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update of the recent advances in the field of rational design of PDE inhibitors. The 
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substrate transition-state analog and evaluating the structure-activity relationship of 
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software Molecular Operating Environment. The aim of the forth chapter is to develop 
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Preface

The basic aim of a quantitative structure-activity relationship (QSAR) is to find a statistical
model that is related to a structure of a chemical, which is described by reference to certain
parameters and to its biological activity. The QSAR analysis allows quantitative analysis of
the interactions between chemicals and life, and it has been successfully applied in many
different areas including pharmaceutical, agricultural, molecular, and cellular events under‐
lying the ozone toxicity in the lung, the prediction of toxicity to environmental species, the
identifying of hazardous compounds for screening of inventories of present compounds,
and the risk assessment and inhibition of corrosion.

QSAR methods can contribute to billion errors, boosting cost-effectiveness and time effec‐
tiveness of risk assessment procedure; saving of million test animals; elucidation of mecha‐
nisms; the identification of toxic chemicals in chemical structure, primarily, the prediction of
specific properties of chemicals based on the structure of the substances; the design of safer
chemicals; and decision-making process of deciding whether it is necessary to elucidate the
concern of a test point.

In the second chapter, application of computational methods used in discovery and devel‐
opment of phosphodiesterase inhibitors will be presented.

In the third chapter, it will be designed that potent small-molecule non-peptidic BACE1 in‐
hibitors with the use of hypothesized that the interaction of the P2 position of the inhibitor
with the S2 site of BACE1 was critical for the mechanism of inhibition and with the propose
the novel concept of “electron donor bioisostere” for drug discovery.

The chromatographic retention times of chlorogenic acids in coffee will be modeled by
structure-property relationships in the forth chapter. An extension of solvent-dependent
conformational analysis program (SCAP) octanol-water model to organic solvents was used
in this study.

In the fifth chapter, to investigate the interaction modes of natural compounds to the
potential macromolecular targets, docking simulation is going to be performed by using
AutoDock Vina.

Fatma Kandemirli
Faculty of Engineering and Architecture

Biomedical Engineering Department
University of Kastamonu

Kastamonu, Turkey





Chapter 1

Introductory Chapter: Some Quantitative Structure
Activity Relationship Descriptor

Fatma Kandemirli

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69642

1. Quantitative structure activity relationship

The Quantitative structure–activity relationship (QSAR) specifies the function between any 
property of the system under examination and the molecular system and its any geometric and 
chemical characteristics. QSAR tries to find a relationship between activity and molecular char-
acterization so that these functions can be used to calculate the property of the new compounds.

QSAR models are available at the intersection of chemistry, statistics and property of the sys-
tem. This property can be activity inhibition and so on. These requirements for the creation 
of the QSAR model are a data set, providing experimental measurements for the system. 
These datasets typically consist of hundred or fewer compounds associated with a specific 
parameter such as inhibition efficiency, intestinal absorption, volume of distribution, blood-
brain barrier penetration or activity of biological targets. Corwin Hansch initiated the field of 
quantitative structure-activity relationships in the years 1962 and 1963, and they reported a 
study on the structure-activity relationships of plant growth regulators and their dependency 
on Hammett constants and hydrophobicity with the publications [1, 2].

The concept of QSAR is used for drug discovery and development and has gained wide 
applicability for correlating molecular information with biological activities, and the quanti-
tative structure-property relationship (QSPR) is an alternative to experimental processing that 
envisages various physical and chemical properties. QSPR is related to the structure and any 
physical-chemical properties of the compounds taken into account. QSAR/QSPR associates 
biological activities or physical-chemical properties with certain structural features or atomic, 
group or molecular descriptors in the series of compounds. The QSAR/QSPR model includes 
structure representation, descriptive analysis and modeling. Todeschini and Consonni [3] 
defined the molecular descriptor as the following “The molecular descriptor is the final result 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



of a logic and mathematical procedure which transforms chemical information encoded 
within a symbolic representation of a molecule into a useful number or the result of some 
standardized experiment.” Chemical structural features are called molecular descriptor, 
and they are closely related to target property of the compounds. There are many molecular 
descriptors. Some of them are conformational, fragment constants, electronic, receptor, quan-
tum mechanical, graph-theoretic, topological, information-content, molecular shape analysis, 
spatial, structural, thermodynamic, pKa, Absorption, distribution, metabolism, and excretion 
(ADME), molecular field analysis and receptor surface analysis descriptors. The descriptors 
may be classified as topological, geometrical, electronic and hybrid or 3D descriptors.

Topological indices are two-dimensional descriptors which take into account the internal 
atomic arrangement of compounds, and which encode in numerical form information about 
molecular size, shape, branching, presence of heteroatoms and multiple bonds and are a very 
useful tool for drug design specialists, with advantages such as offering a simple way of mea-
suring molecular branching, shape and size [4, 5]. Third generation of topological indices is 
the hyper-Wiener index [6, 7] or the molecular identification (ID) numbers [8], the information 
indices [9–11], and the electrotopological state (E-state) indices [12, 13].

Geometrical descriptors or 3D descriptors in general provide much more information and 
discrimination power than topological descriptors for similar molecular structures and mol-
ecule conformations due to involving knowledge of the relative positions of the atoms in 3D 
space [14].

A number of geometric descriptors have been proposed by several scientific communities 
in the last decade to get molecular information for development of QSAR/QSPR models [3].

Electronic descriptors can be used in the design of a training set in QSAR studies, and the 
electronic identifiers obtained by quantum mechanical calculations are more precisely than 
those obtained by semiempirical calculations [15].

Quantum chemically derived descriptors can be subdivided as atomic charges, molecular 
orbital energies, frontier orbital densities, atom-atom polarizabilities, molecular polarizabil-
ity, dipole moment and polarity indices, and energy [16], free valence of atoms [17], atomic 
orbital electron populations [18], overlap populations [19], partitioning of energy data into 
one-center and two-center terms [19], and vectors of lone pair densities [19] are the other 
quantum chemical descriptors successfully used in QSAR/QSPR studies.

Since electrostatic interactions play important role in a chemical reaction, one of the most 
fundamental descriptors to be used in QSAR are quantum chemically computed atomic 
charges. The atomic charges have been used for the prediction of anti-HIV-1 activities of 
1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT)-analog compounds [20]. They 
explained octanol-water partition coefficients of organic compounds with the atomic charges 
[16, 21]. Bhat et al. [22] reported optimal ligand-charge distribution at protein-binding sites 
with the help of atomic charge

Highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital 
(LUMO) are very popular quantum chemical descriptors. The strongest Frontier orbitals (FO) 
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interaction involves the HOMO of the nucleophile and the LUMO of the substrate [23]. They 
reported that mutagens have lower LUMO energies than nonmutagens [24] and also reported 
that carcinogens, as a group, have lower LUMO energies than noncarcinogens [25].

As a conclusion, a QSAR/QSPR tries to find a consistent relationship between molecular prop-
erties and variability in biological activity for a number of compounds so that these equations 
can be used to evaluate new chemical entities.

QSAR has been applied successfully and extensively to find predictive models for activity of 
bioactive agents for the toxicity prediction [26–29], activity of peptides [30–33], drug metabo-
lism [34–36], gastrointestinal absorption [37–39], prediction of pharmacokinetic and ADME 
properties [40–44], drug resistance and physicochemical properties [45–47].
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Abstract

Computational drug design tools have become indispensable in the quest for new drugs. 
There is hardly any drug discovery program where computational methods are not 
employed, be it structure‐based or ligand‐based methods. Numerous drug targets have 
been explored for discovery of new drugs using computational methods. In recent times, 
discovery of newer and selective phosphodiesterase as medications for inflammatory 
disorders, CNS disorders, and many other diseases has been the focus of many research 
groups worldwide. Most of these groups have employed computational methods of 
drug design and discovery at different stages of their research. This chapter reviews the 
reported application of computational methods used in the discovery and development 
of phosphodiesterase inhibitors.

Keywords: phosphodiesterase, QSAR, docking, molecular dynamics, pharmacophore

1. Introduction

The early application of computational methods as a means to identify and design phos‐
phodiesterase (PDE) inhibitors goes back to the 1980s where the first reported study tried 
to explain the relation between specific physicochemical properties and potency of known 
inhibitors [1]. The result was the identification of pharmacophore for PDE inhibitors [2]. 
Computational methods of drug design and discovery have impacted the overall process of 
drug discovery in a big way over the last two decades [3, 4]. The cost as well as time of drug 
discovery has been reduced due to the inclusion of computational methods as well as high‐
throughput synthesis and screening. Computational methods have undergone  development 
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at immense pace and newer and more accurate methods have come up. Traditionally, compu‐
tational methods have been classified into structure‐based methods and ligands‐based meth‐
ods [4]. Structure‐based methods like docking‐based virtual screening has been used for new 
lead identification for phosphodiesterase (PDE) inhibitors, while ligand‐based methods such 
as quantitative structure activity relationships (QSAR) have been mostly used for lead opti‐
mization [5–8]. However, ligand‐based methods, such as pharmacophore development, have 
played an important role in many lead discovery programs. Structure‐based methods like 
molecular dynamics (MD) simulations have been used to study the binding of PDE inhibi‐
tors with the enzyme. While the information derived from MD simulations has been used 
to optimize the structure of inhibitors [9–13]. As far as exploring the inhibitor structural fea‐
tures determining selectivity variations, the computational approach could rely on both struc‐
ture‐based and ligand‐based strategies. However, due to high degree of similarity observed 
among all the PDE catalytic sites, the ligand‐based approach could represent a much more 
promising tool to deeply investigate the selectivity issues around PDE inhibitors as compared 
to structure‐based approach.

This chapter aims to provide an update of the recent advances in the field of rational design 
of PDE inhibitors. Attempt has been made to explore both scientific journals as well as patent 
literature.

2. Ligand‐based methods: general aspects and perspective

The most prominently used ligand‐based drug design methods include QSAR and pharmaco‐
phore mapping. There are several reports where QSAR has been used for optimizing the PDE 
inhibition activity of ligands having specific structural scaffolds. Some studies have reported 
unique applications of ligand‐based methods, i.e., ligand‐based homology modeling and 
exploration of selectivity toward specific receptor subtypes.

2.1. PDE10A inhibitors

Among the several PDE subtypes inhibitors, PDE10A inhibitors have attracted enormous 
interest recently for their potential in the treatment of schizophrenia and Huntington’s dis‐
ease, whereby they can fill up the voids present in the current therapeutic approach. In one 
of the recent studies on PDE10A inhibitors, Mondal et al. reported the application of ligands‐
based methods toward optimization of cinnolines as PDE10A inhibitors [14]. 2D‐QSAR, 
HQSAR (hologram quantitative structure activity relationship), pharmacophore mapping, 
and three‐dimensional (3D)–QSAR analyses in combination with structure‐based methods 
like molecular docking and MD simulations were used for the purpose.

Eighty‐one cinnoline derivatives having PDE10A inhibitory activity were used as the data set. 
2D‐QSAR models were developed by multiple linear regression and partial least square (PLS) 
analyses using both atom‐based and whole molecular descriptors. The best model, having 
considerable internal (q2 = 0.812) and external (R2 pred = 0.691) predictabilities, demonstrated 
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importance of atom‐based topological and whole molecular E‐state as well as 3D topological 
indices.

Hologram QSAR, a relatively newly developed QSAR technique, relates biological activity to 
structural fragments [15]. HQSAR eliminates the need for generation of 3D structures, puta‐
tive binding conformations, and molecular alignments. The process of generating HQSAR 
models involve the fragmentation of the data set structures and then hashing into array bins. 
Molecular hologram fingerprints are then generated. Holograms are constructed by cutting 
the fingerprint into strings at various hologram length parameters. After the generation of 
descriptors, partial least square (PLS) methodology is used to find the possible correlation 
between dependent variable (activity) and independent variable (descriptors generated by 
HQSAR structural features) [15]. The best HQSAR model for cinnolines as PDE10A inhibitors 
was found to be statistically significant (q2 = 0.664, R2 pred = 0.513), and it highlighted some 
important structural features.

Pharmacophore mapping was also employed in this case. The pharmacophore hypothesis 
showed the importance of hydrogen bond acceptors and ring aromatic and hydrophobic fea‐
tures for higher activity. The compounds were mapped to the pharmacophore as per their 
activity, and the pharmacophore provided an efficient means of aligning the compounds for 
comparative molecular field analysis (CoMFA) and comparative molecular similarity indices 
analysis (CoMSIA) studies.

Finally, three‐dimensional QSAR methods implemented as CoMFA and CoMSIA were 
applied on the data set. 3D‐QSAR models were generated using two different types of align‐
ment procedures—(1) pharmacophore based and (2) docking based. Docking‐based alignment 
produced better results for both CoMFA (q2 = 0.578; R2 pred = 0.841) and CoMSIA (q2 = 0.610; 
R2 pred = 0.824) methods.

Molecular dynamics (MDs) simulations were also performed for two ligand–receptor com‐
plexes, and the findings of MD simulations were consistent with the interpretations obtained 
from ligand‐based analyses methods described above. The role of hydrogen bond acceptors 
and aromatic and hydrophobic features in determining PDE10A inhibition potential was 
unraveled. The study clearly puts forth guideline for the design and development of cin‐
nolines as potent and selective PDE10A inhibitors and demonstrates the role of ligand‐based 
drug design methods combined with structure‐based drug design (SBDD) methods.

2.2. PDE4 inhibitors

PDE4 has long been considered as target for design of antiinflammatory molecules, and 
numerous PDE4 inhibitors have been developed [16–21]. Quinolines as a third‐generation 
of PDE4 inhibitors show an increased antiinflammatory effect without being dose limited by 
side effects compared to the first‐ and second‐generation of PDE4 inhibitors such as rolipram 
and roflumilast. Recently, newer quinoline derivatives were developed as selective PDE4B 
inhibitors using ligand‐based pharmacophore and atom‐based 3D‐QSAR modeling along 
with structure‐based docking and ADME methods [21].
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These studies, in combination, led to new understanding about the selection of target mol‐
ecules from many candidates. In this case, computational methods were not the primary tools 
used for designing the ligands rather they were used for identifying and confirming the bind‐
ing site of the ligands on PDE4B. The 3D‐QSAR model of PDE4B inhibitors developed for this 
study proved to be reliable with r2 value of 0.96 and q2 value of 0.91. The specific pharmaco‐
phore for PDE4B was then mapped and selected for virtual screening, and the potent PDE4B 
inhibitors were finally confirmed their selectivity ability for PDE4B by docking, ADME analy‐
sis, and MD, and then, molecules were developed as selective PDE4B inhibitors (Figure 1) [21].

2.3. PDE7 inhibitors

Like PDE4, PDE7, a cAMP‐specific phosphodiesterase, is also highly expressed in human 
immune system such as thymus, lymph nodes, spleen, and blood leukocytes, suggesting 
PDE7 as a possible target for treating CNS and airway diseases [22–25]. A recent study by 
Cichero et al. whereby they applied 3D‐QSAR methods for the development of selective PDE 
7 inhibitors is worth noting. Herein, 72 derivatives of thieno[3,2‐d]pyrimidin‐4(3H)‐one were 
selected from literature and were used to develop new selective PDE7 inhibitors [26]. The 
uniqueness of the study was the application of 3D‐QSAR to identify the structural features 
required for the selectivity for a particular target.

