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Preface

There is nothing better than the exact solution of mathematical problems, for example, equa-
tions or integrals. There are a huge number of such relatively simple cases but the number of
complex problems, which have only approximate solutions, is bigger, even tends to infinity.
The approximate solutions are looked for either by analytical methods or by numerical anal-
ysis. A powerful and widely applicable analytical approach to the obtaining of reliable ap-
proximate solutions is the perturbation method, namely, the development of a perturbation
theory of the selected problem. This general approach is well combined with numerical cal-
culations and computer simulations.

The perturbation theories look alike and can easily be recognized through their main fea-
tures. Their results are represented by infinite series expansions around an exact solution of
a simpler problem. The latter is usually a result of a suitable reduction of the initial problem
when the mathematical part, which is responsible for the lack of exact solution, is ignored.
The ignored part is called “perturbation part." Under the supposition that the perturbation
term has a small effect on the final result, the solution of the entire problem is represented as
an infinite series in powers of some expansion parameter, which is a small factor in the ig-
nored term. The first term in this expansion is usually labeled by the subscript “0" (zero-or-
der term) and represents the solution of the exactly solved reduced task, whereas the other
terms are in powers of the expansion parameter.

The perturbation series are infinite, but in the self-consistent theories, the magnitude of the
terms in nonzero power decreases with the increase of the expansion parameter powers, and
the final sum of the perturbation terms is smaller than the zero-order term. In this much
desired case, the perturbation leads to a relatively small correction to the result for the exact-
ly solvable part of the problem. This usually happens under some conditions that depend on
the features of the specific task and are to be deduced within the development of the theory.
In case of a number of relevant problems, both in mathematics and natural sciences, the per-
turbation contributions are larger than the zero-order solution. This circumstance requires a
more specific interpretation of the final results.

In other important cases, the perturbation series are divergent for some parameters of the
theory. This situation is frequent in research problems in natural sciences, in particular, in
physics. Significant efforts to extract useful information from asymptotic perturbation series
are the daily concern of many theoretical physicists working on the most important physics
problems, particularly in the field of quantum field theory and in the theory of phase transi-
tions, where the interparticle interactions are relatively strong. Namely, the interaction
terms in the Hamiltonian of a physical system are usually chosen as the perturbation part of
perturbation expansions in quantum field theory and statistical physics, where the perturba-
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tion methods are widely used on the basis of the so-called Green’s function approach. In
modern theory of strongly interacting systems, the perturbation expansions are combined
with ideas of scaling and renormalization, and thus these expansions are in the basis of the
so-called renormalization group. The latter is a powerful tool of investigation of the effect of
strong interactions in field theories.

Once introduced and highly developed in physics, perturbation methods of study are also
spread in chemistry—mainly in quantum chemistry, in physical chemistry, in chemical
physics, and in biophysics. In the last three—four decades, new interdisciplinary research
fields appeared, for example, sociophysics and econophysics, where perturbation theories
together with numerical analysis and computer simulations will undoubtedly be very im-
portant.

The book contains seven chapters, written by noted experts and young researchers who
present their recent studies of both pure mathematical problems of perturbation theories
and application of perturbation methods to the study of important topics in physics, for ex-
ample, renormalization group theory and applications to basic models in theoretical physics
(Y. Takashi), the quantum gravity and its detection and measurement (F. Bulnes), atom-pho-
ton interactions (E. G. Thrapsaniotis), treatment of spectra and radiation characteristics by
relativistic perturbation theory (A. V. Glushkov et al.), and Green’s function approach and
some applications (Jing Huang). The pure mathematical issues are related to the problem of
generalization of the boundary layer function method for bisingularly perturbed differential
equations (K. Alymkulov and D. A. Torsunov) and to the development of new homotopy
asymptotic methods and their applications (Baojian Hong).

Dimo I. Uzunov

Professor of Physics

Bulgarian Academy of Sciences
Sofia, Bulgaria



Chapter 1

Perturbed Differential Equations with Singular Points

Keldibay Alymkulov and
Dilmurat Adbillajanovich Tursunov

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67856

Dedicated to academician of National Academy Sciences Kyrgyz Republic
and Corresponding member of RAS Imanaliev Murzabek

Abstract

Here, we generalize the boundary layer functions method (or composite asymptotic
expansion) for bisingular perturbed differential equations (BPDE that is perturbed dif-
ferential equations with singular point). We will construct a uniform valid asymptotic
solution of the singularly perturbed first-order equation with a turning point, for BPDE
of the Airy type and for BPDE of the second-order with a regularly singular point, and
for the boundary value problem of Cole equation with a weak singularity.A uniform
valid expansion of solution of Lighthill model equation by the method of uniformization
and the explicit solution—this one by the generalization method of the boundary layer
function—is constructed. Furthermore, we construct a uniformly convergent solution of
the Lagerstrom model equation by the method of fictitious parameter.

Keywords: turning point, singularly perturbed, bisingularly perturbed, Cauchy prob-
lem, Dirichlet problem, Lagerstrom model equation, Lighthill model equation, Cole
equation, generalization boundary layer functions

1. Preliminary

1.1. Symbols O, o, ~. Asymptotic expansions of functions

Let a function f(x) and @(x) be defined in a neighborhood of x = 0
Definition 1. If hm £ (x = M, then write f(x) = O(@(x)), x — 0, and M is constant.

If hm q)()){()) =0, then wrltef( x) =o(p(x)), x—0.

If hm go(? = 1, then write f(x) ~¢(x), x— 0.

Deﬁmtzon 2. The sequence {0, ()}, where 0,(¢) defined in some neighborhood of zero, is called
the asymptotic sequence in ¢ — 0, if

I m EC H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [{(cc) ExgNN
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6n+1(5)

=0, vwn=12...
20 0,(e) "

For example.
("), {(1/1n(1/e)>"}, {(5111(1/5))”}.

Note 1. Everywhere below ¢ denotes a small parameter.

Definition 3. We say that f(x) function can be expanded in an asymptotic series by the asymp-
totic sequence {¢,(x)}, x — 0, if there exists a sequence of numbers {f, } and has the relation

F0) =3 fupulx) + O (@), 10,
k=0

and write

FOTY figen), x—0.
pay

1.2. The asymptotic expansion of infinitely differentiable functions

Theorem (Taylor (1715) and Maclaurin (1742)). If the function f(x) € C* in some neighborhood
of x = 0, then it can be expanded in an asymptotic series for the asymptotic sequence {x"}, i.e.,

f(x) ~anx", where f = " (0)/n!.
n=1
Thus, the concept of an asymptotic expansion was given for the first time by Taylor and
Maclaurin,although an explicit definition was given by Poincaré in 1886.
1.3. The asymptotic expansion of the solution of the ordinary differential equation

Consider the Cauchy problem for a normal ordinary differential equation
y (@) =fxye), y0)=0. (1)

The function f(x, y, ) is infinitely differentiable on the variables x, y, ¢ in some neighborhood
0(0,0,0). It is correct next.

Theorem 1. The solution y = y(x, €) of problem (1) exists and unique in some neighborhood
point O(0,0,0) and y(x, €) € C”, for small x, ¢.

Corollary. The solution of problem (1) can be expanded in an asymptotic series by the small
parameter ¢, i.e.,

v e) = 3 ey ) @
k=1

Here and below, the equality is understood in an asymptotic sense.



Perturbed Differential Equations with Singular Points
http://dx.doi.org/10.5772/67856
Note 2. Theorem 1 for the case when f(x, y, €) is analytical was given in [1] by Duboshin.

Note 3. This theorem 1 is not true if f(x, y, €) is not smooth at e. For example, the solution of a
singularly perturbed equation

ey (x) = —y(x), y(0)=a
function y(x) = ae~*/¢ and is not expanded in an asymptotic series in powers of ¢ because here
f(x,y,€) = —y(x)/e and f have a pole of the first order with respect to ¢.

Note 4. The series 2 is a uniform asymptotic expansion of the function y(x) in a neighborhood
of x =0.

For example. Series

yr &) =1+ext +(ex )2 4. 4 (ex )" +...

It is not uniform valid asymptotic series on the interval [0, 1], but it is a uniform valid
asymptotic expansion of the segment [¢%, 1], where 0 < & < 1.

1.4. Singularly perturbed ordinary differential equations

We divide such equations into three types:

@ Singular perturbations of ordinary differential equations such as the Prandtl-Tikhonov
[2-56], i.e., perturbed equations that contain a small parameter at the highest deriva-
tive, i.e., equations of the form

V) =fxye), y0)=0  &(x)=gxye), z0)=0,

where f, g are infinitely differentiable in the variables x, y, ¢ in the neighborhood of
0(0,0,0). It is obvious that unperturbed equation (¢ = 0)

Yo' (x) =f(x,y,0), 0=g(xy0)

is a first order.

Definition 4. Singularly perturbed equation will be called bisingulary perturbed if the
corresponding unperturbed differential equation has a singular point, or this one is
an unbounded solution in the considering domain.

For example
1. Equation ey/(x) = —y(x) is a singularly perturbed ordinary differential equation.

2. Equation Vander Pol
ey (x) + (1= y*(0)y (x) + y(x) = 0.

It is a bisingularly perturbed ordinary differential equation with singular points,
if y(x) = £1.
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an

(I

3. ey(x) —xy(x) =1, x€[0,1] is a bisingularly perturbed equation, because the
unperturbed equation has an unbounded solution y,(x) = —x .
4. ey'(x) —xy(x) =1, x€]0,1]is abisingularly perturbed equation also.

Singularly perturbed differential equations such as the Lighthill’s type [57-69], in
which the order of the corresponding unperturbed equation is not reduced, but has
a singular point in the considering domain.

For example, a Lighthill model equation

(x +ey())y' (x) +p()y(x) = r(x), y(1) =a

where x €[0, 1], p(x), r(x) € C”[0, 1]. For unperturbed equation

xyp(x) + p(x)yo (x) = r(x),

point x = 0 is a regular singular point.

A singularly perturbed equation with a small parameter is considered on an infinite
interval. For example, the Lagerstrom equation [70-81]

Y’ (x) + nx 7y (x) + y(x)y (x) = By ()%,
y(e) =0,y(e) = 1.

where 0 < § is a given number and # is the dimension space.

Remark. The division into such classes is conditional, because singularly perturbed
equation of Van der Pol in the neighborhood of points y = %1 leads to an equation of
Lighthill type [2, 3].

1.5. Methods of construction of asymptotic expansions of solutions of singularly perturbed
differential equations

1.

The method of matching of outer and inner expansions [13, 19, 28, 29, 37, 49] is the most
common method for constructing asymptotic expansions of solutions of singularly
perturbed differential equations. Justification for this method is given by II'in [22]. How-
ever, this method is relatively complex for applied scientists.

The boundary layer function method (or composite asymptotic expansion)dates back to the
work of many mathematicians. For the first time, this method for a singularly perturbed
differential equations in partial derivatives is developed by Vishik and Lyusternik [52] and
for nonlinear integral-differential equations (thus for the ordinary differential equations)
Imanaliev [24], O'Malley (1971) [38], and Hoppenstedt (1971) [42].

It should be noted that, for the first time, the uniform valid asymptotic expansion of the
solution of Eq. (5) is constructed by Vasil'eva (1960) [50] after Wasow [69] and Sibuya in
1963 [68] by the method of matching.
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This method is constructive and understandable for the applied scientists.

3. The method of Lomov or regularization method [33] is applied for the construction of
uniformly valid solutions of a singularly perturbed equation and will apply Fredholm
ideas.

4. The method WKB or Liouville-Green method is used for the second-order differential
equations.

5. The method of multiple scales.

6. The averaging method is applicable to the construction of solutions of a singularly
perturbed equation on a large but finite interval.

Here, we consider a bisingularly perturbed differential equations and types of equations of
Lighthill and Lagerstrom.

Here, we generalize the boundary layer function method for bisingular perturbed equations.
We will construct a uniform asymptotic solution of the Lighthill model equation by the
method of uniformization and construct the explicit solution of this one by the generalized
method of the boundary layer functions.

Furthermore, we construct a uniformly convergent solution of the Lagerstrom model equation
by the method of fictitious parameter.

2. Bisingularly perturbed ordinary differential equations

2.1. Singularly perturbed of the first-order equation with a turning point

Consider the Cauchy problem [5]

&y (v) +xy(x) =f(x), 0<x<l, y(0)=a )
where f(x) e C7[0, 1],f(x)=ikak, fe = ®0)/k!, fo #0; ais the constant
k=0

X
Explicit solution of the problem (3) has the form: y(x) = ae /2 + %J "2 £ (5) s,
0

The corresponding unperturbed equation (¢ = 0)
—xy(x) +f(x) =0,

has a solution y(x) = f(x)/x, which is unbounded at x = 0.

If you seek a solution to problem (1) in the form
y(x) = yo(x) + ey (x) + 2y, (0) + .., (4)

then

5



6 Recent Studies in Perturbation Theory

R

v () = x yp ()~ fox 3, x—0,
vo(x) =x7 'y (x)~ 3fx°, x—0,
y3(x) =x"h(x)~ 3-5f x>, x—0,

v, () =xy ()~ 3-5- ... 2n—1)fpx @D, x -0,

and a series of Eq. (4) is asymptotic in the segment (+/¢, 1], and the point xo=y/¢ = p is singular
point of the asymptotic series of Eq. (4). Therefore, the solution of problem (3) we will seek in
the form

y(x) = p g (8) + Yo(x) + mo(t) + [J(Y1(x) + m(t)) + 12 (Yz(x) + nz(t)) +.., u—0
(5)
where Yi(x)eC™[0,1], m(t)eC™[0,u""], x=put and boundary layer functions m(t)
decreasing by power law as t — oo, that is, 7t (t) = O(t™), t— oo, meN.
Substituting Eq. (5) into Eq. (3), we obtain

7y (1) + 1Y () + prg () + P Y3 (x) + i (1) + p Y5 (x) + P () + pP Y5 (x) + pim(f) + ..
+ xYo(x) + uxYq(x) + p2x Yo (x) + 1B2xY5(x) + ...+t (t) + ptro(t) + p2tr (t) + pitma(t)
+ ptns(t) + ... = f(x).

(6)
The initial conditions for the functions m,_1(f), k=0, 1, ... we take in the next form
11_1(0) =0, 1o(0) = a — Yo(0), m(0) = —=Y¢(0), k=1,2,...
From Eq. (6), we have
0 7 (Bt (f) +xYo(x) = f(x), (7.-1)
pls () 4 tro(t) + xYa(x) =0, (7.0)
() 4 () + XY () + Y, (x) =0, k=1,2,... (7.k)

To Y (x) function has been smooth, and we define it from the equation
XYo(x) = f(x) =fo = Yolx) = (f(x) = fo) /%,

and then from Eq. (7.—1), we have obtained the equation
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(1) + () =,

Therefore

t
n_i(t) = foe_tz/zjesz/zds eCo,ul),
0

Obviously, this function bounded and is infinitely differentiable on the segment [0, u '], and

1 3

This asymptotic expression can be obtained by integration by parts the integral expression for
mi_1(t).

Eq. (7.0) define Y (x) and mo(t). Let Yq(x) =0, then
mo(t) + tr(t) =0, mp(0) =a—f;
Hence, we find
() = (a—fr)e
From Eq. (7c) for k = 1, we have
T (8) + tra (t) + xYa(x) + Yy (x) = 0.
Let xY5(x) = Y{(0) — Y{(x), then 7 (£) + tr1(t) = —Y;(0).

From these, we get

Ya(x) = (Yp(0) = Yp(x))/x, mi(t) = —fze*“/zjesz/zds eCou),
0

and

1 3
:%(1+—+t—4+...), f— oo,

m-1(t) 2

From Eq. (7c) for k = 2, we have

0 (F) + ta(f) + xY3(x) + Y7 (x) = 0 or 715 (¢) + tma(t) + xY3(x) = 0.

Let Y3(x) =0, then
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7T/ 2(1’) + i’ﬂz(t) =0, 772(0) = —Yz(O) = 2f3.
From this, we get
T (£) = 2f e~ F/2.

Analogously continuing this process, we determine the others of the functions Yy (x), ().

In order to show that the constructed series of [Eq. (5)] is asymptotic series, we consider
remainder term R, (x) = y(x) — y,,(x),

where y,,(x) = L711(5) + Yo(x) + mo(8) + (Y1) + 71(8)) + .+ 1 (Y ) + (D).
For the remainder term R,,(x), we obtain a problem:

eR (%) + xRy (x) = —u"™2Y! (x), 0<x<1, Ry,(0)=0. (8)

We note that if m is odd, then Y/, (x) = 0.

The problem (8) has a unique solution

X
Ro(x) = —u"e < [Y, ()" s,
0

and from this, we have R,,(x) = O(u™), u — 0, x€[0,1].

2.2. Bisingularly perturbed in a homogenous differential equation of the Airy type

Consider the boundary value problem for the second-order ordinary in a homogenous
differential equation with a turning point

ey'(x) —xy(x) =f(x), x€(0,1), ©)

y(0)=0, y(1)=0. (10)

wheref(x):ikak/ x—0, fi=fY0)/K, f,#0,
k=0

Note 5. It is the general case of this one was considered in Ref. [8, 45-47].

Without loss of generality, we consider the homogeneous boundary conditions, since
y(0) =a, y(1) =b, a®+b*#0, using transformation

y(x) =a+ (b —a)x +2(x),

can lead to conditions (10).
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If the asymptotic solution of the problems (9)-(10) we seek in the form

y(x) = yp(x) + ey (x) + 7y (x) + ..., (11)
then we have
Yolx) = _f(TX) ”fox&/ x—0,

y(x) =27y ~1- 2fpxt, x =0,
yo(x) =2y ()~ 1-2-4-5fx7, x—0,
yi(x) =x ()~ 1-2-4-5-7-8fx 10, x—0,

y, () =xy" [(x)~1-2-4-5-7-8-...-(3n—2)-3n—1) fox D, 0<n, x—0,

and the series (11) is asymptotic in the segment (/¢ 1]. The point xo= /= p is singular point
of asymptotic series (11).

The solution of problems (9) and (10) will be sought in the form
y(x) = () + Yo (Vi) + lt)) + ZAkwk (12)
k=0

where t=x/y, p= Ve, n=(1-x)/A, A=/e. Here, Yi(x)€C~[0,1], me(t) €C7[0,1/y] is
boundary layer function in a neighborhood of t = 0 and decreases by the power law as t — o,
and the function wy(t) € C7[0,1/A] is boundary function in a neighborhood of n =0 and
decreases exponentially as 1 — .

Substituting Eq. (12) in Eq. (9), we get

Y H () — e (¢ )+Zuk”n xZu"Yk (x) =f(x) (13)

k=0

oo

S Ak (wi(n) — (1 = Anyn(n)) =o. (14)

k=0

From Eq. (13), we have

W 7 () =t (H) — xYo(x) = f(x), (15.-1)
uh o wo(t) = tro(f) — xYa(x) =0, (15.0)

W2 my(t) =t (t) — xYa(x) =0, (15.1)

12 7o) =t (t) + Yo (x) — xYs(x) =0, (15.2)

() =t () + Y s (x) —xYi(x) =0, k>3, (15.k)
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Boundary conditions for functions m_1(¢), k= 0,1, ... we take next form

1_1(0) =0, 7,(0) = —Y%(0), lir%nk,l(l/y) =0, k=0,1,2,...
=

To Y (x) function has been smooth; therefore, we define it from the equation
—xYo(x) =f(x) = fo = Yo(x) = =(f(x) = fy)/x,
then from Eq. (15.1), we have the equation

() — tna(t) = £,

Let us prove an auxiliary lemma.
Lemma 1. Next boundary value problem

Z'(t) —tz(t) =b, 0<t<1/u, herebis the constant,

z(0) =2 z(1/u) —0, u—0

will have the unique solution and this one have next form

1/ 1/u

:211(((2)) — b (Ai(t)J; Bi(s)ds + Bi(t)J

t

z(t) = 2°

Ai(s)ds — Ai(t)ﬁj

0 Ai(s)ds),

and z(t) € C7[0, 1.
Proof. We verify the boundary conditions:

1/u

2(0) = 2° — b (Bi(O)JW Ai(s)ds — Ai(O)\/§J Ai(s)ds),
0 0
as Bi(0) = Ai(0)v/3, so z(0) = 2°.
. 1/u
2(1/p) = 2° Aﬁéﬁ‘) — (1 — V3)Ai(1 /,,l)JO " Bi(s)ds,

as Ai(t)~ 437, Bi(t)~ 43", t— e, s02(1/u) = O(u), u— 0.
Now we show that z(f) satisfies Eq. (16). For this, we compute derivatives:

1/u

Ai(s)ds — Ai’(t)\/gjl/y Ai(s)ds)

0

2(H) = 2° fé ((0? b (Az"(t)L Bi(s)ds + Bi/(t)J

t

1/ 1/u

2'(H) =2° Ai.”(t) — 7t (Ai”(t)r Bi(s)ds + Bi”(t)J

. 1 1
A10) . Ai(s)ds — P Ai (t)\/§J

0

Ai(s)ds)

t
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Substituting the expressions for z”(t) and z(t) in Eq. (17), and given that Ai"(t) — tAi(t) = 0 and
Bi"(t) — tBi(t) = 0, we get: b = b.

The uniqueness of z(t) the solution is proved by contradiction. Let u(t)also be a solution of
problems (16) and (17), z(t) # u(t). Considering the function r(t) = z(t) — u(t), for the function
r(t), we obtain the problem

() —tr(t)=0, 0<t<1/u, r(0)=0, r(1/u)—0 u—0.

The general solution of the homogeneous equation is
r(f) = c14i(t) + ¢uBi(t);, 1 7 is the constant.

Considering the boundary condition r(1/u) — 0, p — 0 we have ¢, = 0; r(t) = c;Ai(t). And
the second condition r(0) = 0, ¢; = 0 follows. This implies that r(t) = 0.

Therefore, z(t) = u(t). It is obvious that z(t) € C*[0, u~!]. Lemma 1 is proved.

This Lemma 1 implies the existence and uniqueness of 7_1(t) € C”[0, u~!] solution of the
problem:

() —tna(t) =f, 0<t<1l/y, m4(0)=0, m_(1/u)—0 u—0.

This function bounded and is infinitely differentiable on the segment [0, 4 1], and as t — oo

1-2 1-2-4-5
7'(1(t)=—f70(1+t—3+t76+...>.

This asymptotic expression can be obtained by integration by parts the integral expression for
1 (f) .

From Eq. (15.0), we define Y7 (x) and 7o(t). Let Y1(x) = 0, then
mo(t) —tmo(t) =0, 10(0) =f;, mo(l/u) =0, u—0,
And by Lemma 1, we have
no(t) = f,Ai(t)/Ai(0).
Analogously, from Eq. (15.1), we define Y,(x) and 7;(¢). Let Y,(x) = 0, then

() —tm(t) =0, mm(0)=0 m(l/pu)—0, u—0.

In view of Lemma 1, we have 7t;(f) = 0.

To Y3(x) function has been smooth; as above, we define it from the equation
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xY3(x) = Yo(x) = Y'0(0) = Ya(x) = (Yo(x) = Y0(0)/x, (Y '0(0) = —2f3),
then Eq. (15.2) to 7 (t)hase the problem
ma(t) —tma(t) = 2f5, m(0)=0, m(l/u) —0, u—0.

By Lemma 1, we can write an explicit solution to this problem, and this solution bounded and
is infinitely differentiable on the segment [0, u~!], and as t — oo

2 1-2 1-2:4-5

i’6

Analogously continuing this process, we determine the rest of the functions Yj(x), mi(t).

Now we will define functions wy(n) from the equality (14) by using the boundary conditions
y(1) = 0 We state problems

Lwy = w'o(n) — wo(n) =0, wp(0) = Yo(1), rl]iil;wo(ﬂ) =0 (18.0)
Lwe = —nuwi-1(n), wai(0) = Y3i(1), wzi—1(0) =0, %ﬂwk(n) =0, kieN. (18.k)

One can easily make sure that all these problems (18.0) and (18.k) have unique solutions such
that wi(17) € CT[0, o), wi(n) = O(e™") with 1 — .

Thus, all functions Yi(x), wi(n), and 7 (¢) in equality (12) are defined, i.e., a formally asymp-
totic expansion is constructed. Let us justify the constructed expansion. Let

3m

Ul) = () + Yt (Yal) + ) + Y Al () = y() — ).
k=0 k=0

Then for the remainder term, we state the following problem:
et m(x) — xry(x) = O(e™12), ¢ -0, x€(0,1). (19)
rm(0) = O V), (1) = O(e"), & —0. (20)

Let 7, (x) = (2 — x*)R,u(x) /2, and then problems (19) and (20) take the form

" 4xe 2¢
U (2 —t ’“) Ru(x) = O(c"*12), &0,

Ry(0) = O(e V), R,(1) =O(e™"), e—0.
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According to the maximum principle [23, p. 117, 82], we have R, (x) = O(e"~1/2), & — 0,x €0, 1].
Hence, we get 7,,(x) = O(¢"1/2), ¢—0, x€[0,1].
Thus, we have proved.

Theorem 2. Let f(0) # 0, then the solution to problem (9) and (10) will have next form

() £ (3) + £ ()

Example. Consider the problem

/() -~y =1+x xe(01), y(0)=0, y(1)=0.

The asymptotic solution this problem we can represent in the form y(x) = u~'n_1(t)+

3
DA (Yelx) () + wo(n) + Awi (1) + Awa () + R(x).
k=0

Wehave got Yo(x) = —(1+x—1)/x=-1, Yi23(x) =0,

1/u 1/u

na(f) = —n(Ai(t)Jt Bi(s)ds + Bi(t)J
0

t

Ai(s)ds — Ai(t)\/§J

. Ai(s)ds),

mo(t) = Ai(t)/Ai(0), m1,2,3(t) = 0,wo(n) =2¢7", wy(n) =O(e™"), k=1,2.
eR"(x) — xR(x) = O(e¥/%),0 < x < 1, R(0) = O(e V%), R(1) = O(&?), e — 0.
We have
y(x) = e Pr_y(t) = 1+ 27NV o (#) + Vews () + ewa () + O(Ve), € — 0.

2.3. Bisingularly perturbed equation of the second order with a regularly singular point

Consider the boundary value problem [6, 7]

Ly=ey +xy —q(x)y=f(x), xe€[01] (21)

where q(x), f(x) € C[0, 1].
Here, for simplicity, we consider the case (0) =1, q(x) 21.

The solution of the unperturbed problem
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My = xy' —qlx)y = f(x),
represented as

) = ()| rls)s s, 23)

1
where
10 = 0, )= exp { [ (3 - 1)s s

Extracting in Eq. (23), the main part of the integral in the sense of Hadamard [34], it can be
represented as

Yo(x) = a(x) + rxp(x)Inx, (24)

where

X

a(x) = xp(x)J (r(s) — 1y — rls)s’zds + rop(x)[x — 1],

ro = 1(0), 11 =7(0) = p(0) " [f'(0) — ' (0)f (0))-
Function a(x) € C7[0, 1].

Theorem 3. Suppose that the conditions referred to the above with respect to g(x) and f(x).
Then the asymptotic behavior of the solution of the problems (21) and (22) can be written as:

iu" (Zk(x) + Wk(t))/ e=% x=pt (26)
k=0

where z(x) € C7[0,1], m(t) €C”[0, u~ 1.

Function zy(x)is a solution of equation

Mz = £(x) - coxp(x),

whereey = p(0) '[f'(0) — ¢/(0)f (0)].

The coefficients zx(x)of the series (26) will be determined as the solution of equations
Mz = —2'1_1(x) — cpxp(x),

where ¢, = p(0) ' [~2"4_1(0) + z'+_1(0)¢'(0)], with boundary conditions z(1) = 0, k>1.

Functions . (f) is the solution of the equations
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Ly = 7k (t) + ti(t) — q(ut) () — crutp(ut)

with boundary conditions 7,(0) = —z(0), r(u~1) = 0.
Next, we use the following lemma.

Lemma 2. The problem
My = f(x) = rixp(x)

It has a unique solution y(x) € C[0, 1].
The proof of Lemma 2 follows from Eqgs. (24) and (25).

Lemma 3. A boundary value problem
Lo=v +t' —o(t)=0, v(0)=a, ov(1/u)=0,
has solution v(t) = aX(t), where

1 2

X(f) = tr sZexp (%) ds, 0<X(t)<1, X(0)=1.

t

The proof of Lemma 3 is obvious.

Lemma 4. In order to solve the boundary value problem
LoW = —ut, W(0) = W(u™') =0,
we have the estimate
0<W(y, t)<e 'Inu .

Proof. This follows from the fact that the solution of this problem existsuniquely by the
maximum principle [23, 82] and will be represented in the form

T 2\ Y 2
Wi t) = ytJ y2exp (— y—)J s*exp <S—> dsdy.
t 2/ Jo 2
Lemma 5. The estimate
[te(p, £)] < Br,

where 0 < Biis constant.

Proof. Consider the function
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Vil t) =W t) +y,X(8) £ mel, 1),
where y, and y, are positive constants such that

1 I[Iolal?\p(x)lf Vo > |2(0)]-

It is obvious that
Vi(p,0) >0, Va(uu ) >0, LiVa=V'i(t) +tV'i(t) = Vi(t) <0

From the maximum principle, it follows that |7t (y, £)| <y, W(u, t) + y,X().
Now the proof of the lemma 5 follows from estimates of W (y, f) and X(f).
If we introduce the notation
n
Y, (x €)= Zsk (zk(x) + e, t)),
k=0

where z;(x), m(p, t)are constructed above functions, then

LeYa(x, &) = f(x) + "2,
Let y(x, &)be the solution of the problems (21) and (22). Then

L (Yalx €)= y(x,0) )| < Be™, Yu(0,€) = y(0, €) = YL, €) — y(1, €) = 0.
Therefore, |Y,(x, €) — y(x, &)| < B,e"tL.

2.4. The bisingular problem of Cole equation with a weak singularity

The following problem is considered [9, 13, 28, 29],
ey (x) + Vay'(x) —y(x) =0, 0 <x < 1,
y(0)=a y(1)=0b
where x€[0,1]; g4, b are the given constants.
The unperturbed equation /xy'(x) —y(x) =0, 0 <x < 1,

has the general solution

Yo(x) = ce®* ¢ — const.

This is a nonsmooth function in [0, 1].
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We seek asymptotic representation of the solution of the problems (27) and (28) in the form:

n 3(n+1)
= Zekyk(x) + Z i () + R(x, €), (29)
k=0 k=0

where t = x/p?, ¢ = 1%, y,(x) €C[0, 1], m(t) €C[0,1/u?], R(x, €) is the reminder term.
Substituting Eq. (29) into Eq. (27), we have

Zekwk )+ VA = )+ (7ol0) + Vi)

3(n+1) . (30)
+ Z T (77 k() + VETi(t) — ﬂk—l(t)) — 12 030,49) () + eR"(x, €) + VAR (x, €)

. —R(x, &) —h(x, &)+ h(x, &) =0

By the method of generalized boundary layer function, we put the term h(x, ¢) Zekhk

into the equation. We choose functions h(x) so that y,(x) € C[0, 1].

Taking into account the boundary condition (28), from Eq. (30), we obtain
Vayo(x) —y,(x) =0, 0<x <1, y(1)=b. (31)

VI (x) =y (x) = i (x) =y, (%), 0<x <1, keN, y(1)=0. (32)
The solution of the problems (31) and (32) exists. It is unique and has the form

g o
yO(X) — be‘z(\/;_l),yk(x) = eZﬁJ Me_z\/gdsl keN
1

We choose indefinite functions fi(x) as follows: ¥}, _;(x) — hx_1(x) € C[0, 1]. We can represent

Yolx) = b2<1+2\f+(\/—>+(2\§) (22() +(2n—\/l§)ﬂ+>

Let 11 (x) = be~2 (2\/3—5 + (23@) T —be? (2\}3(_3 - %)

Then

" 1 2 —
¥ (x) = ho(x) €CJ0, 1], 1Py (t?) = —c1 (m - %), ¢ =be?,
¥ 1 1 1 1
— o 2VE _ - 2v5 _ 2V5 | p=2v5
y;(x) = cre J 1< st taat \/s_?’e >e ds.

We can rewrite y;(x) in the form:
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Y (x) =y 0+ y1,1(2\/3?) +3/1,2<2\/§)2 Jry1,3(2\/§)3 +

— (3 1 _ (1 1 _ (=1 1 _ (=1 1
where ]/1/0 = (§+?)Cl’ yl,l = (E-F?)Cl/ y1/2 - (?‘i‘@)cl/ y1,3 = (1_0+@>C1-

Analogously, we have obtained

in(6) = (129 +315 257 = - L Pt
Then
1 6 2 Fyi | s
Y2(x) = he(x) €C0 1), i (007) = == + =
Continuing this process, we have
T (x) = ZkJ_ 4 y"ﬁ; S k=4 ...n,

where y,_, 4, y;_, 5 are corresponding coefficients of the expansion of y,_, ;(x) in powers of
2 V).

