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Uncertainty quantification may appear daunting for practitioners due to its inherent 
complexity but can be intriguing and rewarding for anyone with mathematical 

ambitions and genuine concern for modeling quality. Uncertainty quantification is 
what remains to be done when too much credibility has been invested in deterministic 

analyses and unwarranted assumptions. Model calibration describes the inverse 
operation targeting optimal prediction and refers to inference of best uncertain 

model estimates from experimental calibration data. The limited applicability of most 
state-of-the-art approaches to many of the large and complex calculations made today 
makes uncertainty quantification and model calibration major topics open for debate, 

with rapidly growing interest from both science and technology, addressing subtle 
questions such as credible predictions of climate heating.
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Preface

“Wisest is [s-]he who knows [s-]he does not know."

- Jostein Gaarder, Sophie’s World

This book disseminates and illustrates a selection of aspects and applications of modern meth‐
ods for uncertainty quantification (UQ), by independent authors active in different fields of
science and technology. It is not meant to be exhaustive or representative, even though each
contribution is self-contained and complete within the task addressed. Instead, the presented
studies summarize research efforts from all over the world, often addressing real, important
but also critical issues of our modern society, like risk assessment. The targeted audience con‐
sists of anyone interested in credible computations, with at least rudimentary training in sci‐
entific modeling and mathematical statistics. The texts are primarily meant to motivate further
reading. Being overviews, many details are left out. The reader is therefore advised to make
extended use of the list of references presented in the end of each chapter.

Uncertainty quantification distinguishes what is believed known from what is not, to maxi‐
mize our wisdom, in concurrence with the quotation above. Truthfully, respecting limits of
our knowledge will render prediction intervals of maximum credibility, for best possible
agreement with subsequent observations. The ultimate goal for quantifying uncertainty of
calculations is almost exclusively to make optimal decisions about what not yet has occur‐
red, on the basis of available knowledge and experience. Its utilization may be obvious, as
when selecting only the most viable designs or prototypes in product development for ex‐
pensive experimental testing. Critical aspects of uncertainty quantification are sometimes
disguised. In weather forecasting, improper uncertainties of wind speeds, temperature and
other hazards, due to imperfect treatment of observation data in the data assimilation, even
might become life-threatening. A valid number of uncertainty or statistical coverage of pos‐
sible outcomes can be far more important than just the best estimate from a deterministic
analysis—irrespective of its quality. One example is calculated core temperatures in nuclear
power plants. There is thus a multitude of possible effects, risks, applications and highly
complex contexts, in need of uncertainty quantification.

This book therefore starts with a Prelude, consisting of one hopefully mind-setting introduc‐
tion (Chapter 1). It provides an overall perspective and tries to explain why anyone should
bother about uncertainty of models, simulations and calculations. Typically required knowl‐
edge and versatile references are weaved into a description of the general procedure, briefly
mentioning common pitfalls and some expected difficulties of uncertainty quantification.
That sets an appropriate framework for studying the specific contributions that follow, also
for uninitiated readers.



Wisdom must be acquired before it can be utilized. There are thus two directions of uncer‐
tainty propagation. Uncertainty quantification (UQ) labels the utilization of our wisdom.
Known but uncertain mathematical models predict an uncertain result, usually a scalar
quantity like temperature or a high-dimensional field such as fluid flow velocity. Model cali‐
bration (MC) is the process of acquiring wisdom in terms of a mathematical model with un‐
certainty, from experimental calibration data. The development of uncertainty quantification
approaches splits into methods and applications. From a scientific point of view, applica‐
tions validate the utility and the appropriateness of the methods used. Methodological per‐
spectives are therefore predominantly given before applications. Chapters 2–5, with focus
on UQ, discuss polynomial chaos (Chapter 2) and interval methods (Chapter 3), before the
applications of seismic damage assessment (Chapter 4) and molecular dynamics (Chapter 5).
Chapters 6–9, mainly devoted to MC, start with methods of Bayesian estimation (Chapter 6)
and regression analysis (Chapter 7) and finish with multivariable fault detection of critical
processes (Chapter 8) and analytical chemistry (Chapter 9).

Determination of simplified surrogate models provides a special case of model calibration.
Surrogates are matched to calculated results obtained with the full model, instead of meas‐
ured data. Due to its complexity, model calibration is often circumvented by assessing un‐
certainties of parameters independently of what the model would return and any
experimental data set. That is the prevailing approach for approaches like polynomial chaos
or when the model has been derived from physical principles. If so, model calibration is sub‐
stituted with prior knowledge obtained by other means. Such a perspective is consistent
with the discussed Bayesian approach.

Current practice of uncertainty quantification is rapidly evolving but still entails numerous
unresolved issues, of both theoretical and practical character. We hope you will find the sub‐
ject as challenging and interesting as all of us currently active in this intriguing field of sci‐
ence do. Let this book inspire.

Jan Peter Hessling
Kapernicus AB—Science

Gothenburg, Sweden
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Chapter 1

Introductory Chapter: Challenges of Uncertainty
Quantification

Jan Peter Hessling

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69517

1. Preamble

Uncertainty is beyond awareness our indisputable decision-maker. A meeting announced to 
start at 12:00 may implicitly be understood to start in the time interval 12:00–12:01. Hence, 
we should have arrived at 12:01, at the latest. Alternatively, the interval could be 12:00–12:05. 
The communicated uncertainty of the start of the meeting is clearly ambiguous: accustomed 
to analog clocks discretized in 5-minute intervals, the latter is plausible, but used to digital 
clocks the former makes more sense. A meeting scheduled at 12, however, means something 
quite different to most of us. In that case, it can start as late as 12:30. The invisible practice in 
everyday life is to communicate uncertainty through a vaguely perceived precision, suggest-
ing random variability. It is more often than not confused with accuracy, or systematic devia-
tion (see Figure 1).

Results repeated within ±1% variation tell nothing about the range of possible errors or uncer-
tainty. An entirely deterministic algorithm has perfect precision. This is normally the situation 

Figure 1. Illustrations [1] of precision (left) and accuracy (middle) of four samples (●), and corresponding schematic 
probability density for the population of all possible outcomes (right), often utilized in uncertainty quantification.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



of scientific modeling, before uncertainties are considered. The precision usually thought of as 
random variability for any given set up is often re-interpreted as the total variability between 
known different situations. That is a dubious strategy to assign numbers of uncertainty. 
Without extensive consideration, it is generally impossible to assess whether or not the consid-
ered history is representative for the current problem. For instance, errors in modeling of fluid 
flow velocities and electromagnetic fields at nearly singular points in space or time, such as 
sharp corners, or deficiencies in describing collective phenomena like resonances, are usually 
far too complex to be understood by studying examples only. An extensive analysis based on 
a large or even infinite set of hypothetical variations is required. The widely practiced intuitive 
assessment of uncertainty exemplified above, based on experience and communicated with 
precision, jeopardizes decision-making: uncertainties of this kind are subjective and encourage 
different interpretations. Invalid uncertainty assessment is also a major cause of false rejection 
of modeling as a general tool, depriving us all means for making educated guesses through 
scientific model prediction of important matters, like future weather conditions and risk of 
major nuclear power accidents.

1.1. The goal

Uncertainty quantification targets objective association of quantitative traceable numbers rep-
resenting uncertainty to modeling, simulation, and calculation results. By applying a well-
documented and widely accepted method with known performance, for the last 20–30 years 
of so, such a methodology has been established and widely recognized for measurement 
models, to the extent a quantitative assessment of uncertainty now almost always is required 
for measurement apparatus. It is not yet so for scientific modeling, as the advanced computa-
tions in modern science and technology generally are far more difficult to analyze than mea-
surement models. The uncertainty should predict the range of possible modeling errors, but 
without exaggeration. If so, modeling results and observations are consistent, which means no 
more than they are not contradictory. Expressed in terms of conventional mathematical sta-
tistics developed by Fisher [2] and Popper [3], the hypothesis that the model accurately repro-
duces observations cannot be falsified. These perspectives, outlined in the early 20th century 
while studying, e.g., crop growth in agriculture and demography, still hold well for modern 
uncertainty quantification addressing complex applications, such as nuclear power genera-
tion, fatigue testing, etc. Mathematical statistics is indeed the genesis of most uncertainty 
quantification approaches and techniques utilized today.

The mere evaluation of uncertainty is, however, not automatically of any value. Unwarranted 
assumptions of uncertainties entering the evaluation are deceiving. Respecting what is not 
known is usually far more important than accurately describing what is known. Lack of knowl-
edge tends to increase the uncertainty and often leads to ambiguity, an important ingredient 
in qualitative science. In quantitative science addressed here though, any lack of well-defined 
information is normally defied by bold simplifying assumptions, simply because current meth-
odologies require complete knowledge. Closing the gap of ambiguity in this way reflects willful 
ignorance [4]. Therefore, it is important to consider alternative  hypotheses of uncertainty. For 
instance, parameter correlations are very rarely known, but nevertheless have a major influence 
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on the evaluated uncertainty. In this respect, it is important to view the model with all of its 
parameters as one composite unit. The hypothesis touched upon above, stating that the model 
reproduces observations, implies that propagated parameter errors combine coherently, accord-
ing to the behavior of the deterministic model equations. Correlations are thus essential com-
ponents of uncertainty, as they may attenuate or amplify contributions from different uncertain 
parameters by means of destructive or constructive interference. If such effects are not taken 
into account, uncertainty quantification may evolve into con artistry.

1.2. The preparation

In many respects and for good reasons, methods of uncertainty quantification (UQ) [5] are in 
their infancy. The need of viable and credible UQ methods is rapidly increasing, with higher 
utilization of advanced computations. The excess computational power at disposal for UQ 
is unfortunately not increasing nearly as rapidly as the total resources. The reason is simple. 
Most computational models are discretized in space and time, truncated, or simplified by 
neglecting minor but complicated contributions. Such approximations cannot be traced to 
lack of knowledge or ability, but are often required to enable computation. As soon as the 
resources increase, eliminating these model reductions as much as possible is most logical 
and desirable. Weather forecasting [6] illustrates the principle. Proper propagation of distur-
bances requires comparable resolution in space and time. Reducing the unit cell of analysis 
from 10 km × 10 km down to 5 km × 5 km to render more detailed forecasts increases the 
computational load no less than 24 = 16 times. Even so, the unit cell will still be larger than 
desired. Additional resources will therefore mainly be spent on improvements of the deter-
ministic model formulation in the future, leaving a relatively small fraction to be spent on 
improved UQ. However, with model samples that can be evaluated independently in differ-
ent computer kernels, the challenge of improved UQ by additional sampling translates into 
an economical issue. Then it does not compete with the advancement of computer architec-
ture required to solve the dependent deterministic equations.

UQ combines several advanced mathematical disciplines and can be applied to a plethora 
of disparate applications not only in technology and science, but also in econometrics and 
for risk assessment. This makes the subject exceedingly difficult to master, but also hard to 
understand and learn by studying examples. Physical modeling usually provides the basis 
for setting up the underlying deterministic model. Major simplifications as well as coarse 
assumptions are common. For instance, Navier-Stokes equations of fluid flow may require 
both physical and mathematical idealizations like continuous media and differentiability, as 
well as neglect of higher-order turbulence contributions. Already at this first stage, contribu-
tions to uncertainty are building up. Finite element methods (FEMs) discretize physical fields 
in space and time caused by fixed (solids) or moving (fluids) matter. Signal processing tech-
niques such as temporal sampling, digital filtering, and state space formulations for Kalman 
filtering and model prediction control convert infinite-dimensional continuous physical dif-
ferential models to finite systems of difference equations, suitable for computers. Numerical 
methods then provide the means for solving these equations, with maximum efficiency and 
minimum error. Preferably with known error estimates, which may be re-phrased in terms 
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of uncertainty in the proceeding UQ. Knowledge of computer science is needed for efficient 
programming and maintaining numerical precision throughout the calculation, but also for 
managing large complex software modules. The studied system may also exhibit critical 
properties. The chaotic nature of weather forecast models is one example. More than 50 years 
ago, Lorenz assessed an absolute upper prediction horizon of about two weeks [6]. Explained 
by “the butterfly effect” [6, p. 206], this limit is still believed to be accurate: Even the slightest 
possible change in initial conditions may render a monumental change in the forecast after 
some time, which clearly is a major complication for credible UQ. Understanding these pre-
paratory stages is crucial, as they accommodate many sources of uncertainty.

1.3. Overview

Uncertainty quantification can now be addressed. Statistics of all kinds of uncertain quantities 
are then propagated in two possible directions, as explained in Figure 2 (adapted from Ref. [7]).

Fundamentally, statistics of populations rather than finite samples drawn from them are propa-
gated, which avoids sampling variance, the principal complication addressed in mathematical sta-
tistics with statistical inference [2]. There are thus two generic types of uncertainty1 to some extent 
corresponding to accuracy and precision, respectively:

• Epistemic uncertainty, i.e., unknown and unpredictable systematic but repeatable errors 
due to lack of knowledge and imperfect simplifications.

1Errors are realized uncertainty. The uncertainty predicts the range of possible errors. Such errors are unknown, other-
wise we would eliminate them. Their analysis requires a concept like uncertainty.

Uncertain Model

Model predic�on 
(best es�mate 

with uncertainty) 

Model 
Calibration

Uncertainty 
Quantification 

Prior informa�on 
(Physical models) 

Calibra�on data (experiments) 

Iden�fica�on data Valida�on data

Prior  
Model with 
uncertainty

Iden�fied / Calibrated 
Model with 
uncertainty

Posterior  
Model with  
uncertainty

Surrogate 
Model 

Model
Validation 

Figure 2. Uncertainty quantification (UQ) and model calibration, or inverse UQ. Identifying or matching the model 
against identification data often requires simplified surrogate models. The model should be checked or validated before 
it is utilized for prediction comprising a best estimate and its uncertainty.
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• Aleatoric uncertainty, i.e., non-repeatable errors of a statistical nature. Typically, the vari-
able outcome of finite random draws (sampling variance).

Applications of UQ are typically concerned with epistemic uncertainty due to imperfect 
modeling, calculation and signal processing, finite discretization (FEM) as well as inaccu-
rate boundary and initial conditions, etc. Mathematical statistics, on the other hand, focuses 
on aleatoric uncertainty due to finite statistical sampling. In the latter case, modeling has an 
entirely different character. The quantities of interest are usually not a result of a complex 
model implemented in a large computer program but rather directly observable, like mean 
and variance of some measure of performance, frequency, length, or response time. In that 
case, the uncertainty due to the variability of small observation sets presumably dominates 
over model errors.

1.4. Some common tools

Bayesian approaches [8] make the difference between epistemic and aleatoric uncertainties 
almost invisible. Generalizing observed frequencies of observation to also include other kinds 
of knowledge requires a shift of perspective from experimental testing, to the observer and 
his/her degree of belief. Since our belief rarely is complete or totally absent, this still has the 
appearance of probability, but is conceptually different. Nevertheless, belief is the enabler 
for unifying epistemic and aleatoric uncertainty consistently within the same framework 
of UQ. Our belief often refers to a model’s track record, or how it has performed in differ-
ent situations over a long period of time. That may be difficult to assess quantitatively, but 
could in principle be made with multimodel calibration. Only independent data sets/model 
results must be included, as dependencies will underestimate the uncertainty severely. Worth 
emphasizing is also that any piece of prior information available before the uncertainty is quan-
tified must reflect some kind of knowledge or experience. Any reduction of uncertainty due to 
a guessed prior is purely hypothetical and deceptive.

Random sampling reduces the difference between the practices of UQ and mathematical sta-
tistics even further by introducing sampling variance of finite random ensembles, making it a 
primary target to control in both fields. The basic motivation for random sampling is its sim-
plicity, while a severe drawback is the added sampling variance. Much larger ensembles than 
the computational power allows for may be required. The obvious work-around is to substi-
tute the full model with a much less demanding approximate surrogate model, which allows 
for excessive sampling. The surrogate is often affine, i.e., linear in uncertain parameters and 
obtained with traditional linear regression. Aleatoric sampling errors are then exchanged with 
presumably smaller epistemic ones. Alternatively, the sampling variance may be reduced 
by imposing deterministic components in the random sampling methodology, like stratified 
sampling, perhaps combined with latin-hypercube [9] or orthogonal sampling exclusion rules. 
It is indeed possible to extend these amendments of determinism into entirely deterministic 
sampling, as in the unscented Kalman filter [10]. The sampling variance is then completely(!) 
exchanged with sampling errors due to imperfections of the reproducible sampling rule [11]. 
Just knowing the modeling error is entirely reproducible is of great value when differential 
changes are of primary interest, as in product development.
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Model calibration or inverse UQ is an inverse problem usually requiring an implicit solution. 
The high complexity of the full model normally prohibits ubiquitous trial-and-error search 
and steepest descent methods like the Newton-Raphson method [12], to minimize the model 
prediction error. Just as for excessive random sampling, surrogate models are often utilized. 
In this case though, the iterative character of many inverse solutions requires even higher 
computational efficiency. The maximum likelihood method is perhaps the most common 
approach to inverse propagation of uncertainty. Virtually all methods require complete sta-
tistical information. That is a major issue since available information normally is incomplete. 
Just like Bayesian estimation can be invalidated by faulty prior distributions, inappropriate 
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Abstract

Uncertainty propagation (UP) methods are of great importance to design optimization
under uncertainty. As a well-known and rigorous probabilistic UP approach, the polyno-
mial chaos expansion (PCE) technique has been widely studied and applied. However,
there is a lack of comprehensive overviews and studies of the latest advances of the PCE
methods, and there is still a large gap between the academic research and engineering
application for PCE due to its high computational cost. In this chapter, latest advances of
the PCE theory and method are elaborated, in which the newly developed data-driven
PCE method that does not depend on the complete information of input probabilistic
distribution as the common PCE approaches is introduced and improved. Meanwhile,
the least angle regression technique and the trust region scenario are, respectively,
extended to reduce the computational cost of data-driven PCE to accommodate it to
practical engineering design applications. In addition, comprehensive comparisons are
made to explore the relative merits of the most commonly used PCE approaches in the
literature to help designers to choose more suitable PCE techniques in probabilistic design
optimization.

Keywords: uncertainty propagation, probabilistic design, polynomial chaos expansion,
data-driven, sparse, trust region

1. Introduction

Uncertainties are ubiquitous in engineering problems, which can roughly be categorized as
aleatory and epistemic uncertainty [1, 2]. The former represents natural or physical random-
ness that cannot be controlled or reduced by designers or experimentalists, while the latter

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



refers to reducible uncertainty resulting from a lack of data or knowledge. In systems design,
all sources of uncertainties need to be propagated to assess the uncertainty of system quantities
of interest, i.e., uncertainty propagation (UP). As is well known, UP is of great importance to
design under uncertainty, which greatly determines the efficiency of the design. Since generally
sufficient data are available for aleatory uncertainties, probabilistic methods are commonly
employed for computing response distribution statistics based on the probability distribution
specifications of input [3, 4]. Conversely, for epistemic uncertainties, data are generally sparse,
making the use of probability distribution assertions questionable and typically leading to
nonprobabilistic approaches, such as the fuzzy, evidence, and interval theories [5–7]. This chap-
ter mainly focuses on propagating the aleatory uncertainties to assess the uncertainty of system
quantities of interest using probabilistic methods, which is shown in Figure 1.

A wide variety of probabilistic UP approaches for the analysis of aleatory uncertainties have
been developed [8], among which the polynomial chaos expansion (PCE) technique is a
rigorous approach due to its strong mathematical basis and ability to produce functional
representations of stochastic quantities. With PCE, the function with random inputs can be
represented as a stochastic metamodel, based on which lower-order statistical moments as
well as reliability of the function output can be derived efficiently to facilitate the implementa-
tion of design optimization under uncertainty scenarios such as robust design [9] and
reliability-based design [10]. The original PCE method is an intrusive approach in the sense
that it requires extensive modifications in existing deterministic codes of the analysis model,
which is generally limited to research where the specialist has full control of all model equa-
tions as well as detailed knowledge of the software. Alternatively, nonintrusive approaches
have been developed without modifying the original analysis model, gaining increasing atten-
tion, thus is the focus of this chapter. As a well-known PCE approach, the generalized PCE
(gPCE) method based on the Askey scheme [11, 12] has been widely applied to UP for its
higher accuracy and better convergence [13, 14] compared to the classic Wiener PCE [15].
Generally, the random input does not necessarily follow the five types of probabilistic distri-
butions (i.e., normal, uniform, exponential, beta, and gamma) in the Askey scheme. In this
case, the transformation should be made to transfer each random input variable to one of the
five distributions. It would induce substantially lower convergence rate, which makes the
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Figure 1. Illustration of uncertainty propagation.
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nonoptimal application of Askey polynomial chaos computationally inefficient [8]. Therefore,
the Gram-Schmidt PCE (GS-PCE) [16] and multielement PCE (ME-PCE) [17] methods have
been developed to accommodate arbitrary distributions through constructing their own
orthogonal polynomials rather than referring to the Askey scheme.

All the PCE methods discussed above are constructed based on the assumption that the exact
knowledge of the involved joint multivariate probability density function (PDF) of all random
input variables exists. Generally, by assumption of independence of the random variables, the
joint PDF is factorized into univariate PDFs of each random variable in introducing PCE in the
literature. However, the random input could exist as some raw data with a complicated
cumulative histogram, such as bi-modal or multi-modal type, for which it is often difficult to
obtain the analytical expression of its PDF accurately. Under these scenarios, all the above PCE
approaches become ineffective since they all have to assume the PDFs to be complete. To
address this issue, the data-driven PCE (DD-PCE) method has been proposed [18], in which
its accuracy and convergence with diverse statistical distributions and raw data are tested and
well demonstrated. With this PCE method, the one-dimensional orthogonal polynomial basis
is constructed directly based on a set of data of the random input variables by matching certain
order of their statistic moments, rather than the complete distributions as in the existing PCE
methods, including gPCE, GS-PCE, and ME-PCE.

At present, great research achievements about PCE have been made in the literature, which
have also been applied to practical engineering problems to save the computational cost in UP.
However, there is still a large gap between the academic study and engineering application for
the PCE theory due to the following reasons: (1) the complete information of input PDF often is
not known in engineering, which cannot be solved by most PCE methods presented in the
literature; (2) the computational cost of existing PCE approaches is still very high, which
cannot be afforded in practical problems, especially when applied to design optimization;
and (3) there is a lack of comprehensive exploration of the relative merits of all the
PCE approaches to help designers to choose more suitable PCE techniques in design under
uncertainty.

2. Data-driven polynomial chaos expansion method

Most PCE methods presented in the literature are constructed based on the assumption that
the exact knowledge of the involved PDF of each random input variable exists. However, the
PDF of a random parameter could exist as some raw data or numerically as a complicated
cumulative histogram, such as bimodal or multimodal type, which is often difficult to obtain
the analytical expression of its PDF accurately. To address this issue, the data-driven PCE
method (DD-PCE for short in this chapter) has been proposed. DD-PCE follows the similar
general procedure as that of the well-known gPCE method. For gPCE, the one-dimensional
orthogonal polynomial basis simply comes from the Askey scheme in Table 1 and is a function
of standard random variables. While for DD-PCE, the one-dimensional orthogonal polynomial
basis is constructed directly based on the data of random input by matching certain order of
statistic moments of the random inputs and is a function of the original random variables.
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2.1. Procedure of data-driven PCE method

Step 1. Represent the output y as a PCE model of order p.

y ≈
XP

i¼0

biΦiðXÞ ¼
XP

i¼0

bi
Yd

j¼1

P
ðαi

jÞ
j ðXjÞ ð1Þ

where P+1 (1þ P ¼ ðdþ pÞ!=ðd!p!Þ) is the number of PCE coefficients bi that is the same as
gPCE; ΦiðXÞ is the d-dimensional orthogonal polynomial produced by the full tensor product

of one-dimensional orthogonal polynomials P
ðαi

jÞ
j ðXjÞ; and αi

j represents the order of P
ðαi

jÞ
j ðXjÞ

and clearly satisfies 0 ≤
Xd

j¼1

αi
j ≤ p.

P
ðαi

jÞ
j ðXjÞ corresponding to the jth dimensional random input variable xj in Eq. (1) is defined as

below, in which the index αi
j is replaced by kj for simplicity below:

Pj
ðkjÞðXjÞ ¼

Xkj

s¼0

pðkjÞs, j �ðXjÞs, j ¼ 1, 2,…, d ð2Þ

where pðkjÞs, j is the unknown polynomial coefficient to be solved.

Step 2. Solve the unknown polynomial coefficient pðkjÞs, j to construct the one-dimensional

orthogonal polynomial basis.

Since the construction of P
ðαi

jÞ
j ðXjÞ on each dimension is the same, the subscript j denoting the

dimension number is omitted thereafter for simplicity. Based on the property of orthogonality,
one clearly has

ð

x∈Ω
PðkÞðXÞPðlÞðXÞdΓðXÞ ¼ δkl, ∀k, l ¼ 0, 1,…, p ð3Þ

where δkl is the Kronecker delta, Ω is the original stochastic span, and Γ(X) represents the
cumulative distribution function of the random variable X.

Distribution types PDFs Polynomials Weights Intervals

Normal 1ffiffiffiffi
2π

p e�x2=2 Hermite Hn(x) e�x2=2 [�∞, +∞]

Uniform 1/2 Legendre Pn(x) 1 [�1, 1]

Beta ð1�xÞαð1þxÞβ
2αþβþ1Bðαþ1, βþ1Þ

Jacobi Pðα,βÞ
n ðxÞ ð1� xÞαð1þ xÞβ [�1, 1]

Exponential e�x Laguerre Ln(x) e�x [0, +∞]

Gamma xαe�x

Γðαþ1Þ General Laguerre Lðα,βÞn
xαe�x [0, +∞]

Table 1. Random variable types and the corresponding orthogonal polynomials.
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It is assumed that all the coefficients pðkÞs in Eq. (2) are not equal to 0, and then Pð0Þ ¼ pð0Þ0 . For

simplicity, the coefficient of the highest degree term in each P(k) is set as pðkÞk ¼ 1, ∀k. According
to Eq. (3), one has

ð

x∈Ω
pð0Þ0

Xk
s¼0

pðkÞs Xs

" #
dΓðXÞ ¼ 0 ð4Þ

In the same way as above, one has
ð

x∈Ω

X1
s¼0

pð1Þs Xs

" # Xk
s¼0

pðkÞs Xs

" #
dΓðXÞ ¼ 0

⋮ ⋮ð

x∈Ω

Xk�1

s¼0

pðk�1Þ
s Xs

" # Xk
s¼0

pðkÞs Xs

" #
dΓðXÞ ¼ 0

ð5Þ

There are totally k equations in Eqs. (4) and (5). Through substituting Eq. (4) into the first
equation in Eq. (5), and then substituting Eq. (4) and the first equation in Eq. (5) to the second
equation in Eq. (5), and so on, one set of new equations can be derived:

ð

x∈Ω

Xk
s¼0

pðkÞs XsdΓðXÞ ¼ 0

ð

x∈Ω

Xk
s¼0

pðkÞs Xsþ1dΓðXÞ ¼ 0

⋮ð

x∈Ω

Xk
s¼0

pðkÞs Xsþk�1dΓðXÞ ¼ 0

ð6Þ

It is observed that
ð

ξ∈Ω
XkdΓðXÞ is actually the kth order statisticmoment of x, i.e.,

ð

x∈Ω
XkdΓðXÞ ¼ μk.

Therefore, Eq. (6) can be rewritten as

μ0 μ1 ⋯ μk
μ1 μ2 ⋯ μkþ1
⋮ ⋮ ⋮ ⋮

μk�1 μk ⋯ μ2k�1
0 0 ⋯ 1

2
66664

3
77775

pðkÞ0

pðkÞ1

⋮
pðkÞk�1

pðkÞk

2
6666664

3
7777775
¼

0
0
⋮
0
1

2
66664

3
77775

ð7Þ

where μiði ¼ 0, 1,…, 2k� 1Þ is the ith order statistic moment of x, which can be easily calcu-
lated from the given input data statistically or the PDFs of random inputs by integral. Of
course, when the number of given data is not large enough, errors would be induced in the
moment calculation.

Clearly, to obtain a k-order one-dimensional orthogonal polynomial basis, 0 to (2k � 1)-order
statisticmoments of x shouldbematched,which canbe calculated basedon thePDFor statistically
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based on the data set. Of course, when the number of data is not large enough, errors would be
induced in themoment calculation. The polynomial coefficients for the one-dimensional orthogo-
nal polynomial basis can be obtained by solving Eq. (7) with the Cramer’s Rule.

Step 3. Calculate the PCE coefficients bi by the least square regression technique.

Step 4. Once the PCE coefficients are obtained, a stochastic metamodel (i.e., PCE model) that is
much cheaper than the original model is provided. Evaluate on the PCE model by Monte Carlo
simulation (MCS) to obtain the probabilistic characteristics of y. Since the PCE model is cheap,
a large amount of sample points can be used. For the statistic moments, the analytical expres-
sions can also be conveniently derived based on the PCE coefficients:

E½y� ¼ E
XP

i¼0

biψiðXÞ
" #

¼ b0

σ2½y� ¼ E½y2� � E2½y� ¼
XP

i¼0

b2i E½ψ2
i ðXÞ� � E2½y�

Skew½y� ¼ E y�E½y�
σ½y�

� �3� �
¼ E½y3� � 3E½y�σ2½y� � E3½y�

σ3½y�
Kur½y� ¼ E½ðy� E½y�Þ4�

σ4½y� ¼ E½y4� � 4E½y�E½y3� þ 6E2½y�σ2½y� þ 3E4½y�
σ4½y�

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð8Þ

2.2. Extension of Galerkin projection to DD-PCE

In the existing work about DD-PCE, only the regression method is employed to calculate the
PCE coefficients. To the experience of the authors, the matrix during regression may become
ill-conditioned during regression for higher-dimensional problems since the sample points
required for regression that is often set as two times of the number of PCE coefficients P + 1
[19] is increased greatly causing a large-scale matrix during regression. To solve higher-
dimensional problems, the Galerkin projection method in conjunction with the sparse grid
technique has been widely used in gPCE due to its high accuracy, robustness, and conver-
gence [20], which has also been observed and demonstrated during our earlier studies on PCE
in recent years. In this section, the Galerkin projection method for PCE coefficients calculation
is extended to the DD-PCE approach to address higher-dimensional UP problems. Figure 2
shows the general procedure of the improved DD-PCE method.

With the projection method, the Galerkin projection is conducted on each side of Eq. (1):

yΦjðXÞ
� � ¼

XP

i¼0

biΦiðXÞΦjðXÞ
* +

, ðj ¼ 0, 1,⋯, PÞ ð9Þ

where 〈•〉 represents the operation of inner product as below

〈g, f 〉 ¼
ð
gf dHðXÞ ð10Þ

where H(X) is the joint cumulative distribution function of random input variables X.
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Based on the orthogonality property of orthogonal polynomials, the PCE coefficient can be
calculated as

bi ¼ E yΦiðXÞ½ �=E ΦiðXÞΦiðXÞ½ �, ði ¼ 0, 1,⋯, PÞ ð11Þ

Similar to gPCE, the key point is the computation of the numerator in Eq. (11), which can be
expressed as

E yΦiðXÞ½ � ¼
ð

ξ∈Ω
yΦiðXÞdΗðXÞ ð12Þ

The Gaussian quadrature technique, such as full factorial numerical integration (FFNI) and
spare grid numerical integration, has been widely used to calculate the numerator in the
existing gPCE approaches, with which the one-dimensional Gaussian quadrature nodes and
weighs are directly derived by multiplying some scaling factors on the nodes and weights
from the existing Gaussian quadrature formulae and then the tensor product is employed to
obtain the multidimensional nodes. For some common type of probability distributions, for
example, normal, uniform, and exponential distributions, their PDFs have the similar formu-
lations as the weighting functions of the Gaussian-Hermite, Gaussian-Legendre, and
Gaussian-Laguerre quadrature formula. Therefore, li and wi can be conveniently obtained
based on the tabulated nodes and weights of Gaussian quadrature formula [21], which are

shown in Table 2, where lG�H
i and ωG�H

i , lG�La
i and ωG�La

i , lG�Le
i and ωG�Le

i , respectively,
represent the quadrature nodes and weights of Gaussian-Hermite, Gaussian-Laguerre, and
Gaussian-Legendre quadrature formula; λ is the parameter of exponential distribution; and μ1

and μ0 denote the lower and upper bounds of uniform distribution.

Figure 2. Procedure of the improved DD-PCE.
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However, the distributions of random inputs may not follow the Askey scheme, or are even
nontrivial, or even exist in some raw data with a cumulative histogram of complicated shapes.
Thus, such way to derive these nodes and weighs is not applicable in this case. In this work, a
simple method is proposed based on the moment-matching equations below to obtain the one-
dimensional quadrature nodes and weights.

ω0 þ ω1 þ⋯þ ωn ¼
ð

x∈Ω
1dΓðxÞ

ω0l0 þ ω1l1 þ⋯þ ωnln ¼
ð

x∈Ω
xdΓðxÞ

⋮

ω0ðl0Þn þ ω1ðl1Þn þ⋯þ ωnðlnÞn ¼
ð

x∈Ω
xrdΓðxÞ

ð13Þ

where li and ωi (i = 0, 1, …, n) are respectively the ith one-dimensional Gaussian quadrature
nodes and weights, which theoretically can be obtained by solving Eq. (13).

However, Eq. (13) are multivariate nonlinear equations, which are difficult to solve when the
number of equations is large (n + 1 > 7). It is noted that the one-dimensional polynomial basis
P(k) corresponding to each dimension constructed above is orthogonal. Therefore, its zeros are
just the Gaussian quadrature nodes li, which can be easily obtained by solving P(k) = 0. Through
substituting li into Eq. (13), the n + 1 weights ωi can be conveniently calculated. To calculate
Eq. (13) of PCE order p, generally at least p + 1 one-dimensional nodes should be generated to
ensure the accuracy, i.e., n ≥ p, which means that 0 to at least pth statistic moments of the
random variable X should be matched. In this work, n is set as n = p.

In the same way, the nodes and weights in other dimensions are obtained conveniently. Then,
the numerator can be calculated by the full factorial numerical integration (FFNI) method [8]
for lower-dimensional problems (d < 4) as

E½y ΦiðXÞ� ¼ E½ZðXÞ� ≈
Xm1

i1¼1

ωi1⋯
Xmj

ij¼1

ωij⋯
Xmd

id¼1

ωidZðli1 ,⋯, lij ,⋯, lidÞ¼
XN

j¼1

WjZðLjÞ ð14Þ

where lij and ωij , respectively, represent the one-dimensional nodes and weights of the jth
random input variable, which can be obtained using the way introduced above; Li and Wi

(i = 1, …, N) are the d-dimensional nodes and weights, respectively.

Generally, m is set as m ≥ p + 1 (p is the order of the PCE model). If the number of nodes N for
calculating E[yΦi(X)] is too small, which is not matched with the PCE order, large error would

Normal Exponential Uniform

li ωi li ωi li ωi

ffiffiffi
2

p
σlG�H

i þ μ ωG�H
i ffiffiffi
π

p lG�La
i
λ

ωG�La
i

μ1�μ0
2 lG�Le

i þ μ1þμ0
2

ωG�Le
i
2

Table 2. li and ωi calculated based on Gaussian quadrature.
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be induced. Therefore, the conclusion that the higher the PCE order, the more accurate the UP
results is based on the fact that E[yΦi(X)] has been calculated accurately enough. Clearly, the
number of nodes N is increased exponentially with the increase of dimension d, causing curse
of dimensionality. Therefore, FFNI is only suitable for lower-dimensional problems (d < 4).

For higher-dimensional problems (d ≥ 4), the sparse grid numerical integration method [22]
can be used to calculate E[yΦi(X)] to reduce the computational cost:

E½yΦiðXÞ� ¼ E½ZðXÞ� ≈
X

q�dþ1 ≤ jij ≤ q
ð�1Þq�jij d� 1

q� jij
� �

ðωi1…ωij…ωidÞ Zðli1 ,⋯, lij ,⋯, lidÞ ð15Þ

where jij ¼ i1 þ ,…, þ id and i1,…, id are the accuracy index corresponding to each dimension.

For the FFNI-based method, if m nodes are selected on each dimension (m1 =…= md = m), 2m � 1
accuracy level can be obtained. For the sparse grid-based method, 2k + 1 accuracy level can be
obtained with the accuracy level k = q � d. For example, if k = 2 and d = 8, for the sparse grid-
based method, 17 nodes are required yielding 5th (2�2 + 1)-order accuracy level. For the FFNI-
based method, to obtain the same accuracy level 5 (2�3 � 1), m should be m = 3 requiring 38

nodes. Clearly, to obtain the same accuracy level, the number of nodes of the sparse grid-based
method is much smaller than that of the FFNI-based method if d is relatively large.

In this chapter, we focus on extending the Galerkin projection to the DD-PCE method to
address higher-dimensional UP problems and then exploring the relative merits of these PCE
approaches. For the case with only small data sets, both DD-PCE and the existing distribution-
based method (gPCE) may produce large errors for UP, and the estimation of PDF for the
existing PCE methods is problem dependent and very subjective. It is difficult to make a
comparison effectively between DD-PCE and the existing PCE methods. Therefore, during
the comparison, it is assumed that there are enough data of the random input to ensure the
accuracy of the moments.

2.3. Comparative study of various PCE methods

In this section, the enhanced DD-PCE method, the recognized gPCE method, and the GS-PCE
method that can address arbitrary random distributions are applied to uncertainty propaga-
tion to calculate the first four statistic moments (mean μ, standard deviation σ, skewness β1,
kurtosis β2) and probability of failure (Pf), of which the results are compared to help designers
to choose the most suitable PCE method for UP. To comprehensively compare the three PCE
approaches, four cases are respectively tested on four mathematical functions with varying
nonlinearity and dimension shown in Table 3 and N, U, Exp, Wbl, Rayl, and Logn denote
normal, uniform, exponential, Weibull, Rayleigh, and lognormal distribution, respectively. Pf

is defined as Pf = probability (y ≤ 0).

The PCE order is set as p = 5 for all the functions for comparison, which means that 0–9th
statistic moments of the random inputs should be matched to construct the one-dimensional
orthogonal polynomials for the DD-PCE approach. For the first and second functions, FFNI-
based Galerkin projection is used to calculate the PCE coefficients, while for the latter two,
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the sparse grid-based method with accuracy level k = 4 is used since the dimension is higher.
The results of MCS with 107 runs are used to benchmark the effectiveness of the three
methods.

In Case 1, all the random input distributions are known and belong to the Askey scheme. The
test results are shown in Tables 4–7, where the bold numbers with underline are the relatively
best results and e represents the relative errors of the first four moments (μ, σ, β1, β2) with
respect to MCS. Pf estimated by MCS is presented with 95% confidence interval. The results
marked with * are from the sparse grid-based method. From these tables, it is found that with
the same number of function calls (denoted as Ns), DD-PCE, gPCE, and GS-PCE produce
almost the same results of the statistic moments, which are very similar to those of MCS (with
the largest error as 2.6927%). The estimation of Pf for all the methods is within the 95% confi-
dence interval with respect to MCS, indicating the high accuracy of UP. Although the orthogonal
polynomial basis for DD-PCE is constructed by matching only 0–9th statistic moments of the
random input variable instead of the complete PDFs for gPCE and GS-PCE, the results are
accurate enough in this case. Moreover, the application of sparse grid technique to DD-PCE can
greatly reduce the function calls for higher-dimensional problems (see Tables 5 and 6), while

Function 1: y = x1+x2+x3

Case 1: x1 ~U(1,2), x2 ~N(1,0.2), x3 ~ Exp(0.5)

Case 2: x1 ~Wbl(2,6), x2 ~Rayl(3), x3 ~ Logn(0,0.25)

Case 3: x1~BD, x2~ BD, x3~N(0,0.2)

Case 4: 500 and 107 sample points x1~BM, x2~ BM, x3~N(-0.8,0.2)

Function 2: y = sin(x1) � cos2(x2) + x3sin(x1) + 0.9

Case 1: x1 ~N(0.5,0.2), x2 ~U(0,1.5), x3 ~ Exp(0.1)

Case 2: x1 ~Wbl(2,3), x2 ~Rayl(0.2), x3 ~ Logn(0,0.25)

Case 3: x1~ BD, x2~ BD, x3~U(0,1)

Case 4: 500 and 107 sample points x1~BM, x2~ BM, x3~U(0.4,2)

Function 3: y = e�x1cos(x2) + x3e
�x4x5 � e�x6

Case 1: x1 ~N(1,0.2), x2 ~U(�1,1), x3 ~ N(1,0.2), x4 ~ U(�1,1), x5 ~ N(0,0.2), x6 ~ U(0,2)

Case 2: x1 ~Wbl(1,5), x2 ~Rayl(0.5), x3 ~ Logn(0.5,0.25) ,x4 ~ Rayl (0.3), x5 ~ Wbl(1,5), x6 ~ Rayl(1)

Case 3: x1~ BD, x2~ BD, x3~ N(2,0.2), x4 ~ U(-1,0), x5 ~ N(1,0.2), x6 ~ U(�1,4)

Case 4: 500&107sample points x1~BM, x2~Rayl (0.3), x3~BM ,x4 ~Rayl (0.3), x5 ~BM, x6 ~Rayl (1)

Function 4: y = x1
2x2

2 � x3
2x4

2 + x5
2x6

2 � x7
2x8

2 + x9
2x10

2

Case 1: x1 ~ N(1,0.2), x2 ~ U(0,2), x3 ~ N(0,0.2), x4 ~ U(0,2), x5 ~ N(1,0.2), x6 ~ U(0,2), x7 ~ N(0,0.2), x8 ~ U(0,2), x9 ~ N(1,0.2),
x10 ~ U(0,2)

Case 2: x1 ~Wbl(1,5), x2 ~Rayl(1), x3 ~Wbl(1,5), x4 ~Rayl(0.3), x5 ~Wbl(1,5), x6 ~Rayl(1), x7 ~Wbl(1,5), x8 ~Rayl(0.3), x9 ~Wbl
(1,5), x10 ~Rayl(1)

Case 3: x1 ~ N(1,0.2), x2 ~ N(1,0.2), x3 ~ BD, x4 ~ BD, x5 ~ N(1,0.2), x6 ~ N(1,0.2), x7 ~ BD, x8 ~ BD, x9 ~ N(1,0.2), x10 ~ N(1,0.2)

Case 4: 500 and 107 sample points x1 ~N(1.5,0.2), x2 ~N(1,0.2), x3 ~ BM, x4 ~ BM, x5 ~ N(1,0.2), x6 ~ N(1,0.2), x7 ~N(0,0.2), x8
~ N(0,0.2), x9 ~ N(1,0.2), x10 ~ N(1,0.2)

Table 3. Test functions and random input information of four cases.
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Methods MCS DD-PCE gPCE GS-PCE

eμ (%) – 0.0050 0 0.0100

eσ (%) – 0.0164 (0.0164) 0.0164

eβ1 (%) – 0.1367 0.1367 0.1094

eβ2 (%) – 0.4877 0.3032 0.2199

Pf (1e
�3) [8.5185,8.6328] 8.5472 8.5901 8.5688

Ns 107 125 125 125

Table 4. Results of function 1 (Case 1).

Methods MCS DD-PCE* gPCE* GS-PCE*

eμ (%) – 0.0123 0.0296 0.0074

eσ (%) – 0.0402 0.0723 0.0522

eβ1 (%) – 0.1018 0.0890 0.1399

eβ2 (%) – 0.1050 0 0.1326

Pf (1e
�3) [4.2476,4.3286] 4.2627 4.2881 4.2562

Ns 107 10,626 10,626 10,626

Table 7. Results of function 4 (Case 1).

Methods MCS DD-PCE* gPCE* GS-PCE*

eμ (%) – 0 0.0112 0.0225

eσ (%) – 0.0288 0.0288 (0.0288

eβ1 (%) – 2.2284 2.6927 1.7642

eβ2 (%) – 0.6040 0.6074 0.5028

Pf (1e
�3) [4.8454,4.9318] 4.8993 4.8669 4.9074

Ns 107 1820 1820 1820

Table 6. Results of function 3 (Case 1).

