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Preface

There is nothing better than the exact solution of mathematical problems, for example, equa‐
tions or integrals. There are a huge number of such relatively simple cases but the number of
complex problems, which have only approximate solutions, is bigger, even tends to infinity.
The approximate solutions are looked for either by analytical methods or by numerical anal‐
ysis. A powerful and widely applicable analytical approach to the obtaining of reliable ap‐
proximate solutions is the perturbation method, namely, the development of a perturbation
theory of the selected problem. This general approach is well combined with numerical cal‐
culations and computer simulations.

The perturbation theories look alike and can easily be recognized through their main fea‐
tures. Their results are represented by infinite series expansions around an exact solution of
a simpler problem. The latter is usually a result of a suitable reduction of the initial problem
when the mathematical part, which is responsible for the lack of exact solution, is ignored.
The ignored part is called “perturbation part." Under the supposition that the perturbation
term has a small effect on the final result, the solution of the entire problem is represented as
an infinite series in powers of some expansion parameter, which is a small factor in the ig‐
nored term. The first term in this expansion is usually labeled by the subscript “0" (zero-or‐
der term) and represents the solution of the exactly solved reduced task, whereas the other
terms are in powers of the expansion parameter.

The perturbation series are infinite, but in the self-consistent theories, the magnitude of the
terms in nonzero power decreases with the increase of the expansion parameter powers, and
the final sum of the perturbation terms is smaller than the zero-order term. In this much
desired case, the perturbation leads to a relatively small correction to the result for the exact‐
ly solvable part of the problem. This usually happens under some conditions that depend on
the features of the specific task and are to be deduced within the development of the theory.
In case of a number of relevant problems, both in mathematics and natural sciences, the per‐
turbation contributions are larger than the zero-order solution. This circumstance requires a
more specific interpretation of the final results.

In other important cases, the perturbation series are divergent for some parameters of the
theory. This situation is frequent in research problems in natural sciences, in particular, in
physics. Significant efforts to extract useful information from asymptotic perturbation series
are the daily concern of many theoretical physicists working on the most important physics
problems, particularly in the field of quantum field theory and in the theory of phase transi‐
tions, where the interparticle interactions are relatively strong. Namely, the interaction
terms in the Hamiltonian of a physical system are usually chosen as the perturbation part of
perturbation expansions in quantum field theory and statistical physics, where the perturba‐



tion methods are widely used on the basis of the so-called Green’s function approach. In
modern theory of strongly interacting systems, the perturbation expansions are combined
with ideas of scaling and renormalization, and thus these expansions are in the basis of the
so-called renormalization group. The latter is a powerful tool of investigation of the effect of
strong interactions in field theories.

Once introduced and highly developed in physics, perturbation methods of study are also
spread in chemistry—mainly in quantum chemistry, in physical chemistry, in chemical
physics, and in biophysics. In the last three–four decades, new interdisciplinary research
fields appeared, for example, sociophysics and econophysics, where perturbation theories
together with numerical analysis and computer simulations will undoubtedly be very im‐
portant.

The book contains seven chapters, written by noted experts and young researchers who
present their recent studies of both pure mathematical problems of perturbation theories
and application of perturbation methods to the study of important topics in physics, for ex‐
ample, renormalization group theory and applications to basic models in theoretical physics
(Y. Takashi), the quantum gravity and its detection and measurement (F. Bulnes), atom-pho‐
ton interactions (E. G. Thrapsaniotis), treatment of spectra and radiation characteristics by
relativistic perturbation theory (A. V. Glushkov et al.), and Green’s function approach and
some applications (Jing Huang). The pure mathematical issues are related to the problem of
generalization of the boundary layer function method for bisingularly perturbed differential
equations (K. Alymkulov and D. A. Torsunov) and to the development of new homotopy
asymptotic methods and their applications (Baojian Hong).

Dimo I. Uzunov
Professor of Physics

Bulgarian Academy of Sciences
Sofia, Bulgaria
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Chapter 1

Perturbed Differential Equations with Singular Points

Keldibay Alymkulov and
Dilmurat Adbillajanovich Tursunov

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67856

Dedicated to academician of National Academy Sciences Kyrgyz Republic
and Corresponding member of RAS Imanaliev Murzabek

Abstract

Here, we generalize the boundary layer functions method (or composite asymptotic
expansion) for bisingular perturbed differential equations (BPDE that is perturbed dif-
ferential equations with singular point). We will construct a uniform valid asymptotic
solution of the singularly perturbed first-order equation with a turning point, for BPDE
of the Airy type and for BPDE of the second-order with a regularly singular point, and
for the boundary value problem of Cole equation with a weak singularity.A uniform
valid expansion of solution of Lighthill model equation by the method of uniformization
and the explicit solution—this one by the generalization method of the boundary layer
function—is constructed. Furthermore, we construct a uniformly convergent solution of
the Lagerstrom model equation by the method of fictitious parameter.

Keywords: turning point, singularly perturbed, bisingularly perturbed, Cauchy prob-
lem, Dirichlet problem, Lagerstrom model equation, Lighthill model equation, Cole
equation, generalization boundary layer functions

1. Preliminary

1.1. Symbols O, o, ~. Asymptotic expansions of functions

Let a function f ðxÞ and ϕðxÞ be defined in a neighborhood of x ¼ 0.

Definition 1. If lim
x!0

f ðxÞ
ϕðxÞ ¼ M, then write f ðxÞ ¼ OðϕðxÞÞ, x ! 0, and M is constant.

If lim
x!0

f ðxÞ
ϕðxÞ ¼ 0, then write f ðxÞ ¼ oðϕðxÞÞ, x ! 0.

If lim
x!0

f ðxÞ
ϕðxÞ ¼ 1, then write f ðxÞ eϕðxÞ, x ! 0.

Definition 2. The sequence {δnðεÞ}, where δnðεÞ defined in some neighborhood of zero, is called
the asymptotic sequence in ε ! 0, if

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



lim
ε!0

δnþ1ðεÞ
δnðεÞ ¼ 0, ∀n ¼ 1, 2,…

For example.

εnf g,
�
1=lnð1=εÞ

�nn o
,

�
εlnð1=εÞ

�nn o
:

Note 1. Everywhere below ε denotes a small parameter.

Definition 3. We say that f ðxÞ function can be expanded in an asymptotic series by the asymp-
totic sequence {ϕnðxÞ}, x ! 0, if there exists a sequence of numbers {f n} and has the relation

f ðxÞ ¼
Xn

k¼0

f kϕkðxÞ þOðϕnþ1ðxÞÞ, x ! 0,

and write

f ðxÞe
X∞

k¼0

f kϕkðxÞ, x ! 0:

1.2. The asymptotic expansion of infinitely differentiable functions

Theorem (Taylor (1715) and Maclaurin (1742)). If the function f ðxÞ∈C∞ in some neighborhood
of x ¼ 0, then it can be expanded in an asymptotic series for the asymptotic sequence {xn}, i.e.,

f ðxÞ e
X∞
n¼1

f nx
n, where f n ¼ f ðnÞð0Þ=n!.

Thus, the concept of an asymptotic expansion was given for the first time by Taylor and
Maclaurin,although an explicit definition was given by Poincaré in 1886.

1.3. The asymptotic expansion of the solution of the ordinary differential equation

Consider the Cauchy problem for a normal ordinary differential equation

y0ðxÞ ¼ f ðx, y, εÞ, yð0Þ ¼ 0: ð1Þ

The function f ðx, y, εÞ is infinitely differentiable on the variables x, y, ε in some neighborhood
Oð0, 0, 0Þ. It is correct next.
Theorem 1. The solution y ¼ yðx, εÞ of problem (1) exists and unique in some neighborhood
point Oð0, 0, 0Þ and yðx, εÞ∈C∞, for small x, ε.

Corollary. The solution of problem (1) can be expanded in an asymptotic series by the small
parameter ε, i.e.,

yðx, εÞ ¼
X∞

k¼1

εkykðxÞ: ð2Þ

Here and below, the equality is understood in an asymptotic sense.
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Note 2. Theorem 1 for the case when f ðx, y, εÞ is analytical was given in [1] by Duboshin.

Note 3. This theorem 1 is not true if f ðx, y, εÞ is not smooth at ε. For example, the solution of a
singularly perturbed equation

εy0ðxÞ ¼ �yðxÞ, yð0Þ ¼ a

function yðxÞ ¼ ae�x=ε and is not expanded in an asymptotic series in powers of ε, because here
f ðx, y, εÞ ¼ �yðxÞ=ε and f have a pole of the first order with respect to ε.

Note 4. The series 2 is a uniform asymptotic expansion of the function yðxÞ in a neighborhood
of x ¼ 0.

For example. Series

yðx, εÞ ¼ 1þ εx�1 þ ðεx�1Þ2 þ…þ ðεx�1Þn þ…

It is not uniform valid asymptotic series on the interval [0, 1], but it is a uniform valid
asymptotic expansion of the segment ½εα, 1�, where 0 < α < 1.

1.4. Singularly perturbed ordinary differential equations

We divide such equations into three types:

(I) Singular perturbations of ordinary differential equations such as the Prandtl-Tikhonov
[2–56], i.e., perturbed equations that contain a small parameter at the highest deriva-
tive, i.e., equations of the form

y0ðxÞ ¼ f ðx, y, εÞ, yð0Þ ¼ 0, εz0ðxÞ ¼ gðx, y, εÞ, zð0Þ ¼ 0,

where f , g are infinitely differentiable in the variables x, y, ε in the neighborhood of
Oð0, 0, 0Þ. It is obvious that unperturbed equation (ε ¼ 0)

y0
0ðxÞ ¼ f ðx, y, 0Þ, 0 ¼ gðx, y, 0Þ

is a first order.

Definition 4. Singularly perturbed equation will be called bisingulary perturbed if the
corresponding unperturbed differential equation has a singular point, or this one is
an unbounded solution in the considering domain.

For example

1. Equation εy0ðxÞ ¼ �yðxÞ is a singularly perturbed ordinary differential equation.

2. Equation Vander Pol

εy00ðxÞ þ ð1� y2ðxÞÞy0ðxÞ þ yðxÞ ¼ 0:

It is a bisingularly perturbed ordinary differential equation with singular points,
if yðxÞ ¼ �1.

Perturbed Differential Equations with Singular Points
http://dx.doi.org/10.5772/67856
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3. εy0ðxÞ � xyðxÞ ¼ 1, x∈ ½0, 1� is a bisingularly perturbed equation, because the
unperturbed equation has an unbounded solution y0ðxÞ ¼ �x�1

.

4. εy00ðxÞ � xyðxÞ ¼ 1, x∈ ½0, 1� is a bisingularly perturbed equation also.

(II) Singularly perturbed differential equations such as the Lighthill’s type [57–69], in
which the order of the corresponding unperturbed equation is not reduced, but has
a singular point in the considering domain.

For example, a Lighthill model equation

ðxþ εyðxÞÞy0ðxÞ þ pðxÞyðxÞ ¼ rðxÞ, yð1Þ ¼ a

where x∈ ½0, 1�, pðxÞ, rðxÞ∈C∞½0, 1�. For unperturbed equation

xy00ðxÞ þ pðxÞy0ðxÞ ¼ rðx),

point x ¼ 0 is a regular singular point.

(III) A singularly perturbed equation with a small parameter is considered on an infinite
interval. For example, the Lagerstrom equation [70–81]

y00ðxÞ þ nx�1y0ðxÞ þ yðxÞy0ðxÞ ¼ βðy0ðxÞÞ2,
yðεÞ ¼ 0, yð∞Þ ¼ 1:

where 0 < β is a given number and n is the dimension space.

Remark. The division into such classes is conditional, because singularly perturbed
equation of Van der Pol in the neighborhood of points y ¼ �1 leads to an equation of
Lighthill type [2, 3].

1.5. Methods of construction of asymptotic expansions of solutions of singularly perturbed
differential equations

1. The method of matching of outer and inner expansions [13, 19, 28, 29, 37, 49] is the most
common method for constructing asymptotic expansions of solutions of singularly
perturbed differential equations. Justification for this method is given by Il’in [22]. How-
ever, this method is relatively complex for applied scientists.

2. The boundary layer function method (or composite asymptotic expansion)dates back to the
work of many mathematicians. For the first time, this method for a singularly perturbed
differential equations in partial derivatives is developed by Vishik and Lyusternik [52] and
for nonlinear integral-differential equations (thus for the ordinary differential equations)
Imanaliev [24], O’Malley (1971) [38], andHoppenstedt (1971) [42].

It should be noted that, for the first time, the uniform valid asymptotic expansion of the
solution of Eq. (5) is constructed by Vasil’eva (1960) [50] after Wasow [69] and Sibuya in
1963 [68] by the method of matching.

Recent Studies in Perturbation Theory4
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This method is constructive and understandable for the applied scientists.

3. The method of Lomov or regularization method [33] is applied for the construction of
uniformly valid solutions of a singularly perturbed equation and will apply Fredholm
ideas.

4. The method WKB or Liouville-Green method is used for the second-order differential
equations.

5. The method of multiple scales.

6. The averaging method is applicable to the construction of solutions of a singularly
perturbed equation on a large but finite interval.

Here, we consider a bisingularly perturbed differential equations and types of equations of
Lighthill and Lagerstrom.

Here, we generalize the boundary layer function method for bisingular perturbed equations.
We will construct a uniform asymptotic solution of the Lighthill model equation by the
method of uniformization and construct the explicit solution of this one by the generalized
method of the boundary layer functions.

Furthermore, we construct a uniformly convergent solution of the Lagerstrom model equation
by the method of fictitious parameter.

2. Bisingularly perturbed ordinary differential equations

2.1. Singularly perturbed of the first-order equation with a turning point

Consider the Cauchy problem [5]

εy0ðxÞ þ xyðxÞ ¼ f ðxÞ, 0 < x ≤ 1, yð0Þ ¼ a, ð3Þ

where f ðxÞ∈C∞½0, 1�, f(x)=
X∞

k¼0

f kx
k, f k ¼ f ðkÞð0Þ=k!, f 0 6¼ 0; a is the constant

Explicit solution of the problem (3) has the form: yðxÞ ¼ ae�x2=2ε þ 1
ε

ðx
0
eðs

2�x2Þ=2εf ðsÞds:

The corresponding unperturbed equation (ε ¼ 0)

�x~yðxÞ þ f ðxÞ ¼ 0,

has a solution ~yðxÞ ¼ f ðxÞ=x, which is unbounded at x ¼ 0.

If you seek a solution to problem (1) in the form

yðxÞ ¼ y0ðxÞ þ εy1ðxÞ þ ε2y2ðxÞ þ…, ð4Þ

then

Perturbed Differential Equations with Singular Points
http://dx.doi.org/10.5772/67856
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y0ðxÞ ¼
f ðxÞ
x e f 0x

�1, x ! 0,

y1ðxÞ ¼ x�1y00ðxÞe f 0x
�3, x ! 0,

y2ðxÞ ¼ x�1y01ðxÞe 3f 0x
�5, x ! 0,

y3ðxÞ ¼ x�1y02ðxÞe 3 � 5f 0x�5, x ! 0,

ynðxÞ ¼ x�1y0n�1ðxÞ e 3 � 5 �… � ð2n� 1Þf 0x�ð2nþ1Þ, x ! 0,

and a series of Eq. (4) is asymptotic in the segment ð ffiffiffi
ε

p
, 1�, and the point x0=

ffiffiffi
ε

p ¼ μ is singular
point of the asymptotic series of Eq. (4). Therefore, the solution of problem (3) we will seek in
the form

yðxÞ ¼ μ�1π�1ðtÞ þ Y0ðxÞ þ π0ðtÞ þ μ
�
Y1ðxÞ þ π1ðtÞ

�
þ μ2

�
Y2ðxÞ þ π2ðtÞ

�
þ…, μ ! 0,

ð5Þ

where YkðxÞ∈Cð∞Þ½0, 1�, πkðtÞ∈Cð∞Þ½0,μ�1�, x ¼ μt and boundary layer functions πkðtÞ
decreasing by power law as t ! ∞, that is,πkðtÞ ¼ Oðt�mÞ, t ! ∞, m∈N.

Substituting Eq. (5) into Eq. (3), we obtain

π0
�1ðtÞ þ μ2Y0

0ðxÞ þ μπ0
0ðtÞ þ μ3Y0

1ðxÞ þ μ2π0
1ðtÞ þ μ4Y0

2ðxÞ þ μ3π0
2ðtÞ þ μ5Y0

3ðxÞ þ μ4π0
3ðtÞ þ…

þ xY0ðxÞ þ μxY1ðxÞ þ μ2xY2ðxÞ þ μ3xY3ðxÞ þ…þ tπ�1ðtÞ þ μtπ0ðtÞ þ μ2tπ1ðtÞ þ μ3tπ2ðtÞ
þ μ4tπ3ðtÞ þ… ¼ f ðxÞ:

ð6Þ

The initial conditions for the functions πk�1ðtÞ, k ¼ 0, 1,… we take in the next form

π�1ð0Þ ¼ 0, π0ð0Þ ¼ a� Y0ð0Þ, πkð0Þ ¼ �Ykð0Þ, k ¼ 1, 2,…

From Eq. (6), we have

μ0 : π0
�1ðtÞ þ tπ�1ðtÞ þ xY0ðxÞ ¼ f ðx), ð7:-1Þ

μ1 : π0
0ðtÞ þ tπ0ðtÞ þ xY1ðxÞ ¼ 0, ð7:0Þ

μkþ1 : π0
kðtÞ þ tπkðtÞ þ xYkþ1ðxÞ þ Y0

k�1ðxÞ ¼ 0, k ¼ 1, 2,… ð7:kÞ

To Y0ðxÞ function has been smooth, and we define it from the equation

xY0ðxÞ ¼ f ðxÞ � f 0 ) Y0ðxÞ ¼ ðf ðxÞ � f 0Þ=x,

and then from Eq. (7.�1), we have obtained the equation
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π0
�1ðtÞ þ tπ�1ðtÞ ¼ f 0:

Therefore

π�1ðtÞ ¼ f 0e
�t2=2

ðt

0

es
2=2ds∈C∞½0,μ�1�,

Obviously, this function bounded and is infinitely differentiable on the segment ½0,μ�1�, and

π�1ðtÞ ¼ � f 0
t
ð1þ 1

t2
þ 3
t4
þ…Þ, t ! ∞:

This asymptotic expression can be obtained by integration by parts the integral expression for
π�1ðtÞ.
Eq. (7.0) define Y1ðxÞ and π0ðtÞ. Let Y1ðxÞ � 0, then

π0
0ðtÞ þ tπ0ðtÞ ¼ 0, π0ð0Þ ¼ a� f 1:

Hence, we find

π0ðtÞ ¼ ða� f 1Þe�t2=2:

From Eq. (7c) for k ¼ 1, we have

π0
1ðtÞ þ tπ1ðtÞ þ xY2ðxÞ þ Y0

0ðxÞ ¼ 0:

Let xY2ðxÞ ¼ Y0
0ð0Þ � Y0

0ðxÞ, then π0
1ðtÞ þ tπ1ðtÞ ¼ �Y0

0ð0Þ.
From these, we get

Y2ðxÞ ¼ ðY0
0ð0Þ � Y0

0ðxÞÞ=x, π1ðtÞ ¼ �f 2e
�t2=2

ðt

0

es
2=2ds∈C∞½0,μ�1�,

and

π�1ðtÞ ¼ f 2
t
ð1þ 1

t2
þ 3
t4
þ…Þ, t ! ∞:

From Eq. (7c) for k ¼ 2, we have

π0
2ðtÞ þ tπ2ðtÞ þ xY3ðxÞ þ Y0

1ðxÞ ¼ 0 or π0
2ðtÞ þ tπ2ðtÞ þ xY3ðxÞ ¼ 0:

Let Y3ðxÞ � 0, then
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π0
2ðtÞ þ tπ2ðtÞ ¼ 0, π2ð0Þ ¼ �Y2ð0Þ ¼ 2f 3:

From this, we get

π2ðtÞ ¼ 2f 3e
�t2=2:

Analogously continuing this process, we determine the others of the functions YkðxÞ, πkðtÞ.
In order to show that the constructed series of [Eq. (5)] is asymptotic series, we consider
remainder term RmðxÞ ¼ yðxÞ � ymðxÞ,

where ymðxÞ ¼ 1
μ π�1ðtÞ þ Y0ðxÞ þ π0ðtÞ þ μ

�
Y1ðxÞ þ π1ðtÞ

�
þ…þ μm

�
YmðxÞ þ πmðtÞ

�
.

For the remainder term RmðxÞ, we obtain a problem:

εR0
mðxÞ þ xRmðxÞ ¼ �μmþ2Y0

mðxÞ, 0 < x ≤ 1, Rmð0Þ ¼ 0: ð8Þ

We note that if m is odd, then Y0
mðxÞ � 0.

The problem (8) has a unique solution

RmðxÞ ¼ �μme�x2=2ε
ðx

0

Y0
mðsÞes

2=2εds;

and from this, we have RmðxÞ ¼ OðμmÞ, μ ! 0, x∈ ½0, 1�:

2.2. Bisingularly perturbed in a homogenous differential equation of the Airy type

Consider the boundary value problem for the second-order ordinary in a homogenous
differential equation with a turning point

εy00ðxÞ � xyðxÞ ¼ f ðxÞ, x∈ ð0, 1Þ, ð9Þ

yð0Þ ¼ 0, yð1Þ ¼ 0: ð10Þ

where f ðxÞ ¼
X∞

k¼0

f kx
k, x ! 0, f k ¼ f ðkÞð0Þ=k!, f 0 6¼ 0.

Note 5. It is the general case of this one was considered in Ref. [8, 45–47].

Without loss of generality, we consider the homogeneous boundary conditions, since
yð0Þ ¼ a, yð1Þ ¼ b, a2 þ b2 6¼ 0, using transformation

yðxÞ ¼ aþ ðb� aÞxþ zðxÞ,

can lead to conditions (10).
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0

Y0
mðsÞes

2=2εds;

and from this, we have RmðxÞ ¼ OðμmÞ, μ ! 0, x∈ ½0, 1�:

2.2. Bisingularly perturbed in a homogenous differential equation of the Airy type

Consider the boundary value problem for the second-order ordinary in a homogenous
differential equation with a turning point

εy00ðxÞ � xyðxÞ ¼ f ðxÞ, x∈ ð0, 1Þ, ð9Þ

yð0Þ ¼ 0, yð1Þ ¼ 0: ð10Þ

where f ðxÞ ¼
X∞

k¼0

f kx
k, x ! 0, f k ¼ f ðkÞð0Þ=k!, f 0 6¼ 0.

Note 5. It is the general case of this one was considered in Ref. [8, 45–47].

Without loss of generality, we consider the homogeneous boundary conditions, since
yð0Þ ¼ a, yð1Þ ¼ b, a2 þ b2 6¼ 0, using transformation

yðxÞ ¼ aþ ðb� aÞxþ zðxÞ,

can lead to conditions (10).
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If the asymptotic solution of the problems (9)–(10) we seek in the form

yðxÞ ¼ y0ðxÞ þ εy1ðxÞ þ ε2y2ðxÞ þ…; ð11Þ

then we have

y0ðxÞ ¼ � f ðxÞ
x e f 0x

�1, x ! 0,

y1ðxÞ ¼ x�1y000ðxÞ e 1 � 2 f 0x
�4, x ! 0,

y2ðxÞ ¼ x�1y0 01ðxÞ e 1 � 2 � 4 � 5 f 0x
�7, x ! 0,

y3ðxÞ ¼ x�1y0 02ðxÞ e 1 � 2 � 4 � 5 � 7 � 8 f 0x
�10, x ! 0,

ynðxÞ ¼ x�1y0 0n�1ðxÞ e 1 � 2 � 4 � 5 � 7 � 8 �… � ð3n� 2Þ � ð3n� 1Þ f 0x�ð3nþ1Þ, 0 < n, x ! 0,

and the series (11) is asymptotic in the segment ð ffiffiffi
ε3

p
, 1�. The point x0=

ffiffiffi
ε3

p ¼ μ is singular point
of asymptotic series (11).

The solution of problems (9) and (10) will be sought in the form

yðxÞ ¼ μ�1π�1ðtÞ þ
X∞

k¼0

μk
�
YkðxÞ þ πkðtÞ

�
þ
X∞

k¼0

λkwkðηÞ, ð12Þ

where t ¼ x=μ, μ ¼ ffiffiffi
ε3

p
, η ¼ ð1� xÞ=λ, λ ¼ ffiffiffi

ε
p

. Here, YkðxÞ∈C∞½0, 1�, πkðtÞ∈C∞½0, 1=μ� is
boundary layer function in a neighborhood of t ¼ 0 and decreases by the power law as t ! ∞,
and the function wkðtÞ∈C∞½0, 1=λ� is boundary function in a neighborhood of η ¼ 0 and
decreases exponentially as η ! ∞.

Substituting Eq. (12) in Eq. (9), we get

X∞

k¼0

μkðπ″
k�1ðtÞ � tπk�1ðtÞÞ þ

X∞

k¼0

μkþ3Y″
kðxÞ � x

X∞

k¼0

μkYkðxÞ ¼ f ðxÞ ð13Þ

X∞

k¼0

λk
�
w0 0

kðηÞ � ð1� ληÞwkðηÞ
�
¼ 0: ð14Þ

From Eq. (13), we have

μ0 : π″�1ðtÞ � tπ�1ðtÞ � xY0ðxÞ ¼ f ðx), ð15:-1Þ

μ1 : π″
0ðtÞ � tπ0ðtÞ � xY1ðxÞ ¼ 0, ð15:0Þ

μ2 : π″
1ðtÞ � tπ1ðtÞ � xY2ðxÞ ¼ 0, ð15:1Þ

μ3 : π″
2ðtÞ � tπ2ðtÞ þ Y″

0ðxÞ � xY3ðxÞ ¼ 0, ð15:2Þ

μk : π″
k�1ðtÞ � tπk�1ðtÞ þ Y″

k�3ðxÞ � xYkðxÞ ¼ 0, k > 3, ð15:kÞ
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Boundary conditions for functions πk�1ðtÞ, k ¼ 0, 1,… we take next form

π�1ð0Þ ¼ 0, πkð0Þ ¼ �Ykð0Þ, lim
μ!0

πk�1ð1=μÞ ¼ 0, k ¼ 0, 1, 2,…

To Y0ðxÞ function has been smooth; therefore, we define it from the equation

�xY0ðxÞ ¼ f ðxÞ � f 0 ) Y0ðxÞ ¼ �ðf ðxÞ � f 0Þ=x,

then from Eq. (15.1), we have the equation

π0 0
�1ðtÞ � tπ�1ðtÞ ¼ f 0:

Let us prove an auxiliary lemma.

Lemma 1. Next boundary value problem

z00ðtÞ � tzðtÞ ¼ b, 0 < t < 1=μ, here b is the constant, ð16Þ

zð0Þ ¼ z0, zð1=μÞ ! 0, μ ! 0 ð17Þ

will have the unique solution and this one have next form

zðtÞ ¼ z0
AiðtÞ
Aið0Þ � πb

�
AiðtÞ

ðt
0
BiðsÞdsþ BiðtÞ

ð1=μ
t

AiðsÞds� AiðtÞ
ffiffiffi
3

p ð1=μ
0

AiðsÞds
�
,

and zðtÞ∈C∞½0,μ�1�.
Proof. We verify the boundary conditions:

zð0Þ ¼ z0 � πb
�
Bið0Þ

ð1=μ
0

AiðsÞds� Aið0Þ
ffiffiffi
3

p ð1=μ
0

AiðsÞds
�
,

as Bið0Þ ¼ Aið0Þ ffiffiffi
3

p
, so zð0Þ ¼ z0.

zð1=μÞ ¼ z0
Aið1=μÞ
Aið0Þ � πbð1�

ffiffiffi
3

p
ÞAið1=μÞ

ð1=μ
0

BiðsÞds,

as AiðtÞ e t�1=4e�
2
3 t

3=2
, BiðtÞe t�1=4e

2
3 t

3=2
, t ! ∞, so zð1=μÞ ¼ OðμÞ, μ ! 0.

Now we show that z(t) satisfies Eq. (16). For this, we compute derivatives:

z0ðtÞ ¼ z0
Ai0ðtÞ
Aið0Þ � πb

�
Ai0ðtÞ

ðt
0
BiðsÞdsþ Bi0ðtÞ

ð1=μ
t

AiðsÞds� Ai0ðtÞ
ffiffiffi
3

p ð1=μ
0

AiðsÞds
�

z00ðtÞ ¼ z0
Ai00ðtÞ
Aið0Þ � πb Ai00ðtÞ

ðt
0
BiðsÞdsþ Bi00ðtÞ

ð1=μ
t

AiðsÞds� 1
π
� Ai00ðtÞ

ffiffiffi
3

p ð1=μ
0

AiðsÞds
 !
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,
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0

BiðsÞds,
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2
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3=2
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3=2
, t ! ∞, so zð1=μÞ ¼ OðμÞ, μ ! 0.

Now we show that z(t) satisfies Eq. (16). For this, we compute derivatives:

z0ðtÞ ¼ z0
Ai0ðtÞ
Aið0Þ � πb

�
Ai0ðtÞ

ðt
0
BiðsÞdsþ Bi0ðtÞ

ð1=μ
t

AiðsÞds� Ai0ðtÞ
ffiffiffi
3

p ð1=μ
0
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z00ðtÞ ¼ z0
Ai00ðtÞ
Aið0Þ � πb Ai00ðtÞ

ðt
0
BiðsÞdsþ Bi00ðtÞ

ð1=μ
t

AiðsÞds� 1
π
� Ai00ðtÞ

ffiffiffi
3

p ð1=μ
0

AiðsÞds
 !
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Substituting the expressions for z00ðtÞ and zðtÞ in Eq. (17), and given that Ai00ðtÞ � tAiðtÞ � 0 and
Bi00ðtÞ � tBiðtÞ � 0, we get: b � b.

The uniqueness of zðtÞ the solution is proved by contradiction. Let uðtÞalso be a solution of
problems (16) and (17), zðtÞ 6¼ uðtÞ. Considering the function rðtÞ ¼ zðtÞ � uðtÞ, for the function
rðtÞ, we obtain the problem

r00ðtÞ � trðtÞ ¼ 0, 0 < t < 1=μ, rð0Þ ¼ 0, rð1=μÞ ! 0, μ ! 0:

The general solution of the homogeneous equation is

rðtÞ ¼ c1AiðtÞ þ c2BiðtÞ; c1,2 is the constant.

Considering the boundary condition rð1=μÞ ! 0, μ ! 0, we have c2 ¼ 0; rðtÞ ¼ c1AiðtÞ. And
the second condition rð0Þ ¼ 0, c1 ¼ 0 follows. This implies that rðtÞ � 0.

Therefore, zðtÞ � uðtÞ. It is obvious that zðtÞ∈C∞½0,μ�1�. Lemma 1 is proved.

This Lemma 1 implies the existence and uniqueness of π�1ðtÞ∈C∞½0,μ�1� solution of the
problem:

π0 0
�1ðtÞ � tπ�1ðtÞ ¼ f 0, 0 < t < 1=μ, π�1ð0Þ ¼ 0, π�1ð1=μÞ ! 0, μ ! 0:

This function bounded and is infinitely differentiable on the segment ½0,μ�1�, and as t ! ∞:

π�1ðtÞ ¼ � f 0
t

1þ 1 � 2
t3

þ 1 � 2 � 4 � 5
t6

þ…

� �
:

This asymptotic expression can be obtained by integration by parts the integral expression for
π�1ðtÞ.
From Eq. (15.0), we define Y1ðxÞ and π0ðtÞ. Let Y1ðxÞ � 0, then

π00
0ðtÞ � tπ0ðtÞ ¼ 0, π0ð0Þ ¼ f 1, π0ð1=μÞ ! 0, μ ! 0,

And by Lemma 1, we have

π0ðtÞ ¼ f 1AiðtÞ=Aið0Þ:

Analogously, from Eq. (15.1), we define Y2ðxÞ and π1ðtÞ. Let Y2ðxÞ � 0, then

π0 0
1ðtÞ � tπ1ðtÞ ¼ 0, π1ð0Þ ¼ 0, π0ð1=μÞ ! 0, μ ! 0 :

In view of Lemma 1, we have π1ðtÞ � 0.

To Y3ðxÞ function has been smooth; as above, we define it from the equation
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xY3ðxÞ ¼ Y″
0ðxÞ � Y″

0ð0Þ ) Y3ðxÞ ¼ ðY″
0ðxÞ � Y″

0ð0ÞÞ=x, ðY″
0ð0Þ ¼ �2f 3Þ;

then Eq. (15.2) to π2ðtÞhase the problem

π″
2ðtÞ � tπ2ðtÞ ¼ 2f 3, π2ð0Þ ¼ 0, π2ð1=μÞ ! 0, μ ! 0:

By Lemma 1, we can write an explicit solution to this problem, and this solution bounded and
is infinitely differentiable on the segment ½0,μ�1�, and as t ! ∞:

π2ðtÞ ¼ � 2f 3
t

1þ 1 � 2
t3

þ 1 � 2 � 4 � 5
t6

þ…

� �
:

Analogously continuing this process, we determine the rest of the functions YkðxÞ,πkðtÞ.
Now we will define functions wkðηÞ from the equality (14) by using the boundary conditions
yð1Þ ¼ 0 We state problems

Lw0 � w″
0ðηÞ � w0ðηÞ ¼ 0, w0ð0Þ ¼ Y0ð1Þ, lim

η!∞
w0ðηÞ ¼ 0 ð18:0Þ

Lwk ¼ �ηwk�1ðηÞ, w2ið0Þ ¼ Y3ið1Þ, w2i�1ð0Þ ¼ 0, lim
η!∞

wkðηÞ ¼ 0, k, i∈N: ð18:kÞ

One can easily make sure that all these problems (18.0) and (18.k) have unique solutions such
that wkðηÞ∈C∞½0,∞Þ, wkðηÞ ¼ Oðe�ηÞ with η ! ∞.

Thus, all functions YkðxÞ, wkðηÞ, and πkðtÞ in equality (12) are defined, i.e., a formally asymp-
totic expansion is constructed. Let us justify the constructed expansion. Let

ymðxÞ ¼ μ�1π�1ðtÞ þ
X3m

k¼0

μk
�
YkðxÞ þ πkðtÞ

�
þ
X2m

k¼0

λkwkðηÞ, rmðxÞ ¼ yðxÞ � ymðxÞ:

Then for the remainder term, we state the following problem:

εr″mðxÞ � xrmðxÞ ¼ Oðεmþ1=2Þ, ε ! 0, x∈ ð0, 1Þ: ð19Þ

rmð0Þ ¼ Oðe�1=
ffiffi
ε

p
Þ, rmð1Þ ¼ Oðεmþ1Þ, ε ! 0: ð20Þ

Let rmðxÞ ¼ ð2� x2ÞRmðxÞ=2, and then problems (19) and (20) take the form

εR″
mðxÞ � 4xε

2� x2
R0
mðxÞ �

2ε
2� x2

þ x
� �

RmðxÞ ¼ Oðεmþ1=2Þ, ε ! 0,

Rmð0Þ ¼ Oðe�1=
ffiffi
ε

p
Þ, Rmð1Þ ¼ Oðεmþ1Þ, ε ! 0:
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According to the maximum principle [23, p. 117, 82], we have RmðxÞ ¼ Oðεm�1=2Þ, ε ! 0, x∈ ½0, 1�.
Hence, we get rmðxÞ ¼ Oðεm�1=2Þ, ε ! 0, x∈ ½0, 1�.
Thus, we have proved.

Theorem 2. Let f ð0Þ 6¼ 0, then the solution to problem (9) and (10) will have next form

yðxÞ ¼ 1ffiffiffi
ε3

p π�1
xffiffiffi
ε3

p
� �

þ
X∞

k¼0

ffiffiffiffiffi
εk3

p
ykðxÞ þ πk

xffiffiffi
ε3

p
� �� �

þ
X∞

k¼0

ffiffiffiffiffi
εk

p
wk

1� xffiffiffi
ε

p
� �

:

Example. Consider the problem

εy00ðxÞ � xyðxÞ ¼ 1þ x, x∈ ð0, 1Þ, yð0Þ ¼ 0, yð1Þ ¼ 0:

The asymptotic solution this problem we can represent in the form yðxÞ ¼ μ�1π�1ðtÞþ
X3

k¼0

μkðYkðxÞþπkðtÞÞ þ w0ðηÞ þ λw1ðηÞ þ λ2w2ðηÞ þ RðxÞ.

We have got Y0ðxÞ ¼ �ð1þ x� 1Þ=x ¼ �1, Y1,2,3ðxÞ � 0,

π�1ðtÞ ¼ �π
�
AiðtÞ

ðt
0
BiðsÞdsþ BiðtÞ

ð1=μ
t

AiðsÞds� AiðtÞ
ffiffiffi
3

p ð1=μ
0

AiðsÞds
�
,

π0ðtÞ ¼ AiðtÞ=Aið0Þ, π1,2,3ðtÞ � 0, w0ðηÞ ¼ 2e�η, wkðηÞ ¼ Oðe�ηÞ, k ¼ 1, 2:

εR00ðxÞ � xRðxÞ ¼ Oðε3=2Þ, 0 < x < 1, Rð0Þ ¼ Oðe�1=
ffiffi
ε

p
Þ, Rð1Þ ¼ Oðε2Þ, ε ! 0:

We have

yðxÞ ¼ ε�1=3π�1ðtÞ � 1þ 2e�ð1�xÞ= ffiffiεp
þ π0ðtÞ þ

ffiffiffi
ε

p
w1ðηÞ þ εw2ðηÞ þOð ffiffiffi

ε
p Þ, ε ! 0:

2.3. Bisingularly perturbed equation of the second order with a regularly singular point

Consider the boundary value problem [6, 7]

Lεy � εy″ þ xy0 � qðxÞy ¼ f ðxÞ, x∈ ½0, 1�, ð21Þ

yð0Þ ¼ 0, yð1Þ ¼ 0, ð22Þ

where qðxÞ, f ðxÞ∈C∞½0, 1�.
Here, for simplicity, we consider the case qð0Þ ¼ 1, qðxÞ ≥ 1.
The solution of the unperturbed problem
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My � xy0 � qðxÞy ¼ f ðxÞ,

represented as

y0ðxÞ � xpðxÞ
ðx
1
rðsÞs�2ds, ð23Þ

where

rðxÞ ¼ p�1ðxÞf ðxÞ, pðxÞ ¼ exp
ðx
1

�
qðxÞ � 1

�
s�1ds

� �
:

Extracting in Eq. (23), the main part of the integral in the sense of Hadamard [34], it can be
represented as

y0ðxÞ ¼ aðxÞ þ r1xpðxÞlnx, ð24Þ

where

aðxÞ ¼ xpðxÞ
ðx
1

�
rðsÞ � r0 � r1s

�
s�2dsþ r0pðxÞ½x� 1�,

r0 ¼ rð0Þ, r1 ¼ r0ð0Þ ¼ pð0Þ�1½f 0ð0Þ � q0ð0Þf ð0Þ�:
ð25Þ

Function aðxÞ∈C∞½0, 1�.
Theorem 3. Suppose that the conditions referred to the above with respect to qðxÞ and f ðxÞ.
Then the asymptotic behavior of the solution of the problems (21) and (22) can be written as:

X∞

k¼0

μk
�
zkðxÞ þ πkðtÞ

�
, ε ¼ μ2, x ¼ μt, ð26Þ

where zkðxÞ∈C∞½0, 1�, πkðtÞ∈C∞½0,μ�1�.
Function z0ðxÞis a solution of equation

Mz0 ¼ f ðxÞ � c0xpðxÞ,

wherec0 ¼ pð0Þ�1½f 0ð0Þ � q0ð0Þf ð0Þ�.
The coefficients zkðxÞof the series (26) will be determined as the solution of equations

Mzk ¼ �z″k�1ðxÞ � ckxpðxÞ,

where ck ¼ pð0Þ�1½�z‴k�1ð0Þ þ z″k�1ð0Þq0ð0Þ�, with boundary conditions zkð1Þ ¼ 0, k ≥ 1.

Functions πkðtÞ is the solution of the equations
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Lπk � π″
kðtÞ þ tπ0

kðtÞ � qðμtÞπkðtÞ � ckμtpðμtÞ

with boundary conditions πkð0Þ ¼ �zkð0Þ, πkðμ�1Þ ¼ 0.

Next, we use the following lemma.

Lemma 2. The problem

My ¼ f ðxÞ � r1xpðxÞ

It has a unique solution yðxÞ∈C∞½0, 1�.
The proof of Lemma 2 follows from Eqs. (24) and (25).

Lemma 3. A boundary value problem

L0v � v″ þ tv0 � vðtÞ ¼ 0, vð0Þ ¼ a, vð1=μÞ ¼ 0,

has solution vðtÞ ¼ aXðtÞ, where

XðtÞ ¼ t
ðμ�1

t
s�2 exp

�s2

2

� �
ds, 0 ≤XðtÞ ≤ 1, Xð0Þ ¼ 1:

The proof of Lemma 3 is obvious.

Lemma 4. In order to solve the boundary value problem

L0W ¼ �μt,Wð0Þ ¼ Wðμ�1Þ ¼ 0,

we have the estimate

0 ≤Wðμ, tÞ ≤ e�1lnμ�1:

Proof. This follows from the fact that the solution of this problem existsuniquely by the
maximum principle [23, 82] and will be represented in the form

Wðμ, tÞ ¼ μt
ðμ�1

t
y�2 exp � y2

2

� �ðy
0
s2 exp

s2

2

� �
dsdy:

Lemma 5. The estimate

jπkðμ, tÞj < Bk,

where 0 < Bkis constant.

Proof. Consider the function
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V�ðμ, tÞ ¼ γ1Wðμ, tÞ þ γ2XðtÞ � πkðμ, tÞ,

where γ1 and γ2 are positive constants such that

γ1 > max
½0, 1�

jpðxÞj,γ2 > jzkð0Þj:

It is obvious that

V�ðμ, 0Þ > 0, V�ðμ,μ�1Þ > 0, L0V� � V″�ðtÞ þ tV 0�ðtÞ � V�ðtÞ < 0

From the maximum principle, it follows that jπkðμ, tÞj < γ1Wðμ, tÞ þ γ2XðtÞ:
Now the proof of the lemma 5 follows from estimates of Wðμ, tÞ and XðtÞ.
If we introduce the notation

Ynðx, εÞ ¼
Xn

k¼0

εk
�
zkðxÞ þ πkðμ, tÞ

�
,

where zkðxÞ, πkðμ, tÞare constructed above functions, then

LεYnðx, εÞ ¼ f ðxÞ þ εnþ1z″n:

Let yðx, εÞbe the solution of the problems (21) and (22). Then

jLε
�
Ynðx, εÞ � yðx, εÞ

�
j < Bnεnþ1, Ynð0, εÞ � yð0, εÞ ¼ Ynð1, εÞ � yð1, εÞ ¼ 0:

Therefore, jYnðx, εÞ � yðx, εÞj < Bnεnþ1:

2.4. The bisingular problem of Cole equation with a weak singularity

The following problem is considered [9, 13, 28, 29],

εy00ðxÞ þ ffiffiffi
x

p
y0ðxÞ � yðxÞ ¼ 0, 0 < x < 1, ð27Þ

yð0Þ ¼ a, yð1Þ ¼ b ð28Þ

where x∈ ½0, 1�; a, b are the given constants.

The unperturbed equation
ffiffiffi
x

p
y0ðxÞ � yðxÞ ¼ 0, 0 < x < 1,

has the general solution

y0ðxÞ ¼ ce2
ffiffi
x

p
, c� const:

This is a nonsmooth function in ½0, 1�.
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We seek asymptotic representation of the solution of the problems (27) and (28) in the form:

yðxÞ ¼
Xn

k¼0

εkykðxÞ þ
X3ðnþ1Þ

k¼0

μkπkðtÞ þ Rðx, ε), ð29Þ

where t ¼ x=μ2, ε ¼ μ3, ykðxÞ∈C½0, 1�, πkðtÞ∈C½0, 1=μ2�, Rðx, εÞ is the reminder term.

Substituting Eq. (29) into Eq. (27), we have

Xn

k¼0

εkðεy″kðxÞ þ
ffiffiffi
x

p
y0kðxÞ � ykðxÞÞ þ

1
μ

�
π″

0ðtÞ þ
ffiffi
t

p
π0

0ðtÞ
�

þ
X3ðnþ1Þ

k¼1

μk�1
�
π″

kðtÞ þ
ffiffi
t

p
π0

kðtÞ � πk�1ðtÞ
�
� μ3ðnþ1Þπ3ðnþ1ÞðtÞ þ εR00ðx, εÞ þ ffiffiffi

x
p

R0ðx, εÞ
�Rðx, εÞ � hðx, εÞ þ hðx, εÞ ¼ 0

ð30Þ

By the method of generalized boundary layer function, we put the term hðx, εÞ ¼
Xn�1

k¼0

εkhkðxÞ

into the equation. We choose functions hkðxÞ so that ykðxÞ∈C½0, 1�.
Taking into account the boundary condition (28), from Eq. (30), we obtain

ffiffiffi
x

p
y00ðxÞ � y0ðxÞ ¼ 0, 0 < x < 1, y0ð1Þ ¼ b: ð31Þ

ffiffiffi
x

p
y0kðxÞ � ykðxÞ ¼ hk�1ðxÞ � y″k�1ðxÞ, 0 < x < 1, k∈N, ykð1Þ ¼ 0: ð32Þ

The solution of the problems (31) and (32) exists. It is unique and has the form

y0ðxÞ ¼ be2ð
ffiffi
x

p �1Þ, ykðxÞ ¼ e2
ffiffi
x

p ðx
1

hk�1ðsÞ � y″k�1ðsÞffiffi
s

p e�2
ffiffi
s

p
ds, k∈N:

We choose indefinite functions hk(x) as follows: y0 0k�1ðxÞ � hk�1ðxÞ∈C½0, 1�. We can represent

y0ðxÞ ¼ be�2 1þ 2
ffiffiffi
x

p þ ð2 ffiffiffi
x

p Þ2
2!

þ ð2 ffiffiffi
x

p Þ3
3!

þ ð2 ffiffiffi
x

p Þ4
4!

þ…þ ð2 ffiffiffi
x

p Þn
n!

þ…

 !
:

Let h1ðxÞ ¼ be�2 2
ffiffiffi
x

p þ ð2 ffiffixp Þ3
3!

