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Preface

It is my pleasure to present to you a new book, titled Theriogenology, the contents of which
include original research results and reviews flashing several distinctive aspects of therioge‐
nology, the field that studies animal reproductive health and disease. This challenging field
shows a steady growth in the past years, covering diverse aspects of reproduction in domes‐
tic and wild animals, including the assisted reproductive techniques, which have enormous‐
ly enhanced the ability to rescue endangered species and provide a strong support to the
high reproductive efficiency requested by livestock production.

This book intends to cover some particular topics related to the reproductive function of
mammal and marine species; it is however impossible to exhaust such interesting topics in
the field, as there are so many aspects still needing to be addressed. Reproductive success,
as well as infertility, is the culmination of complex physiological and adaptive processes that
guarantee, at the end, a species´ ability to reproduce and its survival in a challenging and
ever-changing environment. Therefore, InTechOpen and I, we planned to present to you a
collection of manuscripts exploring various aspects of animal theriogenology.

The chapters are organized into two main sections, one in “Mammal Theriogenology,” cov‐
ering both domestic and wild species, and the other in “Theriogenology of Marine Ani‐
mals.” Manuscripts within the first part of the book cover diverse topics, from the
androgens role in the ovary differentiation to the role of melatonin in buffalo reproduction,
or the available techniques to screen reproductive cycles in wild mammals, new markers of
sperm freezability, and mitigation of heat stress impact in livestock, along with one focusing
on the immunocastration in pigs. The second part was dedicated to reproduction in marine
animals, and contains one chapter on the ovarian differentiation in marine teleostei fish, and
the other describes the reproductive cycle of a thalassinidean mud shrimp species. In gener‐
al the chapters are profusely illustrated and represent a great value for their readers.

I would like to thank all the authors for their contribution to this book, for jointly creating this
book, by sharing with us their knowledge in the field. It was a great, challenging journey.

Furthermore, I hope you find this book a useful addition to your library in the animal repro‐
duction field, among other many worthy books already available in theriogenology.

Rita Payan Carreira
University Trás-os-Montes e Alto Douro

Portugal
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Topics from Mammal Reproduction





Chapter 1

The Role of Androgens in Ovarian Follicular
Development: From Fertility to Ovarian Cancer

Malgorzata Duda, Kamil Wartalski,
Zbigniew Tabarowski and Gabriela Gorczyca

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.68881

Abstract

Androgens, steroid hormones produced by follicular cells, play a crucial role in the regu-
lation of ovarian function. They affect folliculogenesis directly through androgen recep-
tors (ARs) or indirectly through aromatization to estrogens. Androgens are thought to be 
primarily involved in preantral follicle growth and prevention of follicular  atresia. It also 
seems possible that they are involved in the activation of primordial follicles. According 
to the World Health Organization, endocrine-disrupting chemicals (EDCs) are substances 
that alter hormonal signaling. EDCs comprise a wide variety of synthetic or natural chemi-
cals arising from anthropogenic, industrial, agricultural, and domestic sources. EDCs inter-
fere with natural regulation of the endocrine system by either  mimicking or blocking the 
function of endogenous hormones as well as acting directly on gene expression or through 
epigenetic modifications. Disruptions in ovarian processes caused by EDCs may originate 
adverse outcomes such as anovulation, infertility,  or premature ovarian failure. In this 
chapter, we aim to point out a possible involvement of androgen excess or deficiency in 
the regulation of ovarian function. We will summarize the effects of EDCs expressing anti-
androgenic or androgenic activity on female physiology. Continuous exposition to even 
small concentration of such compounds can initiate oncogenesis within the ovary.

Keywords: androgens, androgen receptors, ovarian follicle, folliculogenesis, endocrine-
disrupting chemicals

1. Introduction             

The mammalian ovarian follicle guarantees two essential functions in the ovary. It synthe-
sizes many substances, including steroids, and by this way creates a microenvironment for 
the proper development and maturation of a viable oocyte. Even though gonadotrophins are 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



regarded as the main hormones regulating follicular development, sex steroids are also known 
to play an important role in this process. Currently, the least established follicular function is 
that related to androgens. Androgens were originally regarded as hormones influencing pri-
marily the male physiology. This perception has changed as numerous investigations have 
demonstrated the effects of androgens such as testosterone (T) and dihydrotestosterone (DHT) 
on female physiology [1]. It turned out that androgens are one of the most important agents 
influencing folliculogenesis [2–6]. Androgens are known to exert pro-apoptotic effects [7, 8] 
but are also indispensable in normal folliculogenesis for both androgen receptor-mediated 
responses and as substrates for estrogen synthesis [9]. Androgenic actions play a role mainly 
in early follicular growth, whereas estrogenic roles are more important at later follicle devel-
opment stages [1, 9]. The high number of androgen receptors (ARs) that characterize granu-
losa cells (GCs) in preantral follicles declines during antral differentiation at the same time as 
expression of mRNA for P450 aromatase (P450arom) and estrogen synthesis increase [10–13].

Recently, a growing concern aroused about the potential for environmental endocrine- 
disrupting chemicals (EDCs) to alter sexual differentiation. EDCs are one of the factors that 
can induce unfavorable changes taking place in the ovary [14, 15]. They originate as a result 
of human industrial activities, enter the natural environment, and then disturb hormonal 
regulation (e.g., through blocking steroid hormone receptors) [16]. Such a mechanism of 
action negatively influences many processes taking place in the reproductive tract of a female 
[17, 18]. In extreme cases, this may lead to the elimination of many populations from their 
natural habitats, by premature cessation of ovarian function, among other putative mecha-
nisms. The image of muscular bodies as the model for an ideal, which is frequently carried 
in mass communication media, has led to an increase in the number of enthusiasts for andro-
genic anabolic steroid (AAS) use. AAS is a group of synthetic compounds that originate from 
testosterone and its esterified or alkalinized derivatives belonging to EDCs. The association 
between AAS use and cancer that has been described in the literature and may be related to 
the genotoxic potential has already been shown in several studies [19, 20]. In vitro toxicologi-
cal models are widely used to assess the effects of endogenous androgens and EDCs on ovar-
ian function, to understand their role in the initiation/progression of ovarian cancers.

In this chapter, we intend to point out a possible impact of androgen excess or deficiency on the 
regulation of ovarian function as well as following EDC action with antiandrogenic (e.g., vinclo-
zolin, linuron) or androgenic (e.g., anabolic steroids: testosterone propionate, boldione) activity 
due to the fact that continuous exposition to even small concentration of such compounds can 
initiate oncogenesis within the ovary. Following our previous results obtained using an in vitro 
animal model generated for studying androgen deficiency, we have found that the exposure of 
porcine follicles to an environmental antiandrogen—vinclozolin—caused deleterious effects at 
antrum formation stage that may negatively influence the reproductive function in mammals.

2. Androgen receptor structure and mechanism of action

Like all steroid hormones, androgens affect target cells by binding to and activating special-
ized receptors. The types of receptors that are involved in the signal transduction decide on 
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its mechanism of action. A genomic response is usually induced by receptors localized in 
the cytoplasm/nucleus. Additionally, androgens can also exert their effects by interacting 
with receptors located on the cell membrane to perform rapid, non-genomic actions. It is well 
known that the cross talk between non-genomic and genomic signaling pathways is crucial 
for proper ovarian function [21].

The ARs, encoded by a gene composed of eight exons located on the X chromosome, are 
proteins with approximately 919 amino acids. The exact length of ARs is variable due to the 
existence of two diverse polyglutamine and polyglycine stretches in the N-terminal region 
of the protein [22]. This AR region modulates its transactivation [23, 24] and, hence, its func-
tionality. The ARs, which belong to the nuclear receptor superfamily, are characterized by a 
modular structure consisting of four functional domains: C-terminal domain responsible for 
ligand binding (LBD), a highly conserved DNA-binding domain (DBD) with centrally located 
zinc fingers, a hinge region, and N-terminal domain (NTD) (Figure 1) [25, 26]. The C-terminal 
domain of ARs is encoded by exons 4–8. Within itself, besides LBD, C-terminal domain also 
contains transcriptional activation function 2 (AF2) co-regulator binding interface [27, 28]. 
In the most conserved region of ARs—DNA-binding domain—two zinc fingers encoded by 
exon 2 and exon 3, respectively, are located. The first zinc finger determines the specificity of 
DNA recognition, which makes contact with major groove residues in an androgen-response 
element (ARE) half-site. The second zinc finger is a dimerization interface that mediates bind-
ing with a neighboring AR molecule engaged with an adjacent ARE half-site [29]. The short 
flexible hinge region, encoded by exon 4, regulates DNA binding, nuclear translocation, and 
transactivation of the ARs [30]. The N-terminal domain, encoded by AR exon 1, is relatively 
long and poorly conserved. It displays the most sequence variability by, as mentioned above, 
virtue of polymorphic (CAG)n and (GGN)n repeat units encoding polyglutamine and poly-
glycine tracts, respectively [31–33]. This domain contains also the AF1, which harbors two 
transactivation regions, transcriptional activation unit-1 (TAU-1), and transcriptional activa-
tion unit-5 (TAU-5). The N-terminal domain is essential for AR activation [34] and, because 
it contains many sites for Ser/Thr phosphorylation, may be involved in mediating cross talk 
with other signaling pathways leading to the modulation of AF1 activity and interaction with 
co-regulators [35].

In the absence of androgens, unliganded ARs remain in the cytoplasm. To maintain the unbounded 
AR protein in a stable and inactive configuration, the molecular chaperone complex, including 
Hsp90 and high-molecular-weight immunophilins, is needed. Androgens like other steroids can 
freely diffuse across the plasma membrane and bind to the LBD region that induces conforma-
tional changes, including the Hsp90 dissociation from ARs. Followed by these transformation, 
ARs undergo dimerization, phosphorylation, and translocation to the nucleus, which is mediated 
by the nuclear localization signal (NLS) in the hinge region. The dimer binds to the androgen 
response elements (AREs) located in the promoter of the target gene and leads to the recruit-
ment of co-regulators, either coactivators or corepressors such as steroid receptor coactivator 1 
(SRC1) and transcriptional intermediary factor 2 (TIF2), leading to transcription of genes that 
are involved in many cellular activities, from proliferation to programmed cell death [36]. In 
some cases, for example, in the low androgen concentration, the ligand-independent signaling 
pathway may occur. This process involves MAPK/ERK pathway and depends on growth factor 
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receptors. As a result, transcriptional activity enhancement, through direct phosphorylation of 
steroid receptors, is observed [37]. The androgen signaling pathways depicted above are collec-
tively known as “genomic pathway” (Figure 2) [38].

Apart from the direct or indirect genomic effects, androgens may also operate in cells by the 
“non-genomic pathway,” stimulating rapid effects in signal transduction through the produc-
tion of second messengers, ion channel transport, and protein kinase cascades. This kind of 
activity involves receptors localized in the plasma membrane or in “lipid rafts” [39]. Rapid 
non-genomic action of androgens might be mediated by binding to transmembrane recep-
tors unrelated to nuclear hormone receptors (usually G-protein-coupled receptor (GPCR)) 
that was well documented in different tissues [40, 41]. Among GPCRs, there are GPRC6A 
and ZIP9 that have been pharmacologically well characterized [42, 43]. Additionally, andro-
gens can induce activation of the Src/Ras/Raf/MAPK/ERK1/ERK2 pathway in the cytoplasm, 
independently of receptor-DNA interactions (Figure 2) [44, 45]. It was shown that in lutein-
ized human GCs androgens caused rapid, non-genomic-dependent rise in cytosolic calcium, 
involving voltage-dependent calcium channels in the plasma membrane and phospholipase 
C [46, 47].

Androgen action might be disturbed by alternative splicing [48]. This is a common event 
described in the structural molecular biology of AR genes. Alternative splicing is a process 
by which multiple different mRNAs and downstream proteins can be generated from one 
gene through the inclusion or exclusion of specific exons [49]. This process might occur in 

Figure 1. Schematic representation of the structural and functional domains of AR protein (A) and the coding of exons 
1–8 in relation to each functional domain of human AR gene (B). AF, transcriptional activation function; NLS, nuclear 
localization signal; HSP, heat shock protein.
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95% of all multi-exonic genes and provides a significant advantage in evolution by increas-
ing proteomic diversity [50]. Although deregulation of this process may lead to inappropri-
ate spliced mRNA, impaired proteins and eventually to diseases such as cancers [51, 52] or 
endocrine system dysfunction [53]. More recently, two AR splice variants expressed in GCs 
from patients with polycystic ovary syndrome (PCOS), which is one of the most common 
causes of female infertility, have been identified [54]. The altered AR splicing patterns are 
strongly associated with hyperandrogenism and abnormal folliculogenesis in PCOS [55]. It 
seems possible that AR alternative splicing may be an important pathogenic mechanism in 
human infertility.

Figure 2. Molecular mechanism of the AR action. After entering into the cell, ARs bind to their specific receptors located 
in the cytoplasm; the ligand-receptor complexes are then translocated to the nucleus. After that, they bind to DNA 
as dimmers modulating gene expression (1). Alternatively, the ligand-receptor complexes in the nucleus interact with 
transcription factors, which in turn bind to their responsive elements on the DNA to regulate gene expression (2). 
Hormone-independent mechanism involves AR phosphorylation and activation, which is triggered by protein kinase 
cascade in response to growth factors binding to their receptors located on the cell membrane. Phosphorylated ARs 
enter the nucleus and bind to DNA, regulating gene expression (3). Androgens may also be directly bounded by cell 
membrane receptors, triggering the activation of protein kinase cascades. Thereafter, phosphorylated transcription 
factors bind to their own response elements in the genome, thereby controlling gene expression (4). Androgen action 
might be either mediated by intracellular secondary messengers produced in response to the activation of G-protein-
coupled receptors (5). TF, transcription factor; cAMP, cyclic AMP; PKA, protein kinase A; PLC, phospholipase C; IP3, 
inositol 1,4,5-trisphosphate; DAG, diacylglycerol; PKC, protein kinase C.
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3. Androgens and follicular development

In the ovary of a mature mammalian female, the process of folliculogenesis proceeds all 
the time, which manifests in cell proliferation and differentiation. Such a process, involving 
growth and development of ovarian follicles from the stage of primordial to the preovulatory 
ones, is a substantially complicated phenomenon requiring multidirectional regulation. From 
the initial pool of ovarian follicles starting to grow, the preovulatory stage is reached by only 
a few. More than 99% of the follicles undergo atresia at various stages of development. The 
transition from the preantral to an early antral stage is most susceptible to this process. All 
primordial follicles present during fetal life constitute a reserve that cannot increase later on, 
during the postnatal period. Therefore, the very first stages of folliculogenesis, such as forma-
tion of primordial follicles, their recruitment from the resting pool, and then transformation 
into primary ones, are critical for the reproductive cycle of a vertebrate female animal [56]. 
Improper coordination of the primordial follicle formation and activation of their growth may 
disturb folliculogenesis in mature individuals originating infertility.

3.1. Origin of primordial follicles

In the developing ovary, the primordial follicles consist of an oocyte surrounded by a single 
layer of squamous pregranulosa cells. Once assembled, some of the primordial follicles are 
immediately stimulated to growth, but most remain quiescent until selected follicles are gradu-
ally recruited into a growing follicle pool, throughout the reproductive life [57]. The recruit-
ment of primordial follicles into a growth (primordial-to-primary follicle transition) involves 
a change in the shape of the granulosa cells from squamous to cuboidal and the initiation of 
oocyte growth. The primordial-to-primary follicle transition is an irreversible process. The early 
stages of folliculogenesis are believed to be gonadotropin independent. All events related to 
early follicular development are mostly regulated by paracrine growth factors originating from 
the growing oocyte itself and from the somatic cells that surround it [58, 59] and also by ovar-
ian steroid hormones (i.e., progesterone, androgens, and estrogens) [6]. Interestingly, during 
initiation of primordial follicle growth, a fundamental role for androgens has been shown. In 
mouse, bovine and primate ovaries T and DHT [3, 60, 61] are responsible for the stimulation of 
this process, while in sheep DHEA plays the main role [62]. The initiation of primordial follicle 
growth might be mediated through paracrine stimulation, by upregulation of IGF-1 and/or its 
receptor [63]. On the other hand, it seems possible that androgens, acting through ARs, regulate 
the early stages of follicular development. Fowler et al. [61] reported that in human fetal ovaries 
pregranulosa cells express ARs, and the oocytes of the primordial follicles are able to synthe-
size androgens. Taken together, androgens might stimulate the primordial-to-primary follicle 
transition but still an open-ended question is that how they exactly influence primordial follicle 
recruitment and whether this is a primary or secondary response [64].

3.2. Antral follicle formation

Studies indicating AR expression in the different compartments of follicles throughout most 
stages of folliculogenesis allowed us to assume that androgens regulate follicular  development [9]. 
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Although AR expression pattern differs between follicular cell types, it has been observed that AR 
number declines together with follicle maturation to the preovulatory stage [65]. AR-mediated 
actions might be important in the antrum formation during follicular development. Mouse pre-
antral follicles cultured in vitro in the presence of an AR antagonist, bicalutamide, showed sig-
nificantly suppressed growth and antral cavity formation. At the same time, supplementation 
of culture medium with DHT restored the follicular growth and antral development in follicles 
cultured without FSH addition [66]. Similar situation was observed after different androgens 
(incl. T, DHT, or DHEA) in addition to in vitro culture system of mouse preantral follicles. 
They undergone rapid granulosa cell proliferation and amplified responsiveness to FSH [67]. 
Moreover, supplementation of culture media with estrogens, with or without fadrozole (an aro-
matase inhibitor), had no effect on follicular development, while the addition of an AR antago-
nist, flutamide, suppressed follicular growth. These studies allow to state that these androgen 
stimulatory effects on antrum formation and follicular growth are mediated directly through 
ARs and are not induced by T aromatization to estrogens [3]. Our recent research was conducted 
to determine whether experimentally induced androgen deficiency during in vitro culture of 
porcine ovarian cortical slices affects preantral follicular development. Cultured preantral folli-
cles were supplemented with testosterone, nonsteroidal antiandrogen, 2-hydroxyflutamide, and 
a dicarboximide fungicide, separately or in combination with androgen. 2-Hydoxyflutamide is a 
pharmaceutical compound, which is regarded as a model antiandrogen in experimental studies. 
It promotes AR translocation to the nucleus and DNA binding but nevertheless fails to initi-
ate transcription, inhibiting the AR signaling pathway [68]. We demonstrated the deleterious 
effects of androgen deficiency at antrum formation stage, what confirms androgen involvement 
in porcine early follicular development [69]. In summary, it was clearly shown that androgens 
enhance ovarian follicle growth, from preantral to antral stage. The main findings regarding the 
direct action of androgens on the in vivo and in vitro control of follicular development in mam-
mals are based on the transcriptional actions of ARs in follicular cells.

3.3. Preovulatory follicular development

During antrum formation GCs separate into cumulus GCs and mural GCs, which line the fol-
licle wall. These two subpopulations of GCs gain different morphological and functional prop-
erties during further follicle development [70]. The mural granulosa cells are characterized by 
high levels of steroidogenic enzyme activity, which converts androgens to estrogens, while 
the cumulus cells (CCs) are engaged in supporting oocyte growth and maturation. Just before 
ovulation, CCs acquire steroidogenic abilities and start to produce primarily progesterone [71]. 
The role of ARs in the female was elucidated by the studies of various global and tissue-specific 
AR knockout (ARKO) mouse models [72]. Granulosa cell-specific ARKO (GCARKO) mouse 
models have demonstrated that granulosa cells are an important site for androgen action and 
strongly suggested that the AR in these cells is an important regulator of androgen-mediated 
follicular growth and development. On the other hand, AR inactivation in the oocyte, as shown 
in the OoARKO female mouse model, appears to have no major overall effect on female fer-
tility [73]. Using female mice lacking functional ARs (AR−/α), Hu et al. [74] demonstrated 
impaired expression of ovulatory genes, defective morphology of the preovulatory cumu-
lus oophorus cells, and markedly reduced fertility. However, there are contradictory reports 
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concerning androgen effects on oocyte maturation and embryonic development. While some 
authors found androgens exerting inhibitory effects on these processes in different species [75, 
76], others have shown that T increases the cleavage rate of fertilized rat oocytes and that dihy-
drotestosterone improves the fertilizability of mouse oocytes [77, 78]. Optimal androgen levels 
appear to be of real importance in the maintenance of proper preovulatory follicular devel-
opment ensuring normal ovulatory function. Administration of T or DHT did not increase 
preovulatory follicle numbers in primate ovaries [12]. Yet, in pigs, treatment with T or DHT 
during the late follicular phase increased the number of preovulatory follicles and corpora 
lutea [79]. In mice, DHT at a low dose [80] improved the ovulatory response to superovulation. 
Likewise, in vivo treatment of rats with a steroidal AR blocker (cyproterone acetate) leads to 
a decrease in the number of new corpora lutea, indicating an inhibition of ovulation [81]. To 
sum up, these findings indicate that androgens indeed play a role at the preovulatory stage of 
follicle life cycle. Moreover, the coordination of oocyte maturation and ovulation is reactive to 
the androgenic environment. Therefore, a balance of androgen positive and negative actions 
is required for optimal ovarian functioning. Some contradictory findings on the role played by 
androgens in this period of follicle development stress the need for further research aimed at 
elucidating the background of these processes.

4. Antiandrogenic and androgenic EDC action within the ovary

In the light of a dramatic increase of evidences demonstrating the harmful effects of EDCs 
present in the environment, it is crucial for further research on the female reproductive 
potency to understand the mechanisms of their action within ovaries. Among EDCs there is a 
large group of chemicals exerting antiandrogenic effects and blocking endogenous androgen 
action. We can find there pharmaceuticals (e.g. 2-hydroxyflutamide, ketoconazole) as well 
as environmental contaminants: pesticides (e.g. vinclozolin, linuron) or synthetic androgens 
such as testosterone propionate or boldione, which are widely used anabolic steroids [82]. 
During our previous experiments concerning the involvement of androgen in ovarian fol-
licular development and atresia, we generated an in vitro toxicological model for studying 
androgen deficiency. Using 2-hydroxyflutamide, which is a nonsteroidal antiandrogen acting 
at the AR level, we induced distortions of androgen action in the ovary that in consequence 
reduced porcine GC viability and proliferation [83].

Vinclozolin, a commonly used dicarboximide fungicide, is registered in the USA and Europe 
to prevent decay of fruits and vegetables. It was shown that vinclozolin possesses an antian-
drogenic activity in mammals and fish [84–86]. Two major ring-opened metabolites of vin-
clozolin (butenoic acid M1 and enanilide M2) have been detected in rodent fluids and tissue 
extracts following in vivo exposure that might have negative consequences for human health 
[87–89]. Exposure to vinclozolin during gonadal sex determination period in mice promotes a 
transgenerational increase in pregnancy abnormalities and female adult onset malformation 
in the reproductive organs [90, 91]. Our previous studies showed that vinclozolin at an envi-
ronmentally relevant concentration might contribute to the amplification and propagation 
of apoptotic cell death in the granulosa layer, leading to the rapid removal of atretic follicles 
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in porcine ovary [92, 93]. Besides, it seems possible that vinclozolin activates non-genomic 
signaling pathways directly modifying the AR action. Another widely used pesticide with 
antiandrogenic activity is linuron. In vitro studies in mammals demonstrated that linuron 
competitively inhibits the binding of androgens to the ARs [94] and acts as a weak AR antago-
nist in transcriptional activation assays [95]. Additionally, prenatal in vivo exposure to high 
doses of linuron caused reduced testosterone production, altered expression patterns in gene 
involved in tissue morphogenesis, and morphological disruptions to androgen-organized tis-
sues [96–98]. It is currently hypothesized that antiandrogenic pesticides such as vinclozolin 
or linuron act through a mixed mode of action including both AR antagonism and reduced 
testosterone production.

The European Community banned the use of anabolics in Europe by means of laws  
96/22/EC and 96/23/EC. Despite these regulations, in many countries, exogenous sex hor-
mones are widely and illegally used in livestock for anabolic purposes during the last 2 
months of the fattening period. Such deliberate action raised ovarian cancer incidence in 
both adult and young animals [99]. Literature search reveals a positive correlation between 
steroid hormone abuse and cancer incidence [100]. Sex hormones and gonadotropins are 
responsible for the regulation of granulosa cell proliferation and their physiological changes 
with maturation [101]. They stimulate cell growth, even in mutated cells, and this is why 
they are considered cocarcinogens. Thanks to their ability to stimulate mitosis, thus increas-
ing the number of cell divisions, steroids also increase the risk of mutations [102]. Generally, 
some mutations can be corrected by cellular DNA repair mechanisms, but since these pro-
cesses require prolonged times, it is believed that faster cell division increases the risk of 
mutations that can be transferred to daughter cells. Consequently, these hormones may act 
not only as cocarcinogens but also as true carcinogens, being able to provoke an increased 
risk for mutation in their target cells. They also stimulate the divisions of the mutated cells 
[103]. An increased proliferation rate observed in many cell lines indicates that sex steroid 
hormones act as growth factors and activate respective signaling pathways [104]. Although 
this is not a uniform view, it seems that sex steroids interfere with mechanisms controlling 
apoptotic cell death. Regarding androgens, in some experiments, they have been shown to 
promote granulosa cell apoptosis [105], while other authors have affirmed that they pre-
served granulosa cells and follicles from undergoing programmed cell death [106]. Today, 
there is more than 100 varieties of AAS that have been developed, with only a few approved 
for human or veterinary use. They are used not only by athletic competitors and sports-
men but also by people wanting to alter their physical appearance usually based on the 
widespread belief that strong, muscled body is the model for the ideal. Some anabolic sub-
stances, i.e., testosterone propionate, boldione, or nandrolone, are openly available on the 
Internet for use by body builders. The International Agency for Research on Cancer classi-
fies them as probable human carcinogens, with a carcinogenicity index higher than that of 
other androgens such as stanozolol, clostebol, and testosterone [107]. Recently, several mod-
els of primary granulosa cell cultures, originating from different animal species, have been 
devised and are being used to test the effects of EDCs (including anabolic steroids) on cell 
proliferation, steroidogenesis, and neoplastic transformation [108]. Moreover, after in vivo 
exposure of an animal to  testosterone propionate, an increase in primary follicle number 
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together with a decrease in those with antrum was observed, leading to the higher propor-
tion of atretic follicles and the lack of corpora lutea within the ovaries [109]. Following these 
considerations, it should be useful to evaluate the possible involvement of anabolics in the 
follicular cell transformation being this the first step of carcinogenesis. It might be also pos-
sible, in view of the way in which steroids and their derivate act in the mammalian ovary, to 
check if anabolics trigger follicular cell apoptosis, thereby causing PCOS.

5. Conclusions

In the last decades, it was proven that environmental chemical compounds exert toxic and 
genotoxic effects and thus form a serious threat to mammalian reproduction. However, the 
impact of anabolics on ovarian function has been less realized and studied. Recognition and 
evaluation of risk associated with the AAS use are of the utmost importance for human health. 
Harmful effects of compounds with antiandrogenic activities acting during folliculogenesis 
have been shown to affect oocyte survival and follicle growth, as well as steroidogenesis. 
Better understanding of the mechanisms underlying the consequences of the EDC exposure is 
required to implement a risk reduction measures to the health of living organisms and, more 
generally, for a more effective environmental protection activities from chemical pollutants.
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Abstract

The knowledge of reproductive physiology is of paramount importance to guide repro-
ductive management and to make possible future application of assisted reproduction 
techniques (ARTs) aiming ex situ conservation of wild mammals. Nevertheless, informa-
tion on the basic reproductive aspects of wild mammals remain scarce, and appropri-
ate management practices have not yet been developed for all the species. This chapter 
discusses the methods most currently used for reproductive monitoring in wild females. 
Additionally, the difficulties regarding their use in different species and the possibilities 
of these procedures in captivity or in free-living mammals are addressed.

Keywords: wild animals, female reproductive physiology, hormonal profile, noninvasive 
monitoring, captive management

1. Introduction

Considering that reproduction is an essential process for species survival, the use of assisted 
reproduction techniques (ARTs) in wild mammals’ conservation allows the storage and 
exchange of genetic material between populations. Nevertheless, conservation initiatives 
depend on a profound knowledge of the species’ reproductive physiology, since it is not 
always possible, for some endangered species, to extrapolate from domestic species or even 
from other wild species counterparts [1].

Thus, ARTs will only be successfully applied for conservation after mastering the aspects 
related to anatomy and physiology, namely, the characteristics of the reproductive cycle, 
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seasonality, behavior, and other general mechanisms that regulate reproduction [2]. An 
important factor that hinders reproductive monitoring is the lack of knowledge about the 
reproductive biology of various wild mammals, which makes the knowledge on their repro-
ductive behavior scarce [3]. Even though the observation of external estrus signs can be used 
for heat detection, it must be associated with other techniques, for example, vaginal cytology, 
hormone measurement, ultrasonography, or thermography, in order to determine the most 
appropriate time for mating or artificial insemination.

Thus, this chapter presents the methods most currently used for reproductive assessment in 
wild females. In addition, the difficulties regarding its use in different species and the pos-
sibilities for using these procedures in captivity or in free-living animals are addressed.

2. Reproductive behavior analysis

Behavioral expression is a major aspect of animal communication and easily reflects the 
reproductive status to other members of the species. Mammals display considerable variation 
in the display of behaviors during different physiological states. The study of wild animal 
behavior is essential for implementing captive breeding programs. The lack of knowledge of 
the species behavior in its natural environment limits our ability to meet their needs in captiv-
ity. In this sense, information about changes in their reproductive behavior can be used to aid 
monitor the cyclicity of wild females [4, 5].

The behavioral patterns can vary accordingly to the different phases of the estrus cycle. 
Among the female-specific behaviors, restlessness, characteristic vocalization, standing heat, 
vaginal mucus discharge, reduced milk secretion, and reduced food intake can be more fre-
quent or intense during estrus [6]. In some wild ungulates, females generate signs of sexual 
receptivity as visually salient sexual swellings, olfactory cues, or copulation calls [7]. In the 
captive goral (Naemorhedus griseus), the most prevalent behavior is tail-up, which generally 
persists for 2–3 days associated with 35% of estrogen surges, followed by ovulation (based on 
elevation of progestogens). Captive goral females also performed head butts and whistles [8].

A study linked the behavioral and physiological reproductive patterns during the periovula-
tory period and beginning of pregnancy in collared peccaries (Pecari tajacu). In that study, 
Silva et al. [9] referred that behavioral monitoring is a useful procedure for recognition of 
this period, as long as associated to the other morphophysiological parameters and it should 
be useful for good practices of collared peccaries handling in captivity and for the improve-
ment of ARTs.

Nonetheless, females in other species may have a silent estrus, in which the ovarian activity 
is not identified by external signs. External estrus signs are quite inconspicuous in elephants 
(Elephas maximus), and it is difficult to assess their estrus cyclicity using physical cues [10]. 
Even though elephants have a long estrus cycle of 14–16 weeks, the receptive period is rela-
tively short, lasting for 2–10 days. In general, females display their receptive period through 
discreet chemical, auditory, and behavioral expressions to attract males [11]. Moreover, in 
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elephants, estrus behavior includes getting away from the herd in an arc-shaped trail, pre-
senting its head tilted to the side to attract males or inform its state (“estrus walk”). They 
vocalize deep roaring sounds, flick their tail against the vulva, lift, and hold it in the air. When 
chased, female may first run away but eventually will return toward the bull and accept his 
mounting [12].

In addition, in many species in captivity, the estrus signs are not frequent or easily observed, 
mainly due to changes of social and natural habits or small enclosures, in addition to the 
stress caused by visitors, handling, and management [13]. The estrus cycle length in white 
rhinoceros (Ceratotherium simum) lasts from 4 to 10 weeks, but the reason for this variation 
remains unknown. Under captivity, this species undergoes long anovulatory periods without 
luteal activity, which are considered a major reason for their low reproductive rate [14].

Regarding wild felids, major estrus behavioral activities described in the domestic cat, as 
vocalization, rolling, and urine spray or marking, are also observed in Asiatic lion (Panthera 
leo persica). According to Umapathy et al. [15], vocalization was generally followed by rolling. 
Females immediately after a bout of vocalization rolled 3–4 times on their dorsal side, and the 
duration ranged from 10 to 30 s. The frequency of behavioral display is increased on the third 
day and decreased on the 6th day of estrus. Rubbing of the body against objects and lordosis 
were also observed during estrus in this species, alike in other small felid species (ocelots, 
tigrinas, and margays). Moreover, females may show restlessness, an increased frequency of 
urination (in small quantities), vocalization, and sexual receptivity reactions in the presence 
of the male, as well as courting acceptance [15].

Scoring of genital appearance, particularly if using digital cameras, is a noninvasive method 
that provides valuable information and does not require additional training time, laboratory 
work, or extra expense. Studies were carried out in sun bears (Helarctos malayanus) using 
video-recorded females to evaluate estrus behavior related to other parameters. The vulvar 
swelling and color were correlated; nevertheless, vulvar swelling appeared to be a more dis-
criminating indicator of estrus. During the 4 days of interval before the estrogen peak, female 
bears in this study had more agonistic behavior, displayed noticeable declines in appetite, 
showed more vulvar opening, and increased the number of superficial and keratinized cells 
in vaginal cytology. At the estrogen peak (day 0 of estrus), a high number of superficial cells 
were observed, coincident with open vulva, a decrease in agonistic behavior, an increase in 
affiliate behaviors, and low appetite. In addition, sexual behavior occurred until 4 days after 
the estrogen peak, along with vaginal keratinized cells and presumably overlapped with ovu-
lation [16]. The study not only confirmed the utility of behavioral measures but also showed 
that a simple keeper check sheet can be a valuable auxiliary tool for reproductive assessment, 
offering an alternative to data laboriously derived from video-scored recordings.

Matschie’s tree kangaroo (Dendrolagus matschiei) is the predominant species of tree kangaroo 
held in North American zoos [17]. Importation of individuals from the wild is restricted, and, 
therefore, the captive population must be sustainable through oriented reproduction. Males 
and females are generally held separately in captivity and paired for mating during estrus, 
which is identified through observation of proceptive behaviors, for example, licking of the 
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forearms and affiliation with males. Additional information on tree kangaroo’s reproductive 
biology is needed to advance captive propagation of this endangered species. In this sense, 
noninvasive techniques that eliminate blood collection associated stress are very welcome to 
study its reproduction [17].

Taking into account the importance of the knowledge of the reproductive behavior of wild 
animals as a method of estrus cycle monitoring, the main difficulties are especially the lack 
of knowledge on the physiology and behavior of various wild species in captivity. The per-
spectives of using this method associated with other noninvasive techniques are good, since 
it is increasingly necessary to minimize the stress associated with the management of captive 
animals and to affect as little as possible its reproductive function.

