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Optimized operating conditions for complex systems can be attained by using 
advanced combinations of numerical and statistical methodologies. One of the most 

efficient and straightforward solutions relies on the application of statistical methods 
with an emphasis on the design of experiments (DoEs). Throughout the book, the 
design and analysis of experiments are conducted involving several approaches, 

namely, Taguchi, response surface methods, statistical correlations, or even fractional 
factorial and model-based evolutionary operation designs. This book not only presents 
a theoretical overview about the different approaches but also contains material that 

covers the use of the experimental analysis applied to several chemical processes. Some 
chapters highlight the use of software products to assist experimenters in both the 

design and analysis stages.

It helps graduate students, teachers, researchers, and other professionals who 
are interested in chemical process optimization and also provides a good basis of 

theoretical knowledge and valuable insights into the technical details of these tools 
as well as explains common pitfalls to avoid. The world’s leading pharmaceutical 

companies and local governments are trying to achieve their eradication.
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Preface

Optimized operating conditions for complex systems can be attained by using advanced combi‐
nations of numerical and statistical methodologies. One of the most efficient and straightfor‐
ward solutions relies on the application of statistical methods with an emphasis on the design
of experiments (DoEs). DoE deals with several factors where all of them are varied altogether,
instead of one at a time. The great advantage of implementing this strategy is its success to con‐
sider multiple interactions between the factors. Furthermore, it also significantly reduces the
number of runs necessary to extract meaningful information from data. Since the pioneer work
from Box and Wilson where for the first time a systematized approach was developed using
DoE to solve optimization problems, this proven methodology was applied successfully to a
large number of chemical and other related academic and industrial processes.

Throughout the book, the design and analysis of experiments are conducted involving several
approaches, namely, Taguchi, response surface methods, statistical correlations, or even frac‐
tional factorial and model-based evolutionary operation designs. This book not only presents a
theoretical overview about the different approaches but also contains material that covers the
use of the experimental analysis applied to several chemical processes. Some chapters highlight
the use of software products to assist experimenters in both the design and analysis stages.

This book helps graduate students, teachers, researchers, and other professionals who are inter‐
ested in chemical process optimization and also provides a good basis of theoretical knowledge
and valuable insights into the technical details of these tools as well as explains common pit‐
falls to avoid.

The book includes 10 chapters from several researchers and institutions around the world. I
would like to express my most sincere gratitude to all the contributor researchers for sharing
their work and expertise through this book.

I owe a debt of gratitude to Ms. Romina Skomersic for her outstanding support and help in
bringing out the book in the present form.

I’m also indebted to my research team, Mr. Nuno Couto, Mr. João Cardoso, and Ms. Daniela
Eusébio for their efforts in all the book stages and valuable suggestions during the review proc‐
ess.

Finally, my special thanks go to the Polytechnic Institute of Portalegre (my institution) and In‐
Tech-Open Science team for their concern and valuable support to make this book possible.

Valter Silva
Polytechnic Institute of Portalegre
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1. Introduction

Economic pressure and the need to target more competitive levels drive organizations to
invest in efficient methodologies to get solutions able to provide clear advantages in a very
demanding market. In this scenario, statistical approaches emerge as valuable tools to be used
in the chemical process industry. Indeed, the chemical industry uses a wide set of statistical
methodologies, ranging from descriptive approaches to complex optimization topics such as
Design of Experiments (DoE), always targeting safer, more repeatable and profitable solutions.

Chemical processes often present a complex nonlinear multivariate nature where several fac-
tors influence significantly the final outputs. Traditional one-by-one experiment optimization 
implies the testing of factors one at a time instead of conducting all of them simultaneously. 
This approach presents several drawbacks, namely requiring an excessive number of experi-
ments, missing the optimal set of factors and neglecting the interactions between the factors 
[1]. These interactions could play a key role on the system performance. Furthermore, this 
procedure is very time-consuming. This suggests the DoE approach rather than fundamental 
or mechanistic models [1–3]. Besides these clear advantages, the DoE implementation is an 
easy way to reduce the sources of variability in a process as well as is the first step to guide to 
an optimized solution [3–4].

From a practical standpoint, with DoE implementation, users can find the best solution for 
any measurable process within corresponding constraints. To do so, the following elements 
are required:

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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• An objective function to maximize or minimize a response.

• A predictive model able to describe the main trends of the system.

• Variables then can be adjusted to satisfy the process constraints.

One of the first steps to generate a good predictive statistical model based on DoE is to determine 
how far it is worth going in the number of factors that really affect the process. Previous data are 
of major relevance to select a small set of factors. On the other hand, when the users select too 
many factors, these are often unnecessary and always lead to complex problems to solve.

After selecting the factors and corresponding ranges, the experimental design should be 
run in a random way. At this stage, empirical models are generated and their adequacy 
should be evaluated by different statistical procedures such as R measures, analysis of vari-
ance (ANOVA) or diagnosis of residual abnormalities [5]. Now, response surface methodol-
ogy (RSM) should be used to provide the optimal operating conditions for different system 
responses. This allows generating polynomial functions which determine the minimum, the 
maximum or a desired value within a range for each response of interest. Optimization can 
be carried out considering a single response, or taking advantage of the desirability concept, 
multiple responses with different restrictions [6].

Also, the generated model can be used for robust design purposes [3]. In fact, the computer-
aided optimization might set the process on a sharp peak of response and in such manner the 
system will not be robust to variation transmitted from input variables. Advanced statistical 
methods (propagation of error is a valuable option among others) can be used to find the flats 
on response surfaces. These regions are desirable because they do not get affected much by 
variations in factor settings. Improvements are still possible by narrowing tolerance intervals. 
To accomplish such goal, several engineering decisions can be taken: (a) accept the response 
variation as reasonable for this kind of process; (b) change process design specifications; 
(c) improve the measurement system; (d) improve the control process; or even (e) decline the 
system as effective to achieve the required targets.

A cost-effective solution could be found narrowing standard deviations from input factors by 
improving the measurement system or the control process [3, 6]. This is a huge step to become 
a chemical process more repeatable and predictable, leading to significant money saves.

Previous lines show how statistical models can be used to get optimized and robust solutions 
in typical problems coming from chemical processes. Additional challenges can also be found 
and overtaken by using statistical approaches. When the number of significant factors affect-
ing the process is too high, an overwhelming number of runs should be prevented. In such 
cases, a high fractional design (minimal resolution III or IV designs) could be adopted [4]. 
To avoid aliases, the minimal resolution designs should be combined with a complete fold-
over methodology. This means that a second block of runs with signs reversed on all factors 
should be included breaking the aliases between main effects and two-factor interactions. 
Other usual problem found in the chemical industry is to design a set of experiments where 
both operating and mixture parameters occur. An illustrative example is a baking experi-
ment where besides one observable process variable, six mixture components make part of 

Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes2

the input factors [7]. Typical designs do not work at this level. A special type of mathemati-
cal formulation is required, and the adequate solution relies on the crossed mixture-process 
design application. With such approach, it is possible to combine quantitative parameters 
with mixture component restrictions.

Sometimes, standard RSM designs are not the best option or even suitable to solve chemi-
cal problems. Indeed, when multifactor linear constraints or categorical factors are involved, 
optimal designs are the correct option [6]. This is also the best solution when cubic empirical 
models are necessary to best fit experimental data.

Many other challenging problems can be faced by using advanced DoE strategies such as 
nested and split designs, experiments with random factors or even evolutionary operation 
methods (needed for the continuous improvement of a full-scale process) [2].

Parameter designs (two-array) that are made popular by Taguchi are other suitable option 
in order to find optimal operating conditions for quality improvement purposes in different 
chemical processes [8]. Although the approach from Taguchi became extremely popular as an 
effective tool for quality improvement in 1980s, a large controversy arose because there were 
significant issues with the advocated experimental strategy and data analysis procedures [9]. 
Additionally, it was concluded that fractional designs deliver considerable more information 
becoming much more efficient than the two-array parameter designs developed by Taguchi. 
Anyway, the use of Taguchi methods is still valid and of utmost importance at industrial level.

Assisting graduate students, teachers, researchers and other professionals by giving them the 
necessary knowledge on statistical tools with emphasis on DoE approaches that are available 
to them is perhaps the easiest way to expedite the mainstream of this methodology. In doing 
so, they can deepen the fundamental theoretical knowledge on the topic as well as optimize 
chemical processes with more efficient approaches. A more efficient process will be more 
cost-effective (thus increasing the interest to commercialize it) while improving its perfor-
mance. Therefore, the aim of this book is to serve as a starting point for new researchers (and 
experienced ones) wanting to do statistical (emphasis on DoE) analysis of chemical processes.
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Abstract

Response optimization and exploration are the challenging task in front of experimenter. The
cause and effect of input variables on the responses can be found out after doing experiments
in proper sequence. Generally relationship between response of interest y and predictor vari-
ables x1, x2, x3, … xk is formed after carefully designing of experimentation. For examples y
might be biodiesel production from crude ‘Mahua’ and x1, x2 and x3 might be reaction
temperature, reaction time and the catalyst feed rate in the process. In the present book
chapter, design of experiment is discussed based on predictor variables for conducting exper-
iments with the aim of building relationship between response and variables. Subsequently a
case study is also discussed for demonstration of design of experiments for predicting surface
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1. Introduction

Researchers found the unknown solutions by conducting experiments with the help of varying
two or more inputs factors [1]. Typical solutions are obtained from experiments are:

• Effect of input variables over the solutions or responses

• Which combination of input variables will give best solution?

• What are ranges of variables suitable for experiments?

• Under what condition should we operate our plant?

Experiments help us to direct compare among treatments of interest. Design of experiments
minimizes bias in the comparison which helps in reducing error [2]. One of the advantages in
design of experiments that we can control the experiments which allows us to make decision
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about influence of input variables over the response. Explicitly, one can make conclusion about
causation.

An experiment consists of treatments, experimental unit, responses and a method to assign
treatments to unit. Mosteller and Tukey [3] describes three concepts for the development of
relationship between variables and responses namely consistency responsiveness and mecha-
nisms. Proper design of experiments should avoid systematic error, should be precise, allows
estimation of errors and have broad validity.

Some important terms and concepts used in design of experiments are listed below

1.1. Treatment

It defines as are the diverse actions for equate. Amount of fertilizers in agronomy, different
long distance rate structure in marketing or different temperatures in reactor vessel in chemical
engineering are examples of treatments.

1.2. Experimental units

These are units in which treatments are applied. Graph are plotted for to see variation of these
units over response.

1.3. Responses

These are the outputs we measures during experiments. These responses define the mecha-
nism of the process during experiments. Responses for examples might be fatty acid ethyl ester
nitrogen content in biodiesel production or combustion performance biodiesel biomass of corn
plants, profit by production, or yield and quality of the product per ton of raw material.

1.4. Randomization

It is distribution of variables within the range with recognized, defined probabilistic mecha-
nism for the assignment of treatments to units.

1.5. Experimental error

It is defined as variation present in all experimentally measured responses. Experiments runs
on different range of variables will give different results for responses. Moreover conducting
experiments at the same range of variables over and over again will give different results in
different trials. It should be noted that experimental errors within acceptable range does not
indicate conducting wrong experiments.

1.6. Measurement units

It is the unit of measured responses for example combustion pressure in different % blend of
biodiesel. These may differ from the experimental units. For example Fertilizer is applied to a
plot of land containing corn plants, some of which will be harvested and measured. The plot is
the experimental unit and the plants are the measurement units. Ingots of steel are given
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different heat treatments, and each ingot is punched in four locations to measure its hardness.
Ingots are the experimental units and locations on the ingot are measurement units.

2. Design of experiments

An experiment can be defined as a test or series of runs in which purposeful changes are made
to the input variables of a system or process so that changes in the output response variable
may be observed and the reasons for the same may be identified [4–6]. Some process variables
x1, x2, … xp are controllable, whereas other variables z1, z2, … zq may be uncontrollable. An
experiment serves the following purposes:

a. Determine which variables x1, x2, … xp are most influential on response y.

b. Determine where to set the influential x’s so that y is always near to the desired nominal
value.

c. Determine where to set the influential x’s so that variability in y is minimized.

d. Determine where to set the influential x’s so that effects of uncontrolled variables are
minimized.

Design of Experiments refers to the process of planning, designing and analyzing the experi-
ment so that valid and objective conclusions can be drawn effectively and efficiently [7]. In
order to draw statistically sound conclusions from the experiment, it is necessary to integrate
simple and powerful statistical methods into the experimental design methodology [8]. The
success of any industrially designed experiment depends on sound planning, appropriate
choice of design and statistical analysis of data and teamwork skills.

2.1. Approaches for experimentation

The approach to planning and conducting the experiment is called the strategy of experimen-
tation [9]. The best guess approach is the most common and uses guesswork to arbitrarily
select a combination of input factors for testing. However, this is unscientific and one cannot
confirm whether a better response obtained is indeed the best solution.

Another approach is the ‘one factor at a time’ (OFAT) in which one factor is sequentially varied
at a time by different levels and all other factors are kept constant. The levels may be quanti-
tative (such as temperature or voltage) or qualitative (such as presence of coolant). The main
effect of the factor is the change in response produced by a change in the level of the factor.
However, OFAT approach can show only one causal effect and many a times, the causal effect
of multiple factors is not additive, meaning there is interaction between them. An interaction is
the failure of one factor to produce the same effect on the response at different levels of another
factor. OFAT approach cannot give interaction effects as all other factors are kept constant
when a factor is varied.

The scientific approach therefore is to vary several factors together at a time so that both main
effects as well as interaction effects of factors on the response variable may be identified and
studied. This is called factorial experimental design and this is the only way to discover
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interactions between variables. In factorial experiments, factors contain discrete values (levels),
and the number of factor levels influences design of experimental runs. When all possible
combinations of the levels of the factors are investigated, then it is called a full factorial
experiment. In contrast, a fractional factorial experiment is a variation of the full factorial
design in which only a subset of the runs is used.

Various other kinds of experimental designs are in place such as Plackett-Burman design, Taguchi
method, response surface methodology, mixed response design and Latin hypercube design [10].
Each of these designs uses different techniques to generate experimental runs. Of these, response
surface methodology is of particular interest as it takes three levels of factors to generate an
experimental design sequence and uses a quadratic polynomial model for conducting analysis.

The three principles of experimental design such as randomization, replication and blocking
are used in industrial experiments in order to improve the efficiency of experimentation.
Randomization is the random ordering of experiments to ensure all levels of a factor have
equal chance of being affected by noise factors (unwanted sources of variability) such as
temperature or power fluctuation. Replication is the process of repeating all or a part of
experiment runs in a random sequence to allow more precise estimation of experimental error
as well as main and interaction effects. Blocking is the process of arranging similar experimen-
tal runs into blocks (or groups) to distribute the effect of change in blocking factors such as
batch, machine, time of day, etc. across the experiments and avoid confounding (confusion
whether the output change is due to change in block or change in factor level).

For statistical analysis under design of experiments (DOE), the factor level numbers are
considered instead of the actual value of the factor at that level. In other words, the factors are
represented by coded variables instead of natural or uncoded variables. In case of categorical
variables, the levels are represented in natural numbers as 1, 2, … l. Quantitative variables can
also expressed in this manner in many experimental design methods.

Let xi andwi be the coded and uncoded values respectively for a level i of a control variable having
li levels. Then wlow and whigh refer to the uncoded values of the factor at the lowermost and
uppermost levels respectively. For categorical variables, xi and wi are expressed as Eqs. (1) and (2).

xi ¼ wi

whigh � wlow
� �

= li � 1ð Þ (1)

and

wi ¼ xi
whigh � wlow
� �

2
(2)

In case of response surface methodology, the number of levels for all quantitative variables is
odd, and the middle level is given the value 0. Thus the remaining levels get equally distrib-
uted on both sides of the middle level, for example, �2, �1, 0, +1, +2. Then, xi and wi would be
expressed as Eqs. (3) and (4).

xi ¼
wi � whigh þ wlow

� �
=2

whigh � wlow
� �

=2
(3)
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and

wi ¼
whigh þ wlow
� �

2
þ xi

whigh � wlow
� �

2
(4)

3. Response surface methodology

Response surface methodology or RSM is a collection of mathematical and statistical tech-
niques used for the modeling and analysis of problems in which a response of interest is
influenced by several variables and the objective is to optimize the response. The method was
introduced by G. E. P. Box and K. B. Wilson in 1951. It uses a sequence of designed experi-
ments to obtain an optimal response and uses a second-degree polynomial model to achieve
this.

Let a process contain n input variables x1, x2…, xn. Then the response y is given by Eq. (5)

y ¼ f x1; x2;…; xnð Þ þ ε (5)

Where, ε is the error or noise observed in the response. If the expected response is denoted by
E y
� � ¼ f x1; x2;…; xnð Þ ¼ η, then the response surface is represented by Eq. (6)

η ¼ f x1; x2;…; xnð Þ (6)

The response can be represented graphically, either in the three-dimensional space or as
contour plots that help visualize the shape of the response surface. Contours are curves of
constant response drawn in the xi, xj plane keeping all other variables fixed. Each contour
corresponds to a particular height of the response surface. RSM also explores relationships the
response variables and several input variables. If the response is modeled by a linear function
of the independent variables, then the approximating function is the following linear model
shown by Eq. (7).

y ¼ β0 þ β1x1 þ β2x2 þ…þ βnxn þ ε (7)

If there is curvature in the system, then a polynomial of higher degree must be used. Most of
the industrial problems can be modeled with sufficient accuracy by using a second-degree
polynomial, which yields the following second order model shown by Eq. (8)

y ¼ β0 þ
Xn

i¼1

βixi þ
Xn

i¼1

βiixi
2 þ

Xn�1

i¼1

Xn

j¼iþ1

βijxixj þ ε (8)

The method of least square chooses β’s in Eq. (8) so that the sum of the squares of the errors ε,
are minimized. The least squares function is shown by Eq. (9)

L ¼
Xn
i¼1

εi
2 (9)
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By putting value of εi from above equation and differentiating equation with respect to
coefficient β, regression coefficient can be obtained.

3.1. Response surface designs

Response surface designs are those experimental designs which are used for fitting response
surfaces and generally contain three factor levels [11]. Two types of response surface designs
are used namely, central composite design and Box-Behnken design.

3.1.1. Central composite design

This consists of a factorial design (the corners of a cube), center and axial (or star) points that
allow for estimation of second-order effects [12]. The addition of axial points practically
increases the number of levels to five as shown in Figure 1. This may create problems if the
axial points cannot be run due to technical or safety reasons. For a design having k factors, the

distance of the axial point from the design center is α ¼ 2k=4.

A central composite design containing axial points with the calculated value α is called
circumscribed central composite design. If it is not possible to use this value of α, then a
provision exists in which α can be taken equal to 1 in order to obtain what is called as face
centered central composite design.

3.1.2. Box-Behnken design

This design overcomes some loopholes of central composite design by avoiding axial points and
corner points of the design space (or bypassing extreme factor combinations) and by taking only

Figure 1. Central composite design for three factors.
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three factor levels as shown in Figure 2. The design ensures that all factors are never set to high
levels simultaneously and thus ensures design points within safe operating limits.

Also, this design is fully rotatable, meaning that it provides the desirable property of constant
prediction variance at all points that are equidistant from the design center. Compared to
central composite design, this design gives lesser number of experiment runs for the same
number of factors. Hence, it can be seen that Box-Behnken designs have several advantages
over central composite designs.

3.2. Analysis of variance (ANOVA)

The analysis of variance (ANOVA) established by Ronald Fisher in 1918, is a statistical tool
used to analyze variation among and between groups. ANOVA is used to see the significant
and insignificant parameters of the predicted model. This procedure involves checking indi-
vidually variability of variable over the response [13]. It is based on the concept of two
hypotheses namely H0 (means all the regressions coefficients are zero) and H1 (mean at least
one of the regression coefficient is non-zero). If H0 is false then it suggests that one or more of
the variable contribute significantly to the developed model for response [14]. In this test
procedure, sums of square of regression and errors are calculated. To verify hypothesis F value
is calculated as ratio of mean of square (regression) to mean of square (error) is calculated.
Larger values of F suggest that model is significant. Alternatively, p value is the probability of
the predicted model shows its significance in terms of statistics. If p value is less than 0.05
model terms are significant and p value greater than 0.05 indicates that model terms are not
significant. Similarly the value of R2 (correlation coefficient) is calculated as ratio of sum of
square of regression to the total sum of square. The correlation coefficient (R2) value suggests a
satisfactory representation of process by model and good correlation between experimental
and theoretical values provided by the model equation. For goodness of fit of the model, R2

(correlation coefficient) should be at least 0.80. However, a large value of R2 does not necessar-
ily imply that the regression model is good one. Adding a variable to the model will always

Figure 2. Box-Behnken design for three factors.
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hypotheses namely H0 (means all the regressions coefficients are zero) and H1 (mean at least
one of the regression coefficient is non-zero). If H0 is false then it suggests that one or more of
the variable contribute significantly to the developed model for response [14]. In this test
procedure, sums of square of regression and errors are calculated. To verify hypothesis F value
is calculated as ratio of mean of square (regression) to mean of square (error) is calculated.
Larger values of F suggest that model is significant. Alternatively, p value is the probability of
the predicted model shows its significance in terms of statistics. If p value is less than 0.05
model terms are significant and p value greater than 0.05 indicates that model terms are not
significant. Similarly the value of R2 (correlation coefficient) is calculated as ratio of sum of
square of regression to the total sum of square. The correlation coefficient (R2) value suggests a
satisfactory representation of process by model and good correlation between experimental
and theoretical values provided by the model equation. For goodness of fit of the model, R2

(correlation coefficient) should be at least 0.80. However, a large value of R2 does not necessar-
ily imply that the regression model is good one. Adding a variable to the model will always

Figure 2. Box-Behnken design for three factors.
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increase R2, regardless of whether the additional variable is statistically significant or not. Thus
it is possible for models that have large values of R2 to yield poor predictions of new observa-
tions or estimates of the mean response. Therefore sometimes it is beneficial to calculate
adjusted correlation coefficient (R2

adj) which is calculated as (1 � sum of square (error)/sum
of square (total)). Once R2 and R2

adj are different affectedly, there is a decent probability that
non-significant terms have been included in the model.

3.3. Backward elimination approach for developed model evaluation

After developing a model, its adequacy is checked by F test and p value [15]. For a model term
to be significant it should have high F value and low p value. Insignificant model terms do not
affect the response therefore can be removed from the model. In order to avoid insignificant
terms in the model such that modified model clarifies the response, the backward regression
elimination method (also known as stepwise deletion) is used. In the stepwise deletion
method, t test or F test for significance of design variable is performed with sequence begin
with full model. Insignificant variables with the highest p value (e.g. p > 0.05) are removed
from the full model. Stepwise regression procedure details are as follow:

Step 1:

Initially the model can be written as shown in Eq. (10)

y ¼ β0 þ β1x1 þ :……þ βn�1xn�1 þ ε: (10)

Then, the following n�1 tests are carried out, for null hypothesis Hoj: βj = 0. The lowest partial
F-test value Fl corresponding to Hoj: βj = 0 or t-test value tl is compared with the preselected
significance values F0 and t0. One of two possible steps (step 2a and step 2b) can be taken.

Step 2a:

For eliminating any variable say xl, it should satisfy the following case Fl < F0 or tl < t0. Now the
modified model can be written as equation

y ¼ β0 þ β1X1 þ⋯þ βl�1Xl�1 þ βlþ1Xlþ1 þ⋯þ βn�1Xn�1 þ ε (11)

Step 2b:

If Fl > F0 or tl > t0, the original model is the model we should choose.

The procedure will automatically stop when no variable in the new original model can be
removed and all the next best candidate cannot be retained in the new original model. Then,
the new original model is our selected model.

In the present thesis, measured responses after machining are analyzed using responses surface
methodology with cutting parameters as input variables. Initially RSMmodels are developed for
each response. Significance of each variable is confirmed through ANOVA analysis then insig-
nificant terms are removed using backward elimination approach. Analysis of machining
responses is discussed in above sections.

Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes12

4. Case study for using design of experiments in machining operation

Surface roughness is most widely used indicator to quantify surface integrity of machined part
[16, 17]. It directly gives quality of surface finish and has been used by many researchers.
Surface roughness is influenced by several factors such as - cutting speed, feed, depth of cut,
tool geometry, tool wear, etc. [17–20]. Therefore in the present work surface roughness is taken
as response.

In the present case study, design of experiments with central composite design was performed
based on response surface methodology. This is constructed as factorial design (the corners of a
cube), center and axial (or star) points that allow for estimation of second-order effects [21].
The addition of axial points practically increases the number of levels to five. This may create
problems if the axial points cannot be run due to technical or safety reasons. For a design
having k factors, the distance of the axial point from the design center is α = 2k/4 as shown in
Figure 3. If it is not possible to use this value of α, then a provision exists in which α can be
taken equal to 1 in order to obtain what is called as face cantered central composite design. In
the present case study, based on input factors and their levels as shown in, 20 set of experi-
ments were performed, each for turning and milling operations. The design of experiments

Figure 3. Design of experiment using central composite design.

Level -> Lowest Low Center High Highest

Coded value (x) �1.682 �1 0 1 1.682

Cutting speed Vc (m/min) turning 69.9 90.4 120 150 171.4

Feed rate f (mm/min) turning 55.6 72 96 120.6 136.6

Depth of cut ap (mm) milling 1.83 2.0 2.5 2 2.67

Table 1. Level of cutting parameters used for central composite design.
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was performed using MINITAB 17 statistical software. For the present work, based on number
of input factor k, the value of α was taken as 1.682. The coded and natural levels of the
independent variables for design of experiments are presented in Table 1. Five levels of cutting
parameters were calculated in central composite design using Eq. (12) shown above. After
defining levels of cutting parameters, sequence of experiments were generated using
MINITAB 17 statistical software using central composite design for turning and milling oper-
ations. Table 2 shows the 20 sets of experiment in terms of coded values of cutting parameters
sequenced according to run order. The number of experiments was generated based on num-
ber of input factors and their levels.

x1 ¼ Vc � Vcmax þ Vcminð Þ=2
Vcmax � Vcminð Þ=2 ; x2 ¼

f � fmax þ fmin

� �
=2

fmax � fmin

� �
=2

; x3 ¼
ap � apmax þ apmin

� �
=2

apmax � apmin
� �

=2
(12)

Where x is coded value of level of individual cutting parameter, Vc is cutting speed in m/min, f
is feed rate in mm/rev, ap = depth of cut in mm.

Std order Run order Pt type Blocks Cutting speed Feed rate Depth of cut

5 1 1 1 �1 �1 1

6 2 1 1 1 �1 1

4 3 1 1 1 1 �1

14 4 �1 1 0 0 1.681793

1 5 1 1 �1 �1 �1

2 6 1 1 1 �1 �1

19 7 0 1 0 0 0

20 8 0 1 0 0 0

7 9 1 1 �1 1 1

3 10 1 1 �1 1 �1

9 11 �1 1 �1.68179 0 0

10 12 �1 1 1.681793 0 0

8 13 1 1 1 1 1

17 14 0 1 0 0 0

11 15 �1 1 0 �1.68179 0

18 16 0 1 0 0 0

15 17 0 1 0 0 0

16 18 0 1 0 0 0

13 19 �1 1 0 0 �1.68179

12 20 �1 1 0 1.681793 0

Table 2. Sequence of experiments obtained using MINITAB.
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In the present case study, minimization of surface roughness is done for turning and milling
operations. Surface roughness was measured for each machining operation. In order to com-
pensate measuring error, surface roughness was measured at three locations on the machined
surface and average value is taken. Table 3 show the list of experiments and corresponding
surface roughness in turning operations.

Second order models are developed for surface roughness in turning using RSM. After devel-
oping models, ANOVA analysis is done to see significant and insignificant terms in the models
as shown in Table 4. Insignificant terms are identified and eliminated using backward elimi-
nation procedure. In Table 4, the variable for which the value of ‘p’ is less than 0.05 indicates
that the term in the model has a significant effect on the response.

The ANOVA results shown in Table 4 demonstrate that the model is highly significant, and the
lack of fit is non-significant. Model showed a correlation coefficient (R2) of 93.13% for turning
which means more than 90% of the data can be explained by these models. Furthermore, the
significance of each coefficient in the full model was examined by the F-values and p-values.
Larger values of “F” and smaller values of p (p < 0.1) indicate that the corresponding variable

Run type Cutting speed Vc (m/min) Feed rate f (mm/min) Depth of cut ap (mm) Surface roughness Ra (μm)

Center 120.6 96 1.5 0.541

Center 120.6 96 1.5 0.559

Axial 69.9 96 1.5 0.819

Factorial 150.8 72 1 0.457

Axial 120.6 96 2.34 0.608

Factorial 90.4 120 1 0.766

Factorial 150.8 120 1 0.483

Center 120.6 96 1.5 0.592

Center 120.6 96 1.5 0.592

Factorial 150.8 72 1 0.404

Factorial 150.8 120 2 0.474

Axial 120.6 136.4 1.5 0.602

Center 120.6 96 1.5 0.583

Axial 120.6 96 0.66 0.533

Factorial 90.4 72 2 0.747

Factorial 90.4 120 2 0.844

Center 120.6 96 1.5 0.582

Axial 120.6 55.6 1.5 0.554

Axial 171.4 96 1.5 0.386

Factorial 90.4 72 1 0.747

Table 3. Surface roughness measurement after turning operation.
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is highly significant. Hence, the results given in Table 4, suggest that the influence of f2 (square
of feed rate), ap

2 (square of depth of cut), Vc � f (cutting speed � feed rate), Vc � ap (cutting
speed � depth of cut), and f � ap (feed rate � depth of cut) are non-significant and therefore,
can be removed from the full model to further improve the mode as shown in Eq. (13).

Ra ¼ 1:27686� 0:000897964� Vc þ 0:0008937� f þ 0:036303� ap þ 1:69203e� 7� Vc
2 (13)

4.1. Validation of developed model for surface roughness in turning operation

In order to verify the adequacy of the model developed, five validation experiments were
performed as depicted in Table 5. The conditions were those which have not been used
previously but are within the range of the levels defined previously. The predicted values from

Source Sum of square DF Mean of square F value p value
Prob > F

Model 0.31 9 0.035 29.64 <0.0001

Vc 0.30 1 0.30 253.51 <0.0001

f 6.283e-3 1 6.283e-3 5.36 0.0432

ap 4.499e-3 1 4.499e-3 3.84 0.0786

Vc � f 4.572e-5 1 4.572e-5 0.039 0.8474

Vc � ap 1.591e-4 1 1.591e-4 0.14 0.7203

ap � f 2.841e-5 1 2.841e-5 0.024 0.8794

Vc
2 3.859e-3 1 3.859e-3 3.29 0.0998

f2 8.258e-4 1 8.258e-4 0.70 0.4211

ap
2 3.612e-4 1 3.612e-4 0.31 0.5912

Residual 0.012 10 1.173e-3

Lack of fit 9.587e-3 5 1.917e-3 4.47 0.629

Pure error 2.143e-3 5 4.286e-4

Core total 0.32 19

Table 4. ANOVA analysis for surface roughness as response and cutting parameters as variables in turning operation.

Parameters Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Cutting speed (m/min) 72.5 95.0 110.0 130.0 160.0

Feed rate (mm/min) 60 80 100 125 140

Depth of cut (mm) 0.8 0.9 1.4 1.6 1.8

Predicted Ra (μm) 0.797 0.681 0.634 0.565 0.464

Actual Ra (μm) 0.772 0.748 0.721 0.6325 0.501

% Error �3.18 9.96 13.69 11.95 8

Table 5. Confirmation experiments for validating surface roughness model for turning operation.
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the equation developed for surface roughness and the actual experimental value were com-
pared. The percentage errors were calculated. All these values are presented in Table 5. The
percentage error range between the actual and predicted value is �3.18 to 13.69% which is
acceptable. Residual from the least square fit is defined by ei = yi � y* for i = 1, 2,….20 where yi
is the observed response (Surface roughness) and y* is the predicted response. A check of the
normality assumption may be made by constructing a normal probability plot of the residuals.
If the residuals plot is approximately along a straight line, then the normality assumption is
satisfied. Figure 4 presents a plot of residuals ei versus the predicted response y* and it reveals
no apparent problem with normality.

From the confirmation experiments and normal probability plot of residual, it is observed that
the developed model can predict the surface roughness in turning operation. Figure 5 shows the

Figure 4. Normal probability plot of residual for surface roughness in turning operation.

Figure 5. Response surface plots.
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Figure 5. Response surface plots.
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response surface plots give a graphical display of these quantities. Typically, the variance of the
prediction is also of interest, because this is a direct measure of the likely error associated with
the point estimate produced by the model.

From the response surface plots also, it is observed that interaction of cutting speed/feed rate is
strongly affecting the surface roughness value whereas interaction of feed/ doc and cutting
speed/doc has negligible effect over surface roughness [22, 23].

5. Summary

From the above study it can be concluded that experimenter can predict the response using
proper design of experiment where proper underlying mechanism of the process is not fully
understood. Proper fitting of response from experimental data can be done by design of
experiment, regression modeling technique, statistical analysis and optimization. Following
conclusions can be made based on the case study:

• Design of experiments is a very structured methodology for planning and designing a
sequence of experiments.

• Analysis of variance (ANOVA) was used to identify significant input variables for partic-
ular response.

• Prediction model can be developed for a response with correlation coefficient more than
90% which confirm that the models properly explain the experimental data.

• The developed predictive model can help industries in achieving appropriate output for
improving productivity.
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response surface plots give a graphical display of these quantities. Typically, the variance of the
prediction is also of interest, because this is a direct measure of the likely error associated with
the point estimate produced by the model.

From the response surface plots also, it is observed that interaction of cutting speed/feed rate is
strongly affecting the surface roughness value whereas interaction of feed/ doc and cutting
speed/doc has negligible effect over surface roughness [22, 23].

5. Summary

From the above study it can be concluded that experimenter can predict the response using
proper design of experiment where proper underlying mechanism of the process is not fully
understood. Proper fitting of response from experimental data can be done by design of
experiment, regression modeling technique, statistical analysis and optimization. Following
conclusions can be made based on the case study:

• Design of experiments is a very structured methodology for planning and designing a
sequence of experiments.

• Analysis of variance (ANOVA) was used to identify significant input variables for partic-
ular response.

• Prediction model can be developed for a response with correlation coefficient more than
90% which confirm that the models properly explain the experimental data.

• The developed predictive model can help industries in achieving appropriate output for
improving productivity.
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Abstract

Advanced oxidation technologies (AOTs) are processes affected by a large number of
parameters such as iron (Fe2+) and H2O2 concentrations, pH, temperature, light intensity
and chemical composition (organics and inorganics). In addition, for different industrial
chemical processes, there are different effluents, which greatly vary in chemical compo-
sition from each other, not allowing a unique approach for all of them. Thus, it is
necessary to adjust AOT parameters to the specific effluent to be treated. In such context,
statistical design of experiments (DoE) and response surface methodology (RSM)
emerge as important and widely used tools to determine the effects of multiple variables
on wastewater treatment processes such as photo-Fenton. A revision of academic stud-
ies based on degradation of antibiotics-containing effluents is presented. The chapter
also presents commercial cases of AOT and electrical efficiency considerations.

Keywords: design of experiments, planning of experiments, optimization, advanced
oxidation technology, Fenton’s reagent, pharmaceutic compounds, full scale,
figures-of-merit electrical efficiency

1. Introduction

Analgesics, hormones, anaesthetics, mainly antibiotics are pharmaceutical compounds that
can lead to damages to the environment and public health when are improperly discarded.
The main sources of contamination by compound drugs are due to wastewater, effluent and
inadequate disposal by pharmaceutical industries. Many studies related the presence of these
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compounds in surface water, groundwater, tap water and urban sewage samples. On the other
hand, social and legal demands on the impact of chemical effluents on the environment have
driven the development of many procedure and technologies in order to treat wastewater and
poisoning water by the presence of these compounds.

By this way, those technologies based on advanced oxidation technologies (AOTs) have been
extensively studied for the decomposition of a series of persistent and recalcitrant compounds
present in wastewater into less toxic and/or biodegradable substances. In many cases, these
technologies result in the formation of CO2, H2O and inorganic compounds of all non-oxygen
heteroatom from the oxidation of the organic matter present in the persistent compounds. The
AOTs were defined by Glaze et al. [1] as physicochemical processes involving the generation of
transient species of high oxidizing power, among which the hydroxyl radical (OH) stands
out [1]. This radical has a high oxidizing power (EPHHO•/HO +2.8V, 25�C) and can be generated
by photons (including sunlight) or by other forms of energy, being able to mineralize organic
pollutants to non-toxic as CO2 and H2O. Some AOTs, such as heterogeneous photocatalysis,
radiolysis and other advanced techniques, allow the transformation of toxic contaminants that
are not susceptible to oxidation, such as metal ions and halogenated compounds [2]. Among
the most studied AOTs, heterogeneous photocatalysis employing semiconductors and/or
H2O2/UV/semiconductor has played an important role in relation to emerging technologies
for water treatment, due to the large number of investigations on the subject compared to other
AOTs studied, which is most extensively presented in the literature [2, 3].

The catalytic oxidation of tartaric acid in the presence of ferrous salts and hydrogen peroxide
was reported by Fenton in the mid-1890s. The oxidation of organic compounds under UV
irradiation in the presence of ferric ion in acidic media was verified in the 1950s when it was
postulated that the electron transfer initiated by the irradiation resulted in the generation of
•OH, responsible for the oxidation reactions [4]. Degradation efficiency of different classes of
toxic organic compounds has made the photo-Fenton process activated by sunlight quite
attractive, investigating the use of AOT based on Fenton processes, Photo-Fenton, as well as
derived processes for different applications of environmental interest. In this way, the degree
of interest has led to the rapid technological development of this class of AOT. Consequently, it
is possible to find these pilot scale systems being tested for the final treatment of water for
supply and as tertiary stage of municipal sewage treatment in Canada and Spain [5, 6].

As scientific and technological advances are made involving the use of different advanced
oxidative technologies for effluent and wastewater remediation, the need to optimize these
processes in order to be commercially available for the mineralization and stabilization of
recalcitrant compounds is growing. In this sense, statistical tools based on chemometrics and
design of experiments (DoE) have been used to evaluate the figures of merit to extend the range
of commercially available systems. Chemometrics is defined as the application of mathematical
and statistical models and methods for the solution of chemical problems, in order to maximize
the data collection and to allow the extraction of useful information from the obtained data. The
development of analytical equipment and chemical processes has led to a need for advances in
experimental design methods, with the objective of obtaining secure information in a shorter
time span for instrumental calibration and process efficiency analysis [7, 8].
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Design of experiments (DoE) is defined as a set of statistical techniques applied to the plan-
ning, conduction, analysis and interpretation of controlled tests to find and define factors that
influence the values of a parameter or a group of parameters. Its basic principle allows varying
all the levels of all the variables, discrete or continuous, in a programmed and rational way,
reducing the number of experiments without limiting the number of factors to be analysed.
The use of complete factorial design becomes necessary when assessing the influence of vari-
ables, without running the risk of excluding factors or interactions that may be important [8].
Although for economical reasons, fractional factorial design is usually applied [7, 8].

However, only a small fraction of the scientific papers related to advanced oxidative tech-
nologies makes use of the electrical energy consumption figure-of-merit (EE/O). In our
understanding, one of the best response variables that could be used in the study of waste-
water degradation (pharmaceuticals or not) would be EE/O. With EE/O as variable response
in a design of experiments, not only the main factors associated to the advanced oxidative
processes (light source, catalyst, H2O2, O3, Fe

2+ etc.) but also the kinetics of the reaction and
the energy cost would be used in an experimental study to reach the objective of the process.
There is a gap in the scientific community regarding the use of the EE/O tool that could be
explored by researchers in conjunction with the traditional statistical tool design of experi-
ments.

In this sense, the aim of this chapter is to present the use of physicochemical systems based on
advanced oxidation technology (AOT) for the effluents remediation containing pharmacolog-
ical residues. In addition, it is intended to present the state-of-the-art about design of experi-
ments (DoE) and other statistical tools in order to evaluate the figures-of-merit of
photochemical reactors for the treatment of pharmaceutical effluent.

2. Basics of DoE

Design of experiments (DoE) is not a set of formulas but a technique used to plan experiments,
behind there is a theoretical support with good reasoning math. Basically, it looks good
statistical accuracy in response and a lower cost. Therefore, it is a technique of great impor-
tance for the industry and its use permits the obtaining of more reliable results and thus saving
time and resources.

Design of experiments, in statistics, refers to the whole area of studies that develops technical
planning and analysis of experiments. The main techniques of planning experiments are old;
however, the great many of these techniques requires a good amount of calculations being
essential to use the computational resources.

An experiment is nothing else than a procedure or test in which deliberate alterations are made
in input variables of a process to observe, identify and evaluate possible alterations in the
response variable, as well as the reasons of such alteration. DoE is a test, or series of tests in
which the changes in input variables of a process are known, for then, observe which changes
occur in the response variable.
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Why plan an experiment? To have a set of rules or way outline to obtain a mathematical model
that adequately describes the process investigated, using as few experiments as possible. The
planning will let efficiency and economy in the process.

The planning of an experiment investigates potential factors whose variation might impact the
response-variable (process output). The planning will be used to obtain valid results and
introduce objective conclusions. The planning must maximize the quantity of information that
can be obtained for each variation performed. The experimental factor is the variable that is
controlled to check its effect in the response; the factors can be classified into two types:
qualitative or quantitative. A proper planning has to take into consideration some items: a
DOE investigates a list of potential factors whose variation might impact the process output
• Recognition of the problem

• Set experiment objectives

• Define and know the resources

• Optimize resources to meet the objective

• Carry out the experiment and analysis of results

2.1. Recognition of the problem

The Fenton’s process consists in the use of H2O2/Fe
2+ and was first observed by Fenton in 1894.

In solution, ferrous ions (Fe2+) initiate and catalyze the decomposition of H2O2 and lead to the
formation of hydroxyl radical (•OH). Mixtures of Fe2+ and H2O2 are called Fenton reagent. If
Fe2+ is replaced by Fe3+, it is called Fenton-like reagent.

The efficiency of this process is directly linked or related to other experimental parameters,
such as pH, concentration of hydrogen peroxide, iron concentration, concentration of organic
matter, intensity of radiation UV-Vis, exposure time and volume of solution.

2.2. Set the experiment objectives

A good problem implies to define the goal of the experiment. This objective must be non-
biased, specific, measurable and should lead to a practical result. The aim is to answer the
following question: What do you want to investigate? It depends on the operational variables
(factors) to be studied, and the way they relate to each other (synergism or antagonism effects)
in the process. The DoE allows evaluating synergic and antagonistic effects of the operational
variables simultaneously and with a reduced number of experiments. Therefore, one must
investigate the changes in the input variables of this process and then observe which changes
occur in the response variable. The objective of experimental design is to optimize the experi-
mentation process to obtain as much information as possible.