Docking‐based 3D‐QSAR followed by redocking was performed to identify the most suitable 
bioactive conformations of derivatives and most comparable binding mode with that of X‐ray 
structure. The conformations of the compounds showed good agreement with the conformations 
in the known PDE7A‐ligand complex. The compounds were further submitted to a CoMFA and 
CoMSIA analysis. Since inhibitors which showed high selectivity for PDE7, rather than PDE4, 
are candidates for antiinflammatory molecules, two models (PDE7 selectivity (model A) and 

Figure 1. In silico strategy to discover PDE4B specific inhibitors.
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PDE4B selectivity (model B)) were established. Predictive models for both the activities were 
obtained, i.e., CoMFA(model A) (optimum number of components (ONC = 6, r2 = 0.946, and standard 
error of estimate, SEE, = 0.292), CoMSIA(model A) (r2 = 0.961, SEE = 0.249), CoMFA(model B) (ONC = 6, 
r2 = 0.968, and SEE = 0.353), and CoMSIA(model B) (r2 = 0.968 and SEE = 0.356; Figure 2). The role of 
steric, electrostatic, and hydrophobic features in the binding mechanism of ligands to both PDE7 
and PDE4 was identified. The study unraveled structural information for the development of 
new PDE7 inhibitors with high selectivity.

2.4. PDE11 inhibitors

Another unique application of ligand‐based methods was reported by Cichero et al. earlier in 
2013. Since the X‐ray structure of PDE11 was not available, ligand‐based homology  modeling 

Figure 2. CoMFA and CoMSIA models for (a) PDE7 selectivity and (b) PDE4B selectivity (CoMFA: green, favored for 
bulky groups; yellow, disfavored for bulky groups) (CoMSIA: blue, favorable for more positively charged groups; red, 
favorable for less positively charged groups). (Cichero et al. [26] – Published by The Royal Society of Chemistry).
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technique was applied to explore the 3D structure of PDE11 [27]. Consistent with the sequence 
similarity of PDE11 and PDE5, several tadalafil analogs (PDE5 ligands) showed binding 
affinity to PDE11 too [28–30]. Thus, the 3D structure of PDE11 was built on the basis of 
PDE5‐tadalafil complex using homology modeling technique [31]. Besides the conventional 
homology modeling steps such as insertion and deletion of extra atoms during the energy 
minimization stages, evolution, including model building and refinement were performed 
in this specific case. Specifically, residues located in H‐loop and M‐loop were involved in 
obtaining PDE11 structure as they are important for substrate recognition [32]. The coordi‐
nates of PDE11 were derived from PDE5‐tadalafil complex, and the amino acid sequences 
were obtained from the SWISSPROT database. This was followed by the development of 
models using MOE software without significant main chain deviations. AMBER94 force 
field was applied to minimize the structure energy, and Ramachandran plots were applied 
to assess the final obtained model. Successively, reliability of the derived PDE11 model was 
further confirmed by molecular docking and MD simulations with selective PDE11 inhibitors 
and dual PDE5‐PDE11 inhibitors. This study provided new information of target structure 
of PDE11 to design selective PDE11 inhibitors for the treatment of cardiac pathologies [33]. 
The success of this approach is supposedly due to the synergic interaction between theory 
and experiment.

3. Structure‐based methods: general aspects and perspective

Structure‐based drug design (SBDD), as one of the in silico methods, is almost an integral part 
of any drug discovery and development project. These methods, in addition to the binding 
affinity between a specific protein target and a ligand, also provide insight into the interaction 
between the two. This helps in devising substituent modifications around the ligand scaffold 
leading to improved binding [34]. Based on the existing knowledge of 3D structures of PDEs, 
the great potential and success of structure‐based computational methods have been visible 
in the development of newer PDE inhibitors. In addition to the routine screening and interac‐
tion studies, many unique applications of structure‐based methods have been reported for the 
development of PDE inhibitors.

3.1. Selective PDE4B inhibitors

In one of the recent reports by Jing Li and team, virtual screening of natural product data‐
base was carried out to discover novel selective PDE4B inhibitors from natural products data‐
base [35]. Structure‐based approaches like docking and molecular dynamics simulation were 
used for the purpose, although pharmacophore‐based screening was also employed as ini‐
tial filter. The screening led to the identification of four potential PDE4B‐selective inhibitors 
(ZINC67912770, ZINC67912780, ZINC72320169, and ZINC28882432; Figure 3). Compared 
to the reference drug (roflumilast), they scored better during the virtual screening process. 
DOCK and Vina were used for docking, and results were agreeable. Binding free energy was 
−317.51, −239.44, −215.52, and −165.77 kJ/mol, which is better than −129.05 kJ/mol of roflumi‐
last. The MD studies also showed that ZINC28882432‐PDE4B complex reached stable RMSD 
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faster than roflumilast‐PDE4B complex. This study demonstrates the successful application of 
MD in a virtual screening workflow.

3.2. Selective PDE5 inhibitors

The cross‐reactivity of PDE 5 inhibitors like sildenafil, vardenafil, and tadalafil with hERG1 is 
well documented. However, hERG1 is proven to be involved in the regulation of human ven‐
tricular myocyte action potential, thus blocking this hERG channel results in the function loss of 
the PDE5 inhibitors and further leads to serious life‐threatening disorders and cardiovascular 
problems [36, 37]. One of the recent studies explored this cross‐reactivity using docking. Open 
and open‐inactivated states of hERG1 potassium channel were used as protein structures and 
binding interaction patterns and affinity between the proteins and PDE5 inhibitors were studied 
[38]. Three different structure‐based docking tools including GOLD, MOE, and AUTODOCK 
were applied to identify the binding interactions between Sildenafil and hERG1 channel. In 
open‐state conformation of hERG1, both GOLD and MOE showed common interactions and 
further AUTODOCK and GOLD scoring analysis gave a 2.16 kcal/mol lower energy compared 
to open‐inactivated state. In open‐inactivated conformation of hERG1, three docking tools 
showed similar interaction patterns but MOE docking results were more specific in terms of H‐
bonding, distance, and key residues. To further confirm the key residues which are responsible 
for binding affinity to the hERG1 channel, in silico alanine mutagenesis study was performed, 
and new promising molecules were designed based on the interaction patterns and alanine 
mutagenesis studies. MD simulations were finally used to confirm that the complex of the new 
compounds with hERG1 channel is much less stable than that with PDE5. This study showed 
new approach toward the design of PDE5 inhibitors with lower affinity for hERG1 channels.

In another study dealing with cross‐reactivity of PDE5 inhibitors, Kayık and team explored 
cross‐reactivity of PDE5 inhibitors with PDE6 and PDE11 [39]. The major challenge of their 
study was designing novel PDE5 inhibitors with decreased cross‐reactivity with PDE6 and 
PDE11. For this aim, the similarity‐based virtual screening protocol was applied for the “clean 
drug‐like subset of ZINC database that contained more than 20 million small compounds. 
Moreover, molecular dynamics (MD) simulations of selected hits complexed with PDE5 
and off‐targets were performed to get insights for structural and dynamical behaviors of the 
selected molecules as selective PDE5 inhibitors. Since tadalafil blocks hERG1 K channels in 
concentration‐dependent manner, the cardiotoxicity prediction of the hit molecules was also 
tested. The study revealed important structural information for the design of novel, safe, and 
selective PDE5 inhibitors by applying SBDD.

Figure 3. Structure of ZINC28882432 a PDE4B inhibitor from natural sources identified by virtual screening.
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3.3. Dual PDE1 and PDE5 inhibitors

Dual inhibitors of PDE1 and PDE 5 are known to produce vasodilation and have thus been 
explored as therapeutic agents for the treatment of different cardiovascular diseases, i.e., 
hypertension, angina, heart failure, and arteriosclerosis [40, 41]. Yamazaki et al. employed a 
ligand‐based virtual screening for the identification of novel lead candidates with potent dual 
inhibition of PDE1 and 5 [42]. These compounds have application in the treatment of different 
cardiovascular diseases, i.e., hypertension, angina, heart failure, and arteriosclerosis [42, 43].

They applied virtual screening that consists of classification and regression tree (CART) analy‐
sis with the utilization of 168 2‐center pharmacophore descriptors and 12 macroscopic descrip‐
tors which can result in finding of new lead compounds and drug candidates efficiently. The 
method applied started with the learning step of CART analysis where a prediction model is 
configured, and the explanatory variables are selected as per the discrimination index of train‐
ing set. These variables should be independent from each other.

In the following step, they checked the potential energy term and solvation energy, which are the 
main constituents of the binding energy used in molecular modeling and simulation, to select 
the most suitable set of explanatory variables. The potential and solvation energy was obtained 
by summing up electrostatic potential term, van der Waals potential term, solvation free energy 
term, and hydrogen bond energy term. This situation is represented qualitatively by pharma‐
cophore where it provides the binding features with the position of these features. In chemo‐
informatic analysis, the pharmacophore descriptor is either a part or all of pharmacophore. The 
n‐center pharmacophore descriptor is the number of features that participate in binding and the 
distance between them, for example, 2‐center, 3‐center, etc. In this research, they adapted 2 for n 
to reduce the number of explanatory variables. Six binding features were used with eight classes 
of distance between them, this gives 168 two‐center pharmacophore descriptor.

In next stage, the virtual screening has been performed to screen the library of commercially 
available chemical compounds that was supplied by SPECS Inc. for PDE5 inhibitor activity. 
Based on Lipinski’s rule of five, the compounds with undesirable physicochemical and phar‐
macokinetic properties were filtered out, followed by selection of compounds with desirable 
inhibition activities for PDE5 by CART model. The next step involved the selection of struc‐
turally diverse 100 compounds. Finally, 19 drug‐like compounds out of 100 were selected and 
obtained from SPECS Inc. and assayed in vitro to test their inhibitory activity against PDE1 
and PDE5 [42]. The results showed that the virtual screening along with the CART analysis 
have a high prediction capability for biological activity of new chemical compounds.

3.4. Selective PDE1 inhibitors

One of the least explored PDEs as a drug target singly has been PDE1, although it has been 
a combined target with PDE5 for vasodilator drugs [11, 44]. However, some of the studies 
have shown that it is a promising target for the treatment of cognitive impairments [45]. One 
such report by Li et al. recently presented novel PDE1 inhibitors for the treatment of cognitive 
impairments. They applied both ligand‐ and structure‐based drug design methods to discover 
these novel PDE1 inhibitors. Achieving high selectivity among PDE enzymes is challenging, 
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ing set. These variables should be independent from each other.

In the following step, they checked the potential energy term and solvation energy, which are the 
main constituents of the binding energy used in molecular modeling and simulation, to select 
the most suitable set of explanatory variables. The potential and solvation energy was obtained 
by summing up electrostatic potential term, van der Waals potential term, solvation free energy 
term, and hydrogen bond energy term. This situation is represented qualitatively by pharma‐
cophore where it provides the binding features with the position of these features. In chemo‐
informatic analysis, the pharmacophore descriptor is either a part or all of pharmacophore. The 
n‐center pharmacophore descriptor is the number of features that participate in binding and the 
distance between them, for example, 2‐center, 3‐center, etc. In this research, they adapted 2 for n 
to reduce the number of explanatory variables. Six binding features were used with eight classes 
of distance between them, this gives 168 two‐center pharmacophore descriptor.

In next stage, the virtual screening has been performed to screen the library of commercially 
available chemical compounds that was supplied by SPECS Inc. for PDE5 inhibitor activity. 
Based on Lipinski’s rule of five, the compounds with undesirable physicochemical and phar‐
macokinetic properties were filtered out, followed by selection of compounds with desirable 
inhibition activities for PDE5 by CART model. The next step involved the selection of struc‐
turally diverse 100 compounds. Finally, 19 drug‐like compounds out of 100 were selected and 
obtained from SPECS Inc. and assayed in vitro to test their inhibitory activity against PDE1 
and PDE5 [42]. The results showed that the virtual screening along with the CART analysis 
have a high prediction capability for biological activity of new chemical compounds.

3.4. Selective PDE1 inhibitors

One of the least explored PDEs as a drug target singly has been PDE1, although it has been 
a combined target with PDE5 for vasodilator drugs [11, 44]. However, some of the studies 
have shown that it is a promising target for the treatment of cognitive impairments [45]. One 
such report by Li et al. recently presented novel PDE1 inhibitors for the treatment of cognitive 
impairments. They applied both ligand‐ and structure‐based drug design methods to discover 
these novel PDE1 inhibitors. Achieving high selectivity among PDE enzymes is challenging, 
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since all PDE enzymes share a high degree of sequence homology in the catalytic domains [46–
50]. They started by analyzing the published PDE inhibitors with various scaffolds and found 
out that pyrazolo[3,4‐d]pyrimidinones, which was reported by Xia and coworkers, could be 
the first step for designing a new, potent, and selective PDE1 inhibitors [51]. At the beginning, 
these compounds were developed as dual inhibitors for both PDE1 and PDE5 [46–49].

According to the available X‐ray crystal structures of human PDE enzymes, a hydrogen bond 
is formed between the N‐7 nitrogen of purine ring in guanine and adjacent amino acid residue 
in catalytic site. In pyrazolo[3,4‐d]pyrimidinone compounds, the hydrogen bond network is 
disrupted due to the shift of nitrogen in pyrozole ring from position 3 to position 2. Li et al. 
designed polycyclic 3‐aminopyrazolo[3,4‐d]pyrimidinone scaffold 2 to reestablish the hydro‐
gen bond through the substitution of amino group at carbon 3 of pyrazole ring [50]. By apply‐
ing a combination of ligand‐based and structure‐based drug design methods, they designed 
numerous novel scaffolds as PDE1 inhibitors. Their work resulted in the discovery of a clini‐
cal candidate (ITI‐214) which has excellent selectivity toward PDE1 (Figure 4). ITI‐214 is now 
in clinical trial phase I and is being tested for its ability in the treatment of cognitive deficits 
associated with neurodegenerative and neuropsychiatric disorders and other CNS and non‐
CNS diseases [45, 50].

3.5. PDE9A inhibitors

Another PDE which has emerged as a promising drug target recently is PDE9A [52]. PDE9A is 
now considered as an important therapeutic target for the treatment of diabetes and Alzheimer’s 
disease (AD) [53]. Most of the inhibitors of PDE9A until recently were based on the pyrazolopy‐
rimidinone scaffold, thus there was need to identify novel scaffolds possessing this activity [54]. 
Zhe Li and team used a combinatorial method including pharmacophores, molecular docking, 
molecular dynamics simulations, binding free energy calculations, and bioassay to discover 
novel PDE9A inhibitors with new scaffolds (Figure 3) [55]. SPECS database containing about 

Figure 4. Structure of ITI‐214, a PDE1 inhibitor in clinical trials.
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200,000 compounds was screened using their combinatorial approach. The combination of 
ligand‐ and structure‐based methods in combinatorial fashion was done with the aim to reduce 
computational cost as structure‐based methods alone are computationally too expensive for 
virtual screening. The results were encouraging as has been the case whenever such combinato‐
rial approach has been employed. Fifteen hits out of 29 molecules (a hit rate of 52%) with five 
novel scaffolds were identified to be PDE9A inhibitors with inhibitory affinities no more than 
50 mM to enrich the structural diversity, different from the pyrazolopyrimidinone‐derived fam‐
ily. The high hit ratio of 52% for this virtual screening method indicated that the combinatorial 
method is a good compromise between computational cost and accuracy. Binding pattern anal‐
yses indicate that those hits with nonpyrazolopyrimidinone scaffolds can bind the same active 
site pocket of PDE9A as classical PDE9A inhibitors. The five novel scaffolds discovered in this 
study can be used for the rational design of PDE9A inhibitors with higher affinities (Figure 5).