3. External features and vaginal cytology

The focus of an effective estrus detection is to determine the optimal time for mating and 
the ideal time for artificial insemination. Among the many methods available to identify the 
estrus cycle, the observation of external estrus signs and vaginal cytology is highlighted. In 
vaginal cytology (Figure 1), the epithelial cell morphology reflects the effect of the interaction 
of various hormones, particularly estrogen and progesterone, on the reproductive tract. Since 
the vaginal epithelium reflects the changes in hormone milieu, it follows that any abnormality 
in the sexual cycle due to either a direct hormonal involvement or disease condition would 
be reflected in changes in the cell types of vaginal epithelium. Additionally, this technique 
is simple, practical, economically viable, and in some wild mammal species can be used for 
characterizing the estrus cycle [18].

In elephants, the use of vaginal cytology has been described since the 1970s by Jainudeen et al.  
[19] and Watson and D'Souza [20], who described the smear from the vaginal vestibule or 
vagina in this species. In fact, gathering a vaginal vestibule smear from an elephant is rela-
tively easy if the zoo conducts “free contact” animal training on a regular basis, which facili-
tates the monitoring of the estrus cycle [21]. A subsequent study conducted in elephants used 
a spectrum analysis, the Yule-Walker method, to verify the frequency of exfoliative cells. It 
was found that the markedly appearance of nucleated and enucleated superficial cells charac-
terized the periods from proestrus to estrus, while an increase of intermediate and parabasal 
cells characterized the period from metestrus to diestrus [21]. In addition, other estrus signs 
include mucus droppings and the reddening and exposition of the clitoris and the emission 
of infrasonic sounds and olfactory chemicals, which can be transmitted over greater distances 
as verified both for Asian [22] and African individuals [23].

In wild carnivores, as the maned wolf (Chrysocyon brachyurus), the vaginal cytology is an 
effective procedure to determine the estrus cycle phases, but, unlike the domestic dogs, blood 
cells were scarce in all phases of the estrus cycle, including proestrus [24]. Furthermore, these 
findings may be associated with visible signs of estrus, which are characterized as swelling of 
the vulva and rosy or bloody vaginal secretions at the beginning of estrus. Already at the end 
of estrus, the vaginal secretion changes to a thick and yellowish appearance [25].
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The reproduction in captive wild felids, even in relatively naturalistic enclosures, remains 
poor, especially in small species, which seem to be more susceptible to stress. Puma (Puma 
concolor) females vocalize characteristically during estrus, while ocelots show more estrus 
signs than other small felid species. In general, females rarely exhibit regular overt signs of 
sexual receptivity as a higher frequency of rubbing, vocalizing, rolling, urine spraying, and 
sniffing. These characteristics have been described in Siberian tigers (Panthera tigris altaica) 
[26], clouded leopard (Neofelis nebulosa) [27], and Leopardus genus [28]. For this reason, the 
detection of estrus by vaginal cytology is a resource in their reproductive evaluation but 
requires physical and/or chemical contention. In addition, this method has been described for 
lions (Panthera leo) [29], cheetahs (Acinonyx jubatus) [30], pumas [31], and ocelots (Leopardus 
pardalis) [32] in which the estrus was characterized by the presence of a high percentage of 
keratinized superficial cells.

In sun bears (H. malayanus), the vaginal cytology, vulvar changes, and behavior were essential 
for the characterization of the estrus cycle. Sexual behavior characteristics of estrus include 
self-masturbation; the interaction among partners, including mutual genital grooming, genital 
inspect, mount and copulate, affiliative (social play, solicit, follow, groom, and muzzle-muzzle 

Figure 1. Collection of vaginal smears using swabs from female armadillo, Euphractus sexcinctus (A); collared peccary, 
Pecari tajacu (B); and agouti, Dasyprocta leporina (C). Cytological specimen presenting predominance of cornified cells 
indicating estrus in E. sexcinctus (D).
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contact), and stereotyped (pacing and other repetitive movements) behaviors, which are dis-
played along with changes in genital appearance (as vulva color and swell); and the presence 
of superficial and keratinized cells in vaginal cytology. These characteristics are effective and 
inexpensive supplements or alternatives to fecal hormone assays and are highly recommended 
for the continued reproductive management of this and other captive bear populations [33].

Observations of changes in the external genitalia, as the presence of vaginal mucus, hyperemic 
vaginal mucosa, and separation of the vulvar lips, are also important for estrus identification 
in collared peccaries [34]. Regarding the use of vaginal cytology for estrus monitoring in this 
species, Guimarães et al. [35] suggested that it is possible to differentiate estrus cycle stages 
using this technique. Even though superficial and intermediate cells are present in higher 
numbers throughout the estrus cycle, the superficial ones significantly increase during the 
estrus. Nevertheless, authors highlighted that for the correct identification of estrus phases, 
it is necessary to consider other aspects, as the presence or absence of leukocytes and the 
relation between the number of intermediate and superficial cells, besides the signs of exter-
nal genitalia. Conversely, Maia et al. [34] suggested that no significant differences between 
proportions of vaginal epithelial cells were identified when comparing follicular and luteal 
phases in collared peccaries. Therefore, an association is suggested among vaginal cytology, 
behavior and external genitalia observation, and ultrasound and hormonal analysis for cor-
rect estrus detection in this species.

Despite the relative success of vaginal cytology described above, it is not always possible to 
distinguish among the phases of estrus cycle. In Xenarthras, as the maned sloths (Bradypus 
torquatus), this technique was used only to identify estrus, being characterized by the pre-
dominance of nucleated and enucleated superficial cells [36]. Moreover, in six-banded arma-
dillos (Euphractus sexcinctus), the use of vaginal cytology is difficult because it requires the use 
of an anesthetic protocol due to their small vulvar commissure that hinders the swab intro-
duction. Nevertheless, this technique does not allow a detailed identification of all phases of 
estrus cycle, being only possible to distinguish between the follicular and the luteal phase 
[37]. In fact, alterations in external genitalia seem to be very effective for estrus monitoring in 
Xenarthras. Both in Tamandua (Tamandua tetradactyla) [38] and in six-banded armadillos [37, 39],  
the presence of a vulvar bleeding was used as the main parameter to identify the beginning of 
the estrus cycle. Moreover, in armadillos, the presence of vulvar bleeding occurred approxi-
mately 3–7 days after estrogen rise, concomitant to the presence of vulvar edema and mucus 
[37]. In this species, the occurrence of clitoral hyperemia, varying between red and purple, 
and a pronounced clitoral erection was also described [39].

Some difficulties in the use of vaginal cytology for a detailed identification of the stages of 
estrus cycle have also been described for various wild rodents, as coypus (Myocastor coypus) 
[40], chinchillas (Chinchilla lanigera) [41], pacas (Agouti paca) [42], and agoutis (Dasyprocta 
agouti) [43]. The main reason for such difficulty is the existence of a vaginal occlusion mem-
brane that tends to obstruct the external vaginal ostium, which remains until the estrus or 
parturition. The observation of vaginal opening, in parallel with the exfoliative cytology [44], 
allows the correct identification of estrus in D. agouti [43], Dasyprocta prymnolopha [45], Cavia 
porcellus [46], Myoprocta pratti [47], and chinchillas [48]. As an exception, the use of vaginal 
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cytology in the Spix’s yellow-toothed cavy (Galea spixii) is reported to be very effective to dis-
tinguish the phases of the estrus cycle. In these rodents, a predominance of large intermediate 
cells is observed in proestrus, while superficial cells predominate in estrus, and the intermedi-
ate and parabasal cells prevail in diestrus [49].

The use of vaginal cytology has also been reported for common wombat (Vombatus ursinus), 
but the cycle stages are not accurately identified due to the high variability in the propor-
tion of epithelial cells obtained in the smear analysis [50, 51]. In addition, the anatomy of 
the urogenital sinus, whose length varies between individuals and within an individual at 
different cycle stages [50], hinders the collection of an adequate cytological specimen [52]. As 
the vaginal swab collection procedure requires anesthesia in this species, repeated capture of 
the female wombat for sequential analysis is likely to be highly stressful, leading to potential 
reproductive failure [51]. As a marsupial, the condition of the pouch, namely, its depth, open-
ing size, wall thickness, degree of cleanliness, and teat length, could also be indicatives for 
the reproductive status of wombats (i.e., whether cycling or not) [52, 53]. Alternatively, the 
observation of the external genitalia changes (clitoris and pericloacal region) that can become 
swollen and tumescent in different stages of the cycle was proposed for assessing the wom-
bats’ reproductive status [53]. However, this technique is not reliable due to the difficulty in 
detecting any noticeable genitalia changes [52]. An interesting study, conducted by Hogan 
et al. [54], showed that estrus was not detectable in female southern hairy-nosed wombat 
(Lasiorhinus latifrons) even when the continuous observations of physical activity via move-
ment-sensitive transmitters were used. No difference in physical activity was recorded during 
estrus and anestrus, or there was any correlation between physical activity and the occurrence 
of reproductive behavior. In fact, even though numerous studies have examined Vombatidae 
reproductive behavior, estrus has rarely been observed and appears to be exceptionally short, 
as 15 h in the common wombat [55] or 13 h in the southern hairy-nosed wombat [56]. The rea-
son why estrus is so short in wombats has yet to be determined. Further studies into reliable 
methods of estrus detection are urgently required, as the lack of specific information might be 
the most significant impediment to successfully breeding this species in captivity [57].

In general, the association between the vaginal cytology techniques and the observation of 
external estrus signs are useful for estrus cycle monitoring in various wild females. Thus, the 
ability to assess in an easy and safe way the reproductive status through noninvasive means 
is vital to understand the reproductive physiology of animals. Therefore, such methods ought 
to contribute to assist captive breeding of threatened species, additionally, in order to ensure 
better reproductive performance in animal production and the development of techniques 
and tools for assisted reproduction.

4. Endocrine monitoring and its metabolites

Endocrine monitoring enables the knowledge of endocrine activity as a tool to evaluate the 
ovarian cycle and to be used in a captive management, especially for endangered species, aim-
ing to increase the number of individuals [58]. In wild mammals, the endocrine monitoring of 
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the estrus cycle can either be performed by invasive methods, as using blood samples [59], or 
noninvasive methods, by sampling from feces [8], urine [60], saliva [61], and hair [62].

The choice of the hormonal monitoring method depends on the type of assessment method 
selected (invasive and noninvasive) and on the requested information, as well as on the 
differences among species, hormone metabolism, excretion pathway, and viability during 
collection and processing [63]. In either method, the main analysis procedures available 
include the immunoassay, as enzyme immunoassay (EIA) [8], radioimmunoassay (RIA), and 
chemiluminescence [64], with antibodies directed to the hormone of interest [11] and also 
high-performance liquid chromatography (HPLC) [65].

In general, endocrine monitoring in wild mammals has been carried out in blood samples 
for species that do not suffer so much stress during collection, as Elephantidae [58]. Already 
feces, urine, saliva, and hair were used in Cervidae [66], Rhinocerotidae [67], Felidae [28], and 
Ursidae [68].

4.1. Blood samples

Among the type of samples, the blood is the one that promotes a faster response to the endo-
crine cycle, also making possible to extrapolate the evaluation of steroids, for proteins, lutein-
izing hormone (LH), follicle-stimulating hormone (FSH), inhibin, prolactin, and relaxin [69]. 
The invasive method by blood sampling has the advantage of providing more immediate and 
accurate information regarding the peripheral hormone levels [58]. After collection, the blood 
is centrifuged to obtain serum or plasma that can be stored at −20°C until analysis [11].

This method has been used in armadillos, collared peccaries, elephants, and agoutis. In arma-
dillos, a clear identification of a 23.5 days of estrus cycle was made, consisting of 8.8 days for 
follicular and 15.6 days for luteal phase [37]. In collared peccaries, the estrus cycle lasts 21 
days, with a follicular phase of 6 days and 15 days for the luteal phase [34]. In Asian elephants, 
the estrus cycle has an overall duration of 12–19 weeks, the luteal phase extending between 4 
and 15 weeks, and the follicular phase lengthening for 2–12 weeks [11]. In red-rumped agou-
tis, the estrus cycle lasts for 31 days, the follicular phase ranging from 6 to 9 days, and the 
luteal phase from 19 to 23 days [59].

Nevertheless, this method has the inconvenience of causing a high level of stress in several 
wild mammals, associated with blood sampling, whose collection needs a more laborious 
procedure, as physical and chemical contention of the animal [37]. Moreover, the gener-
ated stress can result in a change in hormonal levels [64]. Additionally, the blood collection 
requires the training of the operator that will collect the sample, besides the adaptation of the 
animal to this type of management [58]. Thus, although the blood samples are quite sensi-
tive to hormonal changes and allow the evaluation of a greater number of hormones, in wild 
mammals it is preferable to use noninvasive methods, so to avoid contact with the animal and 
reduce stress into a minimum.

In addition to animal stress, difficulties and risks associated with blood collection and some-
times training requirements supported the development of alternative methods for hormonal 
assessment. In this sense, noninvasive methods have the advantage of an easy collection of 
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tive to hormonal changes and allow the evaluation of a greater number of hormones, in wild 
mammals it is preferable to use noninvasive methods, so to avoid contact with the animal and 
reduce stress into a minimum.

In addition to animal stress, difficulties and risks associated with blood collection and some-
times training requirements supported the development of alternative methods for hormonal 
assessment. In this sense, noninvasive methods have the advantage of an easy collection of 
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the sample, without causing stress to the animal. These methods assume that hormones that 
circulate in the bloodstream are secreted into the saliva, deposited in the hair, and excreted 
via feces or urine [63]. Nevertheless, it has the disadvantages that the immunogenic form of 
hormones in urine and feces is different in some species, because they are metabolized in the 
liver and kidney, mainly in a biologically inactive form [58].

4.2. Fecal samples

In general, fecal steroid metabolites are the most common noninvasive method to screen the 
endocrine function in wild mammals, allowing the knowledge of the reproductive biology 
of several species. The metabolic pathway involves the inactivation or excretion of hormones 
and metabolites of steroids that have different routes according to species and the type of 
steroid in the same species [63]. The main estrogen metabolites present in fecal samples are 
estrone, estradiol-17α, and estradiol-17β [70]. Already progesterone metabolites present in 
fecal samples are allopregnanolone (5α-P-3OH) [10], 17a-hydroxyprogesterone [15], and 
pregnanediol-3-glucuronide (PdG) [71]. The fecal samples have a pattern of steroid concen-
tration similar to the one found in plasma, with a delay in relation to blood due to metabolism 
and excretion (lag time), which can vary from hours to days depending on the species [63].

The collection of fecal samples is simple; nevertheless, the preparation of this sample requires 
a longer time. This type of sample should be stored at −20°C because of the presence of gas-
trointestinal bacteria that can degrade the hormones and cause changes in concentrations 
[27]. Subsequently, fecal samples need to be homogenized prior to the steroid uniformity, 
the extraction in the presence of methanol or ethanol, and the evaluation of hormones in 
the supernatant after centrifugation [72]. Steroid and prostaglandin metabolites are lipophilic 
and are usually conjugated in the liver to soluble portions for excretion into feces [73].

The enzyme immunoassay for monitoring fecal metabolites has been successfully used in 
wild felid species, as ocelots, tigrinas (Leopardus tigrinus), and margays (Leopardus wiedii), 
allowing to determine the mean length of the estrus cycle as 18.4, 16.7, and 17.6 days, respec-
tively [28]. Results derived from hormonal assessment in feces from several other wild mam-
mals are reported in Table 1.

4.3. Urine samples

In most cases, fecal analysis can measure estradiol-17β, estrone conjugates (E1C), progester-
one, and PdG, whereas urine analysis (Table 1) is generally used to measure E1C and PdG 
[71]. Moreover, peptide hormones can be filtered through the renal glomerulus and excreted 
in urine [64]. Analysis of urinary hormones or their metabolites in many cetacean species 
has been successful in detecting estrus, developing the ability to define patterns of endocrine 
excretion [60].

In general, urine collection requires proper training of the animal, to avoid contamination of 
the samples [61]. In case of untrained animals, this material is collected on the ground, and it is 
necessary to isolate the animal, which causes stress besides requiring a time for the isolation and 
urine recovery [58]. These uses of urine samples also require a previous step, that is, creatinine 
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analysis to evaluate if the sample is much diluted for subsequent hormonal evaluation [74]. It 
also includes centrifugation for separation of particles that can cause contamination.

Urine samples can be stored for 24 h at room temperature; if there is an interest in measur-
ing proteo- or peptide hormones, it is advisable to freeze the sample since these particles are 
easily degraded. For the gonadotrophins analysis, it is usual to add glycerol in the sample, 
to avoid dissociation in subunits. On the other hand, sex steroid hormones are secreted as 
conjugates soluble in water [63]; estrone (E1) and PdG represent the urinary metabolites of 
estradiol and progesterone, respectively, in most primate species [71].

4.4. Saliva samples

The sex steroid hormones found in saliva retain the same form as in blood because circulating 
steroid hormones pass through the epithelium of exocrine glands by passive diffusion [75]. 
Thus, the saliva becomes the suitable sample for endocrine monitoring, since it has unaltered 
steroid and whole peptide hormones [64]. In relation to the hormonal proportions of the blood 
in the saliva, it is possible to detect a smaller amount of steroid and peptide/proteo-hormones 
[63]. The saliva reflects the hormonal changes in the blood, allowing for its immediate analysis 
[61]. The hormonal levels in saliva have a difficult interpretation since this is easily changed 
in a short period [75]. Moreover, as the hormones detected in saliva are quite similar to the 
blood, these suffer less the specific species effect, allowing the use of commercial kits [63].

Salivary samples are obtained with the aid of swab and stored at −20°C. In addition, the 
samples can be previously lyophilized or simply centrifuged and suspended in buffer for 
subsequent EIA [61]. Nevertheless, the method is still seldom used because of the difficulty 
in collection that requires a closer contact to the animal to obtain the sample [66], being per-
formed in few species (Table 1).

4.5. Hair samples

The hair can also be used as a source for measuring hormone levels, since through the blood-
stream, hormones are deposited in the hair follicle [62]. The hair is considered as a form of 
long-term monitoring because it will detect endocrine activity for months or weeks and will 
not represent hormone levels for hours or days; nevertheless, the hormones are structurally 
similar to the forms found in blood [76].

In Canada lynx (Lynx canadensis), the hormone measurements from hair samples are foreseen 
as a promising method for reproductive surveillance; nevertheless, it still requires more stud-
ies and validation to be reliable and widely applied [62]. In general, the hair is pre-washed 
with methanol, collected with commercial clippers, and stored at room temperature in alu-
minum foil until analysis. In primates, the use of hair to measure the hormonal exposure of 
fetuses was possible through mass spectrometry (MS) and high-performance liquid chroma-
tography (HPLC), demonstrating that this method has the ability to predict hormone levels 
[76]. Although the method of endocrine monitoring via hair is very interesting for the knowl-
edge of the estrus cycle, further studies are necessary, because this method is more directed to 
the measurement of cortisol levels [64].

Estrus Cycle Monitoring in Wild Mammals: Challenges and Perspectives
http://dx.doi.org/10.5772/intechopen.69444

31



In summary, the availability of different methods of endocrine monitoring in wild animals 
makes it possible to choose the most appropriate method for the species of interest, consider-
ing the hormonal metabolism and the metabolite evaluated. Although some species allow 
blood collection, for most wild mammals, noninvasive methods are preferable to minimize 
stress during collection. This knowledge of the endocrine mechanism concurs to the con-
servation of wild mammals, fostering the study of species of unknown physiology and the 
assessment of endocrine profiles in reproductive biotechnology. Therefore, the endocrine 
monitoring is an important tool to study hormonal ovarian activity of wild mammals.

5. Ultrasonography

Ultrasonography is a classical and reliable method for monitoring ovarian dynamic in mam-
mals (Figure 2). In wild females, ultrasound is an integral part of ART procedures allowing 
the monitoring of sexual cycles. Moreover, ultrasound aids to confirm the efficiency of estrus 
synchronization and superovulation protocols and to identify the presence of follicles and cor-
pora lutea and the follow up of follicular dynamics [82]. In addition, ultrasound can assist in 
the study of corpus luteum regression mechanisms, thus allowing to confirm the response to 
hormonal treatments for estrus control. Nevertheless, the effective application of ultrasound 
varies among different species, being dependent of several characteristics, as ovary size [83].

Follicles within the ovaries appear as anechoic spherical structures, while the corpus luteum 
appears with distinctive margins and non-smooth surfaces that are hypoechoic or anechoic 
in the center, presenting homogeneous fluid dark spaces. This description, observed in the 
majority of mammalian species, can be extrapolated for wild animals [84].

Among nonhuman primates, the initial studies in the common marmoset (Callithrix jacchus) 
showed that ultrasound provides a reliable and noninvasive method for ovarian cycle evalua-
tion. The cycles were monitored by plasma progesterone, and ultrasound reliability was vali-
dated by comparing the findings with direct observation of the ovaries (number and position 
of structures) through laparotomy. In those animals, 92% of the follicles and 78% of corpus 
luteum were correctly determined by ultrasound [85]. In capuchin monkeys (Sapajus paella), 
the dominant follicle was recognized at 6 days prior to ovulation with the use of 2D ultra-
sound, the diameter and mean volume of preovulatory follicle being estimated as 9.6 mm and 
0.54 mL, respectively [86]. By ultrasound, the occurrence of ovulation was observed when the 
mean diameter of the ovulatory follicle was 9 mm, the follicle size being an important param-
eter to estimate the ovulation day in this species [87].

For ungulates as cervids, the transrectal ultrasonography has been described for evaluating 
the ovarian response in wapitis (Cervus elaphus) subjected to estrus synchronization protocol 
(CIDR-B, 1.9 g of progesterone and 200 IU of eCG) used for fixed-time artificial insemination 
(FTAI). In this occasion, corpus luteum and ovulatory follicles (≥8 mm) were easily detected 
[88]. In Jilin sika deer (Cervus nippon hortulorum), the transrectal ultrasonography enabled the 
consistent visualization of both ovaries and allowed the detailed characterization of follicular 
dynamics during the estrus cycle. In this species, it has been shown that the follicular wave 
started with a follicle with ≥4 mm diameter, and it ended in the day when the number of 
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(CIDR-B, 1.9 g of progesterone and 200 IU of eCG) used for fixed-time artificial insemination 
(FTAI). In this occasion, corpus luteum and ovulatory follicles (≥8 mm) were easily detected 
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follicles <4 mm increased and the number follicles ≥4 mm decreased in the same proportion. 
Additionally, the dominant follicle was defined as a follicle that attained a diameter ≥8 mm, 
and these findings provide rationale for the hypothesis that the increase in follicular size was 
associated with an increase in estradiol concentration. After ovulation, the corpus luteum was 
observed at the same location within the next 3 days [84].

For wood bison (Bison bison athabascae), the ultrasound was used for transvaginal ultrasound-
guided follicular aspiration after an effective superovulatory protocol (association of PGF, 
eCG, and FSH). Numerous follicles ≥5 mm were easily detected on day 14 after treatment, 
featuring the technique as effective [89].

Transrectal ultrasound (4–7 MHz) exams were performed to follow the appearance of ovarian 
follicles after different synchronization protocols in the Przewalski’s horse (Equus ferus przew-
alskii). The characterization of ovarian structures, that is, numbers of follicle, follicle size, and 
the presence of a corpus luteum, was easily performed [90].

The use of ultrasound in African elephants has been well characterized. It has proven to be a 
valuable tool for use with ARTs and has enormous potential for evaluating the efficiency of 
hormonal therapies used to treat reproductive dysfunction. Transrectal ultrasound showed 

Figure 2. Placement of the ultrasound transducer for ovary monitoring in armadillo (A), agouti (B), and collared peccary (C).
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that this species presents a peculiar pattern of follicular development in the ovary, associated 
with two LH surges: the first with formation of multiple small follicles and the second with a 
single large ovulatory follicle [91].

In order to determine the ideal day for artificial insemination in white rhinoceros, the ovarian 
follicle sizes were visualized by ultrasound. After measurement of preovulatory follicle (mean 
2.7 cm), ovulation was induced with GnRH analog administration. The artificial insemination 
procedure resulted in two pregnancies. In addition, ultrasound documented the postpartum 
involution of the uterus, complete reabsorption of accumulated intrauterine fluid, and the 
development of a preovulatory follicle 30 days postpartum [14].

Many studies using ultrasonography have been described for estrus monitoring [34] and 
synchronization [92] in collared peccaries. Ovarian follicles measuring 0.2 ± 0.1 cm were visu-
alized during the estrogen peak; corpora lutea, presented as hyperechoic regions measuring 
0.4 ± 0.2 cm, were identified during luteal phase [34].

Regarding carnivores, the ultrasound was useful to characterize the ovaries of maned wolf 
(C. brachyurus) in captivity. In this species, the description of the ovaries (mean 1.02 cm length 
and 0.67 cm width) and follicles (mean 1.12 cm length and 0.32 cm width) is similar to that 
reported for domestic bitches [93].

The lynx (Lynx sp.), a most critically endangered felid, presents unique reproductive strategy 
with a monoestrus cycle persisting corpora lutea over the years. Painer et al. [94] evaluated 
whether artificial luteolysis could be achieved with common luteolytic drugs and if luteolysis 
would induce a subsequent natural estrus. In this case, the ultrasound was used as a primor-
dial method for the identification of nonstructural regression of corpora lutea and subsequent 
spontaneous estrus induction after treatment with PGF2α analog (cloprostenol, 2.5 mg/kg).

However, in the marsupial wombat (L. latifrons), because of the opacity of the ovarian bursa, 
the transabdominal ultrasonography was unsuccessful for confirming ovulation, detecting 
the number of follicles in stimulated ovaries or the presence of the preovulatory follicle [95].

Recently, the monitoring of reproductive physiology in a Xenarthra, the six-banded arma-
dillo, was made possible by ultrasound screening of the ovary. Using a microconvex trans-
ducer (8.0 MHz), it was possible to detect the ovary in 88.3% of the attempts, with defined 
structures, rounded and slightly hypoechoic compared to adjacent tissue [37]. The same study 
showed that, in 52% of the monitored ovaries in the follicular phase, it was possible to iden-
tify the presence of growing ovarian follicles, measuring on average 0.2 ± 0.1 × 0.2 ± 0.2 cm. 
In addition, during the luteal phase, the corpus luteum was observed in 60% of the ovaries, 
ranging from 0.1 to 0.2 cm [37].

Regarding rodents, a study carried out in red-rumped agoutis used different techniques to 
monitor the estrus cycle, including the ultrasound. Although it failed to differentiate the 
ovarian morphology during the different phases of the estrus cycle, the ultrasound was effi-
cient to identify and measure follicles during the follicular phase, with an average diameter 
of 1 ± 0.5 mm; conversely, only in 12.5% of luteal phase, corpora lutea measuring 1.4 ± 0.9 mm 
were identified. Authors related the difficulty in identifying the ovary to its reduced size, as 
well as to the presence of adjacent fat [43].
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6. Other possibilities

Thermography is a modern, noninvasive, and safe technique that measures the temperature 
in a surface based on its infrared radiation emission, given that the superficial heating of an 
animal is influenced by local circulation and tissue metabolism, which are generally constant 
[96]. Areas with higher metabolic rates show a higher temperature than areas with less tis-
sue activity; therefore, surface temperature changes are caused by changes in local perfusion 
[97]. The increased local blood flow is linked to the rising of plasma estrogens, reflected by 
vulvar reddening and swelling that have been widely reported as typical estrus signs [98]. 
Altogether, infrared thermography has the potential to evaluate these physiological changes 
by monitoring the increase of temperature on the vulvar skin, with the objective of establish-
ing a relationship between vulvar temperature fluctuation and ovulation [99].

Unfortunately, thermography has some limitations: good quality thermo-cameras can be very 
expensive, and also the maintenance of the camera can be expensive [97]; care must be taken 
when getting images in sunlight or in high humidity conditions, also with convective heat 
loss due to wind or when surfaces are dirty. Radiation measured by the camera does not only 
depend upon the temperature of the object but is also a function of its emissivity and conduc-
tivity [100]. Infrared thermography has proved to be highly sensitive to changes in the envi-
ronmental conditions. Factors such as air flow, moisture, fluctuations in the environmental  
temperature, level of physical activity, and animal’s stance before the measurement can 
induce a considerable variation in these readings, which may limit the applicability of this 
technology under field conditions, where these factors are difficult to control [99].

Currently, thermography is being used in some domestic species for estrus cycle monitoring 
as bovine [96, 99], swine [101], and equine [102]. In wild animals, this technique is still under-
used; however, it is noteworthy that, in addition to its other advantages, this is a noninvasive 
technique, which in certain conditions may be very useful, to avoid the immobilization of the 
animal [103]. Sykes et al. [104] defend that infrared thermography could be valuable for estrus 
detection in zoological species due to the possibility of observing and monitoring the animals in 
a natural environment with little human interference. However, variation among species could 
hinder the accurate estrus detection in all species. Difference in the length of estrus cycle and in 
the temperature gradients of the vulva also needs to be mapped out over continuous cycles to 
assess uniformity. In this context, continuous research is needed for both domestic and zoologi-
cal species to validate thermography as a reliable tool for estrus detection.

In dealing with wildlife management, the preferential use of less or noninvasive techniques is 
required since this is necessary for maintaining the physiological behavior of the animals and 
reducing stressful situations. Therefore, several modern and practical methods having the 
potential to be adapted from domestic to wild animals have been developed, such as the use 
of pedometers, video cameras, and electronic odor detector, among others.

Pedometer is a real-time watch used for time interval measuring of the animal activity [100]. 
This activity measurer is commonly used at the neck or legs in cows, being connected to a 
computerized receiver for movement analysis. Some pedometer emits signals in a form of 
light when cows show increased activity. It is observed that cows in heat are more mobile 
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and walk two to four times more when compared to non-estrus animals. Data of cow activity 
recoded with the help of pedometer has good correlation with estrus, thus resulting in a heat 
detection efficiency from 90 to 96%. Its main limitations are the high cost for acquisition and 
replacement of lost equipment [105].

The principle of the electronic odor detector is based on the detection of sex pheromones 
related to heat. The pheromones are the natural olfactory signal for male that cow emits dur-
ing estrus. It is up to 90% efficient. Even if the project is running for a successful future, further 
development steps are anticipated [106].

6.1. General considerations

The development of reliable and less-invasive techniques for monitoring the reproductive 
cycle of wild mammals is required to optimize the captive breeding management. These tech-
niques are needed for the use of reproductive biotechnologies applied for either preserva-
tion or production. Understanding the changes in reproductive behavior of wild animals is 
therefore critical to better estrus monitoring—which allows the application of reproductive 
biotechnologies—as well as improving the management of these animals [11, 107]. Therefore, 
the use of noninvasive techniques to monitor the reproductive status is of paramount impor-
tance to avoid stress and its induced changes in physiology.
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Abstract

Advances in sperm assessment techniques have offered new perspectives to improve the 
technology of semen cryopreservation. This review addresses some recent achievements 
in the proteomics of seminal plasma and spermatozoa and exemplifies its importance as 
markers for sperm fertility following cryopreservation. Recent advances in transcriptome 
studies on sperm RNA-Seq data have generated new information aimed to unravel the 
physiological roles of RNAs in the sperm-egg fertilization processes and their associa-
tions with male fertility. The relevance of the sperm freezability markers and the poten-
tial associations of RNA-profiling sequences with the sperm biological functions have 
been discussed.

Keywords: spermatozoa, frozen-thawed semen, RNA-Seq, bioinformatics studies

1. Introduction

Cryopreservation of semen allows the preservation of good genetic resources and the pro-
tection of endangered species [1–5]. While a great deal of efforts has been done over the last 
several years to improve the semen cryopreservation technology, effective cryosurvival of 
spermatozoa from various animal species, including the boar and stallion, still remains elu-
sive and a cryobiological enigma [1]. Cryo-induced oxidative stress is associated with excess 
production of reactive oxygen species (ROS), resulting in biochemical and physical damage 
to the sperm membrane structures and subsequently leading to reduced fertilizing ability of 
spermatozoa [4–6]. In the artificial insemination (AI) industry, there is a need to optimize the 
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selection strategy for individuals with good freezability, so as to incorporate this information 
in the breeding program to improve the fertility of post-thaw semen [2, 3, 7]. Moreover, selec-
tion of animals with good semen freezability for cryopreservation and AI is a crucial step to 
improve the fertility levels of frozen-thawed semen [9, 10]. Furthermore, in some animal spe-
cies, despite satisfactory results of fertility in liquid-stored semen, frozen-thawed semen does 
not give acceptable fertility results in AI practice in the commercial industry [2, 3, 9].

Accumulating evidence has indicated that inherent male variability in semen freezability is 
one of the factors responsible for marked differences in the sperm cryosurvival [2, 5, 7–10]. 
With regard to boar semen, studies have reported that differences in sperm freezability might 
be due to a genetic origin [7, 8]. Even though the underlying mechanisms responsible for the 
genetic differences associated with poor or good semen freezability are yet unknown, it has 
been suggested that the identification of sperm freezability markers might be the most effi-
cient approach to improve the technology of semen cryopreservation.

Recent technological advances have confirmed that the spermatozoon carries epigenetic factors 
that constitute their epigenome, such as proper packaging of the chromatin with protamines, 
modifications of histones, and a large population of messenger ribonucleic acid (mRNA) and 
microRNA (miRNA) transcripts [11–13]. The diversity of the RNA constellation in the seminal 
plasma (SP) and spermatozoa has been used as a pattern for the genomic analysis of semen 
quality characteristics, particularly for the estimation of the fertility potential of spermato-
zoa [12–17]. Moreover, high-throughput sequencing demonstrates that several stable full-
length mRNA transcripts are useful markers for sperm functions in fresh and frozen-thawed 
semen [17]. It has been hypothesized that transcriptome analysis of sperm RNA-Sequencing 
(RNA-Seq) data is required to explore the potential links between semen freezability and the 
transcript profiles of spermatozoa [18–20]. This review discusses recent accomplishments in 
molecular markers for the assessment of post-thaw sperm quality and exemplifies the signifi-
cant relevance of transcriptome profiling by RNA-Seq in semen cryopreservation.

