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The main purpose of control engineering is to steer the regulated plant in such a way 
that it operates in a required manner. The desirable performance of the plant should 
be obtained despite the unpredictable influence of the environment on the control 

system and no matter if the plant parameters are precisely known. Even though 
the parameters may change with time and load, still the system should preserve its 

nominal properties and ensure the required behavior of the plant. In other words, the 
principal objective of control engineering is to design systems that are robust with 

respect to external disturbances and modeling uncertainty. This objective may be very 
well achieved using the sliding mode technique, which is the subject of this book.
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Preface

The main purpose of control engineering is to steer the regulated plant in such a way that it
operates in a required manner. The desirable performance of the plant should be obtained
despite the unpredictable influence of the environment on all parts of the control system,
including the plant itself, and no matter if the system designer knows precisely all the pa‐
rameters of the plant. Even though the parameters may change with time, load, and external
circumstances, still the system should preserve its nominal properties and ensure the re‐
quired behavior of the plant. In other words, the principal objective of control engineering is
to design systems that are robust with respect to external disturbances and modeling uncer‐
tainty. This objective may be very well achieved using the sliding mode technique, which is
the subject of this book.

The theory of variable structure systems with sliding (or quasi-sliding) modes is currently
one of the most significant research topics within the control engineering domain. More‐
over, recently, a number of important applications of the theory have also been reported.
Therefore, this book first presents two chapters concerning the theory of sliding mode con‐
trol and then shows three significant applications of this control method.

In the first chapter, Argha and Su design a new, continuous time, suboptimal in the sense of
ℋ2 and ℋ∞ norm state-feedback sliding mode controller for output tracking of the closed-
loop system. This approach enables to effectively trade off the level of control effort required
to maintain sliding mode and the system performance. In the second chapter, Chakrabarty,
Bandyopadhyay, and Bartoszewicz consider discrete time quasi-sliding mode control strat‐
egies with switching variables characterized by relative degree greater than one. They dem‐
onstrate that introduction of such variables can lead to desirable system performance and a
better robustness than application of conventional, that is, relative degree one, switching
variables.

The next three chapters are devoted to applications of sliding mode controllers in robotics
and motion control systems. In the first of these chapters, Li, Ghasemi, Xie, and Gao present
a sliding mode controller for image-based visual servoing of a six-degree-of-freedom robot
arm. Their controller integrates the standard proportional-derivative action with the sliding
mode approach to obtain faster convergence and increased robustness with respect to dis‐
turbances. The next chapter of this book is concerned with the important practical problem
of autonomous underwater vehicle motion control. In this chapter, Putranti, Wahyuni and
Ismail propose a novel controller that combines a popular super twisting sliding mode con‐
trol paradigm with a region boundary approach. They demonstrate that defining the de‐
sired trajectory as a region can result in an energy saving when compared to conventional
control with the demand state defined as a single point. In the final chapter of this book,



Zaouche, Foughali, and Amini consider adaptive integral higher order sliding mode control
for an aircraft autopilot. Their control method exhibits good robustness and is simpler to
implement than other standard techniques typically used in this application.

The contributions presented in this book demonstrate favorable properties of modern slid‐
ing mode control techniques, that is, their robustness and computational efficiency, and en‐
courage new applications of these techniques in various engineering systems.

Andrzej Bartoszewicz
Institute of Automatic Control

Łódź University of Technology,
Łódź, Poland
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Chapter 1

State-Feedback Output Tracking Via a Novel Optimal-
Sliding Mode Control

Ahmadreza Argha and Steven W. Su

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67468

Abstract

This chapter describes a new framework for the design of a novel suboptimal state-
feedback-sliding mode control for output tracking while H2=H∞ performances of the
closed-loop system are under control. In contrast to most of the current sliding surface
design schemes, in this new framework, the level of control effort required to maintain
sliding is penalized. The proposed method for the design of optimal-sliding mode
control is carried out in two stages. In the first stage, a state-feedback gain is derived
using a linear matrix inequality (LMI)-based scheme that can assign a number of the
closed-loop eigenvalues to a known value while satisfying performance specifications
and ensuring that all the closed-loop poles are located in a preselected subregion. The
sliding function matrix related to the particular state feedback derived in the first stage
is obtained in the second stage by using one of the two different methods developed for
this goal. We present a numerical example to demonstrate the remarkable performance
of the proposed scheme.

Keywords: optimal H2=H∞-based sliding mode control, output tracking, partial
eigenstructure assignment, regional pole placement

1. Introduction

Sliding mode control (SMC) is now a well-developed method of control and its invariance
properties against matched uncertainties have inspired researchers to apply this technique to
different applications [1–6]. Traditionally, SMC is designed in two stages. In the first stage, a
sliding surface whose sliding motions have suitable dynamics is chosen. Many methods have
been proposed in the existing literature for this purpose, for example, eigenstructure assignment,
pole placement, optimal quadratic methods, and linear matrix inequality (LMI) methods; see for
instance [4, 5, 7, 8]. Then, a controller is designed to induce and maintain the sliding motion.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



However, these traditional design methods are unable to limit the available control action
required for satisfying the control objective [3], since during the switching-function synthesis,
there is no sense of the level of the control action required to persuade and retain sliding [3]. It
is worth noting that without having limits on the available control actions, a sliding surface
and thereby a control law may always be obtained which is not practically applicable, as it
may lead to high level of control efforts.

To tackle this problem, for instance, the authors of [9] propose a scheme to design a sliding
surface which minimizes an objective function of the system state and control input, in the
meantime. However, since the method in [9] needs to ensure that at least one eigenvalue of the
closed-loop system (for single-input systems) is a real value, not necessarily any arbitrary
weighting matrices in the objective function may result in a sliding mode control. This refer-
ence, therefore, either reselects the weighting matrices or approximates the closed-loop system
eigenvalues so that a set of eigenvalues are generated which can be divided into the null-space
and range-space dynamics. However, no precise scheme is given on how to reselect the
weighting matrices. Further, the approximation of eigenvalues may lead to a loss in optimality
and possibly robustness.

For addressing the limitations of [9], Tang and Misawab [10] propose an LQR-like scheme in
which a weighting matrix is computed which is closest to the desired one and can result in the
desired eigenvalues. Following this, the associated SMC is designed according to the obtained
eigenvalues and weighting matrix. Nevertheless, both methods in [9, 10] are suitable to single-
input systems. Alternatively, Edwards [3] proposes two new frameworks exploiting two special
system coordinate transformations, which are fundamentally different from the aforementioned
schemes.

This chapter aims to propose a different way for the sliding surface design while optimizing
the control effort associated with the linear part of the control law. This approach is a middle-
of-the-road method in that it uses a specific partial eigenstructure assignmentmethod to assign m
arbitrary stable real eigenvalues while an appropriate sliding motion dynamics will be ensured
by enforcing different Lyapunov-type constraints such as the H2=H∞ and regional pole-place-
ment constraints. The advantages of the proposed approach for the design of sliding surface
compared to all the aforementioned references are threefold: (i) it can set the stage for design-
ing SMC while the level of control efforts is taken into account; (ii) it makes it possible to
integrate several Lyapunov-type constraints, for example, regional pole-placement constraints,
in the SMC design problem; and (iii) the controller can be computed in a numerically very
efficient method. The proposed scheme for the design of suboptimal SMC is indeed a two-
stage LMI-based approach. In the first stage, while enforcing different Lyapunov-type con-
straints, for example, the mixed H2=H∞, a state-feedback gain is derived, using an LMI-based
optimization program employing an instrumental matrix variable, which can precisely assign
some of the closed-loop eigenvalues to a priori known value. Following this, the sliding
surface, associated with the state-feedback gain obtained in the first stage, is determined in
the second stage. Two different approaches are presented for deriving the associated
switching-function matrix. This chapter indeed examines the problem of designing a state-
feedback SMC which utilizes integral action to provide tracking. From the implementation
point of view, the simplicity of such a scheme is very advantageous.

Recent Developments in Sliding Mode Control Theory and Applications2
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The structure of the chapter is as follows. Section 2 is dedicated to the problem statement and
preliminaries. Section 3 explains the novel design strategy for the design of H2=H∞-based
SMC. Section 4 discusses two different approaches for deriving the sliding function matrix
associated with the linear controller obtained in Section 3. Section 5 summarizes the proposed
H2=H∞-based SMC. In Section 6, we discussed the issue of designing SMC with additional
regional pole-placement constraints. Section 7 illustrates this method via an example consider-
ing the flight control problem. Section 8 finally concludes the chapter.

2. Problem statement and preliminaries

Consider the following linear-time invariant (LTI) system:

_~xðtÞ ¼ ~A~xðtÞ þ ~B½uðtÞ þ f ðtÞ�, (1)

where ~x ∈ℝ~n and u∈ℝm are the state vector and control input vector, respectively. The
matrices in Eq. (1) are constant and of appropriate dimensions. The unknown signal f ðtÞ∈ℝm

denotes matched uncertainty in Eq. (1) whose Euclidean norm is bounded by a known func-

tion ρðtÞ. Without the loss of generality, it is assumed that rank ð~BÞ ¼ m and the matrix pair

ð~A; ~BÞ are controllable.
In order to provide the problem with a tracking facility, we exploit an integral action as
follows. Defining

_ξðtÞ ¼ ðtÞ � ~yðtÞ, (2)

where ðtÞ is the input reference to be tracked by ~yðtÞ ¼ ~C~xðtÞ∈ℝp, and ξ represents the

integral of the tracking error, that is, ðtÞ � ~yðtÞ, and introducing x :¼ ξ
~x

� �
∈ℝn, an augmented

system can be derived as

_xðtÞ ¼ AxðtÞ þ B2uðtÞ þ B ðtÞ, (3)

with

A ¼ 0 �~C
0 ~A

� �
; B2 ¼ 0

~B

� �
; B ¼ Ip

0

� �
: (4)

Note that if the matrix pair ð~A, ~BÞ is controllable and the matrix triplet ð~A, ~B, ~CÞ has no zeros
at the origin, it can be shown that ðA, B2Þ is controllable [11].
Consider a linear switching surface as

S ¼ fx : σðtÞ≜SxðtÞ ¼ 0g, (5)

where S∈ℝm · n is the full-rank-sliding matrix to be designed later so that the associated
reduced-order-sliding motions have suitable dynamics.
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Let us consider the following controller:

uðtÞ ¼ �ðSB2Þ�1ðSA� ΦSÞxðtÞ þ ϑðtÞ, (6)

where Φ∈ℝm ·m is a stable matrix and ϑðtÞ∈ℝm denotes the nonlinear part of the controller
with the following form:

ϑðtÞ ¼ �ðSB2Þ�1ρðtÞ σðtÞ
‖σðtÞ‖ if σðtÞ 6¼ 0; (7)

in which the scalar function ρð�Þ satisfies ‖ρðtÞ‖ ≥‖SB2f ðtÞ‖; for example, see [2]. It is worth

noting that the term ðSB2Þ�1ΦSxðtÞ in the controller Eq. (6) is to govern the convergence rate of
the system state to the sliding manifold in association with the nonlinear controller. Further,

�ðSB2Þ�1SA is the so-called equivalent control necessary to maintain sliding in the absence of
uncertainty. Here, similar to [3], it is assumed that Φ ¼ λIm, where λ < 0 is a given constant
value. Note that unlike in [3], λ can also belong to the spectrum of A. Because we set Φ ¼ λIm,
the control law uðtÞ in Eq. (6) can be written as

uðtÞ ¼ ðSB2Þ�1SAλxðtÞ þ ϑðtÞ, (8)

where Aλ ¼ λIn � A. Now assuming that there is no matched uncertainty in Eq. (3) and letting
ρð�Þ ! 0, we can consider that the controller in Eq. (8) contains only the linear part. Hence,

_xðtÞ ¼ AxðtÞ þ B2uðtÞ þ B ðtÞ þ B1wðtÞ
z2ðtÞ ¼ C2xðtÞ þD2uðtÞ
z∞ðtÞ ¼ C∞xðtÞ þD∞uðtÞ,
uðtÞ ¼ ðSB2Þ�1SAλxðtÞ,

(9)

where wðtÞ is a fictitious exogenous disturbance, z2ðtÞ∈ℝq1 and z∞ðtÞ∈ℝq2 are the H2 perfor-
mance output vector and H∞ performance output vector of the system, respectively. The
matrices in Eq. (9) are constant and of appropriate dimensions. Without the loss of generality,
it is also assumed that m ≤ qi ≤n, i ¼ 1, 2. Now, the objective can be regarded as finding a sliding
matrix S so that the resulting reduced-order motion, when restricted to S, is stable and meets
H2=H∞ performance specifications. Indeed, we need to choose S, with a given λ < 0, so that
the obtained reduced-order-sliding mode

• guarantees ‖Twz2‖
2
2 < δ, where ‖Twz2‖2 is theH2 norm of the closed-loop transfer function

from wðtÞ to z2ðtÞ and δ > 0 is a predetermined closed-loop H2 performance, and

• minimizes the H∞ performance, subject to the above item.

For this purpose, one may resort to solve a H2=H∞-state-feedback problem and thereby find
the switching matrix associated with the derived optimal state-feedback gain (say F). Broadly
speaking, this simple scheme may not necessarily result in any solution, unless the obtained
state-feedback gain F can ensure that m of the closed-loop poles are exactly located at λ. Hence,
in order to design an H2=H∞-based SMC, we need to address the following two problems:

Recent Developments in Sliding Mode Control Theory and Applications4
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1. Blend the mixed H2=H∞ problem with the eigenstructure assignment method, that is,
design a state-feedback F enforcing H2=H∞ constraints while ensuring that m poles of the
closed-loop system are precisely located at λ.

2. Obtain the sliding matrix S associated with the particular state-feedback F, derived in the
previous step.

The abovementioned problems are dealt with in the following two sections.

Remark 1. Note that the linear part of the control law can be considered as

uðtÞ ¼ ½ F ~F � ξðtÞ
~xðtÞ
� �

≜FxðtÞ, (10)

where ~F ∈ℝm ·~n is the state-feedback gain and F ∈ℝm · p is the feed-forward gain due to the reference
signal ðtÞ.
The following lemma is recalled from [12], which will be useful in the sequel of this chapter.

Lemma 1 [12]. The following two statements are equivalent:

1: Ψþ Sþ ST < 0:

2. The following LMI is feasible with respect to U.

Ψþ P� ðU þUTÞ ST þUT

SþU �P

� �
< 0,

where P is a positive definite matrix.

It should be noted that Lemma 1 provides a necessary and sufficient condition. However, while
imposing some constraints (e.g., structural constraints) on U, the sufficiency of the lemma is
not violated; that is, always (2) ) (1).

3. Partial eigenstructure assignment for the design of H2=H∞-based SMC

3.1. LMI characterizations

We need to consider the state-feedback synthesis with a combination of H2=H∞ performance
specifications. In what follows, to avoid the conservatism introduced by the so-called quadratic
approach for the design of feedback gains with respect to H2=H∞ performance specifications,
we need to recall the so-called extended LMI methods developed for the H2 and H∞ control
problems from, for example, [12, 13]. This form of LMI characterization will also be shown to
be very useful for the novel SMC of this chapter, as it provides us with the possibility to design
a certain partial eigenstructure assignment scheme which can ensure precise locations for some
of the closed-loop system poles.
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3.1.1. H2 LMI characterization

TheH2 control synthesis problem, by assuming the control law as uðtÞ ¼ FxðtÞ, can be addressed
through the following optimization problem [12]:

Minimize δ subject to (MH2)

�ðGþ GTÞ ⋆ ⋆ ⋆
AGþ B2Y þ Xi �Xi ⋆ ⋆
C2GþD2Y 0 �δI ⋆

G 0 0 �Xi

2
6664

3
7775 < 0, (11)

�Z ⋆
B1 �Xi

� �
< 0, (12)

traceðZÞ < 1, (13)

with respect to decision variables Xi, i ¼ 1, ⋯; N , Z, Y, and G, where Xi and Z are s.p.d
matrices. N hereafter denotes the number of constraints and thus the independent Lyapunov
variables. As Gþ GT > 0, G will be invertible and the state feedback is obtained as F ¼ YG�1.

3.1.2. H∞ LMI characterization

Given scalar 0 < ν≪ 1, theH∞ problem, by assuming the control law as uðtÞ ¼ FxðtÞ, can be set
as the following minimization problem [13].

Minimize γ subject to (MHI)

Xi � ðGþ GTÞ ⋆ ⋆ ⋆
Gþ νðAGþ B2YÞ �Xi ⋆ ⋆

C∞GþD∞Y 0 �ν�1I ⋆
0 B1 0 �γν�1I

2
66664

3
77775
< 0, (14)

with respect to decision variables Xi > 0, i ¼ 1, ⋯; N , Y, G, and γ > 0. Again, the state feed-

back is obtained as F ¼ YG�1.

Remark 2. It is worth mentioning that the advantage of both LMIs (11) and (14) lies in the fact that the
product terms between the matrix A and the Lyapunov matrices Xi disappear which is particularly
useful for a wide range of applications such as mixed H2=H∞-feedback gain design and cases where
the system matrices belong to a given polytopic region. Besides, as seen from Eqs. (11) and (14), the
controller is not dependant on the Lyapunov matrix, but rather the new introduced matrix variable G.

3.1.3. Mixed H2=H∞ state feedback using improved LMI characterizations

An interesting application of the mentioned so-called extended LMI characterizations for H2

and H∞ is the mixed H2=H∞ state-feedback problem. The aim is to design-feedback gains such
that they
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• ensure the H2 performance which means that for a prescribed closed-loop H2 perfor-
mance δ > 0, we have ‖Twz2‖

2
2 < δ;

• minimize the H∞ performance, subject to the above constraint.

This problem can be formulated through an LMI program in decision variables Xi > 0,
i ¼ 1, ⋯; N , Z > 0, Y, G, and γ > 0:

minimize γ
subject to Eqs: ð11Þ, ð12Þ, ð13Þ, and ð14Þ, (MHH)

where δ > 0 and 0 < ν≪ 1 are the given scalars. Notice that another alternative for addressing
the mixed H2=H∞ state-feedback problem is the so-called quadratic approach (see, e.g., [14]),
which is a well-known scheme to address the nonlinearity involved in the matrix inequalities
by using a common Lyapunov matrix for all the involved objectives. However, this scheme
introduces a significant conservatism to the problem in most of the practical cases. The other
alternatives, such as (MHH), which are more computationally expensive, have been basically
considered in the literature in order to reduce the conservatism of the quadratic approach.

Remark 3. Another alternative for the mixed control problem is to design a feedback gain that
minimizes the H2 norm of one channel while satisfying an H∞-norm constraint on the same or another
channel; see, for example, [15]. Hence, in this case, the mixed H2=H∞ problem, given γ > 0 and
0 < ν≪ 1, can be set as follows:

minimize δ
subject to ð11Þ, ð12Þ, ð13Þ and ð14Þ, (MHHN)

where Xi > 0, i ¼ 1, ⋯; N , Z > 0, Y, G, and δ > 0 are decision variables.

3.2. Partial eigenstructure assignment problem

Locating exactly m poles at a specific location can fortunately be performed through the LMI
characterization presented in the previous section. Our specific partial assignment of the set of
eigenvalues

fλ;⋯; λ
zfflfflfflffl}|fflfflfflffl{m times

g, (15)

by state feedback can be implemented in two steps:

1. compute the base Mλ

Nλ

� �
of null space of ½A� λI B2� with conformable partitioning;

2. with arbitrary ηi ∈ℝm, i ¼ 1, ⋯;m, the state feedback will be obtained as F ¼ YG�1 with

Y ¼ NΣN; G ¼ MΣM; (16)

in which
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N :¼ ½Nλ; ⋯; Nλ

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{m times

; I; ⋯; I
zfflfflffl}|fflfflffl{ðn�mÞ times

�,

M :¼ ½Mλ; ⋯;Mλ

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{m times

; I;⋯; I
zfflfflffl}|fflfflffl{ðn�mÞ times

�,
ΣN :¼ diagðη1;⋯; ηm; κ1; ⋯; κðn�mÞÞ,
ΣM :¼ diagðη1; ⋯; ηm; ι1; ⋯; ιðn�mÞÞ

(17)

with κi ∈ℝn and ιi ∈ℝn. Note that only vectors ηk are related to the assignment of the m
eigenvalues to λ. In other words, other vectors (κk and ιk) are not exploited in the pole-
placement purposes and thereby can be employed to meet other Lyapunov-type constraints.

Now, provided by the LMI characterization, for example, (MHH), the first step of our H2=H∞-
based SMC design can be set as an LMI program in the variables Xi > 0, i ¼ 1, ⋯; N , ΣM, ΣN ,

and γ > 0, by recasting (MHH) as:

minimize γ
subject to ð11Þ, ð12Þ, ð13Þ, ð14Þ, and ð16Þ: (MHH2)

However, we have not yet shown that the set of closed-loop eigenvalues encompasses Eq. (15).
This is the subject of the following lemma.

Lemma 2. Set (15) is a subset of the closed-loop system eigenvalues, acquired by applying the state
feedback F ¼ YG�1 with Y and G presented in Eq. (16), to the system in Eq. (3) in the absence of
uncertainty, that is, f ¼ 0.