3.6. PDE2 inhibitors

PDE2 is a key enzyme that hydrolyzes both cAMP and cGMP. It has been suggested that 
selective PDE2 inhibitors could be a promising therapy for some of the CNS disorders, such as 
Alzheimer’s disease, memory deficit, and depression since PDE2 modulates neuronal signaling 

Figure 5. Virtual screening strategy to discover novel PDE9 inhibitor scaffolds.

Quantitative Structure-activity Relationship16



200,000 compounds was screened using their combinatorial approach. The combination of 
ligand‐ and structure‐based methods in combinatorial fashion was done with the aim to reduce 
computational cost as structure‐based methods alone are computationally too expensive for 
virtual screening. The results were encouraging as has been the case whenever such combinato‐
rial approach has been employed. Fifteen hits out of 29 molecules (a hit rate of 52%) with five 
novel scaffolds were identified to be PDE9A inhibitors with inhibitory affinities no more than 
50 mM to enrich the structural diversity, different from the pyrazolopyrimidinone‐derived fam‐
ily. The high hit ratio of 52% for this virtual screening method indicated that the combinatorial 
method is a good compromise between computational cost and accuracy. Binding pattern anal‐
yses indicate that those hits with nonpyrazolopyrimidinone scaffolds can bind the same active 
site pocket of PDE9A as classical PDE9A inhibitors. The five novel scaffolds discovered in this 
study can be used for the rational design of PDE9A inhibitors with higher affinities (Figure 5).

3.6. PDE2 inhibitors

PDE2 is a key enzyme that hydrolyzes both cAMP and cGMP. It has been suggested that 
selective PDE2 inhibitors could be a promising therapy for some of the CNS disorders, such as 
Alzheimer’s disease, memory deficit, and depression since PDE2 modulates neuronal signaling 

Figure 5. Virtual screening strategy to discover novel PDE9 inhibitor scaffolds.

Quantitative Structure-activity Relationship16

involved in concentration, learning and memory, and emotion [56]. Bo Yang and coworkers 
examined the binding structures and free energies for PDE2 and benzo[1,4]diazepin‐2‐one 
derivatives (PDE2 inhibitors) by combining the molecular docking, molecular dynamics (MD), 
calculations of binding free energy, and binding energy decompositions [57, 58]. Molecular 
docking was performed followed by energy minimization. The docked structures were ana‐
lyzed followed by the selection of the best pose for each ligand. The next step was MD stimu‐
lation. The binding free energy (ΔGbind) of PDE2A‐ligand complex was determined based on 
the MD trajectory for each complex [59]. The binding energy decomposition was estimated by 
using molecular mechanism/generalized Born surface area (MM/GBSA) method.

The results put forth important information regarding the PDE2A‐ligand binding patterns 
including the intermolecular interactions, hydrophobic interactions, and hydrogen bonding. 
The estimated PDE2A‐inhibitor binding patterns and the agreement between theoretical and 
experimental outcomes provided a firm base for further design of new, selective, and more 
potent PDE2A inhibitors [57].

In recent years, several potent inhibitors for PDE2 were developed but none reached the 
market due to either lack of selectivity or poor pharmacokinetic properties. This led work 
to focus on the optimization of pharmacokinetic properties of PDE2 inhibitors. Zhang et al. 
tried to discover selective potent PDE2A inhibitors with improved pharmacokinetic proper‐
ties [60–67]. In their study, they described the identification of novel PDE2A inhibitors by 
structure‐based virtual screening. They combined pharmacophore model‐based screening 
and molecular docking along with MD simulations and bioassay to find new selective com‐
pounds with significant improvement in inhibition activity (Figure 6).

Beginning with the selection of small‐molecule database SPECS (comprising almost 200,000 
small molecules) for virtual screening, this database was filtered by Lipinski’s rule of five to 
constitute databaset0 which is the initial data set. The crystal structures of PDE2A in a bound 

Figure 6. Discovery of LHB‐8, a potent PDE2 inhibitor. (Reprinted with permission from Zhang et al. [67] Copyright © 
2017 American Chemical Society).
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state were used to generate the 3D pharmacophore model. This model was applied for mini‐
mizing the size of database through efficient screening of dataset0 to obtain dataset1. Pan‐
assay interfering compound substructures (PAINS) screening was used to obtain dataset2 by 
eliminating the false positive compounds that might interfere with other detecting methods 
and result in false positives.

In the next step, the dataset2 compounds were submitted for molecular docking to predict 
the preliminary optimal binding modes and binding energies between PDE2A and ligand. 
Those compounds with better scores than the reference and proper binding modes consti‐
tuted dataset3. In the last step, MD stimulations and molecular mechanism/Poison‐Boltzman 
surface area (MM‐PBSA) method were applied for more accurate prediction of the binding 
modes and binding energies. AMBER 10.0 was utilized to stimulate the binding of PDE2A 
with the compounds in dataset3, whereas MM‐PBSA was used for the calculation of binding 
free energy. At the end, 30 molecules with optimal binding patterns and top binding energies 
were selected to make up the final dataset. Nine hits out of 30 molecules (a hit rate of 30%) 
were identified with less than 50 μM affinity for PDE2A.

The result of this study was the discovery of new compound LHB‐8 with IC50 = 570 nM 
(Figure 4). This compound poses novel scaffold benzo[cd]indol‐2(1H)‐one among PDE2A 
inhibitors, which can be used as the novel scaffold for designing of potent inhibitors of 
PDE2A [67].

3.7. PDE3 inhibitors

One of the early studies reporting the application of structure‐based drug design on PDE3 
inhibitors was done by Fossa et al. [2]. They combined homology modeling techniques with 
docking to gain knowledge about the molecular requirements of selective inhibition of PDE3 
and identified the important amino acids residues for substrate and inhibitor binding. They 
built a homology model of PDE3A catalytic site based on coupling of PDE4B2B crystal struc‐
ture and PDE3A mutagenesis data. The amino acids sequences of PDEs were obtained and 
multiple sequence alignments of PDE isozymes were performed [68–70]. Then, phylogenetic 
relationship was used to calculate the amino acid conservation based on the obtained align‐
ments followed by prediction of secondary structure [71, 72]. Fold recognition and sequence 
to structure alignment was also done during the course [2, 73]. 3D models were generated by 
the application of restraint‐based homology modeling methods [74]. At the end, the Amber 
force field was applied for energy minimization, and the generalized Born solvation model as 
implemented in AMBER was used for the calculation of molecular mechanic. The structural 
evaluation of the model proved that it is suitable for docking studies [75].

Another study was proposed by Kim et al. where they used a virtual screening approach to 
discover novel PDE3 inhibitors for obesity treatment. They started with the analysis of the 
structural features of the known PDE3 inhibitors and screening of virtual library with 30,000 
diverse compounds, followed by docking study based on the 3D structure of PDE3B. In this 
work, Kim et al. built 3D structures of PDE3B‐ligand complex by utilizing a cocrystal structure. 
Docking was carried out, and 80 compounds with low energy conformation were identified 
by docking. These compounds were examined for their adipocyte lipolysis activity and finally 
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four structurally unrelated compounds were identified. Among these leads, the most potent 
compound has IC50 = 14.8 nM for PDE3A activity and 88.4 nM for PDE3B activity [76].

4. Future perspective

Apart from those discussed in the previous section, there are many more examples of success‐
ful application of in silico methods in the discovery and design of PDE inhibitors. The appli‐
cations are very diverse ranging from lead discovery to optimization. However, the major 
problem with various PDE subtype inhibitors, designed or discovered, is the lack of selectiv‐
ity. Although with the application of computational methods inhibitors with significant selec‐
tivity for PDE subtypes have been designed lately, still none of them have been able to make 
it to the market. The advancement in computational hardware and MD simulation methods 
will be the major boost for solving the selectivity problem in future. These advancements 
will allow more deeper studies on a tinier time scale allowing the computational chemist 
to capture interactions and structural features required for high degree of selectivity. These 
developments bring hope that the unfulfilled potential of various PDE inhibitors will be real‐
ized in near future.
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Abstract

Alzheimer’s disease is the most common cause of dementia. According to the amyloid 
hypothesis, β-secretase (BACE1) is a promising molecular target for the development 
of anti-Alzheimer’s disease drugs. BACE1 triggers the formation of the amyloid-β (Aβ) 
peptides that are the main component of senile plaques in the brain of patients with 
Alzheimer’s disease. As BACE1 cleaves the amyloid precursor protein at the N-terminus 
of the Aβ domain, BACE1 inhibitors reduce the Aβ level in the brain. Previously, we 
designed a series of peptidic inhibitors that possessed a substrate transition-state analogue, 
and the structure-activity relationship of our inhibitors was evaluated, based on docking 
and scoring, using the docking simulation software Molecular Operating Environment 
(MOE). However, there was no association between the scoring values and the inhibitory 
activities at the P2 position. Hence, we hypothesized that the interaction of the P2 position 
of the inhibitor with the S2 site of BACE1 was critical for the mechanism of inhibition, and 
we proposed the novel concept of ‘electron donor bioisostere’ for drug discovery. Using 
this concept, we designed potent small molecule non-peptidic BACE1 inhibitors.

Keywords: Alzheimer’s disease, BACE1 inhibitor, docking simulation, electron donor 
bioisostere, in-silico conformational structure-based design

1. Introduction

Alzheimer’s disease (AD), which is the most common cause of dementia, is characterized by pro-
gressive intellectual deterioration. In 1901, Alois Alzheimer, a psychiatrist and neuropathologist, 
observed a 51-year-old female patient at Frankfurt Asylum. The patient showed strange behav-
ioural symptoms and the loss of short-term memory, which was later called ‘AD’. Unfortunately, 
the cause of AD was unclear until recently, and there have been no treatment approaches since 
that first report by Dr. Alzheimer over 100 years ago. Recently, the development of many drug 
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candidates based on the amyloid hypothesis has been reported. β-secretase (BACE1; β-site amy-
loid precursor protein (APP) cleaving enzyme 1) is a promising molecular target for the devel-
opment of anti-Alzheimer’s drugs. BACE1 triggers the formation of the amyloid-β (Aβ) peptide 
that is the main component of the senile plaques found in the brain of AD patients. Previously, 
we had designed a series of peptidic inhibitors that possessed a substrate transition-state ana-
logue, and evaluated the structure-activity relationship of our inhibitors, based on docking and 
scoring, using the docking simulation software Molecular Operating Environment ((MOE), 
Chemical Computing Group Inc., Canada).

1.1. Pathology of Alzheimer’s disease

Although the cause of AD was unclear until recently, a breakthrough was obtained from the 
genetic study of some patients with familial AD. Certain mutations of the amyloid precur-
sor protein (APP) or presenilin gene increased amyloid-β peptides (Aβs) in the brain, which 
indicated their involvement in the pathogenesis of AD [1–4]. Aβ is produced from APP by two 
processing enzymes, β-secretase and γ-secretase, which are potential molecular targets for the 
development of anti-AD drugs [5–7]. The cleavage sites of APP are shown in Figure 1A. BACE1, 
one of the processing enzymes of APP, triggers Aβ formation in the rate-limiting first step by 
the cleavage of APP at the Aβ domain N-terminus (β-site). BACE1 is a type-I  transmembrane 
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Figure 1. (A) Amyloid precursor protein (APP) and its cleavage site. (B) Early peptidic BACE1 inhibitor by Ghosh et al.
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aspartic protease with 501 amino acids. BACE1 and APP are located in the same intracellular 
granules, the endoplasmic reticulum, Golgi, and trans-Golgi networks, which are acidic envi-
ronments, which suggested that Aβs are produced in these locations [8]. Next, another aspar-
tic protease, the γ-secretase complex, cleaved at the C-terminus of the Aβ domain and released 
Aβ peptides. The γ-secretase complex that contains a protein via the presenilin gene as a cata-
lytic component cleaved at two cleavage sites, ‘γ-sites’, which mainly resulted in the formation 
of two species of Aβs: Aβ1-40 and Aβ1-42 (Figure 1A). Aβ1-42 shows greater neurotoxicity and 
aggregability than Aβ1-40 and appears to be a key biomolecular marker of AD pathogenesis. 
According to the amyloid hypothesis, BACE1 and γ-secretase appear to be molecular targets 
for the development of anti-AD drugs. However, because γ-secretase can cleave other single-
pass transmembrane proteins in vivo, such as Notch, which plays a critical role in cell differ-
entiation, γ-secretase inhibitors appeared to lead to serious side effects. As BACE1 knockout 
transgenic mice demonstrated normal survival, this indicated a promising direction of study, 
in which BACE1 is a molecular target for the development of AD drugs [9]. At present, many 
BACE1 inhibitors have been revealed, including those in our study [10–16].

1.2. Early peptidic BACE1 inhibitors

An early inhibitor of BACE1, an aspartic protease, was designed on the basis of a substrate 
transition-state concept, as well as that of other aspartic proteases, such as renin and HIV 
protease, which have a substrate transition-state analogue at the P1 position [10–16]. It is well-
known that the Swedish mutant APP (K670N and M671L double mutation, Figure 1A) is 
cleaved faster than wild-type APP by BACE1, which results in increased Aβ1-42 and Aβ1-40 
levels. Early BACE1 inhibitors were designed based on the Swedish-mutant APP amino acid 
sequence. In 1999, Sinha et al. from Elan Pharmaceuticals purified the BACE1 enzyme from 
the human brain using a transition-state analogue based on the Swedish-mutant sequence, 
and succeeded in cloning the BACE1 enzyme [17]. Ghosh et al. reported the potent inhibitors 
OM99-2 (Ki = 1.6 nM) and OM00-3 (Ki = 0.3 nM) with a hydroxyethylene unit as a substrate 
transition-state analogue (Figure 1B) and the first X-ray crystal structure (PDB ID: 1FKN) of a 
complex between recombinant BACE1 and OM99-2 [18–21].

We have reported a series of peptidic BACE1 inhibitors that possessed a norstatine-type tran-
sition-state analogue [22–30]. Our early inhibitors are shown in Table 1. Octapeptide 1 with an 
Asn residue and (2R, 3S)-3 amino-2-hydroxy-5-methylhexanoic acid (Nst, Leu-type transition-
state analogue) at the P2 and P1 positions, respectively, corresponding to the Swedish-mutant 
APP sequence showed no inhibitory activity. Octapeptide 2 with (2R, 3S)-3-amino-2-hydroxy-
4-phenylbutyric acid (Pns) as a transition-state analogue at the P1 position, showed weak inhib-
itory activity. Compound 3 with an Asp residue similar to OM00-3, and compound 4, with a 
Met residue at the P2 position, also showed weak inhibitory activity. Although compound 5 
with the P2-Lys residue that corresponded to the wild-type APP sequence showed no inhibitory 
activity, octapeptide 6 that possessed a Leu residue at the P2 position exhibited potent inhibi-
tory activity (>90% at 2 μM). We synthesized some truncated peptides on the N- or C-terminus 
in order to confirm the essential moiety for the inhibitory effect. N-truncation of peptides elimi-
nated their inhibitory activity (peptides 7-8). Although C-truncated peptides 10-13 showed a 
weaker inhibitory activity than octapeptide 6, pentapeptide 12 replicated the inhibitory activity 
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of heptapeptide 10. Hence, we designed a series of pentapeptidic BACE1 inhibitors based on 
compound 12 using a computational approach.