2.3. Define and know the resources

One must choose and select the variables that are possible to be studied and which probably
interfere with the system. In the photo-Fenton process, the variables most studied are pH,
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concentration of hydrogen peroxide, the concentration of iron, concentration of organic matter,
intensity of radiation (UV-Vis) and time of exposure. The variable response must be chosen
with the assurance that the result really supplies useful information about the process under
study. One of the possible variables was chosen is the Total Organic Carbon (TOC) removal
rate.

The choice of factors and levels must encompass the ranges over which these factors will vary
and the specific levels in which each assessment will be carried out. The variables that were not
selected must be fixed during the entire experiment. Instruments, equipment, places, people,
reagents, time spent and cost of the process are external variables to the process that may
influence the application of the method after optimization.

2.4. Optimize resources to meet the objective

Optimization of resources (e.g. chemicals, materials, energy and staff) is a mandatory part of a
process. In this step, the sample size should be defined and which and howmany levels will be
used for each factor should also be known. Only factors that affect the response variable
should be selected. Moreover, the way the measures be carried out, the data acquisition
method, the equipment or instruments that will be necessary along the experiments should
also be defined. Assess whether the parameters involved can be harmed, and evaluate what
can go wrong (time, costs, company reputation, etc.). In the optimization of resources step,
even in a preliminary way, choose which statistical method will be used to evaluate results.
The choice of DoE involves consideration of sample size (number of replications), selection of
an appropriate order of experimental runs, formation of experimental blocks or other restric-
tions involved.

Plan experiments is to define an experimental data acquisition sequence to reach certain
objective, among the methods the factorial planning is most useful when the user wants to
study the effects of two or more variables, so that in each attempt, or replies, all possible
combinations of the levels of each variable are investigated.

2.5. Carry out the experiment and analysis of results

It is necessary to carry out the experiments with rigor—paying attention to minimum details in
each run—to ensure that everything is being performed according to the planning. Any errors
in the experimental procedure disable the experiment. In data analysis, statistical methods
must be used so that the results and conclusions are not an opinion but goals. If the experiment
was planned properly and was carried out in agreement to the planning, the application of
statistical methods would not be complicated. Excellent statistical packages exist to help in
data analysis and graphical methods are the simplest and easiest in data interpretation.

2.5.1. Software

Statistica—developed by Stat Soft—it is one of the systems with an easy-to-use look with a
good graphical interface, the software can make correlations, brings several descriptive statis-
tics, a wide range of tables and a variety of graphical analyses. http://www.statsoft.com/
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must be used so that the results and conclusions are not an opinion but goals. If the experiment
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SAS—‘Statistical Analysis System’ Developed by SAS—It is one of the best systems used by
statisticians. SAS is an integrated system for data analysis applications, consisting of data
recovery, file management, statistical analysis, database access, generation of graphs and
generation of reports (http://www.sas.com/).

MINITAB—developed by Minitab—this is a classic software for statistical purposes. Its inter-
face is similar to a spreadsheet such as Microsoft Excel or Calc of OpenOffice/LibreOffice but
with the ability to perform complex statistical analyses. It offers tools of Quality Control,
Planning of Experiments (DoE), Reliability Analysis and General Statistics. http://www.
minitab.com/

ACTION STAT—developed by Estatcamp. Action Stat under R—which is a free software
environment for statistical computing and graphics, and one of the most widely used statistical
environments. Action Stat connects with Excel to provide a graphical interface for statistical
applications (http://www.portalaction.com.br/).

DESIGN EXPERT—Developed by Stat-Ease—it is a Windows®-based software intended to
optimize a product or process. It provides many statistical tools such as: two-level factorial
screening designs; general factorial studies; response surface methods (RSM); mixture design
techniques; combinations of process factors, mixture components and categorical factors and
design and analysis of split plots (http://www.statease.com).

3. Design of experiments applied to advanced oxidation technologies

Advanced oxidation technologies are affected by a large number of parameters such as iron
(Fe2+) and H2O2 concentrations, pH, temperature, light intensity, organic chemical content,
among others. In addition, for different industrial chemical processes there are different efflu-
ents, which greatly vary in this chemical composition from each other, not allowing a unique
approach for all of them. Thus, it is necessary to adjust AOT parameters to the specific effluent
to be treated.

This adjustment could be performed using the one-variable-at-a-time (OVAT) approach, but this
procedure is time-consuming and less effective due to multiple variable nature of AOT. Statistical
design of experiments (DoE) and response surface methodology (RSM) emerge as important and
widely used tools to determine the effects of multiple variables on objective functions to be
optimized. Different types of DoE used for AOT evaluation include two-level factorial design (2k

FD), central composite design (CCD) and Box-Behnken design (BBD), as can be seen on Table 1.

3.1. Two-level factorial design (2k FD)

Factorial designs are a widely used and efficient way to evaluate the effects of two or more
factors and the interactions among them on response variables. When compared to the one-
variable-at-a-time (OVAT) experiments, factorial designs exhibit higher relative efficiency,
avoid misleading conclusions when interactions are present and allow the effect estimation of
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Reference AOT Organic matter DoE Independent factor: range

Ay and Kargi [9] Fenton Amoxicillin BBD Amoxicillin concentration:
10–200 mg L�1

[H2O2]: 10–500 mg L�1

[Fe2+]: 0–50 mg L�1

Ay and Kargi [10] Photo-Fenton Amoxicillin BBD Amoxicillin concentration:
10–200 mg L�1

[H2O2]: 10–500 mg L�1

[Fe2+]: 0–50 mg L�1

Irani et al. [11] Coupled
adsorption/photo-
Fenton

Phenol and paracetamol BBD pH: 3–4

Phenol initial
concentration:
20–100 mg L�1

Paracetamol initial
concentration:
20–100 mg L�1

NaX to cobalt ferrite
nanoparticles ratio: 0.5–1.5

Diniz [12] Fenton Hospital sewage 22 FD [Fe2+]: 0.1–0.5 g L�1

[H2O2]: 0.1–0.5 g L�1

Marcelino [13] Ozonation Amoxicillin and cephalexin 22 FD pH: 5–12

O2 flow rate: 0.5–1 Lmin�1

Marcelino [13] Fenton Amoxicillin and cephalexin 22 FD [Fe2+]: 100–500 mg L�1

[H2O2]: 1000–1500 mg L�1

Marcelino [13] Photo-Fenton Amoxicillin and cephalexin 22 FD [Fe2+]: 100–500 mg L�1

[H2O2]: 1000–1500 mg L�1

Dwivedi et al. [14] Fenton Carbamazepine 23 FD pH: 2–6

[H2O2]: 0.5–3 g L�1

Contact time: 10–30 min

Silva [15] Photo-Fenton Amoxicillin 24 FD Amoxicillin concentration:
20–60 mg L�1

[Fe2+]: 5–15 mg L�1

[H2O2]: 50–150 mg L�1

UV light intensity: 0–96 W

Dwivedi et al. [14] Fenton Carbamazepine CCD pH: 1.37–5.62

[H2O2]: 0.34–11.65 g L�1

Pérez-Moya et al. [16] Photo-Fenton Sulfamethazine CCD [H2O2]: 176–1,024 mg L�1

[Fe2+]: 12–68 mg L�1

Silva et al. [17] Photo-Fenton Phenol CCD [NaCl]: 0.04–5,857.86 ppm
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techniques; combinations of process factors, mixture components and categorical factors and
design and analysis of split plots (http://www.statease.com).

3. Design of experiments applied to advanced oxidation technologies

Advanced oxidation technologies are affected by a large number of parameters such as iron
(Fe2+) and H2O2 concentrations, pH, temperature, light intensity, organic chemical content,
among others. In addition, for different industrial chemical processes there are different efflu-
ents, which greatly vary in this chemical composition from each other, not allowing a unique
approach for all of them. Thus, it is necessary to adjust AOT parameters to the specific effluent
to be treated.

This adjustment could be performed using the one-variable-at-a-time (OVAT) approach, but this
procedure is time-consuming and less effective due to multiple variable nature of AOT. Statistical
design of experiments (DoE) and response surface methodology (RSM) emerge as important and
widely used tools to determine the effects of multiple variables on objective functions to be
optimized. Different types of DoE used for AOT evaluation include two-level factorial design (2k

FD), central composite design (CCD) and Box-Behnken design (BBD), as can be seen on Table 1.

3.1. Two-level factorial design (2k FD)

Factorial designs are a widely used and efficient way to evaluate the effects of two or more
factors and the interactions among them on response variables. When compared to the one-
variable-at-a-time (OVAT) experiments, factorial designs exhibit higher relative efficiency,
avoid misleading conclusions when interactions are present and allow the effect estimation of
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NaX to cobalt ferrite
nanoparticles ratio: 0.5–1.5
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Reference AOT Organic matter DoE Independent factor: range

[Na2SO4]: 0.04–5,857.86
ppm

Affam et al. [18] Modified Fenton
(FeGAC/H2O2)

Amoxicilin and cloxacillin CCD H2O2/COD molar ratio:
0.32–3.68

[FeGAC]: 1–6 g L�1

Reaction time: 39.55–140.45
min

Almeida [19] Photoelectro-Fenton Paracetamol CCD Electric current: 3.5–8.5 A

[Fe2+]: 3.30 � 10�4–
1.17 � 10�3 mol L�1

pH: 1.37–4.36

Frade [20] Fenton Enrofloxacin CCD [H2O2]: 0.1–0.9 g L�1

[Fe2+]: 5.0 � 10�3–
1.2 � 10�1 g L�1

Temperature: 0–40�C

Homem et al. [21] Fenton CCD [H2O2]: 4.2 � 10�4–
4.28 � 10�3 g L�1

Amoxicillin [Fe2+]: 3.0 � 10�5–
3.5 � 10�4 g L�1

Temperature: 20–70�C

Rozas et al. [22] Fenton and photo-
Fenton

Ampicillin CCD [Fe2+]: 5.3 � 10�5–
8.7 � 10�5 mol L�1

[H2O2]: 2.3 � 10�4–
5.7 � 10�4 mol L�1

pH: 2.3–5.7

Sarrai et al. [23] Photo-Fenton Tylosin CCD [Fe2+]: 6.4 � 10�4–
7.36 � 10�3 g L�1

[H2O2]: 1.32 � 10�4–
4.68 � 10�4 g L�1

pH: 1.89–3.9

Zaidan et al. [24] Photo-Fenton Phenol CCD [Fe2+]: 1.59 � 10�3–
1.50 � 10�2 mol L�1

[H2O2]: 5.93–21.06 g L�1

Reaction time: 39.55–140.55
min

Arslan-Alaton et al. [25] Photo-Fenton-like Naphthalene sulphonic
acid (H-acid)

CCD Reaction time: 6–30 min

[COD]: 0.15–0.75 g L�1

[H2O2]: 1 � 10�2–5 � 10�2

mol L�1

[Fe3+]: 5.0 � 10�4–
2.5 � 10�3 mol L�1
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a factor at different levels of the other factors. The two-level factorial design with k factors (2k)
is the most important of these special cases. In this methodology, the factors vary from a ‘low’
level (also designated as �1) to a ‘high’ level (also designated as +1). The 2k factorial design (2k

FD) is a powerful factor screening tool at initial research stages, since it provides the smallest
number of experiments to be run when many factors are investigated [27].

The number of runs in a set of two level factorial design comprises 2k factorial points and
central points. A usual matrix (treatment combinations) for two (22) and three (23) factors are
presented in Table 2, in a coded representation.

In Table 2, runs 1–4 (for 2 factors, Table 2a) and 1–8 (for 3 factors, Table 2b) are called factorial
points and consists in all 2k possible combinations for the low and high levels of all factors.
Runs 5–7 (for 2 factors, Table 2a) and 9–11 (for 3 factors, Table 2b) are called central points and
are used to obtain an estimate of the error, in order to allow the identification of the significant
factors for a defined confidence interval. In general, three to five central points are
recommended to obtain a good estimation of response variance. At the central points, the
factors assume the mean value between their own low and high levels.

Geometrically, the space delimitated by the factors range of variation is represented by a
square and a cube, as can be seen in Figure 1, for two and three factors, respectively.

The results of 2k FD can be expressed using a first-order regression model (Eq. (1)):

y ¼ β0 þ
Xk

j¼1

βjxj þ
XX

i<j

βijxixj ð1Þ

Where y corresponds to the response variable, xj (xi) represents the coded factors, β0 is the mean
value of response variable, βj’s represent the linear coefficients and βij’s represent the interaction
coefficients. The relationship between the coded (x) and natural (actual) factors (X) is as follows:

x ¼ X� X0

Δ
ð2Þ

Δ ¼ Xhigh � Xlow

2
ð3Þ

Reference AOT Organic matter DoE Independent factor: range

Domínguez et al. [26] Integrated
Fenton/photo-Fenton-
like

Carbamazepine CCD pH: 2.5–4.5

[H2O2]: 0–1.68 � 10�4 mol
L�1

[Fe2+]: 0–1.68 � 10�5 mol
L�1

[Fe3+]: 0–1.68 � 10�5 mol
L�1

Table 1. Studies applying design of experiments for evaluation of advanced oxidation technologies.
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a factor at different levels of the other factors. The two-level factorial design with k factors (2k)
is the most important of these special cases. In this methodology, the factors vary from a ‘low’
level (also designated as �1) to a ‘high’ level (also designated as +1). The 2k factorial design (2k

FD) is a powerful factor screening tool at initial research stages, since it provides the smallest
number of experiments to be run when many factors are investigated [27].
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presented in Table 2, in a coded representation.
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factors for a defined confidence interval. In general, three to five central points are
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factors assume the mean value between their own low and high levels.

Geometrically, the space delimitated by the factors range of variation is represented by a
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Where X0, Xlow, and Xhigh are the value of the natural factor at central point, low level and high
level, respectively. For the cases discussed above, Eq. (1) becomes:

k ¼ 2factors: y ¼ β0 þ β1x1 þ β2x2 þ β12x1x2 ð4Þ

k ¼ 3factors: y ¼ β0 þ β1x1 þ β2x2 þ β3x3 þ β12x1x2 þ β13x1x3 þ β23x2x3 ð5Þ

In Eq. (1), coded variables are preferably used instead of natural factors since coded factors
allow an effective evaluation of relative size of factors effects. This means that depending on
the ranges and units of natural variables, their relative effects could be masked, leading to
erroneous simplification of the model.

Run

Factor

A B C

Run

Factor 1 �1 �1 �1

A B 2 +1 �1 �1

1 �1 �1 3 �1 +1 �1

2 +1 �1 4 +1 +1 �1

3 �1 +1 5 �1 �1 +1

4 +1 +1 6 +1 �1 +1

5 0 0 7 �1 +1 +1

6 0 0 8 +1 +1 +1

7 0 0 9 0 0 0

10 0 0 0

11 0 0 0

(a) (b)

Table 2. Two-level factorial designs: (a) two factors; (b) three factors.

Figure 1. Geometric view of two-level factorial designs: (a) two factors and (b) three factors.
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The general approach to the statistical analysis of 2k factorial design consists in the following
steps [27]:

• Obtain the generalized model (full model) adjusting the regression model described by
Eq. (1) to the experimental data.

• Define a confidence interval and perform an Analysis of Variance (ANOVA) to identify the
statistical significant terms of Eq. (1) (single factors and interaction factors).

• Refine the model, excluding the non-significant terms from the model and adding them to
the lack of fit, and recalculate the coefficients.

• Verify the model adequacy performing a residual analysis.

• Built response surfaces (or contour plots) to perform the graphical interpretation of the results.

Since Eq. (1) is a first-order model, the response surface described is a plane. Then, it is not
possible to affirm that the highest value exhibited corresponds to an optimal value. However,
the response surface can be used to obtain a direction of potential improvement using the
method of steepest ascent.

3.2. Central composite design (CCD)

The model described by Eq. (1) allows the representation of some curvature on response
surface, as the result of twisting of the plane caused by the interaction of factors. However, if
there is no curvature with identification of maximum or minimum points in the graph, it is
then necessary to provide more information for the mathematical model. For that cases, a
second-order model regression may be used [27].

If there is no curvature, then the mean response at the centre point equals the average of the
mean response of the factors at their low and high settings (the corners of the design space).
Curvature is detected when the average mean response at the centre points is significantly
greater or less than the average mean response of the factors at their low and high settings.

y ¼ β0 þ
Xk

j¼1

βjxj þ
XX

i<j

βijxixj þ
Xk

j¼1

βjjx
2
j ð6Þ

where βjj’s represent the quadratic term coefficients.

The addition of more coefficients to the model implies the necessity of a higher number of runs
to allow a reliable coefficient estimation. This increase is usually done by adding axial points to
the factorial design, resulting in the central composite design (CCD). The impact of the axial
point addition can be visualized in Figure 2, where the study space is larger when compared to
the factorial design (Figure 1).

The codified α level depends on the number of factors:

α ¼ 2k=4 ð7Þ

For 2 and 3 factors, α becomes equal to 1.41 and 1.68; respectively. The usual treatment
combinations are presented in Table 3.
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Where X0, Xlow, and Xhigh are the value of the natural factor at central point, low level and high
level, respectively. For the cases discussed above, Eq. (1) becomes:

k ¼ 2factors: y ¼ β0 þ β1x1 þ β2x2 þ β12x1x2 ð4Þ

k ¼ 3factors: y ¼ β0 þ β1x1 þ β2x2 þ β3x3 þ β12x1x2 þ β13x1x3 þ β23x2x3 ð5Þ

In Eq. (1), coded variables are preferably used instead of natural factors since coded factors
allow an effective evaluation of relative size of factors effects. This means that depending on
the ranges and units of natural variables, their relative effects could be masked, leading to
erroneous simplification of the model.

Run

Factor

A B C

Run

Factor 1 �1 �1 �1

A B 2 +1 �1 �1

1 �1 �1 3 �1 +1 �1

2 +1 �1 4 +1 +1 �1

3 �1 +1 5 �1 �1 +1

4 +1 +1 6 +1 �1 +1

5 0 0 7 �1 +1 +1

6 0 0 8 +1 +1 +1

7 0 0 9 0 0 0

10 0 0 0

11 0 0 0

(a) (b)

Table 2. Two-level factorial designs: (a) two factors; (b) three factors.

Figure 1. Geometric view of two-level factorial designs: (a) two factors and (b) three factors.
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Figure 2. Geometric view of central composite designs: (a) two factors and (b) three factors.

Run

Factor

A B C

1 �1 �1 �1

Run

Factor 2 1 �1 �1

A B 3 �1 1 �1

1 �1 �1 4 1 1 �1

2 1 �1 5 �1 �1 1

3 �1 1 6 1 �1 1

4 1 1 7 �1 1 1

5 �1.41 0 8 1 1 1

6 +1.41 0 9 �1.68 0 0

7 0 �1.41 10 +1.68 0 0

8 0 +1.41 11 0 �1.68 0

9 0 0 12 0 +1.68 0

10 0 0 13 0 0 �1.68

11 0 0 14 0 0 +1.68

15 0 0 0

16 0 0 0

17 0 0 0

(a) (b)

Table 3. Central composite designs: (a) two factors; (b) three factors.
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In Table 3, runs 5–8 (for 2 factors, Table 3a) and 9–14 (for 3 factors, Table 3b) are called axial
points. For the cases discussed above, Eq. (6) becomes:

k ¼ 2factors: y ¼ β0 þ β1x1 þ β2x2 þ β12x1x2 þ β11x
2
1 þ β22x

2
2 ð8Þ

k ¼ 3factors: y ¼ β0 þ β1x1 þ β2x2 þ β3x3 þ β12x1x2 þ β13x1x3 þ β23x2x3 þ β11x
2
1 þ β22x

2
2 þ β33x

2
3

ð9Þ

The statistical analysis of central composite design follows the steps presented for the 2k

factorial design, now considering the quadratic terms.

3.3. Box-Behnken design (BBD)

Box-Benhken is a three-level DoE that comprises 2k factorial points with incomplete block
design and is used to fit second-order model regression. For three factors, this methodology
corresponds to spherical revolving design, corresponding to a centre point surrounded by the
middle points of the edges of a cube circumscribed on a sphere of radius

ffiffiffi
2

p
[27] (Figure 3).

Figure 3 shows that Box-Behnken design do not contain any points at the vertices of the cubic
region delimitated by the upper and lower levels of each factor (corner points), making this

Figure 3. Geometric view of a three-factor Box-Behnken design.
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methodology advantageous when these points represent expensive or physically impossible
experimental conditions [27]. Table 4 represents a three factor Box-Behnken design matrix.

3.4. Optimization

Box-Behnken design is also an efficient response surface methodology, since it requires a lower
number of runs when compared to central composite design, as can be seen comparing
Tables 3 and 4.

When a design of experiments is performed, the goal resides in obtaining factor values that
optimize (maximize or minimize) the response variables. In general, this objective could be
achieved using a sequential strategy, in which a factorial design (2k FD, for example) followed
by a response surface methodology (CCD, for example) are employed in sequence. This
procedure is important, since it allows to fit (correct) the factors range of variation and remove
non-significant factors from the study.

However, a problem arises when multiple responses are evaluated and need to be optimized
simultaneously. This optimization could be performed using several approaches such as to
overlay the response surfaces (which is useful for less than three factors); formulation and
resolution of constrained optimization problems, using nonlinear programming methods and
the desirability functions.

Run

Factor

A B C

1 �1 �1 0

2 �1 +1 0

3 +1 �1 0

4 +1 +1 0

5 �1 0 �1

6 �1 0 +1

7 +1 0 �1

8 +1 0 +1

9 0 �1 �1

10 0 �1 +1

11 0 +1 �1

12 0 +1 +1

13 0 0 0

14 0 0 0

15 0 0 0

Table 4. Three factor Box-Behnken design.
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The use of desirability functions consists in converting all the m response variables (yi) into
individual desirability functions (di), making them vary from 0 to 1, which means non-
achievement and achievement of the goal, respectively. Thus, the overall desirability function
(D) is built according to Eq. (10), and the individual desirability functions are varied in order to
optimize D.

D ¼ ðd1:d2…dmÞ1 m= ð10Þ

4. Advanced oxidation processes: photo-Fenton technology

Many organic chemicals discharged into the aquatic environment are not only toxic but also
only partly biodegradable and are not easily degraded by conventional biological wastewater
treatment plants. That is the reason to develop effective methods aiming degradation of
chemical pollutants, either to less noxious transformation products or to their complete miner-
alization (mainly to CO2 and H2O molecules). Throughout the last decades, new methods for
water and wastewater cleaning processes, called as advanced oxidation technologies, have
received more attention. High rates of pollutant oxidation, flexibility concerning water quality
variations and small dimensions of reactors are some advantages of such processes. On the
other hand, high operating costs and special safety requirements because of the use of very
reactive chemicals (ozone, hydrogen peroxide, etc.) and high-energy sources (UV lamps,
electron beams, radioactive sources) are the main negative concerns about AOT.

Advanced oxidation technologies (AOT) imply the use of powerful oxidizing intermediates
(the hydroxyl radical OH) which can oxidize and degrade primarily organic pollutants from
air and water. The term advanced is used because the chemical reactions involved are essen-
tially the same (except billions of times faster) as the reactions that would occur if these
pollutants were exposed in a natural environment. The ubiquitous occurrence of hydroxyl
radicals (•OH) in various types of environments that include natural waters, the atmosphere,
biological systems and interstellar space is now well established. Hydroxyl radicals were first
discovered in 1934 by Haber andWeiss in what is known today as the Fenton reaction [28]. It is
now well known that, under most atmospheric conditions, •OH radicals govern the oxidative
capacity of the natural atmosphere. •OH radicals are composed of a hydrogen atom bonded to
an oxygen atom which makes them highly reactive, readily stealing hydrogen atoms from
other molecules to form water molecules [29].

AOTs have been defined by Glaze et al. [1] as ‘near ambient temperature and pressure water
treatment processes which involve the generation of a very powerful oxidizing agent such as
hydroxyl radical (•OH) in solution in sufficient quantity to effective water purification’. AOTs
are applied whenever conventional oxidation techniques are insufficient, when process kinet-
ics becomes very slow, or because contaminants are refractory to chemical oxidation in aque-
ous medium or partially oxidized yielding stable transformation products showing even
greater toxicity than the starting pollutants. However, it must also be taken into consideration
that the oxidation ability of most AOT diminishes considerably when treating high organic
matter contents (>5.0 g L�1), thereby requiring the consumption of excessive amounts of
expensive reactants that makes the treatment far less cost-affordable.
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an oxygen atom which makes them highly reactive, readily stealing hydrogen atoms from
other molecules to form water molecules [29].
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treatment processes which involve the generation of a very powerful oxidizing agent such as
hydroxyl radical (•OH) in solution in sufficient quantity to effective water purification’. AOTs
are applied whenever conventional oxidation techniques are insufficient, when process kinet-
ics becomes very slow, or because contaminants are refractory to chemical oxidation in aque-
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greater toxicity than the starting pollutants. However, it must also be taken into consideration
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AOTs oxidize a broad range of contaminants, including those that are not readily removed
with other advanced technologies (e.g. reverse osmosis or granular activated carbon). Most of
the commercially viable AOTuse either ozone or photochemical processes [i.e. ultraviolet (UV)
or visible light] to generate OH [30]. In AOT, •OH radicals are generated usually by coupled
chemical and/or physical systems that include H2O2/Fe(II) or H2O2/Fe(III) (Fenton), H2O2/
catalyst or peroxide/catalyst (Fenton-like), O3 (ozonation) and H2O2/O3 (peroxone) that are
often associated with an irradiation technique, namely vacuum-UV radiation, UV radiation
(low-, medium-, or high-pressure lamps), pulse radiolysis or ultrasound [29].

Since its first use [28], until now, the most effective and simple way of generating hydroxyl
radicals for organic pollutants degradation is by classical Fenton reaction (Eq. (11)) [31].

Fe2þ þH2O2 ! Fe3þ þ �OHþOH� ðk ¼ 74 M�1 s�1Þ ð11Þ

However, one of the main inconveniences of Fenton reaction is the rapid consumption of Fe2+

(Eq. (11)) and a very slow regeneration of Fe2+ by ‘Fenton-like’ reaction (Eq. (12)). Fenton-based
degradation process, therefore, demands a high initial concentration or a continuous dosage of
Fe2+. This disadvantage is overcome in photo-Fenton process wherein (UV-Visible irradiation,
λ < 550 nm), Fenton/Fenton-like reaction (Eq. (11)) is paired with UV irradiation to regenerate
Fe2+ (Eq. (13)), thereby minimizing the Fe2+ dosage for degradation [31].

Fe3þ þH2O2 ! Fe2þ þHO�
2 þHþ ðk 0 ¼ 0:02 M�1s�1Þ ð12Þ

Fe3þ þH2O2!hνFe2þ þ �OHþHþ ð13Þ

Consequently, the photo-Fenton has been recognized as a prospective UV-based AOT for
treatment of industrial waste water. In photo-Fenton process, Fe(III) aqua species, mainly the
hydroxo complex [Fe(H2O)5OH]2+ formed at pH~3 is photoactive and regenerates Fe(II) upon
UV irradiation [31]. In the photo-Fenton process, only iron is catalytic, whereas hydrogen
peroxide plays a sacrificial role. The mechanism of the process is very complex and still
remains incompletely elucidated; it is widely accepted that hydroxyl radical plays a major role
as oxidizing agent, although the involvement of other species, such as high-valence iron, has
not been ruled out [32].

When it comes to industrial applications, the scientific literature is scarce and, basically, in the
same situation observed by Vogelpohl [33]. There is a lack of published data providing
comparisons with bench-scale or pilot-scale data. Moreover, studies developed by companies
are often only disclosed internally. As noted by Vogelpohl [33], there are few data on costs,
both for installation and for operation, without which there will be a considerable gap between
academia and industry. On the other hand, the growing number of patents in the area is a
positive factor that indicates that the acceptance of AOTs by the industrial sector is growing
each year. By performing a simple search (5 January 2017), through the Google Patents robot,
the expression ‘advanced oxidation process*’ generated a total of 3384 results, the keyword
‘fenton’ generated 22,977 results, whereas ‘wastewater AND pharmaceut* AND fenton’ strat-
egy obtained 1379 results. In this bibliographic research, other forms of publication other than
patents were excluded.
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Despite scarce literature information—compared to academic number of papers—about
industrial applications of AOT for water and air remediation, advanced oxidation processes
have been successfully commercialized during recent years [34]. Basically, advanced oxidation
solutions begin with a wastewater chemical study and a geologic data evaluation (for treat-
ment of contaminated soil and groundwater). A critical step in ensuring the success of a
treatment program is the selection of the appropriate chemical reagent and application
method. An initial bench-scale is useful to select the appropriate method. Previous information
from the scientific literature (reports, academic studies, conference proceedings and papers) is
mandatory to the chemical remediation industry. In commercial scale of Fenton’s reagent,
H2O2 dosage of 5–35% (w/w) is applied. The initial weight of H2O2 and Fe2+ are based on
contaminants levels, chemical characteristics, type of soil to be treated, and the specific ratio of
H2O2:Fe

2+ determined during the laboratory study (bench scale previous tests). Occasionally,
additional reagents may be applied because of heterogeneity of the medium and to diminish
H2O2 rate of decomposition aiming additional contact time for the contaminants. If the natural
pH of the contaminant site is not low enough for efficient hydroxyl radical generation, H2SO4

may be added to adjust pH prior to the Fenton’s reagent application. Some commercial
applications of AOT are shown as follows:

Calgon Carbon Corporation has provided advanced oxidation technologies for disinfection
drinking water, municipal wastewater and industrial wastewater with low-pressure and
medium-pressure lamps UV reactors (SENTINEL®, C3 Series™, and RAYOX® systems).
According to Calgon Carbon Corp., each Sentinel® reactor is able to treat 200 million litres of
industrial effluents a day, accommodating pipe size from 12 to 48 inches. On the other hand,
Rayox® has reactors from lab scale (batch test units with 1 kW, 30 kW, 60 kW and 90 kW) to
large applications with patented lamp-cleaning device.

The Geo-Cleanse® process is a patented, in-situ chemical oxidation technology that utilizes
Fenton’s reagent andmodified-Fenton’s reagent to destroy organic compounds fromwastewater
and soil. As an example of AOT application, Geo-Cleanse International treated groundwater
contaminated with high concentrations of perchloroethylene (PCE) and its transformation prod-
ucts at a landfill (25-acre area) located on the Naval Submarine Base, Kings Bay Georgia. The
source of PCE contamination was identified on the perimeter of the landfill with concentrations
of over 9000 µg L�1. Injection of chemical reagents and catalyst was implemented by the
placement of 23 injection wells. The AOT achieved over a 98% destruction of chlorinated hydro-
carbons.

Another in-situ chemical oxidation solution is provided by CleanOX® that is based on the
Fenton’s reagent. In-Situ Oxidative Technologies Inc. provides ISOTEC’s modified Fenton’s
reagent (MFR), which consists of injecting patented chelated iron catalysts and stabilized
hydrogen peroxide into contaminated aquifers (at pH~7).

In-Situ Technieken (The Netherlands) treats contaminated soil also with Fenton’s reagent
with a process that can be combined (or not) with aerobic/anaerobic biological degradation
(BISCO®). The Dow Chemical produces raw materials for the polyurethane industry in
Delfzijl (The Netherlands). The soil at the site of the sandblasting area was polluted with
monochlorobenzene (MCB). The DOW plant in Delfzijl was obliged to submit the principles
for a soil remediation plan to the Provincial Government of Groningen. The remediation was
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AOTs oxidize a broad range of contaminants, including those that are not readily removed
with other advanced technologies (e.g. reverse osmosis or granular activated carbon). Most of
the commercially viable AOTuse either ozone or photochemical processes [i.e. ultraviolet (UV)
or visible light] to generate OH [30]. In AOT, •OH radicals are generated usually by coupled
chemical and/or physical systems that include H2O2/Fe(II) or H2O2/Fe(III) (Fenton), H2O2/
catalyst or peroxide/catalyst (Fenton-like), O3 (ozonation) and H2O2/O3 (peroxone) that are
often associated with an irradiation technique, namely vacuum-UV radiation, UV radiation
(low-, medium-, or high-pressure lamps), pulse radiolysis or ultrasound [29].

Since its first use [28], until now, the most effective and simple way of generating hydroxyl
radicals for organic pollutants degradation is by classical Fenton reaction (Eq. (11)) [31].

Fe2þ þH2O2 ! Fe3þ þ �OHþOH� ðk ¼ 74 M�1 s�1Þ ð11Þ

However, one of the main inconveniences of Fenton reaction is the rapid consumption of Fe2+

(Eq. (11)) and a very slow regeneration of Fe2+ by ‘Fenton-like’ reaction (Eq. (12)). Fenton-based
degradation process, therefore, demands a high initial concentration or a continuous dosage of
Fe2+. This disadvantage is overcome in photo-Fenton process wherein (UV-Visible irradiation,
λ < 550 nm), Fenton/Fenton-like reaction (Eq. (11)) is paired with UV irradiation to regenerate
Fe2+ (Eq. (13)), thereby minimizing the Fe2+ dosage for degradation [31].

Fe3þ þH2O2 ! Fe2þ þHO�
2 þHþ ðk 0 ¼ 0:02 M�1s�1Þ ð12Þ

Fe3þ þH2O2!hνFe2þ þ �OHþHþ ð13Þ

Consequently, the photo-Fenton has been recognized as a prospective UV-based AOT for
treatment of industrial waste water. In photo-Fenton process, Fe(III) aqua species, mainly the
hydroxo complex [Fe(H2O)5OH]2+ formed at pH~3 is photoactive and regenerates Fe(II) upon
UV irradiation [31]. In the photo-Fenton process, only iron is catalytic, whereas hydrogen
peroxide plays a sacrificial role. The mechanism of the process is very complex and still
remains incompletely elucidated; it is widely accepted that hydroxyl radical plays a major role
as oxidizing agent, although the involvement of other species, such as high-valence iron, has
not been ruled out [32].

When it comes to industrial applications, the scientific literature is scarce and, basically, in the
same situation observed by Vogelpohl [33]. There is a lack of published data providing
comparisons with bench-scale or pilot-scale data. Moreover, studies developed by companies
are often only disclosed internally. As noted by Vogelpohl [33], there are few data on costs,
both for installation and for operation, without which there will be a considerable gap between
academia and industry. On the other hand, the growing number of patents in the area is a
positive factor that indicates that the acceptance of AOTs by the industrial sector is growing
each year. By performing a simple search (5 January 2017), through the Google Patents robot,
the expression ‘advanced oxidation process*’ generated a total of 3384 results, the keyword
‘fenton’ generated 22,977 results, whereas ‘wastewater AND pharmaceut* AND fenton’ strat-
egy obtained 1379 results. In this bibliographic research, other forms of publication other than
patents were excluded.
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Despite scarce literature information—compared to academic number of papers—about
industrial applications of AOT for water and air remediation, advanced oxidation processes
have been successfully commercialized during recent years [34]. Basically, advanced oxidation
solutions begin with a wastewater chemical study and a geologic data evaluation (for treat-
ment of contaminated soil and groundwater). A critical step in ensuring the success of a
treatment program is the selection of the appropriate chemical reagent and application
method. An initial bench-scale is useful to select the appropriate method. Previous information
from the scientific literature (reports, academic studies, conference proceedings and papers) is
mandatory to the chemical remediation industry. In commercial scale of Fenton’s reagent,
H2O2 dosage of 5–35% (w/w) is applied. The initial weight of H2O2 and Fe2+ are based on
contaminants levels, chemical characteristics, type of soil to be treated, and the specific ratio of
H2O2:Fe

2+ determined during the laboratory study (bench scale previous tests). Occasionally,
additional reagents may be applied because of heterogeneity of the medium and to diminish
H2O2 rate of decomposition aiming additional contact time for the contaminants. If the natural
pH of the contaminant site is not low enough for efficient hydroxyl radical generation, H2SO4

may be added to adjust pH prior to the Fenton’s reagent application. Some commercial
applications of AOT are shown as follows:

Calgon Carbon Corporation has provided advanced oxidation technologies for disinfection
drinking water, municipal wastewater and industrial wastewater with low-pressure and
medium-pressure lamps UV reactors (SENTINEL®, C3 Series™, and RAYOX® systems).
According to Calgon Carbon Corp., each Sentinel® reactor is able to treat 200 million litres of
industrial effluents a day, accommodating pipe size from 12 to 48 inches. On the other hand,
Rayox® has reactors from lab scale (batch test units with 1 kW, 30 kW, 60 kW and 90 kW) to
large applications with patented lamp-cleaning device.

The Geo-Cleanse® process is a patented, in-situ chemical oxidation technology that utilizes
Fenton’s reagent andmodified-Fenton’s reagent to destroy organic compounds fromwastewater
and soil. As an example of AOT application, Geo-Cleanse International treated groundwater
contaminated with high concentrations of perchloroethylene (PCE) and its transformation prod-
ucts at a landfill (25-acre area) located on the Naval Submarine Base, Kings Bay Georgia. The
source of PCE contamination was identified on the perimeter of the landfill with concentrations
of over 9000 µg L�1. Injection of chemical reagents and catalyst was implemented by the
placement of 23 injection wells. The AOT achieved over a 98% destruction of chlorinated hydro-
carbons.

Another in-situ chemical oxidation solution is provided by CleanOX® that is based on the
Fenton’s reagent. In-Situ Oxidative Technologies Inc. provides ISOTEC’s modified Fenton’s
reagent (MFR), which consists of injecting patented chelated iron catalysts and stabilized
hydrogen peroxide into contaminated aquifers (at pH~7).

In-Situ Technieken (The Netherlands) treats contaminated soil also with Fenton’s reagent
with a process that can be combined (or not) with aerobic/anaerobic biological degradation
(BISCO®). The Dow Chemical produces raw materials for the polyurethane industry in
Delfzijl (The Netherlands). The soil at the site of the sandblasting area was polluted with
monochlorobenzene (MCB). The DOW plant in Delfzijl was obliged to submit the principles
for a soil remediation plan to the Provincial Government of Groningen. The remediation was
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carried out with AOT and in accordance with the Netherlands Directive for Soil Protection
(NRB).

On-Contact Remediation Process® by Environmental Business Solutions International Inc.
(EBSI) is another commercial AOT process. In one of the examples provided by EBSI Inc., in-
situ remediation was successfully implemented in Boston, Massachusetts. Fuel oil, gasoline
and several plasticizer additives, including bis-2-ethylhexyl phthalate (DEHP) were stored in
underground storage tanks (UST) outside the facility loading bays. Light Non-Aqueous Phase
Liquid, consisting of fuel oil and DEHP, was discovered at the site in the late 1980s and various
methods to remove it had been attempted over many years. After three rounds of oxidizer
treatment, LNAPL levels were reduced by more than 70% by AOT.

There has been a tendency to quote treatment costs per unit volume for a waste stream and
technology (e.g. dollars/1000 gal); however, such notation does not consider the concentration
of the contaminant nor the treatment goals. Bolton et al. [35] proposed figures-of-merit that are
based on electrical energy consumption within two phenomenological kinetic order regimes:
one for high contaminant concentrations and one for low concentrations. A simple under-
standing of the overall kinetic behaviour of organic destruction in a waste stream (i.e. whether
zero or first order) is necessary for describing meaningful electrical efficiencies. These standard
figures-of-merit are valuable in that they give a direct link to the electrical efficiency of an
advanced oxidation process, independent of the nature of the system and therefore also allow
comparison of widely disparate AOT. Such figures-of-merit are necessary not only to compare
AOT, but also to provide the requisite data for scale-up and economic analyses for comparison
with conventional treatment technologies (e.g. carbon adsorption/regeneration, air stripping
and incineration).

There are many important factors in selecting a waste-stream treatment technology including
economics, economy of scale, regulations, effluent quality goals, operation (maintenance,
control and safety) and robustness (flexibility to change/upsets). Although all these factors are
important, economics is often sovereign. A full economic analysis of the net present cost (i.e.
amortized investment, installation and operating costs) of implementing a wide range of
treatment technologies represents an arduous task and often can be both site- and problem-
specific. A simple figure-of-merit based on electrical energy consumption can be very useful
and informative for AOT, since these processes are often electrical energy intensive and elec-
trical energy can represent a major fraction of the operating costs. Moreover, electrical energy
dosage requirements also dictate the size of the capital equipment needed to generate the
requisite dosage, thus investment should also tend to scale with this figure-of-merit [35].

Asaithambi et al. [36] compared the performance of the photo (UV), Fenton, photo-Fenton
and ozone-photo-Fenton processes in terms of colour removal and chemical oxygen
demand (COD) removal of distillery industrial effluent together with the associated electri-
cal energy per order. The colour and COD removals of industrial effluents were investi-
gated using the pseudo first-order kinetic model. It was observed from the experimental
results that O3/UV/Fe2+/H2O2 process yielded a 100% colour and 95.50% COD removals with
electrical energy per order of 0.015 kWhm�3 compared to all other combinations of AOT.

Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes38

Lin et al. [37] investigated the degradation of ofloxacin antibiotics by UV/H2O2 process in a
large photoreactor, and the effects of UV wavelength, H2O2 dosage and pH on this process.
The degradation of ofloxacin proceeded more rapidly under UV-254 nm than under UV-
365 nm. The degradation of ofloxacin by the UV/H2O2 process followed pseudo-first-order
kinetics. At pH 3 and an H2O2 dosage of 0.27 g L�1, 97% of ofloxacin was degraded under UV-
254 nm after 30 min. The electrical energy per order of removal (EE/O) figure-of-merit value for
the treatment of 10 mg L�1 ofloxacin by the UV-365 nm/H2O2 process was 22.5 kWh m�3 per
order. However, that of the UV-254 nm/H2O2 process was significantly lower, at 2.2 kWh m�3

per order.

Lin and Wu [38] studied the effectiveness of the UV/S2O8
2� process in the degradation of

ciprofloxacin antibiotics in aqueous solutions without adjusting their pH using a large
photoreactor. The EE/O values for 10 mg L�1 ciprofloxacin treatment by the UV/S2O8

2� pro-
cess at various Na2S2O8 concentrations were calculated. The lowest EE/O value in the
UV/S2O8

2� process was calculated as 0.653 kWh m�3 per order at Na2S2O8 concentration of
3.84 g L�1.

Only a small fraction of the scientific papers related to advanced oxidative technologies makes
use of the electrical energy consumption figure-of-merit. In our understanding, one of the best
response variables that could be used in the study of wastewater degradation (pharmaceuti-
cals or not) would be EE/O. With EE/O as variable response in a design of experiments, not
only the main factors associated to the advanced oxidative processes (light source, catalyst,
H2O2, O3, Fe

2+
, etc.), but also the kinetics of the reaction and the energy cost would be used in

an experimental study to reach the objective of the process. There is a gap in the scientific
community regarding the use of the EE/O tool that could be explored by researchers in
conjunction with the traditional statistical tool design of experiments.
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carried out with AOT and in accordance with the Netherlands Directive for Soil Protection
(NRB).