2. Markers for sperm functions

2.1. Motility and motion characteristics

Subjective motility evaluation is one of the most commonly used parameters to determine 
the quality of frozen-thawed semen for AI. Even though post-thaw sperm motility is a good 
indicator of viability, it is not always an accurate fertility predictor of an AI-semen dose [9]. 
Evaluations of sperm motility characteristics have been improved by the incorporation of 
the computer-assisted semen analysis (CASA) system, which measures several motility and 
motion parameters of spermatozoa that are closely related to fertility compared with subjec-
tive motility measurements [21–24]. Besides motility analysis, studies have confirmed that 
the velocity parameters, such as velocity straight line (VSL), velocity curvilinear (VCL), and 
velocity average path (VAP), are associated with the fertilizing capacity of frozen-thawed 
spermatozoa [21, 24].
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2.2. Membrane integrity

Spermatozoa comprise several compartments enclosed within the acrosome, plasma mem-
brane, and mitochondrial membranes, which act as physiological barriers that must remain 
intact to permit cell viability, particularly after cryopreservation [1, 2, 6, 10]. In recent years, 
several fluorescent probes have shown that the cryopreservation process compromises the 
sperm plasma membrane integrity (PMI), resulting in reduced fertilizing capacity of post-
thaw semen [3–5, 23–29]. Post-thaw sperm PMI has been assessed with different fluorescent 
membrane probes, such as the dual SYBR-14 and propidium iodide (PI) assay [25, 28] or 
membrane-permeable substrate carboxyfluorescein diacetate (CFDA), a nonspecific esterase 
substrate [24]. The chlortetracycline (CTC) fluorescence assay has been used to detect capac-
itation-like changes in frozen-thawed spermatozoa, which may compromise their fertilizing 
ability [6, 10, 22–24, 29]. Cryo-induced changes in the acrosome membrane integrity (AMI) 
have been monitored by specific Giemsa-staining technique [25] or with fluorescent dyes, 
such as fluorescein isothiocyanate (FITC)-conjugated PNA (peanut agglutinin) or conjugated 
PSA (Pisum sativum agglutinin), known as plant lectins, which bind to glycoproteins in the 
outer acrosomal membrane [4, 5, 26, 27]. Studies have shown that the utilization of a triple 
staining—SYBR-14, phycoerythrin-conjugated PNA (PE-PNA), and PI (SYBR-14/PE-PNA/
PI)—to simultaneously evaluate the PMI and AMI of frozen-thawed bull spermatozoa can 
be used effectively to assess post-thaw semen viability [26–28]. In a recent study, it has been 
demonstrated that FITC-PSA/PI-staining protocol can detect marked deterioration in both the 
PMI and AMI in frozen-thawed bull spermatozoa [4]. Earlier changes in the membrane per-
meability of frozen-thawed spermatozoa have been monitored with the calcium-dependent 
binding of Annexin-V/FITC/PI [21, 24, 26] or YO-PRO-1 assay [23, 25, 28], which is an imper-
meable membrane probe. Moreover, triple staining with YO-PRO-1, ethidium homodimer 
(Eth), and SNARF-1 (YO-PRO-1/Eth/SNARF-1) has been shown to give similar results with 
respect to PMI assessment of frozen-thawed spermatozoa compared with the Annexin-V/
FITC/PI assay [27, 28]. Kumar et al. [21] reported that there were marked differences in the 
percentages of frozen-thawed spermatozoa with apoptotic-like changes between fertile and 
sub-fertile bulls, being significantly higher in the latter. Moreover, there is accumulating 
evidence indicating that the cryopreservation procedure induces apoptotic-like features in 
bovine spermatozoa, which appeared as ordered events during the freezing-thawing process, 
such as reduced mitochondrial membrane potential (MMP), increased caspase activation, and 
modifications in membrane permeability [6, 21, 24, 27, 28, 30]. Additionally, post-thaw PMI 
has been assessed with the hypo-osmotic swelling (HOS) test, which evaluates the functional 
membrane integrity of the acrosome and tail regions when spermatozoa are exposed to hypo-
osmotic conditions [22, 24, 29].

Cryopreservation affects the lipid composition and organization of the sperm plasma mem-
branes, resulting in leakage of valuable intracellular enzymes, such as antioxidants [4], acro-
sin [31], aspartate aminotransferase (AspAT) [32], or energy substrates, such as adenosine 
triphosphate (ATP) [33], which ultimately lead to cell death. Another measure of membrane 
damage to frozen-thawed spermatozoa is the degree of lipid peroxidation (LPO) of polyun-
saturated fatty acids in sperm cell membranes, induced by the production of reactive oxygen 

Markers for Sperm Freezability and Relevance of Transcriptome Studies in Semen Cryopreservation: A Review
http://dx.doi.org/10.5772/intechopen.68651

49



species during cryopreservation. It has been confirmed that frozen-thawed boar spermatozoa 
are susceptible to FeSO4/ascorbate-induced LPO, measured by the production of malondial-
dehyde (MDA), which is capable of triggering apoptotic-like changes that could result in the 
sublethal sperm cryodamage [24, 30, 32]. Furthermore, the extent of LPO-induced damage to 
frozen-thawed spermatozoa can be analyzed by monitoring the colorimetric measurements 
of lipid peroxide formation with a fluorescent membrane probe, BODIPY581/591-C11 [26, 30].

The sperm mitochondrial membrane potential is necessary for ATP production, which is the 
main energy support for several functions [25, 32]. Several studies showed that cryo-induced 
damage to the MMI of spermatozoa is one the major causes of their reduced fertilizing 
capacity [4, 5, 10, 24, 25, 29, 33]. These studies detected a marked deterioration in the sperm 
mitochondrial function following cryopreservation, as reported by the fluorescent staining 
with rhodamine 123 (R123), the lipophilic cationic compound 5,5′,6,6′-tetrachloro-1,1′,3,3′ 
tetraethylbenzymidazolyl carbocyanine iodine (JC-1), or with ATP measurements by the 
bioluminescence assay. The percentages of frozen-thawed  spermatozoa with  functional 
mitochondria, as assessed by either the R123/PI or JC-1/PI assay, are highly correlated to 
motility [5, 29, 33]. Besides the R123/PI and JC-1/PI assays, there are a plethora of flu-
orescent dyes that can be used to microscopically or cytometrically assess the sperm 
 mitochondrial membrane function (MMF). Some fluorescent MitoTracker probes, such as 
MitoTracker Deep Red, MitoTracker Red, MitoTracker Orange, and MitoTracker Green, 
have been used effectively to assess the MMF on frozen-thawed  spermatozoa [23, 26]. 
Boars with good and poor semen freezability ejaculates were identified using several 
sperm function parameters, including total and progressive motility (TMOT and PMOT, 
respectively), and rapid movement (RAP) analyzed by the computer-assisted semen analy-
sis system,  mitochondrial membrane function, MMF (JC-1/PI assay) and PMI (SYBR-14/PI 
assay) (Figure 1). Post-thaw analysis of the sperm parameters showed that boars with good 
semen freezability were characterized by significantly higher sperm cryosurvival (Boars 
1–6) compared with those with poor semen freezability (Boars 7–10; Figure 1), suggesting 
the importance of these sperm parameters in the assessment of post-thaw semen quality 
(unpublished results).

2.3. Chromatin and DNA integrity

Sperm chromatin and DNA integrity is an uncompensable trait because abnormalities in the 
male genome, characterized by damaged chromatin/DNA structure, may be manifested until 
the sperm-oocyte fusion, or at early embryo development [34]. Accumulating evidence has 
shown that sperm DNA integrity is one of the parameters of semen quality assessment that 
has paramount importance in the prognosis of fertility and the outcome of assisted reproduc-
tive procedures [5, 34, 35,]. Among the most frequently used sperm DNA integrity assays 
are the Comet assay (SCGE), which quantifies double-stranded DNA (dsDNA) and single-
stranded DNA (ssDNA) breaks under neutral or alkaline electrophoresis [8, 32, 35], the sperm 
chromatin structure assay (SCSA) measures the susceptibility of sperm chromatin to acid-
induced denaturation in situ [34], and the terminal deoxynucleotidyl transferase-mediated 
dUDP nick end-labeling assay (TUNEL), which quantifies the incorporation of deoxyuridine 
triphosphate (dUTP) at ssDNA and dsDNA breaks [24, 34]. These DNA integrity assays have 
confirmed that the cryopreservation process increases the sperm susceptibility to DNA dam-
age, irrespective of the extender or the protocol type [4, 5, 8, 21, 24, 32, 34, 35]. It is worth 
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Figure 1. Distribution of the characteristics of frozen-thawed boar spermatozoa for: (A) Total sperm motility (TMOT). (B) 
Progressive sperm motility (PMOT). (C) Rapid moving (RAP) spermatozoa. (D) Mitochondrial membrane function (MMF). (E) 
Plasma membrane integrity (PMI) (unpublished results). The horizontal lines (–) indicate the medians with 25th and 75th per-
centile (boxes) and minimum-maximum values (I). Values with different letters (a–d) indicate a significant difference (P < 0.05).
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noting that sperm DNA fragmentation is associated with differential expression of proteins 
in the viable sperm populations [36]. Intasqui et al. [36] postulated that the overexpression 
of the sperm proteins in the viable sperm population from ejaculates with high-sperm DNA 
fragmentation might indicate proteome alterations to compensate defects in sperm motility.

2.4. Protein freezability markers

Recently, seminal plasma and sperm proteins became an integral part of the reproductive 
area development. It is worth noting that proteins that are involved in the energy metabolism 
of spermatozoa play key roles in glycolysis, the citric acid cycle, and oxidative phosphoryla-
tion, which are required to provide sufficient energy for the sperm physiological functions 
[37]. The protein constellation of the SP and sperm cells, and their distinct subcompartments 
have been well documented in a numerous animal species, using a plethora of proteomic-
based techniques [6, 37, 38]. While some specific sperm protein markers facilitating good 
semen freezability have been identified [10, 24, 39, 40], their function depends on the presence 
of mRNA that can be translated into proteins in the spermatozoa. Moreover, the differential 
expression patterns of certain classes of SP and sperm proteins following cryopreservation 
have been used as markers for semen freezability [3, 6, 10, 39–44]. Regarding boar semen, 
the physiological functions of SP and sperm proteins and their associations with freezability 
have been summarized in recent reviews by Yeste [3, 10]. In the bull, higher concentrations 
of a 26-kDa SP protein, known as lipocalin-type prostaglandin D synthase (L-PGDS), and 
a 13-kDa acidic seminal fluid protein (aSFP) were associated with high-fertility bulls, sug-
gesting the importance of these proteins as freezability markers [41]. Moreover, a fertility-
associated protein, osteopontin (OPN), an acidic glycoprotein occurring in the bovine SP, has 
been shown to induce capacitation and improve viability of spermatozoa by inhibiting the 
apoptotic pathways [39, 41]. Bovine SP proteins, collectively known as binder of sperm (BSP) 
proteins (BSP1, BSP 3, and BSP 5), bind to choline phospholipids in the sperm plasma mem-
brane and are implicated in semen freezability [22, 39, 41, 42]. Recently, it has been confirmed 
that BSP1, one of the most abundantly expressed BSP proteins (representing approximately 
25–47% of the total proteins in bovine SP), consists of four molecular forms that have varying 
cryoprotective effects on the bull spermatozoa [42]. According to Sarsaifi et al. [22], approxi-
mately 52% of the SP protein spots detected after cryopreservation were represented by four 
major protein fractions with different molecular weights, and 10 proteins, identified by mass 
spectrometry, were major bovine SP proteins. It is worth noting that two of these proteins, 
defined as phosphoglycerate kinase (PGK, 37–45 kDa) and phospholipase A2 (PLA2, 50–55 
kDa), are implicated in glycolysis and the fertilization-associated processes, respectively 
[22]. More recently, it has been reported that the presence of fertility-associated 28–30-kDa 
heparin-binding proteins (HPBs) in bovine SP exerted better cryoprotective effects on the 
sperm structural and functional membrane integrity, which resulted in 13% higher concep-
tion rate than the bulls lacking the proteins in their SP [24]. Ledesma et al. [23] postulated 
that the decrease in phosphotyrosine signal of 45-, 40-, or 30-kDa protein in the presence of 
SP was concurrent with an inhibition of cryo-induced capacitation of ram spermatozoa, sug-
gesting the relevance of these proteins as markers for the capacitation status of frozen-thawed 
spermatozoa.
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Spermatozoa have a repertoire of distinct proteins localized in different subcellular structures 
that are associated with post-thaw semen quality [3, 6, 10, 40, 43]. In boar sperm extracts, the 
levels of outer dense fiber 2 (ODF2), A-kinase-anchoring protein 3 or 4 (AKAP3; AKAP4), heat-
shock protein 90 (HSP90AA1), voltage-dependent anion channel 2 (VDAC2), acrosin-binding 
protein (ACRBP), and triosephosphate isomerase 1 (TP1) activities were associated with semen 
freezability [10, 40]. Furthermore, ODFs provide a stable and elastic structure to the flagellum 
of the spermatozoon, supporting its movement and protecting it during the epididymal transit 
and ejaculation [36, 39, 40]. The ODF2 seems to be essential to ODF assembly, and its overex-
pression in frozen-thawed boar spermatozoa was associated with reduced post-thaw semen 
quality [40]. Moreover, AKAP4 and AKAP3 occur in the fibrous sheath of sperm flagellum and 
are involved in sperm motility and morphology [36]. It has been confirmed that an increase in 
the expression of either AKAP4 or AKAP3 in frozen-thawed spermatozoa might be associated 
with their premature capacitation [40]. In another study, it has been demonstrated that greater 
levels of HSP90AA1 and VDAC2 in high-freezability boars might confer increased sperm cryo-
tolerance [10]. Furthermore, greater expression levels of a fertility-associated protein, 90-kDa 
HSP (HSP90), were detected in bull spermatozoa with high cryotolerance and motility, indicat-
ing that the protein can be used as a marker for semen freezability [44]. The concept that HSPs 
supplementation to the freezing extender could protect spermatozoa against cryo-induced 
damage is supported by a report indicating that the HSPA8, a highly conserved member of the 
HSP70 family, exerted beneficial effects on post-thaw bull semen quality, as reflected by the 
reduced proportions of spermatozoa with apoptotic-like changes [45]. According to Chen et al. 
[40], higher levels of mRNA expression of the membrane proteins cytosolic SOD (Cu/Zn SOD1) 
in frozen-thawed boar semen might be due to the protective response of the sperm cells to cold 
stimulation and oxidation stress to prevent cryo-induced damage and also probably due to the 
toxicity of the components of the cryoprotectants. Recently, the application of high-through-
put proteomics to the study of cryopreserved human semen showed substantial changes in 
the sperm proteome at every stage of the freezing-thawing processes [43]. Irrespective of the 
thawing procedure of frozen semen, it was reported that there was an increase in the expres-
sion levels of a few proteins, such as clusterin (CLU), histone H4 (HIST1H4A), and L-xylulose 
reductase (DCXR), whereas there was a decrease in the expression levels of several proteins, 
including apoptosis-inducing factor 1-mitochondrial (AIFM1), carbonic anhydrase 2 (CA2), 
acrosin (ACR), phosphoglycerate mutase 2 (PGAM2), inositol monophosphatase 1 (IMPA1), 
calmodulin (CALM1), cytochrome (CYC2), and NADH-cytochrome b5 reductase2 (CYB5R2) 
[43]. Besides the effect upon the sperm membrane protein P25b, an acrosome membrane-coat-
ing protein, cryopreservation causes a significant loss of several sperm-coating proteins, result-
ing in reduced post-thaw semen quality [10, 22–24, 39–45]. It appears that the cryo-induced 
decrease in the levels of sperm proteins is probably attributed to protein degradation, mem-
brane damage due to osmotic stress, and the subsequent freezing-thawing causing the efflux 
of intracellular sperm constituents [6, 43]. Presently, the mechanism responsible for the cryo-
induced increase in levels of protein expression is not fully understood, even though it has 
been suggested that enhanced phosphorylation might be a possible cause for abundance in 
some of the proteins following cryopreservation [23, 43]. Even though changes in the SP or 
sperm proteome could predict the cryotolerance of spermatozoa, they do not provide relevant 
information about possible associations of sperm transcript profiling with semen freezability.
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3. Transcriptome studies on sperm-derived RNAs

The records of transcription of the late stages of sperm differentiation are easily accessible 
through sperm transcript fragments, which have the potential to be used as markers for fertil-
ity [13]. Among others, increasing focus has been given to the examination of the biological 
functions of mRNAs in spermatozoa of different animal species. It has been suggested that 
the analysis of the sperm-derived RNAs might provide potential links between the sperm pro-
teome and semen freezability [17, 18, 20, 46–48]. It should be underlined that the isolation of 
high-quality RNAs from fresh or frozen-thawed semen is important to assess the sperm gene 
expression [19, 46, 49, 50]. However, to optimize the isolation protocol of total RNA from sper-
matozoa of different animal species, the procedure has to be modified, and should incorporate 
a quality control reverse transcription polymerase chain reaction (RT-PCR) to avoid somatic 
cell contamination [17, 19, 46, 49]. Presently, human sperm transcripts are the best charac-
terized among all mammals with respect to RNA sequence profiling. Even though microar-
ray techniques, coupled with either quantitative real-time qPCR or qRT-PCR, have revealed 
limited features of the transcriptome and global patterns of gene expression in spermatozoa, 
these techniques have revealed that sperm transcripts affecting different metabolic pathways 
are related to semen fertility [48, 49, 51–54]. A study based on the evaluation of sperm capaci-
tation status provides evidence, indicating that the sperm-derived RNAs can be translated de 
novo using mitochondrial-type ribosomes, and at least 26 such sperm-translated proteins are 
known to be required during capacitation, sperm-egg interactions, and fertilization [11, 54].

Recently, the utilization of advanced molecular genetics tools has led to a rapid development 
of high-throughput RNA-Seq techniques, which have been used to explore the relationship 
between sperm functions with the transcript profiles of raw fresh or frozen-thawed sperma-
tozoa [12, 50]. The resolution of RNA population has been optimized with the utilization 
of next-generation sequencing (NGS) technology, to uncover complete transcript profiles of 
mammalian spermatozoa [12], making significant contributions to elucidate the physiologi-
cal roles of sperm-derived RNAs. Moreover, the wider adaption of RNA-Seq has revealed a 
complex RNA repertoire in spermatozoa from different animal species, including the bull 
[17, 51–53, 55, 56], boar [46–48], and stallion [54]. However, despite the increasingly wide 
applications of RNA-Seq in the analysis of different cellular tissues, its application is limited 
to screening of the mRNA profiles of frozen-thawed spermatozoa to uncover candidate genes 
associated with semen freezability.

Despite its apparent transcriptionally inert state, a mature spermatozoon contains diverse 
populations of both small and large RNAs [11–13, 47, 55]. Since their discovery in 1989, sperm-
derived RNAs were implicated in spermatogenesis and in fertilization and early embryonic 
development, suggesting that they are not merely the remnants of sperm cell development 
[11, 46, 54]. Notwithstanding the rich repertoire of coding and noncoding RNAs in mam-
malian spermatozoa, they are not a random remnant from spermatogenesis in testes, but a 
selectively retained and functionally coherent collection of RNAs [12, 54, 55]. Spermatozoa 
contain complex populations of RNAs, including several stable full-length RNAs and a vari-
ety of different RNAs, such as ribosome RNAs (rRNA), mitochondrial RNAs (mtRNAs), 
miRNAs (18–24 nucleotides), piwi-interacting RNAs (piRNAs, 26–31 nucleotides), and small 
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 interfering RNAs (siRNAs), which originate from double-stranded RNAs (dsRNAs) [11–17, 
55]. The precise population of mRNAs in spermatozoa is unknown, but has been estimated 
to be about 3000–7000 transcripts [17, 54]. It has been established that a majority of sperm 
mRNAs are located in the nucleus, and a limited number of mRNAs are located in other areas, 
such as the mid-piece region and flagella fibrous sheath [11]. Individual identified sperm 
transcripts include mRNAs for ribosomal and mitochondrial proteins, protamines, and pro-
teins involved in signal transduction and cell proliferation [13].

Screening of differentially expressed genes (DEGs) in spermatozoa has been explored mainly 
to investigate the associations of the gene expression levels with male fertility [11, 14]. Using 
microarray-based techniques, significant differences in the expression of two genes—testis-
specific protein1 (TPX-1) and lactate dehydrogenase C, transcript variant (LDHC)—were 
detected in human spermatozoa with high and low motilities [11]. Accumulating evidence 
has been shown that the coding and noncoding RNAs in spermatozoa play an important 
role in chromatin stabilization, facilitating the selective escape of sequences necessary for 
early development from re-packaging by protamines [12, 52, 55]. In human spermatozoa, 
some putatively sperm transcripts associated with male fertility and early embryo develop-
ment include CLU, AKAP4, Protamine 1 (PRM1), Protamine 2 (PRM2), and heat-shock-bind-
ing protein1 (HSBP1) [11]. It has been reported that CLU binds to the plasma membrane and 
is the main protein that has been overexpressed in individuals from the low-sperm DNA 
fragmentation group [36]. Even though the potential role of CLU in sperm function is still 
obscure, it has the potential to be a fertility biomarker for bull, stallion, or human semen 
[36]. Besides the crucial roles of DEGs in sperm function, there is limited information about 
the effects of the cryopreservation process on their expression levels. Several full-length 
transcripts have been identified in the frozen-thawed bull spermatozoa using RNA-Seq 
[17, 55]. In frozen-thawed bull spermatozoa, highly abundant full-length transcripts, such 
as PRM1, phospholipase C zeta 1 (PLCZ1), cysteine-rich secretory protein 2 (CRISP2), and 
calmegin 1 (CLGN1), which have been involved in capacitation and fertilization, had been 
identified using the RNA-Seq [17]. A previous study showed that the transcripts encoding 
for a serine/threonine testis- specific protein kinase (TSSK6) and a metalloproteinase non-
coding RNA (ADAM5P) were associated with high-motility status in the bull [51].

Significant differences were detected in the DEGs between fresh and frozen-thawed bull sper-
matozoa using microarray technique in conjunction with qRT-PCR analysis and that upregula-
tions of several DEGs existed, such as ribosomal protein L31 (RPL31) and glutamate-cysteine 
ligase catalytic subunit (GCLC), probably due to the protective response of spermatozoa to cold 
shock and oxidation stress conditions [56]. More recently, an abundance of DEGs has been 
shown to be highly expressed in bull spermatozoa with poor post-thaw motility compared 
with those with good post-thaw motility [53]. According to Yathish et al. [53], some of the sig-
nificantly upregulated DEGs in poor motility freezability ejaculates included the cytochrome 
b5 reductase 4 (CYB5R4), which regulates stress-induced ROS production in spermatozoa; the 
chaperonin containing T-complex polypeptide 1, subunit 5 (CCT5) that is involved in proper 
folding of cytoskeletal proteins and its high expression is associated with spermatogenesis dys-
function; and PACSIN3 (protein kinase C and casein kinase substrate in neurons), which is 
involved in the maintenance of the physiological function of membrane proteins. In a recent 
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study, the RNA-Seq has detected differences in mRNA transcripts of frozen-thawed semen 
between high-fertility and low-fertility bulls, and several of these transcripts were considered 
unique to either fertility group, which differed in their biological functions, such as enrich-
ment of regulatory transcripts for growth and protein kinase activity in the high-fertility bulls 
[55]. Card et al. [55] demonstrated that the sperm transcript cytochrome oxidase subunit 7C 
(COX7C), which is involved in the terminal step in the electron transport chain leading to ATP 
synthesis in the inner mitochondrial membrane, was negatively correlated with bull fertility. 
The authors hypothesized that the abundant expression of COX7C in frozen-thawed sperma-
tozoa from the low-fertility bulls might represent inefficient translation of the transcript, result-
ing in impaired mitochondrial function during the later stages of spermatogenesis. Similarly, 
inefficient translation of protein synthesis has been suggested as a possible cause for other 
sperm transcripts that were abundantly expressed in the low-fertility bulls [55]. However, it 
should be emphasized that both PRM1 and PRM2 are among the most strongly associated 
transcripts with different semen quality parameters, such as sperm concentration, motility, 
morphology, and chromatin and DNA integrity, as well as with fertility and embryo quality 
[11, 17, 46, 52, 55]. Significant reduction in the expression levels of PRM1 mRNA transcript 
in post-thaw bull semen was concurrent with compromised progressive sperm motility [52]. 
It appears that dysfunction in protein synthesis might be associated with aberrant mRNA 
retention, indicating that the regulation of protamine translation might compromise fertility 
[11, 52]. Further study, coupling qRT-PCR analysis with an enzyme-linked immunosorbent assay 
(ELISA), showed that the cryopreservation process caused significant changes in the expression 
levels of several sperm-derived mRNAs and proteins of epigenetic-related genes in boar sper-
matozoa [48]. Evidence has been shown that the mRNA expression levels of PRM1 and PRM2 
were  significantly decreased in frozen-thawed bull spermatozoa [52], thus reinforcing the find-
ings of different studies, and indicating that the cryopreservation process induces sperm DNA 
damage [4, 5, 21, 24, 32, 34, 35]. According to Zeng et al. [48], the mRNA expression levels of 
Dnmt3a and Dnmt3b, which are DNA methyl transferases known to possess de novo methyla-
tion activity in mammalian cells, were markedly suppressed in frozen-thawed spermatozoa, 
reaffirming the unfavorable effects of the cryopreservation process on post-thaw sperm sur-
vival. Furthermore, different transcripts of HSPs have been detected in spermatozoa of various 
animal species,  particularly the most abundantly expressed 70-kDa HSP, which is an effective 
marker for sperm cryotolerance and might be associated with post-thaw semen quality [45, 57]. 
Furthermore, seasonality is an important factor that affects the mRNA profiles of boar sperma-
tozoa, resulting in marked differences in the expression levels of genes, which are implicated 
in numerous sperm physiological and biochemical functions [47]. These findings corroborate 
those of a recent study, indicating that the marked differences in the gene expression profiles of 
SP and sperm proteome, in response to seasonal changes, significantly affected the biochemical 
composition of boar semen, which could compromise post-thaw semen quality [58].

Currently, the biological roles of small-nuclear RNAs (snRNAs)—miRNAs, piRNAs, and 
siRNAs—which are expressed specifically and abundantly in spermatogenic cells, have been 
documented by several authors [11–17]. Quantitative RT-PCR analysis on boar sperm RNA 
revealed that the mRNA targets of the differentially expressed miRNAs encode proteins previ-
ously described to play specific roles in sperm function, such as motility and capacitation [14]. 
According to Chang et al. [16], the differential expression of 15 miRNAs between the cauda 
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epididymal spermatozoa and fresh ejaculate in the boar suggests that significant mRNA expres-
sion and miRNA regulation are implicated in apoptosis, and are associated with the sperm mat-
uration processes. The authors postulated that the targeted gene, adrenoceptor beta 2 (ADRB2), 
a member of the G-protein-coupled receptor superfamily, activates adenylyl cyclase leading to 
the activation of cAMP-dependent kinase, whereas another targeted gene, the adenylate cyclase 
3 (ADCY3), catalyzes the formation of the second messenger cAMP, which in turn leads to 
elevated cAMP levels. It should be emphasized that while many miRNAs are conserved among 
different animal species, some of them are species-specific [12]. Furthermore, profiling of the 
SP by Illumina high-throughput sequencing showed that piRNA appears to play more impor-
tant and direct roles in spermatogenesis and male infertility, and its expression was signifi-
cantly reduced in the SP of infertile patients compared with the healthy individuals [12, 13, 15]. 
However, it remains unclear how individual miRNAs and siRNAs in spermatozoa function at 
the molecular levels, and the impact of the cryopreservation process on their biological func-
tions. It should be emphasized that the SP and mature spermatozoa contain a plethora of other 
small RNAs in which their roles in sperm function are currently unknown [13].

4. Concluding remarks

Even though proteins of the SP and spermatozoa have been used as semen freezability mark-
ers, these expectations are over-shadowed by the problems associated with the inherent male 
variability in sperm cryosurvival. The search for a new set of freezability markers using tran-
scriptome studies on RNA-Seq data, bioinformatics study, and proteome characterization 
of protein expression patterns in frozen-thawed spermatozoa will offer new perspectives to 
enhance the marker-assisted selection programs in animal breeding. It is envisaged that such 
freezability markers will also help to unravel the biological functions of sperm-derived mRNA 
transcripts in the mechanism underlying cryotolerance of spermatozoa from various domestic 
animal species, and will have a significant impact in the technology of semen cryopreservation.
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Abstract

Heat stress affects the fertility and reproductive livestock performance by compromising 
the physiology reproductive tract, through hormonal imbalance, decreased oocyte qual-
ity and poor semen quality, and decreased embryo development and survival. Heat stress 
decreases the secretion of luteinizing hormone and estradiol resulting in reduced length 
and intensity of estrus expression, increased incidence of anoestrus and silent heat in 
farm animals. Oocytes exposed to thermal stress lose its competence for fertilization and 
development into the blastocyst stage, which results in decreased fertility because of the 
production of poor quality oocytes and embryos. Furthermore, low progesterone secre-
tion limits the endometrial functions, and subsequently embryo development. In addi-
tion, the increased secretion of endometrial prostaglandin F2 alpha during heat stress 
threatens the maintenance of pregnancy. In general, the percentage of conception rate was 
found to be reduced by 4.6% for each unit increase in temperature humidity index (THI) 
above 70, and heat stress during pregnancy further slows down the growth of the foetus 
and results in lower birth weight. In tropical and subtropical regions, during hot days, the 
testicular temperature may increase and impair both the spermatogenic cycle and semen 
quality, which culminates in decreased bull fertility. The effects of heat stress on livestock 
can be minimized via adapting suitable scientific strategies comprising physical modifi-
cations of the environment, nutritional management and genetic development of breeds 
that are less sensitive to heat stress. In addition, the summer infertility may be countered 
through advanced reproductive technologies involving hormonal treatments, timed arti-
ficial insemination and embryo transfer, which may enhance the chances for establishing 
pregnancy in farm animals.
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1. Introduction

The performance, health, and well-being of livestock are strongly affected by climate. High 
ambient temperatures, high direct and indirect solar radiation and humidity are environ-
mental stressing factors that impose a strain on animals. Among the environmental variables 
affecting livestock, heat stress seems to be one of the most intriguing factors hampering ani-
mal production in many regions of the world. Even though new knowledge on the animal 
responses to the environment continually arises, managing livestock to reduce the impact 
of climate remains a challenge. Considerable efforts are, therefore, needed from livestock 
researchers to counter the impact of environmental stresses on livestock production. Besides 
ensuring the livelihood security to our poor and marginal farmers, stress mitigation can also 
improve the economy of livestock industry as a whole. Hence, it is crucial to understand the 
impact of environmental stress on livestock production and reproduction. These efforts may 
help in identifying the appropriate targets for developing suitable mitigation strategies.

Thermal stress effects on livestock are of multifactorial nature. It directly alters and impairs the 
cellular functions in various tissues of the body and the redistribution of blood flow, as well 
as the reduction in food intake, which ultimately results in reduced production performance. 
Reproductive functions of livestock are particularly vulnerable to climate change; it has been 
established that large ruminants are more prone to heat stress compared with small ruminants 
[1]. Heat stress is the major cause for infertility and reproductive inefficiency in livestock, 
resulting in profound economic losses. Heat stress reduces the libido, fertility and embryonic 
survival in livestock and favors the occurrence of diseases in neonates with reduced immunity. 
Heat stress affects the fertility and reproductive performance of livestock species through com-
promising the functions of the reproductive tract, disrupting the hormonal balance, decreas-
ing the oocyte quality, and thereby decreasing embryo development and survival [2–4]. In the 
tropical and subtropical regions, during the hot season, both the poor quality of oocytes and 
embryos results in decreased conception rate and subsequently with more days open resulting 
in huge economic losses to the dairy industry [5]. The high ambient temperature and relative 
humidity directly affect reproduction by altering or impairing various tissues or organs of the 
reproductive system of animal [6]. The threshold level of temperature humidity index (THI) 
for the high performance in terms of milk yield and reproduction is around THI 72 in tropical 
and subtropical climates. However, recent studies on THI in temperate climate emphasized 
that the THI lower than 68 is suitable for cattle performance and welfare [7].

This chapter is an attempt to cover in detail the impact of various heat stress factors on live-
stock reproduction, in both the female and male. Apart from these influences, the chapter also 
elaborates on available mitigation strategies directed to sustain livestock reproduction in the 
changing climate scenario.

2. Impact of heat stress on female reproduction

High environmental temperatures impair the female reproductive process at various stages of 
pubertal development, conception and embryonic mortality. Stress inhibits the reproductive 
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performance of livestock species by activating the hypothalamic-pituitary-adrenal (HPA) axis, 
which subsequently excites the pituitary gland to release adrenocorticotropic hormone (ATCH) 
(Figure 1). The ACTH stimulates the release of glucocorticoids and catecholamines, which act 
extensively to alleviate the effect of stress. However, ACTH-stimulated glucocorticoid release 
is responsible for an inhibitory effect on the reproductive axis. Heat stress reduces the length 
and intensity of estrus, alters follicular development and increases the rate of apoptosis in the 
antral and pre-antral follicles. Extreme environmental temperatures delay the onset of puberty 
in male and female animals. Furthermore, heat stress during follicular recruitment suppresses 
the subsequent growth and development to ovulation [8]. Changes in the follicular growth dis-
turb further progress and function of the oocytes [9, 10]. The chronic release of ACTH, such as 
the associated with heat stress, inhibits the ovulation and follicular development by altering the 
efficiency of follicular selection and dominance and glucocorticoids are critical to mediating this 
inhibitory effect on reproduction [11]. Further, high level of glucocorticoids during heat stress 
directly inhibits the meiotic maturation of oocytes, and, in addition, corticotropic releasing 
hormone (CRH) inhibits the ovarian steroidogenesis, derived of the decrease in the secretion of 
luteinizing hormone (LH). The consequent decrease in estradiol results in reduced length and 
intensity of estrus expression [12].

2.1. Reproductive hormones in female livestock

The reproductive hormones play a vital role as they regulate various stages of development 
and function in the female reproductive system. The high ambient temperature and solar 

Figure 1. Impact of heat stress on female reproductive performance.
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radiation as a result of climate change may affect the reproductive rhythm via the hypo-
thalamic-hypophyseal-ovarian axis [13]. Various studies also revealed a significant negative 
correlation between environmental temperature and the reproductive hormone concentration, 
which in turn cause compromised reproductive efficiency in farm animals [14, 15]. The fore-
most important factors that regulate the ovarian activity are the gonadotropin-releasing hor-
mone (GnRH), from the hypothalamus, and the gonadotropins (FSH and LH), from anterior 
hypophysis.

In cattle, the immediate 16 h exposure to a higher temperature (40°C) on day 12 of the estrous 
cycle lead to a significant reduction of GnRH-induced FSH secretion [16], whereas tonic FSH 
secretion was elevated probably due to reduced inhibition of negative feedback from small 
follicles [8]. Heat stress decreases LH pulse amplitude and frequency in cattle with low estra-
diol, thereby compromising the maturation and ovulation of the dominant follicles, while low 
tonic LH levels also hinder luteal development by inhibiting follicular growth and turnover in 
cyclic cows [2]. Furthermore, the decrease in the pre-ovulatory release of LH during heat stress 
reduced the expression of estrus behavior and delayed ovulation. Also in goats, exposition to 
high environmental temperatures induced lower follicular fluid and plasma estradiol concen-
trations and reduced LH receptor levels following lagged ovulation [8]. Estradiol secretion in 
the ovarian follicle is depressed under heat stress, primarily due to reduced theca cell andro-
stenedione production associated with low 17α-hydroxylase expression. In addition, reduced 
granulosa cells aromatase activity and viability also contribute to poor estradiol secretion. In 
the case of dominant follicles, subsequent plasma progesterone concentrations are reduced 
during heat stress and result in the small size of ovulatory follicles with low tonic LH stimula-
tion of luteinization and steroidogenesis [17]. Moreover, low progesterone secretion limits the 
endometrial function and subsequent embryo development. The increased level of circulating 
prolactin leads to suspension of estrous cycles and infertility during heat stress [18–20].