Proof. Using Eq. (16), we can write

ðAþ B2FÞMληi

¼ Aþ B2ðNΣNÞðMΣMÞ�1
h i

Mληi

¼ Aþ B2ðNΣNÞðMΣMÞ�1
h i

ðMΣMÞei
¼ AðMΣMÞ þ B2ðNΣNÞ½ �ei
¼ AMληi þ B2Nληi

¼ λMληi i ¼ 1, ⋯;m:

Note that ek here denotes the canonical basis of ℝn. □

4. Deriving the switching-function matrix

This subsection proposes two approaches to obtain the sliding matrix S associated with the
state feedback F, derived in the previous subsection based on the partial eigenstructure assign-
ment scheme.
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4.1. Approach 1

The first approach is represented in the following theorem.

Theorem 1. Let ðA;B2Þ be a controllable matrix pair. Then

i. ∀ λ∈ℝ�, there always exists a gain matrix F so that m of the eigenvalues of Aþ B2F are
equivalent to λ, and Aþ B2F has m-independent eigenvectors associated with λ.

ii. Define S ¼ ½v1;⋯;vm�T, where vi is a left eigenvector of Aþ B2F associated with the eigenvalue λ,
then, SðAλ � B2FÞ ¼ 0 and SB2 is invertible.

Proof. (i) As ðA;B2Þ is controllable, we can claim that ðλI � A;B2Þ is also controllable for any
λ∈ℝ�. Then, it is easy to see that we can always find F such that the null space of Aλ � B2F has
dimension m, which implies that Aþ B2F has m-independent eigenvectors associated with λ.

(ii) Define S ¼ ½v1;⋯;vm�T , it is easy to show that SðAλ � B2FÞ ¼ 0. Now, assume

SB2 :¼
vT1
⋮
vTm

2
4

3
5B2 ¼ Ω;

where Ω∈ℝm ·m. If Ω is not full rank, then there exists a nonsingular matrix Λ such that the
first row of ΛΩ is zero. This is equivalent to

Λ
vT1
⋮
vTm

2
4

3
5B2 :¼

~vT1
⋮
~vTm

2
4

3
5B2 ¼ ΛΩ;

that is, there exists a vector ~v1 such that ~vT1B2 ¼ 0. On the other hand, we know ~vT1 ½Aλ � B2F�
¼ 0, and so

rank
�
½λI � ðAþ B2FÞ B2�

�
< n:

This is clearly in contradiction with the controllability of ðA;B2Þ. In other words, if we can find
a left eigenvector of Aþ B2F associated with λ that is orthogonal to B2, ðA;B2Þ must be
uncontrollable, which is obviously a contradiction.

In brief, by virtue of Theorem 1, the switching-function matrix S, associated with the state
feedback F, obtained through solving the LMI problem in (MHH2), can be selected as the set of
m linearly independent left eigenvectors of Aþ B2F associated with the (arbitrarily selected)
repeated eigenvalue λ∈ℝ�.

4.2. Approach 2

An alternative approach to obtain the sliding matrix is to address the equality

ðSB2Þ�1SAλ ¼ F; (18)
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utilizing an LMI optimization method as follows. As the matrix S must ensure the invertibility
of SB2, let us suppose S ¼ BT

2P, with P an s.p.d matrix which will be obtained hereafter. The
condition in Eq. (18) can be dealt with a simple relaxation method as

minimize α subject to ‖BT
2PðAλ � B2FÞ‖ < α;

where α > 0 is a scalar variable and F is a given state-feedback matrix, obtained in the previous
subsection, ensuring m of the closed-loop eigenvalues are equal to λ. Simply it can be shown
that the above problem is equivalent to the following LMI minimization problem:

minimize α subject to
�αI ⋆

BT
2PðAλ � B2FÞ �αI

� �
< 0: (19)

Hence, the H2=H∞-based SMC problem is now to find the global solution of the above mini-
mization problem, and then the sliding matrix is obtained as S ¼ BT

2P. In the case of feasibility,
this problem will enforce α so that it is an extremely small number associated with the
precision of the computational unit.

Notice that this approach is numerically very efficient and attractive compared to the first
approach.

5. The summary of H2=H∞-based SMC design method

Now, we summarize the proposed H2=H∞-based SMC in the following theorem.

Theorem 2. Assume that the optimization problem in (MHH2) has a solution F for some δ > 0 and
γ > 0. Then, the H2=H∞ performance constraints ‖Twz2‖

2
2 < δ and ‖Twz∞‖

2
∞ < γ are ensured, and

after the reaching time ts, the resulting reduced n�m-order-sliding mode dynamics, obtained by
applying the following control law:

uðtÞ ¼ FxðtÞ þ ϑðtÞ, (20)

where ϑðtÞ is introduced in Eq. (7), to system (3), is asymptotically stable.

Proof. Consider a change of coordinates x↦Trx. In this new coordinate system, the new matrix
pair ðA;B2Þ is of the form

A ¼ A11 A12
A21 A22

� �
; B2 ¼ 0

Bp

� �
(21)

where the square matrix Bp ∈ℝm ·m has full rank and more importantly is nonsingular; see [1].

Suppose also that F is the state feedback in the new coordinate that ensures the closed-loop
stability, assigns m poles of the closed-loop system at λ, and satisfies the H2=H∞ performance
constraints ‖Twz2‖

2
2 < δ and ‖Twz∞‖

2
∞ < γ. Now, let the switching-function matrix in the orig-

inal coordinates be parameterized such that [1]
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S ¼ S2½ �M Im �Tr; (22)

where S2 ∈ℝm ·m. Notice that theoretically the choice of S2 may not influence the sliding
motion [1]. According to the discussion given in the previous section, it can be readily shown

that there exists a matrixM such that F ¼ ðSB2Þ�1SðA� λInÞ, where S ¼ S2½ �M Im � denotes
the switching-function matrix in the new coordinate. Let ðx1;x2Þ be the partition of the system
states associated with the certain system coordinates in Eq. (21), then it can be shown that
while the system states are confined to the sliding manifold, that is, σ ¼ 0, the reduced-order-
sliding mode dynamics are governed by the stable reduced-order system matrix A11 þ A12M.

Moreover, the dynamics of σ can be derived by taking the time derivative of Eq. (5), substitut-
ing in the state equation (3), and using controllers (8) and (7), that is,

_σðtÞ ¼ λσðtÞ � ρðtÞ σðtÞ
‖σðtÞ‖þ SB2f ðtÞ: (23)

Finally, it follows from ‖SB2f ðtÞ‖ ≤ρðtÞ that the reachability condition σT _σ
‖σ‖ < 0 holds. □

6. Design of SMC with additional regional pole-placement constraints

Note that the proposed method here offers the advantage of introducing additional convex
constraints on the closed-loop dynamics. By locating the closed-loop system poles in a
preselected region, an adequate transient response for system trajectories can be guaranteed
[14]. Therefore, the objective is to augment the optimization problems previously described by
pole-clustering constraints. Note also that as it is already ensured that m of the closed-loop
eigenvalues are exactly assigned to a given negative real value (λ), the remaining eigenvalues
in fact belong to the spectrum of the reduced n�m-order-sliding motion. As a result, a
satisfactory transient response for the sliding motion can be achieved by clustering the poles
governing the sliding motion.

Let us have a brief introduction to the LMI region. Simply, an LMI region is a subset D of the
complex plane as

D :¼fz∈ }E502 : fDðzÞ≜Ξþ zΠþ zΠT < 0g (24)

in which Ξ ¼ ΞT ∈ℝξ ·ξ and Π∈ℝξ ·ξ are real matrices. fDðzÞ is also called the characteristic
equation of the region D.

Definition 1 [16]. A real matrixA is said to beD-stable if all its eigenvalues lie within the LMI regionD.

Lemma 3 [16]. A real matrix A is said to be D-stable if a symmetric matrix XD > 0 exists so that

Ξ⊗XD þΠ⊗ ðXDAÞ þΠT ⊗ ðATXDÞ < 0, (25)

where ⊗ denotes the Kronecker product.
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However, the synthesis problem obtained by imposing the pole-clustering constraints
presented in, for example, [14] or [16] to the synthesis problem in (MHH2) would not result in
a convex problem. Alternatively, the regional pole-clustering constraints can be reformulated
so that the product term between the Lyapunov matrix Xi and the systemmatrix A is removed.

An instrumental theorem is represented first and the main theorem will be presented later in
Theorem 4.

Theorem 3. Let A be a real matrix. The following statements are equivalent, with s.p.d X, G and given
real matrices 0 < Ξ∈ℝξ· ξ and Π∈ℝξ· ξ.

1. A is D-stable, where D is given in Eq. (24).

2. ∃ X such that

Ξ⊗XþΠ⊗ ðXAÞ þΠT ⊗ ðXAÞT ⋆
0 �X

� �
< 0:

3. ∃ X > 0 and G such that

�ðG þ GTÞ ⋆ ⋆ ⋆
ðΠ⊗AÞG þ Iξ ⊗X �Iξ ⊗X ⋆ ⋆

G 0 �Iξ ⊗X ⋆
G 0 0 �Ξ�1 ⊗X

2
6664

3
7775 < 0: (26)

Proof. Refer to the Appendix. □

While Eq. (26) can be seen as a necessary and sufficient condition for D-stability, it is not very
useful in terms of control synthesis purposes. Further, since Ξ ¼ 0, the result of Theorem 3
cannot cover the standard continuous-time systems stability. However, if we let G ¼ Iξ ⊗G
in Eq. (26), a sufficient condition is achieved which is beneficial for the control synthesis
purposes.

Theorem 4. Let A, 0 ≤Ξ∈ℝξ· ξ
, and Π∈ℝξ ·ξ be real matrices. A is D-stable if

�Iξ ⊗ ðGþ GTÞ ⋆ ⋆ ⋆
Π⊗ ðAGÞ þ Iξ ⊗X �Iξ ⊗X ⋆ ⋆

Iξ ⊗G 0 �Iξ ⊗X ⋆
Ξ

1
2 ⊗G 0 0 �Iξ ⊗X

2
66664

3
77775
< 0, (27)

where G is a general matrix and X is an s.p.d matrix.

Proof. The proof can be performed similar to the proof of Theorem 3 by letting G ¼ Iξ ⊗G. □

Clearly, the above theorem does not require Ξ > 0, but Ξ ≥ 0. This is indeed a generalization of
the extended Lyapunov theorem presented in Theorem 3.1 of [12], and the usual stability
region can be obtained by letting Ξ ¼ 0 and Π ¼ 1 in Eq. (27):
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region can be obtained by letting Ξ ¼ 0 and Π ¼ 1 in Eq. (27):
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�ðGþ GTÞ ⋆ ⋆
AGþ X �X ⋆

G 0 �X

2
4

3
5 < 0: (28)

Moreover, the equivalence of Eq. (28) to the standard Lyapunov stability inequality for contin-
uous-time linear systems is presented in [12].

Specifically, let us confine the closed-loop poles to the region }E512ðα; r;θÞ (see [14]) which
can ensure a minimum decay rate α, a minimum damping ratio ζ ¼ cos θ, and a maximum
undamped natural frequency ωd ¼ rsinθ. The LMI region for an αstability, that is, ReðzÞ < �α,
can be obtained through Eq. (27), with Ξ ¼ 2α, Π ¼ 1, AAþ B2F, and XXi. Moreover, by

letting Ξ ¼ 0 and Π ¼ sinθ cosθ
� cosθ sinθ

� �
, the LMI region for a conic sector }E512ð0, 0;θÞ is

achieved. Eventually, a disk centered at the origin with radius r corresponds to

Ξ ¼ �r 0
0 �r

� �
; Π ¼ 0 1

0 0

� �
: (29)

However, for this special pole-clustering constraint, asΞ is not a semi-positive definite matrix, the
LMI region cannot be obtained throughEq. (27).We can alternatively state the following theorem.

Theorem 5. Let A be a real matrix. The following conditions are equivalent:

1. The eigenvalues of A lie in a disk centered at the origin with radius r.

2. There exists a symmetric matrix X > 0 such that

1
r
AXAT � rX < 0: (30)

3. There exists a symmetric matrix X > 0 such that

�rX ⋆
XAT �rX

� �
< 0: (31)

4. There exist a symmetric matrix X > 0, and a matrix G such that

�rX ⋆
GTAT �ðGþ GTÞ þ 1

r
X

" #
< 0: (32)

Proof. Refer to the Appendix. □

Notice that the above theorem with r ¼ 1 reduces to the standard Lyapunov stability inequal-
ity for discrete-time linear systems and its extended (robust) version; for example, see [17].
Now, the extended LMI region for a disk centered at the origin with radius r is as follows:

�rXi ⋆

ðAGþ B2YÞT �ðGþ GTÞ þ 1
r
Xi

" #
< 0, (33)

which is obtained by replacing A:¼Aþ B2F, X:¼Xi in Eq. (32) and introducing Y ¼ FG.
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Remark 4. Exploiting a common G may also lead to conservatism compared with the methods, for
example, in [18]. However, the methods in the aforementioned references are not beneficial for the control
synthesis aims, unless gain-scheduled controllers [19] are considered. Moreover, by employing two instru-
mental variables, a different sufficient condition for robust D stability has been developed in [20] which is
not applicable to the continuous-time control synthesis purposes. Nevertheless, the approach here can
achieve less conservative results through employing non-common Lyapunov variables for every involved
specification.

7. Numerical examples

This section evaluates the effectiveness of the proposed theory using a numerical example.
Consider a two-input, two-output, fourth-order plant describing the motion of a Boeing B-747
aircraft obtained by linearization around an operating condition of 20,000 ft. altitude with a
speed of Mach 0.8 [21]. The system matrices are as follows:

~A ¼

�0:1196 0:0004 �1:0001 0:0383
�4:1195 �0:9743 0:2919 �0:0004
1:6204 �0:0161 �0:2320 �0:0001
0:0007 1:0054 0:0003 0:0003

2
6664

3
7775;

~B ¼

�0:0004 0:0126
0:3103 0:1832
0:0124 �0:9219
�0:0001 �0:0002

2
6664

3
7775;

~C ¼ 1 0 0 0
0 0 0 1

� �
;

and the system state, output, and input vectors are

~xðtÞ ¼ βðtÞ pðtÞ rðtÞ φðtÞ½ �T ;
~yðtÞ ¼ βðtÞ φðtÞ½ �T ;
uðtÞ ¼ ½ δaðtÞ δrðtÞ �T :

where βðtÞ, pðtÞ, rðtÞ, φðtÞ, δaðtÞ, and δrðtÞ denote the sideslip angle, the roll rate, the yaw rate,
the roll angle, the aileron deflection, and the rudder deflection, respectively.

We also let

C2 ¼
diagð0:1; 0:1; 10; 10; 1; 1Þ

02 · 6

" #
;

D2 ¼
06 · 2

diagð1, 1Þ

" #
;

B1 ¼ I6:

Note that the last two nonzero terms of C2 are associated with the integral action and are less
heavily weighted. In addition, the third and fourth terms of C2 have strongly been weighted in
comparison with the fifth and sixth terms to provide an adequate quick closed-loop response
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in terms of the angular acceleration in roll and yaw. We also aim to assign the closed-loop poles
in the half-plane x < �α < �0:1.

We solve the minimization problem in (MH2), with λ ¼ �3, and the state-feedback gain is
obtained as

F ¼ 0:7166 68:7237 16:0446 �19:6616 �4:0591 �62:2050
34:5978 24:6097 �23:0976 0:7777 7:4387 �5:7251

� �
: (34)

Employing the first proposed approach in Section 4, the associated sliding function matrix for
the augmented system is

S ¼ �0:7351 �0:6091 0:2907 0:0151 �0:0621 �0:0066
�0:4278 0:6381 0:2355 �0:1309 �0:0638 �0:5772

� �
: (35)

The sliding motion is governed by the set of poles �2:3205� 3:0365i; � 1:9203� 1:2377if g,
and the associated true value of H2 cost from w to z is 28:0959. Assuming the matched

Figure 1. System states.
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uncertainty term in Eq. (1) as f ðtÞ ¼ 0:2 sin ðtÞβðtÞ
0:3 sin ðtÞφðtÞ
� �

, using the proposed SMC with the

obtained linear gain F in Eq. (34) and the associated switching-function matrix F in Eq. (35),
and letting the switching gain ρ ¼ 1, and considering a step of 5° for β during 30–40 s as well as
a step of 2° for ϕ during 5–15 s, Figures 1–3 show the tracking responses of the system. Note
that the discontinuity in the nonlinear control term ϑðtÞ in Eq. (7) is smoothed by using a
sigmoidal approximation [11] as

ϑεðtÞ ¼ �ðSB2Þ�1ρðtÞ σðtÞ
εþ ‖σðtÞ‖ (36)

with the scalar ε ¼ 0:01 and ρðtÞ ¼ 1, where this can remove the discontinuity at σ ¼ 0 and
introduce the possibility to accommodate the actuator rate limits.

Figure 2. Control efforts.
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8. Conclusions

The focus of this chapter was on the development of novel framework for designing a sliding
surface for a given system while enforcing a number of Lyapunov-type constraints such as the
H2=H∞ and/or regional pole clustering. We specifically considered the problem of output
tracking using a suboptimal state-feedback SMC. In doing so, in the first stage, through a
convex optimization approach, a state-feedback gain is designed while assigning a certain
number (m) of the closed-loop system eigenvalues to a predetermined value, as well as satis-
fyingH2=H∞-norm constraints. The advantages of the proposed scheme are threefold: (i) it can
set the stage for designing SMC while the level of control efforts is taken into account; (ii) it
makes it possible to integrate a number of Lyapunov-type constraints, for example, regional
pole-placement constraints, into the SMC design problem; and (iii) the controller can be
computed in a numerically very efficient method. The achieved results confirmed the effec-
tiveness of the proposed approach.

Figure 3. Switching function.
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A. Proof of Theorem 3

Notice that the equivalence between Eqs. (1) and (2) can be obtained from Lemma 3. We will
show the equivalence between Eqs. (2) and (3) here. The use of Lemma 1 with Ψ ¼ Ξ⊗X,
U ¼ G and S ¼ Π⊗ ðXAÞ, with X ¼ X�1, yields

P� ðG þ G
TÞ þ Ξ⊗X ⋆

Π⊗ ðXAÞ þ G �P

" #
< 0,

or equivalently,

P� ðG þ G
TÞ þ Ξ⊗X ⋆

Π⊗Aþ ðIξ ⊗XÞG �ðIξ ⊗XÞPðIξ ⊗XÞ

" #
< 0, (37)

By performing the congruence transformation G 0
0 I

� �
, with G ¼ G

�1
, and using the Schur

complement, Eq. (37) becomes

�ðG þ GTÞ ⋆ ⋆ ⋆
ðΠ⊗AÞG þ Iξ ⊗X �ðIξ ⊗XÞPðIξ ⊗XÞ ⋆ ⋆

G 0 �P�1 ⋆
G 0 0 �Ξ�1 ⊗X

2
6664

3
7775 < 0:

The above inequality finally linearizes to Eq. (26) with the choice P ¼ Iξ ⊗X�1.

B. Proof of Theorem 5

The equivalence between Eqs. (1) and (3) is shown in, for example, [14]. Moreover, the equiv-
alence between Eqs. (2) and (3) is simply obtained through applying the Schur complement
with respect to the block (2; 2) in Eq. (31). The proof can be followed by noticing that if one
applies the Schur complement with respect to the block (1; 1) in Eq. (32), Eq. (30) is recovered
by choosing G ¼ GT ¼ 1

r X > 0, hence Eq. (2) implies Eq. (4). Also, by left and right multiplying

Eq. (32) by ½ I A � and ½ I A �T , respectively, one can achieve Eq. (30). Hence, Eq. (4) implies
Eq. (2), and the proof is completed.

Author details

Ahmadreza Argha* and Steven W. Su

*Address all correspondence to: rezaargha@yahoo.com

Faculty of Engineering and Information Technology, University of Technology, Sydney,
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Abstract

This work deals with sliding mode control of discrete-time systems where the outputs
are defined or chosen to be of relative degrees more than one. The analysis brings
forward important advancements in the direction of discrete-time sliding mode control,
such as improved robustness and performance of the system. It is proved that the
ultimate band about the sliding surface could be greatly reduced by the choice of higher
relative degree outputs, thus increasing the robustness of the system. Moreover, finite-
time stability in absence of uncertainties is proved for such a choice of higher relative
degree output. In presence of uncertainties, the system states become finite time ulti-
mately bounded in nature. The work presents in some detail the case with relative
degree two outputs, deducing switching and non-switching reaching laws for the same,
while for arbitrary relative degree outputs, it shows a general formalisation of a control
structure specific for a certain type of linear systems.

Keywords: discrete time, sliding mode control, finite-time stability, robust control,
ultimate band

1. Introduction

Sliding mode control is a robust control technique, which is able to make the system insensitive
towards a particular class of uncertainties in finite time. Such uncertainties, known as matched
uncertainties, are those that appear along the input channel of the system and can be nullified
by a simple switching control structure when the disturbance is bounded in nature. The switch
happens about a surface in the space of the state variables and is called a sliding or a switching
surface. The sliding variable s ¼ sðxÞ denotes how far the system states are from the sliding
surface S ¼ x : s xð Þ ¼ 0f g: The control brings the system monotonically towards the sliding

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



surface, thus jsðtÞj reducing until it becomes zero at a finite time. This is called the reaching
phase. Once the system hits the surface, it stays there for all future times, thus making the
system dynamics independent of the matched uncertainties and dependent only on the sliding
surface parameters. Chosen appropriately, one can ensure that the system states become at
least asymptotically stable during this phase called sliding motion of the system [15].