� �″
¼ �be�2 1

2
ffiffiffiffi
x3

p � 1ffiffi
x

p
� �

.

Then

y0 00ðxÞ � h0ðxÞ∈C½0, 1�,μ3h1ðtμ2Þ ¼ �c1
1

2
ffiffiffiffi
t3

p � μ2
ffiffi
t

p
� �

, c1 ¼ be�2,

y1ðxÞ ¼ c1e2
ffiffi
x

p ð x

1
� 1
2s2

þ 1
s
þ 1
2s2

e2
ffiffi
s

p
� 1ffiffiffiffi

s3
p e2

ffiffi
s

p� �
e�2

ffiffi
s

p
ds:

We can rewrite y1(x) in the form:

Perturbed Differential Equations with Singular Points
http://dx.doi.org/10.5772/67856

17



y1ðxÞ ¼ y1,0 þ y1,1ð2
ffiffiffi
x

p Þ þ y1,2ð2
ffiffiffi
x

p Þ2 þ y1,3ð2
ffiffiffi
x

p Þ3 þ…,

where y1,0 ¼ 3
2 þ 1

2e2

� �
c1, y1,1 ¼ 1

6 þ 1
2e2

� �
c1, y1,2 ¼ �1

6 þ 1
4e2

� �
c1, y1,3 ¼ �1

10 þ 1
12e2

� �
c1:

Analogously, we have obtained

h1ðxÞ ¼
�
y1,1ð2

ffiffiffi
x

p Þ þ y1,3ð2
ffiffiffi
x

p Þ3
�″

¼ � y1,1
2
ffiffiffiffiffi
x3

p þ 6y1,3ffiffiffi
x

p :

Then

y002ðxÞ � h2ðxÞ∈C½0, 1�,μ6h2ðtμ2Þ ¼ �μ3y1,1
2
ffiffiffiffi
t3

p þ μ5y1,3ffiffi
t

p :

Continuing this process, we have

hk�1ðxÞ ¼ � yk�1,1

2
ffiffiffiffiffi
x3

p þ 6yk�1,3ffiffiffi
x

p , k ¼ 4,…, n,

where yk�1,1, yk�1,3 are corresponding coefficients of the expansion of yk�1,1ðxÞ in powers of

(2
ffiffiffi
x

p
).

From Eq. (30), we have the following equations for the boundary functions πkðtÞ:

Lπ0 � π″
0ðtÞ þ

ffiffi
t

p
π0

0ðtÞ ¼ 0, 0 < t < ~μ, π0ð0Þ ¼ a� y0ð0Þ, π0ð~μÞ ¼ 0, ~μ ¼ 1=μ2, ð33Þ

Lπ3kþ1ðtÞ ¼ π3kðtÞ þ
yk,1
2
ffiffiffiffi
t3

p , 0 < t < ~μ, π3kþ1ð0Þ ¼ 0, π3kþ1ð~μÞ ¼ 0, k ¼ 0, 1,…, n ð34Þ

Lπ3kþ2ðtÞ ¼ π3kþ1ðtÞ, 0 < t < ~μ, π3kþ2ð0Þ ¼ 0, π3kþ2ð~μÞ ¼ 0, k ¼ 0, 1,…, n ð35Þ

Lπ3kþ3 ¼ π3kþ2ðtÞ �
yk,3ffiffi
t

p , 0 < t < ~μ, π3kð0Þ ¼ �ykð0Þ, π3kð~μÞ ¼ 0, k ¼ 0, 1,…, n–1 ð36Þ

Lπ3ðnþ1ÞðtÞ ¼ π3nþ2ðtÞ �
yn,3ffiffi

t
p , 0 < t < ~μ, π3nð0Þ ¼ 0, π3nð~μÞ ¼ 0 ð37Þ

The solution of problem (33) is represented in the form

π0ðtÞ ¼ ða� be�2ÞA
ð~μ

t

e�
2
3s

3=2
ds, A ¼

ð~μ

0

e�
2
3s

3=2
ds

0
B@

1
CA

�1

:

We note that π0ðtÞ will exponentially decrease as t ! ~μ.

Lemma 6. The general solution of this equation LzðtÞ ¼ 0 will have zðtÞ ¼ c1YðtÞ þ c2XðtÞ; here
c1, c2 are constants, and
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y1ðxÞ ¼ y1,0 þ y1,1ð2
ffiffiffi
x

p Þ þ y1,2ð2
ffiffiffi
x

p Þ2 þ y1,3ð2
ffiffiffi
x

p Þ3 þ…,

where y1,0 ¼ 3
2 þ 1

2e2

� �
c1, y1,1 ¼ 1

6 þ 1
2e2

� �
c1, y1,2 ¼ �1

6 þ 1
4e2

� �
c1, y1,3 ¼ �1

10 þ 1
12e2

� �
c1:

Analogously, we have obtained

h1ðxÞ ¼
�
y1,1ð2

ffiffiffi
x

p Þ þ y1,3ð2
ffiffiffi
x

p Þ3
�″

¼ � y1,1
2
ffiffiffiffiffi
x3

p þ 6y1,3ffiffiffi
x

p :

Then

y002ðxÞ � h2ðxÞ∈C½0, 1�,μ6h2ðtμ2Þ ¼ �μ3y1,1
2
ffiffiffiffi
t3

p þ μ5y1,3ffiffi
t

p :

Continuing this process, we have

hk�1ðxÞ ¼ � yk�1,1

2
ffiffiffiffiffi
x3

p þ 6yk�1,3ffiffiffi
x

p , k ¼ 4,…, n,

where yk�1,1, yk�1,3 are corresponding coefficients of the expansion of yk�1,1ðxÞ in powers of

(2
ffiffiffi
x

p
).

From Eq. (30), we have the following equations for the boundary functions πkðtÞ:

Lπ0 � π″
0ðtÞ þ

ffiffi
t

p
π0

0ðtÞ ¼ 0, 0 < t < ~μ, π0ð0Þ ¼ a� y0ð0Þ, π0ð~μÞ ¼ 0, ~μ ¼ 1=μ2, ð33Þ

Lπ3kþ1ðtÞ ¼ π3kðtÞ þ
yk,1
2
ffiffiffiffi
t3

p , 0 < t < ~μ, π3kþ1ð0Þ ¼ 0, π3kþ1ð~μÞ ¼ 0, k ¼ 0, 1,…, n ð34Þ
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yk,3ffiffi
t

p , 0 < t < ~μ, π3kð0Þ ¼ �ykð0Þ, π3kð~μÞ ¼ 0, k ¼ 0, 1,…, n–1 ð36Þ

Lπ3ðnþ1ÞðtÞ ¼ π3nþ2ðtÞ �
yn,3ffiffi

t
p , 0 < t < ~μ, π3nð0Þ ¼ 0, π3nð~μÞ ¼ 0 ð37Þ

The solution of problem (33) is represented in the form

π0ðtÞ ¼ ða� be�2ÞA
ð~μ

t

e�
2
3s

3=2
ds, A ¼

ð~μ

0

e�
2
3s

3=2
ds

0
B@

1
CA

�1

:

We note that π0ðtÞ will exponentially decrease as t ! ~μ.

Lemma 6. The general solution of this equation LzðtÞ ¼ 0 will have zðtÞ ¼ c1YðtÞ þ c2XðtÞ; here
c1, c2 are constants, and
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YðtÞ ¼ 1� XðtÞ, XðtÞ ¼ α
ð ~μ

t
e�

2
3s

3=2
ds ð α

ð ~μ

0
e�

2
3s

3=2
ds ¼ 1Þ:

Two linearly independent solutions and YðtÞ ¼ OðtÞ, t ! 0, 0 < XðtÞ ≤ 1,

XðtÞ ¼ t�
1
2e�

2
3t
3=2

1� 1
2
t�

3
2 þ…þ ð�1Þn

2n
Π
n

k¼1
1 � 4 �… � ð3k� 2Þt�3n

2 þ…

� �
, t ! ~μ ð38Þ

Lemma 7. The boundary problem LzðtÞ ¼ 0, zð0Þ ¼ zð~μÞ ¼ 0 will have only trivial solution.

The proofs of Lemmas 6 and 7 are evident.

Theorem 4. The problem

LzðtÞ ¼ f ðtÞ, zð0Þ ¼ 0, zð~μÞ ¼ 0,

will have the unique solution and this one has the next form

zðtÞ ¼
ð ~μ

0
Gðt, sÞe 2

3s
3=2
f ðsÞds;

and Gðt, sÞ ¼ �YðtÞXðsÞ, 0 ≤ t ≤ s,
�YðsÞXðtÞ, s ≤ t ≤ ~μ,

�

is the function of Green andf ðtÞ∈Cð0, ~μ� .
Theorem 4 implies the existence and uniqueness of the solution of problem (34)–(37):
jπkðtÞj < l ¼ const, t∈ ½0, ~μ�.
Lemma 8. Asymptotical expansions of functions πkðtÞ, t ! ~μ (k ¼ 1, 2,…) will have the next
forms

π1ðtÞ ¼ � y0,1
2t

1þ 4

5
ffiffiffiffi
t3

p þ 7
4t3

þ 42

11
ffiffiffiffi
t9

p þ 39
2t7

þ…

� �
,

π2ðtÞ ¼
y0,1ffiffi

t
p 1þ 23

40
ffiffiffiffi
t3

p þ 173
2t3

þ…

� �
,π3ðtÞ ¼ � 23y0,1

60
ffiffiffiffi
t3

p þO
1
t3

� �
,

π3kþ1ðtÞ ¼ t�1
X∞

j¼0

l3kþ1, jt�
3
2j,π3kþ2ðtÞ ¼ t�1=2

X∞

j¼0

l3kþ2, jt�
3
2j,π3kðtÞ ¼

X∞

j¼1

l3k, jt�
3
2j:

Proof for Lemma 8.

Firs proof. We can prove this lemma by applying formulas (38) and Theorem 4.

Second proof. We can receive these representations from Eqs. (34)–(37) directly.

Now wewill prove the boundedness of the reminder function Rðx, εÞ. This function will satisfy
the next equation:
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εR00ðx, εÞ þ ffiffiffi
x

p
R0ðx, εÞ � Rðx, εÞ ¼ μ3ðnþ1Þπ3ðnþ1ÞðtÞ þ εnþ1ðhnðxÞ � y″nðxÞÞ,

Rð0, εÞ ¼ 0, Rð1, εÞ ¼ 0:

Applying to this problem theorem [23, p.117, 82], we obtained

jRðx, εÞj ≤ εnþ1C max
0 ≤ x ≤ 1
0 ≤ t ≤ ~μ

jπ3ðnþ1ÞðtÞ þ hnðxÞ � y″nðxÞj:

Therefore, we have Rðx, εÞ ¼ Oðεnþ1Þ, ε ! 0, x∈ ½0, 1�.
We prove next.

Theorem 5. The asymptotical expansion of the solution of the problems (27) and (28) and will
have the next form

yðxÞ ¼
Xn

k¼0

εkykðxÞ þ
X3ðnþ1Þ

k¼0

μkπkðtÞ þOðεnþ1Þ, ε ! 0:

3. Singularly perturbed differential equations Lighthill type

3.1. The idea of the method of Poincare

Consider the equation

MyðxÞ :¼ y00ðxÞ þ yðxÞ � εy3ðxÞ ¼ 0: ð39Þ

Unperturbed equation has solutions y0ðxÞ ¼ a1 cos xþ b1 sin x (where a1, b1 are arbitrary con-
stants) with period 2π. We are looking for the periodic solution of the equation yðx, εÞ with a
period of ωðεÞ ¼ ωð0Þ ¼ 2π.

Note that the operator M transforms Fourier series
X∞

k¼1

ak cos kx and
X∞

k¼1

ak sin kx in itself.

Poincare’s method reduces the existence of periodic solutions of differential equations to the
existence of the solution of an algebraic equation.

We will seek a periodic solution of Eq. (39) with the initial condition

yð0Þ ¼ 1, y0ð0Þ ¼ 0:

If we seek the solution in the form

yðxÞ ¼ y0ðxÞ þ εy1ðxÞ þ ε2y2ðxÞ þ…

with the initial conditions
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Therefore, we have Rðx, εÞ ¼ Oðεnþ1Þ, ε ! 0, x∈ ½0, 1�.
We prove next.

Theorem 5. The asymptotical expansion of the solution of the problems (27) and (28) and will
have the next form

yðxÞ ¼
Xn

k¼0

εkykðxÞ þ
X3ðnþ1Þ

k¼0

μkπkðtÞ þOðεnþ1Þ, ε ! 0:

3. Singularly perturbed differential equations Lighthill type

3.1. The idea of the method of Poincare

Consider the equation

MyðxÞ :¼ y00ðxÞ þ yðxÞ � εy3ðxÞ ¼ 0: ð39Þ

Unperturbed equation has solutions y0ðxÞ ¼ a1 cos xþ b1 sin x (where a1, b1 are arbitrary con-
stants) with period 2π. We are looking for the periodic solution of the equation yðx, εÞ with a
period of ωðεÞ ¼ ωð0Þ ¼ 2π.

Note that the operator M transforms Fourier series
X∞

k¼1

ak cos kx and
X∞

k¼1

ak sin kx in itself.

Poincare’s method reduces the existence of periodic solutions of differential equations to the
existence of the solution of an algebraic equation.

We will seek a periodic solution of Eq. (39) with the initial condition

yð0Þ ¼ 1, y0ð0Þ ¼ 0:

If we seek the solution in the form

yðxÞ ¼ y0ðxÞ þ εy1ðxÞ þ ε2y2ðxÞ þ…

with the initial conditions
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y0ð0Þ ¼ 1, y00ð1Þ ¼ 0, ykð0Þ ¼ y0kð1Þ ¼ 0, k ¼ 1, 2,…

then for ysðxÞ, s ¼ 0, 1,… we have next equations

Ly0 :¼ y0 00ðxÞ þ y0ðxÞ ¼ 0 ) y0ðxÞ ¼ cos x

Ly1 ¼ cos 3x ¼ 3
4
cos xþ 1

4
cos 3x ) y1ðxÞ ¼

3
8
x sin x� 1

32
cos 3xþ 1

32
cos x,

Thus, yðxÞ ¼ cos xþ ε
8 3x sin x� 1

4 cos 3xþ 1
4 cos x

� �þ…it is not a uniform expansion of the y
(x) on the segment ½�∞,∞�, since the term εx sin x is present here.

If these secular terms do not appear in Eq. (39), it is necessary to make the substitution

x ¼ tð1þ εα1 þ ε2α2 þ…Þ

where the constant αk should be selected so as not to have secular terms in t.

Thus, the solution of Eq. (39) must be sought in the form

yðtÞ ¼ y0ðtÞ þ εy1ðtÞ þ ε2y2ðtÞ þ…

x ¼ tð1þ εα1 þ ε2α2 þ…Þ ð40Þ

Then Eq. (39) has the form

z00ðtÞ þ ð1þ α1εþ α2ε2 þ…ÞzðtÞ ¼ εð1þ α1εþ α2ε2 þ…Þz3ðtÞ

where yðwðεÞtÞ ¼ zðtÞ.
We will seek the 2π periodic solution of this equation in the form

zðtÞ ¼ z0ðtÞ þ εz1ðtÞ þ ε2z2ðtÞ þ…

Then

Lz0 :¼ z0 00ðtÞ þ z0ðtÞ ¼ 0 ) z0ðtÞ ¼ cos t:

Lz1ðtÞ ¼ α1 cos tþ 3
4
cos tþ 1

4
cos 3t:

The function Z1(t) will have the periodical solution we take α1 ¼ �3=4. Then z1ðtÞ ¼ � 1
32 cos 3t.

Similarly, from equations

αznðtÞ ¼ �αn cos tþ gðα1,α2,…,αn�1Þ cos tþ
X2nþ1

m¼1

βn cosmt

αn and etc. are uniquely determined.
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Theorem 6. Equation (39) has a unique 2π=ω periodic solution, and it can be represented in the
form (40).

3.2. The idea of the Lighthill method

Lighthill in 1949 [67] reported an important generalization of the method of Poincare.

He considered the model equation [67, 82]:

ðxþ εyðxÞÞy0ðxÞ þ qðxÞyðxÞ ¼ rðxÞ, yð1Þ ¼ a ð41Þ

where x∈ ½0, 1�qðxÞ, rðxÞ∈C∞½0, 1�.
Lighthill proposed to seek the solution of Eq. (41) in the form

yðξÞ ¼ y0ðξÞ þ εy1ðξÞ þ ε2y2ðξÞ þ…

x ¼ ξþ εx1ðξÞ þ ε2x2ðξÞ þ…
ð42Þ

It is obvious that Eq. (42) has generalized the Poincare ideas (see, the transformation Eq. (40)).

At first, we consider the example

ðxþ εyðxÞÞy0ðxÞ þ yðxÞ ¼ 0, yð1Þ ¼ b: ð43Þ

It has exact solution

yðxÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2bεþ ε2b2

p
� xÞ=ε: ð44Þ

It is obvious that for b > 0, the solution (43) exists on the interval ½0, 1� and

yð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bþ εb2

p
=
ffiffiffi
ε

p
:

The solution of Eq. (43) is obtained by the method of small parameter that can be obtained
from Eq. (44). For this purpose, we write Eq. (44) in the form

yðxÞ ¼ x
ε

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2b

ε
x
þ b2

ε
x

� �2r !

and considering x2 > 2εb, this expression can be expanded in powers of ε, and then we have

yðxÞ ¼ b
x
þ b2

2x
ε
x2

ðx2 � 1Þ þ…þO
1
x

ε
x2
� �n� �

þ… ð45Þ

The series (45) is uniformly convergent asymptotic series only on the segment
½εα, 1�, 0 < α < 1=2.

First, we write Eq. (43) in the form
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He considered the model equation [67, 82]:

ðxþ εyðxÞÞy0ðxÞ þ qðxÞyðxÞ ¼ rðxÞ, yð1Þ ¼ a ð41Þ
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It is obvious that Eq. (42) has generalized the Poincare ideas (see, the transformation Eq. (40)).

At first, we consider the example

ðxþ εyðxÞÞy0ðxÞ þ yðxÞ ¼ 0, yð1Þ ¼ b: ð43Þ

It has exact solution

yðxÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2bεþ ε2b2

p
� xÞ=ε: ð44Þ

It is obvious that for b > 0, the solution (43) exists on the interval ½0, 1� and

yð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bþ εb2

p
=
ffiffiffi
ε

p
:

The solution of Eq. (43) is obtained by the method of small parameter that can be obtained
from Eq. (44). For this purpose, we write Eq. (44) in the form

yðxÞ ¼ x
ε

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2b

ε
x
þ b2

ε
x

� �2r !

and considering x2 > 2εb, this expression can be expanded in powers of ε, and then we have

yðxÞ ¼ b
x
þ b2

2x
ε
x2

ðx2 � 1Þ þ…þO
1
x

ε
x2
� �n� �

þ… ð45Þ

The series (45) is uniformly convergent asymptotic series only on the segment
½εα, 1�, 0 < α < 1=2.

First, we write Eq. (43) in the form
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ðxþ εyðξÞÞy0ðξÞ þ yðξÞx0ðξÞ ¼ 0 ð46Þ

Substituting Eq. (42) into Eq. (46):

ðξþ εðy0ðξÞ þ x1ðξÞÞ þ…þ εnðyn�1ðξÞ þ xnðξÞÞ þ…Þðy00ðξÞ þ εy01ðξÞ þ…þ
þεny0nðξÞ þ…Þ þ ðy0ðξÞ þ εy01ðξÞ þ…εny0nðξÞ þ…Þð1þ εx01ðξÞ þ…þ εnx0nðξÞ þ…Þ ¼ 0

and equating coefficients of the same powers ε,we have

ξy00ðξÞ þ y0ðξÞ ¼ 0 ð47Þ

ξy0nðξÞ þ ynðξÞ þ
Xn�1

i¼0

�
ðyiðξÞ þ xiþ1ðξÞÞy0n�1�iðξÞ þ yiðξÞx0n�iðξÞ

�
¼ 0, ynð1Þ ¼ 0, n ¼ 1, 2,…

ð48Þ

From Eq. (47), we have

y0ðξÞ ¼ bξ�1:

Using Eq. (47), Eq. (48) for n ¼ 1 can be written as

ξy01ðξÞ þ y1ðξÞ ¼ ðξx01ðξÞ � x1ðξÞ þ y0ðξÞÞy00ðξÞ ¼ 0, y1ð1Þ ¼ 0: ð49Þ

If we put x1ðξÞ ¼ 0 in Eq. (49), we obtain

ξy01ðξÞ þ y1ðξÞ ¼ �b2ξ�3, y1ð1Þ ¼ 0:

Hence, solving this equation, we have

y1ðξÞ ¼ b2ð2ξÞ�1 � b2ð2ξ3Þ�1:

Since differentiation increased singularity of nonsmooth function, we select x1ðξÞ so that the
expression in the right side of Eq. (49) is equal to zero, i.e.,

ξx01ðξÞ � x1ðξÞ þ y0ðξÞ ¼ 0, x1ð1Þ ¼ 0:

Hence, we have

x1ðξÞ ¼ 2�1bξ� ð2ξÞ�1b:

Then Eq. (49) takes the form

ξy01ðξÞ þ y1ðξÞ ¼ 0, y1ð1Þ ¼ 0:

Hence, we obtain y1ðξÞ ¼ 0.
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Now Eq. (48) for n ¼ 2 takes the form

ξy02ðξÞ þ y2ðξÞ ¼ ðξx02ðξÞ � x2ðξÞÞy00ðξÞ ¼ 0, y2ð1Þ ¼ 0:

Let x2ðξÞ ¼ 0, and then y1ðξÞ ¼ 0. Further also choose xiðξÞ ¼ yiðξÞ ¼ 0 ði ¼ 3, 4,…Þ, as they
also satisfy the initial conditions. Thus, we have found that

yðξÞ ¼ bξ�1 ð50Þ

xðξÞ ¼ ξþ b
2

ξ� 1
ξ

� �
ε: ð51Þ

Putting in Eq. (51) x ¼ 0, we have

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bε=ð2þ bεÞ

p
: ð52Þ

For b > 0, the point x ¼ 0 is achieved. Moreover, the except in variable ξ from Eq. (50) and to
Eq. (51) setting ξ, we obtain the exact solution (44).

Now we will present the main idea of the Lighthill method to Eq. (41) under
conditions:qðxÞ, rðxÞ∈C∞½0, 1� and q0 ¼ qð0Þ > 0. We will write it in the form of

ðxðξÞ þ εyðξÞÞy0ðξÞ ¼ ½rðxðξÞÞ � qðxðξÞÞyðξÞ�x0ðξÞ, yð1Þ ¼ y0: ð53Þ

It is obvious that we have one equation for two unknown functions, yðξÞ, x(ξ). Nowwe substitute
the series (42) to Eq. (53):

�
ξþ

X∞

k¼0

εkðykðξÞ þ xkðξÞÞ
�X∞

k¼0

εky0kðξÞ ¼

¼
�X∞

j¼0

rjðξÞ
�X∞

k¼0

xkðξÞεk
�j

�
X∞

j¼0

qjðξÞ
�X∞

k¼0

xkðξÞεk
�j��

1þ
X∞

k¼0

x0kðξÞεk
�
,

where qj ¼ qjðξÞ ¼ 1
j! q

ðjÞðξÞ, rj ¼ rjðξÞ ¼ 1
j! r

ðjÞðξÞ.

Hence, equating the coefficients of equal powers has ε

Lu0 � ξy00ðξÞ þ qðξÞy0ðξÞ ¼ rðξÞ, y0ð1Þ ¼ y0, ð54Þ

Ly1 ¼ ½ξy00x01 � y00x1 � y0y
0
0� þ ðr1 � q1y0Þx1, y1ð1Þ ¼ 0, ð55Þ

Ly2 ¼ ½ξy00x02 � ðy0 þ x1Þy01 � ðy1 þ x2Þy00 þ ððr1 � q1y0Þx1 � qy1Þx01�þ
þ{r1x2 þ r2x21 � q1x1y1 � ðq1x2 þ q2x

2
1Þy0}, y2ð1Þ ¼ 0, ð56Þ

…

Lyn ¼ ½y00x0n � y00xn þ f nðy0,…, yn�1, x1,…, xn�1, y00,…, y0n�1, x
0
1,…, x0n�1Þ�þ

þ{gnðy0,…, yn�1, x1,…, xn�1Þ}, ynð1Þ ¼ 0; … ð57Þ

where q ¼ q0, r ¼ r0,

Recent Studies in Perturbation Theory24



Now Eq. (48) for n ¼ 2 takes the form

ξy02ðξÞ þ y2ðξÞ ¼ ðξx02ðξÞ � x2ðξÞÞy00ðξÞ ¼ 0, y2ð1Þ ¼ 0:

Let x2ðξÞ ¼ 0, and then y1ðξÞ ¼ 0. Further also choose xiðξÞ ¼ yiðξÞ ¼ 0 ði ¼ 3, 4,…Þ, as they
also satisfy the initial conditions. Thus, we have found that

yðξÞ ¼ bξ�1 ð50Þ

xðξÞ ¼ ξþ b
2

ξ� 1
ξ

� �
ε: ð51Þ

Putting in Eq. (51) x ¼ 0, we have

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bε=ð2þ bεÞ

p
: ð52Þ

For b > 0, the point x ¼ 0 is achieved. Moreover, the except in variable ξ from Eq. (50) and to
Eq. (51) setting ξ, we obtain the exact solution (44).

Now we will present the main idea of the Lighthill method to Eq. (41) under
conditions:qðxÞ, rðxÞ∈C∞½0, 1� and q0 ¼ qð0Þ > 0. We will write it in the form of

ðxðξÞ þ εyðξÞÞy0ðξÞ ¼ ½rðxðξÞÞ � qðxðξÞÞyðξÞ�x0ðξÞ, yð1Þ ¼ y0: ð53Þ

It is obvious that we have one equation for two unknown functions, yðξÞ, x(ξ). Nowwe substitute
the series (42) to Eq. (53):

�
ξþ

X∞

k¼0

εkðykðξÞ þ xkðξÞÞ
�X∞

k¼0

εky0kðξÞ ¼

¼
�X∞

j¼0

rjðξÞ
�X∞

k¼0

xkðξÞεk
�j

�
X∞

j¼0

qjðξÞ
�X∞

k¼0

xkðξÞεk
�j��

1þ
X∞

k¼0

x0kðξÞεk
�
,

where qj ¼ qjðξÞ ¼ 1
j! q

ðjÞðξÞ, rj ¼ rjðξÞ ¼ 1
j! r

ðjÞðξÞ.

Hence, equating the coefficients of equal powers has ε

Lu0 � ξy00ðξÞ þ qðξÞy0ðξÞ ¼ rðξÞ, y0ð1Þ ¼ y0, ð54Þ

Ly1 ¼ ½ξy00x01 � y00x1 � y0y
0
0� þ ðr1 � q1y0Þx1, y1ð1Þ ¼ 0, ð55Þ

Ly2 ¼ ½ξy00x02 � ðy0 þ x1Þy01 � ðy1 þ x2Þy00 þ ððr1 � q1y0Þx1 � qy1Þx01�þ
þ{r1x2 þ r2x21 � q1x1y1 � ðq1x2 þ q2x

2
1Þy0}, y2ð1Þ ¼ 0, ð56Þ

…

Lyn ¼ ½y00x0n � y00xn þ f nðy0,…, yn�1, x1,…, xn�1, y00,…, y0n�1, x
0
1,…, x0n�1Þ�þ

þ{gnðy0,…, yn�1, x1,…, xn�1Þ}, ynð1Þ ¼ 0; … ð57Þ

where q ¼ q0, r ¼ r0,
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f n ¼ �ðy0 þ x1Þy0n�1 � ðy1 þ x2Þy0n�2 �…� ðyn�2 þ xn�1Þy01 � yn�1y
0
0þ

þðr1x1 � qy1 � q1x1y0Þx0n�1 þ ðr1x2 þ r2x21 � qy2 � q1x1y1 � ðq1x2 þ q2x
2
1Þy0Þx0n�2 þ…

þðr1xn�1 þ 2r2x1xn�2 þ 2r2x2xn�3 þ…þ rn�1xn�1
1 � q1y1xn�2 � ðq1xn�1 þ 2q2x1xn�2 þ…

þqn�1x
n�1
1 Þy00Þx01,

gn ¼ r1xn þ 2r2x1xn�1 þ…þ rnxn1 � q1x1yn�1 � ðq1x2 þ q2x
2
1Þyn�2 �…

�ðq1xn þ 2q2x1xn�1 þ…þ qnx
n
1Þy0:

In these equations, the coefficient rðξÞ � qðξÞy0ðξÞ of the derivative x0nðξÞ ðn ¼ 1, 2,…Þwas
replaced by Eq. (54) on ξy00ðξÞ.
From Eq. (57) for n = 1,2,…, it follows that if we want to define functions xnðξÞ ðn ¼ 1, 2,…Þ
from this differential equations, then we must assume that

ξy00ðξÞ ¼ rðξÞ � qðξÞy0ðξÞ 6¼ 0, ξ∈ ð0, 1�: ð58Þ

And this condition cannot be avoided by applying the Lighthill method to Eq. (41). Condition
(58) first appeared in [69], justifying Lighthill method, then in the works Habets [66] and
Sibuya, Takahashi [68]. Comstock [65] on the example shows that the condition (58) is not
necessary for the existence of solutions on the interval ½0, 1�. Further assume that the condition
(58) holds. Note that the right-handside of Eq. (57) is linear with respect to xnðξÞ, and f n
function depends from y00,…, y0n�1, x

0
1,…, x0n�1 only.

The solution of Eq. (54) can be written as

y0ðξÞ ¼ ξ�q0gðξÞðy0 þ
ðξ
1
sq0�1rðsÞg�1ðsÞdsÞ :¼ ξ�q0wðξÞ, ð59Þ

where gðξÞ ¼ exp
�ðξ

1

�
q0 � qðsÞ

�
s�1ds

�
.

Let

w0 ¼ y0 �
ð1
0
sq0�1rðsÞg�1ðsÞds 6¼ 0⇔w0 ¼ wð0Þ 6¼ 0:

Hence, we have

y0ðξÞ eξ
�q0w0, ξ ! 0: ð60Þ

Since the differentiation of y0ðξÞ increased of its singularity at the point ξ ¼ 0, it is better to
choose such that the first brace in Eq. (55) is equal to zero, i.e.,

ξx01 ¼ x1 þ y0, xð1Þ ¼ 0:

Hence, using Eq. (60), we obtain
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x1ðξÞ ¼ ξþ ξ
ðξ
1
s�2y0ðsÞdse � w0

1þ q0
ξ�q0 : ð61Þ

Then Eq. (55) takes the form

Ly1 ¼ ðr1 � q1y0Þx1 e~a1ξ
�2q0 ,

where ~a1=const. Hence, we have

y1ðξÞe a1 ξ�2q0ða1 ¼ constÞ,ξ ! 0: ð62Þ

Now equating to zero the expression in the first brace in the right-hand side of Eq. (56), we
have

ξx02 � x2 ¼ y1 þ ððy0 þ x1Þy01 � ððr1 � q1y0Þx1 � qy1Þx01Þðy00Þ�1
e~b2ξ

�2q0 , ~b2 ¼ const:

From this, we get

x2ðξÞeb2ξ�2q0 , b2 ¼ const, ξ ! 0: ð63Þ

Now Eq. (56) takes the form

Ly2 ¼ g2ðy0, y1, x1, x2Þe~a2ξ
�3q0 , ~a2 ¼ const, ξ ! 0

Solving this equation, we have

y2ðξÞe a2ξ
�3q0 , a2 ¼ const, ξ ! 0 ð64Þ

Next, the method of induction, it is easy to show that

xjðξÞe bjξ
�jq0 , yjðξÞe ajξ

�ðjþ1Þq0 , j ¼ 1, 2,…: ð65Þ

Thus, the series (42) has the asymptotic

yðξÞ eξ
�q0ðw0 þ a1εξ�q0 þ…þ anðεξ�q0 Þn þ…Þ, ξ ! 0, ð66Þ

xe ξ� w0

1þ q0
ξ�q0εþ b2ðεξ�q0 Þ2 þ…þ bnðεξ�q0Þn þ… ð67Þ

From Eq. (67), it follows that the point x ¼ 0 corresponds to the root of the equation

ηþ εx1ðηÞ þ ε2x2ðηÞ þ… ¼ 0 ð68Þ

Moreover, this equation should have a positive root and if the solution of Eq. (41) exists on the
interval ð0, 1�. Solving Eq. (68), we obtain

Recent Studies in Perturbation Theory26



x1ðξÞ ¼ ξþ ξ
ðξ
1
s�2y0ðsÞdse � w0

1þ q0
ξ�q0 : ð61Þ

Then Eq. (55) takes the form

Ly1 ¼ ðr1 � q1y0Þx1 e~a1ξ
�2q0 ,

where ~a1=const. Hence, we have

y1ðξÞe a1 ξ�2q0ða1 ¼ constÞ,ξ ! 0: ð62Þ

Now equating to zero the expression in the first brace in the right-hand side of Eq. (56), we
have

ξx02 � x2 ¼ y1 þ ððy0 þ x1Þy01 � ððr1 � q1y0Þx1 � qy1Þx01Þðy00Þ�1
e~b2ξ

�2q0 , ~b2 ¼ const:

From this, we get

x2ðξÞeb2ξ�2q0 , b2 ¼ const, ξ ! 0: ð63Þ

Now Eq. (56) takes the form

Ly2 ¼ g2ðy0, y1, x1, x2Þe~a2ξ
�3q0 , ~a2 ¼ const, ξ ! 0

Solving this equation, we have

y2ðξÞe a2ξ
�3q0 , a2 ¼ const, ξ ! 0 ð64Þ

Next, the method of induction, it is easy to show that

xjðξÞe bjξ
�jq0 , yjðξÞe ajξ

�ðjþ1Þq0 , j ¼ 1, 2,…: ð65Þ

Thus, the series (42) has the asymptotic

yðξÞ eξ
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1þ q0
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From Eq. (67), it follows that the point x ¼ 0 corresponds to the root of the equation
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ηe ðw0ε=1þ q0Þ1=ð1þq0Þ, ε ! 0: ð69Þ

And, under the conditionw0 > 0, η0 will be positive. It is obvious that on the interval ½ξ0, 1�
series (42) or (66) and (67) remains asymptotic. Substituting Eq. (69) into Eq. (66), we have

yð0Þew0
w0ε
1þ q0

� ��q0=ð1þq0Þ
, ε ! 0:

If w0 < 0 the point x ¼ 0 does not have the positive root of Eq. (68), so that the solution of
Eq. (41) goes to infinity, before reaching the point x ¼ 0.

We have the

Theorem 7. Suppose that the conditions (1) qðxÞ, rðxÞ∈C∞½0, 1�; (2) q0 > 0; (3) w0 > 0; (4)
ξy00 6¼ 0, ξ∈ ½0, 1�. Then the solution of problem (41) exists on the interval ½0, 1�, and it can be
represented in the asymptotic series (42), (66) and (67).

Theorem 7 proved by Wasow [69], Sibuya and Takahashi [68] in the case where qðxÞ, rðxÞ are
analytic functions on ½0, 1�; proved by Habets [66] in the case qðxÞ, rðxÞ∈C2½0, 1�. Moreover,
instead of the condition (3) Wasow impose a stronger condition: a >> 1.

In the proof of Theorem 7, we will not stop because it is held by Majorant method.

From the foregoing, it follows that Wasow condition y00ðξÞ 6¼ 0, ξ∈ ð0, 1� is essential in the
Lighthill method.

Comment 2. Prytula and later Martin [65] proposed the following variant of the Lighthill
method. At first direct expansion determined using by the method of small parameter

yðxÞ ¼ y0ðxÞ þ εy1ðxÞ þ ε2y2ðxÞ þ… ð70Þ

and further at second they will make transformation

x ¼ ξþ εx1ðξÞ þ ε2x2ðξÞ þ… ð71Þ

Here unknowns xjðξÞ are determined from the condition that function yjðξÞ was less singular

function yj�1ðξÞ. We show that using the method Prytula or Martin, also cannot avoid Wasow

conditions. Really, substituting Eq. (71) into Eq. (70) and expanding in a Taylor series in powers
of ε, we have

yðξÞ ¼ y0ðξÞ þ ε{y1ðξÞ þ y00ðξÞx1ðξÞ}þOðε2Þ:

Hence, to obtain a uniform representation of the solution to the second order by ε, we must to
put to zero the expression in the curly brackets, i.e., x1ðξÞ ¼ �y1ðξÞ=y00ðξÞ. Therefore,
yðξÞ ¼ y0ðξÞ þOðε2Þ. Hence, it is clear that we must make the condition of Wasow: y00ðξÞ 6¼ 0
in the method of Prytula or Martin also.
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3.3. Uniformization method for a Lighthill model equation

We will consider the problem (41) again [3, 58–60], i.e.,

ðxþ εyðxÞÞy0ðxÞ ¼ rðxÞ � qðxÞyðxÞ, yð1Þ ¼ a, ð72Þ

Theorem 8. Suppose that the problem (72) has a parametric representation of the solution
y ¼ yðξÞ, x ¼ xðξÞ, where ξ∈ ½η, 1�, η ¼ ηðεÞ > 0, then the problem (72) is equivalent to the
problem

ξy0ðξÞ ¼ rðxðξÞÞ � qðxðξÞÞyðξÞ, yð1Þ ¼ y0,
ξx0ðξÞ ¼ xðξÞ þ εyðξÞ, xð1Þ ¼ 1, ξ∈ ½η, 1�,

�
ð73Þ

where η ¼ ηðεÞ is the root equation xðηÞ ¼ 0 and if the root η ¼ ηðεÞ > 0 and xðξÞ þ εyðξÞ 6¼ 0
on the interval ½η, 1�.
Proof. Sufficiency. Let the solution of the problem (72) exists and xðξÞ, yðξÞ are a parametric
representation of the solution of the problem (72). Then introducing the variable-parameter ξ,
we obtain the problem (73).

Necessity. Let it fulfill the conditions of Theorem 8. Then dividing the first equation by second
one, we get Eq. (72). Theorem 8 is proved.

Equation (73) on the proposal of the Temple [43], we will call uniformizing equation for the
problem (72).

We have the following

Theorem 9. Suppose that the first three conditions of Theorem 8. i.e.,(1) qðxÞ, rðxÞ∈C∞½0, 1�; (2)
q0 > 0; (3) w0 > 0. Then the solution of problem (72) is represented in the form of an asymp-
totic series (42) and its solution can be obtained from uniformizing equation (73).

The proof of this theorem is completely analogous to the proof of Theorem 8, even more easily.

Only it remains to show that under the conditions of Theorem 9 we can get an explicit solution
y ¼ yðx, εÞ. Really, since

xe ξ� w0

1þ q0
ξ�q0ε, ξ ! 0:

Let

Fðx, ξ, εÞ ¼ x� ξþ w0

1þ q0
ξ�q0εþO

�
ðεξ�q0Þ2

�
, ξ ! 0, η ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0

1þ q0
εq0þ1

r
, ε ! 0:

then

∂Fðx, ξ, εÞ
∂ξ

jξ¼ηðεÞ ¼ �1� q0 þO
�
ε1=ð1þq0Þ

�
6¼ 0, ξ∈ ½η, 1�:

Therefore, by the implicit function theorem, we can express ξ : ξ ¼ ϕðx, εÞ.
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xe ξ� w0

1þ q0
ξ�q0ε, ξ ! 0:

Let

Fðx, ξ, εÞ ¼ x� ξþ w0

1þ q0
ξ�q0εþO

�
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�
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0

1þ q0
εq0þ1

r
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then
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Then when we put it in first equality (42), we obtain an explicit solution y ¼ yðx, εÞ.
Comment 3. Explicit asymptotic solution that this problem obtained in Section 3.4.

Example 43. Uniformized equation is

ξy0ðξÞ ¼ �yðξÞ, yð1Þ ¼ b,
ξx0ðξÞ ¼ xðξÞ þ εyðξÞ, xð1Þ ¼ 1, ξ∈ ½η, 1�,

�

It is easy to integrate this system, and we obtain

yðξÞ ¼ bξ�1 , xðξÞ ¼ ð1þ 2�1bεÞξ� ð2ξÞ�1bε,

Hence, excluding variable ξ, we have an exact solution (44).

Example 2 [37, 43])

ðxþ εyðxÞÞy0ðxÞ þ ð2þ xÞyðxÞ ¼ 0, yð1Þ ¼ e�1:

Uniformized equation is

ξx0ðξÞ ¼ xþ εyðξÞ, xð1Þ ¼ 1,
ξy0ðξÞ ¼ �ð2þ xðξÞÞyðξÞ, yð1Þ ¼ e�1, ξ∈ ½η, 1�,

�
ð74Þ

Let

xðξÞ ¼ x0ðξÞ þ εx1ðξÞ þOðε2Þ,
yðξÞ ¼ y0ðξÞ þ εy1ðξÞ þOðε2Þ,

�
ð75Þ

Substituting Eq. (75) into Eq. (74), we have

x0ðξÞ ¼ ξ, x1ðξÞ ¼ ξ
ðξ
1
e�ss�4ds, y0ðξÞ ¼ e�ξξ�2, y1ðξÞ ¼ �e�ξξ�2

ðξ
1
e�ss�4ds,

Hence if ξ ! 0, we obtain

x0ðξÞ ¼ ξ, x1ðξÞ ¼ � 1
3
ξ�2 þ…, y0ðξÞ ¼ ξ�2 þ…, y1ðξÞ ¼ � 1

6
ξ�4 þ…

From the equation xðηÞ ¼ 0, we find η : ηe ffiffiffiffiffiffiffiffi
ε=33

p
.

We prove that xðξÞ þ εyðξÞ 6¼ 0 on the interval ½η, 1�.
Really,

xðξÞ þ εyðξÞeξþ εξ�2 6¼ 0, ξ∈ ½η, 1�:

3.4. It is construction explicit form of the solution of the model Lighthill equation

We will consider the problem [57], i.e., (41) again
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ðxþ εyðxÞÞy0ðxÞ þ qðxÞyðxÞ ¼ rðxÞ, yð1Þ ¼ b ð76Þ

where b is given constant, x∈ ½0, 1�, y0ðxÞ ¼ dy=dx . Given functions are subjected to the condi-

tions U: qðxÞ, rðxÞ∈Cð∞Þ½0, 1�.
Here, we consider the case q0 ¼ �1; this is done to provide a detailed illustration of the idea of
the application of the method. We search for the solution of problem (76) in the form

yðxÞ ¼ μ�1π�1ðtÞ þ
X∞

k¼0

�
πkðtÞ þ ukðxÞ

�
μk, ð77Þ

where t ¼ x=μ, ε ¼ μ2, ukðxÞ∈Cð∞Þ½0, 1� and πkðtÞ∈Cð∞Þ½0,μ0�, μ0 ¼ 1=μ:

Note that πkðtÞ ¼ πkðt,μÞ , i.e., πkðtÞ depends also on μ, but this dependence is not indicated.

The initial conditions for the functions πjðtÞ are taken as

π�1ð1=μÞ ¼ bμ, b ¼ u0 �
X∞

k¼0

μkukð1Þ, πkðμ0Þ ¼ 0, k ¼ 0, 1,… ð78Þ

Substituting Eq. (77) into Eq. (76), we obtain to determine the functions πkðtÞ, k ¼ �1, 0, 1,…,
unðxÞ, n ¼ 0, 1,…,

we have the following equations:
�
tþ π�1ðtÞ

�
π0�1ðtÞ ¼ qðμ tÞπ�1ðtÞ, π�1ðμ0Þ ¼ bμ, ð79:-1Þ

Lu0ðxÞ :¼ xu00ðxÞ � qðxÞu0ðxÞ ¼ rðxÞ, u0ðxÞ∈Cð∞Þ½0, 1� ð80:0Þ

Dπ0ðtÞ :¼
�
tþ π�1ðtÞ

�
π0

0ðtÞ þ
�
π0�1ðtÞ � qðμ tÞ

�
π0ðtÞ ¼ �u0ðtμÞπ0�1ðtÞ, π0ðμ0Þ ¼ 0 ð79:0Þ

Lu1ðxÞ ¼ 0, u1ðxÞ∈Cð∞Þ½0, 1�, ð80:1Þ

Dπ1ðtÞ ¼ �u0ðtμÞπ0
0ðtÞ þ π0ðtÞπ0

0ðtÞ � u1ðtμÞπ0�1ðtÞ, π1ðμ0Þ ¼ 0 ð79:1Þ

Lu2ðxÞ :¼ �u0ðxÞu00ðxÞ, u2ðxÞ∈Cð∞Þ½0, 1� ð80:2Þ

Dπ2ðtÞ :¼ �u0ðtμÞπ0�1ðtÞ � π0ðtÞπ0
1ðtÞ � u1ðtμÞπ0

0ðtÞ � π1ðtÞπ0
0ðtÞ � u2ðtμÞπ0�1ðtÞ, π2ðμ0Þ ¼ 0

ð79:2Þ

Lu3ðxÞ :¼ �u0ðxÞu01ðxÞ � u00ðxÞu1ðxÞ, u3ðxÞ∈Cð∞Þ½0, 1�, ð80:3Þ

Dπ3ðtÞ ¼
X

iþ j ¼ 2
i ≥ 0, j ≥ � 2

uiðμ tÞπj
0ðtÞ þ

X

iþ j ¼ 2
i, j ≥ 0

πiðtÞπj
0ðtÞ, π3ðμ0Þ ¼ 0,

ð79:3Þ

We solve these problems successively. We write problem (79.�1) as
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X∞

k¼0

�
πkðtÞ þ ukðxÞ

�
μk, ð77Þ
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Note that πkðtÞ ¼ πkðt,μÞ , i.e., πkðtÞ depends also on μ, but this dependence is not indicated.