2.2. Follicular growth and development

Heat stress damages the developing follicles whenever the core body temperature exceeds 40°C 
[9]. Heat stress alters the follicular development by reducing steroid hormone secretion, which 
disrupts the oocyte growth, reduces the growth of dominant follicles and increased growth of 
subordinate follicles. Heat stressed lactating Holstein cows present smaller follicular diameter 
compared to non-stressed cows (14.5 vs. 16.4 mm, respectively) showed and also reduced fluid 
volume (1.1 vs.1.9 ml, respectively) [21]. In addition, heat stress was associated with reduced 
follicular dominance by prompting numerous large follicles with diameters above 10 mm, with 
prolonged dominance of ovulatory follicles [10]. Thus, the selection and dominance of normal 
follicles could be disturbed by high tonic follicular stimulating hormone (FSH) availability [2]. 
Low LH and the negative animal energy balance during summer prevent the maturation and 
ovulation of dominant follicles [17]. As the prolonged follicular dominance disrupts the nor-
mal oocyte maturation and reduces their developmental competence, the development of small 
dominant follicles during higher temperature results in ovulation of the infertile oocyte or sub-
functional corpora lutea. The regression of the premature dominant follicle before attaining the 
larger size leads to a substantial reduction in ovulation percentage [8, 11, 17].
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2.3. Effects of heat stress on estrus incidences

The seasonal cycle of reproduction in female animals is primarily controlled by the pho-
toperiod, and it was found to be affected drastically by climate changes. Some studies 
proved the negative influence of heat stress on estrus incidence and duration and hence 
on estrus detection [6]. The length and intensity of estrus are inversely associated with the 
environmental temperatures, with higher temperatures triggering an increase prevalence 
of anestrus and silent heat in farm animals [18, 22]. A significant reduction in the interes-
trous interval was reported in Japanese black cattle during summer (21.5 days) compared 
to winter (23.4 days) [23]. Also, Bulbul and Ataman [24] report a decrease in estrus occur-
rences in cattle with an ambient temperature above 20.5°C. Likewise, decreased estrus dura-
tion and delayed onset of estrus were reported in heat stressed Bharat Merino ewes, which 
were attributed to abnormal LH pulsatility and lower estrogen synthesis during heat stress 
condition [25]. Malpura ewes exposed to multiple stresses (heat stress, nutritional stress, 
and walking stress) recorded lower estrous percentage and estrus duration in compared 
to control (41.7 vs. 66.67% and 14.4 vs. 32 h, respectively) [26, 27]. Similarly, a lower rate 
of estrus detection was reported in summer compared to spring and winter in dairy cattle. 
Contrasting to cattle, buffalos exhibit estrus when the ambient temperature is low, with THI 
value of less than 70 [1, 28].

In addition to ambient temperature, the humidity and solar irradiation also affected the 
expression of reproductive rhythm in buffaloes and cattle [29]. A diurnal rhythm of estrus 
behavior has been observed in the majority of Murrah buffaloes, with 60% of estrus exhibited 
between 22.00 and 6.00 h [28].

2.4. Sexual behavior

Sexual behavior acts as a core indicator of the reproductive activity in livestock females. It 
was found to be negatively influenced by environmental stressors like elevated tempera-
ture [30]. Reduced sexual behavior is reported in livestock during the hottest parts of the 
day. Wilson et al. [31] suggested that heat stress inhibits the follicular growth during the 
pre-ovulatory period of proestrus and reduces the intensity of estrus signs by decreasing 
the level of estradiol. Heat stress also modifies cow behavior, such as decreased walking 
time during estrus, which contributes to poor estrus detection in dairy cows during sum-
mer compared to winter [22]. Cows are less likely to exhibit standing heat during day time 
in summer months and often shows estrus at night hours when the ambient temperature is 
low [32]. Upadhyay et al. [28] reported that the low level of estradiol on the day of estrus 
also leads to poor expression of heat in Indian buffaloes during the summer period, favoring 
feeble estrus detection in buffalos during the summer season [29]. In cows, behavioral estrus 
is markedly reduced in summer, when THI is around 78 [28, 29, 33], while the incidence 
of anestrus and silent ovulation increases [34]. The cows in estrus mount more frequently 
during winter compared to summer, when detection of estrus is challenging. Furthermore, 
Japanese Black cattle exposed to heat stress showed lower locomotor activity during estrus, 
which was attributed to a reduced estradiol 17β production [23].
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2.5. Effect on oocyte competence

Heat stress reduces oocyte developmental competence by affecting growth and maturation 
through an increase in oxidative damage and apoptotic cell death, as well as by inducing 
irreversible changes on cytoskeleton and meiotic spindle [10]. The elevated temperature 
may negatively affect the oocyte growth, protein synthesis and the formation of transcripts 
required for subsequent embryonic development [35]. Reduced mRNA content and stor-
age protein for early embryonic development along with altered membrane integrity affects 
signal transduction and protein transport. Therefore, prolonged follicular dominance leads 
to premature meiosis and aged oocytes with the poor developmental prospect. Incomplete 
dominance could result in ovulation of an aged follicle containing oocytes with reduced 
competence. Among other effects, incompetent oocytes become transcriptionally inactive by 
reaching a diameter of 110 μm and lose the ability to synthesize heat shock protein 70 (HSP70) 
in response to heat shock [36].

In summer, heat stressed Holstein cows exhibit lower proportion of oocytes and cleaved 
embryos that could have otherwise developed into blastocysts by day 8 [11]. Oocytes exposed 
in vitro to different temperatures (38.5, 40 and 41°C) showed altered maturation, namely a 
decreased in the percentage of mature oocytes retrieved when cultured at 40 and 41°C, com-
pared with the proportion obtained during culture at 38.5°C [31]. Oocytes cultured at 41°C 
arrested their development at metaphase 1 stage [37]. Other in vitro experiments demon-
strated that under elevated temperature conditions the oocytes evidence a decrease in protein 
synthesis, disturbed microfilament and microtubule architecture, disorganization of the mei-
otic spindle and increased incidence of induced cell death due to apoptosis [35]. The protein 
impairment and the increased production of free radical in oocytes alter the zona pellucida 
layer and the oocyte cytoplasm which in turn impair sperm penetration. Therefore, reduced 
oocyte competence and stress induced oocyte lesions in the early stages of follicular growth 
result in poor fertility rate [2].

However, even though Bos indicus cows exhibited reduced oocyte quality during chronic 
heat exposure, they do not show any significant changes in the oocyte quality or competence 
during acute heat stress [38, 39]. This suggests that either the animal genetics or the length 
of heat stress may determine the impact of heat stress in cattle reproduction. Thereby, mul-
tifactorial mechanisms are involved in the reduction of fertility of domestic animals during 
heat stress [6].

2.6. Fertility

The high yielding lactating cows are more adversely affected by heat stress than heifers 
because of their increased metabolism, which generates greater internal heat production thus 
lowering their fertility rate in summer and autumn compared to winter periods [36]. Heat 
stress before insemination has been associated with decreased fertility in cattle and sheep [11]. 
Fertility decreases in buffaloes exposed to THI above 75 in subtropical climatic condition as 
compared to cattle, since buffaloes are more sensitive to heat stress [6]. The increase of uterine 
temperature by 0.5°C during hot days causes a decrease in the rate of fertilization [30] since in 
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severely heat stressed cows most damages over the conceptus occur between estrus and day 
7 of pregnancy [39].

Heat stress-related infertility is a current worldwide concern in the livestock industry, par-
ticularly in dairy cattle. A report reveals a higher percentage of reduction in conception rate 
during summer months as compared to cooler months [40]. The elevated environmental tem-
perature on the day of insemination is negatively associated with conception rates [41–43]. 
Impaired conception was associated with heat stress in livestock, either during the breeding 
period or 42 days before and 40 days after insemination [42]. The conception rate in high 
yielding Israeli cows was 45% in winter and 20% in summer [2, 44, 45]. Also, Chebel et al. [46] 
reported a 20–27% drop in conception rates and a decrease in 90-day non-return rate to the 
first service in lactating dairy cows during summer. In dairy cows, the percentage of concep-
tion rate is reduced by 4.6% for each unit increase in THI above 70 and in practical reality, 
conception rate was often declined to less than 10% during summer [32, 47].

2.7. Embryonic growth and development

The embryonic loss is another important factor that affects fertility in cattle, and bovine 
embryos are sensitive to maternal heat stress during the first 2 weeks after breeding [17, 36]. 
A major source for a reduction in embryonic survival induced by heat stress may be due to 
the adverse effects of elevated body temperatures on developing zygotes and embryos. High 
ambient temperatures during oocyte maturation and ovulation or during the first 3–7 day of 
pregnancy reduced the embryonic viability and development. Although elevated tempera-
tures affect the pre-attachment stage of embryos, the degree of the effect decreases as the 
embryo develops. Heat stress causes embryonic death by the interfering with protein synthe-
sis, oxidative cell damage, reduction in successful pregnancy recognition and expression of 
stress-related genes associated with apoptosis. The exposure of lactating cows to heat stress 
after the 1st day of estrus has reduced the development of embryos to blastocyst stage after 
8th day of estrus [39], the deleterious effects of heat stress on the embryos being most evident 
in early stages of its development [48]. In vitro or in vivo exposure of embryos to high tem-
peratures until day 7 (blastocyst stage) is accompanied by lower pregnancy rates up to day 30 
and higher rates of embryonic loss occurred on day 42 of gestation [48]. Embryos at day 1 are 
more susceptible to maternal heat stress than embryos at days 3–7. In addition, heat stressed 
embryo at the time of post-implantation period was found to be associated with foetal mal-
nutrition and various other teratologic conditions in cows, which may ultimately culminate 
in embryonic death [22].

2.8. Impact on pregnancy

Heat stress negatively affects the ability of an animal to become pregnant through many 
mechanisms affecting fertilization, follicular development and early embryonic development 
(Figure 2). Ryan et al. [49] reported that when the rectal temperature of the animals increased 
from 38.5 to 40°C at 72 h after insemination, pregnancy rate decreased up to 50%. Amundson 
et al. [45] also found a significant reduction in the pregnancy rate in beef cattle during sum-
mer (62%) when the THI was equal to or above 72.9. Likewise, Amundson et al. [50] reported 
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3.2% decrease in pregnancy rates in Bos taurus cattle for each unit increase in THI above 70, 
and a decrease of 3.5% for each degree increase in ambient temperature above 23.4°C. Further, 
heat stress during pregnancy slows down the growth of the foetus, which was attributed to the 
decreased uterine blood supply [51], which hampers supply of nutrients and hormones to the 
conceptus [45]. Slow growing embryos fail to signal pregnancy to the maternal organism in 
due time. Therefore, the endometrial prostaglandin F2alpha (PGF2α) secretion tends to increase 
during heat stress and trigger luteolysis, thereby threatening the maintenance of pregnancy [29]. 
Each additional raise of 1.05 unit in the THI over 72, during the peri–implantation period, dur-
ing 21–30 days and up to 90 days of gestation, increases the chance of pregnancy losses [39]. The 
placental weight and hormonal secretions are reduced and the vascular resistance is increased 
during heat stress, which further affects the reduction in perfusion of nutrients to the foetus [23].

2.9. Impact on maternal recognition of pregnancy

The maximum pregnancy losses due to heat stress occur during the early embryonic period of 
8–17 days of pregnancy [52, 53]. In addition, heat stress compromises the embryonic growth 
up to day 17, which was considered a critical period for production of interferon-tau by the 

Figure 2. Impact of heat stress on pregnancy in livestock.
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embryo. The quantity of interferon-tau is crucial to reduce the pulsatile secretion of PGF2α 
thus facilitating the persistence of the corpus luteum for the maintenance of pregnancy. 
Hence, low-quality embryo and poor quality CL are important causes of early embryonic 
death during heat stress. The heat stress during late gestation period in dairy cows resulted in 
lower birth weight calves with reduced milk yield, which is associated with a reduced thyroxine, 
prolactin and growth hormone [54].

2.10. Pre-partum period and days open

The dry period is a critical period, in which the mammary gland involution, the rapid fetal 
growth and induction of lactation occurs, with subsequent mammary development [36]. Heat 
stress in the cow impairs the placental hormones secretion, which can negatively affect the 
intrauterine fetal growth and reduce milk yield [10]. Heat stress in mid to late pregnancy can 
affect endocrine responses that may increase foetal abortions, shorten the gestation length, 
lower calf birth weight, and reduce follicular and oocyte maturation in postpartum estrous 
cycles [55]. Pre-partum heat stress may also decrease thyroid hormones and placental estro-
gen levels, while increasing non-esterified fatty acid concentrations in blood that alters the 
growth of the udder and placenta, placental angiogenesis, nutrients supply to the unborn calf 
and subsequent milk production [10, 54].

The major impact of heat stress on postpartum involves a delay of the return to gestation 
due to decreased submission rate and low conception/pregnancy rates [55], as already men-
tioned. Ray et al. [56] reported that first lactation cows are more sensitive to summer stress 
with the significantly longer postpartum period than cows with multiple lactations. On the 
other hand, Lewis et al. [57] reported that the heat stress did not alter postpartum days from 
calving to first estrus, in clear contradiction with Jonsson et al. [58], who suggested that the 
heat stress induced reduction in dry matter intake may lead to increased negative energy bal-
ance, therefore prolonging the postpartum period and reducing the fertility in dairy cows. 
Further, the negative energy balance decreased the plasma concentrations of insulin and glu-
cose and caused delayed ovulation [33]. The poor folliculogenesis and delayed ovulations 
during heat stress resulted in longer calving interval, reduced the birth weight and milk yield 
[51]. Further, longer service period in buffaloes during summer may be due to the higher 
incidence of silent estrus [1].

3. Male reproductive performance

Bulls are generally considered to be half of the herd and its fertility is directly associated 
with the fertilization of oocyte to produce a good, viable and genetically potential concepts. 
In mammalian species, the males have a unique physiological mechanism of testicular ther-
moregulation to maintain its reproductive activity in adverse environmental conditions [59]. 
The increased density of sweat glands in the scrotum of ruminants is crucial to the efficiency 
of local thermoregulation. The testicular temperature in bulls must be 4–5°C below the rectal 
temperature, and this difference in temperature is essential for an efficient sperm production 
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[60]. The optimal ambient temperature for efficient sperm production could be approximately 
15–20°C. Males are highly susceptible to the pooled effect of high ambient temperature, rela-
tive humidity, solar radiation and the wind, and this reduces both the quantity and quality 
of sperm production, thereby decreasing the male fertility [6, 61] (Figure 3). Also, high tem-
peratures interfere with the oxidative metabolism of glucose in spermatic cells as a result of 
mitochondrial dysfunctions and the accumulation of reactive oxygen species and increase 
lipid peroxidation which is reflected in an increase of sperm primary defects [62].

The scrotum of bull has thin skin with low fat, low pelage, highly vascularized [59], and 
its participation in the thermoregulation mechanism is coupled with physical mechanism 
of counter-current mechanism for heat exchange and blood flow regulation centered in the 
testicular cord. This complex mechanism allows the maintenance of testicular temperature 
between 2 and 6°C below body temperature [63]. The local thermoregulation is approbated 
by relaxation of the dartos (in the scrotum) which together with distension of the cremaster 

Figure 3. Impact of heat stress on the reproductive performances of livestock.
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muscle (in the testicular cord) will increase the distance between the testes and the body 
cavity [63]. Marai et al. [64] reported that the length of the tunica dartos was greater in sum-
mer and autumn than in winter, in rams. Further, it has been established that a high ambient 
temperature during summer significantly increases the scrotal skin temperature in males. 
In spite of the efficiency of this mechanism, exposure of the animals to high environmental 
temperature changes the thermoregulatory mechanisms depending on the thermal gradient 
and may cause a degeneration of testicular parenchyma which was associated with subfertil-
ity and infertility in males, which will negatively impact semen quality and quantity with 
subsequent reduction in ruminants fertility [63].

The heat stress may also cause a temporary interruption in the semen production, sperm 
motility and an increase in the sperm secondary defects [65]. Some reports refer that the 
scrotal skin temperature exhibits highly negative correlation with serum testosterone, libido, 
sperm motility, sperm concentration and conception rate while it was positively associated 
with dead and total abnormal sperm [64, 66]. High testicular temperature also results in sper-
matogonia apoptosis in the seminiferous tubules, degeneration of Sertoli and Leydig cells 
and disruption of DNA strands, particularly in pachytene spermatocytes and round sperma-
tids [55]. Further, direct exposure of the testes to high temperature also alters the spermato-
genic cycle affecting the quality of ejaculate [22]. The changes in libido and sexual behavior in 
bulls are governed by an imbalance in hypothalamus-hypophyseal-gonadal axis culminating 
in low testosterone level, sperm output, and motility. In addition, semen attributes like sperm 
concentration, sperm motility, sperm viability, sperm morphology and acrosome integrity 
are negatively influenced by heat stress in bulls and bucks, which may ultimately lead to 
infertility [46, 55].

3.1. Spermatogenesis

The major indicators of sperm production capacity and spermatogenic functions are scrotal cir-
cumference and testicular consistency, tone, size and weight that are usually inversely related 
to higher ambient temperatures. Sahni and Roy [67] reported that the maximum and minimum 
temperatures for optimum spermatogenesis are 29.4 and 15.6°C, respectively. The elevated 
temperature hampers the process of spermatogenesis by degeneration of sperm cells and sub-
sequently reduces the fertilizing ability of spermatozoa. Further, seminal characteristics are 
affected by high temperature and humidity, which affects the spermiogenic phase 18 days 
before semen collection [68].

Moreover, spermatogenesis is also extremely sensitive to ionizing irradiation and rela-
tive humidity above 50% can destroy the proliferating spermatogonia [50]. The analysis of 
semen obtained from heat stressed bulls showed a reduction in volume and motility along 
with numerous secondary sperm defects [65]. In addition, the total number of dead and 
abnormal sperm cells also increased in response to heat stress. The histological sections 
of testes from heat stressed males showed unchanged or increased interstitium while the 
spermatogenic elements were seldom found. Further, heat stress was reported to reduce the 
breeding efficiency in males as the number of testicular cells like secondary spermatocytes 
and spermatids, the ratio of Sertoli cells to other cells and the diameter of the seminiferous 
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tubules are significantly reduced [35]. Kastelic et al. [69] reported that the minimal tem-
perature gradient between proximal and distal poles of the scrotum in warm periods causes 
increased sperm damage, mass activity, sperm motility, and vigour. Exposure of the bull 
to extreme environmental temperature tends to damage the primary spermatocytes, sper-
matids, and spermatozoa. However, cold stress is likely to be less damaging than higher 
temperature, and it further was established that the animals during cold stress are able to 
maintain a scrotal temperature through scrotal thermoregulation [70].

3.2. Semen characteristics

As a consequence of heat stress in males, the biological phenomena such as sexual activity, 
endocrine secretions and testicular function, spermatogenesis and physical and chemical 
characteristics of semen are affected. Extremes of environmental temperature may cause low 
sperm quality, which is closely related to female low fertility, as a result of low fertilization 
rates and increased embryonic mortality. Abdel-Hafez [71] reported that the reaction time, 
percentage of sperm abnormalities, dead sperm and acrosomal damage were positively asso-
ciated with testicular temperature while semen pH, ejaculate volume, sperm motility and 
sperm concentration (×109 ml) were negatively related. The semen volume, number of sper-
matozoa and motile sperm cells per ejaculation of bulls are lower in summer than in winter 
and spring. Nichi et al. [62] reported a higher percentage of major sperm defects during sum-
mer than winter in Simmental and Nellore bulls. Conversely, Karagiannidis et al. [72] refer an 
improvement of semen characteristics of bucks reared in Greece during summer and autumn. 
The critical temperature for the inhibition of spermatogenesis was established to be around 
29.4°C under continuous exposure where the higher temperature can alter the scrotal thermo-
regulatory mechanism [73].

High temperature can also affect semen production and quality during epididymal matu-
ration or spermatogenesis, not only at the moment of semen collection but up to 70 days 
before collection. Even though the heat stress has minimal effects on the testicular endo-
crinology in bulls, the same level of heat stress alters the steroidogenesis in boars [74]. 
Coulter and Lunstra [75] reported that the percentage of sperm motility was 42% at the 
temperature gradient of 2–4°C whereas Menegassi et al. [68] reported 53% with a tempera-
ture gradient of 0.9°C during summer. The bulls representing an abnormal temperature 
pattern during heat stress enhanced the percentage of cytoplasmic droplets in sperm cells 
by 13.4%.

Pigs are very sensitive to hot conditions due to the low sweating capacity. Kunavongkrita et 
al. [76] reported lower semen volume with less sperm concentration (174 × 106) per mL during 
summer in comparison with winter (266 × 106) in bulls. The biochemical elements of semen 
such as fructose, citric acid, and sodium and potassium, total phosphorus and calcium concen-
tration are reduced significantly during heat stress. The semen quality parameters are decreas-
ing with higher lipid peroxidation production as an effect of oxidative stress during summer. 
The pH of the semen also showed high correlation with environmental temperatures. Further, 
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ing with higher lipid peroxidation production as an effect of oxidative stress during summer. 
The pH of the semen also showed high correlation with environmental temperatures. Further, 

Theriogenology74

reduced testosterone concentration was recorded in males exposed to heat stress apart from 
reducing the reaction time [77].

3.3. Effects of season on semen quality

Sexual behavior, semen quality and quantity are the main factors limiting the male reproduc-
tive efficiency in a year. Possible fluctuations in seminal quality are associated with factors 
such as breed, age, seasonality, temperature, photoperiod and other factors of different etiolo-
gies [78]. The month and season of the year show a significant effect on semen quality param-
eters. The semen output increases when the relative humidity is around 50% and decreases 
markedly in sperm concentration and total sperm output at temperature of 37°C with 80% 
relative humidity [79]. The semen volume and sperm concentration are lowest in the summer 
and gradually increase during the spring and reach a peak in late autumn [78]. Heat stressed 
bulls produced low quality semen with high number of abnormal heads and cytoplasmic 
droplets during summer [80]. The seasonal infertility in rams during summer months was 
attributed to an early occurrence of the acrosome reaction, which could be due to a decreased 
in acrosomal stabilizing protein in the seminal plasma [55].

4. Mitigation strategies to ameliorate the impact of heat stress

The effects of heat stress on livestock cause huge economic losses to the farmers, but there are 
few opportunities to recover some of the losses by adapting suitable strategies to mitigate heat 
stress (Figure 3). There are three major key components to sustain the productivity of animals 
in hot environment: through physical modifications of environment, nutritional management 
and genetic development of breeds that are less sensitive to heat stress [5]. These strategies 
may either be used individually or in combination to obtain better results by providing opti-
mum productive environment for farm animals. In addition, summer infertility may also be 
treated with advanced reproductive technologies comprising gonadotropins, timed artificial 
insemination and embryo transfer. Strategies that are cost effective and involve indigenous 
knowledge have the better success rate in adopting those strategies by the farmers.

4.1. Physical modification of environment

In general, livestock environmental management is an emerging area in animal science, 
which is getting more attention in the era of climatic change, attempting to provide a suit-
able microclimate to ensure optimum production by preventing the adverse environmental 
impacts on animal production systems. Primary means of altering the environment may be 
broadly divided into two categories comprising (i) provision of shade and (ii) evaporative 
cooling techniques [6]. The environmental modifications such as shade and cooling systems 
are critical in arid and semi-arid zones during heat stress to maintain milk production, 
milk component levels, reproductive performance and animal welfare [81]. The basics of 
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providing shade are attributed to the efforts in reducing heat load from direct solar irra-
diation in livestock. These shading structures could be either natural or artificial. Trees are 
considered to be the most cost effective methodology to provide shade since they protect 
from the sun and capture radiation by evaporation of humidity in the leaves. Buffington 
et al. [82] pointed out that painting of upper part of the shade unit with white color and 
installing a 2.5 cm thick of isolating material may considerably reduce solar radiation. The 
height of shades in the corral must be from 3.6 to 4.2 m in order to guarantee reduction in 
solar radiation. It has been established that shading reduces the incoming radiant heat load 
by 30% or more and shading of the feed and water also offered production advantages for 
British and European breeds of cattle [83]. The cooling systems alleviate heat load from live-
stock by using the principle of evaporation, combining water misting and forced ventilation 
through use of spray and fans, and are frequently placed inside free-stall barns or under 
shades in open space corrals. Milk production and reproductive performance of dairy cattle 
are improved by the use of an evaporative cooling system [84]. Furthermore, the animals 
that are cooled with sprinklers consume more feed with less quantity of water, which has 
increased milk, fat, protein and production performance [85]. Fogging and misting systems 
use fine droplets of water, which are immediately dispersed into the air stream by quick 
evaporation and cool the surrounding environment.

4.2. Nutritional management of heat stress

Ensuring appropriate nutritional level to the livestock is crucial to optimize livestock pro-
duction in the changing climatic condition. Importance should be given for providing bal-
anced nutrition to ensure optimum reproduction in animals as the energy balance are closely 
associated with their fertility [86]. The environmental temperatures are highest in arid and 
semi-arid regions where the available feed resources are both of low quality and quantity 
which directly affect the reproductive performance of the livestock species. Combating the 
heat stress effects on the metabolism is therefore very essential, as animals subjected to mild 
to severe heat stress needs to be supplemented 7–25% extra maintenance requirements [87]. 
Therefore, to meet their energy requirements, it is essential to enhance the nutrient density 
by feeding high quality forage, concentrates and fat supplementations. In addition to the 
supplementation of low fiber, high protein diet was also found to be helpful by reducing the 
water requirement for metabolism. Feeding of feed additives stabilizes the distorted rumen 
environment and also improves the energy utilization [88]. Moreover, fat content in the diet 
has favorable effects on concentrations of cholesterol, progesterone, rate of synthesis and 
metabolism of PGF2 α, follicle growth and pregnancy rates in dairy herds [89]. Also, dietary 
supplements of vitamins, trace elements and minerals can ameliorate the adverse effects of 
heat stress. Vitamin E and selenium injections reduce the rectal temperature and body weight 
loss in sheep during summer [19]. Supplementation of inorganic chromium in the feed of buf-
falo calves reared under high ambient temperature improved heat tolerance and the animal 
immune status without affecting nutrient intake and growth performance. It was also demon-
strated that the adverse effect of heat stress on the productive and reproductive efficiency of 
Malpura ewes were reversed through mineral mixture and antioxidant supplementation [19]. 
DiGiacomo et al. [90] also reported that the feeding of betaine, a trimethyl form of glycine, 
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ameliorate heat stress in sheep. Feeding buffers during heat stress is highly beneficial to ani-
mals, since buffers assist in the prevention of low rumen pH and rumen acidosis [91]. Also, 
the addition of common macro minerals Na+ and K+ in feed increases dry matter intake and 
production performance [91]. Inclusion of ascorbic acid in the feed ameliorates, heat stress 
induced problems like poor immunity, feed intake, weight gain, oxidative stress, body tem-
perature, fertility and semen quality [92]. In addition, supplementation of L-ascorbic acid, 
both singly and in combination with l-tocopherol acetate, was found to be helpful to heat-
stressed layers [92].

4.3. Genetic selection of heat-tolerant breeds

Scientific advances allow improving the environmental modifications and nutritional man-
agement in the view of alleviating the impacts of thermal stress on animal performance. 
However, long-term strategies are foreseen for adaptation to climate change, namely regard-
ing the differences in thermal tolerance existing between livestock breeds, endowed with 
tools to select thermo-tolerant animals. However, the selective breeding of dairy cows for 
higher milk production has increased the susceptibility of cows to heat stress by compromis-
ing the summer production and reproduction. Furthermore, selection for high milk yield 
reduced the thermoregulatory range of the dairy cow and resulted in heat stress which has 
magnified the seasonal depression in fertility [15]. Hence, the identification of heat-tolerant 
animals within high-producing breeds will be useful only if these animals are able to main-
tain high productivity and survivability when exposed to heat stress conditions. Cattle with 
shorter hair, hair of greater diameter and lighter coat color are more adapted to hot environ-
ments than those with longer hair coats and darker colors [93]. This phenotype has been 
characterized in B. taurus in tropical environment, and this dominant gene is associated with 
an increased sweating rate, lower rectal temperature and lower respiratory rate in homozy-
gous cattle under hot conditions [94]. The heat shock protein genes that are associated with 
thermo-tolerance have been used as markers in the marker-assisted selection breeding pro-
gram. The association of polymorphisms in heat tolerant genes is reported in various breeds 
such as HSP90AB1, in Thai native cattle [95], or the HSF1 gene, HSP70 A1 A gene and HSBP1 
in Chinese Holstein cattle [96, 97]. In addition to HSPs, there are also other thermo-tolerant 
genes reported in ruminant livestock species which undergo changes in their expression pat-
tern while subjecting them to heat stress. The other genes of economic importance include 
ATP1B2, thyroid hormone receptor, interleukins, fibroblast growth factor, protein kinase C, 
NADH dehydrogenase, phosphofructokinase and glycosyl transferase, among others [6, 97]. 
However, further detailed studies are required to elucidate the expression pattern of these 
genes in diversified animal species before they may be considered as biological markers to 
be used in marker assisted selection program to develop thermo-tolerant breeds, which can 
produce and reproduce normally.

4.4. Hormonal treatment and assisted reproductive technologies

Hormonal treatments have the potential to minimize the heat stress effects in animals. The 
administration of GnRH in the early stages of estrus coincides with the endogenous LH 
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surge and improves the conception rate successfully. GnRH agonist or hCG injected on day 
5 of the estrous cycle results in ovulation or luteinization of the first wave dominant follicle 
and forms an accessory corpus luteum (CL) that enhances the plasma progesterone levels to 
compensate its decrease in chronic heat stress [2, 98]. The timed artificial insemination (AI) 
program also improves summer fertility when associated with an injection of GnRH to induce 
a programmed recruitment of the ovulatory follicle. This protocol should be followed by 
PGF2α injection 7 days later to regress the CL which permits the final maturation of ovu-
latory follicles. Further, a second dose of GnRH 48 h after PGF2α may induce ovulation 
and the insemination of cows at 16 h to ensure successful conception [99]. The Ovsynch 
protocol successfully synchronized the ovulation in buffaloes and increased conception rate 
when combined with timed AI [100]. El-Tarabany and El-Tarabany [101] reported that the 
CIDRsynch and Presynch protocols improved the conception and pregnancy rate of Holstein 
cows under subtropical environmental conditions. Embryo transfer (ET) improves preg-
nancy rates during summer because embryos are transferred after the time at which they 
are more sensitive to heat stress. Compared to AI, pregnancy rates in cows exposed to heat 
stress have been improved by transfer of either frozen or unfrozen embryos produced by 
superovulation [102].

5. Conclusion

Under the climate change scenario, elevated temperature and relative humidity will defi-
nitely impose heat stress on all the species of livestock and will adversely affect their repro-
ductive ability. This chapter discussed in detail the impact of heat stress on both female 
and male reproductive performance. This chapter also elaborated on ameliorative strategies 
that should be given consideration to prevent economic losses incurred due to environmen-
tal stresses on livestock reproduction. Fortunately, proven strategies exist to mitigate some 
effects of heat stress on animal reproduction. These include housing animals in facilities 
that minimize heat stress, use of timed AI protocols to overcome poor estrus detection and 
implementation of embryo transfer programs to bypass damage to the oocyte and early 
embryo caused by heat stress. Management alternatives, such as the strategic use of shade, 
wind protection, sprinklers and ventilation in the summer, also need to be considered to 
help livestock cope with adverse conditions. In addition to these measures, manipulation of 
diet energy density and intake may also be beneficial for livestock challenged by environ-
mental conditions. There are also several promising avenues of research that may yield new 
approaches for enhancing reproduction during heat stress. These include administration 
of antioxidants and manipulation of the growth axis. Opportunities also exist for manipu-
lating animal genetics to develop an animal that is more resistant to heat stress. Genes in 
animals exist for regulation of body temperature and for cellular resistance to elevated tem-
perature and identification and incorporation of these genes into heat sensitive breeds in a 
manner that does not reduce production and reproduction would represent an important 
achievement.
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Abstract

Buffaloes are characterized by seasonal reproductive activity. Anestrus buffalo heif-
ers and lactating buffaloes were used to study the effect of melatonin treatment on the 
resumption of ovarian activity during out-of-breeding season. Buffaloes of treated group 
were injected or implanted with melatonin (18 mg melatonin/50 kg body weight). Using 
CIDR-eCG protocol preceded with melatonin successfully achieved estrus behavior and 
induced conception rate during out-of-breeding season. Furthermore, the reproductive 
performance of buffaloes during out-of-breeding season was clearly improved by mela-
tonin implantation in conjunction with CIDR-eCG protocol due to the luteotrophic effect 
of melatonin expressed as increasing diameter of CL (corpus luteum) and progesterone 
concentration. This improvement resulted in greater values of conception rate, in melato-
nin implanted compared to not implanted buffaloes. Melatonin implantation in anestrus 
buffalo heifers increased the diameter of largest follicles and melatonin concentration 
but progesterone and luteinizing hormone (LH) concentrations were decreased. In addi-
tion, melatonin implantation in anestrus lactating buffaloes increased the SOD (superox-
ide dismutase) enzyme activity. Sustained release of exogenous melatonin significantly 
protects against oxidative stress while increasing beneficial total antioxidant capacity 
(TAC) concentration in summer-stressed anestrus buffaloes. Melatonin implantation in 
conjunction with CIDR-eCG protocol successfully improved some blood metabolites, in 
anestrus buffalo heifers during out-of-breeding season under tropical conditions.

Keywords: melatonin, CIDR, buffalo, reproductive seasonality, ovarian activity, oxidative 
stress
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1. Introduction

Even though buffaloes are able to breed throughout the year in tropical regions, but with 
distance from the equator they show a seasonal breeding pattern [1, 2], that is determined 
by melatonin secretion in response to short-day length [3]. In general, reproductive activ-
ity of buffaloes is mainly determined by day length, climate (ambient temperature and rela-
tive humidity) and nutrition [2]. During summer, poor nutrition coupled with high ambient 
temperature was implicated with anestrus condition in buffaloes [4]. Heat stress in the hot 
summer months is an important driver of anestrus in buffalo, whose effects are mediated by 
increased blood concentrations of prolactin [1], leading to decreased progesterone secretion, 
and, consequently, extended calving to conception intervals due to repeated breeding and, 
generally, reduced reproductive performance [5].

In buffalo (Bubalus bubalis), reduced sexual activity has been reported as coincident with an 
increase in ambient temperature and day length [6], in either heifers or mature buffaloes. 
The proportion of buffaloes exhibiting estrus during the period of short-day length was sig-
nificantly greater than that in the long-day period (74% versus 26%, respectively) [6]. Also, 
the conception rates are usually lower between February and August [7], and the number of 
services per conception are higher in animals calving in summer compared to animals calv-
ing at all the other seasons [7]. Decreasing day length may be a stronger determinant of the 
onset puberty and postpartum ovarian activity, whereas ambient temperature and relative 
humidity may have relatively lesser impact [8]. Nevertheless, the species physiological char-
acteristics adversely affect buffalo dairy industry and result in a typical seasonal calvings that 
impair milk supply throughout the year [9].