From Eq. (30), we have the following equations for the boundary functions 7,():
Lg = o(t) + Viro(t) =0, 0<t<f, m(0)=a—1yy0), mo(t)=0, t=1/u> (33)

L7tz (t) = 7T3k(t) +yk—1 0<t<p, 773k+1(0) =0, 7T3k+1([~1) =0, k=01,..,n (34

2V/F'
Ln3k+2(t) = T3k+1 (t)/ 0 <t< [:l/ n3k+2(0) = 0/ n3k+2(1‘]) = 0/ k = 0/ 1/ ey n (35)

LTtaks = Tigkan(F) — ykT':, 0<t<i, mx(0)=-y(0), mx(@)=0 k=01, ..n-1 (36)

Litsus1)(£) = Tansa(t) — Lw_f' 0<t<i, mn(0)=0 mz(f)=0 (37)

The solution of problem (33) is represented in the form

2 3/2

i
Tio(t) = (a — be~2 AJ s, e
t

ds

O —— T2

We note that 7y(t) will exponentially decrease as t — [i.

Lemma 6. The general solution of this equation Lz(t) = 0 will have z(t) = ¢; Y (t) + c2X(t); here
c1, ¢ are constants, and
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‘[1 _253/2 ﬁ _2:3/2
V() =1-X(0), X)=a| s (o] eF =)

t 0

Two linearly independent solutions and Y(t) = O(t), t — 0, 0 < X(¢)<1,

1 —1)" ,
X(b) :t%e%f3/2<1—§t%+...+(2n) kﬁ11-4-...-(3k—2)t3?+...), t— [ (38)

Lemma 7. The boundary problem Lz(t) = 0, z(0) = z(f1) = 0 will have only trivial solution.

The proofs of Lemmas 6 and 7 are evident.

Theorem 4. The problem
L2(t) = f(8), 2(0) =0, =(f)) = 0,

will have the unique solution and this one has the next form

IS 2.3/2
z(t) = ,[0 G(t, s)e¥ " f(s)ds,

=Y (t)X(s), 0<t<s,

and G(t,s) = { —Y(s)X(t), s<t<f,

is the function of Green andf(t) € C(0, f1] .

Theorem 4 implies the existence and uniqueness of the solution of problem (34)-(37):
|7t (t)] < I = const, te |0, fi].

Lemma 8. Asymptotical expansions of functions m(t), t — fi (k =1,2,...) will have the next
forms

Yor(p, 4 7, 42 39,
58 4F 11ve 20 )

Yo 23 173 > 23y, (1)
H="2(14+——=+—%+... ], t) = — — 4+ 0= |,
m(t) =" ( 40VP ' 2P ml) == ovE O\

Mgk (t) = £ Iy jt 8, man(8) = V2N g it () = hag it 7.
=0 =0 =1

Proof for Lemma 8.

Firs proof. We can prove this lemma by applying formulas (38) and Theorem 4.

Second proof. We can receive these representations from Egs. (34)—(37) directly.

Now we will prove the boundedness of the reminder function R(x, ¢). This function will satisfy
the next equation:
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eR"(x, &) + VxR (x,€) — R(x, €) = y3("“)n3(n+1)(t) + " (h, (x) — y"”(x)),

R(0,¢) =0, R(1,¢)=0.
Applying to this problem theorem [23, p.117, 82], we obtained

R(x,€)|$e1C max_[maquen)(8) +ha(3) =y, (3]
0<x<1

0<t<fi

Therefore, we have R(x, ¢) = O(¢"™1), ¢ — 0, x€|[0,1].
We prove next.

Theorem 5. The asymptotical expansion of the solution of the problems (27) and (28) and will
have the next form

3(n+1)

y(x) = iskyk(x) + Z yknk(t) +0(e"), e 0.
k=0 k=0

3. Singularly perturbed differential equations Lighthill type

3.1. The idea of the method of Poincare

Consider the equation
My(x) == y/'(x) +y(x) = ey’(x) = 0. (39)

Unperturbed equation has solutions y,(x) = a1 cosx + by sinx (where a1, b; are arbitrary con-
stants) with period 27t. We are looking for the periodic solution of the equation y(x, ¢) with a
period of w(e) = w(0) = 2.

Note that the operator M transforms Fourier series Zak coskx and Zuk sinkx in itself.
k=1 k=1

Poincare’s method reduces the existence of periodic solutions of differential equations to the

existence of the solution of an algebraic equation.

We will seek a periodic solution of Eq. (39) with the initial condition

If we seek the solution in the form
y(x) = yo(x) + ey (x) + 2y, (x) + ...

with the initial conditions
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¥(0) =1 y(1) =0, y,(0) =y(1) =0, k=12,...
then for y, (x), s =0,1, ... we have next equations
Ly, :==y'5(x) + yp(x) =0 = y,(x) = cosx

L *cos3x*§cosx+1C053xé (x)*gxsinxflcos3x+lcosx
n= ! 4 S g 32 32 Y

Thus, y(x) = cosx + § (3xsinx — § cos3x + § cosx) + ...it is not a uniform expansion of the y
(x) on the segment [—eo, o], since the term ex sin x is present here.

If these secular terms do not appear in Eq. (39), it is necessary to make the substitution
x=t1+ea + ax +...)
where the constant a; should be selected so as not to have secular terms in .

Thus, the solution of Eq. (39) must be sought in the form

y(t) = yo(t) + ey, (1) + Ey, () + ...
x=t(1+eas +e*ap +...)

(40)
Then Eq. (39) has the form
')+ (1 +are+ae® +..)z(t) = e(1 + are + are® +..)23(t)
where y(w(e)t) = z(t).
We will seek the 27t periodic solution of this equation in the form
z(t) = zo(t) + ez1(t) + 2z () + ...
Then

Lzo :=Z'((t) + zo(t) = 0 = zo(t) = cost.

3 1
Lzi(f) = cost—l—z COSt-l-Z cos 3t.

The function Z;(t) will have the periodical solution we take a; = —3/4. Then z(t) = — 35 cos 3t.

Similarly, from equations

2n+1
az,(t) = —aycost+ g(ay, az, ..., ay_1) cost + Zﬁn cos mt
m=1

a,, and etc. are uniquely determined.

21
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Theorem 6. Equation (39) has a unique 27t/w periodic solution, and it can be represented in the
form (40).

3.2. The idea of the Lighthill method
Lighthill in 1949 [67] reported an important generalization of the method of Poincare.

He considered the model equation [67, 82]:

(x+ey(0)y () +g(x)y(x) = r(x),  y(1) =a (41)
where x €0, 1]g(x), r(x) € C”[0, 1].
Lighthill proposed to seek the solution of Eq. (41) in the form

Y(&) = yp(&) + ey (&) + 2y, (&) + ...

x =&+ ex1 (&) + (8 + ... (42)

It is obvious that Eq. (42) has generalized the Poincare ideas (see, the transformation Eq. (40)).

At first, we consider the example
(x+ey(0)y (x) +y(x) =0, y(1) =D. (43)
It has exact solution
X2 4 2be + 2b* — x)/e. (44)
It is obvious that for b > 0, the solution (43) exists on the interval [0, 1] and

y(0) = V2b + eb?/+/e.

The solution of Eq. (43) is obtained by the method of small parameter that can be obtained
from Eq. (44). For this purpose, we write Eq. (44) in the form

_X_ €, (8
ﬂ@_€<1+ 1+%x+bg)>

and considering x> > 2¢b, this expression can be expanded in powers of ¢, and then we have
b b e, , 1/e\n

The series (45) is uniformly convergent asymptotic series only on the segment
1], 0 <a<1/2.

First, we write Eq. (43) in the form
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(x+ey(8)y' (&) +y(&)x' (&) =0 (46)
Substituting Eq. (42) into Eq. (46):

(E+e(yo(é) +x1(8) + .. +€"(Y, 1 (&) +xu(E)) + ) (Yo (E) + eyi(€) + ...+
+e"y (E) + )+ (Yo (&) + ey (&) + ey (&) + .. )+ exf (&) + ...+ "X (&) +...) =0

and equating coefficients of the same powers ¢,we have

EVH(E) + ¥y(8) = 0 (47)
EVA() + (&) + j}é(wi(a 351 (E)Wy 1) YO (E) =0 y,()=0,n=12,..
(48)
From Eq. (47), we have
Yo(&) =b&.

Using Eq. (47), Eq. (48) for n = 1 can be written as
EY(E) + 11 (&) = (Ex1(8) = x1(8) + 1, (E)yp(E) = 0, (1) =0. (49)
If we put x; (&) = 0 in Eq. (49), we obtain
(&) +y,(8) = =77, (1) =0.
Hence, solving this equation, we have
y, (&) =1 (28) 7 =P (28%) 7.

Since differentiation increased singularity of nonsmooth function, we select x1 (&) so that the
expression in the right side of Eq. (49) is equal to zero, i.e.,

Exy(&) —x1(&) + (&) =0, x1(1) =0.
Hence, we have
x1(8) = 27108 — (28) b
Then Eq. (49) takes the form

(&) +1,(8) =0, y,(1)=0.

Hence, we obtain y, (&) = 0.

23
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Now Eq. (48) for n = 2 takes the form
&a(E) +1,(8) = (Ex3(8) = xa(E)yo() =0, y,(1) =0.

Let x2(&) =0, and then y, (&) = 0. Further also choose x;(&) = y.(&) =0 (i=3,4,...), as they
also satisfy the initial conditions. Thus, we have found that

y(&) =b&! (50)

(&) =& +§ (5 - %) ‘. (51)

Putting in Eq. (51) x = 0, we have

n=/be/(2+ be). (52)

For b > 0, the point x = 0 is achieved. Moreover, the except in variable £ from Eq. (50) and to
Eq. (51) setting &, we obtain the exact solution (44).

Now we will present the main idea of the Lighthill method to Eq. (41) under
conditions:q(x), r(x) € C*[0, 1] and g, = q(0) > 0. We will write it in the form of

(x(&) + ey(E)y (&) = [r(x(8)) — q(x(E)y(E)x' (&), y(1) =" (53)

It is obvious that we have one equation for two unknown functions, y(&), x(). Now we substitute
the series (42) to Eq. (53):

(6 e o)+ 6) Y-ek(0) -
= (ji;w(é) (;xk(é)fk)j - ]i;qj(é) (iOXk(E)Sk)j JEED S AGES?

k= k=0

where g, = (&) = 1g0(&), 1, = 1(&) = 1r9(E).

Hence, equating the coefficients of equal powers has ¢

Lug = Eyp(E) +q(E)y, (&) =), yo(1) =9, (54)
Ly, = [Eyoxt — yox1 — Yo¥ol + (11 — qiyo)x1, y,(1) =0, (55)
Ly, = [&yoxs = (o +x0)y7 — (1 +x2)y0 + (1 = qyyp)x1 — qy)x1]+ (56)

+{rixa + rox? — qi1x1y; — (qy%2 + ’123@%}/ ¥,(1) =0,

Ly = s = Yo+ Fuy o Yoy 1 Bt Y o o Koo
He,Wor - Yy X1, - X)), y,(1) =0; .

where q = q,, ¥ =1,
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w=—Wot X))y — Wy + %2y — o — Wy T Xn-1)Vh — V1Yot
(= qy; — qixay)x, g + (rixe +r2xd = qy, — gixayy — (@x2 + 633)y) %o + ..
+ (11201 + 2122122 + 2722023 + .. + XL — T Y1 Xn—2 — (G Xn-1 + 2G,X1X5—2 + ...
+qn71x¥71 )yé))xllf

8 = T1Xn + 212X121 + o + 1 XE — qyx1y,_; — (G1%2 + 4,X)Y, 5 — .-

=%+ 2q1%1 + .+ ,X7)Y,-
In these equations, the coefficient r(&) —q(&)y,(&) of the derivative x),(§) (n=1,2,...)was
replaced by Eq. (54) on &y (£).

From Eq. (57) for n =1,2,..., it follows that if we want to define functions x,() (n=1,2,...)
from this differential equations, then we must assume that

&o(&) = (&) = q(E)yp(&) #0, £€(0,1]. (58)

And this condition cannot be avoided by applying the Lighthill method to Eq. (41). Condition
(58) first appeared in [69], justifying Lighthill method, then in the works Habets [66] and
Sibuya, Takahashi [68]. Comstock [65] on the example shows that the condition (58) is not
necessary for the existence of solutions on the interval [0, 1]. Further assume that the condition
(58) holds. Note that the right-handside of Eq. (57) is linear with respect to x,(&), and f,
function depends from y, ..., y,,_4, X}, ..., x,,_; only.

The solution of Eq. (54) can be written as

&

Yo(&) = &70g(E)(y° + L shlr(s)g™ (s)ds) == £ Pw(&), (59)

where g(&) = exp (LE (‘70 - q(s))s‘lds).
Let

1

w =y’ - L s71r(s)g ™ (s)ds # 0wy = w(0) # 0.

Hence, we have

Yo(&) ~& hwy,  E—0. (60)

Since the differentiation of y,(&) increased of its singularity at the point & = 0, it is better to
choose such that the first brace in Eq. (55) is equal to zero, i.e.,

&y =x1+y, x(1)=0.

Hence, using Eq. (60), we obtain
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wo
1+q,

£, (61)

&
x1(&) =&+ §J sy (s)ds~ —
1
Then Eq. (55) takes the form
Ly, = (11 — gyyo)x1 ~a1 &%,
where a;=const. Hence, we have

Y1 (&) ~m E720(ay = const), & — 0. (62)

Now equating to zero the expression in the first brace in the right-hand side of Eq. (56), we
have

&xs —x2 =Yy + (9 + 1% — ((n1 = dyyo)x1 = qyp)¥)) ()" ~ba& >, by = const.

From this, we get

xz(é)szé’z%, by = const, & — 0. (63)
Now Eq. (56) takes the form

Ly, = 8,(Yo Yy, X1, %2) ~ @& >0, @5 = const, & — 0

Solving this equation, we have

Y(&)~a& M, ay = const, & — 0 (64)
Next, the method of induction, it is easy to show that

Xi(&) ~bE T,y (&) ~aE TN, j=1,2,.... (65)

Thus, the series (42) has the asymptotic

Y(E)~E 0 (wo +areE ™+ ay(eE0)" +.), £ 0, (66)
i wo —qy o L £—0)\2 e\
x~& 1‘1“705 é+b2(é£ ) ++b”(éé ) + ... (67)

From Eq. (67), it follows that the point x = 0 corresponds to the root of the equation

n+exi(n) +exm) +...=0 (68)

Moreover, this equation should have a positive root and if the solution of Eq. (41) exists on the
interval (0, 1]. Solving Eq. (68), we obtain
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N~ (woe/1 + qo)l/(lﬂu), e —0. (69)

And, under the conditionwy > 0, 1, will be positive. It is obvious that on the interval [&, 1]
series (42) or (66) and (67) remains asymptotic. Substituting Eq. (69) into Eq. (66), we have

woe —qo/(144q0)
> , €¢—0.

1+g4,

y(0)

If wy < 0 the point x = 0 does not have the positive root of Eq. (68), so that the solution of
Eq. (41) goes to infinity, before reaching the point x = 0.

We have the

Theorem 7. Suppose that the conditions (1) g(x), r(x) € C7[0,1]; (2) g, >0; (3) wo > 0; (4)
&yp #0, £€0,1]. Then the solution of problem (41) exists on the interval [0, 1], and it can be
represented in the asymptotic series (42), (66) and (67).

Theorem 7 proved by Wasow [69], Sibuya and Takahashi [68] in the case where g(x), r(x) are
analytic functions on [0, 1]; proved by Habets [66] in the case g(x), r(x) € C2[0, 1]. Moreover,
instead of the condition (3) Wasow impose a stronger condition: a >> 1.

In the proof of Theorem 7, we will not stop because it is held by Majorant method.

From the foregoing, it follows that Wasow condition y;(&) # 0, £€(0,1] is essential in the
Lighthill method.

Comment 2. Prytula and later Martin [65] proposed the following variant of the Lighthill
method. At first direct expansion determined using by the method of small parameter

Y(x) = yo(x) + ey, (x) + €y, (x) + .. (70)
and further at second they will make transformation
x =&+ exi (&) + 22 (8) + ... (71)

Here unknowns x;(¢) are determined from the condition that function y;(&) was less singular
function y;_; (&). We show that using the method Prytula or Martin, also cannot avoid Wasow

conditions. Really, substituting Eq. (71) into Eq. (70) and expanding in a Taylor series in powers
of €, we have

Y(&) = yo(&) + el (&) + o (E)x1 (&)} + O(e?).

Hence, to obtain a uniform representation of the solution to the second order by &, we must to
put to zero the expression in the curly brackets, ie., x1(&) = —y,(&)/yy(&). Therefore,
Y(&) = y,(&) + O(e?). Hence, it is clear that we must make the condition of Wasow: (&) # 0
in the method of Prytula or Martin also.

27
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3.3. Uniformization method for a Lighthill model equation

We will consider the problem (41) again [3, 58-60], i.e.,
(x +ey(0)y (x) = r(x) —q(x)y(x), y(1) =aq, (72)

Theorem 8. Suppose that the problem (72) has a parametric representation of the solution
y=y(&), x =x(&), where £€n, 1], n=n(e) > 0, then the problem (72) is equivalent to the
problem

{ &y (&) = r(x(&)) —q(x(&))y(&), y(1) =y’ 73)
&xX'(&) =x(&) +ey(8), x(1) =1, Len 1],

where 1 = 7(e) is the root equation x(n) = 0 and if the root n = 1(¢) > 0 and x(&) + ey (&) #0
on the interval [, 1].

Proof. Sufficiency. Let the solution of the problem (72) exists and x(&), y(&) are a parametric
representation of the solution of the problem (72). Then introducing the variable-parameter &,
we obtain the problem (73).

Necessity. Let it fulfill the conditions of Theorem 8. Then dividing the first equation by second
one, we get Eq. (72). Theorem 8 is proved.

Equation (73) on the proposal of the Temple [43], we will call uniformizing equation for the
problem (72).

We have the following

Theorem 9. Suppose that the first three conditions of Theorem 8. i.e., (1) g(x), r(x) €C™[0,1]; (2)
9o > 0; (3) wo > 0. Then the solution of problem (72) is represented in the form of an asymp-
totic series (42) and its solution can be obtained from uniformizing equation (73).

The proof of this theorem is completely analogous to the proof of Theorem 8, even more easily.

Only it remains to show that under the conditions of Theorem 9 we can get an explicit solution
y = y(x, €). Really, since

~c wWo 0o .
x¢& 1+%6 e, & —0.
Let
NV Wo —4)2 0= on] WO
F(x, & ¢e)=x £+1+q0¢§ oe—i—O((gE o) )/ E—0,1 1+%€,€ 0.
then
OF(x, &, €
T)LS:,](E) =-1- qO + O(Sl/(1+%)) ?é 0/ ée [77/ 1]

Therefore, by the implicit function theorem, we can express & : & = @(x, €).
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Then when we put it in first equality (42), we obtain an explicit solution y = y(x, ).
Comment 3. Explicit asymptotic solution that this problem obtained in Section 3.4.

Example 43. Uniformized equation is

{ &y'(&) =—y(&), y()=b,
&x'(&) =x(&) +ey(e), x(1)=1, e

It is easy to integrate this system, and we obtain

(&) =be™ x(&) = (1+27"be)e — (28) bz,
Hence, excluding variable &, we have an exact solution (44).
Example 2 [37, 43])

(x +ey(x)y' () + 2+ x)y(x) =0, y(1) =e".

Uniformized equation is

{ (&) =x+ey(), x(1)=1, (74)
&) =-2+x(yE), y1)=e', Eenl]

Let

{ x(&) = x0(&E) + ex1 (&) + O(e?), 75)
Y(&) = yo(&) + ey, (&) + O(e?),

Substituting Eq. (75) into Eq. (74), we have

£ ¢
x(&) =& x1(8) = EJ e s s, yy(&) =€ tE2 (&) = —e"fé’zj e s s,
1

1

Hence if £ — 0, we obtain

1 1
x0(€) =€, x1(5)=—§5_2+..., Yo&) =&+ .., yl(é):—gé‘4+...

From the equation x(1) =0, we find n: n~{/¢/3.
We prove that x(&) + ey(&) # 0 on the interval [n, 1].

Really,
x(&) +ey(&)E+eE2 40 Eel 1)

3.4. It is construction explicit form of the solution of the model Lighthill equation

We will consider the problem [57], i.e., (41) again
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(x +ey(0)y (x) +g(x)y(x) = r(x), y(1) =b (76)

where b is given constant, x€[0,1], y'(x) = dy/dx . Given functions are subjected to the condi-
tions U: ¢(x), r(x) € C™)[0, 1].

Here, we consider the case q, = —1; this is done to provide a detailed illustration of the idea of
the application of the method. We search for the solution of problem (76) in the form

) = i)+ 3 () + () ) 7)
=0

where t = x/y, & = 12, u(x) € C™[0,1] and m(t) € C*)|0, Lol po =1/
Note that 7 (t) = mi(t, 1) , i-e., tr(t) depends also on y, but this dependence is not indicated.

The initial conditions for the functions 7;(t) are taken as
noa(l/u) =by, b=u" = pru (1), m(u) =0, k=0,1,.. (78)
k=0

Substituting Eq. (77) into Eq. (76), we obtain to determine the functions m;(t), k= —1,0,1, ...,
uy,(x), n=0,1,...,

we have the following equations:
(£ 7a0) 72 () = e Hra(t), 7 (pg) = by, (79-1)
Lug(x) == xu/o(x) — g(x)uo(x) = r(x), uo(x) €C™)0,1] (80.0)

Dro(t) = (t + 7L1(t))n’0(t) + (n',l(t) T t))no(t) = —up(tw)'_1 (1), 7o) =0 (79.0)

Lui(x) =0, wu(x)eC™|0,1], (80.1)
Dry(t) = —uo(tu)'o(f) + mo())7o(t) — wa (fu)m' 1 (£),  m1(yy) =0 (79.1)
Luy(x) := —up(x)u'o(x), uz(x)€C™)[0,1] (80.2)
Drp(t) := —uo(tp)m' 1 (t) — mo(t) 7' (t) — ua (tp)70'o(t) — ma ()00 (t) — ua(tp) 7' 1 (t), m2(py) =0
(79.2)
Lus(x) := —up(x)u'1(x) — w'o(x)u1(x), us(x)eC™0,1], (80.3)
Dm(t)= > wuhmO+ Y. mOm(E), mslu) =0,
i+j=2 i+j=2 (79.3)
i20,j> -2 i,j0

We solve these problems successively. We write problem (79.—-1) as



Perturbed Differential Equations with Singular Points
http://dx.doi.org/10.5772/67856

t2'(t) — q(ub)z(t) = —2()2 (1), 2(1y) = by,
where
z=m4(t), py=p "
The fundamental solution of the homogeneous equation corresponding to this equation is of

the form
2(t) = exp {Jt q(ys)%} = exp {Jt (ﬂl(#S) + 1) % - Jt %} = p(it#),

H Ho ko

where

p(t p) = eXp{Jt (‘7(#5) +1)§}-

Ho

Using the expression for z°(t), the solution of the inhomogeneous equation for z(t) can be
written as

t

=) =P bt ] 7t e 600

t

Or t(t) = plt, )b~ plt, )| p (5 w2(6)2 5)s

Ho

After integrating by parts, we reduce the last expression to the following equation:

2 22 t
(0) = ple )~ 30+ ple )+ PO [ RIS s g2 sy

Ho

or

t

z%w+mdﬂ—mamm:p@uﬂ s wp~ (s W2 (s)ds = p(t WT(E2)  (81)
Ho

where ¢(s, 1) = (14 q(us))/s, by = 2b + by

Let by > 0. Let us introduce the notation zo(t) = —t + /#* + bop(t, u). This function satisfies the

inequality 0 < zo(#) <Mt~ (t > 0) and is a strictly decreasing bounded function on the closed
interval [0, i,]. Here and elsewhere, all constants independent of the small parameter u are
denoted by M. Let S, be the set of functions z(t) satisfying the condition

- SM, h == t/
2 2ol <My, where |2] = max 2(1)
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Theorem 10. If by > 0, then there exists a unique constraint of the solution of problem (79.-1) from the
set Sy.

Proof. Equation (81) is equivalent to the equation z = F[t, z], where

Flt,2) = —t+ /2 + bp(t, p) + p(t ) T(1, 22).

Suppose that ||@(t p)||<My, 0<m<p(t p)<M, |p~'(t)|| <M. First, let us estimate T(t,z*)
on the set 5,. We have
) Ho 1 5 Ho 5 Ho 5
(e 2)1< [ ot plly™ 5, lls) s Mp | (s)Pds<Mp " z(s) s

1
SMyJ
0

2 o 2
|z(s)|"ds +MuJ |z(s)|"ds < Mp.
1
Here, we have used the triangle inequality
|2(B)]<[2(t) = 20(£)] + |20 ()],

as well as the inequality

lzo()| <Mt (t>0).
The Fréchet derivative of the operator F(t, z) with respect to z at the point zy(t) is a linear
operator:

" ol WP (6 w20 s)hs) ds
\/ £+ p(t, ) (b TG, z2))

F'.(t, zo)h = —p(t, H)J

t

where h(t) is a continuous function on the closed interval [0, ). Note that, in view of
T(t,z) = O(p), the denominator of this expression is strictly positive on the closed interval
[0, o). For F,(t,zp), we can obtain the estimate ||F,(t, zo)|| <Mulnu~! in the same way as the

estimate for T(t, z2). Hence, in turn, it follows from the Lagrange inequality that the operator is
a contraction operator in the set S,. Therefore, by the fixed-point principle, Eq. (81) has a
unique solution from the class S,,. The theorem is proved.

Corollary. The following inequalities hold:
1. z(t)=mn_(t)2M >0 forall t€[0, uy);
2. mq(H)sMtt (£>0).

The other function 7;(t), u;j(x), j=0,1,2,... is determined from the inhomogeneous linear
equations; therefore, the following lemmas are needed.

Lemma 9. For any function f(x) € C[0,1), the equation LE = f(x) has a unique bounded solution
&(x) € C™)|0, 1] expressible as



Perturbed Differential Equations with Singular Points
http://dx.doi.org/10.5772/67856

)= 00| 0 6% 0w = exp { [ (a69+1) £},

s

x
Proof. The proof follows from the fact that the general solution of the equation under consid-
eration is expressed as

£(x) = QU [E(1) + Jl Q () ()ds].

If we choose
1

£(1) =j Q1 (s)f(s)ds.

0

then we obtain the required result.

This lemma implies that all the functions u(x), k=0,1,... are uniquely determined and
belong to the class C™[0, 1].

Lemma 10. The problem
(t+ ()@ + (72 () = () ) () = kB, nlag) =0, (82)

where the function k(t) belongs to C*[0, 1] is continuous and bounded, and if |k(t)| <Mt~2, t — oo, has
a unique uniformly bounded solutionn(t) = 1(t, ) on the closed interval t € [0, u,lfor a small .

Proof. The fundamental solution of the homogeneous equation (82) is of the form

(1+ 2b)g(t, 1) to d
O(t) = ﬁ, gt u) = exp {—Jt (1 + EI(HS)) ﬁ} .

Obviously, ||g(t u)||<M and g~'(t, u) <M for t €0, yyJand paresmall. The solution of problem
(82) can be expressed as

00 =2 s wes )

The estimate of the integral term in Eq. (83) shows that it is bounded by the constant M. Hence,
it also follows that ()| <Mt~ (+ > 0). The solution of problem (79.0) is defined by the integral
Eq. (83), where

7'(_1(t)
k(t) = —up(t _1(t) = —up(t t) ————,
(5 = —wo(tu)m1(8) = ~wo(ta(u)
satisfies the assumptions of the lemma. Therefore, the function 74 (t) is bounded on [0, y1]. The
boundedness of the other functions 7. (t), k =1,2, ... is proved in a similar way, because the
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right-hand sides of the equations defining these functions satisfy the assumptions of Lemma
10. The estimate of the asymptotic behavior of the series (77) is also carried out using Lemma
10.

Let us introduce the notation

n

y() = i)+ Do (el + ) + R (g, (84)

k=0

The following statement holds.

Theorem 11. Let by > 0 (for this, it suffices that the condition by := b — y,(1) > Oholds). Then the
solution of problem (76) exists on the closed interval [0, 1land its asymptotics can be expressed as Eq.
(84) and|Ry+1(x, p)| <M for all x € [0, 1].

Example. Consider the equation
(x+ey@)y@ +yx =1 y1)=b

This equation is integrated exactly

y(x) =& ,

2
—x+ \/x2 + 2bge + €2 (y<°)) + 2ex

where by = b — 1. If by > 0, then the solution of problem (1) exists on the closed interval [0, 1],
which is confirmed by Theorem 11. The equation for 7t_;(¢) is of the form

(t + n_l(t))rc'_l(t) +mq(t) =0, m_q(yy) =by.

The solution of this problem can be expressed as

(t) = —t+ /2 +2b + b u2.

The equation for u0(x) has the solution y,(x) = 1€ C”[0, 1]. Further,

_ —ma(t) +bu

= = =1,2...
TT0(t) T ug(x) =0, k=1,2,..,

where b = by. The asymptotics of the solutions of problem (76) can be expressed as

y(x) = ptro(x/u) + 1+ mo(x/u) + o(p) forallx€[0,1], u— 0.

4. Lagerstrom model problem

The problem [32]
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v'(r) + l;v’(r) +o(r)'(r) = ﬁ[v’(r)]z, v(e) =0, v(e) =1, (85)

where 0 < f is constant, ke N.

It has been proposed as a model for Lagerstrom Navier-Stokes equations at low Reynolds
numbers. It can be interpreted as a problem of distribution of a stationary temperature v(r).

The first two terms in Eq. (1) is (k+ 1) dimensional Laplacian depending only on the radius,
and the other two members—some nonlinear heat loss.

It turns out that not only the asymptotic solution but also convergent solutions of Eq. (1) can be
easily constructed by a fictitious parameter [70]. The basic idea of this method is as follows.
The initial problem is entered fictitious parameter A € [0, 1] with the following properties:

1. A =0, the solution of the equation satisfies all initial and boundary conditions;

2. The solution of the problem can be expanded in integral powers of the parameter A for all
Ao, 1].

It is convenient in Eq. (85) to make setting r = ex, v =1 — u, then
u"(x) + (kx ™t + )i (x) — Aeu(x)u' (x) = [/ (x)]°, u(1) =1, u(e)=0. (86)

We have the following

Theorem 12. For small ¢ > 0, the solution of problem (86) can be represented in the form of
absolutely and uniformly convergent series

u(x) =uo(x, ) +ve(e)ur(x, &) + ... +vp(e)un(x, ) + ...,
for the sufficiently small parameter ¢, where

k-1
k-2

-1
v1(€) ~ (lni) , Vg eln%, U ~ e(j>2) ;ur(x, e) = 0O(1),Vx €[, )

Note that the function u,(x, ¢) also depends on k, but for simplicity, this dependence is not
specified.
Proof. We introduce Eq. (86) parameter 4, i.e., consider the problem

u"(x) + (ke 4 )i (x) — Bl (0)]* = Aeu(x)u' (x), u(1) =1, u() =0 (87)
Here, we will prove this Theorem 12 in the case p = 0 only for simplicity.
Setting A = 0 in Eq. (87), we have

wWot (xk+ ey =0, up(l) =1 uo() =0. (88)

It has a unique solution
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oo

up=Xx¢e)=1-X1(X¢), Xj= COJ s ke~ s, Cal = j s ke~ s.
1 1

Therefore, Eq. (88) with zero boundary conditions is the Green'’s function

K(x,s,€) = Co' Xi(x, €)X(s,¢), 1<x<s,
- Co'Xi(s, €)X(x,€), s<x <o,

Hence, the problem (87) is reduced to the system of integral equations

00

u(x) = X(x, €) + /\SL G(x,s, f)u(s)u’(s)ds, .

u'(x)=X'(x, &) + AEL Gy (x, s, &)u(s)u/ (s)ds,

where

_ [ Xi(x, e)X(s,€) /X' (s, €), 1<x<s,
Gl s ¢) = {Xl (:, sg)X(;, i) /x’(z, i), ey e

In Eq. (89), we make the substitution u = X(x, €)p(x), u' = X'(x, €){(x), and then we have

P =1+ de | Qulns Np(e)p s i= 1+ AeCsl),

L (90)
0 = 1+ e Quli s pls)p(s)s == 1+ AeQu(1),
where
Q; =X Yx,&)G(x, s, €)X(s, €)X'(s, €),
Q) = X '(x,€)Gx(x,5, €)X(s, )X (s, ).
To prove the theorem, we need next
Lemma 11. The following estimate holds
J 1Qj(x s, € )|ds<J X(s, €)ds (G=12) (91)
1

Given that, we have 0<X; (x, €)<1, |X'(x, €)= X'(x,¢), X'(x,€)<0, x€[l, ), we have

J 10,(x,5, € )|ds<J ;(,1((5 e)) 1X/(s, €)|X(s, €)ds+

et X5 )X (s ¢
+L X 1(x, é)—X’l(s, 2

dssr X(s, €)ds + r X(s, €)ds = J: X(s, €)ds.

1 X

Inequality Eq. (91) for j = 2 is proved similarly.
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Further, by integrating by parts, we have

oo =

kil e i e (e
s k+1€ estSJ S k+1e esds/J s ke Sls = ( )
1 1 €

J X(s, &)ds = -1+ COJ
1

1

Consequently,

er X(x, €)ds <vi(e). (92)

It is from integral expressing of vx(¢) we can obtain the asymptotic behavior such as indicated
in the theorem.

With the solution of Eq. (90), we can expand in series

P(x) =1+ @ (x, &)+ @y(x, e)A* + ...,
Y(x) =1+ Wi(x, e)A + Wa(x, e)A* + ...