The initial conditions for the functions πjðtÞ are taken as

π�1ð1=μÞ ¼ bμ, b ¼ u0 �
X∞

k¼0

μkukð1Þ, πkðμ0Þ ¼ 0, k ¼ 0, 1,… ð78Þ
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�
tþ π�1ðtÞ

�
π0
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�
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We solve these problems successively. We write problem (79.�1) as
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tz0ðtÞ � qðμtÞzðtÞ ¼ �zðtÞz0ðtÞ, zðμ0Þ ¼ bμ,

where

z ¼ π�1ðtÞ, μ0 ¼ μ�1:

The fundamental solution of the homogeneous equation corresponding to this equation is of
the form

z0ðtÞ ¼ exp
ðt
μ0

qðμsÞ ds
s

( )
¼ exp

ðt
μ0

�
qðμsÞ þ 1

� ds
s
�
ðt
μ0

ds
s

( )
¼ pðt,μÞ

μt
,

where

pðt,μÞ ¼ exp
ðt
μ0

�
qðμsÞ þ 1

� ds
s

( )
:

Using the expression for z0ðtÞ, the solution of the inhomogeneous equation for zðtÞ can be
written as

zðtÞ ¼ pðt,μÞ
μt

½zðμ0Þ þ μ
ð t

μ0

p�1ðs,μÞzðsÞz0ðsÞds� ;

Or tzðtÞ ¼ pðt,μÞb� pðt,μÞ
ð t

μ0

p�1ðs,μÞzðsÞz0ðsÞds:

After integrating by parts, we reduce the last expression to the following equation:

tzðtÞ ¼ pðt,μÞb� z2ðtÞ
2

þ pðt,μÞ b
2μ2

2
þ pðt,μÞ

2

ð t

μ0

1þ qðμsÞ
s

p�1ðs,μÞz2ðsÞds

or

z2ðtÞ þ 2tzðtÞ � pðt,μÞb0 ¼ pðt,μÞ
ðt
μ0

φðs,μÞp�1ðs,μÞz2ðsÞds :¼ pðt,μÞTðt, z2Þ ð81Þ

where ϕðs,μÞ ¼ ð1þ qðμsÞÞ=s, b0 ¼ 2bþ b2μ2.

Let b0 > 0. Let us introduce the notation z0ðtÞ ¼ �tþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ b0pðt,μÞ

q
. This function satisfies the

inequality 0 < z0ðtÞ ≤Mt�1 ðt > 0Þ and is a strictly decreasing bounded function on the closed
interval ½0,μ0�. Here and elsewhere, all constants independent of the small parameter μ are
denoted by M. Let Sμ be the set of functions zðtÞ satisfying the condition

kz� z0k ≤Mμ, where kzk ¼ max
0 ≤ t ≤μ0

jzðtÞj,
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Theorem 10. If b0 > 0, then there exists a unique constraint of the solution of problem (79.-1) from the
set Sμ.

Proof. Equation (81) is equivalent to the equation z ¼ F½t, z�, where

F½t, z� ¼ �tþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ bpðt,μÞ þ pðt,μÞTðt, z2Þ:

q

Suppose that kϕðt,μÞk ≤Mμ, 0 < m ≤ pðt,μÞ ≤M, kp�1ðtÞk ≤M: First, let us estimate Tðt, z2Þ
on the set Sμ. We have

jTðt, z2Þj ≤
ðμ0

t
jϕðs,μÞjjp�1ðs,μÞjjzðsÞj2ds ≤Mμ

ðμ0

t
jzðsÞj2ds ≤Mμ

ðμ0

0
jzðsÞj2ds ≤

≤Mμ
ð1
0
jzðsÞj2dsþMμ

ðμ0

1
jzðsÞj2ds ≤Mμ:

Here, we have used the triangle inequality

jzðtÞj ≤ jzðtÞ � z0ðtÞj þ jz0ðtÞj,

as well as the inequality

jz0ðtÞj ≤Mt�1 ðt > 0Þ:

The Fréchet derivative of the operator Fðt, zÞ with respect to z at the point z0ðtÞ is a linear
operator:

F0zðt, z0Þh ¼ �pðt,μÞ
ðμ0

t
ϕðs,μÞp�1ðs,μÞz0ðsÞhðsÞ dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 þ pðt,μÞ
�
bþ Tðt, z2Þ

�r ,

where hðtÞ is a continuous function on the closed interval ½0,μ0�. Note that, in view of
Tðt, z20Þ ¼ OðμÞ, the denominator of this expression is strictly positive on the closed interval
½0,μ0�. For F0zðt, z0Þ, we can obtain the estimate kFzðt, z0Þk ≤Mμlnμ�1 in the same way as the
estimate for Tðt, z2Þ. Hence, in turn, it follows from the Lagrange inequality that the operator is
a contraction operator in the set Sμ. Therefore, by the fixed-point principle, Eq. (81) has a
unique solution from the class Sμ. The theorem is proved.

Corollary. The following inequalities hold:

1. zðtÞ ¼ π�1ðtÞ ≥M > 0 for all t∈ ½0,μ0�;

2. π�1ðtÞ ≤Mt�1 ðt > 0Þ.
The other function πjðtÞ, ujðxÞ, j ¼ 0, 1, 2,… is determined from the inhomogeneous linear
equations; therefore, the following lemmas are needed.

Lemma 9. For any function f ðxÞ∈Cð∞Þ½0, 1�, the equation Lξ ¼ f ðxÞ has a unique bounded solution

ξðxÞ∈Cð∞Þ½0, 1� expressible as
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a contraction operator in the set Sμ. Therefore, by the fixed-point principle, Eq. (81) has a
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ξðxÞ ¼ QðxÞ
ð x

0
Q�1ðsÞf ðsÞ ds

x
,QðxÞ ¼ exp

ð x

1

�
qðsÞ þ 1

� ds
s

� �
:

Proof. The proof follows from the fact that the general solution of the equation under consid-
eration is expressed as

ξðxÞ ¼ QðxÞx�1½ξð1Þ þ
ð x

1
Q�1ðsÞf ðsÞds�:

If we choose

ξð1Þ ¼
ð 1

0
Q�1ðsÞf ðsÞds:

then we obtain the required result.

This lemma implies that all the functions ukðxÞ, k ¼ 0, 1,… are uniquely determined and
belong to the class C∞½0, 1�.
Lemma 10. The problem

�
tþ π�1ðtÞ

�
η0ðtÞ þ

�
π0�1ðtÞ � qðμtÞ

�
ηðtÞ ¼ kðtÞ, ηðμ0Þ ¼ 0, ð82Þ

where the function kðtÞ belongs to C∞½0, 1� is continuous and bounded, and if jkðtÞj ≤Mt�2, t ! ∞, has
a unique uniformly bounded solutionηðtÞ ¼ ηðt,μÞ on the closed interval t∈ ½0,μ0�for a small μ.

Proof. The fundamental solution of the homogeneous equation (82) is of the form

ФðtÞ ¼ ð1þ μ2bÞgðt,μÞ
μ
�
tþ π�1ðtÞ

� , gðt,μÞ ¼ exp �
ð μ0

t

�
1þ qðμsÞ

� ds
sþ π�1ðsÞ

� �
:

Obviously, kgðt,μÞk ≤M and g�1ðt,μÞ ≤M for t∈ ½0,μ0�and μaresmall. The solution of problem
(82) can be expressed as

ηðtÞ ¼ gðt,μÞ
tþ π�1ðtÞ

ð t

μ0

g�1ðs,μÞkðsÞds: ð83Þ

The estimate of the integral term in Eq. (83) shows that it is bounded by the constantM. Hence,
it also follows that jηðtÞj ≤Mt�1 ðt > 0Þ. The solution of problem (79.0) is defined by the integral
Eq. (83), where

kðtÞ ¼ �u0ðtμÞπ�1ðtÞ ¼ �u0ðtμÞqðμtÞ π�1ðtÞ
tþ π�1ðtÞ ,

satisfies the assumptions of the lemma. Therefore, the function π0ðtÞ is bounded on ½0,μ0�. The
boundedness of the other functions πkðtÞ, k ¼ 1, 2,… is proved in a similar way, because the
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right-hand sides of the equations defining these functions satisfy the assumptions of Lemma
10. The estimate of the asymptotic behavior of the series (77) is also carried out using Lemma
10.

Let us introduce the notation

yðxÞ ¼ μ�1π�1ðtÞ þ
Xn

k¼0

μk
�
πkðtÞ þ ukðxÞ

�
þ μnþ1Rnþ1ðx,μÞ: ð84Þ

The following statement holds.

Theorem 11. Let b0 > 0 (for this, it suffices that the condition b0 :¼ b� y0ð1Þ > 0holds). Then the
solution of problem (76) exists on the closed interval ½0, 1�and its asymptotics can be expressed as Eq.
(84) andjRnþ1ðx,μÞj ≤M for all x∈ ½0, 1�.
Example. Consider the equation

�
xþ ε yðxÞ

�
y0ðxÞ þ yðxÞ ¼ 1, yð1Þ ¼ b,

This equation is integrated exactly

yðxÞ ¼ ε�1 �xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2b0εþ ε2

�
yð0Þ
�2

þ 2εx

r" #
,

where b0 ¼ b� 1. If b0 > 0, then the solution of problem (1) exists on the closed interval ½0, 1�,
which is confirmed by Theorem 11. The equation for π�1ðtÞ is of the form

�
tþ π�1ðtÞ

�
π0�1ðtÞ þ π�1ðtÞ ¼ 0, π�1ðμ0Þ ¼ bμ:

The solution of this problem can be expressed as

π�1ðtÞ ¼ �tþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 2bþ b2μ2

q
:

The equation for u0(x) has the solution y0ðxÞ ¼ 1∈C∞½0, 1�. Further,

π0ðtÞ ¼ �π�1ðtÞ þ bμ
tþ π�1ðtÞ , ukðxÞ ¼ 0, k ¼ 1, 2,…,

where b ¼ b0. The asymptotics of the solutions of problem (76) can be expressed as

yðxÞ ¼ μ�1π�1ðx=μÞ þ 1þ π0ðx=μÞ þ oðμÞ for all x∈ ½0, 1�, μ ! 0:

4. Lagerstrom model problem

The problem [32]
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v00ðrÞ þ k
r
v0ðrÞ þ vðrÞv0ðrÞ ¼ β½v0ðrÞ�2, vðεÞ ¼ 0, vð∞Þ ¼ 1; ð85Þ

where 0 < β is constant, k∈N.

It has been proposed as a model for Lagerstrom Navier-Stokes equations at low Reynolds
numbers. It can be interpreted as a problem of distribution of a stationary temperature vðrÞ.
The first two terms in Eq. (1) is ðkþ 1Þ dimensional Laplacian depending only on the radius,
and the other two members—some nonlinear heat loss.

It turns out that not only the asymptotic solution but also convergent solutions of Eq. (1) can be
easily constructed by a fictitious parameter [70]. The basic idea of this method is as follows.
The initial problem is entered fictitious parameter λ∈ ½0, 1� with the following properties:
1. λ ¼ 0, the solution of the equation satisfies all initial and boundary conditions;

2. The solution of the problem can be expanded in integral powers of the parameter λ for all
λ∈ ½0, 1�.

It is convenient in Eq. (85) to make setting r ¼ εx, v ¼ 1� u, then

u00ðxÞ þ ðkx�1 þ εÞu0ðxÞ � λεuðxÞu0ðxÞ ¼ ½u0ðxÞ�2, uð1Þ ¼ 1, uð∞Þ ¼ 0: ð86Þ

We have the following

Theorem 12. For small ε > 0, the solution of problem (86) can be represented in the form of
absolutely and uniformly convergent series

uðxÞ ¼ u0ðx, εÞ þ vkðεÞu1ðx, εÞ þ…þ vnk ðεÞunðx, εÞ þ…,

for the sufficiently small parameter ε, where

v1ðεÞ � ln
1
ε

� ��1

, v2 � εln
1
ε
, vk � k� 1

k� 2
εðj > 2Þ ; ukðx, εÞ ¼ Oð1Þ, ∀x∈ ½1,∞Þ

Note that the function unðx, εÞ also depends on k, but for simplicity, this dependence is not
specified.

Proof. We introduce Eq. (86) parameter λ, i.e., consider the problem

u00ðxÞ þ ðkx�1 þ εÞu0ðxÞ � β½u0ðxÞ�2 ¼ λεuðxÞu0ðxÞ, uð1Þ ¼ 1, uð∞Þ ¼ 0 ð87Þ

Here, we will prove this Theorem 12 in the case β ¼ 0 only for simplicity.

Setting λ ¼ 0 in Eq. (87), we have

u″0 þ ðx�1kþ εÞu00 ¼ 0, u0ð1Þ ¼ 1, u0ð∞Þ ¼ 0: ð88Þ

It has a unique solution
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u0 ¼ Xðx, εÞ :¼ 1� X1ðX, εÞ, X1 ¼ C0

ðx
1
s�ke�εsds, C�1

0 ¼
ð∞
1
s�ke�εsds:

Therefore, Eq. (88) with zero boundary conditions is the Green’s function

Kðx, s, εÞ ¼ C�1
0 X1ðx, εÞXðs, εÞ, 1 ≤ x ≤ s,

C�1
0 X1ðs, εÞXðx, εÞ, s < x < ∞:

(

Hence, the problem (87) is reduced to the system of integral equations

uðxÞ ¼ Xðx, εÞ þ λε
ð∞
1
Gðx, s, εÞuðsÞu0ðsÞds,

u0ðxÞ ¼ X0ðx, εÞ þ λε
ð∞
1
Gxðx, s, εÞuðsÞu0ðsÞds,

ð89Þ

where

Gðx, s, εÞ ¼ X1ðx, εÞXðs, εÞ=X0ðs, εÞ, 1 ≤ x ≤ s,
X1ðs, εÞXðx, εÞ=X0ðs, εÞ, s < x < ∞:

�

In Eq. (89), we make the substitution u ¼ Xðx, εÞϕðxÞ, u0 ¼ X0ðx, εÞψðxÞ, and then we have

ϕðxÞ ¼ 1þ λε
ð∞
1
Q1ðx, s, εÞϕðsÞψðsÞds :¼ 1þ λεQ1ðϕψÞ,

ψðxÞ ¼ 1þ λε
ð∞
1
Q2ðx, s, εÞϕðsÞψðsÞds :¼ 1þ λεQ2ðλψÞ,

ð90Þ

where

Q1 ¼ X�1ðx, εÞGðx, s, εÞXðs, εÞX0ðs, εÞ,
Q2 ¼ X�1

x ðx, εÞGxðx, s, εÞXðs, εÞX0ðs, εÞ:

To prove the theorem, we need next

Lemma 11. The following estimate holds
ð∞
1
jQjðx, s, εÞjds ≤

ð∞
1
Xðs, εÞds ðj ¼ 1, 2Þ ð91Þ

Given that, we have 0 ≤X1ðx, εÞ ≤ 1, jX0ðx, εÞj ¼ X0ðx, εÞ, X0ðx, εÞ ≤ 0, x∈ ½1,∞Þ, we have
ð∞
1
jQ1ðx, s, εÞjds ≤

ðx
1

X1ðs, εÞ
X0

1ðs, εÞ jX
0ðs, εÞjXðs, εÞdsþ

þ
ð∞
x
X�1ðx, εÞX

2ðs, εÞjX0ðs, εÞj
X0

1ðs, εÞ ds ≤
ðx
1
Xðs, εÞdsþ

ð∞
x
Xðs, εÞds ¼

ð∞
1
Xðs, εÞds:

Inequality Eq. (91) for j ¼ 2 is proved similarly.
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u0 ¼ Xðx, εÞ :¼ 1� X1ðX, εÞ, X1 ¼ C0

ðx
1
s�ke�εsds, C�1

0 ¼
ð∞
1
s�ke�εsds:

Therefore, Eq. (88) with zero boundary conditions is the Green’s function

Kðx, s, εÞ ¼ C�1
0 X1ðx, εÞXðs, εÞ, 1 ≤ x ≤ s,

C�1
0 X1ðs, εÞXðx, εÞ, s < x < ∞:

(

Hence, the problem (87) is reduced to the system of integral equations

uðxÞ ¼ Xðx, εÞ þ λε
ð∞
1
Gðx, s, εÞuðsÞu0ðsÞds,

u0ðxÞ ¼ X0ðx, εÞ þ λε
ð∞
1
Gxðx, s, εÞuðsÞu0ðsÞds,

ð89Þ

where

Gðx, s, εÞ ¼ X1ðx, εÞXðs, εÞ=X0ðs, εÞ, 1 ≤ x ≤ s,
X1ðs, εÞXðx, εÞ=X0ðs, εÞ, s < x < ∞:

�

In Eq. (89), we make the substitution u ¼ Xðx, εÞϕðxÞ, u0 ¼ X0ðx, εÞψðxÞ, and then we have

ϕðxÞ ¼ 1þ λε
ð∞
1
Q1ðx, s, εÞϕðsÞψðsÞds :¼ 1þ λεQ1ðϕψÞ,

ψðxÞ ¼ 1þ λε
ð∞
1
Q2ðx, s, εÞϕðsÞψðsÞds :¼ 1þ λεQ2ðλψÞ,

ð90Þ

where

Q1 ¼ X�1ðx, εÞGðx, s, εÞXðs, εÞX0ðs, εÞ,
Q2 ¼ X�1

x ðx, εÞGxðx, s, εÞXðs, εÞX0ðs, εÞ:

To prove the theorem, we need next

Lemma 11. The following estimate holds
ð∞
1
jQjðx, s, εÞjds ≤

ð∞
1
Xðs, εÞds ðj ¼ 1, 2Þ ð91Þ

Given that, we have 0 ≤X1ðx, εÞ ≤ 1, jX0ðx, εÞj ¼ X0ðx, εÞ, X0ðx, εÞ ≤ 0, x∈ ½1,∞Þ, we have
ð∞
1
jQ1ðx, s, εÞjds ≤

ðx
1

X1ðs, εÞ
X0

1ðs, εÞ jX
0ðs, εÞjXðs, εÞdsþ

þ
ð∞
x
X�1ðx, εÞX

2ðs, εÞjX0ðs, εÞj
X0

1ðs, εÞ ds ≤
ðx
1
Xðs, εÞdsþ

ð∞
x
Xðs, εÞds ¼

ð∞
1
Xðs, εÞds:

Inequality Eq. (91) for j ¼ 2 is proved similarly.
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Further, by integrating by parts, we have
ð∞
1
Xðs, εÞds ¼ �1þ C0

ð∞
1
s�kþ1e�εsds ≤

ð∞
1
s�kþ1e�εsds=

ð∞
1
s�ke�εsds :¼ vkðεÞ

ε
:

Consequently,

ε
ð∞
1
Xðx, εÞds ≤ vkðεÞ: ð92Þ

It is from integral expressing of vkðεÞ we can obtain the asymptotic behavior such as indicated
in the theorem.

With the solution of Eq. (90), we can expand in series

ϕðxÞ ¼ 1þ ϕ1ðx, εÞλþ ϕ2ðx, εÞλ2 þ…,
Ψ ðxÞ ¼ 1þ Ψ 1ðx, εÞλþ Ψ 2ðx, εÞλ2 þ…:

The coefficients of this series are uniquely determined from the equations
ϕ0 ¼ Ψ 0 ¼ 1, ϕ1 ¼ εQ1ð1Þ, Ψ 1 ¼ Q2ð1Þ,
ϕn ¼ εQ1ðϕn�1Þ þ εQ1ðΨ n�1Þ þ εQ1ðϕ1Ψ n�2Þ þ…þ εQ1ðϕn�2Ψ 1Þ,
Ψ n ¼ εQ2ðϕn�1Þ þ εQ2ðΨ n�1Þ þ εQ2ðϕ1Ψ n�2Þ þ…þ εQ2ðϕn�2Ψ 1Þ, ðn ¼ 2, 3,…Þ:
Let z ¼ sup

1 ≤ x<∞
fjϕðxÞj, jΨ ðxÞjg, then by using Eq. (92) we have a Majorant equation:

z ¼ 1þ λvkðεÞz2. The solution of this equation can be expanded in powers λ the under condi-
tion 8vkðεÞ ≤ 1 for all λ∈ ½0, 1�.

If we call unðx, εÞ ¼ Xðx, εÞϕnðx, εÞ
vnk ðεÞ

, we get the proof of the theorem.
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Abstract

As we all know, perturbation theory is closely related to methods used in the numerical
analysis fields. In this chapter, we focus on introducing two homotopy asymptotic
methods and their applications. In order to search for analytical approximate solutions
of two types of typical nonlinear partial differential equations by using the famous
homotopy analysis method (HAM) and the homotopy perturbation method (HPM), we
consider these two systems including the generalized perturbed Kortewerg-de Vries-
Burgers equation and the generalized perturbed nonlinear Schrödinger equation (GPNLS).
The approximate solution with arbitrary degree of accuracy for these two equations is
researched, and the efficiency, accuracy and convergence of the approximate solution are
also discussed.

Keywords: homotopy analysis method, homotopy perturbation method, generalized
KdV-Burgers equation, generalized perturbed nonlinear Schrödinger equation, approx-
imate solutions, Fourier transformation

1. Introduction

In the past decades, due to the numerous applications of nonlinear partial differential equa-
tions (NPDEs) in the areas of nonlinear science [1, 2], many important phenomena can be
described successfully using the NPDEs models, such as engineering and physics, dielectric
polarization, fluid dynamics, optical fibers and quantitative finance and so on [3–5]. Searching
for analytical exact solutions of these NPDEs plays an important and a significant role in all
aspects of this subject. Many authors presented various powerful methods to deal with this
problem, such as inverse scattering transformation method, Hirota bilinear method, homoge-
neous balance method, Bäcklund transformation, Darboux transformation, the generalized
Jacobi elliptic function expansion method, the mapping deformation method and so on [6–10].
But once people noticed the complexity of nonlinear terms of NPDEs, they could not find the
exact analytic solutions for many of them, especially with disturbed terms. Researchers had to
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develop some approximate and numerical methods for nonlinear theory; a great deal of efforts
has been proposed for these problems, such as the multiple-scale method, the variational itera-
tion method, the indirect matching method, the renormalization method, the Adomian decom-
position method (ADM), the generalized differential transform method and so forth [11–13],
among them the perturbation method [14], including the regular perturbation method, the
singular perturbation method and the homotopy perturbation method (HPM) and so on.

Perturbation theory is widely used in numerical analysis as we all know. The earliest pertur-
bation theory was built to deal with the unsolvable mathematical problems in the calculation
of the motions of planets in the solar system [15]. The gradually increasing accuracy of
astronomical observations led to incremental demands in the accuracy of solutions to New-
ton’s gravitational equations, which extended and generalized the methods of perturbation
theory. In the nineteenth century, Charles-Eugène Delaunay discovered the problem of small
denominators which appeared in the nth term of the perturbative expansion when he was
studying the perturbative expansion for the Earth-Moon-Sun system [16]. These well-
developed perturbation methods were adopted and adapted to solve new problems arising
during the development of Quantum Mechanics in the twentieth century. In the middle of the
twentieth century, Richard Feynman realized that the perturbative expansion could be given a
dramatic and beautiful graphical representation in terms of what are now called Feynman
diagrams [17]. In the late twentieth century, because the broad questions about perturbation
theory were found in the quantum physics community, including the difficulty of the nth term
of the perturbative expansion and the demonstration of the convergent about the perturbative
expansion, people had to pay more attention to the area of non-perturbative analysis, and
much of the theoretical work goes under the name of quantum groups and non-commutative
geometry [18]. As we all know, the solutions of the famous Korteweg-de Vries (KdV) equation
cannot be reached by perturbation theory, even if the perturbations were carried out. Now, we
can divide the perturbation theory to regular and singular perturbation theory; singular
perturbation theory concerns those problems which depend on a parameter (here called ε)
and whose solutions at a limiting value have a non-uniform behavior when the parameter
tends to a pre-specified value. For regular perturbation problems, the solutions converge to the
solutions of the limit problem as the parameter tends to the limit value. Both of these two
methods are frequently used in physics and engineering today. There is no guarantee that
perturbative methods lead to a convergent solution. In fact, the asymptotic series of the
solution is the norm. In order to obtain the perturbative solution, we involve two distinct steps
in general. The first is to assume that there is a convergent power asymptotic series about the
parameter ε expressing the solution; then, the coefficients of the nth power of ε exist and can be
computed via finite computation. The second step is to prove that the formal asymptotic series
converges for ε small enough or to at least find a summation rule for the formal asymptotic
series, thus providing a real solution to the problem.

The homotopy analysis method (HAM) was firstly proposed in 1992 by Liao [19], which
yields a rapid convergence in most of the situations [20]. It also showed a high accuracy
to solutions of the nonlinear differential systems. After this, many types of nonlinear problems
were solved with HAM by others, such as nonlinear Schrödinger equation, fractional KdV-
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Burgers-Kuramoto equation, a generalized Hirota-Satsuma coupled KdV equation, discrete
KdV equation and so on [21–24]. With this basic idea of HAM (as ℏ ¼ �1 and Hðx, tÞ ¼ 1),
Jihuan He proposed the homotopy perturbation method(HPM) [25] which has been widely
used to handle the nonlinear problems arising in the engineering and mathematical phys-
ics [26, 27].

In this chapter, we extend the applications of HAM and HPM with the aid of Fourier transfor-
mation to solve the generalized perturbed KdV-Burgers equation with power-law nonlinearity
and a class of disturbed nonlinear Schrödinger equations in nonlinear optics. Many useful
results are researched.

1.1. The homotopy analysis method (HAM)

Let us consider the following nonlinear equation

N½uðx, tÞ� ¼ 0, ð1Þ

where N is a nonlinear operator, uðx, tÞ is an unknown function and xand t denote spatial and
temporal independent variables, respectively.

With the basic idea of the traditional homotopy method, we construct the following zero-order
deformation equation

ð1� qÞL½φðx, t; qÞ � u0ðx, tÞ� ¼ qℏHðx, tÞN½φðx, t; qÞ� ð2Þ

where ℏ 6¼ 0 is a non-zero auxiliary parameter, q∈ ½0, 1� is the embedding parameter, Hðx, tÞ is
an auxiliary function, L is an auxiliary linear operator, ~u0ðx, tÞ is an initial guess of uðx, tÞ and
φðx, t; qÞ is an unknown function. Obviously, when q ¼ 0 and q ¼ 1, it holds

φðx, t; 0Þ ¼ u0ðx, tÞ,φðx, t; 1Þ ¼ uðx, tÞ: ð3Þ

Thus, as q increases from 0 to 1, the solution φðx, t; qÞ varies from the initial guess u0ðx, tÞ to the
solution uðx, tÞ. Expanding φðx, t; qÞ in Taylor series with respect to q, we have

φðx, t; qÞ ¼ u0 þ
X∞
m¼1

umqm

¼ u0 þ qu1 þ q2u2 þ⋯; u0 ¼ ~u0ðx, tÞ, um ¼ umðx, tÞ:
ð4Þ

where

umðx, tÞ ¼ 1
m!

∂m

∂qm
φðx, t; qÞj q ¼ 0 : ð5Þ

If the auxiliary linear operator, the initial guess, the auxiliary parameter and the auxiliary
function are so properly chosen such that they are smooth enough, the Taylor’s series (4) with
respect to q converges at q ¼ 1, and we have
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u ¼ φðx, t; 1Þ ¼
X∞
m¼0

um, ð6Þ

which must be one of the solutions of the original nonlinear equation, as proved by Liao. As
ℏ ¼ �1 and Hðx, tÞ ¼ 1, Eq. (2) becomes

ð1� qÞL½φðx, t; qÞ � u0ðx, tÞ� þ qN½φðx, t; qÞ� ¼ 0: ð7Þ

Eq. (7) is used mostly in the HPM, whereas the solution is obtained directly, without using
Taylor’s series. As Hðx, tÞ ¼ 1, Eq. (2) becomes

ð1� qÞL½φðx, t; qÞ � u0ðx, tÞ� ¼ qℏN½φðx, t; qÞ�, ð8Þ

which is used in the HAM when it is not introduced in the set of base functions. According to
definition (5), the governing equation can be deduced from Eq. (2). Define the vector

u
!

mðx, tÞ ¼ {u0, u1, u2,⋯, um}: ð9Þ

Differentiating Eq. (2) m times with respect to the embedding parameter q and then setting
q ¼ 0 and finally dividing them by m!, we have the so-called mth-order deformation equation

L½umðx, tÞ � χmum�1ðx, tÞ� ¼ ℏHðx, tÞRm�1ðu!m�1, x, tÞ, ð10Þ

where

Rm�1ðu!m�1, x, tÞ ¼ 1
ðm� 1Þ!

∂m�1

∂qm�1 N½φðx, t; qÞ�j q ¼ 0 : ð11Þ

And

χm ¼ 0, x ≤ 1
1, x ≥ 2

:

�
ð12Þ

It should be emphasized that umðx, tÞ for m ≥ 1 is governed by the linear Eq. (10) with the linear
boundary conditions that come from the original problem, which can be easily solved by
symbolic computation software such as Mathematica and Matlab.

1.2. The homotopy perturbation method

To illustrate the basic concept of the homotopy perturbation method, consider the following
nonlinear system of differential equations with boundary conditions

AðuÞ ¼ f ðrÞ, r∈Ω, ð13:1Þ

Bðu, ∂u
∂n

Þ ¼ 0, r∈ Γ ¼ ∂Ω ð13:2Þ ,
8<
: ð13Þ
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where B is a boundary operator and Γ is the boundary of the domain Ω, f ðrÞ is a known
analytical function. The differential operator A can be divided into two parts, L and N, in
general, where L is a linear and N is a nonlinear operator. Eq. (13) can be rewritten as follows:

LðuÞ þNðuÞ ¼ f ðrÞ: ð14Þ

We construct the following homotopy mapping Hðφ, qÞ:Ω� ½0, 1� ! R, which satisfies

Hðφ, qÞ ¼ ð1� qÞ½LðvÞ � Lð~u0Þ� þ q½AðvÞ � f ðrÞ� ¼ 0, q∈ ½0, 1�, r∈Ω, ð15Þ

where ~u0is an initial approximation of Eq. (13), and is the embedding parameter; we have the
following power series presentation for φ,

φ ¼
X∞

i¼0

uiðx, tÞqi ¼ u0 þ qu1 þ q2u2 þ⋯: ð16Þ

The approximate solution can be obtained by setting q ¼ 1, that is

u ¼ lim
q!1

φ ¼ u0 þ u1 þ u2 þ⋯: ð17Þ

If we let u0ðx, tÞ ¼ ~u0ðx, tÞ,notice the analytic properties of f , L, ~u0 and mapping (15), we know
that the series of (17) is convergence in most cases when q∈ ½0, 1� [28]. We obtain the solution of
Eq. (13).

To study the convergence of the method, let us state the following theorem.

Theorem (Sufficient Condition of Convergence).

Suppose that X and Y are Banach spaces andN : X ! Y is a contract nonlinear mapping that is

∀u, u � ∈X : kNðuÞ �Nðu�Þk ≤γku� u � k, 0 < γ < 1: ð18Þ

Then, according to Banach’s fixed point theorem, N has a unique fixed point u, that is
NðuÞ ¼ u. Assume that the sequence generated by homotopy perturbation method can be
written as

Un ¼ NðUn�1Þ, Un ¼
Xn

i¼0

ui, ui ∈X, n ¼ 1, 2, 3,⋯, ð19Þ

and suppose that

U0 ¼ u0 ∈BrðuÞ, BrðuÞ ¼ {u � ∈Xjku � �uk < γ} ð20Þ
then; we have ðiÞ Un ∈BrðuÞ, ðiiÞlim

n!∞
Un ¼ u: ð21Þ

Proof. (i) By inductive approach, for n ¼ 1, we have
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kU1 � uk ¼ kNðU0Þ �NðuÞk ≤γkU0 � uk and then

kUn � uk ¼ kNðUn�1Þ �NðuÞk ≤γnkU0 � uk ≤γnr ) Un ∈BrðuÞ

(ii) Because of 0 < γ < 1, we have lim
n!∞

kUn � uk ¼ 0 that is lim
n!∞

Un ¼ u.

2. Application to the generalized perturbed KdV-Burgers equation

Consider the following generalized perturbed KdV-Burgers equation

ut þ αupux þ βu2pux þ γuxx þ δuxxx ¼ f ðt, x, uÞ: ð22Þ

where α, β,γ, δ, p are arbitrary constants, and f ¼ f ðt, x, uÞ is a disturbed term, which is a
sufficiently smooth function in a corresponding domain.

This equation with p ≥ 1 is a model for long-wave propagation in nonlinear media with disper-
sion and dissipation. Eq. (22) arises in a variety of physical contexts which include a number of
equations, and many valuable results about Eq. (22) have been studied by many authors
in [29–31]. In fact, if one takes different value of α, β,γ, δ, p and f , Eq.(22) represents a large
number of equations, such as KdV equation, MKdV equation, CKdV equation, Burgers equa-
tion, KdV-Burgers equation and the equations as the following forms.

Fitzhugh-Nagumo equation [32]:

ut � uxx ¼ f ¼ uðu� αÞð1� uÞ, ð23Þ

Burgers-Huxley equation [33]

ut þ αuδux � λuxx ¼ f ¼ βuð1� uδÞðηuδ � γÞ ð24Þ

Burgers-Fisher equation [34]

ut þ αuδux � uxx ¼ f ¼ βuð1� uδÞ ð25Þ

It’s significant for us to handle Eq. (22).

2.1. The generalized KdV-Burgers equation

If we let f ¼ 0 in Eq. (22), we can obtain the famous generalized KdV-Burgers equation with
nonlinear terms of any order [35, 36].

ut þ αupux þ βu2pux þ γuxx þ δuxxx ¼ 0: ð26Þ

Eq. (26) is solved on the infinite line �∞ < x < ∞ together with the initial condition uðx, 0Þ ¼
f ðxÞ, � ∞ < x < ∞ by using the HAM. We first introduce the traveling wave transform
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ξ ¼ xþ ctþ ξ0: ð27Þ

where c are constants to be determined later and ξ0 ∈C are arbitrary constants. Secondly, we
make the following transformation:

uðξÞ ¼ v1=pðξÞ: ð28Þ

Eq. (26) is reduced to the following form:

pðpþ 1Þð2pþ 1ÞδvðξÞv00ðξÞ þ ðpþ 1Þð2pþ 1Þδð1� pÞv02ðξÞ
þpðpþ 1Þð2pþ 1ÞγvðξÞv0ðξÞ þ cp2ðpþ 1Þð2pþ 1Þv2ðξÞ
þp2ð2pþ 1Þαv3ðξÞ þ p2ðpþ 1Þβv4ðξÞ ¼ 0

ð29Þ

where the derivatives are performed with respect to the coordinate ξ. We can conclude that
Eq. (26) has the following solution, by using the deformation mapping method:

~u0 ¼ � cð1þ pÞ
2α

þ dð1þ pÞγ
pα

ffiffiffiffiffiffiffiffiffiffiffiffi
c2p2

4d2γ2

s
tanhðd

ffiffiffiffiffiffiffiffiffiffiffiffi
c2p2

4d2γ2

s
ðxþ ctþ ξ0ÞÞ

( )1
p

: ð30Þ

2.2. The approximate solutions by using HAM

To solve Eq. (22) by means of HAM, we choose the initial approximation

u0ðx, tÞ ¼ ~u0ðx, tÞ
��� t ¼ 0 ¼ gðxÞ, ð31Þ

where ~u0ðx, tÞ is an arbitrary exact solution of Eq. (23).

According to Eq. (1), we define the nonlinear operator

N½φ� ¼ φt þ αφpφx þ βφ2pφx þ γφxx þ δφxxx � f ðφÞ,φ ¼ φðx, t; qÞ: ð32Þ

It is reasonable to express the solution uðx, tÞ by set of base functions gnðxÞtn, n ≥ 0, under the
rule of solution expression; it is straightforward to choose Hðx, tÞ ¼ 1 and the linear operator

L½φðx, t; qÞ� ¼ ∂φðx, t; qÞ
∂t

ð33Þ

with the property

L½cðxÞ� ¼ 0: ð34Þ

From Eqs. (10, 11 and 32), we have

Rm�1ðu!m�1, x, tÞ ¼ um�1, t þ γum�1, xx þ δum�1, xxx þ αDm�1ðφpφxÞ
þ βDm�1ðφ2pφxÞ � Fðu0, u1,⋯, um�1Þ,

ð35Þ
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where

Dm�1ðφnφxÞ ¼
Xn

k1¼0

Xk1
k2¼0

Xk2
k3¼0

⋯
Xkm�2

km�1¼0

Xm�1

i¼0

Ck1
n C

k2
k1C

k3
k2⋯Ckm�1

km�2
un�k1
0 uk1�k2

1 ⋯ukm�1
m�1uiξ ð36Þ

and n ≥ k1 ≥ k2 ≥⋯ ≥ km�1 ≥ 0∈N, with

Xm�1

j¼1

kj þ i ¼ m� 1, i ¼ 0,⋯, m� 1

Fðu0, u1,⋯, um�1Þ ¼ 1
ðn� 1Þ!

∂ðm�1Þ

∂qm�1 f ðx, t, uÞ q ¼ 0
:

�����

ð37Þ

Now, the solution of the mth-order deformation in Eq. (10) with initial condition umðx, tÞ ¼ 0
for m ≥ 1 becomes

um ¼ χmum�1 þ L�1½ℏRm�1ðu!m�1, x, tÞ�, ð38Þ

Thus, from Eqs. (31, 35 and 38), we can successively obtain

u0 ¼ ~u0ðx, 0Þ ¼ gðxÞ, ð39Þ

u1 ¼ �ℏt½~u0t þ f ðu0Þ�, ~u0t ¼ ∂
∂t

~u0ðx, tÞjt¼0, ð40Þ

u2 ¼ ð1þ ℏÞu1 þ ℏðαup0u1, x þ βu2p0 u1, x þ γu1, xx þ δu1, xxx � f uðu0Þu1Þt ð41Þ

⋮

um ¼ ð1þ ℏÞum�1 þ ℏ½γu1, xx þ δu1, xxx þ αDm�1ðφpφxÞ þ βDm�1ðφ2pφxÞ � Fðu0, u1,⋯, um�1Þ�t
ð42Þ

⋮

We obtain the mth-order approximate solution and exact solution of Eq. (22) as follows

um,appr ¼
Xm

k¼0

uk, uexact ¼ φðx, t; 1Þ ¼ lim
m!∞

Xm

k¼0

uk ð43Þ

if we choose

~u0ðx, 0Þ ¼ � cð1þ pÞ
2α

þ dð1þ pÞγ
pα

ffiffiffiffiffiffiffiffiffiffiffiffi
c2p2

4d2γ2

s
tanhðd

ffiffiffiffiffiffiffiffiffiffiffiffi
c2p2

4d2γ2

s
xÞ

( )1
p

: ð44Þ

From Eqs. (39–44), we can obtain the corresponding approximate solution of Eq. (22).
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where

Dm�1ðφnφxÞ ¼
Xn

k1¼0

Xk1
k2¼0

Xk2
k3¼0

⋯
Xkm�2

km�1¼0

Xm�1

i¼0

Ck1
n C

k2
k1C

k3
k2⋯Ckm�1

km�2
un�k1
0 uk1�k2

1 ⋯ukm�1
m�1uiξ ð36Þ

and n ≥ k1 ≥ k2 ≥⋯ ≥ km�1 ≥ 0∈N, with

Xm�1

j¼1

kj þ i ¼ m� 1, i ¼ 0,⋯, m� 1

Fðu0, u1,⋯, um�1Þ ¼ 1
ðn� 1Þ!

∂ðm�1Þ

∂qm�1 f ðx, t, uÞ q ¼ 0
:

�����

ð37Þ

Now, the solution of the mth-order deformation in Eq. (10) with initial condition umðx, tÞ ¼ 0
for m ≥ 1 becomes
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pα
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4d2γ2

s
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( )1
p

: ð44Þ

From Eqs. (39–44), we can obtain the corresponding approximate solution of Eq. (22).
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2.3. Example

In the following, three examples are presented to illustrate the effectiveness of the HAM. We
first plot the so-called ℏ curves of u

00
apprð0, 0Þ and u

000
apprð0, 0Þ to discover the valid region of ℏ,

which corresponds to the line segment nearly parallel to the horizontal axis. The simulate
comparison between the initial exact solution, exact solution and the fourth order of approxi-
mation solution is given.

Now, we consider the small perturbation term f ¼ ε~f in Eq. (22).

Example 1. Consider the CKdV equation with small disturbed term

ut þ 6uux � 6u2ux þ uxxx ¼ εu2, 0 < ε≪ 1 ð45Þ

with the initial exact solution

~u0ðx, tÞ ¼ 1
2
� 1
2
tanh½1

2
ðx� tÞ�: ð46Þ

From Section 2.2, we have

u0 ¼ 1
2
� 1
2
tanh

1
2
x

� �
, ~u0t ¼ 1

4
sech2 1

2
x

� �
, ð47Þ

u1 ¼ �ℏ
1
4
sech2 1

2
x

� �
þ ε

1
2
� 1
2
tanh

1
2
x

� �� �2( )
t ð48Þ

u2 ¼ �ð1þ ℏÞℏt 1
4
sech2 1

2
x

� �
þ ε

1
2
� 1
2
tanh

1
2
x

� �� �2( )

� ℏ2t2
(
6

1
2
� 1
2
tanh

1
2
x

� �� �
1
4
sech2 1

2
x

� �
þ ε

1
2
� 1
2
tanh

1
2
x

� �� �2( )
x

þ 6ℏ2t2
1
2
� 1
2
tanh

1
2
x

� �� �
2

1
4
sech2 1

2
x

� �
þ ε

1
2
� 1
2
tanh

1
2
x

� �� �2( )
x

� ℏ2t2
1
4
sech2 1

2
x

� �
þ ε

1
2
� 1
2
tanh

1
2
x

� �� �2( )
xxx

þ 2εℏ2t2
1
2
� 1
2
tanh

1
2
x

� �� �
1
4
sech2 1

2
x

� �
þ ε

1
2
� 1
2
tanh

1
2
x

� �� �2( )

¼ ℏt
32

cosh
x
2

� �
� sinh

x
2

� �h i
sec h5

x
2

� �(
ℏ 5t� 3� 3εð Þ � 3� 3ε

þ 2ℏtε 1þ εð Þ þ 2cosh xð Þ 2ε� 2� 2ℏ 1þ εð Þ þ ℏt 2ε2 þ 7ε� 3
� �� �

þ ℏ t� ε� 1þ 2tε2
� �� ε� 1

� �
cosh 2xð Þ � 2sinh

x
2

� �
1� εþ ℏ� εℏ½

þ ℏt 2� 3εþ 2ε2
� �þ 1� εð Þcoshxþ ℏ 1� t� εþ 2tε2

� �
coshxÞ�

)

⋯

ð49Þ
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uappr ¼ 1
2
� 1
2
tanh

1
2
x

� �
� ℏ

1
4
sech2 1

2
x

� �
þ�ε

1
2
� 1
2
tanh

1
2
x

� �� �2( )
t

þ ℏt
32

cosh
x
2

� �
� sinh

x
2

� �h i
sec h5

x
2

� �(
ℏ 5t� 3� 3εð Þ � 3� 3εþ

2ℏtε 1þ εð Þ þ 2cosh xð Þ 2ε� 2� 2ℏ 1þ εð Þ þ ℏt 2ε2 þ 7ε� 3
� �� �

þ ℏ t� ε� 1þ 2tε2
� �� ε� 1

� �
cosh 2xð Þ � 2sinh

x
2

� �
1� εþ ℏ� εℏ½

þ ℏt 2� 3εþ 2ε2
� �þ 1� εð Þcoshxþ ℏ 1� t� εþ 2tε2

� �
coshx

��)þ⋯

ð50Þ

The ℏ curves of u
00
apprð0, 0Þ and u

000
apprð0, 0Þ in Eq. (45) are shown in Figure 1(a), and the compar-

ison between the initial exact solution and the fourth order of approximation solution is shown
in Figure 1(b).

Figure 1. (a) The ℏ curves of u
00
apprð0, 0Þ and u

000
apprð0, 0Þat the fourth order of approximation. (b) The initial exact solution

and the fourth order of approximation solution.

Recent Studies in Perturbation Theory52



uappr ¼ 1
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2
tanh

1
2
x

� �
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x

� �
þ�ε
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2
� 1
2
tanh

1
2
x

� �� �2( )
t

þ ℏt
32

cosh
x
2

� �
� sinh

x
2

� �h i
sec h5

x
2

� �(
ℏ 5t� 3� 3εð Þ � 3� 3εþ

2ℏtε 1þ εð Þ þ 2cosh xð Þ 2ε� 2� 2ℏ 1þ εð Þ þ ℏt 2ε2 þ 7ε� 3
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� �� ε� 1

� �
cosh 2xð Þ � 2sinh

x
2

� �
1� εþ ℏ� εℏ½

þ ℏt 2� 3εþ 2ε2
� �þ 1� εð Þcoshxþ ℏ 1� t� εþ 2tε2

� �
coshx

��)þ⋯

ð50Þ

The ℏ curves of u
00
apprð0, 0Þ and u

000
apprð0, 0Þ in Eq. (45) are shown in Figure 1(a), and the compar-

ison between the initial exact solution and the fourth order of approximation solution is shown
in Figure 1(b).

Figure 1. (a) The ℏ curves of u
00
apprð0, 0Þ and u

000
apprð0, 0Þat the fourth order of approximation. (b) The initial exact solution

and the fourth order of approximation solution.
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Example 2. Consider the KdV-Burgers equation with small disturbed term

ut þ 6uux þ uxx � uxxx ¼ ε sin u ð51Þ

with the initial exact solution

~u0ðx, tÞ ¼ 1
50

1� coth½� 1
10

ðx� 6
25

tÞ�
� �2

ð52Þ

From Section 2.2, we have

u0 ¼ 1
50

½1� cothð� 1
10

xÞ�2, ~u0t ¼ 3
3125

csch2ð 1
10

xÞ½1þ cothð 1
10

xÞ� ð53Þ

u1 ¼ �ℏε sin
1
50

½1� cothð�1
10

xÞ�2
� �

t� 3ℏt
3125

csch2ð 1
10

xÞ½1þ cothð 1
10

xÞ� ð54Þ

u2 ¼ ð1þ ℏÞu1 þ ℏtð6u0u1, x þ u1, xx � u1, xxx � εu1 cos u0Þ ð55Þ

uappr ¼ 1
50

1� coth � 1
10

x
� �� �2

� ℏε sin
1
50

1� coth � 1
10

x
� �� �2( )

t

� 3
3125

ℏtcsch2 1
10

x
� �

1þ coth
1
10

x
� �� �

þ u2 þ⋯

ð56Þ

The ℏ curves of u
00
apprð0, 0Þ and u

000
apprð0, 0Þ in Eq. (51) are shown in Figure 2(a); the comparison

between the initial exact solution and the fourth order of approximation solution is shown in
Figure 2(b).