To overcome seasonality and discipline milk production, it is necessary to implement suitable 
management schemes, particularly for out-of-season breeding [10]. Hormonal therapies to 
induce estrus and ovulation in anestrus buffaloes became important breeding strategies to 
achieve these goals. Hormonal treatments, adapted from other seasonal ruminant species, 
have been designed to control follicular and luteal functions, to synchronize estrus and ovu-
lation and, more importantly, to eliminate estrus detection by scheduled of timed artificial 
insemination (TAI).

In deep anestrus buffaloes, out-of-season breeding requests the use of melatonin. Melatonin 
is a hormone produced and stored in the pineal gland during the day and secreted during 
the dark, starting after sunset and ending at sunrise. Melatonin controls the reproductive 
rhythm in diverse ruminant species, like goats and sheep (short-day species), and also in 
horses (long-day species), especially at higher latitudes [11]. Melatonin-mediated pathways 
regulate GnRH pulsatibility and, therefore, the activity of the reproductive neuroendocrine 
axis. It also modulates prolactin secretion by acting on the hypophysis. In addition to melato-
nin, the concomitant application of estrus/ovulation protocols suggests that controlled inter-
nal drug release systems (CIDR) gave better results for anestrus buffaloes [12]. The priming 
of hypothalamo-hypophysial-gonadal (HHG) axis with adequate amounts of P4 is beneficial 
for the recovery of reproductive function after calving and, hence, a better display of estrus 
behavior at the induced estrus [13]. Furthermore, the sufficient priming of endometrium with 
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P4 might be necessary to enhance the conception rate [14]. Melatonin implantation in conjunc-
tion with CIDR-eCG protocol successfully induced estrus behavior and enhanced conception 
rate in anestrus heifers and anestrus lactating buffaloes during out-of-breeding season under 
tropical conditions [12, 15].

The objectives of this study were to revise the efficacy of melatonin-based treatments for alle-
viation of the summer-induced decline in ovarian activity in anestrus heifers and lactating 
buffaloes and also to evaluate its effects on blood hormonal levels and metabolites concentra-
tions, as well as those of antioxidant enzyme activities, as indicators of sustainability of buf-
faloes to the expenditure of melatonin treatment for preventing summer-induced decline in 
ovarian activity in true anestrus buffaloes.

2. Characterization of the buffalo reproductive cycle

The reproductive patterns of an animal are a result of the interaction of the endogenous regu-
latory mechanisms, mainly endocrine, with environmental signals. This complex interaction 
may deeply affect the reproductive function, e.g., females suspend cyclic ovarian activity in 
some periods of the year, or respond to the presence of a dominant individual on the group, 
or they can ovulate and come into estrus during the non-reproductive season. Bashir (2006) 
[16] has reported that buffaloes calving in summer (June–August) had a shorter calving inter-
val than those calving in other seasons. The longest calving interval observed in buffaloes 
was calving in winter (December–January). This means that the buffaloes that had calved just 
before the onset of their breeding season (October–November) had more chances of getting 
bred than those calving after passing their breeding season. The buffalo heifers attaining their 
proper weight just before their breeding season are more likely to get bred than those passing 
this period and thus, may have lower age at puberty and consequently at calving than those 
attaining proper weight after this season. Based on this hypothesis, while raising the replace-
ment buffalo heifers, efforts should be made to keep an eye on both critical weight of buffaloes 
for attaining the age at puberty and also the season in which this weight is attained. In this 
regard, adjustments in feeding regime may be required to get the critical weight of buffalo 
heifers just before their breeding season. Because once this breeding season is over, then feed-
ing for accelerated growth may not reduce the age at their puberty and then one has to wait 
for their next breeding season to see the puberty in the heifers.

The normal interestrous interval in buffaloes may vary from 16 to 28 days, the estrus lasting 
for 10–20 h during breeding season [17]. The interval between the onset of estrus and LH 
surge is 1–12 hours and ovulation occurs 18–40 h after the LH surge [18]. The reduced inten-
sity of heat symptoms recorded in buffaloes as compared to cows is possibly associated with 
lower estradiol levels due to smaller size pre-ovulatory follicles [17], in a mechanism that is 
further exaggerated by low P4 during luteal phase, a reduced pulsatile LH secretion, growth 
of ovulatory follicle and low estradiol production during summer months [19].

The stress and adverse environmental factors exert a direct effect on the neuroendocrine 
set-up, resulting in hyperprolactinemia, reduced pulsatile gonadotrophin secretion, poor 
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follicular maturation and poor estradiol production, thereby culminating in poor heat 
expression and anestrus [20]. The postpartum anestrus has been differentiated into tem-
porary (less than 150 days) and deep anestrus (more than 150 days), according to the time 
elapsed between calving and conception [3], or into superficial and deep anestrus based 
upon the presence or absence of follicular turnover [21].

3. Mechanisms regulating seasonal reproduction in buffaloes

The place of origin and gestation length undoubtedly influence the way in which reproductive 
seasonality occurs. The natural necessity to coincide calving and weaning with the most suit-
able time of year represents one of the causes of this ‘adaptation’ process [22]. This time of year 
should satisfy the nutritional requirements of the offspring through a period in which etio-
logic agents (infectious and parasitic) are less aggressive and/or present. Those born under the 
most favorable conditions have brought about the natural selection of individuals endowed 
with a more ideal reproductive seasonality that promotes the survival of the species [23].

In domestic animals, spring calving (March–May), which guarantees good availability of for-
age to offspring in temperate zones occurs whenever reproduction takes place in autumn in 
species with 5-month gestation (sheep and goats) or in the previous spring in the case of 11- 
and 12-month gestation (horses and donkeys). The same calving period, therefore, is condi-
tioned by the neuroendocrine system. The reactivation of the reproductive cycle with regard 
to the length of gestation [short day breeder (negative photoperiod) or long breeder (positive 
photoperiod)] is therefore controlled.

Researchers in Italy [24] showed that buffaloes displaying stronger seasonality showed high 
plasma melatonin concentrations 2 hours after sunset, even when they were moved to another 
farm where other females showed low plasma melatonin concentrations and less sensitivity 
toward light stimulation [25]. The plasma melatonin concentrations had a repeatability of 
0.733 [26]. If the heredity of plasma melatonin turns out to be high, as expected on the base 
of the high repeatability, the determination of plasma melatonin could be incorporated into 
genetic selection programmes for buffalo [22]. Lincoln [27] showed that sheep presenting con-
tinuous cyclic activity throughout the year retain this characteristic even if living at latitudes 
where other genotypes were sensitive to the light:dark ratio.

The differences between night and day concentrations of plasma melatonin in March were 
lower in heifers (5.0 times) than in adult buffaloes (28.3 times) [28]. It has been shown that 
buffaloes that calve in spring were more adaptable to out-of-breeding-mating strategy [26] 
and the heifers were less sensitive to the photoperiod [22, 28]. Heifer fertility is not compro-
mised by season [22]. During the summer and when daylight hours are more than the dark, 
there is an increase in blood prolactin, but contrary to the assertions by Madan [7], buffalo 
regularly conceive. It is believed that hyperprolactinemia is secondary to hypothyroidism [29] 
during the warm months. Hypothyroidism exerts a positive feedback on thyroid stimulating 
hormone and hence on thyrotropin-releasing hormone, which in turn promotes an increase 
in prolactin [22, 23].
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4. Methods to manipulate the out-of-season breeding in buffaloes

In small ruminants, induction of ‘out-of-season’ estrous cycles may be practiced, enabling 
spring breeding and, therefore, fall lambing/kidding, resulting in winter production of 
milk and lambs/kids for the winter markets. Several methods to control the reproduction 
of small ruminants involve the manipulation of the environmental light (extension of hours 
of light in a day) [30]. Some others are based on the administration of exogenous hormones 
that modify the physiologic chain of events involved in the sexual cycle (pharmacologic 
methods) and ultimately modify the luteal phase of the cycle (progesterone/progestagen 
and prostaglandins) or the annual pattern of reproduction (melatonin). Synchronization of 
estrous allows the control and short ending of lambing and kidding, with synchronization 
of weaning and uniform batching of animals to slaughter; it also allows more efficient use 
of labor and animal facilities. An appropriate management of reproduction allows ewes 
and does to breed in the spring to increase the supply of product to the market place on 
a year-round basis. Pharmaceutical control of reproduction is possible, usually through 
administration of hormones related to the natural estrous cycle, such as progesterone 
and/or melatonin [31]. Similar treatments can be used to tame the reproductive cycle in 
buffaloes.

In buffalo, during the out-of-breeding season (spring and summer), the greater light:dark 
ratio (long days) suppresses the estrus behavior and the occurrence of ovulation. Anestrus 
buffaloes have insufficient pulsatile secretion of LH to support the final stages of follicu-
lar development, and subsequently, estrus behavior and ovulation do not occur, limiting 
reproductive efficiency, especially in artificial insemination (AI) programs [32]. Therefore, 
hormonal therapies to induce estrus and ovulation in anestrus buffaloes became important 
breeding strategies. These hormonal treatments have been designed to control follicular and 
luteal functions, to synchronize estrus and ovulation and, more importantly, to eliminate 
estrus detection by preplanned scheduled of timed artificial insemination (TAI).

In most studies, the success rate was lower when treatment was performed in periods of low 
breeding activity or during seasonal anestrus, and various modified protocols have been tried 
to improve pregnancy rates. Among the hormonal therapies developed for cattle, GnRH plus 
PGF2α-based TAI protocols resulted in a reduced ovulatory response when applied in anes-
trus buffalo [33]. Also, during the out-of-breeding season, when a high incidence of anestrus 
is expected, lower pregnancy rates are encountered in buffalo cows synchronized with the 
Ovsynch protocol for TAI [33]. Recent studies in buffalo have demonstrated that similar preg-
nancy rates at TAI in both breeding and out-of-breeding seasons can be obtained with the use 
of progesterone (P4), estradiol (E2) and (eCG)-based protocols [34].

Melatonin implants for subcutaneous application have been commercially available in several 
countries. These implants have been widely used to advance the breeding season of anestrus 
ewes and goats. Melatonin implants induce high plasma concentrations of melatonin for 24 h 
every day, without suppressing the endogenous secretion of the pineal hormone during the 
night. Thereby, implants cause a short day-like response by lengthening the duration of the 
melatonin signal [35]. The implants contain 18 mg of melatonin and are designed to maintain 
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high plasma melatonin concentrations for at least 60 days, although most of them continue to 
release the hormone for longer than 100 days [36].

The mechanisms by which melatonin improves reproductive performance are not fully 
understood, as the pineal hormone can act at different body sites. Effects at hypothalamus-
hypophysis level have been previously mentioned, and an effect at ovary level seems to be 
consistent, either by reducing atresia during late folliculogenesis to increase ovulation rate 
[16] or by acting as luteotropic agent [37] to improve fertility. The time of treatment is impor-
tant to guarantee a good efficacy. Melatonin implants inserted around the summer solstice 
have been widely used as a means of advancing the out-of-breeding season in buffaloes in 
areas with high latitude.

In buffalo reproduction, few investigations have been made to clarify a relationship between 
plasma melatonin concentrations and seasonal reproductive pattern. The Mediterranean 
buffaloes showing seasonal reproductive trend had highest night-time plasma melatonin 
concentrations in winter and lowest in summer [24]. In another study carried out on heifers 
and buffaloes, the melatonin levels showed remarkable differences between seasons. In peak 
summer because of the shortest night, the lowest plasma melatonin with less persistence of 
melatonin peak were found, whereas the highest concentrations were noted in early win-
ter corresponding to the start of hypothalamic-hypophysial-ovarian axis (HPO) activity [28]. 
Moreover, low plasma melatonin was associated with a low seasonal ovulatory activity in 
buffaloes [24]. This decrease in ovulatory activity during long days happens despite the pres-
ence of follicles with ovulatory size (12–14 mm) on the ovaries of nulliparous and pluriparous 
Mediterranean buffaloes [3, 21].

Melatonin appears to act at hypothalamic sites to increase the release of GnRH pulses by 
modulating the negative feedback potency of estradiol [38], which acts at hypothalamic and 
hypophysial loci to reduce luteinizing hormone secretion [39]. The photoperiod modulates 
KiSS-1 expression via melatonin, strongly suggesting that kisspeptin relays photoperiodic 
information to the HPO axis. Kisspeptin stimulates LH secretion in a GnRH-dependent man-
ner by increasing GnRH secretion into the hypophysial portal blood [40]. Kisspeptin neurons 
express estrogen and progesterone receptors [41], which are directly regulated by these ste-
roids in a manner consistent with both positive and negative feedback regulation of pulsatile 
GnRH secretion [41].

The protocol for melatonin application is simple and less demanding than the traditional treat-
ment of induction-synchronization of estrus using progestogens. Administration of melatonin 
during anestrus seems to improve the fertility. It has been reported that melatonin implants 
in buffaloes can improve conception rate [12, 15]. Melatonin treatment in buffalo is necessary 
to induce cyclicity during anestrus in out-of-breeding season in which evidenced an improve-
ment in conception rate [42, 43]. Ramadan et al. [12, 15] found that melatonin implantation 
alone did not affect the post-treatment reproductive performance in either anestrus buffalo 
or lactating buffaloes during out-of-breeding season. On the other hand, combined mela-
tonin and CIDR treatments induced cyclicity and enhanced the reproductive performance 
of anestrus buffalo heifers and anestrus lactating buffaloes during out-of-breeding season  
[12, 15] (Figure 1).
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5. The effect of exogenous melatonin on hormonal levels and blood 
metabolites in buffaloes

In anestrus lactating buffaloes injected with melatonin, the serum P4 concentrations increased 
(0.71 ng/ml) after melatonin injection compared with control group (0.28 ng/ml) at days 12 and 
16 post-treatment (post-AI), during the summer season, suggesting a luteotrophic effect of mela-
tonin [42]. Also, exogenous melatonin might improve uterine expression of P4 receptors or their 
binding capacity, which would result in higher reproductive efficiency [42]. Melatonin implants 
plus CIDR in buffalo heifers and lactating buffalo were able to maintain the corpus luteum at 
day 21 of estrous cycle [12, 15]. In addition, the plasma P4 was highest at the second ovulation 
post-treatment than the first ovulation in implanted anestrus heifers in summer [43] (Table 1).

The decrease in P4 concentrations in anestrus lactating buffaloes compared with buffalo heif-
ers was attributed to a prolactin effect. Misztal et al. [44] reported that in lactating ewes the 
melatonin concentration decreases, whereas prolactin, responsible for the initiation and main-
tenance of lactation, increases. Prolactin may block the hypothalamic mechanism responsible 
for episodic release of LH or inhibit the positive feedback of estrogen on LH secretion, and it 
can even affect ovarian steroidogenesis by altering the number of LH receptors [45].

Lactating buffaloes treated with melatonin alone present higher E2 concentrations recorded 
(16 pg/ml) after melatonin treatment in comparison to the control group (9.02 pg/ml) [42]. The 
pattern of serum E2 profile in the induced estrous cycle was highest on the day of estrus and 
decreased in the second week of the cycle [46]. The elevated levels of E2 4 days before estrus 
may mediate the LH surge, as demonstrated in cattle [47]. The reducing effect of melatonin on 
estradiol concentration has also been reported in sheep [38]. Moreover, melatonin decreases 
the estradiol receptor expression in deep endometrial stroma of ewes, where E2-estradiol 
receptor complex acts as a luteolytic agent [48]. In ewes, estradiol concentration has also been 
correlated with the mean response of prostaglandins to oxytocin, via the estrogenic stimula-
tion of uterine oxytocin receptors [49].
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Figure 1. Experimental design to evaluate the effect of melatonin implantation and CIDR-GnRH-based synchronization 
protocol in heifers and lactating buffaloes. CIDR, controlled internal drug release device (1.38 g progesterone); GnRH, 
gonadotropin-releasing hormone (10 μg Receptal, i.m); eCG, equine chorionic gonadotropin (500 IU Folligon, i.m) and 
AI, artificial insemination. Ramadan et al. [12, 15].
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Melatonin treatment interferes with the effects of melatonin directly in buffalo’s hypophy-
sis. In anestrus heifers, with the advancement of melatonin treatment, on days 28 and 42, 
it resulted in a decrease in serum LH (3.44 mlU/mL) [12]. Melatonin had no effect on the 
frequency of LH pulses [12]. In sheep, the rise in circulating melatonin is responsible for 
the increase in GnRH and gonadotropins, thus leading to follicular growth and ovulation 
[50]. However, this finding is inconsistent with the reduction of LH serum concentration 
observed in the melatonin-treated buffalo heifers. The failure of high concentrations of 
serum melatonin to increase LH concentration might be explained by the reduction of buf-
falo estradiol concentration in summer [51]. Estradiol seems to be positively linked with the 
action of melatonin on the female reproductive activity, where melatonin exerts a modu-
latory effect on LH secretion, stimulating its release in the presence of estradiol feedback 
(cyclic animals) and inhibiting it during steroid deprivation (animals in anestrus) [52]. Also, 
the presence of low concentrations of plasma GnRH and gonadotropins during the summer 
period in buffaloes [53] might disturb the development of LH receptors and the synthesis 
of adequate estradiol in the dominant follicle [51] required to induce the ovulatory surge of 
gonadotropins [54].

The administration of slow-release melatonin (implants) was responsible for an increase in 
serum melatonin concentration, ranging from 14.34 to 412.31 pg/ml in treated lactating buf-
faloes [42]. Administration of exogenous slow-release melatonin induced the restoration of 
the ovarian activity in summer anestrus buffaloes, which can be explained by a ‘cascading 
effect’ of at least a 10-fold increase on the plasma concentrations of GnRH and gonadotro-
phins, which provides the necessary boost for follicular growth and ovulation [50]. It has 
been shown that treatments with melatonin implants tend to originate an increase in serum 
melatonin concentration (9.10 pg/ml) in anestrus buffalo heifers [12] and in anestrus lactating 
buffalo (6.80 pg/ml) (Table 1), which could be associated with the antiprolactinic action of 
melatonin, as it was suggested in another species [55].

Route of 
administration1

Associated 
treatment

Animal type P4 (ng/ml) E2 (pg/mL) LH (mlU/mL) Melatonin 
(pg/mL)

Ref(s)

Injection - Lactating (n=20) 0.71 16 - 412.3 [42]

Implantation - Heifers (n=12) 0.66 - - - [43]

Implantation CIDR
eCG
GnRH

Heifers (n=8) 0.72 - 3.44 9.10 [12]

Implantation CIDR
eCG
GnRH

Lactating (n=6) 0.97 - - 6.80 [15]

1(18 mg/50 kg BW).
CIDR, controlled internal drug release device (1.38 g progesterone); eCG, equine chorionic gonadotropin (500 IU 
Folligon, i.m at day before CIDR removal) and GnRH, gonadotropin-releasing hormone (10 μg Receptal, i.m at day after 
CIDR withdrawal).

Table 1. Hormonal levels in anestrus Murrah buffalo before synchronization with melatonin during the non-breeding 
season.

Theriogenology94
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Singh et al. [56] showed that, in anestrus lactating buffalo, melatonin treatments decrease 
plasma albumin (2.7 g/dl), compared to pre-treatment concentrations. In contrast, Ramadan 
et al. [57] found higher albumin values (3.41 g/dl) in treated anestrus buffalo heifers implanted 
with melatonin. Ramadan et al. [57] also reported that the combined treatment of melatonin 
and CIDR resulted in an increase in plasma concentrations of albumin, glucose, high-density 
lipoprotein (HDL), alanine aminotransferase (ALT) and reduction in plasma alkaline phos-
phate (ALP) compared with control animals (Table 2). Because of the interaction of melatonin 
with various endocrine systems [58], it was proposed that melatonin treatment may initiate 
ovarian cyclicity in true anestrus buffalo heifers through its influence on body metabolism 
[59]. Albumin, being the most abundant plasma protein, could play a major role as an antioxi-
dant in plasma, mediating thiol oxidation and carbonyl formation [60].

Plasma concentrations of glucose (65.16 mg/dl) were increased by melatonin and CIDR treat-
ment [57]. Glucose is the primary energy source for the ovary and it is possibly metabolized 
in the ovary through anaerobic pathways. It also stimulates the ovarian follicular growth [61]. 
Furthermore, plasma glucose is a positive metabolic signal for the central control of GnRH 
release [62].

Increased lipolysis during lactation is hormonally regulated and not an expression of energy 
deficiency. Plasma concentrations of HDL (62.29 mg/dl) were increased by melatonin treat-
ment combined with CIDR [57]. The concentration of transaminase enzyme ALT (98.72 IU/L) 
was increased with treatment of melatonin and CIDR in anestrus buffalo heifers during out-
of-season breeding [57]. Singh et al. [56] found that exogenous melatonin did not record any 
alterations in plasma concentration of AST and ALT enzyme activities in anestrus lactat-
ing buffaloes. Thus, minor alterations in AST during treatment period in spite of elevated 
plasma activities of ALT suggested that hepatic functions were not impaired in the buffalo 
[63]. Follicular growth is a dynamic process in which follicular development is continuous 
but accelerates during the later stages of the estrous cycle [64]. Plasma concentrations of ALP 
(97.99 IU/L) were increased by melatonin treatment combined with CIDR in anestrus buffalo 
heifers [57]. The ALP content in serum may changes during the estrous cycle [64]. ALP is a 
lysosomal enzyme that catalyzes various reactions in the body, including synthesis of pro-
teins and DNA turnover within the nucleus [65].

Route of 
administration1

Associated 
treatment

Animal type Albumin 
(g/dl)

Glucose 
(mg/dl)

HDL 
(mg/dl)

ALT (IU/L) ALP (IU/L) Ref(s)

Implantation - Lactating (n=5) 2.7 62.1 35.1 56.4 - [56]

Implantation CIDR
eCG
GnRH

Heifers (n=8) 3.41 65.16 62.29 98.72 97.99 [57]

1(18 mg/50 kg BW).
CIDR, controlled internal drug release device (1.38 g progesterone); eCG, equine chorionic gonadotropin (500 IU 
Folligon, i.m at day before CIDR removal); GnRH, gonadotropin-releasing hormone (10 μg Receptal, i.m at day after 
CIDR withdrawal); HDL, high-density lipoprotein; ALT, alanine aminotransferase and ALP, alkaline phosphate.

Table 2. Serum metabolites and some enzyme activities in anestrus Murrah buffalo synchronized with melatonin during 
out-of-breeding season.
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6. The effect of exogenous melatonin on the antioxidant enzyme activity 
in buffaloes

Metabolic pressures of adaptation to high milk yield and environmental conditions, espe-
cially high ambient temperature, exert a retrograde effect on buffalo reproduction. High tem-
perature-humidity index (THI) predisposes buffaloes to develop oxidative stress [66] with 
anti-gonadotropic and anti-steroidogenic actions [67]. This in turn is involved in modula-
tion of estrous cycle and uterine environment causing defective embryo development and 
reproductive failure in buffaloes [68] and also contributes to the elongation of the postpartum 
anestrus [69]. Jan et al. [70] found that overall greater concentrations of biomarkers of oxida-
tive stress coupled with the reduced concentrations of total antioxidant capacity (TAC) in 
follicular fluid of acyclic buffaloes are indicative of the involvement of oxidative stress in the 
suspension of the ovarian activity. Further evidence showed that the oxidative stress and the 
depletion of the antioxidant activity play a significant role in diminished ovarian function, as 
evidenced by the significant increment in circulatory malondialdehyde (MDA) and simulta-
neous decline of TAC in buffalo heifers [71].

Melatonin affects membrane fluidity in different cells under conditions of high oxidative 
stress, indicating that its mechanism of action relates to possible due to an antioxidant activity 
associated to the directly scavenging of free radicals and the inhibition of lipid peroxidation 
[72] and thereby the decrease in MDA concentration. A wide range of antioxidant enzymes 
are also induced [73], counteracting the generation of free radicals due to inhibition of the 
activity of some pro-oxidant enzymes such as nitric oxide (NO) synthase and lipoxygenase 
[72]. Moreover, melatonin stimulates the activity of several enzymes related to the antioxida-
tive defense system [74].

Several authors reported that exogenous melatonin increased blood melatonin level, which 
has a positive correlation with antioxidant capacity [75]. Kumar et al. [76] refer that the total 
antioxidant capacity (TAC) in the serum of melatonin-treated female buffalos during summer 
anestrus tends to be higher (2.22 mmol/L) on days 12 and 24 after the onset of melatonin treat-
ment, compared with the control group (1.42 mmol/L), supporting the previous studies of 
Ahmed et al. [77]. In the same study [76], it was also shown that the concentrations of serum 
MDA and NO tend to decrease (3.97 mmol/L and 42.41 mmol/L, respectively) (Table 3).

The beneficial effect of a sustained release of melatonin on the increase in TAC and the reduc-
tion in MDA and NO concentrations [76] suggests a beneficial effect of melatonin in mitigating 
the oxidative stress effects on fertility, alike that reported in women [78]. The beneficial effect of 
exogenous melatonin in the resumption of estrus may be related with the facilitation of cellular 
functions in the growing follicles, because NO, an important intra-ovarian factor, regulates the 
process of follicular development through its multifaceted role in angiogenesis, vasodilation, 
regulation of normal follicular growth and function, steroidogenesis and ovulation [79].

Ramadan et al. [15] observed that melatonin treatment resulted in an increase in blood plasma 
of SOD (superoxide dismutase, 4.72 U/mg protein) activity in anestrus lactating buffaloes 
under tropical conditions (Table 3). Therefore, the increased activity of erythrocytic SOD in 
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treated anestrus bovine heifers could be attributed to the physiological upregulation of this 
enzyme to mitigate superoxide radical challenge [80]. It has been established that, in bovine, 
the SOD and catalase activities in the CL (corpus luteum) parallel the P4 plasma patterns: the 
enzymatic activity of catalase and SOD present a sixfold to eightfold increase from day 6 to 
day 16 of the estrous cycle thereafter decreasing through the luteal regression [80]. SOD plays 
important roles in the maintenance of luteal function, possibly by rescuing the corpus luteum 
when pregnancy occurs [81]. It has been reported that SOD acts protectively against superox-
ide radicals to stimulate P4 production by the corpus luteum [82].

The results of Singh et al. [83] are consistent with the results reported by Kumar et al., in sum-
mer anestrus buffaloes [76], which also documented the potential of exogenous melatonin to 
augment the antioxidative capacity of summer anestrus buffalo [76]. Reactive nitrogen spe-
cies are another category of potentially destructive substances that react with melatonin. It 
was suggested that melatonin acts by binding with calmodulin and suppresses the gene tran-
scription of NO synthase enzyme [84]. The enzyme is involved in a rate limiting step in the 
synthesis of nitric oxide; a known oxidant suggested being a major free radical causing fol-
licular damage, thereby resulting in anovulatory condition in summer anestrus buffalo [84].

7. The effects of exogenous melatonin on the reproductive performance 
in buffaloes

7.1. Effect of melatonin alone

Estrus response and fertility in melatonin-treated female is largely dependent on the ani-
mal status, the association of a progesterone treatment and of animals’ management at onset 
of treatment. According to Kumar et al. [42], a single subcutaneous injection of melatonin 

Route of 
administration1

Associated 
treatment

Animal type MDA 
(μmol/L)

SOD (U/mg 
protein)

GPx (IU/
gHb/m)

Nitric oxide 
(μmol/L)

TAC 
(mmol/L)

Ref(s)

Injection - Lactating (n=20) 3.97 - - 42.41 2.22 [76]

Implantation - Lactating (n=41) - 10.14 5.67 - - [83]

Implantation CIDR
eCG GnRH

Heifers (n=8) 3.40 4.12 - - - [12]

Implantation CIDR
eCG GnRH

Lactating (n=6) 1.95 4.72 - - - [15]

1(18 mg/50 kg BW).
CIDR, controlled internal drug release device (1.38 g progesterone); eCG, equine chorionic gonadotropin (500 IU 
Folligon, i.m at day before CIDR removal); GnRH, gonadotropin-releasing hormone (10 μg Receptal, i.m at day after 
CIDR withdrawal); MDA, malondialdehyde; SOD, superoxide dismutase; GPx, glutathione peroxidase and TAC, total 
antioxidant capacity.

Table 3. Antioxidant enzymes, nitric oxide and total antioxidant capacity in anestrus Murrah buffalo synchronized with 
melatonin during out-of-breeding season.
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(18 mg/50 kg BW in sterilized corn oil) in summer anestrus water buffalo showed a definite 
influence on the interval to induced estrus (18 days), obtaining a 90% estrus induction rate. 
In addition, treatments with melatonin implant (18 mg/50 kg BW) in delayed pubertal buf-
falo heifers during summer successfully induced estrus within 6–36 days [43]. Also Ghuman 
et al. [43] reported a successful estrus induction in 100% anestrus buffalo heifers implanted 
with melatonin in summer season (Table 4). However, in other studies on buffalo, melatonin 
implants alone failed to induce estrus signs for the first 45 days after implantation in either 
anestrus heifers or lactating buffaloes during summer season [12, 15].

Ghuman et al. [43] showed that melatonin treatment increased the diameter of the largest 
follicle (14.55 mm) compared to control group (12.2 mm), which might be due to the inability 
to ovulate even after attaining normal pre-ovulatory diameter (>9 mm) [43]. This suggests 
that the follicle diameter itself may not be determinant of ovulation. The failure of ovulation 
of largest follicles could be a drive of a lack of sufficient LH stimulus. The amplitude and 
frequency of GnRH pulses and, therefore, those of gonadotropins, required to induce the 
growth of follicles are different from those required for ovulation [85]. The wide extension of 
the period until estrus induction might be derived from the ovarian structures presented at 
the ovary at starting of treatment in summer anestrus buffalo heifers. Early responders might 
have, on the day of melatonin treatment, dominant follicles or follicles emerging in the ova-
ries, whereas in the later responders the follicles developing in the ovaries still not reached 
divergence. This hypothesis implies an individual variation in the requirements for exoge-
nous melatonin to attain the threshold level necessary to activate hypothalamus-hypophysial-
ovarian axis, as defended by Ghuman et al. [43].

Buffalo heifers in anestrus implanted with melatonin revealed larger CL diameter (15.16 mm) 
at second ovulation than at first [43]. Ghuman et al. [43] hypothesized that in the absence of 
a strong negative-feedback effect of estradiol on the hypothalamus, the sustained release of 

Route of 
administration1

Associated 
treatment

Animal type EIR (day) Estrus % LF (mm) CL (mm) CR (%) Ref(s)

Injection - Lactating (n=20) 18 90 - - - [76]

Injection - Lactating (n=20) 18 90 - - 32.4 [42]

Implantation - Heifers (n=12) 6-36 100 14.55 15.16 - [43]

Implantation - Lactating (n=41) - 65.8 - - - [83]

Implantation CIDR
eCG GnRH

Heifers (n=8) - 100 10.04 16.40 37.5 [12]

Implantation CIDR
eCG GnRH

Lactating (n=6) - 100 13.90 18.33 100 [15]

1(18 mg/50 kg BW).
CIDR, controlled internal drug release device (1.38 g progesterone); eCG, equine chorionic gonadotropin (500 IU 
Folligon, i.m at day before CIDR removal); GnRH, gonadotropin-releasing hormone (10 μg Receptal, i.m at day after 
CIDR withdrawal); EIR, estrus induction response; LF, largest follicle; CL, corpus luteum and CR, conception rate.

Table 4. Estrus response, ovarian activity and conception rate in anestrus Murrah buffalo synchronized with melatonin 
during out-of-breeding season.
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exogenous melatonin in summer anestrus buffalo heifers could stimulate the hypothalamus-
hypophysial-ovarian axis triggering the early induction of estrus. Lactating Murrah buffa-
loes treated with single subcutaneous injection of melatonin during summer evidenced an 
improvement in conception rate (32.4%) compared to untreated animals (0 %) [42].

7.2. Effect of melatonin plus CIDR

When melatonin treatments are associated to CIDR and eCG, the estrus rate after the proges-
terone removal recorded 100% in either the buffalo heifers or cows during out-of-breeding 
season. Also, the diameter of the follicle at the day of AI is higher after melatonin treatment 
plus CIDR in anestrus heifers and anestrus lactating buffaloes [12, 15]. Moreover, compared 
to the use of CIDR alone, the association of melatonin treatment and CIDR presented a supe-
rior ability to maintain CL for 21 days post-AI (12.5% vs. 37.5 %, respectively) in anestrus 
heifers or between 21 and 30 days post-AI (33,3% vs. 100 %, respectively) in anestrus lactating 
buffaloes [12, 15]. The increase in CL size paralleled the increased serum progesterone con-
centration in either treated buffalo heifers or cows [12, 15] (Table 4). Furthermore, melatonin 
may act directly on the corpus luteum to increase progesterone production [37], instead of 
decreasing the uterine secretion of prostaglandin F2α [86] or modifying prostaglandin bio-
synthesis in the hypothalamus [87].

Combined melatonin and CIDR treatments enhanced the reproductive performance of buf-
falo heifers during out-of-breeding season in comparison with CIDR treatments only [12, 15], 
which could be explained by the deepness of anestrus. The percentage of conception at day 30 
post-AI was threefold higher in the melatonin with CIDR-treated anestrus heifers compared 
to untreated group (37.5% vs. 12.5%) [12], as well as in anestrus lactating buffaloes (100% vs. 
33.3%, respectively in the melatonin treated and non-treated groups) [15].

8. Conclusion

So far, it has been believed that milk yield in buffaloes is determined by genetic and environmen-
tal factors. In recent years, a special focus has been placed on melatonin treatment on reproduc-
tive seasonality. In farm animals, day light changes play a very important role as they establish 
their yields. The length of day light, and in particular the melatonin profile, is of special impor-
tance in buffaloes as they determine reproductive process, in which lactation is the last stage of 
reproductive physiology. Experiments carried out in buffaloes demonstrated that buffaloes are 
characterized by seasonal reproductive activity. They become sexually active in response to a 
decreasing day length in late summer to early autumn. During the out-of-breeding season, buf-
faloes often exhibit anestrus, which extends the calving to conception interval and, consequently, 
reduces reproductive performance resulting in seasonal calving and a dramatic disturbance to 
milk supply throughout the year. To avoid seasonality-related constraints, it is necessary to 
implement management schemes to overcome reproductive seasonality and regulate produc-
tion of milk throughout the year. Thus, hormonal therapies to induce estrus and ovulation in 
anestrus buffaloes are important strategies to overcome  seasonality. These  hormonal treatments 
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have been designed to control follicular and luteal functions synchronizing estrus and ovulation 
and, more importantly, to eliminate estrus detection by preplanned scheduled of timed artifi-
cial insemination. Melatonin implantation in conjunction with CIDR-eCG protocol successfully 
induced estrus behavior and enhanced conception rate in anestrus heifers and anestrus lactat-
ing buffaloes during out-of-breeding season under tropical conditions.
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induced estrus behavior and enhanced conception rate in anestrus heifers and anestrus lactat-
ing buffaloes during out-of-breeding season under tropical conditions.
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Abstract

Surgical castration of piglets is a routine practice in pig production used to prevent the 
incidence of boar taint of pig meat, which may develop in entire male pigs as they reach 
puberty. This practice is being presently questioned in the European Union, and there is a 
strong initiative to end it. The initiative is presently voluntary; however, key stakeholders 
of European pig production sector have signed a declaration, and the actions undertaken 
by them already affect the business. Before such new concepts in pig production can 
be implemented, alternative solutions are needed, one of them being immunocastration. 
The present chapter will thus focus on the presentation of immunocastration as one of the 
promising alternatives to surgical castration. Theoretical and practical aspects of immu-
nocastration in pig production will be described, and the advantages and disadvantages 
of this alternative will be summarised. Physiological principles of immunocastration and 
impacts on metabolism, growth performance, body composition and meat quality will be 
described and aspects of public acceptability reviewed.