Methods MCS DD-PCE gPCE GS-PCE

eμ (%) – 0.0115 0 0.0231

eσ (%) – 0.0516 0 0.0258

eβ1 (%) – 0 0.4202 5.4852

eβ2 (%) – 0.1725 0.0814 0.0958

Pf ( 1e
�3) [3.1403,3.2101] 3.1713 3.2017 3.1936

Ns 107 125 125 125

Table 5. Results of function 2 (Case 1).
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exhibiting good accuracy. Especially for the fourth function, with FFNI, the computational cost is
very large (Ns = 976,562).

In Case 2, all the random input distributions are known but do not belong to the Askey
scheme. In this case, the Rosenblatt transformation is employed for the gPCE method first.
However, DD-PCE and GS-PCE can be directly used. The results are shown in Tables 8–11. It
is observed that overall DD-PCE and GS-PCE perform better than gPCE, yielding results that
are close to those of MCS. The reason is that the transformation in gPCE would induce error.
Specifically, in Tables 9 and 10, the gPCE method causes relatively large errors due to the
transformation. In addition, note the numbers with shadow, they are clearly larger than those

Methods MCS DD-PCE gPCE GS-PCE

eμ (%) – 0.0196 0.0087 0.0175

eσ (%) – 0.0298 0.0099 0.0199

eβ1 (%) – 0.2573 0.2059 0.2059

eβ2 (%) – 0.2170 0.2263 0.0899

Pf (1e
�4) [1.9818,2.1602] 2.0360 2.1490 2.0480

Ns 107 125 125 125

Table 8. Results of function 1 (Case 2).

Methods MCS DD-PCE gPCE GS-PCE

eμ (%) – 0.0243 0.0182 0.0061

eσ (%) – 0.0467 0.2101 0

eβ1 (%) – 1.8877 8.0227 2.5956

eβ2 (%) – 0.0307 1.1659 0.0279

Pf (1e
�4) [9.0052,9.3808] 9.0130 7.9720 9.0250

Ns 107 125 125 125

Table 9. Results of function 2 (Case2).

Methods MCS DD-PCE* gPCE* GS-PCE*

eμ (%) – 0 0.0084 0

eσ (%) – 0.0443 0.0887 0.0443

eβ1 (%) – 0.3471 0.6480 0.4397

eβ2 (%) – 0.0419 0.1927 0.1368

Pf (1e
�3) [1.0859,1.1271] 1.0963 1.2291 1.1188

Ns 107 1820 1820 1820

Table 10. Results of function 3 (Case2).
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of DD-PCE and GS-PCE, and Pf is outside the range of the 95% confidence interval of MCS.
The interpretation is that since the first function is linear, the impact of transformation
employed in gPCE on the accuracy of UP is small; while, for the second and third functions,
they are more complicated and nonlinear (including trigonometric and exponential terms), the
error induced by the transformation employed in gPCE is amplified more. The fourth function
is a nonlinear polynomial one, which is easier to be handled than functions 2 and 3 in doing
UP. Therefore, the results are generally accurate except Pf that is still outside the range of the
95% confidence interval of MCS. Moreover, the application of sparse grid greatly reduces Ns,
exhibiting good potential applications for higher-dimensional problems.

In Case 3, the PDFs of some variables is bounded (BD) as below,

f ðxÞ ¼ 2x, 0 < x < 1
0, otherwise

�
ð16Þ

and the rest of the variables follow typical distributions. In this case, the Rosenblatt transfor-
mation is also employed for the gPCE method first.

From the results in Tables 12–15, it is found that generally large errors are induced by gPCE,
especially the numbers with shadow in the tables. Since the first two variables follow the
distribution bounded in an interval, the error induced by the transformation is large and all
values of Pf are outside the confidence intervals for gPCE. While, the results of DD-PCE and
GS-PCE are generally accurate and comparable, which are still very close to those of MCS. It
should be noted that although the error of gPCE is the largest, all Pf by the three methods are

Methods MCS DD-PCE* gPCE* GS-PCE*

eμ (%) – 0.0240 0.0180 0.0320

eσ (%) – 0.0111 0.0722 0.0250

eβ1 (%) – 0.2170 0.1979 0.2362

eβ2 (%) – 0.4229 1.9117 0.4582

Pf (1e
�3) [4.4019,4.4843] 4.4635 4.6942 4.4200

Ns 107 10,626 10,626 10,626

Table 11. Results of function 4 (Case 2).

Methods MCS DD-PCE gPCE GS-PCE

eμ (%) – 0 0.0150 0

eσ (%) – 0.0195 24.1063 0

eβ1 (%) – 0.1359 36.9565 0.1132

eβ2 (%) – 0.0545 12.3239 0.0545

Pf (1e
�3) [4.9841,5.0717] 5.0038 5.2620 5.0333

Ns 107 125 125 125

Table 12. Results of function 1 (Case 3).
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outside the confidence intervals for function 3 (italic numbers) since this function is the most
nonlinear and complicated. Hence, we increase the PCE order p and accuracy level k of the
sparse grid to p = 6 and k = 5, and the results of Pf for DD-PCE, gPCE, and GS-PCE are 3.1263,
3.1446, and 3.1350, exhibiting evident improvement. Clearly with the same Ns, DD-PCE and
GS-PCE are much more accurate than gPCE when nontrivial distribution is involved. These
results further demonstrates the effectiveness and advantage of the enhanced DD-PCE for UP.

In Case 4, the distributions of the random input variables are unknown and only some data
exist. Although, based on the data, the analytical PDF can be obtained through some expe-
rience systems, such as Johnson or Pearson system [8], if the distribution of the data is very

Methods MCS DD-PCE* gPCE* GS-PCE*

eμ (%) – 0.0039 6.4980 0.0194

eσ (%) – 0.0409 8.2618 0.0164

eβ1 (%) – 0.1187 50.3681 0.0475

eβ2 (%) – 0.1720 11.8984 0.1949

Pf (1e
�3) [8.6089,8.7237] 8.6559 0.8227 8.6728

Ns 107 10,626 10,626 10,626

Table 15. Results of function 4 (Case 3).

Methods MCS DD-PCE gPCE GS-PCE

eμ (%) – 0.0083 0.0914 0.0083

eσ (%) – 0.0213 19.7662 0.0213

eβ1 (%) – 0.4186 123.2093 0.3256

eβ2 (%) – 0.0555 12.7841 0.0476

Pf (1
e�3) [1.4429,1.4903] 1.4449 1.7890 1.4452

Ns 107 125 125 125

Table 13. Results of function 2 (Case 3).

Methods MCS DD-PCE* gPCE* GS-PCE*

eμ (%) – 0.0359 0.7473 0.0598

eσ (%) – 0.3983 (4.2798 0.3693

eβ1 (%) – 0.1221 22.5570 0.2036

eβ2 (%) – 0.6186 77.1134 0.6321

Pf (1e
�3) [3.1972,3.2676] 2.6222 8.9269 2.6071

Ns 107 1820 1820 1820

Table 14. Results of function 3 (Case 3).
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complicated, such as with a complicated cumulative histogram of bi- or multimodes, it is
often very difficult to obtain the analytical PDF accurately. As is well-known that the Pearson
system based on the first four statistic moments of the random variable would produce large
errors for bimode (BM) or multimode PDFs. Evidently, the existing PCE approaches, includ-
ing gPCE and GS-PCE, may produce large errors since they all depend on the exact PDFs of
the random inputs in this case. However, DD-PCE can still work since it is a data-driven
approach. To explore the effectiveness and advantage of DD-PCE over the other two
approaches, it is assumed that the input data for some random input variables have a
complicated bimode (BM) histogram shown in Figure 3 and the data for the rest from the
typical distributions. Therefore, for the convenience and effectiveness of test, all the input
data are generated based on the PDFs, of which the PDF of BM distribution is shown in
Eq. (17). It should be pointed out that the PDFs actually are unknown and only some data
exist in practice.

f PDF ¼ 0:647
0:1

ffiffiffiffiffiffi
2π

p exp � x2

2� 0:12

� �
þ 0:353
0:2

ffiffiffiffiffiffi
2π

p exp �ðx� 1Þ2
2� 0:22

 !
, x∈ ½�∞, þ ∞� ð17Þ

We tested small (500) and large (107) numbers of input data to investigate the impact of
number of data on the accuracy of UP. The results are shown in Tables 16–19, from which it is
noticed that the results of DD-PCE are generally very close to those of MCS when the number
of sample points of the random input variables is large (107). When only 500 sample points are
used, the errors are much larger. It means that the accuracy of DD-PCE is improved with the
increase of the number of sample points. The reason is very simple that with the increase of the
number of sample points, the statistic moments of random input variables calculated are more
accurate, which would undoubtedly increase the accuracy of UP. The observation exhibits
great agreements to what has been reported in work of Oladyshkin and Nowak. Similar to
Case 3, the estimated Pf is outside the confidence intervals for function 3 since this function is
the most nonlinear and the random distribution is more irregular, which can be improved by

Figure 3. PDF plot of the bimodal distribution.
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Methods MCS DD-PCE (107) DD-PCE (500)

eμ (%) – 0.0066 1.4873

eσ (%) – 0.0196 0.0688

eβ1 (%) – 0.0150 0.0451

eβ2 (%) – 0.0052 3.2327

Pf (1e
�3) [1.4772,1.5252] 1.5069 0

Ns 107 125 125

Table 16. Results of function 1 (Case 4).

Methods MCS DD-PCE(107) DD-PCE(500)

eμ (%) – 0.0132 0.4350

eσ (%) – 0.0109 0.1957

eβ1 (%) – 0.1159 13.4783

eβ2 (%) – 0.0131 0.8956

Pf (1e
�3) [6.4478,6.5474] 6.4703 8.000

Ns 107 125 125

Table 17. Results of function 2 (Case 4).

Methods MCS DD-PCE(107) DD-PCE(500)

eμ (%) – 0.0327 0.6047

eσ (%) – 2.7503 5.3717

eβ1 (%) – 3.8373 9.5932

eβ2 (%) – 0.5563 1.3573

Pf (1e
�3) [7.7830,7.8924] 6.6667 6.0000

Ns 107 1820 1820

Table 18. Results of function 3 (Case 4).

Methods MCS DD-PCE(107) DD-PCE(500)

eμ (%) – 0.0024 0.1925

eσ (%) – 0.0241 3.5156

eβ1 (%) – 0.4149 214.4537

eβ2 (%) – 0.0170 11.9346

Pf (1e
�3) [9.2650,9.3842] 9.2937 0

Ns 107 10626 10626

Table 19. Results of function 4 (Case 4).
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increasing Ns. This means that the generally the more nonlinear the function and the more
irregular the random input distribution, the more difficult it is to achieve accurate UP results.
These results further demonstrate the effectiveness and advantage of the enhanced DD-PCE
method for UP.

To study the convergence property of the enhanced DD-PCEmethod, the errors (e) of moments
and Pf with different PCE orders obtained by the proposed one as well as gPCE and GS-PCE
are shown in Figures 4–7, taking Function 2, for example. Clearly, similar to the existing two
methods, with the increase of the PCE order, the errors decrease significantly, exhibiting an
approximate exponential convergence rate. Meanwhile, it is observed that the speed of conver-
gence in Case 1 (Askey scheme) is the fastest. Generally, the more irregular the input distribution
and the more nonlinear the function, the slower is the convergence process. In addition, it is also

Figure 4. Errors with respect to different PCE orders (Case 1).

Figure 5. Errors with respect to different PCE orders (Case 2).

Figure 6. Errors with respect to different PCE orders (Case 3).
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noticed that for Case 3, since x1 and x2 follow the nontrivial distribution, the convergence rate is
very slow for gPCE (see left in Figure 6) due to the error induced by the transformation.

2.4. Summary

Overall, the three approaches produce comparably good results when the random inputs follow
the Askey scheme. However, gPCE is the most mature and convenient to be implemented since
there is no need to construct the orthogonal polynomials. When the PDFs of random inputs are
unknown but do not follow the Askey scheme, large errors would be induced by the transforma-
tion for gPCE and the rest two PCE methods are comparable in accuracy and implementation
complexity. It should also be pointed out that for DD-PCE, when constructing one-dimensional
polynomials, the statistic moments (often 0–10 order) should be calculated first. If large gap exists
between the high-order and low-order moments, the matrix singularity would happen in solving
the linear equations (Eq. (7)). Therefore, in this case, GS-PCE is preferable especially when the
function is highly nonlinear.When thePDF is unknownandcannot be obtained accurately, such as
when random inputs exist as some raw data with a complicated cumulative histogram, only the
DD-PCEmethod can still performwell since it is a data-drivenmethod instead of the probabilistic-
distribution-driven, while large errors would be produced if GS-PCE and gPCE are employed.
However, more efforts should bemade to solve the numerical problems in theDD-PCEmethod to
make it more robust and applicable in constructing the one-dimensional orthogonal polynomials.

3. A sparse data-driven PCE method

The size of the truncated polynomial terms in the full PCEmodel is increased with the increase of
the dimension of random inputs d and the order of PCE model p (see Eq. (1)), resulting in a
significant growth of the computational cost. Therefore, attempts are made in this section on the
full DD-PCE method introduced in Section 2 to reduce the computational cost. Accordingly, a
sparse PCE approximation, which only contains a small number of polynomial terms compared

Figure 7. Errors with respect to different PCE orders (Case 4).
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to a classical full representation, is eventually provided by using the least angle regression (LAR)
theory [23] and the sequential sampling method. The original LAR method is used for variables
selection, aiming to find the most important variables with respect to a function response. In this
work, LAR is extended to select some polynomial terms Фi(x) from the full PCE model that have

the greatest impact on the model response y ≈MðxÞ ¼
XP

i¼0
biΦiðxÞ in a similar way.

Although the computational cost and accuracy are dependent on the PCE order, how to
determine a suitable order that compromises between accuracy and efficiency is not within
the scope of this chapter. In common situations, PCE of order p = 2 or 3 can produce results
with good agreement to MCS for the output PDF estimation [24]. For more rigorous
approaches of adaptively determining the order of the PCE model rather than specifying it in
advance, readers can refer to references [25, 26].

3.1. Procedure of data-driven PCE method

A step-by-step description of the proposed method is given in detail as below with a side-by-
side flowchart in Figure 8.

Step 1. Given the information of the random inputs (raw data or probabilistic distributions),
specify the PCE order p, and then construct the full DD-PCE model without computing the PCE
coefficients.

Step 2. Generate the initial input sample points X = [x1,…,xm,…,xN]
T according to the distribu-

tions of the random inputs or select the sample points from the given raw data, where xm = [xm1,
…,xmd]. Meanwhile, calculate the corresponding real function responses y = [y1,…,ym,…,yN]

T.

X is standardized to have mean 0 and unit length, and that the response y has mean 0.

1
N

XN
m¼1

xmn ¼ 0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
m¼1

x2mn

vuut ¼ 1 ðn ¼ 1,…, dÞ, 1
N

XN
m¼1

ym ¼ 0 ð18Þ

Then one has all the standardized data as

X ¼

x11, x12,…, x1d
x21, x22,…, x2d
⋯ ⋯
xN1, xN2,…, xNd

2
6664

3
7775, y ¼ ðy1,…, yNÞT ð19Þ

Step 3. Set the iteration number as K = 0 and compute the values of all polynomial terms Фi(x)
(i = 0, 1, …, P) of the full PCE model in Eq. (1) by, respectively, substituting each input sample
point xm into them. Then one obtains the information matrix as

Φ ¼
Φ0ðx1Þ Φ1ðx1Þ,…, ΦPðx1Þ
⋮… ⋮

Φ0ðxNÞ Φ1ðxNÞ,…, ΦPðxNÞ

2
64

3
75 ð20Þ
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Step 4. The LAR algorithm is employed to automatically detect some number (often K + 1) of
significant orthogonal polynomial terms from the first K + 1 terms Фi(x) (i = 0, 1, …, K) in
Eq. (1), which will be retained to construct a sparse candidate PCE model that has a smaller
scale than the full PCE model. For the introduction of the original LAR algorithm, readers
can refer to reference [23] for more details.

Step 5. To save the computational cost, the leave-one-out cross-validation method [27] is
employed to evaluate the accuracy of the candidate sparse PCE model constructed above,
which is represented as the leave-one-out error analytically as below:

Figure 8. The flowchart of the sparse DD-PCE method.
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ErrLOO ¼ 1
N

XN

j¼1

gðxjÞ � ĝð�jÞ
I

ðxjÞ
1� hj

 !2

ð21Þ

where g(xj) is the response value from the original model at the sample point xj; ĝ
ð�jÞ
I represents

the candidate sparse PCE model comprised of all the selected polynomial terms, of which the

indices are stored in I; the PCE coefficients of ĝð�jÞ
I are computed through using the ordinary

least-square regression method based on the leave-one-out approach, i.e., the sample points for
regression are X(-j) = [x1,…,xj�1, xj+1,…,xN]

T and y(�j) = [y1,…,yj-1, yj+1,…,yN]
T.

Once the PCE coefficients are calculated, the predicted value by the candidate sparse PCE

model at the sample point xj is calculated as ĝð�jÞ
I ðxjÞ; hj is the jth diagonal element of the matrix

ΦA(Φ
T
AΦA)

�1ΦT
A, where ΦA is a N � k matrix comprised of all the selected column vectors

Фi = [Фi(x1), …, Фi(xN)]
T (i ∈ I) and k is the number of selected polynomial terms.

To evaluate the accuracy more effectively, the relative error is employed based on ErrLOO as

εLOO ¼ ErrLOO=V̂ ðyÞ ð22Þ

where V̂ ðyÞ denotes the empirical variance of the response sample points y, which is calculated
by

V̂ ðyÞ ¼ 1
N � 1

XN

j¼1

ðyj � yÞ
2

, y ¼ 1
N

XN

j¼1

yj ð23Þ

Step 6. Check the stop criterion:

If the accuracy εLOO satisfies the target threshold ε, i.e., εLoo ≤ ε, the procedure will be stopped,
the PCE model obtained by LAR in Step 4 will be considered as the final one, and all the
sample points will be used for regression to calculate the PCE coefficients of the current sparse
PCE model;

If εLoo > ε and K < P, set K = K + 1 and go to Step 4 to find another candidate sparse PCE model
by LAR;

If εLoo > ε and K = P, generate some new sample points Xnew with the sequential sampling
technique and calculate the corresponding responses ynew, and add the new sample points into
the old ones as X = [X; Xnew] and y = [y; ynew], then go to Step 3 to find another candidate
sparse PCE model.

In this work, if the PDF of random input is known, a large number of sample points are
generated as the database according to the PDF beforehand; if the PDF of random input is
unknown, the raw data are considered as the database. Each sample point in the database has
its own index. The initial sample points are selected from the database through randomly and
uniformly generating their indices. Then these sample points will be removed from the data-
base and the rest will be indexed again. Similarly, by randomly and uniformly generating the
indices, the sequential sample points will be selected from the reduced database. By using this
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sampling strategy, the sample points are distributed uniformly as far as possible, which is
helpful to improve the accuracy of the PCE coefficient calculation.

Step 7. Based on the final sparse PCE model, the probabilistic properties of y can be obtained
by running MCS or analytically.

3.2. Comparative study

In this section, the proposed sparse DD-PCE method (shortened as sDD-PCE hereafter) is
applied to three mathematical examples to calculate the mean and variance of the output
responses. The full DD-PCE (shortened as fDD-PCE hereafter) method that adopts a full PCE
structure and one-stage sampling with the size of one times the number of PCE coefficients is
also applied to UP, of which the results are compared to those of sDD-PCE to demonstrate its
effectiveness and advantage.

The test examples of varying dimensions including their input information are shown in
Table 20, in which the symbols N ,U and E respectively, denote normal, uniform, and expo-
nential distribution. To fully explore the applicability of sDD-PCE, three different cases of the
random input information that almost cover all the situations in practice (Case 1: raw data;
Case 2: common distribution; Case 3: nontrivial distribution) are considered. The nontrivial
bimodal distribution (denoted as BD) used in Section 2.3 (Eq. (16)) is considered.

Another type of nontrivial distribution considered here is invented by conducting square
operation on the sample points from some common distributions (see Case 3 in Function 2).
The target accuracy ε of sDD-PCE is set as 10�5. Meanwhile, to ensure the effectiveness of
comparison between sDD-PCE and fDD-PCE, the order of the PCE model p is set as the same

Function 1: f1 = X1X2

Case 1: 105 raw data

Case 2: X1~N (1,0.22), X2~U(0.4,1.6)

Case 3: X1 and X2 ~BD

Function 2: f 2 ¼ �X2
1X

2
2 � 2X4

3 þ 3X2
4 � 0:5X5 þ 4:5

Case 1: 105 raw data

Case 2: X1~N (1,0.22), X2~U (0.4,1.6), X3~E (0.1), X4~U (�0.5,1),X5~U (0.5,1).

Case 3: X1~BD, X2~U (0.4,1.6).^2, X3~U (0.5,1) .^2, X4~U (�0.5,1), X5~U (0.5,1).

Function 3: f 3 ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
10

X10

i¼1

x2i

vuut
0
@

1
A� exp 1

10

X10

i¼1

cos ð2πxiÞ
 !

Case 1: 105 raw data

Case 2: X1~N (1,0.22), X2~U(0.4,1.6), X3~U (�1.5,15), X4~U(�1,2), X5~U(�15, 1), X6~N (2,0.22), X7~U(�3,3), X8~U(�15,1.5),
X9~U(�2,15), X10~U(�2,15).

Case 3: X1 and X2 ~BD, X3~U (�1.5,15), X4~U(�1,2), X5~U(�15,1), X6~N (2,0.22), X7~U(�3,3), X8~U(�15,1.5), X9~U(�2,15),
X10~U(�2,15).

Table 20. Test functions.
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by running MCS or analytically.

3.2. Comparative study

In this section, the proposed sparse DD-PCE method (shortened as sDD-PCE hereafter) is
applied to three mathematical examples to calculate the mean and variance of the output
responses. The full DD-PCE (shortened as fDD-PCE hereafter) method that adopts a full PCE
structure and one-stage sampling with the size of one times the number of PCE coefficients is
also applied to UP, of which the results are compared to those of sDD-PCE to demonstrate its
effectiveness and advantage.

The test examples of varying dimensions including their input information are shown in
Table 20, in which the symbols N ,U and E respectively, denote normal, uniform, and expo-
nential distribution. To fully explore the applicability of sDD-PCE, three different cases of the
random input information that almost cover all the situations in practice (Case 1: raw data;
Case 2: common distribution; Case 3: nontrivial distribution) are considered. The nontrivial
bimodal distribution (denoted as BD) used in Section 2.3 (Eq. (16)) is considered.

Another type of nontrivial distribution considered here is invented by conducting square
operation on the sample points from some common distributions (see Case 3 in Function 2).
The target accuracy ε of sDD-PCE is set as 10�5. Meanwhile, to ensure the effectiveness of
comparison between sDD-PCE and fDD-PCE, the order of the PCE model p is set as the same

Function 1: f1 = X1X2

Case 1: 105 raw data

Case 2: X1~N (1,0.22), X2~U(0.4,1.6)

Case 3: X1 and X2 ~BD

Function 2: f 2 ¼ �X2
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Case 1: 105 raw data

Case 2: X1~N (1,0.22), X2~U(0.4,1.6), X3~U (�1.5,15), X4~U(�1,2), X5~U(�15, 1), X6~N (2,0.22), X7~U(�3,3), X8~U(�15,1.5),
X9~U(�2,15), X10~U(�2,15).

Case 3: X1 and X2 ~BD, X3~U (�1.5,15), X4~U(�1,2), X5~U(�15,1), X6~N (2,0.22), X7~U(�3,3), X8~U(�15,1.5), X9~U(�2,15),
X10~U(�2,15).

Table 20. Test functions.
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(p = 3, 4, 5) for both methods. MCS with 108 runs is conducted to benchmark the accuracy of
both methods. In Case 1, the probabilistic distributions of all the random input variables are
unknown and only a number of raw data (105) exist, which cannot be solved by the traditional
PCE methods, such as gPCE. Clearly, the more the raw data, the more reliable the results will
be. Considering that the main objective of this paper is to investigate the effectiveness and
capability of sDD-PCE in reducing the computational cost, it is assumed that a large number of
raw data (105) exist of the random inputs.

The results are listed in Tables 21–23, in which em and ev, respectively, denote the errors (%) of
mean and variance relative to the results of MCS, N denotes the number of total sample points
(function evaluations) used for PCE coefficients estimation during regression, and Na repre-
sents that the result cannot be obtained.

From the results some noteworthy observations are made. First, generally with high PCE order
(p = 5), the results of sDD-PCE are accurate. Second, for low-dimensional problem (d = 2,
Function 1), the efficiency and accuracy of sDD-PCE and fDD-PCE are almost comparable.
Specially, for lower orders p = 3 and 4, sDD-PCE is even less efficient. The interpretation is that

fDD-PCE sDD-PCE

em 0.321 0.099 0.044 0.330 0.201 0.181

ev 0.232 0.813 0.173 0.203 0.099 0.068

p 3 4 5 3 4 5

N 10 15 21 20 30 20

Table 21. Results of function 1 (Case 1).

fDD-PCE sDD-PCE

em 6.162 Na Na 8.803 7.263 2.402

ev 10.182 Na Na 16.670 5.026 8.882

p 3 4 5 3 4 5

N 56 126 252 20 20 30

Table 22. Results of function 2 (Case 1).

fDD-PCE sDD-PCE

em Na Na Na 0.045 0.739 0.239

ev Na Na Na 18.134 12.882 2.479

p 3 4 5 3 4 5

N 286 1001 3003 30 30 30

Table 23. Results of function 3 (Case 1).
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in addition to the regression process, the sample points are also required during the construc-
tion of the sparse PCE model for sDD-PCE, while for fDD-PCE, the sample points are only
used during regression. Moreover, for em with p = 3 (lower order) of Function 1, fDD-PCE is
even more accurate with higher efficiency (see underlined numbers). The reason may be that
for low-dimensional problems with low-order PCE models, the size of the total polynomial
terms is already small and the sparse structure of sDD-PCE is of little help in reducing the
number of sample points since additional sample points are required during the selection of
important polynomial terms. Therefore, fDD-PCE may produce more accurate results than
sDD-PCE since it maintains more information. This will be verified later. Third, with the
increase of dimension (from d = 2, 5 to d = 10), N is increased significantly with the increase of
p for fDD-PCE, causing matrix ill-conditioned problem. So some results (p = 4 and 5) even
cannot be obtained by fDD-PCE. Specially, for Function 3, the dimension is high (d = 10), fDD-
PCE cannot produce results for any order p. However, for sDD-PCE, no remarkable increase in
N is noticed since it adopts a sparse PCE model that can adaptively remove the insignificant
polynomial terms, while its accuracy is generally improved clearly exhibiting small error
relative to MCS. When p = 5, only 13 polynomial terms are selected from 3003 total terms for
Function 3; while for Function 1, 4 are selected from 21 total terms. Therefore, the larger the
dimension, the more obvious the advantage of sDD-PCE over fDD-PCE in efficiency.

In Case 2, the PDFs of all the random inputs are known and assumed to follow common
distributions. This is a general case that can be solved by the traditional probabilistic
distribution-based PCE methods. The results are shown in Tables 24–26. Generally with high
PCE order (p = 5), the results of sDD-PCE are accurate, demonstrating its effectiveness in
dealing with random inputs with known PDFs. Meanwhile, for low-dimensional problem
(Function 1), generally sDD-PCE is more accurate with the similar N as fDD-PCE. However,
for lower order (p = 2) of Function 1, fDD-PCE is even more accurate than sDD-PCE, but with

fDD-PCE sDD-PCE

em 0.083 0.044 0.060 0.710 0.010 0.100

ev 0.468 0.758 0.211 0.975 0.061 0.061

p 3 4 5 3 4 5

N 10 15 21 30 15 20

Table 24. Results of function 1 (Case 2).

fDD-PCE sDD-PCE

em 24.401 Na Na 1.244 0.490 0.216

ev 39.578 Na Na 4.380 3.271 2.837

p 3 4 5 3 4 5

N 56 126 252 20 20 30

Table 25. Results of function 2 (Case 2).
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dimension, the more obvious the advantage of sDD-PCE over fDD-PCE in efficiency.

In Case 2, the PDFs of all the random inputs are known and assumed to follow common
distributions. This is a general case that can be solved by the traditional probabilistic
distribution-based PCE methods. The results are shown in Tables 24–26. Generally with high
PCE order (p = 5), the results of sDD-PCE are accurate, demonstrating its effectiveness in
dealing with random inputs with known PDFs. Meanwhile, for low-dimensional problem
(Function 1), generally sDD-PCE is more accurate with the similar N as fDD-PCE. However,
for lower order (p = 2) of Function 1, fDD-PCE is even more accurate than sDD-PCE, but with

fDD-PCE sDD-PCE

em 0.083 0.044 0.060 0.710 0.010 0.100

ev 0.468 0.758 0.211 0.975 0.061 0.061

p 3 4 5 3 4 5

N 10 15 21 30 15 20

Table 24. Results of function 1 (Case 2).

fDD-PCE sDD-PCE

em 24.401 Na Na 1.244 0.490 0.216

ev 39.578 Na Na 4.380 3.271 2.837

p 3 4 5 3 4 5

N 56 126 252 20 20 30

Table 25. Results of function 2 (Case 2).

Uncertainty Quantification and Model Calibration36

much smaller N. This observation is consistent with what has been noticed in Case 1 and the
reason is that additional sample points are required to selecting important polynomial terms.
With the increase of dimension, N is increased significantly with the increase of p for fDD-PCE.
However, for sDD-PCE, remarkable improvement in the accuracy is noticed without a remark-
able increase in N. These results show great agreements to what has been noticed in Case 1.

In Case 3, the PDFs of all the random inputs are known; however, some of them follow
nontrivial distributions. In this case, the traditional gPCE method cannot work well since large
errors would be induced in transforming such nontrivial distributions to certain ones in the
Askey scheme. The results are shown in Tables 27–29, which exhibit great agreements to what
has been observed in Case 1 and Case 2. The proposed sDD-PCE method can significantly
reduce the number of sample points while with high accuracy. The higher the dimension, the
more advantageous the adaptive sparse structure of sDD-PCE can be. In this case, only 11
polynomial terms are selected from 3003 total terms for d = 10 with sDD-PCE. Moreover, sDD-
PCE can produce accurate and efficient results for nontrivial distributed random inputs.

To verify the guess that for low-dimensional problems with low-order PCE models, fDD-PCE
may produce more accurate results than sDD-PCE since it maintains more information.

fDD-PCE sDD-PCE

em Na Na Na 3.461 4.432 0.317

ev Na Na Na 20.155 6.217 4.223

p 3 4 5 3 4 5

N 286 1001 3003 30 30 30

Table 26. Results of function 3 (Case 2).

fDD-PCE sDD-PCE

em 1.210 0.854 0.302 1.366 1.044 0.161

ev 2.321 0.748 0.815 0.805 0.161 0.000

p 3 4 5 3 4 5

N 10 15 21 10 10 10

Table 27. Results of function 1 (Case 3).

fDD-PCE sDD-PCE

em 3.324 Na Na 5.718 1.383 0.680

ev 7.855 Na Na 7.634 7.322 2.290

p 3 4 5 3 4 5

N 56 126 252 20 30 30

Table 28. Results of function 2 (Case 3).
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Another test is conducted for Function 1 with lower order p = 2 with all the three cases, of
which the results are shown in Table 30. Just as expected, fDD-PCE is clearly more accurate
than sDD-PCE while generally with less sample points. For Function 1 with p = 2, the total
number of polynomial terms is 6, which is very small. With sDD-PCE, only the last polynomial
term is removed, while more points are required in removing the insignificant polynomials. So
the sparse scheme does not have obvious impact under this circumstance. Therefore, it is
concluded that the developed sDD-PCE method is particularly applicable to high-dimensional
problems, especially those requiring a high order PCE model.

3.3. Summary

The developed sDD-PCE can reduce the number of polynomial terms in the PCE model, thus
reducing the computational cost. Generally, the larger the random input dimension, the more
obvious the advantage of the developed sDD-PCE over fDD-PCE in efficiency. The sDD-PCE
method is much more efficient than fDD-PCE in solving high-dimensional problems, espe-
cially those requiring a high order PCE model.

4. Sparse DD-PCE-based robust optimization using trust region

In Section 3, to reduce the computational cost of DD-PCE, a sparse DD-PCE method has been
developed by removing some insignificant polynomial terms from the full PCE model, thus
decreasing the number of samples for regression in computing PCE coefficients. However,
when the sparse DD-PCE is applied to robust optimization, it is conventionally a triple-loop
process (see Figure 9): the inner one tries to identify the insignificant polynomial terms of the

fDD-PCE sDD-PCE

em Na Na Na 4.114 2.212 0.112

ev Na Na Na 48.894 15.817 3.101

p 3 4 5 3 4 5

N 286 1001 3003 30 30 30

Table 29. Results of function 3 (Case 3).

Case 1 Case 2 Case 3

fDD sDD fDD sDD fDD sDD

em 0.2801 0.146 0.0366 0.244 0.414 0.807

ev 0.6344 0.367 0.3577 0.431 0.552 0.477

N 6 7 6 10 6 18

Table 30. Results of function 1 (p = 2).
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PCE model (the dash box); the middle is UP; the outer is the search for optima, which clearly is
still very time-consuming for problems with expensive simulation models.

As has been mentioned in Section 3, during each optimization iteration, although the sample
points required for regression during UP of sDD-PCE are greatly reduced, certain additional
number of sample points are required to identify the insignificant polynomial terms by the inner
loop. If at some iteration design points, almost the same sparse polynomial terms are retained,
the inner loop can clearly be avoided, thus saving the computational cost. To address this issue,
the trust region technique widely used in nonlinear optimization is extended in this section.
During optimizing, a trust region is dynamically defined. If the updated design point lies in the
current trust region, it is considered that the insignificant terms of its PCE model remain
unchanged compared to those of the last design point, i.e., the inner loop is eliminated at the
updated design point. Meanwhile, to further save the computational cost, the sample points
lying in the overlapping area of two adjacent sampling regions are reused for the PCE coefficient
regression for the updated design point. The proposed robust optimization procedure employing
sparse DD-PCE in conjunction with the trust region scenario is applied to several examples of
robust optimization, of which the results are compared to those obtained by the robust optimi-
zation without the trust region method, to demonstrate its effectiveness and advantage.

Figure 9. The triple-loop formulation of sDD-PCE-based robust optimization.
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4.1. The trust region scenario

The trust region method is a traditional approach that has been widely used in nonlinear
numerical optimization [28]. The basic idea of the trust region method is that in the trust
region of the current iteration design point, the second-order Taylor expansion is used to
approximate the original objective function. If the accuracy of the current second-order Taylor
expansion is satisfied, the size of the trust region is increased to speed up the convergence, and
if not it is reduced to improve the accuracy of approximation. To reduce the computational cost
of design optimization, the idea of the trust region technique has been extended and applied to
reliability-based wing design optimization [29], multifidelity wing aero-structural optimiza-
tion [30], and multifidelity surrogate-based wing optimization [31], which has been widely
believed as an efficient strategy in design optimization. For example, when the trust region
technique is applied to meta-model-based design optimization, during optimization, the sam-
ple points are sequentially generated in the trust region and the radius of the trust region is
dynamically adjusted based on the accuracy of the meta-model in the local region.

4.2. Robust design using sparse data-driven PCE and trust region

The scenario of trust region is extended here to reduce the computational cost of sDD-PCE-
based robust optimization. The basic idea is that the radius of a trust region is determined by
the distance between two successive design points and the variation of the corresponding
objective function values. If the updated design point μkþ1

x lies in the current trust region, it is
considered that the insignificant terms of its PCE model remain unchanged compared to those
of the last design point μk

X, i.e., the inner loop is eliminated at the updated design point.
Meanwhile, the sample points lying in the overlapping area of two adjacent sampling regions
are reused for the PCE coefficient regression for the updated design point to further save the
computational cost. Generally, for a practical engineering optimization problem, there is only
one performance function that is computationally expensive. Therefore, only one PCE model is
required to be constructed and the UP for the rest of the functions can be conveniently
implemented by MCS. In this study, it is assumed that the PCE model is only constructed for
the objective function and the general steps of the proposed method is as below.

Step 0: Set the iteration number as k = 1 and the initial staring design point μ0
x, do robust

optimization with sDD-PCE without trust region and obtain a new design variable μk
x, where

the Latin Hypercube sample points are generated around μ0
x to calculate the PCE coefficients.

Step 1: After the kth optimization iteration, define/update the trust region at the current
obtained new design point μk

x as a rectangle with each length as

r1 ¼ max ζ1
���μk

x

���
2
, ζ2 , r2 ¼ max ζ1

���Yk
���, ζ2

onon
ð24Þ

where jμk
xj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
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ðμk

xi
Þ2

q
and |Yk| is the absolute value of corresponding objective function

at μk
x, i.e., jYkj ¼ abs

�
Yðμk

xÞ
�
; ζ1 and ζ2 are user-defined parameters, which can be constants or

functions with respect to the iteration number k.
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Step 2: During the (k + 1)th optimization iteration, the obtained new design point is μkþ1
x .

Before conducting UP, calculate the variation between two successive design points μk
x and

μkþ1
x as Δx ¼ jμkþ1

x � μk
xj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

i¼1
ðμkþ1

xi
� μk

xi
Þ2

q
and the variation of the objective function

ΔY ¼ jYkþ1ðμkþ1
x Þ � Ykðμk

xÞj.

Step 3: If ΔX ≤ r2 and ΔY ≤ r2 both are satisfied, μkþ1
x is considered to be located in the trust

region of μk
x defined in Eq. (45), and go to Step 4; if either ΔX ≤ r1 or ΔY ≤ r2 cannot be

satisfied, μkþ1
x is considered to be not located in the trust region of μk

x defined in Eq. (45), and go
to Step 5.

Step 4: The retained polynomial terms Фi(x) at the updated new design point μkþ1
x are kept as

the same as those for the last design point μk
x, indicating that the inner loop of UP conducted on

μkþ1
x is removed. The Latin Hypercube sample points are generated around μkþ1

x according to
the distribution type and parameters of Xwith the same number of sample points as that used
at the last design point μk

x to calculate the PCE coefficients. Meanwhile, the sample points
located in the overlapping area of the two successive sampling regions are identified and
reused for PCE coefficients calculation to improve the accuracy.

Step 5: The inner loop is conducted on the updated design point μkþ1
x to detect the significant

polynomial terms. Similarly, the sample points located in the overlapping area of the two
successive sampling regions are also reused at the updated design point μkþ1

x in detecting the
significant polynomial terms and calculating the PCE coefficients to save the computational
cost.

Step 6: Set k = k + 1, based on the results of UP, search for the next updated new design point
μkþ1
x and go to Step 1.

The above procedure will continue until the convergent criterion is satisfied. Figure 10 shows
the case that the sample points in the previous optimization iteration are reused in the two
successive iterations. As is seen that two points are located in the overlapping area of two
successive sampling regions, thus are reused in the next iteration for regression to identify the
significant polynomials/calculate the PCE coefficients. In this way, the computational cost can
be further reduced.

Figure 10. Illustration of the reuse of sample points.
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4.3. Comparative studies

The first example is the Ackley Function:

f ðXÞ ¼ �20 exp �0:2
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Aþ 22:71282, d ¼ 10 ð25Þ

The robust design optimization of this example is:

min F ¼ μf þ kσf

�10 ≤μXj
≤ 10, j ¼ 1, 2,…, 10

ð26Þ

All the design variables are considered to follow uniform distribution with variation of �0.2
around their mean values and k in Eq. (26) is set as k = 20. In this study, the fmincon function in
Matlab is used for optimization, and ζ1 and ζ2 in Eq. (45) are set as ζ1 = 0.5 and ζ2 = 0.5.
Meanwhile, the obtained optimal design variables of sDD-PCE-based robust design with and
without trust region scenario as well as the deterministic design without considering any
uncertainties are respectively substituted into Eq. (26) through MCS (with 1e6 runs) to calcu-
late the mean μf and standard deviation σf of the objective function.

The results are shown in Table 31, from which it is found that compared to the robust optimiza-
tion without the trust region scenario (denoted by without), the obtained performance results (μf,
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comparable. However, the number of function calls (denoted as Funcall) is clearly reduced. The
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sensitive to uncertainties (smaller σf) compared to the results of deterministic design (denoted by
DD). These results demonstrate the effective and advantage of the proposed method.

The second example is the robust design optimization of an automobile torque arm, shown in
Figure 11.

In this problem, the four geometrical parameters (a, d1, d2, and l) are considered as design
variables, and the yielding strength Sy, Young’s modulus E, and the applied force Q are
deterministic parameters.
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4.3. Comparative studies
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where the objective function f represents the volume of the arm, the first constraint g1 denotes
the yielding failure at section A-A, the second constraint g2 denotes the buckling failure at the

two connecting rods, and I ¼ a2ðd2 � aÞ2=2þ a4=6.

The distribution parameters of the four design variables and design parameters are shown in
Table 32.

Figure 11. Automobile torque arm.

μ�X μf σf F Funcall

DD [0,0,0,0,0,0,0,0,0,0] 1.8839 0.4390 10.6639 —

with [0.6246,0.7066,0.6687,0.7796,0.5744,
0.6784,0.7470,0.6333,0.6578,0.6904]

4.5014 0.1377 7.2554 12,735

without [0.6564,0.6935,0.6984,0.7036,0.6691,
0.0299,0.0141,0.6407,0.0205,0.0038]

3.7457 0.2003 7.7517 16,840

Table 31. Results of the Ackley Function.

Random variables Distribution Lower bound Upper bound

a Uniform μa �0.5 mm μa +0.5 mm

d1 Uniform μd1 �0.5 mm μd1 +0.5 mm

d2 Uniform μd2 �0.5 mm μd2 +0.5 mm

l Uniform μl �0.5 mm μl +0.5 mm

Parameters Values

Q Deterministic 5500 N

Sy Deterministic 170 N/mm2

E Deterministic 2.1 � 1010 N/mm2

Table 32. Distribution parameters for design variables and design parameters.
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The corresponding robust design optimization model is formulated as

min F ¼ ω1
μf

μ�
f
þ ω2

σf
σ�f

,ω1 ¼ 0:5,ω2 ¼ 0:5

s:t: G1ða, d2, lÞ ¼ μg1
þ kσg1 ≤ 0

G2ða, d1, d2, lÞ ¼ μg2
þ kσg2 ≤ 0

5 ≤μa ≤ 15, 45 ≤μd1
≤ 55, 55 ≤μd2

≤ 65, 110 ≤μl ≤ 210

ð28Þ

As has been mentioned above, the PCE model is only constructed for the objective function
and the results are shown in Table 33. It is noticed that the robust optimization designs with
and without the trust region scenario yields comparable results, while the function calls
(objective function calls) required by design with trust region is evidently smaller. The deter-
ministic design cannot even obtain a feasible optimal solution with both constraint violated
(>0), since it does not consider uncertainties during design. These results further demonstrate
the effectiveness and advantage of the proposed method.

4.4. Summary

The employment of the trust region in sDD-PCE-based robust optimization can evidently
reduce the computational cost. However, the determination of the trust region in this chapter
is still very subjective and a more rigorous method should be explored. In this section as well
as Section 3, the scenarios of sparse PCE and trust region are only employed to DD-PCE to
save the computational cost. However, the methods proposed here are also applicable to other
PCE approaches, such as gPCE and GS-PCE.

In this chapter, the latest advances in PCE theory and approach for probabilistic UP are
comprehensively presented in detail. However, it does not limit the application of PCE to
nonprobabilistic UP to address epistemic uncertainties. Sudret and Schöbi have proposed a
two-level metamodeling approach using nonintrusive sparse PCE to surrogate the exact com-
putational model to facilitate the uncertainty quantification analysis, in which the input vari-
ables are modeled by probability-boxes (p-boxes), accounting for both aleatory and epistemic
uncertainty [32]. The Fuzzy uncertainty propagation in composites has been implemented
using Gram-Schmidt polynomial chaos expansion, in which the parameter uncertainties are
represented by fuzzy membership functions [5]. A general framework has been proposed for a
dynamical uncertain system to deal with both aleatory and epistemic uncertainty using PCE,
where the uncertain parameters are described through random variables and/or fuzzy vari-
ables [33]. The mix UP approach is proposed, in which the inner loop PDFs are calculated
using the PCE, and outer loop bounds can be computed with optimization-based interval

μ�X μf σf F G1 G2 Funcall

DD [8.13, 55.00, 55.00, 110.00] 2.6616e4 1.2171e3 1 0.1848 5.1509e4 82

with [8.53, 54.10, 58.67, 111.03] 3.1027e4 1.3355e3 1.1315 �0.0123 �1.1833e5 658

without [8.57, 52.68, 57.50, 110.00] 3.0332e4 1.3093e3 1.1077 �4.0000e�4 �1.2913e2 1283

Table 33. Results of automobile torque arm.
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estimation [34]. PCE has also been applied for solving Bayesian inverse problem as “surrogate
posterior.”However, it has been indicated that the accuracy cannot always be ensured by PCE
since a sufficiently accurate PCE for this problem requires a high order, making PCE impractical
compared to directly sampling the posterior [35].