Figure 2. (a) The ℏ curves of u
00
apprð10ln2, 0Þ and u

000
apprð10ln2, 0Þ at the fourth order of approximation. (b) The initial exact

solution and the fourth order of approximation solution.
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Example 3. Consider the Burgers-Fisher equation

ut þ u2ux � uxx ¼ εuð1� u2Þ ð57Þ

with the exact solution and the initial exact solution

u1exact ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� 1
2
tanh

1
3
x� 1þ 9ε

9
tþ ξ0

� �s
ð58Þ

u2exact ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� 1
2
coth

1
3
x� 1þ 9ε

9
tþ ξ0

� �s
ð59Þ

~u0ðx, tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� 1
2
tanh

1
3
x� 1

9
tþ ξ0

� �s
ð60Þ

From Section 2.2, we have

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� 1
2
tanh

1
3
x

� �s
, ~u0t ¼ sech2 1

3
x

� �
=18

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2tanh

1
3
x

� �s
ð61Þ

u1 ¼ � ℏtsech2 1
3 x
� �

18
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2tanh 1

3 x
� �q � ℏtε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� 1
2
tanh

1
3
x

� �s
1
2
þ 1
2
tanh

1
3
x

� �� �
ð62Þ

u2 ¼ ð1þ ℏÞu1 þ ℏtðαu0u1, x � u1, xx � εu1 þ 3εu20u1Þ ð63Þ

Figure 3. (a) The ℏ curves of u
00
apprð0, 0Þ and u

000
apprð0, 0Þ at the fourth order of approximation. (b) The exact solution, initial

exact solution and the fourth order of approximation solution.
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From Section 2.2, we have
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� 1
2
tanh
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x
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, ~u0t ¼ sech2 1

3
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� �
=18

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2tanh
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ð61Þ
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3 x
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2� 2tanh 1

3 x
� �q � ℏtε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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� 1
2
tanh

1
3
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1
2
þ 1
2
tanh
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Figure 3. (a) The ℏ curves of u
00
apprð0, 0Þ and u

000
apprð0, 0Þ at the fourth order of approximation. (b) The exact solution, initial

exact solution and the fourth order of approximation solution.
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uappr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� 1
2
tanh

1
3
x

� �s
�

ℏtsech2 1
3
x

� �

18

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2tanh

1
3
x

� �s

� ℏtε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� 1
2
tanh

1
3
x

� �s
1
2
þ 1
2
tanh

1
3
x

� �� �
þ u2 þ⋯

ð64Þ

The ℏ curves of u
00
apprð0, 0Þ and u

000
apprð0, 0Þ in Eq. (57) are shown in Figure 3(a), the comparison

between the initial exact solution and the fourth order of approximation solution is shown in
Figure 3(b).

3. Application to the generalized perturbed NLS equation

In this section, we will use the HPM and Fourier’s transformation to search for the solution of
the generalized perturbed nonlinear Schrödinger equation (GPNLS)

i
∂u
∂z

þ 1
2
βðzÞ ∂

2u
∂t2

þ δðzÞujuj2 � iαðzÞu ¼ βðzÞf ðu, z, tÞ: ð65Þ

If we let t ! x, z ! t,Eq. (65) turns to the following form

i
∂u
∂t

þ 1
2
βðtÞ ∂

2u
∂x2

þ δðtÞujuj2 � iαðtÞu ¼ βðtÞf ðu, t, xÞ: ð66Þ

where disturbed term f is a sufficiently smooth function in a corresponding domain. αðtÞ
represents the heat-insulating amplification or loss. βðtÞ and δðtÞ are the slowly increasing
dispersion coefficient and nonlinear coefficient, respectively. The transmission of soliton in the
real communication system of optical soliton is described by Eq. (66) with f ¼ 0 [37–39].

i
∂u
∂t

þ 1
2
βðtÞ ∂

2u
∂x2

þ δðtÞujuj2 � iαðtÞu ¼ 0: ð67Þ

We make the transformation

u ¼ AðtÞϕðξÞeiη, ξ ¼ k1xþ c1ðtÞ, η ¼ k2xþ c2ðtÞ ð68Þ

With the following consistency conditions,

AðtÞ ¼ ce
Ð t

0
αðτÞdτ, c1ðtÞ ¼ �k1k2

ðt
0
βðτÞdτ, c2ðtÞ ¼ 1

2
ða2k21 � k22Þ

ðt
0
βðτÞdτ, δðtÞ ¼ �a4k21

c2
βðtÞe�2

Ð t
0
αðτÞdτ

ð69Þ

where k1, k2, a2, a4, c are arbitrary non-zero constants.
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If we let f ðu, t, xÞ ¼ 1
2 k

2
1f ðϕÞeiη, substituting Eq. (68) into Eq. (67), we have

ϕ
00
ξξ � a2ϕ� 2a4ϕ3 ¼ f ðϕÞ: ð70Þ

By using the general mapping deformation method [10, 40], we can obtain the following
solutions of the corresponding undisturbed Eq. (70) when f ¼ 0.

~ϕ0 ¼ cn½k1x� k1k2

ðt
0
βðτÞdτ�: ð71Þ

In order to obtain the solution of Eq. (70), we introduce the following homotopic mapping
Hðϕ, pÞ: R� I ! R,

Hðϕ, pÞ ¼ Lϕ� L~ϕ0 þ q
�
L~ϕ0 � 2a4ϕ3 � f ðϕÞ

�
: ð72Þ

where R ¼ ð�∞, þ ∞Þ, I ¼ ½0, 1�, ~ϕ0 is an initial approximate solution to Eq. (70), and the linear
operator L is expressed as

LðuÞ ¼ ϕ
00
ξξ � a2ϕ: ð73Þ

Obviously, from mapping Eq. (72), Hðϕ, 1Þ ¼ 0 is the same as Eq. (70). Thus, the solution of
Eq. (70) is the same as the solution of Hðϕ, qÞ as q ! 1.

3.1. Approximate solution

In order to obtain the solution of Eq. (70), set

ϕ ¼
X∞

i¼0

ϕiðξÞqi ¼ ϕ0 þ qϕ1 þ q2ϕ2 þ⋯ ð74Þ

If we let ϕ0 ¼ ~ϕ0,notice the analytical properties of f , ~ϕ0, and mapping Eq. (72), we can deduce
that the series of Eq. (74) are uniform convergence when q∈ ½0, 1�. Substituting expression (74)
into Hðu, qÞ ¼ 0 and expanding nonlinear terms into the power series in powers of q, we
compare the coefficients of the same power of q on both sides of the equation and we have

q0 : Lϕ0 ¼ L~ϕ0, ð75Þ

q1 : Lϕ1 ¼ f ðϕ0Þ, ð76Þ

q2 : Lϕ2 ¼ 6a4ϕ2
0ϕ1 þ f ϕðϕ0Þϕ1, ð77Þ
⋯

qn : Lϕn ¼ Fðϕ0,ϕ1,⋯,ϕn�1Þ þ 2a4
X3

k1¼0

Xk1
k2¼0

Xk2
k3¼0

⋯

Xkn�2

kn�1¼0

Ck1
3 C

k2
k1C

k3
k2⋯Ckn�1

kn�2
ϕ3�k1
0 ϕk1�k2

1 ϕk2�k3
2 ⋯ϕkn�2�kn�1

n�2 ϕkn�1
n�1

: ð78Þ

⋯
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that the series of Eq. (74) are uniform convergence when q∈ ½0, 1�. Substituting expression (74)
into Hðu, qÞ ¼ 0 and expanding nonlinear terms into the power series in powers of q, we
compare the coefficients of the same power of q on both sides of the equation and we have

q0 : Lϕ0 ¼ L~ϕ0, ð75Þ

q1 : Lϕ1 ¼ f ðϕ0Þ, ð76Þ

q2 : Lϕ2 ¼ 6a4ϕ2
0ϕ1 þ f ϕðϕ0Þϕ1, ð77Þ
⋯

qn : Lϕn ¼ Fðϕ0,ϕ1,⋯,ϕn�1Þ þ 2a4
X3

k1¼0

Xk1
k2¼0

Xk2
k3¼0

⋯

Xkn�2

kn�1¼0

Ck1
3 C

k2
k1C

k3
k2⋯Ckn�1

kn�2
ϕ3�k1
0 ϕk1�k2

1 ϕk2�k3
2 ⋯ϕkn�2�kn�1

n�2 ϕkn�1
n�1

: ð78Þ

⋯

Recent Studies in Perturbation Theory56

where 3 ≥ k1 ≥ k2 ≥⋯ ≥ kn�1 ≥ 0∈N,
Xn�1

j¼1

kj ¼ n� 1, n∈Nþ and Fðϕ0,ϕ1,⋯,ϕn�1Þ ¼ 1
ðn�1Þ!

∂ðn�1Þ
∂pn�1

f ðϕ0,ϕ1,⋯,ϕn�1Þj p ¼ 0 .

From Eq. (75) we have ϕ0ðξÞ ¼ ~ϕ0ðξÞ. If we select ϕ1jξ¼0 ¼ 0, by using Fourier transformation
and from Eq. (76), we have

ϕ1 ¼
1ffiffiffiffiffi
a2

p
ðξ
0
f ðϕ0Þðe

ffiffiffi
a2

p ðξ�τÞ � e�
ffiffiffi
a2

p ðξ�τÞÞdτ, a2 6¼ 0, f ðϕ0Þ ¼ f ðϕ0ðτÞÞ: ð79Þ

If we select ϕ2jξ¼0 ¼ 0, from Eq. (77) we have

ϕ2 ¼
1ffiffiffiffiffi
a2

p
ðξ
0
½6a4ϕ2

0ϕ1 þ f ϕðϕ0Þϕ1�ðe
ffiffiffi
a2

p ðξ�τÞ � e�
ffiffiffi
a2

p ðξ�τÞÞdτ: ð80Þ

where a2 6¼ 0,ϕ0 ¼ ϕ0ðτÞ,ϕ1 ¼ ϕ1ðτÞ.
We obtain the first- and second-order approximate solutions u1homðx, tÞ and u2homðx, tÞ of the
Eq. (70) as follows:

ϕ1homðx, tÞ ¼ ~ϕ0 þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2 � 1
p

ðξ
0
f ðϕ0Þðe

ffiffiffiffiffiffiffiffiffiffiffi
2m2�1

p
ðξ�τÞ � e�

ffiffiffiffiffiffiffiffiffiffiffi
2m2�1

p
ðξ�τÞÞdτ ð81Þ

u1homðx, tÞ ¼ ce
Ð t

0
αðτÞdτþi½k2xþ1

2

Ð t
0
ðð2m2�1Þk21�k22ÞβðτÞdτ�ϕ1homðx, tÞ ð82Þ

ϕ2homðx, tÞ ¼ ~ϕ0 þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2 � 1
p

ðξ
0
f ðϕ0Þðe

ffiffiffiffiffiffiffiffiffiffiffi
2m2�1

p
ðξ�τÞ � e�

ffiffiffiffiffiffiffiffiffiffiffi
2m2�1

p
ðξ�τÞÞdτ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 � 1

p
ðξ
0
½�6m2ϕ2

0ϕ1 þ f ϕðϕ0Þϕ1�ðe
ffiffiffiffiffiffiffiffiffiffiffi
2m2�1

p
ðξ�τÞ � e�

ffiffiffiffiffiffiffiffiffiffiffi
2m2�1

p
ðξ�τÞÞdτ

ð83Þ

u2homðx, tÞ ¼ ce
Ð t

0
αðτÞdτþi½k2xþ1

2

Ð t
0
ðð2m2�1Þk21�k22ÞβðτÞdτ�ϕ2homðx, tÞ ð84Þ

With the same process, we can also obtain the N-order approximate solution

ϕnhomðx, tÞ ¼ ~ϕ0 þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2 � 1
p

ðξ
0
f ðϕ0Þðe

ffiffiffi
a2

p ðξ�τÞ � e�
ffiffiffi
a2

p ðξ�τÞÞdτ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 � 1

p
ðξ
0
½�6m2ϕ2

0ϕ1 þ f ϕðϕ0Þϕ1�ðe
ffiffiffiffiffiffiffiffiffiffiffi
2m2�1

p
ðξ�τÞ � e�

ffiffiffiffiffiffiffiffiffiffiffi
2m2�1

p
ðξ�τÞÞdτ

þ⋯þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 � 1

p
ðξ
0
ðe
ffiffiffiffiffiffiffiffiffiffiffi
2m2�1

p
ðξ�τÞ � e�

ffiffiffiffiffiffiffiffiffiffiffi
2m2�1

p
ðξ�τÞÞ½Fðϕ0,ϕ1,⋯,ϕn�1Þ � 2m2

X3

k1¼0

Xk1
k2¼0

Xk2
k3¼0

⋯
Xkn�2

kn�1¼0

Ck1
3 C

k2
k1C

k3
k2⋯Ckn�1

kn�2
ϕ3�k1
0 ϕk1�k2

1 ϕk2�k3
2 ⋯ϕkn�2�kn�1

n�2 ϕkn�1
n�1�dτ

ð85Þ

unhomðx, tÞ ¼ ce
Ð t

0
αðτÞdτþi½k2xþ1

2

Ð t
0
ðð2m2�1Þk21�k22ÞβðτÞdτ�ϕnhomðx, tÞ ð86Þ

Homotopy Asymptotic Method and Its Application
http://dx.doi.org/10.5772/67876

57



where 3 ≥ k1 ≥ k2 ≥⋯ ≥ kn�1 ≥ 0∈N,
Xn�1

j¼1

kj ¼ n� 1, n∈Nþ and

Fðϕ0,ϕ1,⋯,ϕn�1Þ ¼
1

ðn� 1Þ!
∂ðn�1Þ

∂pn�1 f ðϕ0,ϕ1,⋯,ϕn�1Þ p ¼ 0

����� ð87Þ

3.2. Comparison of accuracy

In order to explain the accuracy of the expressions of the approximate solution represented by
Eq. (86), we consider the small perturbation term

i
∂u
∂t

þ 1
2
βðtÞ ∂

2u
∂x2

þ δðtÞujuj2 � iαðtÞu ¼ 1
2
εk21βðtÞeiη sin nϕ, ð88Þ

where n∈Nþ,ϕ ¼ e�
Ð t
0
αðτÞdτ�iðk2xþ1

2ða2k21�k22Þ
Ð t

0
βðτÞdτÞu=c,0 < ε≪ 1.

From the discussion of Section 3.1, we obtain the second-order approximate Jacobi-like elliptic
function solution of Eq. (88) as follows

ϕ2homðx, tÞ ¼ cn½k1x� k1k2

ðt
0
βðτÞdτ� þ εffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2 � 1
p

ðξ
0
sin nðϕ0Þðe

ffiffiffiffiffiffiffiffiffiffiffi
2m2�1

p
ðξ�τÞ

� e�
ffiffiffiffiffiffiffiffiffiffiffi
2m2�1

p
ðξ�τÞÞdτþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2 � 1
p

ðξ
0
½�6m2ϕ2

0ϕ1 þ εn sin n�1ðϕ0Þ

cos ðϕ0Þϕ1�ðe
ffiffiffiffiffiffiffiffiffiffiffi
2m2�1

p
ðξ�τÞ � e�

ffiffiffiffiffiffiffiffiffiffiffi
2m2�1

p
ðξ�τÞÞdτ

ð89Þ

u2homðx, tÞ ¼ ce
Ð t
0
αðτÞdτþi½k2xþ1

2

Ð t

0
ðð2m2�1Þk21�k22ÞβðτÞdτ�ϕ2homðx, tÞ: ð90Þ

Set ϕexaðx, tÞ ¼
X∞

i¼0

ϕiðx, tÞ to be an exact solution of Eq. (88), notice that

Lðϕexa � ϕ2homÞ ¼ f ðϕÞ þ 2a4ϕexa
3 � ½2a4ϕ0

3 þ f ðϕ0Þ þ 6a4ϕ2
0ϕ1

þ f ϕðϕ0Þϕ1� ¼ ε sin n
X∞

i¼0

ϕi

 !
þ 2a4

X∞

i¼0

ϕi

 !3

� ½2a4ϕ0
3 þ ε sin nðϕ0Þ

þ 6a4ϕ2
0ϕ1 þ εn sin n�1ðϕ0Þ cos ðϕ0Þϕ1� ¼ Oðε2Þ

, ð91Þ

where 0 < ε≪ 1, selecting arbitrary constants such that ϕexað0Þ ¼ ϕ2homð0Þ, from the fixed

point theorem [41], we have ϕexa � ϕ2hom ¼ Oðε2Þ, then

juexa � u2homj ¼ jAðtÞeiη½ϕexa � ϕ2hom�j

¼ ε2An sin n�1ðϕ0Þ cos ðϕ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 � 1

p
ðξ
0
sin nðϕ0Þðe

ffiffiffi
a2

p ðξ�τÞ � e�
ffiffiffi
a2

p ðξ�τÞÞdτ
�����

����� ¼ Oðε2Þ:

ð92Þ
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where 3 ≥ k1 ≥ k2 ≥⋯ ≥ kn�1 ≥ 0∈N,
Xn�1

j¼1

kj ¼ n� 1, n∈Nþ and

Fðϕ0,ϕ1,⋯,ϕn�1Þ ¼
1

ðn� 1Þ!
∂ðn�1Þ

∂pn�1 f ðϕ0,ϕ1,⋯,ϕn�1Þ p ¼ 0

����� ð87Þ

3.2. Comparison of accuracy

In order to explain the accuracy of the expressions of the approximate solution represented by
Eq. (86), we consider the small perturbation term

i
∂u
∂t

þ 1
2
βðtÞ ∂

2u
∂x2

þ δðtÞujuj2 � iαðtÞu ¼ 1
2
εk21βðtÞeiη sin nϕ, ð88Þ

where n∈Nþ,ϕ ¼ e�
Ð t
0
αðτÞdτ�iðk2xþ1

2ða2k21�k22Þ
Ð t

0
βðτÞdτÞu=c,0 < ε≪ 1.

From the discussion of Section 3.1, we obtain the second-order approximate Jacobi-like elliptic
function solution of Eq. (88) as follows

ϕ2homðx, tÞ ¼ cn½k1x� k1k2

ðt
0
βðτÞdτ� þ εffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2 � 1
p

ðξ
0
sin nðϕ0Þðe

ffiffiffiffiffiffiffiffiffiffiffi
2m2�1

p
ðξ�τÞ

� e�
ffiffiffiffiffiffiffiffiffiffiffi
2m2�1

p
ðξ�τÞÞdτþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2 � 1
p

ðξ
0
½�6m2ϕ2

0ϕ1 þ εn sin n�1ðϕ0Þ

cos ðϕ0Þϕ1�ðe
ffiffiffiffiffiffiffiffiffiffiffi
2m2�1

p
ðξ�τÞ � e�

ffiffiffiffiffiffiffiffiffiffiffi
2m2�1

p
ðξ�τÞÞdτ

ð89Þ

u2homðx, tÞ ¼ ce
Ð t
0
αðτÞdτþi½k2xþ1

2

Ð t

0
ðð2m2�1Þk21�k22ÞβðτÞdτ�ϕ2homðx, tÞ: ð90Þ

Set ϕexaðx, tÞ ¼
X∞

i¼0

ϕiðx, tÞ to be an exact solution of Eq. (88), notice that

Lðϕexa � ϕ2homÞ ¼ f ðϕÞ þ 2a4ϕexa
3 � ½2a4ϕ0

3 þ f ðϕ0Þ þ 6a4ϕ2
0ϕ1

þ f ϕðϕ0Þϕ1� ¼ ε sin n
X∞

i¼0

ϕi

 !
þ 2a4

X∞

i¼0

ϕi

 !3

� ½2a4ϕ0
3 þ ε sin nðϕ0Þ

þ 6a4ϕ2
0ϕ1 þ εn sin n�1ðϕ0Þ cos ðϕ0Þϕ1� ¼ Oðε2Þ

, ð91Þ

where 0 < ε≪ 1, selecting arbitrary constants such that ϕexað0Þ ¼ ϕ2homð0Þ, from the fixed

point theorem [41], we have ϕexa � ϕ2hom ¼ Oðε2Þ, then

juexa � u2homj ¼ jAðtÞeiη½ϕexa � ϕ2hom�j

¼ ε2An sin n�1ðϕ0Þ cos ðϕ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 � 1

p
ðξ
0
sin nðϕ0Þðe

ffiffiffi
a2

p ðξ�τÞ � e�
ffiffiffi
a2

p ðξ�τÞÞdτ
�����

����� ¼ Oðε2Þ:

ð92Þ
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Therefore, from the above result, we know that the approximate solution,u2hom, obtained by
asymptotic method and possesses better accuracy.

Set AðtÞ ¼ 1, k1 ¼ k2 ¼ 1, βðtÞ ¼ 1, m ! 1, n ¼ 1, ξ∈ ½0, 3� and ε ¼ 0:01, 0:001 for Eq. (90), and
then, we will have the curves of solutions ju1homðξÞj and ju0ðξÞj and be able to compare them;
see Figures 4 and 5. From Figures 4 and 5, it is easy to see that as 0 < ε≪ 1 is a small parameter,
and the solutions ju1homðξÞj and ju0ðξÞj are very close to each other. This behavior is coincident
with that of the approximate solution of the weakly disturbed evolution in Eq. (88).

4. Conclusions

We research the generalized perturbed KdV-Burgers equation and GPNLS equation by using
the HAM and HPM; these two powerful straightforward methods are much more simple and
efficient than some other asymptotic methods such as perturbation method and Adomian
decomposition method and so on. The Jacobi elliptic function and solitary wave approximate
solution with arbitrary degree of accuracy for the disturbed equation are researched, which

Figure 4. A comparison between the curves of solutions ju1homðξÞj (solid line) and ju0ðξÞj (dashed line) with ε ¼ 0:01.

Figure 5. A comparison between the curves of solutions ju1homðξÞj (solid line) and ju0ðξÞj (dashed line) with ε ¼ 0:001.
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shows that these two methods have wide applications in science and engineering and also can
be used in the soliton equation with complex variables, but it is still worth to research whether
or not these two methods can be used in the system with high dimension and high order.
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Abstract

Both the scalar Green function and the dyadic Green function of an electromagnetic field
and the transform from the scalar to dyadic Green function are introduced. The Green
function of a transmission line and the propagators are also presented in this chapter.

Keywords: Green function, boundary condition, scatter, propagator, convergence

1. Introduction

In 1828, Green introduced a function, which he called a potential, for calculating the distribu-
tion of a charge on a surface bounding a region in Rn in the presence of external electromag-
netic forces. The Green function has been an interesting topic in modern physics and
engineering, especially for the electromagnetic theory in various source distributions (charge,
current, and magnetic current), various construct conductors, and dielectric. Even though most
problems can be solved without the use of Green functions, the symbolic simplicity with which
they could be used to express relationships makes the formulations of many problems simpler
and more compact. Moreover, it is easier to conceptualize many problems; especially the
dyadic Green function is generalized to layered media of planar, cylindrical, and spherical
configurations.

2. Definition of Green function

2.1. Mathematics definition

For the linear operator, there are: L̂x ¼ f ðtÞ, t > 0;

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



xðtÞjt¼0 ¼ y0;⋯xðnÞðtÞjt¼0 ¼ yn ð1Þ

Rewriting Eq. (1) as:

L̂x ¼
ð
f ðt0Þδðt� t0Þdt0 ð2Þ

Defining the Green function as:

L̂Gðt, t0Þ ¼ δðt� t0Þ ð3Þ

So, the solution of Eq. (1) is:

xðtÞ ¼
ð
f ðt0ÞGðt, t0Þdt0 ð4Þ

We give several types of Green functions [1]

3. The scalar Green function

3.1. The scalar Green function of an electromagnetic field

The Green function of a wave equation is the solution of the wave equation for a point source
[2]. And when the solution to the wave equation due to a point source is known, the solution
due to a general source can be obtained by the principle of linear superposition (see Figure 1).

This is merely a result of the linearity of the wave equation, and that a general source is just a
linear superposition of point sources. For example, to obtain the solution to the scalar wave
equation in V in Figure 1

ð∇2 þ k2ÞϕðrÞ ¼ sðrÞ ð5Þ

we first seek the Green function in the same V, which is the solution to the following equation:

ð∇2 þ k2Þgðr, r0Þ ¼ δðr�r0Þ ð6Þ

Given g (r, r0), φ(r) can be found easily from the principle of linear superposition, since g (r, r0) is
the solution to Eq. (5) with a point source on the right-hand side. To see this more clearly, note
that an arbitrary source s(r) is just

L̂ ¼ �ð d2dt2 þ 2γ d
dt þ ω2

0Þ Gðt, t0Þ ¼ 1
2π

ðþ∞

�∞

exp ½�iðt� t0Þk�
k2 þ 2iγk� ω2

0

dk

L̂ ¼ �½f 0ðtÞ d2

dt2 þ f 1ðtÞ d
dt þ f 2ðtÞÞ Gðt, t0Þ ¼ � Ψ 1ðtÞΨ 2ðt0 Þ�Ψ 2ðtÞΨ 1ðt0 Þ

f 0ðt0 Þ½Ψ 1ðt0 Þ _Ψ 2ðt0 Þ� _Ψ 1ðt0 ÞΨ 2ðt0 Þ�

L̂ ¼ � d
dt ½ð1� t2Þ d

dt� Gðt, t0Þ ¼ 1
2 þ
X∞
n¼1

1
nðnþ 1Þ �

2nþ 1
2

PnðtÞPnðt0Þ
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sðrÞ ¼
ð
dr0sðr0Þδðr� r0Þ ð7Þ

which is actually a linear superposition of point sources in mathematical terms. Consequently,
the solution to Eq. (5) is just

ϕðrÞ ¼ �
ð

V

dr0gðr, r0Þsðr0Þ ð8Þ

which is an integral linear superposition of the solution of Eq. (6). Moreover, it can be seen that
g(r, r0) � g(r0, r,) from reciprocity irrespective of the shape of V.

To find the solution of Eq. (6) for an unbounded, homogeneous medium, one solves it in
spherical coordinates with the origin at r'. By so doing, Eq. (6) becomes

ð∇2 þ k2ÞgðrÞ ¼ δðxÞδðyÞδðzÞ ð9Þ

But due to the spherical symmetry of a point source, g(r) must also be spherically symmetric.
Then, for r 6¼ 0, adopt the proper coordinate origin (the vector r is replaced by the scalar r), the
homogeneous, spherically symmetric solution to Eq. (9) is given by

gðrÞ ¼ c1
eikr

r
þ c2

e�ikr

r
ð10Þ

Since sources are absent at infinity, physical grounds then imply that only an outgoing solution
can exist; hence,

gðrÞ ¼ c
eikr

r
ð11Þ

Figure 1. The radiation of a source s(r) in a volume V.
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The constant c is found by matching the singularities at the origin on both sides of Eq. (9). To
do this, we substitute Eq. (11) into Eq. (9) and integrate Eq. (9) over a small volume about the
origin to yield

ð

ΔV

dV∇ � ∇ ceikr

r
þ
ð

ΔV

dVk2
ceikr

r
¼ �1 ð12Þ

Note that the second integral vanishes when ΔV ! 0 because dV = 4πr2dr. Moreover, the first
integral in Eq. (12) can be converted into a surface integral using Gauss theorem to obtain

lim
r!0

4πr2
d
dr

c
eikr

r
¼ �1 ð13Þ

or c = 1/(4π).

The solution to Eq. (6) must depend only on r – r0. Therefore, in general,

gðr, r0Þ ¼ gðr� r0Þ ¼ eikðr�r0Þ

4πðr� r0Þ ð14Þ

implying that g(r, r') is translationally invariant for unbounded, homogeneous media. Conse-
quently, the solution to Eq. (5), from Eq. (9), is then

ϕðrÞ ¼ �
ð

V

dr0
eikðr�r0 Þ

4πðr� r0Þ sðr
0Þ ð15Þ

Once ϕ(r) and n̂ � ∇ϕðrÞ are known on S, then ϕ(r0) away from S could be found

ϕðr0Þ ¼ ∮
S
dSn̂ � ½gðr, r0Þ∇ϕðrÞ � ϕðrÞ∇gðr, r0Þ� ð16Þ

3.2. The scalar Green functions of one-dimensional transmission lines

We consider a transmission line excited by a distributed current source, K(x), as sketched in
Figure 2. The line may be finite or infinite, and it may be terminated at either end with
impedance or by another line [3]. For a harmonically oscillating current source K(x), the
voltage and the current on the line satisfy the following pair of equations:

Figure 2. Transmission line excited by a distributed current source, K(x).
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dVðxÞ
dx

¼ iωLIðxÞ ð17Þ

dIðxÞ
dx

¼ iωCVðxÞ þ KðxÞ ð18Þ

L and C denote, respectively, the distributed inductance and capacitance of the line.

By eliminating I(x) between Eq. (17) and Eq. (18), there is

d2VðxÞ
dx2

þ k2VðxÞ ¼ iωLKðxÞ ð19Þ

where k ¼ ω
ffiffiffiffiffiffi
LC

p
denotes the propagation constant of the line. Eq. (19) has been designated as

an inhomogeneous one-dimensional scalar wave equation.

The Green function pertaining to a one-dimensional scalar wave equation of the form of
Eq. (19), denoted by g(x, x0), is a solution of the Eq. (9). The solution for g(x, x0) is not
completely determined unless there are two boundary conditions which the function must
satisfy at the extremities of the spatial domain in which the function is defined. The boundary
conditions which must be satisfied by g(x, x0) are the same as those dictated by the original
function which we intend to determine, namely, V(x) in the present case. For this reason, the
Green functions are classified according to the boundary conditions, which they must obey.
Some of the typical ones (for the transmission line) are illustrated in Figure 3.

In general, the subscript 0 designates infinite domain so that we have outgoing waves at
x ! �∞, often called the radiation condition. Subscript 1 means that one of the boundary
conditions satisfies the so-called Dirichlet condition, while the other satisfies the radiation
condition. When one of the boundary conditions satisfies the so-called Neumann condition,
we use subscript 2. Subscript 3 is reserved for the mixed type. Actually, we should have used a
double subscript for two distinct boundary conditions. For example, case (b) of Figure 3
should be denoted by g01, indicating that one radiation condition and one Dirichlet condition
are involved. With such an understanding, the simplified notation should be acceptable.

In case (d), a superscript becomes necessary because we have two sets of line voltage and
current (V1, I1) and (V2, I2) in this problem, and the Green function also has different forms in
the two regions. The first superscript denotes the region where this function is defined, and the
second superscript denotes the region where the source is located.

Let the domain of x corresponds to (x1, x2). The function g(x, x0) in Eq. (9) can represent any of
the three types, g0, g1, and g2, illustrated in Figures 3a–c, respectively. The treatment of case
(d) is slightly different, and it will be formulated later.

(a) By multiplying Eq. (19) by g(x, x0) and Eq. (9) by V(x) and taking the difference of the two
resultant equations, we obtain

ðx2
x1
½VðxÞ d

2g0ðx, x0Þ
dx2

� g0ðx, x0Þ
d2Vðx, x0Þ

dx2
�dx ¼ �

ðx2
x1
VðxÞδðx� x0Þdx� iωL

ðx2
x1
KðxÞg0ðx, x0Þdx

ð20Þ
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The first term at the right-hand side of the above equation is simply V(xl), and the term at the
left-hand side can be simplified by integration by parts, which gives

Vðx0Þ ¼ �iωL
ðx2
x1
g0ðx, x0ÞKðxÞdx ð21Þ

If we use the unprimed variable x to denote the position of a field point, as usually is the case,
Eq. (21) can be changed to [4]

Figure 3. Classification of Green functions according to the boundary conditions.
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VðxÞ ¼ �iωL
ðx2
x1
gðx0, xÞKðx0Þdx0

¼ �iωL
ðx2
x1
g0ðx, x0ÞKðx0Þdx0

ð22Þ

The last identity is due to the symmetrical property of the Green function. The shifting of the
primed and unprimed variables is often practiced in our work. For this reason, it is important
to point out that g(x0, x), by definition, satisfies the Eq. (9).

The general solutions for Eq. (9) in the two regions (see Figure 3a) are

g0ðx, x0Þ ¼
i=ð2kÞeikðx�x0Þ, x ≥ x0

i=ð2kÞe�ikðx�x0Þ, x ≤ x0

(
ð23Þ

The choice of the above functions is done with the proper satisfaction of boundary conditions
at infinity. At x = x', the function must be continuous, and its derivative is discontinuous.

They are: ½g0ðx,x0Þ�
x0þ0

x0�0 ¼ 0, and
dg0ðx, x0Þ

dx

� �x0þ0

x0�0

¼ �1

The physical interpretation of these two conditions is that the voltage at x' is continuous, but
the difference of the line currents at x' must be equal to the source current.

(b) The choice of this type of function is done with the proper satisfaction of boundary
conditions. At x = x', the function must be continuous, its derivative is discontinuous, and a
Dirichlet condition is satisfied at x = 0.

g1ðx, x0Þ ¼
ι=ð2κÞ eικðx�x0Þ � eικðxþx0Þ� �

, x ≥ x0

ι=ð2κÞ e�ικðx�x0Þ � eικðxþx0Þ� �
, 0 ≤ x ≤ x0

(
ð24Þ

In view of Eq. (24), it can be interpreted as consisting of an incident and a scattered wave; that
is

g1ðx, x0Þ ¼ g0ðx, x0Þ þ g1sðx, x0Þ ð25Þ

where g1sðx, x0Þ ¼ �i
2k e

ikðxþx0 Þ.

Such a notion is not only physically useful, but mathematically it offers a shortcut to finding a
composite Green function. It is called as the shortcut method or the method of scattering
superposition.

(c) Similarly, the method of scattering superposition suggests that we can start with

g2ðx, x0Þ ¼ g0ðx, x0Þ þ Aeikx ð26Þ

To satisfy the Neumann condition at x = 0, we require
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dg0ðx,x0Þ
dx

þ ikAeikx
� �

x¼0
¼ 0 ð27Þ

Hence

A ¼ i
2k

eikx
0 ð28Þ

g2ðx, x0Þ ¼ i=ð2kÞ eikðx�x0Þ þ eikðxþx0Þ, x ≥ x0

e�ikðx�x0Þ þ eikðxþx0 Þ, 0 ≤ x ≤ x0

(
ð29Þ

(d) In this case, we have two differential equations to start with

d2V1ðxÞ
dx2

þ k21V1ðxÞ ¼ iωL1K1ðxÞ, x ≥ 0 ð30Þ

d2V2ðxÞ
dx2

þ k22V2ðxÞ ¼ 0, x ≤ 0 ð31Þ

It is assumed that the current source is located in region 1 (see Figure 3d). We introduce two
Green functions of the third kind, denoted by g(11) (x, x') and g(21) (x, x'). g(21), the first
number of the superscript corresponds to the region where the function is defined. The second
number corresponds to the region where the source is located; then

d2gð11Þðx, x0Þ
dx2

þ k21g
ð11Þðx, x0Þ ¼ �δðx� x0Þ, x ≥ 0 ð32Þ

d2gð21Þðx, x0Þ
dx2

þ k22g
ð21Þðx, x0Þ ¼ 0, x ≤ 0 ð33Þ

At the junction corresponding to x = 0, g(11) and g(21) satisfy the boundary condition that

gð11Þðx,x0Þx¼0 ¼ gð21Þðx,x0Þx¼0 ð34Þ

1
L1

dgð11Þðx,x0Þ
dx x¼0

¼ 1
L2

dgð21Þðx,x0Þ
dx x¼0

ð35Þ

The last condition corresponds to the physical requirement that the current at the junction
must be continuous. Again, by means of the method of scattering superposition, there are

gð11Þðx, x0Þ ¼ g0ðx, x0Þ þ gð11Þs ðx, x0Þ

¼ i
2k1

eik1ðx�x0Þ þ Reik1ðx�x0 Þ, x ≥ x0

e�ik1ðx�x0 Þ þ Reik1ðxþx0Þ, 0 ≤ x ≤ x0

(
ð36Þ

gð21Þðx, x0Þ ¼ i
2k1

Te�iðk2x�k1x0Þ, x ≥ 0 ð37Þ

The characteristic impedance of the lines, respectively, is
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z1 ¼ L1
C1

� �1=2

, z2 ¼ L2
C2

� �1=2

ð38Þ

By the boundary condition, there are

R ¼ z2 � z1
z2 þ z1

, T ¼ 2z2
z2 þ z1

ð39Þ

Example: Green function solution of nonlinear Schrodinger equation in the time domain [5].

The nonlinear Schrodinger equation including nonresonant and resonant nonlinear items is:

∂A
∂z

þ i
2
β2

∂2A
∂t2

� 1
6
β3

∂3A
∂t3

¼ � a
2
Aþ i

3k0
8nAeff

χð3Þ
NRjAj2A

þ ik0gðω0Þ½1� if ðω0Þ�
2nAeff

A
ðt
�∞

χð3Þ
R ðt� τÞjAðτÞj2dτ

ð40Þ

Where A is the field, β2 and β3 are the second and third order dispersion, respectively. A(z) is
the fiber absorption profile. k0 ¼ ω0=c, ω0 is the center frequency. Aeff is the effective core area.
n is the refractive index.

f ðω1 þ ω2 þ ω3Þ ¼ 2ðω1 þ ω2 þ ω3Þð1� jΓjÞ
�2ðω1 þ ω2 þ ω3Þ2 � 2jΓj þ jΓj2 ð41Þ

gðω1 þ ω2 þ ω3Þ ¼ ½�2ðω1 þ ω2 þ ω3Þ2 � 2jΓj þ jΓj2� ð42Þ

where g(ω1 + ω2 + ω3) is the Raman gain and f(ω1 + ω2 + ω3) is the Raman nongain coefficient. Г
is the attenuation coefficient.

The original nonlinear part is divided into the nonresonant and resonant susceptibility items

χð3Þ
NR and χð3Þ

R . The solution has the form:

Aðz, tÞ ¼ ϕðtÞe�iEz ð43Þ

Then, there is:

1
2
β2

∂2φ
∂t2

þ i
6
β3

∂3φ
∂t3

� 3k0
8nAeff

χð3Þ
NRjφj2φ� k0gðωsÞ½1� if ðωsÞ�

2nAeff
φ
ðþ∞

�∞
χð3Þ
N ðt� τÞjφðτÞjdτ ¼ Eφ ð44Þ

Let:

Ĥ0ðtÞ ¼ 1
2
β2

∂2

∂t2
þ i
6
β3

∂3

∂t3
ð45Þ

V̂ ðtÞ ¼ �3k0
8nAeff

χð3Þ
NRjφj �

k0gðωsÞ½1� if ðωsÞ�
2nAeff

ðþ∞

�∞
χð3Þ
R ðt� τÞjφðτÞj2dτ ð46Þ
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and taking the operator V̂ ðtÞas a perturbation item, the eigenequation �
Xk
n¼2

in

n!
βn

∂nφ
∂Tn ¼ Eφ is

1
2
β2

∂2φ

∂T2 þ
i
6
β3

∂3φ

∂T3 ¼ Eφ ð47Þ

Assuming E = 1, we get the corresponding characteristic equation:

� 1
2
β2r

2 þ β3
6
r3 ¼ E ð48Þ

Its characteristic roots are r1,r2,r3. The solution can be represented as:

φ ¼ c1φ1 þ c2φ2 þ c3φ3 ð49Þ

where ϕm ¼ exp ðirmtÞ, m ¼ 1, 2, 3, and c1,c2,c3 are determined by the initial pulse. The Green
function of Eq. (47) is:

ðE� Ĥ0ðtÞÞG0ðt, t0Þ ¼ δðt� t0Þ ð50Þ

Constructing the Green function as:

G0ðt, t0Þ ¼
a1φ1 þ a2φ2 þ a3φ3, t > t0

b1φ1 þ b2φ2 þ b3φ3, t < t0

(
ð51Þ

At the point t = t0, there are:

a1φ1ðt0Þ þ a2φ2ðt0Þ þ a3φ3ðt0Þ ¼ b1φ1ðt0Þ þ b2φ2ðt0Þ þ b3φ3ðt0Þ ð52Þ

a1φ0
1ðt0Þ þ a2φ0

2ðt0Þ þ a3φ0
3ðt0Þ ¼ b1φ0

1ðt0Þ þ b2φ0
2ðt0Þ þ b3φ0

3ðt0Þ ð53Þ

a1φ″
1ðt0Þ þ a2φ″

2ðt0Þ þ a3φ″
3ðt0Þ � b1φ″

1ðt0Þ � b2φ″
2ðt0Þ � b3φ″

3ðt0Þ ¼ �6i=β3 ð54Þ

It is reasonable to let b1 = b2 = b3 = 0, then:

a1 ¼
φ2

_φ3 � _φ2φ3

Wðt0Þ , a2 ¼
φ3

_φ1 � _φ3φ1

Wðt0Þ , a3 ¼ φ1
_φ2 � _φ1φ2

Wðt0Þ ð55Þ

Wðt0Þ ¼
φ1 φ2 φ3

φð1Þ
1 φð1Þ

2 φð1Þ
3

φð2Þ
1 φð2Þ

2 φð2Þ
3

��������

��������
ð56Þ

Finally, the solution of Eq. (44) can be written with the eigenfunction and Green function:
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Finally, the solution of Eq. (44) can be written with the eigenfunction and Green function:
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φðtÞ ¼ φðtÞ þ
ð
G0ðt, t0ÞVðt0Þφðt0Þdt0

¼ ϕðtÞ þ
ð
G0ðt, t0, EÞVðt0Þϕðt0Þdt0þ

ð
dt0G0ðt, t0, EÞVðt0Þ

ð
G0ðt0, t″, EÞVðt″Þφðt″Þdt″

¼ ϕðtÞ þ
ð
G0ðt, t0, EÞVðt0Þϕðt0Þdt0þ

ð
dt0G0ðt, t0, EÞVðt0Þ

ð
G0ðt0, t″, EÞVðt″Þϕðt″Þdt″ þ⋯

þ
ð
dt0G0ðt, t0ÞVðt0Þ

ð
G0ðt0, t″ÞVðt″Þdt″⋯

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
times l

ð
G0ðtl, tlþ1ÞVðtlþ1Þφðtlþ1Þdtlþ1

ð57Þ

The accuracy can be estimated by the last term of Eq. (57).

4. The dyadic Green function

4.1. The dyadic Green function for the electromagnetic field in a homogeneous isotropic
medium

The Green function for the scalar wave equation could be used to find the dyadic Green
function for the vector wave equation in a homogeneous, isotropic medium [3]. First, notice
that the vector wave equation in a homogeneous, isotropic medium is

∇ ·∇·EðrÞ � k2EðrÞ ¼ iωμJðrÞ ð58Þ

Then, by using the fact that ∇ ·∇·EðrÞ ¼ �∇2Eþ ∇∇ � E and that ∇ � E ¼ ρ=ε ¼ ∇ � J=iωε,
which follows from the continuity equation, we can rewrite Eq. (58) as

∇2EðrÞ � k2EðrÞ ¼ �iωμ Î þ ∇∇
k2

� �
� JðrÞ ð59Þ

where Î is an identity operator. In Cartesian coordinates, there are actually three scalar wave
equations embedded in the above vector equation, each of which can be solved easily in the
manner of Eq. (4). Consequently,

EðrÞ ¼ �iωμ
ð

V

dr0gðr0 � rÞ Î þ ∇0∇0

k2

� �
� JðrÞ ð60Þ

where g(r0�r)is the unbounded medium scalar Green function. Moreover, by using the vector
identities ∇gf ¼ f∇gþ g∇f and ∇ � gF ¼ g∇ � Fþ ð∇gÞ � F, it can be shown that

ð

V

dr0gðr0 � rÞ∇0f ðr0Þ ¼ �
ð

V

dr0∇0gðr0 � rÞf ðr0Þ ð61Þ

and
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ð

V

dr0½∇0gðr0 � rÞ�∇0 � Jðr0Þ ¼ �
ð

V

dr0Jðr0Þ � ∇0∇0gðr0 � rÞ ð62Þ

Hence, Eq. (60) can be rewritten as

EðrÞ ¼ iωμ
ð

V

dr0Jðr0Þ � Î þ ∇0∇0

k2

� �
gðr0 � rÞ ð63Þ

It can also be derived using scalar and vector potentials.

Alternatively, Eq. (63) can be written as

EðrÞ ¼ iωμ
ð

V

dr0Jðr0Þ � Ĝeðr0, rÞ ð64Þ

where

ĜeðrÞ ¼ Iþ ∇0∇0

k2

� �
gðr0 � rÞ ð65Þ

is a dyad known as the dyadic Green function for the electric field in an unbounded, homoge-
neous medium. (A dyad is a 3 · 3 matrix that transforms a vector to a vector. It is also a second
rank tensor). Even though Eq. (64) is established for an unbounded, homogeneous medium,
such a general relationship also exists in a bounded, homogeneous medium. It could easily be
shown from reciprocity that

J1ðrÞ, Ĝeðr, r0Þ, J2ðr0Þ
D E

¼ J2ðrÞ, Ĝeðr, r0Þ, J1ðr0Þ
D E

¼ J1ðrÞ, Ĝ
t
eðr, r0Þ, J2ðr0Þ

D E ð66Þ

where

JiðrÞ, Ĝeðr, r0Þ, Jjðr0Þ
D E

¼
ð

V

ð

V

dr0drJiðr0Þ � Ĝeðr0, rÞ � JjðrÞ ð66aÞ

is the relation between Ji and the electric field produced by Jj. Notice that the above equation
implies [6]

Ĝ
t
eðr0, rÞ ¼ Ĝeðr, r0Þ ð66bÞ

Then, by taking transpose of Eq. (66b), Eq. (64) becomes

EðrÞ ¼ iωμ
ð

V

dr0Ĝeðr, r0Þ � Jðr0Þ ð67Þ

Alternatively, the dyadic Green function for an unbounded, homogeneous medium can also be
written as
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Ĝeðr, r0Þ ¼ 1
k2

∇ ·∇ · Îgðr� r0Þ � Îδðr� r0Þ
h i

ð68Þ

By substituting Eq. (67) back into Eq. (58) and writing

JðrÞ ¼
ð
dr0Îδðr� r0Þ � Jðr0Þ ð69Þ

we can show quite easily that

∇ ·∇· Ĝeðr, r0Þ�k2Ĝeðr, r0Þ ¼ Îδðr� r0Þ ð70Þ

Equation (64) or (67), due to the ∇∇ operator inside the integration operating on g(r0�r), has a
singularity of 1/|r0�r|3 when r0 ! r. Consequently, it has to be redefined in this case for it does
not converge uniformly, specifically, when r is also in the source region occupied by J(r).
Hence, at this point, the evaluation of Eq. (67) in a source region is undefined.