2. Docking simulation and design of pentapeptidic BACE1 inhibitors

Early BACE1 inhibitors were designed using the coordinates of the first reported X-ray 
crystal structure (1FKN) of a complex between BACE1 and OM99-2. OM99-2 has an Asn 
residue, which corresponded to the P2 residue of Swedish mutant sequence. As OM99-2 in 
1FKN appeared to interact with the BACE1-Arg235 side chain via hydrogen bonding, many 
researchers have designed BACE1 inhibitors that possessed a hydrogen bond receptor, such 
as an Asn residue, at the P2 position, using the 1FKN coordinates. However, our peptidic 
BACE1 inhibitors with an Asn at the P2 position showed no inhibitory activity, and, as shown 
in Table 1, the P2 residue that showed potent BACE1 inhibitory activity was a hydrophobic 
amino acid residue, Leu. Thus, our design strategy seemed to require a fundamental review. 
We researched the inhibitory mechanism of our peptides using a computational approach. 
As we found that pentapeptide 21, which possessed an aminobenzoic acid residue as a bio-
isostere of the Asp residue at the P1’ position, showed higher inhibitory activity than penta-
peptide 12, we evaluated the series of pentapeptides 14-24 with an aminobenzoic acid residue 
by using a docking simulation, and then synthesized the compounds (Table 2). The docking 

Compound P4 P3 P2 P1 P1’ P2’ P3’ P4’ BACE1 
inhibition 
(%)1

1 E V N2 Nst D A E F <20

2 E V N2 Pns D A E F 24

3 E V D Pns D A E F 25

4 E V M Pns D A E F 42

5 E V K3 Pns D A E F <20

6 E V L Pns D A E F >90

7 V L Pns D A E F <20

8 L Pns D A E F <20

9 Pns D A E F <20

10 E V L Pns D A E 60

11 E V L Pns D A 46

12 E V L Pns D 61

13 E V L Pns 34

1BACE1 inhibition activities at 2 μM.
2P2 residue corresponding to the Swedish-mutant APP sequence.
3P2 residue corresponding to the wild-type APP sequence.

Table 1. BACE1 inhibitory activities of peptidic BACE1 inhibitors.
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as an Asn residue, at the P2 position, using the 1FKN coordinates. However, our peptidic 
BACE1 inhibitors with an Asn at the P2 position showed no inhibitory activity, and, as shown 
in Table 1, the P2 residue that showed potent BACE1 inhibitory activity was a hydrophobic 
amino acid residue, Leu. Thus, our design strategy seemed to require a fundamental review. 
We researched the inhibitory mechanism of our peptides using a computational approach. 
As we found that pentapeptide 21, which possessed an aminobenzoic acid residue as a bio-
isostere of the Asp residue at the P1’ position, showed higher inhibitory activity than penta-
peptide 12, we evaluated the series of pentapeptides 14-24 with an aminobenzoic acid residue 
by using a docking simulation, and then synthesized the compounds (Table 2). The docking 

Compound P4 P3 P2 P1 P1’ P2’ P3’ P4’ BACE1 
inhibition 
(%)1

1 E V N2 Nst D A E F <20

2 E V N2 Pns D A E F 24

3 E V D Pns D A E F 25

4 E V M Pns D A E F 42

5 E V K3 Pns D A E F <20

6 E V L Pns D A E F >90

7 V L Pns D A E F <20

8 L Pns D A E F <20

9 Pns D A E F <20

10 E V L Pns D A E 60

11 E V L Pns D A 46

12 E V L Pns D 61

13 E V L Pns 34

1BACE1 inhibition activities at 2 μM.
2P2 residue corresponding to the Swedish-mutant APP sequence.
3P2 residue corresponding to the wild-type APP sequence.

Table 1. BACE1 inhibitory activities of peptidic BACE1 inhibitors.
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simulation was performed using MOE software under the MMFF94x force field. The calcu-
lated active sites of BACE1 were depicted in Figure 2A using the Alpha SiteFinder application 
in MOE software and the coordinate set of X-ray crystal structure, 1FKN. The 3D structure of 
OM99-2 after a docking simulation is shown in Figure 2B as a magenta-coloured stick model. 
Because the moieties from the P1 to P4 positions of OM99-2 almost coincided with that of the 
X-ray crystal structure (aqua coloured stick model) of OM99-2, we performed the docking 
simulation study using this calculation model. Although the moieties from the P2’ to P4’ posi-
tions of OM99-2 assumed a different pose from that of the X-ray crystal structure of OM99-2, 
their moieties were placed outside the BACE1 enzyme. It is likely that the difference between 
the X-ray crystal structure and the docking calculation might occur by a packing at the crys-
tallization of BACE1 complex. The results of the docking simulation are shown in Table 2. 
Peptides 14-24 and OM99-2 were scored using the scoring function in the MOE software. 

Compound Xaa U_ele1 U_vdw2 U_str3 U_dock4 BACE1 
inhibition (%)5

OM99-2 (see Figure 1) −284.7 28.0 14.6 −242.1 —

14 N −184.4 4.2 10.2 −170.0 28.4

15 M −196.1 14.8 11.4 −169.9 63.9

16 Y −195.2 18.5 13.6 −163.1 36.9

17 D −174.1 2.0 11.2 −160.9 33.2

18 I −196.3 25.7 11.1 −159.5 65.8

19 F −176.8 9.0 11.6 −156.2 47.3

20 E −179.8 11.9 22.3 −145.6 36.3

21 L −155.1 3.3 10.2 −141.6 83.7

22 W −187.1 19.6 26.6 −140.9 71.3

23 Q −148.9 −0.3 9.8 −139.4 14.1

24 Cha6 −147.1 −1.2 9.7 −138.6 84.1

1Electrostatic energy between BACE1 and inhibitor (kcal/mol).
2van der Waals energy between BACE1 and inhibitor (kcal/mol).
3Strain energy of inhibitor (kcal/mol).
4Docking score (kcal/mol); U_dock = U_ele + U_vdw + U_str.
5BACE1 inhibition % at 2 μM.
6Cyclohexylalanine (Cha).

Table 2. Docking simulation of pentapeptidic BACE1 inhibitors and their score using the 1FKN X-ray crystal structure.
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U_ele, U_vdw, and U_str indicated the potential energies of electrostatic interaction, van der 
Waals interactions between enzyme and ligand, and strain energy of the ligand, respectively, 
and their sum is a docking score, U_dock. OM99-2 and peptide 14, which possess an Asn 
residue at the P2 position, showed good scores. However, peptides 14 and 17, that possess a 
hydrophilic amino acid, such as Asn and Asp, showed a low inhibitory activity. The residues 
of peptides 21 and 24 that exhibited a high inhibitory activity were hydrophobic amino acids 
such as Leu and cyclohexylalanine (Cha), as well as the results in Table 1. Interestingly, pep-
tides 21 and 24 showed low scores. Thus, there was no association between the scoring values 
and the inhibitory activity at the P2 position.

As the docking model using the coordinate set of 1FKN appeared to give an unfavourable 
score for the BACE1 inhibitor, we compared the publicly available X-ray crystal structures 
of BACE1-inhibitor complexes. Surprisingly, the guanidine group of BACE1-Arg235 in most 

Figure 2. (A) Calculated active sites using the Alpha Site Finder application in MOE software. (B) OM99-2 docked in 
BACE1. Aqua and magenta colours indicate the X-ray crystal structure 1FKN and the energy-minimized structure under 
the MMFF94x force field, respectively.
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crystal structures, except 1FKN, showed similar figures flopping over the P2 region of the 
inhibitors, and the nearest distances between the guanidino-plane of Arg235 side chain and 
the P2 region of the inhibitor showed similar values of approximately 3Å [31]. The P2 moieties 
in most of the crystal structures found to interact with the BACE1-Arg235 side chain were a 
methyl group, carbonyl oxygen atom, or aromatic ring, which were bound to the guanidine-
plane of Arg235 side chain by CH-π, O-π, or π-π stacking interactions. This suggested that 
the π-orbital on the guanidino-plane interacted with the P2 region by a weak quantum force 
such as stacking or σ-π interaction. The only exception was the interaction in the first reported 
X-ray crystal structure, 1FKN. The P2 moiety of OM99-2 in the crystal structure 1FKN appeared 
to interact with the BACE1-Arg235 side chain via hydrogen bonding (Figure 3A). OM00-3, 
which was reported by the same researchers, was an inhibitor that was structurally similar 
to OM99-2; surprisingly, the P2-Asp side chain of OM00-3 docked in BACE1 (PDB ID: 1M4H) 
interacted with the π-orbital on the guanidine-plane of the BACE1-Arg235 side chain via O-π 
interaction (Figure 3B). Many early BACE1 inhibitors that possess a hydrogen bond receptor 
at the P2 position were designed using the first reported crystal structure 1FKN. However, 
the hydrogen bonding interaction between most of the inhibitors and the BACE1-Arg235 side 
chain was not shown in their crystal structures. For instance, the inhibitor from Merck (MSD), 
crystal structure (PDB ID: 2B8L), interacted with the BACE1-Arg235 side chain via a CH-π 
interaction (Figure 3C). The researchers at MSD most likely based their inhibitor on a structure 
that possessed an N-methyl-N-methanesulfonyl group at the P2 position in anticipation of the 
hydrogen-bonding interaction between the sulfonyl oxygen atom and the BACE1-Arg235 side 
chain. However, the N-methyl group of the MSD inhibitor interacted with the π-orbital on the 
guanidine-plane of the BACE1-Arg235 side chain at a distance of 2.8 Å. The inhibitor reported 
by Pfizer (PDB ID: 2P83) appeared to interact with the BACE1-Arg235 side chain via O-π inter-
actions, as shown in Figure 3D. As seen above, most of the BACE1 inhibitors, except OM99-2 in 
the crystal structure 1FKN, interacted with the BACE1-Arg235 side chain by a weak quantum 
force such as stacking or σ-π interaction. The Arg235 side chain of the BACE1-OM99-2 com-
plex (1FKN) assumed an exceptionally different pose to the other crystal structures because 
the BACE1 complex appears to be stabilized by intramolecular hydrogen-bonding interaction 
between the P4-Glu and P2-Asn side chains of OM99-2 (Figure 3A). Because OM00-3 does not 
form such intramolecular hydrogen-bonding, the P2 residue of OM00-3 appears to interact with 
the BACE1-Arg235 side chain by a quantum chemical interaction. As many researchers have 
designed BACE1 inhibitors with a hydrogen bond receptor on the basis of the first reported 
crystal structure 1FKN, docking models using 1FKN will require further review. Furthermore, 
we found that the side chain of BACE1-Arg235 could move in concert with the inhibitor’s size. 
The superimposed figure of four crystal structures (PDB ID: 2B8L, 1M4H, 1W51, and 2IQG) of 
the complex between BACE1 and the inhibitors is depicted in Figure 4. The guanidino-planes 
of BACE1-Arg235 in the crystal structures of most BACE1 complexes showed similar distances 
from the P2 regions of the inhibitors regardless of their molecular size [31]. This fact suggested 
a serious issue for a docking simulation for the drug discovery of BACE1 inhibitors. However, 
the BACE1-Arg235 side chain seems to have a restricted range of motion: the BACE1-Arg235 
side chain slides sideways, not up and down, along the wall of the β-sheet structure that con-
sists of four peptide strands behind the flap domain of BACE1; therefore, the location of the 
BACE1-Arg235 side chain could be predicted by the inhibitor’s size. As shown in Figure 4, the 
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Figure 4. Location of BACE1-Arg235 in the respective crystal structures. The blue, magenta, green and red stick models 
represent the X-ray crystal structures of the BACE1-inhibitor complexes, 2B8L, 1M4H, 1W51 and 2IQG, respectively.

Figure 3. Interaction of BACE1-Arg235 with BACE1 inhibitors in X-ray crystal structures. (A) PDB ID: 1FKN, (B) PDB ID: 
1M4H, (C) PDB ID: 2B8L and (D) PDB ID: 2P83.
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orbital follows the same pattern along the wall of the β-sheet structure of BACE1 and might 
be predicted according to the inhibitor’s size. We hypothesized that the role of the BACE1-
Arg235 side chain was important for the BACE1 inhibitory mechanism. The guanidine-plane 
of Arg235 that can move in concert with the inhibitor’s size appears to push down on the P2 
region of the inhibitor, which caused them to be affixed to the active site of BACE1 because of 
this ‘flop-over’ mechanism by the BACE1-Arg235 side chain. Although a quantum chemical 
force, such as σ-π interaction, has a weaker binding energy than a hydrogen bonding interac-
tion, this ‘flop-over’ mechanism permits a strong binding mode with the active site of BACE1.

For the reasons mentioned above, we performed a docking calculation using the X-ray crystal 
structure 1M4H, in which the P2 moiety of the inhibitor (OM00-3) had a similar size to that of 
our inhibitor (Table 3). OM00-3 appears to show a high docking score value owing to its large 
molecular size: OM00-3 has many more amide bonds than our peptapeptidic inhibitors, and 

Compound Xaa U_ele1 U_vdw2 U_str3 U_dock4 BACE1 
inhibition (%)5

OM00-3 (see Figure 1) −233.4 0.7 15.7 −217.0 —

21 L −195.7 11.3 10.3 −174.1 83.7

22 W −189.3 13.0 10.5 −165.8 71.3

18 I −194.6 18.5 11.1 −165.0 65.8

19 F −195.6 23.0 11.7 −160.9 47.3

15 M −195.6 24.6 10.1 −160.9 63.9

24 Cha6 −194.4 26.6 11.6 −156.2 84.1

16 Y −196.7 26.5 14.1 −156.1 36.9

20 E −190.7 24.2 10.6 −155.9 36.3

14 N −190.7 24.2 11.3 −155.2 28.4

23 Q −196.9 27.6 15.7 −153.6 14.1

17 D −185.5 28.5 9.7 −147.3 33.2

1Electrostatic energy between BACE1 and inhibitor (kcal/mol).
2van der Waals energy between BACE1 and inhibitor (kcal/mol).
3Strain energy of inhibitor (kcal/mol).
4Docking score (kcal/mol); U_dock = U_ele + U_vdw + U_str.
5BACE1 inhibition % at 2 μM.
6Cyclohexylalanine (Cha).

Table 3. Docking simulation of pentapeptidic BACE1 inhibitors and their scoring using the 1M4H X-ray crystal structure.
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can closely interact with the BACE1 active site via electrostatic energy. The correlation chart 
between BACE1 inhibitory activities and the docking score values is shown in Figure 5, and it 
indicated a good correlation coefficient (r = −0.717). Peptides that possess a hydrophilic amino 
acid residue at the P2 position showed low docking score values, which indicated that these 
P2 residues cannot interact with the BACE1-Arg235 side chain via electrostatic energy in the 
X-ray crystal structure 1M4H, and the docking score showed a good correlation with BACE1 
inhibitory activity as a result. However, the plot of peptide 24 was outside of the correlation 
line. Peptide 24, with the bulky amino acid Cha at the P2 position, might show van der Waals 
repulsion against the BACE1-Arg235 side chain.

Furthermore, we designed a series of BACE1 inhibitors that possessed one or more bioisosteres 
of carboxylic acid from pentapeptide 21 that conferred excellent values to both docking score and 
BACE1 inhibitory activity, in order to develop practical BACE1 inhibitors as drug candidates 
(Figure 6). A tetrazole ring is known as a carboxylic bioisostere. Because it is well known that 
5-aminotetrazole was highly explosive, peptides 25 and 26, which possessed a carboxylic acid 
bioisostere at the P4 position were designed and synthesized using tetrazole-5-carboxylic acid. 
Peptides 25 and 26 showed potent BACE1 inhibitory activities (IC50 = 8.2 nM and 3.9 nM, respec-
tively) [24, 25]. Moreover, peptide 27, which possessed two tetrazole rings on the P1’ ring, was 
synthesized. Peptide 27 showed the most potent BACE1 inhibitory activity (IC50 = 1.2 nM) [26].