However, in practice, this beautiful property of sliding mode control could not be realized
because of physical limitations of an actuator. Theoretically, the control needs to switch about
the sliding surface with infinite frequency in order to be insensitive towards bounded matched
uncertainties, but no real actuators can offer switching with infinite frequency. This causes
chattering, which are high frequency actuator action giving rise to unmodelled dynamics
excitation in the system as well as rapid degradation of the physical system. Moreover,
measurements by sensors and control computation in a digital computer take place in finite-
time intervals in modern times, thus ripping off the properties of continuous sliding mode
control which made it theoretically so appealing.

To remove this gap between theory and practice, researchers developed the theory of discrete-
time sliding mode control (DSMC) in [1–3, 16, 17, 19, 20, 22, 23]. Moreover, there are many
inherently discrete-time systems that appear in nature as well as in engineering. For such
discrete representation of a system, it was shown that the states of these systems can no longer
hit the sliding surface and stay there in presence of disturbances. The best that can be achieved
is ultimate boundedness of the system about the sliding surface in finite time. Hence, robust-
ness of the system gets defined by the width of this ultimate band for discrete-time systems. It
then becomes imperative that research takes place in the direction to reduce the width of the
ultimate band, ensuring better robustness of the system. The work in this chapter is motivated
by this objective and in the sequel it is shown how the choice of the relative degree of the
output (or the sliding variable) to be greater than one, positively influences the robustness as
well as the performance of the system as defined above. From this point and further in the
chapter, the terms ‘output’ and ‘sliding variable’ will be used interchangeably, as sliding
variable can be viewed as a constructed output of the system.

Traditionally, DSMC has been developed by taking outputs of relative degree one, i.e. there is
only unit delay between the output and the input of the system. This has given rise to proposals
of various reaching laws of the form s kþ 1ð Þ ¼ f ðs kð ÞÞ, where s kð Þ is the sliding variable at the
kth time step. These reaching laws make js kð Þj approach an ultimate band about the sliding
surface in finite time. One can readily calculate the control that does so from the reaching law,
since sðkþ 1Þ contains the control uðkÞ, when calculated from the system model. The most well-
known reaching laws are laid down in Refs. [2, 3, 17]. Of the above, the first two papers deal
with non-switching reaching laws, whereas the third one had proposed a switching reaching
law. Even to this day, reaching law propositions form an important area of work in discrete-time
sliding mode control, with different reaching laws favouring the design of control for a particu-
lar type of system. Some of these reaching laws are found in Refs. [5–11, 21, 24, 25].

The unity relative degree assumed in all the above works is also their major limitation. While it
is the normal case to consider, there is no real restriction on the choice of this relative degree. In
some system structures, the output can be naturally of relative degree more than one. In
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time sliding mode control (DSMC) in [1–3, 16, 17, 19, 20, 22, 23]. Moreover, there are many
inherently discrete-time systems that appear in nature as well as in engineering. For such
discrete representation of a system, it was shown that the states of these systems can no longer
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is ultimate boundedness of the system about the sliding surface in finite time. Hence, robust-
ness of the system gets defined by the width of this ultimate band for discrete-time systems. It
then becomes imperative that research takes place in the direction to reduce the width of the
ultimate band, ensuring better robustness of the system. The work in this chapter is motivated
by this objective and in the sequel it is shown how the choice of the relative degree of the
output (or the sliding variable) to be greater than one, positively influences the robustness as
well as the performance of the system as defined above. From this point and further in the
chapter, the terms ‘output’ and ‘sliding variable’ will be used interchangeably, as sliding
variable can be viewed as a constructed output of the system.

Traditionally, DSMC has been developed by taking outputs of relative degree one, i.e. there is
only unit delay between the output and the input of the system. This has given rise to proposals
of various reaching laws of the form s kþ 1ð Þ ¼ f ðs kð ÞÞ, where s kð Þ is the sliding variable at the
kth time step. These reaching laws make js kð Þj approach an ultimate band about the sliding
surface in finite time. One can readily calculate the control that does so from the reaching law,
since sðkþ 1Þ contains the control uðkÞ, when calculated from the system model. The most well-
known reaching laws are laid down in Refs. [2, 3, 17]. Of the above, the first two papers deal
with non-switching reaching laws, whereas the third one had proposed a switching reaching
law. Even to this day, reaching law propositions form an important area of work in discrete-time
sliding mode control, with different reaching laws favouring the design of control for a particu-
lar type of system. Some of these reaching laws are found in Refs. [5–11, 21, 24, 25].

The unity relative degree assumed in all the above works is also their major limitation. While it
is the normal case to consider, there is no real restriction on the choice of this relative degree. In
some system structures, the output can be naturally of relative degree more than one. In
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others, one can easily construct an output with higher relative degree and consider it to the
sliding variable to go about the analysis. In the recent studies [13, 14] which constitute the
content in this chapter, it is shown that when this apparent limitation is lifted, we get reduced
width of ultimate band, thus increasing robustness, as well as finite-time stability during
sliding in absence of uncertainties. The latter is an important achievement, as previously
finite-time stability during sliding for discrete-time systems had not been achieved. Only in
Ref. [18], such finite-time stability of states had been achieved during sliding, but with specific
design of surface parameters. With relative degree more than one, this finite-time stability of
the system states during sliding is always guaranteed for a wide range of choices of the surface
parameters.

The chapter is written as follows: in Section 2, an idea on the relative degree of outputs for
discrete-time systems is given, which is used in the theoretical developments in the remainder
of the chapter. In Section 3, a detailed work with reaching law propositions is done for relative
degree two outputs for general linear time-invariant (LTI) systems of order n. For arbitrary
relative degree outputs, a generalized control structure is proposed for a specific form of LTI
systems in Section 4, in which the relative degree r is equal to the order n of the system.
Improved robustness and finite-time stability are proved for all cases in both the sections.
Simulation examples are also shown in each section, which corroborate the theoretical devel-
opments. The chapter ends with discussing the main results and implications thereof.

2. Relative degree for discrete-time systems

The concept of relative degree is well understood for continuous-time systems. The definition
can be written as follows:

Definition 1: For a continuous-time system

_x ¼ f cðt, x, uÞ ð1Þ

the output yðtÞ is said to be of relative degree r if yr ¼ grðt, x, uÞ and yi ¼ gi t, xð Þ ∀ 0 ≤ i < r,

where uðtÞ is the control input and yp denotes the pth time derivative of y.

The above definition means that the control first appears physically in the rth derivative of the
output yðtÞ and not before that.

The concept of relative degree for discrete-time systems can be easily understood by making a
parallel of the above definition in the discrete-time domain. The derivative operator in contin-
uous time becomes the difference operator in discrete time. Each difference introduces a delay
between the output and the input of the system. With this in mind, one can propose the
definition of relative degree for discrete-time systems as follows:

Definition 2: For a discrete-time system

x kþ 1ð Þ ¼ f dðk, x kð Þ, u kð ÞÞ ð2Þ
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the output yðkÞ is said to be of relative degree r if y kþ rð Þ ¼ hrðk, x kð Þ, u kð ÞÞ and y kþ ið Þ ¼ hi k,ð
x kð ÞÞ ∀ 0 ≤ i < r, where uðkÞ is the control input and yðkþ pÞ denotes the p unit delays of y.

Physically, the above definition means that the control first appears in the rth delay of the
output yðkÞ and not before that. For a simple LTI system ðA, B, CÞ, this will mean that

CAi�1B ¼ 0 ∀ i ¼ 1 to ðr� 1Þ and CArB 6¼ 0.

3. Systems with relative degree two output

Let us consider a discrete-time LTI system in the regular form as

x1 kþ 1ð Þ ¼ A11x1 kð Þ þ A12x2 kð Þ
x2 kþ 1ð Þ ¼ A21x1 kð Þ þ A22x2 kð Þ þ B2u kð Þ þ B2f kð Þ ð3Þ

where x1 kð Þ∈Rn�m and x2 kð Þ∈Rm are the n states and u kð Þ∈Rm is the control input. The
disturbance f kð Þ∈Rm is assumed to be bounded as jjf kð Þjj ≤ f m.

Obviously A11 ∈R n�mð Þ�ðn�mÞ, A12 ∈R n�mð Þ�m, A21 ∈Rm�ðn�mÞ,A22 ∈Rm�m and B2 ∈Rm�m.
Let us assume det B2ð Þ 6¼ 0. Written in the standard form x kþ 1ð Þ ¼ Ax kð Þ þ Bðu kð Þ þ f kð ÞÞ for
LTI systems, we shall have A ¼ A11 A12

A21 A22

� �
and B ¼ 0

B2

� �
.

3.1. Asymptotic stability with relative degree one output

A relative degree one output for the discrete-time system as in Eq. (3) can be proposed as

s1 kð Þ ¼ CT
1 x kð Þ ¼ Cx1 kð Þ þ Imx2ðkÞ ð4Þ

where C∈Rm�ðn�mÞ and the suffix 1 denotes relative degree one. Then

CT
1B ¼ C Im½ � 0

B2

� �
¼ B2 ð5Þ

and we can calculate the control uðkÞ from

s1 kþ 1ð Þ ¼ CT
1Ax kð Þ þ CT

1Bu1 kð Þ þ CT
1Bf ðkÞ ð6Þ

using some relative degree one reaching law for sðkÞ, since B2 is non-singular.

Design of C is done considering closed-loop performance during sliding motion of the nominal
system, i.e. system with f kð Þ ¼ 0. When the system is sliding, output s1ðkÞ is zero, which makes
x2 kð Þ ¼ �Cx1ðkÞ. Hence, the closed loop during sliding becomes

x1 kþ 1ð Þ ¼ A11 � A12Cð Þx1ðkÞ ð7Þ
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which is traditionally made asymptotically stable by choosing λmaxðA11 � A12CÞ < 1. Since
x2ðkÞ is algebraically related to x1ðkÞ, it also settles down to zero asymptotically.

3.2. Finite-time stability with relative degree two output

For the system in Eq. (3), a relative degree two output can be

s2 kð Þ ¼ CT
2 x kð Þ ¼ Cx1ðkÞ ð8Þ

where C∈Rm�ðn�mÞ can be chosen same as in Eq. (4) or different, but satisfying the conditions
in Theorem 1 below. The suffix 2 is used to denote relative degree two.

Now CT
2B ¼ C 0½ � 0

B2

� �
¼ 0 clearly shows that

s2 kþ 1ð Þ ¼ CT
2AxðkÞ ð9Þ

as calculated from the system dynamics in Eq. (3) does not contain the control input uðkÞ. Then
we need to further assume CT

2B ¼ C 0½ � A11 A12
A21 A22

� �
0
B2

� �
¼ CA12B2 to be non-singular so

that the output s2ðkÞ is of relative degree two. Then we obtain

s2 kþ 2ð Þ ¼ CT
2A

2x kð Þ þ CT
2ABðu2 kð Þ þ f kð ÞÞ ð10Þ

by adding one more delay to Eq. (9). The control input uðkÞ can now be obtained using Eq. (10).

Theorem 1. If KerðCÞ ¼ 0 and det CA12ð Þ 6¼ 0, then the output s2ðkÞ with relative degree two as
designed in Eq. (8) ensures finite-time stability of the states of the system in Eq. (3) during sliding, in
absence of the disturbance f ðkÞ.
Proof. During sliding, s2 kð Þ ¼ Cx1 kð Þ ¼ 0. If Ker Cð Þ ¼ 0, it follows that x1 kð Þ ¼ 0 during sliding.
Also, we have s2 kþ 1ð Þ ¼ CA11x1 kð Þ þ CA12x2 kð Þ ¼ 0 during sliding which implies

x2 kð Þ ¼ � CA12ð Þ�1CA11x1ðkÞ. As x1 kð Þ ¼ 0, it follows that x2 kð Þ ¼ 0 as well, since CA12 is
assumed to be non-singular. Hence, all the states become zero at the same instant as the output
hits zero. This happens in finite time for any appropriately designed reaching law, which can
bring the nominal system to the sliding surface in finite time. Thus, one can conclude that the
system states become finite-time stable with the choice of relative degree two output.

Note that, Ker Cð Þ ¼ 0 is only a sufficient condition and not a necessary one in order to achieve
finite-time stability of system states. The above theorem points out an important achievement
in the closed-loop reduced order dynamics compared to the choice of the relative degree one
output. Of course, if there is a disturbance, then the finite-time stability would be changed to
finite time-bounded stability, i.e. the system states will only enter an ultimate band in a finite
time and stay there.

Remark 1. In simulations, the parameter C is chosen the same for both relative degree one and two
outputs for comparison purposes. However, selection of the parameter C for relative degree two output
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does not in any way require apriori design of the same parameter for a relative degree one output. The
property of finite-time stability is inherent to the relative degree two output systems provided C is
selected as per the conditions in Theorem 1, which are easy to satisfy.

3.3. Non-switching reaching law

In Ref. [3], a reaching law for discrete-time systems is introduced as

s kþ 1ð Þ ¼ sd kþ 1ð Þ þ d kð Þ

sd kð Þ ¼
k� � k
k�

s 0ð Þ for k < k�

0 for k ≥ k�

8<
:

ð11Þ

and dðkÞ is an uncertainty derived from the system uncertainty f ðkÞ. It is evident that this
reaching law makes the sliding variable js kð Þj ≤ dm ∀ k ≥ k�, i.e. dm is the ultimate band for the
sliding variable sðkÞ, where the uncertainty dðkÞ is bounded as jd kð Þj ≤ dm.

3.3.1. Ultimate band for relative degree one output

It is evident that

s1 kþ 1ð Þ ¼ CT
1 x kþ 1ð Þ ¼ CT

1Ax kð Þ þ CT
1Bðu1 kð Þ þ f kð ÞÞ ð12Þ

which requires d kð Þ ¼ d1 kð Þ ¼ CT
1Bf ðkÞ in Eq. (11) so that the control

u1 kð Þ ¼ � CT
1B

� ��1
h
CT
1A

� �
x kð Þ � sd kþ 1ð Þ

i
ð13Þ

does not contain any uncertain terms. This makes the bound of d1 kð Þ for relative degree one
outputs as

d1m ¼ jjCT
1Bjj f m ¼ jjB2jj f m ð14Þ

which is the ultimate band δ1 as well.

3.3.2. Ultimate band for relative degree two output

It is already shown that s2ðkþ 1Þ does not contain the control input as well as the matched
disturbance, being a relative degree two output. Hence, we obtain

s2 kþ 2ð Þ ¼ CT
2 x kþ 2ð Þ ¼ CT

2A
2x kð Þ þ CT

2ABðu kð Þ þ f kð ÞÞ ð15Þ

containing the control input and this requires to extend the reaching law in Eq. (11) to find
s2ðkþ 2Þ. It is done by taking the nominal part of the reaching law (without dðkÞ) and adding
an unit delay to find s2ðkþ 2Þ. Then we include d2ðkÞ to take care of the matched disturbance.
This gives the extended reaching law for relative degree two outputs as
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s2 kþ 2ð Þ ¼ sd kþ 2ð Þ þ d2 kð Þ

sd kð Þ ¼
k� � k
k�

s 0ð Þ for k < k�

0 for k ≥ k^�

(
ð16Þ

With d2 kð Þ ¼ CT
2ABf ðkÞ in Eq. (16), the control input

u2 kð Þ ¼ � CT
2AB

� ��1½ðCT
2A

2x kð Þ � sd kþ 2ð Þ� ð17Þ

does not contain any uncertain terms. The bound of d2ðkÞ in this case is

d2m ¼ jjCT
2ABjj f m ≤ jjCA12jjjjB2jj f m ¼ jjCA12jjd1m ð18Þ

which is the ultimate band δ2 as well.

Theorem 2. If in addition to the conditions in Theorem 1, C also satisfies λmax CA12ð Þ < 1, then the
ultimate band δ2 for the relative degree two output with reaching law in Eq. (16) is lesser than the
ultimate band δ1 for the relative degree one output with reaching law in Eq. (11), irrespective of whether
the parameter C is chosen same for both relative degree cases.

Proof. The property is straightforward to see from Eq. (18).

3.4. Switching reaching law

In Ref. [17], Gao et al. proposed a switching reaching law for discrete time SMC systems,
which has the form

s1 kþ 1ð Þ ¼ αs1 kð Þ � β1sign s1 kð Þð Þ þ d1ðkÞ ð19Þ

where α∈ ð0, 1Þ and β1 > d1m are real constants, d1ðkÞ is the uncertainty derived from the
system uncertainty f ðkÞ and bounded as jd1 kð Þj < d1m. At present there are two ways to analyse
Gao's reaching law, one provided in Ref. [4] and the other in Ref. [12]. In this work, the well-
known analysis established in Ref. [4] is followed.

3.4.1. Ultimate band for relative degree one output

It is already shown that

s1 kþ 1ð Þ ¼ CT
1 x kþ 1ð Þ ¼ CT

1Ax kð Þ þ CT
1Bðu1 kð Þ þ f kð ÞÞ ð20Þ

which requires d1 kð Þ ¼ CT
1Bf kð Þ in Eq. (19) so that the control input

u1 kð Þ ¼ � CT
1B

� ��1½CT
1Ax kð Þ � αCT

1 x kð Þ þ β1sign CT
1 x kð Þ� �� ð21Þ

does not contain uncertain terms. This makes the bound of d1 kð Þ for relative degree one
outputs as
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d1m ¼ jjCT
1Bjj f m ¼ jjB2jj f m ð22Þ

which is the same as Eq. (14) in Section 3.3.1.

As per the analysis in Ref. [4] of the reaching law in Eq. (19), we need β1 >
ð1þαÞ
ð1�αÞ d1m for

crossing-recrossing s1 kð Þ ¼ 0 at each successive step after crossing it for the first time. The
ultimate band is then calculated as

δ1 ¼ β1 þ d1m >
2d1m
1� α

ð23Þ

3.4.2. Ultimate band for relative degree two output

It is already shown that s2ðkþ 1Þ does not contain the input. Hence, we calculate

s2 kþ 2ð Þ ¼ CT
2 x kþ 2ð Þ ¼ CT

2A
2x kð Þ þ CT

2ABðu2 kð Þ þ f kð ÞÞ ð24Þ

where the control input appears. This requires one to also extend the reaching law in Eq. (11) to
find s2ðkþ 2Þ. This is done by taking the nominal part of the reaching law (i.e. with d kð Þ ¼ 0 )
and adding another unit delay to find s2ðkþ 2Þ. Then we include d2ðkÞ to take care of the
matched disturbance. This gives the extended reaching law as

s2 kþ 2ð Þ ¼ α2s2 kð Þ � αβ2sign s2 kð Þð Þ � β2sign s2 kþ 1ð Þð Þ þ d2ðkÞ ð25Þ

With d2 kð Þ ¼ CT
2ABf ðkÞ in Eq. (25), the control

u2 kð Þ ¼ � CT
2AB

� ��1
h
CT
2A

2 � α2CT
2

� �
x kð Þ þ αβ2sign CT

2 x kð Þ� �þ β2sign CT
2Ax kð Þ� �i ð26Þ

becomes devoid of any uncertain terms. The bound of d2ðkÞ in this case is

d2m ¼ jjCT
2ABjj f m ≤ jjCA12jjjjB2jj f m ¼ jjCA12jjd1m ð27Þ

which is same as Eq. (18) in Section 3.3.2. The task now is to determine the ultimate band δ2
and the conditions on β2 that needs to be satisfied. These are evaluated keeping in mind the
property of crossing-recrossing about s2 kð Þ ¼ 0 as imposed in the original work in Ref. [17] for
relative degree one output. For simplicity, we perform the analysis assuming s2 kð Þ∈R. For a
higher-dimensional output s2ðkÞ, the same analysis shall hold for each element of the vector.

Let us consider the sliding variable s2 kð Þ at two consecutive time instants. In other words, we
take into account the values of both s2ðkÞ and s2ðkþ 1Þ, where k is any non-negative integer.
Then, one can either have sign s2 kþ 1ð Þð Þ ¼ signðs2 kð ÞÞ or sign s2 kþ 1ð Þð Þ ¼ � signðs2 kð ÞÞ.

Lemma 1. If β2 >
d2m
1þα and sign s2 kþ 1ð Þð Þ ¼ signðs2 kð ÞÞ, then js2 kþ 2ð Þj is strictly smaller than

js2 kð Þj or crosses the hyperplane s2 kð Þ ¼ 0.

Proof. For sign s2 kþ 1ð Þð Þ ¼ sign s2 kð Þð Þ ¼ 1, from Eq. (25) we get
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higher-dimensional output s2ðkÞ, the same analysis shall hold for each element of the vector.

Let us consider the sliding variable s2 kð Þ at two consecutive time instants. In other words, we
take into account the values of both s2ðkÞ and s2ðkþ 1Þ, where k is any non-negative integer.
Then, one can either have sign s2 kþ 1ð Þð Þ ¼ signðs2 kð ÞÞ or sign s2 kþ 1ð Þð Þ ¼ � signðs2 kð ÞÞ.

Lemma 1. If β2 >
d2m
1þα and sign s2 kþ 1ð Þð Þ ¼ signðs2 kð ÞÞ, then js2 kþ 2ð Þj is strictly smaller than

js2 kð Þj or crosses the hyperplane s2 kð Þ ¼ 0.