Keywords: immunocastration, productivity, welfare, meat quality, public acceptance, pigs

1. Introduction

Castration of male piglets is a traditional practice in pig production used worldwide with the 
main goal to prevent boar taint of pig meat—an unpleasant odour refused by the majority of 
consumers [1]. Odour is an important sensory attribute that determines whether consumers 
will be satisfied with a meat product. In pork, odour can be adversely affected by accumula-
tion of high levels of androstenone and/or skatole, the so-called boar taint [2, 3]. Androstenone 
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is a testicular steroid (with no anabolic effects) and is described as having urine or sweat-like 
odour. It is produced by testicular Leydig cells of sexually mature males. Due to its lipophilic 
character, it accumulates in adipose tissue in much higher concentrations than other steroid 
hormones [4]. Androstenone is also secreted through saliva and serves as a pheromone to 
promote sexual behaviour in sows. On the other hand, skatole is produced in the intestine; its 
odour is related mostly to manure or, to a lesser extent, to naphthalene. Skatole has no known 
physiological function; it is toxic for most animals, but pigs are relatively resistant to it. It is 
a product of bacterial degradation of the amino acid tryptophan in the large intestine and is 
partly excreted through faeces, while the rest is absorbed in the blood and metabolised in the 
liver. Its hepatic metabolism is inhibited by steroid hormones (including androstenone). As a 
result, the increased concentrations of androstenone are responsible for higher levels of ska-
tole [5]. Likewise skatole, due to its lipophilic nature, accumulates in the adipose tissue. The 
fat levels above which the consumers can detect the off-odour were determined to be in the 
range from 0.5 to 1.0 ppm for androstenone and in the range 0.2–0.25 ppm for skatole [6]. The 
major aspect determining the level of boar taint in pork is the balance between the biosynthe-
sis and catabolism of androstenone and skatole. This balance is affected by various intrinsic 
and extrinsic factors (Figure 1) influenced mainly by pig genotype and nutrition (for review, 
see Refs. [5, 7]). Until recently, a traditional way to regulate boar taint was to modify gender 
by surgical castration of male pigs. Surgical castration prevents the formation of both andro-
stenone and skatole; however, it is associated with productivity drawback, as it ceases the 
synthesis of testicular steroids including testosterone and oestrogens and therefore negatively 
affects lean tissue growth and feed efficiency. According to the legislation of the European 
Union (EU), surgical castration can be performed without the use of analgesia/anaesthesia 
within the first week after the birth of piglets [8]. Due to the pain induced during the proce-
dure, there is a growing public criticism of this practice from pig welfare point of view [9, 10]. 
Thus, both economic and ethical concerns make it relevant to reconsider the need for surgical 
castration. As a consequence, a voluntary initiative has been launched by key stakeholders to 
stop castrating male piglets in the EU until 2018 [11]. However, to be able to stop castration, 
alternative methods are required to minimise the risk of boar taint. Ideally, these methods 
should be animal friendly, economically efficient and leading to production of high-quality 

Figure 1. Boar taint: descriptors, responsible substances and influential factors.
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and nutritious products. Among existing alternatives to surgical castration (Table 1), the so-
called immunocastration, an active immunisation against gonadotropin-releasing hormone 

Alternative Advantage Disadvantage

Castration Surgical castration with 
anaesthesia and/or 
analgesia

Reduced pain during 
surgical castration

Increased costs, need for 
authorisation (drugs) and 
specially trained personnel

Immunocastration No castration pain and 
wounds
Applicable for males and 
females
Economic advantage of 
better performance
Applicable for production 
systems with prolonged 
fattening

Need for authorisation 
(drugs)
Need for safety measures 
for operators (self-injection)
Questionable acceptability 
for consumers (and 
consequently chain actors)

Raising entire male pigs Slaughter at younger age/
lower weight (before 
puberty)

No conflict with animal 
welfare
Reduced risk of high 
androstenone and skatole 
levels
Economic advantage of 
better performance

No guarantee of total 
elimination of boar taint
Lower technological meat 
quality
Questionable economic 
efficiency

Dietary manipulations No conflict with animal 
welfare
Reduced risk of high 
skatole levels
Economic advantage of 
better performance

No guarantee of total 
elimination of boar taint
Lower technological meat 
quality
High costs of specific 
ingredients
Not a solution for 
production systems with 
prolonged fattening

Selection against boar taint No conflict with animal 
welfare
Reduced risk of high 
androstenone and skatole 
levels
Economic advantage of 
better performance

No guarantee of total 
elimination of boar taint
Lower technological meat 
quality
Not a solution for 
production systems with 
prolonged fattening
Reduced levels of anabolic 
hormones and, therefore, 
negative effects on growth 
performance of entire male 
pigs and onset of puberty 
in male and female pigs

Sex sorting Sperm sexing Production of female-only 
herds

High costs, low sperm 
output
Technique for gender 
selection is not 
commercially available

Table 1. Cost-benefit analysis of available alternatives as compared to standard surgical castration of entire male piglets.
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(GnRH; also referred to as gonadoliberin), is considered as an appropriate and one of the most 
attractive alternatives. Immunocastration hinders sex steroid synthesis, including androste-
none production, along with a reduction of the size of reproductive organs, sperm number 
and aggressive behaviour [12–17]. Skatole levels are also reduced by immunocastration [13, 
17–19]. The principle of immunocastration is based on the immunological blocking of the 
signal from GnRH, thus decreasing the secretion of luteinising hormone (LH) and follicle-
stimulating hormone (FSH) and testicular steroids.

2. Reproductive physiology of boar

Puberty can be defined as series of physiological changes leading to full sexual maturity and 
capability of reproduction. It is accompanied by changes in testes structure and increased 
secretion of androgens and oestrogens. Puberty is heralded by an increase in the secretion of 
luteinising hormone (LH) and follicle-stimulating hormone (FSH) by the anterior pituitary 
gland. These processes are controlled by the extent and frequency of GnRH pulses, along with 
the feedback from androgens and estrogens. LH and FSH are responsible for the regulation 
of testicular function. The binding of LH to the receptors on the surface of the Leydig cells 
results in the induction of steroidogenic enzymes and increased levels of testicular steroids 
including androstenone. FSH affects the functioning of testicular Sertoli cells and is critical 
for the initiation of spermatogenesis. LH secretion is also controlled by some other hormones 
such as dopamine and prolactin and most crucially by negative feedback from sex steroids. 
It has also been shown that Leydig and Sertoli cells have receptors for growth factors includ-
ing IGF-I [20]. In boars, growth hormone also stimulates functional maturation of Sertoli cells 
although without an effect on their number [21]. Thyroid hormones are also critically impor-
tant for normal testicular development (of Sertoli cells and testes as a whole) [22]. Age-related 
variations of androstenone and testicular hormones are due to the common regulatory system 
controlling the biosynthesis of all testicular steroids. The synthesis of androstenone is low in 
young pigs (the transient increase in androstenone levels also occurs at the age of approxi-
mately 2–4 weeks due to Leydig cell activity at that time) but gradually increases simultane-
ously with other testicular steroids at puberty onset [23]. Therefore, puberty is a central stage 
of development regulating androstenone levels in entire male pigs by the maintenance of adult 
Leydig cell morphology and the stimulation of neuroendocrine system leading to increased 
biosynthesis of testicular steroids (mature boars show an increase in average Leydig cell size 
and therefore an increase in steroidogenic capacity per Leydig cell). In sexually mature boars, 
androstenone levels depend on the individual ability to produce this steroid.

In entire male pigs, androstenone is produced by the Leydig cells of the testes in parallel 
with anabolic testicular hormones [24]. Androstenone is synthesised from the precursors, 
pregnenolone and progesterone, through the formation of androstadienone by the sequential 
action of a number of enzymes, particularly cytochrome P450C17 and cytochrome b5 [25, 26]. 
Androstenone is metabolised in the liver with the production of alpha-androstenol and to a 
greater extent beta-androstenol [27, 28]. Part of androstenone is transported to the submaxil-
lary salivary gland, where it is bind to a specific binding protein pheromaxein and released in 
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the saliva, which among other 16-androstene steroids act as a pheromone to promote sexual 
behaviour in female pigs.

Hormonal regulation of boar taint is illustrated in Figure 2, which shows how androstenone 
biosynthesis is controlled through the activation of the hypothalamic-pituitary-gonadal axis. 
The level of skatole, the other boar taint compound, is also related to sexual maturation. Its 
accumulation in the adipose tissue is due to the inhibition of skatole metabolism in the liver 
by increased levels of testicular steroids, mainly androstenone [29] and oestrogens [30, 31], 
and in part also due to the effect of steroid hormones and growth factors on the epithelial 
proliferation and apoptosis in the intestine, the site of skatole formation [5].

3. Principles and effects of immunocastration

Immunocastration involves the vaccination of animals against hormones that control the 
reproductive function (Figure 3). Progress has lately been made to develop a vaccine for the 
immunisation against gonadotrophin-releasing hormone (GnRH). Commercially available 
vaccine (named Improvac in Europe, Improvest in the USA) against boar taint was devel-
oped in Australia and is now produced by Zoetis (formerly Pfizer Ltd., formerly CSL Limited, 
Parkville, Victoria, Australia). This vaccine was approved for use in pigs in many countries 
(including the EU from 2009), but its practical application is still limited.

Immunocastration uses the natural immune system of the animal to achieve the effects of 
castration. The vaccine contains physiologically inactive analogue of GnRH covalently conju-
gated to an immunogenic carrier protein. The analogue has no hormonal activity but contains 
the necessary epitopes to stimulate an effective anti-GnRH antibody response and blocks 
the stimulation of the hypothalamic-pituitary-gonadal axis. Consequently, the formation of 
gonadal steroid hormones is hindered and thereby the regression of reproductive organs and 
some induced metabolic changes, which ultimately leads to changes in behaviour (reduced 
aggression, increased appetite and feed intake) and growth performance [32].

Figure 2. Relationships between the hypothalamic-pituitary-gonadal axis, androstenone production in testes and 
skatole formation from tryptophan in the intestine and their interrelated metabolism in the liver. In boar, the production 
of testicular steroids, including androstenone, inhibits hepatic clearance of skatole. Androstenone and skatole are 
accumulated in the adipose tissue due to their lipophilic nature.
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3.1. Vaccination scheme

To achieve the effective immunisation, at least two applications of the vaccine with a mini-
mum interval of 4 weeks are needed. Subcutaneous injections are given at the base of the ear 
with a special vaccinator designed by the vaccine producer to prevent accidental self-injection. 
The first dose primes the pig’s immune system and can be given at any time after 8–9 weeks 
of age, and the second dose should be given (if we refer to standard pig production system 
where pigs are slaughtered at 6 months of age) no later than 4–5 weeks prior to slaughter. As 
the first injection has no apparent impact on steroid hormones, this schedule enables to use 
full growth potential of the entire male pigs until the second injection. After the immunisa-
tion, immunocastrated pigs rapidly change their metabolism to castrate-like, with increased 
feed consumption and fat deposition. The longer is the time elapsed from the second vaccina-
tion to slaughter, the higher is the difference between immunocastrates and entire males and/
or the similarity to surgical castrates [33, 34]. In the case of older animals, a three-dose vac-
cination regimen might be required [35, 36] to ensure inactivation of endogenous GnRH and 
elimination of boar taint. Also, if nonrespondent pigs are detected (shown as larger testicle 
size or prolonged sexual behaviour), an additional dose might be applied [37].

A number of studies have been conducted using alternative vaccination schemes. A study 
conducted by Brunius et al. [38] investigated the efficacy of early vaccination with Improvac 
applied to entire male pigs at 10 and 14 weeks of age (pre- or early pubertal). It was shown 
that the levels of androstenone and skatole in pigs vaccinated at weeks 10 and 14 did not dif-
fer from the pigs vaccinated according to manufacturer’s instructions. It has also been shown 
that already 2 weeks following the second vaccination, the levels of androstenone and skatole 
were below sensory threshold [33, 39]. The effect of immunocastration can last up to 22 weeks 
following the second injection [19].

Figure 3. Physiological response to immunocastration in male pigs. The vaccine consists of the antigen (GnRH analogue 
that is bind to carrier protein), which triggers the immune system to produce antibodies that neutralise endogenous 
GnRH. Consequently, there is no stimulus for the hypophysis to release LH and FSH hormones, which in turn fails to 
signal the testes to produce testosterone and androstenone and thus prevents boar taint development.
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size or prolonged sexual behaviour), an additional dose might be applied [37].

A number of studies have been conducted using alternative vaccination schemes. A study 
conducted by Brunius et al. [38] investigated the efficacy of early vaccination with Improvac 
applied to entire male pigs at 10 and 14 weeks of age (pre- or early pubertal). It was shown 
that the levels of androstenone and skatole in pigs vaccinated at weeks 10 and 14 did not dif-
fer from the pigs vaccinated according to manufacturer’s instructions. It has also been shown 
that already 2 weeks following the second vaccination, the levels of androstenone and skatole 
were below sensory threshold [33, 39]. The effect of immunocastration can last up to 22 weeks 
following the second injection [19].

Figure 3. Physiological response to immunocastration in male pigs. The vaccine consists of the antigen (GnRH analogue 
that is bind to carrier protein), which triggers the immune system to produce antibodies that neutralise endogenous 
GnRH. Consequently, there is no stimulus for the hypophysis to release LH and FSH hormones, which in turn fails to 
signal the testes to produce testosterone and androstenone and thus prevents boar taint development.

Theriogenology114

3.2. Effect of immunocastration on boar taint compounds

Immunocastration blocks the synthesis of testicular steroids, including androstenone, by 
interfering with the hypothalamic-pituitary-gonadal axis. Androstenone production is sup-
pressed as a consequence of suppressed testicular function. The approach with immunocas-
tration therefore does not only prevent androstenone formation selectively but also reduces 
the synthesis of anabolic steroids.

Immunocastration also reduces the level of the another boar taint compound, skatole [13, 17, 
18, 40]. Even though skatole is produced in the intestine by microbial degradation of amino 
acid tryptophan and the immunocastration has no direct effect on skatole synthesis, reduction 
of skatole levels in immunocastrated pigs is related to hindered production of androstenone 
and oestrogens. Androstenone and 17-beta-oestradiol were identified as potential inhibitors 
of the expression and/or activity of major skatole-metabolising enzymes CYP2E1 [29, 30, 41] 
and CYP2A [42]. Indeed, activities of skatole-metabolising enzymes in the liver are higher 
in surgically and immunocastrated male pigs than the entire male pigs [43, 44]. Thus, in the 
absence of androstenone and 17-beta-oestradiol, the hepatic metabolism of skatole is not 
inhibited, and produced skatole metabolites are readily eliminated from the body.

Generally, for what regards the prevention of boar taint in pork, immunocastration is compa-
rable to surgical castration as similar effects are achieved as in physical removing of the testes.

3.3. Effect of immunocastration on growth performance and carcass quality

Considering the entire fattening period (from the first vaccination until slaughter), meta-
analysis of the effects of immunocastration on pigs’ growth showed that immunocastrates 
grow faster than surgical castrates and entire males [45]. The explanation is that immuno-
castrates are physiologically entire males until the second (effective) vaccination, and there-
fore until then, they exploit boar-like growth potential. Following the second vaccination, 
rapid changes of the hormonal status start, characterised by the drop of the steroid levels [46]. 
Simultaneously, the concentrations of residual IGF-1 and somatotropin remain relatively high 
[47, 48], resulting in higher feed intake and growth rate of immunocastrates after the effective 
immunisation is reached. A study of Batorek et al. [49] revealed that, after effective immuni-
sation, the immunocastrates increase fat tissue deposition at the expense of lower heat pro-
duction, while protein deposition remains similar to entire males and different from surgical 
castrates, which deposit fat instead of protein (i.e. muscles). It is, however, important to take 
into consideration that these results were obtained with late immunocastration, where the 
first vaccination is performed at the start of the fattening period and the second vaccination 
very late, usually 4–6 weeks prior to slaughter (i.e. may not be the case for early immunisa-
tion). Studies dealing with early immunocastration are rare as such practice is not economi-
cally interesting. The level of fat deposition in immunocastrates has been related to the delay 
between the second vaccination and slaughter; and with longer delay, higher fat deposition 
is reported [33, 34, 50]. Although intramuscular fat deposits are regarded as favourable for 
meat sensory quality, the overall increase in body adiposity has negative impacts on eco-
nomics of rearing (higher fatness leads to lower lean meat %, governing the carcass price). 
Summarising 30 studies, the meta-analysis of Batorek et al. [45] showed that immunocastrates 
exhibit thicker back fat than entire males, resulting in lower carcass lean meat percentage. On 
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the other hand, a comparison of immunocastrates with surgical castrates shows their advan-
tages in terms of carcass quality (lower carcass fatness, heavier ham and shoulder). The way 
to control fat deposition in immunocastrates would be the manipulation of their diet after the 
second vaccination. Restricted feed intake [48] or energy dilution [51] improves carcass lean-
ness due to lower fat deposition.

3.4. Effect of immunocastration on meat quality

Meta-analytical results [45, 52] show that immunocastrates and surgical castrates are very 
similar in regard to meat quality traits. On the other hand, compared to entire males (in addi-
tion to avoiding boar taint problem), immunocastrates exhibit superior meat quality as they 
have more intramuscular fat and more tender meat. Their fat is also more saturated, which 
is beneficial from the technological viewpoint. Besides that, unlike entire males, immuno-
castrates can be slaughtered at older age making their meat suitable for processing into dry-
cured meat products, where raw material of specific quality is required. The available studies 
evaluating immunocastrates for dry-cured products show their similarity with surgical cas-
trates in regard to meat and fat quality (including quantity and fatty acid composition) and 
are considered suitable for prolonged maturation process [36, 53–55]. A comparison of dry-
cured hams originating from immunocastrates and entire males slaughtered at 130 kg [55] 
showed better aptitude of immunocastrates than entire males for long dry-curing maturation 
due to lower seasoning losses, lower salt intake and softer product with more intramuscular 
fat. However, it should be noted that fast changes of metabolism after the effective immunisa-
tion could reflect in changed protein turnover and consequently proteolytic activity of meat 
from immunocastrates, which is of relevance for long dry-curing process and would merit to 
be investigated for potential impact on product quality.

Due to the possible restauration of reproductive function and thus boar taint, triple vaccina-
tion protocol is considered in older, heavier pigs. Recent study comparing surgical castrates 
with double or triple vaccination [36] showed higher levels of boar taint compounds vacci-
nated only twice and slaughtered 14 weeks after the effective immunisation and concluded 
that three-dose immunocastration should be applied to meet the requirements for Italian PDO 
hams. The same study pointed out some indications of higher cathepsin activity than surgical 
castrates but only for immunocastrates vaccinated two times [36]. Similarly in the Iberian pigs 
[56, 57], the immunocastration with triple vaccination protocol has been found to be a suitable 
alternative as no major differences on carcass or technological and sensory meat quality were 
observed compared to surgically castrated females, whereas immunocastration of male pigs 
resulted in somewhat leaner carcasses with less intramuscular fat and lower tenderness than 
in surgical castrates.

Based on the studies, it can be concluded that the resemblance between immunocastrates and 
surgical castrates increases with the increase in elapsed time between the effective immunisa-
tion and slaughter. Depending on the need of pork industry, the protocol of vaccination can 
be adjusted (late or early vaccination, respectively). In summary, using immunocastration 
overcomes the drawbacks of pork production with entire males and is interesting for produc-
tion systems with prolonged fattening (i.e. slaughter at higher age and weight) and extensive 
rearing systems.
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3.5. Effect of immunocastration on animal welfare

Immunocastration itself, as a procedure, is considered a relatively welfare-friendly alterna-
tive. Compared to surgical castration without anaesthesia, it excludes acute pain associated 
with the procedure, the pain limited only to the needle insertion during application of the 
vaccine [10]. However, the administration in group-housing systems (or outdoor systems) 
may cause some practical difficulties that could trigger acute stress situations for pigs. The 
injection of the vaccine can also cause adverse reactions at the injection site, though these are 
most often reported as mild reactions [13, 58]. The injection of the vaccine is a systemic event 
leading to disturbance in the hormonal homeostasis of the animal; thus adverse effects could 
be expected in other tissues apart from the testes. One previous study suggested that immuni-
sation against GnRH created tissue damages to the hypothalamus [59]. However, this was 
not confirmed in the later studies [60] likely due to improved vaccine formulation. The use of 
immunocastration on the other hand could overcome the mortality associated with surgical 
castration due to post-operation complications.

Until after the second administration of the vaccine, the immunocastrates are physiologi-
cally entire males, so compared to surgical castrates, they show male-like behaviour. This 
means more aggressive and mounting behaviour and higher number of skin lesions [61, 
62]. However, after the second vaccination, aggressive and mounting behaviour is reduced 
to the level of surgically castrated pigs [63] in which standard production system happens 
in the period when aggressive behaviour would normally be intensified (i.e. at the age of 
5–6 months). Soon after the effective immunisation, aggressive and mounting behaviour is 
reduced, while feeding behaviour becomes alike to surgical castrates [14, 19, 62]. Calmer 
behaviour is important for carcass quality because it is related to lower incidence of skin 
lesions, a consequence of fighting and mounting especially if unfamiliar pigs are mixed prior 
to slaughter (e.g. transport and lairage). Another aspect worth considering for the welfare 
of immunocastrates is related to their feeding. As their appetite is increased after the second 
vaccination, their feeding needs to be adapted to assure they are calm and satiety without 
negative effects on their body composition (energy dilution). Namely, restrictive feeding of 
immunocastrates showed similar level of aggression (i.e. incidence of carcass skin lesions) in 
restrictively fed immunocastrates as in entire males and higher as in ad libitum fed immuno-
castrates and surgical castrates [48].

4. Immunocastration and public acceptability

Despite the fact that the vaccine for immunocastration has been available in the European 
Union since 2009, its practical use is limited due to a generally low market acceptance [64]. 
Surveys with European stakeholders performed within PIGCAS project showed low pros-
pects for immunocastration (surgical castration with anaesthesia/analgesia was preferred). It 
is also indicated that the main drawback of the immunocastration was the fear of consumers’ 
acceptance [65]. However, opinion of consumers about immunocastration has not been thor-
oughly investigated, and they are mostly not well informed about boar taint and the methods 
used to prevent it [32, 66]. Consumers expect healthy, safe and tasty meat, which denotes that 
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boar taint represents an important concern for consumer acceptance [32]. Presently available 
studies about the consumer acceptability of the immunocastration show important differ-
ences across Europe. For Swiss consumers, the most acceptable alternative was surgical cas-
tration with anaesthesia/analgesia, while immunocastration was not favoured [67]. Swedish 
consumers expressed preference for meat from immunocastrates over the entire males and 
standard surgical castrates [68]. Belgian consumers, after being well informed on the existing 
alternatives, preferred immunocastration to surgical castration [69]. The same was observed 
for German consumers [70]. A survey with over 4000 consumers in France, Germany and the 
Netherlands [71] pointed out that the fear of negative consumer attitude towards immunocas-
tration might be overestimated. Namely, in this survey immunocastration was acceptable for 
over 70% of the respondents. It is worth noting that a recent study [64] reported that Belgian 
farmers changed their attitude after having used different alternatives in a real life scenario 
and preferred entire males and immunocastration. For them, surgical castration with anaes-
thesia and/or analgesia was the least acceptable due to being the most demanding (labour 
intensive, costly and complex). In Belgium, immunocastration is practised by some farmers 
since 2011 because of retailers’ demand [64]. Regarding other stakeholders, nongovernmen-
tal animal welfare organisations find immunocastration acceptable, although they prioritise 
rearing of entire males. According to PIGCAS project survey, the scientists perceive immu-
nocastration as a better alternative to surgical castration with anaesthesia/analgesia due to 
being more practical and having benefits for animal welfare and economics [72]. Overall, it 
seems that the main obstacle for wider utilisation of the immunocastration resides in the fear 
of consumers and how they would accept this alternative. Other drawbacks expressed by 
stakeholders are related to the ease of use in group-housing or outdoor production systems 
and security at work (fear of self-vaccination).

5. Tools to assess effectiveness of immunocastration

Several studies have shown that the effect of immunocastration is very consistent among indi-
viduals. However, there are cases where nonresponders (0–3%) have been reported [39, 54, 
73] in both small- and large-scale experiments. The reasons why some pigs escape the vac-
cination have not yet been sufficiently explained but may be ascribed to poor health status or 
malnutrition of the pig or the fact that some pigs are simply missed at physical vaccination in 
group-housing systems. This argues for the development of good tools to assess the effective-
ness of immunocastration, e.g. at the slaughter line. Assessing the effectiveness of vaccination 
in live pigs basing on the observation of testes size or taking blood for hormonal analyses is 
practically difficult and economically unsustainable. Behavioural observations like high rates 
of mounting could also be warning signs used at the farm to detect possible nonresponders; 
however, this later is not very practical in large-scale farming systems. After the slaughter, 
a reliable method would be to chemically determine the level of boar taint compounds in 
fat tissue; however, for practical and economic reasons, simple, low-cost online methods are 
desired. One option would be to monitor the size and weight of the testes, which have been 
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shown to decrease significantly with successful immunocastration. However, as size/weight 
of testes is strongly related to pig’s weight, it may not be a sufficiently reliable indicator of suc-
cessful vaccination because of partly overlapping distributions between successfully immu-
nocastrated and entire male pigs [17]. It was suggested that measuring seminal vesicle weight 
at slaughter line is more reliable to identify nonresponders [74]. A recent study [75] showed 
100% success rate for prediction of nonresponders by combining the information on weight 
of all reproductive organs. In addition to morphological assessment of the size of reproduc-
tive organs at slaughter line, suspicious carcasses of immunocastrates could be additionally 
checked for boar taint by rapid methods involving the heating of fat tissue and sniffing.
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Abstract

Teleostei fishes constitute a very large group among the vertebrates. They present several 
reproductive strategies, and many species are gonochoristics. During the gonadal differ-
entiation, the gonadal primordium undergoes morphological changes giving rise to male 
or female gonads. Considering the lack of information about gonadal morphogenesis 
in Teleostei, especially in tangent aspects concerning the establishment of the germinal 
epithelium and its relation with the formation of the ovarian cavity, Tanichthys albonubes, 
Corydoras schwartzi, and Amatitlania nigrofasciata were taken as biological models to estab-
lish a comparative analysis of the female gonadal differentiation. In undifferentiated 
gonad, the epithelial cells associate with primordial germ cells and form germline cysts. 
These are distributed throughout the gonadal tissue; after the entrance of the oogonia 
into meiosis, the folliculogenesis occurs forming the first follicles, in a quite conserved 
process. However, the formation of the ovarian cavity is distinct. In T. albonubes and  
A. nigrofasciata, the lumen is formed by pleating and in C. schwartzi, it is formed by cavita-
tion. The central lumen formed characterizes the cystovarian of Teleostei. Although there 
are differences in the chronology of the differentiation, the processes involved are quite 
similar and culminate in the formation of analogous structures.

Keywords: germinal epithelium, gonadal differentiation, germline cysts, 
folliculogenesis, cystovarian formation, Teleostei fish

1. Introduction

Teleostei fish represents about 50% of the vertebrates [1]. The bony fishes, within the Teleostei, 
are divided into Ostariophysi, Protacanthopterygii, and Neoteleostei.

Ostariophysi is the second largest superorder of fish, and it is considered the most basal 
among the Teleostei, representing about three quarters of the world’s freshwater fish [1]. This 
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diverse group contains important fish in the area of feeding, sport fishing, aquarium, and 
research, such as the common carp and zebrafish (Cypriniformes), the characids and tetras 
(Characiformes), the catfishes (Siluriformes), and the electric eels (Gymnotiformes) [1, 2].

The Neoteleostei is another large clade of bony fish that includes most derived species among 
Teleostei, and it is also very important in several areas. Among the Neoteleostei, the most rel-
evant group is the Perciformes, which presents the greatest diversity among all orders of fish, 
being the largest order among vertebrates [1]. The most popular Perciformes are the cichlids, 
such as tilapia.

Regardless of their position on the phylogenetic scale, in most Teleostei species, the repro-
duction is cyclic and seasonal, determining a series of morphophysiological modifications in 
their gonads [3]. Teleostei present several reproductive strategies [3, 4]. Among these, there 
are mechanisms of release of gametes in the aquatic environment for external fertilization, 
development of specialized organs for internal fertilization, posture of fertilized eggs after 
internal fertilization, and even internal gestation of the embryos [5].

In Teleostei, the sexual determination and gonadal differentiation are controlled by genetic, 
physiological, and behavioral factors [6]. The genetic sex of the embryo is determined at the 
time of the fertilization by the combination of the chromosomes from the male and female 
gametes, and sexual determination is defined as the sum of the genes responsible for the 
 formation of the gonads and their characteristics [7, 8]. In this aspect, the genetic control is 
one of the main determinants of the gender, even though environmental factors, such as tem-
perature, photoperiod, or salinity, also have a great influence on the process, determining the 
physiological gender of the fish [9].

Most Teleostei are dioecious or gonochoristic, that is, they present individuals with separated 
sexes. These fishes may present two types of gonadal development, classified as undifferenti-
ated or differentiated gonochoristics. In undifferentiated gonochoristics, the undifferentiated 
gonad begins its development resembling an ovary. Subsequently, part of the individuals 
becomes male, while another part remains female. This natural condition is known as juvenile 
hermaphroditism. In the differentiated gonochoristics, the gonad differentiates directly in a 
testis or in an ovary [6, 10].

However, at the beginning of embryogenesis, the gender of the fish is not morphologically 
defined, since it does not have gonads differentiated in testes or ovaries, and there is no 
other developed characteristic which is associated to the reproductive system. There are only 
embryological precursors that will give rise to the ovaries and testes: the primordial germ 
cells (PGCs) and the somatic cells. At this stage of development, these cells are totipotent, and 
they can give rise to male or female gonads [6]. At some point during gonadal development, 
through hormonal chemical signaling, the gonad differentiates into the ovary or testis. Once 
this occurs and the gonadal tissue completes its differentiation, the fish becomes physiologi-
cally male or female [11].

The gonadal differentiation in the Teleostei includes changes in both somatic and germ 
cells [9], as mitotic divisions of oogonia or spermatogonia from the primordial germ cells, to 
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structural changes, including mitotic proliferation of the somatic cells [12]. As a result, there 
is the formation of the ovarian cavity and spermatic ducts and lobules that will give origin to 
the ovaries and testes, respectively [9, 13].

In males, it is known that primordial germ cells establish specific positions, depending on 
the pattern of testicular organization [14]. This pattern, found in adult males, differs between 
basal (Ostariophysi) and derived taxa (Neoteleostei) [15]. However, the same does not hap-
pen to adult females. In this aspect, this chapter will describe the gonadal morphogenesis, 
with special attention to the formation of the ovarian cavity and establishment of the germi-
nal epithelium, in basal taxa (Tanichthys albonubes and Corydoras schwartzi) and derived taxa 
(Amatitlania nigrofasciata), verifying possible distinctions or existing patterns along gonadal 
differentiation and considering the position of the species on the phylogenetic scale. The dif-
ferent methods used for these analyses are described in “complementary material,” at the end 
of the chapter.

These three representatives were chosen because they are small ornamental species, quite 
resistant and known in ornamental aquarium. In addition, they can be reproduced in aquar-
ium, presenting a fast period of differentiation. Although gonadal differentiation is quick 
in these representatives, the data showed here can be extrapolated to the species of their 
groups, since there is no difference in the events along the differentiation. Thus, despite the 
time of differentiation being species specific, the events and morphological changes are the 
same [16].

T. albonubes is from China, and it prefers low temperatures. It is one of the smallest known 
Cypriniformes (3–4 cm) [17]. Among the Ostariophysi, the Cypriniformes were chosen because 
they are the most basal order, that is, they represent the most basal taxa. C. schwartzi is a tropi-
cal fish, from South America [17], very important in the aquarium hobby. It is a small catfish (7 
cm), and for this reason, it was chosen to represent the other catfish. Catfishes present consid-
erable commercial importance, and many of the largest species are farmed or fished for food. 
A. nigrofasciata is popularly known as acara cichlid. It attains the maximum length of 10 cm. 
Like other cichlids, it is aggressive and territorialist. Originated from Central America, they 
prefer alkaline and hot water [17]. Here, this species represents all other cichlids, that is, the 
most derived taxa.

2. The ovary differentiation in Teleostei

2.1. Gonadal primordium

In Teleostei, as in other vertebrates, the primordial germ cells (PGCs) differentiate from yolk 
sac cells, originating from extragonadal regions, and migrate to the genital ridge  during 
embryonic development [18, 19]. The genital ridge is formed by a thickening of the inter-
mediate mesoderm, which protrudes ventrally into the coelomic cavity of the embryo being 
delimited by a mesothelium [6, 18, 19].
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The primordial germ cells (PGCs) migrate to the genital ridge and are disposed between the 
somatic cells. Both cell populations proliferate by mitosis constituting the gonadal primor-
dium [14, 16, 19, 20], as observed in T. albonubes (Figure 1). Therefore, during the morphogen-
esis period, the gonadal primordium is formed; it increases in length by mitotic proliferation 
of its cells, and it gives rise to an undifferentiated gonad [9, 10, 12, 14, 16, 21]. Now, the undif-
ferentiated gonad will undergo a series of structural modifications determining the formation 
of a female or male gonad.

The gonadal primordia of the species here taken as representatives of the basal (T. albonubes 
and C. schwartzi) and derived taxa (A. nigrofasciata) present patterns of organization, which are 
very similar to each other and to the other Teleostei [22]. They are presented in pairs on the 
peritoneum along the coelomatic cavity, connected by a thin layer of gonadal mesentery. Each 
gonadal primordium is located ventrally to the kidney and dorsally to the swim bladder. The 
gonadal primordium extends throughout the entire coelomatic cavity, from the posterior to 
the anterior region (Figure 1A and B).