The coefficients of this series are uniquely determined from the equations

po=Yo=1 ¢, =eQi(1), W1=0Qy(1),
(Pn = ng ((Pn—l) + ‘SQl (lpn—l) + EQl ((len—z) +...+ ng ((pn72lpl)/
V= ¢eQy(p, 1) +€Q(Wi-1) + Qo Wn2) + ... +€Qu(p, ,W1), (n=23,...).

Let z= sup {|p(x)| |¥(x)|}, then by using Eq. (92) we have a Majorant equation:

1<x<eo
z =1+ Avg(¢)z>. The solution of this equation can be expanded in powers A the under condi-
tion 8vy(e) <1 for all A €0, 1].

X(x, e)g, (¥ €)

If we call u,(x, &) = o we get the proof of the theorem.
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Abstract

As we all know, perturbation theory is closely related to methods used in the numerical
analysis fields. In this chapter, we focus on introducing two homotopy asymptotic
methods and their applications. In order to search for analytical approximate solutions
of two types of typical nonlinear partial differential equations by using the famous
homotopy analysis method (HAM) and the homotopy perturbation method (HPM), we
consider these two systems including the generalized perturbed Kortewerg-de Vries-
Burgers equation and the generalized perturbed nonlinear Schrédinger equation (GPNLS).
The approximate solution with arbitrary degree of accuracy for these two equations is
researched, and the efficiency, accuracy and convergence of the approximate solution are
also discussed.

Keywords: homotopy analysis method, homotopy perturbation method, generalized
KdV-Burgers equation, generalized perturbed nonlinear Schrodinger equation, approx-
imate solutions, Fourier transformation

1. Introduction

In the past decades, due to the numerous applications of nonlinear partial differential equa-
tions (NPDEs) in the areas of nonlinear science [1, 2], many important phenomena can be
described successfully using the NPDEs models, such as engineering and physics, dielectric
polarization, fluid dynamics, optical fibers and quantitative finance and so on [3-5]. Searching
for analytical exact solutions of these NPDEs plays an important and a significant role in all
aspects of this subject. Many authors presented various powerful methods to deal with this
problem, such as inverse scattering transformation method, Hirota bilinear method, homoge-
neous balance method, Backlund transformation, Darboux transformation, the generalized
Jacobi elliptic function expansion method, the mapping deformation method and so on [6-10].
But once people noticed the complexity of nonlinear terms of NPDEs, they could not find the
exact analytic solutions for many of them, especially with disturbed terms. Researchers had to
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develop some approximate and numerical methods for nonlinear theory; a great deal of efforts
has been proposed for these problems, such as the multiple-scale method, the variational itera-
tion method, the indirect matching method, the renormalization method, the Adomian decom-
position method (ADM), the generalized differential transform method and so forth [11-13],
among them the perturbation method [14], including the regular perturbation method, the
singular perturbation method and the homotopy perturbation method (HPM) and so on.

Perturbation theory is widely used in numerical analysis as we all know. The earliest pertur-
bation theory was built to deal with the unsolvable mathematical problems in the calculation
of the motions of planets in the solar system [15]. The gradually increasing accuracy of
astronomical observations led to incremental demands in the accuracy of solutions to New-
ton’s gravitational equations, which extended and generalized the methods of perturbation
theory. In the nineteenth century, Charles-Eugene Delaunay discovered the problem of small
denominators which appeared in the nth term of the perturbative expansion when he was
studying the perturbative expansion for the Earth-Moon-Sun system [16]. These well-
developed perturbation methods were adopted and adapted to solve new problems arising
during the development of Quantum Mechanics in the twentieth century. In the middle of the
twentieth century, Richard Feynman realized that the perturbative expansion could be given a
dramatic and beautiful graphical representation in terms of what are now called Feynman
diagrams [17]. In the late twentieth century, because the broad questions about perturbation
theory were found in the quantum physics community, including the difficulty of the nth term
of the perturbative expansion and the demonstration of the convergent about the perturbative
expansion, people had to pay more attention to the area of non-perturbative analysis, and
much of the theoretical work goes under the name of quantum groups and non-commutative
geometry [18]. As we all know, the solutions of the famous Korteweg-de Vries (KdV) equation
cannot be reached by perturbation theory, even if the perturbations were carried out. Now, we
can divide the perturbation theory to regular and singular perturbation theory; singular
perturbation theory concerns those problems which depend on a parameter (here called ¢)
and whose solutions at a limiting value have a non-uniform behavior when the parameter
tends to a pre-specified value. For regular perturbation problems, the solutions converge to the
solutions of the limit problem as the parameter tends to the limit value. Both of these two
methods are frequently used in physics and engineering today. There is no guarantee that
perturbative methods lead to a convergent solution. In fact, the asymptotic series of the
solution is the norm. In order to obtain the perturbative solution, we involve two distinct steps
in general. The first is to assume that there is a convergent power asymptotic series about the
parameter ¢ expressing the solution; then, the coefficients of the nth power of ¢ exist and can be
computed via finite computation. The second step is to prove that the formal asymptotic series
converges for ¢ small enough or to at least find a summation rule for the formal asymptotic
series, thus providing a real solution to the problem.

The homotopy analysis method (HAM) was firstly proposed in 1992 by Liao [19], which
yields a rapid convergence in most of the situations [20]. It also showed a high accuracy
to solutions of the nonlinear differential systems. After this, many types of nonlinear problems
were solved with HAM by others, such as nonlinear Schrédinger equation, fractional KdV-
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Burgers-Kuramoto equation, a generalized Hirota-Satsuma coupled KdV equation, discrete
KdV equation and so on [21-24]. With this basic idea of HAM (as 7= —1 and H(x, t) = 1),
Jihuan He proposed the homotopy perturbation method(HPM) [25] which has been widely
used to handle the nonlinear problems arising in the engineering and mathematical phys-
ics [26, 27].

In this chapter, we extend the applications of HAM and HPM with the aid of Fourier transfor-
mation to solve the generalized perturbed KdV-Burgers equation with power-law nonlinearity
and a class of disturbed nonlinear Schrodinger equations in nonlinear optics. Many useful
results are researched.

1.1. The homotopy analysis method (HAM)
Let us consider the following nonlinear equation

Nlu(x, t)] =0, (1)

where N is a nonlinear operator, u(x, t) is an unknown function and xand t denote spatial and
temporal independent variables, respectively.

With the basic idea of the traditional homotopy method, we construct the following zero-order
deformation equation

(1 —q)L[¢p(x, t; q) — uo(x, t)] = ghH(x, t)N[p(x, t; q)] (2)

where 7 # 0 is a non-zero auxiliary parameter, g € [0, 1] is the embedding parameter, H(x, t) is
an auxiliary function, L is an auxiliary linear operator, u(x, t) is an initial guess of u(x, t) and
¢(x, t; q) is an unknown function. Obviously, when g = 0 and q = 1, it holds

O(x, £0) = up(x, 1), p(x, £ 1) = u(x, ). (3)

Thus, as g increases from 0 to 1, the solution ¢(x, t; q) varies from the initial guess u(x, f) to the
solution u(x, t). Expanding ¢(x, f; q) in Taylor series with respect to g, we have

X, tq) =uy+ Uy g™

= Uy + qu1 + qPun + -+ U = o (X, £), Uy = Up(x, 1).

where

11

10
(X, 1) = %Gq—m(f)(x, tq)l g=0 (5)

If the auxiliary linear operator, the initial guess, the auxiliary parameter and the auxiliary
function are so properly chosen such that they are smooth enough, the Taylor’s series (4) with
respect to g converges at ¢ = 1, and we have
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U= 1) = U, (6)
which must be one of the solutions of the original nonlinear equation, as proved by Liao. As
h=—-1and H(x, t) = 1, Eq. (2) becomes

(1 —q)L[¢p(x, £ q) — uo(x, t)] + qN[p(x, £; q)] = 0. (7)

Eq. (7) is used mostly in the HPM, whereas the solution is obtained directly, without using
Taylor’s series. As H(x, t) = 1, Eq. (2) becomes

(1 —q)L[¢p(x, £ q) — uo(x, t)] = gaN[p(x, ; 9)], (8)

which is used in the HAM when it is not introduced in the set of base functions. According to
definition (5), the governing equation can be deduced from Eq. (2). Define the vector

ﬁm (x/ t) = {uOI Ui, Uy, *++, Mm}~ (9)

Differentiating Eq. (2) m times with respect to the embedding parameter q and then setting
g = 0 and finally dividing them by m!, we have the so-called mth-order deformation equation

Lit(x, t) = Xyptim—1(x, 1)] = RH(x, t)Rm,l(ﬁm,l,x, t), (10)
where
Ruca (s ) = NG b0l _ - )
(m—1)logn1 =0
And
{1 a2

It should be emphasized that u,,(x, ) for m>1 is governed by the linear Eq. (10) with the linear
boundary conditions that come from the original problem, which can be easily solved by
symbolic computation software such as Mathematica and Matlab.

1.2. The homotopy perturbation method

To illustrate the basic concept of the homotopy perturbation method, consider the following
nonlinear system of differential equations with boundary conditions

Alu) =f(r),reQ, (13.1)
{ B(u, S—Z) =0,rel'=0Q (13.2) 13)
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where B is a boundary operator and I is the boundary of the domain Q, f(r) is a known
analytical function. The differential operator A can be divided into two parts, L and N, in
general, where L is a linear and N is a nonlinear operator. Eq. (13) can be rewritten as follows:

L(u) +N(u) = f(r). (14)
We construct the following homotopy mapping H(¢, 7):Q x [0, 1] — R, which satisfies

H(¢, q) = (1 = q)[L(v) — L(uo)] + q[A(v) = f(r)] = 0,4 €0, 1], re ), (15)

where 1is an initial approximation of Eq. (13), and is the embedding parameter; we have the
following power series presentation for ¢,

¢ = Zu,-(x, Hg' = uo + quy + qPuy + - (16)
i=0

The approximate solution can be obtained by setting g = 1, that is

u:lirrlupzuo—i-ul—i-uz—i----. (17)
q*}

If we let ug(x, t) = uo(x, t),notice the analytic properties of f, L, i1g and mapping (15), we know
that the series of (17) is convergence in most cases when g € [0, 1] [28]. We obtain the solution of
Eq. (13).

To study the convergence of the method, let us state the following theorem.
Theorem (Sufficient Condition of Convergence).

Suppose that X and Y are Banach spaces and N : X — Y is a contract nonlinear mapping that is

Vu,ux €X: ||Nu) — Nux)||<yllu—ux|,0<y <1 (18)

Then, according to Banach’s fixed point theorem, N has a unique fixed point u, that is
N(u) = u. Assume that the sequence generated by homotopy perturbation method can be
written as

n
u, :N(un—l)/ u, = Zui/ u€eX,n=123,--, (19)
i=0
and suppose that
Uo = ttg € B (), By(u) = {u + € X|[ju + —u] < y) (20)
then, we have (i) U, € B,(u), (ii) imU,, = u. (21)

n—oo

Proof. (i) By inductive approach, for n = 1, we have
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Uy — ul] = [[N(Uo) — N(u)[| <y|[Up — ul| and then
U = ull = IN(Un-1) = N(u)[|<)"[[Uo — ul| <y"r = U, €B,(u)

(ii) Because of 0 < y < 1, we have lim||U,, — u|| = 0 that is lim U, = u.
n—o0 n—oo

2. Application to the generalized perturbed KdV-Burgers equation

Consider the following generalized perturbed KdV-Burgers equation

s + auPuy + BuP sty + Yy + Othrry = f(E %, ). (22)

where «a,f,7,0,p are arbitrary constants, and f = f(t x,u) is a disturbed term, which is a
sufficiently smooth function in a corresponding domain.

This equation with p>1 is a model for long-wave propagation in nonlinear media with disper-
sion and dissipation. Eq. (22) arises in a variety of physical contexts which include a number of
equations, and many valuable results about Eq. (22) have been studied by many authors
in [29-31]. In fact, if one takes different value of «, ,, 6, p and f, Eq.(22) represents a large
number of equations, such as KdV equation, MKdV equation, CKdV equation, Burgers equa-
tion, KdV-Burgers equation and the equations as the following forms.

Fitzhugh-Nagumo equation [32]:

U — e =f =u(u—a)(l —u), (23)
Burgers-Huxley equation [33]
4 oty — Ay = f = pu(l — u®)(nu® —y) (24)
Burgers-Fisher equation [34]
U+ o’y — tyy = f = pu(l — u°) (25)

It’s significant for us to handle Eq. (22).

2.1. The generalized KdV-Burgers equation

If we let f = 0 in Eq. (22), we can obtain the famous generalized KdV-Burgers equation with
nonlinear terms of any order [35, 36].

up + aulu, + ﬁuzr’ux + Ylhyy + Ollyyy = 0. (26)

Eq. (26) is solved on the infinite line —eo < x < o together with the initial condition u(x, 0) =
f(x), — e < x < e by using the HAM. We first introduce the traveling wave transform
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E=x+ct+&. (27)

where c are constants to be determined later and &, € C are arbitrary constants. Secondly, we
make the following transformation:

u(g) = o'7(2). (28)
Eq. (26) is reduced to the following form:
p(p+1)(2p + 1ov(E)0"(€) + (p+ 1)(2p + 1)o(1 = p)o(é)

+p(p +1)(2p + 1)yv(E)Y' (&) + cp*(p + 1) (2p + 1)0%(£) (29)
+2(2p + 1av® (&) + p(p + 1)Bo*(E) =0

where the derivatives are performed with respect to the coordinate . We can conclude that
Eq. (26) has the following solution, by using the deformation mapping method:

o ctp) A tpy [ 2 '
g = { oy T ” 4d2y2Lanh(d 4d2y2(x +ct+&o)) o - (30)

2.2. The approximate solutions by using HAM

To solve Eq. (22) by means of HAM, we choose the initial approximation
o, 1) = io(x,1)| , _ 5 =), (31)

where 1(x, t) is an arbitrary exact solution of Eq. (23).

According to Eq. (1), we define the nonlinear operator
N[§] = ¢, + 2@/ Q. + ¥ b, + Y. + 00, — f(), & = P(x, £:9)- (32)

It is reasonable to express the solution u(x, t) by set of base functions g, (x)t", n20, under the
rule of solution expression; it is straightforward to choose H(x, t) = 1 and the linear operator

Liplx, £.) = 22D (33)

with the property
Lie(x)] = 0. (34)
From Egs. (10, 11 and 32), we have

Rmfl (1711171/ X, t) = Um—1,t + VYUm-1, xx + 6”11171, xxx T (XDm,1 (¢ﬁ¢x)
+ ﬁDm,l (¢2p¢x) - F(”O/ Uy, -, um,1),
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where

n ki k ko m—1
Dua@0.) =33 3 o 3 3 CrChCL-Cr " oliiuie (36)

Okz 0k3 m 1—01 0

and n>k; >k, >---2k,,_1 20 €N, with

m—1
dhti=m—1i=0m-1
=1

( =L )
Ug, U1,y Up—1) = —————f(x, L u

Now, the solution of the mth-order deformation in Eq. (10) with initial condition u,,(x, t) =0
for m>1 becomes

Um = XmUm-1 + L_l [hRm—l (ﬁm—lz X, t)}/ (38)

Thus, from Egs. (31, 35 and 38), we can successively obtain

up = uo(x, 0) = g(x), (39)
. - 0.
u = fht[um +f(u0)], Ugt = &uo(x, t)|t:0/ (40)
= (1 + h)us + h(aubus, « + ﬁuﬁpul,x + YUy, xx + OUt, ex — f, (1) 11 )1 (41)

Um = (1 + h)”m—l + hb/ul, xx + 6”1, xxx T aDm—l(¢p¢x) + ﬁDm—l(QZ)Zp(PX) - F(“O/ Ui, *, ”m—l)]t

(42)

We obtain the mth-order approximate solution and exact solution of Eq. (22) as follows
Um, appr = Zukz Uexact = ¢>(x, 1) = lim Zuk (43)

k=0 k=0
if we choose
2,2 0y )’
iio(x,0) = ¢ — UP) AP [EP o, [ S L (44)
2a pa 4d”y? 4d”y?

From Eqgs. (39-44), we can obtain the corresponding approximate solution of Eq. (22).
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2.3. Example

In the following, three examples are presented to illustrate the effectiveness of the HAM. We
apr(0,0) and u;;,pr(O, 0) to discover the valid region of #,
which corresponds to the line segment nearly parallel to the horizontal axis. The simulate
comparison between the initial exact solution, exact solution and the fourth order of approxi-

mation solution is given.

"

first plot the so-called # curves of u

Now, we consider the small perturbation term f = éf in Eq. (22).

Example 1. Consider the CKdV equation with small disturbed term

Up + 6utly — 61Uty + Uyy = €U, 0 < e 1 (45)
with the initial exact solution

tamh[2 (x — 1)) (46)

From Section 2.2, we have

4
— h2t2{6 E — %tanh(%x)} {isech2 <%x) +¢€ E — %tanh(%x)T}x
+ 6% E — ;tanh(;x)}Z{isechz Gx) + ¢ E — ;tanth)r}x
— thZ{%seChz Gx) +e E - %tanh(%xﬂ z}m
+ 2eh?1 E — %tanh(%x)} {}Isechz Gx> + & B — %tanh(%x)} 2} )

P Teosh (%) - s (£)] sech? (2) {h@t 333

+2hte(1 + €) + 2cosh(x) [2e — 2 — 2A(1 + €) + At(2e> + 7¢ — 3)]
+ [A(t — e — 14 2te?) — € — 1] cosh(2x) — ZsinhG) l—e+h—ceh

+ nt(2 —3e+26%) + (1 — e)coshx + (1 —t — e+ 2t£2)coshx)}}
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101 1 1,1 11 1\]?
uupp, 22tanh(2x> — h{4sech (236) + —& |:22tanh<2x>:| }t
nt x e 5 (X i )
b o) - o () ser () ot -3 20022
2nte(1+ €) + 2cosh(x) [2e — 2 — 2A(1 + €) + ht(2e> + 7¢ — 3)]
+ [A(t— e — 14 2te?) — & — 1]cosh(2x) —ZSinh(Jz—C) l—e+h—ceh

(50)

+ ht(2 — 3¢ +2¢%) + (1 — €)coshx + (1 — t — € + 2te?)coshx) ] } + -

"

The # curves of u,(0,0) and Ugppr(

appr
ison between the initial exact solution and the fourth order of approximation solution is shown
in Figure 1(b).

0,0) in Eq. (45) are shown in Figure 1(a), and the compar-

e=00LhAh=-0.11=1 e=00LAh=-11=1

(b)

Figure 1. (a) The # curves of u;ppr(O, 0) and u;';wr

and the fourth order of approximation solution.

(0, 0)at the fourth order of approximation. (b) The initial exact solution
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Example 2. Consider the KdV-Burgers equation with small disturbed term
Up + OUly + Uy — Uy = ESINU

with the initial exact solution

B 1 1 6 \°
uo(x, t) = = {1 - Coth[—m(x - Et)]}
From Section 2.2, we have

1 1 2. 3 51 1
up=—[1- coth(—ﬁx)] , Uot = ————=csch (Ex)[l + coth(ﬁx)]

50 3125
1 ~1 ), 3kt .1 1
U = hesm{SO[l co’ch(10 x)] }t 3125csch (10x)[1+coth(10x)]

Uy = (14 A)uy + At(6uus, x + U, xx — U1, xxx — €U COS Up)

1 1 \1? 1 1\
uuppr:m{l—coth(—lox)} —hssin{so {1—coth<—10x)} }t

3 5[ 1 1
—ﬁhtcsch (Ex> {1 +coth<ﬁx>} + Uy + -

"

The # curves of u,,(0,0) and U (

appr

0,0) in Eq. (51) are shown in Figure 2(a); the comparison

between the initial exact solution and the fourth order of approximation solution is shown in

Figure 2(b).

B3 e

big pppr 1012, e

. et [

e=0.02,/=0

£=005h=01,=1

(a) (b)

Figure 2. (a) The 7 curves of ”prr appr

solution and the fourth order of approximation solution.

(10In2, 0) and u,, (10In2, 0) at the fourth order of approximation. (b) The initial exact
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Example 3. Consider the Burgers-Fisher equation
Uy + 11y — = eu(l — u?)

with the exact solution and the initial exact solution

1 1 1 14 9¢
ulmc,_\/—ztanh[?)x— 9 f+50}

1 1 1 1+9¢
uzmd = \/ZZCOth|:3x — 9 t+£0:|

- 1 1
uo(x,t)\/zzt nh|: 9t+§0:|

From Section 2.2, we have

11 1 _ ya! / 1
Uy = 22tanh<3x), o = sech <3x>/18 2 2tanh<3x)

htsech? (1 1 1 1 1 1 1
U = Sec — htey /= — =tanh < x) ( + —tanh ( x))
18, /2 2tanh (! 22 3 /\2 2 3

= (14 h)uy + ht(Quouy, y — 1, v — €tig + 3euduy)

0,0 02

e=1r=0 ®) e=1h=0.1r=1

Figure 3. (a) The 7 curves of 1, (0,0) and u,

exact solution and the fourth order of approximation solution.

appr ( appr (

0,0) at the fourth order of approximation. (b) The exact solution, initial
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(64)

2
) 1_1 _ htsech
appr = 2 2

18,/2 — 2tanh
1 1 1 1 1 1
Eztanh<3x)(2 2tanh( >>+u2+---

The # curves of uapp,(O 0) and uapp,

between the initial exact solution and the fourth order of approximation solution is shown in
Figure 3(b).

(0,0) in Eq. (57) are shown in Figure 3(a), the comparison

3. Application to the generalized perturbed NLS equation

In this section, we will use the HPM and Fourier’s transformation to search for the solution of
the generalized perturbed nonlinear Schrédinger equation (GPNLS)

Ou 1 o%u

iS4 S B) S + 0@l — ia(z)u = B (2 ). (65)

If welet t — x,z — t,Eq. (65) turns to the following form
bu 1 Q%u 2 .
5 += ﬁ(t) 52 + 0(Hulul” —ia(t)u = B()f (u, t, x). (66)

where disturbed term f is a sufficiently smooth function in a corresponding domain. a(t)
represents the heat-insulating amplification or loss. f(t) and 6(¢) are the slowly increasing
dispersion coefficient and nonlinear coefficient, respectively. The transmission of soliton in the
real communication system of optical soliton is described by Eq. (66) with f = 0 [37-39].

2 T st — a0, (67)

We make the transformation
=A(H)p(E)eM, E=kx +c1(t), n = kox +ca(t) (68)
With the following consistency conditions,

At) = ceh 0 “at) = —kik j; B(T)dr, ca(t) = = (ks — kﬁ)f B(t)dT, 5(t) = Liki ﬁ(t)ﬁfé o)

0 c

N[ =

where ki, ky, a4, a4, ¢ are arbitrary non-zero constants.
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If we let f(u, t, x) = 1kif (p)e™, substituting Eq. (68) into Eq. (67), we have

Qe — 20 — 209° = f(@). (70)

By using the general mapping deformation method [10, 40], we can obtain the following
solutions of the corresponding undisturbed Eq. (70) when f = 0.

@y = cnlkix — k1k2j; B(t)dr]. (71)

In order to obtain the solution of Eq. (70), we introduce the following homotopic mapping
H(p,p):RxI—R,

Hg,p) = Lo — Ljg + (L — 2040° — () ). (72)

where R = (—0, + o), I = [0,1], ¢, is an initial approximate solution to Eq. (70), and the linear
operator L is expressed as

L(u) = qo'g'5 — M. (73)

Obviously, from mapping Eq. (72), H(p, 1) = 0 is the same as Eq. (70). Thus, the solution of
Eq. (70) is the same as the solution of H(¢, q) as g — 1.

3.1. Approximate solution

In order to obtain the solution of Eq. (70), set

oo

P = Z(Pi(é)”li =@yt 499, + ”IZ(P2 + (74)

i=0

If we let ¢, = ¢, notice the analytical properties of f, ¢, and mapping Eq. (72), we can deduce
that the series of Eq. (74) are uniform convergence when g € [0, 1]. Substituting expression (74)
into H(u,q) =0 and expanding nonlinear terms into the power series in powers of g, we
compare the coefficients of the same power of g on both sides of the equation and we have

‘70 Loy = Loy, (75)
q Lo, = f(®y), (76)
" : Lo, = 6as930; + f,(@0)91, (77)
3k
qn : L(Pn = F((PO’ Prr (pn—l) —0—2&42 Z Z
k1=0 k2=0 k3—0 . (78)

kn—z

k1 ~ky ~ks kn_1,3—k1 _ki—ko _kp—ks kn—o—kn-1 kn-1
ZCS CoCaClr@y o1 2@y 5 o
ky-1=0
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n—1
where 32k 2k 22k, 120€N, > ki=n-1neN" and F(p, @, = ,6““,11
Por P17 P Y op
j=1

@y #1, (P"’l)lp -0

From Eq. (75) we have ¢, (&) = ¢, (&). If we select ¢, |._, = 0, by using Fourier transformation
and from Eq. (76), we have

&
P = | Fo)e D e O 20, flpy) =Sl (79

If we select ¢, |;_y = 0, from Eq. (77) we have
1 é —T — =T
P2 =2 | 60ags 4 £, ()T (50)

where a # 0,90, = ¢y (7), 1 = ¢;(7).

We obtain the first- and second-order approximate solutions t1nom (%, t) and uonem (¥, t) of the
Eq. (70) as follows:

e

povd 1 © - —T — — —T
Prvom(® ) = Gy + | Sl @I BT s
2m? —1
rhom (%, £) = ceh j alt )d7+z[kzr+2f((21rz —1E— kz)ﬁ(z)df](plhom(x, ) (82)
. 1 ¢ s o
Pann(30) = 0+ e |l — B
- (83)
1 < — _ —
o | i, £, (o) T — e T
tamom (3, 1) = ce fo a(T)dT+i[kzx+%J;)((Zmzfl)kf—kﬁ)ﬁ(ﬂdr] Popor (1, ) (84)
With the same process, we can also obtain the N-order approximate solution
p pp
; L (E-0) _ g V(e
Pubom (X 1) = P + === | flepp)(eV™"7 — e VEED)dr
V2m?2 —1Jo
1 ¢ o e
| 160l + £, () T — BT g
1 ¢ Vami—1 V21 2 (85)
. +mjo(e ET) o VIEE) F(p o, e ) — 2
3 ki k kn—2

ki ~ky ~ks kn-1,-3—k1 ~ka ko—ks 2—kn-1 -1
ZZZ Z C Ck1 Ckz C ki 2('00 (P P2 (Pnn 2 (Pnnfl}dT
Okz 0k3 0 ku] =0

ej dz+z[k2x+2j((2m2 1)2—k2)B(1)d1]

Uphom (X, 1) = Y0 mom (X 1) (86)
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n—1
where 3>k 2k, >+ >k,_120€N, ij =n-1,neN"and
=

1 a(n—l)

F(po @1, 9,1) = mwﬂ%r @1 Ppot) p=0

3.2. Comparison of accuracy

In order to explain the accuracy of the expressions of the approximate solution represented by
Eq. (86), we consider the small perturbation term

ou 1 du 2 1 ;
Oou 1 . . i n
1 S5 + 2ﬁ(t) 2 +o(t)ulu|” —ia(f)u = 5 skzlﬁ(t)e sin" @, (88)

t . t
whereneNT,p =¢ Jyator=ithriaaki ) | ﬁde)u/c,O <exl.

From the discussion of Section 3.1, we obtain the second-order approximate Jacobi-like elliptic
function solution of Eq. (88) as follows

t 3
Do) = el — ke | Be] + s [ s’ () 62T
0

0 2m2 _
‘ ! E ; 89
_ e_\/2mz——1(r7—7))d’f + 72J [_6m2(PS(P1 +ensin®! ((po) (89)
2m~ —1Jo
cos ((Po)q)l](e\/w—fl(if’f) _ e*\/m@ﬂ))dT
Uohom (%, 1) = e a(f)dT+i[kzx+%L((zmz,1>k%—k§)ﬁ(r>df](p2hom (D). 0

oo

Set @, . (x, 1) = Z(pi(x, t) to be an exact solution of Eq. (88), notice that
i=0
L(qoexa - q)Zhom) :f((P) + 2a4(pexa3 - [2&4@03 +f((p0) + 6614([)(2)(/71

+fo(Po)p,] = sin” (i(m) + 2a4(
i=0

+ 6a403¢; + ensin™ (@) cos (py)@;] = O(e?)

oo

3
(pi) — 2040, + esin™(¢,), (91)
0

where 0 < € <1, selecting arbitrary constants such that ¢, (0) = @y,,,,(0), from the fixed
point theorem [41], we have ¢, , — ¢, ... = O(¢?), then

‘uexa - u2hom| = |A(t)giﬂ [qoexa - (p2hom]|
e2Ansin" 1 (¢,) cos (¢,)
2m? — 1

= J sin"(¢p,) eV~ — e VEET)dr| = O(e?).
0

(92)
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Figure 4. A comparison between the curves of solutions |u1pem ()| (solid line) and |u(&)| (dashed line) with e = 0.01.

= \
[e=1401)

Figure 5. A comparison between the curves of solutions |u1hom ()| (solid line) and |1 ()| (dashed line) with e = 0.001.

Therefore, from the above result, we know that the approximate solution, tsnem, obtained by
asymptotic method and possesses better accuracy.

Set Af)=Lki=k =1t =1Lm—-1,n=1£€(0,3] and ¢ =0.01,0.001 for Eq. (90), and
then, we will have the curves of solutions |t1hom ()| and |uo(&)| and be able to compare them;
see Figures 4 and 5. From Figures 4 and 5, it is easy to see that as 0 < ¢ <1 is a small parameter,
and the solutions |u1hom ()] and |uo(&)| are very close to each other. This behavior is coincident
with that of the approximate solution of the weakly disturbed evolution in Eq. (88).

4. Conclusions

We research the generalized perturbed KdV-Burgers equation and GPNLS equation by using
the HAM and HPM,; these two powerful straightforward methods are much more simple and
efficient than some other asymptotic methods such as perturbation method and Adomian
decomposition method and so on. The Jacobi elliptic function and solitary wave approximate
solution with arbitrary degree of accuracy for the disturbed equation are researched, which
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shows that these two methods have wide applications in science and engineering and also can
be used in the soliton equation with complex variables, but it is still worth to research whether
or not these two methods can be used in the system with high dimension and high order.
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Abstract
Both the scalar Green function and the dyadic Green function of an electromagnetic field

and the transform from the scalar to dyadic Green function are introduced. The Green
function of a transmission line and the propagators are also presented in this chapter.

Keywords: Green function, boundary condition, scatter, propagator, convergence

1. Introduction

In 1828, Green introduced a function, which he called a potential, for calculating the distribu-
tion of a charge on a surface bounding a region in Rn in the presence of external electromag-
netic forces. The Green function has been an interesting topic in modern physics and
engineering, especially for the electromagnetic theory in various source distributions (charge,
current, and magnetic current), various construct conductors, and dielectric. Even though most
problems can be solved without the use of Green functions, the symbolic simplicity with which
they could be used to express relationships makes the formulations of many problems simpler
and more compact. Moreover, it is easier to conceptualize many problems; especially the
dyadic Green function is generalized to layered media of planar, cylindrical, and spherical
configurations.

2. Definition of Green function

2.1. Mathematics definition

For the linear operator, there are: Lx= f(t), t>0;

I m EC H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [{cc) ExgNN
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x(Blio = Yo7 %" (B)lio = ¥, 1)
Rewriting Eq. (1) as:
Lx= J F(E)o(t — t)dt (2)
Defining the Green function as:
LG(tt) =06(t—t) 3)
So, the solution of Eq. (1) is:
() = [f(t)60, v)ar 4)

We give several types of Green functions [1]

[ & oo it —

L=-(G+2y%+a}) Gt ¥) =21_NJ eklel[;(l;c t)f]dk
e ivk — w?

L=l 5+ F+f() G(t t) = — — V() Wa( (F)

Fo (O o)W ()W ()]

L--gla-P)g

Gt ) =1+ Zn(ni 5 2 TR (0Py()

3. The scalar Green function

3.1. The scalar Green function of an electromagnetic field

The Green function of a wave equation is the solution of the wave equation for a point source
[2]. And when the solution to the wave equation due to a point source is known, the solution
due to a general source can be obtained by the principle of linear superposition (see Figure 1).

This is merely a result of the linearity of the wave equation, and that a general source is just a
linear superposition of point sources. For example, to obtain the solution to the scalar wave
equation in V'in Figure 1

(V2 +K)p(r) = s(r) (5)

we first seek the Green function in the same V, which is the solution to the following equation:
(V2 +K)3(r 1) = 5(r—r) (6)
Given g (1, '), ¢(r) can be found easily from the principle of linear superposition, since g (x, r') is

the solution to Eq. (5) with a point source on the right-hand side. To see this more clearly, note
that an arbitrary source s(r) is just
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S

Figure 1. The radiation of a source s(r) in a volume V.
s(r) = Jdl’s(r’)é(r —7) (7)

which is actually a linear superposition of point sources in mathematical terms. Consequently,
the solution to Eq. (5) is just

o) = —Jdr/g(r, Y)s(r) (8)

%4

which is an integral linear superposition of the solution of Eq. (6). Moreover, it can be seen that
g(r, 1') = g(v, 1,) from reciprocity irrespective of the shape of V.