Proof. For sign s2 kþ 1ð Þð Þ ¼ sign s2 kð Þð Þ ¼ 1, from Eq. (25) we get
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s2 kþ 2ð Þ ≤α2s2 kð Þ � 1þ αð Þβ2 þ d2m < s2ðkÞ ð28Þ

since β2 >
d2m
1þα.

For sign s2 kþ 1ð Þð Þ ¼ sign s2 kð Þð Þ ¼ �1, from Eq. (25) we get

s2 kþ 2ð Þ ≥α2s2 kð Þ þ 1þ αð Þβ2 � d2m > s2ðkÞ ð29Þ

It is straightforward to conclude from the above two inequalities that js2 kþ 2ð Þj < js2 kð Þj or
sign s2 kþ 2ð Þð Þ ¼ �sign s2 kþ 1ð Þð Þ ¼ �signðs2 kð ÞÞ.
Lemma 1 can be geometrically interpreted as follows: if the states xðkÞ and xðkþ 1Þ are on the
same side of the sliding hyperplane, then either xðkþ 2Þ is at the same side of the hyperplane
and closer to it than xðkÞ or xðkþ 2Þ is on the other side of the hyperplane.

As k is an arbitrary non-negative integer, the above lemma demonstrates that there exists such
a finite k0 > 0 that ∀ i < k0, we have sign s2 ið Þ½ � ¼ sign½s2 0ð Þ� and sign s2 k0ð Þ½ � ¼ � sign½s2 0ð Þ�.
That is, there exists a finite time instant k0, at which the sliding variable s2ðkÞ changes its sign.
In other words, the system crosses the sliding surface in finite time.

Lemma 2. If β2 >
d2m
1�α and sign s2 kþ 1ð Þð Þ ¼ � signðs2 kð ÞÞ, then sign s2 kþ 2ð Þð Þ ¼ signðs2 kð ÞÞ.

Proof. With sign s2 kþ 1ð Þð Þ ¼ � signðs2 kð ÞÞ, from Eq. (25) we get

s2 kþ 2ð Þ ¼ α2s2 kð Þ � αβ2sign s2 kð Þð Þ � β2sign s2 kþ 1ð Þð Þ þ d2 kð Þ
¼ α2s2 kð Þ � αβ2sign s2 kð Þð Þ þ β2sign s2 kð Þð Þ þ d2 kð Þ
¼ α2s2 kð Þ þ 1� αð Þβ2sign s2 kð Þð Þ þ d2 kð Þ

ð30Þ

Since β2 >
d2m
1�α, then for any jd2 kð Þj < d2m, we get sign s2 kþ 2ð Þð Þ ¼ sign s2 kð Þð Þ:

As k is an arbitrary non-negative integer, the above lemma implies that β2 >
d2m
1�α is both a

necessary and sufficient condition for crossing-recrossing the sliding hyperplane s2 kð Þ ¼ 0 at
each successive step after crossing it for the first time. Furthermore, the condition on β2 in
Lemma 2 automatically guarantees that the condition on β2 in Lemma 1 holds. This concludes
that the former is a necessary and sufficient condition for generating the quasi-sliding mode in
the sense of Gao [17]. Indeed, when β2 >

d2m
1�α is satisfied, then the system crosses the sliding

hyperplane in a finite time and then recrosses it again in every consecutive step. However, the
sequence {js kð Þj} may not necessarily approach zero monotonically, but the sequence of every
alternate sample of {js kð Þj} does. Ultimately, the quasi-sliding mode is achieved when {js kð Þj}
starts crossing-recrossing about s kð Þ ¼ 0 at each time step.

With the help of these ideas, the ultimate band δ2 for the sliding variable s2ðkÞ can be found
out, which gives a measure of the robustness of the system concerned. The ultimate band must
be equal to the largest steady-state value of the sliding variable for the maximum disturbance
jd2 kð Þj ¼ d2m. This is obtained from Eq. (25) putting s2 kð Þ ¼ δ2, which also gives the value of
s2 kþ 2ð Þ ¼ δ2. Thus,
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δ2 ¼ α2δ2 � αβ2 þ β2 þ d2m ð31Þ

which gives

δ2 ¼ 1� αð Þβ2 þ d2m
ð1� α2Þ >

2d2m
ð1� α2Þ ð32Þ

since β2 >
d2m

ð1�αÞ.

Theorem 3. If in addition to the conditions as in Theorem 1, C also satisfies σmax CA12ð Þ < 1þ α, then
the ultimate band δ2 for the relative degree two output with reaching law in Eq. (25) is lesser than the
ultimate band δ1 for the relative degree one output with reaching law in Eq. (19), irrespective of the
parameter C chosen same for both relative degree cases.

Proof. Let us consider ρ > 1. Then the inequalities in Eqs. (23) and (32) can be written as
equalities multiplying the RHS with this ρ. This gives us

δ1 ¼ ρ
2d1m

ð1� αÞ δ2 ¼ ρ
2d2m

ð1� α2Þ ð33Þ

Taking into account the fact that d2m ≤ jjCA12jjd1m, we get

δ2
δ1

¼ 2d2m=2d1m
ð1þ αÞ ≤

jjCA12jj
ð1þ αÞ ð34Þ

Hence, δ2 < δ1, if the condition λmax CA12ð Þ < 1þ α is satisfied.

Here, ρ is selected the same for both the ultimate bands δ1 and δ2. It can be considered as a
selection parameter for δ1 which is kept same for the selection of δ2 for fair comparison
between the two ultimate bands.

Remark 2. Compared to Theorem 2, the condition on C in Theorem 3 is more relaxed. Hence, with the
switching reaching law in Eq. (25), we can decrease the ultimate band for relative degree two output
with a less strict condition than required with the non-switching reaching law in Eq. (11).

3.5. Simulation example

Simulation examples are shown for a second-order discrete LTI system with outputs of both
relative degree one and two to compare performance.

We consider an inherently unstable dynamical system

x kþ 1ð Þ ¼ 1 1:2
5 �1

� �
x kð Þ þ 0

1

� �
ðu kð Þ þ f kð ÞÞ ð35Þ
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where f ðkÞ is a disturbance assuming value þ0.1 for the first half of the simulation cycle and
�0.1 for the last half. The disturbance is chosen at these extremities to bring out the worst
behaviour of the system. The comparison between choices of relative degree one and two
outputs can be considered fair under such a scenario.

3.5.1. Non-switching reaching law

The reaching law of [3] with k� ¼ 5 is used for simulations. The surface parameter is selected as
C ¼ 0:5, which satisfies the conditions required in Theorem 2. The ultimate bands for the
relative degree one and two outputs are calculated to be δ1 ¼ 0:1 and δ2 ¼ 0:06, respectively.
Figure 1 shows the plots of the output sðkÞ along with a zoomed view to show the ultimate
bands. The plots of the state variables and control input are given in Figure 2. The plots
corresponding to relative degree one output are shown with a dotted line whereas those with
relative degree two output are shown with a smooth line. It can be easily seen from Figure 2

Figure 1. Sliding variable for non-switching reaching law.
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Figure 2. State variables and control input for non-switching reaching law.

Recent Developments in Sliding Mode Control Theory and Applications32
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that both the state errors as well as the control effort are also reduced for relative degree two
output compared to relative degree one output.

3.5.2. Switching reaching law

The reaching law of Ref. [17] is used for simulations. The surface parameter is chosen as
C ¼ 0:9 which satisfies the conditions of Theorem 3 with α ¼ 0:4. For the purpose of simula-
tions, ρ ¼ 1:01 is selected which gives the ultimate bands as δ1 ¼ 0:3367 and δ2 ¼ 0:2597. For
these values of the ultimate bands, β1 ¼ 0:2367 and β2 ¼ 0:1836 are calculated. Figure 3 shows
the plots of the output sðkÞ along with a zoomed view to show the ultimate bands. The plots of
the state variables and control input are given in Figure 2. The plots corresponding to relative
degree one output are shown with a dotted line whereas those with relative degree two output
are shown with a smooth line. It can be easily seen from Figure 4 that both the state errors as
well as the control effort are also reduced for relative degree two output compared to relative
degree one output.

Figure 3. Sliding variable for switching reaching law.
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4. Systems with arbitrary relative degree outputs

In Section 3, the system order n was arbitrary but the relative degree of the output was fixed to
two. In this section, the relative degree is extended to arbitrary r > 1 where r∈Nþ. For the

Figure 4. State variables and control input for switching reaching law.
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purpose of the theoretical development presented in this chapter, r ¼ n is considered, i.e. the
relative degree of the output matches the system order. For such an assumption, the system
structure can generally take a canonical form, called the lower Hessenberg form, whenever r > 2.

Consider a chain of n unit delays with the system output defined as y kð Þ ¼ cx1ðkÞ, where x1ðkÞ
is the output of the last unit delay in the chain. Such a system structure is the popular
controller canonical form for LTI systems, which can be obtained from any LTI system model
by a simple linear transformation. However, with r ¼ n, a model ðAn, Bn, CnÞ of increased
complexity can be considered, which is the lower Hessenberg form. This can be described by
the system matrices An ¼ aij

� �
, i, j ¼ 1 to n, where aij ¼ 0 ∀ i ¼ 1 to n� 2ð Þ, j ¼ iþ 2ð Þ to n,

Bn ¼ 0n�1 b½ �T and Cn ¼ ½c 0n�1�. Below is the general structure of the system matrix An:

An ¼

a11 a12 0 0
a21 a22 a23 0 ⋯ 0 0

0 0
⋮ ⋱ ⋮

a n� 2ð Þ1 a n� 2ð Þ2 a n� 2ð Þ3 a n� 2ð Þ4
a n� 1ð Þ1

an1
a n� 1ð Þ2

an2
a n� 1ð Þ3

an3
a n� 1ð Þ4

an4
⋯

a n� 2ð Þðn�1Þ 0
aðn�1Þðn�1Þ a n� 1ð Þn
anðn�1Þ ann

2
666664

3
777775

Of course, yðkÞ, uðkÞ and f ðkÞ are all scalar functions and the structure ensures that y kð Þ is of
relative degree r ¼ n as per the definition given in Section 2.

4.1. Finite-time stability of all states

Let us consider the system

x kþ 1ð Þ ¼ Anx kð Þ þ Bn u kð Þ þ f kð Þð Þ y kþ 1ð Þ ¼ CnxðkÞ ð36Þ

with f kð Þ ¼ 0. Assuming this nominal system reaches sliding mode, the following proposition
can be made.

Theorem 4. If the output of the system in Eq. (36) is of relative degree r ¼ n, then
x1 kð Þ ¼ x2 kð Þ ¼ … ¼ xn kð Þ ¼ 0 ∀ k ≥K, where K is the time step at which the output yðkÞ starts
sliding, i.e. y kð Þ ¼ 0 ∀ k ≥K.

Proof. During sliding, y kð Þ ¼ cx1 kð Þ ¼ 0 ∀ k ≥K implying x1 kð Þ ¼ 0 ∀ k ≥K since jcj∈ ð0,∞Þ.
Now, obviously y kþ 1ð Þ ¼ 0 ∀ k ≥K. This means

0 ¼ ca11x1 kð Þ þ ca12x2 kð Þ ∀ k ≥K ð37Þ

implying x2 kð Þ ¼ 0 ∀ k ≥K as x1 kð Þ ¼ 0 ∀ k ≥K and ja11j, ja12j∈ ð0,∞Þ as per the system structure.

Similarly, y kþ 2ð Þ ¼ y kþ 3ð Þ ¼ … ¼ y kþ n� 1ð Þ ¼ 0 ∀ k ≥K and proceeding in the same line
of argument, it can be shown that x3 kð Þ ¼ x4 kð Þ ¼ … ¼ xn kð Þ ¼ 0 ∀ k ≥K. This implies that
every state hits zero in finite time, which is the same as the time instant when the output hits
zero, and stays there for all future times.
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It is obvious that in the presence of uncertainty f ðkÞ, the states will not reach zero but remain
inside some ultimate band ∀ k ≥K.

4.2. Improved robustness of the system

With relative degree of the output equal to the order of the system, better robustness can be
obtained when compared to usual outputs of relative degree one, by satisfying certain suffi-
cient conditions. The robustness is measured by the width of the ultimate band of the output or
the sliding variable. For this, systems with outputs of relative degree two and three are first
discussed and then the result is generalized for arbitrary relative degree outputs.

For a relative degree one output of an n-order system in Eq. (36), CnBn ¼ b if the sliding surface
is linear, i.e. Cn ¼ ½c c2…1�. Hence, the control can always be computed from Utkin's reaching
law [6]

y kþ 1ð Þ ¼ d1ðkÞ ð38Þ

with jd1 kð Þj ≤ d1m ¼ CnBnf m ¼ bf m. This gives the control as

u kð Þ ¼ � CnBnð Þ�1CnAnxðkÞ ð39Þ

devoid of any uncertain terms, for any system dimension n.

4.2.1. Relative degree two outputs

With system order n ¼ 2, the LTI system becomes

x kþ 1ð Þ ¼ a11 a12
a21 a22

� �
x kð Þ þ 0

b

� �
ðu kð Þ þ f kð ÞÞ ð40Þ

The output

y kð Þ ¼ cx1 kð Þ ¼ C2xðkÞ ð41Þ

is clearly of relative degree two, since C2B2 ¼ 0 and C2A2B2 6¼ 0. Hence, one needs

y kþ 2ð Þ ¼ C2A2
2x kð Þ þ C2A2B2ðu2 kð Þ þ f kð ÞÞ ð42Þ

to obtain the equivalent control from the extended Utkin's reaching law for relative degree two
outputs, which is easily obtained from Eq. (38) as

y kþ 2ð Þ ¼ d2ðkÞ ð43Þ

with jd2 kð Þj ≤ d2m ¼ C2A2B2f m ¼ ca12bf m. This makes the control

u2 kð Þ ¼ � C2A2B2ð Þ�1C2A2
2xðkÞ ð44Þ

devoid of any uncertain terms.
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Obviously, the output yðkÞ will be bounded inside the ultimate band δ2 ¼ d2m ∀ k ≥ 2. For the
output with relative degree one, the ultimate band is simply δ1 ¼ d1m ¼ bf m. From the above, it
is straightforward to put down the below theorem.

Theorem 5. For the same LTI system in Eq. (40), the equivalent control will lead to a decrease in the
width of the ultimate band with an output of relative degree two compared to an output of relative degree
one if ca12 < 1.

4.2.2. Relative degree three systems

With system order n ¼ 3, the LTI system becomes

x kþ 1ð Þ ¼
a11 a12 0
a21 a22 a23
a31 a32 a33

2
4

3
5x kð Þ þ

0
0
b

2
4
3
5ðu kð Þ þ f kð ÞÞ ð45Þ

The output

y kð Þ ¼ cx1 kð Þ ¼ C3xðkÞ ð46Þ

is clearly of relative degree three, since C3B3 ¼ C3A3B3 ¼ 0 and C3A2
3B3 6¼ 0. Hence, one needs

y kþ 3ð Þ ¼ C3A3
3x kð Þ þ C3A2

3B3ðu3 kð Þ þ f kð ÞÞ ð47Þ

to obtain the control from the extended Utkin's reaching law for relative degree three outputs.
This is easily obtained from Eq. (38) as

y kþ 3ð Þ ¼ d3ðkÞ ð48Þ

with jd3 kð Þj ≤ d3m ¼ C3A2
3B3f m ¼ ca12a23bf m. This makes the control

u3 kð Þ ¼ � C3A2
3B3

� ��1
C3A3

3xðkÞ ð49Þ

devoid of any uncertain terms.

Obviously, the output yðkÞ will be bounded inside the ultimate band δ3 ¼ d3m ∀ k ≥ 3. For the
output with relative degree one, the ultimate band is simply δ1 ¼ d1m ¼ bf m. From the above, it
is straightforward to put down the below theorem.

Theorem 6. For the same LTI system in Eq. (40), the equivalent control will lead to a decrease in the
width of the ultimate band with an output of relative degree three compared to an output of relative
degree one if ca12a23 < 1.

4.2.3. Systems with outputs of arbitrary relative degree

With relative degree of the output equal to the order of the system for an arbitrary r ¼ n, the
system is as given in Eq. (36) and yðkþ rÞ needs to be calculated from the output equation
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y kð Þ ¼ cx1 kð Þ ¼ Crx kð Þ ð50Þ

In the same way as in previous subsections, the control devoid of any uncertainty can be
derived as

ur kð Þ ¼ � CrAr�1
r Br

� ��1
CrAr

rxðkÞ ð51Þ

from the extended Utkin's reaching law

y kþ rð Þ ¼ drðkÞ ð52Þ

where jdr kð Þj ≤ drm ¼ c
Yr

i¼2
a i� 1ð Þibf m.

Obviously, the output will be bounded inside an ultimate band δr ¼ drm ∀ k ≥ r. From the
above, it is straightforward to put down the following theorem.

Theorem 7. For the same LTI system in Eq. (36), the equivalent control will lead to a decrease in the
width of the ultimate band with an output of relative degree r ¼ n compared to an output of relative

degree one if c
Yr

i¼2
a i� 1ð Þi < 1.

Figure 5. Comparing robustness of outputs with relative degree one and relative degree three.
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Remark 3. In case of outputs with relative degree more than one, the scaling c can be dropped and
simply y kð Þ ¼ x1ðkÞ. Hence, the robustness entirely depends on the system parameters. It is thus
possible that for some systems for which the parameters do not satisfy the condition in Theorem 7, the
robustness worsens with choice of relative degree r ¼ n with Utkin's equivalent control law.

4.3. Simulation result

A third-order discrete-time LTI system is considered with output of relative degree three for
simulation. For comparison, the results for the output designed to be of relative degree one are
also shown. It can be readily observed that with design parameters kept same for both, the
system with relative degree three output shows better robustness in presence of disturbance
and also achieves finite-time stability of all states in the absence of disturbance.

Let the system be

x kþ 1ð Þ ¼
�1 1:5 0
�0:5 0:5 �0:8
�3 1 1

2
4

3
5x kð Þ þ

0
0
1

2
4
3
5ðu kð Þ þ f kð ÞÞ ð53Þ

where f ðkÞ is a random number bounded by�0:1. The initial states are assumed to be �1 3� 2½ �T .

Figure 6. State dynamics for relative degree one and relative degree three with disturbance.
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An output of relative degree one is designed as

y1 kð Þ ¼ 0:2� 0:625� 1½ �xðkÞ ð54Þ

which makes the poles of the reduced-order system in the sliding mode as 0.1 and �0.1, which
are sufficiently nice pole placement to obtain asymptotic stability of the states fast enough.

The output of relative degree three is designed as

y3 kð Þ ¼ 0:2 0 0½ �xðkÞ ð55Þ

by keeping the first entry of the output matrix same as in Eq. (54). The ultimate bands
calculated for the relative degree one and three outputs are δ1 ¼ 0:1 and δ3 ¼ 0:024, respec-
tively. The zoomed views of the outputs for the two cases are shown in Figure 5, with the
ultimate band superimposed on each plot.

Figures 6 and 7 show the states and the control input for the two cases when the system is
affected by the disturbance f ðkÞ. Not much visible difference can be found between the

Figure 7. Control input for relative degree one and relative degree three with disturbance.
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simulations of the states in Figure 6 because of the presence of disturbance. However, in
Figure 8, it is clear that the states of the system in absence of disturbance become finite-time
stable for relative degree three output, whereas for relative degree one output, only asymptotic
stability is achieved.

5. Conclusion

In this chapter, an important advancement in the direction of discrete-time sliding mode
control is presented. As opposed to the traditional consideration of outputs of relative degree
one, it is shown that with higher relative degree outputs, improved robustness and perfor-
mance of the system can be guaranteed under certain conditions. New reaching laws are
proposed for these higher relative degree outputs, which are extensions of existing reaching
laws proposed in Refs. [2, 3, 17] for relative degree one outputs. These reaching laws are
analysed to find out conditions for increased robustness of the system. Along with such
increased robustness attributed to a reduction in the ultimate band of the sliding variable or

Figure 8. State dynamics for relative degree one and relative degree three without disturbance.
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output, the system states are also proved to be finite-time stable in absence of disturbance. In
presence of disturbance, they are finite time ultimately bounded. Moreover, this finite time
step is same as the time step at which the output hits the sliding surface.
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Abstract

The accuracy and stability are two fundamental concerns of the visual servoing control
system. This chapter presents a sliding mode controller for image-based visual servoing
(IBVS) which can increase the accuracy of 6DOF robotic system with guaranteed stabil-
ity. The proposed controller combines proportional derivative (PD) control with sliding
mode control (SMC) for a 6DOF manipulator. Compared with conventional propor-
tional or SMC controller, this approach owns faster convergence and better disturbance
rejection ability. Both simulation and experimental results show that the proposed
controller can increase the accuracy and robustness of a 6DOF robotic system.

Keywords: sliding mode control, image-based visual servoing, 6DOF robotic
manipulator

1. Introduction

With the development of industrial manufacture technology, manufacture process is going
forward, more dexterous and more efficient machines is needed to meet this large changes.

Visual servoing system comes into being; it can handle the dynamic interaction between the
manipulator and environment and has been applied in various surroundings where high
accuracy and strong robustness are needed, such as cell injection in Ref. [1], car steering,
aircraft landing and missile tracking in Ref. [2]. Generally speaking, the system where the
camera is used as a visual sensor in the feedback is referred to as visual servoing system.
Depending on the configuration of the camera with respect to the robot, the visual servoing
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configuration can be classified as eye-in-hand where the camera is installed at the end effector
and eye-to-hand where the camera is fixed in workspace [3]. In this chapter, more attention is
focused on eye-in-hand configuration in visual servoing system.