Figure 5. The correlation between BACE1 inhibitory activities and the docking score values.
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3. Design of small-sized non-peptidic BACE1 inhibitors

At present, many non-peptidic BACE1 inhibitors have been discovered. The research of Elan 
pharmaceuticals, Merck (MSD), Pfizer, and Schering-Plough, and Ghosh et al. reported the 
BACE1 inhibitors 28-32 (IC50 = 15, 15, 5, 3, and 1 nM, respectively) with an isophthalic scaffold at 
the P2 position, as shown in Figure 7 [14, 16]. Because the distance between the flap domain and 
the cleft domain that forms the S2 pocket of BACE1 was narrow, a planar aromatic ring, such 
as an isophthalic scaffold, might dock closely in the S2 pocket of BACE1. Hence, we designed 
a series of BACE1 inhibitors from the virtual inhibitor 28 (Figure 8), in which the P2 moiety of 
our peptidic inhibitors was replaced with an isophthalic scaffold [31–35]. First, we focused on 
the sterically hindered interaction between the P3 amide and a proton on the P2-isophthalic ring 
of the virtual inhibitor, which restricts the configuration. Using the approach ‘in-silico confor-
mational structure-based design’ based on a conformer of the docked inhibitor in BACE1, we 
adopted a pyridinedicarboxylic scaffold as a P2 moiety, which lacked the 2-proton from the 
isophthalic ring, and designed inhibitor 29 [32]. Next, we optimized the P3-region of inhibitor 29 
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with a P2-pyridinedicarboxylic scaffold. There is a S3 sub-pocket behind the active site of BACE1, 
and the P3 phenyl group of 29 appears to interact with the S3 sub-pocket. We envisioned that 
inhibitors with a P3 benzylamide group assumed a folding pose between the P2 aromatic scaf-
fold and the P3 benzylamide, and that the α-methyl group on the P3 benzylamide of 29 stabilized 
this folding structure. Hence, we designed inhibitor 30 by the introduction of a five-membered 
ring, oxazolidine, at the P3 region to fix the folding structure [32]. The oxazolidine ring fixes the 
direction of the phenyl ring at the P3 position, so that the P3 phenyl ring may be able to bind 
closely to the S3 sub-pocket of BACE1. Inhibitor 30 showed moderate BACE1 inhibitory activity 
(IC50 = 140 nM).

Although in-silico approaches, such as a docking simulation between an enzyme/receptor and 
drugs, have contributed greatly to drug discovery research, most docking simulation software 
programs adopt molecular mechanics/molecular dynamics (MM/MD) calculations based on 
classical Newtonian mechanics. However, docking simulations using these calculations do 
not appear to estimate weak quantum chemical interactions, such as stacking or σ-π interac-
tion, between the BACE1-Arg235 side chain and inhibitors. Because the Arg residue is rec-
ognized as charged in these software programs, the quantum chemical interactions involving 
an Arg side chain are unlikely to receive a favourable score. The concept of ‘bioisostere’ is 
important for the development of practical drugs. However, in the case of BACE1 inhibitor 
design, the bioisostere of the P2 moiety, according to the Swedish-mutant APP, is an Asn or an 
amide residue based on a classical bioisostere concept that does not assume quantum chemical 
interactions. Therefore, inhibitors that can interact with the Arg235 side chain on the basis 
of a quantum chemical interaction could never be designed using such a classical concept. 
The researchers at Bristol-Myers Squibb (BMS) reported a series of BACE1 inhibitors that can 
interact with the BACE1-Arg235 side chain by π-π stacking. According to their SAR study, 
the introduction of an electron-donating methoxy group to the p-position of the phenyl ring 
that interacts with the BACE1-Arg235 side chain enhanced BACE1 inhibitory activity. This 
indicated that an inhibitor that possessed a P2 aromatic ring with higher electron density could 
strongly dock to the active site of BACE1 that has an electron-poor π-orbital on the guanidino-
plane of the BACE1-Arg235 side chain. Hence, we proposed a new concept of the ‘electron-
donor bioisostere’, which can interact with an electron-poor π-orbital, such as the guanidine 
group of Arg235, by quantum chemical interactions [14].

Based on the electron-donor bioisostere concept, we speculated that an electron-rich halo-
gen atom could interact with the electron-poor guanidine π-orbital by Coulomb interaction. 
Using the ab initio molecular orbital approach, Imai et al. indicated that the calculated Cl-π 
interaction energy was slightly stronger than that of CH-π interaction, and its energy was 
affected by π-electron density [36]. Inhibitor 31, which possessed a halogen atom on the P2 
aromatic scaffold, exhibited potent inhibitory activity (IC50 = 15 nM). Moreover, inhibitor 
32, which possessed a fluorine atom on the p-position of the P3 phenyl group exhibited the 
most potent inhibitory activity (IC50 = 9 nM), and was available from Wako Pure Chemical 
Industries (Japan) as a reagent for biological research [31]. The drastic improvement in the 
inhibition of BACE1 following the introduction of a halogen atom into the P2 position of our 
compounds appears to support our hypothesis; namely, the quantum chemical interactions 
between BACE1 and its inhibitors play a critical role in the mechanism of BACE1 inhibition.
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4. Conclusion

Although we calculated the docking scoring values by a docking calculation between 
BACE1 and its inhibitors using the first reported X-ray crystal structure 1FKN, we found no 
association between the scoring values and BACE1 inhibition. We found that a specific inter-
action, a quantum chemical interaction between the Arg235 side chain and the P2 region of 
the inhibitor, played a critical role in the inhibitory mechanism of BACE1. Whereas most 
BACE1 inhibitors, except OM99-2, interacted with BACE1-Arg235 by a quantum chemi-
cal interaction, such as stacking and σ-π interaction, many early BACE1 inhibitors were 
designed using the 1FKN coordinate set. As the crystal structure 1FKN showed a hydrogen 
bonding between the BACE1-Arg235 side chain and OM99-2, the early studies on BACE1 
inhibitor design might have misdirected, as a docking simulation using 1FKN appears to 
be meaningless. In fact, unlike 1FKN, there is no hydrogen bonding interaction present in 
most of the X-ray crystal structures. We selected the peptide sequence that showed potent 
inhibitory activity by a docking simulation using the X-ray crystal structure 1M4H, and 
designed potent peptidic BACE1 inhibitors with one or more carboxylic acid bioisosteres. 
Moreover, we focused on a quantum chemical interaction, and designed the potent non-
peptidic BACE1 inhibitor 32 using the ‘electron-donor bioisostere concept’ that we have 
proposed. Our findings indicated the importance of the X-ray crystal structure in computa-
tional drug design.
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Abstract

Caffeoyl-, feruloyl- and dicaffeoylquinic (chlorogenic) acids in infusions from green and
medium roasted coffee beans were identified and quantified by reverse phase liquid
chromatography. The chromatographic retention times of chlorogenic acids in coffee are
modeled by structure-property relationships. Bioplastic evolution is a view in evolution
that conjugates the result of acquired features, and relationships that come out between
the principles of evolutionary indeterminacy, morphological determination, and natural
selection. Here, it is used to invent the coordination index, which is utilized to typify
chlorogenic acids chromatographic retention times. The factors utilized to compute the
co-ordination index are the standard molar formation enthalpy, molecular bare, and
hydrophobic solvent-accessible surface areas, as well as fractal dimensions. The mor-
phological and coordination indices provide strong correlations. Effect of different types
of features is analyzed: thermodynamic, geometric, fractal, etc. Properties are molar
formation enthalpy, bare molecular surface area, etc., in linear correlation models. For-
mation enthalpy, etc. distinguish chlorogenic acids molecular structures.

Keywords: biological plastic evolution, morphological index, co-ordination index, for-
mation enthalpy, molecular surface, hydrophobic accessible surface, fractal dimension,
solvation parameter model, chlorogenic acid, hydroxycinnamate, coffee, Coffea

1. Introduction

Coffee terpenoids, cafestol, kaweol and 16-O-methylcafestol, which occur as fatty acid (FA) esters
(FAEs), are responsible for the reversible rise in plasma low-density lipoprotein (LDL) cholesterol
(CHOL) observed in some populations (e.g., Scandinavia, Italy) [1–3]. High consumption of
boiled, unfiltered coffee was linked to risen levels of homocysteine [4, 5], which, along with risen
CHOL, is a known risk factor for cardiovascular disease (CVD). Freshly brewed and instant

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



coffee can induce mutagenic cytotoxic effects in vitro [6, 7], because of the gradual formation of
hydrogen peroxide H2O2 in the beverage [8], which is a reactive oxygen species (ROS) capable of
damaging biomolecules and membranes [9]. However, a 5.5% rise in plasma antioxidant activity
(AOA) was observed in human volunteers after a single intake of brewed coffee, suggesting its
in vivo AOA [10].

Coffee contains chlorogenic acids (CGAs) with the amounts varying between green (GCBs)
and roasted (RCBs) coffee beans [11, 12]. Via an LDL oxidation assay, phenolic compounds in
coffee showed AOA, which levels varied depending on coffee beans source and roasting
degree [13]. 5-O-Caffeoylquinic acid (5-CQA) presented anticarcinogenic properties [14, 15]
and a protective role vs. LDL oxidation in an ex vivo animal model [16]. It and other
hydroxycinnamates protected vs. the oxidation of human LDL particles in vitro [17–20], a
process playing a role in atherosclerotic-plaques formation and CVD onset. Crozier and co-
workers reported on-line high-performance liquid chromatography (HPLC) analysis of phe-
nolic compounds AOA in brewed, paper-filtered coffee [21]. Antioxidant activity and princi-
ples of Vietnam bitter tea Ilex kudingcha were informed [22]. Purification and HPLC analysis of
CQAs from Kudingcha made from I. kudingcha were published [23]. Simultaneous qualitation
and quantitation of CGAs in Kuding tea were reported via ultra-HPLC-diode array detection
coupled with linear ion trap-Orbitrap mass spectrometer (UHPLC-DAD-LTQ-Orbitrap-MS)
[24]. Preparation, phytochemical investigation and safety evaluation of CGA products were
informed from Eupatorium adenophorum [25].

The model used in this work is an extension of solvent-dependent conformational analysis
program (SCAP) octanol-water model to organic solvents [26]. In earlier publications, SCAP was
applied for partition coefficients of porphyrins, phthalocyanines, benzobisthiazoles, fullerenes,
acetanilides, local anesthetics [27], lysozyme [28], barbiturates, hydrocarbons [29], polysty-
rene [30], Fe–S proteins [31], C-nanotubes [32] and D-glucopyranoses [33]. Bioplastic evolution
was applied to phenylalcohols, 4-alkylanilines [34], valence-isoelectronic series of aromatics [35],
phenylurea herbicides [36, 37], pesticides [38, 39], methylxanthines and cotinine [40, 41]. Quanti-
tative structure-activity/property relationships (QSARs/QSPRs) were applied to isoflavonoids [42]
and sesquiterpene lactones [43]. Mucoadhesive polymer hyaluronan, as biodegradable cationic
and zwitterionic-drug delivery vehicle, favors transdermal penetration absorption of caffeine
(Caff) [44, 45]. The present report describes QSPR analysis and estimation of CGAs chromato-
graphic retention times. The goal of the study is to identify the properties that differentiate CGAs
consistent with chromatographic retention times. The work uses the chemical index in CGAs. The
aim of this research is the corroboration of the value of the index by its ability to distinguish
CGAs, as well as its concern as a prognostic descriptor for retention time evaluated with regard to
molar formation enthalpy, molecular bare, and hydrophobic solvent-accessible surface areas, and
fractal dimensions. Section2 describes the computational method. Sections3 and 4 illustrate and
discuss the calculation results. Finally, Section5 summarizes our conclusions.

2. Computational method

Biological plastic (bioplastic) evolution is a perspective of the process of the evolution of
species. It conjugates the result of (1) the acquired characters and (2) relationships between
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the principles of evolutionary indeterminacy, morphological determination and natural selec-
tion in evolutionary biology. The relationship between morphology and functionality in organ-
isms is that morphology is the substance prop of functionality, which is the dynamic result of
the former in the circumstance of the interaction between physical environment and living
matter. Morphology, functionality, energy outlay and vital viability are equally affected: When
a morphology is functional, it accomplishes its work with minimum energy outlay, and the
vital viability of the organ or organism is maximum. Counting these ideas includes defining
the functional coordination index Ic, which is expressed as the relation between the work
achieved by morphology T and the characteristic morphological index Im, consistent with:

Ic ¼ T
Im

ð1Þ

The larger the work T attained by a specific morphology Im, the larger the Ic. For an organism,
Im was suggested as the relation between the morphological surface area S and body mass W
[46]:

Im ¼ S
W

ð2Þ

The substitution of Eq. (2) in (1) turns out to be:

Ic ¼ W � T
S

ð3Þ

where T is given by its correspondence in classical mechanics:

T ¼ W � x d
2x
dt2

ð4Þ

Substituting Eq. (4) in (3), it turns out to be:

Ic ¼ W2 � x
S

d2x
dt2

ð5Þ

The Ic rises with the following settings: (1) the larger the body mass at equivalent journeyed
time or distance, the larger the Ic; (2) the Ic is proportional to the distance journeyed in the
smallest achievable period; (3) the lesser body surface area, the larger Ic and the co-ordination
between function and morphology needs lesser energy outlay.

Code SCAP is founded on a representation by Hopfinger, parametrized for 1-octanol-water
solvents [47]. The conjecture is that one is able to center a solvation sphere on all functional
groups in the molecule [48]. The overlapping volume V� between the solvation sphere and van
der Waals (VdW) spheres of the resting atoms is computed. Code SCAP handles factors for a
solvent: (1) n: maximal number of solvent molecules satisfying the solvation sphere; (2) Δg�:
change of Gibbs free energy linked with the removal of one molecule of solvent out of the
solvation sphere [49, 50]; (3) Rv: radius of the solvation sphere; (4) Vf: free volume accessible for
a solvent molecule in the solvation sphere [51]. In the solvation sphere, a fraction of its volume
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keeps out solvent molecules. The volume is made of VdW volume of the functional group at
which the sphere is centered and a volume standing for functional groups connected to the
central one. This volume is symbolized by a set of cylinders. The difference between the total
volume of the solvation sphere and that prohibited for the solvent molecules stands for the
volume V’ that is accessible for n solvent molecules. The Vf is computed by Vf ¼ V’/n–Vs. The
variation of free energy linked to the removal of every solvent molecule out of the solvation
sphere of a functional group R turns out to be: ΔGR

� ¼ nΔg�(1–V�/V’), and the free energy of
solvation of molecule results: ΔGsolv

� ¼ –ΣR¼1
NΔGR

�. The 1-octanol-water partition coefficient
P results:

RT lnP ¼ ΔGo
solvðwaterÞ � ΔGo

solvð1� octanolÞ ð6Þ

at a certain temperature T got as 298K, where R is the gas constant, and ΔGsolv
�(1-octanol) and

ΔGsolv
�(water), in kJ�mol–1, are the standard-state Gibbs solvation free energies. Extending

SCAP for other solvents, the 1-octanol factors were customized considering the result of
solvent permittivity and molecular volume. For a general solvent, the maximal number of
solvent molecules permitted packing the solvation sphere is connected to the molecular vol-
ume of the solvent by:

ns ¼ no
Vs

Vo

� �lognonw
logVoVw ð7Þ

where Vo, Vw and Vs are the molecular volumes of 1-octanol, water and the general solvent.
The no, nw and ns are the maximal numbers of molecules of 1-octanol, water, and the general
solvent allowed packing the solvation sphere. The change in the standard Gibbs free energy
connected to the removal of one molecule of solvent out of the solvation sphere, Δgs�, is
computed via the extended Born equation:

Δgos ¼ Δgoo
1� 1

εs

1� 1
εo

¼ Δgoo
εo εs � 1ð Þ
εs εo � 1ð Þ ð8Þ

where Δgs� is Δg� for 1-octanol, and εo and εs are the permittivities of 1-octanol and the general
solvent. The radius of the solvation sphere results connected to the molecular volume of the
solvent molecule by:

Rv, s ¼ Rv,o
Vs

Vo

� �1
3

ð9Þ

where Rv,o is Rv in 1-octanol. The free volume accessible for a solvent molecule in the solvation
sphere is:

Vf ,s ¼ Vf ,o
Vs

Vo
ð10Þ

where Vf,o is Vf in 1-octanol.
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The models were obtained via multiple linear regression (MLR). Correlation coefficient r was
used as the calibration function of the regression models, together with standard deviation s,
variance ratio F, prediction error sum of squares (PESS), mean absolute percentage error
(MAPE) and approximation error variance (AEV). Statistics r, s and F were calculated with
Microsoft Excel 2016, and PESS, MAPE and AEV, with Knowledge Miner for Excel. Our codes
SCAP and TOPO [52] are available from the authors at the Internet (torrens@uv.es) and are free
for academics.