To find the solution of Eq. (6) for an unbounded, homogeneous medium, one solves it in
spherical coordinates with the origin at r'. By so doing, Eq. (6) becomes

(V2 +K)g(r) = 6(x)6(y)6(2) ©)

But due to the spherical symmetry of a point source, g(r) must also be spherically symmetric.
Then, for r # 0, adopt the proper coordinate origin (the vector r is replaced by the scalar r), the
homogeneous, spherically symmetric solution to Eq. (9) is given by

eikr efikr
§r)=a—+e

: (10)

Since sources are absent at infinity, physical grounds then imply that only an outgoing solution
can exist; hence,

eikr

8 =c= (11)

67



68 Recent Studies in Perturbation Theory

The constant ¢ is found by matching the singularities at the origin on both sides of Eq. (9). To
do this, we substitute Eq. (11) into Eq. (9) and integrate Eq. (9) over a small volume about the
origin to yield

Ce;kr + J ave s

r

JdVV-V

AV AV

1 (12)

Note that the second integral vanishes when AV — 0 because dV = 47rtr2dr. Moreover, the first
integral in Eq. (12) can be converted into a surface integral using Gauss theorem to obtain

d eikr
limdnr? —c—=—1 13
im4nr? (13)

r—0

or ¢ = 1/(4n).
The solution to Eq. (6) must depend only on r — r'. Therefore, in general,
oik(r—r)

- 4dn(r—r) (14)

8(rr) =g(r—r)

implying that g(r, r') is translationally invariant for unbounded, homogeneous media. Conse-
quently, the solution to Eq. (5), from Eq. (9), is then

eik(rfr’)
PlE) = = [ ) (15)

1%

Once @(r) and 71 - Vo(r) are known on S, then ¢(r') away from S could be found

p(r) = deﬁ 8(r ¥)Ve(r) — (1) Vg(r ¥')] (16)

3.2. The scalar Green functions of one-dimensional transmission lines

We consider a transmission line excited by a distributed current source, K(x), as sketched in
Figure 2. The line may be finite or infinite, and it may be terminated at either end with
impedance or by another line [3]. For a harmonically oscillating current source K(x), the
voltage and the current on the line satisfy the following pair of equations:

Tl-'u': Kiz)

Figure 2. Transmission line excited by a distributed current source, K(x).
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dV(x)
dx

= iwLI(x) (17)

dl(x)
dx

= iwCV(x) 4+ K(x) (18)

L and C denote, respectively, the distributed inductance and capacitance of the line.
By eliminating I(x) between Eq. (17) and Eq. (18), there is

d*V (x)
dx?

+ KV (x) = iwLK(x) (19)

where k = wv/LC denotes the propagation constant of the line. Eq. (19) has been designated as
an inhomogeneous one-dimensional scalar wave equation.

The Green function pertaining to a one-dimensional scalar wave equation of the form of
Eq. (19), denoted by g(x, x), is a solution of the Eq. (9). The solution for g(x, x’) is not
completely determined unless there are two boundary conditions which the function must
satisfy at the extremities of the spatial domain in which the function is defined. The boundary
conditions which must be satisfied by g(x, x’) are the same as those dictated by the original
function which we intend to determine, namely, V(x) in the present case. For this reason, the
Green functions are classified according to the boundary conditions, which they must obey.
Some of the typical ones (for the transmission line) are illustrated in Figure 3.

In general, the subscript 0 designates infinite domain so that we have outgoing waves at
x — oo, often called the radiation condition. Subscript 1 means that one of the boundary
conditions satisfies the so-called Dirichlet condition, while the other satisfies the radiation
condition. When one of the boundary conditions satisfies the so-called Neumann condition,
we use subscript 2. Subscript 3 is reserved for the mixed type. Actually, we should have used a
double subscript for two distinct boundary conditions. For example, case (b) of Figure 3
should be denoted by g01, indicating that one radiation condition and one Dirichlet condition
are involved. With such an understanding, the simplified notation should be acceptable.

In case (d), a superscript becomes necessary because we have two sets of line voltage and
current (V1, I1) and (V2, I2) in this problem, and the Green function also has different forms in
the two regions. The first superscript denotes the region where this function is defined, and the
second superscript denotes the region where the source is located.

Let the domain of x corresponds to (x1, x2). The function g(x, x’) in Eq. (9) can represent any of
the three types, g0, g1, and g2, illustrated in Figures 3a—c, respectively. The treatment of case
(d) is slightly different, and it will be formulated later.

(a) By multiplying Eq. (19) by g(x, x') and Eq. (9) by V(x) and taking the difference of the two
resultant equations, we obtain
X dZ /
J [V(.X) gO(x’x)

2
X dx

—go(x,x') %]dx = —JXZ V(x)o(x — x")dx — ia)Lr2 K(x)g(x, x")dx

X1 X1
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Figure 3. Classification of Green functions according to the boundary conditions.

]

The first term at the right-hand side of the above equation is simply V(xI), and the term at the
left-hand side can be simplified by integration by parts, which gives

V(x) = 7ia)Lr2 9o(x, ¥ )K(x)dx (21)

X1

If we use the unprimed variable x to denote the position of a field point, as usually is the case,
Eg. (21) can be changed to [4]
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V(x) = —iwLsz g(x, x)K(x")dx'

" (22)
- _iwLJ 8o (x, X" )K(x")dx’'

X1

The last identity is due to the symmetrical property of the Green function. The shifting of the
primed and unprimed variables is often practiced in our work. For this reason, it is important
to point out that g(x’, x), by definition, satisfies the Eq. (9).

The general solutions for Eq. (9) in the two regions (see Figure 3a) are

n ) i/(2k)eR T, x2x
g() (x' X ) - { i/(2k)€7ik(x7x,>/ x le (23)

The choice of the above functions is done with the proper satisfaction of boundary conditions
at infinity. At x =x', the function must be continuous, and its derivative is discontinuous.

. d X, x/ x40
They are: [g,(x, x’ )]xfg =0, and {%} =1

x'—0

The physical interpretation of these two conditions is that the voltage at x' is continuous, but
the difference of the line currents at x' must be equal to the source current.

(b) The choice of this type of function is done with the proper satisfaction of boundary
conditions. At x = x', the function must be continuous, its derivative is discontinuous, and a
Dirichlet condition is satisfied at x = 0.

/(2% etk(x—x’) _ em(x+x/) ,XZX/
81(x,x/)_{1/ /@ }

(ZK) [e—m(x—x’) _ em(x+x’)], 0<x<x (24)

In view of Eq. (24), it can be interpreted as consisting of an incident and a scattered wave; that
is

§1(xx') = go(x, x') + g1, (%, ') (25)

where g, (x, ') = 5™ ),

Such a notion is not only physically useful, but mathematically it offers a shortcut to finding a
composite Green function. It is called as the shortcut method or the method of scattering
superposition.

(c) Similarly, the method of scattering superposition suggests that we can start with

§(x% ) = go(x, x') + Ae™ (26)

To satisfy the Neumann condition at x = 0, we require
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dg (x.x")y . .
{go &) | zkAe’kx] =0 (27)
dx x=0
Hence
A= %{eik"/ (28)
pik(x=x") 4 pik(x+x') >x
! ’
8l ¥) = /<2k>{ et g D) Gk 29)
(d) In this case, we have two differential equations to start with
d*v
- 12( 2 KBV (x) = iwL Ky (x), x20 (30)
v
d;Z(x) +RVa(x) = 0,x<0 (31)

It is assumed that the current source is located in region 1 (see Figure 3d). We introduce two
Green functions of the third kind, denoted by g(11) (x, x') and g(21) (x, x'). g(21), the first
number of the superscript corresponds to the region where the function is defined. The second
number corresponds to the region where the source is located; then

dzg(n) (x, %)
dx?
ng(Zl) (x, x/)
dx?

+ R (x, ) = —5(x — '), x20 (32)
+ K2 (x, ') = 0,x<0 (33)

At the junction corresponding to x = 0, g(11) and g(21) satisfy the boundary condition that
g (), = 82 (xx') g (34)

Tdgy) _ 1dg(x) 5
Ly dx =0 Ly dx x=0

The last condition corresponds to the physical requirement that the current at the junction
must be continuous. Again, by means of the method of scattering superposition, there are

g (x, 1) = g(x, ') + g™ (x, ')
i | ehl) 4 ReMO—) x>y (36)
T2k | etlr) 4 Rel ) g<x<

g (v, x') = W Te ikvkv) x>0 (37)
1

The characteristic impedance of the lines, respectively, is
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(L 12 (L 12
z1 = (C_1> ;20 = <C_2 (38)

By the boundary condition, there are

_22—21 T— ZZZ
Zz+21, Zo + 21

(39)

Example: Green function solution of nonlinear Schrodinger equation in the time domain [5].

The nonlinear Schrodinger equation including nonresonant and resonant nonlinear items is:
OA i PA 1 A a 3ko (3, 412
el Nt S W APA
P75 6P ar = 2t T A A

1k0g(w02)r[iq;fyt(w0)] AJ_W Xz(s) (t = DA(T)]dr

(40)

Where A is the field, f, and f; are the second and third order dispersion, respectively. A(z) is
the fiber absorption profile. ky = wg/¢, wy is the center frequency. A is the effective core area.
n is the refractive index.

2(0)1 + wy + w3)(1 — ‘F|)
—2(w1 + wy + ws)* = 2| + TP

flwr + w2 + w3) = (41)

gl + w2 + 3) = [~2(@1 + @2+ w3)* = 2T + [T (42)
where g(w1 + w; + w3) is the Raman gain and flw; + w, + w;) is the Raman nongain coefficient. I
is the attenuation coefficient.

The original nonlinear part is divided into the nonresonant and resonant susceptibility items

)(5{;’1)2 and )(g’). The solution has the form:

Az ) = p(t)e (43)
Then, there is:

Fo i, P 3k o, kgl —if@)] [ o _
Shro + ehaas — g tiklofy - BTN [ 30— olp(i =Eg (44)
Let:

- 1 & i
Holt) = 5P 50+ gPsgp (45)

V(1) = g ol - S TON [0 0y ig(o)Pae (6)
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k
and taking the operator V(t)as a perturbation item, the eigenequation Z;— B, gﬁ =Edis
n=2
P P
_132 aTZ +z ﬁ3 6T3 E¢ (47)
Assuming E =1, we get the corresponding characteristic equation:
1 p
- L (48)
Its characteristic roots are r4,5,73. The solution can be represented as:
¢ = 1) + 29, + 35 (49)

where ¢, = exp (irt),
function of Eq. (47) is:

(E—Ho(t)Go(t ) = 5(t — 1)
Constructing the Green function as:

P, + arp, +azp,y, t > 1
Go(t t') =
bl(Pl + b2¢2 + b3(f)3,i‘ <t

At the point t =t there are:
010y () + a, (1) + ass(t') = bip (¢') + bachy(¥') + bahs ()
a1 ¢ () + a9, () +asq/ () = bi¢/, () + bagy (') + b3/ ()

]y () +aa () + a3 (1) — b1y () — bad', () — baty'5(¥') = —6i/B,
It is reasonable to let b; = b, = b3 =0, then:
o = ‘P2¢3 ‘Pz% by = <1)3<151 ¢’3¢’1 a5 = (qusz - (7.’1‘1)2
W) 7 w() 7 W(¥)
¢ b, s
w(t)=[¢ ¢ ¢
S

Finally, the solution of Eq. (44) can be written with the eigenfunction and Green function:

m =1,2,3, and ¢y,c,c3 are determined by the initial pulse. The Green

(50)

(51)

(52)
(53)

(54)

(55)

(56)
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o) +j%aﬂ><mwwﬂ
t) + JGO (t,t,E)V (p(t’)dt'+Jdt'Go(t, t, E)V(t’)[Go(t’, t,E)V(t)o(t)dt'
+JG0 (L, E)V(£)p(t )dt’+Jdt’Go(t, t, E)V(t’)JGo(t’, £ EWV(E Yt )dt + - (57)

+Jdt Go(t, t') JGo(t YV (F )dt"n-JGo(tl, OV (e ad

times [

The accuracy can be estimated by the last term of Eq. (57).

4. The dyadic Green function

4.1. The dyadic Green function for the electromagnetic field in a homogeneous isotropic
medium

The Green function for the scalar wave equation could be used to find the dyadic Green
function for the vector wave equation in a homogeneous, isotropic medium [3]. First, notice
that the vector wave equation in a homogeneous, isotropic medium is

VxVxE(r) — CE(r) = iou](r) (58)

Then, by using the fact that VX VXE(r) = —V?E+ VV -E and that V-E = p/e = V - J/iwe,
which follows from the continuity equation, we can rewrite Eq. (58) as

V2E(r) — KE(r) = —iwp {i + sz} (@) (59)

where I is an identity operator. In Cartesian coordinates, there are actually three scalar wave
equations embedded in the above vector equation, each of which can be solved easily in the
manner of Eq. (4). Consequently,

E(r) = iwyldr’g(r’ r) {I + VI;V/

BC (60)

where g(r'—r)is the unbounded medium scalar Green function. Moreover, by using the vector
identities Vgf = fVg + gVfand V - gF = gV - F 4 (Vg) - F, it can be shown that

Jeeste — v = - [arviger - nrw) (61)

\%4 \%

and
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Jdr’[V’g(r’ CHV () = der’](r’) VVg(¥ — 1) (62)

14 \%4

Hence, Eq. (60) can be rewritten as

E(r) = ia)der/](r/) : [i + VILZV,] g —1) (63)
4

It can also be derived using scalar and vector potentials.

Alternatively, Eq. (63) can be written as

E(r) = ia)yjdr’](r/) -G, (T, 1) (64)
v
where
Gt = [1+ 75 st o) (65)

is a dyad known as the dyadic Green function for the electric field in an unbounded, homoge-
neous medium. (A dyad is a3 x 3 matrix that transforms a vector to a vector. It is also a second
rank tensor). Even though Eq. (64) is established for an unbounded, homogeneous medium,
such a general relationship also exists in a bounded, homogeneous medium. It could easily be
shown from reciprocity that

(10, Ge(x 7). () = (1o(1), Gulx ), 11 (1)) )
= (1, G, 1), 1))
where
(1, 6.0, 30)) = [ [aran @) - 6.0 1) (662)

Vv

is the relation between Ji and the electric field produced by J;. Notice that the above equation
implies [6]

G.(r,1) = G Y) (66b)
Then, by taking transpose of Eq. (66b), Eq. (64) becomes

E(r) = iwadr’Ce(r, r)-J(r) (67)
\%4

Alternatively, the dyadic Green function for an unbounded, homogeneous medium can also be
written as
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G. (1Y) :%[Vxing(r—r’)—ié(r—r’) (68)
By substituting Eq. (67) back into Eq. (58) and writing
J(r) = Jdr/ié(r —1)-J(Y) (69)
we can show quite easily that
VXVXG(r,¥')—KGe(r,¥) = 16(r — ¥) (70)

Equation (64) or (67), due to the VV operator inside the integration operating on g(r'—r), has a
singularity of 1/1¥ —r|®> when ' — r. Consequently, it has to be redefined in this case for it does
not converge uniformly, specifically, when r is also in the source region occupied by J(r).
Hence, at this point, the evaluation of Eq. (67) in a source region is undefined.

And as the vector analog of Eq. (16)

E(r) = #dS [an(r) VxGe(r, ¥) + iwopnx H(r) - G,(r, ¥) (71)
S

4.2. The boundary condition

The dyadic Green function is introduced mainly to formulate various canonical electromagnetic
problems in a systematic manner to avoid treatments of many special cases which can be treated
as one general problem [3, 7, 8]. Some typical problems are illustrated in Figure 4 where (a)
shows a current source in the presence of a conducting sphere located in air, (b) shows a
conducting cylinder with an aperture which is excited by some source inside the cylinder, (c)
shows a rectangular waveguide with a current source placed inside the guide, and (d) shows two
semi-infinite isotropic media in contact, such as air and “flat” earth with a current source placed
in one of the regions.

Unless specified otherwise, we assume that for problems involving only one medium such as

(a), (b), and (c) the medium is air, then the wave number k is equal to a)(yoeo)l/ 2 =2n/A. The
electromagnetic fields in these cases are solutions of the wave Eq. (62) and

VxVxH(r) — CH(r) = Vx]J(r) (72)

The fields must satisfy the boundary conditions required by these problems.

In general, using the notations G, and G, to denote, respectively, the electric and the magnetic
dyadic Green functions; they are solutions of the dyadic differential equations

VXVXG,(r,¥)—k*G,(r,¥) = I6(r— 1) (73)

VXV X G (t, ¥)—RGu(r ¥) = Vx [ié(r - r’)} (74)

is the same as Eq. (70), and there is
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Current source

Conducting sphere

[l
r _- O Current source

ON [T

(©)
Figure 4. Some typical boundary value problems.

G, = VxG, (75)

(a) and (b): Electric dyadic Green function (the first kind, using the subscript 1 denotes Ge1, G,
and the subscript “0” represents the free-space condition that the environment does not have any
scattering object) is required to satisfy the dyadic Dirichlet condition on Sd, namely,

nxGy =0,nxGp =0 (76)
So, for (a)
() = | a0 - Gulo ) (77)
and for (b)
E(r) = $dSnxE(r) - VxG,(r, 1) (78)
Sa

(c) the electric dyadic Green function is required to satisfy the dyadic boundary condition on 54,
namely,

nXVxGy =0nxVxG,y =0 (79)

H(Y) = Jdr](r) VX Ge(r, ¥) (80)
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(d) For problems involving two isotropic media such as the configuration shown in Figure 4d,
there are two sets of fields [9]. The wave numbers in these two regions are denoted by
k= w( /.1151)1/ Zand ky = a)(‘uzsz)l/ 2. There are four functions for the dyadic Green function of
the electric type and another four functions for the magnetic type, denoted, respectively, by

A1 A 12 221 £ 22 A11 212 221 £ 22 - 11

G, G, G,and G, , and G,, G,, G,, and G,,. The superscript notation in G, means that
£21

both the field point and the source point are located in region 1. For G, , it means that the field

point is located in region 1 and the source point is located in region 2. A current source is
located in region 1 only, and the two sets of wave equations are

VX VxE;(r) - KEi (1) = iwp,J; (1) (81)
VxVxHj(r) — ¥H(r) = VxJ, (1) (82)
and

VxVxEy(r) — Ey(r) =0 (83)
VX VxH,(r) — ¥Hy(r) =0 (84)

There are
VxVxG, (1r)-KRG. (rr) =150 —r) (85)
Ux VG (rr)-KRG. (1) =0 (86)

At the interface, the electromagnetic field and the corresponding dyadic Green function satisfy
the following boundary conditions

nx[G. — G| =0 (87)
nx[VxG,' /t ~ Vx G, /i) =0 (88)
The electric fields are
E1(¥) = oy [ (0 6.0 7) (59)
Ey(r) = iw#zjdrl (-G, (xr) (90)

5. Vector wave functions, L, M, and N

The vector wave functions are the building blocks of the eigenfunction expansions of various
kinds of dyadic Green functions. These functions were first introduced by Hansen [10-12] in
formulating certain electromagnetic problems.Three kinds of vector wave functions, denoted
by L, M, and N, are solutions of the homogeneous vector Helmholtz equation. To derive the
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eigenfunction expansion of the magnetic dyadic Green functions that are solenoidal and satisfy
with the vector wave equation, the L functions are not needed. If we try to find eigenfunction
expansion of the electric dyadic Green functions then the L functions are also needed.

A vector wave function, by definition, is an eigenfunction or a characteristic function, which is
a solution of the homogeneous vector wave equation Vx VxF — x2F = 0.

There are two independent sets of vector wave functions, which can be constructed using the
characteristic function pertaining to a scalar wave equation as the generating function. One kind
of vector wave function, called the Cartesian or rectilinear vector wave function, is formed if we let

F=Vx(¥ic) (91)

where 1); denotes a characteristic function, which satisfies the scalar wave equation

VAW 4 12W =0 (92)

And c denotes a constant vector, such as x, y, or z. For convenience, we shall designate c as the
piloting vector and ¥ as the generating function. Another kind, designated as the spherical
vector wavefunction, will be introduced later, whereby the piloting vector is identified as the
spherical radial vector R.

Actually, substituting Eq. (91) into Eq. (92), it is

Vx[e(V2W; + *W1)] =0 (93)
The set of functions so obtained
M; =Vx (W1C) (94)
1
N, = ;VXVX (W20) (95)
L; = V(¥3) (96)

W, W5 denote the characteristic functions which also satisfy (92) but may be different from the
function used to define M1.

In the following, the expressions for the dyadic Green functions of a rectangular waveguide
will be derived asserting to the vector wave functions. The method and the general procedure
would apply equally well to other bodies (cylindrical waveguide, circular cylinder in free
space, and inhomogeneous media and moving medium).

Figure 5 shows the orientation of the guide with respect to the rectangular coordinate system,
and we will choose the unit vector z to represent the piloting vector c.

The scalar wave function

W = (A coskx + Bsinkx)(C cosk,y + D sin kyy)eihZ (97)

where K + & + 1* = &,
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Figure 5. A rectangular waveguide.
the constants k, and k, should have the following characteristic values
ke :%,mzo, 1, (98)
k=" m=01,- (99)

The complete expression and the notation for the set of functions M, which satisfy the vector
Dirichlet condition are

M (h) = VX [W 2]

= (—kyCySyx + k;C, Syy)e™™ (100)

where S, = sink,x, C; = coskyx, S, = sink,y, C, = cosk,y. The subscript “¢” attached to
Memn is an abbreviation for the word “even,” and “o0” for “odd.”

In a similar manner

1 . . ihz
Nom =~ (i CSyx + iy Cy Sy + (K + k) S:Syz)e” (101)

It is obvious that Memn represents the electric field of the TEmn mode, while Nomn represents
that of the TMmn mode.

In summary, the vector wave functions, which can be used to represent the electromagnetic
field inside a rectangular waveguide, are of the form

Me(u)mn =Vx [Iye(o)mnz] (102)

1
Ne(a)mn = % VXVx [lpe(a)mnz} (103)

Then
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sz(R, R/) — -r—w dhz (2 — 50)1{

— W—"_kj) ) [a(h)Nemn (h)M,emn(_l’l) + b(l’l)MOmﬂ (h)Nlomn(—h)] (104)

_ _ 1 _ 12 12 1 m=00mn=0
where a(h) = b(h) = g h = £(K ~ K, kj) and 6o = { Om#0, n#0°
M', N', m', ', I’ denote another set of values, which may be distinct or the same as M, N, m, n,
h.

6. Retarded and advanced Green functions

Green function is also utilized to solve the Schrédinger equation in quantum mechanics. Being
completely equivalent to the Landauer scattering approach, the GF technique has the advan-
tage that it calculates relevant transport quantities (e.g., transmission function) using effective
numerical techniques. Besides, the Green function formalism is well adopted for atomic and
molecular discrete-level systems and can be easily extended to include inelastic and many-
body effects [13, 14].

(A) The definitions of propagators
The time-dependent Schrédinger equation is:

WD)
ih =, = AP () (105)

The solution of this equation at time f can be written in terms of the solution at time #':

W (1) = Ut )W (F)) (106)

where U(t, #') is called the time-evolution operator.

For the case of a time-independent Hermitian Hamiltonian H, so that the eigenstates

|W,(t)) = e~ Et/"|W, ) with energies E, are found from the stationary Schrédinger equation
HW,) = EW,) (107)
The eigenfunctions |V, )are orthogonal and normalized, for discrete energy levels 1:

<Wm |W17> = 6mn (108)

and form a complete set of states (I is the unity operator)

DWWy =1 (109)

n

The time-evolution operator for a time-independent Hamiltonian can be written as
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Ut — 1) = e~ ="/H/n (110)

This formal solution is difficult to use directly in most cases, but one can obtain the useful
eigenstate representation from it. From the identity U = Ul and (107), (109), (110) it follows that

U(t—t) =" /"=, \(w,| (111)

which demonstrates the superposition principle. The wave function at time ¢ is

W) = U)W () =Y e MECOW, W) w,) (112)

where (W,,|W(t')) are the coefficients of the expansion of the initial function |¥(#))on the basis
of eigenstates.

It is equivalent and more convenient to introduce two Green operators, also called propaga-
~R ~ A
tors, retarded G (4, #') and advanced G (¢ t'):

Gty = —%G(t — U E) = —%G(t _ f)emit=t H/n (113)
Gty = %Q(t’ )l ) = %Q(t’ _ pye-it=t)H/n (114)

so that at ¢ > ¥ one has
W) = G (t — )W (1)) (115)
while at t < ¥ it follows

W(t)) = inG" (¢~ £)W(F)) (116)

AR A A
The operators G (¢, ') att>tand G (f,t') at f <t are the solutions of the equation

{ih; - H] &Yty =To(t— 1) (117)

with the boundary conditions GR(t, #y=0att<?t, ¢! (t#) =0att>t.Indeed, at t >+ Eq. (118)
satisfies the Schrodinger equation Eq. (105) due to Eq. (117). And integrating Eq. (117) from
t =t —ntot ="+ +n where 1 is an infinitesimally small positive number n = 0", one gets

. 1.
Gt t)= i (118)

~R
giving correct boundary condition at ¢t = #. Thus, if the retarded Green operator G (t,t') is
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known, the time-dependent wave function at any initial condition is found (and makes many
other useful things, as we will see below).

For a time-independent Hamiltonian, the Green function is a function of the time difference
7 = t—t', and one can consider the Fourier transform

oo

®-] ¢

—oo

~R(4)

R(A
a (4)

(1)eE M dr (119)

~R(A
This transform, however, can not be performed in all cases, because G ( )(E) includes oscillat-

ing terms ¢£%/". To avoid this problem we define the retarded Fourier transform

~R [T AR i(E+in)t/h
G (E)= hrgl G (1)e"r g (120)
N—0+)
and the advanced one
~A [T aa i(E—in)t/h
G (E)= 11151 G (r)e"""MT e (121)
N—=0+) o

where the limit 7 — 0 is assumed in the end of calculation. With this addition, the integrals are
convergent. This definition is equivalent to the definition of a retarded (advanced) function as
a function of complex energy variable at the upper (lower) part of the complex plain.

Applying this transform to Eq. (117), the retarded Green operator is
G (E) = [(E+in)] — A (122)

The advanced operator ¢! (E) is related to the retarded one through
G (E)=G (F) (123)

Using the completeness propertyzn|‘lfn)(lpn| =1, there is

AR _ |Wn><q/n|
6= g e
and
W) (Wl
ZE E,+1n (125)

Apply the ordinary inverse Fourier transform to GR(E ), the retarded function becomes

G () = J+°° &R Byt AE _ —ie(z)szﬂ/ﬂw WW, | (126)
. kT h AR

n
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Indeed, a simple pole in the complex E plainis at E = E,, — i1, the residue in this point determines
the integral at 7 > 0 when the integration contour is closed through the lower half-plane, while at
7 <0 the integration should be closed through the upper half-plane and the integral is zero.

The formalism of retarded Green functions is quite general and can be applied to quantum
systems in an arbitrary representation. For example, in the coordinate system Eq. (124) is

PCEACA S

e ) T W, ()W (1)

n

E-E,+in - ; —E, +1in

(127)

(B) Path integral representation of the propagator

In the path integral representation, each path is assigned an amplitude ¢J U Lis the Lagrang-
ian function. The propagator is the sum of all the amplitudes associated with the paths
connecting xa and xb (Figure 6). Such a summation is an infinite-dimensional integral.

The propagator satisfies

iG(xp, by, Xg, b)) = [dxiG(xb, ty, x, 1)iG(x, t, x4, 1) (128)

Let us divide the time interval [, tb] into N equal segments, each of length At = (f, — ;) /N.

N
iG(xb, ty, Xa, ta) = del ---deHiG(xj, t]', .x];1, t];1)
j=1

= ANdexj exp {12 AtL(t, % +2xj71, i ijl)] (129)
j

_ JD(x)eiJ"dtL(t,x,x')

Xa

t(] tl t2 t3

Figure 6. The total amplitude is the sum of all amplitudes associated with thee paths connecting xa and xb.
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where In[zG(x], t]‘, xj,l, tjfl)} = iAtL(tj, w%, %)
Example: LC circuit-based metamaterials

In this section, we will use the relationship of current and voltage in the LC circuit to build the
propagator of the LC circuit field coupled to an atom.

Figure 7 shows the LC-circuit.The following are valid:

dq
I = T (130)
_q_d
V=s=Llo (131)
Thus:
d*x x
Cﬁ =-1 (132)

where x = LI, I is the current, V is the voltage, g is the charge quantity, L and C are the
inductance and capacitance, respectively. Eq. (132) is equal to a harmonic, and the Lagrangian
operator is:

L1,
Lo(x, %) = % (62 — Q367 (133)

The Lagrangian operator describing the bipole is:

Lom ., m}
Lo(x, %) = =x% — —0x2

. > (134)

where x is the coordinate of the bipole, ¢ is the LC field, m is the mass of an electron, and e is
the unit of charge. ¢ = ¢, and Q;c = NI Defining their action items as:

Sic = Jdt % (62 — Qicez)} (135)

m .
So = Jdt [E (- Qﬁxz)] (136)
Taking the coupling effect (ex¢) into account, the Green function of the coupled system is:
3 . . dtlexe]
G(x ¢) = JDxD<€fz'SLC+’5°+Z~r (137)

Where x represents the series coordinates x1,x2,...,and so on and & represents €1,¢2,...., and so
on.
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bipolap\:.—c

Figure 7. The coupled system, including an LC field and a bipole.

7. The recent applications of the Green function method

7.1. Convergence

In the Green function, the high oscillation of Bessel/Hankel functions in the integrands results
in quite time-consuming integrations along the Sommerfeld integration paths (SIP) which
ensures that the integrands can satisfy the radiation condition in the direction normal to the
interface of a medium. To facilitate the evaluation, the method of moments (MoM) [15], the
steepest descent path (SDP) method, and the discrete complex image method (DCIM) [16, 17]
are very important methods.

The technique for locating the modes is quite necessary for accurately calculating the spatial
Green functions of a layered medium. The path tracking algorithm can obtain all the modes for
the configuration shown in Figure 8, even when region 2 is very thick [18]. Like the method in
Ref. [19], it does not involve a contour integration and could be extended to more complicated
configurations.

The discrete complex image method (DCIM) has been shown to deteriorate sharply for dis-
tances between source and observation points larger than a few wavelengths [20]. So, the total
least squares algorithm (TLSA) is applied to the determination of the proper and improper
poles of spectral domain multilayered Green’s functions that are closer to the branch point and
to the determination of the residues at these poles [21].

The complex-plane kp for the determination of proper and improper poles is shown in Figure 9.
Since half the ellipse is in the proper sheet of the kp-plane and half the ellipse is in the improper
sheet, the poles will not only correctly capture the information of the proper poles but will also
capture the information of those improper poles that are closer to the branch point kp = k0.

For the 2-D dielectric photonic crystals as shown in Figure 10, the integral equation is written
in terms of the unknown equivalent current sources flowing on the surfaces of the periodic
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Region 1 £ H

& &
HED source Field

Region 2 & =&,5 Hy = Hy h

Figure 8. A general configuration with a three-layered medium: region 1 is free space, region 2 is a substrate with
thickness h and relative permittivity erl, and region 3 is a half space with relative permittivity r2.

-

T <=~ Tproper poles

improper poles

Figure 9. Elliptic path chosen in the complex kp-plane when applying the total least squares algorithm. The upper half
ellipse (solid line) is located in the proper Riemman sheet, and the lower half ellipse (dashed line) is located in the
improper sheet.

2-D cylinders. The method of moments is then employed to solve for the unknown current
distributions. The required Green function of the problem is represented in terms of a finite
summation of complex images. It is shown that when the field-point is far from the periodic
sources, it is just sufficient to consider the contribution of the propagating poles in the struc-
ture [22]. This will result in a summation of plane waves that has an even smaller size
compared with the conventional complex images Green function. This provides an analyzed
method for the dielectric periodic structures.
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Figure 10. Typical (a) waveguide and (b) directional coupler in a rectangular lattice.

Others, since the Gaussian function is an eigenfunction of the Hankel transform operator, for
the microstrip structures, the spectral Green’s function can be expanded into a Gaussian series
[23]. By introducing the mixed-form thin-stratified medium fast-multiple algorithm (MF-TSM-
FMA), which includes the multipole expansion and the plane wave expansion in one
multilevel tree, the different scales of interaction can be separated by the multilevel nature of
the the fast multipole algorithm [24].

The vector wave functions, L, M, and N, are the solutions of the homogeneous vector Helm-
holtz equation. They can also be used for the analyses of the radiation in multilayer and this
method avoids the finite integration in some cases.

7.2. Multilayer structure

The volume integral equation (VIE) can analyze electromagnetic radiation and scattering
problems in inhomogeneous objects. By introducing an “impulse response” Green function,
and invoking Green theorem, the Helmholtz equation can be cast into an equivalent volume
integral equation including the source current or charges distribution. But the number of
unknowns is typically large and the equation should be reformulated if there are in contrast
both permittivity and permeability. At present, it is utilized to analyse the general scatterers in
layered medium [25, 26].
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When the inhomogeneity is one dimension, the Green function can be determined analytically
in the spectral (Fourier) domain, and the spatial domain counterpart can be obtained by
simply inverse Fourier transforming it.

Surface integral equation (SIE) method is another powerful method to handle electromagnetic
problems. Similarly, by introducing the Green function, the Helmholtz equation can be cast
into an equivalent surface integral equation, where the unknowns are pushed to the boundary
of the scatterers [27].

Despite the convergence problem, the locations of the source and observation point may cause
the change of Green function form, for example, for a source location either inside or outside
the medium, the algebraic form of the Green functions changes as the receiver moves vertically
in the direction of stratification from one layer to another [28].