Furthermore, visual servoing can be classified into three different classes: image-based visual
servoing (IBVS), position-based visual servoing (PBVS) and hybrid visual servoing (HVS).
Their performances have been precisely described in Refs. [2–6]. In comparison, although
PBVS is convenient in actual application, a calibrated camera and a known geometric model
of the target are needed. The control performance depends on the accuracy of the camera
calibration and the object geometric model, which is difficult to ensure. IBVS directly uses
image feature errors to calculate the control signal, which reduces computational delay and
becomes less sensitive to the calibration and model errors in Refs. [3, 5]. In this chapter, more
attention is focused on IBVS.

Various control methods have been presented to apply to IBVS system, including propor-
tional-integral-derivative control (PID) in Refs. [4, 7, 8], predictive control in Ref. [9], sliding
mode control (SMC) in Ref. [10], adaptive control in Ref. [11], and so on. The core of this
control method is to generate a velocity vector or an acceleration vector as the control input to
guide the end effector to the desired position, to complete the total control task.

Particularly, PID control has a wide range of applications because of its simple form and
popularity among engineers. Some researchers have conducted various analyses on using
proportional or proportional derivative (PD) controller to produce a velocity command in
Ref. [7]; convergent property of proportional or PD controller is satisfactory, but sometimes
sudden variation or small shakiness due to image noise or motion vibration will be caused. In
order to address these issues, the researchers proposed the control scheme using PD controller
and producing an acceleration command as the control input in Ref. [8]. The proposed method
can solve the above-mentioned problems; however, only velocity signal can be accepted as
control input in most visual servoing systems. SMC was considered to be successfully applied
in some automatic control fields due to its insensitivity to model uncertainties and disturbance
in Ref. [12]. Using SMC in IBVS or PBVS or robotic manipulator to guarantee the system
robustness and good tracking performance has been reported in some literature in the recent
years in Refs. [13–15]. Meanwhile, the chatting phenomenon of SMC also needs to be consid-
ered in some special situations.

In this chapter, a new enhanced IBVS scheme that combines PD control with SMC is proposed
to generate the velocity profile to control the robotic manipulator. This PD-SMC method takes
the advantages of PD and SMC methods. The stability of the enhanced IBVS method is proved
by using Lyapunov method. It can achieve the better convergence performance, ensure the
stability of the system and own the strong robustness when the system is subjected to uncer-
tainty and noises.

This chapter is structured as follows. The visual servoing system model is described in Section
2. The enhanced controller is designed in Section 3. The system stability is analysed in Section
4. The simulations are performed in Section 5. The experiments are performed in Section 6. The
concluding remarks and future work are mentioned in Section 7.
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2. System description

In the IBVS system, the control problem can be expressed by obtaining the relation between the
derivative of the image features and the camera spatial velocity in Refs. [3, 4]. The system
model, which consists of a 6DOF manipulator with a camera mounted on its end effector, is
shown in Figure 1.

Before going into the detailed discussion of the system model, the following notations are
introduced. The camera spatial velocity can be noted by u ¼ ðvc, ωcÞ, vc ¼ ðvcx, vcy, vczÞ and
ωc ¼ ðωcx, ωcy, ωczÞ, which are the camera's linear velocity and angular velocity in Ref. [5]. Set
the focal length of camera as f . Aworld point P in the camera frame is denoted by P = (X, Y, Z),
the projected coordinate in image space is denoted by p = (x, y).

Using the velocity of the point relative to the camera frame, we can describe the relationship
between the feature velocity and the camera velocity in normalized image coordinate in Ref. [3]
as follows:
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Due to a 6DOF manipulator that needs to be controlled, at least three feature points are
necessary to avoid the interaction matrix singularities and the multiple global minima in Refs.
[4, 8]. Nevertheless, three points may be required for interaction matrix singularities and the
multiple global minima. For this reason, we use four feature points to control 6DOF in the
space, the expression is written as follows:

Figure 1. IBVS with eye-in-hand configuration.
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_e ¼ Lv4u (2)

where Lv4 is the interaction matrix.

Lv4 ¼

Lv=p¼p1

Lv=p¼p2

Lv=p¼p3

Lv=p¼p4

2
66664

3
77775

(3)

p ¼ p1,…, p4 is the image feature points and e is the feature error. Since the image interaction
matrix largely depends on the depth Z and camera intrinsic parameters such as focal length f,
there exists some uncertainties in these parameters. In this chapter, we focus on dealing with
the uncertainties on the depth. The range of the depth of the visual servoing system is assumed

as Zmin ≤Z ≤Zmax. The estimated interaction matrix L̂v4 is used in the viusal servoing control
design.

3. Controller design

The general design approach of a visual servoing controller is to use proportional control to
generate the control signal. This approach is also applied to the conventional IBVS, the form
can be described as follows:

u ¼ �KL̂þ
v4 _eðtÞ (4)

where L̂þ
v4 is the pseudo inverse of the estimated interaction matrix, K is a positive definite

matrix.

The proportional control is a prompt and timely control method. However, this method cannot
eliminate the system residual error. In this chapter, PD control is used to replace the propor-
tional control, which can improve the control quality with faster control convergence speed
and smaller error. Meanwhile, in order to improve the system stability, the sliding model
control is also adopted to compensate uncertainties of the system. This is an enhanced
approach, which combines PD control with SMC base on IBVS, and can be called as hybrid
PD-SMC method.

We define the sliding surface s, which will converge to 0 when the image feature errors go
forward and stay on it all the time in Ref. [12].

s ¼ e ¼ E� Ed (5)

where E is the image plane feature and Ed is the desired value of the feature. The basic visual
servoing controller of IBVS is designed based on the above proportional control equation in
Ref. [3], and it is described as the following first-order system:
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_e þ Kpe ¼ 0 (6)

Adding the sliding mode control, and applying PD control to the visual servoing system in
Ref. [15], the modified control law should be considered as follows:

u ¼ L̂þ
v4

�
� Kd _eðtÞ � KpeðtÞ � KssgnðsÞ

�
(7)

where Ks is a positive definite matrix and sgn(Â·) is the signum function.

Consider the above control scheme easily to have chatting phenomenon. In order to smooth
the chattering, a saturation function is used to replace the sign function, and the control law is
described as follows:

u ¼ L̂þ
v4

�
� Kd _eðtÞ � KpeðtÞ � KssatðsÞ

�
(8)

where sat(�) is the saturation function, which is defined as follows:

satðsÞ ¼
s if jsj ≤ 1

sgnðsÞ otherwise

(
(9)

This control law is an enhanced IBVS scheme, which combines PD control with SMC together.
SMC is well known for its robustness in Refs. [14–16]. By applying this control method, it is
expected that this controller will achieve better robustness, faster convergence speed and
higher accuracy. This will be demonstrated in both simulation and experiment sections.

4. Stability analysis

The stability analysis of the proposed controller is based on Lyapunov direct method in Ref.
[12]. Consider the uncertainties in depth, the estimated interaction matrix can be described as
follows:

ðI þ ΔminÞ ≤Lv4L̂þ
v4 ≤ ðI þ ΔmaxÞ (10)

where Δmin is a matrix of the uncertainties associated with lower bounds of estimated depth
Zmin and Δmax is a matrix of the uncertainties associated with the upper bounds of the
estimated depth Zmax. A Lyapunov function is constructed as follows:

V ¼ 1
2
sTs (11)

The time derivative of the Lyapunov function is obtained as follows:

_V ¼ sT _s (12)
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By substituting Eq. (8) into Eq. (2), the system error dynamic equation is obtained as follows:

_e ¼ Lv4L̂þ
v4

�
� Kd _eðtÞ � KpeðtÞ � KssatðsÞ

�
� Ed (13)

Moving the term associated with _e to the left of the equation yields

_e ¼ Lv4L̂þ
v4ðI þ KdLv4L̂

þ
v4Þ�1

�
� Kpe� KssatðsÞ

�
� ðI þ KdLv4L̂

þ
v4Þ�1Ed (14)

The time derivative of Lyapunov function is obtained as follows:

_V ¼ Lv4L̂þ
v4ðI þ KdLv4L̂

þ
v4Þ�1ð�eTKpe� KsjsjÞ � ðI þ KdLv4L̂

þ
v4Þ�1sTEd (15)

It is noted that the rank of Lv4L̂þ
v4 is 6, Lv4L̂

þ
v4 has two null vectors that satisfy Lv4L̂þ

v4x ¼ 0. It is

know that Lv4L̂þ
v4 has two null vectors that satisfy fLv4L̂þ

v4 ¼ 0, x∈R8, x 6¼ 0g. Assuming that x

does not belong to the null space of Lv4L̂þ
v4 in Refs. [4, 8], Lv4L̂þ

v4x > 0 can be obtained. If Kd is
chosen as a positive definite matrix,

Kd > 0 (16)

The following formula can be ensured:

ðI þ KdLv4L̂
þ
v4Þ�1Lv4L̂þ

v4x > 0 (17)

Ks is chosen as follows:

Ks >
λmaxðI þ ΔmaxÞ
λminðI þ ΔminÞ�1 Ed þ η (18)

where η is a diagonal positive definite matrix whose elements determine the decay rate of V to
zero. λmin and λmax are the minima and maximum parameters, respectively.

According to the above conditions, the time derivative of Lyapunov function can be described
as follows:

_V < Lv4L̂þ
v4ðI þ KdLv4L̂

þ
v4Þ�1ð�eTKpe� ηjsjÞ < 0 (19)

By applying Barbalat's lemma, it is obvious that _V ¼ 0 when t ! ∞, the image feature error
eðtÞ ! ∞. The stability of IBVS system is ensured.

5. Simulations

Simulations have been conducted on a 6DOF Puma 560 robot model by using MATLAB
Robotics Toolbox and Machine Vision Toolbox in Ref. [3]. The 6DOF arm is chosen as the

Recent Developments in Sliding Mode Control Theory and Applications50



By substituting Eq. (8) into Eq. (2), the system error dynamic equation is obtained as follows:
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�
� Kd _eðtÞ � KpeðtÞ � KssatðsÞ

�
� Ed (13)
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_e ¼ Lv4L̂þ
v4ðI þ KdLv4L̂

þ
v4Þ�1

�
� Kpe� KssatðsÞ

�
� ðI þ KdLv4L̂

þ
v4Þ�1Ed (14)
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þ
v4Þ�1ð�eTKpe� KsjsjÞ � ðI þ KdLv4L̂

þ
v4Þ�1sTEd (15)

It is noted that the rank of Lv4L̂þ
v4 is 6, Lv4L̂

þ
v4 has two null vectors that satisfy Lv4L̂þ

v4x ¼ 0. It is

know that Lv4L̂þ
v4 has two null vectors that satisfy fLv4L̂þ

v4 ¼ 0, x∈R8, x 6¼ 0g. Assuming that x

does not belong to the null space of Lv4L̂þ
v4 in Refs. [4, 8], Lv4L̂þ

v4x > 0 can be obtained. If Kd is
chosen as a positive definite matrix,

Kd > 0 (16)

The following formula can be ensured:

ðI þ KdLv4L̂
þ
v4Þ�1Lv4L̂þ

v4x > 0 (17)

Ks is chosen as follows:

Ks >
λmaxðI þ ΔmaxÞ
λminðI þ ΔminÞ�1 Ed þ η (18)

where η is a diagonal positive definite matrix whose elements determine the decay rate of V to
zero. λmin and λmax are the minima and maximum parameters, respectively.

According to the above conditions, the time derivative of Lyapunov function can be described
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þ
v4Þ�1ð�eTKpe� ηjsjÞ < 0 (19)

By applying Barbalat's lemma, it is obvious that _V ¼ 0 when t ! ∞, the image feature error
eðtÞ ! ∞. The stability of IBVS system is ensured.

5. Simulations

Simulations have been conducted on a 6DOF Puma 560 robot model by using MATLAB
Robotics Toolbox and Machine Vision Toolbox in Ref. [3]. The 6DOF arm is chosen as the
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manipulator and the camera is mounted on the end effector, which assumes no transformation
between the end effector and the camera. The camera characteristics are shown in Table 1. The
maximum linear velocity of Puma 560 is 0.5 m/s according to the robot user manual in Refs.
[17, 18].

To analyse and compare the performance of hybrid PD-SMC IBVS with the conventional IBVS,
three simulation tests have been conducted, including pure translation and pure rotation of
features, and disturbance rejection test. Four feature points are used in visual servoing control.
The initial and desired positions of the image features are given in Table 2.

Test 1, in this test, a normal translational motion, is completed. Figures 2 and 3 show the
feature position error and joint velocity convergence situation of IBVS and enhanced IBVS
(PD-SMC), respectively, under the pure translation condition. Figure 4 shows the feature
trajectory in image space under the pure translation condition.

Test 2, in this test, a pure rotational motion, is concluded. Figures 5 and 6 show the feature
position error and joint velocity convergence situation of IBVS and enhanced IBVS (PD-SMC),
respectively, under the pure rotation condition. Figure 7 shows the feature trajectory in image
space under the pure rotation condition.

Test 3, in this test, a chirp signal as a disturbance, is added to demonstrate the robustness of the
enhanced IBVS. Figures 8 and 9 show the feature position error and joint velocity convergence
situation of IBVS and enhanced IBVS (PD-SMC), respectively, under the disturbance. Figure 7
shows the feature trajectory in image space under the disturbance.

Parameters Values

Focal length 0.008 (m)

Principal point (512, 512)

Camera resolution 1024 � 1024

Table 1. Camera parameters in simulations.

Positions

(x1 y1) (x2 y2) (x3 y3) (x4 y4)

Tests 1 and 3

Initial (360 401) (361 611) (570 610) (573 402)

Desired (412 412) (412 612) (612 612) (612 412)

Test 2

Initial (360 401) (361 611) (570 610) (573 402)

Desired (362 506) (466 612) (572 506) (466 403)

Table 2. Initial and desired positions.

Sliding Mode Control (SMC) of Image‐Based Visual Servoing for a 6DOF Manipulator
http://dx.doi.org/10.5772/67521

51



According to three test results, it is obvious that the performance of enhanced IBVS is better than
that of IBVS. More specifically, the simulation results demonstrate that the PD-SMC control
system owns higher convergence rate, more accurate convergence state and strong robustness.

To further compare the performance of IBVS and enhanced IBVS, the performance index ISE
(integrate square error) is adopted, which is defined as

ISE ¼
ðT

0

e2ðtÞdt (20)

The results are summarized in Table 3, where the ‘ISE Total’ represents the total integrate
square error of feature error x1,x2,x3,x4 and feature error y1,y2,y3,y4. It shows that the ISE of
enhanced IBVS is smaller than that of IBVS in three tests.

Figure 2. Feature error variation in pure translation test: (a) IBVS and (b) enhanced IBVS (PD-SMC).

Figure 3. Joint velocity variation in pure translation test. (a) IBVS and (b) enhanced IBVS (PD-SMC).
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Figure 4. Feature trajectory in image space in Test 1.

Figure 5. Feature error variation in pure rotation test. (a) IBVS and (b) enhanced IBVS (PD-SMC).
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Figure 6. Joint velocity variation in pure rotation test. (a) IBVS and (b) enhanced IBVS (PD-SMC).

Figure 7. Feature trajectory in image space in Test 2.

Recent Developments in Sliding Mode Control Theory and Applications54



Figure 6. Joint velocity variation in pure rotation test. (a) IBVS and (b) enhanced IBVS (PD-SMC).

Figure 7. Feature trajectory in image space in Test 2.
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6. Experiments

To further validate the performance of the proposed method, experimental tests are conducted
on a 6DOF Denso robot. The experimental setup consists of a controller and two computers
through a double PC bilateral teleoperation. PCNo. 1 (Master PC) communicates with themaster

Figure 8. Feature error variation with disturbance. (a) IBVS and (b) enhanced IBVS (PD-SMC).

Figure 9. Joint velocity variation with disturbance. (a) IBVS and (b) enhanced IBVS (PD-SMC).

IBVS Enhanced IBVS

Test 1: ISE total 1.7875 � 104 5.3609 � 103

Test 2: ISE total 4.5601 � 105 1.6251 � 105

Test 3: ISE total 1.7639 � 104 5.3348 � 103

Table 3. ISE values of IBVS and enhanced IBVS.
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robot and transmits the commands to the Slave PC (PC No. 2) over the communication network.
The slave PC also communicates with the slave robot (Denso robot) and obtains the camera data
and sends it back to the master PC over the communication network in Refs. [17, 18]. The
experimental setup is shown in Figure 10. The experimental system is shown in Figure 11. Denso
VP6242G is used as the manipulator in [8]; the characteristics of the camera are given in Table 4.

Three experimental tests have been conducted, including long-distance translation and pure
rotation of features, and hybrid translation-rotation test. Four feature points are used in visual
servoing control. The initial and desired positions of the image features are given in Table 5.
Figure 12 shows Denso robot in initial position and in work processing.

Test 1 is performed to examine the convergence of image feature points when the desired
position is far away from the initial one, which needs a long-distance translational motion.
Figure 13 shows that the feature position errors converge to zero. Figure 14 shows the initial
and desired positions captured by the camera. Figure 15 shows the feature trajectory. Figure 16
shows the camera trajectory in Cartesian space.

It is shown that the performance of hybrid PD-SMC is better than that of IBVS. The settling
time of the hybrid PD-SMC method is shorter than that of conventional method. Furthermore,
in hybrid PD-SMC method, the feature trajectory is straighter in image plane and the camera
trajectory in Cartesian space is smoother.

Figure 10. Experimental setup.
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Figure 11. Experimental system.

Parameters Values

Focal length 0.004 (m)

X-axis scaling factor 110,000 (pixel/m)

Y-axis scaling factor 110,000 (pixel/m)

Image plane offset of X-axis 120 (pixel)

Image plane offset of Y-axis 187 (pixel)

Table 4. Camera parameters in experiments.

Positions

(x1 y1) (x2 y2) (x3 y3) (x4 y4)

Test 1

Initial (57 150) (57 57) (146 63) (146 148)

Desired (595 270) (595 175) (684 177) (686 275)

Test 2

Initial (454 213) (385 146) (447 81) (516 148)

Desired (602 270) (600 174) (688 179) (619 273)

Test 3

Initial (103 136) (196 105) (225 187) (134 220)

Desired (447 203) (540 189) (557 278) (461 292)

Table 5. Initial and desired positions.

Sliding Mode Control (SMC) of Image‐Based Visual Servoing for a 6DOF Manipulator
http://dx.doi.org/10.5772/67521

57



Figure 12. Denso robot. (a) Initial position and (b) work process.

Figure 13. Feature error variation. (a) IBVS and (b) enhanced IBVS (PD-SMC) in Test 1.
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Figure 13. Feature error variation. (a) IBVS and (b) enhanced IBVS (PD-SMC) in Test 1.

Recent Developments in Sliding Mode Control Theory and Applications58

Figure 14. Feature position variation. (a) IBVS and (b) enhanced IBVS (PD-SMC) in Test 1.

Figure 15. Feature trajectory. (a) IBVS and (b) enhanced IBVS (PD-SMC) in Test 1.

Figure 16. Camera trajectory in Cartesian. (a) IBVS and (b) enhanced IBVS (PD-SMC) in Test 1.
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Test 2 is performed to examine the rotation performance of the proposed method; a pure
rotation of image feature points has been completed. Figure 17 shows that the feature position
errors converge to zero. Figure 18 shows the initial and desired positions, which are captured
by the camera. Figure 19 shows the feature trajectory in image plane. Figure 20 shows the
camera trajectory in Cartesian space.

It is obvious that the test is successfully performed to prove the better performance of
enhanced IBVS. Figures 17–20 show the comparison of experiment results. The results are
similar to those of Test 1.

Test 3 is a hybrid translation-rotation motion process. In this experimental test, the translation
and rotation motions of features are incorporated in one process. In the initial stage of the
movement, the translation motion is implemented. In the final stage of the movement, the
rotation motion is completed.

Figure 17. Feature error variation. (a) IBVS and (b) enhanced IBVS (PD-SMC) in Test 2.

Figure 18. Feature position variation. (a) IBVS and (b) enhanced IBVS (PD-SMC) in Test 2.
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Figure 20. Camera trajectory in Cartesian. (a) IBVS and (b) enhanced IBVS (PD-SMC) in Test 2.

Figure 21. Feature error variation. (a) IBVS and (b) enhanced IBVS (PD-SMC) in Test 3.

Figure 19. Feature trajectory. (a) IBVS and (b) enhanced IBVS (PD-SMC) in Test 2.
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Figure 21 shows the feature position error variation of IBVS and enhanced IBVS. It is observed
that enhanced IBVS owns the higher convergence rate. Figure 22 shows the image feature
points from the initial position to the final position and the trajectory by using IBVS and
enhanced IBVS. It is observed that enhanced IBVS performs better in the final stage than IBVS
in terms of the smoothness and length of its trajectories in image plane. Figure 23 shows the
camera trajectory in a three-dimensional space of IBVS and enhanced IBVS. It can be seen that
the camera trajectory of enhanced IBVS is smoother and more accurate.