On-Contact Remediation Process® by Environmental Business Solutions International Inc.
(EBSI) is another commercial AOT process. In one of the examples provided by EBSI Inc., in-
situ remediation was successfully implemented in Boston, Massachusetts. Fuel oil, gasoline
and several plasticizer additives, including bis-2-ethylhexyl phthalate (DEHP) were stored in
underground storage tanks (UST) outside the facility loading bays. Light Non-Aqueous Phase
Liquid, consisting of fuel oil and DEHP, was discovered at the site in the late 1980s and various
methods to remove it had been attempted over many years. After three rounds of oxidizer
treatment, LNAPL levels were reduced by more than 70% by AOT.

There has been a tendency to quote treatment costs per unit volume for a waste stream and
technology (e.g. dollars/1000 gal); however, such notation does not consider the concentration
of the contaminant nor the treatment goals. Bolton et al. [35] proposed figures-of-merit that are
based on electrical energy consumption within two phenomenological kinetic order regimes:
one for high contaminant concentrations and one for low concentrations. A simple under-
standing of the overall kinetic behaviour of organic destruction in a waste stream (i.e. whether
zero or first order) is necessary for describing meaningful electrical efficiencies. These standard
figures-of-merit are valuable in that they give a direct link to the electrical efficiency of an
advanced oxidation process, independent of the nature of the system and therefore also allow
comparison of widely disparate AOT. Such figures-of-merit are necessary not only to compare
AOT, but also to provide the requisite data for scale-up and economic analyses for comparison
with conventional treatment technologies (e.g. carbon adsorption/regeneration, air stripping
and incineration).

There are many important factors in selecting a waste-stream treatment technology including
economics, economy of scale, regulations, effluent quality goals, operation (maintenance,
control and safety) and robustness (flexibility to change/upsets). Although all these factors are
important, economics is often sovereign. A full economic analysis of the net present cost (i.e.
amortized investment, installation and operating costs) of implementing a wide range of
treatment technologies represents an arduous task and often can be both site- and problem-
specific. A simple figure-of-merit based on electrical energy consumption can be very useful
and informative for AOT, since these processes are often electrical energy intensive and elec-
trical energy can represent a major fraction of the operating costs. Moreover, electrical energy
dosage requirements also dictate the size of the capital equipment needed to generate the
requisite dosage, thus investment should also tend to scale with this figure-of-merit [35].

Asaithambi et al. [36] compared the performance of the photo (UV), Fenton, photo-Fenton
and ozone-photo-Fenton processes in terms of colour removal and chemical oxygen
demand (COD) removal of distillery industrial effluent together with the associated electri-
cal energy per order. The colour and COD removals of industrial effluents were investi-
gated using the pseudo first-order kinetic model. It was observed from the experimental
results that O3/UV/Fe2+/H2O2 process yielded a 100% colour and 95.50% COD removals with
electrical energy per order of 0.015 kWhm�3 compared to all other combinations of AOT.
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Lin et al. [37] investigated the degradation of ofloxacin antibiotics by UV/H2O2 process in a
large photoreactor, and the effects of UV wavelength, H2O2 dosage and pH on this process.
The degradation of ofloxacin proceeded more rapidly under UV-254 nm than under UV-
365 nm. The degradation of ofloxacin by the UV/H2O2 process followed pseudo-first-order
kinetics. At pH 3 and an H2O2 dosage of 0.27 g L�1, 97% of ofloxacin was degraded under UV-
254 nm after 30 min. The electrical energy per order of removal (EE/O) figure-of-merit value for
the treatment of 10 mg L�1 ofloxacin by the UV-365 nm/H2O2 process was 22.5 kWh m�3 per
order. However, that of the UV-254 nm/H2O2 process was significantly lower, at 2.2 kWh m�3

per order.

Lin and Wu [38] studied the effectiveness of the UV/S2O8
2� process in the degradation of

ciprofloxacin antibiotics in aqueous solutions without adjusting their pH using a large
photoreactor. The EE/O values for 10 mg L�1 ciprofloxacin treatment by the UV/S2O8

2� pro-
cess at various Na2S2O8 concentrations were calculated. The lowest EE/O value in the
UV/S2O8

2� process was calculated as 0.653 kWh m�3 per order at Na2S2O8 concentration of
3.84 g L�1.

Only a small fraction of the scientific papers related to advanced oxidative technologies makes
use of the electrical energy consumption figure-of-merit. In our understanding, one of the best
response variables that could be used in the study of wastewater degradation (pharmaceuti-
cals or not) would be EE/O. With EE/O as variable response in a design of experiments, not
only the main factors associated to the advanced oxidative processes (light source, catalyst,
H2O2, O3, Fe

2+
, etc.), but also the kinetics of the reaction and the energy cost would be used in

an experimental study to reach the objective of the process. There is a gap in the scientific
community regarding the use of the EE/O tool that could be explored by researchers in
conjunction with the traditional statistical tool design of experiments.
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Abstract

The control policy determination for batch and fed-batch antibiotic production
bioprocesses is an important practical issue due to the high added value of these
bioproducts. Since it is highly desirable to optimize the antibiotic production, several
methods have been proposed aimed at this objective. Once having a mathematical model
for the bioprocess, the optimization problem can be formulated within the framework of
Pontryagin's maximum principle and of the optimal control theory to determinate the best
control trajectory for certain key manipulated variables, such as temperature, pH, and
substrate feed rate. In this chapter, applications of these model-based techniques to opti-
mize and control antibiotics production bioprocesses are reviewed and new aspects are
emphasized. The cases analyzed included the optimization of the substrate feed rate in a
fed-batch reactor and of the temperature in a batch reactor during penicillin fermentations.
The main contributions of this study were: (i) the proposition of a different procedure for
calculating the second switching time of substrate feed rate, (ii) the application of simpler
numerical methods to solve the two-point boundary-value problem associated with the
temperature profile optimization, and (iii) the demonstration that the non-isothermal
operation is more productive in antibiotic than the operation under constant temperature.
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1. Introduction

Improvement in the productivity of many submerged fermentation processes is carried out by
manipulating nutritional and physical parameters such as medium composition, agitation speed,
aeration rate, pH, and temperature [1, 2]. Although the attainment of optimal conditions for a
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multivariable fermentation process is often tedious, it is possible to undertake a rational proce-
dure by using statistical experimental designs [2].

Experimental designs can be divided in two distinct groups [3–6]: (i) model-based experimen-
tal designs and (ii) statistical experimental designs. In model-based experimental designs,
predictions of a mathematical model are used to determine how an experiment or process
should be performed, whereas, with statistical experimental designs, these model predictions
are not explicitly required.

The optimization and operation of fermentation processes play a key role in the biotechnology
industry due to heavy competition among companies. Secondary metabolites, such as antibi-
otics and other pharmaceutical products, represent an important added value; therefore,
improvements in the production of these bioproducts are of great interest to industries. To
achieve high-performance operations, the optimization of manipulated variables that affect the
fermentation process becomes a significant task.

In general, optimization problems can be classified in two categories: set-point and profile
optimizations [7]. Set-point optimization problems involve finding the best set of values of
manipulated variables that lead to the maximization of performance indexes [7]. Profile opti-
mization consists of determining temporal or spatial functions (profiles), rather than a point in
n-dimensional space, which lend an optimal value to the performance index [7].

In antibiotic fermentation, it is well known that the temperature and pH for the maximum rate
of antibiotic production are different from those for the maximum rate of cell growth [8]. In
this sense, the implementation of temperature and pH profiles plays an important role in
significant improvements in antibiotic production bioprocesses [8].

Since the primary goal of a fermentation process is the cost-effective production of bioproducts,
it is important to select the more appropriate operating mode that allows the production of the
desired product at a high concentration with a high productivity and yield [9]. Fed-batch
bioprocesses have been widely employed for the production of various bioproducts, including
primary and secondary metabolites [9]. In the particular case of secondary metabolites, such as
antibiotics, the interaction between growth metabolism and product biosynthesis is critically
affected by growth-limiting nutrient concentrations. Since both the underfeeding and the over-
feeding of nutrients are detrimental to cell growth and product formation, due to the occurrence
of phenomena such as cell starvation and catabolite repression, establishing a suitable feeding
strategy is crucial in fed-batch bioprocesses [9, 10].

A particular time sequence of control variables may be required in order to conduct the bioprocess
over time in a trajectory that provides the greatest productivity. This can lead to complex optimal
time profiles for the control variables, which are sometimes impossible to be determined purely
experimentally. Thus, appropriate mathematical and numerical methods can be applied for the
determination of these profiles in order to reduce the experimental effort and the required time for
optimization.

The search for the optimal pH, temperature, and substrate feed-rate profiles in batch and fed-
batch antibiotic fermentation is a typical problem of optimization and evolutionary operations
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for which the use of kinetic models and powerful mathematical techniques is essential for their
solution [7, 10, 11]. According to Rani and Rao [12], several approaches for the determination
of optimal time profiles for control variables have been reported in the literature [13–15]. In
these reports, the optimization problem is generally formulated on the basis of Pontryagin’s
maximum principle, taking as a starting point a phenomenological mathematical model of the
bioprocess. For simple mathematical models, the problem can be solved analytically, from the
Hamiltonian of the system, by applying an iterative scheme on the control variable to deter-
mine the optimal control profile [8, 16–19].

In this chapter, two studies on the optimization and the evolutionary operation of antibiotic
production bioprocesses are revisited, and new results are obtained and highlighted. Such
studies report mathematical models of bioprocesses, in conjunction with Pontryagin’s maxi-
mum principle, to optimize the substrate feed-rate profile for a fed-batch bioreactor and the
temperature profile for a batch fermentation in order to maximize the production of antibiotic.
The fundamentals of Pontryagin’s maximum principle, when applied to the cases analyzed,
are also presented.

The aim is to provide a theoretical basis for the application of a model-based methodology that
can be used for the optimization and control of bioprocesses from other antibiotics and
secondary metabolites with a broad structural diversity and therapeutic activity, including
antibacterial, antifungal, antiviral, antitumor, immunosuppressive, antihypertensive, and
antihypercholesterolemic compounds.

2. Case studies: batch and fed-batch antibiotic production bioprocesses

During batch and fed-batch bioprocesses, the state variables (cell, substrate, oxygen and
product concentrations, temperature, and pH) change significantly, from initial to final values.
This dynamic behavior motivates the development of optimization methods to find the opti-
mal time trajectories for the control variables in order to improve the performance of these
bioprocesses.

Two case studies on the optimization of control variables in batch and fed-batch antibiotic
production bioprocesses are revisited, and additional results are obtained and presented. The
cases studied are those reported by Costa [20] and Constantinides and Mostouffi [17],
concerning the optimization of the substrate feed rate in a fed-batch reactor and the temperature
in a batch reactor, respectively. These cases are presented and detailed in the following sections.

2.1. Case study #1: determination of the optimal substrate feed-rate profile in fed-batch
bioreactor for penicillin production

In this case study, the bioprocess of penicillin production by Penicillium chrysogenum is
described by the mathematical model presented by Costa [20], which is based on the classical
model proposed by Bajpai-Reuss for penicillin fermentation. In this model, the specific growth
rate (μ) takes into account diffusional limitations that occur in the filamentous fungal biomass,
as described by the Contois model. The specific rate of product formation (π) considers that

Model-Based Evolutionary Operation Design for Batch and Fed-Batch Antibiotic Production Bioprocesses
http://dx.doi.org/10.5772/intechopen.69395

45



multivariable fermentation process is often tedious, it is possible to undertake a rational proce-
dure by using statistical experimental designs [2].

Experimental designs can be divided in two distinct groups [3–6]: (i) model-based experimen-
tal designs and (ii) statistical experimental designs. In model-based experimental designs,
predictions of a mathematical model are used to determine how an experiment or process
should be performed, whereas, with statistical experimental designs, these model predictions
are not explicitly required.

The optimization and operation of fermentation processes play a key role in the biotechnology
industry due to heavy competition among companies. Secondary metabolites, such as antibi-
otics and other pharmaceutical products, represent an important added value; therefore,
improvements in the production of these bioproducts are of great interest to industries. To
achieve high-performance operations, the optimization of manipulated variables that affect the
fermentation process becomes a significant task.

In general, optimization problems can be classified in two categories: set-point and profile
optimizations [7]. Set-point optimization problems involve finding the best set of values of
manipulated variables that lead to the maximization of performance indexes [7]. Profile opti-
mization consists of determining temporal or spatial functions (profiles), rather than a point in
n-dimensional space, which lend an optimal value to the performance index [7].

In antibiotic fermentation, it is well known that the temperature and pH for the maximum rate
of antibiotic production are different from those for the maximum rate of cell growth [8]. In
this sense, the implementation of temperature and pH profiles plays an important role in
significant improvements in antibiotic production bioprocesses [8].

Since the primary goal of a fermentation process is the cost-effective production of bioproducts,
it is important to select the more appropriate operating mode that allows the production of the
desired product at a high concentration with a high productivity and yield [9]. Fed-batch
bioprocesses have been widely employed for the production of various bioproducts, including
primary and secondary metabolites [9]. In the particular case of secondary metabolites, such as
antibiotics, the interaction between growth metabolism and product biosynthesis is critically
affected by growth-limiting nutrient concentrations. Since both the underfeeding and the over-
feeding of nutrients are detrimental to cell growth and product formation, due to the occurrence
of phenomena such as cell starvation and catabolite repression, establishing a suitable feeding
strategy is crucial in fed-batch bioprocesses [9, 10].

A particular time sequence of control variables may be required in order to conduct the bioprocess
over time in a trajectory that provides the greatest productivity. This can lead to complex optimal
time profiles for the control variables, which are sometimes impossible to be determined purely
experimentally. Thus, appropriate mathematical and numerical methods can be applied for the
determination of these profiles in order to reduce the experimental effort and the required time for
optimization.

The search for the optimal pH, temperature, and substrate feed-rate profiles in batch and fed-
batch antibiotic fermentation is a typical problem of optimization and evolutionary operations

Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes44

for which the use of kinetic models and powerful mathematical techniques is essential for their
solution [7, 10, 11]. According to Rani and Rao [12], several approaches for the determination
of optimal time profiles for control variables have been reported in the literature [13–15]. In
these reports, the optimization problem is generally formulated on the basis of Pontryagin’s
maximum principle, taking as a starting point a phenomenological mathematical model of the
bioprocess. For simple mathematical models, the problem can be solved analytically, from the
Hamiltonian of the system, by applying an iterative scheme on the control variable to deter-
mine the optimal control profile [8, 16–19].

In this chapter, two studies on the optimization and the evolutionary operation of antibiotic
production bioprocesses are revisited, and new results are obtained and highlighted. Such
studies report mathematical models of bioprocesses, in conjunction with Pontryagin’s maxi-
mum principle, to optimize the substrate feed-rate profile for a fed-batch bioreactor and the
temperature profile for a batch fermentation in order to maximize the production of antibiotic.
The fundamentals of Pontryagin’s maximum principle, when applied to the cases analyzed,
are also presented.

The aim is to provide a theoretical basis for the application of a model-based methodology that
can be used for the optimization and control of bioprocesses from other antibiotics and
secondary metabolites with a broad structural diversity and therapeutic activity, including
antibacterial, antifungal, antiviral, antitumor, immunosuppressive, antihypertensive, and
antihypercholesterolemic compounds.

2. Case studies: batch and fed-batch antibiotic production bioprocesses

During batch and fed-batch bioprocesses, the state variables (cell, substrate, oxygen and
product concentrations, temperature, and pH) change significantly, from initial to final values.
This dynamic behavior motivates the development of optimization methods to find the opti-
mal time trajectories for the control variables in order to improve the performance of these
bioprocesses.

Two case studies on the optimization of control variables in batch and fed-batch antibiotic
production bioprocesses are revisited, and additional results are obtained and presented. The
cases studied are those reported by Costa [20] and Constantinides and Mostouffi [17],
concerning the optimization of the substrate feed rate in a fed-batch reactor and the temperature
in a batch reactor, respectively. These cases are presented and detailed in the following sections.

2.1. Case study #1: determination of the optimal substrate feed-rate profile in fed-batch
bioreactor for penicillin production

In this case study, the bioprocess of penicillin production by Penicillium chrysogenum is
described by the mathematical model presented by Costa [20], which is based on the classical
model proposed by Bajpai-Reuss for penicillin fermentation. In this model, the specific growth
rate (μ) takes into account diffusional limitations that occur in the filamentous fungal biomass,
as described by the Contois model. The specific rate of product formation (π) considers that

Model-Based Evolutionary Operation Design for Batch and Fed-Batch Antibiotic Production Bioprocesses
http://dx.doi.org/10.5772/intechopen.69395

45



penicillin production is repressed by high substrate concentrations (catabolic repression),
being modeled by the Andrews equation. Penicillin degradation by hydrolysis is also consid-
ered, assuming first-order kinetics for this reaction. The specific rate of substrate consumption
(σ) is represented by the Herbert-Pirt generalized model, whereby the substrate is consumed
for cell growth and maintenance and for product formation. The equations of the full mathe-
matical model are as follows (note that if the dilution rate is used as the control variable, the
total mass-balance equation is not required for the optimization problem formulation, thus
reducing the equation system dimension):

dX
dt

¼ μX� Xu; μ ¼ μmS
BXþ S

ð1� 2Þ

dS
dt

¼ �σXþ ðSf � SÞu; σ ¼ μ
YX=S

þ π
YP=S

þm ð3� 4Þ

dP
dt

¼ ðπX� khPÞ � Pu; π ¼ πmS

km þ Sþ S2
ki

ð5� 6Þ

where

• X, S, and P denote the concentrations of cell, substrate, and product, respectively;

• μ, σ, and π are the specific rates of cell growth, substrate consumption, and product
formation;

• μm, B, YX/S, YP/S,m, πm, km, and ki are the parameters of the mathematical model, including
kinetic and yield parameters;

• u ¼ D ¼ F=V : u ¼ control variable; D ¼ dilution rate; F ¼ feed rate; V ¼ culture volume
ð7Þ

In matrix notation:

dX
dt

¼ f ðXÞ þ gðXÞ u ð8Þ

where

X ¼
X
S
P

2
4

3
5; f ðXÞ ¼

μX
�σX

πX� khP

2
4

3
5; gðXÞ ¼

�X
ðSf � SÞ

�P

2
4

3
5 ð9� 11Þ

The constraints imposed on the control variable u are as follows:

umin ≤ u ≤ umax ð12Þ

where umin = 0 and umax = Fmax / V.
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Another constraint concerns the maximum volume of culture (final volume), i.e., V(tf) = Vmax =
Vf, where tf is the final processing time.

The initial conditions are given by

Xð0Þ ¼ X0; Sð0Þ ¼ S0; Pð0Þ ¼ P0; Vð0Þ ¼ V0 ð13Þ

The objective of the optimization/control problem is to determine the optimal time profile for
the control variable that maximizes the antibiotic concentration at the end of the bioprocess.

According to the Pontryagin’s maximum principle, the optimal profile must maximize the
Hamiltonian, given by

H ¼ λT ½f ðXÞ þ gðXÞu�; λT ¼ ½λ1 λ2 λ3� ð14Þ

or

H ¼ H0ðtÞ þ φðtÞ u H0ðtÞ ¼ λTf ðXÞ
φðtÞ ¼ λTgðXÞ

(
ð15Þ

Since f ðXÞ ¼
f 1
f 2
f 3

2
4

3
5 and gðXÞ ¼

g1
g2
g3

2
4

3
5, the following equations are obtained:

H0ðtÞ ¼ λ1f 1 þ λ2f 2 þ λ3f 3 ¼ λ1μX� λ2σXþ λ3ðπX� kPÞ ð16Þ

ϕðtÞ ¼ λ1g1 þ λ2g2 þ λ3g3 ¼ �λ1Xþ λ2ðSf � SÞ � λ3P ð17Þ

For optimal control, it is established that

• If φðtÞ > 0, then u ¼ umax.

• If φðtÞ < 0, then u ¼ umin.

• If φðtÞ ¼ 0, then u ¼ u sin .

In the singular interval : HðtÞ ¼ 0; ϕðtÞ ¼ 0; H0ðtÞ ¼ 0 ð18� 20Þ

Since λ ¼ λðtÞ, the following equations can be developed:

d
dt
λ ¼ � ∂H

∂X
¼ � ∂

∂X
½λTðf ðxÞ þ gðxÞuÞ� ¼ �λT d

dX
f ðXÞ þ u

d
dX

gðXÞ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
d
dt
λ

� �T

ð21Þ

ϕðtÞ ¼ λTgðXÞ ) dϕ
dt

¼ d
dt
λ

� �T

gðXÞ þ λT d
dt
gðXÞ ð22Þ
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According to the Pontryagin’s maximum principle, the optimal profile must maximize the
Hamiltonian, given by

H ¼ λT ½f ðXÞ þ gðXÞu�; λT ¼ ½λ1 λ2 λ3� ð14Þ

or

H ¼ H0ðtÞ þ φðtÞ u H0ðtÞ ¼ λTf ðXÞ
φðtÞ ¼ λTgðXÞ

(
ð15Þ

Since f ðXÞ ¼
f 1
f 2
f 3

2
4

3
5 and gðXÞ ¼

g1
g2
g3

2
4

3
5, the following equations are obtained:

H0ðtÞ ¼ λ1f 1 þ λ2f 2 þ λ3f 3 ¼ λ1μX� λ2σXþ λ3ðπX� kPÞ ð16Þ

ϕðtÞ ¼ λ1g1 þ λ2g2 þ λ3g3 ¼ �λ1Xþ λ2ðSf � SÞ � λ3P ð17Þ

For optimal control, it is established that

• If φðtÞ > 0, then u ¼ umax.

• If φðtÞ < 0, then u ¼ umin.

• If φðtÞ ¼ 0, then u ¼ u sin .

In the singular interval : HðtÞ ¼ 0; ϕðtÞ ¼ 0; H0ðtÞ ¼ 0 ð18� 20Þ

Since λ ¼ λðtÞ, the following equations can be developed:

d
dt
λ ¼ � ∂H

∂X
¼ � ∂

∂X
½λTðf ðxÞ þ gðxÞuÞ� ¼ �λT d

dX
f ðXÞ þ u

d
dX

gðXÞ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
d
dt
λ

� �T

ð21Þ

ϕðtÞ ¼ λTgðXÞ ) dϕ
dt

¼ d
dt
λ

� �T

gðXÞ þ λT d
dt
gðXÞ ð22Þ
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d
dt
gðXÞ ¼ d

dX

�
gðXÞ

� dX
dt

¼ d
dX

�
gðXÞ

�
½f ðXÞ þ gðXÞu� ð23Þ

d
dt
gðXÞ ¼ d

dðXÞ
�
gðXÞ

�
f ðXÞ þ d

dX

�
gðXÞ

�
gðXÞ u ð24Þ

Substituting Eqs. (21) and (24) into Eq. (22) gives

dφ
dt

¼ �λT d
dX

f ðXÞ þ u
d
dX

gðXÞ
� �

gðXÞ þ λT d
dX

�
gðXÞ

�
f ðXÞ þ d

dX

�
gðXÞ

�
gðXÞu

� �
ð25Þ

dφ
dt

¼ λT d
dX

�
gðXÞ

�
f ðXÞ � d

dX

�
f ðXÞ

�
gðXÞ

� �
: ð26Þ

By developing the matrices indicated in the previous equation, one obtains

dφ
dt

¼ ½λ1 λ2 λ3� �

∂g1
∂X1

∂g1
∂X2

∂g1
∂X3

∂g2
∂X1

∂g2
∂X2

∂g2
∂X3

∂g3
∂X1

∂g3
∂X2

∂g3
∂X3

2
666664

3
777775
�

f 1
f 2
f 3

2
4

3
5�

∂f 1
∂X1

∂f 1
∂X2

∂f 1
∂X3

∂f 2
∂X1

∂f 2
∂X2

∂f 2
∂X3

∂f 3
∂X1

∂f 3
∂X2

∂f 3
∂X3

2
6666664

3
7777775
�

g1
g2
g3

2
4

3
5 ð27Þ

where

g1 ¼ �X; g2 ¼ ðSf � SÞ; g3 ¼ �P; X1 ¼ X; X2 ¼ S; X3 ¼ P ð28� 33Þ

∂g1
∂X1

¼ �1;
∂g1
∂X2

¼ 0;
∂g1
∂X3

¼ 0 ð34� 36Þ

∂g2
∂X1

¼ 0;
∂g2
∂X2

¼ �1;
∂g2
∂X3

¼ 0 ð37� 39Þ

∂g3
∂X1

¼ 0;
∂g3
∂X2

¼ 0;
∂g3
∂X3

¼ �1 ð40� 42Þ

f 1 ¼ μX; f 2 ¼ �σX; f 3 ¼ πX� khP; μ ¼ μðS,XÞ; σ ¼ σðS,XÞ; π ¼ πðSÞ ð43� 48Þ

∂f 1
∂X1

¼ μþ Xμ0
X;

∂f 1
∂X2

¼ Xμ0
S;

∂f 1
∂X3

¼ 0 ð49� 51Þ

∂f 2
∂X1

¼ �ðσþ Xσ0XÞ;
∂f 2
∂X2

¼ �Xσ0S;
∂f 2
∂X3

¼ 0 ð52� 54Þ

∂f 3
∂X1

¼ π;
∂f 3
∂X2

¼ Xπ0
S;

∂f 3
∂X3

¼ �kh ð55� 57Þ

Then
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dϕ
dt

¼ ½λ1 λ2 λ3� �
�1 0 0
0 �1 0
0 0 �1

2
4

3
5 �

f 1
f 2
f 3

2
4

3
5�

μþ Xμ0
X Xμ0

S 0
�ðσþ Xσ0XÞ �Xσ0S 0

π Xπ0
S �kh

2
4

3
5 �

g1
g2
g3

2
4

3
5 ð58Þ

dϕ
dt

¼ ½λ1 λ2 λ3� �
�f 1
�f 2
�f 3

2
4

3
5�

g1ðμþ Xμ0
XÞ þ g2Xμ

0
S

�g1ðσþ Xσ0XÞ � g2Xσ
0
S

g1πþ g2Xπ
0
S � g3kh

2
4

3
5 ð59Þ

dϕ
dt

¼ λ1

�
� f 1 � g1ðμþ Xμ0

XÞ � g2Xμ
0
S

�
þ λ2

�
� f 2 þ g1ðσþ Xσ0XÞ þ g2Xσ

0
S

�

þλ3ð�f 3 � g1π� g2Xπ
0
S þ g3khÞ

ð60Þ

dϕ
dt

¼λ1

�
� μXþ Xðμþ Xμ0

XÞ þ ðSf � SÞXμ0
S

�
þ λ2

�
σX� Xðσþ Xσ0XÞ

þ ðSf � SÞXσ0S
�
þ λ3

�
� ðπX� khPÞ þ πX� ðSf � SÞXπ0

S � khP
� ð61Þ

dϕ
dt

¼ λ1

�
μ0

XX
2 � ðSf � SÞXμ0

S

�
þ λ2

�
� σ0XX2 þ ðSf � SÞXσ0S

�
þ λ3

�
� ðSf � SÞXπ0

S

�
ð62Þ

In the singular interval:

dϕ
dt

¼ 0 ð63Þ

H0ðtÞ ¼ λ1f 1 þ λ2f 2 þ λ3f 3 ¼ 0 ð64Þ

ϕðtÞ ¼ λ1g1 þ λ2g2 þ λ3g3 ¼ 0 ð65Þ

From Eq. (64):

λ1f 1 þ λ2f 2 þ λ3f 3 ¼ 0 ) λ1 ¼ �ðλ2f 2 þ λ3f 3Þ
f 1

ð66Þ

Substituting Eq. (66) into Eq. (65) results in the following equation:

�ðλ2f 2 þ λ3f Þ
f 1

g1 þ λ2g2 þ λ3g3 ¼ 0 ) �λ2f 2
f 1

g1 �
λ3f 3
f 1

g1 þ λ2g2 þ λ3g3 ¼ 0 )

g2 �
f 2
f 1
g1

� �
λ2 ¼ f 3

f 1
g1 � g3

� �
λ3 ) λ2 ¼

f 3
f 1
g1 � g3

� �
λ3

g2 �
f 2
f 1
g1

� � ) λ2 ¼ f 3g1 � f 1g3
f 1g2 � f 2g1

� �

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
β

λ3
ð67Þ

By introducing the expression of λ2 into the expression of λ1, one obtains

λ1 ¼ �
f 3g1�f 1g3
f 1g2�f 2g1

� �
f 2 þ f 3

f 1

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
α

λ3 ð68Þ
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d
dt
gðXÞ ¼ d

dX

�
gðXÞ

� dX
dt

¼ d
dX

�
gðXÞ

�
½f ðXÞ þ gðXÞu� ð23Þ

d
dt
gðXÞ ¼ d

dðXÞ
�
gðXÞ

�
f ðXÞ þ d

dX

�
gðXÞ

�
gðXÞ u ð24Þ

Substituting Eqs. (21) and (24) into Eq. (22) gives

dφ
dt

¼ �λT d
dX

f ðXÞ þ u
d
dX

gðXÞ
� �

gðXÞ þ λT d
dX

�
gðXÞ

�
f ðXÞ þ d

dX

�
gðXÞ

�
gðXÞu

� �
ð25Þ

dφ
dt

¼ λT d
dX

�
gðXÞ

�
f ðXÞ � d

dX

�
f ðXÞ

�
gðXÞ

� �
: ð26Þ

By developing the matrices indicated in the previous equation, one obtains

dφ
dt

¼ ½λ1 λ2 λ3� �

∂g1
∂X1

∂g1
∂X2

∂g1
∂X3

∂g2
∂X1

∂g2
∂X2

∂g2
∂X3

∂g3
∂X1

∂g3
∂X2

∂g3
∂X3

2
666664

3
777775
�

f 1
f 2
f 3

2
4

3
5�

∂f 1
∂X1

∂f 1
∂X2

∂f 1
∂X3

∂f 2
∂X1

∂f 2
∂X2

∂f 2
∂X3

∂f 3
∂X1

∂f 3
∂X2

∂f 3
∂X3

2
6666664

3
7777775
�

g1
g2
g3

2
4

3
5 ð27Þ

where

g1 ¼ �X; g2 ¼ ðSf � SÞ; g3 ¼ �P; X1 ¼ X; X2 ¼ S; X3 ¼ P ð28� 33Þ

∂g1
∂X1

¼ �1;
∂g1
∂X2

¼ 0;
∂g1
∂X3

¼ 0 ð34� 36Þ

∂g2
∂X1

¼ 0;
∂g2
∂X2

¼ �1;
∂g2
∂X3

¼ 0 ð37� 39Þ

∂g3
∂X1

¼ 0;
∂g3
∂X2

¼ 0;
∂g3
∂X3

¼ �1 ð40� 42Þ

f 1 ¼ μX; f 2 ¼ �σX; f 3 ¼ πX� khP; μ ¼ μðS,XÞ; σ ¼ σðS,XÞ; π ¼ πðSÞ ð43� 48Þ

∂f 1
∂X1

¼ μþ Xμ0
X;

∂f 1
∂X2

¼ Xμ0
S;

∂f 1
∂X3

¼ 0 ð49� 51Þ

∂f 2
∂X1

¼ �ðσþ Xσ0XÞ;
∂f 2
∂X2

¼ �Xσ0S;
∂f 2
∂X3

¼ 0 ð52� 54Þ

∂f 3
∂X1

¼ π;
∂f 3
∂X2

¼ Xπ0
S;

∂f 3
∂X3

¼ �kh ð55� 57Þ

Then
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dϕ
dt

¼ ½λ1 λ2 λ3� �
�1 0 0
0 �1 0
0 0 �1

2
4

3
5 �

f 1
f 2
f 3

2
4

3
5�

μþ Xμ0
X Xμ0

S 0
�ðσþ Xσ0XÞ �Xσ0S 0

π Xπ0
S �kh

2
4

3
5 �

g1
g2
g3

2
4

3
5 ð58Þ

dϕ
dt

¼ ½λ1 λ2 λ3� �
�f 1
�f 2
�f 3

2
4

3
5�

g1ðμþ Xμ0
XÞ þ g2Xμ

0
S

�g1ðσþ Xσ0XÞ � g2Xσ
0
S

g1πþ g2Xπ
0
S � g3kh

2
4

3
5 ð59Þ

dϕ
dt

¼ λ1

�
� f 1 � g1ðμþ Xμ0

XÞ � g2Xμ
0
S

�
þ λ2

�
� f 2 þ g1ðσþ Xσ0XÞ þ g2Xσ

0
S

�

þλ3ð�f 3 � g1π� g2Xπ
0
S þ g3khÞ

ð60Þ

dϕ
dt

¼λ1

�
� μXþ Xðμþ Xμ0

XÞ þ ðSf � SÞXμ0
S

�
þ λ2

�
σX� Xðσþ Xσ0XÞ

þ ðSf � SÞXσ0S
�
þ λ3

�
� ðπX� khPÞ þ πX� ðSf � SÞXπ0

S � khP
� ð61Þ

dϕ
dt

¼ λ1

�
μ0

XX
2 � ðSf � SÞXμ0

S

�
þ λ2

�
� σ0XX2 þ ðSf � SÞXσ0S

�
þ λ3

�
� ðSf � SÞXπ0

S

�
ð62Þ

In the singular interval:

dϕ
dt

¼ 0 ð63Þ

H0ðtÞ ¼ λ1f 1 þ λ2f 2 þ λ3f 3 ¼ 0 ð64Þ

ϕðtÞ ¼ λ1g1 þ λ2g2 þ λ3g3 ¼ 0 ð65Þ

From Eq. (64):

λ1f 1 þ λ2f 2 þ λ3f 3 ¼ 0 ) λ1 ¼ �ðλ2f 2 þ λ3f 3Þ
f 1

ð66Þ

Substituting Eq. (66) into Eq. (65) results in the following equation:

�ðλ2f 2 þ λ3f Þ
f 1

g1 þ λ2g2 þ λ3g3 ¼ 0 ) �λ2f 2
f 1

g1 �
λ3f 3
f 1

g1 þ λ2g2 þ λ3g3 ¼ 0 )

g2 �
f 2
f 1
g1

� �
λ2 ¼ f 3

f 1
g1 � g3

� �
λ3 ) λ2 ¼

f 3
f 1
g1 � g3

� �
λ3

g2 �
f 2
f 1
g1

� � ) λ2 ¼ f 3g1 � f 1g3
f 1g2 � f 2g1

� �

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
β

λ3
ð67Þ

By introducing the expression of λ2 into the expression of λ1, one obtains

λ1 ¼ �
f 3g1�f 1g3
f 1g2�f 2g1

� �
f 2 þ f 3

f 1

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
α

λ3 ð68Þ
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Substituting λ1=αλ3 and λ2=βλ3 into the expression of dϕ=dt in the singular interval provides

dϕ
dt

¼ λ3α
�
μ0

XX
2 � ðSf � SÞXμ0

S

�
þ λ3β

�
� σ0XX2 þ ðSf � SÞXσ0S

�
þ λ3

�
� ðSf � SÞXπ0

S

�
¼ 0

ð69Þ
dϕ
dt

¼ λ3 α
�
μ0

XX
2 � ðSf � SÞXμ0

S

�
þ β

�
� σ0XX2 þ ðSf � SÞXσ0S

�
þ
�
� ðSf � SÞXπ0

S

�h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

QðXÞ

¼ 0

ð70Þ
dϕ
dt

¼ λ3QðXÞ ¼ 0 ) QðXÞ ¼ 0 ð71Þ

The equation QðXÞ ¼ 0 is the expression of the singular arc, which is independent of the
adjoint variables λ1, λ2, λ3. In the expression of QðXÞ, the indicated derivatives are given by

μ ¼ μmS
BXþ S

) μ0
X ¼ � μmBS

ðBXþ SÞ2 ; μ
0
S ¼ ðBXþ SÞμm � μmS

ðBXþ SÞ2 ð72� 73Þ

π ¼ πmS

km þ Sþ S2
ki

) π0
S ¼

km þ Sþ S2
ki

� �
πm � πmS 1þ 2

ki
S

� �

km þ Sþ S2
ki

� �2 ð74Þ

σ ¼ μ
YX=S

þ π
YP=S

þm ) σ0X ¼ μ0
X

YX=S
; σ0S ¼ μ0

S

YX=S
þ π0

S

YP=S
ð75� 76Þ

For the determination of the singular dilution rate (usin), one starts from the first derivative of ϕ
as follows:

dϕ
dt

¼ λ3QðXÞ ) d2ϕ
dt2

¼ λ3
d
dt
QðXÞ þQðXÞ dλ3

dt
ð77Þ

d
dt
λ ¼ � ∂H

∂X
)

dλ1=dt
dλ2=dt
dλ3=dt

2
4

3
5 ¼ �

∂H=∂X1
∂H=∂X2
∂H=∂X3

2
4

3
5 ð78Þ

where

H ¼ H0ðtÞ þ ϕðtÞu ¼ λ1f 1 þ λ2f 2 þ λ3f 3 þ ðλ1g1 þ λ2g2 þ λ3g3Þu ð79Þ

Thus:

dλ3

dt
¼ � ∂H

∂X3
¼ �λ3

∂f 3
∂X3

� λ3
∂g3
∂X3

u ð80Þ

Substituting the expression of dλ3/dt into the expression of the second derivative of φ gives
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d2ϕ
dt2

¼ λ3
d
dt
QðXÞ þQðXÞ �λ3

∂f 3
∂X3

� λ3
∂g3
∂X3

u
� �

ð81Þ

When u = usin, the second derivative of ϕ is zero, i.e., d2ϕ=dt2 ¼ 0. Thus,

λ3
d
dt
QðXÞ þQðXÞ �λ3

∂f 3
∂X3

� λ3
∂g3
∂X3

u
� �

¼ 0 ) d
dt
QðXÞ �QðXÞ ∂f 3

∂X3

¼ QðXÞ ∂g3
∂X3

u sin ) u sin ¼
d
dt QðXÞ �QðXÞ ∂f 3

∂X3

� �

QðXÞ ∂g3
∂X3

� �
ð82Þ

The expression of usin determines how the dilution rate must be manipulated (varied) during the
singular interval, being a function only of the state variables. When developed, the final expres-
sion obtained for usin is quite complex and extensive, which was implemented in computational
programming language to evaluate the value of this variable over the singular interval.

The condition for stopping the integration of mass-balance equations during the period fol-
lowing the singular interval, which is conducted in batch mode (u = 0), is determined from the
fact that for free final time (tf) problems, how is the case, H(tf) = 0. Thus

H ¼ λT
�
f ðXÞ þ gðXÞ u

�
)
u¼0

H ¼ λTf ðXÞ ) H ¼ λ1f 1 þ λ2f 2 þ λ3f 3

) H ¼ λ1
dX
dt

þ λ2
dS
dt

þ λ3
dP
dt

ð83Þ

As the final conditions of the adjoint variables are λ1 = 0, λ2 = 0, and λ3 = 1, the stopping
condition at t = tf is dP/dt = 0.

Thus, the problem-solving algorithm consisted of the following steps:

1. Integrate the mass-balance equations with u = 0 (batch operation) until the values of the
state variables satisfy QðXÞ ¼ 0, being the instant that this occurs, the first switching time
t1;

2. From instant t1, make u = usin until the reactor volume reaches its maximum value, which
corresponds to the second switching time t2;

3. Starting from time t2, return the operation of the reactor with u = 0 until the stop condition
is reached in tf.

From the data reported by Costa [20] and summarized in Table 1, the mass-balance equations
were numerically integrated to determinate t1, i.e., the instant at which QðXÞ ¼ 0. According to
the data presented in Table 2, this time instant can be determined as t1 = 28.74 h, since QðXÞ
changes its signal around this time value.

Using the computational program developed for the calculation of usin, it was verified that this
control variable was practically constant during the singular interval, being 0.00213 h-1 a value
quite representative.
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Substituting λ1=αλ3 and λ2=βλ3 into the expression of dϕ=dt in the singular interval provides

dϕ
dt

¼ λ3α
�
μ0

XX
2 � ðSf � SÞXμ0

S

�
þ λ3β

�
� σ0XX2 þ ðSf � SÞXσ0S

�
þ λ3

�
� ðSf � SÞXπ0

S

�
¼ 0

ð69Þ
dϕ
dt

¼ λ3 α
�
μ0

XX
2 � ðSf � SÞXμ0

S

�
þ β

�
� σ0XX2 þ ðSf � SÞXσ0S

�
þ
�
� ðSf � SÞXπ0

S

�h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

QðXÞ

¼ 0

ð70Þ
dϕ
dt

¼ λ3QðXÞ ¼ 0 ) QðXÞ ¼ 0 ð71Þ

The equation QðXÞ ¼ 0 is the expression of the singular arc, which is independent of the
adjoint variables λ1, λ2, λ3. In the expression of QðXÞ, the indicated derivatives are given by

μ ¼ μmS
BXþ S

) μ0
X ¼ � μmBS

ðBXþ SÞ2 ; μ
0
S ¼ ðBXþ SÞμm � μmS

ðBXþ SÞ2 ð72� 73Þ

π ¼ πmS

km þ Sþ S2
ki

) π0
S ¼

km þ Sþ S2
ki

� �
πm � πmS 1þ 2

ki
S

� �

km þ Sþ S2
ki

� �2 ð74Þ

σ ¼ μ
YX=S

þ π
YP=S

þm ) σ0X ¼ μ0
X

YX=S
; σ0S ¼ μ0

S

YX=S
þ π0

S

YP=S
ð75� 76Þ

For the determination of the singular dilution rate (usin), one starts from the first derivative of ϕ
as follows:

dϕ
dt

¼ λ3QðXÞ ) d2ϕ
dt2

¼ λ3
d
dt
QðXÞ þQðXÞ dλ3

dt
ð77Þ

d
dt
λ ¼ � ∂H

∂X
)

dλ1=dt
dλ2=dt
dλ3=dt

2
4

3
5 ¼ �

∂H=∂X1
∂H=∂X2
∂H=∂X3

2
4

3
5 ð78Þ

where

H ¼ H0ðtÞ þ ϕðtÞu ¼ λ1f 1 þ λ2f 2 þ λ3f 3 þ ðλ1g1 þ λ2g2 þ λ3g3Þu ð79Þ

Thus:

dλ3

dt
¼ � ∂H

∂X3
¼ �λ3

∂f 3
∂X3

� λ3
∂g3
∂X3

u ð80Þ

Substituting the expression of dλ3/dt into the expression of the second derivative of φ gives
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d2ϕ
dt2

¼ λ3
d
dt
QðXÞ þQðXÞ �λ3

∂f 3
∂X3

� λ3
∂g3
∂X3

u
� �

ð81Þ

When u = usin, the second derivative of ϕ is zero, i.e., d2ϕ=dt2 ¼ 0. Thus,

λ3
d
dt
QðXÞ þQðXÞ �λ3

∂f 3
∂X3

� λ3
∂g3
∂X3

u
� �

¼ 0 ) d
dt
QðXÞ �QðXÞ ∂f 3

∂X3

¼ QðXÞ ∂g3
∂X3

u sin ) u sin ¼
d
dt QðXÞ �QðXÞ ∂f 3

∂X3

� �

QðXÞ ∂g3
∂X3

� �
ð82Þ

The expression of usin determines how the dilution rate must be manipulated (varied) during the
singular interval, being a function only of the state variables. When developed, the final expres-
sion obtained for usin is quite complex and extensive, which was implemented in computational
programming language to evaluate the value of this variable over the singular interval.