First, we introduce the full-wave computational model [29]. A multilayer structure involving
infinitely 1-D periodic chains of parallel circular cylinders in any given layer can be
constructed as shown in Figure 11. Each layer consists of a homogeneous slab within which
the circular cylinders are embedded. This is the typical aeronautic situation with fiber-
reinforced four-layer pile (with fibers orientated at 0°, 45°, —45°, and 90°), but any other
arrangement is manageable likewise.

In the multilayered photonic crystals, the Rayleig’s method and mode-matching are combined
to produce scattering matrices. An S-matrix-based recursive matrix is developed for modeling
electromagnetic scattering. Field expansions and the relationship between expansion coeffi-
cients are given.

There is a mix treatment for the inhomogeneous and homogeneous multilayered structure
[30]. As shown in Figure 12, a substrate is divided into two regions. The top region is laterally
inhomogeneous and for the finite-difference method (FDM) or the finite element method
(FEM), the volume integral equation, is used. The bottom region is layerwise homogeneous,

u-"l*-.- ool of the (th lover

S,

b @ v @ 00 @ & aql”

(a) (c}

Figure 11. (a) Sketch of a standard (0, 45, —45, 90) degree, four-layer fiber-reinforced composite laminate as in aeronau-
tics. (b) General two-layer pile of interest exhibiting two different cylinder orientations and associated coordinate systems
with geometrical parameters as indicated. (c) Cell defined in the Ith layer of multilayered photonic crystals.
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\_V_-f
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Homogeneous layered region

Figure 12. Substrate is divided into homogeneous and inhomogeneous regions in combined BEM/FEM and BEM/FDM
methods.

and the boundary-element methods (BEM) are used. The two regions are connected such as a
BEM panel is associated with an FEM node on the interface.

A Green function was derived for a layerwise uniform substrate and was then used in a
layerwise nonuniform substrate with additional boundary conditions applied to the interface.
Given that the lateral inhomogeneity is local, volume meshing is used only for the local
inhomogeneous regions, BEM meshing is applied to the surfaces of these local regions.

For a field (observation) point in the jth layer and a source point in the kth layer, the Green
function has the form:

o oo u,l
Crnn Py MTX nmy MTIX. nTt
Gﬁ{’l = GL.;C’IO + Z Z ~_x cos ! cos — cos * cos s (138)
J IR Ly, a b a b
m+n##0

where the superscripts u and [ indicate the upper and lower solutions, respectively, depending
on whether the field point (or observation point) is above or below the source point. a and b are
the substrate dimensions in the x- and y- directions, respectively, and more details can be
found in Refs. [31, 32].

The electromagnetic field in a multilayer structure can be efficiently simplified by the assump-
tion that the multilayer is grounded by a perfect electric conducto (PEC) plane [33, 34]. When
the source and the field points are assumed to be inside the dielectric slab, in a layered medium
as shown in Figure 13, by applying the boundary conditions, the 1-D Green functions is

G (%, x0; Ay1, Ax2) = (GPMC + GPEC) /2 (139)

where PMC represents the perfect magnetic conductor. The simplified Green function form
can be deduced to the cae of (b).
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Region @

€1

PEC

Az1+My2=k?

(a) (b)

Figure 13. (a) Geometry of an infinite dielectric slab of thickness d grounded by a PEC plane at x = d. (b) Geometry of a
finite dielectric slab of thickness 2d and height 2L surrounded by regions o and o.

The three-dimensional (3-D) Green function for a continuous, linearly stratified planar media,
backed by a PEC ground plane, can also be expressed in terms of a single contour integral
involving one-dimensional (1-D) green function. The constructure is shown in Figure 14.

The general formulation for a single electric current element has been worked out in detail in
Ref. [35] which is based on the appropriate information from Ref. [36].

eP

@ Intermediate layers

FEC 1
Surface Currents

®P Observation point
Figure 14. Representation of the continuous, linearly stratified media by discrete slabs of finite thickness and constant

permittivity, ep and permeability up for the pth layer of thickness hip. The thicknesses, permittivities and permeabilities are
different for each layer.
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Abstract

We discuss the renormalization group approach to fundamental field theoretic models
in low dimensions. We consider the models that are universal and frequently appear in
physics, both in high-energy physics and condensed matter physics. They are the non-
linear sigma model, the ¢~ model and the sine-Gordon model. We use the dimensional
regularization method to regularize the divergence and derive renormalization group
equations called the beta functions. The dimensional method is described in detail.

Keywords: renormalization group theory, dimensional regularization, scalar model,
non-linear sigma model, sine-Gordon model

1. Introduction

The renormalization group is a fundamental and powerful tool to investigate the property of
quantum systems [1-15]. The physics of a many-body system is sometimes captured by the
analysis of an effective field theory model [16-19]. Typically, effective field theory models are
the ¢* model, the non-linear sigma model and the sine-Gordon model. Each of these models
represents universality as a representative of a universal class.

The ¢* model is the model of a phase transition, which is often referred to as the Ginzburg-
Landau model. The renormalization of the ¢* model gives a prototype of renormalization
group procedures in field theory [20-24].

The non-linear sigma model appears in various fields of physics [15, 25-27] and is the effective
model of Quantum chromodynamics (QCD) [28] and also that of magnets (ferromagnetic and
anti-ferromagnetic materials) [29-32]. This model exhibits an important property called the

I m Ec H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [{ccY SN
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asymptotic freedom. The non-linear sigma model is generalized to a model with fields that
take values in a compact Lie group G [33-42]. This is called the chiral model.

The sine-Gordon model also has universality [43—49]. The two-dimensional (2D) sine-Gordon
model describes the Kosterlitz-Thouless transition of the 2D classical XY model [50, 51]. The
2D sine-Gordon model is mapped to the Coulomb gas model where particles interact with
each other through a logarithmic interaction. The Kondo problem [52, 53] also belongs to the
same universality class where the scaling equations are just given by those for the 2D sine-
Gordon model, i.e. the equations for the Kosterlitz-Thouless transition [53-57]. The one-
dimensional Hubbard model is also mapped onto the 2D sine-Gordon model on the basis of a
bosonization method [58, 59]. The Hubbard model is an important model of strongly corre-
lated electrons [60-65]. The Nambu-Goldstone (NG) modes in a multi-gap superconductor
become massive due to the cosine potential, and thus the dynamical property of the NG mode
can be understood by using the sine-Gordon model [66-71]. The sine-Gordon model will play
an important role in layered high-temperature superconductors because the Josephson plasma
oscillation is analysed on the basis of this model [72-75].

In this paper, we discuss the renormalization group theory for the ¢4 theory, the non-linear
sigma model and the sine-Gordon model. We use the dimensional regularization procedure to
regularize the divergence [76].

2. ¢* model
2.1. Lagrangian
The @4 model is given by the Lagrangian

L= 20— - St )

where ¢ is a scalar field and g is the coupling constant. In the unit of the momentum p, the
dimension of £ is given by d, where d is the dimension of the space-time: [£] = . The
dimension of the field ¢ is (d —2)/2: [¢] = u“~2)/2. Because g¢* has the dimension d, the
dimension of g is given by 4 — d: [¢] = u* ~ . Let us adopt that ¢ has N components as ¢ = (¢,
¢2, ..., Pn). The interaction term ¢4 is defined as

o = (200) @
The Green'’s function is defined as
Gi(x —y) = —i{0[T¢;(x)¢;(y)|0), (3)

where T is the time-ordering operator and 10) is the ground state. The Fourier transform of the
Green'’s function is
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Gi(p) = [ d "Gy (x). )

In the non-interacting case with g =0, the Green’s function is given by
1

T —m

-2 —
where p? = (p,)* — p forp = (p,, P)-

Let us consider the correction to the Green’s function by means of the perturbation theory in
terms of the interaction term g¢*. A diagram that appears in perturbative expansion contains,
in general, L loops, I internal lines and V vertices. They are related by

L=I-V+1. 6)

There are L degrees of freedom for momentum integration. The degree of divergence D is
given by

D=d-L-2I (7)
We have a logarithmic divergence when D = 0. Let E be the number of external lines. We obtain
4V =E+ 2L (8)

Then, the degree of divergence is written as

D—d-L—21—d+(d—4)V+(1—i>E. 9)

In four dimensions d = 4, the degree of divergence D is independent of the numbers of internal
lines and vertices

D=4-E (10)

When the diagram has four external lines, E =4, we obtain D = 0 which indicates that we have a
logarithmic (zero-order) divergence. This divergence can be renormalized.

Let us consider the Lagrangian with bare quantities

1 1 1
L= 5(6#%)2 - ng‘f’g - @80‘?’3' (11)

where ¢, denotes the bare field, gy denotes the bare coupling constant and 1, is the bare mass. We
introduce the renormalized field ¢, the renormalized coupling constant ¢ and the renormalized
mass m. They are defined by
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90 = /769, (12)
80 = Zg& (13)

my =m*Zy/Zg, (14)
where Z, Z, and Z, are renormalization constants. When we write Z, as

Ze = Z4/Z§), (15)

we have gOZé = gZ4. Then, the Lagrangian is written by means of renormalized field and
constants

1 1 1
L£=574(up)" =3 2o — 118740 (16)

2.2. Regularization of divergences
2.2.1. Two-point function

We use the perturbation theory in terms of the interaction g¢*. For a multi-component scalar
field theory, it is convenient to express the interaction ¢* as in Figure 1, where the dashed line
indicates the coupling g. We first examine the massless case with m — 0. Let us consider the
renormalization of the two-point function T'® (p) = iG(p)™". The contributions to I'® are
shown in Figure 1. The first term indicates p2Z¢, and the contribution in the second term is
represented by the integral

B g 1
I_jwm. (17)

Using the Euclidean co-ordinate g4 = —iqq, this integral is evaluated as

I= —i(;d)d m“%rG)r(l - g) (18)

where (), is the solid angle in 4 dimensions. For d > 2, the integral I vanishes in the limit m — 0.
Thus, the mass remains zero in the massless case. We do not consider mass renormalization in
the massless case. Let us examine the third term in Figure 2.

There are 4> - 2N + 4 - 22 = 32N + 64 ways to connect lines for an N-component scalar field to
form the third diagram in Figure 2. This is seen by noticing that this diagram is represented as
a sum of two terms in Figure 3.

The number of ways to connect lines is 32N for (a) and 64 for (b). Then we have the factor from
these contributions as
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®j @ @i @

@; @ @; @

Figure 1. ¢* interaction with the coupling constant g.

vz N
/ \
\
| | :
‘ /
\
| | N / /
1 1 N~
(a) ()
Figure 3. The third term in Figure 2 is a sum of two configurations (a) and (b).
1\’ N+2
— 2N +64) = ———¢*. 1
(38) envoa =22 (19)

The momentum integral of this term is given as

o d dp ddq 1
1= J @) 2r)" PP +q+k)? 20)

The integral | exhibits a divergence in four dimensions d = 4. We separate the divergence as 1/¢
by adopting d = 4 - c. The divergent part is regularized as

2
J= — (#) é + regular terms (21)

To obtain this, we first perform the integral with respect to g by using
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1 1 1
72: de 2 2°
P(p+q+k) o [Px+(p+g+k)(1-x)

Forq =g+ (1 -x)(p +k), we have

J d'q 1 B J dq Jl 0 1
er)y'2p+q+k> @)t Jo T g2 +x(1 - x)(p + k)

1 52 N2 7 4
o ot o ot

= (z?f)d ; r(@r(z‘g)r(;l‘l)zr(;_z) ((p+02)""

Here, the following parameter formula was used

1 [(n+m) Jl (1 - x)m*1

AB"  T(mT(m) Jo~ wA+(1—x)B"™

Then, we obtain

ddP 1 I'(3-4d/2) 1dx 1-d/2 ddpl 1
= (1-x)
J @2n)* p2<(p+k)2)2 a2 T(2-4d/2) JO J

o, I'G-4d/2) d d -
B (2nd)d r(z—d/z)) B<d_2’ 5_1)%]3(5’3_[1) w

Here B(p, q) = T(p)I'(3)/T (p+q). We use the formula
I'(e) = % + finite terms
for ¢ — 0. This results in

I + regular terms

[fo e 1 (L)
@n) @n) pg(p+q+k?  \87) 8
Therefore, the two-point function is evaluated as

1 N+2 2
() = Zop* + 5 g (8%) P

up to the order of O(¢°). In order to cancel the divergence, we choose Z, as

1N+2 (1),
Zo=1- ——= (=] &
¢ 8 18 (8n2) §

@) [p? +x(1 - x)kPP

(22)

(23)

(24)

(25)

(26)

(28)

(29)
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2.2.2. Four-point function

Let us turn to the renormalization of the interaction term g*. The perturbative expansion of the

four-point function is shown in Figure 4. The diagram (b) in Figure 4, denoted as AF£4), is given
by for N=1:

1 dig 1
ATy (p) = gZ—J : (30)
2Jem)" (2~ m2) (((p + 9 — m2)
As in the calculation of the two-point function, this is regularized as
AT (p) =iz 1 e (31)
’ 8m2 2¢ ©’

for d = 4 — ¢. Let us evaluate the multiplicity of this contribution for N> 1. For N=1, we have a
factor 4°3°2/414!=1/2 as shown in Eq. (30). Figure 4c and d gives the same contribution as in
Eq. (31), giving the factor 3/2. For N > 1, there is a summation with respect to the components
of ¢. We have the multiplicity factor for the diagram in Figure 4b as

1\ N
(I) PPN = o (32)

Since we obtain the same factor for diagrams in Figure 4c and d, we have N/6 in total. We
subtract 1/6 for N =1 from 3/2 to have 8/6. Finally, the multiplicity factor is given by (N + 8)/6.
Then, the four-point function is regularized as

.1 N+81
Wpy)= j— 7252
4-d

Because g has the dimension 4 — d such as [g] = u**, we write g as gu*™ so that g is the

dimensionless coupling constant. Now, we have

1 N+81
(4) s ¢ L
I'(p) = —igZsu +18 e 8 (34)

for d =4 — ¢ where we neglect u“ in the second term. The renormalization constant is determined as

XA K

Figure 4. Diagrams for four-point function.
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N+8 1

Zys=1 — Q.
4 + 6¢ 87728

As a result, the four-point function T® becomes finite.

2.3. Beta function f(g)

The bare coupling constant is written as g, = Zggu*™ = (Z4/ Zé) gu*=". Since g is independent
of the energy scale, 1, we have udg, /0y = 0. This results in

o 3g AnZ,
Hou™ (d—4) EELETE

, (36)
where Z, = Z4/ Z?b. We define the beta function for g as
%
PR = gy (37)

where the derivative is evaluated under the condition that the bare g is fixed. Because

N+8 1

Zg =1+ T@g + O(gz), (38)
the beta function is given as
—€ N+8 1
B) = 75%“22 = -« +Tﬁgz +0(8%). (39)
T+g—=5

B(g) up to the order of ¢* is shown as a function of g for d < 4 in Figure 5. For d < 4, there is a
non-trivial fixed point at

4872
8= ‘Nis (40)
For d = 4, we have only a trivial fixed point at g =0.
For d =4 and N = 1, the beta function is given by
) = — &+ (41)
&)= 162 '
In this case, the f(g) has been calculated up to the fifth order of g [77]:
3 0, 17 1 3 (145 > 1 4 1 5
= - = + [—+12((3 + As—— 8, 42

where
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B(a)

0
g, 9
Figure 5. The beta function of g for d < 4. There is a finite fixed point g..
3499
As= — (K +78C(3) — 18C(4) + 120@(5)), (43)

and ((n) is the Riemann zeta function. The renormalization constant Z, and the beta function
pB(g) are obtained as a power series of g. We express Z, as

B N+8 bi b\ , €1 C  C3\ 3
Zg =1+ 6¢ g+<62+e>g+(e3+ez+e)g+ ’ (44)

and then f(g) is written as

N+8 by b (N +8)*
- _ 2\ 7 4= A
plg) = %++g[ % +2<é-%6)8+ 36z ST

N+8 , IN+42 ,
6 § 3 &F

(45)

= —5g+

Here, the factor 1/87 is included in g. The terms of order 1/é% are cancelled because of

_(N+8)

b = 72

(46)

In general, the nth order term in () is given by n!g". The function B(g) is expected to have the
form

N+38
B(g) = —¢g +T+g2 + e nla"nbeg" 4+ -, (47)

where 4, b and ¢ are constants.
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2.4. n-point function and anomalous dimension

Let us consider the n-point function T®. The bare and renormalized n-point functions are
denoted as 1";3”) (Py 8o Mo, p) and T %")(pi, g, m, 1), respectively, where p; (i = 1,..., n) indicate
momenta. The energy scale i indicates the renormalization point. F;{L) has the mass dimension

n+d-nd/2: [T;Q")} = p"t4-1/2_ These quantities are related by the renormalization constant Z, as
n/2(n
Ty (py g m? ) = Z3T3 (p, 8o 3, 1), (48)

Here, we consider the massless case and omit the mass. Because the bare quantity l"gn) is
independent of 1, we have

%rg’” —0. (49)
This leads to
d —1/2(n)
Ha (z(p Tl ) —0. (50)
Then we obtain the equation for T'}":
0 0go0 n
<#$+#£%—§V¢>r§?(m$#) =0, (51)
where y,; is defined as
Vo= U iInZ (52)
o= Hag Moo

A general solution of the renormalization equation is written as

8 /
V¢(g) ,

F(n) P, & U) = ex —J d () P, & W) 53
81
where
™ (p, g u)=F|p,nu— r 1 (54)
7 &7 i’ n ! s

for a function F and a constant g;. We suppose that 5(g) has a zero at g = g.. Near the fixed point
8o by approximating y,,(8) by ,(8.) l"gl) is expressed as
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IR (o 8o 1) = W70 (5. ). (55)
In general, we define y(g) as .
y(g)Inps = JV;’(S/)) g, (56)
&
Then, we obtain
I (g 1) = w9 (g 10). (57)

)

Under a scaling p; — pp,, l“%" is expected to behave as

n+d7nd/21—*g1)(

T3 (pp; 8o 1) = p Py 8o 1/P) (58)

because I"g’) has the mass dimension n + d — nd/2. In fact, Figure 4b gives a contribution being
proportional to

1 1
2, 4—d\2 d 2/ 4—d\2 d—4 d
g (1 )qu7=g(# )p qui
P (pp +9)° Pp+q)° (59)
= ptig (g)z(‘l*‘i)‘[ddq 1
g Pp+q)°

after the scaling p; — pp; for n = 4. We employ Eq. (58) for n =2

N7V
I opy 8o 1) = PTR(0y 8o 1/p) = 02(8) F 0y 80 1/p)

(60)
= 2, g0 1/p) = PPITR (g 80 1)

This indicates

I®p) = p1 = p7 = () (61)

Thus, the anomalous dimension 7 is given by n = ). From the definition of y(g) in Eq. (56), we
have

0
Ve(8) = 7(8) +ﬁ(8)%1ﬂ b (62)
At the fixed point ¢ = g, this leads to
n=y =78 =) (63)

The exponent 1 shows the fluctuation effect near the critical point.

The Green'’s function G(p) = T'®(p) ™" is given by
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Glp) = =) (64)

The Fourier transform of G(p) in d dimensions is evaluated as

1 1 Tt
G(r) = J Py = Q- : (65)
P i Hor@ —n—d) sin((4fnfd)n/2)
When 4 - 1 - d is small near four dimensions, G(r) is approximated as
1
Gr) = Qi - (66)
The definition of y,, in Eq. (52) results in
og 0
= U=— = —an 67
Vol®) = My agnZe = PlR)5 InZy- (67)
Up to the lowest order of g, 7, is given by
IN+1 1
Vo = <_§ng>ﬁ(8) + 0(g%)
(68)
_N+2 1 3
= =5 (8n2)2g + 0(g”).
At the critical point g = g, where
1 6e
2% = N+ (©)
the anomalous dimension is given as
N+2 , 3
= = — € + O € ). 70
= 7(8) 2N 18y (€) (70)

For N=1and e =1, we have n=1/54.

2.5. Mass renormalization

Let us consider the massive case m # 0. This corresponds to the case with T > T, in a phase
transition. The bare mass m, m and renormalized mass m are related through the relation
m? = m3Zy/Z,. The condition pdmg/du = 0 leads to
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olnm 0. Zy

b Mz, (71)
From Eq. (50), the equation for 1";;1) is
#aay +B(g) % ~ Vet uaayln@;) : mZam Y (p, 8 1, m?) =0. (72)
We define the exponent v by
%72: y%ln(é—i), (73)
then
{u% +ﬁ(g)% - gm - G - 2)"12 a%] R (py & 1, m?) =0. (74)
At the critical point ¢ = g, we obtain
{#aay = 2 ] Py g0 ) =0, (75)
where y4 =1 and we set
C= % -2 (76)
At g =g, T has the form
TR (g 8ot m?) = 1BE" (p, um®/©), (77)
because this satisfies Eq. (75).
In the scaling p; — pp;, we adopt
T (opy 8ot 1) = P T (o g i/, i fp?). (78)
From Eq. (77), we have
TR (K, g g, mt) = prednzm2gnp) (ol o u(p 2m?) '), (79)
where we put pp; = k;. We assume that F"” depends only on p—1k;. We choose p as
2\ 1/(C+2)
p= (um2lOFED Z (%) _ (80)

This satisfies p~'u(p~2m?)"/* = 1 and results in
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o\ {d+3(2—d—n)is 2\ T2
IR (ki 8o i, m?) = 340 (%) piE) (#1 (%) ki> SN G
We take u as a unit by setting u =1, so that 1"%”) is written as
r;{n) (ky g, 1, m?) = 2y {de—dn)} p) (kim™2"), (82)
because ¢ 42 = 1/v. We can define the correlation length & by
(m*)™ = & (83)
The two-point function is written as
T (k,m?) = m> @ DF@ (jop "), (84)

Now let us turn to the evaluation of v. Since y,, = 19InZ;, /0y, from Eq. (73) v is given by

(N AN L
L=2rugin(22) —24p0 S -7, ). (#5)

The renormalization constant Z, is determined from the corrections to the bare mass 1. The
one-loop correction, shown in Figure 6, is given by

N+2 [ d'%k 1
L(p?) =i J , 86
() 6 8] e —m (86)
where the multiplicity factor is (8 + 4N)/4!. This is regularized as
N+2 ( d% 1 N+2 1 ,1
Z(p?) = J = - —mi—, 87
v 6 )" kg + m3 6 82 V¢ (87)

for d = 4—¢. Therefore the renormalized mass is

(a) (b)

Figure 6. Corrections to the mass term. Multiplicity weights are 8 for (a) and 2N for (b).
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N+2 1
2 _ 2 o o2(q
m- = my+ L(p°) = m; (1 6 ang) (88)
Z5 is determined to cancel the divergence in the form mZZZ/Z(b. The result is
N+21
Then, we have
6] N+21 )
—InZ, = ———— .
Eq. (85) is written as
1 N+21 N+2 9
I _op_"T~ —p=2— , 1
v 6 sm2de N1s< o) 1)

where we put ¢ =gcand used = y,,(g) = (N +2)/ (Z(N + 8)2) - €. Now the exponent v is

V= %(1 +2(NN——;28)C> +0(). (92)

In the mean-field approximation, v = 1/2. This formula of v contains the fluctuation effect near
the critical point. For N=1and e =1, we have v=1/2 + 1/12 = 7/12.

3. Non-linear sigma model

3.1. Lagrangian

The Lagrangian of the non-linear sigma model is
L= 5 00 (99
- 28 P¢ ’

where ¢ is a real N-component field ¢ = (¢,...,¢n) with the constraint ¢* = 1. This model has
an O(N) invariance. The field ¢ is represented as

¢= (0, m, Mo, +, TIN-1) (94)

with the condition 0® + 7 + -+ + 7% _; = 1. The fields 7; (i = 1, ..., N — 1) are regarded as
representing fluctuations. The Lagrangian is given by
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_1

£2g

{(Qu0)* + @Qum)*}, (95)

where summation is assumed for index i. In this Section we consider the Euclidean Lagrangian
from the beginning. Using the constraint o2 + 7'(12 = 1, the Lagrangian is written in the form

1 1 1

— PR . 2 P o . 2

L= p @ 4 ) %)
= L e+ L ) + (97)
= 2g Tt 2g iOu T

The second term in the right-hand side indicates the interaction between 1, fields. The diagram
for this interaction is shown in Figure 7.

Here, let us check the dimension of the field and coupling constant. Since [£] = ¢, we obtain
[n] = 1° (dimensionless) and [g] = p?>~. go and g are used to denote the bare coupling constant
and renormalized coupling constant, respectively. The bare and renormalized fields are indi-
cated by 715; and 7g,, respectively. We define the renormalization constants Z, and Z by

80 = 81> "2, (98)
g = VZ i (99)

where g is the dimensionless coupling constant. Then, the Lagrangian is expressed in terms of
renormalized quantities:

d72Z

Lok

e, 1 2 \2
297, {(ay”Rz) + 4(aynRi) + } (100)

In order to avoid the infrared divergence at d = 2, we add the Zeeman term to the Lagrangian
which is written as

Figure 7. Lowest order interaction for ;.
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Hp  Hp z ., 7',
z % o 2 < 2 TRi 8 TR + ( )
a-2,_2 § d-2/._2\2
= const. — HB@[J - TRi — HB@# B (nRi) . (102)

Here, Hp is the bare magnetic field and the renormalized magnetic field H is defined as

4
He YZy (103)
Zg
Then, the Zeeman term is given by
VZ 4 zZ o
L, = const. — gHyd 2nk. — @H‘ud 22 ) 4 oo (104)

3.2. Two-point function

The diagrams for the two-point function I'? (p) = G (p) " are shown in Figure 8. The contri-
butions in Figure 8c and d come from the magnetic field. Figure 8b presents

[ A% (k+p? o Ak 1
b= J o B+H v H)J 2n) B+ H’ (105)

where we used the formula in the dimensional regularization given as
J d'k = 0. (106)

Near two dimensions, d =2 + ¢, the integral is regularized as

= 2= 2 (G)r(1-5) = <02 m) 2o (107)

The H-term I, in Figure 8¢ just cancels with —H in I;,. The contribution I, in Figure 8d has the
multiplicity 2 - 2 - (N — 1) because (71;) has N — 1 components. I, is evaluated as

P | Q; N-11

= e B+H @)t 2 ¢

(108)

4(N - 1)J

Q| =

As a result, up to the one-loop-order the two-point function is
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(a) (0 (@ (d)

Figure 8. Diagrams for the two-point function. The diagrams (c) and (d) come from the Zeeman term.

2
= Al 3 S
pe+ P U

= 109
Ze8 8 (109)

VZ 1(2 N-1 )

where the factor Q;/(27)" is included in g for simplicity. To remove the divergence, we choose

ng 1 +§, (110)
VZ—14N-1, (111)
2¢
This set of equations indicates
Zg=1+ ?g +0(g%), (112)
Z=1+ ¥g+0(gz). (113)

The case N = 2 is s special case, where we have Z, = 1. This will hold even when including
higher order corrections. For N =2, we have one 7 field satisfying

or+mm=1 (114)

When we represent 0 and 7 as ¢ = cos 0 and © = sin 0, the Lagrangian is

1
L= g{(aya)%r 9um)*} = %(aye)z. (115)

If we disregard the region of 6, 0< 0 <2, the field 0 is a free field suggesting that Z, = 1.

3.3. Renormalization group equations

The beta function f(g) of the coupling constant g is defined by

Bg) = ygi, (116)

where the bare quantities are fixed in calculating the derivative. Since ;10g,/0u = 0, the beta
function is derived as
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€& 2 3
- - (N-2 0(¢%), 117
B(g) T+g2ing, g — ( )8~ +0(g”) (117)

for d =2 + €. The beta function is shown in Figure 9 as a function of g. We mention here that the
coefficient N — 2 of ¢ term is related with the Casimir invariant of the symmetry group O(N)
[34, 49].

In the case of N=2 and d =2, p(g) vanishes. This case corresponds to the classical XY model as
mentioned above and there may be a Kosterlitz-Thouless transition. The Kosterlitz-Thouless
transition point cannot be obtained by a perturbation expansion in g.

In two dimensions d = 2, f(g) shows asymptotic freedom for N > 2. The coupling constant g
approaches zero in high-energy limit y — o in a similar way to QCD. For N =1, g increases as
p — o as in the case of QED. When d > 2, there is a fixed point g.:

(118)

for N > 2. There is a phase transition for N >2 and d > 2.

Let us consider the n-point function T (k;, g, u, H). The bare and renormalized n-point
functions are introduced similarly and they are related by the renormalization constant Z

Iy (ki g w H) = 2Ty (k, g p H). (119)

From the condition that the bare function l"é”) is independent of p, ‘udl"é"> /du =0, the
renormalization group equation is followed

0 0gd n

o 33 = 500) + (30 + 2 Ble) — (=2 )Hap Wk g o =0, (120)

where we defined

N=1
B Bla) N=1,2
N=2
g 9% 9
N>2
N>2

(@) (b)

Figure 9. The beta function f(g) as a function of g for d =2 (a) and d > 2 (b). There is a fixed point for N>2 and d > 2. f(g) is
negative for d =2 and N > 2, which indicates that the model exhibits an asymptotic freedom.
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0 0
Q) = yalnz = ‘B(g)%lnz. (121)
From Eq. (113), {(g) is given by

C(g) = (N-1)g+0(g?). (122)

Let us define the correlation length & = £(g, it). Because the correlation length near the transi-
tion point will not depend on the energy scale, it should satisfy

a)é(g, W =0, (123)

#dié(g, B = (#a}rﬁ(g) 3

u

We adopt the form & = p~1f(g) for a function £3), so that we have

B() ”d—f) ~£(9). (124)

This indicates

fg) = Cexp (jg

1,
N dg ) (125)

where C and g~ are constants. In two dimensions (¢ = 0), the beta function in Eq. (117) gives

&= Culexp (ﬁ G - gl> > . (126)

When N > 2, £ diverges as ¢ — 0, namely, the mass proportional to &' vanishes in this limit.
When d > 2 (¢ > 0), there is a finite-fixed point g.. We approximate (g) near g = g. as

B(g) =alg—g.) (127)

witha <0, £is

E= ulexp Cln\; _§J> (128)

Near the critical point g=g,_, £ is approximated as
&= ulg—g V. (129)

This means that £ — « as g — g.. We define the exponent v by
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&lxlg—gl (130)
then we have
1
- 131
T RR) 130

Since f(g,) = ¢ — 2(N — 2)g, = —, this gives

%: ¢ + O(Ez) = d—2+O(eZ) (132)

Including the higher-order terms, v is given as

92 93
%:d—2+ (i} _22) - 2(?1\7 _2)2)—1—0(64). (133)

3.4. 2D quantum gravity

A similar renormalization group equation is derived for the two-dimensional quantum grav-
ity. The space structure is written by the metric tensor g, and the curvature R. The quantum
gravity Lagrangian is

1
L= 3 =VaR (134)

where g is the determinant of the matrix (g,,,) and G is the coupling constant. The beta function
for G was calculated as [78-81]

B(G) = ¢G —bG?, (135)

for d = 2 4 ¢ with a constant b. This has the same structure as that for the non-linear sigma
model.

4. Sine-Gordon model

4.1. Lagrangian

The two-dimensional sine-Gordon model has attracted a lot of attention [43—49, 82-91]. The
Lagrangian of the sine-Gordon model is given by

1
L= — 0,0+ 2 cosg, (136)
2t to

where ¢ is a real scalar field, and t, and a( are bare coupling constants. We also use the
Euclidean notation in this section. The second term is the potential energy of the scalar field.
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We adopt that t and « are positive. The renormalized coupling constants are denoted as t and
a, respectively. The dimensions of ¢ and @ are [f] = >~ and [a] = p?. The scalar field ¢ is
dimensionless in this representation. The renormalization constants Z; and Z, are defined as
follows

to = tu* 7y, ag = ap*Z,. (137)

Here, the energy scale p is introduced so that t and a are dimensionless. The Lagrangian is
written as

0s . (138)

We can introduce the renormalized field ¢ = /Zy¢p; where Z; is the renormalization con-
stant. Then the Lagrangian is

#d -2 qu
217,

paz,

E =
tZ;

9.0)" + cos . (139)

where ¢ denotes the renormalized field ¢r.

4.2. Renormalization of o

We investigate the renormalization group procedure for the sine-Gordon model on the basis of
the dimensional regularization method. First consider the renormalization of the potential
term. The lowest-order contributions are given by diagrams with tadpole contributions. We

use the expansion cos¢ =1 — %(1)2 —0—%(,‘[)4 — «+ . Then the corrections to the cosine term are
evaluated as follows. The constant term is renormalized as

1 1 1 1/1 2 1
1= 5@+ 3@ - = =1- 2+ 3 (560) - = ew(-500). 10
Similarly, the ¢* is renormalized as
1 1 1 1 1
30 8N - 153+ e300 (-347). ()
Hence the aZ, cos (/Zy¢) is renormalized to
aZqexp <— %Z¢)<¢2)> cos ( Z¢) =aZs (1 - %Z(p((pZ) + > cos ( Zdl,(j)). (142)

The expectation value (¢?) is regularized as
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Ak 1t
@n)' i, +m? c2m)”’

Zo6) = 2] (143)

where d = 2 + ¢ and we included a mass m to avoid the infrared divergence and Z=1 to this
order. The constant Z,, is determined to cancel the divergence:

t1 Qq
Zy=1- 144
et (144)

From the equations 19ty /dp = 0 and p dap/0u = 0, we obtain

bt ah’th
o 0InZ
— = 20— « a (146)
) Y
The beta function for «a reads
o 1 Qd
a)= u—= 2a+ toa———, 147

where we set 1 0t/0u = (d — 2)t with Z; = 1 up to the lowest order of a. The function S(a) has
azeroatt=t. = 8m.