More specifically, the robustness against the random disturbances during the experiment is
demonstrated in rotation movement. By comparing the trajectories, one can notice that the
proposed enhanced IBVS method owns better robustness.

The performance index ISE (Integrate Square Error) is also used to compare the performance of
IBVS and enhanced IBVS. The results are described in Table 6, and it shows that the ISE of
enhanced IBVS is smaller than that of IBVS in three tests.

Figure 22. Feature trajectory. (a) IBVS and (b) enhanced IBVS (PD-SMC) in Test 3.

Figure 23. Camera trajectory in Cartesian. (a) IBVS and (b) enhanced IBVS (PD-SMC) in Test 3.
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7. Conclusions

An enhanced IBVS, which combines PD control with SMC, is proposed for a 6DOF manipula-
tor in this chapter. This approach can improve the visual servoing performance by taking the
advantages of PD control and SMC and compensating for the shortcomings. The stability of
the enhanced IBVS system is proven. Extensive simulations and experiments have been carried
out and three tests are implemented for the comparison. The results validate that the tracking
performance and robustness of the proposed method are superior to the conventional IBVS
controller.
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Abstract

A robust tracking control for an Autonomous Underwater Vehicle (AUV) system oper-
ated in the extreme ocean environment activities is very much needed due to its external
disturbances potentially disturb the stability of the system. This research proposes a new
robust-region based controller which integrates Super Twisting Sliding Mode Control
(STSMC) with region boundary approach in the presence of determined disturbances.
STSMC is a second order SMC which combines between continuous signal and discon-
tinuous signal to produce a robust system. By incorporating region based control into
STSMC, the desired trajectory defined as a region produces an energy saving control
compared to conventional point based control. Energy function of region error is
applied on the AUV to maintain inside the desired region during tracking mission, thus,
minimizing the energy usage. Analysis on a Lyapunov candidate proved that the pro-
posed control achieved a global asymptotic stability and showed less chattering, pro-
viding 20s faster response time to handle perturbations, less transient of thrusters'
propulsion and ability to save 50% of energy consumption compared to conventional
SMC, Fuzzy SMC and STSMC. Overall, the newly developed controller contributed to a
new robust, stable and energy saving controller for an AUV in the presence of external
disturbances.

Keywords: super twisting sliding mode control, region boundary scheme, AUV

1. Introduction

An autonomous underwater vehicle (AUV) is employed with the aim to reduce the possibility
of human accident in a long-term underwater mission. One of the important parts to be

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



installed on an AUV is an advance control system. Beside the capability to ensure the robust-
ness and efficiency of an AUV, the selected control system must have the capability to mini-
mize the effect of hazardous underwater environment such as sea current and hydrodynamics
forces that potentially increase the energy usage since the position of AUV is moved from the
desired trajectory. Various controllers are introduced to be adapted on the underwater vehicle.
Linear quadratic regulator (LQR), linear quadratic Gaussian (LQG), H2, and H∞ are examples
of optimal control used to design a method which optimize some desirable parameters. In Ref.
[1], Joshi and Talange compared PID and linear quadratic regulator (LQR) to control the depth
of REMUS 100 AUV. It was shown that the PID control took faster time response compared to
LQR but it produced greater overshoot. The steady-state error was not produced by both
controllers. Wadoo et al. proposed an optimal feedback control, H2, for trajectory tracking
case of kinematic model on an AUV [2]. In this chapter, H2 was obtained by formulating LQG
as a system of two-norm optimization problem. For the result, the proposed control showed an
optimal design since it proved the robustness to the disturbances. However, the dynamics
model of the AUV was not included. The types of AUV as well as the types of disturbances
were also not mentioned.

Meanwhile, other researchers employed a sliding mode controller (SMC) which is robust
against an inaccurate model and the external disturbances [3]. In this case, Cristi et al. designed
the SMC from the Lyapunov candidate then applied it to adjust the AUV's maneuver based on
the dynamics system and operating condition [4]. The simulation obtained a small error but it
did not include the effect of the disturbances. The integrator SMC was also proposed by Hong
et al. for the depth control of torpedo-shaped AUV in Ref. [5]. The SMC was applied as an
inner pitch controller, while the effect of buoyancy on pitch and heave dynamics was consid-
ered. It was shown that the steady-state error existed and bounded within 0:15 m. Akcakaya
et al. simulated the SMC based on the Lyapunov candidate to observe the yaw steering of the
NPS AUV II model [6]. The effect of the disturbances was added in the simulation, and it was
assumed that the AUV moved along x-axis with a constant speed of 0:75 ms�1. The AUV
completed the task even if disturbances were introduced. However, the chattering effect was
produced in the switching condition when the system tried to reach the sliding surface of the
SMC. This caused overconsumption of energy and could damage the AUV because the rudder
changed rapidly [6].

Fuzzy logic control (FLC) is well known as an intelligent and adaptive control method [7].
For some cases, FLC is used to solve the chattering problem, thus, Guo et al. superposed
SMC with fuzzy tuning technique [8]. Stability and robustness of the control system were
guaranteed by selecting the shrinking and dilating factors of the fuzzy membership func-
tions. Two experiments were conducted to observe the efficiency of the proposed controller
for a Hai-Min underwater vehicle under the influence of ocean current. The results con-
firmed the effectiveness of the proposed scheme, although a poor transient performance
was produced when the system tried to achieve precise tracking. At the transition moment,
the state and sliding surface were separated by a significant distance. Lakehekar and
Saundarmal developed an adaptive fuzzy sliding mode controller with a boundary layer
scheme [9]. In the simulation, the SMC was required to manage the vertical position of the
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AUV. However, the variables inside SMC changed dramatically. Thus, a boundary layer near
the switching line was introduced as a new method. To maintain the states inside the layer,
two fuzzy approximators were employed. The first approximator was used to update the
slope's value in the sliding surface, while the second approximator was used to shape the
error tracking. The result showed that the proposed controller reduced the reaching time of
1–2 s faster in overcoming the perturbations compared to the conventional SMC and the
fuzzy SMC. However, better results were obtained after formulating good parameter condi-
tions, which were produced by creating many rules. Moreover, the use of many rules
increased the energy demand.

Neural network (NN) is commonly used either as a control plant model or as a controller
[7, 10]. There are two kinds of learning processes in the NN, online learning and offline
training, and the success of NN depends on selecting the correct learning process. Some cases
reported that different responses could be resulted even after the same controller was applied
under the same environment [11]. Ji-Hong et al. compared the conventional SMC with neural
network (NN) SMC [12]. When the SMC is widely used as a robust control, NN is used in
conjunction to minimize the nonlinearity of the dynamic's error [13]. The results show that the
NN produced small errors and the AUV was able to track the trajectory after many learning
and adaptation processes [14]. The effect of the disturbances was also not considered. Mean-
while, Van de ven et al. approximated the damping model of an AUV by using the value of
velocity and acceleration under offline training process [10]. Noise was added in the second
simulation, hence an online learning was adopted to decrease the state prediction error as well
as to minimize the influence of the noise. It was shown that NN was used to improve the
performance of poor identification of the AUVmodel. However, Van de ven et al assumed that
other parts of the AUV model to be fully known, while in real case, the other parts such as
added mass and also colioris and centripetal model were fully uncertain.

Another robust controller, which has been developed has a high order sliding mode controller
(HOSMC), works on higher order derivatives of the sliding variable/system deviation [15–19].
The development of this method aimed to minimize the chattering effect produced by the
conventional SMC. The second order is widely implemented because of the low information
demand. Robust integral of sign of error (RISE) is included in the type of HOSMC. Fischer et al.
used the RISE as a robust control of a six-DOF AUV [20]. The experimental setup was
conducted in a swimming pool and an openwater sea trial with 0:08 ms�1 of flow current. It
was shown that the RISE gave a good performance despite larger orientation error being
produced in an openwater sea trial. Then, Fischer et al. superposed the RISE with NN to solve
the issue of dynamics model error by using online learning technique [21]. The simulation
result showed that the error converged 10 s faster under the proposed control. Experimental
validation was the next plan for a further research. Rhif proposed second-order sliding mode
control, named 2-SMC, to control the position and speed of a torpedo AUV [22]. The presence
of external disturbances was considered in the simulation, although its value and type were
not mentioned in detail. Chattering effect was reduced by proposed control. In Ref. [23],
2-SMCwas applied to observe the stability of cyclops AUVunder constant value of disturbances.
The proposed control reduced the effect of disturbances and the steady-state error. For further
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work, it was planned to develop the proposed control without decoupling some motions under
sinusoidal disturbances.

Besides making a robust controller for the AUV, the other problem, which needs to be solved,
was reducing the energy consumption. As stated in Ref. [6], the AUV could be damaged if it
spends more energy. Li et al. was successful in introducing an adaptive region-tracking con-
troller to overcome this weakness [24]. This success was followed by Ismail and Dunnigan [25].
The proposed controller in both the research guaranteed the error convergence of the sliding
vector because the desired target was determined as a region instead of a point. The results
showed that the thrusters were only activated when the AUV was outside the region. There-
fore, the AUV reduced the energy consumption. Li and Cheah also used a similar approach for
manipulator robot [26]. Li and Cheah proposed a unified objective bound method to merge the
set point of the control, the trajectory tracking, and the performance bound. The desired
trajectory reduced the conventional trajectory when the error was small, and it also changed
to a dynamic region which could be scaled or rotated. Then, the system guaranteed the
transient and the steady-state response of close loop system, as long as the objective was
specified as a performance bound. A simulation was conducted to show the energy-saving
properties of the proposed controller. The energy remained zero when the end effector of the
arm robot started and stayed inside the bound. The proposed controller required less energy
than the standard controller.

Reviewing from the advantages and the disadvantages of previous work, this chapter pro-
poses a super twisting sliding mode control with region boundary for an AUV's tracking
trajectory under the influence of perturbation. The proposed control is expected to obtain
accuracy and efficiency, which is tracking precisely on the desired trajectory as well as saving
energy consumption. The chapter is organized as follows: Section 2 studies about kinematic
and dynamic model of a 6 DOFAUV, Section 3 describes the proposed control and comparison
control, Section 4 performs results of simulation and analysis, while conclusion is explained in
Section 5.

2. Kinematic and dynamic model

This section presents the kinematic and the dynamic model of a six-DOF AUV. Before
discussing about the kinematic and the dynamic model, we introduce two types of geometric
transformation in a six-DOF AUV, namely translation and rotations. The translation is
represented by sway, surge, and heave movements, while the rotation is represented by roll,
pitch, and yaw movements. An origin C, which is located on the center of the mass, a body-
fixed reference and an earth-fixed reference, is used to describe the geometric transformation.
The illustration can be seen in Figure 1.

The kinematic model studies about the relationship between inertial position of an AUV and
velocity of an AUV. First, define the vector of position, vector of velocity, and vector of force as
shown in Eq. (1) [27]:
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η ¼ ½η1; η2�T ¼ ½x, y, z; φ, θ, ψ�T

v ¼ ½v1; v2�T ¼ ½u, v,w; p, q, r�T

τ ¼ ½τ1; τ2�T ¼ ½X, Y, Z;K, M, N�T (1)

where η indicates the linear and angular position, v indicates the linear and angular velocity, and
τ indicates the linear and angular force. Jacobian matrix is used to approximate a small displace-
ment in different spaces. Thus, the kinematic model from six DOFAUV is shown in Eq. (2) [27]:

v1
v2

� �
¼ J1�1ðη2Þ 03�3

03�3 J2�1ðη2Þ

" #
_η1

_η2

� �
⇔ v ¼ J�1ðηÞ _η (2)

where

J1�1ðη2Þ ¼
cosψ cosθ � sinψ cosφþ cosψ sinθ sinφ sinψ sinφþ cosψ cosφ sinθ

sinψ cosθ cosψ cosφþ sinφ sinθ sinψ � cosψ sinφþ sinθ sinψ cosφ

� sinθ cosθ sinφ cosθ cosφ

2
664

3
775

J2�1ðη2Þ ¼
1 0 sinθ

0 cosφ cosθ sinφ

0 � sinφ cosθ cosφ

2
664

3
775

Figure 1. Body-fixed frame and earth fixed reference frame.
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Meanwhile, the acceleration during a motion is studied by the dynamics model. The dynamic
model is developed from the Newtonian and Lagrangian principles. This has been deeply
discussed in Ref. [27]. The general dynamic model of the 6 DOFs AUV can be seen in Eq. (3):

MRB _v þ CRBðvÞv ¼ τRB (3)

where MRB ∈R6�6 is the inertia matrix of a rigid body AUV, CRB ∈R6�6 is the coriolis and
centripetal matrix of a rigid body, and τRB ∈R6�1 is an external force and moment. However,
the ocean is a rough area. The hydrodynamics effects inside the ocean move and rotate the
AUV from the initial position. The hydrodynamics effect is a force caused by fluids. These
effects should be considered to avoid a model error of the AUV. The examples of hydrody-
namics effects are radiation-induced forces and environmental forces. The equation of the
forces of the hydrodynamics effect is established in Eq. (4) [27]:

�MA _v � CAðvÞv�DðvÞv� gðηÞ ¼ τH (4)

whereMA is the added inertial matrix, CA is the added hydrodynamics coriolis and centripetal
matrix, D is the potential damping matrix, g is the gravitational matrix influenced by restoring
forces, and τH donates the hydrodynamics’ forces.

Eliminate the external forces by the hydrodynamics effect as shown in Eqs. (5–7):

τRB � τH ¼ τ (5)

ðMRB þMAÞ _v þ ðCRB þ CAÞðvÞvþDðvÞvþ gðηÞ ¼ τ (6)

M _v þ CðvÞvþDðvÞvþ gðηÞ ¼ τ (7)

where M∈R6�6 indicates inertia matrix and added mass ðMRB þMAÞ, CðvÞ∈R6�6 is the

coriolis and centripetal matrix and added mass
�
CRBðvÞ þ CAðvÞ

�
, DðvÞ∈R6�6 is the damping

matrix (hydrodynamic damping and lift force), gðηÞ∈R6�1 represents the gravitational force
and moment (restoring force), and τ∈R6�1 is the control input/sum of estimated dynamics
disturbances. Equation (2) is used to transform the dynamic model of AUV in Eq. (7) as follows,

MðηÞ€η þ Cðv, ηÞ _η þDðv, ηÞ _η þ gðη2Þ ¼ J�Tτ (8)

The dynamic model in Eq. (8) maintains Property 1, Property 2, and Property 3 [28].

Property 1 : M is symmetric and positive definite such that M ¼ MT > 0.

Property 2 : Cðv, ηÞ is the skew-symmetric matrix such that Cðv, ηÞ ¼ �CTðv, ηÞ.

Property 3 : Dðv, ηÞ is positive definite, that is, Dðv, ηÞ ¼ DTðv, ηÞ > 0.

3. Proposed control

This section discusses a proposed control which combines the super twisting sliding mode and
region boundary scheme for a six-DOF AUV. Some equations in region boundary are used in
super twisting sliding mode control; hence, this method is explained earlier.
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3.1. Super twisting sliding mode controller

Super twisting is a part of the high order sliding mode control (HOSMC). The basic idea of
HOSMC is removing the chattering effect, increasing the accuracy for tracking trajectory, and
at the same time maintaining the advantages of conventional SMC [16]. In the conventional
SMC, the control law consists of discontinuous system to ensure a sliding regime and the error
convergence in a finite time happens when the system is restricted in the sliding surface.
However, the high switching frequency known as chattering effect in the output signal is
produced, thus, the stability of the control system is disturbed [29]. Furthermore, the value of
sliding surface cannot be zero if the switching error exists. For this reason, super twisting
SMC is used to preserve the zero value of sliding surface although in the presence of switching
error [30].

There are two components in the super twisting SMC, the derivative of the discontinuous
sliding surface and the continuous function of the sliding variable. Formulating the continuous
function is useful to handle the chattering effect produced by the discontinuous function. The
super twisting SMC is shown in Eq. (9):

τst ¼ τ1 þ τ2 (9)

where τ1 denotes the discontinuous time derivative and τ2 is a continuous function of the
sliding variable. The values of τ1 and τ2 are determined in Eqs. (10) and (11), respectively:

τ1 ¼
ð
� Κ sgn ðsÞ (10)

τ2 ¼ �κjsj0:5 sgn ðsÞ (11)

where s is the sliding surface, Κ∈R represents a control parameter of the discontinuous
system and its value is greater than zero, κ∈R represents a gain of continuous system, and
sgn is a signum symbol. The value of sgn ðsÞ is equal to �1 if the sliding surface is less than
zero, equal to zero if the sliding surface is zero, and equal to 1 if the sliding surface is greater
than zero. The sliding surface is defined based on the first derivative of the tracking error, as
shown in Eq. (12),

s ¼ _η � _ηr (12)

where _η denotes the actual velocity and ηr denotes the reference vector which is developed
from the region-based control. The final equation of super twisting sliding mode controller is
given in Eq. (13):

τst ¼
ð
� Κ sgn ðsÞ � κjsj0:5 sgn ðsÞ ¼

ð
� Κ sgn ð _η � _ηrÞ � κj _η � _ηrj0:5 sgn ð _η � _ηrÞ (13)

Remark 3.1: Equation (13) reaches the finite time convergence as long as Κ > d
ΓM

and

κ2 ≥ 4dΓMðΚþdÞ
Γ2mΓmðΚþdÞ, where d is an arbitrary chosen as a positive real number of disturbance, Γm and

ΓM are constants with Γm ¼ Κ� d0 and ΓM ¼ Κþ d0, while d0 denotes the initial value of d.
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3.2. Region boundary scheme

The region boundary scheme works by replacing line-based into region-based trajectory and
different shapes of region can be decided by choosing the appropriate function [24]. The
objective region in an inequality functions is given as follows,

f iðΔηiÞ ¼
f 1ðΔη1Þ
f 2ðΔη2Þ

…
f NðΔηNÞ

2
664

3
775 ≤ 0 (14)

where Δηi ≜ ðη� ηdÞ∈ R3, i is declared as 1, 2, …, N with N being the total number of

objective function, η∈ R3 is an actual position/orientation of an AUV, and ηd ∈ R3 is a refer-
ence point of f iðΔηiÞ. The actual position of an AUV is counted from the position of origin C of
the vehicle. The example of region boundary scheme is explained as follows: the desired region
is determined as a 2D square, the illustration is shown in Figure 2. The inequality function of
Figure 2 is given as

f 1ðΔη1Þ ¼ ðx� xdÞ2 � r2x ≤ 0

f 2ðΔη2Þ ¼ ðy� ydÞ2 � r2y ≤ 0 (15)

where rx and ry are the regional bound.

To calculate the energy consumption when the AUV tracks on the region, the inequality
function in Eq. (14) should be modified by adding the potential energy, given in Eq. (16):

Figure 2. Rectangle desired region.
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PðΔηÞ ¼
XN

i¼1

PiðΔηiÞ (16)

where PiðΔηÞ≜ kpi
2 maxð0, f iðΔηÞÞ
� �2. The value of PiðΔηiÞ relies on Eq. (17):

PiðΔηiÞ ¼
0

kpi
2
f 2i ðΔηÞ

, if f iðΔηiÞ ≤ 0
, if f iðΔηiÞ > 0

8<
: (17)

where kp ∈RN�N denote positive constants of the potential energy. Note that the value of
f iðΔηiÞ is less than or equal to zero when the AUV enters the bound, thus, the gradient of
PiðΔηiÞ becomes smaller. Then, differentiating Eq. (17) with respect to Δηi yields Eq. (18):

∂PðΔηÞ
∂Δη

� �T

¼
XN

i¼1

kPimax
�
0, f iðΔηiÞ

� ∂f iðΔηiÞ
∂Δηi

� �T

≜ Δeη (18)

where Δeη is the region error whose value reduces to zero once the AUV move toward the
desired region [24].

Remark 3.2: The region error will trigger an AUV toward the desired region. Once the AUV is
inside the region, the gradient of potential energy, PiðΔηiÞ , becomes zero and at the same time
Δeη reduces smoothly to zero.

3.3. Super twisting sliding mode controller with region boundary scheme

Equation of super twisting SMC with region boundary scheme is shown in Eq. (19):

τ ¼ τst þ τeq (19)

where τ denotes a force acting on the center mass of an AUV or a control input, τst is a super
twisting SMC, and τeq is the energy saving control law. Differentiating a sliding surface in
Eq. (12) with respect to time yields Eq. (20):

_s ¼ €η � €ηr (20)

The following equation is the reference vector according to the region error,

_ηr ¼ J�1ðηÞð _ηd � ΔηÞ � αJ�1ðηÞΔeη (21)

where α is a constant value and Δη represents the difference value between the actual and the
desired position. Second derivatives of Eq. (21) with respect to time produces Eq. (22) [24]:

€ηr ¼ _J�1ðηÞð _ηd � ΔηÞ þ J�1ðηÞð€ηd � Δ _ηÞ � α _J�1ðηÞΔeη � αJ�1ðΔ _eηÞ (22)

Then, multiplying M into both sides of Eq. (20) yields
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M _s ¼ M€η �M€ηr (23)

where M€η ¼ J�Tτeq � ðC _η þD _η þ gÞ. Determine _s ¼ 0, hence [24]

M _s ¼ J�Tτeq � ðM€ηr þ C _η þD _η þ gÞτeq ¼ JTðM€ηr þ C _η þD _η þ gÞ (24)

Substitute JTΔeη into Eq. (24), thus, energy saving potential control is obtained in Eq. (25) [24]:

τeq ¼ JTðM€ηr þ C _η þD _η þ gÞ � JTΔeη (25)

Remark 3.3: Energy saving potential control drives the sliding surface converging to zero
throughout the tracking mission, thus the AUV tracks inside the region.