The condition for stopping the integration of mass-balance equations during the period fol-
lowing the singular interval, which is conducted in batch mode (u = 0), is determined from the
fact that for free final time (tf) problems, how is the case, H(tf) = 0. Thus

H ¼ λT
�
f ðXÞ þ gðXÞ u

�
)
u¼0

H ¼ λTf ðXÞ ) H ¼ λ1f 1 þ λ2f 2 þ λ3f 3

) H ¼ λ1
dX
dt

þ λ2
dS
dt

þ λ3
dP
dt

ð83Þ

As the final conditions of the adjoint variables are λ1 = 0, λ2 = 0, and λ3 = 1, the stopping
condition at t = tf is dP/dt = 0.

Thus, the problem-solving algorithm consisted of the following steps:

1. Integrate the mass-balance equations with u = 0 (batch operation) until the values of the
state variables satisfy QðXÞ ¼ 0, being the instant that this occurs, the first switching time
t1;

2. From instant t1, make u = usin until the reactor volume reaches its maximum value, which
corresponds to the second switching time t2;

3. Starting from time t2, return the operation of the reactor with u = 0 until the stop condition
is reached in tf.

From the data reported by Costa [20] and summarized in Table 1, the mass-balance equations
were numerically integrated to determinate t1, i.e., the instant at which QðXÞ ¼ 0. According to
the data presented in Table 2, this time instant can be determined as t1 = 28.74 h, since QðXÞ
changes its signal around this time value.

Using the computational program developed for the calculation of usin, it was verified that this
control variable was practically constant during the singular interval, being 0.00213 h-1 a value
quite representative.
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With respect to the second switching time (t2), this was determined from usin and the initial and
final (maximum) volumes as follows:

dV
dt

¼ F ¼ uV ) dV
V

¼ udt ) ln
Vf

V0

� �
¼ uΔt ) ln

10
8:121

� �
¼ 0:00213Δt ) Δt ¼ 97:71 h ð84Þ

Thus, the singular interval duration is of 97.71 h and the second switching time (t2) is t2 = t1 + Δt
= 28.74 + 97.71 = 126.45 h. The mass-balance equations were then integrated until this time, and
it was verified that, at the end of the integration, the stop condition (dP/dt=0) had been
satisfied, dispensing with the complementary period of batch operation and reaching a final
product concentration (P) of 6.35 g/L.

2.1.1. Simulation of the penicillin production bioprocess in fed-batch reactor
under optimized conditions

The simulation of the bioprocess under optimized conditions was performed using a computer
program in FORTRAN language. For the numerical integration of the ordinary differential
equations corresponding to the mass balances, the variable-step fourth-order Runge-Kutta-Gill
method was used [17]. The full profiles of the state variables during the bioprocess are shown
in Figures 1 and 2.

Due to the decoupling between biomass growth and product synthesis, this type of fermenta-
tion behaves as a biphasic process. Therefore, characteristic profiles of penicillin fermentation
were obtained for the state variables as shown in Figure 1, i.e., a first phase of accumulation of
the cell is observed in which the substrate is almost entirely consumed for this purpose,
without associated product formation (trophophase). After this growth phase, the fed sub-
strate is practically used for penicillin production since there is no further catabolic repression
of the antibiotic synthesis due to the low levels of substrate concentration established in the

Kinetic parameters/operating variables Values

μm (h-1); B (g-S/g-X) 1.1�10-1; 6�10-3

πm (g g-1 h-1); km (g/L); ki (g/L); kh (h
-1) 4.0�10-3; 1.0�10-4; 1.0�10-1; 1.0�10-2

YX/S (g/g); YP/S (g/g); m(g g-1 h-1) 0.47; 1.2; 2.9�10-2

X0 (g/L); S0 (g/L); P0 (g/L); Sf (g/L) 1.3; 69.0; 0.0; 500.0

V0 (L); Vf (L) 8.121; 10.0

Table 1. Values of kinetic parameters and operating variables used in the case study of the optimization of penicillin
production in fed-batch reactor (source: [20]).

t (h) X (g/L) S (g/L) P (g/L) Q(X)

28.742 30.09 4.16�10-3 1.39�10-2 125799.24

28.743 30.09 3.06 �10-3 1.40�10-2 �86336.84

Table 2. Data of the numerical integration of the mass-balance equations used to determine the first switching time (t1)
during the penicillin production in fed-batch reactor.
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reactor in this second phase (idiophase). In addition, the kinetic pattern observed is in agree-
ment with that expected for a secondary metabolite, i.e., the production occurs mostly after cell
growth.
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Figure 1. Temporal profiles of the S (dotted line), X (dashed line), and P (solid line) state variables during a fed-batch
penicillin production bioprocess.

Figure 2. Temporal profile of the state variable V (dotted line) and of the control variable u (solid line) during a fed-batch
penicillin production bioprocess.
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With respect to the second switching time (t2), this was determined from usin and the initial and
final (maximum) volumes as follows:

dV
dt

¼ F ¼ uV ) dV
V

¼ udt ) ln
Vf

V0

� �
¼ uΔt ) ln

10
8:121

� �
¼ 0:00213Δt ) Δt ¼ 97:71 h ð84Þ

Thus, the singular interval duration is of 97.71 h and the second switching time (t2) is t2 = t1 + Δt
= 28.74 + 97.71 = 126.45 h. The mass-balance equations were then integrated until this time, and
it was verified that, at the end of the integration, the stop condition (dP/dt=0) had been
satisfied, dispensing with the complementary period of batch operation and reaching a final
product concentration (P) of 6.35 g/L.

2.1.1. Simulation of the penicillin production bioprocess in fed-batch reactor
under optimized conditions

The simulation of the bioprocess under optimized conditions was performed using a computer
program in FORTRAN language. For the numerical integration of the ordinary differential
equations corresponding to the mass balances, the variable-step fourth-order Runge-Kutta-Gill
method was used [17]. The full profiles of the state variables during the bioprocess are shown
in Figures 1 and 2.

Due to the decoupling between biomass growth and product synthesis, this type of fermenta-
tion behaves as a biphasic process. Therefore, characteristic profiles of penicillin fermentation
were obtained for the state variables as shown in Figure 1, i.e., a first phase of accumulation of
the cell is observed in which the substrate is almost entirely consumed for this purpose,
without associated product formation (trophophase). After this growth phase, the fed sub-
strate is practically used for penicillin production since there is no further catabolic repression
of the antibiotic synthesis due to the low levels of substrate concentration established in the

Kinetic parameters/operating variables Values

μm (h-1); B (g-S/g-X) 1.1�10-1; 6�10-3

πm (g g-1 h-1); km (g/L); ki (g/L); kh (h
-1) 4.0�10-3; 1.0�10-4; 1.0�10-1; 1.0�10-2

YX/S (g/g); YP/S (g/g); m(g g-1 h-1) 0.47; 1.2; 2.9�10-2

X0 (g/L); S0 (g/L); P0 (g/L); Sf (g/L) 1.3; 69.0; 0.0; 500.0

V0 (L); Vf (L) 8.121; 10.0

Table 1. Values of kinetic parameters and operating variables used in the case study of the optimization of penicillin
production in fed-batch reactor (source: [20]).

t (h) X (g/L) S (g/L) P (g/L) Q(X)

28.742 30.09 4.16�10-3 1.39�10-2 125799.24

28.743 30.09 3.06 �10-3 1.40�10-2 �86336.84

Table 2. Data of the numerical integration of the mass-balance equations used to determine the first switching time (t1)
during the penicillin production in fed-batch reactor.
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reactor in this second phase (idiophase). In addition, the kinetic pattern observed is in agree-
ment with that expected for a secondary metabolite, i.e., the production occurs mostly after cell
growth.
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Figure 1. Temporal profiles of the S (dotted line), X (dashed line), and P (solid line) state variables during a fed-batch
penicillin production bioprocess.

Figure 2. Temporal profile of the state variable V (dotted line) and of the control variable u (solid line) during a fed-batch
penicillin production bioprocess.
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Regarding the fermentation medium volume in the bioreactor, the behavior of this variable
shown in Figure 2 was already expected since, during the batch operation, this volume is
constant because there is no addition or removal of fermentation medium to or from the
bioreactor. In the fed-batch operation with continuous feed of unfermented medium to the
bioreactor at a constant flow rate, the volume increases linearly over time, as shown in Figure 2.
The temporal profile exhibited by the control variable u (dilution rate) in a step format is due to
the change in the bioreactor operation, from batch (u = 0) to fed-batch (u 6¼ 0) mode.

2.2. Case study #2: determination of the optimal temperature profile in a batch bioreactor
for penicillin production

In this case study, the fungal growth is described by the logistic law, a substrate-independent
model for microorganism population dynamics. In addition, the production of penicillin is also
modeled considering that the formation of antibiotic is not associated with cell growth, and
that the product is degraded by hydrolysis according to a first-order kinetics. The mathemat-
ical model, comprising two ordinary differential equations corresponding to the mass balances
of cell and product in a batch bioreactor, and containing four parameters, is represented by
(more information about this model can be found in Ref. [21]):

dX
dt

¼ rX ¼ μmX 1� X
Xm

� �
ð85Þ

dP
dt

¼ rP � rh ¼ βX� khP ð86Þ

where t is the time, X is the cell concentration, P is the antibiotic concentration, rX is the cell
growth rate, rP is the antibiotic production rate, rh is the product’s hydrolysis rate, and μm, Xm,
β, and kh are the parameters of the model, according to the following meanings: μm is the
maximum specific growth rate, Xm is the maximum possible cell concentration to be achieved,
β is the constant of product formation not associated with growth, and kh is the rate constant
for the antibiotic hydrolysis reaction.

For the application of the Pontryagin’s maximum principle, the model variables were dimen-
sionless and expressions describing the kinetic parameters (bi) as a function of temperature (θ)
were incorporated in order to extend the validity range of the model to non-isothermal condi-
tions. These functions have shapes typical of those found in microbial or enzyme-catalyzed
reactions (concave down parabolas). The hydrolysis of the antibiotic is neglected in this dimen-
sionless version of the model, with this version given by the following equations [17]:

dy1
dτ

¼ b1y1 �
b1
b2

y21, y1ð0Þ ¼ 0:03 ð87Þ

dy2
dτ

¼ b3y1, y2ð0Þ ¼ 0:0 ð88Þ

where
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• y1 = dimensionless concentration of cell (-); y2 = dimensionless concentration of product (-);
τ = dimensionless time, 0 ≤ τ ≤ 1 (-)

b1 ¼ w1
1:0� w2ðθ� w3Þ2
1:0� w2ð25� w3Þ2

" #
; b2 ¼ w4

1:0� w2ðθ� w3Þ2
1:0� w2ð25� w3Þ2

" #
; b3 ¼ w5

1:0� w2ðθ� w6Þ2
1:0� w2ð25� w6Þ2

" #

ð89� 91Þ

• w1 ¼ 13:1; w2 ¼ 0:005; w3 ¼ 30�C

• w4 ¼ 0:94; w5 ¼ 1:71; w6 ¼ 20�C

As in this case, gðXÞ ¼ 0 and u = 0, due to the reactor being operated in a batch mode, the mass-

balances equations are simplified to

dX
dt

¼ f ðXÞ ð92Þ

where

X ¼ y1
y2

� �
; f ðXÞ ¼ f 1

f 2

� �
¼ b1y1 �

b1
b2

y21
b3y1

2
4

3
5 ð93� 94Þ

As previously established in the first case study, the Hamiltonian is given by

H ¼ λT f ðXÞ þ gðXÞ u
|fflfflffl{zfflfflffl}

0

0
BBB@

1
CCCA ) H ¼ λTf ðXÞ;λT ¼ ½λ1λ2� )

H ¼ ½λ1λ2� f 1
f 2

� �
¼ λ1f 1 þ λ2f 2 ¼ λ1 b1y1 �

b1
b2

y21

� �
þ λ2ðb3y1Þ

ð95Þ

The temporal variation rates of the adjoint variables λ1 and λ2 are formulated as

d λ
dτ

¼ � ∂H
∂X

) d
dτ

λ1
λ2

� �
¼ �λ1b1 þ 2

b1
b2

y1 � λ2b3
0

" #
ð96Þ

From the previous equation, the following equations can be derived

dλ1

dτ
¼ �b1λ1 þ 2

b1
b2

y1λ1 � b3λ2 ð97Þ

dλ2

dτ
¼ 0 ð98Þ

The necessary condition for the optimization of the bioprocess is
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Regarding the fermentation medium volume in the bioreactor, the behavior of this variable
shown in Figure 2 was already expected since, during the batch operation, this volume is
constant because there is no addition or removal of fermentation medium to or from the
bioreactor. In the fed-batch operation with continuous feed of unfermented medium to the
bioreactor at a constant flow rate, the volume increases linearly over time, as shown in Figure 2.
The temporal profile exhibited by the control variable u (dilution rate) in a step format is due to
the change in the bioreactor operation, from batch (u = 0) to fed-batch (u 6¼ 0) mode.

2.2. Case study #2: determination of the optimal temperature profile in a batch bioreactor
for penicillin production

In this case study, the fungal growth is described by the logistic law, a substrate-independent
model for microorganism population dynamics. In addition, the production of penicillin is also
modeled considering that the formation of antibiotic is not associated with cell growth, and
that the product is degraded by hydrolysis according to a first-order kinetics. The mathemat-
ical model, comprising two ordinary differential equations corresponding to the mass balances
of cell and product in a batch bioreactor, and containing four parameters, is represented by
(more information about this model can be found in Ref. [21]):

dX
dt

¼ rX ¼ μmX 1� X
Xm

� �
ð85Þ

dP
dt

¼ rP � rh ¼ βX� khP ð86Þ

where t is the time, X is the cell concentration, P is the antibiotic concentration, rX is the cell
growth rate, rP is the antibiotic production rate, rh is the product’s hydrolysis rate, and μm, Xm,
β, and kh are the parameters of the model, according to the following meanings: μm is the
maximum specific growth rate, Xm is the maximum possible cell concentration to be achieved,
β is the constant of product formation not associated with growth, and kh is the rate constant
for the antibiotic hydrolysis reaction.

For the application of the Pontryagin’s maximum principle, the model variables were dimen-
sionless and expressions describing the kinetic parameters (bi) as a function of temperature (θ)
were incorporated in order to extend the validity range of the model to non-isothermal condi-
tions. These functions have shapes typical of those found in microbial or enzyme-catalyzed
reactions (concave down parabolas). The hydrolysis of the antibiotic is neglected in this dimen-
sionless version of the model, with this version given by the following equations [17]:

dy1
dτ

¼ b1y1 �
b1
b2

y21, y1ð0Þ ¼ 0:03 ð87Þ

dy2
dτ

¼ b3y1, y2ð0Þ ¼ 0:0 ð88Þ

where
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• y1 = dimensionless concentration of cell (-); y2 = dimensionless concentration of product (-);
τ = dimensionless time, 0 ≤ τ ≤ 1 (-)

b1 ¼ w1
1:0� w2ðθ� w3Þ2
1:0� w2ð25� w3Þ2

" #
; b2 ¼ w4

1:0� w2ðθ� w3Þ2
1:0� w2ð25� w3Þ2

" #
; b3 ¼ w5

1:0� w2ðθ� w6Þ2
1:0� w2ð25� w6Þ2

" #

ð89� 91Þ

• w1 ¼ 13:1; w2 ¼ 0:005; w3 ¼ 30�C

• w4 ¼ 0:94; w5 ¼ 1:71; w6 ¼ 20�C

As in this case, gðXÞ ¼ 0 and u = 0, due to the reactor being operated in a batch mode, the mass-

balances equations are simplified to

dX
dt

¼ f ðXÞ ð92Þ

where

X ¼ y1
y2

� �
; f ðXÞ ¼ f 1

f 2

� �
¼ b1y1 �

b1
b2

y21
b3y1

2
4

3
5 ð93� 94Þ

As previously established in the first case study, the Hamiltonian is given by

H ¼ λT f ðXÞ þ gðXÞ u
|fflfflffl{zfflfflffl}

0

0
BBB@

1
CCCA ) H ¼ λTf ðXÞ;λT ¼ ½λ1λ2� )

H ¼ ½λ1λ2� f 1
f 2

� �
¼ λ1f 1 þ λ2f 2 ¼ λ1 b1y1 �

b1
b2

y21

� �
þ λ2ðb3y1Þ

ð95Þ

The temporal variation rates of the adjoint variables λ1 and λ2 are formulated as

d λ
dτ

¼ � ∂H
∂X

) d
dτ

λ1
λ2

� �
¼ �λ1b1 þ 2

b1
b2

y1 � λ2b3
0

" #
ð96Þ

From the previous equation, the following equations can be derived

dλ1

dτ
¼ �b1λ1 þ 2

b1
b2

y1λ1 � b3λ2 ð97Þ

dλ2

dτ
¼ 0 ð98Þ

The necessary condition for the optimization of the bioprocess is
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∂H
∂θ

¼ 0 ) ∂H
∂θ

¼ λ1 y1
∂b1
∂θ

� �
� y21

∂ðb1=b2Þ
∂θ

� �
þ λ2 y1

∂b3
∂θ

� �
¼ 0 ð99Þ

From the expressions bi = bi(θ), the following derivatives can be obtained

∂b1
∂θ

¼ � 2w1w2ðθ� w3Þ
1:0� w2ð25� w3Þ2

" #
;
∂ðb1=b2Þ

∂θ
¼ 0;

∂b3
∂θ

¼ � 2w5w2ðθ� w6Þ
1:0� w2ð25� w6Þ2

" #
ð100� 102Þ

By inserting the derivatives of the parameters with respect to the temperature into the expression
of ∂H/∂θ = 0, the expression of the optimal temperature profile (θopt) is obtained as follows:

θopt ¼ 2λ1y1w1w2w3

1:0� w2ð25� w3Þ2
þ 2y1w5w2w6

1:0� w2ð25� w6Þ2
" #

=
2λ1y1w1w2

1:0� w2ð25� w3Þ2
þ 2y1w5w2

1:0� w2ð25� w6Þ2
" #

ð103Þ

As previously demonstrated, when the objective is to maximize the antibiotic concentration at
the end of the bioprocess, it is necessary that λ1(1) = 0 and λ2(1) = 1. Since dλ2/dt = 0, the second
condition requires that λ2 be constant and equal to 1.0 in the entire time domain, i.e., λ2 = 1.0
for 0 ≤ τ ≤ 1.

Several numerical methods have been developed to solve this two-point boundary-value
problem arising from the application of the maximum principle of Pontryagin to a batch
penicillin production bioprocess. Constantinides and Mostoufi [17] used the orthogonal collo-
cation method to solve this problem, justifying that this method is more accurate than the finite
difference method. The problem was solved here using a much simpler numerical method
than that of the orthogonal collocation to integrate the differential equations, which is the
variable-step fourth-order Runge-Kutta-Gill method [17]. Thus, the algorithm for solving the
problem consisted of the following steps:

1. Assignment of an initial value for λ1(0);

2. Integration of the system of ODEs from τ = 0 to τ = 1 and verification if λ1(1) = 0. If not,
assign a new value to λ1(0) until the final condition is satisfied.

In order to make the computational algorithm autonomous for the determination of λ1(0), the
Newton-Raphson method [17] was coupled to the numerical integration method, solving the
following non-linear algebraic equation:

r
�
λ1ð0Þ

�
¼ ½λ1ð1Þ�calculated � ½λ1ð1Þ�specif ied|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

0

¼ 0 ) r
�
λ1ð0Þ

�
¼ ½λ1ð1Þ�calculated ¼ 0 ð104Þ

2.2.1. Simulation of the penicillin production bioprocess in batch reactor under optimized
non-isothermal conditions

The proposed algorithm was implemented in FORTRAN programming language, and the
profiles of the state variables (y1, y2, and θ) are presented in Figures 3–5. These profiles are in
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strict agreement with those reported by Constantinides and Mostoufi [17] when they used the
orthogonal collocation method to solve this problem. The value determined for λ1 at τ = 0 was
λ1(0) = 3.61210035.

The cell concentration profile shown in Figure 3 depicts the main phases involved in a typical
microbial growth curve, i.e., the exponential, stationary, and decline phases. The decline phase is
attributed to the negative effects of low temperatures on cell growth. In Figure 4, concerning the
penicillin production dynamics, an initial short lag phase can be observed, followed by a transition
phase in which penicillin production is initiated, until a final linear production phase is achieved.

According to the presented formulation (bioprocess model and Pontryagin’s maximum prin-
ciple), the optimum temperature profile varies between 20 and 30�C following the curve (a)
shown in Figure 5. This profile suggests a variable operating temperature during the growth
and penicillin production phases, contradicting the standard industrial operating procedure of
maintaining a constant temperature throughout the bioprocess. Particularly during the peni-
cillin production phase, the profile prescribes a decrease in the operating temperature so that a
high concentration of antibiotic is reached at the end of the bioprocess. The temperature profile
(a) shown in Figure 5may bring some practical difficulty to its programming/execution. In this
context, an approximate profile derived from the exact profile, such as that represented by the
curve (b) in Figure 5, may make the temperature programming strategy more feasible. This
proposal is in agreement with that reported by Bailey and Ollis [22], i.e., the temperature
schedule predicted by these calculations can be closely approximated in industrial practice
with little added cost. The approximate profile was built from the following equations, which
were based on the analysis of the temperature data generated by the exact profile:
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maintaining a constant temperature throughout the bioprocess. Particularly during the peni-
cillin production phase, the profile prescribes a decrease in the operating temperature so that a
high concentration of antibiotic is reached at the end of the bioprocess. The temperature profile
(a) shown in Figure 5may bring some practical difficulty to its programming/execution. In this
context, an approximate profile derived from the exact profile, such as that represented by the
curve (b) in Figure 5, may make the temperature programming strategy more feasible. This
proposal is in agreement with that reported by Bailey and Ollis [22], i.e., the temperature
schedule predicted by these calculations can be closely approximated in industrial practice
with little added cost. The approximate profile was built from the following equations, which
were based on the analysis of the temperature data generated by the exact profile:

0.0 0.2 0.4 0.6 0.8 1.020

22

24

26

28

30

- t
em

pe
ra

tu
re

 
(o

C
)

(-)

(a):  exact optimal profile
(b):  approximate optimal profile

t

q

Figure 5. Exact and approximate optimal temperature profiles for a non-isothermal penicillin fermentation.

Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes58

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

opt

oC 20oC

y 1
)-(

noitartnecnoc
sselnoisne

midllec-

 (-)

=30oC

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

opt

y 2 - 
pr

od
uc

t d
im

en
si

on
le

ss
 c

on
ce

nt
ra

tio
n 

(-
)

(-)

(b)

q

=30oCq

=25q

oC=25q

q

q

q

=

20oCq =

t

t

Figure 6. Dimensionless concentration profiles of cell and product during isothermal penicillin fermentations at different
temperatures.

Model-Based Evolutionary Operation Design for Batch and Fed-Batch Antibiotic Production Bioprocesses
http://dx.doi.org/10.5772/intechopen.69395

59



• 0:0 ≤ τ ≤ 0:4: θð�CÞ ¼ θðτ¼0:0Þ þ θðτ¼0:4Þ�θðτ¼0:0Þ
0:4�0:0

� �
ðτ� 0:0Þ ) θ ¼ 29:65� 11:625τ

• 0:4 < τ < 0:9: θð�CÞ ¼ 25:0

• 0:9 ≤ τ ≤ 1:0: θð�CÞ ¼ θðτ¼0:9Þ þ θðτ¼1:0Þ�θðτ¼0:9Þ
1:0�0:9

� �
ðτ� 0:9Þ ) θ ¼ 25:0� 50ðτ� 0:9Þ

2.2.2. Simulation of the penicillin production bioprocess in batch reactor under non-optimized
isothermal conditions

A pertinent simulation to be performed is one under isothermal conditions to verify whether
this thermal operation mode is, in fact, less productive in penicillin than non-isothermal mode
following an optimal temperature profile. For this purpose, simulations were performed for
constant temperatures of 20, 25, and 30�C and the results were compared with those obtained
with the optimized temperature profile (Figure 6). Figure 6(a) illustrates the well-known fact
that high temperatures (30�C) favor the growth of the fungus, while low temperatures (20�C)
favor the synthesis of the antibiotic since relative to the amount of penicillin produced, more
and less biomass was accumulated at these respective temperature levels [22]. It is observed in
Figure 6(b) that the isothermal operation at an intermediate temperature to those investigated
(θ = 25�C) presents a performance very similar to the operation with optimized temperature
profile, becoming a viable alternative if the variable temperature strategy cannot be
implemented, although with lower productivity, according to the data presented in Table 3.
Despite the fact that operation at a fixed temperature between 24 and 25�C predominates in
current industrial practice, the benefits of temperature programming during batch antibiotic
fermentations are clear.

3. Conclusions

In this chapter, the usefulness of the Pontryagin’s maximum principle has been demonstrated
for the optimization and operation of complex antibiotic production bioprocesses such as those
conducted in batch and fed-batch reactors under isothermal/non-isothermal conditions. By
applying this principle, it was possible to determine the optimal profile of temperature in
batch reactors and substrate feed rate in fed-batch reactors that maximize the antibiotic con-
centration at the end of the bioprocess. Although having a rather complex mathematical
formulation, the Pontryagin’s maximum principle can be classified as a powerful and suitable

θ (�C) y1 (τ =1) y2 (τ =1) (y2/y1)τ =1

θopt 0.82 1.22 1.49

20 0.53 0.65 1.23

25 0.94 1.18 1.25

30 1.07 0.80 0.75

Table 3. Final values of the dimensionless concentration of cells (y1) and product (y2) in isothermal and non-isothermal
penicillin fermentations.
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tool for the optimization, control, and model-driven operation of bioprocesses aiming at
maximum productivity of bioproducts. However, for the application of this principle, it is
necessary to dispose a mathematical model, preferably phenomenological and representative
of the bioprocess, in order to evaluate whether or not the solution found for a given problem is
feasible. In the present study, two classical phenomenological models of penicillin production
bioprocesses were used, together with the Pontryagin’s maximum principle, aiming to deter-
mine the optimal operating conditions for the production of antibiotic, and the solutions found
are considered feasible and can be implemented in real cases. However, a more complete
mathematical model, incorporating the medium oxygenation state, could provide better
bioprocess control, since the productivity in penicillin fermentations is highly dependent upon
dissolved oxygen concentration, with its critical level being around 30% of saturation. In the
models used here, the dissolved oxygen concentration was implicitly assumed to be non-
limiting of the bioprocess, making this a rather restrictive hypothesis.
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Abstract

Catalytic reforming of Methane (CH4) and carbon dioxide (CO2) is one of the techniques
used for the production of hydrogen and syngas. This technique has dual advantages of
mitigation of greenhouse gases and production of hydrogen and syngas which are often
used as intermediates for the synthesis of valuable chemical products and oxygenates.
This study presented an overview of the application of response surface methodology
(RSM) in the optimization of hydrogen and syngas production from catalytic reforming
of CH4 and CO2. The different catalytic system that has been employed together with
the nature of experimental design, input parameters, responses, the optimum conditions
and the maximum values of their responses were examined. The future research direc-
tion in the application of RSM to optimization of hydrogen and syngas production by
catalytic reforming of CH4 and CO2 was recommended.

Keywords: greenhouse gases, response surface methodology, catalytic reforming,
hydrogen, syngas

1. Introduction

The frequent environmental pollution often encountered from the consumption of energy
derived from fossil fuel has aroused the quest for production of alternative and cleaner source
of energy [1, 2]. One of such alternative means of energy production is catalytic methane dry
reforming whereby the two principal greenhouse gases, carbon dioxide (CO2) and methane
(CH4) are utilized for the production of hydrogen and syngas using active catalysts [3–5].
Compare to other forms of reforming processes which utilized steam and oxygen; the dry
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methane reforming has a dual advantage of mitigating greenhouse effect by utilizing the two
principal components of greenhouse gases CH4 and CO2 as feedstocks. Besides, hydrogen and
syngas are produced which can either be used directly as fuel or as a chemical intermediate for
the synthesis of value-added chemicals and synthetic fuel [6–8]. Thermodynamically, the dry
methane reforming reaction requires temperature >500�C to be feasible [9, 10]. Hence, at a
temperature >500�C, coke formation and deposition on the catalyst surface is often induced
mainly by methane cracking and Boudouard reactions [11, 12]. The deposited coke usually
lead to deactivation of the catalyst thereby reducing the activities and stability [13–15]. To
overcome these major challenges, several supported catalysts such as Ni, Co, Pt, Pd, Ru, Rh, Li
and so on have been employed to catalyze the production of hydrogen and syngas via dry
methane reforming [14, 16, 17]. The findings from these studies revealed that the individual
catalysts displayed different degrees of catalytic activities and stabilities during the dry meth-
ane reforming reaction. Hence, obtaining a consensus on the optimum conditions that can
maximize the hydrogen and the syngas yield has been a bone of contention till date. In view of
this, several authors have employed response surface methodology approach to investigate the
optimum conditions required for obtaining maximum hydrogen and syngas yield from cata-
lytic methane dry reforming. This study, therefore, presents an overview of the different
response surface methodology (RSM) approaches that have been used to optimize hydrogen
and syngas production by methane dry reforming using different catalysts.

2. Metal-based dry reforming catalysts

An extensive review by Pakhare and Spivey [14], Budiman et al. [16] and Kathiraser et al. [18]
revealed that supported metal catalysts such as Pt, Rh, Ru, Co, and Ni had been widely
investigated for hydrogen and syngas production by dry methane reforming. According to
Pakhare and Spivey [14] noble metals such as Pt, Rh and Ru displayed high catalytic activities
and stabilities towards dry reforming of methane even with minimal metal loading. However,
the activities of these noble metals were observed to vary with the nature of support. Supports
such as SiO2, La2O3, ZrO2, TiO2, CeO2, Al2O3, and MgO have been investigated for these noble
metals [14, 19–21]. The significant physicochemical properties that influence the activities of
the noble metals-based catalyst are their high metal dispersion and the metal surface area.
Nevertheless, noble metals are pricey and not readily available. Hence, their usage might not
be economical in the eventuality of a scale-up process.

In view of this, other supported metal catalysts mostly Co, and Ni have been given full
attention as catalytic candidates for hydrogen and syngas production by dry methane
reforming [16, 18]. Although several studies have shown that Co and Ni catalysts have inferior
catalytic activities and stability compared to the noble metals, these metals are inexpensive and
readily available. Hence, Co and Ni-based catalysts have been tipped as potential candidates
for scale-up of catalytic dry methane reforming. Moreover, the catalytic properties of the Co
and Ni catalysts can be improved to be competitive with that of the noble metals by either
using suitable supports or promoters [14].
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3. RSM approach to process optimization

Chemical process optimization is an important activity performed on a system or a process to
obtain optimum conditions that can give the maximum benefit from such process. This can be
achieved statistically by using one-variable-at-a-time for optimizing a response [22]. This
method of optimization entails changing the parameters of a variable while keeping the level
of the other variables constant [23]. One major drawback of this type of optimization is that the
interaction effects of the variables are not usually considered during the optimization process
[22]. Hence, the one-variable-at-time technique does not capture the broad effects of the
parameters on the responses [24]. Besides, the technique requires a massive number of exper-
imental runs which invariably implies an increase in time of experiment as well as high cost of
reagents and materials [22].

The challenges using the one-variable-at-time form of optimization of the chemical process can
be overcome using response surface methodology (RSM). RSM is a more robust optimization
technique that presents the statistical design of experiment (DoE) which can be employed in
achieving process with ultimate performance. RSM as a technique for chemical process opti-
mization is made up of a set of mathematics and statistical tools which work based on
empirical model fittings to the obtained experimental data from DoE [25]. The empirical model
fittings help in developing a suitable functional relationship between a set of input variables
and the targeted response [25]. The different stages involved in the use of RSM for chemical
process optimization are depicted in Figure 1 [22]. These stages include screening of the vari-
ables that have been identified for optimization, the choice of the experimental design, the
codification of the level of the variables, mathematic-statistic treatment of data, evaluation of
fitted model and determination of the optimum conditions.

Figure 1. Stages involved in RSM applications [22].
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Several parameters are often needed to investigate chemical processes extensively. One of the
most significant challenges is to investigate all the effects of these parameters on the process.
An attempt to do this might be rigorous, time-consuming and expensive [26]. Hence, it is
expedient to determine the parameters that significantly affect the responses from the chemical
process. To achieve this, experiment to identify parameters with most significant effects is
usually performed at the preliminary stage using factorial designs [26]. Screening of variable
before the main DoE has the advantages of preventing the mistake of chosen wrong levels that
might negatively influence overall success of the process optimization. Having ascertained the
appropriate parameters to be used for the main experiment, the next stage is to choose the
right experimental design.

Experimental design can be selected based on the intention of using a simple model which can
be employed as a linear function depicted in Eq. (1)

y ¼ βo
Xk

i¼1
βixi þ ε (1)

where k, βo, βi, xi and ε depicts number of variables, the constant term, coefficients of the liner
parameters, the input variables and the residual associated with the experiments, respectively.
The response obtained from the linear model cannot be used to determine curvature. Hence
the need for a second-order model represented in Eq. (2).

y ¼ βo þ
Xk

i¼1
βixi þ

Xk

1 ≤ i ≤ j
βijxj þ ε (2)

where the coefficient of the interaction parameter is denoted as βij. The critical point which
could either be maximum, minimum or saddle can be determined by including quadratic
terms to the polynomial terms in Eq. (2) as shown in Eq. (3).

y ¼ βo þ
Xk

i¼1
βixi þ

Xk

1z ≤ xj i ≤ j
βij þ

Xk

1¼i
βiix

2
i þ ε (3)

where the coefficient of the quadratic parameter is denoted as βii.

Eq. (3) can be identified as a form two-modeling, symmetrical response surface designs which
could be three-level factorial design, Box-Behnken design (BBD), central composite design
(CCD), and Doehlert design. The main difference between these two modeling, symmetrical
response surface designs is the selection of their experimental points, number of levels for
variables, and the number of runs and block [22].

After choosing the appropriate experimental design, the next stage is the codification of the
level of the variables which entail the transformation of the process real values to a coordinate
within dimensionless value scale proportional to the localization in the experimental space
[22]. One significant advantage of codification is that it allows the variables of different orders
of magnitude to be determined without substantial influence on the lesser values.

The data obtained for each of the experimental point based on the selected experimental
design can be subjected to mathematical-statistical treatment. The mathematical-statistical
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treatment entails the fitting of an appropriate mathematical equation that can best describe the
behavior of the responses. The method of least squares which is a statistical approach can also
be employed to fit a mathematical model to a given set of experimental data [27]. The mathe-
matic model obtained from the treatment of the data can subsequently be evaluated to deter-
mine if it appropriately explains the experimental sphere investigated. This can be achieved by
employing the analysis of variance (ANOVA). The use of ANOVA enables the comparison
between the variations that arise from the treatment of the experimental data and the variation
as a result of the random errors that accompanied the measurement of the obtained responses
[28]. Moreover, the ANOVA helps to determine the significance and the mathematical model
adequacy [28]. Besides ANOVA, other tools such as normality test, regression analysis and
lack of fit test can be employed to examine the model adequacy of the RSM optimization. The
normality of the experimental data can be performed using the normal plot of the internally
studentized residuals. The data points in a normal plot is linear when the studentized residuals
are normally distributed. Otherwise, when the data points in a normal plot is non-linear, it
implies that the studentized residuals are not normally distributed. Hence, there is a need for
the correction of the responses. Regression analysis is often performed on the fittings of the
model denoted by the equation to the experimental data. The regression analysis of the model
helps to determine to what extent the fitted model accounted for the variations in the experi-
mental data. In order to further test the adequacy of the specified model, the lack of fits test can
be employed. A significant lack of fit implies that the specific model is not suitable to explain
the experimental data. Hence, a different form of model would adequately fit the data if
investigated. The last stage of the application of the RSM is the determination of the optimum
conditions that can maximize the response values. Numerical optimization using the RSM
techniques can be employed to obtain the desired value for each of the input variables as a
function of the target response. This is dependent on the input optimization strategies such as
the range, maximum, minimum or target set to obtain the maximum achievable desired
responses of the chemical process [29].

4. Optimization of hydrogen and syngas production using RSM

The details of the optimization studies on the catalytic reforming of CH4 and CO2 to hydrogen
and syngas is depicted in Table 1. It can be seen that there is a dearth of literature on the
optimization of hydrogen and syngas by the catalytic reforming of CH4 and CO2 despite the
volume of literature available on their catalytic activities, stabilities and kinetic studies as
reported by Budiman et al. [16], Pakhare and Spivey [14], and Kathiraser et al. [18]. The studies
show that supported Ni-based catalysts such as Ni/γ-Al2O3, and Ni/SiO2 has been employed
for investigating the optimum conditions of hydrogen and syngas production from reforming
of CH4 and CO2 using CCD. CCD as an RSM technique entails the use of a full factorial or
fractional factorial design, a star design which consist of experimental points at a distance α
from its center and the central point [30, 34]. For the Ni/γ-Al2O3 catalyst, the effect of factors
such as discharge power, total flow rate CO2/CH4 molar ratio and Ni-loading on responses
such as CO2 conversion, CH4 conversion, and CO yield, H2 yield and the fuel production
efficiency were investigated [30]. The ANOVA results show that all the factors investigated
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have significant effects on the responses since their p-values were <0.05. Optimum conditions
of 60 W, 56.1 mL/min, 1.03, and 9.5% were obtained for the power discharged, total flow rate,
CO2/CH4 molar ratio, and Ni-loading, respectively. These optimum conditions resulted in
maximum values of 31.7%, 48.1%, 21.7%, 17.9%, and 7.9% of CO2 conversion, CH4 conversion,
CO yield, H2 yield, and fuel production efficiency, respectively. Similarly, for the Ni/SiO2 cata-
lyst, the effect of input variables such as reaction temperature and CH4/CO2 molar ratio on the
CH4 conversion, CO2 conversion, H2/CO ratio and carbon content were investigated using CCD
[34]. Based on the ANOVA results, the factors investigated were observed to have a significant
effect on the CH4 conversion, CO2 conversion, H2/CO ratio and carbon content (p < 0.05). The
optimum process conditions of 800�C and 2.125 were obtained for reaction temperature and
CH4/CO2 molar ratio, respectively yielding maximum values of 79.6%, 84.2%, 0.4 and 51.1% for
CH4 conversion, CO2 conversion, H2/CO ratio and carbon content, respectively.

In addition to supported Ni catalysts, other Ni-containing bimetallic catalysts such as Ni–Co/
MSN, and Ni-Co/MgO-ZrO2 catalyst have been employed to study the effect of different
process variables on their respective responses using CCD [30, 33]. The variables investigated
include reaction temperature, CO2/CH4 ratio, GHSV, and O2 concentration in the feed while
the responses include CH4 conversion and H2 yield. The ANOVA results of the fittings of the
experimental data obtained using both the Ni-Co/MSN, and Ni-Co/MgO-ZrO2 catalysts
showed that the input variables had significant influence on the responses. The reforming of
CH4 and CO2 over the Ni-Co/MSN gave optimum conditions of 783�C, 3, and 38,726 mL g�1 h�1

for the reaction temperature, CO2/CH4 ratio, GHSV, respectively yielding maximum value 97%
for the CH4 conversion. Similarly, the reforming of CH4 and CO2 over the Ni-Co/MgO-ZrO2

catalyst gave optimum conditions of 749�C, 3, 145,190 mL g�1 h�1, and 7 mol% for the reaction
temperature, CO2/CH4 ratio, GHSV O2 concentration in the feed, respectively. Consequently,
maximum values of 88% and 86% for CH4 conversion and H2 yield, respectively were obtained
at the optimum conditions.

The optimization of hydrogen and syngas production from catalytic reforming of CH4 and
CO2 over Sm2O3 and CeO2 supported Co catalysts have been investigated using BBD [37, 38].
The BBD is more efficient and less costly compared to the three-factor design. This is because
the BBD allows an effective estimate of the first and second-order coefficients of the mathe-
matical model [22]. The effects of process factors such as reaction temperature, CH4 partial
pressure, CO2 partial pressure, and CO2/CH4 ratio on H2 yield, CO yield, CH4 conversion, and
CO2 conversion were investigated using both Co/Sm2O3 and Co/CeO2 catalysts. The p-value
(<0.05) obtained from the ANOVA results of the study revealed that all the factors investigated
significantly influence the responses. The reforming of CH4 and CO2 over the Co/Sm2O3

catalyst led to optimum conditions of 727�C, 47.9 kPa, 48.9 kPa for the reaction temperature,
CH4 partial pressure, and CO2 partial pressure, respectively leading to the maximum values of
79.4% and 79% for H2 yield, and CO yield respectively. Likewise, the reforming of CH4 and
CO2 over the Co/CeO2 catalyst resulted in optimum conditions of 727�C for the reaction
temperature, 46.85 kPa for the CH4 partial pressure, and 0.6 for the CO2/CH4 ratio. These
optimum conditions resulted in maximum values of 74.85% for CH4 conversion, 76.49% for
CO2 conversion and 0.97 for the syngas ratio. Besides Ni and Co-based catalysts, other cata-
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have significant effects on the responses since their p-values were <0.05. Optimum conditions
of 60 W, 56.1 mL/min, 1.03, and 9.5% were obtained for the power discharged, total flow rate,
CO2/CH4 molar ratio, and Ni-loading, respectively. These optimum conditions resulted in
maximum values of 31.7%, 48.1%, 21.7%, 17.9%, and 7.9% of CO2 conversion, CH4 conversion,
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CH4 conversion, CO2 conversion, H2/CO ratio and carbon content were investigated using CCD
[34]. Based on the ANOVA results, the factors investigated were observed to have a significant
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In addition to supported Ni catalysts, other Ni-containing bimetallic catalysts such as Ni–Co/
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for the reaction temperature, CO2/CH4 ratio, GHSV, respectively yielding maximum value 97%
for the CH4 conversion. Similarly, the reforming of CH4 and CO2 over the Ni-Co/MgO-ZrO2

catalyst gave optimum conditions of 749�C, 3, 145,190 mL g�1 h�1, and 7 mol% for the reaction
temperature, CO2/CH4 ratio, GHSV O2 concentration in the feed, respectively. Consequently,
maximum values of 88% and 86% for CH4 conversion and H2 yield, respectively were obtained
at the optimum conditions.