And as the vector analog of Eq. (16)

Eðr0Þ ¼ ∮
S
dS n ·EðrÞ � ∇· Ĝeðr, r0Þ þ iωμn ·HðrÞ � Ĝeðr, r0Þ
h i

ð71Þ

4.2. The boundary condition

The dyadic Green function is introduced mainly to formulate various canonical electromagnetic
problems in a systematic manner to avoid treatments of many special cases which can be treated
as one general problem [3, 7, 8]. Some typical problems are illustrated in Figure 4 where (a)
shows a current source in the presence of a conducting sphere located in air, (b) shows a
conducting cylinder with an aperture which is excited by some source inside the cylinder, (c)
shows a rectangular waveguide with a current source placed inside the guide, and (d) shows two
semi-infinite isotropic media in contact, such as air and “flat” earth with a current source placed
in one of the regions.

Unless specified otherwise, we assume that for problems involving only one medium such as

(a), (b), and (c) the medium is air, then the wave number k is equal to ωðμ0ε0Þ1=2 ¼ 2π=λ. The
electromagnetic fields in these cases are solutions of the wave Eq. (62) and

∇ ·∇·HðrÞ � k2HðrÞ ¼ ∇ · JðrÞ ð72Þ

The fields must satisfy the boundary conditions required by these problems.

In general, using the notations Ĝe and Ĝm to denote, respectively, the electric and the magnetic
dyadic Green functions; they are solutions of the dyadic differential equations

∇ ·∇· Ĝeðr, r0Þ�k2Ĝeðr, r0Þ ¼ Îδðr� r0Þ ð73Þ

∇ ·∇ · Ĝmðr, r0Þ�k2Ĝmðr, r0Þ ¼ ∇· Îδðr� r0Þ
h i

ð74Þ

is the same as Eq. (70), and there is
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Ĝm ¼ ∇· Ĝe ð75Þ

(a) and (b): Electric dyadic Green function (the first kind, using the subscript 1 denotes Ĝe1, Ĝm1,
and the subscript “0” represents the free-space condition that the environment does not have any
scattering object) is required to satisfy the dyadic Dirichlet condition on Sd, namely,

n · Ĝe1 ¼ 0,n · Ĝm1 ¼ 0 ð76Þ

So, for (a)

Eðr0Þ ¼
ð
drJðrÞ � Ĝeðr, r0Þ ð77Þ

and for (b)

Eðr0Þ ¼ ∮
SA

dSn ·EðrÞ �∇ · Ĝeðr, r0Þ ð78Þ

(c) the electric dyadic Green function is required to satisfy the dyadic boundary condition on Sd,
namely,

n ·∇ · Ĝe2 ¼ 0 n ·∇ · Ĝm2 ¼ 0 ð79Þ

Hðr0Þ ¼
ð
drJðrÞ � ∇ · Ĝeðr, r0Þ ð80Þ

Figure 4. Some typical boundary value problems.
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So, for (a)

Eðr0Þ ¼
ð
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(d) For problems involving two isotropic media such as the configuration shown in Figure 4d,
there are two sets of fields [9]. The wave numbers in these two regions are denoted by

k1 ¼ ωðμ1ε1Þ1=2 and k2 ¼ ωðμ2ε2Þ1=2. There are four functions for the dyadic Green function of
the electric type and another four functions for the magnetic type, denoted, respectively, by

Ĝ
11
e Ĝ

12
e Ĝ

21
e and Ĝ

22
e , and Ĝ

11
m Ĝ

12
m Ĝ

21
m and Ĝ

22
m . The superscript notation in Ĝ

11
e means that

both the field point and the source point are located in region 1. For Ĝ
21
e , it means that the field

point is located in region 1 and the source point is located in region 2. A current source is
located in region 1 only, and the two sets of wave equations are

∇ ·∇·E1ðrÞ � k2E1ðrÞ ¼ iωμ1J1ðrÞ ð81Þ

∇ ·∇·H1ðrÞ � k2H1ðrÞ ¼ ∇· J1ðrÞ ð82Þ

and

∇ ·∇ ·E2ðrÞ � k2E2ðrÞ ¼ 0 ð83Þ

∇ ·∇·H2ðrÞ � k2H2ðrÞ ¼ 0 ð84Þ

There are

∇ ·∇· Ĝ
11
e ðr, r0Þ�k21Ĝ

11
e ðr, r0Þ ¼ Îδðr� r0Þ ð85Þ

∇·∇ · Ĝ
21
e ðr, r0Þ�k22Ĝ

21
e ðr, r0Þ ¼ 0 ð86Þ

At the interface, the electromagnetic field and the corresponding dyadic Green function satisfy
the following boundary conditions

n · ½Ĝ11
e � Ĝ

21
e � ¼ 0 ð87Þ

n · ½∇· Ĝ
11
e =μ1 � ∇ · Ĝ

21
e =μ2� ¼ 0 ð88Þ

The electric fields are

E1ðr0Þ ¼ iωμ1

ð
drJðrÞ � Ĝ11

e ðr, r0Þ ð89Þ

E2ðr0Þ ¼ iωμ2

ð
drJðrÞ � Ĝ21

e ðr, r0Þ ð90Þ

5. Vector wave functions, L, M, and N

The vector wave functions are the building blocks of the eigenfunction expansions of various
kinds of dyadic Green functions. These functions were first introduced by Hansen [10–12] in
formulating certain electromagnetic problems.Three kinds of vector wave functions, denoted
by L, M, and N, are solutions of the homogeneous vector Helmholtz equation. To derive the
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eigenfunction expansion of the magnetic dyadic Green functions that are solenoidal and satisfy
with the vector wave equation, the L functions are not needed. If we try to find eigenfunction
expansion of the electric dyadic Green functions then the L functions are also needed.

A vector wave function, by definition, is an eigenfunction or a characteristic function, which is
a solution of the homogeneous vector wave equation ∇ ·∇ · F� κ2F ¼ 0.

There are two independent sets of vector wave functions, which can be constructed using the
characteristic function pertaining to a scalar wave equation as the generating function. One kind
of vectorwave function, called theCartesian or rectilinear vectorwave function, is formed ifwe let

F ¼ ∇ · ðΨ 1cÞ ð91Þ

where ψ1 denotes a characteristic function, which satisfies the scalar wave equation

∇2Ψ þ κ2Ψ ¼ 0 ð92Þ

And c denotes a constant vector, such as x, y, or z. For convenience, we shall designate c as the
piloting vector and Ψ as the generating function. Another kind, designated as the spherical
vector wavefunction, will be introduced later, whereby the piloting vector is identified as the
spherical radial vector R.

Actually, substituting Eq. (91) into Eq. (92), it is

∇ · ½cð∇2Ψ 1 þ κ2Ψ 1Þ� ¼ 0 ð93Þ

The set of functions so obtained

M1 ¼ ∇ · ðΨ 1cÞ ð94Þ

N2 ¼ 1
κ
∇ ·∇· ðΨ 2cÞ ð95Þ

L3 ¼ ∇ðΨ 3Þ ð96Þ

Ψ2,Ψ3 denote the characteristic functions which also satisfy (92) but may be different from the
function used to define M1.

In the following, the expressions for the dyadic Green functions of a rectangular waveguide
will be derived asserting to the vector wave functions. The method and the general procedure
would apply equally well to other bodies (cylindrical waveguide, circular cylinder in free
space, and inhomogeneous media and moving medium).

Figure 5 shows the orientation of the guide with respect to the rectangular coordinate system,
and we will choose the unit vector z to represent the piloting vector c.

The scalar wave function

Ψ ¼ ðA cos kxxþ B sin kxxÞðC cos kyyþD sin kyyÞeihz ð97Þ

where k2x þ k2y þ h2 ¼ κ2.
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There are two independent sets of vector wave functions, which can be constructed using the
characteristic function pertaining to a scalar wave equation as the generating function. One kind
of vectorwave function, called theCartesian or rectilinear vectorwave function, is formed ifwe let

F ¼ ∇ · ðΨ 1cÞ ð91Þ

where ψ1 denotes a characteristic function, which satisfies the scalar wave equation

∇2Ψ þ κ2Ψ ¼ 0 ð92Þ

And c denotes a constant vector, such as x, y, or z. For convenience, we shall designate c as the
piloting vector and Ψ as the generating function. Another kind, designated as the spherical
vector wavefunction, will be introduced later, whereby the piloting vector is identified as the
spherical radial vector R.

Actually, substituting Eq. (91) into Eq. (92), it is

∇ · ½cð∇2Ψ 1 þ κ2Ψ 1Þ� ¼ 0 ð93Þ

The set of functions so obtained

M1 ¼ ∇ · ðΨ 1cÞ ð94Þ

N2 ¼ 1
κ
∇ ·∇· ðΨ 2cÞ ð95Þ

L3 ¼ ∇ðΨ 3Þ ð96Þ

Ψ2,Ψ3 denote the characteristic functions which also satisfy (92) but may be different from the
function used to define M1.

In the following, the expressions for the dyadic Green functions of a rectangular waveguide
will be derived asserting to the vector wave functions. The method and the general procedure
would apply equally well to other bodies (cylindrical waveguide, circular cylinder in free
space, and inhomogeneous media and moving medium).

Figure 5 shows the orientation of the guide with respect to the rectangular coordinate system,
and we will choose the unit vector z to represent the piloting vector c.

The scalar wave function

Ψ ¼ ðA cos kxxþ B sin kxxÞðC cos kyyþD sin kyyÞeihz ð97Þ

where k2x þ k2y þ h2 ¼ κ2.
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the constants kx and ky should have the following characteristic values

kx ¼ mπ
a

,m ¼ 0, 1,⋯ ð98Þ

ky ¼ nπ
b
, n ¼ 0, 1,⋯ ð99Þ

The complete expression and the notation for the set of functions M, which satisfy the vector
Dirichlet condition are

MemnðhÞ ¼ ∇ · ½Ψ emnz�
¼ ð�kyCxSyxþ kxCySxyÞeihz ð100Þ

where Sx ¼ sin kxx, Cx ¼ cos kxx, Sy ¼ sin kyy, Cy ¼ cos kyy. The subscript “e” attached to
Memn is an abbreviation for the word “even,” and “o” for “odd.”

In a similar manner

Nomn ¼ 1
κ
ðihkxCxSyxþ ihkyCySxyþ ðk2x þ k2yÞSxSyzÞeihz ð101Þ

It is obvious that Memn represents the electric field of the TEmn mode, while Nomn represents
that of the TMmn mode.

In summary, the vector wave functions, which can be used to represent the electromagnetic
field inside a rectangular waveguide, are of the form

MeðoÞmn ¼ ∇· ½Ψ eðoÞmnz� ð102Þ

NeðoÞmn ¼ 1
κ
∇·∇ · ½Ψ eðoÞmnz� ð103Þ

Then

Figure 5. A rectangular waveguide.
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Ĝm2ðR,R0 Þ ¼
ðþ∞

�∞
dh
X
m,n

ð2� δ0Þκ
πabðk2x þ k2yÞ

� ½aðhÞNemnðhÞM0
emnð�hÞ þ bðhÞMomnðhÞN0

omnð�hÞ� ð104Þ

where aðhÞ ¼ bðhÞ ¼ 1
κ2�k2

, h ¼ �ðk2 � k2x � k2yÞ1=2and δ0 ¼ 1, m ¼ 0orn ¼ 0
0, m 6¼ 0, n 6¼ 0

�
.

M', N', m', n', h' denote another set of values, which may be distinct or the same as M, N, m, n,
h.

6. Retarded and advanced Green functions

Green function is also utilized to solve the Schrödinger equation in quantum mechanics. Being
completely equivalent to the Landauer scattering approach, the GF technique has the advan-
tage that it calculates relevant transport quantities (e.g., transmission function) using effective
numerical techniques. Besides, the Green function formalism is well adopted for atomic and
molecular discrete-level systems and can be easily extended to include inelastic and many-
body effects [13, 14].

(A) The definitions of propagators

The time-dependent Schrödinger equation is:

iħ
∂jΨ ðtÞ〉

∂t
¼ Ĥ jΨ ðtÞ〉 ð105Þ

The solution of this equation at time t can be written in terms of the solution at time t0:

jΨ ðtÞ〉 ¼ Ûðt, t0ÞjΨ ðt0Þ〉 ð106Þ

where Ûðt, t0Þ is called the time-evolution operator.

For the case of a time-independent Hermitian Hamiltonian Ĥ , so that the eigenstates
jΨ nðtÞ〉 ¼ e�iEnt=ħjΨ n〉 with energies En are found from the stationary Schrödinger equation

Ĥ jΨ n〉 ¼ EnjΨ n〉 ð107Þ

The eigenfunctions jΨ n〉are orthogonal and normalized, for discrete energy levels 1:

〈ΨmjΨ n〉 ¼ δmn ð108Þ

and form a complete set of states (Î is the unity operator)
X
n
〈Ψ njΨ n〉 ¼ 1 ð109Þ

The time-evolution operator for a time-independent Hamiltonian can be written as
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Ûðt� t0Þ ¼ e�iðt�t0ÞĤ=ħ ð110Þ

This formal solution is difficult to use directly in most cases, but one can obtain the useful

eigenstate representation from it. From the identity Û ¼ Û Î and (107), (109), (110) it follows that

Ûðt� t0Þ ¼
X
n
ei=ħEnðt�t0 ÞjΨ n〉〈Ψ nj ð111Þ

which demonstrates the superposition principle. The wave function at time t is

jΨ ðtÞ〉 ¼ Ûðt, t0ÞjΨ ðt0Þ〉 ¼
X
n
e�i=ħEnðt�t0Þ〈Ψ njΨ ðt0ÞjΨ n〉 ð112Þ

where 〈Ψ njΨ ðt0Þ〉 are the coefficients of the expansion of the initial function jΨ ðt0Þ〉on the basis
of eigenstates.

It is equivalent and more convenient to introduce two Green operators, also called propaga-

tors, retarded Ĝ
Rðt, t0Þ and advanced Ĝ

Aðt, t0Þ:

Ĝ
Rðt, t0Þ ¼ � i

ħ
θðt� t0ÞÛðt, t0Þ ¼ � i

ħ
θðt� t0Þe�iðt�t0ÞĤ=ħ ð113Þ

Ĝ
Aðt, t0Þ ¼ i

ħ
θðt0 � tÞÛðt, t0Þ ¼ i

ħ
θðt0 � tÞe�iðt�t0ÞĤ=ħ ð114Þ

so that at t > t0 one has

jΨ ðtÞ〉 ¼ iħĜ
Rðt� t0ÞjΨ ðt0Þ〉 ð115Þ

while at t < t0 it follows

jΨ ðtÞ〉 ¼ iħĜ
Aðt� t0ÞjΨ ðt0Þ〉 ð116Þ

The operators Ĝ
Rðt, t0Þ at t > t0and Ĝ

Aðt, t0Þ at t < t0 are the solutions of the equation

iħ
∂
∂t

� Ĥ
� �

Ĝ
RðAÞðt, t0Þ ¼ Îδðt� t0Þ ð117Þ

with the boundary conditions Ĝ
Rðt, t0Þ ¼ 0 at t < t0, Ĝ

Aðt, t0Þ ¼ 0 at t > t0. Indeed, at t > t0 Eq. (118)
satisfies the Schrödinger equation Eq. (105) due to Eq. (117). And integrating Eq. (117) from
t ¼ t0 � η to t ¼ t0 þ η where η is an infinitesimally small positive number η ¼ 0þ, one gets

Ĝ
Rðtþ η, t0Þ ¼ 1

iħ
Î ð118Þ

giving correct boundary condition at t = t0. Thus, if the retarded Green operator Ĝ
Rðt, t0Þ is
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known, the time-dependent wave function at any initial condition is found (and makes many
other useful things, as we will see below).

For a time-independent Hamiltonian, the Green function is a function of the time difference
τ ¼ t�t0, and one can consider the Fourier transform

Ĝ
RðAÞðEÞ ¼

ðþ∞

�∞
Ĝ

RðAÞðτÞeiEτ=ħdτ ð119Þ

This transform, however, can not be performed in all cases, because Ĝ
RðAÞðEÞ includes oscillat-

ing terms eiEτ=ħ. To avoid this problem we define the retarded Fourier transform

Ĝ
RðEÞ ¼ lim

η!0þ

ðþ∞

�∞
Ĝ

RðτÞeiðEþiηÞτ=ħdτ ð120Þ

and the advanced one

Ĝ
AðEÞ ¼ lim

η!0þ

ðþ∞

�∞
Ĝ

AðτÞeiðE�iηÞτ=ħdτ ð121Þ

where the limit η! 0 is assumed in the end of calculation. With this addition, the integrals are
convergent. This definition is equivalent to the definition of a retarded (advanced) function as
a function of complex energy variable at the upper (lower) part of the complex plain.

Applying this transform to Eq. (117), the retarded Green operator is

Ĝ
RðEÞ ¼ ½ðEþ iηÞÎ � Ĥ ��1 ð122Þ

The advanced operator Ĝ
AðEÞ is related to the retarded one through

Ĝ
AðEÞ ¼ Ĝ

RþðEÞ ð123Þ

Using the completeness property
X

n
jΨ n〉〈Ψ nj ¼ 1, there is

Ĝ
RðEÞ ¼

X
n

jΨ n〉〈Ψ nj
ðEþ iηÞÎ � Ĥ

ð124Þ

and

Ĝ
RðEÞ ¼

X
n

jΨ n〉〈Ψ nj
E�En þ iη

ð125Þ

Apply the ordinary inverse Fourier transform to Ĝ
RðEÞ, the retarded function becomes

Ĝ
RðτÞ ¼

ðþ∞

�∞
Ĝ

RðEÞe�iEτ=ħ dE
2πħ

¼ � i
ħ
θðτÞ

X
n
e�iEnτ=ħjΨ n〉〈Ψ nj ð126Þ
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The advanced operator Ĝ
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Indeed, a simple pole in the complex E plain is at E ¼ En � iη, the residue in this point determines
the integral at τ > 0 when the integration contour is closed through the lower half-plane, while at
τ < 0 the integration should be closed through the upper half-plane and the integral is zero.

The formalism of retarded Green functions is quite general and can be applied to quantum
systems in an arbitrary representation. For example, in the coordinate system Eq. (124) is

Ĝ
Rðr, r0, EÞ ¼

X
n
〈rjΨ n〉〈Ψ njr0〉

E�En þ iη
¼
X
n

Ψ nðrÞΨ ∗
nðrÞ

E�En þ iη
ð127Þ

(B) Path integral representation of the propagator

In the path integral representation, each path is assigned an amplitude ei
Ð
dtL, L is the Lagrang-

ian function. The propagator is the sum of all the amplitudes associated with the paths
connecting xa and xb (Figure 6). Such a summation is an infinite-dimensional integral.

The propagator satisfies

iGðxb, tb, xa, taÞ ¼
ð
dxiGðxb, tb, x, tÞiGðx, t, xa, taÞ ð128Þ

Let us divide the time interval [ta, tb] into N equal segments, each of length Δt ¼ ðtb � taÞ=N.

iGðxb, tb, xa, taÞ ¼
ð
dx1⋯dxN

YN

j¼1

iGðxj, tj, xj�1, tj�1Þ

¼ AN
ðY

j

dxj exp i
X

ΔtLðtj,
xj þ xj�1

2
,
xj � xj�1

2
Þ

� �

¼
ð
DðxÞei

Ð
dtLðt, x, _xÞ

ð129Þ

Figure 6. The total amplitude is the sum of all amplitudes associated with thee paths connecting xa and xb.
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where ln½iGðxj, tj, xj�1, tj�1Þ� ¼ iΔtLðtj, xjþxj�1

2 , xj�xj�1

2 Þ.
Example: LC circuit-based metamaterials

In this section, we will use the relationship of current and voltage in the LC circuit to build the
propagator of the LC circuit field coupled to an atom.

Figure 7 shows the LC-circuit.The following are valid:

I ¼ � dq
dt

ð130Þ

V ¼ q
C
¼ L

dI
dt

ð131Þ

Thus:

C
d2x
dt2

¼ � x
L

ð132Þ

where x ¼ LI, I is the current, V is the voltage, q is the charge quantity, L and C are the
inductance and capacitance, respectively. Eq. (132) is equal to a harmonic, and the Lagrangian
operator is:

L0ðx, _xÞ ¼ 1
2g

ð _ε2 �Ω2
LCε

2Þ ð133Þ

The Lagrangian operator describing the bipole is:

L0ðx, _xÞ ¼ m
2
_x2 �mΩ2

0

2
x2 ð134Þ

where x is the coordinate of the bipole, ε is the LC field, m is the mass of an electron, and e is
the unit of charge. g ¼ 1

c, and ΩLC ¼ 1ffiffiffiffiffi
LC

p . Defining their action items as:

SLC ¼
ð
dt

1
2g

ð _ε2 �Ω2
LCε

2Þ
� �

ð135Þ

And

S0 ¼
ð
dt

m
2
ð _x2 �Ω2

0x
2Þ

h i
ð136Þ

Taking the coupling effect (exε) into account, the Green function of the coupled system is:

Gðx, εÞ ¼
ð
DxDεeiSLCþiS0þi

Ð dt½exε�
ð137Þ

Where x represents the series coordinates x1,x2,…,and so on and ɛ represents ɛ1,ɛ2,…., and so
on.
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7. The recent applications of the Green function method

7.1. Convergence

In the Green function, the high oscillation of Bessel/Hankel functions in the integrands results
in quite time-consuming integrations along the Sommerfeld integration paths (SIP) which
ensures that the integrands can satisfy the radiation condition in the direction normal to the
interface of a medium. To facilitate the evaluation, the method of moments (MoM) [15], the
steepest descent path (SDP) method, and the discrete complex image method (DCIM) [16, 17]
are very important methods.

The technique for locating the modes is quite necessary for accurately calculating the spatial
Green functions of a layered medium. The path tracking algorithm can obtain all the modes for
the configuration shown in Figure 8, even when region 2 is very thick [18]. Like the method in
Ref. [19], it does not involve a contour integration and could be extended to more complicated
configurations.

The discrete complex image method (DCIM) has been shown to deteriorate sharply for dis-
tances between source and observation points larger than a few wavelengths [20]. So, the total
least squares algorithm (TLSA) is applied to the determination of the proper and improper
poles of spectral domain multilayered Green’s functions that are closer to the branch point and
to the determination of the residues at these poles [21].

The complex-plane kρ for the determination of proper and improper poles is shown in Figure 9.
Since half the ellipse is in the proper sheet of the kρ-plane and half the ellipse is in the improper
sheet, the poles will not only correctly capture the information of the proper poles but will also
capture the information of those improper poles that are closer to the branch point kρ = k0.

For the 2-D dielectric photonic crystals as shown in Figure 10, the integral equation is written
in terms of the unknown equivalent current sources flowing on the surfaces of the periodic

Figure 7. The coupled system, including an LC field and a bipole.
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2-D cylinders. The method of moments is then employed to solve for the unknown current
distributions. The required Green function of the problem is represented in terms of a finite
summation of complex images. It is shown that when the field-point is far from the periodic
sources, it is just sufficient to consider the contribution of the propagating poles in the struc-
ture [22]. This will result in a summation of plane waves that has an even smaller size
compared with the conventional complex images Green function. This provides an analyzed
method for the dielectric periodic structures.

Figure 8. A general configuration with a three-layered medium: region 1 is free space, region 2 is a substrate with
thickness h and relative permittivity ɛr1, and region 3 is a half space with relative permittivity ɛr2.

Figure 9. Elliptic path chosen in the complex kρ-plane when applying the total least squares algorithm. The upper half
ellipse (solid line) is located in the proper Riemman sheet, and the lower half ellipse (dashed line) is located in the
improper sheet.
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Others, since the Gaussian function is an eigenfunction of the Hankel transform operator, for
the microstrip structures, the spectral Green’s function can be expanded into a Gaussian series
[23]. By introducing the mixed-form thin-stratified medium fast-multiple algorithm (MF-TSM-
FMA), which includes the multipole expansion and the plane wave expansion in one
multilevel tree, the different scales of interaction can be separated by the multilevel nature of
the the fast multipole algorithm [24].

The vector wave functions, L, M, and N, are the solutions of the homogeneous vector Helm-
holtz equation. They can also be used for the analyses of the radiation in multilayer and this
method avoids the finite integration in some cases.

7.2. Multilayer structure

The volume integral equation (VIE) can analyze electromagnetic radiation and scattering
problems in inhomogeneous objects. By introducing an “impulse response” Green function,
and invoking Green theorem, the Helmholtz equation can be cast into an equivalent volume
integral equation including the source current or charges distribution. But the number of
unknowns is typically large and the equation should be reformulated if there are in contrast
both permittivity and permeability. At present, it is utilized to analyse the general scatterers in
layered medium [25, 26].

Figure 10. Typical (a) waveguide and (b) directional coupler in a rectangular lattice.
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When the inhomogeneity is one dimension, the Green function can be determined analytically
in the spectral (Fourier) domain, and the spatial domain counterpart can be obtained by
simply inverse Fourier transforming it.

Surface integral equation (SIE) method is another powerful method to handle electromagnetic
problems. Similarly, by introducing the Green function, the Helmholtz equation can be cast
into an equivalent surface integral equation, where the unknowns are pushed to the boundary
of the scatterers [27].

Despite the convergence problem, the locations of the source and observation point may cause
the change of Green function form, for example, for a source location either inside or outside
the medium, the algebraic form of the Green functions changes as the receiver moves vertically
in the direction of stratification from one layer to another [28].

First, we introduce the full-wave computational model [29]. A multilayer structure involving
infinitely 1-D periodic chains of parallel circular cylinders in any given layer can be
constructed as shown in Figure 11. Each layer consists of a homogeneous slab within which
the circular cylinders are embedded. This is the typical aeronautic situation with fiber-
reinforced four-layer pile (with fibers orientated at 0�, 45�, �45�, and 90�), but any other
arrangement is manageable likewise.

In the multilayered photonic crystals, the Rayleig’s method and mode-matching are combined
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and the boundary-element methods (BEM) are used. The two regions are connected such as a
BEM panel is associated with an FEM node on the interface.

A Green function was derived for a layerwise uniform substrate and was then used in a
layerwise nonuniform substrate with additional boundary conditions applied to the interface.
Given that the lateral inhomogeneity is local, volume meshing is used only for the local
inhomogeneous regions, BEM meshing is applied to the surfaces of these local regions.

For a field (observation) point in the jth layer and a source point in the kth layer, the Green
function has the form:

Gu, l
jk ¼ Gu, l

jk,0 þ
X∞
m¼0

mþn6¼0

X∞
n¼0

cmnϕ
u, l
jk

abεkγmn
· cos

mπxf
a

cos
nπyf
b

cos
mπxs
a

cos
nπys
b

ð138Þ

where the superscripts u and l indicate the upper and lower solutions, respectively, depending
on whether the field point (or observation point) is above or below the source point. a and b are
the substrate dimensions in the x- and y- directions, respectively, and more details can be
found in Refs. [31, 32].

The electromagnetic field in a multilayer structure can be efficiently simplified by the assump-
tion that the multilayer is grounded by a perfect electric conducto (PEC) plane [33, 34]. When
the source and the field points are assumed to be inside the dielectric slab, in a layered medium
as shown in Figure 13, by applying the boundary conditions, the 1-D Green functions is

Gxðx, x0;λx1,λx2Þ ¼ ðGPMC
x þ GPEC

x Þ=2 ð139Þ

where PMC represents the perfect magnetic conductor. The simplified Green function form
can be deduced to the cae of (b).

Figure 12. Substrate is divided into homogeneous and inhomogeneous regions in combined BEM/FEM and BEM/FDM
methods.
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The three-dimensional (3-D) Green function for a continuous, linearly stratified planar media,
backed by a PEC ground plane, can also be expressed in terms of a single contour integral
involving one-dimensional (1-D) green function. The constructure is shown in Figure 14.

The general formulation for a single electric current element has been worked out in detail in
Ref. [35] which is based on the appropriate information from Ref. [36].

Figure 13. (a) Geometry of an infinite dielectric slab of thickness d grounded by a PEC plane at x = d. (b) Geometry of a
finite dielectric slab of thickness 2d and height 2L surrounded by regions □ and □.

Figure 14. Representation of the continuous, linearly stratified media by discrete slabs of finite thickness and constant
permittivity, ɛp and permeability μp for the pth layer of thickness hp. The thicknesses, permittivities and permeabilities are
different for each layer.
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Abstract

We discuss the renormalization group approach to fundamental field theoretic models
in low dimensions. We consider the models that are universal and frequently appear in
physics, both in high-energy physics and condensed matter physics. They are the non-
linear sigma model, the φ4 model and the sine-Gordon model. We use the dimensional
regularization method to regularize the divergence and derive renormalization group
equations called the beta functions. The dimensional method is described in detail.

Keywords: renormalization group theory, dimensional regularization, scalar model,
non-linear sigma model, sine-Gordon model

1. Introduction

The renormalization group is a fundamental and powerful tool to investigate the property of
quantum systems [1–15]. The physics of a many-body system is sometimes captured by the
analysis of an effective field theory model [16–19]. Typically, effective field theory models are
the φ4 model, the non-linear sigma model and the sine-Gordon model. Each of these models
represents universality as a representative of a universal class.

The φ4 model is the model of a phase transition, which is often referred to as the Ginzburg-
Landau model. The renormalization of the φ4 model gives a prototype of renormalization
group procedures in field theory [20–24].

The non-linear sigma model appears in various fields of physics [15, 25–27] and is the effective
model of Quantum chromodynamics (QCD) [28] and also that of magnets (ferromagnetic and
anti-ferromagnetic materials) [29–32]. This model exhibits an important property called the

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



asymptotic freedom. The non-linear sigma model is generalized to a model with fields that
take values in a compact Lie group G [33–42]. This is called the chiral model.

The sine-Gordon model also has universality [43–49]. The two-dimensional (2D) sine-Gordon
model describes the Kosterlitz-Thouless transition of the 2D classical XY model [50, 51]. The
2D sine-Gordon model is mapped to the Coulomb gas model where particles interact with
each other through a logarithmic interaction. The Kondo problem [52, 53] also belongs to the
same universality class where the scaling equations are just given by those for the 2D sine-
Gordon model, i.e. the equations for the Kosterlitz-Thouless transition [53–57]. The one-
dimensional Hubbard model is also mapped onto the 2D sine-Gordon model on the basis of a
bosonization method [58, 59]. The Hubbard model is an important model of strongly corre-
lated electrons [60–65]. The Nambu-Goldstone (NG) modes in a multi-gap superconductor
become massive due to the cosine potential, and thus the dynamical property of the NG mode
can be understood by using the sine-Gordon model [66–71]. The sine-Gordon model will play
an important role in layered high-temperature superconductors because the Josephson plasma
oscillation is analysed on the basis of this model [72–75].

In this paper, we discuss the renormalization group theory for the φ4 theory, the non-linear
sigma model and the sine-Gordon model. We use the dimensional regularization procedure to
regularize the divergence [76].

2. φ4 model

2.1. Lagrangian

The φ4 model is given by the Lagrangian

L ¼ 1
2
ð∂μφÞ2 � 1

2
m2φ2 � g

4!
φ4, ð1Þ

where φ is a scalar field and g is the coupling constant. In the unit of the momentum μ, the
dimension of L is given by d, where d is the dimension of the space-time: ½L� ¼ μd. The
dimension of the field φ is ðd� 2Þ=2: ½φ� ¼ μðd�2Þ=2. Because gφ4 has the dimension d, the
dimension of g is given by 4 – d: [g] = μ4 – d. Let us adopt that φ has N components as φ = (φ1,
φ2, …, φN). The interaction term φ4 is defined as

φ4 ¼
XN

i¼1
φ2
i

� �2
: ð2Þ

The Green’s function is defined as

Giðx� yÞ ¼ �i〈0jTφiðxÞφiðyÞj0〉, ð3Þ

where T is the time-ordering operator and |0〉 is the ground state. The Fourier transform of the
Green’s function is

Recent Studies in Perturbation Theory98



asymptotic freedom. The non-linear sigma model is generalized to a model with fields that
take values in a compact Lie group G [33–42]. This is called the chiral model.

The sine-Gordon model also has universality [43–49]. The two-dimensional (2D) sine-Gordon
model describes the Kosterlitz-Thouless transition of the 2D classical XY model [50, 51]. The
2D sine-Gordon model is mapped to the Coulomb gas model where particles interact with
each other through a logarithmic interaction. The Kondo problem [52, 53] also belongs to the
same universality class where the scaling equations are just given by those for the 2D sine-
Gordon model, i.e. the equations for the Kosterlitz-Thouless transition [53–57]. The one-
dimensional Hubbard model is also mapped onto the 2D sine-Gordon model on the basis of a
bosonization method [58, 59]. The Hubbard model is an important model of strongly corre-
lated electrons [60–65]. The Nambu-Goldstone (NG) modes in a multi-gap superconductor
become massive due to the cosine potential, and thus the dynamical property of the NG mode
can be understood by using the sine-Gordon model [66–71]. The sine-Gordon model will play
an important role in layered high-temperature superconductors because the Josephson plasma
oscillation is analysed on the basis of this model [72–75].

In this paper, we discuss the renormalization group theory for the φ4 theory, the non-linear
sigma model and the sine-Gordon model. We use the dimensional regularization procedure to
regularize the divergence [76].

2. φ4 model

2.1. Lagrangian

The φ4 model is given by the Lagrangian

L ¼ 1
2
ð∂μφÞ2 � 1

2
m2φ2 � g

4!
φ4, ð1Þ

where φ is a scalar field and g is the coupling constant. In the unit of the momentum μ, the
dimension of L is given by d, where d is the dimension of the space-time: ½L� ¼ μd. The
dimension of the field φ is ðd� 2Þ=2: ½φ� ¼ μðd�2Þ=2. Because gφ4 has the dimension d, the
dimension of g is given by 4 – d: [g] = μ4 – d. Let us adopt that φ has N components as φ = (φ1,
φ2, …, φN). The interaction term φ4 is defined as

φ4 ¼
XN

i¼1
φ2
i

� �2
: ð2Þ

The Green’s function is defined as

Giðx� yÞ ¼ �i〈0jTφiðxÞφiðyÞj0〉, ð3Þ

where T is the time-ordering operator and |0〉 is the ground state. The Fourier transform of the
Green’s function is

Recent Studies in Perturbation Theory98

GiðpÞ ¼
ð
d dxeip�xGiðxÞ: ð4Þ

In the non-interacting case with g = 0, the Green’s function is given by

Gð0Þ
i ðpÞ ¼ 1

p2 �m2 , ð5Þ

where p2 ¼ ðp0Þ2 � p!
2
for p ¼ ðp0, p

!Þ.
Let us consider the correction to the Green’s function by means of the perturbation theory in
terms of the interaction term gφ4. A diagram that appears in perturbative expansion contains,
in general, L loops, I internal lines and V vertices. They are related by

L ¼ I � V þ 1: ð6Þ

There are L degrees of freedom for momentum integration. The degree of divergence D is
given by

D ¼ d � L� 2I: ð7Þ

We have a logarithmic divergence whenD = 0. Let E be the number of external lines. We obtain

4V ¼ Eþ 2I: ð8Þ

Then, the degree of divergence is written as

D ¼ d � L� 2I ¼ dþ ðd� 4ÞV þ 1� d
2

� �
E: ð9Þ

In four dimensions d = 4, the degree of divergence D is independent of the numbers of internal
lines and vertices

D ¼ 4� E ð10Þ

When the diagram has four external lines, E = 4, we obtainD = 0 which indicates that we have a
logarithmic (zero-order) divergence. This divergence can be renormalized.

Let us consider the Lagrangian with bare quantities

L ¼ 1
2
ð∂μφ0Þ2 �

1
2
m2

0φ
2
0 �

1
4!
g0φ

4
0, ð11Þ

where φ0 denotes the bare field, g0 denotes the bare coupling constant andm0 is the bare mass. We
introduce the renormalized field φ, the renormalized coupling constant g and the renormalized
mass m. They are defined by
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φ0 ¼
ffiffiffiffiffiffi
Zφ

q
φ, ð12Þ

g0 ¼ Zgg, ð13Þ

m2
0 ¼ m2Z2=Zφ, ð14Þ

where Zφ, Zg and Z2 are renormalization constants. When we write Zg as

Zg ¼ Z4=Z2
φ, ð15Þ

we have g0Z
2
φ ¼ gZ4. Then, the Lagrangian is written by means of renormalized field and

constants

L ¼ 1
2
Zφð∂μφÞ2 � 1

2
m2Z2φ2 � 1

4!
gZ4φ4: ð16Þ

2.2. Regularization of divergences

2.2.1. Two-point function

We use the perturbation theory in terms of the interaction gφ4. For a multi-component scalar
field theory, it is convenient to express the interaction φ4 as in Figure 1, where the dashed line
indicates the coupling g. We first examine the massless case with m ! 0. Let us consider the

renormalization of the two-point function Γð2ÞðpÞ ¼ iGðpÞ�1. The contributions to Γ(2) are
shown in Figure 1. The first term indicates p2Zφ and the contribution in the second term is
represented by the integral

I ¼
ð

d dq

ð2πÞd
1

q2 �m2 : ð17Þ

Using the Euclidean co-ordinate q4 = –iq0, this integral is evaluated as

I ¼ �i
Ωd

ð2πÞd
md�2 1

2
Γ

d
2

� �
Γ 1� d

2

� �
, ð18Þ

whereΩd is the solid angle in d dimensions. For d > 2, the integral I vanishes in the limitm! 0.
Thus, the mass remains zero in the massless case. We do not consider mass renormalization in
the massless case. Let us examine the third term in Figure 2.

There are 42 � 2N þ 42 � 22 ¼ 32N þ 64 ways to connect lines for an N-component scalar field to
form the third diagram in Figure 2. This is seen by noticing that this diagram is represented as
a sum of two terms in Figure 3.

The number of ways to connect lines is 32N for (a) and 64 for (b). Then we have the factor from
these contributions as
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form the third diagram in Figure 2. This is seen by noticing that this diagram is represented as
a sum of two terms in Figure 3.

The number of ways to connect lines is 32N for (a) and 64 for (b). Then we have the factor from
these contributions as
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1
4!
g

� �2

ð32N þ 64Þ ¼ N þ 2
18

g2: ð19Þ

The momentum integral of this term is given as

JðkÞ :¼
ð

d dp

ð2πÞd
ddq

ð2πÞd
1

p2q2ðpþ qþ kÞ2 : ð20Þ

The integral J exhibits a divergence in four dimensions d = 4. We separate the divergence as 1/E
by adopting d = 4 – E. The divergent part is regularized as

J ¼ � 1
8π2

� �2 1
8E

þ regular terms ð21Þ

To obtain this, we first perform the integral with respect to q by using

=

φi

φi

φj

φj

φi

φi

φj

φj

Figure 1. φ4 interaction with the coupling constant g.

++

Figure 2. The contributions to the two-point function Γð2ÞðpÞ up to the order of g2.

(a () b)

Figure 3. The third term in Figure 2 is a sum of two configurations (a) and (b).

Renormalization Group Theory of Effective Field Theory Models in Low Dimensions
http://dx.doi.org/10.5772/intechopen.68214

101



1

q2ðpþ qþ kÞ2 ¼
ð1
0
dx

1

½q2xþ ðpþ qþ kÞ2ð1� xÞ�2 : ð22Þ

For q0 = q + (1 – x)(p + k), we have

ð
ddq

ð2πÞd
1

q2ðpþ qþ kÞ2 ¼
ð

ddq0

ð2πÞd
ð1
0
dx

1

½q0 2 þ xð1� xÞðpþ kÞ2�2

¼ Ωd

ð2πÞd
ð1
0
dx
�
xð1� xÞ

�d
2�2 �

ðpþ kÞ2
�d

2�2
ð∞
0
drrd�1 1

ðr2 þ 1Þ2

¼ Ωd

ð2πÞd
1
2
Γ

d
2

� �
Γ 2� d

2

� �
Γ

d
2
� 1

� �2 1
Γðd� 2Þ

�
ðpþ kÞ2

�d
2�2

:

ð23Þ

Here, the following parameter formula was used

1
AnBm ¼ ΓðnþmÞ

ΓðnÞΓðmÞ
ð1
0
dx

xn�1ð1� xÞm�1

½xAþ ð1� xÞB�nþm : ð24Þ

Then, we obtain

ð
ddp

ð2πÞd
1

p2
�
ðpþ kÞ2

�2�d=2 ¼
Γð3� d=2Þ
Γð2� d=2Þ

ð1
0
dxð1� xÞ1�d=2

ð
ddp0

ð2πÞd
1

½p02 þ xð1� xÞk2�3�d=2

¼ Ωd

ð2πÞd
Γð3� d=2Þ

�

Γð2� d=2Þ B d� 2,
d
2
� 1

� �
1
2
B

d
2
, 3� d

� �
ðk2Þd�3:

ð25Þ

Here B(p, q) = Γ(p)Γ(q)/Γ(p+q). We use the formula

ΓðEÞ ¼ 1
E
þ finite terms ð26Þ

for E ! 0. This results in

ð
ddp

ð2πÞd
ddq

ð2πÞd
1

p2q2ðpþ qþ kÞ2 ¼ � 1
8π2

� �2 1
8E

k2 þ regular terms ð27Þ

Therefore, the two-point function is evaluated as

Γð2ÞðpÞ ¼ Zφp2 þ 1
8E

N þ 2
18

g
8π2

� �2
p2, ð28Þ

up to the order of O(g2). In order to cancel the divergence, we choose Zφ as

Zφ ¼ 1� 1
8E

N þ 2
18

1
8π2

� �2

g2: ð29Þ
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8E
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Therefore, the two-point function is evaluated as

Γð2ÞðpÞ ¼ Zφp2 þ 1
8E
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g
8π2

� �2
p2, ð28Þ

up to the order of O(g2). In order to cancel the divergence, we choose Zφ as

Zφ ¼ 1� 1
8E
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8π2

� �2
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2.2.2. Four-point function

Let us turn to the renormalization of the interaction term g4. The perturbative expansion of the

four-point function is shown in Figure 4. The diagram (b) in Figure 4, denoted as ΔΓð4Þb , is given
by for N = 1:

ΔΓð4Þ
b ðpÞ ¼ g2

1
2

ð
ddq

ð2πÞd
1

ðq2 �m2Þ
�
ððpþ qÞ2 �m2

� : ð30Þ

As in the calculation of the two-point function, this is regularized as

ΔΓð4Þ
b ðpÞ ¼ i

1
8π2

1
2E

g2, ð31Þ

for d = 4 – E. Let us evaluate the multiplicity of this contribution for N > 1. For N = 1, we have a
factor 42322/4!4!=1/2 as shown in Eq. (30). Figure 4c and d gives the same contribution as in
Eq. (31), giving the factor 3/2. For N > 1, there is a summation with respect to the components
of φ. We have the multiplicity factor for the diagram in Figure 4b as

1
4!

� �2

22222N ¼ N
18

: ð32Þ

Since we obtain the same factor for diagrams in Figure 4c and d, we have N/6 in total. We
subtract 1/6 for N = 1 from 3/2 to have 8/6. Finally, the multiplicity factor is given by (N + 8)/6.
Then, the four-point function is regularized as

ΔΓð4ÞðpÞ ¼ i
1

8π2

N þ 8
6

1
E
g2: ð33Þ

Because g has the dimension 4 – d such as [g] = μ4–d, we write g as gμ4–d so that g is the
dimensionless coupling constant. Now, we have

Γð4ÞðpÞ ¼ �igZ4μE þ i
1

8π2

N þ 8
6

1
E
g2: ð34Þ

for d = 4 – Ewhere we neglect μE in the second term. The renormalization constant is determined as

= + + +

(a) (b) (c) (d)

Figure 4. Diagrams for four-point function.
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Z4 ¼ 1þN þ 8
6E

1
8π2 g: ð35Þ

As a result, the four-point function Γ(4) becomes finite.

2.3. Beta function β(g)

The bare coupling constant is written as g0 ¼ Zggμ4�d ¼ ðZ4=Z2
φÞgμ4�d. Since g0 is independent

of the energy scale, μ, we have μ∂g0=∂μ ¼ 0. This results in

μ
∂g
∂μ

¼ ðd� 4Þg� gμ
∂g
∂μ

∂lnZg

∂g
, ð36Þ

where Zg ¼ Z4=Z2
φ. We define the beta function for g as

βðgÞ ¼ μ
∂g
∂μ

, ð37Þ

where the derivative is evaluated under the condition that the bare g0 is fixed. Because

Zg ¼ 1þN þ 8
6E

1
8π2 gþOðg2Þ, ð38Þ

the beta function is given as

βðgÞ ¼ �Eg

1þ g ∂ lnZg

∂g

¼ �EgþN þ 8
6

1
8π2 g

2 þOðg3Þ: ð39Þ

β(g) up to the order of g2 is shown as a function of g for d < 4 in Figure 5. For d < 4, there is a
non-trivial fixed point at

gc ¼ E
48π2

N þ 8
: ð40Þ

For d = 4, we have only a trivial fixed point at g = 0.

For d = 4 and N = 1, the beta function is given by

βðgÞ ¼ 3
16π2 g

2 þ ⋯: ð41Þ

In this case, the β(g) has been calculated up to the fifth order of g [77]:

βðgÞ ¼ 3
16π2 g

2 � 17
3

1

ð16π2Þ2 g
3 þ 145

8
þ 12ζð3Þ

� �
1

ð16π2Þ3 g
4 þ A5

1

ð16π2Þ4 g
5, ð42Þ

where
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A5 ¼ � 3499
48

þ 78ζð3Þ � 18ζð4Þ þ 120ζð5Þ
� �

, ð43Þ

and ζ(n) is the Riemann zeta function. The renormalization constant Zg and the beta function
β(g) are obtained as a power series of g. We express Zg as

Zg ¼ 1þN þ 8
6E

gþ b1
E2

þ b2
E

� �
g2 þ c1

E3
þ c2

E2
þ c3

E

� �
g3 þ⋯, ð44Þ

and then β(g) is written as

βðgÞ ¼ �Egþ Eg2
N þ 8
6E

þ 2
b1
E2

þ b2
E

� �
gþ ðN þ 8Þ2

36E2
gþ⋯

" #

¼ �EgþN þ 8
6

g2 � 9N þ 42
36

g3 þ ⋯

ð45Þ

Here, the factor 1/8π2 is included in g. The terms of order 1/E2 are cancelled because of

b1 ¼ �ðN þ 8Þ2
72

: ð46Þ

In general, the nth order term in β(g) is given by n!gn. The function β(g) is expected to have the
form

βðgÞ ¼ �EgþN þ 8
6

g2 þ ⋯þ n!annbcgn þ ⋯, ð47Þ

where a, b and c are constants.