Author details

Shuxing Yang*, Fenfen Xiong and Fenggang Wang

*Address all correspondence to: yangshx@bit.edu.cn

School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China

References

[1] Matthies HG. Quantifying uncertainty: Modern computational representation of proba-
bility and applications. Extreme Man-Made and Natural Hazards in Dynamics of Struc-
tures. Springer Netherlands, 2007;105–135

[2] Kiureghian AD, Ditlevsen O. Aleatory or epistemic? Does it matter? Structural Safety.
2009;31(2):105–112

[3] Swiler LP, Romero VJ. A survey of advanced probabilistic uncertainty propagation and
sensitivity analysis methods. Proposed for presentation at the 2012 Joint Army Navy
NASA Air Force Combustion/Propulsion Joint Subcommittee Meeting; December 3-7,
2012; Monterey, CA

[4] Du X, Chen W. A most probable point-based method for efficient uncertainty analysis.
Journal of Design & Manufacturing Automation. 2001;4(1):47–66

[5] Mukhopadhyay S, Khodaparast H, Adhikari S. Fuzzy uncertainty propagation in com-
posites using Gram–Schmidt polynomial chaos expansion. Applied Mathematical
Modelling. 2016; 40(7–8):4412–4428

[6] Jiang C, Zheng J, Ni BY, Han X. A probabilistic and interval hybrid reliability analysis
method for structures with correlated uncertain parameters. International Journal of
Computational Methods. 2015;12(4):1540006 (24 pages)

[7] Terejanu G, Singla P, Singh T, Scott PD. Approximate interval method for epistemic
uncertainty propagation using polynomial chaos and evidence theory. IEEE American
Control Conference; 30 June–2 July 2010; Marriott Waterfront, Baltimore, MD, USA.

[8] Lee SH, Chen W. A comparative study of uncertainty propagation methods for black-
box-type problems. Structural & Multidisciplinary Optimization. 2009;37(3):239–253

[9] Dodson M, Parks GT. Robust aerodynamic design optimization using polynomial chaos.
Journal of Aircraft. 2009;46(2):635–646

Polynomial Chaos Expansion for Probabilistic Uncertainty Propagation
http://dx.doi.org/10.5772/intechopen.68484

45



[10] Coelho R, Bouillard P. Multi-objective reliability-based optimization with stochastic
metamodels. Evolutionary Computation. 2011;19(4):525–560

[11] Xiu D, Karniadakis GE. The wiener-askey polynomial chaos for stochastic differential
equations. SIAM Journal on Scientific Computing. 2002;24(2):619–644

[12] Wiener N. The homogeneous chaos. American Journal of Mathematics. 1938;60(1):897–936

[13] Fan et al. Parameter uncertainty and temporal dynamics of sensitivity for hydrologic
models: A hybrid sequential data assimilation and probabilistic collocation method.
Environmental Modelling & Software. 2016;86:30–49

[14] Guerine A, Hami AE, Walha L, et al. A polynomial chaos method for the analysis of the
dynamic behavior of uncertain gear friction system. European Journal of Mechanics - A/
Solids. 2016;59:76-84

[15] Meecham WC, Siegel A. Wiener-Hermite expansion in model turbulence at large Reyn-
olds numbers. Physics of Fluids (1958-1988). 1964;7(8):1178–1190. DOI: 10.1063/1.1711359

[16] Witteveen JAS, Bijl H. Modeling arbitrary uncertainties using Gram-Schmidt polynomial
chaos. 44th AIAA Aerospace Sciences Meeting and Exhibit; 9–12 January 2006; Reno,
Nevada

[17] Wan X, Karniadakis GE. Multi-element generalized polynomial chaos for arbitrary prob-
ability measures. SIAM Journal on Scientific Computing. 2006;28(3):901–928

[18] Oladyshkin S, Nowak W. Data-driven uncertainty quantification using the arbitrary poly-
nomial chaos expansion. Reliability Engineering & System Safety. 2012;106(4):179–190

[19] Hosder S, Walters RW, Balch M. Efficient sampling for non-intrusive polynomial chaos
applications with multiple uncertain input variables. 48th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference; 23–26 April 2007; Honolulu,
Hawall

[20] Eldred MS. Recent advances in non-intrusive polynomial chaos and stochastic collocation
methods for uncertainty analysis and design. 50th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference; 4–7 May 2009; Palm Springs, California

[21] Abramowitz M, Stegun I, Mcquarrie D A. Handbook of Mathematical Functions. Dover
Publications, New York,1964

[22] Xiong F, Greene S, Chen W, Xiong Y, Yang S A new sparse grid based method for uncer-
tainty propagation. Structural & Multidisciplinary Optimization. 2009;41(3):335–349

[23] Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. Mathematics. 2004;32
(2):407–499

[24] Tatang MA, Pan W, Prinn RG, McRae GJ. An efficient method for parametric uncertainty
analysis of numerical geophysical models. Journal of Geophysics Research. 1997;102
(D18):21925–21932

Uncertainty Quantification and Model Calibration46



[10] Coelho R, Bouillard P. Multi-objective reliability-based optimization with stochastic
metamodels. Evolutionary Computation. 2011;19(4):525–560

[11] Xiu D, Karniadakis GE. The wiener-askey polynomial chaos for stochastic differential
equations. SIAM Journal on Scientific Computing. 2002;24(2):619–644

[12] Wiener N. The homogeneous chaos. American Journal of Mathematics. 1938;60(1):897–936

[13] Fan et al. Parameter uncertainty and temporal dynamics of sensitivity for hydrologic
models: A hybrid sequential data assimilation and probabilistic collocation method.
Environmental Modelling & Software. 2016;86:30–49

[14] Guerine A, Hami AE, Walha L, et al. A polynomial chaos method for the analysis of the
dynamic behavior of uncertain gear friction system. European Journal of Mechanics - A/
Solids. 2016;59:76-84

[15] Meecham WC, Siegel A. Wiener-Hermite expansion in model turbulence at large Reyn-
olds numbers. Physics of Fluids (1958-1988). 1964;7(8):1178–1190. DOI: 10.1063/1.1711359

[16] Witteveen JAS, Bijl H. Modeling arbitrary uncertainties using Gram-Schmidt polynomial
chaos. 44th AIAA Aerospace Sciences Meeting and Exhibit; 9–12 January 2006; Reno,
Nevada

[17] Wan X, Karniadakis GE. Multi-element generalized polynomial chaos for arbitrary prob-
ability measures. SIAM Journal on Scientific Computing. 2006;28(3):901–928

[18] Oladyshkin S, Nowak W. Data-driven uncertainty quantification using the arbitrary poly-
nomial chaos expansion. Reliability Engineering & System Safety. 2012;106(4):179–190

[19] Hosder S, Walters RW, Balch M. Efficient sampling for non-intrusive polynomial chaos
applications with multiple uncertain input variables. 48th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference; 23–26 April 2007; Honolulu,
Hawall

[20] Eldred MS. Recent advances in non-intrusive polynomial chaos and stochastic collocation
methods for uncertainty analysis and design. 50th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference; 4–7 May 2009; Palm Springs, California

[21] Abramowitz M, Stegun I, Mcquarrie D A. Handbook of Mathematical Functions. Dover
Publications, New York,1964

[22] Xiong F, Greene S, Chen W, Xiong Y, Yang S A new sparse grid based method for uncer-
tainty propagation. Structural & Multidisciplinary Optimization. 2009;41(3):335–349

[23] Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. Mathematics. 2004;32
(2):407–499

[24] Tatang MA, Pan W, Prinn RG, McRae GJ. An efficient method for parametric uncertainty
analysis of numerical geophysical models. Journal of Geophysics Research. 1997;102
(D18):21925–21932

Uncertainty Quantification and Model Calibration46

[25] Hu C, Youn BD. Adaptive-sparse polynomial chaos expansion for reliability analysis and
design of complex engineering systems. Structural & Multidisciplinary Optimization.
2011; 43(3):419–442

[26] Wan X, Karniadakis GE. An adaptive multi-element generalized polynomial chaos
method for stochastic differential equations. Journal of Computational Physics. 2005;209
(2):617–642

[27] Tu J, Cheng YP. An integrated stochastic design framework using cross-validated multi-
variate metamodeling methods. SAE Technical Paper 2003-01-0876; 2003

[28] Nocedal J, Wright S. Numerical Optimization. Springer Series in Operations Research
and Financial Engineering. New York: Springer; 2006

[29] ElhamA,ToorenMJLV. Trust region filter-SQPmethod formulti-fidelitywing aerostructural
optimization. Variational Analysis andAerospace Engineering. 2016;116:247–267

[30] Kim S, Ahn J, Kwon JH. Reliability based wing design optimization using trust region
framework. 10th AIAA/ISSMOMultidisciplinary Analysis and Optimization Conference;
30 August–1 September 2004; Albany, New York

[31] Robinson TD, Eldred MS, Willcox KE, Haimes R. Surrogate-based optimization using
multifidelity models with variable parameterization and corrected space mapping. AIAA
Journal. 2008;46(11):2814–2822

[32] Schöbi R, Sudret B. Uncertainty propagation of p-boxes using sparse polynomial chaos
expansions. 2016, 339:307–327

[33] Jacquelin E, Friswell MI, Adhikari S, Dessombz O, Sinou J. Polynomial chaos expansion
with random and fuzzy variables. Mechanical Systems and Signal Processing. 2016;75
(15):41–56

[34] Eldred MS, Swiler LP, Tang G. Mixed aleatory-epistemic uncertainty quantification with
stochastic expansions and optimization-based interval estimation. Reliability Engineer-
ing and System Safety. 2011;96(9):1092–1113

[35] Lu F, Morzfeld M, Tu X, Chorin AJ. Limitations of polynomial chaos expansions in the
Bayesian solution of inverse problems. Journal of Computational Physics. 2014;282
(C):138–147

Polynomial Chaos Expansion for Probabilistic Uncertainty Propagation
http://dx.doi.org/10.5772/intechopen.68484

47





Chapter 3

State‐of‐the‐Art Nonprobabilistic Finite Element

Analyses

Wang Lei, Qiu Zhiping and Zheng Yuning

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.68154

Abstract

The finite element analysis of a mechanical system is conventionally performed in the
context of deterministic inputs. However, uncertainties associatedwithmaterial properties,
geometric dimensions, subjective experiences, boundary conditions, and external loads are
ubiquitous in engineering applications. The most popular techniques to handle these
uncertain parameters are the probabilistic methods, in which uncertainties are modeled as
random variables or stochastic processes based on a large amount of statistical information
on each uncertain parameter. Nevertheless, subjective results could be obtained if insuffi-
cient information unavailable and nonprobabilisticmethods can be alternatively employed,
which has led to elegant procedures for the nonprobabilistic finite element analysis. In this
chapter, each nonprobabilistic finite element analysis method can be decomposed as two
individual parts, i.e., the core algorithm and preprocessing procedure. In this context, four
types of algorithms and two typical preprocessing procedures as well as their effectiveness
were described in detail, based on which novel hybrid algorithms can be conceived for the
specific problems and the future work in this research field can be fostered.

Keywords: interval finite element method, fuzzy finite element method, arithmetic
approach, perturbation approach, sampling approach, optimization approach, subinter-
val technique, surrogate model

1. Introduction

The traditional finite element analysis (FEA) was performed in the context of deterministic
parameters. However, uncertainties associated with material properties, geometric dimen-
sions, and external loads are always unavoidable in engineering. The ability to include uncer-
tainties is of great value for a design engineer. In the last decade, criticism has arisen regarding
the general application of the probabilistic concept. Especially when the statistical information

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



on uncertainties is limited [1], the subjective probabilistic analysis result may be obtained by
the probabilistic method [2, 3], which proves to be of little value and does not justify the high
computational cost [3–5]. Consequently, nonprobabilistic concepts have been introduced.

In this context, interval and fuzzy approaches are gaining more and more momentum for the
uncertainty analysis and optimization of numerical models in their descriptions. In the interval
approach, uncertainties are considered to be contained within a predefined range and only the
lower and upper bounds are necessary for each uncertain parameter. The fuzzy approach further
extends this methodology by the α-level technique, where α stands for the extent that a specific
value is member of the range of possible input values. From this viewpoint, a fuzzy analysis
requires the consecutive solution for a number of interval analysis based on the α-level technique
[6]. For this reason, current researches on nonprobabilistic uncertainty propagation mainly focus
on the solution and implementation of the interval analysis. In the past decades, the interval and
fuzzy concepts in FEA have been studied extensively and some typical solution schemes for the
interval FEA (IFEA) and fuzzy FEA (FFEA) were developed. This chapter is to give an overview
of state-of-the-art numerical implementations of IFEA and FFEA in applied mechanics.

FFEA aims to obtain a fuzzy description of an FEA result, starting from fuzzy descriptions of all
uncertainties. The α-level technique subdivides the membership function range into a number of
discrete α-levels. The α-cuts of the input quantities are defined as xiα ¼ {xi ∈Xi,μ~xi

ðxiÞ ≥α} where

μ~xðxÞ is the membership function. This means that an α-cut is the interval resulting from
intersecting the membership function at μ~xi

ðxiÞ ¼ α. The α-level interval describes the grade of

membership to the fuzzy set for each element in the domain and enables the representation of a
value that is only to a certain degree member of the set. However, the confidence interval defined
in statistics is the range of likely values for a population parameter, such as the population mean.
The selection of a confidence level for an interval determines the probability that confidence
interval produced will contain the true parameter value. The intersection with the membership
function of the input uncertainties on each α-level results in an interval and IFEA is formulated,
resulting in an interval for the output on the considered α-level. The fuzzy solution is finally
assembled from the resulting intervals on each sublevel. The IFEA is based on the interval
description of uncertainties and its goal is to capture the range of specific output quantities of
interest that corresponds to a given interval description of input uncertainties. For the sake of
simplicity, the static analysis of a mechanical system is adopted in this chapter to explain current
IFEA schemes. The FEA equation can be expressed in a general form as follows:

KðpÞUðpÞ¼ FðpÞ ð1Þ

where K and F stand for the stiffness matrix and load vector, respectively; U represents the
static response vector; and p is the input parameter vector of the mechanical system. In the
IFEA, p is quantified as an interval input vector pI and shown in Figure 1.

where pci is the nominal value, Δpi is the interval radius. Then, the IFEA equation is accordingly
rewritten as follows:

KðpIÞUðpIÞ¼ FðpIÞ ð2Þ
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function of the input uncertainties on each α-level results in an interval and IFEA is formulated,
resulting in an interval for the output on the considered α-level. The fuzzy solution is finally
assembled from the resulting intervals on each sublevel. The IFEA is based on the interval
description of uncertainties and its goal is to capture the range of specific output quantities of
interest that corresponds to a given interval description of input uncertainties. For the sake of
simplicity, the static analysis of a mechanical system is adopted in this chapter to explain current
IFEA schemes. The FEA equation can be expressed in a general form as follows:

KðpÞUðpÞ¼ FðpÞ ð1Þ

where K and F stand for the stiffness matrix and load vector, respectively; U represents the
static response vector; and p is the input parameter vector of the mechanical system. In the
IFEA, p is quantified as an interval input vector pI and shown in Figure 1.

where pci is the nominal value, Δpi is the interval radius. Then, the IFEA equation is accordingly
rewritten as follows:

KðpIÞUðpIÞ¼ FðpIÞ ð2Þ
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where the superscript “I” hereinafter represents an interval input. The exact solution set of this
interval equation can be expressed as:

U ¼ UjKðpÞU ¼ FðpÞ, ∀p∈pI� � ð3Þ

It is noted that interdependencies among entries of the response vector are introduced due to
sharing the common input vector and a nonconvex polyhedron is always defined [7], which
makes it extremely difficult to obtain the exact solution [5]. However, only individual ranges of
some components in the response vector are of interest for real-life problems. Therefore, by
neglecting the aforementioned interdependencies, the smallest hypercube approximation

denoted as UI around the exact solution set is an alternative object for current IFEA. The kth

component of UI is expressed as follows:

UI
k ¼ UL

k , U
U
k

h i
¼ min

p∈pI
UkðpÞ, max

p∈pI
UkðpÞ

� �
, k ¼ 1, 2,…, N ð4Þ

where superscripts “L” and “U” represent the lower and upper bounds of an interval variable,
respectively; N is the total number of response components of interest. Accordingly, the
smallest hypercube solution of IFEA equation is expressed as:

UI ¼ UI
1 ,U

I
2,…,UI

N

h iT
ð5Þ

where “T” is a transposition operator.

2. Core algorithms

From published literatures, four types of algorithms for IFEA have been well established. Most
of the current schemes are formulated based on these core algorithms.

Figure 1. The diagram of interval variable p.
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2.1. Arithmetic approach

The key point of arithmetic approach is to translate the complete deterministic numerical FE
procedure to an interval procedure using the arithmetic operations. Each substep of the
interval algorithm calculates the range of the intermediate subfunction instead of the deter-
ministic result. Based on this principle, the interval bounds of the output can be obtained.
The original solution procedure for IFEA is the interval arithmetic approaches [7–10], in
which all basic deterministic algebraic operations are replaced by their interval arithmetic
counterparts.

The major advantage of the arithmetic approach is its simplicity. However, the major
drawback of this method is its repeated vulnerability to conservatism. It is shown that
these methods suffer considerably from the overestimation effect, also referred to as the
dependency problem, and for the real-life problems, the resulting overestimation may
render the final result totally useless [5]. A simple example is shown as follows. Consider
the function

f ðxÞ ¼ x2 � xþ 1 ð6Þ

applied on the interval x ¼ ½0, 1�. Applying arithmetic approach, both terms are assumed
independently. This leads to the interval solution f ðxÞ ¼ ½0, 2�. However, the exact range of the
function equals f ðxÞ ¼ 3

4 , 1
� �

. That is to say, an arithmetic interval operation introduces conser-
vatism in its result if neglecting the correlation that exists between the operands. Besides, the
integration of interval arithmetic approaches with software for FEA is also a challenge in real
applications.

2.2. Perturbation approach

The perturbation approach has been widely applied in structural response analyses and other
applications. Compared to arithmetic approaches, perturbation methods are more popular
due to its simplicity and efficiency in IFEA and can be available in the original, improved,
and modified versions.

2.2.1. Original version

The first-order Taylor expansions of the interval stiffness matrix and load vector at the nominal
(mid-) values of interval parameters were firstly obtained as:

KðpIÞ ¼ KðpcÞ þ
Xn

i¼1

∂KðpcÞ
∂pi

ΔpIi ¼ Kc þ ΔKI

FðpIÞ ¼ FðpcÞ þ
Xn

i¼1

∂FðpcÞ
∂pi

ΔpIi ¼ Fc þ ΔFI
ð7Þ

where pc is the nominal (mid-) value of the interval input vector and ΔpIi ¼ ½�Δpi,Δpi� is the
interval radius of the ith interval parameter, i.e.,
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pc ¼ ðpU þ pLÞ=2 ¼ ½pc1, pc2,…, pcn�T
Δp ¼ ðpU � pLÞ=2 ¼ ½Δp1 ,Δp2,…,Δpn�T

ð8Þ

And the interval radiuses of the stiffness matrix and load vector in Eq. (7) are expressed as
follows, respectively.

ΔKI ¼
Xn

i¼1

∂KðpcÞ
∂pi

ΔpIi ¼ ½�ΔK,ΔK�

ΔFI ¼
Xn

i¼1

∂FðpcÞ
∂pi

ΔpIi ¼ ½�ΔF,ΔF�
ð9Þ

The FEA model for the perturbed system can be rewritten as follows:

ðKc þ ΔKIÞðUc þ ΔUIÞ ¼ Fc þ ΔFI ð10Þ

By expanding Eq. (10) and neglecting the second-order perturbed term, the following equa-
tions can be obtained.

Uc ¼ ðKcÞ�1Fc

KcΔUI ¼ ΔFI � ΔKIðKcÞ�1Fc
ð11Þ

Substituting Eq. (10) into Eq. (11) yields the interval radius of the response vector as:

ΔUI ¼ ðKcÞ�1
Xn

i¼1

∂FðpcÞ
∂pi

ΔpIi � ðKcÞ�1
Xn

i¼1

∂KðpcÞ
∂pi

ΔpIiðKcÞ�1Fc ð12Þ

And the radius vector of the response vector is estimated in the original interval perturbation
method [11] as follows:

ΔU ¼
Xn

i¼1

ðKcÞ�1

�����

�����
∂FðpcÞ
∂pi

�����

�����þ ðKcÞ�1

�����

�����
∂KðpcÞ
∂pi

�����

����� ðK
cÞ�1

�����

����� F
c

�����

�����

 !
Δpi ð13Þ

The smallest hypercube solution can thus be determined as:

UI ¼ ½Uc � ΔU,Uc þ ΔU� ð14Þ

The major drawback of this method is that a significant overestimation is introduced by the
original interval perturbation method, indicating that it applies to the interval analysis of
problems with “small” interval parameters.

2.2.2. Improved version

The most typical improved interval perturbation method was proposed in Ref. [12], in which
the radius vector of the response vector was calculated as follows:
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ΔU ¼
Xn

i¼1

ðKcÞ�1 ∂FðpcÞ
∂pi

� ðKcÞ�1 ∂KðpcÞ
∂pi

ðKcÞ�1Fc
�����

�����Δpi ð15Þ

Accordingly, the smallest hypercube solution of IFEA can also be determined by Eq. (14).
Although with better accuracy compared to the original one, an interval translation effect, i.e.,
the translation of the resulting interval w.r.t. the accurate one, is always introduced by the
improved interval perturbation method.

2.2.3. Modified versions

Compared with the original version of the perturbation approach where only first-order terms
are considered, the main aspect of the following two modified interval perturbation methods
[13, 14] is that the interval bounds are calculated by retaining part of higher order terms in
Neumann series. Therefore, the modified methods can obtain more accurate response bounds.
The key expressions are summarized as follows:

Uc ¼ ðKcÞ�1 Iþ
Xn

i¼1

Ec
i

" #
Fc

ΔUI ¼
Xn

k¼1

ðKcÞ�1 Iþ
Xn

i¼1

Ec
i

" #
∂FðpcÞ
∂pk

( )
ΔpIk þ

Xn

i¼1

ðKcÞ�1ΔEI
iF

c

ð16Þ

where

Ec
i ¼

�
ðIþ ΔpiKiÞ�1 þ ðI� ΔpiKiÞ�1 � 2I

�
=2

ΔEi ¼ ðIþ ΔpiKiÞ�1 � ðI� ΔpiKiÞ�1

�����

�����=2
ð17Þ

and

Ki ¼ ∂KðpcÞ
∂pi

ðKcÞ�1 ð18Þ

Different estimations of the radius vector of the response vector were, respectively, obtained as
follows:

ΔU¼
Xn

k¼1

ðKcÞ�1 Iþ
Xn

i¼1

Ec
i

" #
∂FðpcÞ
∂pk

( )
Δpk þ

Xn

i¼1

ðKcÞ�1ΔEiFc
�����

����� ð19Þ

ΔU¼
Xn

k¼1

ðKcÞ�1 Iþ
Xn

i¼1

Ec
i

" #
∂FðpcÞ
∂pk

�����

�����Δpk þ
Xn

i¼1

ðKcÞ�1ΔEiFc
�����

����� ð20Þ
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Xn

k¼1
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Xn

i¼1

Ec
i

" #
∂FðpcÞ
∂pk

( )
Δpk þ

Xn

i¼1

ðKcÞ�1ΔEiFc
�����

����� ð19Þ

ΔU¼
Xn

k¼1

ðKcÞ�1 Iþ
Xn

i¼1

Ec
i

" #
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�����

�����Δpk þ
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It should be pointed out that significant unpredicted estimation is always introduced by
Eqs. (19) and (20). A more reasonable estimation of the radius vector of the response vector is
simultaneously determined herein as follows:

ΔU¼
Xn

k¼1

ðKcÞ�1 Iþ
Xn

i¼1

Ec
i

" #
∂FðpcÞ
∂pk

�����

�����Δpk þ
Xn

i¼1

ðKcÞ�1

�����

�����ΔEi Fc
�����

����� ð21Þ

And a slight conservatism is alternatively resulted in by Eq. (21). The smallest hypercube solution
for the IFEA is finally determined as Eq. (14). It is worth mentioning that the spectral radius of

ðKcÞ�1ΔK increases with the increase in ΔKI. ðKc þ ΔKÞ�1 can be expanded with a Neumann

series if and only if kðKcÞ�1ΔKk is less than 1 based on the criteria of convergence for a Neumann
series. Therefore, thesemethods applies to the interval analysis of nonlinear problemswith “small”
interval parameters and the accuracy for those with “large” interval inputs can be improved by the
subinterval technique in Section 3.1. Furthermore, the integration of all interval perturbation
methods with current FEA software for the system simulation remains a great challenge.

2.3. Sampling approach

2.3.1. Vertex method

The vertex method was originally developed in Ref. [15], which can be viewed as a sampling
technique with vertices being input samples of the FEA model. This method has been popular
for the implementation of IFEA [16–21] due to its main aspect of simple formulation and the
black-box property. If the behavior of the target response w.r.t. uncertain parameters can be
guaranteed to be monotonic, the vertex method firstly proposed in Ref. [15] yields the exact
solution. It should be pointed out that the concept of monotonicity in this section means
monotonic along all principal directions where only one parameter is changing at a time.
However, it is very hard—if not impossible —to prove the property of monotonicity in a
general way, e.g., in the application of structural dynamics [22]. The number of FEA runs
necessary for the vertex method is given as:

N ¼ 2n ð22Þ

where n is the number of interval parameters. It is noted that the computational cost for the
vertex method exponentially increases w.r.t. the number of interval parameters, which results
in a dimensionality curse.

2.3.2. Transformation method

To promote the accuracy of the vertex method for nonmonotonic problems, transformation
methods for the epistemic uncertainty propagation were developed. Its original version was
firstly proposed in literature [23]. This method is based on the α-level strategy and on each
α-level the interval problem is defined. The interval solution strategy then consists of a dedi-
cated sampling strategy in the space spanned by α-cut of fuzzy parameters. This method is
available in a general, a reduced, and an extended form, with the most appropriate form to be
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selected depending on the type of model to be evaluated [23, 24]. If the behavior of the target
response w.r.t. uncertain parameters can be guaranteed to be monotonic, the reduced transfor-
mation method yields the exact solution. If it shows nonmonotonic behavior, instead, the
extended transformation method can be applied, in which more observation points were
added in a well-directed way to the search domain after rating the monotonicity of the
response w.r.t. different uncertain parameters on the basis of a classification criterion [24].

The computational cost of the transformation method is governed by the number of FEA runs
N to be performed. In the case of the general transformation method, this number is given as:

N ¼
Xmþ1

k¼1

kn ð23Þ

where m is the number of discrete α-levels and n is the number of fuzzy parameters. It is noted
that the number of FEA runs grows exponentially w.r.t. the number of fuzzy inputs, which
makes the general transformation method computational tedious for high-dimensional prob-
lems. The main aspect of the transformation method, its characteristic property of reducing
fuzzy arithmetic to multiple crisp-number operations entails that this method can be
implemented without major problems into an existing software environment for system simu-
lation. Expensive rewriting of the program codes is not required [25]. Some of the most recent
applications can be found in Refs. [25–32]. Besides, a program named as FAMOUS (fuzzy
arithmetical modeling of uncertain systems) has been developed [25], which provides an
interface to commercial software environments. Primarily developed in Matlab environment,
FAMOUS actually works as a standalone application on both Windows and Linux platforms.

2.4. Optimization approach

In essence, calculating the solution set expressed in Eq. (3) is equivalent to performing a global
optimization, aimed at the minimization and maximization of the components of the deter-
ministic analysis results {U}. The lower and upper bounds of the output of a classical FEA
model are determined by the optimization approach through a search algorithm within the
domain spanned by the interval parameters. If the global minimum and maximum of the
analysis result are found by the search algorithm, it returns the smallest hypercube solution
around the exact one. The optimization is performed independently on each element of the
response vector. Furthermore, as the behavior of the target response w.r.t. uncertain parame-
ters is rather unpredictable, the computational cost of the optimization approach in general is
strongly problem-dependent. It is noted that the optimization approach is immune to the
excessive conservatism for the interval arithmetic approaches because the optimization strat-
egy approaches the smallest hypercube solution from its inside, which means that it does not
guarantee conservatism until the actual bounds are captured. Additionally, the smooth behav-
ior of the target response w.r.t. uncertain parameters facilitates the search for the global
extrema over the space spanned by uncertain parameters. The directional search-based algo-
rithm [16, 33, 34], linear programming [35], and genetic algorithm [36] were utilized to formu-
late the procedure of IFEA or FFEA. More applications can be found in [37–39]. It is worth
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mentioning that the optimization approach and Monte Carlo simulation can be adopted to
verify the accuracy of other schemes for IFEA and FFEA.

3. Preprocessing procedures

Except for the aforementioned core algorithms for IFEA/FFEA, two types of preprocessing
procedures are always adopted to improve either the accuracy or efficiency.

3.1. Subinterval technique

For the accuracy improvement, the subinterval technique w.r.t. interval inputs is developed
[11, 40] and can be integrated with the interval arithmetic and perturbation approaches. The
main aspect of the subinterval technique is the ability to relax requirements of “small” or
“narrow” interval inputs for nonlinear responses. However, there remain two challenges as
follows:

1. Convergence validation. Similar to the prior determination of the sample size of MC in the
probabilistic analysis, the subinterval number for each interval parameter should be first
determined to guarantee the convergence of the analysis result.

2. Efficiency sacrifice. An exponential increase of the computational cost is introduced as
increasing the subinterval number to guarantee the convergence of the analysis result.
For example, the computational cost increases by mn times where n is the number of
parameters and m is the number of subintervals for each interval parameter. Thus, the
most dominant advantage in efficiency for the interval arithmetic and perturbation
approaches over other interval algorithms is significantly sacrificed.

3.2. Surrogate model

To enhance the efficiency of IFEA and FFEA, many surrogate models of the real numerical
model are always adopted when dealing with engineering design problems often involving
large-scale FEA models. The main aspect of the surrogate model is to avoid the large amount
of computational time. Apart from the conventional surrogate models always used in the
optimization procedure of IFEA and FFEA, e.g. response surface models [41, 42], Kriging
models [43–45], radial basis function models [46–48] and sparse grid meta-models [49–51],
those for the sampling and optimization approaches including the high dimensional model
representation (HDMR) and the component mode synthesis (CMS) are gaining momentum in
recent years. CMS was originally introduced in Ref. [52], in which a Ritz-type transformation
to each individual component of a structure was adopted. The deformation of each component
is approximated using a limited number of component modes. For each of these vectors, only a
single degree of freedom (DOF) was retained in the reduced component model, yielding a
large reduction in DOF for each component and the entire structure. Thus, the computational
cost for the FEA is drastically reduced. From this viewpoint, CMS can also be seen as a special
surrogate model of the expensive numerical FEA for the improvement in the computational
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efficiency. The repeated FEAs required in the context of IFEA can benefit from this computa-
tional time reduction obtained by CMS.

4. Hybrid algorithms

Numerous schemes for IFEA and FFEA have been developed based on the core algorithms
and preprocessing procedure, which can be classified into the following three cases.

4.1. Subinterval-based hybrid algorithms

Divide the large interval parameter pIiði ¼ 1, 2,…, nÞ into Ni subintervals and its rith subinter-
val can be expressed as follow:

ðpIiÞri ¼ pLi þ
2ðri � 1ÞΔpi

Ni
, pLi þ

2riΔpi
Ni

� �
, ri ¼ 1, 2,…, Ni ð24Þ

The number of subintervals for each interval parameter may be different. Nsub combinations
can be produced by taking a subinterval out of each interval parameter.

Nsub ¼
Yn

i¼1

Ni ð25Þ

For each subinterval combination, the IFEA model can be rewritten as:

KðpI
r1r2…rn ÞUðpI

r1r2…rn Þ¼FðpI
r1r2…rnÞ, ri ¼ 1, 2,…, Ni; i ¼ 1, 2,…, n ð26Þ

where pI
r1r2…rn stands for a subinterval combination and is composed of the r1th subinterval of

the first interval parameter, the r2th subinterval of the second one and up to the rnth subinter-
val of the nth one. In a conclusion, Eq. (26) stands for Nsub subinterval IFEA equations. For
each subinterval IFEA equation, the response vector can be obtained by using core algorithms
in Section 2, e.g., interval arithmetic approaches, perturbation approaches, and vertex method.
For two adjacent subinterval vector pI

r1…rr…rn and pI
r1…rrþ1…rn , the following formulae hold true,

i.e.,

KðpI
r1…rr…rn Þ ∩KðpI

r1…rrþ1…rnÞ ¼ KðpIr1 ,…, pUrr ¼ pLrr ,…, pInÞ ð27Þ

FðpI
r1…rr…rnÞ ∩ FðpI

r1…rrþ1…rn Þ ¼ FðpIr1 ,…, pUrr ¼ pLrr ,…, pInÞ ð28Þ

where pUrr and pLrr are the upper bound of pIrr and lower bound of pLrrþ1, respectively. Thus, the

intersection of UðpI
r1…rr…rnÞ and UðpI

r1…rrþ1…rn Þ does not equal to an empty set, i.e.,

UðpI
r1…rr…rnÞ ∩UðpI

r1…rrþ1…rnÞ 6¼ ∅ ð29Þ
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and preprocessing procedure, which can be classified into the following three cases.

4.1. Subinterval-based hybrid algorithms

Divide the large interval parameter pIiði ¼ 1, 2,…, nÞ into Ni subintervals and its rith subinter-
val can be expressed as follow:

ðpIiÞri ¼ pLi þ
2ðri � 1ÞΔpi

Ni
, pLi þ

2riΔpi
Ni

� �
, ri ¼ 1, 2,…, Ni ð24Þ

The number of subintervals for each interval parameter may be different. Nsub combinations
can be produced by taking a subinterval out of each interval parameter.

Nsub ¼
Yn

i¼1

Ni ð25Þ

For each subinterval combination, the IFEA model can be rewritten as:

KðpI
r1r2…rn ÞUðpI

r1r2…rn Þ¼FðpI
r1r2…rnÞ, ri ¼ 1, 2,…, Ni; i ¼ 1, 2,…, n ð26Þ

where pI
r1r2…rn stands for a subinterval combination and is composed of the r1th subinterval of

the first interval parameter, the r2th subinterval of the second one and up to the rnth subinter-
val of the nth one. In a conclusion, Eq. (26) stands for Nsub subinterval IFEA equations. For
each subinterval IFEA equation, the response vector can be obtained by using core algorithms
in Section 2, e.g., interval arithmetic approaches, perturbation approaches, and vertex method.
For two adjacent subinterval vector pI

r1…rr…rn and pI
r1…rrþ1…rn , the following formulae hold true,

i.e.,

KðpI
r1…rr…rn Þ ∩KðpI

r1…rrþ1…rnÞ ¼ KðpIr1 ,…, pUrr ¼ pLrr ,…, pInÞ ð27Þ

FðpI
r1…rr…rnÞ ∩ FðpI

r1…rrþ1…rn Þ ¼ FðpIr1 ,…, pUrr ¼ pLrr ,…, pInÞ ð28Þ

where pUrr and pLrr are the upper bound of pIrr and lower bound of pLrrþ1, respectively. Thus, the

intersection of UðpI
r1…rr…rnÞ and UðpI

r1…rrþ1…rn Þ does not equal to an empty set, i.e.,

UðpI
r1…rr…rnÞ ∩UðpI

r1…rrþ1…rnÞ 6¼ ∅ ð29Þ
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It is shown from Eq. (29) that the interval response vectors for each subinterval combination
are simply connected. Therefore, the interval response vector can be obtained as follows by
using the interval union operation.

UðpIÞ ¼ ⋃
ri ¼ 1, 2,…, Ni
i ¼ 1, 2,…, n

UðpI
r1r2…ri…rnÞ ¼

min
ri¼1, 2,…,Ni

�
UðpI

r1r2…ri…rnÞ
�
, max
ri¼1, 2,…,Ni

�
UðpI

r1r2…ri…rnÞ
�� � ð30Þ

The above subinterval method is shown in Figure 2with 50 subintervals when considering one
uncertain parameter x.

The interval arithmetic approach, subinterval technique and Taylor series expansion were
integrated [40]. More applications can be found in [13, 53, 54].

4.2. Surrogate model-based hybrid algorithms

Taylor series expansion was integrated with the interval arithmetic approach in [40] and a
method named as Taylor expansion with extrema management was proposed by integrating
the higher order Taylor series expansion and the optimization approach [55] to detect possible
nonmonotonic influences.

The transformation method was integrated with HDMR in Ref. [25]. And a component mode
transformation method was developed [56] by combing the CMS with the transformation
method to provide a significant reduction of the computational cost for large mechanical prob-
lems with uncertain parameters. Besides, a hybrid method was proposed for the interval fre-
quency response analysis by integrating the optimization and interval arithmetic approach in
[57], which was further integrated with CMS in Ref. [22]. An acceptable computational cost and a
limited amount of conservatism in the analysis result were achieved by these hybrid algorithms.

Figure 2. The diagram of subinterval method.
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4.3. Hybrid core algorithms

The aforementioned core algorithms can be combined together to achieve a better tradeoff
between the accuracy and efficiency, e.g., frameworks [22, 57–60] formulated by the global
optimization methods and interval arithmetic ones.

To improve the computational efficiency, any core algorithm in Section 2 can be integrated
with reanalysis method [61], which is fundamentally an intrusive FEA. It is noted that the
major computational cost of IFEA consists of repeated solutions of the deterministic FEA
systems while the main goal of the re-analysis method is to accelerate this conventional FEA
solution process. It is shown that the application of the re-analysis method in the context of
IFEA can reduce the computational cost by one order of magnitude compared to those based
on the conventional FEA strategy [5].

5. Conclusions

This chapter presents the state-of-the-art and recent advances in nonprobabilistic finite element
analyses. The main advantages and shortcomings of each nonprobabilistic finite element
analysis method are discussed.

The arithmetic approach is the most straightforward strategy for nonprobabilistic finite ele-
ment analyses. However, this chapter further shows that the interval arithmetic implementa-
tion of the finite element procedure is conservative. Therefore, the development of an adequate
methodology for solving the uncertain parameter dependency problem is still the main chal-
lenge in the domain of arithmetic approach. The perturbation approach has been widely used
in structural response analyses and other applications due to its simplicity and efficiency. The
accuracy of the original perturbation methods can be improved by retaining part of higher
order terms in Neumann series or Taylor series as shown in the improved and modified
versions. The sampling approach like vertex method yields the exact solution under the
condition that the behavior of the target response w.r.t. uncertain parameters can be
guaranteed to be monotonic and has been popular for the implementation of IFEA due to its
main aspect of simple formulation and the black-box property. However, when tackling the
nonmonotonic problems, the extended transformation methods should be applied by adding
more observation points in a well-directed way. The optimization approach is more and more
acknowledged as standard procedure in an interval finite element context except for the high
computational cost.

Moreover, in this context, two typical preprocessing procedures, e.g., subinterval technique
and surrogate model to improve either the accuracy or efficiency are described in detail.
Additionally, novel hybrid algorithms, including subinterval-based hybrid algorithms, surro-
gate model-based hybrid algorithms and hybrid core algorithms can be conceived by combin-
ing the aforementioned core algorithms and preprocessing procedures to achieve a better
tradeoff between the accuracy and efficiency for the specific problems and the future work in
this research field can be fostered.
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Abstract

The damage-based structural seismic performance evaluations are widely used in seis-
mic design and risk evaluation of civil facilities. Due to the large uncertainties rooted in
this procedure, the application of damage quantification results is still a challenge for
researchers and engineers. Uncertainties in damage assessment procedure are important
consideration in performance evaluation and design of structures against earthquakes.
Due to lack of knowledge or incomplete, inaccurate, unclear information in the model-
ing, simulation, and design, there are limitations in using only one framework (proba-
bility theory) to quantify uncertainty in a system because of the impreciseness of data or
knowledge. In this work, a methodology based on the evidence theory is presented for
quantifying the epistemic uncertainty of damage assessment procedure. The proposed
methodology is applied to seismic damage assessment procedure while considering
various sources of uncertainty emanating from experimental force-displacement data
of reinforced concrete column. In order to alleviate the computational difficulties in the
evidence theory-based uncertainty quantification analysis (UQ), a differential evolution-
based computational strategy for efficient calculation of the propagated belief structure
in a system with evidence theory is presented here. Finally, a seismic damage assess-
ment example is investigated to demonstrate the effectiveness of the proposed method.

Keywords: damage model, epistemic uncertainty, uncertainty quantification, evidence
theory, differential evolution algorithm

1. Introduction

With widespreading of the concept and applications of performance-based earthquake engi-
neering (PBEE) and performance-based seismic design (PBSD), the effective measures for
assessing the performance state of structural components or entire structure have been deeply

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



investigated in seismic engineering. In consistence with the different performance assessment
criteria, the evaluation and measurements of damage states for structural components are
divided into three main branches (e.g., displacement-based approach, energy-based mea-
sure and the combination of both). Due to the simplicity and convenience of observation
and description for structural damage states, the displacement-based approach and corres-
ponding damage index (e.g., inelastic displacement, maximum inter story drift ratio, and
ductility demand, etc.) have been widely documented in building seismic evaluation and
retrofit of existing building guidelines [1]. Notwithstanding the prevalent application of
displacement method in damage assessment, the defect of lacking the influence of low
cyclic fatigue of structural components is obvious. The hysteretic energy dissipation is
considered as a more reasonable indicator for seismic structural damage, because it is a
cumulative parameter involved cyclic-plastic deformations in a structure during earth-
quakes [2]. Despite the effectiveness of hysteretic energy, experimental observations dem-
onstrate that the expression of energy would be significantly affected by the exceedance
plastic deformation [3]. And the cumulative laboratory experimental data on structural
members and structures indicate the fact that the structure is damaged by a combination
of the excessive deformation and hysteretic energy. Park–Ang damage model [4], which
takes into account the effects of both the first exceedance failure and cumulative damage
failure in low-cycle-fatigue for a structural component during seismic load, is served as a
baseline for many researches. Due to intrinsic simplicity as well as calibrations against a
significant amount of observed seismic damages, the Park-Ang model and its modified
version have been extensively implemented in seismic performance evaluation of struc-
tures [5–7].

Although the applicability and practicability of using the Park-Ang model and its modified
versions have been supported by many researchers [8, 9], it should be noted that the Park-
Ang-damage-index-based performance evaluation is still a challenging task due to the large
uncertainties associated with the damage model parameters [10]. With the influence of these
uncertainties [11, 12], the evaluation results of structural damage state are always represented
with the empirical interval value (e.g., the minor damage state is represented by 0.25<D<0.4 or
0.11<D<0.4, etc. [13]). Some of these uncertainties stem from factors that are inherently random (or
aleatory) in engineering or scientific analysis (e.g., material properties such as Young’s modulus of
steel; compression strength of concrete). Others arise from a lack of knowledge, ignorance, or
modeling (e.g., simplification of mathematical model of buildings for structural analysis pur-
poses). The large uncertainties associated with the Park-Ang damage model are derived from
limited experimental data and approximate modeling (lack of knowledge) [2, 4, 5, 10]. Consider-
ing the importance of damage model in assessment of damage state for a structure, the epistemic
uncertainty shall be taken into account in seismic damage state assessment with great care. Hence,
it is significant to present a comprehensive uncertainty analysis methodology to quantify the
epistemic uncertainty and obtain more reliable results.