3. Calculation results

For nine CGAs, viz. 3/4/5-O-caffeoyl- (CQAs), 3/4/5-O-feruloyl- (FQAs) and 3, 4/3, 5/4, 5-O-
dicaffeoylquinic (diCQAs) acids (cf. Figure 1), reverse phase (RP) HPLC retention times Rt

were taken from Crozier and co-workers.
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Figure 1. Structures: (a) 3-O-caffeoylquinic; (b) 3-O-feruloylquinic; (c) 3,4-O-dicaffeoylquinic acids.
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The 3-CQAwas taken as reference retention time Rt
� because of least Rt (cf. Table 1). Ratios (Rt-

Rt
�)/Rt

� were calculated. Standard molar formation enthalpy was computed with code
MOPAC-AM1 [53]. Molecular bare S and hydrophobic solvent (water)-accessible (HBAS)
surface areas, fractal dimension D and this averaged for non-buried atoms D’ were calculated
with our code TOPO.

The use of the co-ordination index in the chemical description of molecules needs to change
variables T, S andW [Eq. (3)]: T is redescribed as minus the standard molar formation enthalpy
(kJ�mol–1), S is the molecular surface area (Å2), and W is the molecular mass (g�mol–1). Chem-
ical indices for CGAs characterization (cf. Table 2) show that Im remains constant, while Ic rises
with W.

Indices variation for CGAs vs. molecular weight W (cf. Figure 2) shows that most points
collapse for CQAs, FQAs and diCQAs, every group with three isomers. The only descriptor
that remains almost constant is Im. Descriptors more sensitive to W decay: Ic > T > S > Im.

Variations of (Rt-Rt
�)/Rt

� vs. morphological index Im show fit; the regression turns out to be:

Rt � Ro
t

Ro
t

¼ 43:7� 45:3Im ð11Þ

n ¼ 9, r ¼ 0:808, s ¼ 1:047, F ¼ 13:2.

PESS ¼ 0:3972, MAPE ¼ 36:39%, AEV ¼ 0:3472.

Molecule Rt (min) Rt-Rt
� (min) (Rt-Rt

�)/Rt
� ΔHf

� (kJ�mol–1)a HBAS (Å2)b Dc D’d

1. 3-O-Caffeoylquinic acid (3-CQA) 9.0 0.0 0.000 �1545.4 218.42 1.390 1.480

2. 4-O-Caffeoylquinic acid (4-CQA) 13.6 4.6 0.511 �1550.0 241.44 1.375 1.498

3. 5-O-Caffeoylquinic acid (5-CQA) 15.4 6.4 0.711 �1570.5 238.38 1.387 1.458

4. 3-O-Feruloylquinic acid (3-FQA) 16.2 7.2 0.800 �1519.5 281.61 1.410 1.490

5. 4-O-Feruloylquinic acid (4-FQA) 23.6 14.6 1.622 �1524.2 305.78 1.383 1.511

6. 5-O-Feruloylquinic acid (5-FQA) 27.3 18.3 2.033 �1541.4 301.12 1.395 1.476

7. 3,4-O-Dicaffeoylquinic acid (3,4-
diCQA)

41.9 32.9 3.656 �1839.7 296.65 1.445 1.534

8. 3,5-O-Dicaffeoylquinic acid (3,5-
diCQA)

44.7 35.7 3.967 �1865.2 322.59 1.453 1.562

9. 4,5-O-Dicaffeoylquinic acid (4,5-
diCQA)

49.1 40.1 4.456 �1867.2 308.05 1.434 1.500

aStandard molar formation enthalpy calculated with MOPAC-AM1.
bHBAS: hydrophobic water-accessible surface area.
cD: molecular fractal dimension.
dD’: molecular fractal dimension averaged for non-buried atoms.

Table 1. Retention time, formation enthalpy and fractal dimensions for chlorogenic acids.
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Molecule W (g�mol–1)a T (kJ�mol–1)b S (Å2)c Im (mol�Å2�g–1)d Ic (kJ�g�mol–2�Å–2)e

3-O-Caffeoylquinic acid 354 1545.4 328.77 0.929 1664.0

4-O-Caffeoylquinic acid 354 1550.0 329.08 0.930 1667.4

5-O-Caffeoylquinic acid 354 1570.5 335.65 0.948 1656.4

3-O-Feruloylquinic acid 368 1519.5 345.85 0.940 1616.8

4-O-Feruloylquinic acid 368 1524.2 346.24 0.941 1620.0

5-O-Feruloylquinic acid 368 1541.4 351.14 0.954 1615.4

3,4-O-Dicaffeoylquinic acid 516 1839.7 459.17 0.890 2067.4

3,5-O-Dicaffeoylquinic acid 516 1865.2 464.60 0.900 2071.6

4,5-O-Dicaffeoylquinic acid 516 1867.2 447.14 0.867 2154.8

aW: molecular weight (g�mol–1).
bT: minus standard formation enthalpy (kJ�mol–1).
cS: molecular surface area (Å2).
dIm: morphological index (mol�Å2�g–1).
eIc: co-ordination index (kJ�g�mol–2�Å–2).

Table 2. Bioplastic evolution indices for chlorogenic acids.
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Figure 2. Variation of chemical indices for CGAs vs. molecular weight: y ¼ 589þ2.92x; y ¼ 817þ2.01x; y ¼ 64.7þ0.761x;
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where MAPE is 36.39% and AEV, 0.3472. The use of coordination index Ic improves the model:

Rt � Ro
t

Ro
t

¼ �9:70þ 0:00651Ic ð12Þ

n ¼ 9, r ¼ 0:906, s ¼ 0:754, F ¼ 31:9.

PESS ¼ 0:2038, MAPE ¼ 25:80%, AEV ¼ 0:1800.

and AEV decays by 48%. The utilization of the standard molar formation enthalpy betters the fit:

Rt � Ro
t

Ro
t

¼ �13:8� 0:00959ΔHo
f ð13Þ

n ¼ 9, r ¼ 0:916, s ¼ 0:714, F ¼ 36:3.

PESS ¼ 0:1857, MAPE ¼ 26:15%, AEV ¼ 0:1616.

and AEV drops by 53%. The application of the bare molecular surface area S improves the model:

Rt � Ro
t

Ro
t

¼ �8:09þ 0:0266S ð14Þ

n ¼ 9, r ¼ 0:950, s ¼ 0:556, F ¼ 64:5.

PESS ¼ 0:1232, MAPE ¼ 22:11%, AEV ¼ 0:0979.

and AEV decreases by 72%.

The inclusion of the hydrophobic solvent (water)-accessible surface area HBAS improves the
fit:

Rt � Ro
t

Ro
t

¼ �12:3þ 0:00472Ic þ 0:0210HBAS ð15Þ

n ¼ 9, r ¼ 0:988, s ¼ 0:291, F ¼ 127:5.

PESS ¼ 0:0365, MAPE ¼ 9:86%, AEV ¼ 0:0230.

and AEV decays by 93%. The fractal dimension averaged for non-buried atoms D’ betters the
fit:

Rt � Ro
t

Ro
t

¼ �2:57� 0:00801ΔHo
f þ 0:0229HBAS� 10:0D 0 ð16Þ

n ¼ 9, r ¼ 0:995, s ¼ 0:204, F ¼ 174:7.

PESS ¼ 0:0141, MAPE ¼ 6:63%, AEV ¼ 0:0095.

and AEV decreases by 97%. The incorporation of the fractal dimension D improves the model:
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Rt � Ro
t

Ro
t

¼ 7:86� 0:00899ΔHo
f þ 0:0257HBAS� 7:80D� 11:3D 0 ð17Þ

n ¼ 9, r ¼ 0:998, s ¼ 0:154, F ¼ 232:2.

PESS ¼ 0:0091, MAPE ¼ 5:16%, AEV ¼ 0:0058.

and AEV drops by 98%. The inclusion of the bare molecular surface area S betters the correlation:

Rt � Ro
t

Ro
t

¼ 11:0� 0:00776ΔHo
f þ 0:00606Sþ 0:0222HBAS� 11:2D� 9:71D 0 ð18Þ

n ¼ 9, r ¼ 0:999, s ¼ 0:136, F ¼ 239:1.

PESS ¼ 0:0060, MAPE ¼ 4:00%, AEV ¼ 0:0038.

and AEV decays by 99%. The best non-linear models do not improve the correlation. Addi-
tional fitting parameters were tested: molecular dipole moment, weight, volume, globularity,
rugosity, hydrophilic and total solvent-accessible surfaces, accessibility and fractal dimension
for external atoms minus fractal index (D’–D). Notwithstanding, the results do not improve
Eqs. (12)–(18).

4. Discussion

Food effects on health rightly worry consumers. Mass media tend to satisfy the permanent
question, and physicians must face many queries from the persons that come to consult them.
Information sources are scattered in many scientific journals, and a few domains exist that be so
dispersed in different databases international journals. Information circulates badly, critical
syntheses are rare, and an important passivity exists in knowledge transmission. Because of the
great interest devoted to their health, consumers are receptive to all new accounts that concern
food. Mass media know it and reply in a simplified way via all new data, where the impact will
be proportional to novelty character. Results of scientific studies must be interpreted vs. experi-
mental conditions, transmitting them without nuance finish in a misinformation and myths
creation. Cafés popularization during the nineteenth century, replacing beer bars, decreased
alcohol consumption during working days, improving health and safety at work. Daily coffee is
something to which many people cannot renounce. It does not matter if it is consumed to
increase energy or enjoy it in the company but one thing is clear: The taste and quality are
important factors. In order to guarantee the best taste and quality, many RCB companies place
their trust in good-quality equipment. Many physiological properties either favorable or unfa-
vorable to health were attributed to coffee [54]. Some are exact, some other, mistaken. Errors
come from two causes: tradition and experimental results interpretation. As coffee physiological
effects frequently entail by subjective observations, and their intensity is variable from one
person to another, early generalizations were made, which led to definitive takings of the
position that entertain public misinformation. According to some studies, to drink three or four
cups of coffee per day presents positive effects for health. It is indifferent that it be decaffeinated
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or not. Besides Caff and flavorings, coffee is rich in antioxidants, responsible for this be so
healthy. Decaffeinated and GCBs would be more healthy than RCBs coffee. Caffeine is more
concentrated in tea leaves than in GCB/RCBs. However, more caffeine exists in a coffee than in a
tea drink because of the different preparation methods. Molecule Caff acts by impeding adeno-
sine A1/2A receptors (A1/2AR), pointing to that some A1Rs are tonically more active. Mice were
made with a targeted disturbance of the second coding exon of A1R (A1R

–/–) [55]. They raised
and increased mass as normal, and presented a usual heart speed, blood pressure, and body
temperature. In the majority of behavioral experiments, they resulted alike A1R

þ/þ but A1R
–/–

mice presented signals of risen nervousness. Electrophysiological footages from pieces of the
hippocampus showed that the inhibition arbitrated by adenosine and increase arbitrated by
theophylline of excitatory glutamatergic neurotransmission resulted put to an end in A1R

–/–

mice. In A1R
þ/– mice, adenosine activity was halved, as resulted in the figure of A1Rs. In A1R

–/–

mice, the painkilling consequence of intrathecal adenosine resulted misplaced, and thermal
hyperalgesia was shown, but morphine painkilling result was whole. The decay of neuronal
potency on hypoxia decreased in pieces of the hippocampus and brainstem, and working revival
after hypoxia decreased. The A1Rs do not perform a fundamental position throughout develop-
ment and, though they affect synaptic potency, they perform an additional position in usual
physiology. However, beneath pathophysiological circumstances (e.g., noxious incentive, O2

lack), these receptors result significant. Coffee abuse turns people weaker. Taking high Caff doses
per day for a long time turns people more sensitive to pain and hypoxias [56]. Caffeine is stimulant
and counterproductive. Not all Caff effects are negative; for example, it is fine for vasodilating.
When a premature newborn baby suffers from apnoeas (breath suspensions), administering him
Caff improves lung functionality. Caffeine is also administered to patients suffering from asthma
because it helps them to bronchodilate. However, all at moderate doses, as high Caff doses
present the opposite effect. Another contradiction is that although coffee helps to digest, Caff is
a gastric irritant because it increases the production of saliva, HCl, and substances that are
released with gastric juices. It is counter-indicated in the case of ulcers and gastritis, but it
presents a positive effect in the cases of gallstones as it reduces 40% the risk of suffering from
them. In most cases, Caff is more negative than positive for health, although at small doses,
which is what people normally take (e.g., one cup of coffee in themorning, another after lunch), it
presents beneficial effects as it acts as a stimulant. In pregnant women, Caff effect is higher and it
is harder for them to eliminate it. Those born of women that during pregnancy drink a lot of
coffee, in the first hours of life, present a small abstinence-syndrome symptomatology. It is
because Caff causes dependence. When one does not drink coffee (if he habitually does it), he
suffers from a headache, fatigue sensation, apathy, irritability, marked sleepiness, etc. Symptoms
disappear when one drinks it again. Although one cannot label it as an addictive substance, it is
considered doping, and high-competition athletes cannot drink it because it is considered a
psychoactive substance that stimulates resistance and muscular strength. Caffeine is also present
in tea, colas (e.g., Coca-Cola®) and cocoa, although in the last, the quantity is derisory. The
quantity of Caff that one consumes also depends on how the coffee is served, type of coffee or
tea, etc.; for example, green (GT) presents 40% less Caff than black tea (BT) because the latter is
oxidized (fermented), which makes that Caff come out easier. Maximum recommended quantity
of Caff is 500mg/day. Caffeine is a drug model because it is one of the most studied medicines. It
is the world’s most widely consumed psychoactive drug. Theobromine may serve as a lead
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per day for a long time turns people more sensitive to pain and hypoxias [56]. Caffeine is stimulant
and counterproductive. Not all Caff effects are negative; for example, it is fine for vasodilating.
When a premature newborn baby suffers from apnoeas (breath suspensions), administering him
Caff improves lung functionality. Caffeine is also administered to patients suffering from asthma
because it helps them to bronchodilate. However, all at moderate doses, as high Caff doses
present the opposite effect. Another contradiction is that although coffee helps to digest, Caff is
a gastric irritant because it increases the production of saliva, HCl, and substances that are
released with gastric juices. It is counter-indicated in the case of ulcers and gastritis, but it
presents a positive effect in the cases of gallstones as it reduces 40% the risk of suffering from
them. In most cases, Caff is more negative than positive for health, although at small doses,
which is what people normally take (e.g., one cup of coffee in themorning, another after lunch), it
presents beneficial effects as it acts as a stimulant. In pregnant women, Caff effect is higher and it
is harder for them to eliminate it. Those born of women that during pregnancy drink a lot of
coffee, in the first hours of life, present a small abstinence-syndrome symptomatology. It is
because Caff causes dependence. When one does not drink coffee (if he habitually does it), he
suffers from a headache, fatigue sensation, apathy, irritability, marked sleepiness, etc. Symptoms
disappear when one drinks it again. Although one cannot label it as an addictive substance, it is
considered doping, and high-competition athletes cannot drink it because it is considered a
psychoactive substance that stimulates resistance and muscular strength. Caffeine is also present
in tea, colas (e.g., Coca-Cola®) and cocoa, although in the last, the quantity is derisory. The
quantity of Caff that one consumes also depends on how the coffee is served, type of coffee or
tea, etc.; for example, green (GT) presents 40% less Caff than black tea (BT) because the latter is
oxidized (fermented), which makes that Caff come out easier. Maximum recommended quantity
of Caff is 500mg/day. Caffeine is a drug model because it is one of the most studied medicines. It
is the world’s most widely consumed psychoactive drug. Theobromine may serve as a lead