The optimization of hydrogen and syngas production from catalytic reforming of CH4 and
CO2 over Sm2O3 and CeO2 supported Co catalysts have been investigated using BBD [37, 38].
The BBD is more efficient and less costly compared to the three-factor design. This is because
the BBD allows an effective estimate of the first and second-order coefficients of the mathe-
matical model [22]. The effects of process factors such as reaction temperature, CH4 partial
pressure, CO2 partial pressure, and CO2/CH4 ratio on H2 yield, CO yield, CH4 conversion, and
CO2 conversion were investigated using both Co/Sm2O3 and Co/CeO2 catalysts. The p-value
(<0.05) obtained from the ANOVA results of the study revealed that all the factors investigated
significantly influence the responses. The reforming of CH4 and CO2 over the Co/Sm2O3

catalyst led to optimum conditions of 727�C, 47.9 kPa, 48.9 kPa for the reaction temperature,
CH4 partial pressure, and CO2 partial pressure, respectively leading to the maximum values of
79.4% and 79% for H2 yield, and CO yield respectively. Likewise, the reforming of CH4 and
CO2 over the Co/CeO2 catalyst resulted in optimum conditions of 727�C for the reaction
temperature, 46.85 kPa for the CH4 partial pressure, and 0.6 for the CO2/CH4 ratio. These
optimum conditions resulted in maximum values of 74.85% for CH4 conversion, 76.49% for
CO2 conversion and 0.97 for the syngas ratio. Besides Ni and Co-based catalysts, other cata-
lysts such as Li/MgO, 15wt%Rh/MgO, Fe/Mg/Al2O3, and ZnO catalysts have been investigated
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for optimization of hydrogen and syngas production from reforming of CH4 and CO2 [31, 32,
35, 36]. The ANOVA results obtained from these studies indicate that the all the factors
investigated had significant effects on their responses.

5. Implications for further research

The overview of RSM approach to the optimization of hydrogen and syngas from reforming of
CH4 and CO2 over different catalysts performed in this study has revealed that every
reforming catalyst displayed a unique set of optimum conditions. This trend might be due to
the temperature dependent nature of the reforming reaction and the unique physicochemical
properties of each of the catalysts investigated. As a result, there is no consensus on unified
optimum conditions for hydrogen and syngas production by catalytic reforming of CH4 and
CO2. Moreover, the study also shows that only CCD and BBD has been employed for the
optimization of the hydrogen and syngas production over the catalysts investigated. Hence,
other forms of experimental design such as Doehlert design and Taguchi can further be
explored for the optimization study and then compare with existing one in literature. Further-
more, none of the work reported in this study perform an initial screening of the variable. A
school of thought has argued that screening of variable is only essential when using Plackett-
Burman design. However, it is worthwhile investigating the effect of initial screening of the
different variables that can potentially influence hydrogen and syngas production from
reforming of CH4 and CO2. Moreover, to ensure reliability and accuracy, high fractional
factorial design can be employed during the pre-screening stage. An efficient pre-screening of
all possible factors that influence the production of hydrogen and syngas by dry methane
reforming will enable the most significant factors to be obtained for subsequent optimization.
A consensus can be arrived at using these significant factors for further optimization of the
hydrogen and syngas production with different catalytic system.

Although, response surface design is usually carried out using continuous factors (factors
whose values are fixed to investigate their relationship to a response), it will be worthy of
investigation is research efforts can be geared towards response surface design using categor-
ical factors since such factors have discrete settings with no specific order. This could help
eliminating the discrepancy in the variations in the optimum conditions obtained using differ-
ent catalytic system in the optimization reforming reactions.

6. Conclusion

There is a growing interest in the application of RSM for the optimization of chemical pro-
cesses due to its numerous advantages over the traditional one-variable-a-time optimization
techniques. Such advantages include the tendency to obtain a large aggregate of information
from a small set of experimental runs and propensity to determine the effect of interaction
between the variables on the process responses. In this overview, RSM as an optimization
technique has been applied for optimization of catalytic reforming of CH4 and CO2 over few
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catalytic systems mainly supported Ni and Co catalysts as well as their bi-metallic compo-
nents. This study also affirms that the choice of the experimental design employed for the
optimization process was limited to CCD and BBD. Despite that all the literature considered in
this study reported the significant interactive effect of the input variables on their respective
responses, there was, however, no consensus of the optimum conditions of all the catalysts
investigated. Each of the catalysts was observed to yield a unique set of optimum conditions
primarily due to the differences in their physicochemical properties. This study has revealed
that there is dearth literature in the application of RSM to optimization of hydrogen and
syngas production from the catalytic reforming of CH4 and CO2. Hence, it is therefore
recommended that research efforts should be concentrated on investigating other RSM tech-
niques besides BBD and CCD as well as considering using more catalytic system for the future
optimization study.
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Abstract

Excessive concentrations of cobalt (Co) ions in the soil cause quality degradation and
pose a significant hazard to biota. One of the options for the permanent separation of the
pollutant from soil matrix is extraction by chemical reagents. In this study, response-
surface methodology (RSM) was applied to evaluate the factors affecting Co extraction
from contaminated calcareous soil. Solutions of disodium ethylenediaminetetraacetate
(Na2EDTA), citric acid (CA), and HCl were considered as leaching media. Reagent
concentration, soil to solution ratio, and extraction time were selected as process vari-
able, while Co extraction efficiencies and final pH values of extracts were the measured
responses. The effect of factor variation between three levels was studied using Box-
Behnken experimental design. By statistical analysis, the most influential factors were
determined for each reagent, and the model equations were proposed for the prediction
of system responses. Overlaid contour plots were used for the analysis of the effect of
process conditions on both responses simultaneously. Given that each case of contami-
nation is unique and requires extensive research before the remediation is implemented
full-scale, it was shown that experimental design methodology is a smart approach for
the assessment and comparison between the treatments.

Keywords: cobalt ions, soil contamination, chemical extraction, Box-Behnken design,
ANOVA

1. Introduction

Cobalt (Co) is one of the essential heavy metals, which is vital at trace levels for proper function-
ing of the human metabolism [1]. However, at concentrations higher than optimal, essential
metals become toxic. The poisoning by Co is commonly a result of drinking water contamina-
tion, high ambient air and soil concentrations, and consequent entrance and bioaccumulation of
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Co in the food chain. Therefore, development and application of remediation methods are
necessary in order to mitigate the negative impact of Co on the ecosystem.

The average concentration of Co in the Earth’s crust is 10 mg/kg [2]. The levels of Co in the soil
are influenced by the pedogenic factors, as well as by the characteristics of a parent rock
material. For different climatic zones, the values of 0.05 and 300 mg/kg were reported as the
minimum and maximum naturally occurring concentrations in the soil [3]. Lower amounts
were found in the soils from the northern regions, which originated from the glacial deposits.
The average concentrations of Co in the northern parts of Ukraine, Russia [2], and Sweden [4]
are 3.5, 5.5, and 7.1 mg/kg, respectively. In contrast, naturally higher values can be found in the
areas with arid or semiarid climate, like in Egypt [3].

The property which affects the manifestation of both beneficial and toxic effects is the solubil-
ity of Co in a particular environment. In respect to total concentration of Co in the soil, the
fraction available to plants is more important. The accessibility to living organisms is the
highest for free Co ions and water soluble complexes, while its metallic form and insoluble
compounds commonly exhibit very low bioaccessibility. The available content of Co in differ-
ent soil types, determined using 2.5% acetic acid as an extracting agent, was found to vary
from 0.05 to 1 ppm [3]. On one hand, the lack of available Co leads to Co-deficiency in living
organisms, while on the other, Co and its compounds are highly toxic in excessive amounts
causing serious cell and tissue damages (LD50 values for intake of Co salts for rats are in the
range 150–500 mg/kg of body weight [5]).

The main sources of environmental pollution with Co are industrial activities. Utilization of Co
as catalyst in the chemical industry, in the production of dyes and pigments, magnetic record-
ing media, alloys, batteries, etc., makes this element of the strategic importance for military,
industrial, and commercial applications [6]. In numerous studies, Co concentrations in soil and
sediments were measured to define its levels and identify the main pollution sources. Soil
pollution by Co in Shenzhen soil (China) was attributed to uncontrolled discharge of industrial
wastewater from factories that produce or use chemical compounds or alloys containing
Co [7]. Furthermore, ceramic industry was highlighted as the source of the sediment contam-
ination with Co and other heavy metals in Jiangsu Province (China) [8]. The highest concen-
trations were observed in the surface soil layer, within the 20–22 cm depth. In north greater
Cairo (Egypt), direct discharge of industrial wastewaters to irrigation water canals during 30
years provoked significant contamination of soil with Co (146 mg/kg) [9]. The activity of a
smelter in Zambia was found to result in dust with elevated concentrations of Co and other
heavy metals, causing the contamination of soil and plants [10]. The highest measured Co
concentration was 606 mg/kg found in the 0–2 cm of soil depth [11]. Furthermore, Co has been
found in increased concentrations in at least 426, out of 1636 most serious hazardous waste
sites in the USA, identified by Environmental Protection Agency (US EPA) [12]. The contam-
ination of soil with Co is therefore a global problem with a tendency of steady increase.

Contaminated areas need to be treated using the techniques based either on the pollutant
separation from the soil matrix or on its stabilization [13]. The levels and properties of heavy
metal pollutants, as well as the physicochemical properties of the soil, govern the distribution
of heavy metals which is an important factor for the selection of effective remediation method.
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When soil is exposed to Co-containing solution, several processes can occur at the surface of
soil constituents: electrostatic attraction, ion-exchange, complexation, co-precipitation, precip-
itation, occlusion, diffusion, and migration. Various single-step leaching procedures and
sequential extractions are in use for the determination of metal distribution and mobility in
the soil. Sequential extraction of the soil by so-called Tessier protocol is frequently applied [14].
This procedure is based on the consecutive application of selective chemical reagents in five
extraction steps (F1–F5), with the aim to extract the pollutant associated with different soil
fractions: ion-exchangeable (F1), acid soluble (F2), bound to Fe, Mn-oxides (F3), complexed by
organic matter (F4), and incorporated in the residual fraction (F5). As the strength of the bonds
between the metal and the soil constituents increases along the extraction scheme, the metal
mobility decreases in the same manner.

Clean-up of the contaminated soil can be completed by the method of chemical extraction if
the pollutant is distributed between relatively mobile fractions F1–F3 [15]. Extraction processes
require mixing of contaminated soil with leaching solutions (solutions of acids, inorganic salts,
chelating agents, surfactants, etc.) that cause a transfer of pollutant from the soil matrix into the
liquid phase. If the chemical extraction is chosen among other alternative methods, the opti-
mization of the method performance requires extensive research on the effects of a large
number of variables. Some of the previous studies have addressed the impact of reagent type
and concentration, reaction time, soil/solution ratio, pH, temperature, etc., on the efficiency of
heavy metals extraction from the soil matrix [16–19]; however, the experiments were
conducted by varying one factor at the time and little attention has been paid onto evaluation
and comparison of factor effects, their interactions and process optimization.

Taking into account numerous potentially important factors, experimental design methodol-
ogy (DOE) can be a useful strategy for the analysis of different soil treatments. In that sense,
the present chapter aimed to explore the applicability of DOE approach for the analysis of the
factors affecting chemical extraction of Co from contaminated soil and for the prediction of
system responses.

2. Design of experiment (DOE)

The analysis and optimization of virtually any process can be conducted by experimental
design methodology (DOE). Compared to the classical approach which implies variation of
one factor at the time, DOE relies on simultaneous variation of all factors and reveals the most
influential ones, the significant interactions between the factors, and the optimal levels of the
factors. This methodology aims to describe or explain the variation of information under
conditions that are hypothesized to reflect the variation. Therefore, DOE is a planned approach
to find out the relationships between process variables and process responses, in relatively
small number of experimental trials. Depending on the process under consideration, as well as
on the number and the type of information of interest, different types of experimental design
are in use, such as full and fractional factorial designs, response-surface designs, mixture
designs, random block, Latine squares designs, etc. [20].
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The response-surface methodology (RSM) was developed in order to optimize chemical reac-
tions used on an industrial scale [21]. The application of RSM is of relevance in situations
where several input variables influence the performance or quality characteristics of the pro-
cess, which are called the responses. The input variables, usually denoted as independent
variables, are controlled. Variation in experimental conditions provokes changes in the process
response. Dependence between process responses and two process variables is a smooth
surface called the response surface. The purpose of the response surface is to locate the
conditions which lead to the achievement of the minimum/maximum response. Furthermore,
in cases when several responses are of interest, RSM can give the optimal conditions for their
target values [22]. The response values (y) are related to the process variables (x1, x2…)
according to the model:

y ¼ f ðx1, x2,…Þ þ ε ð1Þ

In Eq. (1), f(x1, x2…) is called the response surface and represents the mean response at each x,
while ε represents other sources of variability (measurement error, background noise, the
effect of other variables, etc.), and it is usually treated as a statistical error.

The function f(x1, x2…) can be given as the first-order [Eq. (2)], or the second-order model
[Eq. (3)]. The first-order model describes experimental conditions which provide the responses
without peaks, and it is applicable for the description of local area responses without function
extremes.

f ðxiÞ ¼ β0 þ
X

βixi þ ε ð2Þ

In Eq. (2), βi denotes the linear effect of the process variable xi. Given that it includes only the
main effects of the two or more variables, the form of the first-order model given by Eq. (2) is
called the main effects model. In some processes, the interactions between studied variables
may be significant; thus, the interaction term must be added to the first-order model, which
introduce curvature into the response function.

The advantage of RSM is that the lack of fit can be estimated and the adequacy of the model
can be estimated. The lack of fit test provides the answer whether the proposed model
adequately describes system response (H0—null hypothesis) or not (HA—alternative hypothe-
ses). If the proposed model is suitable, there is no lack of fit. When the first-order polynomial
regression model is not adequate, the applicability of the second-order model is analyzed:

f ðxiÞ ¼ β0 þ
X

βixi þ
X

βijxixj þ
X

βiix
2
i þ ε ð3Þ

The term βi,j represents the interaction effect between two factors xi and xj, and βi,i is the
quadratic effect of factor xi. The meanings of the other terms in Eq. (3) are the same as
aforementioned. The designs that correspond to the surface response methodology are Box-
Behnken design, central composite design, and optimal designs.

The results of a literature survey showed that different types of experimental design were used
for the investigation of Co sorption by potential sorbent materials such as apatite, zeolite,
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bauxite residue, and dried activated sludge [23–25]; however, DOE approach has not been
applied, to this point, for the study of Co sorption or leaching from the soil matrix. In fact, just
a few examples of RSM application for the analysis of a soil remediation process can be
found [26, 27]. In this study, a three-level-three-factor Box-Behnken experimental design was
selected for the evaluation of the effect of factors which influence the Co extraction from
contaminated soil. Box-Behnken design is a three-level factorial design which considers factors
at their low (–1) and high (þ1) values, as well as at their arithmetic mean (0) [28]. This is the
type of quadratic design which does not contain the factorial or fractional factorial designs but
considers the midpoints of the edges of the process space and its center. In general, it is an
alternative to full factorial design at three levels.

3. Materials and methods

3.1. Soil contamination and clean-up experiments

The soil was sampled from the site of Vinča Institute of Nuclear Sciences (Belgrade, Serbia),
from the surface layer (0–20 cm). Prior to contamination with Co ions, soil was dried at
room temperature, homogenized, grained, and sieved in order to separate the fraction of
particles with the diameter <2 mm. The soil at this locality was characterized as weak
alkaline (pHH2O ¼ 8, pHKCl ¼ 7), with CaCO3 content of 5.4%, total organic content (TOC)
of 2.1%, and cation exchange capacity (CEC) of 13 meq/100 g [29]. Mineralogical analysis
revealed quartz, kyanite, and muscovite as main crystal phases, whereas mica, albite, kao-
linite, and calcium, magnesium–carbonate were present in lower quantities [29].

In the first step, the soil was artificially contaminated by Co ions. The solution containing 0.0012
mol/L of Co(NO3)2(Merck, p.a.) was mixed with 100 g of dried soil at the solid/liquid ratio 1:20.
After 24 h of equilibration, the liquid phase was separated from the soil by filtration and the
contaminated sample was dried in the air atmosphere. The concentration of Co ions sorbed by
the soil was calculated as the difference between its initial and the residual concentration.

Soil clean-up was conducted using the method of chemical extraction. Based on the high
extraction efficiencies observed in the previous study [18], the solutions of disodium ethylene-
diaminetetraacetate (Na2EDTA), citric acid (CA), and HCl were selected as extracting agents.
The contaminated soil was mixed with the reagent solutions in the centrifuge tubes which
were placed on the rotary shaker and agitated at the constant speed (10 rpm) at ambient
temperature (20 � 2�C).

The effects of the variation of reagent concentration, solid/liquid ratio, and contact time,
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The response-surface methodology (RSM) was developed in order to optimize chemical reac-
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f ðxiÞ ¼ β0 þ
X

βixi þ ε ð2Þ
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f ðxiÞ ¼ β0 þ
X

βixi þ
X

βijxixj þ
X

βiix
2
i þ ε ð3Þ

The term βi,j represents the interaction effect between two factors xi and xj, and βi,i is the
quadratic effect of factor xi. The meanings of the other terms in Eq. (3) are the same as
aforementioned. The designs that correspond to the surface response methodology are Box-
Behnken design, central composite design, and optimal designs.

The results of a literature survey showed that different types of experimental design were used
for the investigation of Co sorption by potential sorbent materials such as apatite, zeolite,
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bauxite residue, and dried activated sludge [23–25]; however, DOE approach has not been
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Soil clean-up was conducted using the method of chemical extraction. Based on the high
extraction efficiencies observed in the previous study [18], the solutions of disodium ethylene-
diaminetetraacetate (Na2EDTA), citric acid (CA), and HCl were selected as extracting agents.
The contaminated soil was mixed with the reagent solutions in the centrifuge tubes which
were placed on the rotary shaker and agitated at the constant speed (10 rpm) at ambient
temperature (20 � 2�C).

The effects of the variation of reagent concentration, solid/liquid ratio, and contact time,
among three levels, were investigated. Experimental variables and their levels are given in
Table 1. The matrix with the experimental conditions for simultaneous variation of process
parameters (Table 2) was generated using Minitab Release Software 13.1.

Extraction of Co ions was performed using each of the selected reagents, according to the
conditions given in Table 2. After specified contact times, the suspensions were centrifuged
for 10 min at 10,000 rpm and the extracted concentrations of Co ions were measured in clear
supernatants. The chemical extraction experiments were conducted in duplicate.
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In the sorption and extraction experiments, Co concentrations were determined by Perkin Elmer
3100 atomic absorption spectrometer (AAS), using a wavelength of 252.1 nm. Standards for
instrument calibration were prepared by diluting certified Perkin Elmer standard (1000 mg/L),
and the calibration was repeated after every 10-sample measurement. The detection limit was
0.05 mg/L, whereas the deviations among five replicate measurements for each sample were
lower than 3%.

The percentages of the extracted Co ions were used as the main response function of the
process. In addition, pH values of the leaching solutions after the completion of the process
(denoted as final pH) were measured using WTW InoLab pH-meter, and also considered as
system response.

Independent factor Symbol Level 1 coded
value (�1)

Level 2 coded
value (0)

Level 3 coded
value (�1)

Reagent concentration (mol/L) A 0.0005 0.05025 0.1

Soil/solution ratio B 5 15 25

Contact time (h) C 1 3.5 6

Table 1. Experimental factors and their levels used in the Box-Behnken design.

Experimental run Independent factor

A B C

1 1 1 0

2 �1 0 �1

3 0 1 �1

4 �1 0 1

5 0 0 0

6 1 �1 0

7 0 1 1

8 �1 �1 0

9 0 0 0

10 0 �1 1

11 1 0 �1

12 0 �1 �1

13 1 0 1

14 �1 1 0

15 0 0 0

Table 2. Combinations of factors and their levels according to Box-Behnken design matrix.
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3.2. Statistical analysis

Mean values of measured parameters, obtained from duplicate extraction experiments, were
used as system responses for data interpretation and statistical analysis. Experimental point
designation, analysis of variance (ANOVA), fitting of regression polynomial models, and
graphical presentations (ternary plots) were performed using the statistical software MINITAB
Release 13.2. The statistical analysis was done at the confidence level α ¼ 95%.

4. Results and discussion

4.1. System responses at different experimental conditions

After the contamination step, the total amount of Co ions sorbed by the investigated soil was
found to be 1390 mg/kg. High sorption affinities of soils and soil components toward Co are
well documented [24, 30–32]. The sorbed amount is in agreement with the results of a previous
study in which the soil from the same location was contaminated with Co under the range of
experimental conditions [18].

The variation of chemical reagents and other experimental conditions according to the Box-
Behnken design resulted in variation of system responses (Figure 1).

The mean values of Co extraction efficiency were found to fluctuate in the range 10–72% for
Na2EDTA, 1–66% for CA, and 0–71% for HCl as extracting agent (Figure 1a). The results
signify that, at certain levels of the considered factors, amounts of extracted Co can reach high
values using tested reagents. It is evident that the change of experimental conditions differ-
ently affects the performance of tested reagents and that effect of HCl was the lowest when
compared to other reagents under the same sets of experimental conditions.

The final pH values were also largely dependent on the type of reagent and process variables
(Figure 1b). The initial pH values of extracting solutions at their lower, middle, and higher
selected concentrations were: 4.4, 4.6, and 4.9 for Na2EDTA, 2.0, 2.2, and 3.5 for CA, and 1.0,
1.3, and 3.3 for HCl. After the reaction of contaminated soil with Na2EDTA solutions, pH
values were in the range 4.4–8.8, while using solutions of CA and HCl, pH values varied
between 2.8–7.8 and 1.6–7.6, respectively. The observed increase in pH, after interaction with
the soil, can be attributed to the buffering capacity of the soil which mainly originates from its
carbonate content [18].

The knowledge of the nature and the strength of the bonds established between added Co ions
and soil constituents are important for interpretation and understanding the effect of different
chemical reagents. By means of the sequential extraction analysis, the portions of Co bonded in
different fractions of the investigated soil were previously analyzed [18]. Considering various
contamination levels and aging times (1 h to 30 days), Co ions were found to be associated
with Fe, Mn-oxide fraction (F3), carbonate/acid soluble (F2), and ion-exchangeable (F1) fraction
(F1 þ F2 þ F3 > 92%). For the comparison, the majority of naturally occurring Co in the soil
from the Vinča locality was found in F3 and residual (F5) phase [29], indicating that sorbed
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study in which the soil from the same location was contaminated with Co under the range of
experimental conditions [18].
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The mean values of Co extraction efficiency were found to fluctuate in the range 10–72% for
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signify that, at certain levels of the considered factors, amounts of extracted Co can reach high
values using tested reagents. It is evident that the change of experimental conditions differ-
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selected concentrations were: 4.4, 4.6, and 4.9 for Na2EDTA, 2.0, 2.2, and 3.5 for CA, and 1.0,
1.3, and 3.3 for HCl. After the reaction of contaminated soil with Na2EDTA solutions, pH
values were in the range 4.4–8.8, while using solutions of CA and HCl, pH values varied
between 2.8–7.8 and 1.6–7.6, respectively. The observed increase in pH, after interaction with
the soil, can be attributed to the buffering capacity of the soil which mainly originates from its
carbonate content [18].

The knowledge of the nature and the strength of the bonds established between added Co ions
and soil constituents are important for interpretation and understanding the effect of different
chemical reagents. By means of the sequential extraction analysis, the portions of Co bonded in
different fractions of the investigated soil were previously analyzed [18]. Considering various
contamination levels and aging times (1 h to 30 days), Co ions were found to be associated
with Fe, Mn-oxide fraction (F3), carbonate/acid soluble (F2), and ion-exchangeable (F1) fraction
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Evaluation of Factors Affecting Chemical Extraction of Co Ions from Contaminated Soil
http://dx.doi.org/10.5772/68066

85



cobalt ions have significantly higher mobility. These results signify that chemical extraction can
be considered for soil clean-up [33].

Fe- and Mn-oxides and hydroxides have been generally recognized as the major substrates
for Co ions in the soil [34]. High affinities of such minerals toward Co ions were also revealed

Figure 1. System responses obtained for different extracting agents under experimental conditions defined in Table 2:
(a) extraction efficiency of Co ions from the contaminated soil and (b) final pH of extracts.
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in the studies of Co sorption by Fe- and Mn-oxides [35–37], as well as by geochemical
modeling of Co speciation in different soil samples [38]. The amounts of Co found in F2
phase of the sequential extraction correspond to the fraction associated with carbonates, as
well as the fraction chemisorbed on the surface of soil components. The crystal lattice of
calcium-carbonate can accommodate high quantities of Co and other divalent metals, imply-
ing that calcite is an important sorbent for metals in calcareous soils [39]. In addition,
carbonate phase is of a crucial importance for high soil pH, which results in higher stability
of sorbed metal ions [40]. Finally, the ion-exchange between Co and other divalent cations
contained in the soil minerals also contributes to Co retention in the soil [41].

Taking into account the effects achieved by investigated reagents (Figure 1a), it can be concluded
that both complexing agents and the mineral acid can release Co ions sorbed within different soil
fractions. The extraction potential of HCl solutions is governed by the changes of pH. As the pH
becomes more acidic, the dissolution of soluble soil constituents occurs, as well as the exchange
reactions between Hþ and metal ions, and the protonation of active surface sites which become
more positively charged [31, 42, 43]. Depending on the pH, these reactions cause the liberation of
metal ions bonded by ion-exchange mechanism, specifically sorbed, and associated with carbon-
ates and oxide minerals. Solubility of metal ions in the soil is also enhanced in the presence of
chelating anions. These organic ions formmultiple bonds with the metal cation, essentially in the
form of a ring, which exhibits high stability in aqueous media. The chelating agents have a
potential to extract the metal ions bonded to all non-residual fractions [44].

4.2. Evaluation of the effects of factors by Box-Behnken design

By using actual values of process variables, the response variable (y) was fitted to a second-
order polynomial model as follows:

y ¼ β0 þ
Xk

i¼1

βixi þ
Xk

i¼1

βiix
2
i þ

Xk�1

i¼1

Xk

j¼iþ1

βijxixj ð4Þ

where y is system response, β0 is the intercept, βi is the linear effect, and βii is the quadratic
effect of the process variable xi, while βi,j is the effect of the interaction between two indepen-
dent process variables xi and xj.

Applicability of different models was tested by ANOVA. In order to determine which mathe-
matical model adequately fits the obtained experimental results, full quadratic model was
initially applied [Eq. (4)]. Statistical calculations were assessed on the basis of the F- and
p-values. F-values are obtained from Fisher’s test and represent the ratio of the mean square
due to regression and mean square due to residual error, whereas p-value is defined as the
smallest level of significance which leads to the rejection of null hypothesis. Therefore, higher F
and lower p-values (p < 0.05) represent statistically significant terms. By omitting the insignif-
icant terms (p > 0.05) and considering the values of determination coefficients (R2) together
with the results of lack of fit, the most appropriate models were found.

For Na2EDTA as Co leaching reagent, the most suitable model included only linear terms,
following the equation:
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CoðNa2EDTAÞ ¼ 41:142þ 23:798Aþ 5:935Bþ 3:138C ð5Þ

According to the proposed Eq. (5), Co desorption efficiency was dependent on the linear effect
of all selected factors. However, by observing the values of coefficients next to the respective
factors, it can be concluded that the highest effect on the process response was achieved by the
change of initial reagent concentration, followed by the effect of applied reagent volume, and
finally the effect of contact time. The positive signs of the calculated coefficients indicate that
leached amounts of Co increase with the increased levels of factors.

The coefficient of determination (R2) was calculated according to the equation:

R2 ¼ 1� SSres
SStot

ð6Þ

where SSres denotes the sum of squares of the residuals, while SStot is the total sum of squares.
SStot was calculated as the sum of squared differences between the different system responses
values (yi) and its mean. Furthermore, the SSres is the sum of the squared differences between
each system variable and its value predicted by the model. Knowing that the R2 values
increase with the number of terms in the model even if their effect is insignificant, an incorrect
model could be proposed if R2 magnitude is solely considered. Therefore, the value of the
adjusted determination coefficient (R2

adj) was included. In contrast to their effect on R2 values,
insignificant terms in the model provoke the decrease in R2

adj values.

The summary of ANOVA, F and p-values obtained for significant model terms and the results
of the lack of fit are given in Table 3. Using the experimental results obtained for Na2EDTA
extraction efficiency, calculated R2 and R2

adj values were 99.02 and 98.76%, respectively. Prac-
tically, the predicted model adequately describes even 99.02% of experimental results. Giving
that F-value was <1 and p-value was >0.05, the proposed model can be regarded as adequate.

The following model was developed for CA as a leaching reagent:

CoðCAÞ ¼ 54:527þ 27:779 Aþ 5:304 Bþ 3:990 C� 23:238A2 ð7Þ

The extraction of Co ions with CA solutions was found to be dependent on all investigated
factors with the statistical significance. Changes in the level of reagent initial concentration
have caused the highest impact on the leaching efficiency. Furthermore, the squared term in
the derived equation (A2) indicates the existence of curvature in the response surface. The
obtained Eq. (7) fitted 97.88% of the experimental results, with the calculated R2

adj value of
97.03%.

The extraction of Co using HCl can be described by the model which includes the following
linear and interaction terms:

CoðHClÞ ¼ 28:31þ 24:15 Aþ 19:20 Bþ 12:39AB ð8Þ

For the proposed model, determined R2 was 94.69%, while R2
adj was 93.25%. The analysis of

factors affecting the efficiency of applied inorganic acid indicates that the changes of contact
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time did not significantly influence on the amount of leached cobalt. On the other hand,
changes in the concentration and volume of the reagent were significant, as well as the
interaction of these two parameters.

Furthermore, the models for the description of final pH values were developed. Considering
the data obtained using Na2EDTA, the following equation was found suitable, with calculated
values of R2 ¼ 96.48% and R2

adj ¼ 95.52%:

pHðNa2EDTAÞ ¼ 7:0186� 1:8438A� 0:3250B� 0:5548A2 ð9Þ

The final pH values of the CA extracts can be described (R2 ¼ 96.33%, R2
adj ¼ 95.33%) by

Eq. (10):

pHðCAÞ ¼ 4:0400� 2:2175A� 0:6375Bþ 1:5600A2 ð10Þ

Eqs. (9) and (10) indicate that variation of initial concentration and volume of both investi-
gated complexing agents had an effect on final pH. The negative signs of the corresponding

Na2EDTA CA HCl

F p F p F p

Extraction efficiency

Regression 371.70 <0.0001 115.50 <0.0001 65.45 <0.0001

A 1032.90 <0.0001 333.90 <0.0001 111.29 <0.0001

B 64.24 <0.0001 12.17 <0.006 70.40 <0.0001

C 17.96 0.001 6.89 0.025 / /

A2 / / 109.04 <0.0001 / /

AB / / / / 14.65 0.003

Lack of fit 4.48 0.196 5.37 0.160 3.13 0.310

Final pH of extracts

Regression 86.21 <0.0001 96.28 <0.0001 77.93 <0.0001

A 318.98 <0.0001 219.89 <0.0001 269.36 <0.0001

B 9.91 0.01 18.17 0.001 132.38 <0.0001

A2 13.48 0.004 50.79 <0.0001 / /

C / / / / 10.61 0.012

C2 / / / / 8.95 0.017

AB / / / / 38.40 <0.0001

BC / / / / 7.86 0.023

Lack of fit 2.51 0.151 6.37 0.06 5.14 0.18

Table 3. Analysis of variance.
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that F-value was <1 and p-value was >0.05, the proposed model can be regarded as adequate.

The following model was developed for CA as a leaching reagent:

CoðCAÞ ¼ 54:527þ 27:779 Aþ 5:304 Bþ 3:990 C� 23:238A2 ð7Þ

The extraction of Co ions with CA solutions was found to be dependent on all investigated
factors with the statistical significance. Changes in the level of reagent initial concentration
have caused the highest impact on the leaching efficiency. Furthermore, the squared term in
the derived equation (A2) indicates the existence of curvature in the response surface. The
obtained Eq. (7) fitted 97.88% of the experimental results, with the calculated R2

adj value of
97.03%.

The extraction of Co using HCl can be described by the model which includes the following
linear and interaction terms:

CoðHClÞ ¼ 28:31þ 24:15 Aþ 19:20 Bþ 12:39AB ð8Þ

For the proposed model, determined R2 was 94.69%, while R2
adj was 93.25%. The analysis of

factors affecting the efficiency of applied inorganic acid indicates that the changes of contact
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time did not significantly influence on the amount of leached cobalt. On the other hand,
changes in the concentration and volume of the reagent were significant, as well as the
interaction of these two parameters.

Furthermore, the models for the description of final pH values were developed. Considering
the data obtained using Na2EDTA, the following equation was found suitable, with calculated
values of R2 ¼ 96.48% and R2

adj ¼ 95.52%:

pHðNa2EDTAÞ ¼ 7:0186� 1:8438A� 0:3250B� 0:5548A2 ð9Þ

The final pH values of the CA extracts can be described (R2 ¼ 96.33%, R2
adj ¼ 95.33%) by

Eq. (10):

pHðCAÞ ¼ 4:0400� 2:2175A� 0:6375Bþ 1:5600A2 ð10Þ

Eqs. (9) and (10) indicate that variation of initial concentration and volume of both investi-
gated complexing agents had an effect on final pH. The negative signs of the corresponding

Na2EDTA CA HCl

F p F p F p

Extraction efficiency

Regression 371.70 <0.0001 115.50 <0.0001 65.45 <0.0001

A 1032.90 <0.0001 333.90 <0.0001 111.29 <0.0001

B 64.24 <0.0001 12.17 <0.006 70.40 <0.0001

C 17.96 0.001 6.89 0.025 / /

A2 / / 109.04 <0.0001 / /

AB / / / / 14.65 0.003

Lack of fit 4.48 0.196 5.37 0.160 3.13 0.310

Final pH of extracts

Regression 86.21 <0.0001 96.28 <0.0001 77.93 <0.0001

A 318.98 <0.0001 219.89 <0.0001 269.36 <0.0001

B 9.91 0.01 18.17 0.001 132.38 <0.0001

A2 13.48 0.004 50.79 <0.0001 / /

C / / / / 10.61 0.012

C2 / / / / 8.95 0.017

AB / / / / 38.40 <0.0001

BC / / / / 7.86 0.023

Lack of fit 2.51 0.151 6.37 0.06 5.14 0.18

Table 3. Analysis of variance.
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coefficients denote that increased concentration levels and increased levels of applied vol-
ume influenced the decrease in pH.

The complex mathematical model was obtained for describing the solution pH values after soil
leaching with HCl:

pHðHClÞ ¼ 5:6386� 1:9150A� 1:3425Bþ 0:3800C� 0:511C2 � 1:0225ABþ 0:4625BC ð11Þ

The adequacy of Eq. (11) was confirmed by high R2 and R2
adj values (98.32% and 97.06%,

respectively). The model indicates that the variation of all studied factors, as well as AB and BC
interactions, significantly affected the pH of resulting extracts. The HCl concentration and
volume exhibited negative correlation with pH, while the contact time and pH were positively
correlated.

Inside the range of experimental conditions covered by the design, the efficiency of Co extraction
can be predicted using the mathematical models proposed by Eqs. (5), (7), and (8). The graphical
interpretation of these equations, that help visualize the shape of the response surface, is given in
Figure 2 in form of contour plots. The graphs express the relationships between calculated

Figure 2. Contour plots for cobalt extraction efficiency using: (a) EDTA, (b) CA, and (c) HCl solutions, presenting the
relationships between calculated responses and statistically significant factors, at the constant intermediate value of the
third factor (A—reagent concentration, B—soil/solution ratio, C—extraction time).

Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes90

responses and statistically significant variables, at the constant intermediate value of the third
parameter. The lines on the graphs represent constant values of the system response.

The parallel lines on the contour plots in Figure 2a refer to the linear effect of process variables
on Co desorption efficiency by Na2EDTA, with the highest yield of extraction achieved at their
maximum levels. The curvature in system responses occurred in case when CA was used as
reagent, due to the quadratic term in the model equation, whereas in case of HCl due to the
significant interaction effect between the reagent concentration and applied volume.

Similar predictions were made for final pH values as response functions, using Eqs. (9)–(11),
and the contour plots are given for statistically significant parameters (Figure 3).

The contour graphs, as well as the ANOVA results, signify that increase of the initial reagent
concentration provoked decrease in the final pH. Furthermore, pH declined with increased
volume of the reagents. In contrast, longer reaction times contribute only to higher pH of HCl
solution.

If multiple system responses are considered in the same experiment, their simultaneous anal-
ysis could be essential to optimize the process. Construction of overlaid contour plots enables
determination of the ranges of process variable which lead to the achievement of the target
effect. These plots are constructed by overlaying the contour plots of each considered response.
The responses defined in the presented study, final pH values of the filtrate and extraction
efficiency, are related: the lower the pH―the higher extraction yield (Figures 2 and 3). How-
ever, high acidity of extracting solutions may cause the degradation of soil vital properties due
to significant degradation of both mineral and organic phase [43], making the soil inappropri-
ate for on-site disposal and re-vegetation after completion of the treatment. Furthermore, the

Figure 3. Contour plots for the final pH of extracts: (a) EDTA, (b) CA, and (c) HCl, presenting the relationships between
calculated responses and statistically significant factors, at the constant intermediate value of the third factor (A—reagent
concentration, B–soil/solution ratio, C—extraction time).
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concentration provoked decrease in the final pH. Furthermore, pH declined with increased
volume of the reagents. In contrast, longer reaction times contribute only to higher pH of HCl
solution.
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ysis could be essential to optimize the process. Construction of overlaid contour plots enables
determination of the ranges of process variable which lead to the achievement of the target
effect. These plots are constructed by overlaying the contour plots of each considered response.
The responses defined in the presented study, final pH values of the filtrate and extraction
efficiency, are related: the lower the pH―the higher extraction yield (Figures 2 and 3). How-
ever, high acidity of extracting solutions may cause the degradation of soil vital properties due
to significant degradation of both mineral and organic phase [43], making the soil inappropri-
ate for on-site disposal and re-vegetation after completion of the treatment. Furthermore, the
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obtained filtrates represent liquid waste which requires further management (neutralization,
metal recovery, reagent recovery, etc.). Thus, both the wastewater and the processed soil would
need to be neutralized, increasing the complexity and cost of the treatment.

Therefore, the performance of different reagents was compared using near neutral final pH (5–7)
and Co extraction efficiency >50%, as target values. Under these conditions, overlaid contour
plots were constructed for Na2EDTA and CA (Figure 4a and b). On the other hand, desired
response values could not be reached simultaneously using HCL, and the target value of Co
extraction was decreased to >40% (Figure 4c).

Figure 4. Overlaid contour plots for determination of process conditions which lead to achievement of target system
responses using (a) Na2EDTA, (b) CA, and (c) HCl (A—reagent concentration, B—soil/solution ratio, C—extraction time).
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The white areas in the constructed plots present the ranges of factors A and B that provide
given responses, at different contact times (C). Using Na2EDTA, target response values can be
obtained for contact times of 1 h, as well as 3.5 h, by selecting reagent concentration and
volume in the designated ranges. Designated area is wider for 3.5 h, which practically means
that if the duration of extraction is increased the desired responses can be gained at lower
reagent concentrations. For the same extraction times, using CA instead of Na2EDTA (Figure 4b),
target values of Co desorption efficiency and solution pH can be obtained using initial concen-
trations and volumes of the reagent in much lower ranges. The effect of HCl was limited since it
is governed by pH decrease (Figure 4c). Approximately 40% of sorbed Co ions can be leached
under conditions that simultaneously assure target pH of the extract, at higher contact times
(6 and 3.5 h).

Such results may be indicative for further evaluation of reagents. Consideration of the advan-
tages and disadvantages related to the application of a chemical reagent includes the environ-
mental impact and overall costs. Although HCl is often used for chemical leaching at full-scale,
its effect is limited in calcareous soils. Consumption of high amounts of acid reagent would be
necessary to provide efficient Co separation, which would in turn results in dissolution and
degradation of soil matrix, creation of acidic waste water and soil residue. On the other hand,
by selection of factor levels, complexing agents provide more efficient decontamination, even
at near neutral pH conditions. Leaching of soil by chelating agents is potentially detrimental to
its quality if a part of the chelating agent remains in the soil. As a natural compound, CA
undergoes biodegradation process more easily compared to Na2EDTA [45]. Furthermore, CA
is less expensive chelating reagent [46], which supports the selection of CA among the tested
reagents.

5. Conclusion

The Box-Behnken design was applied for screening and analyzing the factors affecting soil
chemical extraction process using the sample of calcareous soil artificially contaminated with
Co ions. Using Na2EDTA, CA, and HCl as reagents, the effect of variation of three factors
(concentration of the chemical reagent, soil/liquid ratio, and the contact time between the
phases) between three levels was analyzed in respect to extraction efficiency and final pH
values. The adequacy of different mathematical models, with inclusion of linear or quadratic
terms, was tested for the description of experimental results. The extraction efficiency was
highly dependent of the applied chemical reagent. Analysis of variance of the chosen
responses revealed that Co separation was predominantly affected by the variation of the
reagents concentrations. Effect of applied reagents volume had smaller statistical significance,
while the contact time played an important role in the performance of complexing agents.
Mathematical models were developed to describe the effect of each independent parameter
and their interactions on system response. Predicted values of Co recovery, obtained using
model equations, were in good agreement with the experimental data. Treatments by different
reagents were compared using overlaid contour plots, taking into consideration extraction
efficiencies in near neutral range of final pH values. The results demonstrate limited effect of
HCl in cancerous soil, while chelating agents can exhibit high efficiencies by selection of factor
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reagent concentrations. For the same extraction times, using CA instead of Na2EDTA (Figure 4b),
target values of Co desorption efficiency and solution pH can be obtained using initial concen-
trations and volumes of the reagent in much lower ranges. The effect of HCl was limited since it
is governed by pH decrease (Figure 4c). Approximately 40% of sorbed Co ions can be leached
under conditions that simultaneously assure target pH of the extract, at higher contact times
(6 and 3.5 h).

Such results may be indicative for further evaluation of reagents. Consideration of the advan-
tages and disadvantages related to the application of a chemical reagent includes the environ-
mental impact and overall costs. Although HCl is often used for chemical leaching at full-scale,
its effect is limited in calcareous soils. Consumption of high amounts of acid reagent would be
necessary to provide efficient Co separation, which would in turn results in dissolution and
degradation of soil matrix, creation of acidic waste water and soil residue. On the other hand,
by selection of factor levels, complexing agents provide more efficient decontamination, even
at near neutral pH conditions. Leaching of soil by chelating agents is potentially detrimental to
its quality if a part of the chelating agent remains in the soil. As a natural compound, CA
undergoes biodegradation process more easily compared to Na2EDTA [45]. Furthermore, CA
is less expensive chelating reagent [46], which supports the selection of CA among the tested
reagents.