The traditional probability theory, based on the sufficient statistical information, is used to
model the objective uncertainty (random), which is inherent in physical variability of mate-
rials and environment. Unfortunately, the limited number of experimental data set cannot
support the strong assumption of probability theory, and the process of collecting data is
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always costly and time consuming. These shortcomings lead the assessment result of dam-
age state of structures are not aleatory but epistemic. In the past decades, several alternative
approaches have been developed to deal with epistemic uncertainty. Some of the potential
uncertainty theories are the theory of fuzzy set [14], possibility theory [15], the theory of
interval analysis [16], imprecise probability theory [17], and evidence theory [18, 19].
Among these promising uncertainty representation models, evidence theory with the abil-
ity of handling aleatory and epistemic uncertainty is used for UQ, risk assessment, and
reliability analysis.

With two complementary measures of uncertainty such as belief and plausibility, using
evidence theory to UQ is flexible and effective. In comparison with the calculation of single
probability density function (PDF) in probability theory, the computationally intensive
problem involves computing the bound values over all possible discontinuous sets which
is a main shackle of wide application for evidence theory. In order to break the computa-
tional barriers in the evidence theory-based UQ, the differential-evolution-based interval
optimization is employed to enhance the computational efficiency as described by the
authors [20].

2. Sources of uncertainty in seismic damage assessment

To effectively describe the damage state of structural components or entire structure, the
original Park-Ang damage model and modified model were developed. The original Park-
Ang damage model was presented here to access the uncertainty influence of the evaluation on
the damage state of column components. There are various methods to estimate constants in
Park-Ang damage model in different studies. In addition to diverse combination measures, the
empirical estimation value and calibration value dispersed in a large range. Using the classifi-
cation method proposed by Oberkampf and Helton [21], the aleatory and epistemic uncer-
tainties involved in Park-Ang damage model are listed as:

1. The random uncertainties rooted in experimental materials, e.g., the material composition
of concrete and the strength test results in single compositional material.

2. The objective and subjective uncertainties of experimental condition. e.g., the environmen-
tal factor, the loading error of machine, and measurements error.

3. The subjective uncertainties of fitting measures of parameters in Park-Ang damage model
and mathematical representation of model itself.

In consideration of these aleatory and epistemic uncertainties in Park-Ang damage model, the
quantification influence of uncertainties is indispensable. To achieve this goal, a series of
empirical expressions are summarized. Then, the Structural Performance Database of Pacific
Earthquake Engineering Research Center (PEER) is used to construct the uncertain sources of
parameters of damage assessment models. Using these calibration results of column set, the
parameter uncertainties are represented by the fluctuation of ratio of empirical values and
calibration values.
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2.1. Park-Ang model and empirical expression of its constants

The Park-Ang damage model [4] combines the first exceedance failure and cumulative damage
failure with a linear expression as:

D ¼ δm=δu þ β
ð
dE=Fyδu ð1Þ

where δm is the maximum deformation under earthquake, δu is the ultimate deformation

under monotonic load,
ð
dE is the cumulative energy under earthquake, β is the energy

coefficient, and Fy is the yield strength. In order to simplify the analysis procedure, the value
of Fy, δu, and β are always assumed as the constants and have nothing to do with the loads
pattern. Following above assumption, the value of damage index D for per-load stage can be

computed by only using the current value of δm and
ð
dE. Furthermore, the damage evolution

of structures and components can be described and this evolution index is supported to
estimate the true damage stage of structure and components.

In the last two decades of the twentieth century, a set of experimental results were conducted
and some illuminate-, empirical-, or mechanical-based expression of Fy, δu, and β were succes-
sively generated. Park et al. [4] computed the value of β as given in Eq. (2):

β¼ð�0:447þ 0:073l=dþ 0:24n0 þ 0:314ρtÞ· 0:7ρω ð2Þ

where l and d denote the length span and effective height of cross section, n0 is the axial load
ratio, ρt is the longitude tension steel ratio (%), and ρw is the confinement ratio (%). Kunnath
et al. [5] used 260 beams and columns data to fit the value of β as given in Eq. (3):

β¼ ½0:37n0 þ 0:36ðkp � 0:2Þ2�0:9pw ð3Þ

where kp ¼ ρt f y=0:85f c is normalized steel ratio and ρw is confinement ratio. Similarly, δu can be

determined with statistical approach or fundamental method using the mechanics of concrete
and steel. Using the typical statistical measure, Park [6] evaluated the ultimate displacement as:

δu ¼ 0:52ðl=dÞ0:93ρ�0:27ρ0:48
ω n�0:48

0 f�0:15
c · δy ð4Þ

where ρ is normalized steel ratio and δy is the yield displacement of components that can be
computed with [4] and other factors are same as above. Compared to above statistical calcula-
tion model, EU 8 [22] and Fardis and Biskinis [23] presented two different models with the
mechanics of concrete and steel:

δu ¼ 1
γel

0:016ð0:3Þn0 maxð0:01,ω0Þ
maxð0:01,ωÞ f c
� �0:225

min 9,
l
h

� �� �0:35
25

αρsx
fyw
f c

� �
· l ð5Þ

δu ¼ αstð1� 0:4αcycÞð1þ 0:5αslÞð0:3Þn0 maxð0:01,ω0Þ
maxð0:01,ωÞ f c
� �0:175 l

h

� �0:4

25
αρs

fyw
f c

� �
· l ð6Þ
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where γel is coefficient of primary and secondary elements, ω0 and ω are mechanical steel ratio
of compression and tension reinforcement, respectively, h is cross-section height, α is confine-
ment effective factor, ρsx is confinement steel ratio, fyw is yield strength of stirrup, and αst, αcyc,
and αsl are coefficients for type of steel, loading, and anchorage slip. For the yield strength of
concrete components, the expression is given by Panagiotakos and Fardis [24]:

Fy ¼ bd3

l
φy Ec

k2y
2

0:5ð1þ δ0Þ � ky
3

� �
þ Es

2
ð1� kyÞρþ ðky � δ0Þρ0 þ ρv

6
ð1� δ0Þ

h i( )
ð1� δ0Þ ð7Þ

Conventionally, the damage index D can be obtained by using above expressions to obtain the
nominal value of Park-Ang constants. Owing to limited statistical data and incomplete knowl-
edge of mathematical model to predict these constants, the large convergence is reported as in
[4–6, 23, 24]. Furthermore, these uncertainties will influence the quantification result of Park-
Ang damage index. In order to verify the impact of damage quantification result derived from
uncertainty of Park-Ang model constants, we present the structural performance database of
PEER [25] to calibrate these constants and determine the uncertainty fluctuation range of each
constant.

2.2. Comparison between the calibration results and empirical results

In this work, the calibration set is selected from the structural performance database of PEER
and the selection criteria are such as (1) the cross section of column is rectangle; (2) the column is
loaded cyclically until failure and the corresponding failure model is dominated by flexure; (3)
the longitude bars in column should not be spliced and the column should experience more than
two hysteretic cycles. In conformity with these criteria, 185 specimens are selected. Using these
column load-displacement data, the performance points on the backbone curve of column under
cyclic load are calibrated.

Similar to the most studies [23], the ultimate deformation under monotonic load δu is defined
as a distinct reduction on the negative stiffness slope of backbone curve and 80% of maximum
strength which is always assumed as Fu. Unfortunately, the missing monotonic load experi-
ments oblige us to employ the statistical relationship of ultimate displacement under cyclic
load and monotonic load to characterize the ultimate displacement. Herein, the failure dis-
placement under typical load histories is assumed as 60% of their ultimate deformation capac-
ity, which is firstly observed by Panagiotakos and Fardis [24]. For yield force, we defined that
the value is 75% of the maximum force. Following above definitions, the energy coefficient β is
computed with the assumption that damage index D is 1 at the ultimate state. In light with
above definitions, the performance point is marked on the backbone of columns as depicted in
Figure 1.

As shown in Figure 1, the column backbone curves are divided into two categories: one with
obvious ultimate state point (the 80% maximum force) like in Figure 1a, the other with the
largest displacement in backbone curve (e.g., Figure 1b). In order to yield the uncertainty
distribution of empirical model, the attention is concentrated on the first category. Using the
selected force-displacement data, the comparison of empirical model results and calibration
results is given in Figure 2.
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As shown in Figure 2, the predicted and experimental values are scattered in a wide range,
and this means the researchers should carefully handle the uncertainty derived from the
empirical model in the process of evaluating damage state with Park-Ang model. Employing
the parameter ε to represent the variability of predicted model deviation, the experimental
value Vexp can be expressed as Vexp = Vpre · ε. Taking into account the major fluctuation range
of ε and the number of experimental samples, the ε which is located in the interval [1/3, 3] is
selected and the range of data points which located less than 1/3 or more than 3 are discarded.
In the light of above rules, the uncertainty source of β, δu, and Fy consists of 83, 111, and 173
specimen, respectively.

Along with classical concept, probability theory plays a key role in the UQ of physical model,
and the distribution type is determined by the hypothesis test and related parameter are
calibrated by enough experimental data. However, the limited data of experimental set and
large variation restricted the ability of probability theory. As a generalized UQ measure,
evidence theory is compatible with both aleatory and epistemic uncertainties. So, the evidence
theory is adopted in this work to handle the epistemic uncertainty rooted in parameters of
Park-Ang damage model.

Figure 1. Performance point of backbone curve with obvious ultimate state point (a) and with the largest displacement
point (b).

Figure 2. Comparison of predicted results and experimental results of β, δu and Fy.
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3. Evidence theory and differential evolution-based UQ for seismic
damage assessment

3.1. Basic of the evidence theory

Evidence theory is a theoretical framework for reasoning with partial and unreliable informa-
tion. It was proposed by Dempster [18] and further improved by Shafer [19]. Compared to the
classical uncertain model theory, it offers the possibility to explicitly represent doubt and
conflict. As the most basic concept of the evidence theory, the fame of discernmentΩ is defined
as a set of mutually exclusive elementary propositions. Due to limited information, the prop-
ositions can be scattered, nested, or partially overlapped. Thus, the mutually exclusive elemen-
tary propositions construct the power set F = 2Ω. Given the measureable sample space (Ω, F),
the basic belief assignment (BBA) on F, m is a mapping F! [0, 1] that satisfies the following
axioms:

mðAÞ ≥ 0 mð∅Þ ¼ 0
X

mðAÞ ¼ 1 for each A ⊆ Ω : ð8Þ

An element A∈F for which m(A) > 0 is named a focal element. Corresponding to the scattered,
nested, or partially overlapped propositions in F, it seems more reasonable to make use only of
this available information to produce two uncertain measures, the Belief (Bel) and the Plausi-
bility (Pl) functions (Figure 3).

Similar to the additive rule in probability, belief and plausibility measures of proposition A can
be calculated from following formula:

BelðAÞ ¼
X

B⊆A
mðBÞ for all B⊆ 2Ω ð9Þ

PlðAÞ ¼
X

B ∩A 6¼∅
mðBÞ for all B ⊆ 2Ω ð10Þ

whereA represents different elements in F. In terms of two complementary setsA andÃ, the sum
of belief and plausible function is not required to be one. But the weaker rule Pl(A)+Bel(Ã)=1 is
satisfied, and this expression is completely different from probability distribution function p in
probability theory, that is, p(A)+p(Ã)=1. As the most remarkable distinction from probability
theory, evidence theory allows evidence stemming from different sources and employs the rules
of combination to aggregate [26]. One of the most important combination rules is Dempster’s
rule which has following formulation. Given two independent BBA m(B1) and m(B2), the
Dempster’s rule can be expressed as:

Figure 3. Belief function (Bel) and Plausibility function (Pl) of proposition A.
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mðAÞ ¼
X

B1 ∩B2¼A
mðB1ÞmðB2Þ

ð1� KÞ for all A 6¼ ∅ ð11Þ

where K ¼
X

B1 ∩B2¼∅

mðB1ÞmðB2Þ can be viewed as contradiction or conflict among the informa-

tion given by the independent knowledge sources.

3.2. Evidence theory-based UQ of seismic damage assessment using differential evolution

3.2.1. Evidence-based uncertainty representation

For the purpose of UQ, the first step is the uncertainty representation of parameters using
evidence theory, in which separate belief structures for each uncertain parameter should be
constructed. In this work, we adopt a general methodology as described previously by
Salehghaffari et al. [27] to obtain necessary information from available data and express the
uncertain variables in the mathematical framework of evidence theory.

According to Salehghaffari et al. [27], two principle steps are involved in this methodology: (1)
representation of uncertain parameters in several intervals through drawing bar charts by
using all available data or directly from expert opinions and (2) identification of three relation-
ships between all adjacent intervals and construction of the associated BBA structure. To
further illustrate this, assuming that D1 and D2 represent the number of data points within
two adjacent intervals I1 and I2, respectively, and D1 > D2, three relationships of two adjacent
intervals can be identified as agreement ðD2=D1 ≥ 0:8Þ, conflict ð0:5 ≤D2=D1 < 0:8Þ, and igno-
rance ðD2=D1 < 0:5Þ (see Figure 4), the corresponding belief structure and BBA value for these
three relationships are calculated by Eqs. (12)–(14), respectively.

mð{I} ¼ {I1, I2}Þ ¼ ðD1 þD2Þ=DT ð12Þ
mð{I1}Þ ¼ D1=DT ; mð{I2}Þ ¼ D2=DT ð13Þ

Figure 4. Three relationships of uncertain intervals.
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mð{I1}Þ ¼ D1=DT , mð{I1, I2}Þ ¼ D2=DT ð14Þ

where DT denotes the total number of data points, following this approach, a reasonable BBA
structure of uncertain parameter is constructed based on available data and knowledge, a
more detailed illustration of uncertainty representation in intervals with assigned BBA value
is referred in Salehghaffari et al. [27].

Employing this strategy, the uncertainty of Park-Ang model parameters can be properly
represented with the evidence theory. In Figure 5, we use εA(β), εB(β), and ε(Fy) to denote the
variability of the predicted models in Refs. [4, 5] for energy constant β and the one in Ref. [24] for
yielding force Fy of columns. The εC(δu), εD(δu), and εE(δu) in Figure 6 represent the fluctuation of
the empirical model for ultimate displacement under monotonic loading in Refs. [6, 22, 23].

Figure 6. Evidential uncertainty description of ε(δu).

Figure 5. Evidential uncertainty description of ε(β) and ε(Fy).
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3.2.2. Uncertainty propagation using differential evolution

In evidence theory community, uncertainty variable is usually expressed to be a series of focal
element intervals based on limited information and the joint frame of discernment is composed of
the Cartesian products of uncertain intervals, then, the BBAvalue of each element of joint frame of
discernment is also the Cartesian product of BBA value assigned on the corresponding interval.
Given two independent uncertain parameters u1 ∈ U1 and u2 ∈ U2, and corresponding focal
element C1 and C2, the joint BBA structure of this problem is defined as:

C¼C1 ⊗C2, ∀u∈U ∀u1 ∈U1 ∀u2 ∈U2 ð15Þ
mðCÞ ¼ mðC1ÞmðC2Þ ð16Þ

where the symbol ⊗ denotes the Cartesian products. Using Eqs. (15) and (16), the joint
uncertainty input of system can be seemed as the multidimensional hypercube. Therefore,
uncertainty propagation is a progress of finding the maximum and minimum of the system
response value in each hypercube interval (proposition of the joint belief structure). To propa-
gate the represented uncertainties of Park-Ang damage model constants, the damage index D
is considered as system response.

Considering epistemic uncertainty of the system, the belief and plausibility functions of the
response are obtained on the basis of the combined BBAs of the input parameters from
different information sources using the evidence combination rules. For the prediction
response process D = f(Y), whose input parameter vector Y = (Y1,…,Yn) has n variables with
epistemic uncertainty, the joint proposition C of elementary proposition is constructed for the
Park-Ang damage index prediction system model as:

C ¼ {ck ¼ ½x1i1 , x2i2 ,⋯, xnin � : x1i1 ∈X1, x2i2 ∈X2,⋯, xnin ∈Xn} ð17Þ

where X1, X2, …, Xn denote the intervals sets (frame of discernment) of the n variables Y1, Y2,
…, Yn, and the relevant numbers of the intervals are I1, I2,…, In. x1i1 , x2i2 ,⋯, xnin denote the
subintervals, 0 ≤ jij ≤ Ij (j = 1,2,…,n); ck denotes the n-dimensional joint proposition set
constructed by several subintervals, and there are I1, I2,…,In joint proposition sets ck in C. The
BBA of the joint proposition set C is defined as:

mcðckÞ ¼ m1ðx1i1Þm2ðx2i2Þ⋯mnðxninÞ ð18Þ

Thus every element of the Cartesian set C is required to be checked in the evaluation of the
belief and plausibility functions by finding the system response bounds. That is to say the
minimum and maximum responses of each joint set are needed to calculate:

½Dmin, Dmax� ¼ ½min½f ðckÞ�,max½f ðckÞ�� ð19Þ

As uncertain variable is represented by many discontinuous set instead of smooth and contin-
uous explicit function, time consuming is inevitable in UQ with evidence theory. There are two
main approaches to find the bounds of the system response: sampling and optimization. The
accuracy of sampling approach is highly dependent on the number of samples and the number
of hypercubes, and the process is costly. On the contrary, optimization methods have the
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potential to dramatically reduce the computational work. To alleviate this computational
burden, based on authors’ previous work [11], the differential evolution (DE) [28] optimization
approach is used to calculate the response bounds of each hypercube and compute the com-
posite BBA of each hypercube, propagation of the represented uncertainty through Park-Ang
damage model (Eq. (1)). The characteristics of derivative-free and capability of handling
discrete belief structure make DE method to be a good choice for such an interval bound task.

DE is arguably one of the most powerful stochastic real-parameter optimization algorithms for
solving complex and computational optimization problems in current use. As a novel evolu-
tionary computation technique, differential evolution resembles the structure of an evolution-
ary algorithm (EA). However, unlike traditional EAs, the DE-variants perturb the current
generation population members with the scaled differences of randomly selected and distinct
population members. The characteristics together with other factors of DE make it a fast and
robust algorithm and as an alternative to EA. Since late 1990s, DE started to find several
significant applications to the optimization problems arising from diverse domains of science
and engineering. In a recently published article, Das and Suganthan [29] provided a compre-
hensive survey of the DE algorithm and its basic concepts, different structures and variants for
solving various optimization problems, as well as applications of DE variants to practical
optimization problems.

In the context of DE, the individual trial solutions (which constitute a population) are called
parameter vectors or genomes. Let S ∈ Rn be the search space of the problem. Then, the n-
dimensional vector can be represented by xi = (xi1, xi2,…, xin)

T∈ S, i = 1, 2, …, NP, and DE
algorithm utilizes NP as a population for each iteration, called a generation of the algorithm.
For the damage index assessment response process, its parameter vector is generated by the
uncertainty variables (β, Fy, and δu) in ranges according to their respective belief structures. DE
operates through the same computational steps as employed by a standard EA, including
crossover, mutation, crossover, and selection operators, but differs from traditional EAs, DE
employs difference of the parameter vectors to explore the objective function landscape. As
above brief description, the pseudocode of DE is presented in Figure 7 and with a detailed
survey of the DE family of algorithms can be found in Ref. [29].

Take the pseudocode of DE in mind, the illustration of DE-based computational strategy for
finding the propagated belief structure by the example as shown in Figure 8 (only one
uncertain parameter is considered).

The procedure of uncertainty propagation using the DE strategy is as follows:

• Collect all uncertain information and construct corresponding BBA structure of each
uncertain parameter, combine the BBA structures under the situation of evidences pro-
vided by different sources or experts using combination rules of evidence.

• Use differential evolution algorithm to calculate the bound values of the system response
within each joint interval and construct corresponding joint belief structures.

• Given the complete BBA on the output response of interest damage indexD, the belief and
plausibility functions on D are given and any general subset can be developed by apply-
ing Eqs. (9) and (10).
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Once the BBA structure of the Park-Ang damage index response is constructed, observed
evidence on simulation responses is used in the determination of target propositions to

Figure 7. Pseudocode of DE.

Figure 8. Uncertainty propagation of belief structure of system by DE.
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estimate uncertainty measures, i.e., cumulative belief function (CBF) and cumulative plausi-
bility function (CPF).

3.2.3. Uncertainty measurement for seismic damage assessment

In evidence theory framework, the plausibility function Pl and belief function Bel are used to
denote the uncertainty measurement. Employing the construction rule proposed by Sentz et al.
[30], the CBF and CPF of Park-Ang damage index D less than the threshold value are formu-
lated as follows:

PlðDthreÞ ¼
X

uD ∩UD 6¼∅
mðuÞ UD ¼ {uD ≤Dthre} ð20Þ

BelðDthreÞ ¼
X

uD ⊆UD
mðuÞ UD ¼ {uD ≤Dthre} ð21Þ

Where uD ∩UD 6¼ ∅ means that the joint focal element u can be entirely or partially within the
threshold domain uD ≤Dthre and uD ⊆UD means that the joint focal element uD can be entirely
within the threshold domain uD ≤Dthre. Summarized above subparts, the separate stages of UQ
framework of evidence theory using differential evolution optimization is shown in Figure 9.

Figure 9. Procedure of UQ of Park-Ang damage model.
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4. Case study

In order to investigate the effectiveness and feasibility of the proposed UQ measures, the
column “zahn86u7” [31] is selected to compute the Park-Ang damage index in its load step.
The backbone curve and load history are shown in Figure 10.

As shown in Figure 10a, the ultimate cyclic displacement is calibrated by using the average
value of 80% maximum force point on the force capacity reduction slope of positive and
negative direction. The effective path in Figure 10b denotes the load path from initial state to
ultimate state and the load path is the global displacement history. Using the properties of
column, listed in the webpage of PEER, the nominal value of constants in Park-Ang damage
model β, δu and Fy can be estimated by the empirical expressions from Eq. (2) to Eq. (7),
respectively. In consistent with Section 3.2, the uncertainty distribution of model constants
can be depicted as the nominal value multiply the factor ε. Taking the computed results into
the evidence representation process, the BBA structures of β, δu, and Fy with different models
are listed in Tables 1 and 2.

Taking above uncertain information into the differential evolution-based uncertainty propaga-
tion framework, the evidential UQ results for each load step as shown in Figure 11.

To validate the generality of evidence theory, the variability of Park-Ang model parameters is
also represented by probability theory. The goodness of fit test is applied to test the distribu-
tion type and determine the related distribution parameters. The uncertainty distribution
information of model B for β model C for δu and Fy is presented in Table 3.

From Table 3, the values of ε(β) and ε(δu) do not refuse the normal and lognormal distribution.
We use two strategies to construct the probability input of variables. In first strategy, the lognor-
mal distribution is applied to fit all the uncertainty inputs and the cumulative distribution

Figure 10. Backbone curve (a) and load path (b) of columns of column test.
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function of uncertainty response which is indicated as CDF1. In other strategy, the probability
distributions of ε(β) and ε(δu) are assigned as normal distribution, while the distribution of ε(Fy)
is lognormal and corresponding cumulative distribution function of uncertainty result is
represented as CDF2. To compare the quantification results of probability and evidence theory,
Figure 12 is presented to describe the damage index evolution in load steps 280 and 412,
respectively. To make a further illustration for the damage state evolution in each load step, the
point 0.25, 0.5, 0.75, and 1 are used to represent the minor, moderate, severe, and collapse
damage state, respectively.

As illustrated in Figure 12, the probability theory based UQ results CDF1 and CDF2 are
located in the range of curves CPF and CBF, this indicates that evidence theory is compatible
to probability theory. The discrepancy of CDF1 and CDF2 demonstrates that probability
theory may not be suitable to handle the epistemic uncertainty which is stemmed from limited
experimental data. In other words, the probabilistic UQ result is ambiguous due to epistemic
uncertainty and the choice of distribution type has a great impact on the quantification result.
However, evidential UQ strategy demonstrates its power to quantify the epistemic uncertainty

β Fy

Model A Model B

Range BBA Range BBA Range BBA

[0.0345, 0.087] 0.301 [0.0266, 0.067] 0.458 [77.40, 133.19] 0.121

[0.0873, 0.139] 0.181 [0.0672, 0.108] 0.325 [105.22, 133.19] 0.422

[0.139, 0.192] 0.277 [0.0672, 0.189] 0.181 [133.19, 161.01] 0.26

[0.192, 0.244] 0.145 [0.0672, 0.230] 0.036 [161.01, 188.82] 0.139

[0.244, 0.296] 0.096 [161.0, 216.63] 0.029

[161.01, 244.44] 0.017

[161.01, 272.42] 0.012

Table 1. The BBA structure for multisource of β and Fy.

Model C Model D Model E

Range BBA Range BBA Range BBA

[0.034, 0.115] 0.568 [0.043, 0.116] 0.649 [0.0442, 0.104] 0.541

[0.115, 0.156] 0.207 [0.116, 0.188] 0.351 [0.104, 0.133] 0.180

[0.115, 0.196] 0.01 [0.133, 0.193] 0.279

[0.196, 0.237] 0.125

Table 2. The BBA structure for multisource of δu.
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because of its two uncertain measures belief function and plausibility function. In order to
further clarify the influence of epistemic uncertainty, the quantitative results of damage index
in Figures 12a and b are reported in Table 4.

As shown in Table 4, the belief interval of moderate damage state in steps 280 and 412 are
[0.11, 0.447] and [0, 0.026], respectively. This means the exceeding probability of moderate
damage state are [0.553, 0.89] and [0.974, 1] in steps 280 and 412, respectively. Table 5 also
displays the cumulative distribution value for moderate damage state for probability-theory-
based quantification results. Using the first probability strategy CDF1, the cumulative distri-
bution for moderate damage state are 0.217 and 0 corresponding to steps 280 and step 412.
This means the exceeding probabilities of moderate damage state are 0.783 and 1 in steps 280
and 412, respectively. Analogously, the cumulative distribution values of CDF2 for moderate
damage state are 0.298 and 0 in steps 280 and 412, respectively. It is worth noting the diver-
gence of the cumulative distribution values of CDF1 and CDF2 in step 280. Furthermore, the

Figure 11. The evidential uncertainty propagation results of Park-Ang damage index.

Constants Distribution type mu σ

εB(β) Normal 0.963 0.529

Lognormal -0.171 0.514

εC(δu) Normal 1.404 0.697

Lognormal 0.206 0.537

ε(Fy) Lognormal -0.272 0.225

Table 3. The distribution information of Park-Ang constants.
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divergence of two kind probability-based quantification results provides the evidence that
probability theory is not able to handle the epistemic uncertainty. Comparing the quantifica-
tion results of collapse damage state, the similar conclusion can be obtained. Especially, the
cumulative distribution value for collapse damage state is step 412, the evidence result is
[0.094, 0.447], this means the value of damage index larger than 1 is located in the interval
[0.453, 0.906]. While the cumulative probabilities of CDF1 and CDF2 are 0.178 and 0.233,
respectively. This illustrates that the exceedance probability of collapse state is 0.822 for CDF1
and 0.767 for CDF2. From the view of risk assessment, the evidence theory will give decision
maker a more robust UQ result, but the probability cannot.

With the incomplete knowledge of prediction model under the various operation conditions,
different expert evidence conflicts are inevitable. To reconcile this task challenge, evidence combi-
nation rule is proposed to combine the evidences from multisource. Herein, the Dempster’s rule is
applied to aggregate the different source of evidence for β, δu, and Fy as shown in Table 5.

Using the aggregated BBA structures of these three uncertain parameters, the system uncertain
response CPF2 and CBF2 are shown in Figure 13. To clarify the effectiveness of combination

Figure 12. Comparison of propagation results using evidence theory and probability theory. (a) The cumulative distribu-
tion of damage index in step 280 and (b) the cumulative distribution of damage index in step 412.

Damage index Cumulative distribution curve in step
280

Damage index Cumulative distribution curve in step
412

CPF CDF1 CDF2 CBF CPF CDF1 CDF2 CBF

0.25 0.026 0 0 0 0.25 0 0 0 0

0.5 0.447 0.217 0.298 0.11 0.5 0.026 0 0 0

0.75 1 0.522 0.644 0.354 0.75 0.244 0.050 0.053 0.026

1 1 0.722 0.818 0.419 1 0.447 0.178 0.233 0.094

Table 4. The cumulative distribution value of Park-Ang constants in step 280 and 412.
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rule, the uncertainty propagation results CPF1 and CBF1 from the model B of β and model C of
δu and Fy are also listed in Figure 13.

As shown in Figure 13, the UQ results of Park-Ang damage index variate in a large range. The
distance of CBF and CPF denotes the epistemic uncertainty that is derived from the limited
experimental data and lack of knowledge for complicated composite materials (e.g., parame-
ters model hypothesis, material properties) or incomplete knowledge of empirical model. In
comparison with the distance of CPF1 and CBF1 for uncombined BBA, the distance of CPF2
and CBF2 for combined BBA is much narrower, and this can be explained as the high conflict
information of multisources that are discarded by aggregating the multisources evidence.
However, the aggregation rule is not established in probability theory. From this point of view,
the evidence theory has great potential to quantify the uncertainty from multisources which
are having great existence in civil engineering.

β δu Fy

Range BBA Range BBA Range BBA

[0.035, 0.067] 0.297 [0.044, 0.104] 0.568 [77.40, 133.19] 0.121

[0.067, 0.087] 0.351 [0.104, 0.115] 0.189 [105.22, 133.19] 0.422

[0.087, 0.108] 0.127 [0.115, 0.116] 0.102 [133.19, 161.01] 0.26

[0.087, 0.139] 0.085 [0.116, 0.133] 0.055 [161.01, 188.82] 0.139

[0.139, 0.189] 0.108 [0.133, 0.156] 0.058 [161.01, 216.63] 0.029

[0.139, 0.192] 0.021 [0.133, 0.188] 0.028 [161.01, 244.44] 0.017

[0.192, 0.230] 0.011 [161.01, 272.42] 0.012

Table 5. The combined BBA structure for β, δu, and Fy.

Figure 13. Comparison of propagation results with uncombined and combined BBA input. (a) The cumulative distribu-
tion of damage index in step 280 and (b) the cumulative distribution of damage index in step 412.
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5. Conclusions

UQ of seismic damage model are important for PBSD and performance-based seismic
assessment. In this chapter, the epistemic uncertainty of the constants of Park-Ang model is
taken into account. The Park-Ang damage model constants are calibrated with column set,
selected from PEER column performance database. To effectively represent the uncertainty
inherent in Park-Ang model constants with limited experimental data, the UQ measurement
that combines evidence theory and differential evolution is presented. In order to further
investigate the feasibility and effectiveness of presented UQ measurement, the Monte-Carlo
sampling method combined with classical probability distribution, which is fitted with given
data, is used. Comparing the propagation results of evidence theory and classical probability
theory, we can conclude that the evidence theory is flexible to handle the epistemic uncer-
tainty, which is stemmed from lack of knowledge or sparse experimental data, whereas the
classical probability theory may be limited by the selection of distribution type and the
determination of value for the distribution parameters. Using the aggregation rules of evi-
dence theory demonstrates that evidence theory is capable to handle the uncertainty from
multisources.
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Abstract

Molecular dynamics (MD) is an important method underlying the modern field of
Computational Materials Science. Without requiring prior knowledge as inputs, MD
simulations have been used to study a variety of material problems. However, results
of molecular dynamics simulations are often associated with errors as compared with
experimental observations. These errors come from a variety of sources, including inac-
curacy of interatomic potentials, short length and time scales, idealized problem
description and statistical uncertainties of MD simulations themselves. This chapter
specifically devotes to the statistical uncertainties of MD simulations. In particular,
methods to quantify and reduce such statistical uncertainties are demonstrated using a
variety of exemplar cases, including calculations of finite temperature static properties
such as lattice constants, cohesive energies, elastic constants, dislocation energies, ther-
mal conductivities, surface segregation and calculations of kinetic properties such as
diffusion parameters. We also demonstrate that when the statistical uncertainties are
reduced to near zero, MD can be used to validate and improve widely used theories.

Keywords: molecular dynamics, molecular statics, uncertainty quantification, model
calibration, materials science, thermodynamics, kinetics

1. Introduction

In atomistic simulations, a material is represented by the positions of an assembly of atoms
whose energy is represented through a model of the interatomic forces. Molecular dynamics
(MD) simulations follow the motion of this collection of atoms. From these simulations, one
can extract information about the thermodynamics and kinetics of materials and key material
defects. As an example of an MD material simulation, Figure 1(a) shows an aluminium crystal

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



whose ½110�, [111], and ½ 1 12� crystallographic orientations are aligned respectively with the x-,
y- and z- coordinate directions. The initial atom coordinates can be assigned according to
structure, orientation and lattice constant of the crystal. To make the system interesting,
Figure 1(a) also contains two edge dislocations created by removing a ð110Þ plane as indicated
by the white vertical line. The width of the removed region, therefore, equals exactly the
Burgers magnitude b = |<110>a/2|. To close the gap of the missing plane, surrounding atoms
as indicated by the dark region are shifted towards the gap. The system can also possess a
temperature. This is achieved by assigning velocities to all atoms under the Boltzmann distri-
bution condition. Normally, periodic boundary conditions are used to remove free surfaces
and infinitely extend the system. This means that the system shown in Figure 1(a) is periodi-
cally repeated in the x-, y- and z- coordinate directions, with the periodic lengths equal to the
corresponding system dimensions Lx, Ly and Lz. Based on an interatomic potential model that
can be used to calculate system energy and interatomic forces [1], an MD simulation essentially
solves atom positions as a function of time from Newton’s equations of motion [2, 3].

The simplest MD simulations conserve energy and do not change system sizes Lx, Ly and Lz.
With such NVE (meaning that the number of atoms, system volume and system energy are
constant) simulations, constant target temperature and pressure usually cannot be maintained.
By using Nose-Hoover dragging forces [4] to increase or decrease atom kinetic energies
depending on if the temperature is lower or higher than the desired value, MD simulations
can be performed at a constant temperature. By using the Parrinello-Rahman algorithm [5] to
allow the periodic lengths Lx, Ly, and Lz to increase or decrease depending on if the pressure is
higher or lower than the desired value, MD simulations can also be performed at a constant
pressure.

Once an interatomic potential is given, the MD methods described above enable many mate-
rial problems to be computationally studied without any prior knowledge of these problems.
For example, MD reveals phonon vibration spectrum and thermal transport properties even
when applied to defect-free systems. When systems contain point defects, MD simulates the
diffusion of these defects. When systems contain dislocations, such as Figure 1(a), MD com-
putes dislocation core structures and core energies. When external forces/loads are applied to
the system, MD explores a variety of other problems including deformation, fracture and

Figure 1. Observation of MD uncertainties. (a) An aluminium crystal containing an edge dislocation dipole and (b) the
total energies of the dislocated aluminium crystal obtained from MD and MS simulations of 10 different samples.
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structure evolution. When adatoms are continuously added to a surface, MD shows the
structure evolution during vapour deposition synthesis processes. Due to the broad applica-
bility and high predictability of MD simulations, the problem of the uncertainty margin of MD
results is becoming increasingly important.

In principle, results of molecular dynamics simulations necessarily contain errors as compared
with experimental observations. These errors come from a variety of sources, including inac-
curacy of interatomic potentials, short length and time scales, idealized problem description
and statistical uncertainties of MD simulations themselves. This chapter focuses on quantifica-
tion and reduction of one important model uncertainty: statistical uncertainty of molecular
dynamics simulations.

2. An overview perspective of uncertainty quantification methods

The ultimate goal of evaluating and reducing the statistical uncertainty of MD simulations is to
minimize differences between predictions and experimental observations. To establish a useful
context, we first briefly describe quantification methods for other uncertainties during
multiscale simulations of materials.

Uncertainties are commonly divided into two types: aleatoric uncertainty arising from ran-
domness and epistemic uncertainty arising from lack of knowledge. Examples of the aleatoric
uncertainty include head or tail when flipping a coin or a high precision length measured with
a coarse scale ruler. Typically, the aleatoric uncertainty can be described by a probability
distribution function. Increasing data can result in more accurate characterization of this
distribution, but cannot reduce its variance. Examples of the epistemic uncertainty include
prediction from an inaccurate (or incorrect) model, or the length measured by a low-quality
ruler. Usually, the epistemic uncertainty cannot be described by a probability distribution. This
uncertainly, however, can be reduced when additional data or knowledge are incorporated
(e.g., when the model is improved or the error of the ruler is calibrated). Note that sometimes
the epistemic uncertainty can be treated as the aleatoric uncertainty. For example, due to the
thermal expansion, rulers are usually associated with an epistemic error on a given day. This
epistemic uncertainty may become an aleatoric uncertainty if the measurements are made
throughout the entire year.

There are many issues that influence the comparison of MD results with experimental obser-
vations. The most commonly discussed approximation is the accuracy (epistemic uncertainty)
of the interatomic potential. Ideally, this represents the true energy of the arrangement of
atoms. In practice, a computationally convenient and physically motivated functional form of
the potential is assumed and parameterized to match either fundamental electronic structure
calculations or experimental data [1]. Only recently have systematic evaluations of these errors
begun to be performed [6, 7]. As one practical approach, Moore et al. [7] performed a param-
eter sensibility study where the parameter of an interatomic potential is varied one at a time
and its effects on properties (e.g., lattice constant, elastic constants, cohesive energy and
enthalpy of mixing) are determined using MD simulations. Such a study reveals the relative
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importance of each of the potential parameters. However, it does not provide information on
the accuracy of potential.

In principle, we can always image the existence of an ideal potential that will give the exact
solution to the problem of our interest, provided that this potential is fitted to the right values
of a list of properties {k1, k2, …, kn, u1, u2, …, um}, where k1, k2, …, kn are the list of properties
that are known to be important (e.g., lattice constant, elastic constants, cohesive energy, etc.),
and u1, u2, …, um are a sufficient list of important properties that will make the potential
accurate but are unknown to us as what these properties are due to the lack of knowledge. In
practices, however, we will never achieve such an ideal potential because not only we do not
know ui (i = 1, 2, …, m), but also no potential can be fitted exactly to the target values of all ki
(i = 1, 2, …, n). Based on this recognition, a relevant approach to quantify the epistemic
uncertainty of the potential is to create an ensemble of potentials that predict a distribution of
properties {k1, k2, …, kn} centring around the true experimental values and quantify the effects
of this distribution on the target properties computed with MD simulations. This approach
may still not yield a satisfactory quantification of the epistemic uncertainty of the potential
currently. However, the quantified epistemic uncertainty will continuously improve as more
and more ui properties are understood and become ki with improved knowledge.

There are additional issues associated with MD simulations. For the study of complex defects,
issues can arise from the boundary conditions imposed on the simulations and from the
structural idealizations often imposed. For example, in a recent study of faceting of grain
boundaries in Fe, there were qualitative differences between the MD-predicted facet length
and facet junction geometries and experimental observations [8]. The source of the disagree-
ment was the idealized geometry used in the MD simulations. The simulations assumed an
ideal coincident site lattice misorientation between the crystal lattices while the experiment
deviated slightly from this ideal misorientation. This deviation introduced interfacial disloca-
tions that fundamentally changed the faceting behaviour. The use of improved geometries,
often at the computational cost of using larger systems, can be used to estimate the related
epistemic uncertainty. Likewise, the time scales of MD simulations (on the order of nanosec-
onds) raise issues with processes that occur on longer time scales. For example, in simulations
of multi-component systems, diffusive processes of substitutional impurities often occur on
time scales beyond direct MD simulations, and simulations of mechanical deformation can be
strongly influenced by the high strain-rates required by MD simulation times. Increasing
simulation time can provide an estimate of the trends of the related epistemic uncertainty.

To study material problems at engineering scales, multiscale approaches linking models of
different scales are needed. Beyond the specific uncertainties associated with MD simulations,
there are also initial studies of the broader question of how those uncertainties propagate
through a material modelling hierarchy [9–11]. To study how an aleatoric uncertainty of the
interatomic potential propagates through the MD to a continuum model, we can perform
many MD simulations using different interatomic potentials sampled from the aleatoric uncer-
tainty distribution. Results of each MD simulation are used as inputs to perform a separate
continuum simulation of the final material properties. Many continuum simulations then give
an aleatoric uncertainty distribution. To yield a highly converged continuous distribution of
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the final results, thousands or more MD simulations are needed. This is often computationally
impractical.

Assume that a continuum scale model requires a list of properties Pi, MD (i = 1, 2, …, N) from
MD calculations as inputs. If these properties are independent (e.g., thermal conductivities
obtained at different temperatures), then the direct Monte Carlo sampling [12] can be used to
propagate uncertainties efficiently. First, numerous MD simulations are performed to deter-
mine distribution of each Pi, MD. Because only distribution of one property is concerned, the
number of MD simulations needed to yield a smooth distribution of that property is signifi-
cantly reduced. Knowledge of distribution of each of the Pi, MD properties can then be used to
sample as many {P1, P2, …, PN} sets [12] as one may desire. These data sets can be used in
continuum simulations to yield a smooth distribution of the final results.

Experimentally, no samples can have exactly the same microstructure in terms of size and
population of grains, shape and volume fraction of phases, defect densities, chemical compo-
sition and purity. As a result, experimental measurements of mechanical properties of mate-
rials always involve uncertainties. Because microstructures obtained from the same processing
satisfy a certain distribution, such uncertainties are aleatoric. On the other hand, some proper-
ties such as diffusivities are difficult to measure. As a result, there are considerable disagree-
ments for the diffusivity data reported by different groups [13]. Such uncertainties can be
considered as epistemic. Note that experimental uncertainties are often the problem of interest,
but they are different from model uncertainties. It is possible to use multiscale modelling to
predict the experimental uncertainties. For example, MD simulations can be used to determine
the cohesive zone laws [14, 15] of different grain boundaries. These cohesive zone laws can be
incorporated in continuum models to simulation intergranular fracture. Through a continuum
simulation of the intergranular fracture from a large number of realizations of initial grain
structures, the experimental uncertainties due to the variation of grain microstructures can be
calculated. Because experimental uncertainties are superimposed on model uncertainties, it is
required that model uncertainties be reduced (or at least quantified) before experimental
uncertainties can be confidently studied. The quantification and reduction of the statistical
uncertainty of molecular dynamics simulations are therefore important.

3. Statistical uncertainty of molecular dynamics methods

Due to thermal noises, MD simulations are always associated with a statistical uncertainty. To
examine this problem, an MD simulation of the computational system shown in Figure 1(a) is
performed for a period of 20 ps at a temperature of 300 K using a previously developed Al-Cu
interatomic potential [16]. After the first 10 ps is ignored to enable a preliminary equilibration,
the total system energy is calculated every 1 ps for the remaining 10 ps. The total energies for
these 10 snapshot samples are shown in Figure 1(b) using the filled circles. It can be seen that
the total energies for the 10 samples are not exactly the same, but rather span a range of nearly
900 eV. Two types of uncertainties can be identified here. First, there is a general decreasing
trendwith sample number (corresponding to time). This systematic error arises from a continued
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equilibration with increasing simulation time. Second, there are some occasional fluctuations of
the results. This statistical error arises from thermal noises.

Molecular statics (MS) is another frequently applied computational method [2] to study mate-
rials. Rather than solving Newton’s equation of motion, MS determines equilibrium atom posi-
tions by minimizing the total potential energy of the system at the 0 K temperature (i.e., there is
no kinetic energy of atoms). To examine if MS simulations have the uncertainty issue when
studying dislocations, 10 MS simulations are performed on the configuration of Figure 1(a)
using different random number seeds. The 10 total system potential energies obtained from the
10 MS simulations are included in Figure 1(b) using unfilled circles. Interestingly, MS simula-
tions, which do not involve thermal noises, also involve large uncertainties. In fact, differences
among the 10 samples are comparable with the MD simulations (~800 eV or above). This MS
error, however, appears to be entirely statistical.