Figure 5. The beta function of g for d < 4. There is a finite fixed point gc.
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2.4. n-point function and anomalous dimension

Let us consider the n-point function Γ(n). The bare and renormalized n-point functions are

denoted as ΓðnÞ
B ðpi, g0, m0,μÞ and ΓðnÞR ðpi, g, m,μÞ, respectively, where pi (i = 1,…, n) indicate

momenta. The energy scale μ indicates the renormalization point. ΓðnÞ
R has the mass dimension

n + d – nd/2: ½ΓðnÞ
R � ¼ μnþd�nd=2. These quantities are related by the renormalization constant Zφ as

ΓðnÞ
R ðpi, g, m2,μÞ ¼ Zn=2

φ ΓðnÞ
B ðpi, g0, m2

0,μÞ: ð48Þ

Here, we consider the massless case and omit the mass. Because the bare quantity ΓðnÞB is
independent of μ, we have

d
dμ

ΓðnÞB ¼ 0: ð49Þ

This leads to

μ
d
dμ

�
Z�n=2
φ ΓðnÞ

R

�
¼ 0: ð50Þ

Then we obtain the equation for ΓðnÞR :

μ
∂
∂μ

þ μ
∂g
∂μ

∂
∂g

� n
2
γφ

� �
ΓðnÞR ðpi, g,μÞ ¼ 0; ð51Þ

where γφ is defined as

γφ ¼ μ
∂
∂μ

lnZφ: ð52Þ

A general solution of the renormalization equation is written as

ΓðnÞ
R ðpi, g,μÞ ¼ exp

n
2

ðg

g1

γφðg0Þ
βðg0Þ dg0

0
B@

1
CAf ðnÞðpi, g,μÞ, ð53Þ

where

f ðnÞðpi, g,μÞ ¼ F pi, lnμ�
ðg
g1

1
βðg0 Þ dg

0
 !

, ð54Þ

for a function F and a constant g1. We suppose that β(g) has a zero at g = gc. Near the fixed point

gc, by approximating γφðg0Þ by γφðgcÞ, ΓðnÞ
R is expressed as
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ΓðnÞR ðpi, gc,μÞ ¼ μ
n
2γφðgcÞf ðnÞðpi, gc,μÞ: ð55Þ

In general, we define γ(g) as

γðgÞlnμ ¼
ðg

g1

γφðg0Þ
βðg0Þ dg0, ð56Þ

Then, we obtain

ΓðnÞR ðpi, g,μÞ ¼ μ
n
2γðgÞf ðnÞðpi, g,μÞ: ð57Þ

Under a scaling pi ! ρpi, Γ
ðnÞ
R is expected to behave as

ΓðnÞ
R ðρpi, gc, μÞ ¼ ρnþd�nd=2ΓðnÞ

R ðpi, gc, μ=ρÞ, ð58Þ

because ΓðnÞR has the mass dimension nþ d� nd=2. In fact, Figure 4b gives a contribution being
proportional to

g2ðμ4�dÞ2
ð
ddq

1

q2ðρpþ qÞ2 ¼ g2ðμ4�dÞ2ρd�4
ð
ddq

1

q2ðpþ qÞ2

¼ ρ4�dg2 μ
ρ

� �2ð4�dÞð
ddq

1

q2ðpþ qÞ2 ,
ð59Þ

after the scaling pi ! ρpi for n = 4. We employ Eq. (58) for n = 2

Γð2Þ
R ðρpi, gc, μÞ ¼ ρ2Γð2Þ

R ðpi, gc, μ=ρÞ ¼ ρ2 μ
ρ

� �γ
f ð2Þðpi, gc, μ=ρÞ

¼ ρ2�γμγf ð2Þðpi, gc, μ=ρÞ ¼ ρ2�γΓð2Þ
R ðpi, gc, μ=ρÞ:

ð60Þ

This indicates

Γð2ÞðpÞ ¼ p2�η ¼ p2�γ ¼ ðp2Þ1�γ=2: ð61Þ

Thus, the anomalous dimension η is given by η = γ. From the definition of γ(g) in Eq. (56), we
have

γφðgÞ ¼ γðgÞ þ βðgÞ ∂γðgÞ
∂g

ln μ: ð62Þ

At the fixed point g = gc, this leads to

η ¼ γ ¼ γðgcÞ ¼ γφðgcÞ: ð63Þ

The exponent η shows the fluctuation effect near the critical point.

The Green’s function GðpÞ ¼ Γð2ÞðpÞ�1 is given by
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GðpÞ ¼ 1
p2�η: ð64Þ

The Fourier transform of G(p) in d dimensions is evaluated as

GðrÞ ¼
ð

1
p2�η e

ip�rddp ¼ Ωd
1

rd�2þη

π

2Γð4� η� dÞ sin
�
ð4� η� dÞπ=2

� : ð65Þ

When 4 – η – d is small near four dimensions, G(r) is approximated as

GðrÞ ≈ Ωd
1

rd�2þη : ð66Þ

The definition of γφ in Eq. (52) results in

γφðgÞ ¼ μ
∂g
∂μ

∂
∂g

lnZφ ¼ βðgÞ ∂
∂g

lnZφ: ð67Þ

Up to the lowest order of g, γφ is given by

γφ ¼ � 1
8E

N þ 1
9

1

ð8π2Þ2 g
 !

βðgÞ þ Oðg3Þ

¼ N þ 2
72

1

ð8π2Þ2 g
2 þ Oðg3Þ:

ð68Þ

At the critical point g = gc, where

1
8π2 gc ¼

6∈
N þ 8

, ð69Þ

the anomalous dimension is given as

η ¼ γφðgcÞ ¼
N þ 2

2ðN þ 8Þ2 E
2 þOðE3Þ: ð70Þ

For N = 1 and E = 1, we have η = 1/54.

2.5. Mass renormalization

Let us consider the massive case m 6¼ 0. This corresponds to the case with T > Tc in a phase
transition. The bare mass m0 m and renormalized mass m are related through the relation
m2 ¼ m2

0Zφ=Z2. The condition μ ∂m0=∂μ ¼ 0 leads to
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m2 ¼ m2

0Zφ=Z2. The condition μ ∂m0=∂μ ¼ 0 leads to
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μ
∂lnm
∂μ

¼ μ
∂
∂μ

ln
Zφ

Z2
: ð71Þ

From Eq. (50), the equation for ΓðnÞR is

μ
∂
∂μ

þ βðgÞ ∂
∂g

� n
2
γφ þ μ

∂
∂μ

ln
Zφ

Z2

� �
�m2 ∂

∂m2

� �
ΓðnÞR ðpi, g, μ, m2Þ ¼ 0: ð72Þ

We define the exponent ν by

1
ν
� 2 ¼ μ

∂
∂μ

ln
Z2

Zφ

� �
, ð73Þ

then

μ
∂
∂μ

þ βðgÞ ∂
∂g

� n
2
γφ � 1

ν
� 2

� �
m2 ∂

∂m2

� �
ΓðnÞR ðpi, g, μ, m2Þ ¼ 0: ð74Þ

At the critical point g = gc, we obtain

μ
∂
∂μ

� n
2
η� ζm2 ∂

∂m2

� �
ΓðnÞR ðpi, gc, μ, m2Þ ¼ 0, ð75Þ

where γφ = η and we set

ζ ¼ 1
ν
� 2: ð76Þ

At g = gc, Γ
ðnÞ
R has the form

ΓðnÞ
R ðpi, gc, μ, m2Þ ¼ μ

n
2FðnÞðpi, μm2=ζÞ: ð77Þ

because this satisfies Eq. (75).

In the scaling pi ! ρpi, we adopt

ΓðnÞ
R ðρpi, gc, μ, m2Þ ¼ ρnþd�nd=2ΓðnÞ

R ðpi, gc, μ=ρ, m2=ρ2Þ: ð78Þ

From Eq. (77), we have

ΓðnÞR ðki, gc, μ, m2Þ ¼ ρnþd�nd=2�nη=2μ
n
2ηFðnÞ

�
ρ�1ki, ρ�1μðρ�2m2Þ1=ζ

�
, ð79Þ

where we put ρpi ¼ ki. We assume that F(n) depends only on ρ�1ki. We choose ρ as

ρ ¼ ðμm2=ζÞζ=ðζþ2Þ ¼ μ
m2

μ2

� �1=ðζþ2Þ
: ð80Þ

This satisfies ρ�1μðρ�2m2Þ1=ς ¼ 1 and results in
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ΓðnÞ
R ðki, gc, μ, m2Þ ¼ μdþn

2ð2�d�ηÞ m2

μ2

� �{dþn
2ð2�d�ηÞ} 1

ζþ2

μ
n
2ηFðnÞ μ�1 m2

μ2

� �� 1
ζþ2

ki

 !
: ð81Þ

We take μ as a unit by setting μ = 1, so that ΓðnÞR is written as

ΓðnÞ
R ðki, gc, 1, m2Þ ¼ m2ν dþn

2ð2�dþηÞf gFðnÞðkim�2νÞ, ð82Þ

because ςþ 2 ¼ 1=ν. We can define the correlation length ξ by

ðm2Þ�ν ¼ ξ: ð83Þ

The two-point function is written as

Γð2Þ
R ðk,m2Þ ¼ m2νð2�ηÞFð2Þðkm�2νÞ: ð84Þ

Now let us turn to the evaluation of ν. Since γφ ¼ μ ∂ lnZφ=∂μ, from Eq. (73) ν is given by

1
ν
¼ 2þ μ

∂
∂μ

ln
Z2

Zφ

� �
¼ 2þ βðgÞ ∂

∂g
lnZ2 � γφðgÞ: ð85Þ

The renormalization constant Z2 is determined from the corrections to the bare mass m0. The
one-loop correction, shown in Figure 6, is given by

Σðp2Þ ¼ i
N þ 2

6
g
ð

ddk

ð2πÞd
1

k2 �m2
0

, ð86Þ

where the multiplicity factor is (8 + 4N)/4!. This is regularized as

Σðp2Þ ¼ N þ 2
6

g
ð

ddk

ð2πÞd
1

k2E þm2
0

¼ �N þ 2
6

g
1

8π2 m
2
0
1
E
, ð87Þ

for d = 4–E. Therefore the renormalized mass is

= +

(a () b)

Figure 6. Corrections to the mass term. Multiplicity weights are 8 for (a) and 2N for (b).
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m2 ¼ m2
0 þ Σðp2Þ ¼ m2

0 1�N þ 2
6E

1
8π2 g

� �
ð88Þ

Z2 is determined to cancel the divergence in the form m2Z2/Zφ. The result is

Z2 ¼ 1þN þ 2
6E

1
8π2 g: ð89Þ

Then, we have

βðgÞ ∂
∂g

lnZ2 ¼ �N þ 2
6

1
8π2 gþOðg2Þ: ð90Þ

Eq. (85) is written as

1
ν

¼ 2�N þ 2
6

1
8π2 gc � η ¼ 2�N þ 2

N þ 8
EþOðE2Þ, ð91Þ

where we put g = gc and used η ¼ γφðgÞ ¼ ðN þ 2Þ=
�
2ðN þ 8Þ2

�
� E. Now the exponent ν is

ν ¼ 1
2

1þ N þ 2
2ðN þ 8Þ E

� �
þOðE2Þ: ð92Þ

In the mean-field approximation, ν = 1/2. This formula of ν contains the fluctuation effect near
the critical point. For N = 1 and E = 1, we have ν = 1/2 + 1/12 = 7/12.

3. Non-linear sigma model

3.1. Lagrangian

The Lagrangian of the non-linear sigma model is

L ¼ 1
2g

ð∂μφÞ2, ð93Þ

where φ is a real N-component field φ = (φ1,…,φN) with the constraint φ2 = 1. This model has
an O(N) invariance. The field φ is represented as

φ ¼ ðσ, π1, π2, ⋯, πN�1Þ ð94Þ

with the condition ο2 þ π2
1 þ⋯þ π2

N�1 ¼ 1. The fields πi (i = 1, …, N – 1) are regarded as
representing fluctuations. The Lagrangian is given by
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L ¼ 1
2g

fð∂μσÞ2 þ ð∂μπiÞ2g, ð95Þ

where summation is assumed for index i. In this Section we consider the Euclidean Lagrangian
from the beginning. Using the constraint σ2 þ π2

i ¼ 1, the Lagrangian is written in the form

L ¼ 1
2g

ð∂μπiÞ2 þ 1
2g

1
1� π2

i
ðπi∂μπiÞ2 ð96Þ

¼ 1
2g

ð∂μπiÞ2 þ 1
2g

ðπi∂μπiÞ2 þ ⋯ ð97Þ

The second term in the right-hand side indicates the interaction between πi fields. The diagram
for this interaction is shown in Figure 7.

Here, let us check the dimension of the field and coupling constant. Since ½L� ¼ μd, we obtain
½π� ¼ μ0 (dimensionless) and ½g� ¼ μ2�d. g0 and g are used to denote the bare coupling constant
and renormalized coupling constant, respectively. The bare and renormalized fields are indi-
cated by πBi and πRi, respectively. We define the renormalization constants Zg and Z by

g0 ¼ gμ2�dZg, ð98Þ

πBi ¼
ffiffiffiffiffi
Z

p
πRi ð99Þ

where g is the dimensionless coupling constant. Then, the Lagrangian is expressed in terms of
renormalized quantities:

L ¼ μd�2Z
2gZg

ð∂μπRiÞ2 þ 1
4
ð∂μπ2

RiÞ2 þ ⋯
� �

: ð100Þ

In order to avoid the infrared divergence at d = 2, we add the Zeeman term to the Lagrangian
which is written as

p

− p+ q

p'

− p'− q

qµ − qµ

Figure 7. Lowest order interaction for πi.
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LZ ¼ HB

g0
σ ¼ HB

g0
1� Z

2
π2
Ri �

Z2

8
π4
Ri þ ⋯

� �
ð101Þ

¼ const: � HB
Z

2gZg
μd�2π2

Ri � HB
Z2

8gZg
μd�2ðπ2

RiÞ2: ð102Þ

Here, HB is the bare magnetic field and the renormalized magnetic field H is defined as

H ¼
ffiffiffiffi
Z

p

Zg
HB ð103Þ

Then, the Zeeman term is given by

Lz ¼ const: �
ffiffiffiffi
Z

p

2g
Hμd�2π2

Ri �
Z

3
2

8g
Hμd�2ðπ2

RiÞ2 þ ⋯: ð104Þ

3.2. Two-point function

The diagrams for the two-point function Γð2ÞðpÞ ¼ Gð2ÞðpÞ�1 are shown in Figure 8. The contri-
butions in Figure 8c and d come from the magnetic field. Figure 8b presents

Ib ¼
ð

ddk

ð2πÞd
ðkþ pÞ2
k2 þH

¼ ðp2 �HÞ
ð

ddk

ð2πÞd
1

k2 þH’
ð105Þ

where we used the formula in the dimensional regularization given as

ð
ddk ¼ 0: ð106Þ

Near two dimensions, d = 2 + E, the integral is regularized as

Ib ¼ ðp2 �HÞ Ωd

ð2πÞd
H

d
2�1Γ

d
2

� �
Γ 1� d

2

� �
¼ �ðp2 �HÞ Ωd

ð2πÞd
1
E
: ð107Þ

The H-term Ic in Figure 8c just cancels with –H in Ib. The contribution Id in Figure 8d has the
multiplicity 2 � 2 � ðN � 1Þ because (πi) has N – 1 components. Id is evaluated as

Ic ¼ 1
8
� 4ðN � 1Þ

ð
ddk

ð2πÞd
1

k2 þH
¼ � Ωd

ð2πÞd
N � 1

2
1
E
: ð108Þ

As a result, up to the one-loop-order the two-point function is
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Γð2ÞðpÞ ¼ Z
Zgg

p2 þ
ffiffiffiffi
Z

p

g
H � 1

E
p2 þN � 1

2
H

� �
, ð109Þ

where the factor Ωd=ð2πÞd is included in g for simplicity. To remove the divergence, we choose

Z
Zg

¼ 1þ g
E
, ð110Þ

ffiffiffiffi
Z

p
¼ 1þN � 1

2E
g: ð111Þ

This set of equations indicates

Zg ¼ 1þN � 1
E

gþOðg2Þ, ð112Þ

Z ¼ 1 þ N � 1
E

gþOðg2Þ: ð113Þ

The case N = 2 is s special case, where we have Zg = 1. This will hold even when including
higher order corrections. For N = 2, we have one π field satisfying

σ2 þ π2 ¼ 1 ð114Þ

When we represent σ and π as σ = cos θ and π = sin θ, the Lagrangian is

L ¼ 1
2g

fð∂μσÞ2 þ ð∂μπÞ2g ¼ 1
2g

ð∂μθÞ2: ð115Þ

If we disregard the region of θ, 0 ≤θ ≤ 2π, the field θ is a free field suggesting that Zg = 1.

3.3. Renormalization group equations

The beta function β(g) of the coupling constant g is defined by

βðgÞ ¼ μ
∂g
∂μ

, ð116Þ

where the bare quantities are fixed in calculating the derivative. Since μ ∂ g0=∂μ ¼ 0, the beta
function is derived as

++ +

(a () b () c) (d)

HH

Figure 8. Diagrams for the two-point function. The diagrams (c) and (d) come from the Zeeman term.
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p
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E
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2
H
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βðgÞ ¼ Eg
1þ g ∂

∂g lnZg
¼ Eg� ðN � 2Þg2 þOðg3Þ; ð117Þ

for d = 2 + E. The beta function is shown in Figure 9 as a function of g. We mention here that the
coefficient N – 2 of g2 term is related with the Casimir invariant of the symmetry group O(N)
[34, 49].

In the case of N = 2 and d = 2, β(g) vanishes. This case corresponds to the classical XY model as
mentioned above and there may be a Kosterlitz-Thouless transition. The Kosterlitz-Thouless
transition point cannot be obtained by a perturbation expansion in g.

In two dimensions d = 2, β(g) shows asymptotic freedom for N > 2. The coupling constant g
approaches zero in high-energy limit μ ! ∞ in a similar way to QCD. For N = 1, g increases as
μ ! ∞ as in the case of QED. When d > 2, there is a fixed point gc:

gc ¼
E

N � 2
, ð118Þ

for N > 2. There is a phase transition for N > 2 and d > 2.

Let us consider the n-point function ΓðnÞðki, g, μ, HÞ. The bare and renormalized n-point
functions are introduced similarly and they are related by the renormalization constant Z

ΓðnÞR ðki, g, μ, HÞ ¼ Zn=2ΓðnÞ
B ðki, g, μ, HÞ: ð119Þ

From the condition that the bare function ΓðnÞ
B is independent of μ, μ d ΓðnÞ

B =dμ ¼ 0, the
renormalization group equation is followed

μ
∂
∂μ

þ μ
∂g
∂μ

∂
∂g

� n
2
ζðgÞ þ 1

2
ζðgÞ þ 1

g
βðgÞ � ðd� 2Þ

� �
H

∂
∂H

� �
ΓðnÞR ðki, g, μ, HÞ ¼ 0, ð120Þ

where we defined

(a) (b)

Figure 9. The beta function β(g) as a function of g for d = 2 (a) and d > 2 (b). There is a fixed point for N > 2 and d > 2. β(g) is
negative for d = 2 and N > 2, which indicates that the model exhibits an asymptotic freedom.
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ζðgÞ ¼ μ
∂
∂μ

lnZ ¼ βðgÞ ∂
∂g

lnZ: ð121Þ

From Eq. (113), ζ(g) is given by

ζðgÞ ¼ ðN � 1ÞgþOðg2Þ: ð122Þ

Let us define the correlation length ξ ¼ ξðg,μÞ. Because the correlation length near the transi-
tion point will not depend on the energy scale, it should satisfy

μ
d
dμ

ξðg,μÞ ¼ μ
∂
∂μ

þ βðgÞ ∂
∂g

� �
ξðg,μÞ ¼ 0: ð123Þ

We adopt the form ξ ¼ μ�1f ðgÞ for a function f(g), so that we have

βðgÞ df ðgÞ
dg

¼ f ðgÞ: ð124Þ

This indicates

f ðgÞ ¼ C exp
ðg
g�

1
βðg0Þ dg

0
 !

, ð125Þ

where C and g* are constants. In two dimensions (E = 0), the beta function in Eq. (117) gives

ξ ¼ Cμ�1exp
1

N � 2
1
g
� 1
g�

� �� �
: ð126Þ

When N > 2, ξ diverges as g ! 0, namely, the mass proportional to ξ�1 vanishes in this limit.
When d > 2 (E > 0), there is a finite-fixed point gc. We approximate β(g) near g = gc as

βðgÞ ≈ aðg� gcÞ, ð127Þ

with a < 0, ξ is

ξ ¼ μ�1exp
1
a
ln

g� gc
g� � gc

� �� �
: ð128Þ

Near the critical point g ≈ gc, ξ is approximated as

ξ�1 ≈ μ⌊g� gc⌋
1=⌊a⌋: ð129Þ

This means that ξ ! ∞ as g ! gc. We define the exponent v by
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ξ�1 ≈ ⌊g� gc⌋
ν, ð130Þ

then we have

ν ¼ � 1
β

0 ðgcÞ
: ð131Þ

Since β
0 ðgcÞ ¼ E� 2ðN � 2Þgc ¼ �E, this gives

1
ν
¼ E þ OðE2Þ ¼ d� 2þOðE2Þ: ð132Þ

Including the higher-order terms, ν is given as

1
ν
¼ d� 2þ ðd� 2Þ2

N � 2
þ ðd� 2Þ3

2ðN � 2Þ þOðE4Þ: ð133Þ

3.4. 2D quantum gravity

A similar renormalization group equation is derived for the two-dimensional quantum grav-
ity. The space structure is written by the metric tensor gμν and the curvature R. The quantum

gravity Lagrangian is

L ¼ � 1
16πG

ffiffiffi
g

p
R ð134Þ

where g is the determinant of the matrix ðgμνÞ and G is the coupling constant. The beta function

for G was calculated as [78–81]

βðGÞ ¼ EG� bG2, ð135Þ

for d ¼ 2þ E with a constant b. This has the same structure as that for the non-linear sigma
model.

4. Sine-Gordon model

4.1. Lagrangian

The two-dimensional sine-Gordon model has attracted a lot of attention [43–49, 82–91]. The
Lagrangian of the sine-Gordon model is given by

L ¼ 1
2t0

ð∂μφÞ2 þ α0

t0
cosφ, ð136Þ

where φ is a real scalar field, and t0 and α0 are bare coupling constants. We also use the
Euclidean notation in this section. The second term is the potential energy of the scalar field.
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We adopt that t and α are positive. The renormalized coupling constants are denoted as t and
α, respectively. The dimensions of t and α are ½t� ¼ μ2�d and ½α� ¼ μ2. The scalar field φ is
dimensionless in this representation. The renormalization constants Zt and Zα are defined as
follows

t0 ¼ tμ2�dZt, α0 ¼ αμ2Zα: ð137Þ

Here, the energy scale μ is introduced so that t and α are dimensionless. The Lagrangian is
written as

L ¼ μd�2

2tZt
ð∂μφÞ2 þ μdαZα

tZt
cosφ: ð138Þ

We can introduce the renormalized field φB ¼ ffiffiffiffiffiffi
Zφ

p
φR where Zφ is the renormalization con-

stant. Then the Lagrangian is

L ¼ μd�2Zφ

2tZt
ð∂μφÞ2 þ μdαZα

tZt
cosφ: ð139Þ

where φ denotes the renormalized field φR.

4.2. Renormalization of α

We investigate the renormalization group procedure for the sine-Gordon model on the basis of
the dimensional regularization method. First consider the renormalization of the potential
term. The lowest-order contributions are given by diagrams with tadpole contributions. We
use the expansion cosφ ¼ 1� 1

2φ
2 þ 1

4!φ
4 �⋯ . Then the corrections to the cosine term are

evaluated as follows. The constant term is renormalized as

1� 1
2
〈φ2〉þ 1

4!
〈φ4〉� ⋯ ¼ 1� 1

2
〈φ2〉þ 1

2
1
2
〈φ2〉

� �2

� ⋯ ¼ exp � 1
2
〈φ2〉

� �
: ð140Þ

Similarly, the φ2 is renormalized as

� 1
2
φ2 þ 1

4!
6〈φ2〉φ2 � 1

6!
15 � 3〈φ2〉2φ2 þ ⋯ ¼ exp � 1

2
〈φ2〉

� �
� 1
2
φ2

� �
: ð141Þ

Hence the αZα cos ð
ffiffiffiffiffiffi
Zφ

p
φÞ is renormalized to

αZαexp � 1
2
Zφ〈φ2〉

� �
cos

ffiffiffiffiffiffi
Zφ

q
φ

� �
≈αZα 1� 1

2
Zφ〈φ2〉þ⋯

� �
cos

ffiffiffiffiffiffi
Zφ

q
φ

� �
: ð142Þ

The expectation value 〈φ2〉 is regularized as
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Zφ〈φ2〉 ¼ tμ2�d Zt

ð
ddk

ð2πÞd
1

k2 þm2
0

¼ � t
E

Ωd

ð2πÞd
, ð143Þ

where d ¼ 2þ E and we included a mass m0 to avoid the infrared divergence and Zt=1 to this
order. The constant Zα is determined to cancel the divergence:

Zα ¼ 1� t
2
1
E

Ωd

ð2πÞd
: ð144Þ

From the equations μ ∂t0=∂μ ¼ 0 and μ ∂α0=∂μ ¼ 0, we obtain

μ
∂t
∂μ

¼ ðd� 2Þt� tμ
∂ lnZt

∂μ
, ð145Þ

μ
∂α
∂μ

¼ �2α� αμ
∂ lnZα

∂μ
ð146Þ

The beta function for α reads

βðαÞ � μ
∂α
∂μ

¼ �2αþ tα
1
2

Ωd

ð2πÞd
, ð147Þ

where we set μ ∂ t=∂μ ¼ ðd� 2Þt with Zt ¼ 1 up to the lowest order of α. The function β(α) has
a zero at t ¼ tc ¼ 8π.

4.3. Renormalization of the two-point function

Let us turn to the renormalization of the coupling constant t. The renormalization of t comes
from the correction to p2 term. The lowest-order two-point function is

Γð2Þð0ÞB ðpÞ ¼ 1
t0
p2 ¼ 1

tμ2�dZt
p2: ð148Þ

The diagrams that contribute to the two-point function are shown in Figure 10 [88]. These
diagrams are obtained by expanding the cosine function as cosφ ¼ 1� ð1=2Þφ 2 þ⋯. First, we
consider the Green’s function,

G0ðxÞ ¼ Zφ<φðxÞφð0Þ> ¼ tμ2�dZt

ð
ddp

ð2πÞd
p

eip�x

p2 þm2
0
¼ tμ2�dZt

Ωd

ð2πÞd
K0ðm0jxjÞ, ð149Þ

where K0 is the zeroth modified Bessel function and m0 is introduced to avoid the infrared

singularity. Because sinh I � I ¼ I3=3!þ⋯, the diagrams in Figure 10 are summed up to give
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ΣðpÞ ¼
ð
ddx½eip�xðsinh I � IÞ � ðcosh I � 1Þ�, ð150Þ

Where I ¼ G0ðxÞ. Since sinh I � I ≈ eI=2 and cosh I ≈ eI=2, the diagrams in Figure 10 lead to

Γð2ÞcB ðpÞ ¼ � 1
2

αμdZα

tZt

� �2ð
ddxðeip�x � 1ÞeG0ðxÞ: ð151Þ

We use the expansion eip�x ¼ 1þ ip � x� ð1=2Þðp � xÞ2 þ⋯, and keep the p2 term. We denote the
derivation of t from the fixed point tc ¼ 8π as ν:

t
8π

¼ 1þ ν, ð152Þ

for d = 2. Using the asymptotic formula K0ðxÞe� γ� lnðx=2Þ for small x, we obtain

Γð2ÞcB ðpÞ ¼ 1
8

αμd

tZt

� �2

p2ðc0m2
0Þ�2�2νΩd

ð∞
0
dxxdþ1 1

ðx2 þ a2Þ2þ2ν

¼ � 1
8
p2

αμd

tZt

� �2

ðc0m2
0Þ�2Ωd

1
E
þ OðνÞ

≈ � 1
tμ2�dZt

p2
1
32

α2μdþ2ðc0m2
0Þ�2 1

E
þOðνÞ

ð153Þ

where c0 is a constant and a ¼ 1=μ is a small cut-off. The divergence of α was absorbed by Zα.
Now the two-point function up to this order is

Γð2Þ
B ðpÞ ¼ 1

tμ2�dZt
p2 � 1

32
α2μdþ2ðc0m2

0Þ�2 1
E

� �
ð154Þ

The renormalized two-point function is Γð2ÞR ¼ ZφΓ
ð2Þ
B . This indicates that

Figure 10. Diagrams that contribute to the two-point function.
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Zφ

Zt
¼ 1þ 1

32
α2μdþ2ðc0m2

0Þ�2 1
E
: ð155Þ

Then, we can choose Zφ = 1 and

Zt ¼ 1� 1
32

α2μdþ2ðc0m2
0Þ�2 1

E
: ð156Þ

Zt=Zφ can be regarded as the renormalization constant of t up to the order of α2, and thus we
do not need the renormalization constant Zφ of the field φ. This means that we can adopt the
bare coupling constant as t0 ¼ tμ2�d ~Zt with ~Zt ¼ Zt=Zφ.

The renormalization function of t is obtained from the equation μ ∂ t0=∂μ ¼ 0 for t0 ¼ tμ2�dZt:

βðtÞ � μ
∂t
∂μ

¼ ðd� 2Þtþ 1
32

ðc0m2
0Þ�2 1

E
2αμdþ2μ

∂α
∂μ

þ ðdþ 2Þα2μdþ2
� �

t

¼ ðd� 2Þtþ 1
32

μdþ2ðc0m2
0Þ�2tα2

ð157Þ

Because the finite part of G0ðx ! 0Þ is given by G0ðx ! 0Þ ¼ �ð1=2πÞlnðeγm0=2μÞ, we perform
the finite renormalization of α as α ! αc0m2

0a
2 ¼ αc0m2

0μ
�2. This results in

βðtÞ ¼ ðd� 2Þtþ 1
32

tα2: ð158Þ

As a result, we obtain a set of renormalization group equations for the sine-Gordon model

βðαÞ ¼ μ
∂α
∂μ

¼ �α 2� 1
4π

t
� �

, ð159Þ

βðtÞ ¼ μ
∂t
∂μ

¼ ðd� 2Þtþ 1
32

tα2, ð160Þ

Since the equation for α is homogeneous in α, we can change the scale of α arbitrarily. Thus, the
numerical coefficient of tα2 in β(t) is not important.

4.4. Renormalization group flow

Let us investigate the renormalization group flow in two dimensions. This set of equations
reduces to that of the Kosterlitz-Thouless (K-T) transition. We write t ¼ 8πð1þ νÞ, and set
x ¼ 2ν and y ¼ α=4. Then, the equations are
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μ
∂x
∂μ

¼ y2, ð161Þ

μ
∂y
∂μ

¼ xy, ð162Þ

These are the equations of K-T transition. We have

x2 � y2 ¼ const: ð163Þ

The renormalization flow is shown in Figure 11. The Kosterlitz-Thouless transition is a beau-
tiful transition that occurs in two dimensions. It was proposed that the transition was associ-
ated with the unbinding of vortices, that is, the K-T transition is a transition of the binding-
unbinding transition of vortices.

The Kondo problem is also described by the same equations. In the s-d model, we put

x ¼ πβJz � 2, y ¼ 2jJ⊥jτ: ð164Þ

where Jz and J⊥ð¼ Jx ¼ JyÞ are exchange coupling constants between the conduction electrons
and the localized spin, and β is the inverse temperature. τ is a small cut-off with τ∝1=μ. The
scaling equations for the s-d model are [53, 57]

τ
∂x
∂τ

¼ � 1
2
y2, ð165Þ

τ
∂y
∂τ

¼ � 1
2
xy: ð166Þ

The Kondo effect occurs as a crossover from weakly correlated region to strongly correlated
region. A crossover from weakly to strongly coupled systems is a universal and ubiquitous

tt
c

a

Figure 11. The renormalization group flow for the sine-Gordon model as μ ! ∞.
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phenomenon in the world. There appears a universal logarithmic anomaly as a result of the
crossover.

5. Scalar quantum electrodynamics

We have examined the φ4 theory and showed that there is a phase transition. This is a second-
order transition. What will happen when a scalar field couples with the electromagnetic field?
This issue concerns the theory of a complex scalar field φ interacting with the electromagnetic
field Aμ, called the scalar quantum electrodynamics (QED). The Lagrangian is

L ¼ 1
2
jðDμφÞj2 � 1

4
gðjφj2Þ2 � 1

4
F2μν; ð167Þ

where g is the coupling constant and Fμν ¼ ∂μAν � ∂νAμ.Dμ is the covariant derivative given as

Dμ ¼ ∂μ � ieAμ, ð168Þ

with the charge e. The scalar field φ is an N component complex scalar field such as
φ ¼ ðφ1, ⋯, φNÞ. This model is actually a model of a superconductor. The renormalization
group analysis shows that this model exhibits a first-order transition near four dimensions
d ¼ 4� E when 2N < 365 [92–96]. Coleman and Weinberg first considered the scalar QED
model in the case N = 1. They called this transition the dimensional transmutation. The result
based on the E-expansion predicts that a superconducting transition in a magnetic field is a
first-order transition. This transition may be related to a first-order transition in a high mag-
netic field [97].

The bare and renormalized fields and coupling constants are defined as

φ0 ¼
ffiffiffiffiffiffi
Zφ

q
φ, ð169Þ

g0 ¼
Z4

Z2
φ

gμ4�d, ð170Þ

e0 ¼ Zeffiffiffiffiffiffiffiffiffiffiffiffi
ZAZφ

p e, ð171Þ

Aμ0 ¼
ffiffiffiffiffiffi
ZA

p
Aμ, ð172Þ

where φ, g, e and Aμ are renormalized quantities. We have four renormalization constants.
Thanks to the Ward identity

Ze ¼ ZA, ð173Þ

three renormalization constants should be determined. We show the results:
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Zφ ¼ 1þ 3
8π2E

e2, ð174Þ

ZA ¼ 1� 2N
48π2E

e2, ð175Þ

Zg ¼ 1þ 2N þ 8
8π2E

gþ 3
8π2E

1
g
e4: ð176Þ

The renormalization group equations are given by

μ
∂e2

∂μ
¼ �Ee2 þ N

24π2 e
4, ð177Þ

μ
∂g
∂μ

¼ �EgþN þ 4
4π2 g2 þ 3

8π2 e
4 � 3

4π2 e
2g: ð178Þ

The fixed point is given by

ec ¼ 24
N

π2E, ð179Þ

gc ¼ E
2π2

N þ 4
1þ 18

N
� ðn2 � 360n� 2160Þ1=2

n

( )
, ð180Þ

where n ¼ 2N. The square root δ � ðn2 � 360n� 2160Þ1=2 is real when 2N > 365. This indicates
that the zero of a set of beta functions exists when N is sufficiently large as long as 2N > 365.
Hence there is no continuous transition when N is small, 2N ≤ 365, and the phase transition is
first-order.

There are also calculations up to two-loop-order for scalar QED [98, 99]. This model is also
closely related with the phase transition from a smectic-A to a nematic liquid crystal for which
a second-order transition was reported [100]. When N is large as far as 2N > 365, the transition
becomes second-order. Does the renormalization group result for the scalar QED contradict
with second-order transition in superconductors? This subject has not been solved yet. A
possibility of second-order transition was investigated in three dimensions by using the
renormalization group theory [101]. An extra parameter c was introduced in [101] to impose a
relation between the external momentum p and the momentum q of the gauge field as q ¼ p=c.
It was shown that when c > 5:7, we have a second-order transition. We do not think that it is
clear whether the introduction of c is justified or not.

6. Summary

We presented the renormalization group procedure for several important models in field
theory on the basis of the dimensional regularization method. The dimensional method is very
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6. Summary

We presented the renormalization group procedure for several important models in field
theory on the basis of the dimensional regularization method. The dimensional method is very
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useful and the divergence is separated from an integral without ambiguity. We invested three
fundamental models in field theory: φ4 theory, non-linear sigma model and sine-Gordon
model. These models are often regarded as an effective model in understanding physical
phenomena. The renormalization group equations were derived in a standard way by regular-
izing the ultraviolet divergence. The renormalization group theory is useful in the study of
various quantum systems.

The renormalization means that the divergences, appearing in the evaluation of physical
quantities, are removed by introducing the finite number of renormalization constants. If we
need infinite number of constants to cancel the divergences for some model, that model is
called unrenormalizable. There are many renormalizeable field theoretic models. We consid-
ered three typical models among them. The idea of renormalization group theory arises
naturally from renormalization. The dependence of physical quantities on the renormalization
energy scale easily leads us to the idea of renormalization group.
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Abstract

Fundamentals of gauge-invariant relativistic many-body perturbation theory (PT) with
optimized ab initio zeroth approximation in theory of relativistic multi-electron systems
arepresented.Theproblemof construction of optimal one-electron representation isdirectly
linked with a problem of the correct accounting for multielectron exchange-correlation
effects and gauge-invariance principle fulfilling in atomic calculations. New approach to
construction of optimal PT zeroth approximation is based on accurate treating the lowest
ordermultielectron effects, in particular, the gauge-dependent radiative contribution for the
certain class of photon propagator (for instance, the Coulomb, Feynman, Babushkin ones)
gauge. This value is considered to be a typical representative of important multielectron
exchange-correlation effects,whoseminimization is a reasonable criteria in the searching for
optimal PT one-electron orbital basis. This procedure derives an undoubted profit in the
routine many-body calculations as it provides the way of refinement of the atomic charac-
teristics calculations, based on the “first principles”. The relativistic density-functional
approximation is taken as the zeroth one. There have taken into account all exchange-
correlation corrections of the second order and dominated classes of the higher orders
diagrams (polarization interaction, quasiparticles screening, etc.). New form of multi-elec-
tron polarization functional is used. As illustration, the results of computing energies,
transition probabilities for some heavy ions are presented.

Keywords: relativistic many-body perturbation theory, density-functional approxima-
tion, exchange-correlation effects, radiative transitions, oscillator strengths, heavy atoms
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1. Introduction

Perturbation theory (PT) formalism has a long history in studying different multielectron (more
generally, multifermion) systems, including different atomic, molecular, and nuclear properties.
Really, one should say about formalism of the many-body PT as, a rule, usually it applies to
studying different properties of the multiparticle systems, for instance, ionization and excitation
energies, spectra, electron exchange-correlation energies, hyperfine structure, radiative and
autoionization decay rates (transition probabilities, oscillator, and lines strengths), as well as the
influence of an external electromagnetic fields. In the last few decades, the PTmethods have been
refined with a sophisticated and comprehensive approach of more correct treatment of the
exchange-correlation effects, electron-nuclear dynamics, and so on [1–44]. Rephrasing the known
interesting quote by Bartlett and Musiał [3, 4] and earlier by Wilson, one could say that the PT
methods are an emerging computational area that is sixty years ahead of lattice gauge theory… and a rich
source of new ideas and new approaches to the computation of many fermion systems. The oldmultibody
quantum theoretical approaches often take place, which have been primarily developed in a
theory of a superfluity and/or a superconductivity, and generally speaking in a theory of solids,
became the powerful tools for developing new conceptions in many-body (multielectron)
atomic, nuclear, and molecular calculations [1–7].

A number of the PT versions include a synthesis of cluster expansions, Brueckner’s summation
of ladder diagrams, the summation of ring diagrams Gell-Mann, and an infinite-order gener-
alization of manybody PT (Kelly, 1969; Ivanov-Tolmachev, 1969–1974, Bartlett and Silver,
1974–1976, etc.; see review in Ref. [7]). Using quantum-field methods in atomic and molecular
theory allowed obtaining a very powerful approach for the correct treatment of the exchange-
correlation effects in many-electron systems. In this context, it is useful to remind about such
sophisticated methods as a coupled-cluster theory, the Green-functions method, configuration
interaction methods, and so on. Only with this property are applications to solids or the
electron gas possible, and, even for small atoms and molecules, its effects are numerically quite
essential. When relativistic effects became essential in the studied multielectron (fermion)
system, naturally it is necessary to formulate a formalism of the relativistic many-body PT. In
the first attempts, an account for the relativistic effects had been reduced to treating the
Darwin, mass-velocity, and spin-orbit effects, which have to be added to the nonrelativistic
solution and provide different approximations lying between the Schrödinger equation and
the four-component Dirac equation [2, 6, 7]. Among recent developments in this field, special
attention should be given to two very general and important computer systems for relativistic
and QED calculations of atomic and molecular properties developed in the Oxford, Troitsk,
and other groups (known as ”GRASP,” ”Dirac,” ”BERTHA,” ”QED,” “Superatom,” etc.; Ref.
[1–13] and references therein). For example, a new relativistic molecular structure theory
within the QED framework with accounting of the electron correlation and higher-order QED
effects has been formulated and further realized as the BERTHA program. The master system
of equations includes the so-called Dirac-Hartree-Fock-Breit self-consistent field equations. The
useful overview of the relativistic electronic structure theory is presented in Refs. [2, 7] from
the QED point of view. The next important step is an adequate taking into account the QED
corrections. This topic has been a subject of intensive theoretical and experimental interest.
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Hitherto, most many-body PT studies concerned atoms with a simple electron-shell structure,
namely atoms of the inert gases and atoms and ions with a single electron (or hole) above
(or inside) the closed shells core. The fundamental limitation to extend the many-body proce-
dure beyond such simple atomic systems arises from the complexity of any perturbation
expansion if more than just one or two effective particles appear in the derivation (see detailed
analysis in Ref. [5]). In order to overcome this difficulty, a number of different efficient tech-
niques of complex expansions were developed. As a rule, the atomic PT expansions are
expressed in terms of the Feynman-Goldstone diagrams in Rayleigh-Schrödinger PT formula-
tion. Above the most popular and known versions of the PT formalism, one should mention
formally exact relativistic many-body PT with the model zeroth approximation by Ivanova-
Ivanov et al., relativistic PT with the Hartree-Fock (HF) or Dirac-Fock (DF) zeroth approxima-
tions by Johnson et al., Flambaum-Dzuba et al., Safronova and Safronova et al., Khetselius
et al., and so on [9–38]).

The searching for the optimal one-electron zeroth representation is one of the oldest in the
theory of multielectron atoms and, respectively, in the formulation of the effective PT formal-
ism. Two decades ago, Davidson had pointed the principal disadvantages of the traditional
representation based on the self-consistent field approach and suggested the optimal “natural
orbitals” representation [11]. Nevertheless, there remain insurmountable computational
difficulties in the realization of the Davidson program (see, e.g., Refs. [11, 12]). One of the
simplified recipes represents, for example, a density functional theory (DFT) formalism [8].
Unfortunately, this approach does not provide a regular refinement procedure in the case of
the complicated atom with few quasiparticles (QPs) (electrons or vacancies above a core of the
closed electronic shells). The problem of construction of the optimal one-electron representa-
tion is tightly linked with the problem of the correct accounting for the multielectron exchange-
correlation effects. In Refs. [47, 48], the PT lowest-order multielectron effects, in particular, the
gauge-dependent radiative contribution (gauge-noninvariant) for the certain class of the pho-
ton propagator gauge is treated. This value is considered to be the typical representative of the
multielectron exchange-correlation effects contribution. New fundamental idea has been pro-
posed in Refs. [47, 48] in order to construct the optimal PT one-electron basis and is in
minimization of the gauge-noninvariant contribution into a radiation width of atomic level.
Such an approach allows to determine an effectiveness of accounting of the multielectron
exchange-correlation effects and provides the practical way of the refinement of the atomic
characteristics calculations, based on the “first principles.” Really, the known standard crite-
rion of the multielectron computing quality in atomic spectroscopy is linked with a closeness
of the atomic level radiation width values, calculated using two alternative forms of the
transition operator (the “length” and the “velocity” forms). It is of special interest to verify
the compatibility of the new optimization principle with the other requirements conditioning a
“good” one-electron representation. We suppose that this point should be obligatory in for-
mulation of the effective, optimal PT formalism.

In this chapter, we present the theoretical fundamentals of the gauge-invariant relativistic many-
body PTwith using the optimized one-QP representation in the theory of relativistic multielectron
systems [21–23, 47, 48]. All exchange-correlation corrections of the second-order and dominated
classes of the higher-orders diagrams (polarization interaction, QPs screening, etc.) [47–67] have
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been taken into account. As illustration of application of the presented PT formalism, we list the
results of computing energies, transition probabilities (oscillator strengths) in some heavy atoms
(ion of Hg+).

2. Relativistic many-body perturbation theory with optimized
one-quasiparticle zeroth representation

2.1. General remarks

Our relativistic PT version is constructed on the same principles as the known formally exact
PT with model zeroth approximation by Ivanova-Ivanov et al. [33–47]; however, there a few
principal points, where our formalism differs from this known theory. At first, this is another
definition of the zeroth approximation, namely within the relativistic DFT one [14–17, 19–22].
Second, this is an implementation of the principally new approach to construction of the
optimized one-QP representation, which allows correctly to take into account a gauge invari-
ance principle fulfilling.