Quantitative Structure-activity Relationship54

compound for novel drugs development. Analysis of Caff, its metabolites and phenolic com-
pounds (CGAs) in foods, beverages, human plasma and urine is difficult because of the complex
food, blood, and urine matrixes. Despite their progressive destruction during roasting, substan-
tial amounts of CGAs survive to be extracted into domestic brews and instant coffee, and for
many consumers, the beverage must be major dietary source of not only CGAs but also other
antioxidants.

One of the important applications of QSAR/QSPR models is to fill data gaps, by predicting a
given response property or activity from known molecular features, or physicochemical and
physiological properties of new compounds, which might not be experimentally tested. The
performance of a model should be evaluated based on predictions quality from the test and not
from the training set, in order to obviate any overfitting problem. The use of phenomenological
methods, for example, QSAR/QSPR, is restricted by the insufficient accuracy of final digits. A
quantum-mechanical consideration of additive models showed that in most phenomenological
approaches, systematic error is composed of two methodical errors: the same contribution of
formally identical fragments and the inclusion of small molecules in training set. Two ways to
improve models prognostic capabilities are: (1) compensation by introducing additional terms
and (2) elimination of models systematic error. Building a model, Occam’s razor (principle of
maximal parsimony) philosophical approach should be used, that is, fit the least complex
(most parsimonious) model that could correctly describe training data. The simpler the model,
the better the generalization one is going to find.

A study was made of the relations between retention times obtained by RP-HPLC chromatog-
raphy for a group of CGAs. Via multivariate linear regression, the corresponding molecular
functions were obtained, which were selected based on their respective statistical parameters.
Regression analysis of molecular functions showed a forecast of experimental elution sequence
for CGAs. In order to predict experimental elution sequence in CGAs, 1–5-variable models
were necessary in which the appearance of coordination index, morphological indicator, molar
formation enthalpy, bare surface area S, hydrophobic water-accessible surface HBAS, D and D’

reveals thermodynamic, geometric and fractal analyses importance in the studied property,
allowing the use of such equations in forecasting property value. Molecular structures may be
differentiated even in other phenolic compounds not included in the series, in brewed, paper-
filtered coffee.

The QSPR linear models explaining the variation of chromatographic relative retention time vs.
morphological Im and coordination Ic indices show a negative correlation with Im [Eq. (11)] and
a positive association with Ic [Eq. (12)]. The best model is for index Ic [Eq. (12)], according to all
statistics: correlation coefficient, standard deviation, variance ratio, prediction error sum of
squares, mean absolute percentage error and approximation error variance.

Thermodynamic indices were tried in order to improve the model. The molar formation
enthalpy negatively correlates with the relative retention time and betters the fit [Eq. (13)].

Geometric descriptors were assayed in order to improve the fit. The molecular surface posi-
tively correlates with the relative retention time and betters the model [Eq. (14)]. The inclusion
of the hydrophobic accessible surface presents a positive correlation with the relative retention
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time and improves the fit [Eq. (15)]. Notice that in this equation, index Ic shows a positive
correlation, in agreement with Eq. (12).

Topological indices were tried in order to improve the model. The incorporation of the fractal
dimension averaged for external (non-buried) atoms negatively correlates with the relative
retention time and betters the fit [Eq. (16)]. In this equation, index ΔHf

� shows a negative
correlation, in agreement with Eq. (13), and index HBAS presents positive association, in
agreement with Eq. (15). The inclusion of the fractal dimension negatively correlates with the
relative retention time and improves the fit [Eq. (17)]. In this equation, index ΔHf

� presents
negative correlation, in agreement with Eqs. (13) and (16), index HBAS presents positive
association, in agreement with Eqs. (15) and (16), and index D’ presents negative correlation,
in agreement with Eq. (16). The inclusion of index S positively correlates with the relative
retention time and improves the fit [Eq. (18)], in agreement with Eq. (14). In Eq. (18), index ΔHf

�

presents negative correlation, in agreement with Eqs. (13), (16) and (17), index HBAS shows a
positive association, in agreement with Eqs. (15)–(17), index D presents negative correlation, in
agreement with Eq. (17), and index D’ shows a negative association, in agreement with Eqs. (16)
and (17).

5. Conclusion

From the present results and discussion, the following conclusions can be drawn.

1. The objective of this study was to develop structure-property relationships for the
qualitative and quantitative prediction of the reverse phase liquid chromatographic
retention times of CGAs. It is hoped that the results of the present work increase
scientific knowledge in the field of the relation prediction of chlorogenic acids in coffee.
Program SCAP permits the Gibbs free energies of solvation (hydration) and partition
coefficients that illustrate that for a certain atom, the solvation energies and partition
coefficients result responsive to the occurrence in the molecule of some other atoms and
groups.

2. The factors necessary to compute the co-ordination index result in the standard molar
formation enthalpy, molecular mass and surface area.

3. Linear correlation models resulted for chromatographic retention times. The morpholog-
ical and coordination indices provided strong multivariable linear regression equations
for chromatographic retention. The trend between the coordination index and molecular
weight points not only to a homogeneous molecular structure of chlorogenic acids but
also to the ability to predict and tailor their properties. The latter is non-trivial in the
analysis of chlorogenic acids and phenolic compounds in foods, beverages, human
plasma, and urine because of the complex food, blood and urine matrixes.

4. The effect of different types of features was analyzed: thermodynamic, geometric, fractal,
etc. The molar formation enthalpy, bare molecular and hydrophobic solvent-accessible
surface areas, fractal dimensions, etc. distinguished chlorogenic acids in linear fits.
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Abstract

A variety of compounds from medicinal plants have been reported to possess anti-
inflammatory properties. Selected natural compounds that exhibit anti-inflammatory 
properties were subjected to docking simulation using AutoDock Vina to investigate 
their interaction modes to the potential macromolecular targets. The docking was per-
formed using different molecular targets, i.e., cyclooxygenase-2, phospholipase A2, 
NF-κB inhibitor, and interleukin-1 receptor. It revealed that flavonoids have the highest 
affinity to the macromolecular targets (the lowest binding energy values) and the high-
est consistency of interaction model. Some terpenoids were identified to have potential 
inhibitor of phospholipase A2.

Keywords: molecular docking analysis, natural compounds, anti-inflammatory, 
Autodock Vina

1. Introduction

Inflammation is the body defense system in response to the pathogens and injury. During the 
inflammation process, various inflammatory mediators are synthesized and secreted from cells 
and generate many cellular effects [1]. Uncontrolled inflammation lead to several chronic dis-
eases such as cardiovascular disease, arthritis, asthma, type 2 diabetes mellitus, and cancer. To 
relieve inflammatory responses, nonsteroidal anti-inflammatory drugs (NSAIDs) and steroids 
are widely used. NSAIDs possess anti-inflammatory effect by inhibit cyclooxygenase (COX) 
enzyme. However, their long-term use causes gastrointestinal toxicity due to nonselective inhi-
bition of COX-1 and COX-2 [2]. Glucocorticoids decrease the transcription of proinflamma-
tory cytokines and chemokines and increase the transcription of anti-inflammatory cytokines, 
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resulting in strong anti-inflammatory activity. However, their benefits are limited by the vari-
ety of systemic side effects and the development of resistance after chronic use. Thus, develop-
ing new drug candidates from natural products is greatly interesting [3].

In medicinal plants, many natural compounds, such as flavonoids, terpenoids, alkaloids, and 
saponin, have been reported to have in vitro as well as in vivo anti-inflammatory activity 
[4]. The mechanism of action and molecular target of various natural compounds needs to 
be studied for constructing a structure activity relationship. Molecular docking analysis can 
be conducted to study the interaction of these natural compounds with various molecular 
targets of anti-inflammatory activity. Further, the structure-activity relationship can be used 
to develop new derivative natural compounds with higher anti-inflammatory activity. This 
research aims to determine the model of interactions between the natural compounds with 
anti-inflammatory molecular target by molecular docking analysis. These natural compounds 
were used as the subjects in this study, with the cyclooxygenase-2 (COX-2), phospholipase 
A2, NF-κB–inducing kinase (NIK), and interleukin receptor (IRAK) as the molecular targets. 
The molecular docking analysis was conducted using Autodock Vina.

2. Molecular targets of anti-inflammatory agents

2.1. Cyclooxygenase-2 (COX-2)

The COX enzymes (COX-1 and COX-2) catalyze the biosynthesis of prostaglandins, prosta-
cylins and thromboxanes, from arachidonic acid. COX-1 is constitutively expressed in most 
tissues, while COX-2 is expressed in specific tissues and is induced by cytokine and growth 
hormones. COX-1 possesses regulatory effects on platelet aggregation and gastric mucous 
biosynthesis, while COX-2 is involved in pathological conditions such as inflammation, pain, 
and fever. NSAIDs possess their anti-inflammatory activity by inhibition of COX-1 and COX-
2. Prolonged inhibition of COX-1 in the gastrointestinal system causes gastrointestinal tract 
injury due to ulcer formation and gastric bleeding. Coxibs, the COX-2 selective inhibitor, were 
designed to inhibit COX-2 over COX-1, to obtain desired anti-inflammatory activity with min-
imal gastric toxicity side effect [5].

COX-1 and COX-2 were almost identical, despite of the residues of Ile434, His513, and Ile523 
in COX-1, while in COX-2 were Val434, Arg513, and Val523. These differences result in a vol-
ume increasing of the COX-2 active site and additional side pocket off the main channel. The 
structures of coxibs consist of diaryl heterocycle with a sulfonamide or methyl sulfone moiety, 
which will bind to the side pocket of COX-2 to provide isoform-selective inhibition [6].

2.2. Phospholipase A2 (PLA2)

Phopholipase A2 (PLA2) enzymes are required to increase the level of arachidonic acid 
for metabolism and biosynthesis of eicosanoid under physiological condition as well as in 
inflammatory cell activation. PLA2 superfamily consists of cytosolic calcium dependent PLA2 
(cPLA2), cytosolic calcium-independent PLA2 (iPLA2), and secreted PLA2 (sPLA2). iPLA2 is 
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constitutively generating a low level of free fatty acids with relatively minimal specificity for 
the particular esterified fatty acid. cPLA2 hydrolysis arachidonic acid-containing phospholip-
ids, leading to the production of proinflammatory eicosanoids. sPLA2 is an inducible enzyme 
that augments cPLA2 function to control the magnitude and duration of elevated free fatty 
acid levels including arachidonic acid [7].

2.3. NF-κB–inducing kinase (NIK)

Nuclear factor (NF)-κB is a group of eukaryotic transcription factors that regulates the expres-
sion of gene important for immune responses. NF-κB-inducing kinase (NIK) activates NF-κB2 
by promoting proteolytic processing and the generation of NF-κB transcription of the targeted 
gene. NIK is also required in the signaling pathways elicited by other cytokines. NIK regu-
lates both inflammation-induced and tumor-associated angiogenesis. NIK is highly expressed 
in endothelial cells of tumor tissues and inflamed rheumatoid arthritis synovial tissues [8].

2.4. Interleukin-1 receptor-associated kinase-4 (IRAK-4)

Contribution of interleukin-1 (IL-1), a proinflammatory cytokine, in the inflammation net-
work is important. It propagates and amplifies signals; furthermore, the signaling pathways 
mediated by IL-1 and other cytokines receptors may communicate in various cross-talk 
mechanisms. Therefore, inhibition of IL-1 receptor would have profound effects on overall 
inflammatory responses. Interleukin-1 receptor-associated kinase 4 (IRAK-4) plays a pivotal 
role in signaling cascades associated with the immune and inflammatory diseases, and may 
be an effective therapeutic target for various diseases associated with deregulated inflam-
mation [9].

3. Anti-inflammatory activity of natural compounds

3.1. Flavonoid and phenolic compounds

Flavonoids belong to a group of natural compounds and occur as aglycone, glycosides, and 
other derivatives. The flavonoids are categorized into flavonols, flavones, cathecins, flava-
nones, anthocyanidins, and isoflavonoids. Flavonoids exert their anti-inflammatory activity 
by various mechanisms, i.e., inhibition of phospholipase A2, COX, and LOX. Other mecha-
nisms include inhibition of histamine release, phosphodiesterase, protein kinases, and activa-
tion of transcriptase. Phenylated flavonoids and a number of biflavonoids (amentoflavone, 
bilobetin, morelloflavone and ginkgetin) have been shown to inhibit phospholipase C1 and 
A2. Quercetin is reported as a strong inhibitor of both COX-2 and 5-LOX [10].

Curcumin, a polyphenol compound derived from the rhizomes of the plant turmeric, has 
anti-inflammatory activity, mainly due to inhibition of arachidonic acid (AA) metabolism, 
cyclooxygenase (COX), lipoxygenase (LOX), cytokines interleukin (IL) and tumor necrosis 
factor (TNF), and nuclear factor kappa B (NF-κB), despite it is also reported to stabilize lyso-
somal membranes [11–14].
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3.2. Terpenoids

Terpenoids are classified into hemi-, mono-, sesqui-, di-, sester-, tri- and tetraterpenoids. 
A large numbers of terpenoids have been tested for anti-inflammatory properties. Anti-
inflammatory activity of 1,8-Cineol, a monoterpene oxide, is correlated to inhibition of leu-
kotriene B4, prostaglandin E2 TNF-α, interleukin, and thromboxane [15]. Parthenolide, a 
sesquiterpene lactone, possesses anti-inflammatory activity by several mechanisms, includ-
ing inhibition of NF-κB [16]. Cucurbitacins, a group of triterpenes, were reported to show 
anti-inflammatory activity by inhibition of prostaglandin production and blocking NF-κB 
activation [17].