The uncertainty discussed abovepertains to total energyof the system. The system considered in
Figure 1(a) contains 129,600 atoms.As a result, the relative error shown in Figure 1(b) is less than
900/129,600 = 0.007 eV/atom. It is important to note that theMS errors revealed in Figure 1(b) are
larger than one would normally see in literature. This is because literature simulations are
usually applied to either defect-free systems or much smaller system dimensions. When defects
relax (e.g., a perfect dislocation dissociates into two partials bounding a stacking fault as in the
present case), many local energy minimums occur and therefore MS results become uncertain
because there are really no robust methods available today to identify the global minimum
energy configuration. Furthermore, while current MS methods can achieve high accuracies for
relative properties (e.g., energy per atom), it is unrealistic to achieve small global errors for large
systems (unless accuracies of relative properties can be infinitely improved when system sizes
are increased). Global errors are important tomany applications. In Figure 1(a), for example, the
dislocation line energy is defined as the total system energy difference between dislocated and
perfect crystals, divided by total dislocation length 2Lz along the z direction. When Lz is not too
big, say, ~25 Å as in the present case, a total energy error of 900 eV will result in meaningless
dislocation line energy calculations considering that the line energies of dislocations are usually
less than 5 eV/Å [17]. In the following, we will discuss methods to quantify and reduce the
statistical uncertainty margin ofMD simulations as revealed here.

4. Methods for quantifying molecular dynamics statistical uncertainty

Experimentally measured properties are average behaviour of systems over the time scale of
the measurement, which is usually much longer than the MD time scales. To reflect experi-
mental properties, it is appropriate to calculate time-averaged properties during MD simula-
tions. Two different approaches can be used to perform statistical uncertainty quantification
for time-averaged MD simulations based on fundamental principles of statistics [18].

The first approach is based entirely on the statistical nature of MD results. Assume that an MD
simulation is performed for a total period of ttot. We can divide ttot into N segments with the
end point of each segment being ti = iΔt (i = 1, 2, …, N) where Δt = ttot/N. Any time-averaged
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property can be calculated for each of the time intervals Δti = ti – ti�1 = Δt, and as a result, each
MD simulation will produce N values of the property P. If we denote each estimate of P to be Pi

(i = 1, 2, …, N), the best estimate of the property can be calculated as

P ¼

XN

i¼1

Pi

N
ð1Þ

The uncertainty of the samples Pi can be quantified by the sample standard deviation defined
as

σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ðPi � PÞ2

N � 1

vuuuut ð2Þ

The best estimate P is also associated with an uncertainty σ. σ is reduced from σ through the
well-known relationship [18]

σ ¼ σffiffiffiffi
N

p ð3Þ

Eqs. (1)–(3) are effective in determining the variation of the calculated properties. They do not
give direct indication of how physical the results are. In many applications, properties P, Q, R,
… are often related through some well-justified physical functions, say, F(P, Q, R, …) = 0. The
second approach is based on the deviation of the calculated properties from these functions. In
particular, a deviation parameter can be defined as ξ

ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

FðPi,Qi,Ri,…Þ2

N

vuuuut ð4Þ

As a first example to calculate ξ, elastic constants of single cubic crystals satisfy C11 = C22 = C33,
C33 = C44 = C55, C12 = C13 = C21 = C23 = C31 = C32 and Cij (j = 4, 5, 6, i = 1, 2, …, j-1) = 0.
Accordingly, we can define four deviation parameters as

ξ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

i¼1

½Cii � ðC11 þ C22 þ C33Þ=3�2

3

vuuuut ð5Þ

ξ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

j¼1

X3
i ¼ 1;
i 6¼ j

½Cij � ðC12 þ C13 þ C21 þ C23 þ C31 þ C32Þ=6�2

6

vuuuuut
ð6Þ
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ξ3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X6

i¼4

½Cii � ðC44 þ C55 þ C66Þ=3�2

3

vuuuut ð7Þ

ξ4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X6

j¼4

Xj�1

i¼1

ðCij
2 þ Cji

2Þ

24

vuuuut
ð8Þ

If we want to determine how physical our overall results are, the best MD estimates of Cij can
be used in Eqs. (5)–(8) to calculate ξ1 – ξ4. This simply means that Cij are averaged over the
entire simulation time ttot rather than the short time interval Δt. We can also use Cij obtained
within different time intervals (multiple of Δt) to examine time convergence of the calculated
properties towards the true physical values.

As another example to calculate ξ, diffusivity D is related to pre-exponential factor D0 and

activation energy barrier Q through the Arrhenius equation, D ¼ D0exp �Q
kT

� �
or ln D0 � Q

kT�
ln D ¼ 0, where k and T are respectively Boltzmann constant and temperature. If MD can be
used to calculate diffusivities Di at different temperatures Ti (i = 1, 2, …, N), then we can fit the
Arrhenius equation to get D0 and Q. We can then define a deviation error parameter for the
calculated diffusivities from true values as

ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ln D0 � Q
kTi

� ln Di

� �2

N

vuuuut ð9Þ

Note that although the error parameter ξ can validate models, it does not directly measure the
uncertainty margin of a property. However, ξ is related to the direct uncertainty margin σ (or
σ) because ξ ! 0 necessarily leads to σ ! 0 (or σ ! 0). In the following, we demonstrate
specific examples on how to quantify σ (or σ) and ξ in MD simulations.

5. Lattice constant and cohesive energy

We now quantify the uncertainty margins of the finite temperature lattice constant and cohe-
sive energy of aluminium calculated using MD simulations based on a literature interatomic
potential [16]. The periodic computational system includes 5 � 5 � 5 unit cells of a face-
centred-cubic (fcc) crystal. The initial lattice is intentionally strained in the x-, y- and z- direc-
tions by 0.01, �0.01 and 0.02, respectively, and all atoms are randomly disturbed from their
lattice sites subjecting to a maximum displacement of 0.05 Å. A zero pressure NPT (number of
atoms, pressure, and temperature are constant) MD simulation is then performed at 300 K
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tions by 0.01, �0.01 and 0.02, respectively, and all atoms are randomly disturbed from their
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atoms, pressure, and temperature are constant) MD simulation is then performed at 300 K
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using a time step size of 0.004 ps. Since the lattice constants (ax, ay and az) in the three
coordinate directions are not the same initially, their geometric mean a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiaxayaz3

p is used as
the overall lattice constant. Here, geometric mean is used instead of arithmetic mean to
conserve volume. The short-term average lattice constant and cohesive energy (per atom) are
calculated every 10 time steps (i.e., Δt = 0.04 ps). The best estimates (refer to running averages
here) of these properties are calculated using Eq. (1) as a function of simulation time ttot. The
results of these best estimates are shown in Figure 2(a). Figure 2(a) indicates that despite the
initial disturbed crystal that biases the average calculations towards a non-equilibrium struc-
ture at short time, the finite temperature lattice constants and cohesive energy calculated from
MD approaches convergence rapidly. After 15 ps simulation, both lattice constant and cohesive
energy essentially become constant, and as a result, there is no significant uncertainty associ-
ated with this simulation.

Note that we do not explicitly show the standard deviation defined by Eq. (3). However, the
information is implicitly revealed in Figure 2(a), because the standard deviation must
approach zero when the calculated properties become constant. On the other hand, cubic
crystal lattice constants satisfy a relation ax = ay = az. This allows us to define a deviation

parameter ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðax� ffiffiffiffiffiffiffiffiffiaxayaz3p Þ 2þðay� ffiffiffiffiffiffiffiffiffiaxayaz3p Þ 2þðaz� ffiffiffiffiffiffiffiffiffiaxayaz3p Þ 2

3

q
to measure how physical the results are. ξ is

calculated as a function of ttot, and the results are shown in Figure 2(b). Considering the small
scale in the vertical axis, the non-cubic deviation is very small. This further confirms that the
calculated values have extremely small uncertainty margin.

This example indicates that the uncertainty margin of time-averaged MD simulations can be
easily reduced to a negligible level when calculating simple properties, such as lattice constant
and cohesive energy. This is because these quantities are relative properties (i.e., per unit cell
for lattice constant and per atom for cohesive energy), do not involve defects (i.e., no large
number of local energy minimums) and can be obtained from small systems. More challenging
cases will be presented below.

Figure 2. Effect of simulation time on uncertainty of MD calculation of lattice constant and cohesive energy of an fcc
aluminium crystal. (a) Lattice constant and cohesive energy and (b) deviation of lattice constant from the cubic relations.
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6. Elastic constants

Compared with lattice constant and cohesive energy, calculations of finite temperature elastic
constants encounter a bigger uncertainty problem. This is because elastic constants are defined
by Cij ¼ ∂σi=∂εj, where σi and εj are the stress and strain components in the Voigt notation.
Within the finite difference method, elastic constants are calculated as Cij ¼ δσi=δεj, where δσi
is a small change of stress in responding to a small imposed strain δεj. Accurate calculations
can only be achieved when the uncertainty margin of the δσi calculation is significantly smaller
than a very small δεj value. We now explore this problem using fcc palladium as an example.
The simulations employ the literature interatomic potential [19].

First, the equilibrium finite temperature palladium lattice constant that accounts for thermal
expansion is calculated using the approach described above. This equilibrium lattice constant is
then used to create an fcc palladium crystal containing 4 � 4 � 4 unit cells. Positive and negative
small strains of the jth component � δεj = 10�4 (j = 1, 2, …, 6) are separately applied to the
system. MD simulations using an NVT (number of atoms, volume and temperature are constant)
ensemble are performed for 100 ns to relax both the positively and negatively strained systems.
An NVT ensemble is needed to maintain the imposed strain. After discarding the first 20 ns,
time-averaged stresses σi (i = 1, 2, …, 6) are calculated for the remaining ttot = 80 ns. The MD
elastic constants Cij are then calculated using a finite-difference scheme

Cij ¼
σiðδεjÞ � σið�δεjÞ

2δεj
ð10Þ

By repeating the same process for all i, j = 1, 2, …, 6, we determine all elastic constants. These
elastic constants are converted to average values based on the cubic relations, i.e., the bulk
modulus B = (C11 + C22 + C33 + 2C12 + 2C13 + 2C23)/9, shear moduli C’ = (C11 + C22 + C33 � C12 �
C13 � C23)/6 and C44 = (C44 + C55 + C66)/3. If we divide the 80 ns into 80 segments, B, C’ and C44

are calculated for each segment, and the results are shown in Figure 3(a), where data points are
values for some selected segments and lines represent running averages. It can be seen that the
uncertainty margin of the averaged elastic constants is very small especially for the running
averages, which are virtually constant in the scale of the figure. Note that the data shown in

Figure 3. Effect of simulation timeonuncertainty ofMDcalculations of finite temperature elastic constants of an fcc palladium
crystal. (a) Cubic-averaged elastic constants and (b) deviation of individual elastic constants from the cubic relations.
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Figure 3(a) have been averaged based on the cubic relations. Individual elastic constants Cij

may deviate from these relations. The four error parameters ξ1 � ξ4 for individual elastic
constants to deviate from the cubic relations are calculated using Eqs. (5)–(8). If individual
elastic constants are calculated as running averages over the entire ttot, then results for ξ1 � ξ4
are shown in Figure 3(b) as a function of ttot. Figure 3(b) further reveals that at average time
below 20 ns, the calculated elastic constants might have relatively large uncertainties as they
have not fully converged to physical values. However, satisfactorily converged results can be
achieved when the average time exceeds 20 ns or above.

7. Dislocation energy

Dislocation relaxation causes a large number of local energy minimums, the long elastic field
of dislocations requires the use of large systems and dislocation energies are related to total
system energies rather than per-atom energy. All of these contribute to large uncertainties as
can be seen in Figure 1(b). As a result, reducing uncertainty margin during MD calculations of
dislocation energies becomes extremely important. Here, we illustrate this by calculating core
energies of edge type of misfit dislocation in zinc-blende CdS [20] using the literature
interatomic potential [21]. We also calculated dislocation energies for aluminium using exactly
the same geometry as shown in Figure 1(a), and the same results were obtained [22].

The crystals used for the calculations contain nx (101) planes in x-, ny (010) planes in y- and
ð101Þ nz planes in z-. At a fixed nz = 6 (Lz ~ 25 Å), 10 system dimensions of nx � ny = 24 � 86, 26
� 92, 28 � 98, 30 � 104, 32 � 110, 34 � 116, 36 � 122, 38 � 128, 40 � 134 and 42 � 140 are
studied. Under these dimensions, the lengths Ly and Lx roughly satisfy the relation Ly = 81.7 (Å)
+ 4.24 Lx, and the smallest (nx � ny = 24 � 86) and the largest (nx � ny = 42 � 140) systems
correspond to Lx � Ly ~100 � 500 Å2 and ~170 � 820 Å2, respectively. Similar to Figure 1(a), a
dislocation dipole is created by removing a (101) plane (a thickness of the Burgers magnitude
b) of height d = 40 (010) planes (~230 Å).

MD simulations are performed at 300 K for 4 ns to equilibrate the systems, and another 16 (=
ttot) ns to calculate time-averaged energies of both perfect crystals and crystals containing the
dislocation dipoles. Let Ep and Np represent the energy and total number of atoms in the
perfect crystal, and Ed and Nd represent the energy and total number of atoms in the dislocated
crystal. Since atoms are equivalent in the perfect crystal, the total energy of a perfect crystal
containing the same number of atoms as in the dislocated crystal can be obtained by scaling Ep

with the ratio Nd/Np. Hence, the dislocation line energy is calculated as

Γ ¼
Ed � Nd

Np
Ep

2Lz
ð11Þ

where 2Lz is the total dislocation length. Based on a time segment of Δt = 16 ps to calculate
sample Γi, both best estimate dislocation energies Γ (simplified as Γ) and their standard devia-
tions σ are calculated using Eqs. (1)–(3). The results of Γ and σ are shown in Figure 4 as unfilled
circles and error bars, respectively. In Figure 4, the thin light line is obtained from a continuum
model [20], and the crosses represent data from MS simulations.
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Figure 4 indicates that despite the challenge for convergence during short-time MD simula-
tions as seen in Figure 1(b), the uncertainty margin of time-averaged MD results of dislocation
energies can be reduced to a negligible level if the average time is increased to 16 ns or above.
As a consequence of the high convergence, all the MD data points fall right on top of the
continuum line. This means that if constructed from the continuum function, the error param-
eter ξ would also be near zero. Contrarily, the MS results only approximately agree with the
continuum line at small system dimensions (however, our smallest dimension of Lx ~ 100 Å
would correspond to 80,000 atoms, which is big according to the literature MS standard) and
become meaningless for large systems. The uncertain margin of MS simulations can also be
quantified and reduced by performing ensemble averages of a large number of MS simulations
with initial configurations taken from various snapshots of an MD simulation (so that they are
at different thermally activated states). This is left as an exercise for readers as we only address
MD simulations in this chapter.

8. Diffusion parameters

For alloyed systems, or systems involving defects, the number of possible atomic diffusion
mechanisms can be tremendous. In such cases, diffusivities can be most effectively calculated
from the mean square displacement of the diffusing species obtained from MD simulations.
Diffusivities at different temperatures can be further used to derive pre-exponential factor and

Figure 4. CdS misfit dislocation energy as a function of system dimensions Lx and Ly under the constraint Ly = 81.7 (Å) +
4.24 Lx. Note that error bars of MD data are essentially horizontal lines, indicating negligible uncertainty margins.
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activation energy of diffusion through an Arrhenius fit. The only challenge of this approach is
that it is usually associated with large statistical errors. We now explore this issue using
hydrogen diffusion in aluminium as an example. We use the literature Al-H potential [13] in
the calculations.

Aluminium fcc crystals containing 8 {100} planes in each of the three <100> coordinate direc-
tions are used for simulations. The initial crystals are created based on the room temperature
experimental lattice constant a = 4.05 Å [23]. The system dimension is therefore around 32 Å,
corresponding to 2048 aluminium atoms. For comparison, we also calculate the theoretical
lattice constants at finite temperatures following the approach described above, and find
a = 4.05 Å at 300 K and a = 4.06 Å at 700 K. Bulk crystals are simulated using periodic boundary
conditions, and a single hydrogen atom is introduced in the computational cell.

First, a warm-up MD simulation is performed for more than 0.1 ns to equilibrate the system at
the target temperature T. Following this, an MD simulation is performed for a total period of
ttot. If the time step size is dt, the total number of simulated steps n = ttot/dt. The time-dependent
hydrogen location, r(t), is recorded on a time interval of Δt, i.e., at times t = iΔt, i = 1, 2, …, m
(m = ttot/Δt), where Δt is a multiple of dt. These locations allow calculations of the relative
hydrogen displacement per time interval Δt. For example, if the starting and ending times of
the Δt interval are (i � 1)Δt and iΔt, respectively (i = 1, 2, …, m), the displacement can be
calculated as Δri(Δt) = r(iΔt) � r(iΔt � Δt). Once Δr per Δt is known, the relative displacement
per larger time intervals of kΔt, measured between (i � 1)Δt and (i � 1 + k)Δt, can be simply

obtained as ΔriðkΔtÞ ¼
Xi�1þk

j¼i
ΔrjðΔtÞ, where i = 1, 2, …, m + 1 � k. This means that we can

calculate m + 1 � k values of Δri(kΔt). Clearly, the number of Δri(kΔt) values is large when k≪ m.
Under this condition, a highly converged mean square displacement can be obtained from

⌊ΔrðkΔtÞ⌋2 ¼

Xmþ1�k

i¼1

jΔriðkΔtÞj2

mþ 1� k
ð12Þ

This mean square displacement is a linear function of time t. In particular, ⌊ΔrðkΔtÞ⌋2 ¼ 6Dt,
where D is diffusivity [24]. Fitting the MD data to 6Dt in a small time range t≪ ttot (i.e., k≪ m)
allows us to determine diffusivity D. Eq. (4) can be used to estimate the uncertainty of this
linear fit.

The MD procedures described above can be used to calculate diffusivities at different temper-
atures. The results can be fitted to the Arrhenius equation to get the pre-exponential factor D0

and activation energy Q of hydrogen diffusion in aluminium [13]. Eq. (4) can also be used to
estimate error of this Arrhenius fit.

Based on an NVT ensemble, MD simulations are performed to calculate the mean square
displacement of the hydrogen atom at various temperatures between 400 and 800 K using
ttot = 0.88 ns, dt = 0.001 ps and Δt = 0.0088 ps. The mean square displacements for a small time
range (t < 15 ps) are fitted to 6Dt. A small time range is used to increase the terms in the
average sum. For example, for t = 15 ps, the total number of terms in Eq. (12) equalsN =m + 1�
k = ttot/Δt + 1 � t/Δt > 98296. The MD mean square displacement results and the fitted 6Dt lines
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are shown in Figure 5(a) for three chosen temperatures 500, 600 and 700 K. The diffusivities
derived from the mean square displacement are fitted to the Arrhenius equation, and the
results are shown in Figure 5(b). It can be seen that although the mean square displacement
appears to satisfy well the linear function of time, the statistical error for the Arrhenius fit is
significant.

To examine convergence of the results with respect to simulation time ttot, extensive MD
simulations at a variety of temperatures are performed using dt = 0.001 ps and Δt = 4.4 ps.
Arrhenius fits are performed at different total MD simulation time ttot, and the error parameter
ξ for the Arrhenius fits is calculated using Eq. (9). The results for the fitted activation energy
and the associated error parameter as a function of ttot are shown respectively in Figure 6(a)
and (b). It can be seen that the activation energy approaches a constant value after the
simulation time reaches 10 ns and above. Correspondingly, the Arrhenius error reduces to
near zero at t ≥ 10 ns. To verify that highly converged results are indeed obtained at ttot = 13.2
ns, the corresponding mean square displacement as a function of time at selected temperatures
and the Arrhenius plot are shown respectively in Figure 7(a) and (b). It can be seen that ideally
linear plots are obtained for both mean square displacement and Arrhenius fit, indicating

Figure 5. Uncertainty examination of hydrogen diffusion parameters in aluminium calculated fromMD simulations at ttot
= 0.88 ns, dt = 0.001 ps and Δt = 0.0088 ps. (a) Mean square displacement and (b) Arrhenius plot.

Figure 6. Convergence of diffusion calculation as a function of simulation time. (a) Activation energy and (b) Arrhenius
error.
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negligible errors. Interestingly, the activation energy determined from the slope of the Arrhe-
nius fit, Q = 0.43 eV, is in excellent agreement with MS calculation at 0 K, Q = 0.41 eV [13]. Note
that MS can only be applied for a single atomic diffusion mechanism as in the present case. MD
simulations can be applied to alloyed and defected systems that may involve thousands or
more different atomic jump paths.

9. Thermal conductivity

Another good example to examine uncertainty is thermal conductivity calculations which are
usually associated with large statistical errors. Here, we explore calculations of thermal con-
ductivities for a bulk GaN crystal using a ‘direct method’ [12]. The geometry of such a method
is illustrated in the left bottom legend of Figure 8. Assuming that heat flux is along the x-axis,
two regions of width w are created in the cell. One region is in the middle, and the other region
is on the two ends (due to the periodic boundary condition, the two regions of width w/2
shown in the legend are in fact one region). Through velocity rescaling, a constant heat flux of J
(say, in unit eV/ps�Å2) is continuously removed from the middle region and an exactly the
same amount of heat flux is continuously added to the end region. When a steady state is
reached, this creates a temperature gradient ∂T/∂x from the cold (middle) to the hot (end)
regions. This temperature gradient can then be used to calculate thermal conductivity κ
through the Fourier’s law

κ ¼ �J
∂T=∂x

ð13Þ

Our calculations use the GaN literature potential developed by Bere and Serra [25, 26]. A
wurtzite GaN crystal with 500 (0001) planes in the x-direction, 6 (1100) planes in the y-
direction and 10 (1120) planes in the z-direction is used. The crystal is uniformly divided into

Figure 7. Statistical uncertainty examination of hydrogen diffusion parameters in aluminium calculated from MD simu-
lations at ttot = 13.2 ns, dt = 0.001 ps and Δt = 4.4 ps. (a) Mean square displacement and (b) Arrhenius plot.
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100 bins along the x-axis so that position-dependent temperature can be calculated as the time-
averaged temperature for each of the bins. MD simulation is performed for 24 ns using an NVE
ensemble at an initial temperature of 300 K, a heat flux of J = 0.0015W/ps�Å2, a heat source/sink
width of w = 60 Å and a time step size of dt = 0.001 ps. After the first 4 ns is discarded to enable
the temperature gradient to reach a steady state, time-averaged temperatures are calculated for
the remaining simulations.

To examine the convergence of the temperature gradient calculations, Figure 8(a) and (b)
compares the temperature profiles obtained from a short average time of 0.5 ns (average
between 23.5 and 24 ns) and a long average time of 20 ns (average between 4 and 24 ns). It
can be seen that extremely scattered data are obtained at the short average time. A related
phenomenon is that the temperature gradients obtained from the left and the right sides of the
cold region do not closely match, indicating non-convergence. Contrarily, the data averaged
over the longer time are extremely smooth, and the temperature gradients obtained from both

Figure 8. Results of 300 K thermal conductivity calculations. (a) Temperature averaged over a short period of 0.5 ns; (b)
temperature averaged over a long period of 20 ns; (c) convergence of temperature gradient and (d) convergence of
thermal conductivity.
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sides of the cold region are the same up to the fourth decimal point. This suggests that the
statistical margin of the temperature gradients is greatly reduced by increasing the average
time. To quantify this, we show the running averages of the left and the right temperature
gradients in Figure 8(c). Figure 8(c) confirms that although the two temperature gradients
differ significantly at short times, they approach the same plateau at t ! 24 ns.

To understand the uncertainty margin of the final thermal conductivity, we divide the 20 ns
simulation average time into 20 segments and calculate the thermal conductivities κi for each
of the segments i = 1, 2, …, 20. We also calculate the running average of these conductivities.
The results are shown in Figure 8(d). It can be seen that κi is associated with a significant
uncertainty margin σ, which can be calculated using Eq. (2). However, the running average
quickly approaches a saturated value of ~91 W/K�m. Note that the running average at time
t = 20 ns is exactly the average measurement of the 20 κi as defined by Eq. (1). The uncertainty

margin of this average is σ ¼ σ=
ffiffiffiffiffi
20

p
.

10. Composition profile

Population of chemical species in a material often needs to be studied. For instance, hydrogen
segregation to a crack tip causes hydrogen embrittlement. Hydrogen segregation to a surface
impacts the adsorption/desorption performance of solid state hydrogen storage materials.
Calculation of composition profiles is a good approach to quantify these segregation effects.
However, due to the discrete nature of crystals, a snapshot composition profile is not smooth
and is hence associated with a significant uncertainty margin. Here, we demonstrate the
calculation of uncertainty margin of a composition profile obtained from MD simulations. We
use the hydrogen segregation on (111) palladium surface as an example. The literature Pd-H
potential [19] is used.

The fcc palladium crystal contains 5040 Pd atoms with 21 ð112Þ planes in the x- direction, 20
(111) planes in the y- direction and 12 ð110Þ planes in the z- direction. Based on an NPT
ensemble to relax stresses, an MD simulation is performed at a temperature of T = 300 K and
a hydrogen composition of x = 0.1 (i.e., the chemical formula for the system is PdH0.1). The
corresponding numbers of H atoms are randomly introduced into the octahedral interstitial
sites so that the initial composition is nominally uniform. To simulate the (111) surfaces,
periodic boundary conditions are used in the x- and z-directions and a free boundary condition
is used in the y- direction. To ensure a full equilibration between the surfaces and bulk, we first
perform a pre-conditioning MD simulation that involves 1.5 ns annealing at 600 K, another
1.5 ns to cool the system from 600 K to the target temperature T = 300 K, and a final 1.5 ns
annealing at the target temperature. With the pre-conditioned sample, a second MD simula-
tion is performed for 33 ns at the target temperature, where 100 snapshots of atom positions
are recorded on a time interval of 330 ps. Hydrogen composition is calculated for each atomic
layer and is averaged over the 100 snapshots. One snapshot of atomic configuration and the
averaged composition profile normal to the surface are shown respectively in Figure 9(a)
and (b). In Figure 9(b), the error bars represent the standard deviation calculated using Eq. (3).
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Considering that the initial composition is nominally uniform, Figure 9(a) shows visually a
strong hydrogen surface segregation effect. This is confirmed in Figure 9(b) where the surface
composition reaches the saturation value of 1.0 as compared to the bulk value of xbulk ~ 0.03.
Interestingly, all data points shown in Figure 9(b) have negligible error bars. Also it is impor-
tant to note that the composition profile is highly symmetric with respect to the two end
surfaces and the composition is ideally constant in the bulk region. These further confirm that
our high temperature pre-annealing and the ensemble-average of many snapshots have suc-
cessfully equilibrated the system and reduced the statistical error, resulting in highly con-
verged composition profile.

11. Calibration of continuum models

When the uncertainty margin is reduced to near zero, MD simulations are well suited to
validate and calibrate other models. Here, we apply MD to calibrate a continuum misfit
dislocation theory. As shown in Figure 10(a), consider that a film is grown on a substrate
surface. If the film lattice constant af is smaller than the substrate lattice constant as, then the
film must be stretched by a strain of ε = (as � af)/af in order to grow on the substrate. This
creates a large strain energy. However, if misfit dislocations are formed in the film (i.e., adding
a lattice unit in the film), then the strain for the film to match the substrate is reduced to ε = (as
� af)/af � b/L, where b is the Burgers magnitude of the dislocation and L is the dislocation
spacing. While formation of dislocations reduces lattice mismatch strain energy, it causes
additional dislocation energy. The continuum misfit dislocation models express the total sys-
tem energy as a function of dislocation density so that by minimizing the total energy, the
equilibrium dislocation density can be predicted. This concept has been used to develop a
variety of continuum misfit dislocation models [27–30].

In previous application of the continuum misfit dislocation models, the dislocation Burgers
magnitude b is usually taken from the film lattice constant, and the dislocation spacing L is
usually taken from the substrate [31–33]. Referring to Figure 10(a), these mean that b = af and
L = Ls. Despite that these choices appear to be natural, they have not been justified. Questions
arise on why the Burgers magnitude should be defined by the film lattice constant because if a

Figure 9. Hydrogen segregation on (111) surfaces. (a) A snapshot configuration and (b) averaged composition profile.
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misfit dislocation can be viewed as an extra plane in the film, it can be equally viewed as a
missing plane in the substrate. To understand this issue, we have performed MD analyses of a
CdS film on a CdTe substrate [20]. Our MD energy (normalized by interfacial area) is com-
pared with the original continuum model [30] in Figure 10(b). It can be seen that MD results
do not perfectly match the continuum prediction. Because the uncertainty margin of MD
simulations on dislocation energy and strain energy (or equivalently elastic constant) calcula-
tions has been reduced to near zero as shown in Figures 3 and 4, the results should match
perfectly if the MD and the continuum models are consistent. We find, however, that if an
approximation of the dislocation interaction energy array assumed in the original continuum
model is corrected, and if the Burgers magnitude is taken from substrate rather than film (i.e., b
= as), and the dislocation spacing is taken from the film rather than substrate (i.e., L = Lf), then
MD results can match the continuum prediction perfectly as shown in Figure 10(c).

The Burger magnitude must be defined from substrate, whereas the dislocation spacing must
be defined from the film can be analytically derived. Assume that in a dislocation-free system,
nf planes of film with plane spacing af are matched with ns (assumes that ns = nf) planes of
substrate with plane spacing as. If the substrate is much thicker than the film, it can be assumed
to be rigid. Then the film is subject to a mismatch strain of (nfas � nfaf)/(nfaf) = (as � af)/af. If we
consider a scenario where a half plane is inserted to the film, then the film is subject to a
residual strain of [nfas � (nf + 1)af]/[(nf + 1)af] = (as � af)/af � as/Lf. Obviously, Lf = (nf + 1)af is
exactly the length of unstrained film. Alternatively, if we consider a scenario where a half plane
is removed from the substrate, then the film is subject to a residual strain of [(nf � 1)as � nfaf]/
(nfaf) = (as � af)/af � as/Lf. Interestingly, Lf = nfaf is again exactly the length of unstrained film.
Hence, when the substrate is fixed, a dislocation always causes a consistent residual strain of
(as � af)/af � as/Lf whether the dislocation is viewed as inserting a half plane in the film or
removing a half plane from the substrate. By comparing the residual strain shown in Figure 10
(a), we see that the magnitude of the Burgers vector b should be the substrate value as rather

Figure 10. Calibration of a continuum misfit dislocation theory. (a) Misfit strain with and without misfit dislocation; (b)
comparison of MD data with an uncalibrated continuum model and (c) comparison of MD data with a calibrated
continuum model.
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than the film value af, and the dislocation spacing L should be the film value Lf rather than the
substrate value Ls. This can also be understood in a different way. According to the definition
of strain ε = ΔL/L0 where ΔL is change of sample length and L0 is the length of unstrained
sample, it is clear that the unstrained film length Lf should be used in place of L0 because in our
case, the substrate is fixed and only the film is strained. On the other hand, our fixed substrate
represents an infinite substrate thickness so that the thickness weighted average plane spacing
equals the substrate plane spacing. As a result, the substrate spacing bs (or as) should be taken
as the Burgers vector. This example shows how an MD model with reduced uncertainty
margin can reveal errors of widely used theories.

12. Conclusions

A brief overview is given for uncertainty quantification methods of multiscale models. We
demonstrate that rigorous quantification of all model uncertainties is still challenging. How-
ever, robust methods are already available today to reliably quantify and reduce the statistical
uncertainties of molecular dynamics (MD) simulations. In particular, by averaging over time,
the statistical uncertainties of MD calculated properties can always be reduced to near zero as
long as the MD simulation is sufficiently long. Counterintuitively, the statistical uncertainties
of time-averaged MD simulations are significantly smaller than those of molecular statics
simulations especially for large systems with many local energy minimums. For instance, the
dislocation energies calculated from time-averaged MD simulations match exactly the contin-
uum predictions, whereas the dislocation energies calculated from MS diverge at large system
dimensions. It is also demonstrated that the statistical uncertainties in long MD diffusion
simulations can be reduced to such a low level that ideally linear Arrhenius behaviour of
diffusion is captured. This means that MD simulations can be used to study diffusion for any
complex systems containing any number of diffusion paths. This is extremely important
considering that the past MS method to calculate diffusion energy barrier is usually only
applicable to single, known atomic jump paths. When zero statistical uncertainty margin is
achieved, MD simulations have been successfully used to validate and improve a widely-used
misfit dislocation theory. Most importantly, zero statistical error means that MD simulations
do not introduce additional errors beyond those inherent in the interatomic potential and
simplified systems. Such MD simulations, therefore, isolate out other uncertainties, facilitating
their quantifications. All these show that when statistical uncertainties are quantified and
reduced, MD simulations can impact material research that would be otherwise impossible.
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Abstract

This chapter addresses the stochastic modeling of functional response, which is a major
concern in engineering implementation. We first introduce a general framework and
several conventional models for functional data, including the functional linear model,
penalized regression splines, and the spatial temporal model. However, in engineering
practice, a naive mathematical modeling of functional response may fail due to the lack
of expressing the underlying physical mechanism. We propose a series of quasiphysical
models to handle the functional response. A motivating example of metamaterial design
is thoroughly discussed to demonstrate the idea of quasiphysical models. In real appli-
cations, various uncertainties have to be taken into account, such as that of the permit-
tivity or permeability of the substrate of themetamaterial. For the propagation of uncertainty,
simulation-based methods are discussed. A Bayesian framework is presented to deal with
the model calibration in the case of functional response. Experimental results illustrate the
efficiency of the proposed method.

Keywords: functional response, meta model, Bayesian uncertainty quantification,
model calibration, metamaterial design

1. Introduction

In recent years, computer experiments have become widely adopted in both engineering appli-
cations and scientific research to replace or support their physical counterparts. Functional
response is the mathematical representation of system behaviors, where the data are collected
over an interval of some input indices. With the advance of modern simulation and experiment
technology, accessing functional data becomes easier. Functional response can be in the form of
one-dimensional data such as a curve or higher dimensional data such as an image, which can

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



provide better physical insights. However, even with the advancement of computer technology,
full simulation based on a finite element method or a finite difference method still takes an
extensive amount of time. To reduce the amount of simulation time, historical simulated data
are usually used to build a cheaper metamodel [1], in which the functional response of
unobserved input can be predicted by either regression or interpolation. The simplest represen-
tation of functional data can be considered basis expansion, where polynomials are used to
formulate the input-output relation [2]. For frequency response analysis, Fourier series are
usually applied to replace the polynomials [3]. Both methods are categorized as linear regression,
which requires parameter estimations. Nonparametric approaches were also used to analyze
functional data in many scientific and engineering fields [4]. The purpose of building these
models is to provide the “best” estimate regarding the given data, while providing a statistical
scheme for prediction at unobserved inputs.

In this chapter, we provide a more sophisticated approach to naturally analyze functional
responses, which may suggest more insightful conclusions that may not be apparent otherwise.
We introduce one motivating example of functional response in computer experiments. In the
design of metamaterial, the goal is to establish a relationship between the physical dimensions of
a unit cell and its electromagnetic (EM) frequency response [5]. In practice, designers usually
evaluate the EM properties of a metamaterial microstructure via full-wave simulation data, such
that corresponding adjustments are constantly made to the design (dielectric architecture, micro-
structure topologies, etc.) until a desired performance is achieved. Figure 1 depicts an example of
unit cell design whose response phases differ on a frequency span along with the varying
geometric parameter. Naïve regression-based metamodels fail in dealing with such a problem

Figure 1. Example of functional response in metamaterial unit cell design-phase shift between different physical dimension
inputs.
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because they require building regressions for each output, which could be very expensive and
leaves the correlation between different frequencies unutilized. Moreover, when resonance is
involved, the functional data cannot be well described by polynomials or splines. However, this
can be overcome by some quasiphysical models, which explore the essential physical mechanism.
In addition, a more general two-stage modeling scheme can be applied, where in Stage I, we
approximate the response with rational functions. This allows us to decompose the continuous
response into a few discrete parameters. Stage II consists of a nonparametric metamodel to
capture the input dependence.

2. General models for functional response

Various statistical models, including the spatial temporal model, functional linear model, and
penalized regression splines, have been widely discussed in the past. Most models share a unified
expression that sums up a mean function μðf , xÞ and a random term εðf , xÞ, written as

yðf , xÞ ¼ μðf , xÞ þ εðf , xÞ ð1Þ

where y is the response, x ¼ {x1,…, xp} is the input variables with dimensionality p, and f
represents some index, which could be the frequency of an electromagnetic wave or the time
of a time series. Despite the shared form, these models differ in the way the mentioned terms
are estimated.

2.1. Functional linear model

To model the functional response, the primary task is to estimate the mean function μðf , xÞ, on
which a certain form is often imposed. As a generalization of linear regression models, the
functional linear model is in the form of

μðf , xÞ ¼ β0ðf Þ þ xTβðf Þ; ð2Þ

with basis functions β ¼ β0ðf Þ ;βðf Þ
� �

(βðf Þ ¼ ðβ1ðf Þ;…,βpðf ÞÞ
T
has the same dimensionality to

the input variable), which incorporate the index dependence, and can be seen as an extension
to the parameters of linear regression models. Therefore, by substituting the mean function
into Eq. (1), we obtain the resulting output

yðf , xÞ ¼ β0ðf Þ þ xTβðf Þ þ εðf , xÞ : ð3Þ

Given a certain index f , this model is a universal linear model. Furthermore, it contains an
underlying index-varying effect of x, whereas β is assumed to be a smooth function of f . Thus,
the model is referred to as a functional linear model. To estimate the coefficients β0ðf Þ and βðf Þ,
it is straightforward to apply the least squares method, which adopts the data collected at f.
However, smoothing over f componentwise, using penalized splines, can enhance the effi-
ciency of estimates [6].
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Penalized regression splines implement estimation of smoothing basis functions in functional
linear models by minimizing the penalized least squares. They are widely adopted in model-
ing functional responses due to their easy implementation and low computational cost [6].

Noted that the primary purpose of applying penalized regression splines is to estimate the
basis function β. Suppose we have n data f , yi

� �
, i ¼ 1,…, n

� �
, and the basis function is a

random sample from

βj ¼ mðf Þ þ δj, ð4Þ

with j ¼ 1,…, p. mðf Þ is an unspecified smooth mean function of β and δj is a zero mean
random error. In practice, mðf Þ can be estimated by a series of power-truncated spline basis

1, f , f 2, f p, ðf � κ1Þpþ,…, ðf � κKÞpþ, where {κ1,…,κK} is a given set of knots and aþ denotes the
positive part of a, i.e., aþ ¼ ðaþ jajÞ=2. Therefore, the model in Eq. (4) can be approximately
written as

βj ≈α0 þ
Xp

l¼1

αlf l þ
XK

k¼1

αkþpðf -κkÞpþ þ δj, ð5Þ

where αj represents coefficients whose values can be obtained via least squares estimates.
Generally, overfitting in the approximation of mðf Þ may occur, which leads to high variance
and poor prediction. To avoid large modeling bias, the trade-off between model bias and
overfitting requires careful consideration. In order to resolve such a problem, variable selection
procedures should be applied to the linear regression model. However, when the number of
involved basis functions is very large, variable selection would encounter great computational
difficulty [7]. Alternatively, αj is estimated by minimizing the penalized least squares function
in the form of

Xn

i¼1

yi � xij α0 þ
Xl

l¼1

αlf l þ
XK

k¼1

αkþpðf -κkÞpþ
( )" #2

þ g
XK

k¼1

α2
kþp
, ð6Þ

where g is a tuning parameter determined by cross-validation or generalized cross-validation [8].

The smoothing method with penalized splines estimates also requires selection of the number
of knots and the order p, which may vary from case to case. Fortunately, the estimates are not
sensitive to these choices; and cubic splines are suggested in most cases [6], which ensure
continuous second-order and piecewise continuous third-order derivatives at the knots. Mean-
while, knots are usually selected from the interval over which f is evenly distributed, or κk is
taken to be the 100k=ðK þ 1Þth percentile from the unevenly distributed f.

2.2. Spatial temporal model

The spatial temporal model is defined by the sum of a mean function, μðf , xÞ, and εðf , xÞ of a
zero-mean Gaussian random field. It is a generalization of the Gaussian processes (GP) model,
which has been widely adopted for spatial statistic problems [4, 9].

Uncertainty Quantification and Model Calibration118



Penalized regression splines implement estimation of smoothing basis functions in functional
linear models by minimizing the penalized least squares. They are widely adopted in model-
ing functional responses due to their easy implementation and low computational cost [6].

Noted that the primary purpose of applying penalized regression splines is to estimate the
basis function β. Suppose we have n data f , yi

� �
, i ¼ 1,…, n

� �
, and the basis function is a

random sample from

βj ¼ mðf Þ þ δj, ð4Þ

with j ¼ 1,…, p. mðf Þ is an unspecified smooth mean function of β and δj is a zero mean
random error. In practice, mðf Þ can be estimated by a series of power-truncated spline basis

1, f , f 2, f p, ðf � κ1Þpþ,…, ðf � κKÞpþ, where {κ1,…,κK} is a given set of knots and aþ denotes the
positive part of a, i.e., aþ ¼ ðaþ jajÞ=2. Therefore, the model in Eq. (4) can be approximately
written as

βj ≈α0 þ
Xp

l¼1

αlf l þ
XK

k¼1

αkþpðf -κkÞpþ þ δj, ð5Þ

where αj represents coefficients whose values can be obtained via least squares estimates.
Generally, overfitting in the approximation of mðf Þ may occur, which leads to high variance
and poor prediction. To avoid large modeling bias, the trade-off between model bias and
overfitting requires careful consideration. In order to resolve such a problem, variable selection
procedures should be applied to the linear regression model. However, when the number of
involved basis functions is very large, variable selection would encounter great computational
difficulty [7]. Alternatively, αj is estimated by minimizing the penalized least squares function
in the form of

Xn

i¼1

yi � xij α0 þ
Xl

l¼1

αlf l þ
XK

k¼1

αkþpðf -κkÞpþ
( )" #2

þ g
XK

k¼1

α2
kþp
, ð6Þ

where g is a tuning parameter determined by cross-validation or generalized cross-validation [8].

The smoothing method with penalized splines estimates also requires selection of the number
of knots and the order p, which may vary from case to case. Fortunately, the estimates are not
sensitive to these choices; and cubic splines are suggested in most cases [6], which ensure
continuous second-order and piecewise continuous third-order derivatives at the knots. Mean-
while, knots are usually selected from the interval over which f is evenly distributed, or κk is
taken to be the 100k=ðK þ 1Þth percentile from the unevenly distributed f.

2.2. Spatial temporal model

The spatial temporal model is defined by the sum of a mean function, μðf , xÞ, and εðf , xÞ of a
zero-mean Gaussian random field. It is a generalization of the Gaussian processes (GP) model,
which has been widely adopted for spatial statistic problems [4, 9].

Uncertainty Quantification and Model Calibration118

Both of the preceding models aim to represent the functional data in terms of their mean
functions. In contrast, the spatial temporal model utilizes the property of the normal distribu-
tion of the residuals; thus, the output can be seen as a realization of a Gaussian random field.
We assume a mean function μðf , xÞ in the form of

μðf , xÞ ¼
Xn

i¼0

hiðxÞβiðf Þ ¼
def

hðxÞTβðf Þ; ð7Þ

where hðxÞ and βðf Þ are two series of basis functions of the input variable and index variable,
respectively. Such an assumption leads to a spatial temporal model

yðf , xÞ ¼ hðxÞTβðf Þ þ εðf , xÞ; ð8Þ

where εðf , xÞ is a zero-mean Gaussian random field, and the covariance function follows the
form

cov{εðf , xÞ, εðf , x0Þ} ¼ Kðκf ; jx-x0jÞ; ð9Þ

where Kðκf Þ denotes the covariance matrix, whose (i,j) element Kðκf ; jxi � xjjÞ measures the
covariance between xi and xj. κf is an f-dependent hyperparameter that controls the properties
of the covariance.

Suppose we have obtained observation yðf j, xiÞ at input sites ðf j, xiÞ with j ¼ 1,…, J and

i ¼ 1;…, n, where J and n are the length of indices and input settings. βðf Þ and κf can be
calculated following the hyperparameter estimation procedure within a standard Gaussian
processes model [4]. The spatial temporal model also allows predictions at unobserved sites f �
and x�. The procedures for prediction are summarized in the following algorithm.