Finally, super twisting SMC based on region boundary scheme is shown in Eq. (26):

τ ¼
ð �

� Κ sgn ð _η � _ηrÞ
�
� κjð _η � _ηrÞj0:5 sgn ð _η � _ηrÞ þ JTðM€ηr þ C _η þD _η þ gÞ � JTΔeη (26)

Theorem: The control input τ in Eq. (26) minimizes the chattering effect and allows the AUV
to track on the desired region under determined perturbations as long as Remarks 3.1, 3.2,
and 3.3 are fulfilled. Hence, the global asymptotic stability of closed loop systems is also
guaranteed.

Proof: Propose a positive definite function of a Lyapunov candidate given in Eq. (27):

V ¼ 1
2
sTMsþ

XN

i¼1

kPimax
�
0, f iðΔηiÞ

� ∂f iðΔηiÞ
∂Δηi

� �T

þ 2κjsj þ 1
2
τ12 þ 1

2
Κjsj12 sgn ðsÞ � τ1
� �2

(27)

Define ζ equal to jsj12 sgn ðsÞ τ1
h iT

and P equal to 1
2

4κþ Κ2 �Κ
�Κ 2

� �
. Equation (27) is trans-

formed as a quadratic form as shown in Eq. (28):

V ¼ 1
2
sTMsþ

XN

i¼1

kPimax
�
0, f iðΔηiÞ

�
ðΔ _ηÞT ∂f iðΔηiÞ

∂Δηi

� �T

þ ζTPζ (28)

Differentiating Eq. (28) with respect to time yields

_V ¼ sTM _s þ
XN

i¼1

kPimax
�
0, f iðΔηiÞ

�
ðΔ _ηÞT ∂f iðΔηiÞ

∂Δηi

� �T

� 1
js1=2j ζ

TQζþ q1
Tζ (29)

where Q ¼ Κ
2

2κþ Κ2 �Κ
�Κ 1

� �
and q1

T ¼ 2κþ 1
2
Κ2 � 1

2
Κ

� �
. Substituting Eq. (24) into Eq. (29)

gives [18]
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_V ¼ sT
�
J�Tτ� ðM€ηr þ C _η þD _η þ gÞ

�

þ
XN

i¼1

kPimax
�
0, f iðΔηiÞ

�
ðΔ _ηÞT ∂f iðΔηiÞ

∂Δηi

� �T

� W
2js1=2j ζ

T ~Qζ

(30)

where δ denotes coefficient of perturbation and ~Q = 2κþ Κ2 � 4κ
Κ

þ Κ

� �
δ �Κþ 2δ

�Κþ 2δ 1

2
4

3
5:

Assume τeq in Eq. (25) as τ and substitute into Eq. (30), hence,

_V ¼ �sTðΔeη Þ þ
XN

i¼1

kPimax
�
0, f iðΔηiÞ

�
ðΔ _ηÞT ∂f iðΔηiÞ

∂Δηi

� �T

� Κ

2js1=2j ζ
T ~Qζ (31)

_V ¼ �
�
_η � J�1ðηÞð _η � ΔηÞ � αJ�1ðηÞΔeη

�
ðΔeη Þ

þ
XN

i¼1

kPimax
�
0, f iðΔηiÞ

�
ðΔ _ηÞT ∂f iðΔηiÞ

∂Δηi

� �T

� Κ

2js1=2j ζ
T ~Qζ

(32)

_V ≤ � αΔeηTΔeη � Κ

2js1=2j ζ
T ~Qζ ≤ 0 (33)

V is bounded since M is uniformly positively definite, hence, s and PiðΔηiÞ are also bounded.

By applying Barbalat's Lemma and Remark 3.1, it implies that _V is negative definite if ~Q > 0.
Therefore, the proposed control for the dynamic system of AUV in Eq. (7) guarantees Δeη ! 0

and s ! 0 in t ! ∞. Region error converges to zero indicates that f iðΔηiÞ ≤ 0, thus, ∂f iðΔηiÞ
∂Δηi

converges to zero.

3.4. Related control laws for comparative analysis

Because of the similarity of the proposed controller, some controller such as conventional
sliding mode control (SMC), fuzzy SMC, and super twisting SMC are selected for the comp-
arison purpose in the simulation. The equation of each comparison control is discussed as
follows.

3.4.1. Sliding mode control (SMC)

The function of SMC is shown in Eq. (34) [5],

τSMC ¼ �Κ sgn ðsÞ þ
ð
ks _ηr (34)

The sliding surface s, _ηr, and Δη are defined as follows
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s ¼ _η � _ηr (35)

_ηr ¼ J�1ðηÞð _ηd � ΔηÞ (36)

Δη ¼ η� ηd (37)

where ks ∈R is a constant of integrate controller.

3.4.2. Fuzzy SMC

Formula of fuzzy SMC is given in Eq. (38) [31]

τfuzzy ¼ �Κf sgn ðsÞ þ
ð
ks _ηr (38)

where Κf ∈R indicates the control parameter of discontinuous system which is obtained from
the fuzzy rule, ks ∈R is a constant of an integrate controller, while the value of s, _ηr, and Δη are
the same as Eqs. (35), (36), and (37). The rule of fuzzy is given in Table 1, where s and _s are the
input of membership function and Κf is the output. Input s uses a trim type of membership
function and its value varies from�150 to 150, input _s uses the same type as s and its value varies
from�1 � 1010 to 1:5 � 1010, while outputΚf uses gauss2mf as the type of membership function
with range value from 5 to 25. The graph of the membership function is shown in Figure 3.

3.4.3. Super twisting SMC

The formula of super twisting SMC is given in Eq. (39) [32]

τST ¼
ð
� Κ sgn ðsÞ � κjsj0:5 sgn ðsÞ (39)

where Κ∈R is a control parameter of discontinuous system and κ∈R is a constant of contin-
uous system. Equations (35–37) are used as the value of s, _ηr, and Δη.

Κf

s

Negative
large

Negative
medium

Negative
small Zero

Positive
small

Positive
medium

Positive
large

_s Negative Large Large Large Medium Small Medium Large

Zero Large Large Medium Small Medium Large Large

Positive Large Medium Small Medium Large Large Large

Table 1. Fuzzy rule.
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4. Results

The simulation utilizes an omni-directional intelligent navigator (ODIN) type of an AUV
developed by Hawaii University as it is easy and widely used for the simulation purpose, as
well as a holonomic model so that the singularity can be avoided and capable to move in six
degree of freedoms (DOFs) without any preference of direction [33, 34]. The ODIN has eight
thrusters to support its movement and does not require a heading angle to achieve a certain
position. The horizontal diameter of an ODIN is 0.63 (m), while the vertical diameter is 0.61 (m).
Its dry weight is about 125 (kg). There are two types of trajectories, which will be used in
the simulation, a conventional line trajectory and a region trajectory. The conventional trajec-
tory is applied on the conventional sliding mode control (SMC), fuzzy SMC, and super
twisting SMC, while the region trajectory determined as a spherical shape is applied on the

proposed control. An AUV is placed in the initial position at ½ 0 1 0 �Tm, then it moves to the

start sign at ½ 1:5 0 �1:2 �Tm, which indicates the start-tracking point, while the finish sign is

at ½ 10 0 0 �Tm where the simulation is stopped. The inequality equation of the spherical
region is shown in Eq. (40) [25]:

f ðΔη1Þ ¼ ðx� xdÞ2 þ ðy� ydÞ2 þ ðz� zdÞ2 � r2 ≤ 0 (40)

where ðx, y, zÞ represents the position of the vehicle in the x, y, and z axes, ðxd, yd, zdÞ denotes
the centre of the spherical region, and r ¼ 0:2 m is the radius of the desired region. The value of
the radius is determined arbitrary bigger than the radius of the ODIN, and there is no specific
term on how to determine the value of the radius [24]. In the middle of the tracking activity,
0:05 ms�1 linear perturbation on x-axis, y-axis, and z-axis disturb the movement of an AUV.
Table 2 shows the parameter's values for each controller.

The first result is shown about tracking performance to see whether the AUV tracks outside
the trajectory. As shown in the result of the conventional SMC in Figure 4(a), the AUV reached
the desired position after it moved down and gave oscillations of around 30 s at the start of the
tracking point. Slightly similar to the conventional SMC, the AUV under the fuzzy SMC,
shown in Figure 4(b), also moved down before it reached the desired position, although the

No. Controller Parameter

1. Proposed controller κ ¼ 14:5 Κ ¼ 0:5
α ¼ 0:3
kp i ¼ diag{1, 1, 1}

2. Conventional SMC Κ ¼ 20
ks ¼ 0:01

3. Fuzzy SMC Input = s and _s
Output Κf from 5 to 25
ks ¼ 0:01

4. Super twisting SMC κ ¼ 25 Κ ¼ 5
ks ¼ 0:01

Table 2. Technical description.
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oscillations did not appear. A better performance was shown under the super twisting SMC
which can be seen in Figure 4(c). The AUV moved slightly straight toward the start tracking
point from the initial position. The oscillations also did not appear under this controller.
However, the proposed controller gave the best movement compared to the others. From
Figure 4(d), the AUV moved straight from the initial position to the start tracking point. In
the perturbation time, it is shown that the higher the value of the perturbation, the further the
AUV moved from its desired position. While Figure 4(a)–(c) show that the AUV was unable to
maintain its position on the tracking line, the opposite result is shown in Figure 4(d). The AUV
remains inside the region boundary even though the perturbations are presented.

Next, results are discussed about error convergence and analyzed how long the controller
takes the AUV to settle from the perturbation's effect. The time is counted from η 6¼ 0 to
η ¼ 0. η 6¼ 0 indicates the AUV is not on the desired position. In the case of the proposed
controller, the error convergence is counted from η 6¼ r to η < r. “r” sign indicates the radius of
region boundary or the allowable error of the AUV's position based on Eq. (40), while η < r
indicates that the AUV has been inside the region. Another aim of error convergence is to see
whether the controller produces the chattering effect during the convergence. Figures 5(a) and (b)

(a) (b)

(d)(c)

Figure 4. 3D results for (a) conventional SMC, (b) fuzzy SMC, (c) super Twisting SMC, and (d) proposed controller.
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show that the X- and Y-axes of conventional SMC and fuzzy SMC converged to zero faster than
theZ-axis in the beginning of the time. TheX- and Y-axes of conventional SMC took 5 s and 125 s
was needed by Z-axis. Meanwhile, the X- and Y-axes of fuzzy SMC required 27 s to make the
AUV converge to the desired trajectory and 118 s were needed by the Z-axis. Conventional SMC
and fuzzy SMC took a longer time to converge to zero due to the increasing value of perturba-
tions. The time required for the error convergence in the X- and Y-axes was 180 s, while 15 s was
required for the Z-axis. Meanwhile, the super twisting SMC required 30 s for the error conver-
gence in all axes, while 5 s was required by the proposed controller during the perturbation time.
The maximum error for the conventional SMC, fuzzy SMC, super twisting SMC, and the pro-
posed controllers was 0:3, 0:3, 0:4, and 0:02 m, respectively. Meanwhile, the small graph of
Figures 5(a) and (b) show the conventional SMC and fuzzy SMC producing the chattering in
the presence of perturbation. A small chatter is also shown by super twisting SMC in small graph
of Figure 5(c), while proposed control showed a stable signal as performed in small graph of
Figure 5(d).

Figure 5. Error convergence for (a) conventional SMC, (b) fuzzy SMC, (c) super twisting SMC, and (d) proposed controller.
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Results of force and moment are accumulated to obtain the energy spent by the AUV when the
mission is executed. Force is an energy to make an object, in this case an AUV, move linearly
from its initial position. On the other hand, moment is a force to make an AUV rotate from its
center. The value of the force and moment were collected within the perturbed time or when
the perturbations started to disturb the AUV. The reason for selecting this specific time was to
see the differences in the way each controller handled the same perturbation. High amounts of
force and moment indicate the inefficiency of the controller. The total amount was calculated
by using the two-norm function or Euclidean distance and was considered as the energy spent
by the AUV to accomplish the desired mission. As shown in Table 3, the proposed control
spent the least energy at 356.72 N for force and at 65.02 Nm for moment compared to other
controllers. The highest amount of force is spent by super twisting SMC at 463.45 N, while
conventional SMC spent the highest amount of moment at 449.58 Nm.

The last results discuss about the thrusters’distribution. These data are collected to analyze the
effort of the propeller to maintain the AUVat its desired position. The more effort spent by the
propeller, the more power will be consumed. The ODIN had eight thrusters to move the AUV
from one place to another. The eight thrusters were divided into two functions. Thrusters 1–4
were used to move the AUV horizontally, while thrusters 5–8 were used to move it vertically.
Figure 6 shows that the oscillation values of all the thrusters for conventional SMC and fuzzy
SMC were similar. For super twisting SMC, more effort was required by thrusters 1, 3, 7, and
8 in the presence of disturbances, while the other thrusters showed constant oscillation. In the
case of a proposed controller, all thrusters required more effort when the AUV was disturbed
by perturbation.

It can be seen from the results that the proposed controller gave the best performance in terms
of robustness and energy consumption. The first was referred from the value of the gain
selection. The proposed controller needed smaller parameters value, 14:5 of κ and 0.5 of κ,
compared to the other controllers. These parameters were used to trigger the movement of the
AUV toward the desired position or were related to the tracking performance and error
convergence. In normal situations, a high value of this parameter results in oscillations at the
beginning of the time. In contrast, a small value of this parameter causes the AUV to take a
longer time to reach the target. The worst case is the AUV never reaches the target. Second
discussion is about error convergence. The results of the error convergence showed that all the
controllers, except for the proposed controller, produced oscillations at the beginning of the
time. The highest oscillation was produced by the conventional SMC, followed by the fuzzy
SMC and the super twisting SMC. Hence, the AUV could not move directly from the initial
position to the start tracking point under the conventional SMC and fuzzy SMC. Zero error
convergences exist in the case of line trajectory for conventional SMC, fuzzy SMC, and super
twisting SMC. Different result was shown in the use of region trajectory as the error position

Control SMC Fuzzy SMC Super twisting SMC Proposed control

Force 442.45 N 440.13 N 463.45 N 356.72 N

Moments 449.58 Nm 463.97 Nm 172.27 Nm 65.02 Nm

Table 3. Norm value of force and moment.
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converged to the determined radius or allowable error instead of zero. This condition is in
accordance with Remark 3.2 that as long as the AUV is inside the region, the gradient of
potential energy becomes zero, thus the error region reduces to zero. According to the proof,
one condition to ensure s!0 is the error convergence into region boundary.

In terms of the time required for the error convergence, the proposed controller took the
shortest time to converge to zero, followed by the super twisting SMC. The position of the
AUV at each axis under the conventional SMC and fuzzy SMC could not converge simulta-
neously. In this case, the time requirement stops had to be calculated when the position of the
AUV in all the axes converged to zero. Thus, the conventional SMC took the longest time to
converge to zero, followed by the fuzzy SMC. It could be seen from the results of the tracking
performance that the AUV managed to move within the region under the proposed controller
in the presence of perturbation. On the other hand, the other controllers failed to maintain the
position of the AUV on the desired tracking line.

Based on the energy consumption, the super twisting SMC spent the highest force, both under
constant and sine wave Gaussian white noise perturbations. The conventional SMC and fuzzy
SMC were in the middle position, while the proposed controller spent the least force. The

(a) (b)

(d)(c)

Figure 6. Thrusters’ distribution for (a) conventional SMC, (b) fuzzy SMC, (c) super twisting SMC, and (d) proposed
controller.
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proposed control saved up to 30.2% of linear force consumption. For the moment under the
constant perturbations, the highest value was spent by the conventional SMC, followed by the
fuzzy SMC, the super twisting SMC, and the proposed controller. Meanwhile, the highest
moment value under the sine wave Gaussian white noise perturbation was spent by the fuzzy
SMC, followed by the conventional SMC, the super twisting SMC, and the proposed control-
ler. In this case, the proposed controller saved more than 50% of the moment consumption.

More force was spent by the super twisting SMC and the proposed controller during the
transition from the initial point. Therefore, the AUV was enabled to move directly to the start
tracking point. These controllers also reacted to the presence of perturbations. The higher the
value of the perturbation that disturbed the AUV, the greater the force that would be spent. In
contrast, the conventional SMC and the fuzzy SMC showed a similar pattern of force and
moment in all the times and in all conditions. This meant that these two controllers were not
able to adapt well in handling changes in the situation.

The last discussion is about the propulsion or distribution of the thrusters. The proposed
controller produced the least effort during the mission, followed by the super twisting SMC.
Meanwhile, the conventional SMC and the fuzzy SMC showed the most active propulsion in
all conditions. This situation was not good due to the battery consumption of the AUV. The
more active thrusters indicated that the AUV would lose battery power easily. The high value
of propulsion of the thrusters was also not good for the electrical devices inside the AUV.

5. Conclusion

A new robust-region-based controller is introduced from a survey of existing robust controls
and saving energy approach for an autonomous underwater vehicle (AUV). Lyapunov candi-
date was used to prove a global asymptotical stability, while some simulations involving
conventional sliding mode control (SMC), fuzzy SMC, and the only use of super twisting
SMC were conducted under two kinds of perturbations to observe the effectiveness of the
proposed controller. It is shown that the use of proposed controller was able to keep the AUV
within the desired region under certain value of constant perturbations as well as a sinusoidal
perturbation with a Gaussian white noise. From the results, it can be concluded that the
proposed controller was able to minimize the chattering effect, provide a good response when
overcoming the disturbances, provide a short computational time of error convergence, and
save the amount of force and moment.
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Abstract

In order to develop and implement the laws piloting for an aircraft, flights validation
will be necessary. This could in fact be done, in a first step, by using flight simulators. In
this work, we choose the predator virtual model flying in MicrosoftTM flight simulator
(MSFS) and we propose the procedure of controlling its attitude. We send the adaptive
integral high-order sliding mode (AIHOSM) inputs piloting control. This work is a real-
time virtual simulation. For the AIHOSM controller, we propose the gain adaptation for
reduction of chattering phenomena and possibility to control the aircraft presented by
the uncertain nonlinear systems in which the uncertainties have unknown bounds. This
technique is more robust and simpler to implement than the quaternion one and only
needs the information about the sliding mode surface.

Keywords: adaptive integral high-order sliding mode controller, Microsoft flight
simulatorr, UAV predator, real-time virtual simulation

1. Introduction

In reality, all physical systems are affected by uncertainties due to modeling errors, parametric
variation, and external disturbances. Controlling of dynamical systems in the presence of
uncertainties is extremely difficult as the controller's performances degrade and the system
may even be led to instability. As such, active researches are continuing to develop controllers
that can work successfully in spite of uncertainties. Robust control techniques such as
nonlinear adaptive control, model predictive control, backstepping and sliding mode control
[1, 2, 3, 4, 5, 11, 19, 20, 32, 34] have been evolved to deal with uncertainties.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The classical Sliding Mode Control (SMC) leads, generally, to the appearing of an undesirable
chattering phenomenon [2, 3, 9, 10, 13, 14, 15] to solve this problem we propose an approach
using the Adaptive Integral High Order Sliding Mode Controller (AIHOSMC). This technique
ensures a good tradeoff between error and robustness against noise and especially a good
accuracy for a certain frequency range, regardless of the gain setting of the algorithm. This
technique is based on estimating the successive derivatives of the sliding mode surface and
transmitting them to the control block, all by using an aircraft in virtual simulated environ-
ments [24, 25]. It is real-time virtual simulation, which is close to the real-world situation.

The piloting technique proposed in this work is more robust and simpler to implement than
the quaternion one. It only requires information about the sliding mode surface.

2. Problem statement

Through a methodology based on the confrontation of the real and the simulated worlds, the
main objective of this chapter is to develop an autopilot based on a robust controller to
maintain the desired trajectory (Figure 1).

Figure 1. Real trajectory.
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To achieve this objective, we use the flight simulator FS2004 as a simulated world environment
coupled to a hardware and a software development platform. This simulator is developed by
Microsoft, with several simulated aircraft included in its airplane library. We choose the
Predator MQ-1 (Figure 2). It is considered as a reconnaissance and an intelligent system.

In this work, the main goal is to maintain the desired aircraft's trajectory; and to do so, we
propose the following approach:

• description and analysis of the aircraft system model;

• implementation of a real-time interface between the flight simulator FS2004 and the
module real-time Windows target of Simulink/Matlab;

• development and implementation of the piloting law based on adaptive integral sliding
mode for the design of the autopilot controller;

• flight tests.

3. Characteristics of the predator

The MQ-1 predator is an American unmanned aerial vehicle (UAV) that can serve in the
reconnaissance or attack role. Predator has been in the United States Air Force (USAF) service
since 1995 and has seen combat in numerous theatres.

Airwrench tool gives access to flight dynamic characteristics (http://www.mudpond.org/
AirWrench_main.htm). This tool allows creating and tuning flight dynamics files description
of simulated planes models. This software uses aerodynamics formulas and equations
described on the Mudpond Flight Dynamics Workbook. It calculates aerodynamic coefficients
based on the physical characteristics and performance of the aircraft (Table 1).