5. Conclusion

The Box-Behnken design was applied for screening and analyzing the factors affecting soil
chemical extraction process using the sample of calcareous soil artificially contaminated with
Co ions. Using Na2EDTA, CA, and HCl as reagents, the effect of variation of three factors
(concentration of the chemical reagent, soil/liquid ratio, and the contact time between the
phases) between three levels was analyzed in respect to extraction efficiency and final pH
values. The adequacy of different mathematical models, with inclusion of linear or quadratic
terms, was tested for the description of experimental results. The extraction efficiency was
highly dependent of the applied chemical reagent. Analysis of variance of the chosen
responses revealed that Co separation was predominantly affected by the variation of the
reagents concentrations. Effect of applied reagents volume had smaller statistical significance,
while the contact time played an important role in the performance of complexing agents.
Mathematical models were developed to describe the effect of each independent parameter
and their interactions on system response. Predicted values of Co recovery, obtained using
model equations, were in good agreement with the experimental data. Treatments by different
reagents were compared using overlaid contour plots, taking into consideration extraction
efficiencies in near neutral range of final pH values. The results demonstrate limited effect of
HCl in cancerous soil, while chelating agents can exhibit high efficiencies by selection of factor
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levels. CA stands out as the most suitable agent, due to its performance, price, and biodegrad-
ability. The applicability of RSM for fast assessment and comparison of soil treatments was
verified, highlighting the significance of DOE in practical applications.
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Abstract

Carburized samples were prepared under different sets of conditions at Millat Equipment 
Limited, Lahore, Pakistan, using continuous carburizing furnace under a reducing atmo-
sphere. The gas carburizing process parameters were determined by the Taguchi design 
of experiment (DoE), an orthogonal array of L9 type with the mixed level of control fac-
tors. The key process parameters in gas carburizing process such as delay quenching 
interval, hardening temperature, and soaking time in oil were optimized in terms of core 
hardness, effective case depth (ECD), and surface hardness. DoE approach elucidated 
that the best results in terms of core hardness are A2 (delay quenching for 60 seconds), 
B2 (hardening temperature of 800°C), and C2 (soaking in quenching oil for 300 seconds). 
However, the best results in terms of ECD were A1 (delay quenching for 45 seconds), B3 
(hardening temperature of 820°C), and C1 (soaking in quenching oil for 180 seconds). In 
order to choose the optimized parameters from the results given by DoE, microscopic 
analysis was conducted. Microscopic analysis showed coarse bainitic structure in core 
and tempered martensite at the surface of the samples processed at A2 (delay quench-
ing for 60 seconds), B2 (hardening temperature of 800°C), and C1 (soaking in quenching 
oil for 180 seconds) compared to the other process conditions (A1, B3, and C1), which 
shows fine bainitic structure at core and relatively higher amount of retained austenite 
at the surface. Finally, defect per million opportunities (DPMO) model exhibited that 
the samples produced from the optimized set of parameters (A2, B2, and C1) are highly 
reproducible, gaining DPMO of 83 parts per million (PPM).
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1. Introduction

In the current era, most of the industries are focusing on economical process optimization 
techniques. The most common industrial approaches are trial-and-error approach or one vari-
able at a time (OVAT) in which one variable is changed at one time [1, 2]. These approaches 
are inefficient and time-consuming. However, statistical tools, such as the Taguchi design of 
experiments (DoE), provide superior methods to conduct experiments by efficient means. 
The selection of investigated parameters involved in the process is based on the philosophy 
of Dorian Shainin, which is characterized by focusing on a limited number of parameters 
selected by their cause and effect relationship [2, 3]. Hence, the Taguchi DoE has been widely 
used nowadays in the industrial sector. Moreover, Taguchi DoE approach allows changing 
more than one factor at one time, which reduces the number of experiments required to deter-
mine the optimized parameter [2, 4–6].

The Taguchi DoE assesses the effect and significance of controllable factors of an experiment, 
which increases the robustness of a process. Robustness is measured as a signal-to-noise (S/N) 
ratio. It comprises the sensitivity of the signal to disturbing factors involved in the process, 
the so-called noise [4, 7]. The optimization process is based on the assessment of this ratio 
as it determines the impact of control factors on the process. The DoE provides an efficient 
method for the optimization since only a limited number of experiments are required in con-
trast to full factorial methods [3, 8–10]. The statistical significance of each control factor can 
be determined by the performance of the multivariate analysis of variance (MANOVA). The 
significance of individual control factors can be estimated by its probability value  p  [5, 7].

Another important factor in the industrial process is the reproducibility. Design of experi-
ment approach can further help in improving the reproducibility of the process. An important 
method to determine the reproducibility of the process is defect per million opportunities 
model (DPMO). DPMO evaluates the reproducibility of the process to relatively high sensitiv-
ity such as parts per million (PPM) [11, 12]. The “Six Sigma” approach can help in achieving 
the highly reproducibility of the industrial process. Therefore, it can be concluded that DoE 
approach coupled with the Six Sigma can help in economical process optimization at higher 
statistical confidence and reproducibility. Finally, KAIZEN “tools for continuous improve-
ment” can help in sustaining the optimized experimental conditions [12].

Taguchi DoE is applied here to solve the particular industrial problems related with the 
higher field failure rate of crown wheel pinion. For example, field failure for the pinion after 
only 200 working hours was taken into account. Microscopic examination of sectioned piece 
revealed Chevron nature of fracture. Metallographic studies were also taken into account 
to know the reason behind this premature failure. Findings were the higher value of core 
hardness (38 HRC), with 25% of retained austenite. In service the retained austenite, which 
is metastable phase, will transform into martensite raising brittleness, because newly formed 
martensite is untempered. In addition, this newly formed martensite will cause dimensional 
changes as well as cause unexpected shift of contact pattern and backlash of more than 
0.01 mm. Higher value of core hardness will make the core to respond to any sudden shock 
with minimum absorptivity and maximum transmissibility [13–15]. Furthermore, literature 
was studied to investigate the reasons behind the higher values of core hardness and retained 
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austenite. It was found that high quenching temperatures, high quenching oil’s temperature, 
improper diffusion, over carburizing, coarse initial grain size, segregation of the impurities 
at high-angle grain boundaries, higher value of chromium and silicon, improper soaking in 
the quenching oil, and viscosity of the oil might also be the reason [16–18]. Higher values of 
core hardness and retained austenite cause increase in the surface brittleness and improper 
load distribution behavior under dynamic loading conditions. It is hoped that this research 
will have paramount importance for industrial development and academic research [17, 19, 
20]. Therefore, keeping in view for the criticality of core hardness, it was aimed to develop 
an intermediate and compromised value of core hardness during the carburizing process. In 
this research work, we choose delay quenching time, soaking time in oil, and hardening tem-
perature as the significant parameters on the basis of fishbone diagram. Afterward, the effect 
of each parameter at various levels was studied to determine the optimum gas carburizing 
conditions.

2. Materials and methods

2.1. Materials

The material used in the present experimental work was a low-carbon low-alloy steel (SAE 
8620). The chemical composition of the steel is given in Table 1.

The addition of alloying elements such as Mn, Mo, Ni, and Cr increases the hardening ability 
of the steel. The depth to which the steel is hardened is usually called as the hardenability of 
the steel.

2.2. Gas carburizing process

Test coupons were made up of 8620 low-alloy steel having dimensions of 2 × 1 (inch2). One 
of the test samples was subjected to destructive testing for the metallography (microstructure 

Element Composition (mol %)

C 0.18–0.23

Si 0.15–0.35

Mn 0.7–0.9

Mo 0.150–0.25

S 0.04 max

P 0.35 max

Ni 0.4–0.7

Cr 0.4–0.6

Table 1. Chemical composition for 8620 alloy steel determined by using spark arc emission spectroscopy at AFCO Steel 
Mills Pvt Ltd., Lahore, Pakistan.
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austenite. It was found that high quenching temperatures, high quenching oil’s temperature, 
improper diffusion, over carburizing, coarse initial grain size, segregation of the impurities 
at high-angle grain boundaries, higher value of chromium and silicon, improper soaking in 
the quenching oil, and viscosity of the oil might also be the reason [16–18]. Higher values of 
core hardness and retained austenite cause increase in the surface brittleness and improper 
load distribution behavior under dynamic loading conditions. It is hoped that this research 
will have paramount importance for industrial development and academic research [17, 19, 
20]. Therefore, keeping in view for the criticality of core hardness, it was aimed to develop 
an intermediate and compromised value of core hardness during the carburizing process. In 
this research work, we choose delay quenching time, soaking time in oil, and hardening tem-
perature as the significant parameters on the basis of fishbone diagram. Afterward, the effect 
of each parameter at various levels was studied to determine the optimum gas carburizing 
conditions.

2. Materials and methods

2.1. Materials

The material used in the present experimental work was a low-carbon low-alloy steel (SAE 
8620). The chemical composition of the steel is given in Table 1.

The addition of alloying elements such as Mn, Mo, Ni, and Cr increases the hardening ability 
of the steel. The depth to which the steel is hardened is usually called as the hardenability of 
the steel.

2.2. Gas carburizing process

Test coupons were made up of 8620 low-alloy steel having dimensions of 2 × 1 (inch2). One 
of the test samples was subjected to destructive testing for the metallography (microstructure 

Element Composition (mol %)

C 0.18–0.23

Si 0.15–0.35

Mn 0.7–0.9

Mo 0.150–0.25

S 0.04 max

P 0.35 max

Ni 0.4–0.7

Cr 0.4–0.6

Table 1. Chemical composition for 8620 alloy steel determined by using spark arc emission spectroscopy at AFCO Steel 
Mills Pvt Ltd., Lahore, Pakistan.
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Figure 1. Optical image of the machine test coupon used for the carburizing process.

is shown in Figure 5(D)). Hardness was measured for all the samples prior to carburizing 
(150–200 HB, Brinell hardness number). Samples were charged into the continuous carbu-
rizing furnace (Gibbons furnace, UK) having fixed carburizing time (3.5 hours), carburizing 
temperature (930°C), and carbon potentials (1.00), but varying quenching time, holding in 
air (delay quenching intervals) before quenching, and hardening temperatures. It is impor-
tant to highlight that carburizing time, carburizing temperature, and carbon potential were 
determined from the fishbone diagram (data not shown here), following previous studies 
[7, 10, 21]. Endo-gas (CO) was provided from endothermic gas generator to maintain reduc-
ing environment in the furnace. Diffusion of carbon took place in the same furnace but at 
comparatively low temperatures (780–840°C) and low values of flow rates of enrichment gas 
than in the carburizing process. Quenching was done in quenching tank of 12 × 10 × 8 feet at 
75°C. Samples were tempered in the conveyer type tempering furnace at 120°C; prior to this 
washing was done.

2.3. Metallography

Metallography consists of studying the microscopic structure and characteristics of a given 
metal or an alloy. Metallography determines grain size, grain shape distribution of various 
phases and inclusions, and mechanical and thermal treatment of metals [22]. The non heat 
treated samples were sectioned using manual hacksaw whereas for cutting the heat treated 
samples abrasive cutoff wheel was used [22, 23].

Samples were cut and machined into 1 × 2 (inch2) for the carburizing process, as shown in 
Figure 1. Test coupons after the gas carburizing process were subjected to the destructive 
testing such as effective case depth measurement and microstructural analysis. Prior to these 
samples were grind and polished (Figure 2). Two percent of nital was used to etch (to reveal 
the internal microstructure) the samples followed by washing with ethyl alcohol and subsequent 
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drying [22]. Etchant attacks the particles at high energy levels, since grain boundaries are at 
higher energy level so they become visible under microscope. The microstructure was evalu-
ated at the surface and core with LECO microscope at MEL Quality Assurance Department 
(microstructures after heat treatment are shown in Figure 5(A–C)).

2.4. Effective case depth (ECD) measurement

ECD was measured with “Micro Vickers Hardness Testing Machine” (Shimadzu, Japan). 
Polished samples were placed on the platform, and then harness was measured by the indent 
steps at 0.1 mm. After taking an indent, mean diagonal length was measured and converted 
into Vickers pyramid hardness number (VPN). Similar indents were taken at increasing dis-
tance till the hardness value of 500 VPN. The distance from surface at which 500 VPN is 
achieved is known as effective case depth (ECD) [22]. Core hardness was also measured by 
taking an indent at the center point of test sample.

2.5. Hardness testing

After carburizing samples were subjected to surface hardness test using Rockwell hardness 
tester in which the first minor load (10 Kgf) was applied followed by the major load of 300 Kgf.

2.6. Design of experiments

In order to optimize the gas carburizing of SAE 8620 alloy steel, the basic tools of Six Sigma 
were applied. Vital parameters offered by the basic diffusion model was scrutinized by cause 
and effect diagram in terms of intended application (hard case and tough core), which offered 
the basis for selection of control factors (soaking time in oil, delay quenching interval, and 
hardening time), as shown in Table 2. In order to study the effect of these control factors, an 
orthogonal array of L9 (three control factors and three levels of each) type with the mixed 
level of control factors was applied (Table 3). The DoE approach was helpful in reducing the 
number of experiment from 27 (full factorial design) to 9 (DoE array of L9 type). Thus, the 
optimized parameters can be determined with the less number of experiments.

Figure 2. Digital image of the mounted samples after cutting, grinding, and polishing showing a mirror-like surface.
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Run Control factors Core 
hardness 
(HRC)

ECD 
(mm)

Surface 
hardness 
(HRC)

S/N ratio for 
core hardness 
(dB)Delay 

quenching 
interval (S)

Hardening 
temperature (°C)

Soaking time 
in oil (S)

1 45 780 180 26 0.90 57 28,299

2 45 800 300 29 1.00 59 29,248

3 45 820 420 34 1.20 60 30,629

4 60 780 300 22 0.65 58 26,848

5 60 800 420 25 0.80 57 27,958

6 60 820 180 28 0.90 58 28,943

7 90 780 420 20 0.45 56 26,020

8 90 800 180 23 0.60 57 27,234

9 90 820 300 26 0.70 57 28,299

Table 3. Experimentally measured values of core hardness, ECD, and surface hardness for gas carburizing process of 
SAE 8620 steel.

3. Results and discussion

3.1. Gas carburizing process

In the gas carburizing process, first the test coupons were preheated at 400°C for 30 minutes to 
avoid thermal shocks. Second, the temperature was raised to 930°C under a reducing environ-
ment, which was produced by the flow of CO in the furnace from endothermic gas generator. 
Moreover, methane gas was enriched in the furnace to maintain the carbon potential of 1.0. 
At 930°C the solubility of carbon in steel is approximately 1.14 (because steel transforms to 
the austenitic phase), due to which carbon started to flow from the atmosphere to the samples 
[18, 24, 25]. After soaking the samples for optimized time period, the surface carbon contents 
of the samples were raised. Afterward, samples entered into the hardening zone/diffusion 
zone, where the samples were kept for 1 hour in the temperature range of 780–820°C under 
a reducing environment [26, 27]. Since the temperature of the samples are dropped now, car-
bon from the outer surface starts to diffuse into the core [28]. The reason could be that outer 

Symbol Control factor Levels

1 2 3

A Delay quenching interval (S) 45 60 90

B Hardening temperature (°C) 780 800 820

C Soaking time in oil (S) 180 300 420

Table 2. Control factors and level of variables.
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surface is at lower temperature in comparison to that of inner surface of the sample; thus, the 
solubility of inner portion is reasonably high, which allows the diffusion of carbon [25, 29]. 
Finally, samples were quenched in the mineral oil at 75°C. The quenching process allows the 
diffusionless martensitic transformation at the surface [30–32]. However, thermal gradient at 
the core of the sample is significantly less, which allows the bainitic or ferritic transformation 
to occur in the core of the samples [32, 33]. The carburizing cycle of the test coupons is shown 
in Figure 3.

3.2. Design of experiment approach for gas carburizing of SAE 8620 steel

Control factors and their levels used in the design of experiment approach are illustrated in 
Table 2.

After the selection of control factors with the help of a cause and effect diagram (not given 
here), a signal-to-noise ratio (S/N) was calculated for the average core hardness of the heat-
treated samples by considering that high value of S/N is desired [4]:

    S __ N   = − 10 log  [  1 __ n   (  1 ____ ∑   i  2  Y     ) ]   (1)

where

Yi is the average core hardness.

n the number of observations.

Unit for S/N ratio is dB.

The design of experiment technique allows studying the effects of each parameter at different 
levels by averaging S/N ratio at each level. For example, the mean S/N ratio for deposition 
yield at levels 1, 2, and 3 of control factor A (delay quenching interval) can be calculated by 

Figure 3. Typical carburizing cycle of the Gibbons furnace for SAE 8620 test coupons.
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Run Control factors Core 
hardness 
(HRC)

ECD 
(mm)

Surface 
hardness 
(HRC)

S/N ratio for 
core hardness 
(dB)Delay 

quenching 
interval (S)

Hardening 
temperature (°C)

Soaking time 
in oil (S)
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7 90 780 420 20 0.45 56 26,020

8 90 800 180 23 0.60 57 27,234

9 90 820 300 26 0.70 57 28,299
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3. Results and discussion

3.1. Gas carburizing process

In the gas carburizing process, first the test coupons were preheated at 400°C for 30 minutes to 
avoid thermal shocks. Second, the temperature was raised to 930°C under a reducing environ-
ment, which was produced by the flow of CO in the furnace from endothermic gas generator. 
Moreover, methane gas was enriched in the furnace to maintain the carbon potential of 1.0. 
At 930°C the solubility of carbon in steel is approximately 1.14 (because steel transforms to 
the austenitic phase), due to which carbon started to flow from the atmosphere to the samples 
[18, 24, 25]. After soaking the samples for optimized time period, the surface carbon contents 
of the samples were raised. Afterward, samples entered into the hardening zone/diffusion 
zone, where the samples were kept for 1 hour in the temperature range of 780–820°C under 
a reducing environment [26, 27]. Since the temperature of the samples are dropped now, car-
bon from the outer surface starts to diffuse into the core [28]. The reason could be that outer 

Symbol Control factor Levels

1 2 3
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C Soaking time in oil (S) 180 300 420
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surface is at lower temperature in comparison to that of inner surface of the sample; thus, the 
solubility of inner portion is reasonably high, which allows the diffusion of carbon [25, 29]. 
Finally, samples were quenched in the mineral oil at 75°C. The quenching process allows the 
diffusionless martensitic transformation at the surface [30–32]. However, thermal gradient at 
the core of the sample is significantly less, which allows the bainitic or ferritic transformation 
to occur in the core of the samples [32, 33]. The carburizing cycle of the test coupons is shown 
in Figure 3.

3.2. Design of experiment approach for gas carburizing of SAE 8620 steel

Control factors and their levels used in the design of experiment approach are illustrated in 
Table 2.

After the selection of control factors with the help of a cause and effect diagram (not given 
here), a signal-to-noise ratio (S/N) was calculated for the average core hardness of the heat-
treated samples by considering that high value of S/N is desired [4]:

    S __ N   = − 10 log  [  1 __ n   (  1 ____ ∑   i  2  Y     ) ]   (1)

where

Yi is the average core hardness.

n the number of observations.

Unit for S/N ratio is dB.

The design of experiment technique allows studying the effects of each parameter at different 
levels by averaging S/N ratio at each level. For example, the mean S/N ratio for deposition 
yield at levels 1, 2, and 3 of control factor A (delay quenching interval) can be calculated by 

Figure 3. Typical carburizing cycle of the Gibbons furnace for SAE 8620 test coupons.
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Figure 4. (A) Mean of mean core hardness response of control factors on core hardness, (B) mean of S/N (dB) response 
for the effect of control factors on core hardness, (C) mean of mean response for the effect of control factors on ECD, and 
(D) mean of S/N (dB) response for the effect of control factors on ECD.

averaging S/N ratios for experiments 1–3, 4–6, and 7–9, respectively [4, 5, 7]. This technique 
was used for calculating the response of core hardness and ECD as presented in Table 3.

DoE approach was conducted to find out the suitable combination of gas carburizing param-
eters in order to ensure the optimum gas carburizing parameters with relatively higher sta-
tistical confidence. The effect of each control factor on the core hardness and ECD is shown in 
Figure 4, which shows that the parameters, that is, delay quenching interval and hardening 
temperature, have significant effect on core hardness and case depth. This effect was further 
confirmed by calculating maximum-minimum values reported in Tables 4–7.

Figure 4(A) shows that the increase in delay quenching significantly reduces the core hard-
ness. The increase in hardening temperature tends to increase the core hardness. However, 
the increased soaking time in oil slightly raises the core hardness value. The aim was to obtain 
an intermediate value of core hardness; thus, the core should neither be too hard to cause 
fracture nor too soft to cause core crushing [10, 17, 34]. The intermediate values for the core 
hardness were attained at A2 (delay quenching interval of 60 seconds), B2 (hardening temper-
ature of 800°C), and C2 (soaking time in oil for 300 seconds) conditions, as shown in Table 8. 
The reason for the decrease in the core hardness with the rise in delay quenching intervals 
could be the slow cooling of core in air compared to that of oil, which may have led to ferritic 
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Level Delay quenching interval (S) Hardening temperature (°C) Soaking time in oil (S)

1 15.35 11.67 13.23

2 12.89 13.23 13.23

3 11.79 15.13 13.58

Maximum-minimum 3.56 3.47 0.35

Rank 1 2 3

Table 4. Mean response for the core hardness.

Level Delay quenching interval (S) Hardening temperature (°C) Soaking time in oil (S)

1 3.23 −0.86 0.92

2 0.81 0.88 0.73

3 −1.82 2.20 0.58

Maximum-minimum 5.04 3.05 3.41

Rank 1 2 3

Table 5. S/N (dB) response for the core hardness.

Level Delay quenching interval (S) Hardening temperature (°C) Soaking time in oil (S)

1 1.03 0.67 0.80

2 0.78 0.80 0.78

3 0.58 0.93 0.81

Maximum-minimum 0.45 0.27 0.03

Rank 1 2 3

Table 6. Mean response for ECD.

Level Delay quenching interval (S) Hardening temperature (°C) Soaking time in oil (S)

1 0.22 −3.86 −2.09

2 −2.20 −2.12 −2.28

3 −4.82 −0.81 −2.43

Maximum-minimum 5.05 3.05 0.34

Rank 1 2 3

Table 7. S/N (dB) response for ECD.
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Delay quenching 
interval (S)

Hardening 
temperature (°C)

Soaking time in 
oil (S)

Optimum parameters for the best ECD 45 (A1) 820 (B3) 180 (C1)

Optimum parameters for the best core hardness 60 (A2) 800 (B2) 300 (C2)

Optimum parameters for the best combination of 
ECD, core hardness, and microstructure

60 (A2) 800 (B2) 180 (C1)

Table 8. Illustration of the best possible condition for optimum ECD, core hardness, and the combination of core 
hardness, ECD, and microstructure.

transformation at core rather than the bainitic transformation [21, 30], thus lowering the core 
hardness values of the specimens. Similar effect may be held responsible for the drop in core 
hardness values with the decrease in immersion time in oil [22].

Figure 4(C) shows the effect of control factors on the effective case depth. Here, the maximum 
value of case depth is required to provide high wear resistance for longer period of time [33]. 
The most significant parameter was the delay quenching interval. Reducing the delay time 
significantly improves the ECD, which may be due to the fact that rapid quenching hinders 
the diffusion of carbon toward the core of the sample. Thus, we formed uniform and shallow 
case depth during the hardening process. It was inferred from Figure 4(C and D) that best 
parameters in terms of the ECD are A1 (delay quenching of 45 seconds), B3 (hardening tem-
perature of 820°C), and C1 (soaking in oil for 180 seconds).

It was concluded that there is a contrast in the best results for ECD and core hardness. Therefore, 
it was essential to establish a trade-off between the ECD and core hardness. Thus, we choose 
A2 (delay quenching of 60 seconds), B2 (hardening temperature of 800°C), and C1 (soaking 
in oil for 180 seconds), as the best condition. Soaking time in oil was the least significant fac-
tor; thus, it was chosen on the basis of the highest possible case depth. On the other hand, A2 
and B2 were selected on the basis of core hardness because it was established in our previ-
ous studies that hard core will cause the premature failure of the components. Moreover, the 
microstructural analysis of the samples hardened at 820°C shows the formation of relatively 
higher amount of retained austenite (almost 25%, as shown in Figure 5(A)), which is a brittle 
phase and may also undergo dimensional changes, because retained austenite will eventu-
ally transform into the martensite in service [17, 19, 30]. It is important to highlight that the 
quantitative analysis was done with the software equipped with the LECO microscope, which 
quantitatively gives the amount of each phase present in the microstructure. Dimensional 
changes during the operation/service are deleterious, which may result in uneven load dis-
tribution between the matting parts. For example, the field failure investigations of different 
components show the deviations in pitch circle diameter (PCD), face runout (FR), and back-
lash (BL) level for the components with relatively higher amount of retained (higher amounts 
of retained austenite led to the dimensional changes in the components during the service).

On the other hand, samples processed at optimized conditions (A2, B2, and C1) showed a 
coarse bainitic structure (Figure 5(B)), which is considered as one of the toughest structures 
of steel [22, 23]. Moreover, the surface of the sample was covered with tempered martensite, 
as shown in Figure 5(C).
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Figure 5(D) shows the microstructure of the SAE 8620 alloy steel prior to the heat treatment. 
It was observed that the microstructure is comprised up of fine grains with relatively higher 
amount of pearlite dispersed with small amount of ferrite as well, as shown in Figure 5(D). 
Thus, it can be concluded that the microstructure of the specimen is in the suitable range for 
the heat treatment process. In the present study, the grain size was measured by using ASTM 
standards whereas the amounts of ferrite (10%) and pearlite (90%) in the sample were ana-
lyzed by using the software equipped with LECO microscope.

3.3. Defect per million opportunities (DPMO) model

In order to gain deep insight of the optimized parameters predicted by the DoE array, DPMO 
was calculated by using the following formula [12]:

  DPMO =   
no. of defects found in a sample

   _______________________________________________    sample size × no. of defect opportunities per unit   × 10,00,000  (2)

A number of defect opportunities were 24, which could be calculated by the help of cause and 
effect diagram (not reported here). In short, the cause and effect diagram takes into account 
both internal (environment, human error, machine error, machine constraints, etc.) and exter-
nal factors (carburizing time, carburizing temperature, carbon potential, hardening time, etc.). 

Figure 5. Optical microscope images of the samples: (A) microstructure of the sample processed at A1, B3, and C1 
conditions; (B) microstructure at the core of the sample processed at A2, B2, and C1 conditions; (C) microstructure at 
the surface of the sample processed at A2, B2, and C1 conditions; and (D) microstructure of the SAE 8620 low-alloy steel 
prior to the carburizing.

Design of Experiment Approach in the Industrial Gas Carburizing Process
http://dx.doi.org/10.5772/intechopen.72822

109



Delay quenching 
interval (S)

Hardening 
temperature (°C)

Soaking time in 
oil (S)

Optimum parameters for the best ECD 45 (A1) 820 (B3) 180 (C1)

Optimum parameters for the best core hardness 60 (A2) 800 (B2) 300 (C2)

Optimum parameters for the best combination of 
ECD, core hardness, and microstructure

60 (A2) 800 (B2) 180 (C1)

Table 8. Illustration of the best possible condition for optimum ECD, core hardness, and the combination of core 
hardness, ECD, and microstructure.

transformation at core rather than the bainitic transformation [21, 30], thus lowering the core 
hardness values of the specimens. Similar effect may be held responsible for the drop in core 
hardness values with the decrease in immersion time in oil [22].

Figure 4(C) shows the effect of control factors on the effective case depth. Here, the maximum 
value of case depth is required to provide high wear resistance for longer period of time [33]. 
The most significant parameter was the delay quenching interval. Reducing the delay time 
significantly improves the ECD, which may be due to the fact that rapid quenching hinders 
the diffusion of carbon toward the core of the sample. Thus, we formed uniform and shallow 
case depth during the hardening process. It was inferred from Figure 4(C and D) that best 
parameters in terms of the ECD are A1 (delay quenching of 45 seconds), B3 (hardening tem-
perature of 820°C), and C1 (soaking in oil for 180 seconds).

It was concluded that there is a contrast in the best results for ECD and core hardness. Therefore, 
it was essential to establish a trade-off between the ECD and core hardness. Thus, we choose 
A2 (delay quenching of 60 seconds), B2 (hardening temperature of 800°C), and C1 (soaking 
in oil for 180 seconds), as the best condition. Soaking time in oil was the least significant fac-
tor; thus, it was chosen on the basis of the highest possible case depth. On the other hand, A2 
and B2 were selected on the basis of core hardness because it was established in our previ-
ous studies that hard core will cause the premature failure of the components. Moreover, the 
microstructural analysis of the samples hardened at 820°C shows the formation of relatively 
higher amount of retained austenite (almost 25%, as shown in Figure 5(A)), which is a brittle 
phase and may also undergo dimensional changes, because retained austenite will eventu-
ally transform into the martensite in service [17, 19, 30]. It is important to highlight that the 
quantitative analysis was done with the software equipped with the LECO microscope, which 
quantitatively gives the amount of each phase present in the microstructure. Dimensional 
changes during the operation/service are deleterious, which may result in uneven load dis-
tribution between the matting parts. For example, the field failure investigations of different 
components show the deviations in pitch circle diameter (PCD), face runout (FR), and back-
lash (BL) level for the components with relatively higher amount of retained (higher amounts 
of retained austenite led to the dimensional changes in the components during the service).

On the other hand, samples processed at optimized conditions (A2, B2, and C1) showed a 
coarse bainitic structure (Figure 5(B)), which is considered as one of the toughest structures 
of steel [22, 23]. Moreover, the surface of the sample was covered with tempered martensite, 
as shown in Figure 5(C).
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Figure 5(D) shows the microstructure of the SAE 8620 alloy steel prior to the heat treatment. 
It was observed that the microstructure is comprised up of fine grains with relatively higher 
amount of pearlite dispersed with small amount of ferrite as well, as shown in Figure 5(D). 
Thus, it can be concluded that the microstructure of the specimen is in the suitable range for 
the heat treatment process. In the present study, the grain size was measured by using ASTM 
standards whereas the amounts of ferrite (10%) and pearlite (90%) in the sample were ana-
lyzed by using the software equipped with LECO microscope.

3.3. Defect per million opportunities (DPMO) model

In order to gain deep insight of the optimized parameters predicted by the DoE array, DPMO 
was calculated by using the following formula [12]:

  DPMO =   
no. of defects found in a sample

   _______________________________________________    sample size × no. of defect opportunities per unit   × 10,00,000  (2)

A number of defect opportunities were 24, which could be calculated by the help of cause and 
effect diagram (not reported here). In short, the cause and effect diagram takes into account 
both internal (environment, human error, machine error, machine constraints, etc.) and exter-
nal factors (carburizing time, carburizing temperature, carbon potential, hardening time, etc.). 

Figure 5. Optical microscope images of the samples: (A) microstructure of the sample processed at A1, B3, and C1 
conditions; (B) microstructure at the core of the sample processed at A2, B2, and C1 conditions; (C) microstructure at 
the surface of the sample processed at A2, B2, and C1 conditions; and (D) microstructure of the SAE 8620 low-alloy steel 
prior to the carburizing.
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However, at least 10,000 experiments were conducted from the optimized set of parameters, 
that is, A2, B2, and C1, but no significant variations were observed. This may be due to the fact 
that DoE approach takes into account almost all factors at the same time. Thus, the chances 
for the deviations are minimized. DPMO for the optimized set of conditions was 83, which 
is quite good according to the Six Sigma approach. Moreover, considering the complexity of 
the gas carburizing process, it must be highlighted that achieving such a high reproducibility 
of the surface treatment process is a challenging task, which was accomplished by the DoE 
approach. The present study is believed to be helpful in further reducing the DPMO values 
upon further improvements in this study.

4. Conclusions

The conclusions of this chapter are listed as follows:

1. SAE 8620 low-alloy steel was successfully case hardened under various conditions.

2. Control parameters and their levels for the gas carburizing process were selected on the 
basis of fishbone diagram.

3. Taguchi design of experiment approach was applied to build L9 matrix.

4. Control parameters and their levels were studied in terms of ECD, core hardness, and 
surface hardness.

5. DoE approach elucidated that the best parameters are delay quenching interval of 60 sec-
onds, hardening temperature of 800°C, and soaking time in oil for 180 seconds.

6. The samples processed at optimized parameters possessed coarse bainitic structure at core 
and tempered martensite at the surface.

7. The optimized parameters were highly reproducible, as evaluated by the DPMO model.
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However, at least 10,000 experiments were conducted from the optimized set of parameters, 
that is, A2, B2, and C1, but no significant variations were observed. This may be due to the fact 
that DoE approach takes into account almost all factors at the same time. Thus, the chances 
for the deviations are minimized. DPMO for the optimized set of conditions was 83, which 
is quite good according to the Six Sigma approach. Moreover, considering the complexity of 
the gas carburizing process, it must be highlighted that achieving such a high reproducibility 
of the surface treatment process is a challenging task, which was accomplished by the DoE 
approach. The present study is believed to be helpful in further reducing the DPMO values 
upon further improvements in this study.

4. Conclusions

The conclusions of this chapter are listed as follows:

1. SAE 8620 low-alloy steel was successfully case hardened under various conditions.

2. Control parameters and their levels for the gas carburizing process were selected on the 
basis of fishbone diagram.

3. Taguchi design of experiment approach was applied to build L9 matrix.

4. Control parameters and their levels were studied in terms of ECD, core hardness, and 
surface hardness.

5. DoE approach elucidated that the best parameters are delay quenching interval of 60 sec-
onds, hardening temperature of 800°C, and soaking time in oil for 180 seconds.

6. The samples processed at optimized parameters possessed coarse bainitic structure at core 
and tempered martensite at the surface.

7. The optimized parameters were highly reproducible, as evaluated by the DPMO model.
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Abstract

In falling film evaporators, the overall heat transfer coefficient is controlled by film
thickness, velocity, liquid properties and the temperature differential across the film
layer. This chapter presents the heat transfer behaviour for evaporative film boiling on
horizontal tubes, but working at low pressures of 0.93–3.60 kPa as well as seawater
salinity of 15,000–90,000 mg/l or ppm. Owing to a dearth of literature on film-boiling
at these conditions, the chapter is motivated by the importance of evaporative film-
boiling in the process industries. It is observed that in addition to the above-
mentioned parameters, evaporative heat transfer of seawater is affected by the emer-
gence of micro-bubbles within the thin film layer, particularly when the liquid satura-
tion temperatures drop below 25�C (3.1 kPa). Such micro-bubbles are generated near
to the tube wall surfaces, and they enhanced the heat transfer by two or more folds
when compared with the predictions of conventional evaporative film-boiling. The
appearance of micro-bubbles is attributed to the rapid increase in the specific volume
of vapour, i.e. dv/dT, at low saturation temperature conditions. A new correlation is
thus proposed in this chapter and it shows good agreement to the measured data with
an experimental uncertainty less than �8%.
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the key design components which are associated with not only high heat transfer rates but are
also immune to change in feed qualities. In particular, for present desalination application, the
falling film evaporative process could augment heat transfer rates involving brines which
inherently reduce the equipment cost because of compact design.

In this chapter, a horizontal tube falling film evaporator is studied for low-temperature appli-
cations, particularly for the desalination industry. The first part of this chapter focuses on
advantages of horizontal tube falling film evaporators over flooded evaporators and vertical
tube evaporators and its applications. In the second part of the chapter, a literature review on
falling film evaporation heat transfer coefficient (FFHTC) to the extent necessary for this work
is provided. A novel FFHTC for low-temperature (below ambient) applications and for differ-
ent salt concentrations is developed in the third part of this chapter. The comparison of
proposed correlation with traditional Han and Fletcher [1] correlation and the effect of differ-
ent operational parameters on heat transfer is discussed in the last section of the chapter.

Flooded evaporators have been used in desalination industry for long time. Recently, there is a
thrust of horizontal tubes falling film evaporators over the flooded evaporators because of
their advantages. They also replaced the vertical tube evaporators because of its unique
characteristics. Falling film evaporators in general, are highly responsive to operational param-
eters, such as energy supply, pressure levels, feed rate, and salt concentrations in the feed. The
fact that falling film evaporators can be operated across small temperature differences make
them amenable to the application in multiple effect configurations. The advantages of falling
film evaporators are outlined in the section below.

2. Advantages of falling film evaporators

The main advantages of falling film evaporators over flooded evaporators are as follows:

1. High heat transfer coefficient and resulting compact design.

2. More uniform overall heat transfer coefficient value across the tube bundle.

3. Reduction in working fluid requirement to about one-third as compared to flooded
evaporators.

4. Short product contact times, typically just a few seconds per pass.

5. Minimization of salt deposition on tubes surface that helps in cleaning the tubes.

The potential advantages of horizontal tube evaporators over vertical tubes evaporators are as
follows:

1. Heat transfer coefficients for horizontal tubes are higher than those for vertical tubes since
the heated flow length is much shorter.

2. External enhancements are available for tubes in copper, copper-nickel and stainless steel,
etc. for up to a 10-fold increase in evaporation coefficient.

Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes116

3. A horizontal tube bundle can have multiple tube passes of the heating fluid to signifi-
cantly increase its heat transfer coefficient as compared to vertical tubes evaporators with
single pass.

4. A larger Length to diameter ratio (L/D) ratio horizontal shell evaporator can be designed
as compared to small L/D ratio of vertical evaporator that helps to prevent the dry out and
flooding in the tubes.

5. The two pass (U-tube) design in horizontal tube evaporators is much more efficient,
cheaper and easier to maintain compared to the single pass floating head in vertical tubes.

6. Flow length of liquid film in a horizontal tube evaporator minimizes the liquid hold-up
time and residence time during operation.

7. Horizontal tubes bundle arrangement reduces the unit height that helps to reduce the
piping work.

8. Horizontal arrangement reduces the footprint for large-capacity plant because the evapo-
rators can be arranged in double tier arrangement.

Although the horizontal tubes falling film evaporators have advantages over flooded and
vertical tubes evaporators, the main limitation is the lack of heat transfer data particularly at
low temperature, i.e., below 323 K.

3. Heat transfer review for falling film evaporators

A critical appreciation of the thermal performance is essential for the optimum design of
falling film horizontal tube evaporators especially for desalination industry. A large number
of empirical and theoretical heat transfer coefficients correlations are available in literature.
The majority of those available correlations are for different refrigerants, and few of them are
for pure water and limited to saturation temperatures more than 323 K.

Many researchers provided the detailed overview of available correlations. A critical review is
published by Ribatski and Jacobi [2] who tabulated the heat transfer correlations in terms of
dimensionless numbers as developed by many researchers. They also provided heat transfer
coefficient values for water and different refrigerants with single-tube and multi-tube evapo-
rators. They concluded that every correlation has a limited validation governed by operating
parameters under which they developed, and efforts are needed to generalize these correla-
tions. Adib et al. [3] conducted the experiment with vertical tube falling film evaporator, and
they calculated the heat transfer coefficient value using correlation available in literature [4–8]
and found good agreement with experimental results. Uche et al. [9] compared the heat
transfer correlations at different inlet brine temperatures and for different mass velocities for
horizontal and vertical tube evaporators. They also compared their results with different
available correlations [1, 10–14] and found that Parken correlation can be used for nonboiling
conditions, and Han and Fletcher’s correlation is good for boiling conditions. A falling film
evaporation analytical model is developed by Fujita et al. [15–17] using R-11, and they
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cantly increase its heat transfer coefficient as compared to vertical tubes evaporators with
single pass.

4. A larger Length to diameter ratio (L/D) ratio horizontal shell evaporator can be designed
as compared to small L/D ratio of vertical evaporator that helps to prevent the dry out and
flooding in the tubes.

5. The two pass (U-tube) design in horizontal tube evaporators is much more efficient,
cheaper and easier to maintain compared to the single pass floating head in vertical tubes.

6. Flow length of liquid film in a horizontal tube evaporator minimizes the liquid hold-up
time and residence time during operation.

7. Horizontal tubes bundle arrangement reduces the unit height that helps to reduce the
piping work.

8. Horizontal arrangement reduces the footprint for large-capacity plant because the evapo-
rators can be arranged in double tier arrangement.

Although the horizontal tubes falling film evaporators have advantages over flooded and
vertical tubes evaporators, the main limitation is the lack of heat transfer data particularly at
low temperature, i.e., below 323 K.

3. Heat transfer review for falling film evaporators

A critical appreciation of the thermal performance is essential for the optimum design of
falling film horizontal tube evaporators especially for desalination industry. A large number
of empirical and theoretical heat transfer coefficients correlations are available in literature.
The majority of those available correlations are for different refrigerants, and few of them are
for pure water and limited to saturation temperatures more than 323 K.

Many researchers provided the detailed overview of available correlations. A critical review is
published by Ribatski and Jacobi [2] who tabulated the heat transfer correlations in terms of
dimensionless numbers as developed by many researchers. They also provided heat transfer
coefficient values for water and different refrigerants with single-tube and multi-tube evapo-
rators. They concluded that every correlation has a limited validation governed by operating
parameters under which they developed, and efforts are needed to generalize these correla-
tions. Adib et al. [3] conducted the experiment with vertical tube falling film evaporator, and
they calculated the heat transfer coefficient value using correlation available in literature [4–8]
and found good agreement with experimental results. Uche et al. [9] compared the heat
transfer correlations at different inlet brine temperatures and for different mass velocities for
horizontal and vertical tube evaporators. They also compared their results with different
available correlations [1, 10–14] and found that Parken correlation can be used for nonboiling
conditions, and Han and Fletcher’s correlation is good for boiling conditions. A falling film
evaporation analytical model is developed by Fujita et al. [15–17] using R-11, and they
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analysed the drip pattern, droplets, and sheet modes. They found that accuracy of their model
is within �20%.

Table 1 summaries heat transfer correlations of many researchers found in the literature. This
table also highlights the limitations of applications of these correlations, such as the types of
working fluids, pressures and the temperature ranges and evaporator geometry.