Step 1: For j ¼ 1,…, J, calculate the best estimates of β̂ðf Þ and κf for f ¼ f j by maximizing the

(log) likelihood, given by

log pðyjXÞ ¼ � 1
2
½ðy� hðxÞβÞTK�1ðκf Þðy� hðxÞβÞ� � 1

2
logjKj �N

2
log 2π

Step 2: According to the data {xi, yðf j, xiÞ}, obtain estimates μðf , xÞ, and κ̂f . Calculate prediction

yðf j, x�Þ, at f ¼ f j, with the best linear unbiased prediction [2]

yðf j, x�Þ ¼ hðx�ÞT β̂ þ KTðκ̂ f ; jx�-xjÞ K-1ðκ̂ f ; jx� x0jÞðy� hðxÞT β̂Þ

Step 3: For new index f � ∈ ½f 1, f J� and given outputs at two existing indices yðf 0Þ and yðf 1Þ, use
linear interpolation to make predictions for yðf �, x�Þ, as

yðf �, x�Þ ¼ yðf 0, x�Þ þ ðf � � f 0Þ
yðf 1, x�Þ � yðf 0, x�Þ

f 1 � f �
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2.3. Quasiphysical model

Metamaterial frequency response, for example, modeling the resonance response is often quite
challenging and cannot be achieved with the models introduced above. This is due to that the
above models are based upon linear regression and simply encode the index dependence
within the linear index-dependent smooth basis functions. However, when distinct resonance
peaks exist, a common scenario in radio frequency engineering, fitting to these smooth basis
functions often, leads to poor accuracy [10]. To deal with these problems, we tend to utilize
some underling physical mechanism and establish a quasiphysical modeling method. For
example, the mean function μðf ; xÞ is represented by the combination of some link function
Lðf ,•Þ, which follows certain physical mechanisms, and a set of low-dimensional scaling vari-
ables ϕðxÞ, i.e.,

μ f , xð Þ ¼ L f ,ϕðxÞð Þ: ð10Þ

Then, we have yðf , xÞ ¼ L f ,ϕðxÞð Þ þ εðf , xÞ. Instead of finding a single function with respect to
both frequency index and input variables, the functional response is separated into two parts: a
physical meaningful link function Lðf ,•Þ contains the functional features, whereas the other
captures the relationship between input variables x and scaling variables ϕðxÞ. This separation
often leads to dimension reduction in statistical models. In the example of metamaterial
design, the functional response is represented by the effective permittivity of a unit cell, which
can be well fitted by a Drude-Lorentz form [11],

Lðf ,ϕðxÞÞ ¼ εa 1� Fef 2

f 2 � f 20 þ iγef

 !
: ð11Þ

where ϕðxÞ � {εa, Fe, f 0,γe} is the intermediate variable which can be estimated via fitting the
functional response by Eq. (11), meanwhile ϕðxÞ is a function of input variables. Here, we
choose the Gaussian processes (GP) regression model for interpolate new ϕ� given previous
obtained pairs {x,ϕðxÞ }7D and new x�. Once the new ϕ� is obtained, it can then be used to
evaluate the new functional response by Eq. (11). Figure 2 displays a smooth surface of f 0 and
an example of predicted effective permittivity.

The aforementioned Drude-Lorentz model allows high accuracy only when the metamaterial
system works in a static or quasistatic regime, such that the metamaterial architecture can be
seen as a single piece of effective medium. However, for complex metamaterial systems, the
working regime is beyond static; thus, approximation accuracy by such a model is severely
deteriorated. We noted that EM waves propagate through each layer of metamaterial like a
current on transmission lines. Such a perspective transfers the EM field problems to circuit
problems. Hence, function response to a continuous spectrum is reduced to discrete LRC (short
form of inductor, resistor and capacitor) networks. We propose a two-stage modeling scheme,
where in the first stage, a vector fitting (VF) technique is adopted to provide accurate rational
approximation to frequency responses with distinct resonances. Its results are easily inter-
preted as an equivalent circuit. The approximation accuracy to a frequency response and its
corresponding equivalent circuits are shown in part (a) and (b) of Figure 3, respectively. And in
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Figure 3. Example of modeling frequency response via (a) vector fitting, (b) equivalent circuit, and (c) GP regression.

Figure 2. Example of modeling functional response assisted by the physical model: (a) Gaussian process surface of a
scaling variable; (b) predicted functional response.
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Stage II, the empirical circuit elements are then taken as the target response in statistical
models to establish the mapping input-output relation by performing regression, which also
allows predictions at unobserved input sites. Part (c) of Figure 3 presents the GP surface built
of circuit parameters over two input variables. A graphical display of this two-stage approach
is illustrated in Figure 4. To predict functional response at unobserved input, it is implemented
by first predict the presenting circuit elements and then recover the response.

3. Uncertainty quantification

In the engineering modeling and design, uncertainty is ubiquitous, due to the inability to
specify a “true” input or model parameter. Quantifying the uncertainty of the model, e.g., in
the form of predictive confidence intervals, is of great importance for decision making and
advanced design [1]. In general, uncertainty quantification can be divided into twomajor types
of problem: forward uncertainty propagation and inverse assessment of model and parameter
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3.1. Metamodel-based uncertainty propagation

The main problem in analyzing uncertainty propagation is obtaining an analytical representa-
tion of the metamodel for any arbitrary (uncertain) input values. Given its probability density,
the Bayesian framework can provide a probability measure of random inputs on the output
field. The purpose of such an operation is to evaluate the influence of an uncertain input on the
model response.

Assume that the Gaussian process regression model is trained on a dataset with the input

X ¼ x1,…, xNf g and the corresponding intermediate variable Ψ ¼ ϕðx1Þ,…,ϕðxNÞð ÞT which is
obtained by fitting algorithm in Stage I. The GP hyperparameters learned from the data are
denoted by γ. The uncertainty of the input variable x� is captured by a probability density function,

x� � pðx�Þ ð14Þ

At a deterministic test input x�, the predictive distribution of the function, pðϕ�jx�,X,Ψ ,γÞ (for
simplicity, we use ϕ� to denote ϕðx�Þ, the output of the metamodel.), is Gaussian with mean

~ϕ� ¼ Eðϕ�jx�,X,Ψ ,γÞ ¼
XN

i¼1

ζiCðxi, x�Þ; ð15Þ

and variance

covðφ�Þ ¼ Cðx�, x�Þ �
XN

i, j¼1

ðC� σ2IÞ�1Cðx�, xiÞCðx�, xjÞ ð16Þ

where ζi is the ith element of column vector ζ ¼ ½Cþσ2I�Ψ . C denotes the covariance matrix of
the Gaussian process, whose ijth element is given by Cij ¼ Cðxi, xjÞ.
The final goal is to propagate uncertainty through the link function Lðf ,ϕ�Þ. The computation
of the statistics is implemented by integrating over the uncertainty with the mean

μL� ¼
ð
Lðf ,ϕ�Þpðϕ�jx�,X,Ψ ,γÞpðx�Þdϕ�dx�: ð17Þ

and the variance

σ2L� ¼
ð
½Lðf ,ϕ� � μL� Þ�2pðϕ�jx�,X,Ψ ,γÞpðx�Þdϕ�dx�: ð18Þ

The uncertainty propagation is induced by the variability of the input variable. For example, in
metamaterial engineering, the dimension of a design parameter, say the thickness of the metallic
microstructure layer, could differ from what has been instructed during the manufacturing pro-
cesses. Frommeasurements, the value of such a variable would rather follow a distribution than be
pre-specified as an exact value. Therefore, the analysis of uncertainty propagation is needed to be
in the metamaterial design process.
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3.2. Bayesian calibration

Compared to uncertainty forward propagation, the inverse problem is more difficult yet of
great importance in enhancing the fidelity of metamodels. Two major aspects concerning the
inverse problem are measuring model discrepancy and model calibration. In this chapter, we
use the formulation to address both issues within an updating process, similar to that pro-
posed in Ref. [12].

3.2.1. The model

In this section, we introduce the details of performing Bayesian calibration with regard to
Eq. (13). The calibration parameters, denoted by θ, are defined as any physical parameters that
can be specified as an input to the statistical model given by Eq. (13). The fundamental
difference between x and θ is that the former refers to design inputs whose value can be
specified by the user during experiment and simulation, whereas the latter cannot be con-
trolled and its true value is not directly observable [12]. In the previous chapter, the calibration
parameter is not explicitly specified. However, we here include it in the framework to quantify
its uncertainty, which completes the full cycle of metamaterial design and modeling. Suppose
θ represent a constitutive parameter, say permittivity, of a dielectric used to fabricate the
metamaterial system, which cannot be accurately measured directly.

Before offering the detailed statistics for uncertainty quantification, we must note that the
purpose of parameter calibration is to provide an accurate prediction with the metamodel with
a small amount of data. An even smaller amount of experimental data is acquired to calibrate
and validate the main model. To select the “best” experiment samples, uniform experimental
design techniques are usually applied [6]. A Latin hypercube sampling, for example, is widely
used for such cases, mainly due to its good coverage property [13].

The data corresponding to the metamodel ϕ are obtained at D1 ¼ ðx0
1,θ1Þ;…; ðx0

N,θNÞ
n o

,

where {x
0
1,…, x

0
N} and {θ1,…,θN} are the set of design inputs and calibration parameters.

Although the notation is included, the true values of the calibration parameters are unknown
throughout the entire calibration process. The inverse problem of uncertainty quantification is
implemented in an updated formulation with a Bayesian approach [1]. In model (13), the
metamodel, ϕðx,θÞ, and discrepancy function, ηðxÞ, are both Gaussian processes:

ϕðx,θÞ � N m1ðx,θÞ;C1 ðx,θÞ, ðx0,θ0Þð Þð Þ , ð19Þ

ηðxÞ � N m2ðxÞ;C2ðx, x0Þð Þ, ð20Þ

where m1ðx,θÞ ¼ h1ðx,θÞTβ1 and m2ðxÞ ¼ h2ðxÞTβ2 [12]. C1 �, �ð Þ, �, �ð Þð Þ and C2 �, �ð Þ are covari-
ance functions, which can be parameterized by some hyperparameters, denoted by Γ1 and Γ2,
respectively. Let us denote these hyperparameters with Γ ¼ ðΓ1, Γ2Þ, collectively. There are
many candidates of covariance functions from which one can chose. For example, as one of
the most applied covariance functions, squared exponential function, in form of
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C1 x,θð Þ, x0,θ0ð Þð Þ ¼ σ21exp �ðx� x0ÞTV1xðx� x0Þ
n o

exp �ðθ� θ0ÞTVθðθ� θ0Þ
n o

,

C2 x, x0ð Þ ¼ σ22exp �ðx� x0ÞTV2xðx� x0Þ
n o

;
ð21Þ

can provide smooth samples to infer the latent function variable. In Eq. (21), the value of
hyperparameters can be inferred via Markov Chain Monte Carlo (MCMC) techniques.

3.2.2. Data and prior distribution

Let us denote the matrix of basis functions H1ðD1Þ with rows h1ðx0
1,θ1ÞT,…,h1ðx0

N,θNÞT
n o

,

which leads to the expectation of ϕ as H1ðD1Þβ1. Similarly, from the experimental observations
we can obtain ϕ̂, the estimation of ϕ by Eq. (13). It can be further augmented by the calibration
parameter at each x, with D2ðθÞ ¼ ðx1,θÞ,…, ðxn,θÞf g. In contrast to the simulation output
{x

0
1,…, x

0
N}, the experimental data are usually acquired with much smaller size, i.e., n << N,

which is in accordance with the purpose of reducing the amount of physical experiments with
calibrated models. Meanwhile, we use xi and xi 0 to describe that the observation points could
be different between two datasets. The expectation ϕ̂ of can be represented by

H1 D2ðθÞf gβ1 þH2ðD2Þβ2. We write the full data vector ΩT ¼ {ϕT, ϕ̂T}, which is obtained via
Stage I given the simulation and observation of functional response. Meanwhile, they are

normally distributed given the full set of parameters {θ,β,φ} (β ¼ ðβT1 ,βT2 ÞT , φ ¼ ðλ, ΓÞ).
The goal of calibration is to obtain pðθjΩÞ, the posterior distribution of conditional only on the
full data Ω. To derive the posterior distribution of parameters, we begin with the normal
distribution of the full set of data, during which the likelihood function will yield a Gauss-
ian [14], with mean

EðΩjθ,β,ϕÞ ¼ mdðθÞ ¼ HðθÞβ, ð22Þ

where

HðθÞ ¼ H1ðD1Þ 0
H1 D2ðθÞf g H2ðD2Þ

� �
: ð23Þ

To specify the variance matrix of Ω, we need the variance matrix of ϕ, denoted by V1ðD1Þ,
whose (i,i') element is C1 ðx0

i ;θiÞ; ðx0
i0 ,θi0 Þ

� �
. Similarly, we can define V1 D2ðθÞf g and V2ðD2Þ.

Let C1 D1, D2ðθÞf g be the matrix with (i,j) element C1 ðx0
i ;θiÞ; ðx0

j,θjÞ
n o

. Therefore,

VarðΩjθ,β,ϕÞ ¼ VdðθÞ ¼ V1ðD1Þ C1 D1,D2ðθÞf gT
C1 D1, D2ðθÞf g λIþV1 D2ðθÞf gþV2ðD2Þ

� �
, ð24Þ

where I is the n� n identity matrix.

To derive the posterior distribution under the Bayesian framework, the prior distributions of
parameters, {θ,β,φ}, must also be independently specified. Following the suggestion of [12],
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we chose conjugate prior for θ and φ, and a weak prior for β, specifically pðβ1, β2Þ∝ 1, then we
have pðθ,β,φÞ ¼ pðθÞpðφÞ, where pðφÞ ¼ pðλÞpðΓ1ÞpðΓ2Þ. Meanwhile, Bayesian inference with
MCMC requires specification of proper prior distributions to perform Bayesian statistics. For
such purpose, conjugate priors are specified, e.g.

σ21, σ
2
2 � IGða; bÞ;

V1x,V2x � Wðρ, νÞ;
θ � N ðμθ;VθÞ:

ð25Þ

where IG, W , and N are inverse gamma, Wishart, and normal distributions, respectively [15].

3.2.3. Posterior distribution

Conditional on full data, the independence of parameters leads to the full joint posterior
distribution

pðθ,β,φjΩÞ∝ pðθÞpðφÞpðβÞpðΩjmdðθÞ;VdðθÞÞ
∝ pðθÞpðφÞjV�1

d ðθÞj�1=2

�exp � 1
2

Ω�mdðθÞð ÞTV�1
d ðθÞ Ω�mdðθÞð Þ

n o� �
:

ð26Þ

To obtain pðθjΩÞ, it is required to integrate out β and hyperparameters φ from Eq. (26).
Integrating β yields

pðθ,φjΩÞ∝ pðθÞpðφÞjV�1
d ðθÞj�1=2jWðθÞj1=2

� exp � 1
2

Ω�HðθÞβ̂ðθÞ� �T
V�1

d ðθÞ Ω�HðθÞβ̂ðθÞ� �n o� �
,

ð27Þ

where

β̂ðθÞ ¼ WðθÞHðθÞTVdðθÞ-1Ω, ð28Þ

WðθÞ ¼ HðθÞTVdðθÞ-1HðθÞ
� ��1

: ð29Þ

3.2.4. Calibration and prediction

Since the posterior distribution specified in Eq. (27) is a highly intractable function of φ, we
need Monte Carlo method to integrate out φ and get the numerical estimation for the posterior
distribution of the calibration parameters θ. The formulation is given by

pðθjΩÞ ¼ 1
M

XM

i¼1

pðθ,φijΩÞ: ð30Þ
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However, the purpose of calibration of parameters is to predict the real process rather than
achieve their values. Therefore, in practice, we are rather more interested in expressing the
posterior distribution of φ, which is a Gaussian process as well, conditional on the calibration
parameters and estimated hyperparameters. The mean and covariance function of this GP is
given by

E ϕðxÞjθ,φ,Ωð Þ ¼ hðx,θÞT β̂ðθÞþtðx,θÞTV�1
d ðθÞ Ω�HðθÞβ̂ðθÞ

� �
, ð31Þ

where hðx,θÞ ¼ h1ðx,θÞ
h2ðxÞ

� �
, tðx,θ

�
¼ V1 ðx,θÞ;D1ð Þ

V1 ðx,θÞ;D2ðθÞð Þ þV2 x, D2ð Þ
� �

,

and covariance

cov ϕðxÞ;ϕðx0Þjθ,φ,Ωð Þ ¼ c1 ðx,θÞ, ðx0,θÞð Þ þ c2ðx, x0Þ � tðx,θÞTV�1
d ðθÞtðx0,θÞ

þ hðx,θÞ�HðθÞTV�1
d ðθÞtðx,θÞ

� �T
WðθÞ hðx0,θÞ�HðθÞTV�1

d ðθÞtðx0,θÞ
� �

:
ð32Þ

Inference about φðxÞ can be implemented again numerically with its posterior mean
E ϕðxÞjθ,φ,Ω½ � at estimated θ and φ, by integrating Eq. (31) with regard to Eq. (28). Given the
estimation of φðxÞ, the analysis of z becomes straightforward by applying the link function L �ð Þ
as described in model (13).

So far, we have accomplished calibrating a metamodel in the Bayesian framework using the
experimental data, which accounts for parameter uncertainty and corrects the model discrep-
ancy and experimental uncertainty.

4. Simulation study

This section demonstrate the results obtained using the Bayesian uncertainty quantification
framework for the metamaterial design problem with the models described in Sections 2 and 3,
with examples. Of both propagation and inverse assessment, the overall model is formulated
in Eq. (13), where geometric variablew and incident angle α are input variables specified in the

simulation, i.e., xT ¼ {w,α}T . Thus, the model is expressed as

zðxÞ ¼ yðx,θÞþηðxÞþε

¼ L f ,ϕ {w,α},θð Þ þ η w,αð Þð Þ þ ε0,
ð33Þ

To demonstrate parameter calibration within the metamaterial modeling and design, we con-
sider an example where the real part of the permittivity of a dielectric material, εd, is defined as
the calibration parameters θ ¼ εd, and its prior is given normal distribution as model (25), with
mean μθ¼ 3 and variance Vθ¼ 0:5. Figure 5 illustrates the probability density function of this
prior distribution. We demonstrate a measure of uncertain propagation in Figure 6, where
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Figure 5. Comparison of prior and posterior distributions of the calibration parameter. The mean of the Gaussian
distribution shifts from 3 to 3.17, and the variance is much smaller after Bayesian calibration.

Figure 6. The effect of uncertainty propagation and results of parameter calibration.
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predictions with 2.5% quantile (green or light gray) and 97.5% quantile (red or dark gray) of the
samples are depicted to show the discrepancy induced by the uncertain input. Following the
methodology introduced in Section 3, metamodels can be established for the simulation data
and discrepancy function, with Gaussian process regression models. In our example, we
obtained 92 simulation data to build GPs and 20 observations for calibration. The posterior
distribution of the calibration parameter is also displayed in Figure 5. After calibration, the
distribution of calibration parameter has a much smaller variance. The comparison between the
prediction at posterior mean (cyan curve) and “real data” (blue dash) is shown in Figure 6,
where the discrepancy reduction is remarkable.

5. Conclusion

In this chapter, we review several conventional model for functional response and present the
quasiphysical model for functional response. Compared with the conventional models, this
model can reveal the physical insight more clearly and make better use of historical experience.
The two-stage method was presented to model the frequency response of metamaterial and
facilitate the design process. Using this approach, we decomposed the complex modeling
problem into a vector fitting-based equivalent circuit modeling process and a GP regression
process, which can easily generate the mapping function from the structure’s geometric design.
The predictive property of this model enables the massive reduction of time-consuming simu-
lations.

Another important topic with this chapter was the development and application of a Bayesian
uncertainty quantification approach in dealing with functional response. Both forward uncer-
tainty propagation and inverse assessment of the model were discussed, and a Bayesian
framework was presented with simulation experimental results to deal with the model cali-
bration for functional response. We envision that our two-stage approach can be generalized to
model any functional responses of a rational form. With the Bayesian framework for the
functional data of computer experiments, we were able to incorporate our prior knowledge
into the model and obtain a probabilistic measure of the uncertainty associated with
metamaterial system design. This general methodology enables researchers and designers to
achieve high efficiency and accuracy in modeling functional response with a considerably
small amount of data. With a Bayesian calibration framework, we are able to constantly
increase the precision of predictions of the functional response at unobserved sites, thus
replacing expensive physical experiments.
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Chapter 7

Fitting Models to Data: Residual Analysis, a Primer

Julia Martin, David Daffos Ruiz de Adana and
Agustin G. Asuero

Additional information is available at the end of the chapter
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“Since all models are wrong the scientist cannot obtain a “correct” one by
excessive elaboration. On the contrary following William of Occam he should
seek an economical description of natural phenomena. Just as the ability to
devise simple but evocative models is the signature of the great scientist so
overelaboration and overparameterization is often the mark of mediocrity”.

(Box, G.E.P. Science and Statistics, J. Am. Stat. Ass. 1976, 71, 791–796)

Abstract

The aim of this chapter is to show checking the underlying assumptions (the errors are
independent, have a zero mean, a constant variance and follows a normal distribution)
in a regression analysis, mainly fitting a straight-line model to experimental data, via the
residual plots. Residuals play an essential role in regression diagnostics; no analysis is
being complete without a thorough examination of residuals. The residuals should
show a trend that tends to confirm the assumptions made in performing the regression
analysis, or failing them should not show a tendency that denies them. Although there
are numerical statistical means of verifying observed discrepancies, statisticians often
prefer a visual examination of residual graphs as a more informative and certainly more
convenient methodology. When dealing with small samples, the use of the graphic
techniques can be very useful. Several examples taken from scientific journals and
monographs are selected dealing with linearity, calibration, heteroscedastic data, errors
in the model, transforming data, time-order analysis and non-linear calibration curves.

Keywords: least squares method, residual analysis, weighting, transforming data
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1. Introduction

The purpose of this chapter is to provide an overview of checking the underlying assumptions
(errors normally distributed with zero mean and constant variance (σi

2), being independent
one of each other) in a regression analysis, via the use of basic residual plot, such as plots of
residuals versus the independent variable x. Compact formulae for the weighted least squares
calculation of the a0 (intercept) and a1 (slope) parameters and their standard errors [1, 2] are
shown in Table 1. The similarity with simple linear regression is obvious, simply making the
weighting factors wi ¼ 1. A number of selected examples taken from scientific journals and
monographs are subject of study in this chapter. No rigorous mathematical treatment will be
given to this interesting topic. Emphasis is mainly placed on a visual examination of residuals
to check for the model adequacy [3–7] in regression analysis. The role of residuals in regression
diagnostics is vital, being necessary with their thorough examination to consider an analysis as
complete [8–10].

The residuals are geometrically the distances calculated in the y-direction [1, 2, 11, 12] (vertical
distances) between the points and the regression line (error free in the independent variable)

ri ¼ yi � ŷi ð1Þ

The calculated regression line

ŷi ¼ a0 þ a1xi ð2Þ

corresponds to the model

yi ¼ α0 þ α1xi þ εi ð3Þ

where εi is the random error (a0 and a1, Eq. (2), are the estimates of the true values α0 and α1),
leading to a sum of squares of the residuals minimum

Qmin ¼
X

r2i
h i

min
ð4Þ

Note that the model error is given by

εi ¼ yi � EðyiÞ ð5Þ

where E(yi) is the expected value of yi [6]. Thus, the residuals ri may be viewed as the
differences between what is really observed, and what is predicted by the model equation
(i.e. the amount that the regression equation is not able to explain). The residuals ri may be
thought as the observed errors [10] in correct models. The residuals reveal the existing asym-
metry [13] in the functions of the response and the independent variable in regression prob-
lems. A number of assumptions concerning the errors [14, 15] have to be made when
performing a regression analysis, for example, normality, independence, zero mean and con-
stant variance (homoscedasticity property).
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An assumption that the errors are normally distributed is not required to obtain the parameter
estimates by the least squares method. However, for inferences and estimates (standard errors,
t- and F-test, confidence intervals) to be made about regression, it is necessary to assume that
the errors are normally distributed [11]. The assumption of normality, nevertheless, is plausible
as in many real situations errors tend to be normally distributed due to the central limit
theorem. The assumption that no residual term is correlated with another, combined with the
normality assumption, means [10] the errors are also independent. Constructing a normal
probability plot of the residuals [16–18] is a way to verify the assumption of normality.
Residuals are ordered and plotted against the corresponding percentage points from the
standardized normal distribution (normal quantities). If the residuals are then situated along
a straight line, the assumption of normality is satisfied.

A standardized residual is the residual divided by the standard deviation of the regression line

eri ¼
ri
sy=x

ð6Þ

The standardized residuals are normally distributed with a mean value of zero and (approxi-
mately) unity variance [10, 19]

VarðriÞ ¼ VarðyiÞ � VarðŷiÞ ¼ σ2 � σ2
1X
wi

þ ðx� xÞ2
SXX

 !

¼ σ2 1� 1X
wi

� ðx� xÞ2
SXX

 !
¼ σ2ð1� hiiÞ

ð7Þ

VarðeriÞ ¼ 1� hii ð8Þ

The hii term may be regarded as measuring the leverage of the data point (xi,yi) (see below). The
estimated residuals are correlated [10], but this correlation does not invalidate the residual plot
when the number of points is large in comparison with the number of parameters estimated by

Equation: ŷi ¼ a0 þ a1 xi Slope: a1 ¼ SXY=Sxx

Weights: wi ¼ 1=s2i Intercept: a0 ¼ y� a1 x

Explained sum of squares: SSReg ¼
X

wiðŷ i � yÞ2 Weighted residuals: w1=2
i ðyi � ŷiÞ

Residual sum of squares: SSE ¼
X

wiðyi � ŷ iÞ2 Correlation coefficient: r ¼ SXY=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SXXSYY

p

Mean:
x ¼

X
wixi=

X
wi

y ¼
X

wiyi=
X

wi

Sum of squares about the mean:
SXX ¼

X
wiðxi � xÞ2

SYY ¼
X

wiðyi � yÞ2
SXY ¼

X
wiðxi � xÞðyi � yÞ

Standard errors: s2y=x ¼ SSE
n�2 ¼

SYY�a21 SXX
n�2

s2a0 ¼ s2y=x

X
wix2i

SXX
X

wi

s2a1 ¼
s2y=x
SXX

covða0, a1Þ ¼ �xs2y=x=SXX

Table 1. Formulae for calculating statistics for weighted linear regression (WLR).
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the regression. As pointed out by Behnken and Draper [20]: ‘In many situations little is lost by
failing to take into account the differences in variances’. Standardized residuals are useful in looking
for outliers. They should have random values, the 95% falling between �2 and 2 for normal
distribution.

The tendencies followed by the residuals should confirm the assumptions we have previously
made [21], or at least do not deny them. Remember the sentence of Fischer [22, 23]: ‘Every
experiment may be said to exist only in order to give the facts a chance of disproving the null
hypothesis’. Conformity assays of the assumptions inherent to regression fall mainly in the
examination of residual pattern. Although there are statistical ways of numerically measuring
some of the observed discrepancies [24], graphical methods play an important role in data
analysis (Table 2) [25–31]. A quick examination of residuals often allows obtaining more
information than significance statistical tests of some limited null hypothesis. Nevertheless,
objective, unambiguous determination should be based on standard statistical methodology.
This chapter is mainly focused on residual plots rather than on formulas, or hypothesis testing.
As we will see in the selected examples, the plots easily reveal violations of the assumptions if
they are severe enough as to warrant any correction.

The main forms of representation [10] of residuals are (i) global; (ii) in temporal sequence, if its
order is known; (iii) faced to the adjusted values, y-hat; (iv) facing the independent variable xji
for j ¼ 1,2… k; and (v) in any way that is sensitive to the problem subject of analysis.

The following points can be verified in the representation of the residuals: (i) the form of the
representation, (ii) the number of positive and negative residuals should be equivalent of
vanishing median, (iii) the sequence of residual signs must be randomly distributed between
þ and�, and (iv) it is possible to detect spurious results (outliers); their magnitudes are greater
than the rest of the residuals.

Residual plots appear more and more frequently [32–39] in papers published in analytical
journals. In general, these plots as well as those discussed in this chapter are very basic and

Sentence Author(s)/reference

‘Most assumptions required for the least squares analysis of data using the general linear model
can be judged using residuals graphically without the need for formal testing’

Darken [25]

‘Graphical methods have an advantage over numerical methods for model validation because they
readily illustrate a broad range of complex aspects of the relationship between the model and the
data’.

NIST/
SEMATECH [26]

‘There is no single statistical tool that is a powerful as a well-chosen graph’ Huber [27]

‘Although there are statistical ways of numerically measuring some of the observed discrepancies,
statistician themselves prefer a visual information of the residual plots as being more informative
and certainly more convenient’

Belloto and
Sokoloski [28]

‘Eye-balling can give diagnostic insights no formal diagnostic will ever provide’ Chambers et al. [29]

‘Graphs are essential to good statistical analysis’ Anscombe [30]

‘One picture says more than a thousand equations’ Sillen [31]

Table 2. Sentences of some authors about the use of graphical methods.
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can undergo some criticism. For example, the residuals are not totally distributed independent
of x, since [10, 19] the substitution of the estimates by the parameters introduces some depen-
dence. However, more sophisticated methods have been developed [40–44] based on stan-
dardized, studentized, jack-knife, predictive, recursive residuals, and so on (Table 3). In spite
of their importance, they are considered beyond the scope of this contribution.

Despite the frequency with which the correlation coefficient is referred to in the scientific
literature as a criterion of linearity, this assertion is not free from reservations [1, 45–49] as
evidenced several times throughout this chapter.

The study of linearity not only implies a graphic representation of the data. It is also necessary
to carry out a statistical check, for example, the analysis of the variance [50–54], which requires
repeated measurements. This implies the fulfilment of two requirements: the homogeneity
(homoscedasticity) of the variances and the normality of the residuals. Incorporating replicates
to the calibration estimation offers a possibility to look at the calibration not only in the context
of fitting but also of the uncertainty of measurements [15]. However, if replicate measurements
are not made, and an estimate of the mean square error (replication variance) is not available,
the regression variance

s2y=x ¼
X

ðyi � ŷiÞ2
n� 2

¼
X

r2i
n� 2

ð9Þ

may be compared with the estimated variance around the mean of the yi values [55]

s2y ¼
X

ðy� yÞ2
n� 1

ð10Þ

by means of an F-test. The goodness of fit of non-linear calibration curves is improved by
raising the degree of the fitting polynomial, performing then an F-test (quotient of the residual
variance for the kth to k þ first-polynomial degree) [56]. A suitable test can also be carried out
according to Mandel [56, 57]. However, this contribution is essentially devoted to the use of
basic graphical plots of residuals, a simple and at the same time a powerful diagnostic tool, as
we will have the occasion to claim through this chapter.

Symbol Name Formula Comments

ei Classical residuals ei

eNi Normalized residuals ei
sy=x

eSi Standardized residuals ei
sy=x

ffiffiffiffiffiffiffiffi
1�hii

p Identification of heteroscedasticity

eJi Jack-knife residuals ei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�m�1
n�m�e2Si

r
Identification of outliers

ePi Predicted residuals ei
1�hii

eRi Recursive residuals Identification of autocorrelations

Table 3. Types of residuals and suitability for diagnostic purposes [42–44].
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Several examples taken from scientific journals and monographs are selected in order to
illustrate this chapter: (1) linearity calibration methods: fluorescence data [58] as an example;
(2) calibration graphs: the question of intercept [59] or non-intercept; (3) errors are not in the
data, but in the model: the CO2 vapour pressure [59] versus temperature dependence; (4) the
heteroscedastic data: high-performance liquid chromatography (HPLC) calibration assay [60]
of a drug; (5) transforming data: preliminary investigation of a dose-response relation-
ship [61, 62]; the microbiological assay of vitamin B12; (6) the variable that has not yet been
discovered; the solubility of diazepan [28] in propylene glycol; and (7) no models perfect:
nickel(II) by atomic absorption spectrophotometry.

2. Linearity in calibration methods: fluorescence data as example

Calibration is a crucial step, an essential part, the key element, the soul of every quantitative
analytical method [38, 40, 63–69], and influences significantly the accuracy of the analytical
determination. Calibration is an operation that usually relates an output quantity to an input
quantity for a measuring system under given condition (The International Union of Pure and
Applied Chemistry (IUPAC)). The topic has been the subject of a recent review [67] focused on
purely practical aspects and obviating the mathematical and metrological aspects. The main
role of calibration is transforming the intensity of the measured signal into the analyte concen-
tration in a way as accurate and precise as possible. Guidelines for calibration and linearity are
shown in Table 4 [70–81].

Linearity is the basis of many analytical procedures. It has been defined as [78] the ability
(within a certain range) to obtain test results that are directly proportional to the concentration
(amount) of analyte in the sample. Linearity is one of the most important characteristics for the

Scientific Association or Agency Reference

Calibration

International Union of Pure and Applied
Chemistry (IUPAC)

Guidelines for calibration in analytical chemistry [70]

International Organization for
Standardization (ISO)

ISO 8466-1:1990 [70]; ISO 8466-2:2001 [71]; ISO 11095:1996 [72]; ISO 28037:2010
[73]; ISO 28038:2014 [74]; ISO 11843-2: 2000 [75]; ISO 11843-5: 2008 [76]

LGC Standards Proficiency Testing LGC/VAM/2003/032 [77]

Linearity

International Conference on
Harmonization (ICH)

Guideline Q2A [78]

Clinical Laboratory Standard Institute
(CLSI)

EP6-A [79]

Association of Official Analytical
Chemists (AOAC)

AOAC Guidelines 2002 [80]

European Union EC 2002/657 [81]

Table 4. Scientific organizations that approve calibration guidelines [70–81].
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evaluation of accuracy and precision in assay validation, and as seldom is the case where a
calibration curve is perfectly linear, it is crucial to access linearity during method validation.
Such evaluation is also recommended in regulatory guidelines [78–81]. Although it may seem
that everything has been said on the subject of linearity, it is still an open question and subject
to debate. It is therefore not surprising that some proposals are made from time to time to
resolve this issue [54, 82–92].

However, in calibration, statistical linearity tests between the variables are rarely performed in
analytical studies. When dealing with regression models, the most convenient way of testing
linearity beside a visual assessment is plotting the residual sequence in the concentration domain.
A simple nonparametric statistical test for linearity, known as ‘the sign test’ [9, 16, 28], is based on
the examination of the residuals (ri) sign sequence.

The residuals should be distributed in a random way. That is, the number of plus and minus
residuals sign should be equal with the error symmetrically distributed (null hypothesis for the
assay) when the variables are connected through a true linear relationship. The probability to
get a random residual signs pattern is related to the number of runs in the sequence of signs.
Intuitively and roughly speaking, the more these changes are randomly distributed [93] the
best is the fit. A run is a sequence of the same sign with independence of its length. A pattern of
residual signs of the kind [þ - - þ þ - þ - þ - þ], from independent measurements, is
considered as random, whereas a pattern like this [- - - þ þ þ þ þ þ - -] is not. Though a
formal statistical test may carry out [94] with the information afforded by the residual plot, it is
necessary a number of points greater than is usual in calibrate measurements.

The fluorescence in arbitrary units of a series of standards is shown in Table 5. To these data
that appear to be curved, a straight line may be fitted (Figure 1, top) which results in an
evident lack of fit, though the correlation coefficient (R) of the line is equal to 0.995 2. A plot
of the resulting residuals ri against the x-values (reduced residuals on the secondary axis) is
also shown in Figure 1 (top), and allows checking for systematic deviations between data and
model.

The pattern of the sign of the residuals indicates that fitting the fluorescence data by a straight-
line equation is inadequate, higher-order terms should possibly be added to account for the
curvature. Note that the straight-line model is not adequate even though the reduced residuals
are less than 1.5 in all cases. When an erroneous equation is fitted to the data [95–97], the

Concentration (μM) Fluorescence (arbitrary units) Concentration (μM) Fluorescence (arbitrary units)

0 0.2 6 20.4

1 3.6 7 22.7

2 7.5 8 25.9

3 11.5 9 27.6

4 15 10 30.2

5 17

Table 5. Calibration fluorescence data [58].

Fitting Models to Data: Residual Analysis, a Primer
http://dx.doi.org/10.5772/68049

139



Figure 1. Fitting a straight line (top), a quadratic function (middle) and a cubic function (bottom) to fluorescence data
compiled in Table 5.
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information contained in the form of the residual plots is a valuable tool, which indicates how
the model equation must be modified to describe the data in a better way. A curved calibration
line may be fitted to a power series. The use of a quadratic (second-degree) equation is enough
in this case to obtain a good fit: the scattering of the residuals above and below the zero line is
similar, as shown in Figure 1 (middle). Then, when no obvious trends in the residuals are
apparent, the model may be considered to be an adequate description of the data. The simplest
model or the model with the minimum number of parameters that adequately fit the data in
question is usually the best choice. ‘Non sunt multiplicanda entia praeter necessitatem’ (Occam’s
razor) [98]. In fact, the order of the polynomial (k) must not rise above 2 since [sy/x]k ¼ 2 ¼
0.3994 < [sy/x]k ¼ 3 ¼ 0.4142.

In summary, when it is assumed a correct relationship between the response and the indepen-
dent variable (s), the residual plot should resemble that of Figure 2 (left). All residuals should
fall into the gravelled area, with a non-discernable pattern, that is, random. If the representa-
tion of the residuals resembles that of Figure 2 (right), where curvature is appreciated, the
model can probably be improved by adding a quadratic term or higher-order terms, which
should better describe the model with the required curvature.

Calibration curves with a non-linear shape also appear in analytical chemistry [99–104].
When the data in the x-range (calibration) vary greatly as it does in many real problems, the
response becomes non-linear (Table 6) [101, 105–107] at sufficiently large x-values. The
linear range of liquid chromatography-tandem mass spectrometry (LC-MS/MS) is typically
about three orders of magnitude. The analyst’s usual response in this case is to restrict
sometimes the concentration range with the purpose of using a linear response, thus intro-
ducing biases in the determination, since the choice of the ‘linear region’ is usually done in
an arbitrary way. The use of a wider range in standard curve is preferred in order to avoid
the sample dilution, saving time and labour [108]. An acceptable approach to extend the
dynamic range of the standard curve is the use of quadratic regression. Among the possible
causes of standard curve non-linearity are saturation at high concentration during ioniza-
tion, the formation of dimer/multimer/cluster ions, or detector saturation. It has been
established that when the analyte concentration is above ∼10�5 M, its response starts to
saturate providing non-linear response.

Figure 2. Residuals in a random (left) and parabolic (right) form.
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Quadratic curve-fitting calibration data are more appropriate [104, 109–117] than straight-line
linear regression, in the case of some quantification methods. Matrix-related non-linearity is
typical of methods such as LC-MS/MS. In order to provide an appropriate validation strategy
for such cases, the straight-line fit approximation has been extended to quadratic calibration
functions. When such quadratic terms are included [10, 118–120], precautions should be taken
because of the consequent multicollinearity problems.

However, the use of quadratic regression model is considered as less appropriate or even
viewed with suspicion by some regulatory agencies and, as a result, not often used in regu-
lated analysis. In addition, the accuracy around the upper limit of quantitation (ULOQ) can be
affected if the curve range is extended to the point where the top of the curve is flat.

Statistical tests may also be considered for providing linearity, like Mandel’s test [57] for
comparison errors of residuals of quadratic and linear regression by means of an F-test at a
determined significance level, or like lack-of-fit test by analysis of variance (ANOVA) or testing
homoscedasticity (the homogeneity of variance residuals).

3. Calibration graphs: the question of intercept or non-intercept

Absorption spectrometry is an important analytical technique, and, to be efficient, the calibra-
tion must be accomplished with known samples. Data for the calibration of an iron analysis, in
which the iron is complexed with thiocyanate, are shown in Table 7. The absorption of the iron

Response function Name Technique

y ¼ a0 þ a1x Beer law Absorption spectrophotometry

y ¼ Aþ Blogx Nernst equation Electrochemistry

y ¼ axn

ðlogy ¼ n logxþ logaÞ
Scheibe-Lomakin Emission spectroscopy ESI-MS; ELSD; CAD

y ¼ a xn þ a0 ð0 < y < y0Þ
y ¼ k xþ y0 ðy > y0Þ

TLC-densitometry“

bnyn þ b1y ¼ x DAD

b
ffiffiffi
y

p þ b0 ¼
ffiffiffi
x

p
ESI-MS

y ¼ a0 þ a1xþ a2x2 Wagenaar et al. Atomic absorption spectrophotometry, liquid chromatography/MS/MS

logy ¼ a0 þ a1logxþ a2logx2 CAD

y ¼ a0 þ a1xþ a2x2 þ a3x3 Ion-Trap-MS

y ¼ Aþ Bð1� exp �CxÞ Andrews et al. Atomic absorption spectrophotometry

y ¼ A�D
1þ x

Cð ÞB
þD Rodbard Radioimmunoassay

ESI-MS: electrospray ionization mass spectrometry; TCD: thermal conductivity detector; TLC-densitometry: TLC with
detection by optical densitometry; ELSD: evaporative light scattering detector; CAD: charged aerosol detection.

Table 6. Response functions used in instrumental analysis [105–107].
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complex is measured and depicted versus iron concentration in ppm. The standard deviation
of the regression line, sy/x, obtained from the experimental data, quantifies the quality of fit and
the accuracy of the model to predict the values of y (the measured quantity), for a given value
of x (the independent variable).

The regression line is first computed by forcing it to pass through the coordinate origin (a0 ¼ 0),
since the absorbance should be directly proportional to the concentration (at zero concentration, a
zero absorbance might be expected). However, the adjustment thus obtained is not very good. The
representation of residuals shows the pattern of signs þ þ þ þ þ - (Figure 3, lower left). If we
compute the regression line with intercept (Figure 3, upper right), the correlation coefficient
increases from 0.990 8 to 0.994 7, but the pattern of non-random signs persists, that is, - - - þ þ -
(Figure 3, lower right). What is a reasonable explanation? If the highest concentration point
(32.8 ppm) is discarded, all the other points appear to fall on a straight line. However, this point
cannot be discarded on the basis of its deviation from the best-fit line, because it is closer to the line
than other calibration points in the series. As a matter of fact, the last point (32.8 ppm) defines
where the line must pass: being so distant, it has a great influence (leverage) and forces the least
squares regression line in its direction. The non-robustness behaviour is a general weakness of the
least squares criterion. Very bad points [59] have a great influence just because their deviation from
the true line, which rises to the square, is very large. One has to be aware of dubious data by

Concentration, Fe (ppm) Absorbance Concentration, Fe (ppm) Absorbance

0.3644 0.0268 3.644 0.248

0.7288 0.0506 7.288 0.495

1.083 0.0783 32.8 1.52

Table 7. Absorbance data for Fe3þ calibration (as Fe-SCN2þ complex) [59].

Figure 3. Calibration curve and residuals for the Fe-SCN2þ system without intercept (left) and with intercept (right)
included in the model for all data compiled in Table 7.

Fitting Models to Data: Residual Analysis, a Primer
http://dx.doi.org/10.5772/68049

143



correcting obvious copying errors and adopting actions coherent with the identified causes.
Improper recording of data (e.g. misreading responses or interchange of digits) is frequently a
major component of the experimental error [121].

A few high or low points [8] can alter the value of the correlation coefficient in a great extension.
Larger deviations present at larger concentrations tend to influence (weight) the regression line
more than smaller deviations associated with smaller concentrations, and thus the accuracy in
the lower end of the range is impaired. It is therefore very convenient [122–124] to analyse the
plotted data and to make sure that they cover uniformly (approximately equally spaced) the
entire range of signal response from the instrument (85). Data should be measured at random (to
avoid confusing non-linearity with drift). The individual solutions should be prepared from the
same stock solution, thus avoiding the introduction of random errors from weighing small
quantities from individual standards. Depending on the location of the outliers, the correlation
coefficient may increase or decrease. In fact, a strategically situated point can make the correla-
tion coefficient varies practically between �1 and þ1 (Figure 4), so precautions should be taken
when interpreting its value. However, points of influence (e.g. leverage points and outliers)
(Table 8) are rejected only when there is an obvious reason for their anomalous [125] behaviour.
The effect of outliers is greater as the sample size decreases. Duplicate measurements, careful
scrutiny of the data while collecting and testing discrepant results with available samples may
aid to solve problems [28] with outliers.

Figure 4. Influence of an anomalous result on the least squares method (solid line) and on the correlation coefficient.