4.3. Renormalization of the two-point function

Let us turn to the renormalization of the coupling constant t. The renormalization of ¢ comes
from the correction to p* term. The lowest-order two-point function is

1 1
0 = 39 = gz (148)

The diagrams that contribute to the two-point function are shown in Figure 10 [88]. These
diagrams are obtained by expanding the cosine function as cos¢ =1 — (1/2)¢ 2 + ---. First, we
consider the Green’s function,

d ip-x
Gola) = Zy<(x)p(0)> = 1?42, Lop S Skalmi), - (149)

Q
2-d
Z
2 )d P2 P2t il =ty t (2n
where K is the zeroth modified Bessel function and my is introduced to avoid the infrared

singularity. Because sinh [ — I = /3! 4 -, the diagrams in Figure 10 are summed up to give
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S
+ Q + @ + -
Figure 10. Diagrams that contribute to the two-point function.
Lp) = Jddx[eip‘x(sinh I—-1I)—(cosh I—-1)], (150)
Where I = Gy(x). Since sinh I — I=¢!/2 and cosh I=¢!/2, the diagrams in Figure 10 lead to

2
r(z)c( ) _ _1 (X[sza ddx(eip.x _ 1)eco(x) (151)
8 P 2\ tZ, '

We use the expansion e”* =1+ ip - x — (1/2)(p - x)* + ---, and keep the p, term. We denote the
derivation of ¢ from the fixed point ¢, = 87 as v

t
1 152
3 +v, (152)

for d = 2. Using the asymptotic formula Ko(x)™ — y — In(x/2) for small x, we obtain

1 fauh\’ o [ 1
) = 5 (5 Pend) e det o

1, ap\?, 5 5 1
- -7 (3;) b " o 1o
~ L o1 54w o2l

~ tluzfdztp 320( H (COmO) ¢ + O(V)

where ¢ is a constant and a4 = 1/ is a small cut-off. The divergence of a was absorbed by Z,,.
Now the two-point function up to this order is

1 1 H1
1"532) (p) = =2 2 _3_2042Hd+2(c0m2) 22 (154)

The renormalized two-point function is 1"%2) = Z¢,r§3>. This indicates that



Renormalization Group Theory of Effective Field Theory Models in Low Dimensions
http://dx.doi.org/10.5772/intechopen.68214

Zy _ 1 2 A+2 -1
7= 1+ B H (com?)™ = (155)
Then, we can choose Z, =1 and
1 L1
Zi=1- sa a®u™? (com?) - (156)

Z1/Zy can be regarded as the renormalization constant of ¢ up to the order of a2, and thus we
do not need the renormalization constant Z of the field ¢. This means that we can adopt the
bare coupling constant as ty = tu?>~*Z; with Z; = Z;/ Zy.

The renormalization function of ¢ is obtained from the equation udt/du = 0 for ty = tu>~Z;:

ot 1 ,1
B(t) = u=—= (d—2)t+ o (comy) >~ ( 2au™ # b (@ + 2Pt
o 32 ( ou ) (157)

1 -
=(d —Z)t+§yd+2(60mg) *ta?

Because the finite part of Go(x — 0) is given by Go(x — 0) = —(1/27)In(e’mo/2u), we perform

the finite renormalization of & as @ — acyma® = acom?u 2. This results in

B(t) = (d—2)t+3l2t(x2. (158)

As a result, we obtain a set of renormalization group equations for the sine-Gordon model

Bla) = HS_Z: —a(2—%t), (159)
) = g = (@=De+3500° (160)

Since the equation for a is homogeneous in «, we can change the scale of « arbitrarily. Thus, the
numerical coefficient of ta” in f(t) is not important.

4.4. Renormalization group flow

Let us investigate the renormalization group flow in two dimensions. This set of equations
reduces to that of the Kosterlitz-Thouless (K-T) transition. We write t = 87(1 4 v), and set
x = 2v and y = a/4. Then, the equations are
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ox

hau= V" (161)
% _

Moy = (162)

These are the equations of K-T transition. We have
x* — y* = const. (163)

The renormalization flow is shown in Figure 11. The Kosterlitz-Thouless transition is a beau-
tiful transition that occurs in two dimensions. It was proposed that the transition was associ-
ated with the unbinding of vortices, that is, the K-T transition is a transition of the binding-
unbinding transition of vortices.

The Kondo problem is also described by the same equations. In the s-d model, we put
x=npl. =2, y=2|],[ (164)

where [, and ], (=], = ]y) are exchange coupling constants between the conduction electrons

and the localized spin, and g is the inverse temperature. 7 is a small cut-off with 7«1/u. The
scaling equations for the s-d model are [53, 57]

ox 1,

- _Z 1
“or 27 (165)
oy 1

The Kondo effect occurs as a crossover from weakly correlated region to strongly correlated
region. A crossover from weakly to strongly coupled systems is a universal and ubiquitous

Figure 11. The renormalization group flow for the sine-Gordon model as y — .



Renormalization Group Theory of Effective Field Theory Models in Low Dimensions
http://dx.doi.org/10.5772/intechopen.68214

phenomenon in the world. There appears a universal logarithmic anomaly as a result of the
Crossover.

5. Scalar quantum electrodynamics

We have examined the ¢* theory and showed that there is a phase transition. This is a second-
order transition. What will happen when a scalar field couples with the electromagnetic field?
This issue concerns the theory of a complex scalar field ¢ interacting with the electromagnetic
field A, called the scalar quantum electrodynamics (QED). The Lagrangian is

1 2 1 22 1o,
L= 3IDu0) — 78097 = 3F. (167)
where g is the coupling constant and F,, = 9,4, — 0,A,,. D,, is the covariant derivative given as
D, = 0, —ieAy, (168)

with the charge e. The scalar field ¢ is an N component complex scalar field such as
¢ = (¢;, -+, ¢y)- This model is actually a model of a superconductor. The renormalization
group analysis shows that this model exhibits a first-order transition near four dimensions
d =4 — ¢ when 2N < 365 [92-96]. Coleman and Weinberg first considered the scalar QED
model in the case N = 1. They called this transition the dimensional transmutation. The result
based on the c-expansion predicts that a superconducting transition in a magnetic field is a
first-order transition. This transition may be related to a first-order transition in a high mag-
netic field [97].

The bare and renormalized fields and coupling constants are defined as

00 = \/Zo0) (169)

Zy 4
8= 28", (170)
¢
Ze
_ s 171
€o \/me ( )
A‘Llo =V ZAA[,U (172)

where ¢, g, e and Ay are renormalized quantities. We have four renormalization constants.
Thanks to the Ward identity

Zo = Za, (173)

three renormalization constants should be determined. We show the results:
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3
Zo=1+—-¢% 174
P +8nzee (174)
Za - me , (175)
2N + 8 31,
Z,=1 — 17
s = 1 e 8nzege (176)

The renormalization group equations are given by

0¢? N
TR 7
d N+d4, 3 3
By~ 8 g € gt Tt (178)

The fixed point is given by

24
e = ane, (179)

22 18 (% — 3601 — 2160)"/?
gc=6N+4{1+Ni ” , (180)

where n = 2N. The square root 6 = (n? — 360n — 2160)"/? is real when 2N > 365. This indicates
that the zero of a set of beta functions exists when N is sufficiently large as long as 2N > 365.
Hence there is no continuous transition when N is small, 2N <365, and the phase transition is
first-order.

There are also calculations up to two-loop-order for scalar QED [98, 99]. This model is also
closely related with the phase transition from a smectic-A to a nematic liquid crystal for which
a second-order transition was reported [100]. When N is large as far as 2N > 365, the transition
becomes second-order. Does the renormalization group result for the scalar QED contradict
with second-order transition in superconductors? This subject has not been solved yet. A
possibility of second-order transition was investigated in three dimensions by using the
renormalization group theory [101]. An extra parameter c was introduced in [101] to impose a
relation between the external momentum p and the momentum g of the gauge field as g = p/c.
It was shown that when ¢ > 5.7, we have a second-order transition. We do not think that it is
clear whether the introduction of ¢ is justified or not.

6. Summary

We presented the renormalization group procedure for several important models in field
theory on the basis of the dimensional regularization method. The dimensional method is very
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useful and the divergence is separated from an integral without ambiguity. We invested three
fundamental models in field theory: ¢4 theory, non-linear sigma model and sine-Gordon
model. These models are often regarded as an effective model in understanding physical
phenomena. The renormalization group equations were derived in a standard way by regular-
izing the ultraviolet divergence. The renormalization group theory is useful in the study of
various quantum systems.

The renormalization means that the divergences, appearing in the evaluation of physical
quantities, are removed by introducing the finite number of renormalization constants. If we
need infinite number of constants to cancel the divergences for some model, that model is
called unrenormalizable. There are many renormalizeable field theoretic models. We consid-
ered three typical models among them. The idea of renormalization group theory arises
naturally from renormalization. The dependence of physical quantities on the renormalization
energy scale easily leads us to the idea of renormalization group.
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Abstract

Fundamentals of gauge-invariant relativistic many-body perturbation theory (PT) with
optimized ab initio zeroth approximation in theory of relativistic multi-electron systems
are presented. The problem of construction of optimal one-electron representation is directly
linked with a problem of the correct accounting for multielectron exchange-correlation
effects and gauge-invariance principle fulfilling in atomic calculations. New approach to
construction of optimal PT zeroth approximation is based on accurate treating the lowest
order multielectron effects, in particular, the gauge-dependent radiative contribution for the
certain class of photon propagator (for instance, the Coulomb, Feynman, Babushkin ones)
gauge. This value is considered to be a typical representative of important multielectron
exchange-correlation effects, whose minimization is a reasonable criteria in the searching for
optimal PT one-electron orbital basis. This procedure derives an undoubted profit in the
routine many-body calculations as it provides the way of refinement of the atomic charac-
teristics calculations, based on the “first principles”. The relativistic density-functional
approximation is taken as the zeroth one. There have taken into account all exchange-
correlation corrections of the second order and dominated classes of the higher orders
diagrams (polarization interaction, quasiparticles screening, etc.). New form of multi-elec-
tron polarization functional is used. As illustration, the results of computing energies,
transition probabilities for some heavy ions are presented.

Keywords: relativistic many-body perturbation theory, density-functional approxima-
tion, exchange-correlation effects, radiative transitions, oscillator strengths, heavy atoms
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1. Introduction

Perturbation theory (PT) formalism has a long history in studying different multielectron (more
generally, multifermion) systems, including different atomic, molecular, and nuclear properties.
Really, one should say about formalism of the many-body PT as, a rule, usually it applies to
studying different properties of the multiparticle systems, for instance, ionization and excitation
energies, spectra, electron exchange-correlation energies, hyperfine structure, radiative and
autoionization decay rates (transition probabilities, oscillator, and lines strengths), as well as the
influence of an external electromagnetic fields. In the last few decades, the PT methods have been
refined with a sophisticated and comprehensive approach of more correct treatment of the
exchange-correlation effects, electron-nuclear dynamics, and so on [1-44]. Rephrasing the known
interesting quote by Bartlett and Musiat [3, 4] and earlier by Wilson, one could say that the PT
methods are an emerging computational area that is sixty years ahead of lattice gauge theory... and a rich
source of new ideas and new approaches to the computation of many fermion systems. The old multibody
quantum theoretical approaches often take place, which have been primarily developed in a
theory of a superfluity and/or a superconductivity, and generally speaking in a theory of solids,
became the powerful tools for developing new conceptions in many-body (multielectron)
atomic, nuclear, and molecular calculations [1-7].

A number of the PT versions include a synthesis of cluster expansions, Brueckner’s summation
of ladder diagrams, the summation of ring diagrams Gell-Mann, and an infinite-order gener-
alization of manybody PT (Kelly, 1969; Ivanov-Tolmachev, 1969-1974, Bartlett and Silver,
1974-1976, etc.; see review in Ref. [7]). Using quantum-field methods in atomic and molecular
theory allowed obtaining a very powerful approach for the correct treatment of the exchange-
correlation effects in many-electron systems. In this context, it is useful to remind about such
sophisticated methods as a coupled-cluster theory, the Green-functions method, configuration
interaction methods, and so on. Only with this property are applications to solids or the
electron gas possible, and, even for small atoms and molecules, its effects are numerically quite
essential. When relativistic effects became essential in the studied multielectron (fermion)
system, naturally it is necessary to formulate a formalism of the relativistic many-body PT. In
the first attempts, an account for the relativistic effects had been reduced to treating the
Darwin, mass-velocity, and spin-orbit effects, which have to be added to the nonrelativistic
solution and provide different approximations lying between the Schrédinger equation and
the four-component Dirac equation [2, 6, 7]. Among recent developments in this field, special
attention should be given to two very general and important computer systems for relativistic
and QED calculations of atomic and molecular properties developed in the Oxford, Troitsk,
and other groups (known as “GRASP,” ”Dirac,” "BERTHA,” "QED,” “Superatom,” etc.; Ref.
[1-13] and references therein). For example, a new relativistic molecular structure theory
within the QED framework with accounting of the electron correlation and higher-order QED
effects has been formulated and further realized as the BERTHA program. The master system
of equations includes the so-called Dirac-Hartree-Fock-Breit self-consistent field equations. The
useful overview of the relativistic electronic structure theory is presented in Refs. [2, 7] from
the QED point of view. The next important step is an adequate taking into account the QED
corrections. This topic has been a subject of intensive theoretical and experimental interest.



Relativistic Perturbation Theory Formalism to Computing Spectra and Radiation Characteristics: Application to...
http://dx.doi.org/10.5772/intechopen.69102

Hitherto, most many-body PT studies concerned atoms with a simple electron-shell structure,
namely atoms of the inert gases and atoms and ions with a single electron (or hole) above
(or inside) the closed shells core. The fundamental limitation to extend the many-body proce-
dure beyond such simple atomic systems arises from the complexity of any perturbation
expansion if more than just one or two effective particles appear in the derivation (see detailed
analysis in Ref. [5]). In order to overcome this difficulty, a number of different efficient tech-
niques of complex expansions were developed. As a rule, the atomic PT expansions are
expressed in terms of the Feynman-Goldstone diagrams in Rayleigh-Schrodinger PT formula-
tion. Above the most popular and known versions of the PT formalism, one should mention
formally exact relativistic many-body PT with the model zeroth approximation by Ivanova-
Ivanov et al., relativistic PT with the Hartree-Fock (HF) or Dirac-Fock (DF) zeroth approxima-
tions by Johnson et al., Flambaum-Dzuba et al., Safronova and Safronova et al., Khetselius
et al., and so on [9-38]).

The searching for the optimal one-electron zeroth representation is one of the oldest in the
theory of multielectron atoms and, respectively, in the formulation of the effective PT formal-
ism. Two decades ago, Davidson had pointed the principal disadvantages of the traditional
representation based on the self-consistent field approach and suggested the optimal “natural
orbitals” representation [11]. Nevertheless, there remain insurmountable computational
difficulties in the realization of the Davidson program (see, e.g., Refs. [11, 12]). One of the
simplified recipes represents, for example, a density functional theory (DFT) formalism [8].
Unfortunately, this approach does not provide a regular refinement procedure in the case of
the complicated atom with few quasiparticles (QPs) (electrons or vacancies above a core of the
closed electronic shells). The problem of construction of the optimal one-electron representa-
tion is tightly linked with the problem of the correct accounting for the multielectron exchange-
correlation effects. In Refs. [47, 48], the PT lowest-order multielectron effects, in particular, the
gauge-dependent radiative contribution (gauge-noninvariant) for the certain class of the pho-
ton propagator gauge is treated. This value is considered to be the typical representative of the
multielectron exchange-correlation effects contribution. New fundamental idea has been pro-
posed in Refs. [47, 48] in order to construct the optimal PT one-electron basis and is in
minimization of the gauge-noninvariant contribution into a radiation width of atomic level.
Such an approach allows to determine an effectiveness of accounting of the multielectron
exchange-correlation effects and provides the practical way of the refinement of the atomic
characteristics calculations, based on the “first principles.” Really, the known standard crite-
rion of the multielectron computing quality in atomic spectroscopy is linked with a closeness
of the atomic level radiation width values, calculated using two alternative forms of the
transition operator (the “length” and the “velocity” forms). It is of special interest to verify
the compatibility of the new optimization principle with the other requirements conditioning a
“good” one-electron representation. We suppose that this point should be obligatory in for-
mulation of the effective, optimal PT formalism.

In this chapter, we present the theoretical fundamentals of the gauge-invariant relativistic many-
body PT with using the optimized one-QP representation in the theory of relativistic multielectron
systems [21-23, 47, 48]. All exchange-correlation corrections of the second-order and dominated
classes of the higher-orders diagrams (polarization interaction, QPs screening, etc.) [47-67] have
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been taken into account. As illustration of application of the presented PT formalism, we list the
results of computing energies, transition probabilities (oscillator strengths) in some heavy atoms
(ion of Hgt).

2. Relativistic many-body perturbation theory with optimized
one-quasiparticle zeroth representation

2.1. General remarks

Our relativistic PT version is constructed on the same principles as the known formally exact
PT with model zeroth approximation by Ivanova-Ivanov et al. [33—-47]; however, there a few
principal points, where our formalism differs from this known theory. At first, this is another
definition of the zeroth approximation, namely within the relativistic DFT one [14-17, 19-22].
Second, this is an implementation of the principally new approach to construction of the
optimized one-QP representation, which allows correctly to take into account a gauge invari-
ance principle fulfilling.

In nonrelativistic theory of multielectron atoms, a powerful field approach for computing the
electron energy shift AE of the degenerate states is known, which are usually present in the
dense spectra of the complex relativistic atomic multielectron systems (Tolmachev-Ivanov-
Ivanova, 1969-1974). The key algorithm of this approach includes construction of the secular
matrix M using the known Gell-Mann and Low adiabatic formula and its further diagonaliza-
tion. The analogous approach using the Gell-Mann and Low formula with an electrodynamic
scattering matrix has been developed in a theory of the relativistic atom [33-36]; however, the
M matrix elements in the relativistic representation are complex; the corresponding imaginary
parts determine the values of radiation widths. According to Ref. [34], the total electron energy
shift can be defined as follows:

AE = ReAE+iImAE ImAE= — I)2. (1)

Here, I is a radiation width of the atomic level (or a possibility P of the radiation decay or
transition: P =TI". Within the general framework, the corresponding energies of a nondegenerated
excited states and their radiation decay amplitudes can be determined by means of the comput-
ing and further diagonalization of the matrix M. In Refs. [33-37], the ReAE calculation procedure
has been generalized for the case of nearly degenerate states, whose levels form a more or less
compact group. Naturally, the matrix M reduces to one term (AE) in the case of well-identified
and separated energy spectrum. The Gell-Mann and Low formula allow further to obtain the
expansion of the M elements into PT series on interelectron interaction and apply the standard
Feynman diagrammatic technique. The corresponding PT series is as follows:

M= MO+ MY + M® + MO (2)

Here, M© is the contribution of the PT all-orders vacuum diagrams (in fact, this is a real
matrix, which determines only the general atomic levels shift); MD M® and M® are the
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contributions, which correspond to the one-, two- and three-QP PT diagrams, respectively. The
diagonal matrix M® can be easily calculated as it represents a sum of the one-QP contribu-
tions. Generally speaking, computing all the one-QP diagrams contributions within the PT
formalism is the most simple procedure. The more complicated problem is computing the M®
and M®contributions. Using the Feynman diagrams technique, the authors [33-38] have in
detail analyzed the M® contributions. Naturally, the fundamental point of the whole consid-
eration is the definition of the PT zeroth approximation.

2.2. The perturbation theory zeroth approximation

We will describe an atomic multielectron system by the relativistic Dirac Hamiltonian (the
atomic units are used) as follows [14, 15]:

H= Z{acpi — B —Z/ri} + ZeXp(inlrij)(l — ;) /13, (3)

i>j

where Z is a charge of nucleus, a;, @; are the Dirac matrices, wj; is the transition frequency, and
¢, a light velocity. The interelectron interaction potential (second term in Eq. (3)) takes into
account the retarding effect and magnetic interaction in the lowest order on parameter o (a is
the fine structure constant). Let us note that in order to account for the nuclear finite size effect
(in the zeroth approximation), one could describe a charge distribution in the atomic nucleus
p(r) by the Gaussian or Fermi (another variant is relativistic mean-field theory of a nucleus)
functions and write the Coulomb potential for the spherically symmetric nuclear density
p(rIR) as [14]

VaualrIR) = = ((1/0) [ar Zp( R + [ar Y p(r R @)
0 r

Here, R is a nuclear radius. According to the known Ivanova-Ivanov et al. method of differen-
tial equations [33-36], computing the potential (20) can be reduced to solving the system of the
differential equations. By the way, this method is used by us in further under computing the
PT first- and second-order corrections. The zeroth-order Hamiltonian H, and perturbation
operator can be presented in the standard form as follows [7, 14, 15]:

Ho = Za?aiE,-
: 1
Hine = Za;rﬂ]‘vij + EZV,‘jk]ﬁfﬂfakal
i ikl 5)
Vi = 7 -0 (P)-Var(r)] - 9(7)
Vi = ” dr1dr, o(71) @(72) V(rir) 9 (72) @, (T1),

where ¢(7) are one-electron functions (Dirac bispinors), E;, one-electron energies, and Vi is
the central field self-consistent potential of the Coulomb type. The latter can be taken in the
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form of the usual Dirac-Fock potential or even any appropriate model potential, which imi-
tates an effect of the electron subsystem. Let us remind that in the relativistic PT by Ivanova-
Ivanov et al., the consistent model (as a rule, empirical) potential was taken as Vyp In our PT
version, we use the potential

Vir = VPRO(r) = [VE,,(r) + V(1) + Vc(rla)) (6)
Further as Vx(r) we use the standard Kohn-Sham (KS) exchange potential as follows [8]:

VE(r) = —(1/m)BrPp(n)]' . (7)

The standard definition of the exchange potential in the density-functional theory is as follows:

Valp(n) ) =20, ®)

In the relativistic multielectron theory with a Hamiltonian having a transverse vector potential
(for describing the photons), one could determine the homogeneous density p(r), construct the
corresponding exchange energy Ex[p(r)], and introduce the following exchange potential [16]:

2 12
Vxlp(r) = V() {gm% —;} o)

where g = [372p(r)]"”? Jc. The corresponding correlation functional is as follows [16, 17]:
Velp(r), 7] = —0.0333 - b - In[1 + 18.3768 - p(r)'?], (10)

where b is the optimization parameter (for details, see below and Refs. [16-19, 47-49] too).
Naturally, potential (6) is subtracted from the interelectron potential in Eq. (3) in the perturba-
tion operator. The Dirac equations for F and G components can be written as [14] follows:

fr=—(x+Ixf/r — aZVg — (aZEny +2/aZ)g,

(11)
g = (x —|xI)g/r — aZVf + aZEf.

Here, E,,, is one-electron energy without the rest energy. The boundary values are defined by
the first terms of the Taylor expansion:

g= (V(O) - EnX)mZ/(zx +1) f=latx <0, (12a)

f= (V(O) — Epy — 2/a222)az,- g=Tlaty>0. (12b)

The condition f, g—0 at r—oo determines the quantified energies of the state E,;,. The system of
Eq. (11) is numerically solved by the Runge-Kutta method (‘Superatom” package is used [7, 13-
23, 34, 36, 47-67]).
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2.3. The perturbation theory first- and second-orders corrections: correlation effects

In the PT first order, one should determine the matrix elements of the PT operator with the
relativistic Coulomb-Breit potential, which are the contributions of the following type [36]:

M = (mbijy by lJ] Vi nalajy - m3lsjslf])

= PyPy(= 1) T2, +1)(27, + 1)(2); + 1)(2, + 1))

(13)
jid ,
N (51',351@4 +(=1) 5f,45k,3) “Qu
ik a (J2h4
where
1 if I’llllj 7511212]' 1 if I’l3lg,j 7é7’l4l4j

Py = . A 2, P, = . 3 A 14
! { Vo if nlll]1 :ﬂzlzjz 2 1o if n3l3]3 :;1414]4 (14)

The value of the Q, can be expressed through the radial Slater-like integrals and presented as a
sum of the Coulomb and Breit parts: Q, = Q5 uy QB which corresponds to a partition of the
interelectron potential into the Coulomb and Breit ones in the second term of Eq. (1). Let us
remind that, for instance, the Coulomb part in Eq. (13) is expressed through the radial integrals
and angle coefficients as follows:

2l % {Rl(1243)SA(1243) + R;(1243)5,(1243) +
(15)
R (1343)5,(1243) + Rl(iiié)sA(iiié)}.

In the nonrelativistic limit, there remains only the first term in Eq. (15) depending only on the
large component f{r) of the one-electron Dirac functions. For example, its imaginary part is as
follows [36]:

Im R (12;43) = %(u +1)mXa(13)XA(24)

(16)
X)(12) = Jdr 2 f, (r)]£\1+)1/2 (mZ\a)[fz(r))
The angular coefficient has only a real part:
hoJs A
51(12;43) = 5,(13)5,(24) Sx(13) = {Ahl} 1 1 0 (17)
2 2

Here, {Al1]5} means that A, [; and I3 must satisfy the triangle rule and the sum A +I; + I3 must be
an even number. The rest terms in Eq. (16) include the small components of the Dirac func-
tions. The tilde in Eq. (13) designates that the large radial component f must be replaced by the
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small one g, and instead of /;, I; = I; — 1 should be taken for ji<lyand I;=1;+1 for ji> 1. The
Breit (magnetic) part can be expressed by the similar way (see details in Refs. [13-16]).

Then, exchange-correlation effects can be treated within the PT formalism as effects of the
second and higher PT orders. In the second order, one should especially note the polarization
and ladder diagrams. In Figures 1 and 2, we list some important diagrams of the second order
describing the effects of the polarization interaction of quasiparticles and screening of the
external quasiparticles (or antiscreening in the case, say, of an electron and a vacancy).

The polarization diagrams take into account the quasiparticle interaction through the polariz-
able core, and the ladder diagrams account for the immediate quasiparticle interaction. An
effective approach to accounting the polarization contributions is in adding the effective two-
QP polarizable operator into the first-order matrix elements. The corresponding polarization
operator can be taken in the following form [50]:

Via(rir) =
ar (o)) o) (e (p00) o) v (p0) o) "
X J |11 — 7| |r' — 12 _J |11 — 7| J |7 — 17| /<( g0)) >
(18a)
()"} = [ar (o) e (180)
o) = {1+ 32 o0 () /cz}l/ ’ (18¢)
- o M

L
.
0.

Figure 1. Some diagrams of the second order, taking into account the exchange and polarization interaction of quasipar-
ticles and electrons of the closed shells core.

|

Figure 2. Some diagrams of the second order, describing a direct interaction of the two or three external quasiparticles.
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where p! is the core electron density (without account for the quasiparticle), X is the numerical
coefficient, and c is the light velocity. The similar approximate potential representation has
been received for the exchange polarization interaction of quasiparticles (see details in Refs.
[7, 14-19]). The polarization potential Eqs. (18a)-(18c) generalizes the corresponding nonrela-
tivistic operator, which has been derived in Ref. [36].

In order to take into account the ladder diagrams contributions as well as some of the three-
quasiparticle diagram contributions in all PT orders, we use the special procedure, which includes
a modification of the mean-filled potential, which describes the effects of screening (antiscreening)
of the core potential of each QP by the others (see details in Refs. [7, 14-19, 33-38]). Introduction of
the additional screening potential into the Dirac equations for the large and small components
changes the 1-QP energies and orbitals. It results in the corresponding modification of the diago-

nal 1-QP matrix M W and further 2-QP one too; M ?
and the modified radial 1-QP wave functions.

is computed using the PT first-order formulae

2.4. Optimization of the relativistic orbitals basis

In order to obtain a precise description of the spectral characteristics of multielectron atomic
systems, within the PT framework one should generate the optimized relativistic orbitals basis
(see “Introduction” section) [1-7, 9-15]. The powerful ab initio approach to construction of the
optimized PT basis has been developed in Ref. [48] and reduced to consistent treating gauge-
dependent multielectron contributions ImAE, ., of the lowest relativistic PT corrections to the
atomic level radiation width and their further functional minimization.

For simplicity, let us consider now the one-quasiparticle atomic system (i.e., atomic system
with one electron or vacancy above a core of the closed electronic shells). The multiquasi-
particle case does not contain principally new moments. In the PT lowest, second order for
the AE, there is only one-quasiparticle Feynman diagram B (see Figure 3), contributing the
ImAE (the radiation decay width).

In the fourth order of QED PT (the second order of the atomic PT), the diagrams appear, whose
contribution to the ImAE, ., accounts for the multielectron exchange-correlation (polarization)
effects (diagrams A, Ae Figure 3). This multielectron contribution is dependent on the
photon propagator gauge (the gauge-noninvariant contribution). Let us remind about the
known criterion of the correctness of the atomic-computing radiation transition probabilities
using the alternative forms for the transition operator (“length” and “velocity” transition
operator forms). Their closeness of the “length” and “length” transition probabilities values

Figure 3. B: second other PT diagram contributing the imaginary energy part related to the radiation transitions; A; and
Aex: QED PT fourth (atomic PT second)-order polarization diagrams.
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confirms the correctness of the relativistic orbitals basis construction. Correspondingly, their
noncoincidence is provided by multielectron by their nature and gauge-noninvariant terms.

In Ref. [48], the gauge-noninvariant contribution to an imaginary part of the electron energy
has been calculated, which is as follows:

2
1
IMAE ;i (a0 — 5|Ag) = _C:_n [ J J J drydrydradryy (————+

Wy + Wa,
1

Wmn — Wy,
{[(azqrs — (a3maa)(@anzy)) /134 - sin [wa, (112 + 734) + Wa,, -
€08 [Wa, (112 4 734)] (1 + (a31134) (a1134) ) [NV (r3) W (1) W (r2) W (1)

YW (1) W, (r2) W (r3) W, (r4) (1 — 1) /112 (19)

where C is the gauge constant, and f is the boundary of the closed shells.

Realizing a principle of minimization of the functional ImAE,;,,, one could obtain the Dirac-
Kohn-Sham (DKS)-like equations for an electron density. Their numerical solution allows to
obtain the optimized basis of the one-QP relativistic orbitals. The corresponding procedure is
described in detail, for example, in Refs. [18-23]. All details of the presented PT formalism can
be found in Refs. [7, 14-20, 47-49].

2.5. Radiation decay probability as an imaginary part of the electron energy shift.
Method of calculation

The method of computing the radiation decay (transition probabilities, oscillator strengths)
probabilities within the relativistic energy approach is presented in, for instance, Refs. [16—
19, 33-35, 47, 48]. Here, we only note that a probability is directly linked with the imaginary
part of electron energy shift, which is defined in the PT lowest order as follows:

anan’

2

e
ImAE = —— V|@an| 2
m yp Z (20)

a>n>f
la<n<f]

where Z is for electron and Z for vacancy, and V| is determined as follows:

anan
a>n>f a<ns<f

sin |a)|r12

Vi = ” dridry W (r1) ¥ (1) (1 — 1) Wi (r2) W5 (r1) (21)

12

The individual terms of the sum Eq. (21) represent the contributions of different channels and
probability, for instance, of the dipole a-n transition as P,,~ = V!“u ! the probability with

an. 4g * anan’
accounting for the core polarization correction is Py, ~ & - (V€| 4 (dtex }. The total prob-

Qn  A4p anan pol )anan

ability of a A-pole transition is usually represented as a sum of the electric P; and magnetic P}!
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parts. The electric (or magnetic) A-pole transition y — 6 connects two states with parities which
by A (or A + 1) units. In our designations,

Pi(y —6) = 202/ + 1)Q5(yo;y8)  QF=Qf + Q¥+ Q¥

| , (22)

Py —0) = 22/ + DQY05y8) Q' = Qi
In a case of the two-quasiparticle states (for instance, the excited atomic state is treated as a
state with the two QP: electron and vacancy above the closed shells core), the corresponding

probability has the following form (say, transition: jj, [J] — jj,[J):

PRI = 0 5T g, 23)

It is worth noting that all relativistic atomic calculations are usually carried out in the jj-
coupling scheme. The transition to the intermediate-coupling scheme is realized by diagonal-
ization of the M matrix, but usually only ReM should be diagonalized. The important simpli-
fied moment of the procedure is connected with converting the imaginary part by means of the
matrix of eigenvectors {C,,}, obtained by diagonalization of ReM:

Im My = Y _Cni My Ce (24)
ij

where M;; are the matrix elements in the jj-coupling scheme, and M, in the intermediate-
coupling scheme representation. The procedure is correct to terms of the order of Im M/Re M.

In conclusion, let us also underline that the tedious procedure of phase convention in calculat-
ing the matrix elements of different operators is avoided in the energy approach, although the
final formulae, certainly, must coincide with the formulae obtained using the traditional
amplitude quantum-mechanical method. All other details can be found in Refs. [7, 16—
19, 33-36, 47-50].