These characteristics of the gonadal primordium are also found in the adult form of the spe-
cies that present an odd gonad, such as Poeciliids, a viviparous species, considered derived 
taxa [14, 23, 24]. In these, the formation of bilateral gonadal primordia is common. However, 
both gonadal primordia merge during the development of the gonadal tissue, forming a sin-
gle organ in the adult individual [3, 14, 23].

Histologically, the gonadal primordia are formed by primordial germ cells (PGCs) and 
somatic cells. The somatic cells show varied forms, being predominantly squamous, with 
basophilic nucleus and scarce cytoplasm. The PGCs are large oval cells with voluminous 
nucleus and show quite evident nucleolus. Their cytoplasm is scarce and rich in “nüage,” 
presenting positive response to metanil yellow, indicating the presence of proteins in its 
constitution (Figure 1C).

The primordial germ cells (PGCs) are distributed along the gonadal primordium, which is 
filiform, long, and thin, composed by only one or two layers of PGCs. Mitotic activity of PGCs 
may be occasionally visualized.

Figure 1. The gonadal primordium in T. albonubes. Light microscopy. Parasagittal sections. (A, B) The gonadal 
primordium (arrow) is located ventral to the kidney and dorsal to the gut. (C) The gonadal primordium is formed by 
primordial germ cells (PGCs) and somatic cell(s). Staining: periodic acid Schiff + hematoxylin + metanil yellow.
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At this stage, in any of the species, there are no morphological differences which suggest the 
evolution toward a male or female gonad. The number of germ and somatic cells gradually 
increases throughout the gonadal development. As a result, there is an increase in the size of 
the gonadal tissue, which becomes an undifferentiated gonad.

2.2. Undifferentiated gonad

The undifferentiated gonads of T. albonubes and A. nigrofasciata (Figure 2A–D) were observed 
in animals up to 30 days postfertilization (dpf) with 0.5 and 0.7 cm in length, respectively. In 
C. schwartzi the gonads remain undifferentiated (Figure 2E and F) for a longer period, up to 
120 dpf, when the animals measure 2.5 cm.

In these species, as in most Teleostei, the undifferentiated gonads are pairs, long, and thin, 
occupying two-thirds of the coelomatic cavity from the urogenital papillae. They are formed 
by primordial germ cells (PGCs) dispersed among somatic cells.

In parasagittal sections, the undifferentiated gonads are thicker in comparison with the 
gonadal primordium, mainly due to the greater amount of somatic cells, which present irreg-
ular and squamous forms. The primordial germ cells (PGCs) remain in small numbers and are 
initially isolated between somatic cells, scattered throughout the gonad (Figure 2).

Since the undifferentiated gonads are formed only by primordial germ cells and somatic 
cells, they are very similar in any group of fishes, from the basal to the most derived taxa, 
including primitive fish such as sturgeon [25] or species with indirect gonochoristic develop-
ment as Cypriniformes Danio rerio [26] and Characiformes Gymnocorymbus ternetzi [21], both 
Ostariophysians.

2.3. Gonadal differentiation

Morphological changes in the gonadal tissue, such as the formation of the ovarian cavity and 
the entrance into meiosis of the germ cells in females or the formation of the testicular ducts 
and lobules in males, are the main parameters used for the sexual distinction of gonochoristic 
gonads. Although these characteristics gather the consensus among different authors [6, 13], 
who use them as parameters for gonadal differentiation, the distinction between the female 
and male gonads may be detected prior to the entrance of the primordial germ cells into 
meiosis or before the formation of gonadal structures by the somatic cells. This detection of 
presumed female or male gonads is possible when considering the organization of germ and 
somatic cells in the gonadal tissue [14]. In other words, the gonadal differentiation in many 
species of Teleostei is closely related to the organization of the cellular types, which constitute 
the early gonadal tissue [14, 16].

A peculiarity observed here in A. nigrofasciata is the fact that the pattern of cellular  organization 
in the undifferentiated gonads is different between female and male gonads [14], i.e., early 
gonads that will supposedly give rise to the ovaries and testes already present certain mor-
phological differentiation. The same was observed in other derived taxa, such as Poecilia retic-
ulata [14], being a common feature among the derived groups, that is, Neoteleostei.
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Figure 2. The undifferentiated gonads in T. albonubes (A, B), A. nigrofasciata (C, D), and C. schwartzi (E, F). Light 
microscopy. Parasagittal sections. The undifferentiated gonads are very elongated, are thin, and show a major number 
of somatic cells (arrow). The primordial germ cells (PGCs) are surrounded by somatic cells. Staining: periodic acid Schiff 
+ hematoxylin + metanil yellow.
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However, this pattern of organization of the Neoteleostei differs from the one found in the 
representatives of the Ostariophysi here utilized (T. albonubes and C. schwartzi), which pres-
ent patterns similar to most of the existing descriptions for Teleostei [6, 12, 16, 18, 19, 22, 27].

In these, the supposedly female animals present primordial germ cells distributed in the cen-
tral region of the early gonadal tissue, which has a smaller number of somatic cells concen-
trated mainly in the peripheral region of the gonad. At this stage, among most basal fish, it is 
possible to differentiate female from male gonads. In female gonads, the oogonia proliferate, 
form continuous cords of cells, and enter into meiosis, originating the first oocytes [16], while 
in male gonads, spermatogonia are organized in acinar structure or cell clusters, after forming 
continuous cords [14].

Thus, before the appearance of structures such as the ovarian cavity formation, the female 
gonadal differentiation in both Ostariophysi and Neoteleostei is initially marked by the 
appearance of meiotic figures in gonadal tissue [12, 13, 16].

The gonads of T. albonubes, C. schwartzi, and A. nigrofasciata differentiate directly into the ovary 
or testis, presenting direct gonochoristic development. In these three species, gradually and 
close to the period preceding gonadal differentiation, there is a small difference in the dis-
tribution of primordial germ cells (PGCs) along the gonadal tissue, between the supposedly 
female and male gonads.

In T. albonubes and A. nigrofasciata, the ovarian differentiation precedes the testicular dif-
ferentiation and occurs around 37 and 120 dpf, respectively (in animals measure 1 and 3 cm). 
In contrast, in C. schwartzi, the ovarian and testicular differentiation occurs simultaneously 
around 130–150 dpf (3–4 cm).

In T. albonubes and A. nigrofasciata, the supposedly female gonad is smaller in size than the 
supposedly male one. The ratio of primordial germ cells (PGCs) to somatic cells is more bal-
anced in females, whereas in supposedly male gonads, PGCs are scarce and are scattered 
among countless somatic cells. As a consequence, the male gonad becomes thicker than the 
female gonad [14]. Furthermore, in the supposedly female gonads, there is usually only a 
single line of PGCs delimited by somatic cells due to the gonad lower thickness.

In C. schwartzi, the first indication of gonadal differentiation refers to the organization of germ 
cells in supposedly male and female gonads. In female gonads, the oogonia form small germ-
line cysts, separated by a highly developed interstitial tissue.

As it can be observed in these species, as well as in most Teleostei, the events involved 
in ovarian differentiation are quite similar, distinguishing between the species only in the 
chronology and the way in which the processes concurs to achieve the same final result—
the formation of a cavity organ delimited by a germinal epithelium. Thus, the first stages of 
ovarian differentiation, characterized by the entrance of the germ cells into meiosis and the 
beginning of the folliculogenesis process, did not present significant differences between the 
species.
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2.4. First folliculogenesis

The gonadal tissue of the analyzed species is thin, elongated, and formed by primordial germ 
cells (PGCs), now differentiated into oogonia, and somatic cells. The oogonia, immersed 
within the gonadal tissue, may be associated with somatic cells or remain isolated (Figure 3A). 
Isolated oogonia proliferate by mitosis giving rise to new oogonia (Figure 3B). When associ-
ated with somatic cells, they form a cyst of oogonium (Figure 3C and D), which originates the 
initial prophase oocytes, upon entering into meiosis, analogous to what occurs in the germi-
nal epithelium of the ovigerous lamellae in sexually adult females [28–30]. The development 
of germ cells within each cyst is synchronous, due to the presence of cytoplasmic bridges 
between oogonia (Figure 3E and F) and prophase oocytes [16, 22, 31]. Thus, the cytokinesis 
is incomplete.

Since each oogonium gives rise to a cyst and the cellular divisions begin, different cysts are 
formed next to each other, giving rise to cell clusters, delimited gradually by a sole basement 
membrane in formation (Figure 3C and D). Thus, throughout the gonad, it is possible to 
observe individual isolated oogonia between somatic cells and cysts delimited by somatic cells 
derived from the epithelium, containing oogonia and/or early prophase oocytes (Figure 3G).

The oogonia are oval cells that present scarce cytoplasm with granulations corresponding 
to “nüages.” Their nuclei are large and spherical with one or more evident nucleoli. Its cyto-
plasm presents spherical mitochondria with tubular ridges, often associated with “nüages” 
(Figure 3A–D).

Oocytes present in the cysts are also rounded, with nuclei containing chromatin in differ-
ent forms of organization according to the stage of the prophase in which they are found 
(Figure 3G–M), but their cytoplasm does not differ them, always remaining slightly aci-
dophilus and scarce. Initially, the prophase oocytes have a more basophilic nucleus than the 
oogonia, and there is a decrease in the amount of “nüage” in the cytoplasm. The leptotene 
oocyte shows a strongly basophilic nucleus, with at least one nucleolus quite evident. With 
the progression of the prophase, the oocyte gradually lost nuclear basophilia. The zygotene 
oocyte presents greater chromosome condensation, giving the nucleus a granular aspect. 
Formation of the synaptonemic complexes begins, allowing the pairing of the homologous 
chromosomes. In pachytene, the synaptonemic complexes are totally formed. In the nucleus 
of the oocyte, there is a strong basophilia next to the nuclear envelope. These stages are illus-
trated below.

Now, the germline cysts containing diplotene oocytes are invaded by somatic epithelial cells—the 
pre-follicle cells (Figure 3I–K). Pre-follicle cells strongly united by numerous desmosomes com-
plete and gradually involve each oocyte which separates from the cyst, giving rise to an ovarian 
follicle (Figure 3L). During this process, known as folliculogenesis, pre-follicle cells begin to form 
the basement membrane, after differentiating into follicle cells (Figure 3M and N). Gradually, the 
basement membrane is synthesized, individualizing each ovarian follicle. After the oocyte enter 
and remain in diplotene stage, the lampbrush chromosomes become visible. The cytoplasm of 
the oocytes increases, becoming gradually more basophilic and initiating the primary growth 
while within the germline cysts. Now, the diplotene oocyte isolated in the ovarian follicle, and in 
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initial prophase oocytes, upon entering into meiosis, analogous to what occurs in the germi-
nal epithelium of the ovigerous lamellae in sexually adult females [28–30]. The development 
of germ cells within each cyst is synchronous, due to the presence of cytoplasmic bridges 
between oogonia (Figure 3E and F) and prophase oocytes [16, 22, 31]. Thus, the cytokinesis 
is incomplete.
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(Figure 3A–D).
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dophilus and scarce. Initially, the prophase oocytes have a more basophilic nucleus than the 
oogonia, and there is a decrease in the amount of “nüage” in the cytoplasm. The leptotene 
oocyte shows a strongly basophilic nucleus, with at least one nucleolus quite evident. With 
the progression of the prophase, the oocyte gradually lost nuclear basophilia. The zygotene 
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Formation of the synaptonemic complexes begins, allowing the pairing of the homologous 
chromosomes. In pachytene, the synaptonemic complexes are totally formed. In the nucleus 
of the oocyte, there is a strong basophilia next to the nuclear envelope. These stages are illus-
trated below.
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pre-follicle cells (Figure 3I–K). Pre-follicle cells strongly united by numerous desmosomes com-
plete and gradually involve each oocyte which separates from the cyst, giving rise to an ovarian 
follicle (Figure 3L). During this process, known as folliculogenesis, pre-follicle cells begin to form 
the basement membrane, after differentiating into follicle cells (Figure 3M and N). Gradually, the 
basement membrane is synthesized, individualizing each ovarian follicle. After the oocyte enter 
and remain in diplotene stage, the lampbrush chromosomes become visible. The cytoplasm of 
the oocytes increases, becoming gradually more basophilic and initiating the primary growth 
while within the germline cysts. Now, the diplotene oocyte isolated in the ovarian follicle, and in 
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Figure 3. Transmission electron microscopy of A. nigrofasciata ovaries, showing details of the process of folliculogenesis. 
In the gonadal tissue, the oogonia (g) are encompassed by somatic cells, pre-follicle cells (pf), forming germline 
cysts (A–C), delimited by a basement membrane (bm) (C,D). In the germline cysts, the oogonia are interconnected 
by cytoplasmic bridges (cb) (E,F). The germline cysts of oogonia, oocytes (o), and isolated oogonia are immersed in 
the gonadal tissue, separated from the other somatic components by a basement membrane in formation (G–K). After 
folliculogenesis, the follicle complex is formed around a primary growth oocyte (pg) (L–N). Blood vessel (bv), nucleus 
(n), nucleolus (nu), mitochondria (m), follicle cell (f), synaptonemic complexes (arrowhead), and nüage (arrow).
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primary growth, presents a nucleus with a variable number of nucleoli, which, initially located 
in the central region of the nucleus (oocytes with multiple nuclei), later become peripheral (peri-
nucleolar oocytes).

In T. albonubes, the stage of the first folliculogenesis is quite rapid. Thus, with only 44 dpf 
and 1.5 cm long, the gonad is still thin, but it already presents diplotene oocytes in primary 
growth (Figure 4).

Figure 4. Parasagittal histological section of the female gonads in T. albonubes showing the development of the compact 
gonad, formed by oogonia (g) in A, and prophase oocytes (o) in different stages of the folliculogenesis (B and C). The 
diplotene oocytes inter into primary growth (D), becoming larger and basophilic (E). Ventral region (vr), pre-follicle cells 
(arrow), primary growth oocyte (pg), mesentery (me), liver (li), gut (gu), pancreas (pa), and swim bladder (sb). Staining: 
periodic acid Schiff + hematoxylin + metanil yellow.
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In C. schwartzi, this process appears to be slower. The gonad remains for a long period, from 
130 to 150 dpf, presenting only germline cysts of oogonia and prophase oocytes. These 
cysts are separated from each other by a developing interstitial tissue, which responds posi-
tively to PAS and increases in number, gradually increasing the thickness and volume of 
the gonad (Figure 5A–F). At 160 dpf, in animals with 4 cm, the diplotene oocytes enter into 
primary growth, but the germline cysts are still predominant, and the gonad is still compact 
(Figure 5G and H).

In A. nigrofasciata, the folliculogenesis begins after 37 dpf. The gonadal tissue increases in 
length and thickness (Figure 6A and B). Oogonia decrease in quantity. Leptotene, zygo-
tene, pachytene, and early diplotene oocytes become numerous and are easily identifiable 
(Figures 6C–G and 7A). The gonadal tissue presents a large amount of primary growth 
oocytes and remains with the same histological characteristics until the animal completes 90 
dpf (Figure 7B and C), when presents 2 cm.

At this stage of ovarian differentiation, the gonad is still compact in all the species here 
 analyzed (Figures 4–7).

2.5. Formation of the ovarian cavity

In most Teleostei fish, the ovaries are even saculiform organs, presenting a cavity in their 
interior. This type of ovarian organization is unique among vertebrates and is known as cys-
tovarian ovary [32]. In this type, the ovaries are cavitary organs and present the germinal 
compartment in the form of lamellae, which protrude from the capsule toward the lumen of 
the organ. In this case, the ovarian cavity is continuous with the gonoducts [33], which merge 
caudally and flow into the urogenital papillae [3, 33].

The species utilized herein as representatives of Teleostei have this type of ovarian organiza-
tion. The constitution of the ovary as a cavitary organ, and therefore the formation of the 
ovarian lumen, precedes the complete formation of the ovigerous lamellae in all of them, 
and, depending on the species, it may be concomitant to the constitution of the germinal 
epithelium. In all cases, the closure of the organ is gradual and can be followed through cross 
histological sections. Variations of the involved events can occur among the species studied.

In these species, the process of formation of the ovarian cavity follows what has been reported 
for most of fish [13] and is a result of the proliferation of somatic cells in the periphery of the 
ovary. This proliferation is responsible for the formation of the laminar tissues, which expand 
laterally and fuse, enclosing the forming ovary in a cavity—the before-known coelomatic cav-
ity—now, the ovarian lumen.

Despite the similarities found during the cystovarian formation between the groups of fish 
analyzed, a single divergence could be observed, namely, the location of the somatic cell 
proliferation regions in the ovary and the direction (ventral or dorsal) of the laminar tissue 
toward the coelomic cavity.

In the Cypriniformes T. albonubes, the laminar tissues grow dorsally to the ovary (Figure 8). 
In contrast, in Perciformes A. nigrofasciata, the laminar tissues grow ventrally to the ovary 
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Figure 5. Parasagittal histological section of the female gonads in C. schwartzi showing the development of the compact 
gonad, formed by oogonia (g) and prophase oocytes (o) in different stages of the folliculogenesis. Note the developed 
interstitial tissue (in) (A–F) and the mitotic activity of oogonia (arrowhead) (E and F). Kidney (k), ventral region (v), 
pre-follicle cells (arrow), primary growth oocyte (pg), follicle cells (f), and gonad (G). Staining: periodic acid Schiff + 
hematoxylin + metanil yellow.
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Figure 6. Parasagittal histological section of the female gonads in A. nigrofasciata showing the development of the 
compact gonad, formed by oogonia (g) and prophase oocytes (o) in different stages of the folliculogenesis. Ventral region 
(V), somatic cells (s), gut (gu), leptotene oocyte (lo), pachytene oocyte (po), diplotene oocyte (do), pre-follicle cells (pf), 
gonad (G), and swim bladder (sb). Staining: periodic acid Schiff + hematoxylin + metanil yellow.
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(Figure 9), similar to what occurs in Cyprinus carpio, another Cypriniformes [16], or in 
G.  ternetzi, a Characiformes [21]. Therefore, the direction of the closure of the ovarian cavity 
seems to vary among species, independent on their phylogenetic position.

In T. albonubes and A. nigrofasciata, despite pertaining to different orders, being a basal and 
another derived taxa, respectively, the formation of the ovarian cavity (at 44 and 90 dpf, respec-
tively) is very similar.

In both species, concomitant to the entrance of the oocyte in primary growth, the gonadal tis-
sue, still compact, presents lateral tissue projections from the proliferation of somatic cells in 
the periphery of the gonadal tissue. Through the cross sections, the growth of the laminar tis-
sue, on both sides of the ovary, can be traced toward the dorsal (T. albonubes) and ventral por-
tion (A. nigrofasciata) of the gonad (Figures 8 and 9). During the growth of the laminar tissues, 
they eventually find the epithelium of the mesentery in the dorsal or ventral region, in which 
the gonad is supported. In this way, the laminar tissues fuse to the mesothelium and enclose 
the ovary in a space—the ovarian cavity. At this stage, oogonia and germline cysts, immersed 
in the still compact gonadal tissue, are concentrated in the periphery, near the newly formed 

Figure 7. Parasagittal histological section of the female gonads in A. nigrofasciata in early development (A), showing 
prophase oocytes (o) and entrance of the oocyte in primary growth (pg) (B and C). Pre-follicle cells (pf), follicle cells (f), 
and blood vessel (bv). Staining: periodic acid Schiff + hematoxylin + metanil yellow.
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ovarian cavity, whereas the primary growth oocytes occupy the opposite region. This is the 
first indication of the germinal epithelium formation in T. albonubes and A. nigrofasciata.

In C. schwartzi, another Ostariophysi (i.e., a basal taxa), the ovary is also considered a cystovarian, 
although the formation of the ovarian cavity occurs by a different mechanism, known as 
 cavitation. In this, the formation of the ovarian cavity is the result of a reorganization of 
somatic components inside the gonadal tissue, during the formation of the ovigerous lamel-
lae. Thus, in this species, the formation of the ovarian cavity is concomitant to the formation 
of the ovigerous lamellae and occurs at 180 dpf, in animals with 5 cm. The process will be 
described below.

Figure 8. Histological cross sections of the female gonads in T. albonubes—formation of the ovarian cavity toward the 
dorsal region of the gonad. Localization of the ovaries in the coelomic cavity (A). Compact ovary (B) and ovary with 
lateral projections (C, D). Ovarian cavity (E–G). Note the ovarian cavity separated in each of the ovaries (E, H), forming 
a single cavity in the caudal region of the animal (I–K). Differentiated gonad with ovarian cavity in the dorsal region (L). 
Ovaries (arrowheads), mesentery (me), gut (gu), ovary (ov), ovarian cavity (ca), laminar tissue (arrow), swim bladder 
(sb), and ovarian lumen (sinuous arrow). Staining: periodic acid Schiff + hematoxylin + metanil yellow.
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2.6. From the formation of female germinal epithelium to the organization of follicle 
complexes

In all the species analyzed here, the gonadal tissue is still compact in the stage that precedes 
the formation of the ovigerous lamellae, even though the ovarian cavity is already formed. In 
the gonadal tissue, the developing ovarian follicles are gradually surrounded by a basement 

Figure 9. Histological cross section of the female gonads in A. nigrofasciata—formation of the ovarian cavity toward 
the ventral region of the gonad. Localization of the ovaries in the coelomic cavity (A). Ovary compact (B, C) and with 
lateral projections (D, E). Formation of the ovarian cavity (F) and the differentiated gonad (G), with established germinal 
epithelium (ge) (H). Ovaries (arrowheads), mesentery (me), gut (gu), ovarian cavity (ca), laminar tissue (arrow), swim 
bladder (sb), primary growth oocyte (pg), pachytene oocyte (po), and oogonia (g). Staining: periodic acid Schiff + 
hematoxylin + metanil yellow.
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membrane (Figure 10), remaining immersed in the gonadal tissue, along with germline cysts 
of oogonia, of prophase oocytes and isolated oogonia [16].

In T. albonubes with 60 dpf and in A. nigrofasciata with 100 dpf, both animals with 2 cm long, 
from this stage, epithelial cells in movement coming from the gonadal periphery invade the 
compact tissue forming invaginations that progress into the gonadal tissue, forming interla-
mellar spaces, which become deeper and deeper (Figure 11).

Thus, the lamellae gradually increase in size and project into the ovarian cavity. In the region 
of projection and formation of the ovigerous lamellae, the somatic cells peripheral to the 
gonadal tissue reorganize forming an epithelium that borders the newly formed lamellae. 
This newly formed epithelium isolates the germ cells from the interlamellar lumen. This 
mechanism, at the same time, forms the ovigerous lamellae and originates the germinal epi-
thelium that borders the lamellae (Figure 12) [16].

In C. schwartzi, at 180 dpf (5 cm in length), the somatic components within the gonadal tis-
sue undergo some reorganization, resulting in an alignment of the somatic cells throughout 
the longitudinal extent of the gonad. Thus, in longitudinal sections, there are several double 
rows parallel to each other and longitudinal to the gonadal tissue, from the cranial toward the 
caudal region of the gonad. These rows gradually move away from each other, giving rise to 
a small space that becomes more and more prominent (Figure 13A–H).

With the distancing of several longitudinal parallel rows of somatic cells to provide the ovar-
ian lumen formation, the gonadal tissue is separated longitudinally in its central-medial 
region, becoming pleated. Thus, several parallel longitudinal pleats are formed, each one 
delimited by the somatic cells that originated them, composing the primordium of the oviger-
ous lamellae (Figure 13I and J).

Within each newly formed ovarian lamellae, the oogonia and germline cysts reorganize and 
migrate to the lamellar periphery, associating with the epithelial somatic cells that compose the 
border of each ovigerous lamellae, thus constituting the female germinal epithelium in C. schwartzi.

Figure 10. Histological section of the female gonads in C. schwartzi—Reticulin method. The germinal components are 
totally separated from the somatic components in the first stages of gonadal differentiation (A, B). (B) Detail of A. Note 
the cysts of oogonia (g) and cysts of prophase oocytes (o) surrounded by the basement membrane (arrow). (C and D) 
After entrance in primary growth (pg), each oocyte is individualized totally by the basement membrane (arrow). (D) 
Detail of C. Blood vessel (bv), germline cysts (c), and gonad (G).
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By a mechanism opposite to the other Ostariophysi (the Cypriniformes Cyprinus carpio), 
where the ovigerous lamellae arise by the invagination of somatic cells in the gonadal tis-
sue [16], in the Siluriformes C. schwartzi, those lamellae are formed by evagination and growth 
of the gonadal tissue toward the lumen of the ovarian cavity, which is already established. In 
cross sections, the gonadal tissue presents a little prominent ovigerous lamellae, on both sides 

Figure 11. Parasagittal histological section of the female gonads in T. albonubes. Formation of the ovigerous lamellae 
(A–D) and establishment of the germinal epithelium. Ovarian structure already differentiated in cross section, showing 
ovigerous lamellae in the dorsal region (E and F). Formation of ovigerous lamellae (arrow), germline cysts (c), primary 
growth oocyte (pg), delimitation of the ovarian cavity (sinuous arrow), and ovigerous lamellae (la). Staining: periodic 
acid Schiff + hematoxylin + metanil yellow.
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of the ovary. With the advancement of the gonadal development, there is an expansion of the 
gonadal tissue toward the ovarian lumen, and the ovigerous lamellae become definite.

There are few reports on the different mechanisms that can lead to the formation of the ovig-
erous lamellae. Therefore, these mechanisms in other Teleostei are still quite unknown, mak-
ing it impossible for an in-depth comparison along the evolutionary scale.

Thus, even though the formation of ovigerous lamellae is different in C. schwartzi, the process 
that follows for the establishment of the germinal epithelium is the same, even in species 
which do not present ovigerous lamellae, such as Poeciliids [24].

During the formation of the female germinal epithelium, the somatic epithelial cells, originated 
from specific regions according to each species, interpose among the germ cells, interconnecting 
them, after migrating through the compact gonadal tissue. The germ cells, from the beginning of 
the formation of the gonad, are segregated from other tissue components by the pre-follicle cells. 
These, in their turn, are supported on a basement membrane. Thus, the germinal epithelium, 
when formed, will be separated from the ovarian stroma by the basement membrane [16, 21].

In all the species analyzed here, along the female gonadal tissue, there are other cellular 
components which are interposed to the ovarian follicles already formed and to the cysts of 
oogonia and/or oocytes. Among these cellular components, small spaces arise and expand 
gradually giving rise to extravascular spaces. The extravascular spaces are filled by fluids rich 
in glycoproteins and polysaccharides. In adult animals, they originate from extravasation of 
blood plasma, which leaves the circulatory system between the endothelial cells and begin 
to fill regions within the gonadal tissue [15]. It is assumed that the extravascular spaces, in 
animals with gonadal differentiation, are formed in the same way [16].

Now, this fluid is disposed between the cellular components, moving them apart. Concomitantly, 
among the cellular components, star-shaped cells with mesenchymal characteristics intercon-
nect progressively, forming a loose network that gives rise to an interstitial compartment [16].

Figure 12. Parasagittal histological section of the female gonads in A. nigrofasciata. Ovigerous lamellae already formed 
(A) and establishment of the germinal epithelium (B). Ovarian lumen (lu), ovigerous lamellae (la), germinal epithelium 
(ge), and oogonium (g). Staining: periodic acid Schiff + hematoxylin + metanil yellow.
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Figure 13. Parasagittal (A–H), longitudinal (I), and cross (J) histological section of female gonads in C. schwartzi. (A) 
Overview of the compact ovary. (B and C) Details of A, showing parallel rows of somatic cells (arrow) among germline 
cysts. (D and E) The parallel rows of somatic cells move away from each other, giving rise to spaces (arrow). (F) Overview 
of the ovary, showing spaces within gonadal tissue. (G and H) Note the spaces formed (sinuous arrow) and delimited the 
germinal epithelium (ge). The ovarian cavity and primordium of ovigerous lamellae are formed. (I and J) Ovary showing 
ovigerous lamellae (la) with defined ovarian cavity (ca) and established germinal epithelium. Kidney (k) and primary 
growth oocyte (pg). Staining: periodic acid Schiff + hematoxylin + metanil yellow.
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This compartment corresponds to the ovarian stroma, in which new cellular components will 
differentiate, remaining isolated from the germinal compartment by a basement membrane. 
The ovarian stroma in the fish is usually formed by a loose connective tissue, in which the 
extravascular spaces are larger and the amount of collagen fibers is small [16, 28].

From the newly formed stroma, the mesenchymal cells emit cytoplasmic projections which 
interact with the ovarian follicles and respond from now on by the formation of constituents 
of the theca. Since the follicles already have a totally formed basement membrane, the mesen-
chymal cells contacting the follicle, supported by their basement membrane, differentiate into 
a pre-theca cell and later into theca cells (Figure 14) [16].

Figure 14. Histological section of the ovary in C. schwartzi—Reticulin method (A, D, G) and transmission electron 
microscopy of A. nigrofasciata. Formation of the theca from the mesenchymal cells (mc) of the ovarian stroma. (A) Ovarian 
stroma constituted by mesenchymal cells (mc), including pre-thecal cell (arrow). (B) Pre-thecal cell (pt) in the ovarian 
stroma. (C–F) The pre-thecal cell (arrow—pt) approaches the ovarian follicle, and it rests on its basement membrane 
(bm). (C—inset) Detail of the pre-thecal cell. (G–J) After this process, pre-thecal cell differs in theca (arrow—t) and 
changes its morphology becoming more fusiform. Primary growth oocyte (pg), follicle cell (f), nucleus (n), nucleolus 
(nu), and basement membrane (bm).
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The ovarian stroma may be more or less developed, depending on the species. In C. schwartzi, 
it presents a developed stroma already in the early stages of gonadal differentiation. In con-
trast, T. albonubes and A. nigrofasciata initially exhibit a growth of gonadal tissue, and only in 
later stages of oocyte development, the gonad will present a developed stroma. Although 
some species such as C. schwartzi present developed interstitial components in the initial 
stages of the differentiation process, the ovarian stroma is only totally established later.

With the differentiation of the theca cells, the ovarian follicle becomes the follicle complex. 
The follicle complex is formed by the diplotene oocyte, surrounded by follicle cells, sustained 
by a basement membrane, and by two layers of theca cells [28, 33–36]. Thus, now the gonad 
presents two distinct compartments—the germinal epithelium of the ovigerous lamellae and 
the ovarian stroma [33, 35, 36]—separated by the basement membrane that becomes totally 
continuous (Figure 15).

Within the follicle complexes, the oocyte development proceeds. Microvilli arise in the oocyte 
plasma membrane and in the membrane of the apical region of the follicle cells. In this region, 
oocyte and follicle cells contact, and the formation of the zona pellucida begins [16, 29].

Once the germinal epithelium is fully established, it will become permanently active. In the epi-
thelium, the oogonia proliferate forming clusters, denominated nests (Figure 16A and B). In 
these, the oogonia associate to the somatic cells of epithelial origin, differentiate, and form a new 
germline cyst (Figure 16C–E) [30]. Within the cyst, oogonia proliferate or enter into meiosis giving 
rise to germline cysts of prophase oocytes (Figure 16F–K). Isolated oogonia, oogonia inside cysts, 
cysts containing oocytes, and pre-follicle cells start occupying the inside of the same nest [16, 30].

After the formation of the ovarian follicle (Figure 16L), the oocyte follows its growth (Figure 16M), 
remaining connected to the germinal epithelium through a certain extension of the basement 
membrane shared between the follicle cells and the epithelial cells (Figure 16N) [16, 30, 33].

Figure 15. Histological section of the ovary in C. schwartzi — Reticulin method. The germinal epithelium is totally 
separated from the other somatic components (A). Detail of the germinal epithelium on basement membrane (B). Note 
the sharing of the basement membrane between two oocytes (C). Basement membrane (arrow), primary growth oocyte 
(pg), oogonia (g), cysts (c), germinal epithelium (ge), pre-follicle cells (pf), and follicle cells (f).
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Figure 16. Folliculogenesis in a totally differentiated ovary of A. nigrofasciata. (A and B) Cell nests (n) in the germinal 
epithelium (ge). (C) Differentiated oogonia (g) isolated in the germinal epithelium. (D and E) Germline cysts of oogonia. 
(F and G) Cysts of leptotene oocytes (lo). (H) Cyst of zygotene oocytes (zo). (I and J) Cysts of pachytene oocytes (po). 
(K) Cyst of late pachytene oocytes (lpo) with pre-follicle cells (pf) invading the cyst and individualizing the oocytes. 
(L) Early diplotene oocyte (do) with one nucleolus (nu). (M) Primary growth oocyte (pg) connected to the germinal 
epithelium (ge). (N) Detail of (M), showing the region of sharing of the basement membrane (bm) between the oocyte 
and the germinal epithelium. Follicle cells (f), ovigerous lamellae (la), ovarian lumen (lu), germline cysts (c), nucleus 
(n), somatic cells (s), secondary growth oocyte (sg), and epithelial cell (ec). Staining: periodic acid Schiff + hematoxylin 
+ metanil yellow.
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Once the ovarian follicle is formed, i.e., the folliculogenesis process is complete, the oocyte 
effectively initiates its primary growth [36–38]. From here, the oocytes will be ready to 
respond to the stimuli that lead to the incorporation of the yolk, and therefore they undergo 
maturation and subsequent ovulation or spawning [35–38].

The species T. albonubes, A. nigrofasciata, and C. schwartzi analyzed here presented sexual 
maturity, and they were able to spawn after 180, 150, and 540 days postfertilization.

3. Conclusion

When analyzing different representatives of Teleostei, it can conclude that the processes 
involved in female gonadal differentiation are quite similar and it is possible to differentiate 
supposedly female and male gonads, even in the early development stages, independent on 
being a basal or derived species.

In the three species analyzed here, representatives of basal and derived taxa in Teleostei, the 
beginning of the female gonadal differentiation is marked by the entrance of the oogonia into 
meiosis, in early stages of the gonadal development, when the gonad is still a compact tissue. 
Thus, the formation of the ovarian cavity occurs only after the entrance into meiosis of the 
oocytes, preceding the formation of ovigerous lamellae in T. albonubes and A. nigrofasciata. In 
C. schwartzi, the formation of the cystovarian and the establishment of the ovigerous lamellae 
occur simultaneously. Despite the differences, the folliculogenesis is a very conserved process 
among basal and derived taxa, with no difference between species.

Thus, although there are differences in the chronology of the differentiation among species 
of Teleostei, the processes involved are quite similar and culminate in the formation of analo-
gous structures in the different fishes. Therefore, these data showed here can be applied to the 
most different groups of Teleostei fish.

4. Complementary material

Methodology used: Larvae and juveniles were obtained from spawns of adult of the three 
 species. After hatching, part of the brood was sampled periodically covering the period of 
histologically discernible sex differentiation. The specimens were anesthetized with 0.1% 
benzocaine and killed according to the institutional animal care protocols and approval 
(175/2009-CEEA-IBB/UNESP). The gonadal tissues were fixed by immersion in 2% 
 glutaraldehyde and 4% paraformaldehyde in Sorensen’s phosphate buffer (0.1 M, pH 7.2) for 
at least 24 h.