In nonrelativistic theory of multielectron atoms, a powerful field approach for computing the
electron energy shift ΔE of the degenerate states is known, which are usually present in the
dense spectra of the complex relativistic atomic multielectron systems (Tolmachev-Ivanov-
Ivanova, 1969–1974). The key algorithm of this approach includes construction of the secular
matrix M using the known Gell-Mann and Low adiabatic formula and its further diagonaliza-
tion. The analogous approach using the Gell-Mann and Low formula with an electrodynamic
scattering matrix has been developed in a theory of the relativistic atom [33–36]; however, the
M matrix elements in the relativistic representation are complex; the corresponding imaginary
parts determine the values of radiation widths. According to Ref. [34], the total electron energy
shift can be defined as follows:

ΔΕ ¼ Re ΔEþ i ImΔE ImΔE ¼ � Γ=2: ð1Þ

Here, Γ is a radiation width of the atomic level (or a possibility P of the radiation decay or
transition: P = Γ. Within the general framework, the corresponding energies of a nondegenerated
excited states and their radiation decay amplitudes can be determined by means of the comput-
ing and further diagonalization of the matrixM. In Refs. [33–37], the ReΔE calculation procedure
has been generalized for the case of nearly degenerate states, whose levels form a more or less
compact group. Naturally, the matrix M reduces to one term (ΔE) in the case of well-identified
and separated energy spectrum. The Gell-Mann and Low formula allow further to obtain the
expansion of the M elements into PT series on interelectron interaction and apply the standard
Feynman diagrammatic technique. The corresponding PT series is as follows:

M ¼ Mð0Þ þMð1Þ þMð2Þ þMð3Þ: ð2Þ

Here, M(0) is the contribution of the PT all-orders vacuum diagrams (in fact, this is a real
matrix, which determines only the general atomic levels shift); M(1), M(2),and M(3) are the
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Here, M(0) is the contribution of the PT all-orders vacuum diagrams (in fact, this is a real
matrix, which determines only the general atomic levels shift); M(1), M(2),and M(3) are the
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contributions, which correspond to the one-, two- and three-QP PT diagrams, respectively. The
diagonal matrix M(1) can be easily calculated as it represents a sum of the one-QP contribu-
tions. Generally speaking, computing all the one-QP diagrams contributions within the PT
formalism is the most simple procedure. The more complicated problem is computing theM(2)

and M(3)contributions. Using the Feynman diagrams technique, the authors [33–38] have in
detail analyzed the M(2) contributions. Naturally, the fundamental point of the whole consid-
eration is the definition of the PT zeroth approximation.

2.2. The perturbation theory zeroth approximation

We will describe an atomic multielectron system by the relativistic Dirac Hamiltonian (the
atomic units are used) as follows [14, 15]:

H ¼
X
i

{αcpi � βc2 � Z=ri}þ
X
i>j

expðijωjrijÞð1� αiαjÞ=rij, ð3Þ

where Z is a charge of nucleus, αi, αj are the Dirac matrices, ωij is the transition frequency, and
c, a light velocity. The interelectron interaction potential (second term in Eq. (3)) takes into
account the retarding effect and magnetic interaction in the lowest order on parameter α2 (α is
the fine structure constant). Let us note that in order to account for the nuclear finite size effect
(in the zeroth approximation), one could describe a charge distribution in the atomic nucleus
ρ(r) by the Gaussian or Fermi (another variant is relativistic mean-field theory of a nucleus)
functions and write the Coulomb potential for the spherically symmetric nuclear density
ρ(r|R) as [14]

VnuclðrjRÞ ¼ �
�
ð1=rÞ

ðr

0

dr0r02ρðr0jRÞ þ
ð∞

r

dr0r0ρðr0jRÞ: ð4Þ

Here, R is a nuclear radius. According to the known Ivanova-Ivanov et al. method of differen-
tial equations [33–36], computing the potential (20) can be reduced to solving the system of the
differential equations. By the way, this method is used by us in further under computing the
PT first- and second-order corrections. The zeroth-order Hamiltonian H0 and perturbation
operator can be presented in the standard form as follows [7, 14, 15]:

H0 ¼
X
i

aþi aiEi

Hint ¼
X
ij

aþi ajVij þ
1
2

X
ijkl

Vijklaþi a
þ
j akal

Vij ¼
ð
d r! � ϕið r

!Þ½�VMFðrÞ� � ϕð r!Þ

Vijkl ¼
ðð

d r!1d r
!

2 ϕð r!1Þ ϕð r!2Þ Vðr1r2Þ ϕkð r
!

2Þ ϕlð r
!

1Þ,

ð5Þ

where ϕð r!Þ are one-electron functions (Dirac bispinors), Ei , one-electron energies, and VMF is
the central field self-consistent potential of the Coulomb type. The latter can be taken in the
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form of the usual Dirac-Fock potential or even any appropriate model potential, which imi-
tates an effect of the electron subsystem. Let us remind that in the relativistic PT by Ivanova-
Ivanov et al., the consistent model (as a rule, empirical) potential was taken as VMF. In our PT
version, we use the potential

VMF ¼ VDKSðrÞ ¼ ½VD
CoulðrÞ þ VXðrÞ þ VCðrjaÞ� ð6Þ

Further as VX(r) we use the standard Kohn-Sham (KS) exchange potential as follows [8]:

VKS
X ðrÞ ¼ �ð1=πÞ½3π2ρðrÞ�1=3: ð7Þ

The standard definition of the exchange potential in the density-functional theory is as follows:

VX½ρðrÞ, r� ¼ δEX½ρðrÞ�
δρðrÞ , ð8Þ

In the relativistic multielectron theory with a Hamiltonian having a transverse vector potential
(for describing the photons), one could determine the homogeneous density ρ(r), construct the
corresponding exchange energy EX[ρ(r)], and introduce the following exchange potential [16]:

VX½ρðrÞ, r� ¼ VKS
X ðrÞ � 3

2
ln

½βþ ðβ2 þ 1Þ1=2�
βðβ2 þ 1Þ1=2

� 1
2

( )
; ð9Þ

where β ¼ ½3π2ρðrÞ�1=3=c. The corresponding correlation functional is as follows [16, 17]:

VC½ρðrÞ, r� ¼ �0:0333 � b � ln½1þ 18:3768 � ρðrÞ1=3�, ð10Þ

where b is the optimization parameter (for details, see below and Refs. [16–19, 47–49] too).
Naturally, potential (6) is subtracted from the interelectron potential in Eq. (3) in the perturba-
tion operator. The Dirac equations for F and G components can be written as [14] follows:

f 0 ¼ �ðχþ jχjÞf =r� αZVg� ðαZEnχ þ 2=αZÞg,
g0 ¼ ðχ� jχjÞg=r� αZVf þ αZEnχf :

ð11Þ

Here, Enχ is one-electron energy without the rest energy. The boundary values are defined by
the first terms of the Taylor expansion:

g ¼
�
Vð0Þ � Enχ

�
rαZ=ð2χþ 1Þ; f ¼ 1 at χ < 0, ð12aÞ

f ¼
�
Vð0Þ � Enχ � 2=α2Z2

�
αZ; g ¼ 1 at χ > 0: ð12bÞ

The condition f, g!0 at r!∞ determines the quantified energies of the state Enχ. The system of
Eq. (11) is numerically solved by the Runge-Kutta method (‘Superatom” package is used [7, 13–
23, 34, 36, 47–67]).
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2.3. The perturbation theory first- and second-orders corrections: correlation effects

In the PT first order, one should determine the matrix elements of the PT operator with the
relativistic Coulomb-Breit potential, which are the contributions of the following type [36]:

Mð2Þ
1 ¼ 〈 n1l1j1 n2l2j2½J� jV intj n4l4j4 n3l3j3½J� 〉

¼ P1P2ð�1Þ1þj2þj4þJ½ð2j1 þ 1Þð2j2 þ 1Þð2j3 þ 1Þð2j4 þ 1Þ�1=2

�
X
i, k

X
a

jijkJ

j2j1a

( )�
δi,3δk,4 þ ð�1ÞJδi,4δk,3

�
�Qλ,

ð13Þ

where

P1 ¼ 1 if n1l1j1 6¼ n2l2j2
1=2 if n1l1j1 ¼ n2l2j2

, P2 ¼ 1 if n3l3j3 6¼ n4l4j4
1=2 if n3l3j3 ¼ n4l4j4

:

��
ð14Þ

The value of the Qλ can be expressed through the radial Slater-like integrals and presented as a

sum of the Coulomb and Breit parts: Qλ ¼ QQul
λ þQBr

λ , which corresponds to a partition of the
interelectron potential into the Coulomb and Breit ones in the second term of Eq. (1). Let us
remind that, for instance, the Coulomb part in Eq. (13) is expressed through the radial integrals
and angle coefficients as follows:

QQul
λ ¼ 1

Z

�
Rlð1243ÞSλð1243Þ þ Rlð~124~3ÞSλð~124~3Þ þ

þRlð1~2~43ÞSλð1~2~43Þ þ Rlð~1~2~4~3ÞSλð~1~2~4~3Þ
�
:

ð15Þ

In the nonrelativistic limit, there remains only the first term in Eq. (15) depending only on the
large component f(r) of the one-electron Dirac functions. For example, its imaginary part is as
follows [36]:

Im Rλð12; 43Þ ¼ 1
2
ð2λþ 1ÞπXλð13ÞXλð24Þ

Xλð12Þ ¼
ð
dr r3=2 f 1ðrÞJð1Þλþ1=2

�
rαZjωjf 2ðrÞ

� ð16Þ

The angular coefficient has only a real part:

Sλð12; 43Þ ¼ Sλð13ÞSλð24Þ Sλð13Þ ¼ fλl1l3g
j1 j3 λ

1
2

� 1
2

0

0
@

1
A ð17Þ

Here, {λl1l3} means that λ, l1 and l3 must satisfy the triangle rule and the sum λ + l1 + l3 must be
an even number. The rest terms in Eq. (16) include the small components of the Dirac func-
tions. The tilde in Eq. (13) designates that the large radial component fmust be replaced by the
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small one g, and instead of li, ~li ¼ li � 1 should be taken for ji < li and ~li ¼ li þ 1 for ji > li. The
Breit (magnetic) part can be expressed by the similar way (see details in Refs. [13–16]).

Then, exchange-correlation effects can be treated within the PT formalism as effects of the
second and higher PT orders. In the second order, one should especially note the polarization
and ladder diagrams. In Figures 1 and 2, we list some important diagrams of the second order
describing the effects of the polarization interaction of quasiparticles and screening of the
external quasiparticles (or antiscreening in the case, say, of an electron and a vacancy).

The polarization diagrams take into account the quasiparticle interaction through the polariz-
able core, and the ladder diagrams account for the immediate quasiparticle interaction. An
effective approach to accounting the polarization contributions is in adding the effective two-
QP polarizable operator into the first-order matrix elements. The corresponding polarization
operator can be taken in the following form [50]:

Vd
polðr1r2Þ ¼

X
ð dr0

�
ρð0Þ
c ðr0Þ

�1=3
θðr0Þ

jr1 � r0j � jr0 � r2j �
ð dr0

�
ρð0Þ
c ðr0Þ

�1=3
θðr0Þ

jr1 � r0j
ð dr00

�
ρð0Þ
c ðr00Þ

�1=3
θðr00Þ

jr00 � r2j
. �

ρð0Þc

�1=3� �
8><
>:

9>=
>;
ð18aÞ

�
ρð0Þ
c

�1=3� �
¼
ð
dr
�
ρð0Þ
c ðrÞ

�1=3
θðrÞ, ð18bÞ

θðrÞ ¼ 1þ ½3π2 � ρð0Þ
c ðrÞ�2=3=c2

n o1=2
ð18cÞ

Figure 1. Some diagrams of the second order, taking into account the exchange and polarization interaction of quasipar-
ticles and electrons of the closed shells core.

Figure 2. Some diagrams of the second order, describing a direct interaction of the two or three external quasiparticles.
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where ρ0c is the core electron density (without account for the quasiparticle), X is the numerical
coefficient, and c is the light velocity. The similar approximate potential representation has
been received for the exchange polarization interaction of quasiparticles (see details in Refs.
[7, 14–19]). The polarization potential Eqs. (18a)–(18c) generalizes the corresponding nonrela-
tivistic operator, which has been derived in Ref. [36].

In order to take into account the ladder diagrams contributions as well as some of the three-
quasiparticle diagram contributions in all PTorders, we use the special procedure, which includes
a modification of the mean-filled potential, which describes the effects of screening (antiscreening)
of the core potential of each QP by the others (see details in Refs. [7, 14–19, 33–38]). Introduction of
the additional screening potential into the Dirac equations for the large and small components
changes the 1-QP energies and orbitals. It results in the corresponding modification of the diago-

nal 1-QP matrix ~M
ð1Þ
and further 2-QP one too; ~M

ð2Þ
is computed using the PT first-order formulae

and the modified radial 1-QP wave functions.

2.4. Optimization of the relativistic orbitals basis

In order to obtain a precise description of the spectral characteristics of multielectron atomic
systems, within the PT framework one should generate the optimized relativistic orbitals basis
(see “Introduction” section) [1–7, 9–15]. The powerful ab initio approach to construction of the
optimized PT basis has been developed in Ref. [48] and reduced to consistent treating gauge-
dependent multielectron contributions ImΔEninv of the lowest relativistic PT corrections to the
atomic level radiation width and their further functional minimization.

For simplicity, let us consider now the one-quasiparticle atomic system (i.e., atomic system
with one electron or vacancy above a core of the closed electronic shells). The multiquasi-
particle case does not contain principally new moments. In the PT lowest, second order for
the ΔE, there is only one-quasiparticle Feynman diagram B (see Figure 3), contributing the
ImΔE (the radiation decay width).

In the fourth order of QED PT (the second order of the atomic PT), the diagrams appear, whose
contribution to the ImΔEninv accounts for the multielectron exchange-correlation (polarization)
effects (diagrams Ad, Aex; Figure 3). This multielectron contribution is dependent on the
photon propagator gauge (the gauge-noninvariant contribution). Let us remind about the
known criterion of the correctness of the atomic-computing radiation transition probabilities
using the alternative forms for the transition operator (“length” and “velocity” transition
operator forms). Their closeness of the “length” and “length” transition probabilities values

Figure 3. B: second other PT diagram contributing the imaginary energy part related to the radiation transitions; Ad and
Aex: QED PT fourth (atomic PT second)-order polarization diagrams.
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confirms the correctness of the relativistic orbitals basis construction. Correspondingly, their
noncoincidence is provided by multielectron by their nature and gauge-noninvariant terms.

In Ref. [48], the gauge-noninvariant contribution to an imaginary part of the electron energy
has been calculated, which is as follows:

ImΔEninvðα� sjAdÞ ¼ �C
e2

4π

ð ð ð ð
dr1dr2dr3dr4

X
ð 1
ωmn þ ωαs

þ
1

ωmn � ωαs

ÞΨþ
α ðr1ÞΨþ

mðr2ÞΨþ
s ðr3ÞΨþ

n ðr4Þð1� α1α2Þ=r12�

{½ðα3α4 � ðα3n34Þðα4n34ÞÞ=r34 � sin ½ωαnðr12 þ r34Þ þ ωαn �
cos ½ωαnðr12 þ r34Þ�ð1þ ðα3n34Þðα4n34ÞÞ�}Ψmðr3ÞΨαðr4ÞΨnðr2ÞΨsðr1Þ

ð19Þ

where C is the gauge constant, and f is the boundary of the closed shells.

Realizing a principle of minimization of the functional ImΔEninv, one could obtain the Dirac-
Kohn-Sham (DKS)-like equations for an electron density. Their numerical solution allows to
obtain the optimized basis of the one-QP relativistic orbitals. The corresponding procedure is
described in detail, for example, in Refs. [18–23]. All details of the presented PT formalism can
be found in Refs. [7, 14–20, 47–49].

2.5. Radiation decay probability as an imaginary part of the electron energy shift.
Method of calculation

The method of computing the radiation decay (transition probabilities, oscillator strengths)
probabilities within the relativistic energy approach is presented in, for instance, Refs. [16–
19, 33–35, 47, 48]. Here, we only note that a probability is directly linked with the imaginary
part of electron energy shift, which is defined in the PT lowest order as follows:

ImΔE ¼ � e2

4π

X

α>n>f
½α<n ≤ f �

V jωαnj
αnαn, ð20Þ

where
X
α>n>f

is for electron and
X

α<n ≤ f

for vacancy, and V jωαn j
αnαn is determined as follows:

V jωj
ijkl ¼

ðð
dr1dr2Ψ�

i ðr1ÞΨ�
j ðr2Þ

sin jωjr12
r12

ð1� α1α2ÞΨ�
kðr2ÞΨ�

l ðr1Þ ð21Þ

The individual terms of the sum Eq. (21) represent the contributions of different channels and

probability, for instance, of the dipole α-n transition as Pαne 1
4πV

jωαn j
αnαn; the probability with

accounting for the core polarization correction is Pαne 1
4π � {V jωαn j

αnαn þ ðVdþex
pol Þαnαn}. The total prob-

ability of a λ-pole transition is usually represented as a sum of the electric PE
λ and magnetic PM

λ
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parts. The electric (or magnetic) λ-pole transition γ! δ connects two states with parities which
by λ (or λ + 1) units. In our designations,

PE
λðγ ! δÞ ¼ 2ð2jþ 1ÞQE

λðγδ;γδÞ QE
λ ¼ QCul

λ þ QBr
λ, λ�1 þ QBr

λ, λþ1

PM
λ ðγ ! δÞ ¼ 2ð2jþ 1ÞQM

λ ðγδ;γδÞ QM
λ ¼ QBr

λ, λ:
ð22Þ

In a case of the two-quasiparticle states (for instance, the excited atomic state is treated as a
state with the two QP: electron and vacancy above the closed shells core), the corresponding
probability has the following form (say, transition: j1j2½J� ! j1j2½J�):

Pðλjj1j2½J�, j1j2½J�Þ ¼ ðJÞ λ…J…J
j2…j1…j1

� �
Pðλj11Þðj1Þ, ð23Þ

It is worth noting that all relativistic atomic calculations are usually carried out in the jj-
coupling scheme. The transition to the intermediate-coupling scheme is realized by diagonal-
ization of the M matrix, but usually only ReM should be diagonalized. The important simpli-
fied moment of the procedure is connected with converting the imaginary part by means of the
matrix of eigenvectors {Cmk}, obtained by diagonalization of ReM:

Im Mmk ¼
X
ij

C∗
mi Mij Cjk ð24Þ

where Mij are the matrix elements in the jj-coupling scheme, and Mmk in the intermediate-
coupling scheme representation. The procedure is correct to terms of the order of Im M/Re M.

In conclusion, let us also underline that the tedious procedure of phase convention in calculat-
ing the matrix elements of different operators is avoided in the energy approach, although the
final formulae, certainly, must coincide with the formulae obtained using the traditional
amplitude quantum-mechanical method. All other details can be found in Refs. [7, 16–
19, 33–36, 47–50].

3. Some results and conclusions

As illustration of the application of the above presented formalism, we present the results of
computing energies, transition probabilities (oscillator strengths) in the heavy multielectron
ion of Hg+. A great interest to studying similar systems (Hg) is explained by the importance
of the corresponding data, for instance, for laser effect studying. The collision of atoms of
the Mendeleev table second raw with ions of helium (other inert gases) leads to creating ions
in the excited states which is important for creating the inverse populations and laser effect.
The available literature data on radiative characteristics are definitely insufficient. An account
of the relativistic and correlation effects has a critical role in the cited systems as the studied
transitions occur in the external shells in a strong field of atom with large Z. Within the
relativistic PT, the Hg+ states can be treated one- and three-QP states of electrons (6s) and
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vacancy (5d�1) above the core of the closed shells 5d106s2. The interaction “quasiparticle core”
is described by the potential (6). The polarization interaction of the quasiparticles through the
core is described by the two-particle effective potential Eqs. (18a)–(18c). All calculations are
performed using the modified atomic code “Superatom-ISAN.”

In Tables 1–3, we present the experimental (NIST) [32] and theoretical energies, electric E1
(5d107p(P1/2,P3/2)-5d

106s(S1/2), 5d
107p(P1/2,P3/2)-5d

107s(S1/2)), and E2 (5d96s2 (D5/2, D3/2)-5d
106s

(S1/2)) probabilities of the transitions in the spectrum of Hg+. The theoretical results are
obtained within the Hartree-Fock, Dirac-Fock methods by Ostrovsky-Sheynerman, relativistic
PT theory with the empirical model potential zeroth approximation (RPT-MP) [18, 31], and our
optimized RPT using relativistic energy approach (RPT-EA).

The standard HF and DF approaches in the single-configuration approximations do not allow
to obtain very accurate results. Using the empirical transition energies significantly improve
the theoretical results as in fact it means an account for very important interparticle correla-
tions effects. In our approach, the corresponding exchange-correlation effects (the polarization

Method E6s 7P1/2-6S1/2 7P3/2-6S1/2 7P1/2-7S1/2 7P3/2-7S1/2 D3/2-S1/2

HF �1.07 0.721 0.721 0.095 0.095 0.863

DF �1.277 0.904 0.922 0.109 0.127 0.608

RPT-MP �1.377 0.986 1.019 0.114 0.147 0.462

RPT-EA �1.378 0.987 1.020 0.115 0.148 0.462

Exp. �1.378 0.987 1.020 0.115 0.148 0.461

Theoretical data—Hartree-Fock (HF), Dirac-Fock (DF) [31]; relativistic PT with the empirical model potential approxima-
tion (RPT-MP) [18]; relativistic PT-RPT-EA (this work); experimental data—Moore (NBS, Washington) [32] (see text).

Table 1. The energies of the 5d96s2(D5/2,D3/2)-5d
106s (S1/2), 5d

107p(P1/2,P3/2)-5d
106s(S1/2), 5d

107p(P1/2,P3/2)-5d
107s(S1/2),

5d96s2(D5/2,D3/2)-5d
106s (S1/2) transitions in Hg+ (Ry).

Method 7P3/2-6S1/2 7P1/2-6S1/2 7P3/2-7S1/2 7P1/2-7S1/2 7P3/2-6S1/2

HF 4.75�106 4.75�106 3.65�107 3.65�107 3.65�107

DF 8.45�107 1.67�107 6.89�107 6.89�107 4.71�107

DF (Eexp) 1.17�108 2.04�107 1.10�108 1.10�108 5.52�107

RPT-MP 1.49�108 2.31�107 1.41�108 1.41�108 6.33�107

RPT-EA 1.51�108 2.33�107 1.43�108 1.43�108 6.35�107

Exp. 1.53�108 2.35�107 1.44�108 1.44�108 6.37�107

HF, Hartree-Fock data; DF, Dirac-Fock data; DF (Eexp), DF data using the experimental transitions energies [31]; relativ-
istic perturbation theory with the empirical model potential approximation RPT-MP [18]; relativistic PT-RPT-EA (this
work); experimental data—Moore (NBS, Washington) [32] (see text).

Table 2. Probabilities of the transitions 5d107p(P1/2,P3/2)-5d
106s(S1/2), 5d

107p(P1/2,P3/2)-5d
107s(S1/2) in Hg+ (in s�1).
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interaction of the QPs, mutual screening and anti-screening corrections, etc.) are taken into
account more accurately. The core polarization correction to the transition probability is of
great importance as it changes significantly the probability value (~15–40%). It should be also
noted that the gauge-noninvariant contribution to radiation width is very small (0.2%; see
Table 2 in the line “EA”) that means equivalence of the calculation results in the standard
amplitude approach with using the length and velocity forms for transition operator. From the
other side, this is an evidence of the successful choice of the PT zeroth approximation and
accurate account of the multi-particle correlation effects.

We have presented the fundamentals of the new relativistic many-body PT formalism with
construction of the optimized one-QP representation in the theory of relativistic multielectron
systems. The relativistic density-functional approximation with the Kohn-Sham potential is
taken as the zeroth one and all exchange-correlation corrections of the second-order and
dominated classes of the higher-orders diagrams (polarization interaction, QPs screening,
etc.) have been taken into account. In order to reach the corresponding optimization, we have
used a procedure of the accurate treating of the PT lowest-order multielectron effects, in
particular, the gauge-dependent radiative contribution for the certain class of the photon
propagator gauge. The corresponding contribution is considered to be the typical representa-
tive of the important multielectron exchange-correlation effects, whose minimization is rea-
sonable criteria in the searching for the optimal PT one-electron basis. This procedure derives
an undoubted profit in the routine many-body calculations as it provides the way of the
refinement of the atomic (molecular) characteristics calculations, based on the “first princi-
ples.” The presented relativistic PT formalism can be further generalized, in particular, by the
way of accounting for the radiation, QED (the Lamb shift self-energy and vacuum polarization
corrections, for instance in the effective Uhling-Serber approximation with account for the
Källen-Sabry and Wichmann-Kroll corrections), and nuclear (the Bohr-Weisskopf and Breit-
Rosenthal-Crawford-Schawlow effects, nuclear finite size correction, magnetic moment distri-
bution, etc.) effects [13–23].

Method D3/2-S1/2 D5/2-S1/2

HF 1360 1360

DF 257.0 77.4

DF (Eexp) 63.9 13.3

RPT-MP 54.54 11.8

RPT-EA 54.52 (0.2%) 11.7 (0.2%)

Exp. 53.5 � 2.0 11.6 � 0.4

HF, Hartree-Fock data; DF, Dirac-Fock data; DF (Eexp), DF data using the experimental transitions energies [31]; relativ-
istic perturbation theory with the empirical model potential approximation (RPT-MP) [18]; relativistic PT-RPT-EA (this
work); experimental data—Moore (NBS, Washington) [32] (see text).

Table 3. The E2 probabilities of the 5d96s2(D5/2,D3/2)-5d
106s (S1/2) transition in Hg+ (in s�1).
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Abstract

We study the dynamics of one-electron atoms interacting with a pulsed, elliptically
polarized, ultrashort, and coherent state. We use path integral methods. We path inte-
grate the photonic part and extract the corresponding influence functional describing
the interaction of the pulse with the atomic electron. Then we angularly decompose it.
We keep the first-order angular terms in all but the last factor as otherwise their angular
integration would contribute infinites as the number of time slices tends to infinity.
Further we use the perturbative expansion of the last factor in powers of the inverse
volume and integrate on time. Finally, we obtain a closed angularly decomposed expres-
sion of the whole path integral. As an application we develop a scattering theory and
study the two-photon ionization of hydrogen.

Keywords: path integrals, influence functional, perturbation, coherent state, hydrogen,
sign solved propagator, two photons

1. Introduction

The study of the interaction of radiation with matter is an area of major importance in physics.
The production in laboratories of pulses of various durations and central frequencies has given
a further boost in that study. These pulses can be used in the study of various elementary
processes such as the excitation or photoionization of atoms [1–7]. This is possible due to their
short time length of the order of a few femtoseconds or of a few hundreds attoseconds. Sub-
100-as pulses have been generated as well. Moreover, their photons’ energy may belong in the
ultraviolet or extreme ultraviolet and therefore just one or two photons may be enough to
cause excitation or ionization.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In the present chapter,we introduce a fully quantummechanical field theoretical treatment, for the
interaction of a pulsed, elliptically polarized ultrashort coherent state with one optically active
electron atoms. We use path integral methods. So we integrate the photonic part and extract the
corresponding influence functional describing the interactionof thepulsewith the atomic electron.

Proceeding we use the discrete form of that influence functional and angularly decompose its
expression. We keep first-order angular terms in all but the last factor as otherwise their angular
integration would contribute infinites as the number of time slices tends to infinity. Further, we
use the perturbative expansion of the last factor in powers of the inverse volume and integrate on
time. So we generate a perturbative series describing the action of the photonic field on the
electron of the atom. It includes photonic and vacuum fluctuations contributions. Moreover, we
manipulate the angular parts of the atomic action via standard path integral methods to finally
obtain a closed angularly decomposed expression of the whole path integral.

As an application we develop a scattering theory and we study the two-photon ionization of
hydrogen from its ground state to continuum. For the same transitions and to the same order
vacuum fluctuation terms contribute as well. In the present application we consider orthogo-
nal pulses. We use the propagator that appears in its sign solved propagator (SSP) form Ref.
[8]. Previously, we have considered other kinds of photonic states interacting with one-electron
atoms (see Refs. [6, 7, 9, 10]).

The present chapter proceeds as follows. In Section 2,wedescribe the present systemand integrate
its photonic part. Then in Section 3, we give the angular decomposition of the propagator in the
case of elliptic polarization. In Section 4, we give an application and our conclusions in Section 5.
Finally, in theAppendixwe give some functions necessary in the evaluation of certain integrals.

2. System Hamiltonian and path integration

In the present chapter, we consider a one-electron atom initially in its ground state under the
action of a coherent state. Therefore, the system Hamiltonian H can be decomposed into a sum
of three terms. The electron’s one He, the photonic field one Hf, and an interaction term of the
photonic field with the electron HI .that is,

H ¼ He þHf þHI : ð1Þ

He has the form

He ¼ 1
2
p!
2 þ Vð r!Þ, ð2Þ

where Vð r!Þ is the atomic potential. The photonic field has the Hamiltonian

Hf ¼ ωaþa, ð3Þ

while the interaction term HI in the Power-Zienau-Woolley formalism takes the form
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HI ¼ �e r! � E!f ð r!, τÞ: ð4Þ

E
!

f ð r!, τÞ is the field operator of the photonic pulse given by the expression

E
!

f ð r!, τÞ ¼ 1ffiffiffiffi
V

p ilðωÞ℘ðτÞ ε_aei k
!

ph� r
!
� ε_

∗
aþe�i k

!
ph� r

!
" #

: ð5Þ

℘ðτÞ is the pulse’s envelope function. In Eq. (5) lðωÞ ¼ ffiffiffiffiffiffiffiffiffi
2πω

p
is a real frequency function, ε_ is

the polarization vector, ω is the pulse’s carrier frequency, k
!
ph is the radiation wave vector and

V is a large volume. Then HI has the form

HI ¼ gðτÞaþ g∗ðτÞaþ: ð6Þ

We have set

gðτÞ ¼ � 1ffiffiffiffi
V

p ielðωÞ℘ðτÞε_ � r!ðτÞei k
!

ph� r
!ðτÞ: ð7Þ

Now we combine the photonic field variables in the term

H0ðaþ, a; τÞ ¼ Hf þHI ¼ ωaþaþ gðτÞaþ g∗ðτÞaþ: ð8Þ

The propagator between the initial and final states corresponding to the Hamiltonian Eq. (1) can
be obtained by integrating on both the space and photonic field variables. At first we integrate the
photonic field variables, which appear only in H0 (Eq. (8)). Then we obtain the following path
integral of only the spatial variables:

Kðαf , r
!

f , tf ;αi, r
!

i; tiÞ ¼
ð
Dr!ðτÞDp!ðτÞ

ð2πÞ3 �

exp i
ðtf

ti

dτ p!ðτÞ � _r!ðτÞ � p!
2ðτÞ
2

� Vð r!ðτÞÞ
 !

� i
ðtf

ti

dτgðτÞZðτ, tiÞ�

2
64

1
2
ðjαf j2 þ jαij2Þ þ Yðtf , tiÞα∗

f αi þ Zðtf , tiÞα∗
f � iαiXðtf , tiÞ

�
,

ð9Þ

where Yðtf , tiÞ, Xðtf , tiÞ, and Zðtf , tiÞ read:

Yðtf , tiÞ ¼ exp �i
ðtf

ti

dτωðτÞ

2
64

3
75 ¼ exp

�
� iωðtf � tiÞ

�
, ð10Þ

Xðtf , tiÞ ¼
ðtf

ti

dτgðτÞYðτ, tiÞ, ð11Þ
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Zðtf , tiÞ ¼ �i
ðtf

ti

dτg∗ðτÞ exp �i
ðtf

τ

dτ0ωðτ0Þ

2
64

3
75: ð12Þ

The propagator in Eq. (9) with diagonal field variables (αi ¼ αf ¼ α) can be written as

Kðα, r!f , tf ;α, r
!

i, tiÞ ¼
ð
Dr!ðτÞDp!ðτÞ

ð2πÞ3
exp i

ðtf

ti

dτ p!ðτÞ � _r!ðτÞ � p!
2ðτÞ
2

� Vð r!ðτÞÞ
" #2

64

þA� Bjαj2 þD1αþDα∗

#
: ð13Þ

The parameters are given as follows:

Aðtf , tiÞ ¼ � 1
V
e2l2ðωÞ

ðtf

ti

dτ
ðτ

ti

dρ℘ðτÞε_ � r!ðτÞei k
!

ph� r
!ðτÞ ℘ðρÞε_∗ � r!ðρÞe�i k

!
ph� r

!ðρÞe�iωðτ�ρÞ, ð14Þ

Bðtf � tiÞ ¼ 1� Yðtf , tiÞ ¼ 1� e�iωðtf�tiÞ, ð15Þ

Dðtf , tiÞ ¼ 1ffiffiffiffi
V

p elðωÞ
ðtf

ti

dτ℘ðτÞε_∗ � r!ðτÞe�i k
!

ph � r
!ðτÞe�iωðtf�τÞ, ð16Þ

D1ðtf , tiÞ ¼ � 1ffiffiffiffi
V

p elðωÞ
ðtf

ti

dτ℘ðτÞε_ � r!ðτÞei k
!

ph � r
!ðτÞe�iωðτ�tiÞ: ð17Þ

In the case of a field transition between an initial photonic state jΦ1〉 and a final one jΦ2〉, the
reduced propagator of finite time takes the form

~Kð r!f , tf ; r
!

i, tiÞ ¼
ð
d2α
π

ejαj
2
〈Φ2jα〉Kðα, r!f , tf ;α, r

!
i, tiÞ〈αjΦ1〉: ð18Þ

Here we consider that we have a field transition from an initial coherent state jβ〉 to a final one
jγ〉. So we can integrate to obtain the following reduced propagator for the motion of the
electron,

~Kð r!f , tf ; r
!

i, tiÞ ¼ Cðtf � tiÞK0ð r!f , tf ; r
!

i, tiÞ
¼ Cðtf � tiÞ

ð ð
Dr!ðτÞDp!ðτÞ

ð2πÞ3 exp fiStot½p!, r!, τ�g,
ð19Þ

where
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CðtÞ ¼
exp βγ∗

BðtÞ � 1
2 jβj2 � 1

2 jγj2
� �

BðtÞ : ð20Þ

The action is

Stot½p!, r!, τ� ¼
ðtf

ti

p!ðτÞ � _r!ðτÞ � p!
2ðτÞ
2

� Vð r!ðτÞÞ
" #

dτ

þi
1ffiffiffiffi
V

p elðωÞ
ðtf

ti

dτ βχðτÞε_ � r!ðτÞei k
!

ph� r
!ðτÞ þ γ∗χ∗ðτÞε_∗ � r!ðτÞe�i k

!
ph� r

!ðτÞ
 !

þ 1
V
e2l2ðωÞ

ðtf

ti

dτ℘ðτÞ
ðτ

ti

dρ℘ðρÞ i
eiωðτ�ρÞ

eiωðtf�tiÞ � 1

�
ε_
∗ � r!ðτÞe�i k

!
ph� r

!ðτÞ
��

ε_ � r!ðρÞei k
!

ph� r
!ðρÞ

�
þ c:c:

" #
,

ð21Þ

where χ(τ) has the form

χðτÞ ¼ ℘ðτÞ e�iωτ

e�iωti � e�iωtf
: ð22Þ

We notice the following identities:

1
BðtÞ ¼

1
2
� 1
2
i cot

ωt
2

� �
¼ 1

2
� i
ω

X∞
m¼�∞

1
t� 2πm

ω

: ð23Þ

On using them and for arbitrary A(t) we can obtain the following formula after a direct Fourier
transform,

ð∞

�∞

AðtÞ
BðtÞe

if tdt ¼ 1
2

ð∞

�∞

AðtÞeif tdtþ π
ω

X∞
m¼�∞

A
2πm
ω

� �
exp if

2πm
ω

� �
: ð24Þ

Finally, upon using an inverse Fourier transform we obtain the following functional identities

AðtÞ
BðtÞ ¼ AðtÞ 1

2
þ π
ω

X∞
m¼�∞

δ
2mπ
ω

� t
� �" #

¼ AðtÞ 1
2
þ 1
2

X∞
m¼�∞

δ m� ωt
2π

� �" #
: ð25Þ

In the above expressions, the summation is to be performed symmetrically. Identity in Eq. (25)
is to be used in Eqs. (19) and (20). The delta functions do not contribute in the final expressions
of Section 4 at the specific times introduced by them the photonic influence functional becomes
zero. Moreover, the measure of all those times is zero. Further to handle the exponential in
Eq. (20) within the scattering theory of Section 4 we use the limit
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lim
t!∞

1
BðtÞ ¼ lim

t!∞

1

1� exp
�
� iðω� i0Þt

� ¼ 1: ð26Þ

Now due to the large volume V, we shall approximate the exact action (21) by neglecting in the
Taylor expansions

r!ðρÞ ¼ r!ðτÞ þ ðρ� τÞ _r!ðτÞ þ…, ð27Þ

higher terms than the first one, as they are going to involve powers of higher order in V in the
denominator. To demonstrate this we consider the action in Eq. (21) and we derive the
equation of motion of the electron by using Lagrange’s equation and the action’s Lagrangian

in the absence of Vð r!Þ. So the part of the Lagrangian that interests us reads

L ¼
_r!
2
ðτÞ
2

þ 1ffiffiffiffi
V

p elðωÞ βχðτÞε_ � r!ðτÞei k
!

ph� r
!ðτÞ þ γ∗χ∗ðτÞε_∗ � r!ðτÞe�i k

!
ph� r

!ðτÞ
 !

þ 1
V
e2l2ðωÞ℘ðτÞ

ðτ

ti

dρ℘ðρÞ i
eiωðτ�ρÞ

eiωðtf�tiÞ � 1

�
ε_
∗ � r!ðτÞe�i k

!
ph� r

!ðτÞ
��
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and has equation of motion

€r!ðτÞ ¼ O
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p
� �

: ð29Þ

Therefore we can set,

r!ðρÞ ¼ r!ðτÞ þO
1ffiffiffiffi
V

p
� �

: ð30Þ

In the case of the presence of Vð r!Þ we perform a full order perturbation expansion of the full
propagator in Eq. (19) with respect to the potential term. That is,

K0 ¼ T þ TVT þ TVTVT þ…: ð31Þ

Then the propagator T, in the expansion, will be the one of the electron in the photonic field
for which the approximation of Eq. (30) as discussed above is valid. Then, we sum back to
obtain the final full propagator, thus maintaining the same approximation for the total
propagator as well. Notice that the expansion (31) may converge very slowly but since it is
a full order expansion it does not matter. Eventually in the large volume limit we get the
action
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Stot p!, r!, τ
h i

¼
ðtf

ti

p!ðτÞ � _r!ðτÞ � p!
2ðτÞ
2

� Vð r!ðτÞÞ
" #
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V
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!
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V
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ðtf
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dτνðτÞ ε_ � r!ðτÞ
�����

�����
2

,

ð32Þ

where
νðτÞ ¼ ℘ðτÞ

ðτ

ti

℘ðρÞξðτ� ρÞdρ, ð33Þ

ξðτ� ρÞ ¼ csc
ωðtf � tiÞ

2

� �
cos ωðτ� ρÞ � ωðtf � tiÞ

2

� �
: ð34Þ

Finally, we notice that in the long wavelength approximation we can set ei k
!

ph� r
!

ffi 1. So we
obtain the following expression

Stot p!, r!, τ
h i

¼
ðtf

ti

p!ðτÞ � _r!ðτÞ � p!
2ðτÞ
2

� Vð r!ðτÞÞ
" #
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i
1ffiffiffiffi
V
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ðtf
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þ

1
V
e2l2ðωÞ

ðtf

ti

dτνðτÞ ε_ � r!ðτÞ
�����

�����
2

:

ð35Þ

Now we proceed to the angular decomposition of the above expressions.

3. Angular decomposition

We intend to perform angular decomposition and evaluate the SSP corresponding to the
propagator of Eq. (19) in the long wavelength approximation.

Here we consider elliptic polarization so that the polarization vector takes the form

ε_ ¼ ε_x cos
ξ
2

� �
� iε_y sin

ξ
2

� �
, ð36Þ
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where ε_x and ε_y are the unit vectors along the x- and y-axis. The upper sign corresponds to left
polarization while the lower one to right one.

The propagator Kξ
0ð r

!
f , tf ; r

!
i, tiÞ of Eq. (19) with the above polarization vector ε_ has the discrete

form

Kξ
0ð r

!
f , tf ; r

!
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Nþ1

n¼1

ð∞

�∞
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þ i
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nε
_∗ � r!nÞ þ 2πω

V
ενn ε_ � r!n

�����

�����
2
3
5
9=
;:

ð37Þ

All the functions with index n are evaluated at time τn ¼ nεþ ti where ε ¼ tf�ti
Nþ1. χn and νn have

the form (see Eqs. (22) and (33))

χn ¼ ℘ðτnÞ e�iωτn

e�iωti � e�iωtf
, ð38Þ

νn ¼ νðτnÞ: ð39Þ

Additionally, we note that we have set r!0 ¼ r!i and r!Nþ1 ¼ r!f .

Now we insert delta functions in Eq. (37) to get the expression

Kξ
0ð r
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!
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2
3
5
9=
;:

ð40Þ

We have defined δð2ÞðzÞ ¼ δðzÞδðz∗Þ. Moreover wn ¼ wxn þ iwyn. The delta functions have the
representation
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δð2Þ wn � ε_ � r!n

� �
¼

δð2Þ wn � rn sinϑn cos
ξ
2

� �
cosϕn � i sin

ξ
2

� �
sinϕn

� �� �� �
¼ 1

2πð Þ2

�
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�∞
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� �� i
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ξ
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� �
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ξ
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� �� �
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�

�i
1
2
λ∗
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� �
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� �
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ð41Þ

We have set λn ¼ λxn þ iλyn. Now we perform the change of variables λxn ! λxn

cos ξ
2ð Þ, λyn !

λyn

sin ξ
2ð Þ, wxn ! cos ξ

2

� �
wxn, wyn ! sin ξ

2

� �
wyn. The factor due to the integration on λn is cancelled

with the factor due to the integration on wn. Further we expand angularly according to the
identity,

eiκ
!� r! ¼ 4π

X∞

l¼0

Xl

m¼�l

iljlðjκ
!jrÞY∗

lmðϑκ,ϕκÞYlmðϑ,ϕÞ, ð42Þ

where jl are spherical Bessel functions, and Ylm are spherical harmonics. So for right elliptic
polarization we get

δð2Þðwn � ε_ � r!nÞ ¼
X∞

ln¼0

Xln
mn¼�ln

glnmn
ðw0

n, rnÞ
ffiffiffiffiffiffi
4π

p
Ylnmnðϑn,ϕnÞ, ð43Þ

where

glnmn
ðw0

n, rnÞ ¼ ð�iÞln Olnmn

ð2πÞ2
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�∞
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�∞

d2λn exp ½iλxnw0
xn � iλynw0

yn�

�jlnðjλnjrnÞ exp ð�imnϕλnÞ,

ð44Þ

Olnmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ln þ 1Þ ðln �mnÞ!

ðln þmnÞ!

s
Pmn
ln ð0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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π

p
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Γ
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2
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Γ

�ln �mn þ 1
2
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We notice that if ln þmn is odd then Olnmn is zero. Moreover jλnj, ϕλn are the polar coordinates
of λn on the x-y plane. We have set

wxn ¼ w0
xn cos

ξ
2

� �
¼ jw0

nj cos ðϕw0nÞ cos
ξ
2

� �
, ð46Þ

wyn ¼ w0
yn sin

ξ
2

� �
¼ jw0

nj sin ðϕw0nÞ sin
ξ
2

� �
, ð47Þ

and
w0

n ¼ w0
xn þ iw0

yn ¼ jw0
njeiϕw0n : ð48Þ

On integrating over ϕλn we get

glnmn
ðw0

n, rnÞ ¼ ð�iÞln Olnmn

2π
exp imn ϕw0n þ

π
2
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ð∞

0

dρλn
ρλn

jlnðρλn
rnÞJmn

ðρλn
jw0

njÞ:
ð49Þ

ρλn
¼ jλnj and Jmn

are Bessel functions. In the appendix we give results for the expression in

Eq. (49).

Finally, we replace the delta functions in Eq. (40) with the above angularly decomposed
expressions. As N! ∞ and within the range from n = 0 to Nwe keep first-order angular terms.
Higher order angular parts would contribute infinites. Finally, the propagator takes the form

Kξ
0ð r

!
f , tf ; r

!
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1
rf ri
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qpðϑi,ϕiÞ,

ð50Þ

where after standard manipulations [11] on the angular parts of the atomic system

Kξ
lmqðrf , tf ; ri, tiÞ takes the form

Kξ
lmqðrf , tf ; ri, tiÞ ¼
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0

drn
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3
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:

ð51Þ

Further we observe that
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N!∞
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So Eq. (51) becomes

Kξ
lmqðrf , tf ; ri, tiÞ ¼ Flmðrf Þ

ðð
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2π

� exp i
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where

Flmðrf Þ ¼
ðð

jw0
f j<rf

d2w0
f glmðw0

f , rf Þ�

exp �
ffiffiffiffiffiffiffiffiffi
2πω
V

r
εðβχwf þ γ∗χ∗w∗

f Þ þ i
2πω
V

ενjwf j2
( )

:

ð54Þ

We notice that to evaluate the integrals in Eq. (54) we have to take into account the
expressions of Eqs. (46) and (47). Then we expand it on parameters of interest and integrate
on time.

In the next section, we use the present propagator in its SSP form which appears after the
solution of the sign problem. It is

Kξ
1ð r

!
f , t; r

!
i, 0Þ ¼ 1

rf ri
δðrf � riÞ
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l¼0

Xl

m¼�l
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q¼0

Xq

p¼�q
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0

νðτÞdτ
2
4

3
5:

ð55Þ

We have dropped the phase due to the atomic Hamiltonian because in the subsequent appli-
cation of the present chapter, it eventually cancels.
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4. Application and results

Proceeding to an application of the present theory we apply the above formalism to the case of
the ionization of hydrogen. In that case the potential is given as

Vð r!Þ ¼ � 1
r
: ð56Þ

We use as an initial state, the hydrogen’s ground one with wavefuction,

Ψ ið r!, tÞ ¼ Ψ ið r!Þe�iεi t ¼ R1sðrÞY00ðϑ,φÞe�iεi t ¼ 2e�rY00ðϑ,φÞe�iεi t, ð57Þ

where εi ¼ �1=2 is the energy of the ground H(1s) state.

The final state of the ionized electron with wave vector k
! ¼ kð sinϑk cosϕk, sinϑk sinϕk, cosϑkÞ

is

Ψ k
!

f ð r!, tÞ ¼

Ψ k
!
f ð r!Þe�iεt ¼ exp

π
2k
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Γ 1þ i

k

� �
ei k
!

� r!
1F1 � i

k
; 1; � ikr� i k

! � r!
� �

e�iεt:
ð58Þ

It has energy

ε ¼ k2=2, ð59Þ

and partial wave expansion

Ψ k
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp ð�2π=kÞp

Ys
y¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

k2

r !
1

ð2sþ 1Þ!