Since operational and design parameters are the key factors to maximize the evaporator
performance, so researches are provided extensive data on it. Film modes are controlled by
film Reynolds numbers, and different heat transfer coefficient behaviours are noticed by
researchers for smooth tubes as Reynolds number changes [15, 18–21]. They observed three
kinds of behaviour such as (1) heat transfer coefficient decreases to its minimum value and
then increases again, (2) it increases with Reynolds number, and (3) heat transfer coefficient
increases to its maximum value and then drops. Lorenz and Yung [22] investigated that film
evaporation on a single tube is different to an array of tubes, and it may be due to turbulence of
inter-tube evaporation. They also found that critical Reynolds number affects the evaporation
heat transfer, and for below 300, the heat transfer coefficient value for a single tube is higher as
compared to an array of tubes. Thome et al. [23] conducted the experiments for falling film
heat transfer coefficient for four types of tubes, such as plain, turbo-BII HP, Gewa-B and high-
flux tubes. They concluded that for different inter-tube flow modes, there is no discernible
difference in heat transfer coefficients in respective flow zone. Fujita et al. [15] investigated that
the heat transfer value is low on the top row of tubes which is due to direct expose to feed
supply. They also investigated the effect of feeder type on heat transfer coefficient. They used
refrigerant R-11 on horizontal tube evaporators. Liu et al. [18] performed falling film heat
transfer experiments for different tubes surfaces, and they concluded that the value is from 3-
to 4-folds higher for roll-worked tubes as compared to smooth tubes. They also found that
both the flow conditions and tubes spacing have negligible effect on the heat transfer coeffi-
cient. Aly et al. [24] conducted the tests for deposit film thickness effects, and they found
drastic decrease in heat transfer with increase in deposition thickness. Moeykens et al. [25, 26]
and Chang et al. [27] performed falling film experiment tests for R-123, R-134a, R-22, and R-
141b, and they found that it can be enhanced by adding the collection tray under each tube
row. The falling film correlations developed by researchers [26, 28–30] for refrigerants R-22, R-
123, R-134a, and R-141b are having uncertainty of 20–25% by using four different apparatuses.
Bourouni et al. [31] performed the experiments with aero-evaporator, and they reported that
increase in characteristic dimensions of heat exchanger results in a significant increase in the
evaporative performance. Yang and Shen [32] found that the heat transfer coefficient is a
strong function of heat input and increases with heat input. The vapour flow effect due to
liquid drag and dry out of tubes is studied by Ribatski and Jacobi [2]. The effect of dynamics of
film on heat transfer is investigated by Xu et al. [33] and Yang and Shen [34]. They found that
increase in liquid load causes perturbation in film that enhances the heat transfer. They also
reported that increase in tube diameter does not favour heat transfer which can be due to more
turbulence in film on smaller diameter tubes. For horizontal tubes falling film evaporators,
Han and Fletcher [1] is the most famous correlation, whereas Chun and Seban [35] is used for
vertical tube. Both of these famous correlations are for pure water and for saturation temper-
atures of 322 K or more.
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analysed the drip pattern, droplets, and sheet modes. They found that accuracy of their model
is within �20%.

Table 1 summaries heat transfer correlations of many researchers found in the literature. This
table also highlights the limitations of applications of these correlations, such as the types of
working fluids, pressures and the temperature ranges and evaporator geometry.

Since operational and design parameters are the key factors to maximize the evaporator
performance, so researches are provided extensive data on it. Film modes are controlled by
film Reynolds numbers, and different heat transfer coefficient behaviours are noticed by
researchers for smooth tubes as Reynolds number changes [15, 18–21]. They observed three
kinds of behaviour such as (1) heat transfer coefficient decreases to its minimum value and
then increases again, (2) it increases with Reynolds number, and (3) heat transfer coefficient
increases to its maximum value and then drops. Lorenz and Yung [22] investigated that film
evaporation on a single tube is different to an array of tubes, and it may be due to turbulence of
inter-tube evaporation. They also found that critical Reynolds number affects the evaporation
heat transfer, and for below 300, the heat transfer coefficient value for a single tube is higher as
compared to an array of tubes. Thome et al. [23] conducted the experiments for falling film
heat transfer coefficient for four types of tubes, such as plain, turbo-BII HP, Gewa-B and high-
flux tubes. They concluded that for different inter-tube flow modes, there is no discernible
difference in heat transfer coefficients in respective flow zone. Fujita et al. [15] investigated that
the heat transfer value is low on the top row of tubes which is due to direct expose to feed
supply. They also investigated the effect of feeder type on heat transfer coefficient. They used
refrigerant R-11 on horizontal tube evaporators. Liu et al. [18] performed falling film heat
transfer experiments for different tubes surfaces, and they concluded that the value is from 3-
to 4-folds higher for roll-worked tubes as compared to smooth tubes. They also found that
both the flow conditions and tubes spacing have negligible effect on the heat transfer coeffi-
cient. Aly et al. [24] conducted the tests for deposit film thickness effects, and they found
drastic decrease in heat transfer with increase in deposition thickness. Moeykens et al. [25, 26]
and Chang et al. [27] performed falling film experiment tests for R-123, R-134a, R-22, and R-
141b, and they found that it can be enhanced by adding the collection tray under each tube
row. The falling film correlations developed by researchers [26, 28–30] for refrigerants R-22, R-
123, R-134a, and R-141b are having uncertainty of 20–25% by using four different apparatuses.
Bourouni et al. [31] performed the experiments with aero-evaporator, and they reported that
increase in characteristic dimensions of heat exchanger results in a significant increase in the
evaporative performance. Yang and Shen [32] found that the heat transfer coefficient is a
strong function of heat input and increases with heat input. The vapour flow effect due to
liquid drag and dry out of tubes is studied by Ribatski and Jacobi [2]. The effect of dynamics of
film on heat transfer is investigated by Xu et al. [33] and Yang and Shen [34]. They found that
increase in liquid load causes perturbation in film that enhances the heat transfer. They also
reported that increase in tube diameter does not favour heat transfer which can be due to more
turbulence in film on smaller diameter tubes. For horizontal tubes falling film evaporators,
Han and Fletcher [1] is the most famous correlation, whereas Chun and Seban [35] is used for
vertical tube. Both of these famous correlations are for pure water and for saturation temper-
atures of 322 K or more.
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It can be seen from the above discussion that Han and Fletcher’s correlation is most frequently
used for film boiling on horizontal tubes. This correlation is developed with pure water
evaporating at temperatures 322 K and above. There is a lack of data for evaporative film
boiling typically below ambient condition. The boiling data pertaining to saline solution of
15,000–90,000 mg/l or ppm are also scarce, and yet these conditions are particularly important
for the designing of falling film evaporators for processes industries and desalination plants,
such as food and beverage, multi-effect desalination (MED) and multi-stage flash evaporation
(MSF). Many manufacturers, perhaps due to competition reason, are not revealing their pro-
prietary film boiling data at these conditions. We designed experiments to develop falling film
heat transfer coefficient for low-temperature evaporator typically from 279 to 300 K and
pressure from 0.93 to 3.60 kPa. The new proposed correlation will be applicable for wide range
of concentration evaporator design. We also presented the effect of salt concentration on heat
transfer and log mean temperature difference (LMTD). The proposed designed experiments
will help process industries to design falling film evaporators for wide range of operation.

4. Falling film heat transfer coefficient development

The methodology used here is to adopt Han and Fletcher’s correlation for film boiling on
horizontal tubes and to enhance its use by incorporating the effects of salinity and by
expanding the range of temperatures of its application for horizontal tubes falling film evapo-
ration.

4.1. Theoretical model

The non-dimensional terms in Han and Fletcher correlation model, namely, the Reynolds,
Prandtl and Nusselt numbers are adequate to describe the surface evaporation from liquid
film due to thermal effect. At low saturation pressures, the vapour specific volume rapidly
increases, and this could possibly leads to enhancement of heat transfer. Han and Fletcher
model is revisited to capture this additional heat transfer enhancement phenomenon. At a low
saturation temperature the micro-bubble generated at tube surface can lift up quickly because
of high specific volume and break through the thermal barrier within liquid film. The tradi-
tional heat transfer models are unable to define this augmentation of heat transfer enhance-
ment by buoyancy fortified bubble agitation.

The Han and Fletcher correlation given in Table 1 can also be expressed in a more familiar
form as shown in Eq. 1

hevap
μ2
l

gρ2l

� �1=3

kl
¼ Nu ¼ 0:0028ðReΓÞ0:5ðPrÞ0:85 ð1Þ

where indices and the constant term are found for the boundary conditions of film boiling. For
the determination of the overall heat transfer coefficient, the total heat transfer is computed via
heat transferred to circulating water, i.e.
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It can be seen from the above discussion that Han and Fletcher’s correlation is most frequently
used for film boiling on horizontal tubes. This correlation is developed with pure water
evaporating at temperatures 322 K and above. There is a lack of data for evaporative film
boiling typically below ambient condition. The boiling data pertaining to saline solution of
15,000–90,000 mg/l or ppm are also scarce, and yet these conditions are particularly important
for the designing of falling film evaporators for processes industries and desalination plants,
such as food and beverage, multi-effect desalination (MED) and multi-stage flash evaporation
(MSF). Many manufacturers, perhaps due to competition reason, are not revealing their pro-
prietary film boiling data at these conditions. We designed experiments to develop falling film
heat transfer coefficient for low-temperature evaporator typically from 279 to 300 K and
pressure from 0.93 to 3.60 kPa. The new proposed correlation will be applicable for wide range
of concentration evaporator design. We also presented the effect of salt concentration on heat
transfer and log mean temperature difference (LMTD). The proposed designed experiments
will help process industries to design falling film evaporators for wide range of operation.

4. Falling film heat transfer coefficient development

The methodology used here is to adopt Han and Fletcher’s correlation for film boiling on
horizontal tubes and to enhance its use by incorporating the effects of salinity and by
expanding the range of temperatures of its application for horizontal tubes falling film evapo-
ration.

4.1. Theoretical model

The non-dimensional terms in Han and Fletcher correlation model, namely, the Reynolds,
Prandtl and Nusselt numbers are adequate to describe the surface evaporation from liquid
film due to thermal effect. At low saturation pressures, the vapour specific volume rapidly
increases, and this could possibly leads to enhancement of heat transfer. Han and Fletcher
model is revisited to capture this additional heat transfer enhancement phenomenon. At a low
saturation temperature the micro-bubble generated at tube surface can lift up quickly because
of high specific volume and break through the thermal barrier within liquid film. The tradi-
tional heat transfer models are unable to define this augmentation of heat transfer enhance-
ment by buoyancy fortified bubble agitation.

The Han and Fletcher correlation given in Table 1 can also be expressed in a more familiar
form as shown in Eq. 1
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where indices and the constant term are found for the boundary conditions of film boiling. For
the determination of the overall heat transfer coefficient, the total heat transfer is computed via
heat transferred to circulating water, i.e.
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Using the concept of log mean temperature difference (LMTD) and the saturation temperature of
evaporator, the overall heat transfer coefficient (Uoverall) of the evaporator can be expressed as
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The local falling film heat transfer coefficient on film side (h) is deduced from the knowledge of
the resistance due to chilled water flow inside the tubes which is calculated by the Dittus-
Boelter correlation given in Eq. 4

Nu ¼ 0:023Re0:25Prn ð4Þ

The pipe wall resistance (stainless steel 316) is negligible due to small thickness (0.7 mm). The
evaporation heat transfer coefficient is calculated by using overall heat transfer coefficient
given in Eq. 5

1
UA
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� �
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ð5Þ

The experimental program is planned for capturing the two unknown parameters in above
Eq. 5.

4.2. Experimental apparatus

Adsorption desalination (AD) plant existing in air-conditioning laboratory is used to conduct
the experiments. Figures 1 and 2 show the AD plant installed in National University of
Singapore (NUS) and plant operational schematic.

There are five main components of AD plant namely: (1) evaporator, (2) adsorber/desorber
beds, (3) condenser, (4) conditioning facility and (5) pre-treatment facility. The evaporator shell
and tubes are fabricated with stainless steel and are arranged horizontally details of which are
shown in Figure 3.

The evaporator tubes are arranged in four rows with 12 tubes in each row. This evaporator is 4
pass using a ‘water box’ arrangement at the ends of the heat exchanger. Special profiled tubes
are used in evaporator to enhance the heat transfer. The details of the tube are shown in
Figure 4.

A precise electrical thyristor controller is installed to supply the chilled water to evaporator at
constant inlet temperature. This thyristor maintains the temperature fluctuations at inlet of
coolant water to less than �0.15 K. The chilled water supply is regulated at 48 l/min. Since
experiments are conducted at different salt concentrations, and constant salt concentration
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condition in evaporator is maintained by re-circulation of the condensate back to evaporator
via U-tube. To maintain a constant liquid film on tube surface, a spray pump is used to
discharge fine water droplets (nominally 0.1–0.15 mm diameter) through nozzles on top of
tube bundle. The design parameters of evaporator are given in Table 2.

4.2.1. Experimental procedure

Experimental procedure can be categorized into operation of individual components namely:
(1) evaporator, (2) Vacuum system, (3) adsorber/desorber and (4) condenser.

The evaporator operation can be divided into two circuits namely: (1) feed water circuit and (2)
chilled water circuit.

Figure 1. Pictorial view of adsorption desalination plant installed in NUS.

Figure 2. Detailed operational schematic of adsorption desalination plant schematic.
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4.2.1.1. Feed water circuit

The seawater/feed first enters into a pre-treatment facility to remove particulates and suspen-
sions and then to the de-aeration tank to de-aerate. In the de-aeration tank, the dissolved non-
condensable is removed before the feed enters to AD evaporator. The de-aerated feed is then
pumped into the evaporator via feed pump. A spray pump is installed with evaporator to
spray the feed on to the tube bundle via spray nozzles. This is special magnetic pump that can
operate in vacuum environment. The reflux from condenser maintains the salt concentration

Figure 3. Adsorption desalination cycle evaporator detailed design.

Figure 4. Cross section of end-cross tube used in evaporator of adsorption desalination plant.

Parameters Values Units

Number of tubes 48

Length of each tube 1900 mm

Tube outer diameter 16 mm

Tube thickness 0.7 mm

No of passes 4

Shell diameter 558.8 mm

Shell length 2000 mm

Table 2. Design parameters of adsorption desalination system evaporator.
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level inside the evaporator. This feed water line is provided with flow meter and valve to
regulate the feed flow.

4.2.1.2. Chilled water circuit

The chilled water is the heat source that is circulated inside the tubes of evaporator. An
electrical heater is installed to maintain the coolant temperature. This heater is controlled by a
thyristor controller to maintain its inlet temperature. Chilled water circuit is equipped with
regulating valve and flow meter to adjust the flow rate such that the evaporator can be
operated under different conditions. The operation parameters are given in Table 3.

4.2.1.3. Vacuum system

A water vapour tolerant vacuum pump is necessary since the operation of AD system is under
vacuum. Prior running an experiment vacuum holding capacity of the system is tested for 36 h,
and it is found that the vacuum leak is negligible. During an experiment vacuum pump helps
to maintain the desired saturation pressure inside the evaporator by pulling the air in case it
ingress into the system. To ensure that the film on the tube surface is evaporating all the time, it
is imminent to maintain the saturation temperature which is always lower than chilled water
temperature inside the tubes.

4.2.1.4. Adsorber/desorber bed operation

The evaporator is connected to adsorber bed filled with silica gel via pneumatic valves to
adsorb the water vapour. The adsorption of water vapour sustains the continuous evaporation
in the evaporator. The heat of adsorption is removed by circulation of cooling water inside the
adsorber coolant flow channel.

Similarly, a desorber bed is connected to a condenser and heat of desorption is supplied by a
heater controlled by a thyristor controller.

4.2.1.5. Condenser operation

The desorber bed is connected to a condenser where the desorbed vapours are condensed on
shell side. The cooling water circulated through the tubes of condenser is regenerated in a
cooling tower at roof top.

Parameters Values Units

Chilled water flow rate 48 LPM

Sea water flow rate (Г) 1.1 LPM/m of tube length

Evaporator saturation temperature 279–300 K

Evaporator saturation pressure 0.93–3.60 kPa

Feed water salinity range 15,000–90,000 ppm

Table 3. Operational parameters of adsorption desalination cycle.
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electrical heater is installed to maintain the coolant temperature. This heater is controlled by a
thyristor controller to maintain its inlet temperature. Chilled water circuit is equipped with
regulating valve and flow meter to adjust the flow rate such that the evaporator can be
operated under different conditions. The operation parameters are given in Table 3.

4.2.1.3. Vacuum system

A water vapour tolerant vacuum pump is necessary since the operation of AD system is under
vacuum. Prior running an experiment vacuum holding capacity of the system is tested for 36 h,
and it is found that the vacuum leak is negligible. During an experiment vacuum pump helps
to maintain the desired saturation pressure inside the evaporator by pulling the air in case it
ingress into the system. To ensure that the film on the tube surface is evaporating all the time, it
is imminent to maintain the saturation temperature which is always lower than chilled water
temperature inside the tubes.

4.2.1.4. Adsorber/desorber bed operation

The evaporator is connected to adsorber bed filled with silica gel via pneumatic valves to
adsorb the water vapour. The adsorption of water vapour sustains the continuous evaporation
in the evaporator. The heat of adsorption is removed by circulation of cooling water inside the
adsorber coolant flow channel.

Similarly, a desorber bed is connected to a condenser and heat of desorption is supplied by a
heater controlled by a thyristor controller.

4.2.1.5. Condenser operation

The desorber bed is connected to a condenser where the desorbed vapours are condensed on
shell side. The cooling water circulated through the tubes of condenser is regenerated in a
cooling tower at roof top.

Parameters Values Units

Chilled water flow rate 48 LPM

Sea water flow rate (Г) 1.1 LPM/m of tube length

Evaporator saturation temperature 279–300 K

Evaporator saturation pressure 0.93–3.60 kPa
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Table 3. Operational parameters of adsorption desalination cycle.
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The apparatus is fully instrumented to capture all required data. A Yokogawa pressure trans-
mitter of range 0–60 KPa abs. (accuracy �0.25%) is installed on the evaporator for saturation
pressure readings. The OMEGA 5 kΩ type thermistors (accuracy �0.15 K) are used for all
temperature measurements. The KROHNE Flow meters (accuracy �0.5% of reading) are used
for flow measurements. All temperature, pressure and flow readings are continuously moni-
tored by a data logger unit at intervals of 1 min.

A high speed camera is installed on the evaporator to observe the film behaviour over the
tubes. It is observed that there is ample turbulence in liquid film on the tubes due to bubble
formation on tube surface. The evidence of film turbulence is captured by camera shown in
Figure 5, and more clear explanation by a film model is also presented.

There is a natural temperature gradient within liquid film on the tubes and the micro-bubble
generation on tube surface agitates the liquid film when it tries to break through the thermal
barrier. The micro-bubble generation and agitation phenomenon is explained in Figure 6. This

Figure 5. Bubbles formation in liquid film on tube surfaces and film agitation effect captured by camera.

Figure 6. Film agitations due to bubbles movement and effect on conventional thermal gradient.
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bubble agitation has two useful effects: first, it breaks the thermal barrier between the liquid
film and tube surface that enhances the local heat transfer coefficient and second, when a
micro-bubble moves up to the tube surface due to its very high specific volume, it also draw
the heat from tube surface which further helps to enhance the heat transfer. An additional
benefit is agitation within the liquid film due to the bubble movement.

5. Results and discussion

Figure 7 shows the experimental overall heat transfer coefficient values. The heat source
temperatures vary from 10 to 40�C and salt concentration is 45,000 ppm. It can be seen from
the results that overall heat transfer first drop with increase in chilled water temperature and
then increase again at 40�C. A similar overall heat transfer trend is observed for 60,000 ppm (60
ppt) salt concentration as shown in Figure 8.

Figure 7. Typical experimental overall heat transfer coefficient profiles at 45000 ppm salt concentration.

Figure 8. Typical experimental overall heat transfer coefficient profiles at 60000 ppm salt concentration.
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The saturation temperature of evaporator and overall heat transfer coefficient values from
experimental data at different chilled water inlet temperature and at different salt concentra-
tion are tabulated as shown in Table 4.

The evaporative heat transfer coefficient is calculated from experimental overall heat transfer
coefficient by formulation as explained in theoretical model section. Figure 9 shows the three-
dimensional plot of evaporative heat transfer coefficients for assorted evaporator saturation
temperatures and salinity level.

It can be seen from the plot that the heat transfer coefficient varies with saturation temperature
and with salt concentration. It can be observed that at any salt concentration, it approaches the
minimum value at 295 K and then with further decrease in saturation temperature the evapo-
ration heat transfer coefficient value increases very sharply. It is also observed that specific
volume of vapour increases very rapidly below at 295 K and above that temperature the
change in specific volume of vapour is very small as shown in Figure 10.

It can be concluded that the sharp increase in evaporator heat transfer coefficient below 295 K
may be due to bubble agitation. The micro-bubble produced on the tube surface from within
the liquid film moves up quickly due to its very high specific volume and breaks the thermal
barrier due to film agitation. This unique phenomenon is called ‘bubble assisted evaporation’.

In film evaporation, ‘micro-bubble agitation’ plays an important role to enhance the heat
transfer by reducing the thermal resistance between the liquid and tube surface barrier (model
is shown in Figure 6). The traditional falling film evaporation heat transfer coefficient

Salinity Tch,in Tevap U Salinity Tch,in Tevap U

C C W/m2K C C W/m2K

15,000 10 5.9 1025.45 60,000 10 5.9 937.61

20 13.1 953.28 20 13.3 833.69

30 20.3 885.17 30 19.7 776.62

40 27.3 963.33 40 26.2 896.47

30,000 10 5.9 998.31 75,000 10 5.9 848.06

20 13.1 920.78 20 13.0 751.47

30 19.7 853.40 30 19.6 733.78
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45,000 10 5.6 970.78 90,000 10 5.5 815.94

20 12.9 881.81 20 12.9 728.17

30 19.3 798.17 30 19.3 694.79

40 25.1 895.15 40 27.3 898.97

Table 4. Experimental overall heat transfer coefficient values and different saturation temperatures and at different salt
concentrations.
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correlations (i.e. Han and Fletcher) do not capture this unique phenomenon and only capture
the thermal driven film evaporation at saturation temperatures greater than 322 K.

A new falling film heat transfer coefficient with inclusion of ‘bubble-assisted evaporation’ for
application at low saturation temperatures is proposed based on the experimental data. The
above presented models (Eqs. 1–5) were written in FORTRAN to develop new correlation. The
operational parameters namely: film velocity, salt concentration and heat flux are also included
as additional parameters in the new correlation. In addition, to capture the effect of vapour
specific volume, the gas volume term is also incorporated. The new correlation is given in

Figure 9. Experimental film evaporation heat transfer coefficient profiles at different saturation temperature and different
salt concentrations.

Figure 10. Change in vapour-specific volume with saturation temperature.
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Eq. 3.6. Figure 11 shows a comparison of Eq. 6 against the experimental data. It can be seen
that new correlation has good agreement with experimental result. The measured heat transfer
coefficient from experimental data has uncertainty of less than 8%. The Root mean square
(RMS) error of regressed data is 3.5%. The additional terms used in the proposed correlation
permit the limits of salinity and temperature to be accounted for, and a reference temperature,
Tref is taken as the reference temperature to match the region of Han and Fletcher.
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The above correlation is suitable for sub-atmospheric conditions from 0.93 to 3.60 kPa (corresp-
onding to saturation temperatures 279–300 K) and feed water salinity ranges from 15,000 to
90,000 ppm. The film Reynolds number ranges 45< ReГ < 90 and Prandtl number ranges 5< Pr <
10. In proposed superposition of effects in correlation, the first term is for film surface evapo-
ration thermally driven and the second term is due to enhancement by the bubble assisted
boiling effect.

Figure 11. Falling film heat transfer coefficients values: experimental and proposed correlation.

Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes130

The proposed falling film heat transfer coefficient is compared with Han and Fletcher
correlation extrapolated to a region outside its validation range. The Han and Fletcher
correlation is for pure water. It can be seen from Figure 12 that Han and Fletcher correlation
is only suitable for thermally driven surface evaporation for saturation temperatures 322 K
and above.

A unique feature of the present correlation is the capture of ‘bubble-assisted evaporation’
which boosts the heat transfer coefficient by two to three folds at low saturation tempera-
ture. This additional effect seems to be significant only at a low saturation temperature 295 K
or below. As a consequence, for situations where cooling and desalination are required
simultaneously, the design of such an evaporator is likely to be more compact than at
present.

This proposed falling film heat transfer coefficient is useful for falling film evaporator design
for the process industries. It also includes concentration factor to accommodate operational
variables for proper heat transfer area design.

The effects of operational parameters namely: (1) salt concentration and (2) saturation temper-
ature on heat input and LMTD are also investigated. Figure 13 shows the effect of these
parameters on heat input. It can be seen that heat input increases with saturation temperature
and it is due to increase in temperature difference of heat source. It can also be observed that
salt concentration effect is negligible on heat input. Figure 14 shows the effect of saturation
temperature and salt concentration on LMTD. It can be observed that LMTD also increases
with saturation temperature which is due to higher temperature differences at high saturation
temperatures.

The salt concentration effect is minimal as can be seen from plot. The measured accuracy of log
mean temperature difference (LMTD) and the heat input (Q) is 8%.

Figure 12. Falling film heat transfer coefficient values: experimental and proposed correlation compared with Han and
Fletcher correlation extrapolated region.
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6. Summary of chapter

Horizontal tube falling film evaporators can replace flooded and vertical tube evaporators
because of their inherent advantages. Although horizontal falling film evaporators are advan-
tageous, there is a lack of research data related to the heat transfer coefficient especially at low

Figure 13. Effect of evaporator saturation temperature and feed salt concentration on heat input to evaporator.

Figure 14. Effect of evaporator saturation temperature and feed salt concentration on LMTD.
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saturation temperatures less than 323 K. The heat transfer coefficient for low saturation tem-
perature (typically in the zone of below ambient) and for a horizontal tube evaporator of
special interest to desalination applications is essential.

Experiments are conducted to investigate the heat transfer coefficient for low saturation tem-
peratures of 279–300 K corresponding to pressure ranges of 0.93–3.60 kPa. Salt concentration
in the evaporator is investigated in the range of 15,000–90,000 ppm. The heat transfer coeffi-
cient calculated from experimental data is plotted for different salt concentrations.

At low saturation temperatures, below 298 K, the tendency for liquid film to flash into vapour
is made easier by the rapid increase in the specific volume of vapour. For a given thermal
gradient across the liquid film, the micro-bubble is readily generated at suitable nucleation
sites, such as the grooved surfaces on the tubes. This conjecture of ‘bubble-agitation boiling’ is
backed up by photographic evidence which indicates the presence of micro-bubble generation
beneath the liquid layer. The effect of micro-bubble during film boiling reduces the thermal
barrier within liquid film which is responsible for enhancement of heat transfer. At low
saturation temperature, the evaporation is done by two mechanisms namely: thermally driven
evaporation and bubble agitation-assisted evaporation. The basic domain of validation of
traditional Han and Fletcher correlation is now extended through to capture the bubble-
assisted evaporation. There is heat transfer enhancement due to bubble-assisted evaporation
that increases the heat transfer coefficient value from two- to four-fold

A new falling film evaporation heat transfer coefficient is proposed with parameter regression
including two basic mechanisms observed during experiments. The measured heat transfer
coefficient from experimental data has uncertainty of less than 8%. The RMS error of regressed
data is 3.5%. The effects of operational parameters namely salt concentration and saturation
temperature on heat input and LMTD are also investigated. The proposed correlation can be
used for the designing of low-pressure horizontal tubes falling film evaporators for process
industry.

Nomenclature

μ1 = Liquid viscosity (kg/m-sec) ρl = Liquid density (kg/m3)

k1= Liquid conductivity (W/m K) ReΓ = Film Reynolds number

Pr = Prandtl number S = Feed water salinity (ppm)

So= Reference sea water salinity (30,000 ppm) q = input heat flux (W/m2)

Tevap = Evaporator saturation temperature (K)

Tsaturation = Evaporator saturation temperature (K)

Tref= Reference saturation temperature (K) (Tref = 322.15 K)

Tch,in = Chilled water inlet temperature (K)

vg = vapour specific volume (m3/kg) (vref = 52. 65 m3/kg at 295 K)

Δ T = Tch,in � Tevap
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sites, such as the grooved surfaces on the tubes. This conjecture of ‘bubble-agitation boiling’ is
backed up by photographic evidence which indicates the presence of micro-bubble generation
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traditional Han and Fletcher correlation is now extended through to capture the bubble-
assisted evaporation. There is heat transfer enhancement due to bubble-assisted evaporation
that increases the heat transfer coefficient value from two- to four-fold
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including two basic mechanisms observed during experiments. The measured heat transfer
coefficient from experimental data has uncertainty of less than 8%. The RMS error of regressed
data is 3.5%. The effects of operational parameters namely salt concentration and saturation
temperature on heat input and LMTD are also investigated. The proposed correlation can be
used for the designing of low-pressure horizontal tubes falling film evaporators for process
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1. Introduction

Industries are engaged in a variety of activities such as developing new products, improv-
ing previous designs, maintenance, controlling and improving ongoing processes and some 
more. Experimentation is a frequent task in these activities to measure and analyse the output, 
and for this purpose engineers/researchers use many tools like statistics, analytical models, 
etc., regardless of their background in it [1].
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Montgomery [2] writes,

“Experiments are performed in almost any field of enquiry and are used to study the performance of pro-
cesses and systems. The process is a combination of machines, methods, people and other resources that 
transforms some input into an output that has one or more observable responses. Some of the process 
variables are controllable, whereas other variables are uncontrollable, although they may be controllable 
for the purpose of a test. The objectives of the experiment include: determining which variables are most 
influential on the response, determining where to set the influential controllable variables so that the 
response is almost always near the desired optimal value, so that the variability in the response is small, 
so that the effect of uncontrollable variables are minimized.”

In today’s era, the purpose of experiments in industries is essentially optimization and robust 
design analysis (RDA, which is used to make the system less sensitive to variations in uncon-
trollable noise factors or in other words to make the system robust). DOE, or experimental 
design, is the name given to the techniques used for guiding the choice of the experiments 
to be performed in an efficient way. In a general way, the process analysis can be expressed 
as the study of the cause-effect relationships which may be carried out by drawing infer-
ences from a finite number of samples. And one of the most important purposes of it is to 
design sampling experiments that are productive and cost-effective and provide a sufficient 
data base in a qualitative sense [3]. Design of experiments has been applied successfully in 
diverse fields such as agriculture (improved crop yields have created grain surpluses), the 
petrochemical industry (for highly efficient oil refineries) and Japanese automobile manufac-
turing (giving them a large market share for their vehicles), and still its implementation area 
is spreading and providing the optimized results. These developments are due in part to the 
successful implementation of design of experiments. The reason to use design of experiments 
is to implement valid and efficient experiments that will produce quantitative results and 
support sound decision-making [4].

1.1. Brief history

Statistical experimental design, together with the basic ideas underlying DOE, was born in 
the 1920s from the work of Sir Ronald Aylmer Fisher [5]. Fisher was the statistician who cre-
ated the foundations for modern statistical science. The second era for statistical experimental 
design began in 1951 with the work of Box and Wilson [6], who applied the idea to indus-
trial experiments and developed the response surface methodology (RSM), which is used to 
find out the relationships between various process parameters and one or more responses. 
The work of Dr. Genichi Taguchi in the 1980s [7], despite having been very controversial 
(described briefly in heading 2.4), had a significant impact in making statistical experimental 
design popular and stressed the importance it can have in terms of quality improvement.

Usually, data subject to experimental error (noise) are involved, and the results can be sig-
nificantly affected by noise. Thus, it is better to analyse the data with appropriate statistical 
methods. The basic principles of statistical methods in experimental design are replication, 
randomization and blocking. Replication is the repetition of the experiment to obtain a more 
precise result (sample mean value) and to estimate the experimental error (sample standard 
deviation). Randomization refers to the random order in which the runs of the experiment 
are to be performed. In this way, the conditions in one run neither depend on the conditions 
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of the previous run nor predict the conditions in the subsequent runs. Blocking aims at isolat-
ing a known systematic bias effect and prevents it from obscuring the main effects [8]. This 
is achieved by arranging the experiments in groups that are like one another. In this way, the 
sources of variability are reduced, and the precision is improved.

The design of experiments (DOE) is explained by Lye [9], as a methodology for systematically 
applying statistics to experimentation. In DOE, a sequence of tests is designed in which pur-
poseful vary the input parameters (factors) of a product or process to examine the reasons of 
the variation in the output response [10]. By the end of the twentieth century, DOE was no lon-
ger viewed as merely a stand-alone tool, because it was packaged together with a structured 
initiative for business improvement known as Six Sigma. Moreover, an increased emphasis on 
DOE took place during this period in Six Sigma literature [11]. DOE is a good tool to under-
stand and optimize products or process parameters. It is quick as well as cost-effective.

1.2. Advantages of DOE

With real engineering examples, Czitrom [12] listed the following advantages of DOE:

• A good amount of data can be obtained with lesser resources (experiments, time, material, 
etc.).

• The estimates of the effect of each factor (variable) on the response are more precise.

• It is a systematic way to estimate the interactions between the process factors.

• There is experimental information in a larger region of the factor space.

1.3. DOE techniques

A survey was carried out within the industry which identifies the needs of using an efficient 
and practical technique for the experimentation. It was surveyed that 76% of industries con-
sider themselves in need of a methodology [13]. So here are listing some of the techniques 
that are in use in Industries. The list of the techniques considered is far from being complete 
since the aim of the section is just to introduce the reader into the topic showing the main 
techniques which are used in practice [14].

• Randomized complete block design

• Latin square

• Full factorial

• Fractional factorial

• Central composite

• Box-Behnken [15]

• Plackett-Burman [16]

• Taguchi [7]
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• Random

• Halton, Faure and Sobol sequences

• Latin hypercube

• Optimal design

• Response surface design

Several DOE techniques are available to the experimental designer. However, as it always 
happens in optimization, there is no best choice. The correct DOE technique selection depends 
on the problem to be investigated and on the aim of the experimentation.

M. Cavzzuti [14] concluded that items to be considered are:

a. The number of experiments N which can be afforded. In determining the number of 
experiments, an important issue is the time required for a single experiment. There is a 
lot of difference between whether the response variable is extracted from a quick simula-
tion in which a number is computed or taken from a spreadsheet or it involves the set-
ting up of a complex laboratory experiment. In the former case, it could take a fraction 
of a second to obtain a response, and in the latter one, each experiment could take days.

b. The number of parameters k of the experiment. For many DOE techniques, the number of 
experiments required grows exponentially with the number of parameters (Figure 1). Not 

Figure 1. Number of experiments required by the DOE techniques [14].
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necessarily to use a cheap technique is the best choice, because a cheap technique means 
imprecise results and insufficient design space exploration. Unless the number of experi-
ments which can be afforded is high, it is important to limit the number of parameters as 
much as possible to reduce the size of the problem and the effort required to solve it. Of 
course, the choice of the parameters to be discarded can be a particularly delicate issue. 
This could have done by applying a cheap technique (like Plackett-Burman etc.) as a pre-
liminary study for estimating the main effects.

2. Introduction to Taguchi method

2.1. Brief history

After the Second World War, allied forces observed some of the major drawbacks of the Japanese 
telephone system, that is, extremely poor quality and unsuitability for long-term communica-
tion purposes. To overcome these drawbacks, an improved system was required, for this the 
allied command recommended establishing research facilities to develop a state-of-the-art com-
munication system. At that time, the electrical communication laboratories (ECL) were came 
on the stage with Dr. Genichi Taguchi (Figure 2) in charge of improving the R&D productivity 
and enhancing product quality. It was observed that the ratio of the time and money expended 
on engineering experimentation and testing is very high than the efforts given to the process of 
creative brainstorming to minimize the expenditure of resources. He noticed that the process 
of inspection, screening and salvaging cannot improve poor quality. The inspection process is 
done to check the quality but it can’t increase the quality by itself. Therefore, he believed that 
quality concepts should be based upon, and developed around, the philosophy of prevention.

This moved Taguchi to develop new optimizing methods of the processes of engineering 
experimentation. He believed that the best way to improve quality was to design and build it 

Figure 2. Dr. G. Taguchi [17].
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into the product. He quoted that [18], “Cost is more important than quality but quality is the best 
way to reduce cost.”

He developed the techniques which are now known as Taguchi methods (TM). His main 
contribution lies not in the mathematical formulation of the design of experiments, but rather 
in the accompanying philosophy. Taguchi method is different from the traditional techniques 
because of Taguchi’s concepts of design. By his methods, he developed Robust Manufacturing 
systems that are insensitive to daily or seasonal variations of environment, wears or other 
noise factors. His philosophy had far reaching consequences, yet it is founded on three very 
simple concepts [19].

Taguchi’s new technique consist of three concepts about quality, these are:

1. Quality should be designed into the product and not inspected into it.

2. Quality is better achieved by minimizing the deviation from a target. The product should 
be so designed that it is immune to uncontrollable environmental factors.

3. The cost quality should be measured as a function of deviation from the standard and the 
losses should be measured system-wide.

In Taguchi’s thinking, the quality improvement is an ongoing effort. He endeavoured con-
tinually to reduce the variation around the target value. Right population selection as near 
to the target value or desired value is the first stair step of the quality improvement. And to 
accomplish this, Taguchi designed experiments using especially constructed tables known as 
“orthogonal arrays” (OA). It makes the design of experiments very easy and consistent.

Taguchi’s two most important contributions to quality engineering are as follows:

i) The use of Gauss’s quadratic loss function to quantify quality.

ii) The development of robust designs (parameter and tolerance design).

Since the early 1980s when applications to different industries began in western hemisphere, 
the Taguchi method is evaluated in different platforms like books, articles, panel discus-
sions, etc. Taguchi methods have touched most of the manufacturing processes to optimize 
the process in such a way so that noise factors do not affect the output. Several reports [20–
29] evaluated Taguchi methods from a statistical standpoint. In these reports, the parameter 
design received the most attention. These reports confirm that Dr. Taguchi made important 
contributions to quality engineering; however, without some basic statistical knowledge, it 
is hard to apply his technique. Specifically, the use of signal-to-noise ratios in identifying 
the nearly best factor levels to minimize quality losses may not be efficient [30].

2.2. Taguchi method

In Taguchi method, we assume that we are designing an engineering system—it might be a 
machine that performs some intended function or it might be a production process. We use the 
knowledge of fundamental about the system and process parameters for efficient  experimentation. 
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We can skip all the extra effort that might have gone in to investigating interactions. By this, 
we can decrease the number of factors. Taguchi categorize the factors in two sets:

1. Control factors, which are under our control.

2. Noise factors, which are not under our control, except during experiments in the laboratories.

In the 1920, Sir R. A. Fisher first proposed the DOE with multiple factors known as Factorial 
Design of Experiments. In the full factorial design, we work on the all possible combina-
tions extruded from the preselected set of factors. Mostly all industrial experiments depends 
upon on the number of factors and if we consider all possible combination then it becomes 
harder and also time consuming to execute a large sequence of experiments. The full frac-
tional design consists of kn experiments, where “k” is the number of levels of factors and “n” 
is the number of factors (factors are the different variables, which determine the functionality 
or performance of a product or system). After that, partial factorial method came into the exis-
tence. In this, the number of experiments is reduced, and only a small set from all possibilities 
is selected, which produces the most information.

Taguchi’s approach complements the following two important areas:

• Taguchi constructed a special set of orthogonal arrays (OA) to lay out his experiments. 
Taguchi prepared a new set of standard OAs which could be used for a number of experi-
mental situations.

• He also devised a standard method for analysis of the results.

As mentioned, the full factorial design requires many experiments to be carried out. It 
becomes laborious and complex, if the number of factors increases. To overcome this prob-
lem, Taguchi suggested a specially designed method called the use of orthogonal array. In 
this, we can study the more factors or parameter space with lesser number of experiments. 
Opposite to full factorial analysis, the Taguchi method reduces the number of experimental 
runs to a reasonable one, in terms of cost and time, using orthogonal arrays [31]. For example, 
if there are three factors called A, B and C, all are examined with two levels called “1” and 
“2” (in general, they are referred as “1” and “−1”). Then, according to the full fractional, the 
number of experiments should be 23 = 8. In Table 1, the full fractional array is shown; such 
experiments can find all main and two and three factor interactions.

But at the same time, Taguchi’s L8 array can deal with seven factors and their two levels as 
shown in Table 2, such experiments can find all seven main factors effects.

So, it can be seen that the full fractional method is dealing with three factors, and orthogonal 
array is dealing with seven factors in same eight experimental runs.

Taguchi method is based on mixed levels, highly fractional factorial designs and other orthog-
onal designs. It distinguishes between control variables and noise variables. In this, we choose 
two sets of parameters, that is, controlled and noise parameters or variables. Respectively, we 
choose orthogonal designs also. The design chosen for the controlled variable is known as 
inner array and for the noise variables is known as outer array. The combination of the inner 
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be so designed that it is immune to uncontrollable environmental factors.
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Since the early 1980s when applications to different industries began in western hemisphere, 
the Taguchi method is evaluated in different platforms like books, articles, panel discus-
sions, etc. Taguchi methods have touched most of the manufacturing processes to optimize 
the process in such a way so that noise factors do not affect the output. Several reports [20–
29] evaluated Taguchi methods from a statistical standpoint. In these reports, the parameter 
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is hard to apply his technique. Specifically, the use of signal-to-noise ratios in identifying 
the nearly best factor levels to minimize quality losses may not be efficient [30].

2.2. Taguchi method

In Taguchi method, we assume that we are designing an engineering system—it might be a 
machine that performs some intended function or it might be a production process. We use the 
knowledge of fundamental about the system and process parameters for efficient  experimentation. 
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We can skip all the extra effort that might have gone in to investigating interactions. By this, 
we can decrease the number of factors. Taguchi categorize the factors in two sets:

1. Control factors, which are under our control.

2. Noise factors, which are not under our control, except during experiments in the laboratories.

In the 1920, Sir R. A. Fisher first proposed the DOE with multiple factors known as Factorial 
Design of Experiments. In the full factorial design, we work on the all possible combina-
tions extruded from the preselected set of factors. Mostly all industrial experiments depends 
upon on the number of factors and if we consider all possible combination then it becomes 
harder and also time consuming to execute a large sequence of experiments. The full frac-
tional design consists of kn experiments, where “k” is the number of levels of factors and “n” 
is the number of factors (factors are the different variables, which determine the functionality 
or performance of a product or system). After that, partial factorial method came into the exis-
tence. In this, the number of experiments is reduced, and only a small set from all possibilities 
is selected, which produces the most information.

Taguchi’s approach complements the following two important areas:

• Taguchi constructed a special set of orthogonal arrays (OA) to lay out his experiments. 
Taguchi prepared a new set of standard OAs which could be used for a number of experi-
mental situations.

• He also devised a standard method for analysis of the results.

As mentioned, the full factorial design requires many experiments to be carried out. It 
becomes laborious and complex, if the number of factors increases. To overcome this prob-
lem, Taguchi suggested a specially designed method called the use of orthogonal array. In 
this, we can study the more factors or parameter space with lesser number of experiments. 
Opposite to full factorial analysis, the Taguchi method reduces the number of experimental 
runs to a reasonable one, in terms of cost and time, using orthogonal arrays [31]. For example, 
if there are three factors called A, B and C, all are examined with two levels called “1” and 
“2” (in general, they are referred as “1” and “−1”). Then, according to the full fractional, the 
number of experiments should be 23 = 8. In Table 1, the full fractional array is shown; such 
experiments can find all main and two and three factor interactions.

But at the same time, Taguchi’s L8 array can deal with seven factors and their two levels as 
shown in Table 2, such experiments can find all seven main factors effects.

So, it can be seen that the full fractional method is dealing with three factors, and orthogonal 
array is dealing with seven factors in same eight experimental runs.