3.3. Alkaloid

Alkaloids are the basic substances that contain one or more nitrogen atoms, usually in com-
bination as part of a cyclic system. They are often toxic to have various pharmacological 
activities, including anti-inflammatory activity [18]. Isoquinoline, quinoline, and indole alka-
loids were the most studied classes for anti-inflammatory activity. Berberine, an isoquinoline 
alkaloid, showed potential in vitro and in vivo anti-inflammatory activity. It was reported 
to inhibit prostaglandin E2 production, without inhibitory effect on either COX-1 or COX-2 
activity [19].

3.4. Saponins

Saponins are group of glycosides found in many plants, with triterpenoid or steroid as the 
aglycone moiety. Kalopanaxsaponin A was triterpenoid saponin isolated from the stem bark 
of Kalopanax pictus that showed significant anti-inflammatory activity [20]. Loniceroside A, 
a triterpenoid saponin isolated from the aerial parts of Lonicera japonica, also showed com-
parable anti-inflammatory activity to aspirin. It exhibited anti-inflammatory activity against 
acute and chronic inflammation [21].

4. Molecular docking analysis

Molecular modeling investigations were carried out using Zyrex Cruiser workstation EM4100 
running Intel Core i3-4030U Processor, 2 GB RAM, 500 GB hard disk, and Intel HD Graphic 
Family graphics card. Autodock Vina docking program, Molecular Graphic Lab, The Scripps 
Research Institute [22] was employed for the docking studies.

4.1. Preparation of target proteins

PDB structures used, i.e., 5IKT (COX-2), 4UY1 (PLA2), 1DV4 (NF-κB), 5KX7 (IRAK-4), were 
obtained from the Brookhaven Protein Data Bank (www.rcsb.org). Table 1 presented the 
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Target macromolecule (pdb 
code)

Ligand Structure

COX-2 (5IKT) Tolfenamic acid

Phospholipase A2 (4UY1) 5-(2,5-dimethyl-3-thienyl)-1H-pyrazole-3-
carboxamide

NIK (IDV4) 4-{3-[2-amino-5-(2-methoxyethoxy)pyrimidin-
4-yl]-1H-indol-5-yl}-2-methylbut-3-yn-2-ol

IRAK-4 (5KX7) ~{N}-(3-aminocarbonyl-1-methyl-
pyrazol-4-yl)-6-(1-methylpyrazol-4-yl)
pyridine-2-carboxamide

Table 1. Target macromolecules, pdb codes, native ligands, and ligand structures used in the docking study.
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 target macromolecules and each of the native ligand. The protein structures were prepared 
using UCSF Chimera 1.11.2 to remove all nonreceptor atom including water, ion, and miscel-
laneous compounds. The obtained structures then were saved as pdb file.

4.2. Preparation of ligands

The structures of native ligands from each target macromolecules were prepared by UCSF 
Chimera 1.11.2 to separate from the protein, water, and miscellaneous substances. The struc-
tures of the 40 ligands of natural compounds were sketched using MolView 2.2. Each struc-
ture then was executed an MMFF94 energy minimization. These obtained conformations 
were used as starting conformations to perform docking analysis.

4.3. Docking method validation

To ensure that the docking studies were valid and represented the reasonable potential bind-
ing model, the docking methods and parameters used were validated by redocking experi-
ment. Each copy of native ligand was docking into the native protein to determine the ability 
of Autodock program to reproduce the orientation and position of the ligand observed in the 
crystal structure. The valid criteria used is the all atom root mean square deviation (RMSD) 
between the docked position and the crystallographically observed binding position of the 
ligand, and success is typically regarded as being less than 2 Å.

4.4. Docking studies

Docking studies were carried out using the above mentioned prepared target macromolecules 
and natural compound ligands (1–40) by employing Autodock Vina program. Docking was 
performed to obtain a population of possible conformations and orientations for the ligand at 
the binding site. The protein was loaded in PyRx software, creating a PDBQT file that contains 
a protein structure with hydrogens in all polar residues. All bonds of ligands were set as rotat-
able. All calculations for protein-fixed ligand-flexible docking were done using the Lamarckian 
Genetic algorithm (LGA) method. The docking site on protein target was defined by establish-
ing a grid box with a default grid spacing, centered on the position of native ligand. The best 
conformation was chosen with the lowest binding energy, after the docking search completed. 
The interactions complex protein-ligand conformations, including hydrogen bonds and the 
bond lengths were analyzed using Discovery Studio Visualizer 16.1.0.15350.

5. Result and discussion

The molecular docking analysis was performed using Autodock Vina program with 40 plant-
derived compounds, including flavonoids and phenolic compounds, alkaloid, terpenoid, and 
saponin. First, the validation method was conducted to ensure the capability of docking machine. 
Figure 1 represented the validation result of docking protocol. All of the  redocking ligands showed 
similar conformation with the native redocking ligands, and the RMSD values were ≤2.0 Å.
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Each natural compound then was docked into each of six different targets, using valid param-
eter method. The lowest energy docked conformation of the best cluster was selected and 
analyzed. Table 2 summarizes the docking study results, presented as binding energy.

5.1. Interaction to Cyclooxygenase-2

Structure of COX-2 complex with tolfenamic acid, a selective COX-2 inhibitor, was used for this 
study. The carboxylic group of tolfenamic acid interacted by hydrogen bonding with Tyr-385A 
and Ser-530A at the top of channel. While the methylphenyl aminobenzoic moiety interacted 
hydrophobically with Val116A, Val349A, Leu352A, Val523A, Ala527A, as well as Leu531A [23]. 
This study revealed that some flavonoids and phenolic compounds, i.e., amentoflavone, apigenin, 
bilobetin, diosmine, epicatechin gallate, ginkgetin, hesperidin, luteolin, morelloflavon, and quer-
cetin, showed lower binding energy than that of tolfenamic acid, the selective COX-2 inhibitor.

The model interaction of these flavonoids to the binding site of COX-2 was similar to the 
model interaction of native ligand. Carbonyl group at C-ring of flavonoid played an important 
role in the ligand-target interaction, by hydrogen bond interaction to Ser530A and Arg120A 
residue, while A- and B-phenolic ring interacted to Val349A, Leu352, Ala527, and Leu531A 
residue via hydrophobic interaction (Figure 2).

This result was in line with previous reports about COX-2 inhibitory activity of flavonoid and 
phenolic compounds. Several research reports about COX inhibitory activity of flavonoids 
were documented [24–26]. A structure-activity relationship study about COX-2 inhibitory 
activity of flavonoid resumed the pharmacophores group were 4-oxo (C-ring), 7-hydroxyl 
moiety (A-ring), as well as para-substituted phenolic B-ring [27]. Apigenin meets all the 
requirements, due to its hydroxylation pattern at 5’-, 7’-, and 4’-positions.

Figure 1. Overlay of the native ligands (gray) and redocking conformations (yellow). (a: COX-2; b: PLA2; c: NF-κB; d: 
IRAK-4).
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Compound Target macromolecules; binding energy (kcal/mole)

COX-2 PLA2 NIK IRAK-4

Native ligand −9.0 −7.8 −9.9 −9.0

Flavonoids and phenolic compounds:

Amentoflavone −8.7 −9.0 −8.2 −8.1

Anthocyanin −8.3 −7.8 −8.3 −8.1

Apigenin −9.2 −7.8 −9.1 −9.3

Apocynin −6.7 −6.5 −6.8 −6.3

Apocynin ester −6.2 −5.8 −6.0 −6.2

Bilobetin −10.6 −9.1 −6.3 −10.1

Curcumin −8.9 −8.4 −9.0 −9.3

Diosmine −8.6 −8.9 −5.6 −8.8

Epicatechin gallate −9.9 8.2 −7.9 −8.4

Epigallocatechin 
gallate

−8.4 8.1 −8.0 −8.8

Ginkgetin −9.4 −9.0 −6.4 −10.2

Hesperidin −8.8 −8.9 −6.1 −8.2

Hydrocinnamic acid −6.4 −6.6 −6.4 −6.8

Luteonin −9.4 −8.1 −9.3 −8.9

Morelloflavon −9.5 −8.1 −4.1 3.0

Paeonol −6.5 −6.0 −5.9 −6.1

Procyanidin −7.9 −8.5 −6.5 −4.9

Pterostilben −7.6 −6.7 −8.0 −8.0

Quercetine −9.5 −8.1 −8.9 −9.1

Resveratol −7.9 −7.1 −8.0 −8.1

Yuccaol A −7.8 −8.2 −6.4 0.3

Yuccaol B −8.0 −7.0 0.3 −0.8

Yuccaol C −7.8 −6.9 −0.4 −0.5

Yuccaol D −8.5 −7.5 −1.8 3.3

Yuccaol E −8.1 −7.1 −0.9 −1.0

Alkaloids

Berberine −9.8 −8.4 −8.9 −9.3

Terpenoids

1.8-Cineol −5.6 −5.2 −5.8 −5.9

Cucurbitacin B −8.0 −7.6 −2.1 −0.6
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Compound Target macromolecules; binding energy (kcal/mole)

COX-2 PLA2 NIK IRAK-4

Cucurbitacin D −8.2 −7.4 −3.3 −1.7

Cucurbitacin E −8.8 −7.8 −2.9 −3.3

Cucurbitacin I −8.4 −7.3 −3.7 −3.0

Cucurbitacin R −8.3 −7.9 −2.6 −1.3

Dihydrocucurbitacin 
B

−7.5 −7.2 −2.1 −1.8

Oleanolic acid −8.7 −7.5 1.3 −3.0

Partenolid −7.7 −8.1 −6.7 −7.3

Pseudopterosin −7.8 −7.5 −8.3 −9.0

Ursolic acid −7.8 −8.0 1.7 −3.6

Saponins

Kalopanaxsaponin −8.7 −7.7 9.1 −0.5

Loniseroside A −6.1 −7.8 −7.4 −6.5

Table 2. Binding energy values of natural compounds docked to target macromolecules.

Figure 2. Model interaction of tolfenamic acid, apigenin and epicatechin gallate with COX-2 binding site. Dark green: 
hydrogen bond; light green: van der Waals; red: electron donor-donor interaction; pink-violet: hydrophobic interaction.
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Figure 3. Model interaction of phospholipase native ligand, bilobetin, and ginkgetin. Dark green: hydrogen bond; light 
green: van der Waals; red: electron donor-donor interaction; pink-violet: hydrophobic interaction; brown: π-cation 
interaction.

Epicatechin gallate was reported to inhibit COX-2 enzyme [28]. In this study, epicatechin 
gallate also showed good interaction to COX-2 binding site, where hydrogen bond was 
formed between its phenolic groups and Tyr385A as well as Arg180A residues, in addition to 
hydrophobic interactions between the aromatic groups and Val349A, Val523A, Ala527A, and 
Leu531A. Berberine, the alkaloid used in study, showed lower affinity compared to native 
ligand. This result was in agreement with the fact that berberine does not interfere with COX 
enzyme activity [19].

5.2. Interaction to Phospholipase A2

Complex structure of PLA with 5-(2,5-dimethyl-3-thienyl)-1H-pyrazole-3-carboxamide, 
shows that the terminal amide group interacts with by hydrogen bonding with Asp47A and 
His46A, while hydrophobic interaction is formed between the thienyl pyrazole moiety and 
Leu5A [26]. Three biflavonoids, i.e., amentoflavone, bilobetin, and ginkgetin, were the ligands 
with the lowest binding energy, with the binding energy value being −9.0, −9.1, and −9.0 kcal/
mole respectively. Biflavanoids were repeatedly reported as PLA2 inhibitors [29–32].

The biflavonoids successfully docked into the PLA2 binding site (Figure 3). The compounds 
bind to the target via hydrogen bond with Leu29A residue, while hydrophobic interactions 
were formed between aromatic rings of biflavonoid with Ala2A, Leu5A as well as Ala6A. 
Hydrophobic pharmacophores of biflavonoids support the PLA2 inhibitory activity, due to 
interaction between substrate of PLA2 usually occurs at hydrophobic channel of the enzyme. 
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The π-cation interaction increases the affinity of biflavonoid, because the Ca2+ ion is important 
for the catalytic mechanism of PLA2 [33].

5.3. Interaction to NF-κB–inducing kinase (NIK)

Study about NIK inhibitory has been conducted with the analogs of imidazopyridinyl pyrim-
idinamine. The hydrogen bonds were formed between pyrimidinamine group and Glu470A 
as well as Leu 472A; furthermore, imidazopyridinyl pyrimidinamine ring was hydropho-
bically interacted to Val414A, Ala427A, Lys429A, Leu522A, and Cys533A. Interaction of 
π-sulfur was formed between pyrimidinamine ring and Met469A [34].

This study revealed that apigenin and luteolin, two flavonoid aglikons, had lowest binding 
energy values. This was in line with previous research reports that apigenin and luteolin 
inhibit activation of NF-πB [35–38].

The similarity of interaction model between native ligand and these flavonoids are presented 
in Figure 4. Hydrogen bond was formed between carbonyl group at C-ring (4-oxo) of flavo-
noid and Ser476A residue. Similar to the interaction model of native ligand, hydrophobic 
interactions were formed between aromatic rings of flavonoid with Val414A, Ala427A, and 
Leu522A residues. Interaction of π-sulfur was also formed between B-ring with Met469A 
residue. Additional hydrogen bonding was formed between hydroxyl groups of B-ring with 
Glu470A and Leu472A residues. This result concluded that o-catechol or p-hydroxy B-ring 

Figure 4. Model interaction of NIK native ligand, apigenin, and luteolin. Dark green: hydrogen bond; light green: van 
der Waals; red: electron donor-donor interaction; pink-violet: hydrophobic interaction; brown: π-sulfur interaction.
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Figure 5. Model interaction of NIK native ligand, quercetin, and bilobetin. Dark green: hydrogen bond; light green: van 
der Waals; red: electron donor-donor interaction; pink-violet: hydrophobic interaction.

was the pharmacophore group for NIK inhibitory activity, in addition to -oxo and planar 
aromatic ring of flavonoids.

5.4. Interaction to Interleukin-1 receptor-associated kinase-4 (IRAK-4)

The X-ray crystal structure of IRAK-4-inhibitor complex has been reported. The structure 
revealed that the carboxamide group and N-pyrazol contributed as hydrogen bond acceptor 
(interacted to Met265B and Lys213B, respectively). Furthermore, two aromatic rings acted as 
hydrogen bond donor increased the affinity to the target via hydrophobic interaction with 
Val200B, Ala211B, Val246B, Tyr262B, as well as Leu318B [39].

Among 40 natural compounds docked to IRAK-4, apigenin, bilobetin, curcumin, ginkgetin, 
quercetin, berberine, and pseudopterosin showed higher affinity compared to the native 
ligand. Quercetin was reported to show IRAK-4 inhibitory activity [40]. Affinity of querce-
tin to the binding site was supported by hydrogen bond between 4-hydroxy of B-ring with 
Lys213B and Glu233B residues, while the aromatic rings contributed by forming hydrophobic 
interaction with Val200B, Tyr262B, and Leu318B. Similar to the interaction model of native 
ligand to IRAK-4, aromatic rings of bilobetin also formed the hydrophobic interaction to 
Val200B, Tyr262B, and Leu318B residues of IRAK-4 (Figure 5).
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6. Conclusion

The docking results revealed that the highest affinity to the macromolecular targets (the low-
est binding energy values) and the consistency of interaction model were shown by the fla-
vonoids. Some terpenoids were identified to have potential inhibitor of phospholipase A2.
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