For light microscopy, the gonadal tissue from larvae and juveniles was embedded in his-
toresin (Leica HistoResin). Serial sections (3μm) were stained with periodic acid Schiff (PAS) + 
hematoxylin + metanil yellow [39] and with the reticulin method that enhances the basement 
membranes. Gonadal tissues were evaluated by using a computerized image analyzer (Leica 
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Qwin 2.5). The reticulin stain [40] uses an oxidizing agent, potassium permanganate, to oxi-
dize aldehyde groups. Subsequently, the oxidized aldehyde groups are detected by the depo-
sition of positive silver ions followed by their reduction using formalin. The result is a black 
hue of the reticulin fibers. As reticulin fibers are part of basement membranes, the method 
clearly detects basement membranes.

For electron microscopy, the gonadal tissue from larvae and juveniles was postfixed for 
2 h in the dark in 1% osmium tetroxide (in the same buffer). To highlight the cellular struc-
tures, block-staining was carried out using an aqueous solution of 5% uranyl acetate for 2 h. 
Subsequently, the specimens were dehydrated and embedded in Araldite, sectioned, and 
post-stained with a saturated solution of uranyl acetate in 50% ethanol and 0.2% lead citrate 
in NaOH (1 N). Electron micrographs were obtained using a Tecnai Spirit Fei Company 
Transmission Electron Microscope.
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Abstract

The thalassinideans comprise the infraorders Axiidea and Gebiidea, two distinct groups 
of decapods that have converged morphologically and ecologically as burrowing forms, 
commonly known as mud lobsters and mud or ghost shrimps. These groups are an 
important component of the macroinfauna of intertidal and subtidal environments and 
are distributed throughout the world, with species diversity increasing from high lati‐
tudes toward the equator. These species are burrowing benthic decapods, with more 
than 95% of species inhabiting shallow waters in marine and estuarine environments, 
exerting considerable influence over the structure of benthic communities through their 
ability to bioturbate the sediments, with effects on the infauna and seagrasses in coastal 
environments. Upogebia vasquezi has an ample geographic distribution, it is typically 
found in rocky outcrops near mangroves. This species reproduces year round, which is 
subjected to strong seasonal fluctuations in salinity due to the local precipitation regime. 
The Amazon Macrotidal Mangrove Coast, representing 10% of the Brazilian coastline 
and encompassing more than 56% of the country’s mangrove forests, is a high priority 
area for conservation. This chapter aims to elucidate the reproductive traits of U. vasquezi 
with a revision about the known ecological information available for thalassinidean spe‐
cies all over the world.
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1. Introduction

The Thalassinidea (infraorders Axiidea de Saint Laurent 1979 and Gebiidea de Saint Laurent, 
1979) designates a group of decapods popularly known as “mud shrimps,” “mud lobsters,” 
“ghost shrimps,” or “corruptos” in Portuguese [1–3]. They are among the most common bur‐
rowing shrimps frequently found in high densities in coastal and sublittoral sediments, from 
brackish to euryhaline environments [4]. Most species are marine or estuarine and use shel‐
tered sites as habitats, preferably estuaries, bays, lagoons, beaches, and seas, both in tropical 
countries and in temperate regions worldwide, and their distribution ranges from shallow 
mid‐ and infralittoral to deeper zones [5–7].

These species are also very sensitive to any type of disturbance in their environments, thus 
serving as effective bioindicators [1]. The potential to accumulate pollutants in their tissues 
is higher than that of other crustaceans such as crabs and sand crabs, which is useful in 
the assessment of coastal environments polluted by domestic sewage and industrial waste 
[1, 8]. On the Amazon Coast, for instance, thalassinidean species have not been found on 
coastal sites that directly receive untreated domestic effluents, and have only appeared in less 
anthropized, more preserved regions [9].

Some species also have indirect economic value, as they are used as bait in artisanal and 
recreational fishing [6, 10–15]. Its capture is usually performed using “prawn pumps,” with 
consequent trampling and digging in several locations, resulting in relevant impacts to the 
ecosystems where they dwell [16], as well as on the associated biota [17]. Furthermore, thalas‐
sinidean populations might occasionally suffer a sharp decrease themselves or even be at risk 
of extinction [14]. They have been reportedly used as food in some eastern countries, e.g., 
Austinogebia edulis (Ngoc‐Ho and Chan, 1992), which is commercialized in Taiwan [18]. On 
the other hand, they might also cause harm in oyster farming, provoking sediment instabil‐
ity, that impacts on the growth of cultivated organisms or even cause their mortality [19–21].

Despite the ecological relevance of this species in benthic communities of the mid‐littoral, 
very little is known about its biology, especially regarding reproduction and larval develop‐
ment [10, 22–24], mostly due to its cryptic habit and difficulties in capturing specimens [25].

The aim of this chapter is to provide a brief revision on the biology of Axiidea and Gebiidea 
crustaceans and characterize the Amazon coastal habitats where these organisms are found, 
with emphasis on Upogebia vasquezi (Ngoc‐Ho, 1989), one of the most abundant species of this 
group in the region.

2. Systematics and morphology

The evolutionary position of thalassinidean shrimps inside decapods is still quite controver‐
sial, and this is reflected in frequent systematic revisions. These species have already comprised 
the Infraorder Anomura MacLeay, 1838, together with hermit crabs, porcellanids, and galatids, 
among other different representatives of this taxon [26–28]. Although this classification was based 
on the morphological characteristics of adults, some similarities concerning larval morphology 
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were also observed, e.g., the reduction of a pair of marginal bristles of the telson in the zoeal stage 
[27], which reinforced indications of a relationship between hermit crab species and this group.

Notwithstanding, important distinctions have also been observed, which indicate a strong 
association between Callianassidae Dana, 1852 and Axiidae Huxley, 1879 and between 
Upogebiidae Borradaile, 1903 and Laomediidae Borradaile, 1903 with other Anomurans 
(Figure 1), suggesting a inhomogeneous group [29], which would later be called “nephropoi‐
dean” and “anomuran” larvae, respectively [30].

Thalassinideans were later considered a distinct group, at the same hierarchical level as ano‐
murans [31], until they were pointed out as a monophyletic taxon, comprising the infraorder 
Thalassinidea (Latreille, 1831) [32]. The definition of this infraorder was based on some char‐
acteristics shared by the species that comprise it, namely, the complex burrow systems they 
built and the presence of thick feathery bristles on their second pair of pereiopods [32–34].

However, differences observed between two of the main families that comprise Thalassinidea 
(Callianassidae and Upogebiidae) suggested that they could have distant phylogenetic origins 
[35]. Thus, the similar habits between these two taxa (reclusive habits, burrows) would have 
converged throughout their evolutionary history [35]. This assumption corroborated the indica‐
tions [28] of the existence of two different groups based on larval morphology. This morpholog‐
ical evidence was supported by molecular phylogeny analyses and resulted in the suggestion of 
dividing this taxon into two infraorders: Axiidea De Saint Laurent, 1979 and Gebiidea De Saint 
Laurent, 1979 [36, 37], which has been adopted by several authors [38–42]. Another nomencla‐
ture was proposed [43] for these taxa: Callianassidea Dana, 1852 and Thalassinidea Latreille, 
1831, respectively. However, the names Axiidea and Gebiidea, which were first proposed by 
Saint Laurent [44], are the most widely accepted and consistently used to designate the two 
infraorders, which recognizably comprise thalassinidean decapods [42].

According to the most recent classification [40], the following families are included in the 
infraorder Axiidea: Axiidae Huxley, 1879; Callianassidae Dana, 1852; Ctenochelidae Manning 
and Felder, 1991; Micheleidae Sakai, 1992; and Strahlaxiidae Poore, 1994; whereas the 
infraorder Gebiidea is comprised of: Axianassidae Schmitt, 1924; Laomediidae Borradaile, 1903; 
Thalassinidae Latreille, 1831; and Upogebiidae Borradaile, 1903 [40]. Since 1792, when the first 
thalassinidean species were described, currently cataloged as Upogebia pusilla (Petagna, 1792), 

Figure 1. Representative specimens of infraorders Axiidea (Lepidophthalmus siriboia) and Gebiidea (Upogebia vasquezi) 
collected in the Amazon coastal region. Scale in millimeters. Photos: Dalila Silva.
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Callianassa tyrrhena (Petagna, 1792), and Callianassa candida (Olivi, 1792), information available 
on this group has increased considerably, mainly over the last 100 years, and Callianassidae, 
Upogebiidae, and Axiidae are the most extensively studied ones [7].

Thalassinidean decapods encompass a relatively small number of species, with approximately 
646 catalogued species [38, 39]. This number has recently increased to approximately 674 spe‐
cies, with 465 Axiidea and 209 Gebiidea [45]. Morphologically, these organisms share charac‐
ters such as the presence of a fairly calcified carapace, symmetrical and extended, while the 
abdomen is feebly calcified, ending on a well‐developed tail fan (telson + uropods) [46]. Some 

Figure 2. Upogebia vasquezi, adult female. (A) Dorsal view; (B) detail of the rostrum; (C) detail of part of the abdomen 
with pleopods and telson, lateral view; (D) embryos adhered to pleopods in the hatching phase, lateral view. Photos: (A) 
Rory Oliveira; (B)–(D) Danielly Oliveira.
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species are more similar to lobsters with a highly calcified exoskeleton (e.g., Thalassinidae 
and Axiidae); while others have a more elongated body and a slightly calcified exoskeleton, 
better adapted to the “burrowing” life style (e.g., Callianassidae) [45].

Differences between the representatives of the infraorders Axiidea and Gebiidea are mainly 
the shape of the anterior part of the carapace, the structure of appendages, and larval mor‐
phology [30, 47]. Gebiidea have a chelated or subchelated first pair of pereiopods, and the sec‐
ond pair is subchelated or simple (never are both pairs chelated), whereas Infraorder Axiidea 
has the two first pairs of pereiopods chelated [40]. In addition, Axiidea are frequently hetero‐
chelic, as opposed to Gebiidea, whose first pair of pereiopods (chelipods) are of the same size, 
as can be observed in the two species frequently found on the Amazon coast: Lepidophthalmus 
siriboia (Axiidea) and U. vasquezi (Gebiidea) (Figure 1).

U. vasquezi has a triangular rostrum, whose lateral edges are nearly straight and longer than 
the ocular peduncles, with presence of postocular spine [47]. The abdomen is robust, broader 
than long (Figure 2A), and the entire body is adorned with bristles, from the anterior por‐
tion, on the cephalic appendages (Figure 2B), to the abdominal appendages (pleopods) and 
telson (Figure 2C). Females carry the eggs on the pleopods until hatching, in zoea I stage 
(Figure 2D), with approximately 0.88 mm of carapace length [48].

3. Distribution

Thalassinideans are distributed around the world, with a higher concentration of species in 
the regions located at low latitudes; e.g., the three major groups Callianassidae, Upogebiidae, 
and Axiidae occur mainly between latitudes 25°N and 10°N and between 0° and 15°S [7]. The 
highest percentage of species (36.5%) was recorded in the Western Indian‐Pacific, but they are 
also found in the eastern and western portions of the Atlantic, including the Caribbean Sea 
and the Gulf of Mexico; as well as in the Mediterranean region [41, 49, 50].

They are mostly marine species, usually found in sheltered habitats, such as estuaries, bays, 
lagoons, beaches, and seas, both in tropical countries and in temperate regions worldwide, 
and their distribution ranges from shallow mid‐ and infralittoral to deeper zones [5–7]. Most 
species (95%) occur in shallow waters (0–200 m), and few have been found in depths lower 
than 2000 m [7, 49].

In Brazil, the occurrence of 43 species has been registered [47, 51], and they are popularly 
known as “corruptos” [1]. Their distribution ranges from Amapá (Northern region) to Rio 
Grande do Sul (Southern Region) in different habitats, such as bottoms of calcareous waters, 
coral reefs, rocks, sand, mud, near seaweed meadows, surrounding mangrove vegetation, 
and in deeper waters on the continental shelf and slope, down to a depth of 820 m [47].

Species of only two families have occurred on the Amazon coast: Callianassidae (Axiidea) and 
Upogebiidae (Gebiidea) [47], typically found in very shallow waters (down to a depth of 2 m) 
of estuarine regions with decreased salinity [7, 47]. Only 13 species has been recorded in the 
State of Pará [47, 52, 53] Brazil (Table 1).
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Infraorder Family Gender Species Geographical distribution

Gebiidea (De Saint 
Laurent, 1979)

Upogebiidae 
Borradaile, 1903

Upogebia (Leach, 
1814)

U. acanthura 
(Coelho, 1973)

Western Atlantic: Gulf of Mexico 
and the Bahamas, Antilles, 
northern South America and Brazil 
– from Pará to Pernambuco and 
along Espírito Santo.

U. brasiliensis 
(Holthuis, 1956)

Western Atlantic: Belize, French 
Guiana, Suriname, and Brazil – 
from Pará to Santa Catarina.

U. marina (Coelho, 
1973)

Western Atlantic: Venezuela and 
Brazil – from Pará to São Paulo.

U. paraffinis 
(Williams, 1993)

Western Atlantic: Brazil – Pará and 
from Ceará to Paraná.

U. vasquezi (Ngoc‐
Ho, 1989)

Western Atlantic: south of Florida, 
Bahamas, Central America, 
Antilles, Venezuela, and Brazil – 
from Pará and Maranhão to São 
Paulo.

Axiidea (De Saint 
Laurent, 1979)

Callianassidae 
(Dana, 1852)

Corallianassa 
Manning, 1987

C. longiventris (A. 
Milne Edwards, 
1870)

Western Atlantic: Florida, 
Bermuda, Antilles, and Brazil 
– Rocas, and from Pará to 
Pernambuco.

Cheramus Bate, 
1888

C. marginatus 
(Rathbun, 1901)

Western Atlantic: Florida, Antilles, 
and Brazil – from Amapá to Rio de 
Janeiro.

Callichirus 
(Stimpson, 1866)

C. major (Say, 
1818)

Western Atlantic: North Carolina to 
Florida, Gulf of Mexico, Venezuela 
and Brazil – Rio Grande do Norte, 
Pernambuco, and from Bahia to 
Santa Catarina.

Lepidophthalmus 
(Holmes, 1904)

L. siriboia (Felder 
and Rodrigues, 
1993)

Western Atlantic: Florida, Gulf of 
Mexico, Antilles, and Brazil – from 
Pará to Bahia.

Neocallichirus 
(Sakai, 1988)

N. grandimana 
(Gibbes, 1850)

Western Atlantic: Florida, Gulf of 
Mexico, Bermuda, Antilles, and 
South America, and Brazil – from 
Pará to Bahia.

Sergio (Manning 
and Lemaitre, 
1994)

S. guara 
(Rodrigues, 1971)

Western Atlantic: Brazil – from 
Pará to São Paulo.

Marcusiaxius 
(Rodrigues and 
Carvalho, 1972)

M. lemoscastroi 
(Rodrigues and 
Carvalho, 1972)

Western Atlantic: Central America, 
Colombia, Venezuela, and Brazil – 
Amapá, Pará, and Ceará.

Dawsonius 
(Manning and 
Felder, 1991)

D. latispinus 
(Dawson, 1967)

Western Atlantic: Florida and 
Brazil – from Amapá to Alagoas.

Table 1. Geographical distribution of thalassinidean species (Gebiidea and Axiidea), with occurrence registered on the 
coast of Pará.
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The distribution of U. vasquezi encompasses the Western Atlantic, ranging from Florida and 
several islands in the Caribbean Sea region (such as Aruba and Bonaire), through Central 
America, Bahamas, Dominican Republic, Barbuda, Antigua, Barbados, Tobago, Mexico, 
Panama, Venezuela, to Brazil: from Pará to São Paulo [47, 50, 53, 54] (Figure 3). It occurs in 
shallow waters, mostly down to depths of 2 m [7], dwelling in burrows excavated in the sedi‐
ment of the intertidal zone [47].

4. Amazon coastal habitats

The coast of Pará accounts for 6.6% of the Brazilian coast, and the extension of mangrove area 
covers approximately 2176 km2 [55] in the northeastern portion of the state alone, correspond‐
ing to 1.2% of the global mangrove area (181,000 km2) [55–57]. The region known as “Amazon 
Macrotidal Mangrove Coast” extends from Marajó Bay (PA) to São José Bay (MA), totalling 
650 km of coast [55]. It is characterized by a wide coastal plain and an extensive adjacent conti‐
nental shelf (∼200 km wide), which is irregular and cut through by several estuaries [55]. This 
region is subjected to a quite dynamic tidal regime and currents, with semidiurnal macrotides 
ranging from 4 to 7.5 m of amplitude [48, 55, 58].

Figure 3. Distribution of Upogebia vasquezi in the American continent, according to occurrence records available in 
references [47, 50, 53, 54].
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Several habitats comprise the Amazon coast, e.g., sandy beaches and estuaries, temporary tide 
pools, muddy coastal plains, and rocky outcrops, where several decapod species are found, 
including thalassinideans. For instance, L. siriboia occurs mostly on beaches with sandy‐muddy 
sediment [9, 59], Callichirus major might be found in habitats similar to L. siriboia, on the most 
exposed portion of the beach (Danielly B. Oliveira, personal observation), whereas U. vasquezi 
inhabits burrows sheltered under rocky outcrops with sandy‐muddy sediment [48, 53].

5. Burrows

One of the characteristics shared by thalassinidean shrimps is their reclusive lifestyle, with the 
construction of burrows, which are among the deepest and most complex systems recorded 
in transitional marine environments [6]. They are built on sandy and muddy surfaces of the 
coastal zone, serving as shelter and protection against predators, as well as feeding and repro‐
duction sites [1, 6, 25]. Thanks to the fossilization of burrows on these species, paleontologists 
gathered important indications about ancient coastlines [6].

Thalassinidean burrows are considered unique environments, whose physical‐chemical con‐
ditions are strongly influenced by the behavior of these species, mostly due to their biotur‐
bation activities, which have effects on nutrient cycling (for example, see [60–62]) and also 
ensure high availability of dissolved oxygen, aside from providing protection from the direct 
action of waves [1]. The process of burrow construction increases the inner surface area of the 
sediment, in the oxygenated water‐sediment interface [33, 63], and causes physicochemical 
changes, thus increasing the metabolic activity in the sediment [64].

In regions with intense thalassinidean aggregations, there is a change in the sediment structure, 
which becomes more porous and has increased concentration of smaller particles and organic 
matter [65]. Such conditions influence the structure of the local benthic community [66], creat‐
ing, changing, and maintaining a mosaic of habitats for a wide range of organisms [67].

Burrow structure is specific for each species, and it is related to their feeding mode, as well as 
to environmental conditions and the population density of these crustaceans in their habitats 
[63]. Externally, they might be divided into two main types: burrows with and without sedi‐
ment heaps around their openings [63]. Regarding shape, they might be built in a single U‐ or 
Y‐shaped tunnel, or in several sediment layers or branched, deep tunnels [63], which might 
be interconnected and might shelter at least one specimen [68].

Most Upogebia species, for example, live in relatively shallow, U‐shaped burrows, e.g., U. 
africana (Ortmann, 1894) [69], U. stellata (Montagu, 1808) and U. deltaura (Leach, 1815) [70], 
U. tipica (Nardo, 1869) [71] U. noronhensis (Fausto‐Filho, 1969) [23] U. major (De Haan, 1841) 
[66] and U. vasquezi [72]). Some species of this group build Y‐shaped burrows in sandy‐
muddy habitats, like U. omissa (Gomes Corrêa, 1968), U. yokoyai (Makarov, 1938), and U. 
carinicauda (Stimpson, 1860) [25, 73, 74].

Burrows of U. vasquezi are built in predominantly sandy‐muddy sediment, with small and 
abundant rock fragments, located below extensive outcrops comprised of rocks of several 
sizes. These outcrops are located near mangroves on some Amazon estuarine beaches, and 
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exposed portion of the beach (Danielly B. Oliveira, personal observation), whereas U. vasquezi 
inhabits burrows sheltered under rocky outcrops with sandy‐muddy sediment [48, 53].

5. Burrows

One of the characteristics shared by thalassinidean shrimps is their reclusive lifestyle, with the 
construction of burrows, which are among the deepest and most complex systems recorded 
in transitional marine environments [6]. They are built on sandy and muddy surfaces of the 
coastal zone, serving as shelter and protection against predators, as well as feeding and repro‐
duction sites [1, 6, 25]. Thanks to the fossilization of burrows on these species, paleontologists 
gathered important indications about ancient coastlines [6].

Thalassinidean burrows are considered unique environments, whose physical‐chemical con‐
ditions are strongly influenced by the behavior of these species, mostly due to their biotur‐
bation activities, which have effects on nutrient cycling (for example, see [60–62]) and also 
ensure high availability of dissolved oxygen, aside from providing protection from the direct 
action of waves [1]. The process of burrow construction increases the inner surface area of the 
sediment, in the oxygenated water‐sediment interface [33, 63], and causes physicochemical 
changes, thus increasing the metabolic activity in the sediment [64].

In regions with intense thalassinidean aggregations, there is a change in the sediment structure, 
which becomes more porous and has increased concentration of smaller particles and organic 
matter [65]. Such conditions influence the structure of the local benthic community [66], creat‐
ing, changing, and maintaining a mosaic of habitats for a wide range of organisms [67].

Burrow structure is specific for each species, and it is related to their feeding mode, as well as 
to environmental conditions and the population density of these crustaceans in their habitats 
[63]. Externally, they might be divided into two main types: burrows with and without sedi‐
ment heaps around their openings [63]. Regarding shape, they might be built in a single U‐ or 
Y‐shaped tunnel, or in several sediment layers or branched, deep tunnels [63], which might 
be interconnected and might shelter at least one specimen [68].

Most Upogebia species, for example, live in relatively shallow, U‐shaped burrows, e.g., U. 
africana (Ortmann, 1894) [69], U. stellata (Montagu, 1808) and U. deltaura (Leach, 1815) [70], 
U. tipica (Nardo, 1869) [71] U. noronhensis (Fausto‐Filho, 1969) [23] U. major (De Haan, 1841) 
[66] and U. vasquezi [72]). Some species of this group build Y‐shaped burrows in sandy‐
muddy habitats, like U. omissa (Gomes Corrêa, 1968), U. yokoyai (Makarov, 1938), and U. 
carinicauda (Stimpson, 1860) [25, 73, 74].

Burrows of U. vasquezi are built in predominantly sandy‐muddy sediment, with small and 
abundant rock fragments, located below extensive outcrops comprised of rocks of several 
sizes. These outcrops are located near mangroves on some Amazon estuarine beaches, and 
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are submerged during high tide and exposed during low tide (Danielly B. Oliveira, personal 
observation). Regarding its morphology, the burrows of U. vasquezi are relatively shallow 
and U‐shaped [72], and in its natural habitat, it is possible to observe the opening of the bur‐
rows excavated in the sediment by just removing some rocks from the outcrop (Danielly B. 
Oliveira, personal observation).

6. Ecological relationships

Several organisms associated to thalassinideans occur inside their burrows, using them as 
shelter and also for feeding. Examples are some alpheid shrimp species, as Leptalpheus axi-
anassae (Dworschak and Coelho, 1999), the crabs Pinnixa gracilipes (Coelho, 1997); Pinnixa 
transversalis (H. MilneEdwards and Lucas, 1842); and Austinixa aidae (Righi, 1967), as well as 
invertebrates phoronids, polychaetes, nemertins, copepods, and gobiidae fish [20, 68, 75–80]. 
Some species might be parasitic to thalassinideans; e.g., isopods are prevalent ectoparasites of 
Upogebia (Leach, 1814) (for example, see [4, 5, 81–83]). There are also endoparasites of thalas‐
sinids, such as trematode cysts, Acanthocephala [4], and copepods infesting gills, pereiopods, 
and egg masses (e.g., [68]).

In addition to these species, there is a varying fauna that coexists in the sandy and muddy 
plains inhabited by thalassinideans, not necessarily inside the burrows, which are also influ‐
enced by the dynamics of “corruptos” (mud crabs). For example, gastropods, bivalves, echi‐
ura, echinodermata, polychaetes, and anemones comprise of an important fraction of the 
macrozoobenthos biomass in Upogebia issaeffi habitats (Balss, 1913) [84]. Stomatopods spe‐
cies, bivalves, and echiura, along with other sympratic thalassinids (e.g., Upogebia sp. and 
Lepidophthalmus sp.) [80], are macrofauna also associated to habitats of Axianassa australis 
(Rodrigues and Shimizu, 1992) on the tropical beaches of the Brazilian coast [80].

The invading intertidal fish species Omobranchus punctatus (Valenciennes, 1836) (Osteichthyes: 
Blenniidae) and the shrimp Alpheus estuariensis (Christoffersen, 1984) (Figure 4) have been 

Figure 4. Species inhabiting burrows of Upogebia vasquezi in the Amazon estuarine region. (A) Omobranchus punctatus; (B) 
Alpheus estuariensis. Photos: Rory Oliveira.
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found in burrows of U. vasquezi on the Amazon coast (Danielly B. Oliveira, personal obser‐
vation). Gobbidea fish are common dwellers of burrows of Upogebiidea, feeding mostly on 
small crustaceans [85].

7. Reproduction and life cycle

7.1. Larval biology

Information available on larval biology of thalassinidean shrimps (infraorders Axiidea and 
Gebiidea) is relatively scarce, mainly because the development of larval stages of most species 
have not yet been described, thereby hindering the identification of specimens captured in 
natural environments. Among the available descriptions, many of them are based on speci‐
mens collected in zooplankton samples, which might mislead species identification [86], and 
in others, the characterization of the different development stages [63] are frequently poorly 
understood.

Only 12.5% of thalassinidean species and 25% of thalassinidean genera are estimated to have 
a known larval development, and Upogebia is the group with the highest number of spe‐
cies whose larvae have been described [87]. In absolute numbers, approximately 80 species 
(including unidentified morphotypes of some genera) have had their larval cycle partially or 
completely described [87]. Some of these species have also had their post‐larval stage (or first 
juvenile stage) morphologically described (e.g., Upogebia affinis (Say, 1818): [88]; U. paraffinis 
(Williams, 1993): [89]; L. siriboia: [90]).

Regarding the 13 thalassinidean species whose occurrence in the Amazon coastal region has 
been recorded, only four have already had their larval and/or juvenile development stages 
partially or completely described: C. major, L. siriboia, U. paraffinis, and U. vasquezi (Table 2).

The larval phase of thalassinideans is predominantly planktonic, and in most species, it is 
the only life‐cycle stage where they remain outside their burrows [6]. The complete suppres‐
sion of larval stages during development is only known for Upogebia savignyi (Strahl, 1862), a 
sponge commensal [91].

Species Developmental stages References

Callichirus major ZI–ZV, M [95]

Lepidophthalmus siriboia Prezoea, ZI–ZIII, M, JI [90]

Upogebia paraffinis ZI–ZV, M [89]

Upogebia vasquezi ZI–ZIV, M [48]

Note: Z, Zoea; M, Megalopa; J, juvenile. Roman numbers represent the number of developmental stages described.

Table 2. Thalassinidean species with occurrence on the coast of Pará whose larval and/or juvenile development stages 
have already been partially or completely described.
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Thalassinideans have varying developmental patterns, generally one to eight zoeal stages 
[86, 92]. Among Axiidea, a reduced larval cycle is common, with two to three development 
stages (e.g., Callichirus kraussi (Stebbing, 1900) as Callianassa kraussi [93]; Pestarella tyrrhena 
(Petagna, 1792) as C. tyrrhena [22]; Lepidophthalmus sinuensis (Lemaitre and Rodrigues, 1991), 
Lepidophthalmus louisianensis (Schmitt, 1935) [94], and L. siriboia [90]). Some species in this 
group also have a long planktonic larval development, such as C. major and Callichirus isla-
grande (Schmitt, 1935), which undergo 4–5 zoeal stages [95, 96], or Boasaxius princeps (Boas, 
1880) and Nihonotrypaea petalura (Stimpson, 1860), with 7–8 zoea [97, 98].

Regarding Gebiidea, a long larval development is frequent: Naushonia crangonoides (Kingsley, 
1897) undergoes six to seven zoeal stages until it reaches the post‐larval stage [99]; and A. 
australis (Rodrigues and Shimizu, 1992) shows up to eight zoeal stages [100]. The most com‐
mon larval development pattern of Upogebiidea is the presence of three to four zoeal stages 
(e.g., Upogebia kempi (Shenoy, 1967) [101]; Upogebia darwinii (Miers, 1884) [102]; U. major [10]; 
U. pusilla [103]; U. issaeffi [104]; U. yokoyai [63]; U. vasquezi [48]).

The life cycle of U. vasquezi larvae has four zoeal stages [48]. When immature, the eggs of 
this species are yellowish (Figure 5A), their color start becoming more orange by the end of 
embryo development, in the hatching stage, when the eyes also become visible (Figure 5B). 
Larvae hatch in Zoea I, going through three other zoeal stages and one megalopa until reach‐
ing the first juvenile stage (Figure 5C–H).

Only C. major, L. siriboia, and U. vasquezi larvae have already been found in estuarine zoo‐
plankton samples from the Amazon coast [53]. Among the studies conducted with these spe‐
cies in the region, the taxonomic studies stand out, namely the morphological description of 
larval developmental stages of L. siriboia [90], as well as the description of mouth appendages 
and stomachs of larvae [105], analysis of the lecithotrophic behavior of this species during 
larval cycle [24], and abundance of larvae in the estuarine zooplankton [53]. With regard to C. 
major, the importance of feeding during larval development has been analyzed (as opposed 
to the lecithotrophic behavior of L. siriboia) [106], as well as the abundance of estuarine plank‐
tonic larvae throughout an annual cycle [53].

U. vasquezi was the most studied thalassinidean species in the region regarding larval biology, 
with description of larval morphology [48, 107], analysis of the effect of salinity on survival 
and duration of larval stages, its implication on larval migration [108], and occurrence of 
planktonic larvae along a salinity gradient in the Amazon estuary [53].

7.2. Effects of biotic factors on larval development

Diverse environmental factors influence developmental rates, number of stages, and survival 
of larvae of marine invertebrates [109]. Temperature and salinity are among the physicochem‐
ical factors that have a higher influence on survival and larval development of marine deca‐
pods [110]. Temperature might influence the growth of decapods during different life‐cycle 
phases, from larvae and post‐larvae to juveniles and adults [111], and trigger the acceleration 
or decrease of larval developmental rate, and impact metabolism and development, as well as 
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the seasonality of larvae emergence in some plankton species [110]. For instance, temperature 
mainly influences the duration of decapod larval stages, which are prolonged in stressful situ‐
ations (for example, see [22, 112, 113]).

Saline concentration is generally constant in open sea, whereas it might seasonally fluctuate in 
coastal and estuarine zones, both regionally and locally [110]. Hence, salinity is considered an 

Figure 5. Developmental stages of Upogebia vasquezi. (A) Eggs in the initial developmental stage; (B) eggs in the final 
developmental stage; (C) Zoea I; (D) Zoea II; (E) Zoea III; (F) Zoea IV; (G) Megalopa (without antennas); (H) Juvenile I. 
Photos: Danielly Oliveira.

Theriogenology168



the seasonality of larvae emergence in some plankton species [110]. For instance, temperature 
mainly influences the duration of decapod larval stages, which are prolonged in stressful situ‐
ations (for example, see [22, 112, 113]).

Saline concentration is generally constant in open sea, whereas it might seasonally fluctuate in 
coastal and estuarine zones, both regionally and locally [110]. Hence, salinity is considered an 

Figure 5. Developmental stages of Upogebia vasquezi. (A) Eggs in the initial developmental stage; (B) eggs in the final 
developmental stage; (C) Zoea I; (D) Zoea II; (E) Zoea III; (F) Zoea IV; (G) Megalopa (without antennas); (H) Juvenile I. 
Photos: Danielly Oliveira.

Theriogenology168

ecological and physiological factor of extreme importance for species in these environments 
[110], with impact on the development, survival, feeding, and growth rate, as well as on shed‐
ding cycles, metabolic rates, and behavior [113].

The reproductive behavior (life‐cycle strategies) of decapods might also be influenced by 
salinity. Most estuarine species export their larvae to marine coastal zones, where salinity is 
more stable and, on average, higher than in the parental habitat, whereas others retain their 
initial larval stages inside the estuarine environment [112, 113]. For instance, some typical 
estuarine crabs increase their swimming activity in higher salinities to avoid being trans‐
ported outside the estuary [114].

Studies analyzing the effect of salinity on larval development of decapods are also useful to 
identify which reproductive strategy is adopted by the species (either retention or expor‐
tation) due to the fact that saline limits tolerated by decapod larvae under experimental 
conditions coincide with their distribution along salinity gradients in the field [113]. In the 
coastal region of Pará, the effect of salinity on larval development of the crabs Ucides cordatus 
(Linnaeus, 1763), Uca vocator (Herbst, 1804), and Uca rapax was analyzed in the laboratory, 
obtaining decreased survival rates under lower salinity conditions, thus indicating a strategy 
of larval dispersal and exportation [115–118].

7.3. Reproduction, dynamics, and secondary production

Studies on the population dynamics and reproductive biology of thalassinideans have been 
developed in several locations worldwide, thus contributing to understanding the life cycle 
of these species (for example, see [14, 23, 80, 119–126]). Most of these studies were conducted 
in temperate and subtropical regions and few have shown estimates of population dynamic 
parameters for this group. On the Amazon coast, only the population dynamics of L. siriboia 
has been studied [59].

Secondary production might be defined as the production of biomass carried out by heterotro‐
phic organisms, including animals, fungi, and heterotrophic bacteria; it represents an estimated 
biomass made available for higher trophic levels [127]. Decapod crustaceans have a crucial con‐
tribution to secondary production in the habitats they inhabit. For example, even though their 
abundance is lower than that of other invertebrates, they account for an important fraction of 
productivity in coral reef ecosystems [128] and on sandy beaches at different latitudes [129].

Secondary production estimates are still quite scarce, mostly in the equatorial region (between 
latitudes 5°S and 5°N), with absence of studies on benthic macrofaunal populations of sandy 
beaches [130]. Only 12 decapod populations have been studied [130] at higher latitudes, on 
tropical and subtropical beaches, including the thalassinids U. pusilla [4] and C. major [131, 
132]. In Brazil, studies of this type have only been conducted in the Southern and Southeastern 
regions (for example, see [132–139]).

The capture of mud shrimps (Axiidea and Gebiidea) might cause changes in the target species 
and habitat and might influence resident communities and cause indirect effects on sediment 
structure [12, 13]). Excessive fishery efforts might lead to overexploitation of naturally abundant 
populations or even to the total disappearance of some species [12, 14]. Management plans and 
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efforts for the conservation of these species and recovery of their habitats must be based on their 
regional population and reproductive characteristics [14]. Thus, studies that investigate popula‐
tion dynamics and reproductive biology of thalassinideans in several locations are of utmost 
importance, especially in priority conservation areas.

Despite the importance of thalassinidean species on Amazon coastal habitats, very little are 
known on their ecology, mostly regarding burrow morphology, physiology, population 
dynamics, behavior, and larval description.
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