Gross errors Caused by outliers in the measured variable or by the leverage points extremes

Golden points Special chosen points which have been very precisely measured to extend the prediction capability
of the system

Latently influential
points

Consequence of a poor regression model

According to data location

Outliers Differs from the other points in values of the y-axis

Leverage points Differ from the other points in values of the x-axis or in a combination of these quantities (in the
case of multicollinearity)

Table 8. Influential points [44].
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If the regression analysis is made without the 32.8 ppm influence point forcing to pass through
the origin, the correlation coefficient reaches the 0.999 91 value (Figure 5, top left). This point
was not considered because a high deviation standard values were above the new line.
Perhaps, the problem observed with the 32.8 ppm point is due to the fact that sulphocyanide
(thiocyanate) is not in enough excess to complex all the iron present. However, the inspection
of residuals (þ þ þ þ -) shows systematic, non-random deviations (Figure 5, bottom left),
which may indicate an incorrect or inadequate model. Systematic errors of analysis translate into
(systematic) deviations from the fit equation (negative residuals correspond to low estimated
values, and positive residuals to high). An erroneous omission of the intercept term in the model
may be the cause of this effect. The standard deviation of the regression line improves notably,
from 0.0026 to 0.0017, when the intercept is introduced (Figure 5, top right) in the model
(correlation coefficient equals 0.999 97), the residual pattern being now random (- - þ - þ)
(Figure 5, bottom right). The calibration is then appropriate and linear, at least up to 8 ppm.
However, the intercept value, 0.0027, is of the same order of magnitude as the standard devia-
tion, sy/x, of the regression line. A calibration problem (of minor order) may be apparent, for
example, the spectrophotometer was not properly set to zero or the cuvettes were not conve-
niently matched.

Residual analysis of small sample sizes has [126] some complications. Firstly, residuals are not
totally distributed in an independent way from x, because the substitution of the parameters
by the estimators introduces [10, 19] certain dependence. Secondly, a few points far from the
bulk of the data may eventually condition the estimators, residuals and inferences.

4. Error is not in the data, but in the model: the CO2 vapour pressure versus
temperature case

The linear variation of physical quantities is not a universal rule, although it is often possible to
find a coordinate transformation [18] that converts non-linear data into linear ones. The vapour

Figure 5. Calibration curve and residuals for the Fe-SCN2þ system without intercept (left) and with intercept (right)
included in the model (data in Table 7 with the exception of the 32.8 ppm point).
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pressure, P, in atmospheres, of carbon dioxide (liquid) as a function of temperature, T, in
degrees Kelvin, is not linear (Table 9). Carbon dioxide found its use in chemical analysis as a
supercritical fluid for extracting the caffeine from the coffee. We may expect, on the basis of the
Clausius-Clapeyron equation, to fit the data compiled in Table 9 into an equation of the form

lnP ¼ Aþ B=T ð11Þ

This requires a transformation of the data. If we define

Y ¼ lnP ð12Þ

and

X ¼ 1=T, ð13Þ

this form is linear,

Y ¼ Aþ BX ð14Þ

The resulting graph (Figure 6, middle solid line) examined, appears to be fine, like calculated
statistics, and so there is no reason at first to esteem any problem. Results lead to a correlation
coefficient of 0.999 988 76. This almost perfect adjustment is indeed very poor when attention
is paid to the potential quality of the fit as shown by the sinusoidal pattern of residuals [þ þ -
þ -þþþþþ - -], which are incorporated in the figure to the resulting least squares regression
line. As the details of measurements are unknown, it is not possible to test for systematic error
in the experiments. The use of an incorrect or an inadequate model is the reason, which
explains in this case the systematic deviations. The Clausius-Clapeyron equation does not
exactly describe the phenomenon when the temperature range is wide. Results similar to those
shown in Figure 6 are also obtained by applying weighted linear regression by using
weighting factors defined by [6, 7, 127–129]

Temperature (�K) Vapour pressure Temperature (�K) Vapour pressure

216.5500 5.11023 266.4944 28.70169

222.0500 6.44393 272.0500 33.39684

227.6056 8.04301 277.6056 38.63636

233.1611 9.92107 283.1611 44.47469

238.7167 12.09853 288.7167 50.93903

244.2722 14.62303 294.2722 58.07022

249.8278 17.50817 299.8278 65.91589

255.3833 20.78797 304.1611 72.76810

260.9389 24.51007

Table 9. CO2 vapour pressure versus temperature data [59].
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wi ¼ 1
∂Yi
∂yi

� �2 ¼
1

∂lnPi
∂Pi

� �2 ¼ P2
i ð15Þ

on the basis of the transformation used.

Figure 6. Top: CO2 vapour pressure against temperature data (top). Middle: representation of ln P against the reciprocal
of temperature (Clausius-Clapeyron equation) including the residuals plot. Bottom: CO2 vapour pressure as a function of
temperature according to the expanded (MLR) model.
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The error does not lie in the data then, but in the model. We may try to improve the latter by
using a more complete form of the equation

lnP ¼ Aþ B=T þ ClnT þDT ð16Þ

The results now obtained (analysis by multiple linear regression) depicted in Figure 6 (bottom) are
better than those obtained by using the single linear regression equation, with the residuals ran-
domly distributed. Values of ln Pmay be calculated with an accuracy of 0.001 (or an accuracy level
of 0.1%), as suggested by the standard deviation of the regression line obtained. In addition, as T is
used as a variable, instead of its inverse, interpolation calculations are carried out in an easier way.

The moral of this section is that there are not perfect models [130, 131], but models that are
more appropriate than others.

5. The heteroscedastic data: HPLC calibration assay of a drug

In those cases in which the experimental data to be used in a given analysis are more reliable
than others [6, 61, 63], gross errors may be involved when the conventional method of least
squares is applied in a direct way. The assumption of uniform or regular variance of y may be
no correct when the experimental measurements cover a wide range of x-values. There are two
possible solutions to this non-constant, irregular, non-uniform or heteroscedastic variance
problem: data transformation or weighted least squares regression analysis.

The squared sum of the weighted residuals [132, 133, 64]

Qmin,w ¼
X

wir2i
h i

min
ð17Þ

wi ¼ 1
σ2i

ð18Þ

is minimized in theweighted least squares procedure. The idea underlyingweighted least squares is
to attribute the greatest worth [2, 40, 132, 66, 101, 135, 136] to the most precise data. The greater the
deviation from the homoscedasticity, the greater the profit that can be extracted from the use of the
weighted least squares procedure. The homoscedasticity hypothesis is usually justified in analytical
chemistry in the framework of the calibration. However, when the range of abscissa values (concen-
tration) covers several orders of magnitude, for example, in the study of (calibration) drug concen-
trations in urine or in other biological fluids, the accuracy of y-values is strongly dependent of the x
ones. In those cases, the homoscedastic requirement implied in single linear regression is violated,
thus the introduction of weighting factors being mandatory. Some typical cases of heteroscedasticity
appear [137, 138] involving a constant relative standard deviation (Figure 7)

RSD ¼ σi
x

ð19Þ

or a constant relative variance (radioactive accounts, Poisson distribution). Photometric absor-
bances by Beer’s law cover a wide concentration range and like chromatographic analysis in
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certain conditions, tend to be heteroscedastic. Inductive plasma-coupling emission spectrome-
try coupled to mass spectrometry (ICPMS) requires weighted least squares estimates even
when the calibration covers a relatively small concentration range. The standard deviation
(absolute precision) of measurements σi usually increases with the concentration xi, whereas
the relative standard deviation (relative precision, RSD) decreases instead.

It is possible to derive [138] relationships between precision and concentration through the
concentration range essayed so that chemical methods are applied to found analytes present at
varying concentrations. A number of different relationships [2, 139–142] have been proposed
(Table 10) for different authors, and ISO 5725 gives [143] indications to assist in obtaining a
given C ¼ f(σi) relationship.

The advantages of the least squares method may be impaired if the appropriate weights are
not included in the equations, despite being a powerful tool. The least squares criterion is
highly sensitive to outliers, as we have seen in Figure 4. An undesirable paradox may often
occur consisting in the fact that the experimental data of worst quality contribute most to the

Figure 7. Left: hypothetical HPLC response versus concentration for a typical serum. Right: examples of relationships
between concentration of analyte (x), standard deviation (SD), and coefficient of variation (CV).

σc ¼ pCk ðk ¼ 0:5, 1, > 1,…Þ

σc ¼ pðCþ 1Þk

σc ¼ peq C

σc ¼ pCk þ q

σc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 þ a1Cq

p
ðq ¼ 1, 2Þ

σc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 þ a1Cþ a2C2

p

σc ¼ pyk

σc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 þ a1yþ a2y2

p

Table 10. Relationship types between the standard deviation and the concentration of the analyte.
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estimation of the parameters. Although replication may be severely limited [15, 132], it possesses
the advantage to provide a certain kind of robust regression [144]. The most common method of
performing a weighted regression is using weights values reciprocal to the corresponding vari-
ances values, that is,

wi ¼ 1
s2i

ð20Þ

where si
2 is the experimental estimate of σi

2. Eq. (14) warrants that in using replication, the
lower weights correspond to the outliers of yi. The incorporation of heteroscedasticity into the
calibration procedure is preconized [145, 146] by several international organizations such as
ISO 9169, and ISO/CD 13-752. The International Union of Pure and Applied Chemistry
(IUPAC) includes the heteroscedasticity [147, 148] or non-constant variance topic for the
calculation of the limits of detection and quantification.

The assumption of constant variance in the physical sciences may be erroneous [34, 149–157].
The data from a calibration curve (Table 11) relating to the readings of an HPLC assay to the
drug concentration in ng/mL in blood [60] are shown in Figure 8. A regression model reason-
able for the mean values is y¼ α0 þ α1 x, in the first approximation. However, the variability of
the response increases in a systematic way with increasing the concentration level. This indi-
cates that the constant variance assumption of the response through the range of concentra-
tions assayed is not followed. In fact at the highest level of concentration, a very large response
value is produced. There is no physical justification that allows excluding this value from the

Doses

0 5 15 45 90

Response 0.0016 0.0118 0.0107 0.106 0.106

0.0019 0.0139 0.0670 0.026 0.158

0.0002 0.0092 0.0410 0.088 0.272

0.0030 0.0033 0.0087 0.078 0.121

0.0042 0.0120 0.0410 0.029 0.099

0.0006 0.0070 0.0104 0.063 0.116

0.0006 0.0025 0.0170 0.097 0.117

0.0011 0.0075 0.0320 0.066 0.105

0.0006 0.0130 0.0310 0.052 0.098

0.0013 0.0050

0.0020 0.0180

0.0050

0.0050

Table 11. Calibration data for an HPLC blood concentration (ng/mL) assay of a drug [60].
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others in the analysis. Assuming in the first instance constant variance, the least squares are
used to obtain as estimated parameters a0 ¼ 0.0033 and a1 ¼ 0.0014, with sy/x ¼ 0.0265. The
representation of the residuals versus the values of x should show variability with a constant
band, if the model was appropriate. Note that, in Figure 9 (bottom left), the pattern of funnel
shape or trumpet indicates that the measurement error is increasing as it does the mean
response. The assumption of constant variance is thus not satisfied. On the other hand, the

Figure 8. Calibration curve obtained by single linear regression (top) and corresponding residuals plot (bottom).

Figure 9. Residuals in the form of funnel (left) and ascending (right).
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intercept value, 0.0033, is not in good agreement with the mean response value (13 replicates)
at zero dose, 0.0021, which supposes another additional problem. The result of ignoring the non-
constant variance in this case results in a poor fit of the model. The weighted linear regression
straight-line model led instead (Figure 10, top) to the equation y¼ 0.0015 xþ 0.0021, the band of
residuals being now rectangular (Figure 10, bottom).

The weighted least squares method requires a higher number of replicates than the conventional
least squares method. The estimation of the minimum number of replicates varies between six
and 20, according to different authors. In practice, it is often difficult to reach such high level of
replication [2, 15] for different reasons, such as cost or availability of calibration, standards and
reagents, time demands on previous operations, or by recording of the chromatograms.

In order to apply the weighted least squares analysis, it is mandatory to assign weighting
factors to the corresponding observations. In fact, the weighting factor is related with the
information contained in the yi value, being proportional to the reciprocal of the variance of
yi. The results of single-trial assay without additional information seldom contain enough
information as to model the variance in a satisfactory way. The independent variable may be
usually choice, fortunately, by the researcher, and the corresponding values for the dependent
thus replicated.

Figure 10. Response versus concentration obtained by weighted linear regression (top) and residuals plot for this model
(bottom).
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The general phenomenon of non-constancy of variance is called as we have previously seen
heteroscedasticity. It can be addressed [2, 15] by the weighted least squares method. A second
method of dealing with heteroscedasticity is to transform the response [18] so that the variance
of the transformed response is constant, proceeding then in the usual way, as in the following.

6. Transforming data: preliminary investigation of a dose-response
relationship

The non-linear relationship between two variables may be sometimes handled as linear by
means of [158] a transformation. A transformation consists in the application of a mathemati-
cal function to a set of data. The transformation leading finally to a straight-line fit to the data
can be carried out on a variable or on both. The transformation of data is sometimes under-
stood as a device which statisticians use, a conviction founded on the preconceived idea that
the natural scale of measurement [159] is something like sacrosanct. This is not like this, and in
fact some measurements, for example, those of pH, are actually logarithmic, transformed
values [160]

As much as the analyst wants the mould of nature to be linear, often in the curves truth is
simply found [118, 160]. Real-world systems sometimes do not fulfil the essential requirements
for a rigorous or even an approximate validity of the method of analysis. In many cases, a
transformation (change of scale) can sometimes be applied to the experimental data [18] in
order to carry out a conventional analysis. Although it may seem that the best way to estimate
the coefficients of a non-linear equation is the direct use of a non-linear regression program
(NLR), NLR itself [161] is not without drawbacks and problems.

The data of turbidimetric measurements of the growth response of Lactobacillus leichmannii to
vitamin B12 [61] provide a good illustration of a preliminary investigation of dose-response
relationships. Table 12 shows the responses to the eight different doses of vitamin B12 mea-
sured in six independent tubes per dose, which are depicted in Figure 11.

Doses (ng/tube)

0.23 0.35 0.53 0.79 1.19 1.78 2.67 4

Response 0.15 0.28 0.36 0.51 0.68 0.85 1.06 1.21

0.14 0.20 0.36 0.53 0.63 0.80 0.91 1.22

0.19 0.23 0.34 0.54 0.64 0.71 1.09 1.29

0.19 0.25 0.37 0.45 0.61 0.85 0.93 1.24

0.17 0.23 0.33 0.57 0.65 0.94 1.09 1.18

0.16 0.23 0.38 0.49 0.68 0.83 1.12 1.24

Table 12. Microbiological assay of vitamin B12 [61, 62].
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The transformation [62]

z ¼ log x ð21Þ

can be used (Figure 12). The inspection of Figure 12, however, suggests the existence of a
marked curvature. The graph of the residuals, the deviation of each point of the model,
indicates that the straight line is incorrect, due to the observed systematic pattern. There is a

Figure 11. Representation of the dose-response data for the microbiological assay of vitamin B12.

Figure 12. Top: fitting a straight line to response versus logarithm of dose (microbiological assay of vitamin B12). Bottom:
plot of the residuals against the logarithm of the doses for the straight-line model.
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tendency towards curvature, as it is not randomly distributed around zero. It should be
assumed that the model is susceptible to improvement, requiring either higher-order addi-
tional terms or a transformation of the data.

If a second-degree polynomial is fitted to the response data as a function of the logarithm of
the dose, the adjustment to the naked eye seems adequate (Figure 13, top). The representation
of the residuals as a function of the abscissa values (Figure 13, bottom), however, adopts a
funnel shape. The non-random pattern of residuals carries the message that the assumption of
homogeneous (regular or constant) variance is not satisfied, which would require the applica-
tion of the weighted least squares method, rather than simple linear regression.

The shape of Figure 13 (top) suggests a simple possibility, that of transformation [43] also in
the response

u ¼ ffiffiffi
y

p ð22Þ

A simple inspection of Figure 14 (top) now shows that the linear regression is valid throughout
the entire range. Both transformations to achieve homogeneity of variance and normality
(Tables 13 and 14) go together (hand in hand) and then both postulates are (almost) often
simultaneously fulfilled, fortunately, on applying an adequate transformation.

The stabilization of variance usually takes precedence over improving normality [160]. As
stated by Acton [86] ‘The gods who favour statisticians have frequently ordained that the world be

Figure 13. Top: fitting a second-degree polynomial to the response versus logarithm of dose (microbiological assay of
vitamin B12). Bottom: plot of the residuals against the logarithm of the dose for the second-degree polynomial model:
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well behaved, and so we often find that transformation to obtain one of these desiderata in fact achieves
them all (well, almost achieves them¡)’.

Linear regression is a linear (in the parameters) modelling process. However, non-linear terms
may be introduced into the linear mathematical context by performing a transforma-
tion [162, 163] of the variables (Table 15). Note that when a transformation is used, a transfor-
mation-dependent weight (Table 16) should be used (in addition to any weight based on
replicate measurements). When a non-linear function is capable of being transformed into
another one linear, it is called ‘intrinsically linear’. Non-linear functions that cannot be
transformed into linear are instead called ‘intrinsically non-linear’.

Figure 14. Top: fitting a straight line to the transformed data, square root of the response against the logarithm of the dose
(microbiological assay of vitamin B12). Bottom: plot of the residuals versus the logarithm of the doses for the straight-line
model applied to the data transformed in both axes.

Date type Transformation

Poisson (counts) (y)
ffiffiffi
y

p

Small counts (y)
ffiffiffiffiffiffiffiffiffiffiffi
yþ 1

p
or

ffiffiffi
y

p þ ffiffiffiffiffiffiffiffiffiffiffi
yþ 1

p

Binomial ð0 < P < 1Þ a sin
ffiffiffi
P

p

Variance ¼ (mean)2 lny

Correlation coefficient 0.5[ln(1þr)�ln(1�r)]

Table 13. Transformations to correct for homogeneity and approximate normality [18, 162].
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7. The variable that has not yet been discovered: the solubility of diazepan
in propylene glycol

The study of the solubility of diazepan in mixed solvents [28] requires the representation of
Beer’s law of a set of data corresponding to the solubility of diazepan in propylene glycol. The
experimental data are shown in Table 17.

Estimated relationship α λ ¼ 1� α Transformation

s ¼ kby2 2 �1 Reciprocal

s ¼ kby3=2 3/2 �1/2 Inverse square root

s ¼ kby2 1 0 Logarithmic

s ¼ kby1=2 1/2 1/2 Square root

s ¼ k 0 1 Without transformation

Table 14. Transformations to stabilize variance [18, 158] W ¼ ðyλ � 1Þ=λðλ 6¼ 0Þ; W ¼ lnyðλ ¼ 0Þ.

Function Formula Transformation Linear form

Power function y ¼ αxb y0 ¼ logy
x0 ¼ logx

y0 ¼ logαþ βx0

Exponential grow model y ¼ αeβx y0 ¼ logy y0 ¼ logαþ βx

Logarithmic y ¼ αþ βlogx x0 ¼ logx y ¼ αþ βx0

Hyperbolic y ¼ x
αx�β y0 ¼ 1=y

x0 ¼ 1=x
y0 ¼ α� βx0

Logit y ¼ eαþβx

1þeαþβx y0 ¼ logð y
1�yÞ y0 ¼ αþ βx

Table 15. Linearizable non-linear functions [18, 162].

Transformation Weighting factor (*)

1
y

y4

lny y2

y2 1
4y2

ey 1
e2y

logit y2ð1� yÞ2

(*) in units of σ20=σ
2
y; σ

2
0 is a proportionality factor, that is, the variance of a function of unit weight [2]

Table 16. Weighting factors associated with a given transformation [2, 127, 128].
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The relationship obtained between absorbance and concentration is (Figure 15)

A ¼ 0:11767C� 0:003568 ð23Þ

These data can be used to corroborate the previously made statement that the correlation
coefficient is not necessarily a measure of the suitability of the model. The R2-value of the above
equation is 0.998 (r ¼ 0.999). Many researchers would settle for this, but they would be wrong.

In spite of the high coefficient of correlation (r¼ 0.999), when the residuals are represented as a
function of the numerical order in which the samples were measured, we obtain Figure 15
(bottom). The pattern obtained is not random by marking the residual trend with a positive
slope. This behaviour is indicative of the situation in which the assumption of independence is
not satisfied. The slope in a representation of the residuals as a function of the order of measure
(time) indicates that a linear term must be included in the model.

When time is included in the model, Eq. (21) results

A ¼ �0:070193þ 0:118394Cþ 0:000336936t ð24Þ

giving rise to a value of R2 equal to 0.999.

When the residuals are calculated for this model and are plotted as a function of the concentra-
tion, a graph similar to that of Figure 15 (middle) is obtained (Figure 16, top). However, if the
residuals are represented for this model as a function of time (which is reflected in the order in
which the samples were measured), the resulting pattern is obtained in Figure 16 (bottom), in
which it is observed that the independence of the error has been accommodated (compare
Figure 15, bottom), and the fit has improved, although it could probably do so even more.

C (mg/mL) T (min) A C (mg/mL) T (min) A

16.0760 0.00 1.799 12.8608 87.50 1.481

3.2152 6.00 0.335 12.8608 92.75 1.503

6.4304 10.50 0.700 12.8608 97.75 1.522

12.8608 21.50 1.487 16.0760 102.75 1.868

6.4304 33.50 0.670 12.8608 117.25 1.508

9.6500 39.25 1.068 9.6500 122.25 1.108

16.0760 45.75 1.840 9.6500 130.50 1.109

9.6500 50.75 1.088 9.6500 135.75 1.128

16.0760 56.75 1.842 6.4304 141.00 0.720

3,2152 67.25 0.358 6.4304 146.25 0.719

6.4304 71.75 0.703 3.2152 150.75 0.349

16.0760 77.75 1.869 3.2152 155.75 0.367

3.2152 82.50 0.345

Table 17. Solubility of diazepan in propylene glycol (absorbance as a function of concentration and time) [28].
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Figure 15. Top: absorbance as a function of concentration for (solubility) of diazepam. Middle: plot of the residuals as a
function of the concentration. Bottom: plot of the residuals as a function of the measurement time (measurement order).
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The order in the analysis time demonstrates the significant fact that a representation of the
residuals allows the observation of the effect of the time that otherwise would not have been
perceived. This is possible in the case of diazepam solubility because the researcher was careful
to record the time to which the samples were measured.

The appearance of a pattern in residuals as a function of time in a study of Beer’s law could
indicate that some contaminant is affecting, or that the light source is decaying, or perhaps that
it has not yet been warmed. The pattern of the residuals indicates if there is a time-dependent
variable, but not the reason for that dependency, which must be ascertained, in its case.

8. Nickel by atomic absorption: all models are wrong

Nickel nitrate (II) hexahydrate reagent analysis (Merck) is used to prepare a standard solution of
1 g/L Ni. The salt of 5.0058 g is weighed into the analytical balance and brought into a 1-L
volumetric flask with ultrapure water. From this solution containing 1000 mg/L, a working
solution contains 125 mg/L. Appropriate volumes of this solution (triplicates) are added to 25-mL

Figure 16. Top: residuals as a function of concentration for the extended model including the measurement time. Bottom:
residuals as a function of time (order of measurement) for the model with the time included.
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volumetric flasks to obtain the calibration curve, thinning with ultrapure water. The measure-
ments are carried out in an ‘Analyst 200 Atomic Spectrometer’ operating in absorption mode
with a Cu-Fe-Ni multi-element Lumma lamp (Perkin Elmer), at 232 nm, with an acetylene air
flame. The obtained absorbances, given below, are superior to those described in Perkin
Elmer [164]. The measurements depend on the flow, for example, of the nebulizer system,
different in each case.

Absorbance data (in arbitrary units) in the triplicate of aqueous solutions of Ni2þ in mg/L (ppm)
are compiled in Table 18. It has been tried to adjust Eq. (2), third-degree and fourth-degree
polynomial models (Figure 17) (left figures with mean and right values with individual values),
observing that as the degree of the polynomial increases, the goodness of the adjustment
increases, although the residuals detect pattern. There are no perfect models, but models more
appropriate than others [165, 166]. It is possible to use rational form polynomials with the

Ni2þ (ppm) Absorbance (arbitrary units) Ni2þ (ppm) Absorbance (arbitrary units)

2.5 0.217 0.207 0.226 17.5 0.743 0.742 0.744

5.0 0.399 0.396 0.389 20.0 0.767 0.767 0.771

7.5 0.523 0.513 0.519 22.5 0.787 0.786 0.789

10.0 0.618 0.615 0.612 25.0 0.808 0.813 0.807

12.5 0.672 0.664 0.664 27.5 0.820 0.821 0.824

15.0 0.713 0.715 0.707 30 0.835 0.835 0.831

Table 18. Atomic absorption spectrophotometry calibration data of nickel(II).

Figure 17. Atomic absorption spectrophotometry nickel(II) calibration data.
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SOLVER function of Excel. Even so, the residuals show a pattern similar to that presented when
a fourth-degree polynomial is fitted to the data.

9. Final comments

Calibration is an essential part of every quantitative analytical method, with the exception of
primary methods of analysis (isotope dilution mass spectrometry, coulometry, gravimetry,
titrimetry and a group of colligative methods). The correct performance of calibration is a vital
part of method development and validation. Parameter estimation models are often employed
to obtain information concerning chemical systems, forming on this way a fundamental part of
analytical chemistry. In those cases in which a wrong equation is fitted to data, the form of the
residuals plot contains useful information which helps to modify and improve the model in
order to get a better explanation of the data. Examples extracted from the literature show how
residual plots reveal any violation of the assumptions severe enough as to deserve correction.
As a matter of fact, some authors [12, 25, 28, 59, 96] are in favour of using residuals graphically
to evaluate the inherent assumptions in the least squares method.

If there is a true linear relationship between the variables with the error symmetrically distrib-
uted, the sign of residuals should be distributed at random between plus and minus with an
equal number of each. A plot of residuals allows checking for systematic deviation between data
and model. Systematic deviations may indicate either a systematic error in the experiment or an
incorrect or inadequate model. A curvilinear pattern in the residuals plot shows that the equation
being fitted should possibly contain higher-order terms to account for the curvature. A system-
atic linear trend (descending or ascending) may indicate that an additional term in the model is
required. The ‘fan-shaped’ residual pattern shows that experimental error increases with mean
response (heteroscedasticity) so the constant variance assumption is inappropriate. This phe-
nomenon may be approached by the weighted least squares method or by transforming the
response. Time-order analysis proves sometimes the more noteworthy fact that a residual plot
permits the observation of a time effect that otherwise might not have become known. However,
note that there are no perfect models, but models that are more suitable than others.

Many more sophisticated methods have been devised (standardized, studentized, jack-knife,
predicted and recursive residuals). However, in spite of their worth and importance they are
considered beyond the scope of this chapter, devoted to a primer on residuals. The analyses
presented in this chapter were mainly done using an Excel spreadsheet.
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Abstract

Data observed from environmental and engineering processes are usually noisy and
correlated in time, which makes the fault detection more difficult as the presence of
noise degrades fault detection quality. Multiscale representation of data using wavelets
is a powerful feature extraction tool that is well suited to denoising and decorrelating
time series data. In this chapter, we combine the advantages of multiscale partial least
squares (MSPLSs) modeling with those of the univariate EWMA (exponentially weighted
moving average) monitoring chart, which results in an improved fault detection system,
especially for detecting small faults in highly correlated, multivariate data. Toward this
end, we applied EWMA chart to the output residuals obtained from MSPLS model. It is
shown through simulated distillation column data the significant improvement in fault
detection can be obtained by using the proposed methods as compared to the use of the
conventional partial least square (PLS)-based Q and EWMAmethods andMSPLS-based Q
method.

Keywords: data uncertainty, multiscale representation, fault detection, data-driven
approaches, statistical monitoring schemes

1. Introduction

Monitoring chemical and environmental processes has increasingly attracted greater attention
of researchers and practitioners for improving the quality of products and enhancing process
safety. For example, detecting anomalies in chemical or environmental plants is expected to
reflect not only on the productivity and profitability of these plants, but also on the safety of
people [1, 2]. To enhance process operation, we should monitor the process in an efficient
manner and correctly detect abnormality events that may result in any degradation of

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



product quality, operation reliability, and profitability, in order that we can respond accord-
ingly by making any necessary correction to the process. Fault detection and diagnosis
represent two vital components of process monitoring (see Figure 1), during which abnor-
mal events are first identified and then isolated to ensure that they can be appropriately
handled [2, 3]. Generally, faults in modern automatic processes are difficult to avoid and
may result in serious process degradations. Even small deviations in process parameters can
result in lost time, and catastrophic failure can bring devastating health, safety, and financial
consequences. Because of this, engineers must keep tweaking and improving the reliability
of their processes, watching carefully for signs of anomalies that could lead to disaster.
Therefore, it is crucial to be able to detect and identify any possible faults or failures in the
system as early as possible [2, 4, 5].

Keeping an automated process running smoothly and safely and producing the desired results
remains a major challenge in many sectors. Various fault detection techniques have been
developed for the safe operation of systems or processes. There are two main types of these
techniques: process history-based approaches and model-based approaches, as shown in
Figure 2. Model-based approaches compare analytically computed outputs with measured
values and signal an alarm when large differences are detected [2, 6, 7]. Unfortunately, the
effectiveness of model-based fault-detection approaches relies on the accuracy of the models
used. When there is no process model, model-free or process-history-based methods were
successfully used in process monitoring because they can effectively deal with highly corre-
lated process variables [8, 9]. Such methods require a minimal a prior knowledge about

Figure 1. Scheme of fault detection and diagnosis.
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process physics, but depends on the availability of quality input data. Process-history-based
methods use implicit empirical models derived from analysis of available data and rely on
computational intelligence and machine learning methods [10–12]. In the last four decades,
process-history-based methods such as principal component analysis (PCA) and partial least
squares (PLSs) have become more and more important in statistical process monitoring. They
have been extensively applied in the field of chemometrics [5, 13, 14]. In contrast to the classical
univariate statistical process monitoring tools, these approaches take the correlations between
variables into account and monitor a set of correlated variables simultaneously. Moreover, by
projecting the original measurements into a latent sub space, latent variables (LVs) are moni-
tored in a reduced dimensional space. A PCA or PLS model is built on good historical data of
normal or process operation [15, 16]. This model can then be used to monitor or predict the
future behavior of the process [17].

However, most of the processes are in dynamic state, with various events occurring such as
abrupt process changes, slow drifts, bad measurements due to sensor failures, and human
errors. Data from these processes are not only cross-correlated, but also autocorrelated. Apply-
ing conventional latent variable regression (LVR) methods directly to dynamic systems results
in false alarms, making it insensitive to detect and discriminate different kinds of events.
In addition, noisy data and model uncertainties negatively affect the performance of fault detec-
tion methods. In fact, wavelet-based multiscale representation of data has been shown to provide
effective noise-feature separation in the data, to approximately decorrelate autocorrelated data,
and to transform the data to better follow the Gaussian distribution [18]. Multiscale representation

Figure 2. Fault detection methods.
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of data using wavelets has been widely used for data denoising, compression, and for process
monitoring [18–21].

The detection of incipient faults is crucial for maintaining the normal operations of a system by
providing early fault warnings. The problem is that incipient anomalies are often too weak to
be detected by conventional monitoring methods. The objective of this chapter is to extend the
fault detection techniques developed to take into account the uncertainty of the data. To this
end, multiscale data representation, a powerful feature extraction tool, will be used to reduce
false alarms by improving noise-feature data separation and decorrelation of autocorrelated
measurement errors. To do so, multiscale partial least square (MSPLS)-based exponentially
weighted moving average (EWMA) fault detection techniques will be developed. The overarch-
ing goal of this work is to tackle multivariate challenges in process monitoring by merging the
advantages of EWMA chart and multiscale-PLS modeling to enhance their performance. It is
shown through simulated distillation column data that significant improvement in detecting
small fault can be obtained using the MSPLS-EWMA approach as compared to the PLS-EWMA
fault detection approach.

The remainder of this chapter is organized as follows. Section 2 gives a brief overview of the
PLS and the multiscale PLS approach. In Section 3, we present the proposed MSPLS-EWMA
fault-detection procedure. In Section 4, EWMA chart is briefly presented. Section 5 applies the
proposed fault-detection procedure to a simulated distillation column process. Finally, Section
6 concludes the chapter.

2. Preliminary materials

2.1. Partial least squares (PLS)-based charts

The objective of PLS models is to find relations between input and output data blocks by
relating their latent variables. A detailed description of the PLS technique is given in Ref. [22].
This data-driven empirical statistical model approach is extremely useful under the situation
where either a first principal model or analytical model is difficult to obtain or the measured
variables are highly correlated (collinear) to each other. The PLS methods have been exten-
sively researched and applied in the chemometrics field.

Consider an input data matrix X∈Rn�m and an output data matrix Y∈Rn�p, where n is the
number of samples or observations, m and p are the number of input and output variables,
respectively. The objective of PLS is to maximize the covariance matrix between linear combina-
tions of X and Y. A PLS model is given by the inner model and the outer model [15, 23] (see
Figure 3). The input and outputmatrices can be related to LVs as follows via the outermodel [23]:

X ¼ bX þ E ¼
Xl

i¼1

tiPT
i þ E ¼ TPT þ E

Y ¼ bY þ F ¼
Xl

i¼1

uiqT
i þ F ¼ UQT þ F

8>>>><
>>>>:

ð1Þ
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tions of X and Y. A PLS model is given by the inner model and the outer model [15, 23] (see
Figure 3). The input and outputmatrices can be related to LVs as follows via the outermodel [23]:

X ¼ bX þ E ¼
Xl

i¼1

tiPT
i þ E ¼ TPT þ E

Y ¼ bY þ F ¼
Xl

i¼1

uiqT
i þ F ¼ UQT þ F

8>>>><
>>>>:

ð1Þ
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where bX and bY are approximated data matrices of X and Y, respectively, the matrices T∈Rn�l

and U∈Rn�q consist of l retained LVs of the input and output data, respectively. E∈Rn�m and
F∈Rn�p represent the residuals matrices that were the unexplained variance of the input and
output data, respectively, P∈Rm�l and Q∈Rp�q are the loading of matrices X and Y, respec-
tively. In practice, how to choose a proper number l for LVs is an important step in PLS
modeling. If all LVs are used in modeling, the model may fit the noise and therefore reduce
the predictive ability of the model. Here, the cross-validation method can be used to determine
a proper number of LVs [24]. The inner model can be computed as

U ¼ TBþH; ð2Þ

where B is a regression matrix and H is a residual matrix. The information in Y can be
expressed as

Y ¼ TBQT þ F� ð3Þ

where matrix F� was the residue that presented the unexplained variance.

2.2. Wavelet transform

Most engineering processes generate data with multiscale properties, signifying that they
include both useful information and noise at different times and frequencies. The majority of
fall detection approaches are based on time-domain data (operates on a single time scale) that

Figure 3. Principle of PLS.
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do not take multiscale characteristics of the data into consideration. Wavelet analysis has been
show to represent data with multiscale properties, efficiently separating deterministic and
stochastic features [18].

Multiresolution time series decomposition was initially applied by Mallat, who used orthogo-
nal wavelet bases during data compression for image decoding [25]. Wavelets represent a
family of basis functions that can be expressed as the following localized in both time and
frequency [18]:

ψa;bðtÞ ¼
1ffiffiffi
a

p ψ
t� b
a

� �
; ð4Þ

where a represents the dilation parameter, b is the translation parameter [26] and ψðtÞ is the
mother wavelet. Both these parameters are commonly discretized dyadically as a¼ 2m,
b¼ 2mk, ðm;kÞ∈Z2, and the family of wavelets can represented as ψmnðtÞ ¼ 2

�m
2 ψð2�mt�mÞ.

Here, ψðtÞ is the mother wavelet and m and k are the respective dilation and translation
parameters, respectively. Different families of basis functions are created based on their
convolution with different filters, such as the Haar scaling function and the Daubechies
filters [26, 27]. Parameters that are discretized dyadically force downsampling reduce the
number of parameters dyadically with every decomposition. However, dyadically discretized
wavelet force samples at nondyadic locations to become decomposed only after a certain time
delay.

The discrete wavelet transform (DWT) analyzes the signal at different scales (or over different
frequency bands) by decomposing the signal at each scale into a coarse approximation (low
frequency information), A, and detail information (high frequency information), D. DWT

employs two sets of functions: the scaling functions φj;kðtÞ ¼
ffiffiffiffiffiffiffi
2�j

p
φð2�jt� kÞ;k∈Z and wavelet

functions ψj;kðtÞ ¼
ffiffiffiffiffiffiffi
2�j

p
ψð2�jt� kÞ;j ¼ 1;…;J;k∈Z, which are associated with low pass filter H

and high pass filter G, respectively. Where the coarsest scale J usually termed the decomposi-
tion level. Any signal can be represented by a summation of all scaled and detailed signals as
follows [26]:

xðtÞ ¼
Xn2�J

k¼1

aJkφJkðtÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{AJðtÞ

þ
XJ

j¼1

Xn2�j

k¼1

djkψjkðtÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{DjðtÞ:

ð5Þ

where j, k, J, and n represent the dilation parameter, translation parameter, number of scales,
and number observations in the original signal, respectively [28, 29]. djk and aJk are respectively
the scaling and the wavelet coefficients, and AJðtÞ andDjðtÞ; j ¼ 1; 2;…;Jð Þ represent the approx-
imated signal and the detail signals, respectively. Of course, by passing a series of high and low
pass wavelets filters, it is decomposed into signals at different scales as shown in Figure 4.

In the next section, we highlight the advantages of multiscale.
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2.3. Advantages of multiscale representation

Conventional methods are referred to as time-domain analysis methods. These methods are
more sensitive toward impulsive oscillations and are unable to extract frequencies and pat-
terns in the data that may be hidden. Before the introduction of multiscale wavelet analysis,
mathematical tools such as Fourier transform analysis, coherence function analysis, and power
spectral density analysis were used. However, these tools would only allow the signal to
imitate the tool being used for analysis. For example, the use of Fourier transform analysis
would decompose the signal into a sum of cosine and sine functions. Multiscale helps over-
come this problem as it helps simultaneously examine both the time and frequency domains,
while Fourier transform is only capable of shifting between the time and frequency domain.

Ganesan et al. in a literature review of multiscale statistical process monitoring state the follow-
ing advantages of using wavelet coefficients in Multiscale statistical process control (MSSPC)
over conventional Statistical process control (SPC) methods [20]:

• The ability to separate noise from important feature.

• The wavelet coefficients of autocorrelated data are approximately decorrelated at multiple
scales.

• Data are closer to normality at multiple scales.

Figure 4. Principle of multiscale representation based on wavelet transform.
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2.4. Separating noise feature

Two important applications, data compression and data denoising, can be achieved through
wavelet multiscale decomposition. One of the biggest advantages of multiscale representation is
its capacity of distinguishing measurement noise from useful data features, by applying low and
high pass filters to the data during multiscale decomposition. This allows the separation of
features at different resolutions or frequencies, which makes multiscale representation a better
tool for filtering or denoising noisy data than traditional linear filters, like the mean filter and the
EWMA filter. Despite their popularity, linear filters rely on defining a frequency threshold above
where all features are treated as measurement noise. The ability of multiscale representation to
separate noise has been used not only to improve data filtering, but also to improve the predic-
tion accuracy of several empirical modeling methods and the accuracy of state estimators.

A noisy signal is filtered by a three-step method [30]:

• Apply wavelet transform to decompose the noisy signal into the time-frequency domain.

• Threshold the detail coefficient and remove coefficients a selected threshold.

• Transform back into the original domain the threshold coefficients to obtain a filtered
signal.

2.5. Multiscale PLS modeling

Data observed from environmental and engineering processes are usually noisy and correlated
in time, which makes the fault detection more difficult as the presence of noise degrades fault
detection quality, and most methods are developed for independent observations. Multiscale
representation of data using wavelets is a powerful feature extraction tool that is well suited to
denoising and decorrelating time series data.

The integrated multiscale PLS (MSPLS) modeling approach is to take advantage of the both
latent variable regression and denoising ability of the multiscale decomposition using wavelets.
Thus, improve in prediction ability of the model, which in term improves the fault detection
methods. The given input variable data matrixX and response variable matrix y are decomposed
at different scales using multiscale basis function called wavelets. Let the decomposed data at
each scale ðjÞ be Xj and yj. Then, the MSPLS model is developed using decomposed data, can be

expressed as

yj ¼ TjBjQT
j � Fj; ð6Þ

where Xj ∈Rn�m is the filtered input data matrix at scale ðjÞ, yj ∈Rn�1 is the response output

vector at scale ðjÞ. F∈Rm�p is the MSPLS model residual at jth decomposition scale.

However, denoising the input and output variables a prior to developing model results in poor
prediction ability of the MSPLS model due to removal of features which may be important to
model. Therefore, in the proposed integrated MSPLS modeling approach, the selection of
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optimum decomposition depth based on the prediction ability of the developed MSPLS model
is used. The integrated MSPLS modeling algorithm is summarized next [8].

• Preprocessing of training and testing data is required to ensure that all available data is set
to zero mean and unit variance.

• Wavelet decomposition allows the data to be converted into wavelet coefficients. This
changes the set of data from a single scale to multiple scales that allow for multiscale
modeling.

• Filter the training data at different scales based on the filtering algorithm is given in
Section 2.4.

• Build a PLS model using the filtered data at each scale. Cross-validation is used to
determine the number of LVs.

• Use the estimated model from each scale to predict the output for the testing data and
compute the cross-validated mean square error.

• Choose the PLS with the smallest cross-validated mean square error as the MSPLS model.

Once an MSPLS model based on past normal operation is obtained, it can be used to monitor
future deviation from normality. Two monitoring statistics, the T2 and Q statistics, are usually
utilized for fault detection purposes [31]. First, the Hoteling T2 statistics indicates the variation
within the process model in the LVs subspace. Second, theQ statistic, also known as the squared
prediction error (SPE), monitors how well the data conforms to the model (see Figure 5).

The T2 statistic based on the number of retained LVs, l, is defined as [31]

T2 ¼
Xl

i¼1

t2i
λi

; ð7Þ

where λi is eigenvalue of the covariance matrix of X. The T2 statistic measures the variation in
the LVs only. A large change in the PC subspace is observed if some points exceed the confidence

Figure 5. (a) Hoteling T2 statistic and (b) Q statistic.
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limit of the T2 chart, indicating a big deviation in the monitored system. Confidence limits for T2

at level (1� α) relate to the Fisher distribution, F, as follows [31]:

T2
l;n;α ¼ lðn� 1Þ

n� l
Fl;n�l;α; ð8Þ

where Fl;n�l;α is the upper 100α% critical point of F with l and n� l degrees of freedom.

The squared prediction error (SPE) or Q statistic, which is defined as [31]

Q ¼ eTe; ð9Þ

captures the changes in the residual subspace. e ¼ x� x̂ represents the residuals vector, which
is the difference between the new observation, x, and its prediction, x̂, via the MSPLS model.
Eq. (9) provides a direct mean of the Q statistic in terms of the total sum of measured variation
in the residual vector e. The SPE can be considered a measure of the system-model mismatch.
The confidence limits for SPE are given in Ref. [32]. This test suggests the existence of an
abnormal condition when Q > Qα, where Qα is defined as

Qα ¼ ϕ1

h0cα
ffiffiffiffiffiffiffiffi
2ϕ2

p
ϕ1

þ 1þ ϕ2h0ðh0 � 1Þ
ϕ2
1

" #
; ð10Þ

where

ϕi ¼
Xm

j¼lþ1

λi
j; for i ¼ 1; 2; 3; ð11Þ

h0 ¼ 1� 2ϕ1ϕ3

3ϕ2
2

: ð12Þ

cα is the confidence limits for the 1� α percentile in a normal distribution.

However, the MSPLS-based T2 and Q approaches fail to detect small faults [9]. Here, we use
only the Q-based chart as a benchmark for fault detection with PLS and MSPLS. Motivated by
the power of the EWMA chart, which are widely used univariate control chart, is proposed as
improved alternatives for fault detection. The objective is to tackle MSPLS challenges in
process monitoring by merging the advantages of the EWMA and MSPLS approaches to
enhance their performance and widen their practical applicability.