�ð2krÞse�ikr
1F1

i
k
þ sþ 1, 2sþ 2, 2ikr

� � ð61Þ

is the radial function and δs ¼ argΓ 1� i
k þ s

� �
a phase. Then the transition amplitude from the

initial state i at t!�∞ to the final continuum state f at t! +∞may be evaluated at any time t; it is

Afi ¼ 〈Φ�
f ðtÞjΦþ

i ðtÞ〉, ð62Þ

where Φ�
f ð r!, tÞ and Φþ

i ð r!, tÞ are exact solutions of the present system’s time-dependent

Schrodinger equation subject to the asymptotic conditions
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r
: ð56Þ
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where εi ¼ �1=2 is the energy of the ground H(1s) state.
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Ψ k
!
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π
2k

� �
Γ 1þ i

k

� �
ei k
!

� r!
1F1 � i

k
; 1; � ikr� i k

! � r!
� �

e�iεt:
ð58Þ
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Φ�
f ð r!, tÞ !

t!þ∞
Ψ k

!
f ð r!, tÞ, ð63Þ

Φþ
i ð r!, tÞ !

t!�∞
Ψ ið r!, tÞ: ð64Þ

According to standard scattering theory we obtain the following form of the transition amplitude

Afi ¼
1
2

lim
t1!�∞
t2!∞

Ψ k
!

f

* �����U
0ðt2Þþ exp �i

ðt2

0

Hef f ðt2,ρÞdρþ i
ðt1

0

Heffðt1,ρÞdρ
0
@

1
AU0ðt1Þ

�����Ψ i

+
: ð65Þ

The effective Hamiltonian Heff, appearing above and corresponding to the action of Eq. (35)
has the form (see Eq. (2))

Heff ¼ He � i
1ffiffiffiffi
V

p elðωÞðβχε_ � r! þ β∗χ∗ε_
∗ � r!Þ � 1

V
e2l2ðωÞνjε_ � r!j2: ð66Þ

Moreover

U0ðtÞ ¼ e�iHet: ð67Þ

We set β = γ. This appears to be a requirement in order the Hamiltonian to be PT (parity–time
reversal) symmetric. The one-half factor in Eq. (65) appears due to the initial 1

BðtÞ factor in

Eq. (20) and the identity in Eq. (25). At the times introduced by the delta functions the

propagator Kξ
1ð r

!
f , τ; r

!
i, 0Þ(see below) becomes zero. Moreover the exponential in Eq. (20) is

one as lim
t!∞

1
BðtÞ ¼ 1 and β = γ.

Now to proceed we set t2 ¼ �t1 ¼ t and take into account the PT invariance of the whole
system as the Hamiltonian Eq. (66) is PT invariant. So we reverse the time sign of the terms

involving the time t1 something that equivalently implies for the position r! ! � r!, for the

momentum p! ! p! and for the imaginary unit i ! �i. Then we differentiate the operators
between the bra and the ket in Eq. (65), with respect to the variable t. Finally, after certain
standard manipulations and a subsequent integration we obtain the result

Afi ¼ Ψ k
!

f jΨ i

* +
þ

þ
ðς

0

dτ Ψ k
!
f jU0ðτÞþ exp �i

ðτ

0

Heffðτ,ρÞdρþ i
ð0

�τ

HeðρÞdρ
0
@

1
A

*

� � 1ffiffiffiffi
V

p elðωÞðβχε_ � r! þ β∗χ∗ε_
∗ � r!Þ þ i

1
V
e2l2ðωÞνjε_ � r!j2

� �
U0ðτÞ

����Ψ i

�
:

ð68Þ
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We have supposed that the duration of the pulse is ς, as well as that it begins at time zero. Now
in order to proceed we take into account that the asymptotic initial and final states are orthogo-
nal. Further we make use of the path-integral representation of the exponential in Eq. (68) and
angularly decompose it. So on making use of the results of the previous section and solving the
sign problem [8], Eq. (68) becomes

Afi ¼
ðζ

0

dτ
ðð

d r!f d r
!

i
1
r2i
eiðε�εiÞτ

�
Ψ k

!

f ð r!f Þ
�∗

Kξ
1ð r

!
f , τ; r

!
i, 0Þ

� �
ffiffiffiffiffiffiffiffiffi
2πω
V

r �
βχðτÞε_ � r!i þ c:c:

�
þ i

2πω
V

jε_ � r!ij2νðτÞ
 !

Ψ ið r!iÞ:

ð69Þ

We have used the prior form of the transition amplitude. Kξ
1ð r

!
f , τ; r

!
i, 0Þ is given by Eq. (55).

The phase which appears after the solution of the sign problem has cancelled.

As the present theory is PT symmetric we have to use PT symmetric quantum mechanics. So

our equations take their final form according to the fact that
�
Ψ k

!
f ð r!Þ

�PT
¼
�
Ψ k

!
f ð r!Þ

�∗
.

Here we want to study two-photon ionization processes. They are of order 1
V or higher. For the

same transitions the vacuum fluctuations term contributes to the same order. So we take it into
account. The amplitude takes the form

A ¼
ðζ

0

dτ
ðð

d r!f d r
!

i
1
r2i
eiðε�εiÞτ

�
Ψ k

!
f ð r!f Þ

�∗

� �
ffiffiffiffiffiffiffiffiffi
2πω
V

r
Sξl¼1ð r

!
f , τ; r

!
i, 0Þ
�
βχðτÞε_ � r!i þ c:c:

�
þ i

2πω
V

Sξl¼0ð r
!
f , τ; r

!
i, 0Þjε_ � r!ij2νðτÞ

 !
Ψ ið r!iÞ:

ð70Þ

Upon expanding to powers of volume the sign solved propagators appearing in Eq. (70) take
the form

Sξl¼1ð r
!

f , τ; r
!

i, 0Þ ¼ 1
rf ri

δðrf � riÞ
X∞
q¼0

Xq

p¼�q
Yqpðϑf ,ϕf ÞY∗

qpðϑi,ϕiÞ

� �
ffiffiffiffiffiffiffiffiffi
2πω
V

r �
ε_ � r!f β

ðτ

0

dρχðρÞ þ c:c:
�2

4
3
5 exp i

2πω
3V

r2f

ðτ

0

νðρÞdρ
2
4

3
5,

ð71Þ

and
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Sξl¼0ð r
!

f , τ; r
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i, 0Þ ¼ 1
rf ri
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������
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8><
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2πω
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Finally, we obtain the second-order transition probability

∂P
∂ε

¼ 1
4π2 k

ð
jAj2dΩ

k
!: ð73Þ

Here we consider the case of an orthogonal pulse of duration ζ. Then

℘ðτÞ ¼ 1 0 ≤ τ ≤ ζ
0 otherwise :

�
ð74Þ

In Figure 1, we plot the second-order term ∂P
∂ε as a function of the energy of the injected electron

ε for ζ = 100 as and various values of the elliptic polarization parameter ξ. We use

∂Ρ/∂ε

ε

Figure 1. Second-order probability ∂P
∂ε of ionization as a function of the ε. We set ζ = 100 as. We give curves corresponding

to ξ ¼ π
2 (solid) ξ ¼ π

3 (dashed) ξ ¼ π
20 (dotted). We use ω ¼ 0:4275a.u., β = 1 and V ¼ 107.
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2ω ¼ 0:855 a:u:Within the range 0 ≤ ξ ≤ π
2 the larger the ξ the smaller the transition probability.

ξ ¼ π
2 corresponds to circular polarization. We give another approach of this case in [10]. ξ = 0

corresponds to linear polarization. In that case the present approach is degenerate. We give
other approaches in [6, 7, 9].

5. Conclusions

In the present chapter we have used path-integral methods in the study of the interaction of
electrons with photonic states. We have integrated the photonic field and then angularly
decomposed the electron—photonic field influence functional. Within those manipulations
there have appeared terms due to the electromagnetic vacuum fluctuations.

As an application we have developed a scattering theory and used it in the two-photon ioniza-
tion of hydrogen. For those transitions, the electromagnetic vacuum fluctuations contribute to
the same order. Moreover to handle the path integrals that appear, we have used the relevant
propagators in their sign solved propagator (SSP) form. The SSP theory appears in Ref. [8].

Concluding the present method is tractable and can be used in many problems involving the
quantum mechanics of one-electron atoms interacting with radiation.

Appendix

In Eq. (49), we have the expression (here we drop the n indices)

glmðw0, rÞ ¼ ð�iÞl Olm

2π
exp im ϕw0 þ π

2

� �� �ð∞

0

dρλρλjlðρλrÞJmðρλjw0jÞ

¼ Olm

2π
ð�iÞlimeimϕw0

ffiffiffiffiffi
π
2r

r ð∞

0

dρλ
ffiffiffiffiffiffi
ρλ

p
Jlþ1

2
ðρλrÞJmðρλjw0jÞ

¼ Olm

2π
imð�iÞleimϕw0

ffiffiffiffi
π

p jw0jmΓ lþm
2

þ 1
� �

rmþ2Γ
l�mþ 1

2

� �
Γðmþ 1Þ

�F
lþm
2

þ 1,
m� lþ 1

2
; mþ 1;

jw0j2
r2

 !
Θðr� jw0jÞ

¼ Olm

2π
imð�iÞleimϕw0

2m
ffiffiffiffi
π

p
Γ

lþm
2

þ 1
� �

rΓ
l�mþ 1

2

� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � jw0j2

q

�P�m
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � jw0j2

q

r

0
@

1
AΘðr� jw0jÞ,

ð75Þ

where Θ(x) is the step function
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ΘðxÞ ¼ 1, x > 0

0, x < 0
:

(
ð76Þ

We give the following cases:

g00ðw0, rÞ ¼ 1
2π

1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � jw0j2

q Θðr� jw0jÞ, ð77Þ

g1�1ðw0, rÞ ¼ ∓
ffiffiffi
3
2

r
e�iϕw0

2π
jw0j
r2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � jw0j2

q Θðr� jw0jÞ: ð78Þ
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Abstract

The curvature energy as spectra of a field observable that is resulted of the variation of
energy due to the speed of direction change in the space, is measured and detected by a
sensor designed and developed through H-fields of energy that are superposes,
obtaining strong variations in the fermion state to the H-torsion (second curvature
energy) of the space-time via the gravitational covariant derivative having that the
actions can be consigned to these H-fields as Majorana states with a corresponding
action of gauge field. Likewise, in this chapter, some geometrical models of these H-
states and their spectra of curvature are generated and discussed, which are extrapo-
lated to the design of curvature energy sensors to quantum gravity.

Keywords: curvature energy, curvature energy sensor H-states, H-torsion, quantum
gravity, spectral curvature, torsion

1. Introduction

The study of the field theory in physics establishes that the field actions can be measurable
through their observables such as curvature or torsion of the space, which represent forms in
how the field affects the space giving it a geometrical shape that depends directly on the field
sources and their localization in the space. From the viewpoint of the topological field theory
(TFT), these relations between the sources localizing in the space, where born the actions of the
field, are born and the proper geometry engendered in the space by the actions of field to
deform the space establish to the curvature and their second version; the torsion, as the
geometrical invariant most important to characterize to a space and their geometry as implicit
part of the field acting in the space through their energy. Physically, the detection of the field
presence, without causing its extension in the space, is realized through its energy. This makes us
think that curvature measurements can be realized using the energy concept that considers the
curvature as an energy perturbation in the space, which can be measured through its spectra.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Likewise, a new concept developed above through new measurement methods and new tech-
nology prototypes to measure curvature as field observable [1, 2], or as microscopic deforming of
the space-time associated to the gauge fields that enter in action with the quantum gluing of the
matter and the constructing of the electric charge of the particles, is the curvature energy [1, 2],
which is determined as a variation of energy perceived by a change in speed rate of direction in
the space detected by the energy condition or censorship condition designed by certain integrals
of energy born of the curvature integral transforms [3, 4] applied on certain cycles of the signal
space acting on the space, to obtain certain energy co-cycles that are curvature data of the space
and which represent in an energy space the curvature energy (see Figure 1).

This raises the need to design a sensor and also the space perception of a device (censorship
condition), which must use a modulation space with a domineering energy condition given by
[2, 3] as follows:

½V�2
ð

C

hk2ds ≥
ð

Ch2 � k
� �2

ds ≥
1
2
AV2

ð2π

0

kdθ ð1Þ

Here voltages Vare factored by mean and principal curvatures along the curved part of curved
surface, having an inequality of Hilbert type, which establishes the energy range in which the
curvature energy exists.

Then the measure of curvature can be obtained as an extrinsic curvature from a space classes
(cycles) with a curvature measure well defined and which represent the interacting of the rate
of direction changes of the space with pulses of energy (Fourier analysis) that go sensing these
direction variations and consigned in their energy spectrum through of their co-cycles. Some
measurements realized have been the obtained applying energy Gaussian pulses π(x, y), [2]
that determine, in the infinitum the measure of curvature through of this spectra (see the
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OE ¼ dγHomKðM, S2Þ
ð
Ω, ð2Þ

But this obeys to the field condition given by gravity in their more fine aspects, since gravity
acts as subjacent energy in the geometrical aspect of any space (all the objects in the space are
always affected by gravity) using the universal gravitation in the modality of field theory given
by Einstein equations.1 Likewise, the scaled gravitational energy is used in the process of
gauging of sensor device whose advances correspond to that measured and gauged by the
proper universal gravitation and considered by the spherizer operator OE , [2, 6, 7]. Then using
the result enounced in [8], and considering the scaled gravitational constant χ ¼ 8π

c4 G ¼
2:071 · 10�43 sec2meter�1kg�1, which is the proportionality between space-time curvature
and energy (as shown in Figure 3 in [8]), and using Eq. (2) and the field Einstein equations,
we have the following:

OE ¼ dγHomKðM, S2Þ
ð

M

eð�1ÞndΣðfðxÞÞ ¼ 8π2, ð3Þ

Figure 3. Curvature gauged in curvature energy on an arbitrary surface M, using a spherical surface Σ, [5].

Figure 2. Curvature energy spectra of hyperbolic paraboloid z = xy.

1Rμν � 1
2 Rgμν ¼ χTμν:
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which is the energy quantity measured per determined curvature. Similarly, using this mea-
sure of net energy, gravitational waves can be detected by the device that involves this energy
to measure curvature energy through electromagnetic fields as gauge fields. This idea is and
will be fundamental to determine conditions of energy [Hilbert inequations as given in Eq. (1)]
to any censorship required to design a curvature sensor in field theory, including the micro-
scopic theory to QFT. Similarly, in this respect arises the possibility of using the torsion field as
the second curvature to measure curvature in field theory considering certain modifications
that can be used in field quantum equations as Dirac equation. But far of want the unification
of the gravitational and electromagnetic forces to construct a unique field (which is failured
reheresal considering only the Einstein equations) is necessary involves the Dirac equation and
their solutions in their first integral given by the field actions to curvature in a homogeneous
space [3, 7] as described in [7] and using the field theory on the homogeneous space G½½z��=X,
[9] whose curvature energy measures can be constructed by co-cycles in this space.

Other studies followed in the search of curvature measure through light waves were realized in
[6] under the same philosophy of the energy integral value on curved spaces (more specific
Riemannian manifolds), considering integral transforms defined in homogeneous spaces or cycle
spaces (whose cycles are invariant under translations and rotations on the proper manifold).
Similarly, the curvature was obtained initially (using the units of volts on cubic meter, mentioned
before) as measure through the corresponding co-cycles as integral transform [2, 10]:

κðω1,ω2Þ ¼
ð

M

κðp,φÞe�jðω1t1 þ ω2t2Þdpdφ, ð4Þ

which are our spectra of curvature to a measure realized by our curvature device in an instant t
In the case of light waves, the censorship condition is given in [6] as follows:

Theorem (F. Bulnes) 1. 1. [6, 11]. The Radon transform of the Gaussian curvature whose
detection condition is the inequality (censorship2) is as follows:

½logϕðξðtÞÞ�2
ð
logσðtÞ

� �2
≥
�ð

Ωð1� ∇2logΩÞ
�2

≥ 4π
ð
Ω, ð5Þ

and using the signals, the curvature measured by light beam is
ðð

jKϕ,Lζ,•Þj
L1

¼ 2
R

ðð

D2

jKhðσðtÞÞjdxdy, ð6Þ

Proof. [6, 11].

Likewise, considering the representation of curvature in a Hilbert space (energy space) that is
to say, given by Λ~gðf Þ, ∀υ∈Vζ, ∀ζ∈K ∧ , and f∈C∞

c ðG=KÞ, 3 (theorem (F. Bulnes) [12, 13]), we

have the following:

2Theoretical sensor of curvature by a wave of light [6, 10, 11]
3~g, is the pseudo-Riemannian metric in G/K, induced by the pseudo-Riemannian metric of the manifold M.
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< Λ~gðVÞ, f ≥⊕ζ∈K ∧ < Λ~gðVðζÞÞ, f > , ð7Þ

which is an “energy” representation of curvature. This permit generalizes the idea of the
curvature as field observable to a level of its energy, having the concept of curvature energy to
quantum level, that is to say, the domineering energy in the action of a quantum field on a
curved space [14] to displace a particle on said space (see Figure 2). The next step is that it
can interpret these energy observables as field observables, which are born of the deforma-
tions obtained on space-time background. Remember that the representations of curvature
determined in Eq. (7) obey a fine structure with weak topological conditions from a point of
view of global analysis. Each isotopic component is a co-cycle in the spectral space or
spectrum of curvature.

But how to design a field gauge to measure the gravity observables through curvature energy
to a quantum level?

Re-writing the symmetric tensor of the metric, it stays as oμνðSÞ. This tensor is analogue to the
usual metric tensor“g” but refers to lengths (as is usual) where the distance is symmetric as
functional. The super fix that is represented as “S” refers to symmetric state [15]. The asym-
metric tensor that could be the case of more general metric tensor (which could consider electro-
magnetic fields as field gauges to measurements of other fields as gravitational field) is defined
through the external product between tetrads as follows [9, 15]:

oabμν ¼ oaμo
b
ν ¼ oabμν

ðSÞ þ oabμν
ðAÞ, ð8Þ

The anti-symmetric form involves the symmetry and anti-symmetry parts. The anti-symmetric
component from Eq. (8) is oabμν

ðAÞ: The anti-symmetric tensor of the metric is defined through

the wedge product of two tetrads [9, 15]:

oabμν
ðAÞ ¼ oaμ ∧ o

b
ν, ð9Þ

The action of the product of the tensors of curvatures Rαβ and oαμ will establish “torsion effect

on the action of gravity”, which is measurable and representable as distortions produced from the
gravity, in the presenece of a gauge field (see (Figure 4)). In this point, the spectrum of the
searched curvature can be constructed. Then with the application of the quantum mechanics,
more specifically, the QFT, and their interrelation with the gravitation is searched and the
cause of the field through the quantum interactions that generate this is established. Then in
this new “exhibition of gravity”, the Einstein field equations can be re-written as follows:

Ra
μ � 1

2
Roaμ ¼ χTa

μ, ð10Þ

and using this fact, the new metric tensor can be expressed as4:

4The new metric tensor is anti-symmetric.
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gabðAÞ
μν ¼ oaμ ∧ o

b
ν, ð11Þ

we arrive at the new field equation to electrodynamics that is generally covariant:

oaμ ∧ ðRb
ν �

1
2
RobνÞ ¼ χoaμ ∧T

b
ν, ð12Þ

which gives us the spin or torsion of the field. However, this must be accompanied with
the Dirac equation to a designed boson to the start of the second curvature, which must
have inherence in the microstructure of the space-time to perceive the gravity to micro-
scopic scale. In the asymmetric space-time model are obtained field models that reflect the
torsion as the central part (this is due to the field polarization to particle level) that defines
field perturbations whose origins are quantum and whose operators are non-commutative
[9]; for example, the asymmetric field theory given by Yang-Mills where this theory pro-
vides an extension of Maxwell theory to the case of non-Abelian fields. In these dimen-
sions raise the wrappings and the loop contributions that will contribute to the energy
micro-states used to define electromagnetic signal effects of power that can be consigned
in a harmonic analyzer with polynomial enters in a non-harmonic interphase of Legendre
polynomials.

Figure 4. Flat-R4-Worldsheet of distortion angle obtained for the electromagnetic backreaction with the background
radiation (gravity). The photon is the gauge field to measure quantum gravity action.
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2. Curvature from quantum gravity: a curvature sensor in field theory

How measure curvature of the space-time from the concept of quantum gravity interpreting
their observables as light-field deformations obtained on space-time background with the
action of a gauge field?

To this measurement, we use a hypothetical particle graviton that is modelled as dilaton, being a
gauge graviton (gauge boson) [1, 15]. According to our curvature, studies come from a theoretical
sensor of curvature in the presence of the incurve and detected by a wave of light [1, 6]. This was
mentioned in theprevious section. The curvature quantumperception in the space is associated as a
little distortionof the finemicro-local structureof the space-timedue to the interactionof particles of
the matter and energy with diverse field manifestations [1]. The matter is shaped by hypothetical
particles that take as base the background radiation of the space, which in last studies due to QFT
[16] and brane theory are organized and tacked to shape spaces of major dimensions. These spaces
are represented by diverse particles of the matter, such as gravitons, barions, fermions of three
generations, etc. [1, 9]. These particles are shaping gravity to quantum level, obtaining representa-
tions of the same for classes of cohomologyof theQFT, for example, the FRW-cohomology (which is
a Floer Wrapped Cohomology [16]), which brings exact solutions to the Einstein field equations.
This last affirmation considers diverse symmetries of cylindrical and spherical type for the gravity
modelled like awave of gravitational energy “quasi-locally” (see Figure 5) [1, 9].

We can determine action integrals of the gravitational energy density (Hamiltonian) given for
[1, 9, 18] as follows:

HTOTAL ¼ 1
G8π

ð

M

Γþ 1
2
LαTαβ Xβ, ð13Þ

where Lα is the Lagrangian, Tαβ is the corresponding tensor of matter and energy, Γ is a
Hamiltonian density and Xβ is the corresponding field of displacement of the particles in the
space moving for action of Lα influenced by the matter and energy tensor Tαβ [1, 9].

In the study of the microscopic space-time exist the group representations of SU(2), where one
of these considers that the super-symmetry is given for S3 (sphere of dimension 3) [15]. In it,
the topological invariant of their 2–form ω3, and given in the cohomology group
H3ðSUð2Þ,RÞ 6¼ 0, [9, 17, 19] will show clearly the gravity presence.

This registry, at least, is realized on the surface of this ball S3, which is a mini-twister surface in
the presence of gravity [9], having as ambitwistor space the set of field couples ðZα,WαÞ, to the
microscopic space-time. Here, Zα is the field of gauge nature (in this case electromagnetic fields)
and Wα, the field of particles of the gravity (gravitons, that in this case is the background) [1, 9].

Similarly, it was mentioned and considered that the curvature value can be understood as the
deformation contour on a surface (initial idea created and developed relative to the under-
standing of curvature in a space-time [10, 15]).

Also the curvature can be understood to the field distortion as undulating in the space-time for
the back-reaction due to the photon propagation in the presence of gravity [see Figure 5 (a)
and (b) (using string theory)].

Detection and Measurement of Quantum Gravity by a Curvature Energy Sensor: H-States of Curvature Energy
http://dx.doi.org/10.5772/68026

175



We can extrapolate this idea to design a type of accelerometer that can be connected to the
devices of navigation of a travelling satellite by space. In said accelerometer, a sensor of ultra-
sensitive gravity based on a solid sphere S3, whose material can be similar to a colloid, could be
involved in their interior, capturing the changes of the weight of a liquid that is also of colloid
type (perhaps of major density that of the ball S3) due to the universal factor G [1, 17].

A censorship5 device in the earth’s gravity can be designed to construct a fine curvature sensor to
detect energy for the matter inflow in the space occupied by matter. This brings to collation the
perception of the matter-energy tensor Tαβ, which influences the movement of the sensor device.6

The measured curvature will be a Gaussian curvature expressed through spherical harmonics
given by Legendre polynomials.

5This censorship can be understood as electromagnetic detectors of curvature, which can design the cosmic sensors of
curvature with the Penrose censor [1].
6Considering M, a four – dimensional space is necessary to consider the spherical map ∂M ! S3, where for this case the

electromagnetic fields can be used as gauges, remembering that SUð2Þ ffi S3: Then the cohomology group of the Cartan

forms ω1, and ω2 are annulled [17], that is to say H1ðSUð2Þ,RÞ ¼ 0, that is the case of the integrals

∮ω1 ¼ 0 ð∮ δAi ¼ δð∮AiÞ ¼ 0Þ: To the non-null case, as was mentioned earlier, the unique unique 2-form to the determi-

nation of curvature is ω3. Thus, the value of the integral of this group of cohomology is [1, 9] as follows:

1
8π2

ð

SUð2ÞffiS3

ω3 ¼ 2 < F, F > ,

But by the background radiation of a Minkowski space M (as four-dimensional model of the space-time), where the

energy of the matter is given by the tensor Tαβ, , is that Jα ¼ kαTαβ, where kα, is the density of background radiation that
establishes for the curved part of the space (that in this case has spherical symmetry) the variation of energy together with the
energy and matter tensor that comes given as [1, 17] follows:

1
4Gπ

ð

S2

Tαβkαdσβ ≥
ð

S2

Jαdσβ ≥ 2πχ,

But conserved current in whole space is

Jα ¼ Eαβkβ þ 1
2
Sαβγ∇βkγ,

Then the energy inside the sphere satisfies [7, 27]

1
16π2

1
ð2� 2gÞ

ð

SUð2ÞffiS3

ω3 ≤ 1,

since the electromagnetic energy with respect to the energy of background radiation can fulfill that

4π
ð
Ω2 ≥ 8π

ð
< Fij, Fij >:
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These Legendre polynomials can be measured by harmonics that can be consigned in a wave
with an algebraic frequency. The device is a sensor of free fall that can register different force G,
according to its position in the Cosmos [1]. The difference is consigned by theHall Effect obtained
by the scattering difference of fermions detected in each case by particles/anti-particles [1, 17].

Inside the device, considering the Lagrangian action given for [1], the actions of change regis-
tered by the free little falls can be reprogrammed. The distortions detected on the 3-sphere can be
identified with these harmonics and thereafter consigned as spectral curvature (Figure 6) [17].

With our ideas and precise goal, we can consider some useful concepts and create other.

Def. 3. 1 (F. Bulnes, M. Ramírez, L. Ramirez, O. Ramírez). broson is a hypothetical particle that
is a fermion that comes from D – Branes, being the hypothetical particle wrapped by gauge
bosons in the space-time [15].

Being a field solution, the broson will be our solution of the Dirac equation to distortions
of field [1, 9, 15] that are perturbations in the space-time created by reaction of this
particle with background. Likewise the broson will be solution of the field equation:

ð□þ χTÞoaμ ¼ 0, ð14Þ

Figure 5. (a) Dilaton measuring distortion due to quantum gravity, according to the model computational magnetic. (b)
The case is when there is not photon back-reaction [1, 14].
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If we have the term χT, this must be imagined as spherical density. The term R is the curvature
of the space-time, which is a deformation of the spatial scenery due to the presence of matter in
space. The exact values are not important in this last description, but their implications in the
geometrical scenery and their invariants [15] hold significance because these describe the
shape of the space-time, at least, locally.

The torsion is produced by the gauge bosons in the microscopic space due to the electromag-
netic characteristics of these bosons that are photons [15], realizing back-reaction [1, 17] with
the space covered or affected by gravity.

Indeed, in the non-Abelian electromagnetic theory “ghosts” are produced that are states of
negative norm or fields with the wrong sign of the kinetic term linked to every particle whose
effect is predicted by Faddaev-Popov [19, 20, 21].

Every ghost is associated to a gauge field where the gauge field acquires a mass via a Higgs
mechanism (mechanism that creates matter and charge, although each one takes its proper
way in the particle decomposition).

The associated ghost field acquires the same mass (in the Feynman-'t Hooft gauge only, not true
for other gauges) where the gauge must be designed or proposed in accordance to the
Feynman-t’Hooft theory) [1, 9].

Figure 6. (a) Sensor device to consignee the little variations in free fall for gravity of the sensitive material ball in the space-
time. (b) Deformed ball due gravity sensing. (c) The device is designed to be used in a traveler satellite. (d) Gravity spectra.
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In the QFT, and particle physics frame, the existence of a weak field has been established that
helps to define the unification to the neutron. The weak field, whose nature is electromagnetic,
is associated with the gauge boson as of the type W boson. Similarly, when the neutron exists
outside the atomic nucleus, it is transformed after 10 minutes into an electron, anti-neutrino
and one proton. This establishes the condition to create matter and anti-matter in the required
proportion that is needed in the Universe [14].

We consider the algebraic object assigned as a set of rules of a chain complex (as a graded
module equipped with degree d, such that d2 = 0) that permits to understand the movement as
a continuous transformation whose image in a quantum space is a deformation of the space-time
to microscopic level given by little changes in energy. Their macroscopic image of such quanti-
zation can be consigned inside a Poisson manifolds family that under certain quasi-equivalence
[9, 15, 20, 21] and through homotopies can be carried to a macroscopic reality [9, 15]. Through
the duality of Koszul complexes on microstate spaces can be demonstrated that the entropy is an
aspect of the evolution of the energy that can be considered as an inverted image in a mirror
space of the equivalences. Gravity in this case is consigned under torsion (and defined as
pressure on a body or particles) in a Drinfeld space with twisted loops, where these loops and
strings could be our “brosons” according to definition 3. 1., given [1, 15].

Taking into consideration the optimal design of the censorship condition, using the micro-
scopic torsion theory and involving the field solution to Eqs. (10) and (14) from the QFT
(considering that the artificial particle is defined before, because remember that the broson must
be a fermion to be consistent with the different helicities of strings), we have the movement ramifi-
cation as macroscopic effect of the following field action7 [15]:

ITotal ¼ IG þ IQED�fermions, ð15Þ

3. H-fields in a generalized curvature tensor and some boson-fermion
measurements

Through the integration formalism applied to the total action integral of gabðAÞ
μν , which comes

from the actions of two tensors, the partial action due to the curvature tensor and the electro-
magnetic tensor, including in this last, along with the fermion self-interactions induced by the
quantum second curvature, we can establish the following total action as second integral of
Eq. (12):

ITOTAL ¼ 1
2κ

ð
d4xooaμo

b
νRðϖÞ þ i

2

ð
d4xo·

· ðoaμðψγaDμðϖ,AÞψ�Dμðϖ,AÞψγaψÞÞ�

�
ð
d4xo

3
10

κJμðAÞJðAÞμ,

ð16Þ

where {γμ,γν} ¼ 2gμν, is Dirac matrix and Rμν ¼ dωμν þ ωμ
σ ∧ωνς, is the 2-form of curvature.

7This is viewed as energy curvature stated using the perturbative method.

Detection and Measurement of Quantum Gravity by a Curvature Energy Sensor: H-States of Curvature Energy
http://dx.doi.org/10.5772/68026

179



Here, χ ¼ 8πGN, is the gravitational constant mentioned in the introduction section, which we
know, is intimately related with the production of matter by the tensor of matter-energy-
momentum in the Universe estimated inside the Einstein field equations.

However, the studies in [15, 22, 23] need to explain the mechanism of the gravitational energy
with the torsion. Similarly, through the QED and QFT, (see Figure 7) using perhaps the spinor
frame (because it is a wave superposing many trajectories taken by the dilaton interacting with
the space-time), we have within the Dirac equation as was given in Eq. (14) the fermion
interactions [14] that give the different matter particle, which is a space-time torsion, where
finally is a second curvature.

Finally, this global action defined in Eq. (16) can be re-written to fermions in gravity with torsion
[23, 24], with a specific scalar field of torsion (Kalb-Ramond field strength [25]) inspirited from the
string theory [26] (UV- complete) and that cando the job of providing a constant, axial background
in a local frame of FRW-cosmology. The additional fermion-piece of the form is stated as follows:

I ¼ α
2

ð
d4xoðψγaDμðϖ,AÞψ�Dμðϖ,AÞψγaψÞ,α ¼ cte, ð17Þ

Using the Dirac kinetic terms, the fermion action reads:

IDirac�Holst�Fermi ¼ α
2

ð
d4xoðΨγað1� iαγ5ÞDμΨ �DμΨ γað1� iαγ5ÞΨ Þ, ð18Þ

where inside the integrand the Dirac equations to the differentiating fermions are involved in
the non-Harmonic analysis that appears in the anti-symmetric behaviour of the curvature field
measured for quantum interactions (see Figure 8).

This establishes the conjecture in [15], which we enounce.

Conjecture (F. Bulnes) 3. 1. The curvature from the quantum gravity is the measure through
the link-wave or perturbation wave (see Figure 9a) between a hypothetical graviton particle

Figure 7. Construction of string energy curvature through the study areas to quantum fields on curved space. To obtain the
curvature energy, we consider QFT and general relativity on expanding Universe, and to initial conditions we consider
elemental particle behaviour in the earlyUniverse. The curvature energymodel in quantum level is necessary to consider fields
that are solutions of the Cartan-Einstein equations andDirac equation. This has beenmentioned in the Introduction section I.
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modelled as dilaton (gauge graviton) and the trace of any particle in the space-time, whose
relativistic Feynman diagram followed to a quantum field [15].

Theorem (F. Bulnes). The quantum curvature is the set of curvature energy states from the
perturbative method of their Hamiltonian [15].

The perturbation method consider a Hamiltonian H ¼ H1 þ εH2, which determines first,
energy spectra and after on the base of an action as the given through a field broson action
[15], obtain curvature as torsion or second curvature. Similarly, the electro-gravitational energy

Figure 9. (a) Curvature measured to quantum level as the little quantum distortion given by the link-wave between a
hypothetical particle as graviton modelled as dilaton (gauged graviton) and the trace on relativistic Feynman diagram
followed in quantum gravity [15]. (b) The quantum curvature can be considered as different times in the causality and
conformal structure of the the space-time [15]. The different deviations to the world lines in each case show the curvature.
(c) The microscopic perturbation on a cylindrical surface is retaken [15]. Also it is considered the causal structure given by
light cones. The red segment in Figure 9b corresponds to the surface model given in Figure 9c.

Figure 8. Refs. [14, 26] Separation of fermions due to their spin ½ in the non-Harmonic analysis that appear in the anti-
symmetric behaviour of the curvature in a gravitational field measured for quantum interactions. This is realized in a
spintronic simulation.
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produced can be consigned to torsion energy and its detection can be obtained by back-
reaction on background space-time as energy perturbation expressed as perturbation wave.

In microscopic UV-radiation frame, the underlying theory of quantum gravity takes different
tensors with a corresponding particle spin involved in the interaction. Likewise, we consider
the Kalb-Ramond field Bμν ¼ �Bνμ, [27] with the massless gravitational multiplets of “closed”
strings such as scalar or dilaton (spin 0), traceless symmetric rank (spin 2), 2-tensor or the
graviton (spin 1), anti-symmetric rank 2-tensor or electromagnetic tensor.

A gauge invariant to effective field theories (in low-energy scale E << Ms) given for
Bμν ! Bμν þ ∂½μθðxÞν�, is feasible, which depends only on the field strength Hμνρ ¼ ∂½μBνρ�, [27].

Then we give the Bianchi identity as follows:

∂½σHμνρ� ¼ 0, ð19Þ

However, the detected anomalies by gravitational field interacting with gauge field cancella-
tions of strings (necessary to the perceiving of the gravitational waves letting only the gravitational
strings) require a re-definition of the H-fields given in Eq. (19) considering the extension due to
the Majorana neutrinos masses from (three loop) anomalous terms with axion-neutrino cou-
plings [27]. The corresponding extended Bianchi identity to these anomalous terms is stated as
follows:

Hμνρ ¼ ∂½μBνρ� þ α0

2κ
ðΩL �ΩVÞ, ð20Þ

Thus interesting results from the study of the phase-space density are derived from the
difference between the Chern-Simons 3-forms [28] ΩL, and ΩV, where Lorentz-Chern-Simons
3-form ΩL defined to neutrinos is considered and the electro-gravitational formalism in gauge
theory is considered in the case of the gauge Chern-Simons 3-form[27].

In quantum gravity, a theoretical study related to the propagation of photons shows that a
region of space-time with a singularity is supported by an energy that decreases asymptoti-
cally to the infinite. This hypothetical energy can be constructed with the expression of a
Lagrangian-type given in Table 1 [1, 29], with cylindrical gravitational wave given by the
dilaton (gauge particle) [27] as follows:

Φ ¼ ð1=10000ðexpð�4ξÞJν,xð3ξ, 1Þ þ expð�4ξÞYν,xð2ξ, 1ÞÞ ð21Þ

where the equation expresses a wave model for energy of gravitational waves (see Eqs. (1), (9),
(17)) [1]. Also see Figure 10a [1, 9].

Now, considering the effective gravitational action (that is to say, the action whose Lagrangian is
effective) in string low-energy and in terms of a generalized curvature Riemannian tensor (where

the Christoffel connection includes the H-fields, that is to say, Γ
μ
νρ ¼ Γμνρ þ κffiffi

3
p Hμ

νρ 6¼ Γ
μ
ρν, defined

in Eq. (20)), we can give the four-dimensional action as follows:
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Sð4Þ ¼
ð
d4x ffiffiffiffiffiffiffi�gp 1

2κ2
R� 1

6
HμνρHμνρ

� �

¼
ð
d4x ffiffiffiffiffiffiffi�gp 1

2κ2
R � 1

3
κ2HμνρHμνρ

� �
,

ð22Þ

where the dual of H, in four dimensions, is given by the differential equation:

�3
ffiffiffi
2

p
∂σb ¼ ffiffiffiffiffiffiffi�g

p
∈ μνρσHμνρ, ð23Þ

where b(x) is a pseudo-scalar that defines the Kalb-Ramond axion. Then to a dilaton Φ, that
satisfies Eq. (23) has the properties described in Eq. (14) as gravitational wave, the field equation
is as follows:

Figure 10. (A) Gravitational alteration perceived by the censor is designed by Eq. (20) when it is obtained as a great
alteration of energy near the singularity of the space-time. (B) Spinor waves superposing due to the curvature energy due
to singularity. These are created as small quantum field fluctuations in the post-limit of Newtonian gravity. The singular-
ity is not combing thus the unique admissible representation is through spinor waves which can be superposed to shape a
perturbing measurable in energy space.

Electromagnetic Lagrangian action Electromagnetic interaction

IðxðsÞÞ ¼
ð

M
LMAXðxðsÞÞdðxðsÞÞ, Classic electromagnetism

I
∘ ¼

ð
Rij ∧Σ

ij � 1
2 < Fij, Fij>~M VolðgÞ, Quantized electromagnetism

I ¼ 1
2π

ð
d2zðGμν þ BγνÞ∂xμ∂̄xμ þ 1

4π

ð ffiffiffi
g

p
RΦðxLÞ, Electromagnetic string photons (Bosons)

I ¼ k
4 ISOð3Þðλ,θ,ωÞ þ 1

2π

ð
d2z½∂x0∂̄x0 þ ψ0∂ψ0 þ

X3

l¼1

ψl∂ψl� þ Q
4π

ð ffiffiffi
g

p
RxL,

Gravitational heterotic string (gravitons)

I ¼
ð
d4x

ffiffiffiffi
G

p
e�2Φ½Rþ 4ð∇ΦÞ2 � 1

12H
2 � 1

4g2 F
μ
αβF

μ,αβ þ C
3�,

Electro-gravitational heterotic string dilaton-
graviton

δI ¼
ffiffiffiffiffiffiffiffiffi
kkgH

p
2π

ð
d2z½∂ωþ cosθ∂λ�, Magnetic distortion (back-reaction)

Table 1. Lagrangian actions to electromagnetic interactions [1, 9, 17].
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Hμνρ ¼ o2Φ ∈ μνρσ∂
σbðxÞ, ð24Þ

The linear dilaton solution in string frame (or logarithmic in FRW-time in Einstein frame) with
conformally flat Einstein-frame target space-time [see Figure 11a] is exact in all orders of a
parameter that appears in Eq. (17) [27].

Then considering the principles dictated in Eqs. (18)–(20) and the differentiated fermions in the
non-Harmonic analysis that appears in the anti-symmetric behaviour of the curvature field
measured by quantum interactions (Figure 8), we can give the following action that comes
from the Majorana states in fermionic field theories with H-torsion [9, 27]:

Sψ ¼ � 3
4

ð
d4 ffiffiffiffiffiffiffi�g

p
Sμψγμγ5ψ, ð25Þ

Then considering the extra-charge created by the fermion interaction (central charge underly-
ing in the world-sheet conformal field theory [16]), we can define the scalar field:

bðxÞ ¼
ffiffiffi
2

p
e�φ0

ffiffiffiffiffiffi
Q2

q
Msffiffiffi
n

p t, ∀n∈Z, ð26Þ

which is a field model with fine electromagnetic terms, where this can be used to create a basic
charge in a component of g-cell [27].

Also we use the theorem on curvature given in [3], which must consider an isotopic compo-
nent of Gaussian factor to lectures of curvature, then we can define a sensor whose 3-ball of
non-Newtonian fluid can receive these signals and re-interpret through voltage-curvature
energy, such as said by theorem III. 1 [1, 14, 17].

These data as little electrical voltages that come from the surface of the 3-ball can be censored
(and sensored) as little changes in the background (that are perturbations) due to the dilaton
interaction with this [14, 27].

Figure 11. (A) Macroscopic Fluctuations density detected by CMB in the Newtonian limit, which can be consigned in
microwave map realized by the SWAP Universe. The quantum field fluctuations that generate the macroscopic fluctua-
tions can be modelled by a dilaton φ, that enters in back-reaction with the background radiation. (B) Perturbation surface
in the Newtonian limit (in beginning of the flatness of the space-time supported by the neutrinos/anti-neutrinos totality).
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Likewise, realizing some experiments with little accelerometers in curvature sensor perfor-
mance, we can include a charged ball whose charge variation in time is given by the energy
spectra [1, 27]. Then the position variation of the accelerometer in respect to their horizontal
frame (Ecuador) registered in their g-cell change (see Figure 8) will measure the falls by
gravity, these being consigned in curvature energy. We can use two leads to determine the
polarization effect created in natural way by the fermionic behaviour [27] (see Figures 6 and 8).

Then we can define an accelerometer in a classic sense in the earth’s gravity. The curvature will
be expressed as a Gaussian curvature according to spherical harmonics given by Legendre
polynomials [14, 27]. These polynomials carry the information of ball variations. Likewise, the
sensor is a sensor of free fall that can register different force factors G. This difference is
consigned by the Hall Effect obtained by the scattering difference of fermions detected in each
case, particles/anti-particles. The proper device considering these as a Lagrangian action given
can reprogram the actions of the changes [1, 9, 27].

Then extrapolating this experiment in the ambit of the photonics, the folds or “creases” in a
deformable sphere (Figure 6) are oscillations in the Universe, which are given by the mixture of
neutrinos/anti-neutrinos for the eco of the Early Universe [27], which will arrive until our days.

The Universe will maintain its basic non-spherical symmetry until our days, which can be
expressed through its Lagrangian as follows:

L ¼ Lf þ LI ¼ ffiffiffiffiffiffiffi�g
p

ψ½iγa∂a �mÞ þ γaγ5Ba�ψ, ð27Þ

where ψ, and ψ, are component of the field spinorΨ. The oscillations are received as spherical
auto-modes of the alteration of central charge Q, obtained by the differentiated fermionic
process (see Figure 9) (extension of the model the axion b(x), using total derivatives of the
gravitational cRμνρσ~Rμνρσ, and electromagnetic cFμν~Fμν, terms [18] of the fields oaμ, translated

to H-fields).

In the Universe, the neutrinos and anti-neutrinos conform to the asymmetry around the black
holes or space-time singularities [25]. Inside singularities, the gravitational field is dementia. Then
their particles and anti-particles (by the same polarization process) can be generated from the
torsion. Likewise, using a plane wave approximation, different dispersion relations between
particles and anti-particles to finite densities assuming constant background torsion can be
obtained (see Ref. [27]).

Finally, through a magnetic dilaton Φ, we can give a model of magnetic distortion, that is to
say, the energy curvature in the gravitational media can be translated as magnetic defor-
mation of thefour-dimensional part of the string of background radiation (see Figure 11)
[9, 27].

The gravitational energy is the curvature energy obtained through components of Bessel
functions or harmonic polynomials (see Figure 12).

Finally, we can conclude that the curvature energy expressed through the H-states can be

written using the superposing principle to each connection ω⊗ j
C , (with C, a curve) that
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describes the corresponding dilaton. Likewise, in a Hamiltonian densities space [9], we have
Figure 12(a) considering a Hitchin base that is stated as follows:

H0ðωCÞ⊕H0ðω⊗ 2
C Þ⊕…⊕H0ðω⊗n

C Þ, ð28Þ

In the case of spinor representation, the corresponding H-states can be given as spinor waves
[see Figure 12b], which can be consigned in oscillations in the space-time-curvature/spin, to a
microscopic deformation measured in H.

4. Conclusions

The curvature as field observable can be detected by back-reaction of a gauge field considering
that the quantum gravity is the quantum effect produced by interaction of particles that
conform to the matter (that is to say, particles of matter) with gauge particles, which in most
cases are of boson type. However, we can consider an underlying causal fermion system or
fundamental causal fermion system from which effects (from their energy states) as geometri-
cal invariants to the space-time can be observed, which can be described to the space-time as
discretized by H-states of Majorana states (as given in 28 to a space-time modelled initially as
complex Riemannian manifold and transformed later to be a discrete manifold).

Then we can establish quantum geometry of the space-time, and using the concept of curva-
ture energy associated to the particle/wave, we can give a representation as perturbation
H ¼ H1 þ εH0, generated by the interaction of particles mentioned. Likewise, geometrical
models of quantum gravity can be given to show the quantum behaviour of observables
obtained for photons that act on the background radiation (or microwave radiation) such that
a second curvature as torsion can be induced for fields as dilatons or gauge bosons, which can
exhibit observable of gravitational field that is curvature in all cases. As this process is realized
in quantum level, results remain curvature to quantum gravity, which is curvature energy or
gravitational energy (as defined in the introduction of this chapter from the energy-matter

Figure 12. (A) Direct sum of H-states to establish the curvature measure by field ramification. (B) The waves that are
spinor waves can be consigned in oscillations in the space-time in the presence of curvature to the change of particles spin.
(C) Gravitational waves produced by quantum gravity due to H-states on cylindrical surface. Their propagation is
realized on axis X. These gravitational waves are originated for the oscillations in the space-time-curvature/spin (that is
to say using causal fermions systems).
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tensor Tαβ) that will exist until our days as an echo of the times of the creation of the gravity in
the transit of the Early Universe. Then a censorship condition can be used to sensing and
gauging of curvature, which can give characteristics to construct and design a sensor device,
using the curvature energy to measure and detect quantum gravity as such [29].
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