3. Some results and conclusions

As illustration of the application of the above presented formalism, we present the results of
computing energies, transition probabilities (oscillator strengths) in the heavy multielectron
ion of Hg". A great interest to studying similar systems (Hg) is explained by the importance
of the corresponding data, for instance, for laser effect studying. The collision of atoms of
the Mendeleev table second raw with ions of helium (other inert gases) leads to creating ions
in the excited states which is important for creating the inverse populations and laser effect.
The available literature data on radiative characteristics are definitely insufficient. An account
of the relativistic and correlation effects has a critical role in the cited systems as the studied
transitions occur in the external shells in a strong field of atom with large Z. Within the
relativistic PT, the Hg" states can be treated one- and three-QP states of electrons (6s) and
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vacancy (5d ') above the core of the closed shells 5d'°6s. The interaction “quasiparticle core”
is described by the potential (6). The polarization interaction of the quasiparticles through the
core is described by the two-particle effective potential Eqs. (18a)—(18c). All calculations are
performed using the modified atomic code “Superatom-ISAN.”

In Tables 1-3, we present the experimental (NIST) [32] and theoretical energies, electric E1
(5d"°7p(P12,P312)-5d"%65(S1,2), 5d"°7p(P1/2,P3/2)-5d'°75(S1/2)), and E2 (5d°6s” (Ds, Dsj0)-5d'%s
(S1/2)) probabilities of the transitions in the spectrum of Hg'. The theoretical results are
obtained within the Hartree-Fock, Dirac-Fock methods by Ostrovsky-Sheynerman, relativistic
PT theory with the empirical model potential zeroth approximation (RPT-MP) [18, 31], and our
optimized RPT using relativistic energy approach (RPT-EA).

The standard HF and DF approaches in the single-configuration approximations do not allow
to obtain very accurate results. Using the empirical transition energies significantly improve
the theoretical results as in fact it means an account for very important interparticle correla-
tions effects. In our approach, the corresponding exchange-correlation effects (the polarization

Method Ees 7P1/2-6S1/2 7P3/,-6S1/2 7P1/2-7S12 7P3/2-7S1/2 D3/2-S1/2
HF -1.07 0.721 0.721 0.095 0.095 0.863
DF -1.277 0.904 0.922 0.109 0.127 0.608
RPT-MP -1.377 0.986 1.019 0.114 0.147 0.462
RPT-EA —1.378 0.987 1.020 0.115 0.148 0.462
Exp. —1.378 0.987 1.020 0.115 0.148 0.461

Theoretical data—Hartree-Fock (HF), Dirac-Fock (DF) [31]; relativistic PT with the empirical model potential approxima-
tion (RPT-MP) [18]; relativistic PT-RPT-EA (this work); experimental data—Moore (NBS, Washington) [32] (see text).

Table 1. The energies of the 5d°65%(Ds/5,D3/2)-5d"%6s (S1/2), 5d"°7p(P12,P312)-5d"%65(S1,2), 5d'°7p(P1/2,P3/2)-5d"75(S112),
5d%6s%(Ds/5,D3/2)-5d'%s (S1/) transitions in Hg" (Ry).

Method 7P3/2-6S1/2 7Py,2-6S1/2 7P3/2-7S1/2 7Py/2-7S1/2 7P3/2-6S1/2
HF 4.75x10° 4.75x10° 3.65x107 3.65x107 3.65x107
DF 8.45%107 1.67x10” 6.89%107 6.89%10” 4.71x107
DF (Eexp) 1.17x108 2.04x10” 1.10x108 1.10x108 5.52x10”
RPT-MP 1.49x108 2.31x107 1.41x108 1.41x108 6.33%x10”
RPT-EA 1.51x108 2.33x107 1.43x10° 1.43x10° 6.35x107
Exp. 1.53x10° 2.35x10” 1.44x10° 1.44x10° 6.37x107

HF, Hartree-Fock data; DF, Dirac-Fock data; DF (Eexp), DF data using the experimental transitions energies [31]; relativ-
istic perturbation theory with the empirical model potential approximation RPT-MP [18]; relativistic PT-RPT-EA (this
work); experimental data—Moore (NBS, Washington) [32] (see text).

Table 2. Probabilities of the transitions 5d"°7p(P1,5,P3/2)-5d"%65(S1,2), 5d"7p(P1/2,P3/2)-5d"75(S12) in Hg' (in s ).
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Method D3/2-S1/2 Ds/2-S112
HF 1360 1360

DF 257.0 77 .4

DF (Eexp) 63.9 133
RPT-MP 54.54 11.8
RPT-EA 5452 (0.2%) 11.7 (0.2%)
Exp. 53.5+2.0 11.6 + 04

HF, Hartree-Fock data; DF, Dirac-Fock data; DF (Eexp), DF data using the experimental transitions energies [31]; relativ-
istic perturbation theory with the empirical model potential approximation (RPT-MP) [18]; relativistic PT-RPT-EA (this
work); experimental data—Moore (NBS, Washington) [32] (see text).

Table 3. The E2 probabilities of the 5d°6s*(Ds/5,D3/2)-5d'%s (Syy) transition in Hg" (in s~%).

interaction of the QPs, mutual screening and anti-screening corrections, etc.) are taken into
account more accurately. The core polarization correction to the transition probability is of
great importance as it changes significantly the probability value (~15-40%). It should be also
noted that the gauge-noninvariant contribution to radiation width is very small (0.2%; see
Table 2 in the line “EA”) that means equivalence of the calculation results in the standard
amplitude approach with using the length and velocity forms for transition operator. From the
other side, this is an evidence of the successful choice of the PT zeroth approximation and
accurate account of the multi-particle correlation effects.

We have presented the fundamentals of the new relativistic many-body PT formalism with
construction of the optimized one-QP representation in the theory of relativistic multielectron
systems. The relativistic density-functional approximation with the Kohn-Sham potential is
taken as the zeroth one and all exchange-correlation corrections of the second-order and
dominated classes of the higher-orders diagrams (polarization interaction, QPs screening,
etc.) have been taken into account. In order to reach the corresponding optimization, we have
used a procedure of the accurate treating of the PT lowest-order multielectron effects, in
particular, the gauge-dependent radiative contribution for the certain class of the photon
propagator gauge. The corresponding contribution is considered to be the typical representa-
tive of the important multielectron exchange-correlation effects, whose minimization is rea-
sonable criteria in the searching for the optimal PT one-electron basis. This procedure derives
an undoubted profit in the routine many-body calculations as it provides the way of the
refinement of the atomic (molecular) characteristics calculations, based on the “first princi-
ples.” The presented relativistic PT formalism can be further generalized, in particular, by the
way of accounting for the radiation, QED (the Lamb shift self-energy and vacuum polarization
corrections, for instance in the effective Uhling-Serber approximation with account for the
Kaéllen-Sabry and Wichmann-Kroll corrections), and nuclear (the Bohr-Weisskopf and Breit-
Rosenthal-Crawford-Schawlow effects, nuclear finite size correction, magnetic moment distri-
bution, etc.) effects [13-23].
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Abstract

We study the dynamics of one-electron atoms interacting with a pulsed, elliptically
polarized, ultrashort, and coherent state. We use path integral methods. We path inte-
grate the photonic part and extract the corresponding influence functional describing
the interaction of the pulse with the atomic electron. Then we angularly decompose it.
We keep the first-order angular terms in all but the last factor as otherwise their angular
integration would contribute infinites as the number of time slices tends to infinity.
Further we use the perturbative expansion of the last factor in powers of the inverse
volume and integrate on time. Finally, we obtain a closed angularly decomposed expres-
sion of the whole path integral. As an application we develop a scattering theory and
study the two-photon ionization of hydrogen.

Keywords: path integrals, influence functional, perturbation, coherent state, hydrogen,
sign solved propagator, two photons

1. Introduction

The study of the interaction of radiation with matter is an area of major importance in physics.
The production in laboratories of pulses of various durations and central frequencies has given
a further boost in that study. These pulses can be used in the study of various elementary
processes such as the excitation or photoionization of atoms [1-7]. This is possible due to their
short time length of the order of a few femtoseconds or of a few hundreds attoseconds. Sub-
100-as pulses have been generated as well. Moreover, their photons’ energy may belong in the
ultraviolet or extreme ultraviolet and therefore just one or two photons may be enough to
cause excitation or ionization.

I m Ec H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [{cc SN
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In the present chapter, we introduce a fully quantum mechanical field theoretical treatment, for the
interaction of a pulsed, elliptically polarized ultrashort coherent state with one optically active
electron atoms. We use path integral methods. So we integrate the photonic part and extract the
corresponding influence functional describing the interaction of the pulse with the atomic electron.

Proceeding we use the discrete form of that influence functional and angularly decompose its
expression. We keep first-order angular terms in all but the last factor as otherwise their angular
integration would contribute infinites as the number of time slices tends to infinity. Further, we
use the perturbative expansion of the last factor in powers of the inverse volume and integrate on
time. So we generate a perturbative series describing the action of the photonic field on the
electron of the atom. It includes photonic and vacuum fluctuations contributions. Moreover, we
manipulate the angular parts of the atomic action via standard path integral methods to finally
obtain a closed angularly decomposed expression of the whole path integral.

As an application we develop a scattering theory and we study the two-photon ionization of
hydrogen from its ground state to continuum. For the same transitions and to the same order
vacuum fluctuation terms contribute as well. In the present application we consider orthogo-
nal pulses. We use the propagator that appears in its sign solved propagator (SSP) form Ref.
[8]. Previously, we have considered other kinds of photonic states interacting with one-electron
atoms (see Refs. [6, 7, 9, 10]).

The present chapter proceeds as follows. In Section 2, we describe the present system and integrate
its photonic part. Then in Section 3, we give the angular decomposition of the propagator in the
case of elliptic polarization. In Section 4, we give an application and our conclusions in Section 5.
Finally, in the Appendix we give some functions necessary in the evaluation of certain integrals.

2. System Hamiltonian and path integration

In the present chapter, we consider a one-electron atom initially in its ground state under the
action of a coherent state. Therefore, the system Hamiltonian H can be decomposed into a sum
of three terms. The electron’s one H,, the photonic field one Hj, and an interaction term of the
photonic field with the electron H; .that is,

H = H, + Hy + Hj. (1)
H, has the form
1_2 -
He=5p +V(7) @)

where V(7) is the atomic potential. The photonic field has the Hamiltonian

Hf = wa™a, (3)

while the interaction term H; in the Power-Zienau-Woolley formalism takes the form
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H, = —e7 - E(7, 7). (4)

E}(?, 7) is the field operator of the photonic pulse given by the expression

g 1

Ef(r,7) = Wil(a))@(T) cae

=
=
ik -1

P
—Eateikmr | (5)

¢(7) is the pulse’s envelope function. In Eq. (5) [(w) = V27w is a real frequency function, ¢ is

the polarization vector, w is the pulse’s carrier frequency, ko, is the radiation wave vector and
Vis a large volume. Then H; has the form

Hy = g(t)a+g"(t)a". (6)
We have set
(1) = —%iel(w)@(T)E . 7(T)eizph-7(7). )

Now we combine the photonic field variables in the term

Ho(a",a;7) =Hf + Hy = wa*a + g(t)a+ g*(t)a™. (8)

The propagator between the initial and final states corresponding to the Hamiltonian Eq. (1) can
be obtained by integrating on both the space and photonic field variables. At first we integrate the
photonic field variables, which appear only in Hy (Eq. (8)). Then we obtain the following path
integral of only the spatial variables:

Foteq Fot) = T Dﬁ(T)
K(Olf, fr tfr Qi i, tl) = JD (T) (27_()3
tf ) 2 f
exp ide (ﬁ(f) ST (1) — pT(T) — V(7(T))) - inTS(T)Z(T/ ti)— ©)

ti ti

1 £ £ .
E (‘0(f|2 + |0(1‘|2) + Y(tf, t,-)afa,' + Z(tf, t,‘)af — lOtiX(l’f, t,')} ,

where Y(tf, t), X(tf, t;), and Z(tf, t;) read:

t
Yt ) = exp —inw(T) - exp(—iw(tf—ti)), (10)
fr

X(ty ) = Jaeg(e)Y(z, 1), (11)

i
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b tr

Z(tr, ti) = 71'Jd’[g*(’[) exp 7inT,w(T/) . (12)

ti T

The propagator in Eq. (9) with diagonal field variables (a; = ay = @) can be written as

K(a, Tftha, 7 t) = JD?(T) ?zi(;) exp inT [E(T) . 7(1) p 2(T) - V(7(1))
+A — Bla]* + Dia + Da*|. (13)

The parameters are given as follows:

oot R
Alty ) = — %ezl%w)JdTJ dpgo(t)e - 7 (DK T go(p)e” - 7 (p)e ik T Plemiolen), (14

ti ti

B(i’f —t)=1- Y(tf, ) =1- €7iw(tf7t'), (15)
fr
1 —~% ,'E 7 i —
D(ty, t;) :—el(w)JdTgJ(T)e 7 (1)e e T (D) pmiwlt—D), (16)
VvV )
i -
Di(ty, t;) = — \/LVEZ(deT@(T)? 7 () Ko T (gmivte—ty), (17)

i

In the case of a field transition between an initial photonic state |®;) and a final one |®,), the
reduced propagator of finite time takes the form

> — — dza — —
K(7p b 73, b)) = 176'“'2(<D2|a>1<(a, et o, T t)(al®r). (18)

Here we consider that we have a field transition from an initial coherent state |8) to a final one
[y). So we can integrate to obtain the following reduced propagator for the motion of the
electron,

f((?f, i’f,' 71', i’,‘) = C(i’f — t,')Ko(7f, i’f,' 71', fz')

Dp(7)

= C(i‘f — tZ)JJD?(T) (zp ) (19)

5 eXp {iStot[ﬁ, 7, 7]},
T

where
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o (F - 41E - 30P)

B0 (20)
The action is
i 7o)
- = - = T -
Sulp, 7,7 —j[pm Fm - vw»} i
£
tf b
Hiel(o) e B - FRe R O 4y @ F e T
Vv
f f w(t-p)
150 . e Sk T\ (7.7 ik (o)
+Ve [ (a))JdT{p(T)Jdpg)(p) [1m (s ~r(T)e " )(s - r(p)e ) +cc.|,
t;i ti
(1)
where x(7) has the form
e—im”(
X(1) = (1) ——r (22)
eTiwh — Tl
We notice the following identities:
1 1 1. wt 1 i< 1

On using them and for arbitrary A(f) we can obtain the following formula after a direct Fourier
transform,

oo

J %eiftdt - ;];A(t)elﬂdt +g i A (27;"1) exp <if 27;;11) : (24)

Mm=—o0

Finally, upon using an inverse Fourier transform we obtain the following functional identities

R sl S e

C— =

In the above expressions, the summation is to be performed symmetrically. Identity in Eq. (25)
is to be used in Egs. (19) and (20). The delta functions do not contribute in the final expressions
of Section 4 at the specific times introduced by them the photonic influence functional becomes
zero. Moreover, the measure of all those times is zero. Further to handle the exponential in
Eq. (20) within the scattering theory of Section 4 we use the limit
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1 1
lim — = lim =1 (26)
t==B(t) tmeq exp ( —i(w — iO)t)

Now due to the large volume V, we shall approximate the exact action (21) by neglecting in the
Taylor expansions

(p) = 7(0) + (p— )T (1) + ..., 27)

=

higher terms than the first one, as they are going to involve powers of higher order in Vin the
denominator. To demonstrate this we consider the action in Eq. (21) and we derive the
equation of motion of the electron by using Lagrange’s equation and the action’s Lagrangian

in the absence of V(7). So the part of the Lagrangian that interests us reads
52 (1) - -
r(t 1 ~ = ik T o kT
L= +—el(w T)e - 7 (1) T oy x*(n)e” . 7 (1)e Ko T (0
> W()(ﬁx() (7) yix(e - r(q)

—

iw(T—p) PR ; - P 7 =
¢ (e : r(T)e*’kP“'”T)> (e : r(p)e’k*""r(m) +c.c.

7

eim(tfft,) -1

4 PR @0 dpplp) [z‘

ti

and has equation of motion

F(1)=0 (%) . (29)

Therefore we can set,

Flp)=T(1) + o(\%). (30)

In the case of the presence of V(7) we perform a full order perturbation expansion of the full
propagator in Eq. (19) with respect to the potential term. That is,

Ko=T+TVT +TVTVT +.... (31)

Then the propagator T, in the expansion, will be the one of the electron in the photonic field
for which the approximation of Eq. (30) as discussed above is valid. Then, we sum back to
obtain the final full propagator, thus maintaining the same approximation for the total
propagator as well. Notice that the expansion (31) may converge very slowly but since it is
a full order expansion it does not matter. Eventually in the large volume limit we get the
action
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+i\/1vel(w)JdT <‘BX(T)€ 7(’[)61%?“?“) +y'x(t)e - r (T)EZEP}“7(T)> (32)

t 2

+ e2lz(w)JdTV(T) e-r(1)],

where T
0) = (o) [@(p)i(x — p)dp, (3)
&(t—p) =csc [@} cos |:(U(T -p)— w} . (34)

Finally, we notice that in the long wavelength approximation we can set ek =150 we
obtain the following expression

b _2
Sit [P, 0] = ”ﬁ(f) Fr)-F 2(1) — V(7 (1)) |dr+
iiel(a))JdT {ﬁ){(r)? () +yixt(n)E - 7(1)} + (35)
e
1 b 2
VeZZZ(w)JdTv(T) e-7(1)] .

ti

Now we proceed to the angular decomposition of the above expressions.

3. Angular decomposition

We intend to perform angular decomposition and evaluate the SSP corresponding to the
propagator of Eq. (19) in the long wavelength approximation.

Here we consider elliptic polarization so that the polarization vector takes the form

€ = €, cos (g) +ie, sin (g), (36)
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where ¢, and ¢, are the unit vectors along the x- and y-axis. The upper sign corresponds to left
polarization while the lower one to right one.

The propagator KS(7f, tg; 7, ti) of Eq. (19) with the above polarization vector ¢ has the discrete

form

N | Nt1| 7
K§ (rf,tf, Tit) = H[Jdrn} H [
N+1 ﬁz(’f) -
xexp{zZ[ rn_l)—g< ”2 +V(rn)> (37)

21w PR, 21w
i T BE  Fa Y XE ) F e

All the functions with index n are evaluated at time 7,, = ne + t; where € = N +1 X» and v, have
the form (see Egs. (22) and (33))

efiu)'(,,
Xn = @(Tn)m/ (38)
vy = v(Ty). (39)
Additionally, we note that we have set To=riand rny = 7}.
Now we insert delta functions in Eq. (37) to get the expression
K§(Fp t 7o ti) =
N [T N+1 = |N#1| T N+1
- dp ~ >
dr, J L jdzwn 8@ (w, —¢ -7,
(] Jor 1| 25| T o T e )
Nt1 =2 (40)
- pn( ) -
><exp{zn1 [pn (r Tn 1) s( ’ +V(rn)

Wy

2
. 2nw . 2T
+i TR (Bxnwn + y* Xiw3) +78vn

We have defined §?(z) = 6(2)5(z*). Moreover w,, = Wy, + iwy,. The delta functions have the
representation
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5@ (w —z. 7,1) =

5@ (wn — 1 [Sin I (cos (%) cos ¢, * isin (g) sin (p”ﬂ) = (2717)2
J J Lexp i [ (Antoy + Arw?) — i%/\n (?x cos (i) +ie,sin (i)) T (41)
_1'1/\* €, Cos < Fie,sin : T I
2\ \2) T 2) )T T oy

<exp it = Mot~ ihnc05 (5 )€+ 7 & ik (5 ), 7o

We have set A, = A +idyn. Now we perform the change of variables Ay, — Ct 6k Ayn —
2

A yn
sin (é
with the factor due to the integration on w,. Further we expand angularly according to the
identity,

¥ Wyn — €08 (§)Wyn, Wyn — sin (5)wyn. The factor due to the integration on A,, is cancelled

~>

e v _47-‘221]1 K1) Yo (9 @,) Yim (S, @), (42)

1=0 m=—1

where j; are spherical Bessel functions, and Y}, are spherical harmonics. So for right elliptic
polarization we get

oo I
6(2> (wn - /g . 711) = Z Z m wn’ T’n \/—Yl m”(‘gnr (pn) (43)
1,=0 =1,
where
( S (44)
X].l” (|/\n|rn) exp (_im”(P/\n)’
ln - mn ! 111
Opn, = \/ (2l +1) mpzn" ©
(15)

B \/(21’1 U ZZ ; Z:;ir(ln —zmn N 1>\/Er2€n—ln —;nn n 1) '
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We notice that if [, + m, is odd then O, ,,, is zero. Moreover |A,|, ¢,, are the polar coordinates
of A, on the x-y plane. We have set

Wxn = Wn COS <§> = |w'y| cos (¢,,,) cos <§>, (46)
Wyn = Wy SIN < = |w)y| sin (@, ) sin < (47)
yn yn 2 n wn 2 7
and
Wy = Whn + i0yn = [Wy]ePer. (48)

On integrating over ¢,,, we get

/ Onmn T(
S () = ()" (i + 5 )
T . (49)
<o, (02,70, (01, )
0

p;, = A4 and J,, are Bessel functions. In the appendix we give results for the expression in
Eq. (49).

Finally, we replace the delta functions in Eq. (40) with the above angularly decomposed
expressions. As N — o and within the range from n =0 to N we keep first-order angular terms.
Higher order angular parts would contribute infinites. Finally, the propagator takes the form

Kg (?f, ff,' 71', fi) =
1 q

ZZZKﬁnq U )\/_Ylm(sf'(Pf) Yap (S5, 0p) Yop (85 @),

rfrll 0 m=—1g=0p=—q

(50)

where after standard manipulations [11] on the angular parts of the atomic system
Kfm q(rf, tr; 1i, t;) takes the form

; N |5 N+1| T dp N+1 N
K (f i 7is i) H jdrn H J 2_7; ﬂ 1 (800 (W, 1))

n=1 n=1 | * n

[w'y |<ty

n=1
. 21w 21w
+l\/7€(.3)(nwn +y xnwn) + 75W|wn|2}

Further we observe that

N+1 2
" +1 51
Xglm(wN+1/ rN+1 exp {1 |:pn — Tn— 1 <pz + q(q2r2 ) + V(rl‘l)) ( )
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N N
lim ” >w, goo W, rn
_ -1

N—eo
"= [w'| <7 "
A=t N 27m) . s e 2T 2
xexp{zN+1; 1\/ (Bxuwn + 7 xw),) + v ——— V| W] (52)

So Eq. (51) becomes

King 0117780 = Fn ) Dr() 2507
f s ¥ (53)
X exp inT {pf - (% + q(qz:; Y + V(r)ﬂ + Z,Z;I_Vw v(t)r*(t)dr §,

ti ti

where

Fim(rf) = ” w5 g W'y, 77) X

\w’f|<rf

2nw . 2T 2
exp< — 78(ﬁXWf+)/wa)+17€V|ZUf| .

We notice that to evaluate the integrals in Eq. (54) we have to take into account the
expressions of Eqs. (46) and (47). Then we expand it on parameters of interest and integrate
on time.

(54)

In the next section, we use the present propagator in its SSP form which appears after the
solution of the sign problem. It is

I 9

Kf (7/:, t 7,‘, 0) rf — 7 Z Z Z Z qu Sf, (Pf qp(S,, ®; )

1=0 m=—1q=0p=—q
(55)

t
2
X VAT (8, @) Fim (1) xp |:i$)rj%Jv(T)dT] .
0

We have dropped the phase due to the atomic Hamiltonian because in the subsequent appli-
cation of the present chapter, it eventually cancels.
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4. Application and results

Proceeding to an application of the present theory we apply the above formalism to the case of
the ionization of hydrogen. In that case the potential is given as

V(F) = _}. (56)

We use as an initial state, the hydrogen’s ground one with wavefuction,
W,‘(?, ) = lp,(?) —ieit = Ry5(r) Yoo (9, ¢)) e et =2e"Yqo (9, (1)) e L (57)
where ¢; = —1 is the energy of the ground H(1s) state.

The final state of the ionized electron with wave vector k = k( sin 9 cos ¢,, sin 9 sin¢,, cos )
is

vk =
E et oxp (7 K7 (o F e
—i€ i1 il — 1. —ie
Wf (r)e ™ = exp (Zk)r(uk) 1F1< % 1, —ikr —ik r)e .
It has energy
=/ (59)
and partial wave expansion
‘I/f (7) = 3 Zzse’lést Zy; (S, 0)Yst (St Dp)- (60)

t=—s

| 5 1
Ri() = V1—exp( 2n/k H( ) (2s+1)!

x (2kr)’e~*" Fy <%

(61)
+s5+1,25+2, 2ikr>

is the radial function and 6; = argI'(1 — £ + s) a phase. Then the transition amplitude from the
initial state i at t — —oo to the final continuum state f at f — +e> may be evaluated at any time ¢; it is

A = (Df (D[] (1)), (62)

where @ (7,t) and @ (7,t) are exact solutions of the present system’s time-dependent

Schrodinger equation subject to the asymptotic conditions
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—

o (7,0, = W (7,0, (63)
O (7,1) — Wi(7,t). (64)

t——oo

According to standard scattering theory we obtain the following form of the transition amplitude

‘Pi> . (65)

The effective Hamiltonian H.g, appearing above and corresponding to the action of Eq. (35)
has the form (see Eq. (2))

tr 51
U’(t) " exp ( J o (b, p)dp + iJHeff(tlf p)dp> u’(t)

0 0

1
E tllimm <lpf

1 ~ o1 -~ .
Heif = H, — i—el(w)(Bxe - 7 + Bx*e - 7) — =P (w)v]e - 7. 66
f N (w)(Bx B x ) v (w)v| | (66)

Moreover

U'(t) = e et (67)

We set p =y. This appears to be a requirement in order the Hamiltonian to be PT (parity-time
reversal) symmetric. The one-half factor in Eq. (65) appears due to the initial % factor in
Eq. (20) and the identity in Eq. (25). At the times introduced by the delta functions the
propagator K5(7f, 7; 7;,0)(see below) becomes zero. Moreover the exponential in Eq. (20) is
one as hmB< =land p=1y.

Now to proceed we set f, = —t =t and take into account the PT invariance of the whole
system as the Hamiltonian Eq. (66) is PT invariant. So we reverse the time sign of the terms
involving the time t; something that equivalently implies for the position ¥ — —7, for the
momentum p — p and for the imaginary unit i — —i. Then we differentiate the operators
between the bra and the ket in Eq. (65), with respect to the variable t. Finally, after certain
standard manipulations and a subsequent integration we obtain the result

Ag = <sz|q/i>+
¢ N T 0
+Jm<wfk U (r)* exp (i]Heff(T, o)dp +i J He(p)dp> (68)
) .

0 -1
qx,>.

X <—\/Lvel(w)(ﬁ)(§ T HBE T+ i%ezlz(a})v\g . 7|2> u(r)
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We have supposed that the duration of the pulse is ¢, as well as that it begins at time zero. Now
in order to proceed we take into account that the asymptotic initial and final states are orthogo-
nal. Further we make use of the path-integral representation of the exponential in Eq. (68) and
angularly decompose it. So on making use of the results of the previous section and solving the
sign problem [8], Eq. (68) becomes

—
*

c
Af = Jd’[ﬂdrfdri—zel“_é"ﬁ (Wfk(rf)) Kf(rf, T, 74,0)
74
0

21w ~ = 2Mw ~ -
X (— 7<‘BX(T)€ T +c.c.) +17\e . r,-|2v(7)>llfi(ri).

We have used the prior form of the transition amplitude. K‘f(?p 7; 7, 0) is given by Eq. (55).
The phase which appears after the solution of the sign problem has cancelled.

As the present theory is PT symmetric we have to use PT symmetric quantum mechanics. So

—

. g . K —\FT k =\ *
our equations take their final form according to the fact that (Wf (r )) = ( r(r )) .

Here we want to study two-photon ionization processes. They are of order ¢ or higher. For the
same transitions the vacuum fluctuations term contributes to the same order. So we take it into
account. The amplitude takes the form

C —
1 .. *
_ Pl i(e—ei)T k —
A—JdTHdrfdrl—rze (‘Pf (rf))

i

0
2nw & = — —~ = ,27'((1) & = — ~ =2 -
x| - 75111(17, 7, 7,0) (ﬁ)((’()e T +c.c.) ‘HTSl:o(rﬁ T, 1, 0) e - ri|v(T) |Wi(rs).
(70)

Upon expanding to powers of volume the sign solved propagators appearing in Eq. (70) take
the form

E o o 1 g .
Spa(ry, w1, 0) :ffri‘s(”f )Y D Yap(S, 0) Vi (85 9))
q=0p=—1

X {_@(E : ﬂﬁjdp)((p) + C.C.)] exp li?—VwT}JV(P)d."] ’
0 0

and
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Si_o(T, T 73, 0) = rf_ré If=Ti ZZ Yap (S, 05) Yop (S5, ;)
q=0p=—1
2

2 | I T ’
« 14_7;;Q§ 1jvgndp+-5jdpxgﬂ + coséRe (Bjdpxuﬂ) (72)
0 0 0
X exp izél)?’j%JV(P)dP :
0

Finally, we obtain the second-order transition probability

P 1 )
—_— = Al“dQ-_.. 7.
i ij\ Fio. (73)

Here we consider the case of an orthogonal pulse of duration C. Then

1 0<7<(
0 otherwise

o)~ {

In Figure 1, we plot the second-order term & as a function of the energy of the injected electron

¢
¢ for C = 100 as and various values of the elliptic polarization parameter . We use

9E-14 -
8E-14
7E-14 - .
6E44-:¢”

5E-14

4E-14 4

3E-144"
dP/oe

2E-14 1

1E-14 . . . . .
0,0 0,2 € 0,4 0,6

Figure 1. Second-order probability & % of ionization as a function of the ¢. We set C = 100 as. We give curves corresponding
to & =7 (solid) & = § (dashed) & = 7 (dotted). We use w = 0.4275a.u., f=1and V = 107.
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2w = 0.855 a.u. Within the range 0< £ < 7 the larger the £ the smaller the transition probability.
& = 7 corresponds to circular polarization. We give another approach of this case in [10]. £ =0
corresponds to linear polarization. In that case the present approach is degenerate. We give
other approaches in [6, 7, 9].

5. Conclusions

In the present chapter we have used path-integral methods in the study of the interaction of
electrons with photonic states. We have integrated the photonic field and then angularly
decomposed the electron—photonic field influence functional. Within those manipulations
there have appeared terms due to the electromagnetic vacuum fluctuations.

As an application we have developed a scattering theory and used it in the two-photon ioniza-
tion of hydrogen. For those transitions, the electromagnetic vacuum fluctuations contribute to
the same order. Moreover to handle the path integrals that appear, we have used the relevant
propagators in their sign solved propagator (SSP) form. The SSP theory appears in Ref. [8].

Concluding the present method is tractable and can be used in many problems involving the
quantum mechanics of one-electron atoms interacting with radiation.
Appendix

In Eq. (49), we have the expression (here we drop the n indices)

oo

Qi (W, 1) = (—i)l % exp (im (%ﬂ + g) ) JdpAijl(pAr)]m(pAlw/D
0

Om ~Lm _ime,_, nw /
= O it [ Bl par o)
0
s (LM
ol y V|| T(—2 +1>
— Zm o Al
oy (—i)e

pnt2[ <7l - "21 + 1>T(m +1)

— /|2
XF(Hm m—1+1 |

(75)
. oy
> +1, 5 sm+1; 2 )@(r |w'])

2" /ar (HT'” + 1)

rl“<7l_n21+1) 72— |w'|?

I avieE ,
X P, B O(r— |w'|),

where ©(x) is the step function

Omm A\ im
=—1"(—i) "
o L (=)
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o) 1, x>0 (76)
x) = .
0, x<0
We give the following cases:
S, 1) = 5-————0(r — ) 77)
00 ! 27Tr 7’2 _ ‘w,‘z !
3 eTiPw |w/| 1
/ J— e e _ /
(1) = 7 T ———o( ) (78)

— [w
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Chapter 7

Detection and Measurement of Quantum Gravity by a
Curvature Energy Sensor: H-States of Curvature Energy
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Additional information is available at the end of the chapter
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Abstract

The curvature energy as spectra of a field observable that is resulted of the variation of
energy due to the speed of direction change in the space, is measured and detected by a
sensor designed and developed through H-fields of energy that are superposes,
obtaining strong variations in the fermion state to the H-torsion (second curvature
energy) of the space-time via the gravitational covariant derivative having that the
actions can be consigned to these H-fields as Majorana states with a corresponding
action of gauge field. Likewise, in this chapter, some geometrical models of these H-
states and their spectra of curvature are generated and discussed, which are extrapo-
lated to the design of curvature energy sensors to quantum gravity.

Keywords: curvature energy, curvature energy sensor H-states, H-torsion, quantum
gravity, spectral curvature, torsion

1. Introduction

The study of the field theory in physics establishes that the field actions can be measurable
through their observables such as curvature or torsion of the space, which represent forms in
how the field affects the space giving it a geometrical shape that depends directly on the field
sources and their localization in the space. From the viewpoint of the topological field theory
(TFT), these relations between the sources localizing in the space, where born the actions of the
field, are born and the proper geometry engendered in the space by the actions of field to
deform the space establish to the curvature and their second version; the torsion, as the
geometrical invariant most important to characterize to a space and their geometry as implicit
part of the field acting in the space through their energy. Physically, the detection of the field
presence, without causing its extension in the space, is realized through its energy. This makes us
think that curvature measurements can be realized using the energy concept that considers the
curvature as an energy perturbation in the space, which can be measured through its spectra.