3. EWMA monitoring charts

In this section, we briefly introduce the basic idea of the EWMA chart and its properties. For a
more detailed discussion of EWMA charts, see Ref. [33]. EWMA is a statistic that gives less
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weight to old data, and more weight to new data. The EWMA charts are able to detect small
shifts in the process mean, since the EWMA statistic is a time-weighted average of all previous
observations. The EWMA control scheme was first introduced by Roberts [34], and is exten-
sively used in time series analysis. The EWMA monitoring chart is an anomaly detection
technique widely used by scientists and engineers in various disciplines [6, 33, 35]. Assume
that {x1;x2;…;xn} are individual observations collected from a monitored process. The expres-
sion for the EWMA is [33]

zt ¼ λxt þ 1� λð Þ zt�1 if t > 0

z0 ¼ μ0; if t ¼ 0:

(
ð13Þ

The starting value z0 is usually set to the mean of the fault-free data, μ0. Zt is the output of
EWMA and xt is the observation from the monitored process at the current time. The forget-
ting parameter λ∈ ð0; 1� determines how fast EWMA forgets historical data. Equation (13) can
also be written as

zt ¼ λ
Xn
t¼1

ð1� λÞn�txt þ ð1� λÞnμ0; ð14Þ

where λð1� λÞn�t is the weight for xt, which falls off exponentially for past observations. We
can see that if λ is small, then more weight is assigned to past observations. Thus, the chart is
tuned to have efficiency for detecting small changes in the process mean. On the other hand, if
λ is large, then more weight is assigned to the current observations, and the chart is more
suitable for detecting large shifts [33]. In the special case, λ ¼ 1, the EWMA is equal to the most
recent observation, xt, and provides the same results as Shewhart chart. As λ approaches zero,
EWMA approximates the CUSUM criteria, which gives equal weights to the current and
historical observations.

Under fault-free conditions, the standard deviation of zt is defined as

σzt ¼ σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

ð2� λÞ ½1� ð1� λÞ2t�
s

; ð15Þ

where σ0 is the standard deviation of the fault-free or preliminary data set. Therefore, in such

cases, zt � N μ0;σ
2
zt

� �
. However, in the presence of a mean shift at the time point 1 ≤ τ ≤n,

zt � N μ0 þ ½1� ð1� λÞn�τþ1�ðμ1 � μ0Þ;σ2zt
� �

. The upper and lower control limits (UCL and

LCL) of the EWMA chart for detecting a mean shift are UCL=LCL ¼μ0 � Lσzt , where L is a
multiplier of the EWMA standard deviation σzt . The parameters L and λ need to be set
carefully [33]. In practice, L is usually set to three, which corresponds to a false alarm rate of
0.27%. If zt is within the interval [LCL and UCL], then we conclude that the process is under
control up to time point t. Otherwise, the process is considered out of control.
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4. Combining MSPLS model with EWMA chart: MSPLS-EWMA

In this chapter, we combine the advantages of MSPLS modeling with those of the univariate
EWMA monitoring chart, which results in an improved fault detection system, especially for
detecting small faults in highly correlated, multivariate data. Toward this end, we applied
EWMA charts to the output residuals obtained from the MSPLS model (see Figure 6). Indeed,
under normal operation with little noise and few errors, the residuals are close to zero, while
they significantly deviate from zero in the presence of abnormal events. In this work, the
output residuals from MSPLS are used as a fault indicator.

As given in Eq. (6), the output vector y can be written as the sum of a predicted vector ŷ and a
residual vector F, i.e.,

y ¼ ŷ þ F: ð16Þ

The residual of the output variable, F ¼ f 1;…;f t;…;f n
� �

, which is the difference between the
observed value of the output variable, y, and the predicted value, ŷ, obtained from the MSPLS
model, is a potential indicator for fault detection. The EWMA statistic based on the residuals of
the response variable can be calculated as follows:

zt ¼ λf t þ 1� λð Þ zt�1t∈ ½1;n� ð17Þ

In this case, since the EWMA control scheme is applied on the residual data matrix, one
EWMA decision function will be computed to monitor the process.

Figure 6. Principle of MSPLS-EWMA procedure.
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5. Monitoring a simulated distillation column

In this section, the ability of the proposed MSPLS-EWMA technique to detect faults is studied
through simulation data and the results compared with those obtained using a traditional
PLS-EWMA method. In all monitoring charts, the red-shaded area is the region where the fault
is injected to the test data while the 95% control limits are plotted by the horizontal-dashed line.

5.1. Description and data generation of the process

A distillation column is most commonly used unit operation in chemical process industries.
The objective of the distillation operation is to separate the component from a mixture of
component. The operation of distillation column is very energy expensive. Therefore, monitor-
ing of such process plays very important role in bringing down the cost of the operation. The
schematic diagram of the distillation column is shown in Figure 7.

The efficacy of the proposed fault detection strategy tested using simulated (using ASPEN
simulation software [36]) distillation column. The input variables consist of temperature mea-
surements at different location of the distillation column along with feed flow rate and reflux
flow. The light distillate from reflux drum considered as the response variable. The operating
conditions, nominal operating conditions, and detailed steps involved in the data generation
can be found in Ref. [36]. The generated 1024 data samples are then corrupted with zero mean
Gaussian white noise with signal-to-noise ratio (SNR) of 10 dB used for model development
and testing the Fault detection (FD) strategy. Figure 8 shows dynamic data of the distillation
column, i.e., variations of the light component for changes in the reflux and feed flow. The
MSPLS model is developed from first 512 data samples and later part of the data points is used
for testing purpose. The optimal LVs for the model are achieved through cross-validation
methods and found to be three LVs for the MSPLS model.

A scatter plot of the measured and predicted data is presented in Figure 9. This plot indicates a
reasonable performance of the selected models.

5.2. Detection results

After a process model has been successfully identified, we can proceed with fault detection.
Three types of faults in distillation columns will be considered here: abrupt, intermittent, and
gradual faults.

To quantify the efficiency of the proposed strategies, we use two metrics: the false detection
rate (FAR) and the miss detection rate (MDR) [37]. The FAR is the number of normal observa-
tions that are wrongly judged as faulty (false alarms) over the total number of fault-free data.
The MDR is the number of faults that are wrongly classified as normal (missed detections)
over the total number of faults.

5.2.1. Case (A): abrupt fault detection

In this case study, an abrupt change is simulated by adding a small constant deviation which is
2% of the total variation in temperature Tc3, to the temperature sensor measurements Tc3,
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between sample times 150 and 200. In the example, the testing data with low SNR, SNR ¼ 5,
are generated for the purpose of evaluation of MSPLS-EWMA and PLS-Q monitoring perfor-
mances. Results of the PLS-Q and MSPLS-Q statistics are demonstrated in Figure 10(a) and (c),
respectively. It can be seen from Figure 10(a) and (c) that PLS-Q and MSPLS-Q cannot detect
this small fault. Figure 10(b) shows that the PLS-EWMA chart is capable of detecting this simu-
lated fault but with a lot missed detection (i.e., MDR ¼ 55% and FAR ¼ 0.96%). Figure 10(d)
shows that although the MSPLS-EWMA chart clearly detected this abrupt faults without missed
detection (i.e., MDR ¼ 0% and FAR ¼ 0.96%).

5.2.2. Case (B): intermittent fault

In this case study, we introduce into the testing data a bias of amplitude 2% of the total
variation in temperature Tc3 of between samples 50 and 100, and a bias of 10% between
samples 350 and 450. Figure 11(a)–(d) shows the monitoring results of the PLS-based Q and
EWMA charts, and MSPLS-based Q and EWMA charts. Figure 11(a) shows that the PLS-based

Figure 7. Distillation column diagram.
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Q chart has no power to detect this fault. From Figure 11(b), it can be seen that the MSPLS-Q
chart can detect the intermittent faults but with several missed detections. Figure 11(c) shows
that the PLS-EWMA chart can indeed detect this fault, but with some missed detections. On
the other hand, the MSPLS-EWMA chart with λ ¼ 0:3 correctly detects this intermittent fault
(see Figure 11(d)). In this case study, we can see that detection performance is much enhanced
when using the MSPLS-EWMA chart compared to the others.

Figure 8. Simulation of a distillation column: variation of input-output data with SNR ¼ 10 (Solid line: noise-free data;
dots: noisy data).
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5.2.3. Case (C): drift failure detection

A slow drift fault is simulated by adding a ramp change with a slope of 0.01 to the temperature
sensor, Tc3, from sample 250 through the end of the testing data. Monitoring results of PLS and

Figure 9. Scatter plots of predicted and observed training data.

Figure 10. Monitoring results of PLS-Q chart (a), PLS-EWMA chart (b), MSPLS-Q chart (c), and MSPLS-EWMA chart (d)
in the presence of a bias anomaly in the temperature sensor measurements ‘Tc3’ with SNR ¼ 30, Case (A).
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MSPLS-based Q and EWMA statistics are shown in Figure 12(a)–(d). Figure 12(a) shows the
monitoring results of PLS-Q chart, in which we can see that a signal is first given at sample 313
with a significant false alarm rate (i.e., FAR ¼ 22.4%). Figure 12(b) shows that the PLS-EWMA
chart first detects the fault at the 290th observation. The MSPLS-Q chart is shown in Figure 12(c),
which first flags the fault at sample 323. Figure 12(d) shows that the MSPLS-EWMA chart first
detects the fault at the 288th observation. Therefore, a fewer observations are needed for the
MSPLS-EWMA chart to detect a fault compared to the other charts.

This case study testifies again to the superiority of the proposed approaches compared to
conventional PLS-based fault detection. Of course, this chapter also demonstrates through

Figure 11. Monitoring results of PLS-Q chart (a), PLS-EWMA chart (b), MSPLS-Q chart (c), and MSPLS-EWMA chart (d)
in the presence intermittent sensor fault in ‘Tc3’ with SNR ¼ 30, Case (B).

Figure 12. Monitoring results of PLS-Q chart (a), PLS-EWMA chart (b), MSPLS-Q chart (c), and MSPLS-EWMA chart (d)
in the presence drift sensor anomaly in ‘Tc3’ with SNR ¼ 30, Case (C).
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simulated data that significant improvement in fault detection can be obtained by using the
MSPLS model when combined with the EWMA chart.

6. Conclusion

The objective of this chapter is to extend the PLS fault-detection methods to deal with uncer-
tainty in the measurements. The developed approach merges the flexibility of multiscale PLS
model and the greater sensitivity of the EWMA control chart to incipient changes. Specifically,
in this approach, the multiscale PLS model has been constructed using the wavelet coefficients
at different scales, and then EWMAmonitoring chart was applied using this model to improve
the fault detection abilities of this PLS fault detection method even further. Using a simulated
distillation column, we demonstrate the effectiveness of MSPLS-EWMA to detect abrupt and
drift faults. Results show that the MSPLS-EWMA can achieve better fault-detection efficiency
than the PLS-EWMA, PLS-Q, and MSPLS-Q monitoring approaches.
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Abstract

Indirect or methodological calibration in chemical analysis is outlined. The establish-
ment of calibration curves is introduced and discussed. Linear calibration is presented
and considered in three scenarios commonly faced in chemical analysis: external cali-
bration (EC) when there are no matrix effects in the sample analysis; standard addition
calibration (SAC) when these effects are present and internal standard calibration (ISC)
in cases of intrinsic variability of the analytical signal or possible losses of the analyte in
stages prior to the measurement. In each kind of calibration, the uncertainty and confi-
dence interval for the determined analyte concentration are given.

Keywords: external calibration, standard addition method, internal standard, uncer-
tainty measurement

1. Introduction

Direct absolute methods such as gravimetry, titrimetry or coulometry (among others) are
directly traceable to SI units. Thus, traceability of contemporary instrumental methods is
accomplished by applying indirect calibration procedures. In a direct calibration, the value of
the standard (reference value) is expressed in the same quantity as the measurement of the
equipment (for instance, the calibration of an analytical balance). In an indirect calibration, the
value of the standard is expressed in a quantity different from the output one, that is, the
measurement and the measurand are different. This is the most common kind of calibration in
chemical analysis, for example, the calibration of a spectrophotometric method. Accordingly,
the indirect calibration in analytical chemistry, also known as methodological calibration, is the
operation that determines the functional relationship between measured values and analytical

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



quantities, characterizing types of analytes, and their amounts. In this chapter, the establishment
and validation of the mathematical model for the calibration function will be studied and
discussed as well as the habitual scenarios concerning interferences coming from the chemical
environment (matrix effects) and physical/instrumental lack of control leading to signal modifi-
cation (standard additions and internal standard methodology). Confidence intervals for the
calculated analyte concentration will be outlined and discussed.

2. The calibration in analytical chemistry

Calibration, as previously defined, can be assimilated to a mathematical function, Y ¼ f(x),
where Y is the analytical signal or response corresponding to the analyte concentration x. The
major analytical aim consists of finding this functionality. When applying absolute methods of
analysis [1], where traceability is assured, such as gravimetry, titrimetry or coulometry, there is
no need for indirect calibration. The analyte amount is evaluated from the analytical signal
with the use of physicochemical constants (atomic mass, Faraday constant) and the concentra-
tion of the standardized titration solution in titrimetry, leading to a typical linear response
model x ¼ KY:

• Gravimetry: x ¼ Gðgravimetric factorÞ � Yðmass of weighing formÞ
• Titrimetry: x ¼ pðstoichiometryÞ � Cðtitrant concentrationÞ � Yðtitrant volumeÞ

• Coulometry: x ¼ Yðtotal chargeÞ
nðelectrons transferredÞFðFaraday constantÞ

But in the field of relative methods (the majority of instrumental ones), traceability is reached
just by performing an indirect calibration, that is by establishing the relationship between the
analyte concentration and the analytical response. There are some theoretical relationships [2–5]
verified for special analytical techniques as depicted in Table 1.

Nevertheless, in the common situations, the response function has to be empirically established
by using standard analyte solutions. Many response functions exhibit linear zones, generally at
low concentrations of analyte and other zones where a curvature appears, and in some cases,

Response function Reference Analytical technique

y ¼ Aþ Bx Beer's law Absorption spectroscopy

y ¼ Aþ Blogx Nernst's equation Electrochemistry

y ¼ AxB Scheibe-Lomaking [2] Atomic emission spectrometry

y ¼ Aþ Bxþ Cx2 Wagenaar et al. [3] Atomic absorption spectrometry

y ¼ Aþ B½1� e�Cx� Andrews et al. [4]

y ¼ A�D
1þ x

Bð ÞB
þD Rodbard four parameter Logistic equation [5] Immunoassay

Table 1. Theoretical response functions used in some analytical instrumental techniques.
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there are regions where the response signal is independent of the analyte concentration [6].
Analysts are interested to the portion of the response function where the variation of the
analytical signal with the analyte concentration contains useful analytical information. This
portion of response function with analytical interest for calibration purposes is called the calibra-
tion curve. From the calibration curve, the amount of analyte in an unknown sample is evaluated
from interpolation. The calibration step is of utmost importance within the realm of method
validation.

In many situations, the calibration curve is linear, and a calibration straight line is obtained.
From the mathematical models applied for establishing the response function, the most
straightforward, studied, and easy to handle is the linear one. Accordingly, the linear calibra-
tion model will be considered throughout this chapter.

In case of non-linear response, there are several alternatives. The use of linearizing trans-
formations is a common tool [7], but when this procedure does not work, curve-fitting
methods are chosen. The best procedure is to try with polynomials of degrees successively
larger until the F-test of residual variances indicates that the systematic error due to the lack
of fit is negligible. If the plot has “N” points, the major degree polynomial to be used is of
degree N�1. But the blind use of high-order polynomial may lead to overfitting. This kind of
fitting is solved by multilinear regression [8]. This technique sometimes fails because the
coefficient matrix is nearly singular. To avoid this, we can use orthogonal polynomials. The
use of these polynomials leads to a diagonal coefficient matrix, overcoming singularities,
and simplifying calculations. The orthogonal polynomials commonly used in curve fittings
are the Chebischev's polynomials [9] and the Forsythe ones [10].

Aside from the advantages and applications of orthogonal polynomials, they are not at all the
ultimate weapon. Rice proposed rational polynomial functions of the type FðxÞ ¼X

i

aixi
.X

i

bixi

that present a higher flexibility than orthogonal polynomials for adjusting purposes [11].
Another approach is to fit the points to a curve consisting of several linked sections of different
geometrical shapes. This is the basis of the spline functions. Cubic spline [12] is the most used.
They approximate the data to a series of cubic equations. These cubic links overlap in p
interpolation points called “knots,” and it is essential that splines show continuity at such
points. This continuity applies to the spline function and its first derivatives. A total cubic
spline has p�1 links, with four coefficients (S ¼ aþ bxþ cx2 þ dx3). Thus, 4(p�1) coefficients
have to be calculated. This technique has been successfully applied in radioimmunoassay, gas–
liquid chromatography, and atomic absorption spectrometry [13].

The most usual technique for establishing a calibration straight line is the method of least

squares. This consists of minimizing the function Q ¼
X

Yi � Ŷ i
� �2

where Yi is the observed

value of the response function at a xi analyte concentration, and Ŷ i is the estimated response

value according to the linear model Y ¼ aþ bxþ εðYÞ or Ŷ ¼ aþ bx. The minimization ∂Q
∂a

¼ 0

and ∂Q
∂b

¼ 0 leads to the values of a, b as well as their variances and covariance [13].

Three main requisites must be fulfilled before using this method [14], namely:
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• The x variable is free from error εðxÞ ¼ 0.

• The error associated to Y variable, εðYÞ, is normally distributed, N(0,σ2).

• The variance of response Y, σ2ðYÞ, remains uniform in the dynamic range of x (homosce-
dasticity).

In analytical calibrations, the analyte concentration is known with high accuracy and precision
and, accordingly, the requirement (i) is accomplished. The condition (ii) is assumed by many
researchers without a previous testing. There are several statistical assays for testing normal-
ity [13], and they should be performed before embarking in the fitting. Analysts have paid
much more attention to the requirement (iii). In situations of heteroscedasticity (non-constant
variance), the method of least squares can be applied but by using the so-called weighing
factors [15], which are defined as wi ¼ 1

σ2ðYiÞ. Thus, the function to be minimized now is

Q ¼
X

wi Yi � Ŷ i
� �2

leading to expressions similar to the one obtained in simple linear regres-

sion. This is the weighted regression [13].

Let us assume that we deal with a situation often found in routine analysis where the three
mentioned requirements are fulfilled. In the following, we consider the different scenarios we
can face.

3. Metrological foundations on indirect calibration

Consider a new proposed analytical method which is applied to dissolved test portions of a
given sample within the linear dynamic range of the linear analytical response (Y). This
response may be expressed by the following linear relationship involving both analyte and
matrix amounts [16]:

Ŷ ¼ Aþ Bxþ CzþDxz ð1Þ

where Ŷ is the estimated analytical response and A, B, C and D are constants.

A is a constant that does not change when the concentrations of the matrix, z, and/or the
analyte, x, change. It is obviously related to the constant error blank correction. The blank
must account for signals coming from reagents and solvents used in the assay as well as any
bias resulting from interactions between the analyte and the sample's matrix. It is well known
that the calibration blank and the reagent blank compensate for signals from reagents and
solvents, but neither of them can correct for a bias resulting from an interaction between the
analyte and the sample's matrix. The suitable blank must include both the sample's matrix and
the analyte, and so it must be determined using the sample itself. The term A is called the true
sample blank and can be estimated from the Youden sample plot, which is defined as the “sample
response curve” [17]. Thus, by applying the selected analytical method to different test por-
tions, namely m (a different mass taken from the test sample), different analytical responses Y
are obtained. The plot of Y versus m is the Youden sample plot, and the intercept of the
corresponding regression line is the so-called total Youden blank (TYB) which is the true
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sample blank [17–19]. However, when a “matrix without analyte” is available, the term A can
be determined by evaluating the system blank (calibration and reagent blank).

Bx is the essential term that justifies the analytical method because it directly deals with the
sensitivity to the presence of analyte.

Cz refers to the signal contribution from the matrix, depending only on its amount, z. When
this term occurs, the matrix is called interferent. This contribution must be absent, because a
validated analytical method should be selective enough with respect to the potential interfer-
ences appearing in the samples where the analyte is determined. Accordingly, the majority of
validated methods do not suffer from such a direct matrix interference.

Dxz is an interaction analyte/matrix term. This matrix effect occurs when the sensitivity of the
instrument to the analyte is dependent on the presence of the other species (the matrix) in the
sample [20]. For the sake of determining analytes, this effect may be overcome by using the
method of standard additions as we consider later.

Thus, the calibration function remains as:

Ŷ ¼ Aþ BxþDxz ð2Þ

This function has to be established by using standards and could be applied to samples
according to different methodologies. Calibration standards are prepared from primary stan-
dards containing the analyte or a surrogate, that is, a pure substance equivalent to analyte in
chemical composition, separation and measuring that is taken as representative of the native
analyte. It must be absent in the sample. Commonly, a surrogate is used in an internal
methodology and in this case is termed as internal standard (IS) [21].

Three different scenarios can be considered for establishing the calibration function in order to
determine the analyte in the sample: the external calibration (EC) (applicable when there is no
matrix effect); the standard addition calibration (SAC) (used when matrix effect is present);
and the internal calibration (IC) (applied for compensate uncontrolled analytical signal varia-
tions). These methodologies are outlined in the following section.

4. The external calibration

The external calibration (EC) is the most commonly used calibration methodology. It is named
so because the calibration standards are not made up of the sample test portion. Instead, they
are prepared and analysed separately from samples [21]. Accordingly, the signals recorded
accounts for the analyte added as primary standard, reagents, solvents and other agents
according to the analytical procedure, except the sample matrix. Accordingly, because EC is
established in a free matrix environment, it can be applied for analyte determination only
when sample matrix effects are absent. Thus, as a preliminary step within the method, valida-
tion to assess constant and proportional bias due to matrix effects has to be performed [22].
Being a matrix free calibration scenario, z ¼ 0, B is the slope of EC, bEC, and A can be taken as
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the system blank, aEC. In order to evaluate the goodness of the fit, the regression analysis of the
analytical signal on the analyte concentrations established in the calibration set yields the
calibration curve for the predicted responses. The simplest model is the linear one, very often
found in analytical methodology, leading to predicted responses according to

Ŷ ¼ aEC þ bECx ð3Þ

Eq. (3) must be checked for goodness of fit.

The correlation coefficient r ¼
X

ðxi � xÞðYi�YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðxi � xÞ2

X
ðYi � YÞ2

q , although commonly used, espe-

cially in linear models, is not appropriate owing to the little value of this parameter for
detecting curvature [23, 24]. In statistical theory, correlation is the measure of the association
between two random variables, but in our case, x and Y are strongly related. Thus, there is no
correlation in its mathematical sense. Values of r near þ1 or �1 provide an environment of
respectability but not much else. Some authors apply statistical tests for significance of the

correlation coefficient, for instance, the student t-test [13] t ¼ jrj ffiffiffiffiffiffiffiffiffiffiffiffiffiN � 2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p or the Fisher transfor-

mation [9] z ¼ 1
2ln

1þ r
1� r

� �
, but they cannot ward off danger because the null hypothesis is that

the variables are uncorrelated (zero correlation), and accordingly, a small r value can be
considered significantly different from r ¼ 0. As Thompson [23] pointed out, “certainly it is
true that, if the calibration points are tightly clustered around a straight line, the experimen-
tal value of r will be close to unity. But the converse is not true”. Thus, some more suitable
criteria should be considered. A very simple way to prove that the linear model suitably fits
the experimental data and is right for searching possible calibration pathologies is the
analysis of residuals [8, 13, 25]. So, if the model is suitable, the residuals should be normally
distributed. This can be assessed by plotting them on a normal probability graph. The
presence of curvature reveals a lack of fit due to non-linear behaviour. A residual segmented
pattern may indicate heteroscedasticity in the data, and a weighted linear regression could
be used.

Another parameter measuring the goodness of the fit is called the on-line linearity [26] and is a
parameter that measures the dispersion of the points around the calibration straight line and is

evaluated as the relative standard deviation of its slope: on-line linearity ¼ RSDbEC ¼ sbEC
bEC

. The

typical critical threshold for considering a suitable linear model is RSDb ≤ 0:05.

Nevertheless, the best way to test the goodness of fit is by comparing the variance of the lack of
fit against the pure error variance [27]. For an adequate assess of the lack of fit of the linear
model, a suitable experimental design for performing the calibration is needed as indicated in
the following [28]:

i. At least six calibration points spaced over the concentration range of the method scope
are required for establishing the calibration straight line.

ii. Calibration standards should be measured over 5 days for suitably covering the possible
sources of uncertainty.
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iii. Each calibration standard should be measured in triplicate to account for pure error
variance.

From these data, we can test homoscedasticity. Accordingly, we have a triplicate of responses
for each calibration standard and hence an estimation of the pure error variance of the
response is available at each calibration point. We can apply the Cochran’s assay because
the number of observations is same for all concentration levels of analyte. Thus, if the number
of calibration standards is N and they are replicated n times, the Cochran statistics is calcu-
lated as:

C ¼ s2max

XN

i¼1

s2i

ð4Þ

where s2i is the response variance at the concentration level i and s2max is the maximum variance.
This value is compared against the critical tabulated value CtabðN, n, PÞ, P being the selected
confidence level. If C ≤Ctab, then the response variances can be considered to be uniform across
the range of analyte concentrations, and an estimated pooled sum of squares due to pure
errors, SSPE, can be obtained:

SSPE ¼
XN

i¼1

Xn

j¼1

Yij � Yi
� �2 ¼ n� 1

N

XN

i¼1

s2i ð5Þ

The residual sum of squares of the model SSR is given by

SSR ¼
XN

i¼1

Xn

j¼1

Yij � Ŷ ij

� �2
¼
XN

i¼1

n Yi � Ŷ i
� �2 ð6Þ

where Yij is the recorded analytical signal of the calibration point i at the replication j and Ŷ ij.
This value can be split into two terms: the sum of squares corresponding to pure error (SSPE)
and the sum of squares corresponding to the lack of fit (SSLOF):

SSLOF ¼ SSR � SSPE ð7Þ

The pure error variance is SSPE/(n�1), and the variance of the lack of fit, by considering N�2
degrees of freedom for SSR, is SSLOF/(N�n�1). So, for assessing the adequacy of the model, the
Fisher F-test is applied:

F ¼ SSR � SSPEð Þ= N � n� 1ð Þ
SSPE= n� 1ð Þ ð8Þ

The calibration model is considered suitable if less than the one-tailed tabulated value
FtabðN � n� 1, n� 1, PÞ exists at a P given confidence level.

Practical Considerations on Indirect Calibration in Analytical Chemistry
http://dx.doi.org/10.5772/intechopen.68806

203



Once the model is adequate for application, analyte determination is carried out by
interpolating the analytical signal of the sample in the calibration model. Typical statistical
calculations for evaluating the variances of slope, intercept, its covariance as well as the
uncertainty associated to the estimated analyte concentration can be found in several
texts, for instance, Miller and Miller [13]. Thus, if Y0 is the response signal recorded by
applying the analytical method on the sample, the concentration of native analyte, x0, is
given by

x̂0 ¼ Y0 � aEC
bEC

ð9Þ

In order to evaluate its standard deviation, and the corresponding expanded uncertainty,
the theorem of variance propagation is applied. The propagation of variance is the common
approach for evaluating the uncertainty of indirect measurements according to the current
edition of the guide for the expression of uncertainty measurement (GUM). However, an
essential limitation has to be taken into account. The non-linearity of the function (here the
calibration function) must be negligible. This is fundamental because the function is
expanded in a Taylor series, and then, it is truncated by neglecting second- and higher-
order terms. To avoid this drawback, the propagation of distributions instead of the propa-
gation of variance is a very suitable way for estimating the measurement uncertainty. The
application of Monte-Carlo method to carry out the propagation of distributions is very
effective [29].

Saying that brute-force Monte-Carlo (MC) methods are “very effective” may seem strange
to some readers, as one major problem of MC is their methodological in-efficiency. It is
due to large sampling variance of the relatively small samples acceptable in computation-
ally demanding applications. In other words, any acceptable sample of 100 values may
have a large random unknown error, generally different from any other sample of com-
parable size. To overcome this inefficiency, approximate simplified surrogate models are
often used to allow for sampling a much as 106 times, just to reduce sampling variability. I
would thus rather call MC methods ‘general’, ‘useful’, ‘simple’ and ‘powerful’ etc., as they
apply to any parametric model and any distribution (if a random generator can be found),
and can be utilized by anybody with very little statistical training.

But in our case, where the calibration function has been considered linear, the use of theorem
of variance propagation can be applied without risks:

s2x0 ¼
∂x0
∂Y0

� �2

s2Y0
þ ∂x0

∂aEC

� �2

s2aEC þ
∂x0
∂bEC

� �2

s2bEC þ 2
∂x0
∂aEC

� �
∂x0
∂bEC

� �
covðaEC, bECÞ

¼ 1
bEC

� �2

s2Y0
þ � 1

bEC

� �2

s2aEC þ �Y0 � aEC
b2EC

 !2

s2Y0
þ 2 � 1

bEC

� �
�Y0 � aEC

b2EC

 !
�xs2bEC

� �
ð10Þ

Considering the following equivalences (see Ref. [13] for instance):
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s2Y0
¼ s2R ¼ SSR=ðN � 2Þ

s2aEC ¼ s2R
1
N

þ x2

Sxx

� �

s2bEC ¼ s2R
Sxx

Sxx ¼
X
i

xi � xð Þ2

ð11Þ

After some algebraical manipulations, we get

s2x0 ¼
s2R
b2EC

1þ 1
N

þ Y0 � Y
� �2
b2ECSxx

" #
ð12Þ

If the signal Y0 is obtained as the average of m measurements, we have

s2x0 ¼
s2R
b2EC

1
m
þ 1
N

þ Y0 � Y
� �2
b2ECSxx

" #
ð13Þ

And the corresponding expanded uncertainty can be evaluated from the tabulated Student t-
statistics or by assuming a Gaussian distribution and using the z score at a given confidence
level (generally P ¼ 95%) and so:

Ux0 ¼ ttabðN � 2, 95%Þsx0
Ux0 ¼ z95%sx0 ≈ 2sx0

Confidence Interval : x0 �Ux0

ð14Þ

EC is adequate for analytical procedures that could be considered as methods free from matrix
effects, but it has the main limitation coming from the assumption that the different environ-
ments (matrices) of the calibration standards (solvent, buffer,…) and of the samples are equiv-
alent, and they have no effect on the calibration function [21]. If this assumption is incorrect,
additive and/or proportional systematic errors may appear. Accordingly, in a preliminary
stage within the method validation, constant and proportional bias due to matrix effects must
be investigated with the help of standard addition calibration and Youden plot [22].

5. Standard addition calibration

The standard addition calibration (SAC) or standard addition method was originally proposed
in 1937 by Hans Hohn in polarographic studies [30]. He used this strategy in order to avoid the
matrix effects on the intensity of emission signal, and nowadays, it is widely used in chemical
analysis. SAC can be applied with three fundamental goals [31]:
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• To determine analytes in samples where the analyte-matrix interactions lead to inaccurate
results when the EC is used.

• To determine analytes where the content in the sample is smaller than the quantitation
limit but within the range of analytical sensitivity.

• To check the accuracy of an analytical result when no reference materials or reference
method is available (recovery assay).

In essence, the calibration for the two first purposes comprises three steps [32]:

a. Measure the analytical response produced by the test solution.

b. Spike the test solution with one or more amounts of analyte to get corresponding solu-
tions and measure the new responses.

c. From the responses, calculate a straight-line fit of the experimental data and from that
evaluate the concentration that produced the response obtained from the untreated test
solution.

The SAC can be performed either at a final fixed volume or at a variable volume [19]. In this
discussion, we only consider the first case by working at constant final volume.

Consider now the application of the analytical procedure to a dissolved test portion of an
unknown sample within the linear working range. The analyte concentration x is the sum of
the fixed native concentration coming from the sample (volume of test portion V0) and the
variable spiked concentration (spiked volume, Vspike) and keeping a final constant volume V.
The amount of matrix in the test portion (z) is constant. Accordingly, the analytical response
can be now modelled as:

Ŷ ¼ Aþ BxþDxz ¼ Aþ ðBþDzÞx ¼ Aþ ðBþDzÞ V0C0
native þ VspikeC0

spike

V

 !
¼

Aþ ðBþDzÞCnative þ ðBþDzÞCspike ¼ aSAC þ bSACCspike

ð15Þ

where Cnative is the actual concentration of the analyte in the unspiked sample, Cspike the actual
concentration of the spiked analyte and aSAC and bSAC are the intercept and the slope of the SAC
calibration straight line. Ifwe try to estimate the analyte concentration of a spiked sample byusing
the external calibration line, we obtain an estimation of the total observed analyte concentration:

Ĉobs ¼ Ŷ � aEC
bEC

¼ aSAC � aEC þ bSACCspike

bEC
ð16Þ

For the unspiked sample, Cspike ¼ 0, we obtain

Ĉnative ¼ aSAC � aEC
bEC

ð17Þ

According to Eqs. (16) and (17), the spiked concentration of the analyte is estimated from the
external calibration as:
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Ĉobs ¼ Ŷ � aEC
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Ĉspike ¼ Ĉobs � Ĉnative ¼
bSACCspike

bEC
ð18Þ

From Eq. (18), an overall estimation of the overall consensus recovery is calculated as:

Rec ¼ Ĉspike

Cspike
ð19Þ

When proportional bias is absent, we have bSAC ¼ bEC, and that implies Rec ¼ 1. This must be
tested for statistical significance by using the student t-test [22]:

t ¼ jRec-1j
sRec

ð20Þ

with the recovery standard deviation given by:

sRec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2bSAC
b2EC

þ b2SACs
2
bCE

b4EC

vuut ð21Þ

Thus, if the degrees of freedom ν corresponding to the uncertainty of consensus recovery are
known, student t-statistic is compared with the critical two-tailed tabulated value, ttab(ν,P), at
P% confidence. If t ⩽ ttab, the consensus recovery is not significantly different from 1. Alterna-
tively, instead of ttab, a coverage factor k taken as z score may be used for the comparison.
Typical values are k ¼ 2 or k ¼ 3 for 95 or 99% confidence, respectively [22], so

• if jRec �1j
sRec

≤ k, the recovery is not significantly different from 1.

• if jRec �1j
sRec

> k, the recovery is significantly different from 1, and the results have to be

corrected by Rec.

Although recovery is sometimes considered a separate validation parameter, it should be
established as a part of method validation because it is directly related to the trueness assess-
ment [33]. Aside from the statistical testing considered above, the Association of Official
Analytical Chemists (AOAC) has published tables of acceptable recovery percentages as a
function of the level of analyte in the sample (see Table 1 of [22]). The relative uncertainty for
proportional bias owing to matrix effects is taken as sRec

Rec
according to SAC.

The relationships between the analytical signal and theanalyte concentrationwhenamatrix effect is
present aregivenbyEq. (15). The independent term“A” is the totalYoudenblank,which is included
in the intercept of the SACcalibration (aSAC¼Aþ bSACCnative). TheYouden's plot [17–19] consists of
plotting the analytical response (Y) against the amount of the test portion taken for analysis:

Ŷ ¼ Aþ bYwsample ð22Þ

The intercept of this plot is an evaluation of the TYB, which is the sum of the system blank (SB)
corresponding to the intercept of the EC (aEC) and the YB associated with the constant bias in

Practical Considerations on Indirect Calibration in Analytical Chemistry
http://dx.doi.org/10.5772/intechopen.68806

207



the method [13]. Thus, we can equate TYB ¼ A, SB ¼ aEC and YB ¼ A – aEC. We can define the
method constant bias as:

θ ¼ A� aEC
bEC

ð23Þ

The uncertainty of the constant bias can be obtained by the law of variance propagation [22]:

sθ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2A
b2EC

þ s2aEC
b2EC

þ A� aECð Þ2s2bEC
b4EC

þ 2 A� aECð Þ
b3EC

covðaEC, bECÞ

vuut ð24Þ

The variances s2aEC , s
2
bEC and the covariance are obtained from the statistical parameters of the

EC straight line and s2A from the Youden's plot. Once sθ is calculated, the constant bias may be
assessed for significance as in the case of recovery.

• If jθj
sθ
≤ k, the constant bias is not significantly different from 0.

• If jθj
sθ
> k, the constant bias is significantly different from 0, and the results have to be

corrected by θ.

Accordingly, if after performing the assessment of proportional and constant bias matrix
effects are present, the uncorrected result x0, found by EC, must be suitably corrected as

x0 ¼ xuncorr0 � θ
Rec

ð25Þ

Another way of getting the correct result from the reading of analytical signal Y0 is

x0 ¼ Y0 � A
bSAC

ð26Þ

On the other hand, when using the SAC for evaluating the analyte concentration x0 of a
sample, its standard deviation can be obtained by applying the theorem of variance propaga-
tion to the function

x0 ¼ aSAC � A
bSAC

ð27Þ

leading to

s2x0 ¼
∂x0
∂A

� �2

s2A þ ∂x0
∂aSAC

� �2

s2aSAC þ
∂x0
∂bSAC

� �2

s2bSAC

þ2
∂x0
∂aSAC

� �
∂x0
∂bSAC

� �
covðaSAC, bSACÞ

¼ � 1
bSAC

� �2

s2A þ 1
bSAC

� �2

s2aSAC þ
�ðaSAC � AÞ

b2SAC

 !2

s2bSAC

�2
1

bSAC

� � �ðaSAC � AÞ
b2SAC

 !
xs2bSAC

ð28Þ
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After several algebraical manipulations, we obtain

s2x0 ¼
s2y=x
b2SAC

1
N

þ Y
2

b2SACSxx

þAðA� 2YÞ
b2SACSxx

" #
þ s2A
b2SAC

ð29Þ

But many workers apply the SAC without considering the true blank, that is, by setting A ¼ 0
and sA ¼ 0 leading to

s2x0 ¼
s2y=x
b2SAC

1
N

þ Y
2

b2SACSxx

" #
ð30Þ

This expression is presented in several standard analytical textbooks, for instance [13, 19, 32, 34].
However, Ortiz et al. [35] pointed out that when extrapolating, the analyte concentration is
obtained by setting Y0 ¼ 0 and calculating x0 ¼ �aSAC=bSAC, but even in this case, the uncer-
tainty of the signal must be included in calculations, leading to

s2x0 ¼
s2y=x
b2SAC

1þ 1
N

þ Y
2

b2SACSxx

" #
ð31Þ

The SAC, as it has been outlined, is considered as an extrapolation method but an interpolation
approach is available [32, 36]. A plot of the data obtained from SAC and how the analyte
concentration is predicted by extrapolation are depicted in Figure 1. Nevertheless, an interpo-
lation alternative is also gathered there. The latter is discussed in the following.

What value of the analytical signal Y0 will correspond to a spiked x value that is equal to the
concentration of the native analyte? That is:

Y0 ¼ aSAC þ bSACx0 ¼ Aþ 2bSACx0 ¼ 2Yunspiked � A ð32Þ

Figure 1. The plot of extrapolation and interpolation for prediction of the native analytical concentration of a sample by
using the SAC.
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And if we disregard the true blank, we get

Y0 ¼ aSAC þ bSACx0 ¼ 2bSACx0 ¼ 2Yunspiked ð33Þ

Thus, the native analyte concentration can be obtained by interpolation by setting the analyt-
ical signal for the sample as the double of the signal, corresponding to the unspiked sample
minus the true blank:

x̂0 ¼ Y0 � aSAC
bSAC

ð34Þ

This leads to a variance for the native analyte

s2x0 ¼
s2y=x
b2SAC

1þ 1
N

þ Y0 � Y
� �2
b2SACSxx

" #
ð35Þ

According toAndrade et al. [32, 36], the use of extrapolation in the SAC is a risky practice because
it may lead to biased prediction and uncertainties substantially different from interpolation.
Confidence interval from extrapolation is always higher than those obtained by interpolation.

6. The internal standard calibration

The method of internal standard calibration (ISC) was first applied in the 1950s in several
analytical fields [37–41]. This method is especially useful when the analytical response varies
slightly from run to run due to different causes, for instance:

• Temperature fluctuations in atomic emission spectrometry.

• Changes in the capillary characteristics in polarography.

• Inhomogeneities in the effective magnetic field due to shielding effect in nuclear magnetic
resonance (NMR).

• Variability in the injection volume in gas chromatography (manual injection).

• Irreproducibility of automatic injectors in capillary electrophoresis.

• Differences in the nature of particulate matter in the sample in X-ray fluorescence.

The use of an internal standard is also needed for analytical methods where there are multiple
sample preparation steps, especially when volumetric recovery at each step may vary (extrac-
tion with separation cartridges) or when involving chemical derivatizations with low or
variable yields of reaction.

An internal standard is a substance different from the analyte but that has physicochemical
properties very similar to the analyte. Evidently, the internal standard cannot be a component
of the sample.
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It is added to the sample, and the patterns in known amounts and the signal produced by both
the analyte and the internal standard are measured. If in repeated measurements, there is
signal oscillation, it will occur both in the analyte and in the internal standard, and the ratio
of the signals of both will not change.

Thus, instead of the response Y, the ratio of responses Y/YIS is used in the calibration proce-
dure. Assuming that in the instrumental method the signal is in direct proportion to the
analyte and internal standard, we get:

Y ¼ kx

YIS ¼ kISxIS
Y
YIS

� �
¼ F

x
xIS

� � ð36Þ

Here, Y is the analytical signal due to the analyte andYIS is the analytical signal corresponding
to the internal standard. The calibration straight line is performed as in EC by preparing
standards at several analyte concentrations and with the same concentration fixed for
internal standard xIS. Thus, the calibration constant F is evaluated. Whereas the dispersion
of the calibration straight line Y ¼ kx may be significant, the one obtained with the ISC is
negligible.

The sample is then treated in the same way by spiking the internal standard at the same

concentration in the standards. Thus, if the reading of the sample is Y0

Y0
IS

� �

x̂0 ¼ Y0

Y0
IS

 !
xIS
F

ð37Þ

By applying the variance propagation law and considering negligible variance of xIS, we get

sX0 ¼
xISsR
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
x2IS

Y0

Y0
IS

 !2

F2
X

x2i

vuuuuut ð38Þ

The main advantage of ISC is that this quantification method does not need a previous
calibration because it is implicit in the quantification [21]. Accordingly, the use of one-
point calibration method can be used. It only requires the addition of known and equal
amounts of internal standards to the standard analyte solution and to sample solution and
measures the analytical signals of analyte and internal standard in the standard and in the
sample. Evidently, the signals of analyte and internal standard must be distinguishable
without overlapping.

Thus,
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Ystd

Ystd
IS

 !
¼ F

xstd

xIS

� �
and

Y0

Y0
IS

 !
¼ F

x0

xIS

� �

x̂0 ¼ xIS

Y0

Y0
IS

 !

Ystd

Ystd
IS

 !
ð39Þ

Another exclusive feature of ISC is the possibility of performing the quantification of several
analytes of the same chemical family in the same test portion and in a unique internal calibra-
tion with a single internal standard. Consequently, it could be possible to evaluate the mass
fraction of each analyte according to [21].

%x0i ¼ x0iX
j

x0j
� � 100 ¼

xIS
F

� � Y0
i

Y0
IS

 !

X
j

xIS
F

� � Y0
j

Y0
IS

 ! 100 ¼ Y0
iX

j

Y0
j

100 ð40Þ

Accordingly, ISC is a very powerful method for congener analysis (for instance in fat analysis,
determination ofwaxes, sterols, aliphatic alcohol and so on) byusing onlya unique internal standard.

7. Synthesis

Indirect calibration is a key concept for method validation. Instrumental analysis involving
indirect calibration is a common feature in routine analysis, and three typical scenarios can be
found depending on the analyte-matrix interaction and the uncontrolled variation of the
analytical signal owing to intrinsic characteristics of the analytical process. Thus, when the
interaction of the matrix of sample is negligible, the external calibration is the normal choice.
Otherwise, the Standard Addition calibration together with the Youden plot have to be
applied. In cases where there are non-random signal variations run to run or possible analyte
losses due to sample preparation procedures or derivatization reactions, Internal Standard
calibration must be considered. These three approaches have been outlined and discussed.
Uncertainty values for the analyte concentration coming from the calibration step are consid-
ered and evaluated from the calibration data.
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