Taguchi method is based on mixed levels, highly fractional factorial designs and other orthog-
onal designs. It distinguishes between control variables and noise variables. In this, we choose 
two sets of parameters, that is, controlled and noise parameters or variables. Respectively, we 
choose orthogonal designs also. The design chosen for the controlled variable is known as 
inner array and for the noise variables is known as outer array. The combination of the inner 
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and the outer arrays gives the crossed array, which is the list of all the samples scheduled by 
the Taguchi method. It means that for each sample in the inner array, the full set of experi-
ments of the outer array is performed. The advantage of this cross combination is that it pro-
vides the information about the relation between the parameters which plays very important 
for the robust system designing.

Then, it is recommended by Dr. Taguchi to use the quality loss function to measure the per-
formance characteristics. The quality loss function is a continuous function that is defined in 
terms of the deviation of a design parameter from an ideal or target value. The value of this 
loss function is further transformed into signal-to-noise (S/N) ratio. Performance characteris-
tics are available in three categories to determine the S/N ratio:

• Nominal-the-Best

• Larger-the-Best

• Smaller-the-Best

A B C D E F G

1 1 1 1 1 1 1

2 1 1 2 1 2 2

1 2 1 2 2 1 2

2 2 1 1 2 2 1

1 1 2 1 2 2 2

2 1 2 2 2 1 1

1 2 2 2 1 2 1

2 2 2 1 1 1 2

Table 2. Orthogonal array factor assignments to experimental array columns.

A B C AB BC AC ABC

1 1 1 1 1 1 1

2 1 1 2 1 2 2

1 2 1 2 2 1 2

2 2 1 1 2 2 1

1 1 2 1 2 2 2

2 1 2 2 2 1 1

1 2 2 2 1 2 1

2 2 2 1 1 1 2

Table 1. Full fractional factor assignments to experimental array columns.
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The Taguchi method has four basic phases in the optimization process, these are as follows:

1. First phase is to timely thinking about the quality characteristics and determining the pa-
rameters which important to the product or process.

2. In second phase the experiments sequence is designed and executed accordingly.

3. In third phase of the optimization process the statistical analysis is done to determine the 
optimum conditions.

4. Finally in the fourth phase the confirmation test is run with the optimum conditions.

Barrado et al. [32] expanded above-mentioned four phases into the following steps for imple-
menting Taguchi experimental design:

Step 1. Selection of the output or target parameters.

Step 2. Identification of the input parameters and their levels.

Step 3. Determining the suitable orthogonal array (OA).

Step 4. Assign factors and interactions to the columns of the array.

Step 5. Conduct the experiments.

Step 6. Statistical analysis and the signal-to-noise ratio and determining the optimum setting 
of the factor levels.

Step 7. Perform confirmatory experiment (if necessary).

First of all, the input parameters and the respective operation levels and output or responses 
are selected. After this choice, the best fitted or economical matrix experiment or orthogonal 
array is selected [33, 34]. Here, in Table 3, the array selector is shown.

After performing the experiments as per the chosen array, we choose the desired signal-to-
noise ratio function (smaller-the-better, larger-the-better and nominal-the-better). The S/N 
ratio is a logarithmic function which can also be defined as an inverse of variance. Generally 
in the optimization of the process or product design and in minimizing the variability we 
use it. If we maximize the S/N ratio, we reduce the variability of the process against undesir-
able changes in noise factors. Because S/N ration and variance are inversely proportional, 
so the chosen factors should produce maximum value of S/N so that we get the minimum 
variability.

Three types of common problems and respective signal-to-ratio function are presented in Table 4.

In Table 4, yi denotes the nth observations of response variable and μ2 denotes the square of 
mean and σ2 the variance of the observations of the replicated response values.

For analysing the data, one of the most common methods used is ANOVA. ANOVA is a sta-
tistical technique that assesses potential differences in a scale-level dependent variable by a 
nominal-level variable having two or more categories [35]. The ANOVA is developed by Sir 
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and the outer arrays gives the crossed array, which is the list of all the samples scheduled by 
the Taguchi method. It means that for each sample in the inner array, the full set of experi-
ments of the outer array is performed. The advantage of this cross combination is that it pro-
vides the information about the relation between the parameters which plays very important 
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loss function is further transformed into signal-to-noise (S/N) ratio. Performance characteris-
tics are available in three categories to determine the S/N ratio:

• Nominal-the-Best

• Larger-the-Best

• Smaller-the-Best
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2 1 1 2 1 2 2

1 2 1 2 2 1 2

2 2 1 1 2 2 1

1 1 2 1 2 2 2

2 1 2 2 2 1 1

1 2 2 2 1 2 1

2 2 2 1 1 1 2
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2 1 1 2 1 2 2

1 2 1 2 2 1 2

2 2 1 1 2 2 1

1 1 2 1 2 2 2

2 1 2 2 2 1 1

1 2 2 2 1 2 1

2 2 2 1 1 1 2

Table 1. Full fractional factor assignments to experimental array columns.
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The Taguchi method has four basic phases in the optimization process, these are as follows:
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rameters which important to the product or process.

2. In second phase the experiments sequence is designed and executed accordingly.

3. In third phase of the optimization process the statistical analysis is done to determine the 
optimum conditions.

4. Finally in the fourth phase the confirmation test is run with the optimum conditions.

Barrado et al. [32] expanded above-mentioned four phases into the following steps for imple-
menting Taguchi experimental design:

Step 1. Selection of the output or target parameters.

Step 2. Identification of the input parameters and their levels.

Step 3. Determining the suitable orthogonal array (OA).

Step 4. Assign factors and interactions to the columns of the array.

Step 5. Conduct the experiments.

Step 6. Statistical analysis and the signal-to-noise ratio and determining the optimum setting 
of the factor levels.

Step 7. Perform confirmatory experiment (if necessary).

First of all, the input parameters and the respective operation levels and output or responses 
are selected. After this choice, the best fitted or economical matrix experiment or orthogonal 
array is selected [33, 34]. Here, in Table 3, the array selector is shown.

After performing the experiments as per the chosen array, we choose the desired signal-to-
noise ratio function (smaller-the-better, larger-the-better and nominal-the-better). The S/N 
ratio is a logarithmic function which can also be defined as an inverse of variance. Generally 
in the optimization of the process or product design and in minimizing the variability we 
use it. If we maximize the S/N ratio, we reduce the variability of the process against undesir-
able changes in noise factors. Because S/N ration and variance are inversely proportional, 
so the chosen factors should produce maximum value of S/N so that we get the minimum 
variability.

Three types of common problems and respective signal-to-ratio function are presented in Table 4.

In Table 4, yi denotes the nth observations of response variable and μ2 denotes the square of 
mean and σ2 the variance of the observations of the replicated response values.

For analysing the data, one of the most common methods used is ANOVA. ANOVA is a sta-
tistical technique that assesses potential differences in a scale-level dependent variable by a 
nominal-level variable having two or more categories [35]. The ANOVA is developed by Sir 
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Numbers of Parameters (P) Number of levels

2 3 4 5

2 L4 L9 L16 L25

3 L4 L9 L16 L25

4 L8 L9 L16 L25

5 L8 L18 L16 L25

6 L8 L18 L32 L25

7 L8 L18 L32 L50

8 L12 L18 L32 L50

9 L12 L18 L32 L50

10 L12 L27 L32 L50

11 L12 L27 L50

12 L16 L27 L50

13 L16 L27

14 L16 L36

15 L16 L36

16 L32 L36

17 L32 L36

18 L32 L36

19 L32 L36

20 L32 L36

21 L32 L36

22 L32 L36

23 L32 L36

24 L32

25 L32

26 L32

27 L32

28 L32

29 L32

30 L32

31 L32

Table 3. Taguchi orthogonal array selector.
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Ronald Fisher in 1918. It is the extended version of T test and Z test. The reason of its origin 
was the limitations of the T & Z tests which have the problem of only allowing the nominal 
level variable to have just two categories. This analysis method is also famous with the title 
“The Fisher Analysis of Variance.”

The use of ANOVA depends on the research design. Commonly, ANOVAs are used in three 
ways:

a. One-way ANOVA

b. Two-way ANOVA

c. N-way multivariate ANOVA.

2.3. Applications of Taguchi method in industrial chemical processes

The Taguchi method is used whenever the settings of interest parameters are necessary, not 
only for manufacturing processes. Therefore, the Taguchi approach is used in many domains 
such as environmental sciences [36, 37], agricultural sciences [38], physics [39], statistics [40], 
management and business [41], medicine [42] and in chemical processes as well [43]. Here, 
some of the literature reviews are given, which clearly show the application of Taguchi method 
in the chemical processes of various industries.

The identification and incorporation of quality costs and robustness criteria are becoming a 
critical issue while addressing chemical process design problems under uncertainty. Fernando 
P. Bernardo et al. [44] used Taguchi loss functions along with other robustness criteria and 
presented a systematic design framework. They conducted their study within a single-level 
stochastic optimization formulation, and an efficient cubature technique is used for the estima-
tion of the expected values. An optimal design was discovered, together with a robust operat-
ing policy. It was observed that these parameters maximizes average process performance.

Choose… S/N ratio formulas Use when the goal is to…

Smaller the better   S / N = − 10 log [    1 _ n    ∑ 
i=1

  
n

     y  i        2  ]    Minimize the response

Nominal the better  S / N = 10 log   
 μ   2 

 __  σ   2    
Target the response and you want to base the S/N 
ratio on means and standard deviations

Larger the better   S / N = − 10 log [    1 _ n    ∑ 
i=1

  
n
      1 _  y  i        2 

   ]    Maximize the response

Table 4. Types of problems and respective signal-to-ratio function.
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Numbers of Parameters (P) Number of levels

2 3 4 5
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31 L32
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Kundu et al. [45] investigated the optimal operation conditions to prepare activated carbon (AC) 
using palm kernel shell (PKS). They choose four control factors for their research which were irra-
diation time, microwave power, concentration of impregnation substance which was phosphoric 
acid and impregnation ratio between acid and PKS aided by Taguchi optimization method. After 
successful implementation of Taguchi method, the optimal settings were found and the optimal 
levels were microwave power of 800 W, irradiation time of 17 min, impregnation ratio of 2 and 
concentration of acid 85% (undiluted). After the confirmation test with optimal settings, acti-
vated carbon with high BET surface area of 1473.55 m2 g−1 and high porosity was obtained.

Zolfaghari et al. [46] presented a systematic optimization approach by using the Taguchi 
method for removal of lead (Pb) and mercury (Hg) by a nanostructure, zinc oxide-modified 
mesoporous carbon CMK-3 denoted as Zn-OCMK-3. CMK-3 was synthesized by using SBA-
15 and then oxidized by nitric acid. Their investigation using Zn-OCMK-3 in the frame of 
the Taguchi method brought forth the optimum conditions for Pb and Hg adsorption from 
water. The determined optimum conditions for removal of Pb (II) and Hg (II) were the agi-
tation time of 120 min, the initial concentration of 10 mg/l, the temperature of 35 ◦C, the 
dose of 0.7 g/l, and the pH of 6. Based on the confirmation test under optimum conditions 
for Zn-OCMK-3, it was observed that this nanoporous carbon is very effective in removing 
the lead and mercury with a high pollutant removal efficiency (PRE) i.e. 97.25% for Pb (II) 
and 99% for Hg (II). Removal of lead and mercury were highly concentration dependent. 
Number of Pb and Hg ions highly increase from initial concentration of 10–400 mg/l. It is 
also observed that a lot of ions cannot be adsorbed at high concentration, which reduce the 
removal efficiency.

Venkata Mohan et al. [47] applied design of experimental methodology (DOE) by Taguchi 
approach to find out the effects of selected factors on the H2 production with the final aim of 
optimizing the process. They selected four factors for their research study, that is, inlet pH, 
inoculum type, feed composition and inoculum pre-treatment methods. Here, also Taguchi 
method enhanced the process. Results showed significant variation and process efficiency. 
Among the factors studied with respect to H2 production, feed composition showed stronger 
influence followed by inlet pH, pre-treatment method and origin of the inoculum. Taguchi 
approach also permits process optimization of system by a set of independent factors (over a 
specific region of interest (levels) by identifying the influence of individual factors, establish-
ing the relationship between variables and operational conditions and finally estimate the 
performance at optimum levels obtained. By using optimized conditions of the factors, the 
rate of H2 production can be enhanced by almost threefold (0.376–1.166 mmol/day), same 
positive enhanced results were recorded for substrate degradation also.

Taguchi-based DOE methodology provides a systematic and efficient mathematical approach 
to understand complex process of fermentative H2 production and substrate degradation 
for the optimization of the near optimum design parameters, only with a few well-defined 
experimental sets [48].

Messias Borges Silva et al. [49] applied Taguchi method in optimization of the treatment con-
ditions of polyester-resin effluent by means of Advanced Oxidative Processes (AOPs). The 
output parameter were Chemical oxygen demand (COD). Their study consist of two type of 
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evaluation. First one is, the influence individual independent parameter and the second one 
is the respective interactions effect. This allowed determining the most statistically significant 
variables and the optimal conditions. The treatment by means of advanced oxidative process 
provided an approximate 35% reduction in chemical oxygen demand of the polyester-indus-
try wastewater. However, when compared to studies describing the treatment of this effluent 
by Advanced Oxidative Processes, it was seen that the results were relevant. This investiga-
tion confirms the effectiveness of Taguchi Method in the industrial chemical processes.

Liao et al. [50] applied the Taguchi method and designs of experiments (DOE) approach to 
optimize parameters for chemical mechanical polishing (CMP) processes in wafer manufac-
turing. Planning of experiments was based on a Taguchi orthogonal array table to determine 
an optimal setting, and significant results were found.

S. V. Mohan et al. [51] applied the Taguchi robust experimental design (DOE) methodology on 
a dynamic anaerobic process treating complex wastewater by an anaerobic sequencing batch 
biofilm reactor (AnSBBR). Their work was to optimize the process and also at the other hand 
to evaluate the influence of distinct factors on the process. They considered the uncontrollable 
(noise) factors. This is the first kind of study of anaerobic process evaluation and process opti-
mization by using the Taguchi methodology adopting dynamic approach.

The biological oxidation of ferrous ion by iron-oxidizing bacteria is potentially a useful indus-
trial process for removal of H2S from industrial gases, desulphurization of coal, removal of 
sulfur dioxide from flue gas, treatment of acid mine drainage and regeneration of an oxidant 
agent in hydrometallurgical leaching operations that pH of feed solution has the most contribu-
tion in the biooxidation rate of ferrous ion. When the parameters were set according to Taguchi 
approach, the biological reaction rate was obtained. Mousavi et al. [52] studied and find out the 
optimum values of the process parameters on the ferrous biooxidation rate by immobilization 
of a native Sulfobacillus species on the surface of low-density polyethylene (LDPE) particles in 
a packed-bed bioreactor using Taguchi method. L16 array was used with five factors and their 
four levels. Temperature, initial pH of feed solution, dilution rate and initial concentration 
of Fe3+ and aeration rate are considered as input parameters in Taguchi technique. Analysis 
of variance (ANOVA) was used to determine the optimum conditions and most significant 
process parameters affecting the reaction rate. Results indicated that pH of feed solution has 
the most contribution in the biooxidation rate of ferrous ion. When the parameters were set 
according to Taguchi approach, the biological reaction rate was obtained 8.4 g L−1 h−1.

Taguchi robust design method with L9 orthogonal array was implemented to optimize experi-
mental conditions for the preparation of nano-sized silver particles using chemical reduction 
method [53]. The parameters for chemical-mechanical polishing (CMP) in an ultra-large-scale 
integrated (ULSI) planarization process are explored using the Taguchi method [54]. So, it can 
be seen easily the popularity of the Taguchi method in industrial chemical processes.

2.4. Advantages and disadvantages of Taguchi method

The foundation of the DOE in Taguchi method (TM) is orthogonal array design that is very 
simple method for analysing the outputs. His work was controversial and criticized by some 
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approach also permits process optimization of system by a set of independent factors (over a 
specific region of interest (levels) by identifying the influence of individual factors, establish-
ing the relationship between variables and operational conditions and finally estimate the 
performance at optimum levels obtained. By using optimized conditions of the factors, the 
rate of H2 production can be enhanced by almost threefold (0.376–1.166 mmol/day), same 
positive enhanced results were recorded for substrate degradation also.

Taguchi-based DOE methodology provides a systematic and efficient mathematical approach 
to understand complex process of fermentative H2 production and substrate degradation 
for the optimization of the near optimum design parameters, only with a few well-defined 
experimental sets [48].

Messias Borges Silva et al. [49] applied Taguchi method in optimization of the treatment con-
ditions of polyester-resin effluent by means of Advanced Oxidative Processes (AOPs). The 
output parameter were Chemical oxygen demand (COD). Their study consist of two type of 
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variables and the optimal conditions. The treatment by means of advanced oxidative process 
provided an approximate 35% reduction in chemical oxygen demand of the polyester-indus-
try wastewater. However, when compared to studies describing the treatment of this effluent 
by Advanced Oxidative Processes, it was seen that the results were relevant. This investiga-
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Liao et al. [50] applied the Taguchi method and designs of experiments (DOE) approach to 
optimize parameters for chemical mechanical polishing (CMP) processes in wafer manufac-
turing. Planning of experiments was based on a Taguchi orthogonal array table to determine 
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Taguchi robust design method with L9 orthogonal array was implemented to optimize experi-
mental conditions for the preparation of nano-sized silver particles using chemical reduction 
method [53]. The parameters for chemical-mechanical polishing (CMP) in an ultra-large-scale 
integrated (ULSI) planarization process are explored using the Taguchi method [54]. So, it can 
be seen easily the popularity of the Taguchi method in industrial chemical processes.

2.4. Advantages and disadvantages of Taguchi method

The foundation of the DOE in Taguchi method (TM) is orthogonal array design that is very 
simple method for analysing the outputs. His work was controversial and criticized by some 
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researchers for being inefficient and ineffective in some cases [55]. But still the simplicity of 
Taguchi method increased its use in manufacturing industries. Here, some of the advantages 
and disadvantages are discussed briefly which clears its popularity even in the clouds of con-
troversies. A survey shows that 51% of respondents are familiar with TM, although only 14% 
of them apply it [13].

The key step of the TM is to increasing the quality level with less affecting the cost factor. 
TM provides the optimal settings for the processes which can improve quality, and these set-
tings attained from TM are also insensitive to the variation of noise factors. Basically, classical 
process parameter design is complex and not easy-to-use, and at the other hand, Taguchi 
technique is user friendly [56].

Another advantage of the Taguchi method is that it emphasizes a mean performance charac-
teristic value close to the target value rather than a value within certain specification limits, 
thus improving the product quality. Also, it is straightforward and easy to apply to many 
engineering situations, this property makes it a powerful yet simple tool for industries. It can 
be used to quickly narrow the scope of a research project or to identify problems in a manu-
facturing process from data already in existence [57].

It is probably unfortunate that the important concepts advocated by Taguchi have been 
overshadowed by controversy associated with his approach to modelling and data analy-
sis. There have been several research papers and books which explain, review, or raise 
questions on the Taguchi’s ideas [55, 58]. One of its demerit is that the results obtained from 
it are only relative. It is unable to indicate exactly which parameters have the highest effect 
on the performance or response.

Another debating topic is that when orthogonal array do not tests all the possible combina-
tions of the factors, then this method should not be adopted with all relationships between all 
factors. The Taguchi method has been criticized for its difficulty in accounting for interactions 
between parameters.

Another limitation is that the Taguchi methods are offline. So in the case of dynamically 
changing processes for example a simulation study, the TM is not appropriate. And also, the 
Taguchi method is most effectively applied at the designing stage of a product development, 
it cannot help after the process is started. Because TM deals with designing quality rather than 
correcting for poor quality [59].

3. Conclusion

Industries are in the need of the method of conducting experiments which optimize processes 
and increase the quality of products. Same is desired in chemical industrial processes also. For 
this, design of experiments is the basic step of quality improvement via optimized processes. 
And this requires proper planning and layout of the experiments and accurate analysis of 
the results. And Dr. G. Taguchi studied these issues very well and developed his method. 
Thus, DOE using Taguchi approach has become a much more attractive tool to practicing 
engineers and scientists. Since the conventional experimental design techniques were applied 

Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes150

to industrial applications or processes, these conventional methods were always covered with 
drawbacks and limitations. And Taguchi array, also known as orthogonal array design, adds 
a new dimension to conventional experimental design. Taguchi method is a broadly accepted 
method of DOE which has proven in producing high-quality products at subsequently low 
cost. In most of the industrial applications or processes, the researchers and scientists used 
Taguchi method with other analytical tools in their research works, and in industrial chemical 
processes, it is also showing great results in optimization of the processes. A very important 
and fundamental part of Taguchi’s method is to make sure that the product performs well 
even in noise; it helps in making the product long lasting. Taguchi’s method can be applied in 
a very short amount of time; it does not take a lot of effort and improves the processes dramat-
ically. The manufacturing industries can improve their processes very quickly and efficiently 
by applying the Taguchi’s method. Around Industrial chemical processes, Taguchi method is 
showing the outstanding performance by optimizing the process parameters and reducing 
the number of experiments via orthogonal arrays. Taguchi method gives a new height to the 
processes by making them cost-effective and quick with improved quality.
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Abstract

Experimental design plays an important role in several areas of science and industry. 
Experimentation is an application of treatments applied to experimental units and is then 
part of a scientific method based on the measurement of one or more responses. It is 
necessary to observe the process and the operation of the system well. For this reason, 
in order to obtain a final result, an experimenter must plan and design experiments and 
analyzes the results. One of the most commonly used experimental designs for optimiza-
tion is the response surface methodology (RSM). Because it allows evaluating the effects 
of multiple factors and their interactions on one or more response variables it is a use-
ful method. In this section, recent studies have been compiled which aim to extraction 
of plant material in high yield and quality and determine optimum conditions for this 
extraction process.

Keywords: design of experiments, olive, phenolic content, yield, RSM, food science

1. Introduction

The response surface methodology (RSM) is a widely used mathematical and statistical 
method for modeling and analyzing a process in which the response of interest is affected 
by various variables [1] and the objective of this method is to optimize the response [2]. The 
parameters that affect the process are called dependent variables, while the responses are 
called dependent variables [3].

For example, the hardness of a meat is affected by cooking time X1 and cooking tempera-
ture X2. The meat hardness can be changed under any combination of treatment X1 and X2. 
Therefore, time and temperature can vary continuously. If treatments are from a continuous 
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range of values, response surface methodology is useful for developing, improving, and opti-
mizing the response variable. In this case, the hardness of meat Y is the response variable, 
and it is a function of time and temperature of cooking. It can be expressed as the dependent 
variable y is a function of X1 and X2.

  Y = f (X1
)  + f (X2

)  + e  (1)

where Y is the response (dependent variable), X1 and X2 are independent variables and e is 
the experimental error.

Response surface is a method based on surface placement. Therefore, the main goals of a 
RSM study are to understand the topography of the response surface including the local 
maximum, local, minimum and ridge lines and find the region where the most appropriate 
response occurs [4].

The RSM investigates an appropriate approximation relationship between input and out-
put variables and identify the optimal operating conditions for a system under study or 
a region of the factor field that satisfies the operating requirements [5, 6]. Box-Behnken 
designs (BBD) and central composite design (CCD) are two main experimental designs 
used in response surface methodology [3]. Central composite rotatable design (CCRD) 
and face central composite design (FCCD) has also been applied to optimization studies in 
recent years [7–9].

The experimental data are evaluated to fit a statistical model (Linear, Quadratic, Cubic or 2FI 
(two factor interaction)). The coefficients of the model are represented by constant term, A, B 
and C (linear coefficients for independent variables), AB, AC and BC (interactive term coef-
ficient), A2, B2 and C2 (quadratic term coefficient). Correlation coefficient (R2), adjusted deter-
mination coefficient (Adj-R2) and adequate precision are used to check the model adequacies; 
the model is adequate when its P value < 0.05, lack of fit P value > 0.05, R2 > 0.9 and Adeq 
Precision >4. Differences between means can be tested for statistical significance using analy-
sis of variance (ANOVA) [10].

1.1. The basic and theoretical aspects of RSM

The design of experiments (DoE) is the most important aspect of RSM. The DoE aims the 
selection of most suitable points where the response should be well examined. The math-
ematical model of the process is mostly related to design of experiments. Thus, the selection 
of experiment design has a great effect in determining the correctness of the response sur-
face construction. The advantages offered by the RSM can be summarized as determining 
the interaction between the independent variables, modeling the system mathematically, and 
saving time and cost by reducing the number of trials [11]. However, the most important 
disadvantage of the response surface method is that the experimental data are fitted to a poly-
nomial model at the second level. It is not correct to say that all systems with curvature are 
compatible with a second-order polynomial model. In addition, experimental verification of 
the estimated values in the model should be done absolutely [3].

Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes158

In early stage of DoE, screening experiments are performed. If there are many variables have 
little or more effect on the response, the variables which have large effects on response are 
identified. Therefore the aim is to determine the design variables that have large effects for 
further investigation [12].

2. RSM application in optimization of extraction

Using Response Surface Method in the extraction studies has been of interest to many 
researchers in recent years [10, 13, 14]. The steps that must be followed in order to apply this 
method correctly are shown in Figure 1.

Recent optimization studies using the response surface method in extraction from plant mate-
rials are summarized in Table 1. Independent and dependent variable numbers and the opti-
mization designs are also demonstrated in the same table.

2.1. Yield

Extraction yield is one of the main properties determining efficiency of olive oil extraction. 
This parameter indirectly takes into account the oil content held in vegetable water and pom-
ace [15, 16].

Extraction yield is defined as the percentage of the extracted olive oil from the total weight of 
fruit (g). The extraction yield is calculated using the formula below [10]:

  Yield =   
Extracted Oil (g)   _____________  Olive Fruit (g)    x 100  (2)

Aydar et al. used olive fruits (Olea europaea L.) from Edremit cultivar grown in Mut area were 
harvested in the 2015 crop season with a maturity index of 3.35 to obtain ideal conditions for 
an ultrasound assisted olive oil extraction. It was aimed an extraction for extra virgin olive oils 
in low acidity and high yield using the Box-Behnken design to optimize extraction parameters 
including ultrasound time, ultrasound temperature and malaxation time [10].

In terms of yield, the independent variable (X2), the quadratic term (X2
2) and the interactive 

terms (X1X2, X2X3) were all significant (P < 0.05). The quadratic regression model for AV was 
as follows:

  Yield = 7.48 + 0.9062  5X  2   + 0.8875  X  3   − 1 .  1X  1    X  2   + 0.4375  X  2    X  3   − 1.3525   X  2     2   (3)

The most significant effect on the extraction yield (P < 0.05) was the malaxation tempera-
ture among all ultrasound extraction variables. Conversely, ultrasound time showed no effect 
(P > 0.05) on the yield [10].

The response surface methodology has been applied to determine the optimization of olive 
paste heating and how it is affected by the independent process variables including olive  
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identified. Therefore the aim is to determine the design variables that have large effects for 
further investigation [12].

2. RSM application in optimization of extraction

Using Response Surface Method in the extraction studies has been of interest to many 
researchers in recent years [10, 13, 14]. The steps that must be followed in order to apply this 
method correctly are shown in Figure 1.

Recent optimization studies using the response surface method in extraction from plant mate-
rials are summarized in Table 1. Independent and dependent variable numbers and the opti-
mization designs are also demonstrated in the same table.
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Extraction yield is one of the main properties determining efficiency of olive oil extraction. 
This parameter indirectly takes into account the oil content held in vegetable water and pom-
ace [15, 16].

Extraction yield is defined as the percentage of the extracted olive oil from the total weight of 
fruit (g). The extraction yield is calculated using the formula below [10]:
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(P > 0.05) on the yield [10].

The response surface methodology has been applied to determine the optimization of olive 
paste heating and how it is affected by the independent process variables including olive  
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paste flow (Q), high power ultrasound (HPU) intensity (W), olive temperature (OT),  
olive moisture (OM) and olive fat content (OF) by Bejaoui et al. [17]. They obtained a 2FI 
(two factor interaction) model for olive paste temperature according to the analysis of vari-
ance which showed that the regression model was significant for a P-value <0.0001. The most 
significant terms of the model were Q, W and the interaction terms Q*W and W*OF based on 
P-values less than 0.0001 [17].

Second-order equations for oleuropein yield was shown in Eq. (4) [9]

  Yield = 0.62767 − 0.029622  X  1   − 2.60 ×  10   −3   X  2   − 0.056494  X  3   + 4.26 ×  10   −5   X  1    X  2   + 5.07 ×  10   −3   X  1    X  3   
            + 2.48 ×  10   −4   X  2    X  3   + 1.15 ×  10   −4   X  21   + 2.53 ×  10   −6   X  22   − 0.013423  X  23    (4)

Figure 1. Steps for response surface methodology.
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paste flow (Q), high power ultrasound (HPU) intensity (W), olive temperature (OT),  
olive moisture (OM) and olive fat content (OF) by Bejaoui et al. [17]. They obtained a 2FI 
(two factor interaction) model for olive paste temperature according to the analysis of vari-
ance which showed that the regression model was significant for a P-value <0.0001. The most 
significant terms of the model were Q, W and the interaction terms Q*W and W*OF based on 
P-values less than 0.0001 [17].

Second-order equations for oleuropein yield was shown in Eq. (4) [9]

  Yield = 0.62767 − 0.029622  X  1   − 2.60 ×  10   −3   X  2   − 0.056494  X  3   + 4.26 ×  10   −5   X  1    X  2   + 5.07 ×  10   −3   X  1    X  3   
            + 2.48 ×  10   −4   X  2    X  3   + 1.15 ×  10   −4   X  21   + 2.53 ×  10   −6   X  22   − 0.013423  X  23    (4)

Figure 1. Steps for response surface methodology.
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Where X1 is the amount of sample, X2 is the Microwave (MW) irradiation power, and X3 is the 
extraction time. The researchers found that the second power of microwave intensity was the 
most significant parameter, followed by the amount of sample, quadratic time, and power for 
oleuropein yield [9].

Response surface method has been used frequently in recent years to optimize different oil 
extractions other than olive oil including papaya seed oil and pomegranate seed oil [18, 19].

To optimize the ultrasound-assisted extraction conditions followed by ultrahigh performance 
liquid chromatography (UHPLC) to achieve high catechin, myricetin, and quercetin contents, 
and high antioxidant and anticancer activities in the curry leaf extracts, RSM was applied 
by Ghasemzadeh et al. [20]. They used the central composite experimental design (3-level, 
3-factorial) to determine the optimum extraction parameters affecting the extraction yields 
of catechin (Y1), myricetin (Y2), quercetin (Y3), and antioxidant activity (Y4) of curry leaf 
extracts [20].

The extraction efficiency of UAE and MAE methods was compared to a conventional solvent 
extraction by Guglielmetti et al. [21]. Authors used RSM with a CCD to investigate ultrasound 
assisted extraction (UAE) and microwave assisted extraction (MAE) of caffeoylquinic acids 
and caffeine from coffee silverskin (CS) at two particle size. They found that the highest caf-
feine content (14.24 g kg−1 dw) with a significant reduction of extraction time was obtained 
by UAE [21].

Since different extraction methods have important impacts on the polysaccharide bioactivity, 
yield and structure, to find the best extraction method to obtain high yield of polysaccharide 
is crucial. Recently several researchers used RSM for optimization of polysaccharide extrac-
tion from different plant materials [22–26]. To investigate the best response surface design for 
optimization of polysaccharide yield (CPS) from hazelnut skin, CCD and BBD designs were 
studied by Yılmaz and Tavman [25]. Optimum conditions for a maximum yield of polysac-
charide extraction from Trapa quadrispinosa stems recently determined by Raza et al. 41 min, 
31.5 mL/g and 58°C were the optimum conditions for extraction time, ratio of water to mate-
rial, and extraction temperature, respectively [26].

2.2. Phenolic and antioxidant compound extraction from plant materials

In recent years, there has been a growing interest in finding new natural sources of food 
antioxidants. As a main fruit crop, olive is also valued due to its phenolic- containing leaves. 
Optimization of ultrasound-assisted extraction of olive leaf has been studied by extraction 
parameters including solid/solvent ratio, time and ethanol concentration by Şahin and Şamli [27].  
In order to obtain the maximum extraction performance for an ultrasound assisted extraction, 
500 mg olive leaf to 10 mL solvent ratio, 60 min of extraction time and 50% ethanol composi-
tion were found to be as optimal operating conditions [27].

Shirzad et al. also studied on optimization of olive leave extraction in order to shorten the 
time of extraction and decrease the consumption of energy. The conditions for obtaining max-
imum yield of polyphenols, total flavonoids and antioxidants were optimized using RSM The 
effects of ultrasonic temperature (35–65°C), ultrasonic time (5–15 min), and ethanol to water 
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Where X1 is the amount of sample, X2 is the Microwave (MW) irradiation power, and X3 is the 
extraction time. The researchers found that the second power of microwave intensity was the 
most significant parameter, followed by the amount of sample, quadratic time, and power for 
oleuropein yield [9].

Response surface method has been used frequently in recent years to optimize different oil 
extractions other than olive oil including papaya seed oil and pomegranate seed oil [18, 19].

To optimize the ultrasound-assisted extraction conditions followed by ultrahigh performance 
liquid chromatography (UHPLC) to achieve high catechin, myricetin, and quercetin contents, 
and high antioxidant and anticancer activities in the curry leaf extracts, RSM was applied 
by Ghasemzadeh et al. [20]. They used the central composite experimental design (3-level, 
3-factorial) to determine the optimum extraction parameters affecting the extraction yields 
of catechin (Y1), myricetin (Y2), quercetin (Y3), and antioxidant activity (Y4) of curry leaf 
extracts [20].

The extraction efficiency of UAE and MAE methods was compared to a conventional solvent 
extraction by Guglielmetti et al. [21]. Authors used RSM with a CCD to investigate ultrasound 
assisted extraction (UAE) and microwave assisted extraction (MAE) of caffeoylquinic acids 
and caffeine from coffee silverskin (CS) at two particle size. They found that the highest caf-
feine content (14.24 g kg−1 dw) with a significant reduction of extraction time was obtained 
by UAE [21].

Since different extraction methods have important impacts on the polysaccharide bioactivity, 
yield and structure, to find the best extraction method to obtain high yield of polysaccharide 
is crucial. Recently several researchers used RSM for optimization of polysaccharide extrac-
tion from different plant materials [22–26]. To investigate the best response surface design for 
optimization of polysaccharide yield (CPS) from hazelnut skin, CCD and BBD designs were 
studied by Yılmaz and Tavman [25]. Optimum conditions for a maximum yield of polysac-
charide extraction from Trapa quadrispinosa stems recently determined by Raza et al. 41 min, 
31.5 mL/g and 58°C were the optimum conditions for extraction time, ratio of water to mate-
rial, and extraction temperature, respectively [26].

2.2. Phenolic and antioxidant compound extraction from plant materials

In recent years, there has been a growing interest in finding new natural sources of food 
antioxidants. As a main fruit crop, olive is also valued due to its phenolic- containing leaves. 
Optimization of ultrasound-assisted extraction of olive leaf has been studied by extraction 
parameters including solid/solvent ratio, time and ethanol concentration by Şahin and Şamli [27].  
In order to obtain the maximum extraction performance for an ultrasound assisted extraction, 
500 mg olive leaf to 10 mL solvent ratio, 60 min of extraction time and 50% ethanol composi-
tion were found to be as optimal operating conditions [27].

Shirzad et al. also studied on optimization of olive leave extraction in order to shorten the 
time of extraction and decrease the consumption of energy. The conditions for obtaining max-
imum yield of polyphenols, total flavonoids and antioxidants were optimized using RSM The 
effects of ultrasonic temperature (35–65°C), ultrasonic time (5–15 min), and ethanol to water 
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ratio (Et:W) (25–75%) were evaluated. The highest extraction yield was found to be 51% of 
ethanol to water ratio at 65°C for 15 min [28].

Elksibi et al. used RSM to investigate the optimization of natural colorant non-conventional 
extraction technique from olive waste. They studied the combined effects of extraction con-
ditions on total phenolic content (TPC) and relative color strength (K/S) using a three-level 
three-factor Box-Behnken design [29].

Second-order equation for total phenolic content from olive leaf obtained by RSM was shown 
in Eq. (5) by Şahin et al. [9]:

  TPC = − 0.019369 − 0.3600  3X  1   + 0.1424   9X  2     −13  . 6102  9X  3   + 6.64 ×  10   −4   X  1    X  2   + 0.089174  X  1    X  3    
                  + 4.53 ×  10   −3   X  2    X  3   − 0.012889  X  21   − 2.74 ×  10   −4   X  22   + 2.3499  3X  23    (5)

where X1 is the amount of sample, X2 is the MW irradiation power, and X3 is the extraction 
time [9].

Agcam et al. [13] used response surface methodology to optimize ultrasound assisted antho-
cyanin compounds extraction from black carrot. The independent variables were temperature 
and ultrasound energy density which is calculated with following Eq. (6):

  E =   P . t ___ M    (6)

The optimization of five different anthocyanin compounds from black carrot was con-
ducted using CCD design with a 16 factorial experiments, 5 replicates of the central point. 
They obtained quadratic polynomial equations for each anthocyanin compound which were 
cyanidin-3-xylosyl-glucosyl-galactoside (C3XGG),cyanidin-3-xylosyl-galactoside (C3XG), 
monoacylated anthocyanins cyaniding-3-xylosyl-glucosyl-galactosidesinapic acid (C3XGGS), 
cyanidin-3-xylosyl-glucosylgalactoside-ferulic acid (C3XGGF), and cyanidin-3-xylosyl-gluco-
syl-galactoside-coumaric acid (C3XGGC) [13].

Ghasemzadeh et al. [20] found that ANOVA for predicted model of antioxidant activity was 
significant (F-value 17.21, P < 0.0001) with a good coefficient of determination (R2 = 0.98). 
They also observed that extraction variables showed significant (P < 0.01) quadratic and linear 
effects on the antioxidant activity and the predicted model obtained for DPPH (Y4) was as 
follows:

  DPPH = +79.56 − 5.70  X  1   + 1.88  X  2   + 1.29  X  3   − 1.31  X  1    X  2   + 0.24  X  1    X  3   + 0.64  X  2    X  3    
                                 − 15.29   X  1     2  − 0.57   X  2     2  − 1.14   X  3     2   (7)

Where X1 is the temperature, X2 is the methanol concentration, and X3 is the ultrasonic power.

Using RSM the extraction conditions including extraction time, temperature and solvent–
solid ratio were optimized for maximizing extraction yields of carotenoids and antioxidant 
capacity from Gac fruit peel by Chuyen et al. [30]. In that study most effective solvent was 

Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes164

ethyl acetate and optimal extraction conditions (time, temperature and solvent-solid ratio) 
were 150 min, 40.7°C and 80 mL g−1, respectively [30].

Box-Behnken design (BBD) with a total number of 29 experiments were conducted for four 
factors (temperature, liquid to material ratio, duration and ultrasonic power) and at three 
levels to obtain high yield of carotenoid from rapeseed meal. Optimal ultrasound assisted 
extraction conditions were as follows: temperature 49.6°C, liquid to material ratio 41.4 mL/g, 
duration 48.5 min, ultrasonic power 252.9 W [31].

Guglielmetti et al. observed a positive correlation between an increase of temperature and 
total phenolic content (TPC) for conventional solvent extraction and UAE; a negative effect 
on TPC when using MAE above 50°C. They found that temperature was the most effective 
process variable on extraction processes [21].

Espínola et al. used RSM to investigate the optimum extraction condition for virgin olive oil 
extraction from olives at three different maturation index (MI). In olives at lowest maturity 
index, temperature had a positive effect on polyphenol content at low malaxation tempera-
tures, however no significant effect was determined at higher temperatures. On the contrary, 
malaxation time had a slight influence at lower temperatures. In higher MI olives, variations 
of polyphenol content were not significantly different [32].

3. Validation of the model

In the response surface method, the model that best represents how dependent variables are 
affected by independent variables is determined theoretically. However, experiments should 
be carried out to verify the reliability of the theoretically determined models under optimum 
conditions. Chi-Square test and t-tests are most commonly used to determine the difference 
between experimental and predicted values. Another method to evaluate the validation of 
model is to calculate experimental error between theoretical and experimental values.

The experimental and predicted values were 8.31 and 8.42% for the acidity and the yield were 
0.31 g oleic acid/ 100 g olive oil and 0.28 g oleic acid/ 100 g olive oil for predicted and experimen-
tal values, respectively. These results were in good agreement with the predicted values under 
the optimum working condition. Therefore, the acidity value of olive oil and yield for any com-
bination of ultrasound time, ultrasound temperature and malaxation time could be accurately 
predictor by the regression models obtained by RSM [10]. In the 2005–2006 season, the esti-
mated extraction yield, acidity and peroxide index of the 3.2 MI olive samples showed that the 
experimental data were consistent with the model for all three dependent variables [32].

Elksibi et al. found that experimental value of 22.54 and 1120 mg/L for the color strength param-
eter (K/S) and the total phenolic content, respectively. While the predicted values were 23.22 
and 1134 mg/L for the color strength parameter (K/S) and the total phenolic content, respec-
tively. They determined the results obtained at the optimal combination was in agreement with 
the theoretical result. Therefore, the model obtained in this research was confirmed [29].
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The experimental extraction yield in the hot water extraction process was 3.79 ± 0.13% and the 
yield in the ultrasound extraction process was 6.04 ± 0.21% under the optimum conditions, 
which were in good agreement with the predicted values. These results demonstrated that the 
extraction models were reliable and accurate [33].

15 min, 45°C and 50% amplitude was selected as an optimal level of parameters to validate the 
result of desirability functions. 1.69% CPS yield and 73.00 kJ energy consumption were found 
and the predicted values obtained by CCD and BBD were similar to the experimental values 
and the points of all predicted and experimental response values were correlating. Thus the 
model developed was significant and reliable. Studentized test results were in agreement 
with experimental runs which showed that all the data points were kept within the limits [34].

Validation of the regression equation and statistical model was conducted at 49.6°C, 41.4 mL/g, 
48.5 min and 240 W which were temperature, liquid to material ratio, extraction time and 
power of ultrasound, respectively. With these optimized conditions, the predicted response 
for carotenoid yield was approximately 0.1570 mg/g, and the experimental value was found 
as 0.1577 ± 0.0014 mg/g. These results confirmed that experimental values are in agreement 
with the predicted values, thus the model was validated [31].

4. Conclusions

Response surface methodology with a wide range of applications in food science and tech-
nology has been successfully used for many years. Optimization of the extraction of plant 
materials known to be useful for health has attracted many researchers in recent years. This 
section summarizes the recent researches that optimize extraction conditions necessary to 
obtain higher quality and yield than plant materials using RSM. One of the most important 
points in the implementation of this method is that the predicted values in the model should 
be verified experimentally. RSM has many advantages when compared to classical methods. 
It needs fewer experiments to study the effects of all the factors and the optimum combina-
tion of all the variables can be revealed. The interaction (the behavior of one factor may be 
dependent on the level of another factor) between factors can be determined. It also requires 
less time and effort. With all of these advantages, it will be used not only in food science but 
also in other areas in future.
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