I m EC H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [{(cc) ExgIN
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Likewise, a new concept developed above through new measurement methods and new tech-
nology prototypes to measure curvature as field observable [1, 2], or as microscopic deforming of
the space-time associated to the gauge fields that enter in action with the quantum gluing of the
matter and the constructing of the electric charge of the particles, is the curvature energy [1, 2],
which is determined as a variation of energy perceived by a change in speed rate of direction in
the space detected by the energy condition or censorship condition designed by certain integrals
of energy born of the curvature integral transforms [3, 4] applied on certain cycles of the signal
space acting on the space, to obtain certain energy co-cycles that are curvature data of the space
and which represent in an energy space the curvature energy (see Figure 1).

This raises the need to design a sensor and also the space perception of a device (censorship
condition), which must use a modulation space with a domineering energy condition given by
[2, 3] as follows:

> 2n
[V]ZJhkzds > (Jchz - k) ds > %szjkde (1)

Here voltages V are factored by mean and principal curvatures along the curved part of curved
surface, having an inequality of Hilbert type, which establishes the energy range in which the
curvature energy exists.

Then the measure of curvature can be obtained as an extrinsic curvature from a space classes
(cycles) with a curvature measure well defined and which represent the interacting of the rate
of direction changes of the space with pulses of energy (Fourier analysis) that go sensing these
direction variations and consigned in their energy spectrum through of their co-cycles. Some
measurements realized have been the obtained applying energy Gaussian pulses m(x, y), [2]
that determine, in the infinitum the measure of curvature through of this spectra (see the
Figure 2).

Thus from the perturbation theory viewpoint, the curvature energy can be defined as the
energy perturbing product of the interaction of the electrical field of the curvature sensor (with
their censorship) with the surface curvature in accordance with the metrology study realized
in [5], where the curvature energy is given by the units as Voltage m > and is proved with the
experiments (see Figure 3) introducing the curvature integral transform as follows:

curvature ENErgY Sensor

{
7

CURVED SURFACE

A) B)

Figure 1. (A) Curvature energy sensor advancing on curved surface. (B) Curvature energy perturbation due to the surface
curvature.
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Figure 2. Curvature energy spectra of hyperbolic paraboloid z = xy.

Figure 3. Curvature gauged in curvature energy on an arbitrary surface M, using a spherical surface X, [5].

Og = d,Homg(M, SZ)JQ, (2)

But this obeys to the field condition given by gravity in their more fine aspects, since gravity
acts as subjacent energy in the geometrical aspect of any space (all the objects in the space are
always affected by gravity) using the universal gravitation in the modality of field theory given
by Einstein equations. Likewise, the scaled gravitational energy is used in the process of
gauging of sensor device whose advances correspond to that measured and gauged by the
proper universal gravitation and considered by the spherizer operator O, [2, 6, 7]. Then using
the result enounced in [8], and considering the scaled gravitational constant x = 585G =

2.071 x 107* sec?meter'kg~!, which is the proportionality between space-time curvature
and energy (as shown in Figure 3 in [8]), and using Eq. (2) and the field Einstein equations,
we have the following:

Og = d,Homg(M, Sz)Je(—l)“dZ(f(x)) =81, (3)
M

1RHV - %Rgpv = XTPV'

171



172

Recent Studies in Perturbation Theory

which is the energy quantity measured per determined curvature. Similarly, using this mea-
sure of net energy, gravitational waves can be detected by the device that involves this energy
to measure curvature energy through electromagnetic fields as gauge fields. This idea is and
will be fundamental to determine conditions of energy [Hilbert inequations as given in Eq. (1)]
to any censorship required to design a curvature sensor in field theory, including the micro-
scopic theory to QFT. Similarly, in this respect arises the possibility of using the torsion field as
the second curvature to measure curvature in field theory considering certain modifications
that can be used in field quantum equations as Dirac equation. But far of want the unification
of the gravitational and electromagnetic forces to construct a unique field (which is failured
reheresal considering only the Einstein equations) is necessary involves the Dirac equation and
their solutions in their first integral given by the field actions to curvature in a homogeneous
space [3, 7] as described in [7] and using the field theory on the homogeneous space G[[z]]/X,
[9] whose curvature energy measures can be constructed by co-cycles in this space.

Other studies followed in the search of curvature measure through light waves were realized in
[6] under the same philosophy of the energy integral value on curved spaces (more specific
Riemannian manifolds), considering integral transforms defined in homogeneous spaces or cycle
spaces (whose cycles are invariant under translations and rotations on the proper manifold).
Similarly, the curvature was obtained initially (using the units of volts on cubic meter, mentioned
before) as measure through the corresponding co-cycles as integral transform [2, 10]:

@) = [w(p, ple T+ Hdpdg, @

M

which are our spectra of curvature to a measure realized by our curvature device in an instant ¢
In the case of light waves, the censorship condition is given in [6] as follows:

Theorem (F. Bulnes) 1. 1. [6, 11]. The Radon transform of the Gaussian curvature whose
detection condition is the inequality (censorship?) is as follows:

llogp(&(£)))2 U logc(t)} 8 (JQ(l _ vzlogg))zzzmj 0 (5)

and using the signals, the curvature measured by light beam is

Ko Lo o) == ([Kn(o(t)dxdy, (6)
[Jmoreon, =z

D2
Proof. [6, 11].

Likewise, considering the representation of curvature in a Hilbert space (energy space) that is
to say, given by Ag (f), YveV,, ¥CeK", and feCZ(G/K), (theorem (F. Bulnes) [12, 13]), we

have the following:

2Theoretical sensor of curvature by a wave of light [6, 10, 11]
%3, is the pseudo-Riemannian metric in G/K, induced by the pseudo-Riemannian metric of the manifold M.
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<Ag(V), f2@cex <A (VD) >, (7)

which is an “energy” representation of curvature. This permit generalizes the idea of the
curvature as field observable to a level of its energy, having the concept of curvature energy to
quantum level, that is to say, the domineering energy in the action of a quantum field on a
curved space [14] to displace a particle on said space (see Figure 2). The next step is that it
can interpret these energy observables as field observables, which are born of the deforma-
tions obtained on space-time background. Remember that the representations of curvature
determined in Eq. (7) obey a fine structure with weak topological conditions from a point of
view of global analysis. Each isotopic component is a co-cycle in the spectral space or
spectrum of curvature.

But how to design a field gauge to measure the gravity observables through curvature energy
to a quantum level?

Re-writing the symmetric tensor of the metric, it stays as o*V®). This tensor is analogue to the
usual metric tensor”g” but refers to lengths (as is usual) where the distance is symmetric as
functional. The super fix that is represented as “S” refers to symmetric state [15]. The asym-
metric tensor that could be the case of more general metric tensor (which could consider electro-
magnetic fields as field gauges to measurements of other fields as gravitational field) is defined

through the external product between tetrads as follows [9, 15]:

off, = ofol = 0¥ + o, (8)
The anti-symmetric form involves the symmetry and anti-symmetry parts. The anti-symmetric
component from Eq. (8) is OER/(A). The anti-symmetric tensor of the metric is defined through
the wedge product of two tetrads [9, 15]:

ab (A)

O

=0y A o°, 9)
The action of the product of the tensors of curvatures R** and o;; will establish “torsion effect
on the action of gravity”, which is measurable and representable as distortions produced from the
gravity, in the presenece of a gauge field (see (Figure 4)). In this point, the spectrum of the
searched curvature can be constructed. Then with the application of the quantum mechanics,
more specifically, the QFT, and their interrelation with the gravitation is searched and the

cause of the field through the quantum interactions that generate this is established. Then in
this new “exhibition of gravity”, the Einstein field equations can be re-written as follows:

1
Rf — ERO; = xT?, (10)

and using this fact, the new metric tensor can be expressed as*:

“The new metric tensor is anti-symmetric.
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g| angle from
electromagnetic
distortion

Figure 4. Flat-R*-Worldsheet of distortion angle obtained for the electromagnetic backreaction with the background
radiation (gravity). The photon is the gauge field to measure quantum gravity action.

b(A b
giw( ) = OEAOV, (11)

we arrive at the new field equation to electrodynamics that is generally covariant:

a 1
op A (Rb — EROB) = XOj, AT, (12)

which gives us the spin or torsion of the field. However, this must be accompanied with
the Dirac equation to a designed boson to the start of the second curvature, which must
have inherence in the microstructure of the space-time to perceive the gravity to micro-
scopic scale. In the asymmetric space-time model are obtained field models that reflect the
torsion as the central part (this is due to the field polarization to particle level) that defines
field perturbations whose origins are quantum and whose operators are non-commutative
[9]; for example, the asymmetric field theory given by Yang-Mills where this theory pro-
vides an extension of Maxwell theory to the case of non-Abelian fields. In these dimen-
sions raise the wrappings and the loop contributions that will contribute to the energy
micro-states used to define electromagnetic signal effects of power that can be consigned
in a harmonic analyzer with polynomial enters in a non-harmonic interphase of Legendre
polynomials.
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2. Curvature from quantum gravity: a curvature sensor in field theory

How measure curvature of the space-time from the concept of quantum gravity interpreting
their observables as light-field deformations obtained on space-time background with the
action of a gauge field?

To this measurement, we use a hypothetical particle graviton that is modelled as dilaton, being a
gauge graviton (gauge boson) [1, 15]. According to our curvature, studies come from a theoretical
sensor of curvature in the presence of the incurve and detected by a wave of light [1, 6]. This was
mentioned in the previous section. The curvature quantum perception in the space is associated as a
little distortion of the fine micro-local structure of the space-time due to the interaction of particles of
the matter and energy with diverse field manifestations [1]. The matter is shaped by hypothetical
particles that take as base the background radiation of the space, which in last studies due to QFT
[16] and brane theory are organized and tacked to shape spaces of major dimensions. These spaces
are represented by diverse particles of the matter, such as gravitons, barions, fermions of three
generations, etc. [1, 9]. These particles are shaping gravity to quantum level, obtaining representa-
tions of the same for classes of cohomology of the QFT, for example, the FRW-cohomology (which is
a Floer Wrapped Cohomology [16]), which brings exact solutions to the Einstein field equations.
This last affirmation considers diverse symmetries of cylindrical and spherical type for the gravity
modelled like a wave of gravitational energy “quasi-locally” (see Figure 5) [1, 9].

We can determine action integrals of the gravitational energy density (Hamiltonian) given for
[1, 9, 18] as follows:

G8m
M

1 1
HroraL = == Jr + ELaTa[ﬂ XF, (13)

where L” is the Lagrangian, T,g is the corresponding tensor of matter and energy, I' is a
Hamiltonian density and XP is the corresponding field of displacement of the particles in the
space moving for action of L” influenced by the matter and energy tensor Tyg [1, 9].

In the study of the microscopic space-time exist the group representations of SU(2), where one
of these considers that the super-symmetry is given for S (sphere of dimension 3) [15]. In it,
the topological invariant of their 2-form w; and given in the cohomology group

H3(SU(2), R) #0, [9, 17, 19] will show clearly the gravity presence.

This registry, at least, is realized on the surface of this ball S°, which is a mini-twister surface in
the presence of gravity [9], having as ambitwistor space the set of field couples (Z%, W), to the
microscopic space-time. Here, Z is the field of gauge nature (in this case electromagnetic fields)
and W*, the field of particles of the gravity (gravitons, that in this case is the background) [1, 9].

Similarly, it was mentioned and considered that the curvature value can be understood as the
deformation contour on a surface (initial idea created and developed relative to the under-
standing of curvature in a space-time [10, 15]).

Also the curvature can be understood to the field distortion as undulating in the space-time for
the back-reaction due to the photon propagation in the presence of gravity [see Figure 5 (a)
and (b) (using string theory)].
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We can extrapolate this idea to design a type of accelerometer that can be connected to the
devices of navigation of a travelling satellite by space. In said accelerometer, a sensor of ultra-
sensitive gravity based on a solid sphere S?, whose material can be similar to a colloid, could be
involved in their interior, capturing the changes of the weight of a liquid that is also of colloid
type (perhaps of major density that of the ball S*) due to the universal factor G [1, 17].

A censorship® device in the earth’s gravity can be designed to construct a fine curvature sensor to
detect energy for the matter inflow in the space occupied by matter. This brings to collation the
perception of the matter-energy tensor T,g, which influences the movement of the sensor device.”

The measured curvature will be a Gaussian curvature expressed through spherical harmonics
given by Legendre polynomials.

>This censorship can be understood as electromagnetic detectors of curvature, which can design the cosmic sensors of
curvature with the Penrose censor [1].

®Considering M, a four — dimensional space is necessary to consider the spherical map dM — S°, where for this case the
electromagnetic fields can be used as gauges, remembering that SU(2) = S°. Then the cohomology group of the Cartan
forms w;, and w, are annulled [17], that is to say H'(SU(2),R) =0, that is the case of the integrals

$w, =0 ($6A" = 5($A") = 0). To the non-null case, as was mentioned earlier, the unique unique 2-form to the determi-
nation of curvature is ws. Thus, the value of the integral of this group of cohomology is [1, 9] as follows:
1

82
Su(2)=s*

w3=2<FF>,

But by the background radiation of a Minkowski space M (as four-dimensional model of the space-time), where the
energy of the matter is given by the tensor T%, , is that J* = k*T%, where k% is the density of background radiation that
establishes for the curved part of the space (that in this case has spherical symmetry) the variation of energy together with the
energy and matter tensor that comes given as [1, 17] follows:

1
- B> | 10458 >
T JTar;k"da _J] dof >2my,

g2 s?

But conserved current in whole space is

1
J* = EPky + ES"W Viky,

Then the energy inside the sphere satisfies [7, 27]

11 j o<l
1672 (2 — 23) =Y
suR)=s*

since the electromagnetic energy with respect to the energy of background radiation can fulfill that

4n[(2228n[<F,-]-,F’7 >,
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distortions

flat xpace

b)

Figure 5. (a) Dilaton measuring distortion due to quantum gravity, according to the model computational magnetic. (b)
The case is when there is not photon back-reaction [1, 14].

These Legendre polynomials can be measured by harmonics that can be consigned in a wave
with an algebraic frequency. The device is a sensor of free fall that can register different force G,
according to its position in the Cosmos [1]. The difference is consigned by the Hall Effect obtained
by the scattering difference of fermions detected in each case by particles/anti-particles [1, 17].

Inside the device, considering the Lagrangian action given for [1], the actions of change regis-
tered by the free little falls can be reprogrammed. The distortions detected on the 3-sphere can be
identified with these harmonics and thereafter consigned as spectral curvature (Figure 6) [17].

With our ideas and precise goal, we can consider some useful concepts and create other.

Def. 3.1 (F. Bulnes, M. Ramirez, L. Ramirez, O. Ramirez). broson is a hypothetical particle that
is a fermion that comes from D — Branes, being the hypothetical particle wrapped by gauge
bosons in the space-time [15].

Being a field solution, the broson will be our solution of the Dirac equation to distortions
of field [1, 9, 15] that are perturbations in the space-time created by reaction of this
particle with background. Likewise the broson will be solution of the field equation:

(o+xT)of, =0, (14)
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Non-distorted
a} Ball
Distorted Ball by
‘J{,} Gravity

rmm‘

Fia |19y ® E )

Figure 6. (a) Sensor device to consignee the little variations in free fall for gravity of the sensitive material ball in the space-
time. (b) Deformed ball due gravity sensing. (c) The device is designed to be used in a traveler satellite. (d) Gravity spectra.

If we have the term XT, this must be imagined as spherical density. The term R is the curvature
of the space-time, which is a deformation of the spatial scenery due to the presence of matter in
space. The exact values are not important in this last description, but their implications in the
geometrical scenery and their invariants [15] hold significance because these describe the
shape of the space-time, at least, locally.

The torsion is produced by the gauge bosons in the microscopic space due to the electromag-
netic characteristics of these bosons that are photons [15], realizing back-reaction [1, 17] with
the space covered or affected by gravity.

Indeed, in the non-Abelian electromagnetic theory “ghosts” are produced that are states of
negative norm or fields with the wrong sign of the kinetic term linked to every particle whose
effect is predicted by Faddaev-Popov [19, 20, 21].

Every ghost is associated to a gauge field where the gauge field acquires a mass via a Higgs
mechanism (mechanism that creates matter and charge, although each one takes its proper
way in the particle decomposition).

The associated ghost field acquires the same mass (in the Feynman-'t Hooft gauge only, not true
for other gauges) where the gauge must be designed or proposed in accordance to the
Feynman-t"Hooft theory) [1, 9].
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In the QFT, and particle physics frame, the existence of a weak field has been established that
helps to define the unification to the neutron. The weak field, whose nature is electromagnetic,
is associated with the gauge boson as of the type W boson. Similarly, when the neutron exists
outside the atomic nucleus, it is transformed after 10 minutes into an electron, anti-neutrino
and one proton. This establishes the condition to create matter and anti-matter in the required
proportion that is needed in the Universe [14].

We consider the algebraic object assigned as a set of rules of a chain complex (as a graded
module equipped with degree d, such that d* = 0) that permits to understand the movement as
a continuous transformation whose image in a quantum space is a deformation of the space-time
to microscopic level given by little changes in energy. Their macroscopic image of such quanti-
zation can be consigned inside a Poisson manifolds family that under certain quasi-equivalence
[9, 15, 20, 21] and through homotopies can be carried to a macroscopic reality [9, 15]. Through
the duality of Koszul complexes on microstate spaces can be demonstrated that the entropy is an
aspect of the evolution of the energy that can be considered as an inverted image in a mirror
space of the equivalences. Gravity in this case is consigned under torsion (and defined as
pressure on a body or particles) in a Drinfeld space with twisted loops, where these loops and
strings could be our “brosons” according to definition 3. 1., given [1, 15].

Taking into consideration the optimal design of the censorship condition, using the micro-
scopic torsion theory and involving the field solution to Eqs. (10) and (14) from the QFT
(considering that the artificial particle is defined before, because remember that the broson must
be a fermion to be consistent with the different helicities of strings), we have the movement ramifi-
cation as macroscopic effect of the following field action” [15]:

jTcotal = jG + jQEfoermions/ (15)

3. H-fields in a generalized curvature tensor and some boson-fermion
measurements

Through the integration formalism applied to the total action integral of gf}\’}(A), which comes

from the actions of two tensors, the partial action due to the curvature tensor and the electro-
magnetic tensor, including in this last, along with the fermion self-interactions induced by the
quantum second curvature, we can establish the following total action as second integral of
Eq. (12):

AN ey

X (0}, (PY*Dy(@, A)p — Dy (@, Ajpy™))— (16)

1 .
JTOTAL = 5= J d*x00208R(@) + % J d*xox

3
4
_J d XOEK]FA)](A)W

where {y*, vV} = 2g!V, is Dirac matrix and R"¥ = dow"¥ + w5 Aw"S, is the 2-form of curvature.

"This is viewed as energy curvature stated using the perturbative method.
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Here, x = 8nGy, is the gravitational constant mentioned in the introduction section, which we
know, is intimately related with the production of matter by the tensor of matter-energy-
momentum in the Universe estimated inside the Einstein field equations.

However, the studies in [15, 22, 23] need to explain the mechanism of the gravitational energy
with the torsion. Similarly, through the QED and QFT, (see Figure 7) using perhaps the spinor
frame (because it is a wave superposing many trajectories taken by the dilaton interacting with
the space-time), we have within the Dirac equation as was given in Eq. (14) the fermion
interactions [14] that give the different matter particle, which is a space-time torsion, where
finally is a second curvature.

Finally, this global action defined in Eq. (16) can be re-written to fermions in gravity with torsion
[23, 24], with a specific scalar field of torsion (Kalb-Ramond field strength [25]) inspirited from the
string theory [26] (UV- complete) and that can do the job of providing a constant, axial background
in a local frame of FRW-cosmology. The additional fermion-piece of the form is stated as follows:

x ——a D (S A\il,2
3= Ejd4x0(lpy Dy (@, AV — D(@, Ay ), o = cte, (17)
Using the Dirac kinetic terms, the fermion action reads:

a — . —F .
jDiracfHolsthermi = EJd‘LxO(WV'Z(l - ZOQ/S)DHW - Dylp)/”(l - ZOCVS)W)/ (18)

where inside the integrand the Dirac equations to the differentiating fermions are involved in
the non-Harmonic analysis that appears in the anti-symmetric behaviour of the curvature field
measured for quantum interactions (see Figure 8).

This establishes the conjecture in [15], which we enounce.

Conjecture (F. Bulnes) 3. 1. The curvature from the quantum gravity is the measure through
the link-wave or perturbation wave (see Figure 9a) between a hypothetical graviton particle

R Elementary Paticles —— (OFT_)

. ; —
~ Quantum fields on ™.,
curved spacetime /

e S -

o
L

pr

/""Jéxinandj,-_;g'm'""'*\ _/ " General ™\
“__Universe _~ . Relativity

Figure 7. Construction of string energy curvature through the study areas to quantum fields on curved space. To obtain the
curvature energy, we consider QFT and general relativity on expanding Universe, and to initial conditions we consider
elemental particle behaviour in the early Universe. The curvature energy model in quantum level is necessary to consider fields
that are solutions of the Cartan-Einstein equations and Dirac equation. This has been mentioned in the Introduction section I
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modelled as dilaton (gauge graviton) and the trace of any particle in the space-time, whose
relativistic Feynman diagram followed to a quantum field [15].

Theorem (F. Bulnes). The quantum curvature is the set of curvature energy states from the
perturbative method of their Hamiltonian [15].

The perturbation method consider a Hamiltonian H = H; + eH,, which determines first,
energy spectra and after on the base of an action as the given through a field broson action
[15], obtain curvature as torsion or second curvature. Similarly, the electro-gravitational energy
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Figure 8. Refs. [14, 26] Separation of fermions due to their spin % in the non-Harmonic analysis that appear in the anti-
symmetric behaviour of the curvature in a gravitational field measured for quantum interactions. This is realized in a
spintronic simulation.
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Figure 9. (a) Curvature measured to quantum level as the little quantum distortion given by the link-wave between a
hypothetical particle as graviton modelled as dilaton (gauged graviton) and the trace on relativistic Feynman diagram
followed in quantum gravity [15]. (b) The quantum curvature can be considered as different times in the causality and
conformal structure of the the space-time [15]. The different deviations to the world lines in each case show the curvature.
(c) The microscopic perturbation on a cylindrical surface is retaken [15]. Also it is considered the causal structure given by
light cones. The red segment in Figure 9b corresponds to the surface model given in Figure 9c.
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produced can be consigned to torsion energy and its detection can be obtained by back-
reaction on background space-time as energy perturbation expressed as perturbation wave.

In microscopic UV-radiation frame, the underlying theory of quantum gravity takes different
tensors with a corresponding particle spin involved in the interaction. Likewise, we consider
the Kalb-Ramond field B, = —B,, [27] with the massless gravitational multiplets of “closed”
strings such as scalar or dilaton (spin 0), traceless symmetric rank (spin 2), 2-tensor or the
graviton (spin 1), anti-symmetric rank 2-tensor or electromagnetic tensor.

A gauge invariant to effective field theories (in low-energy scale E << M) given for
By — B + awe(x)v], is feasible, which depends only on the field strength Hy, = 9y, By, [27].
Then we give the Bianchi identity as follows:

doHug =0, (19)

However, the detected anomalies by gravitational field interacting with gauge field cancella-
tions of strings (necessary to the perceiving of the gravitational waves letting only the gravitational
strings) require a re-definition of the H-fields given in Eq. (19) considering the extension due to
the Majorana neutrinos masses from (three loop) anomalous terms with axion-neutrino cou-
plings [27]. The corresponding extended Bianchi identity to these anomalous terms is stated as
follows:

o
ng = a[vaQ] + ﬂ (QL — Qv), (20)

Thus interesting results from the study of the phase-space density are derived from the
difference between the Chern-Simons 3-forms [28] Q;, and Qy, where Lorentz-Chern-Simons
3-form ) defined to neutrinos is considered and the electro-gravitational formalism in gauge
theory is considered in the case of the gauge Chern-Simons 3-form[27].

In quantum gravity, a theoretical study related to the propagation of photons shows that a
region of space-time with a singularity is supported by an energy that decreases asymptoti-
cally to the infinite. This hypothetical energy can be constructed with the expression of a
Lagrangian-type given in Table 1 [1, 29], with cylindrical gravitational wave given by the
dilaton (gauge particle) [27] as follows:

® = (1/10000(exp(—4€)], (38, 1) + exp(—4E) Yy (26, 1)) (21)

where the equation expresses a wave model for energy of gravitational waves (see Egs. (1), (9),
(17)) [1]. Also see Figure 10a [1, 9].

Now, considering the effective gravitational action (that is to say, the action whose Lagrangian is
effective) in string low-energy and in terms of a generalized curvature Riemannian tensor (where

the Christoffel connection includes the H-fields, that is to say, f =TI, + 5HY, # FQV, defined

in Eq. (20)), we can give the four-dimensional action as follows:
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Electromagnetic Lagrangian action Electromagnetic interaction

Classic electromagnetism

I(x(s)) = JMLMAX(X(S))d(X(S))r

2 ij i uantized electromagnetism
§=JRU—/\Z]—%<FH-,FJ>)7[ Vol(g), Q 8n

3 Elect tic stri hot B
5= ﬁ‘[dzz(cw + By JOxHOxH +$J\/§R<D(XL), ectromagnetic string photons (Bosons)

) - S Gravitational heterotic string (gravitons)
J =550 (A, 0, @) + 5= J d*2[0x0x° + Py’ + le '+ 2 J VERX,
1=1

Electro-gravitational heterotic string dilaton-

— 4 —20 2 1112 _ 1 gH prap 4 C
s_jd xv/Ge 2[R + 4(VO)? — H? — Ll P 1G] et

o7 =V lzd;gH J 2[00 + cosOOA], Magnetic distortion (back-reaction)

Table 1. Lagrangian actions to electromagnetic interactions [1, 9, 17].

A)

Figure 10. (A) Gravitational alteration perceived by the censor is designed by Eq. (20) when it is obtained as a great
alteration of energy near the singularity of the space-time. (B) Spinor waves superposing due to the curvature energy due
to singularity. These are created as small quantum field fluctuations in the post-limit of Newtonian gravity. The singular-
ity is not combing thus the unique admissible representation is through spinor waves which can be superposed to shape a
perturbing measurable in energy space.

1 1
4 4
s = Jd X, /——g(@R - gHWQHW@>
1 1 (22)
4 D Vi
- Jd x/=F (QR — 5 HunH! @),
where the dual of H, in four dimensions, is given by the differential equation:
3V/3b = /=B € g H, (23)

where b(x) is a pseudo-scalar that defines the Kalb-Ramond axion. Then to a dilaton ®, that
satisfies Eq. (23) has the properties described in Eq. (14) as gravitational wave, the field equation
is as follows:
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HMY = 02% € ,0007b(x), (24)

The linear dilaton solution in string frame (or logarithmic in FRW-time in Einstein frame) with
conformally flat Einstein-frame target space-time [see Figure 11a] is exact in all orders of a
parameter that appears in Eq. (17) [27].

Then considering the principles dictated in Eqgs. (18)—(20) and the differentiated fermions in the
non-Harmonic analysis that appears in the anti-symmetric behaviour of the curvature field
measured by quantum interactions (Figure 8), we can give the following action that comes
from the Majorana states in fermionic field theories with H-torsion [9, 27]:

Sy = 3 | VBT, )

Then considering the extra-charge created by the fermion interaction (central charge underly-
ing in the world-sheet conformal field theory [16]), we can define the scalar field:

b(x) = vZe i\ /Q? %t, Vnez, (26)

which is a field model with fine electromagnetic terms, where this can be used to create a basic
charge in a component of g-cell [27].

Also we use the theorem on curvature given in [3], which must consider an isotopic compo-
nent of Gaussian factor to lectures of curvature, then we can define a sensor whose 3-ball of
non-Newtonian fluid can receive these signals and re-interpret through voltage-curvature
energy, such as said by theorem III. 1 [1, 14, 17].

These data as little electrical voltages that come from the surface of the 3-ball can be censored
(and sensored) as little changes in the background (that are perturbations) due to the dilaton
interaction with this [14, 27].
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Figure 11. (A) Macroscopic Fluctuations density detected by CMB in the Newtonian limit, which can be consigned in
microwave map realized by the SWAP Universe. The quantum field fluctuations that generate the macroscopic fluctua-
tions can be modelled by a dilaton ¢, that enters in back-reaction with the background radiation. (B) Perturbation surface
in the Newtonian limit (in beginning of the flatness of the space-time supported by the neutrinos/anti-neutrinos totality).
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Likewise, realizing some experiments with little accelerometers in curvature sensor perfor-
mance, we can include a charged ball whose charge variation in time is given by the energy
spectra [1, 27]. Then the position variation of the accelerometer in respect to their horizontal
frame (Ecuador) registered in their g-cell change (see Figure 8) will measure the falls by
gravity, these being consigned in curvature energy. We can use two leads to determine the
polarization effect created in natural way by the fermionic behaviour [27] (see Figures 6 and 8).

Then we can define an accelerometer in a classic sense in the earth’s gravity. The curvature will
be expressed as a Gaussian curvature according to spherical harmonics given by Legendre
polynomials [14, 27]. These polynomials carry the information of ball variations. Likewise, the
sensor is a sensor of free fall that can register different force factors G. This difference is
consigned by the Hall Effect obtained by the scattering difference of fermions detected in each
case, particles/anti-particles. The proper device considering these as a Lagrangian action given
can reprogram the actions of the changes [1, 9, 27].

Then extrapolating this experiment in the ambit of the photonics, the folds or “creases” in a
deformable sphere (Figure 6) are oscillations in the Universe, which are given by the mixture of
neutrinos/anti-neutrinos for the eco of the Early Universe [27], which will arrive until our days.

The Universe will maintain its basic non-spherical symmetry until our days, which can be
expressed through its Lagrangian as follows:

L= Li+ L= y=gbliy*0. —m) + Y*y’B.]Y, (27)

where {, and ), are component of the field spinor W. The oscillations are received as spherical
auto-modes of the alteration of central charge Q, obtained by the differentiated fermionic
process (see Figure 9) (extension of the model the axion b(x), using total derivatives of the
gravitational Cvagof{me and electromagnetic CFHVFHV, terms [18] of the fields 0;, translated
to H-fields).

In the Universe, the neutrinos and anti-neutrinos conform to the asymmetry around the black
holes or space-time singularities [25]. Inside singularities, the gravitational field is dementia. Then
their particles and anti-particles (by the same polarization process) can be generated from the
torsion. Likewise, using a plane wave approximation, different dispersion relations between
particles and anti-particles to finite densities assuming constant background torsion can be
obtained (see Ref. [27]).

Finally, through a magnetic dilaton @, we can give a model of magnetic distortion, that is to
say, the energy curvature in the gravitational media can be translated as magnetic defor-
mation of thefour-dimensional part of the string of background radiation (see Figure 11)
[9, 27].

The gravitational energy is the curvature energy obtained through components of Bessel
functions or harmonic polynomials (see Figure 12).

Finally, we can conclude that the curvature energy expressed through the H-states can be

written using the superposing principle to each connection wé@ ), (with C, a curve) that
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C
A) B)

Figure 12. (A) Direct sum of H-states to establish the curvature measure by field ramification. (B) The waves that are
spinor waves can be consigned in oscillations in the space-time in the presence of curvature to the change of particles spin.
(C) Gravitational waves produced by quantum gravity due to H-states on cylindrical surface. Their propagation is
realized on axis X. These gravitational waves are originated for the oscillations in the space-time-curvature/spin (that is
to say using causal fermions systems).

describes the corresponding dilaton. Likewise, in a Hamiltonian densities space [9], we have
Figure 12(a) considering a Hitchin base that is stated as follows:

H(wc)@H" (0&?)®...0H (0d™), (28)

In the case of spinor representation, the corresponding H-states can be given as spinor waves
[see Figure 12b], which can be consigned in oscillations in the space-time-curvature/spin, to a
microscopic deformation measured in H.

4. Conclusions

The curvature as field observable can be detected by back-reaction of a gauge field considering
that the quantum gravity is the quantum effect produced by interaction of particles that
conform to the matter (that is to say, particles of matter) with gauge particles, which in most
cases are of boson type. However, we can consider an underlying causal fermion system or
fundamental causal fermion system from which effects (from their energy states) as geometri-
cal invariants to the space-time can be observed, which can be described to the space-time as
discretized by H-states of Majorana states (as given in 28 to a space-time modelled initially as
complex Riemannian manifold and transformed later to be a discrete manifold).

Then we can establish quantum geometry of the space-time, and using the concept of curva-
ture energy associated to the particle/wave, we can give a representation as perturbation
H =H; + eHy, generated by the interaction of particles mentioned. Likewise, geometrical
models of quantum gravity can be given to show the quantum behaviour of observables
obtained for photons that act on the background radiation (or microwave radiation) such that
a second curvature as torsion can be induced for fields as dilatons or gauge bosons, which can
exhibit observable of gravitational field that is curvature in all cases. As this process is realized
in quantum level, results remain curvature to quantum gravity, which is curvature energy or
gravitational energy (as defined in the introduction of this chapter from the energy-matter
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tensor T,g) that will exist until our days as an echo of the times of the creation of the gravity in
the transit of the Early Universe. Then a censorship condition can be used to sensing and
gauging of curvature, which can give characteristics to construct and design a sensor device,
using the curvature energy to measure and detect quantum gravity as such [29].
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