Figure 2. The predator MQ-1 flying in FS-2004.
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4. Implementation of a real-time interface between Microsoft flight
simulator and the module “real-time windows target” of Simulink/Matlab

We communicate with FS2004 by using a dynamic link library called FSUIPC.dll (Flight
Simulator Universal Inter-Process Communication). This library created by Peter Dowson
and is downloadable from his website [36] (www.schiratti.com/dowson.html). It allows external
applications to read and write in and from Microsoft flight simulator (MSFS) by the means of
an IPC (interprocess communication) using a buffer of 64 Ko. The documentation given with
FSUIPC explains the organization of this buffer [8, 17, 18].

To read or write a variable using the FSUIPC, we need to know its offset address, its format,
and the necessary conversions. For example, the bank angle (ϕ) is read as a signed long S32 at
the offset 0x057C. Table 2 shows the parameters used in our simulation.

To deal with the design of an autopilot controller, we propose an environment framework
based on a software in the loop (SIL) methodology (see Figure 3) and we use Microsoft flight
simulator (MSFS-2004) as a plane simulation environment [24, 25].

This work is a real-time virtual simulation, we read or/and write the desired parameters from
and to MSFS-2004 through the computer memory by using the FSUIPC library.

Dimensions Moments of inertia

Length: 11.88 m Pitch: 1800.0

Wingspan: 14.84 m Roll: 3700.00

Wing surface area: 11.43 m2 Yaw: 1800.00

Wing root chord: 1.55 m Cross: 0.00

Aspect ratio: 19.28

Taper ratio: 0.10

Table 1. FS2004 aircraft-simulated characteristics PREADAR MQ-1.

Offset Name Var. type Size (octet) Usage

057C Bank angle (ϕ) S32 4 Degree

578 Elevation angle (θ) S32 4 Degree

580 Head angle (ψ) U32 4 Degree

02BC Speed IAS (V) S32 4 Knot*128

0BB2 Elevator deflection (δe) S16 2 -16383 to +16383

0BB6 Aileron deflection (δa) S16 2 -16383 to +16383

0BBA Rudder deflection (δr) S16 2 -16383 to +16383

088C Thrust control (δx) S16 2 -16383 to +16383

Table 2. Flight parameters in the buffer FSUIPC.
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5. System modeling

The model describing the system is presented by [12, 25, 26]

_x ¼ f ðxÞ þ gðxÞ:U (1)

with is the aircraft state vector in the body frame:

x ¼ ½ u v w p q r ϕ θ ψ �T

¼ ½ x1 : : : : : : : x9 �T
(2)

U ¼ ½ δt δe δa δr �T is the control vector and δt, δe, δa and δr denoting thrust control,
elevator deflection, aileron deflection, and rudder deflection, respectively.

We propose the following output vector:

y ¼ ½φ θ ψ �T (3)

The nonlinear functions f(x) and g(x) are given by [16, 23, 25]:

f ðxÞ ¼ ½ f 1ðxÞ : : f 9ðxÞ �T (4)

where,

Figure 3. Software-in-the-loop architecture.
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f 1ðxÞ ¼ x2x6 � x3x5 þ Cx2x5 þ Cx4 þ Cx5αþ Cx1 _α � g sin x8

f 2ðxÞ ¼ x3x5 � x2x4 þ Cy2x4 þ Cy3x6 þ Cy6βþ Cy1 _β þ Cy7 þ g sin x9 sin x8

f 3ðxÞ ¼ x1x5 � x1x2 þ Cz2x5 þ Cz5αþ Cz1 _α þ Cz4 þ g cos x9 cos x8

f 4ðxÞ ¼ � Izz
Δ

½�Ixzx4x5 þ ðIyy � IzzÞx6x5 þ Cl2x4 þ Cl3x6�

� Ixz
Δ

½�Ixzx6x5 þ ðIyy � IxxÞx4x5 � Cn2x4 þ Cn3x6�

� 1
Δ
½IzzðCl5βþ Cl1 _β þ Cl7Þ � IxzðCn6βþ Cn1 _βÞ � Cn7�

f 5ðxÞ ¼ � 1
Iyy

ðIzz � IxxÞx4x6 þ Ixzðx26 � x24Þ þ Cm2x5 þ Cm5αþ Cm1 _α þ Cm4
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Δ
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� Ixx
Δ

½�Ixzx6x5 þ ðIyy � IxxÞx4x5 � Cl2x4 þ Cl3x6�

� 1
Δ
½�IxzðCl5βþ Cl1 _β þ Cl7Þ þ IxxðCl5βþ Cl1 _βÞ � Cn7�

f 7ðxÞ ¼ x4 þ x5 sin x7 tan x8 þ x6 cos x7 tan x8

f 8ðxÞ ¼ x5 cos x7 � x6 sin x7

f 9ðxÞ ¼
x5 cos x7 þ x6 sin x7

cos x8

gðxÞ ¼

Fprop cosαm

m
Cx3 0 0

0 0 Cy4 Cy5

Fprop sinαm

m
Cz3 0 0

0 0 a1 a2

0 Cm3 0 0

0 0 a3 a4

0 0 0 0

0 0 0 0

0 0 0 0

2
666666666666666666666664

3
777777777777777777777775

(5)

where Δ ¼ I2xz � IxxIzz,a1 ¼ � ðIzzCl4�IxzCn4Þ
Δ ,a2 ¼ � ðIzzCl6�IxzCn5Þ

Δ ,, a4 ¼ � ðIzzCn5�IxzCl6Þ
Δ .

The coefficients Cx1, ::::::::,Cn5 are defined in Table 3 [21, 22, 25, 26].
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6. Integral sliding mode controller problem formulation

Consider the following nonlinear uncertain system [31]

_x ¼ f ðxÞ þ gðxÞ:U
y ¼ Sðx, tÞ (6)

Sðx, tÞ is a sliding variable. f and g are uncertain smooth vector fields and are differentiable.

The uncertainties in f ðxÞ and gðxÞ are caused by the parameter variations, the nonmodeled
dynamics, or the external disturbances.

Assumption 1 [31]: The relative degree r of system (6) is constant and known, and the
associated zero dynamics are stable.

The rth-order sliding mode is defined through the following definition.

Definition 1 [6, 7, 8, 31]: Consider the nonlinear system (6) and the sliding variable S. Assume

that the time derivatives S, _S, :::::, Sðr�1Þ are continuous functions. The manifold defined as

Σr ¼ fxjSðx, tÞ ¼ _Sðx, tÞ ¼ ::::: ¼ Sðr�1Þ ¼ 0g (7)

is called “rth-order sliding mode set,” which is nonempty and is locally an integral set in the
Fillipov sens [30]. The motion Σr on is called “rth-order sliding mode” with respect to the
sliding variable S.

Definition 2 [6–8, 31, 32]: Consider the nonlinear system (6) and the sliding variable S. Assume

that the time derivatives S, _S, :::::, Sðr�1Þ are continuous functions. The manifold defined as

Σr
� ¼ fxjjSj ≤μ0τ

r�1, j _Sj ≤μ1τ
r�1, :::::, jSðr�1Þj ≤μrg (8)

Cx1 ¼ QSCx _α
m Cx2 ¼ QScCxq

mV Cx3 ¼ QSCxδe
m Cx4 ¼ QSCx0

m

Cx5 ¼ QSCxα
m Cy1 ¼ QSbCy _β

2mV
Cy2 ¼ QSbCyp

2mV Cy3 ¼ QSbCyr

2mV

Cy4 ¼ QSCyδa

m Cy5 ¼ QSCyδr

m Cy6 ¼ QSCyβ

m Cy7 ¼ QSCy0

m

Cz1 ¼ QScCz _α
mV Cz2 ¼ QScCzq

mV
Cz3 ¼ QSCzδe

m Cz4 ¼ QSCz0
m

Cz5 ¼ QSCzα
m Cl1 ¼ QSc2Cl _β

2V Cl2 ¼ QSb2Clp

2V
Cl3 ¼ QSb2Clr

2V

Cl4 ¼ QSbClδa Cl5 ¼ QSbClβ Cl6 ¼ QSbClδr Cl7 ¼ QSbCl0

Cm1 ¼ QSc2Cm _α
2V Cm2 ¼ QSc2Cmq

V
Cm3 ¼ QScCmδe

Iyy
Cm4 ¼ QScCm0

Cm5 ¼ QScCmα Cn1 ¼ QSb2Cm _β

2V
Cn2 ¼ QSb2Cnp

2V
Cn3 ¼ QSb2Cnr

2V

Cn4 ¼ QSbCnδa Cn5 ¼ QSbCnδr Cn6 ¼ QSbCnβ Cn7 ¼ QSbCn0

Table 3. Expression of the modified aerodynamic coefficients.
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With μi ≥ 0 (0 ≤ i ≤ r� 1), is named “real rth-order sliding mode set,” which is nonempty and is
locally an integral set in the Fillipov sens [30]. The motion on Σr is called “real rth-order sliding
mode”with respect to the sliding variable S. Given the form of system (6), the rth-order sliding
mode control (SMC) approach allows the finite time stabilization to zero of the sliding variable
S and its (r-1) first time derivatives by defining a suitable discontinuous control function. The
rth time derivative of S satisfies the equation [6–8]:

SðrÞ ¼ aðx, tÞ þ bðx, tÞU (9)

With b ¼ LgLr�1
f S and a ¼ Lrf S

Assumption 2 [31, 32]: Solutions of Eq. (9) with discontinuous right-hand side are defined in
the sense of Fillipov [30].

Assumption 3 [31, 32]: Functions aðt, xÞ and bðt, xÞ are smooth and uncertain but bounded
functions; furthermore, they can be partitioned into a well-known nominal part (respectively,
aðt, xÞ and bðt, xÞ is an uncertain bounded one, respectively, aðt, xÞ and Δbðt, xÞ.

aðt, xÞ ¼ aðt, xÞ þ Δaðt, xÞ
bðt, xÞ ¼ bðt, xÞ þ Δbðt, xÞ

(10)

Functions aðt, xÞ and aðt, xÞ are such that a≻ 0 and a≻ 0 there is an upper bound constant ξ and
a priori known constant 0≺γ ≤ 1 such that the uncertain functions satisfy the following
inequalities [33]:

Δbðt, xÞ
bðt, xÞ

�����

����� ≤ 1� γ, jΔaðt, xÞj ≤ ξ (11)

The rth-order sliding mode controller (SMC) of Eq. (6) with respect to the sliding variable S is
equivalent to the finite time stabilization of

_zi ¼ zi�1

_zi ¼ aðt, xÞ þ bðt, xÞ (12)

With 1 ≤ i ≤ r� 1 and z ¼ ½ z1 z2 ::: ::: zr �T ¼ ½ S _S ::: :::: Sðr�1Þ �T

Consider the following state feedback control

U ¼ 1
bðx, tÞ

�
� aðt, xÞ þ σ

�
(13)

with σ the auxiliary control input. Note that this state feedback control linearizes (by an input-
output point of view) the nominal system, i.e., system (12) with no uncertainties.

Applying Eq. (13) to system (10), one gets
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_zi ¼ zi�1

_zi ¼ Δaðt, xÞ � Δbðt, xÞ
bðt, xÞ aðt, xÞ þ 1þ Δbðt, xÞ

bðt, xÞ

 !
σ (14)

The control objective is now the following: how to define a discontinuous control law ensuring
the stabilization of the previous system, in a finite time and in spite of the uncertainties?

6.1. Control design

We proposed two high-order sliding mode controllers based on integral sliding mode concept
[27]: the first requires knowledge of the uncertainties bounds, whereas, for the second one, no
knowledge of the bounds is required. This latter feature is due to an adaptation law for the
control gain.

6.1.1. Finite time stabilization of an integrators’ chain system

The following theorem proposes a continuous finite time stabilizing feedback controller for a
chain of integrators, by giving an explicit construction involving a small parameter. One gets
an asymptotically stable closed-loop system; the system is homogeneous of negative degree
with respect to a suitable dilation, which implies the finite time stability. Consider the system
(12) with no uncertainty (Δaðt, xÞ ¼ 0 and Δbðt, xÞ ¼ 0).

_zi ¼ zi�1
_zr ¼ σ

(15)

Theorem 1 [28]

Let k1, :::, kr≻0 be such that the polynomial λr þ krλr�1 þ :::þ k2λþ k1 is Hurwitz. There exists
ε∈ �0, 1½ such that, for every α∈ �1� ε, 1½, the origin is a globally finite time stable equilibrium
point for system (15) under the feedback

σ ¼ k1signðz1Þjz1jα1 �…� krsignðzrÞjzrjαr (16)

With α1, ::::,αr�1 satisfy αi�1 ¼ αiαiþ1
2αiþ1�αi

For i ¼ 2, :::, r with αr ¼ α and αrþ1 ¼ 1.

6.1.2. Robust finite time controller design based on integral sliding mode [31, 32]

Consider the following function, named “integral sliding variable,” defined as (t0 being the
initial time)

SðzðtÞÞ ¼ zrðtÞ � zrðt0Þ �
ðt

t0

σnomðτÞdτ (17)

with the term σnom defined by Eq. (16) in Theorem 1. Note that, Sðzðt0ÞÞ ¼ 0: then the system is
evolving on the sliding manifold early from the initial time.
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This latter feature is a key point of the integral sliding mode controller; in fact, the definition of
the integral sliding variable allows to ensure that a sliding mode has been established early
from the initial time, thanks to the finite time convergence property of σnom. Then, it is
necessary to force the system to evolve on the integral sliding surface S ¼ 0 in spite of the
uncertainties and perturbations: it will be the role of the discontinuous part of the controller. In
fact, the term σnom appearing in S can be viewed as a desired trajectory generator. By suppos-
ing that, ∀t ≥ t0, S ¼ 0, one has

_S ¼ _zr � σnom ¼ 0 ! _zr ¼ σnom (18)

From the previous inequality, it is clear that, if the control σ guarantees that S ¼ 0, ∀t ≥ t0 and
given the features of σnom, system (15) is stabilized at the origin in a finite time.

Then, in order to stabilize system (15), the following control law is defined

σ ¼ σnom � KsignðSÞ (19)

This controller has two parts:

• The first one σnom, called “ideal control”, is continuous and stabilizes the system (15) at the
origin in absence of uncertainties. This controller is also used in order to generate the
system's ideal trajectories;

• The second one �KsignðSÞ provides the complete compensation of uncertainties and
perturbations and ensures that control objectives are reached, where the gain is satisfying

K≻
ð1� γÞðjσnomj þ jψj þ ξþ ηÞ

γ
(20)

Theorem 2: [29, 33] Consider the nonlinear system (6) and assume that assumptions 1–3 are
fulfilled. Then, if the gain

K fulfills the condition (20), the control law

U ¼ b�1ðx, tÞ
�
� aðx, tÞ þ σnom � KsignðSÞ

�
(21)

ensures the establishment of a rth-order sliding mode versus the sliding variable S, i.e., the
trajectories of system (6) converge to zero in finite time.

7. Application of the adaptive integral- high-order-sliding -mode
controller for piloting

The relative degrees are rϕ ¼ rθ ¼ rψ ¼ 0.

The input control U is defined by σϕ,θ,ψ ¼ ½ δe δa δr �T.
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We propose the integral sliding variable as follows:

Sϕ,θ,ψðzðtÞÞ ¼ z1,φ,θ,ψðtÞ � ydðt0Þ �
ðt

t0

σnomðτÞdτ (22)

where yd ¼ ½ϕd θd ψd �T is the desired vector and z1,ϕ,θ,ψ ¼ ½ϕ θ ψ �T is the output vec-
tor of integrators’ chain.

In Theorem 1, we choose ε ¼ 0:7, so we can take α ¼ 0:5.

The integrators’ chain is defined by

_z1 ¼ z2
_z2 ¼ �λ̂1ϕ,θ,ψjz1ϕ,θ,ψj

1
3signðz1ϕ,θ,ψÞ � λ̂2ϕ,θ,ψjz2ϕ,θ,ψj

1
2signðz2ϕ,θ,ψÞ (23)

where, σnom ¼ �λ̂1ϕ,θ,ψjz1ϕ,θ,ψj
1
3signðz1ϕ,θ,ψÞ � λ̂2ϕ,θ,ψjz2ϕ,θ,ψj

1
2signðz2ϕ,θ,ψÞ.

The control input can be chosen as

σϕ,θ,ψ ¼ �λ̂1ϕ,θ,ψjz1ϕ,θ,ψj
1
3signðz1ϕ,θ,ψÞ � λ̂2ϕ,θ,ψjz2ϕ,θ,ψj

1
2signðz2ϕ,θ,ψÞ

� λ̂3ϕ,θ,ψ

ðt

0

signðz2ϕ,θ,ψÞdt� K1ϕ,θ,ψz2ϕ,θ,ψ
(24)

where K1ϕ,θ,ψ ≻ 0.

The reduction of the noise is assumed by the presence of the linear term (Kiz2i, where i ¼ ϕ,θ,ψ)
in the equation of each output i in the algorithm. This linear term can be expressed as the law of
the control, which allows the reduction of the chattering effect. The addition of this continuous
term smoothes the output noise due to a low gain values. If the chosen values of these gains
become very low, the convergence of the algorithm becomes slow. Therefore, the choice of the
convergence gains remains difficult and is based on a compromise between reducing the noise
and having a short algorithm's convergence time. It should also be noted that in the presence of
noise, it is necessary to impose small initial values for the dynamic gains in order to reduce the

effect of the discontinuous control. Moreover, the presence of integral term (
ðt
0
signðz2ϕ,θ,ψÞdt) in

the expressions of the dynamic gains provides the smoothing of the estimated derivatives.

The dynamic adaptation of the gains _̂λi, i∈ f0, 1, 2g is given by

_̂λ1ϕ,θ,ψ ¼ jz1ϕ,θ,ψj
2
3signðz1,ϕ,θ,ψÞz1,ϕ,θ,ψ

_̂λ2ϕ,θ,ψ ¼ jz2ϕ,θ,ψj
1
2signðz2,ϕ,θ,ψÞz2,ϕ,θ,ψ

_̂λ3ϕ,θ,ψ ¼ z2ϕ,θ,ψ
ðt

0

signðz2,ϕ,θ,ψÞdt

8>>>>>><
>>>>>>:

(25)
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The application of this piloting technique in FS2004 is shown in Figure 2. λ, μ and h are
latitude, longitude and altitude of aircraft, respectively.

The input signals at the upper and lower saturation values of the control laws are used to
respect the actuators bounds. Scaled functions are added to take into account the actuators
resolutions.

The adaptive integral high-order sliding mode technique is used to recover the desired signal.
Several flight tests were realized to demonstrate the effectiveness of the combined controller/
integrators’ chain.

7.1. Simulation results

We run the flight simulator FS2004 and the interface with the module real-time windows target
of Simulink/Matlab.

In a first step, we used aircraft predator, the aircraft taking off was done using the keyboard.
Then, we run our software to transmit the control inputs based on the adaptive integral higher-
order sliding mode to the autopilot controller in order to maintain the desired trajectory.

The desired signal injected and the output integrators’ chain are shown in Figure 4. We notice
the outputs of the integrators’ chain z1, j where j ¼ ϕ,θ,ψ follows the references ϕd, θd and ψd

perfectly. The surface sliding mode Sϕ,θ,ψ is small (see Figure 5).

Figure 4. Application of the adaptive integral high order sliding mode controller in FS2004.
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Figure 6 shows the error between the output integrators’ chain z1ϕ and ϕd0. The signal z1ϕ
follows ϕd.

The input signals at the upper and the lower saturation values of the aileron, rudder, and
elevator deflections are used to respect the virtual Joystick (PPjoy) bounds. Upper limit: 62767,
lower limit: 1.

Airwrench gives the following data:

• Aileron parameters: Aileron area 1.70 m2, aileron up angle limit 20.0�, aileron down angle
limit 15.0�.

• Elevator parameters: Elevator area 1.54 m2, elevator up angle limit 25.00�, elevator down
angle limit 20.00�.

• Rudder parameters: Rudder area 0.62 m2, Rudder angle limit 24.00�.

Figure 6. Surface sliding mode Sφ.

Figure 5. Reference and output integrators.
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The aileron, elevator, and rudder deflections are shown in Figures 7–9. We notice the absence
of the chattering phenomenon.

The evolution parameters λ̂1, λ̂2, and λ̂3 are shown in Figure 10.

The flight tests demonstrate the robustness of the adaptive integral high-order sliding mode. It
makes it possible to ensure a better derivation of the desired input signal in real time, and this
is to ensure a good accuracy of tracking the desired trajectory.

Figure 7. Ailler control.

Figure 8. Rudder control.
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8. Conclusion

In this chapter, a procedure of the communication with an aircraft model in a simulated
environment and the implementation of the real-time interface between the Microsoft flight
simulator and the module “real-time windows target” of Simulink/Matlab has been presented.
After that, an adaptive integral sliding mode for an aircraft autopilot has been presented. Our
approach uses the environment simulator (FS2004) to reduce the design process complexity.

For the piloting part, we have interested the gain adaptation for the reduction of chattering
phenomena and possibility to control the aircraft presented by the uncertain nonlinear systems

Figure 10. Dynamic parameters evolution λ̂1, λ̂2, and λ̂3.

Figure 9. Elevator control.
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in which the uncertainties have unknown bounds. This technique is more robust and simpler
to implement than the quaternion one and only needs the information about the sliding mode
surface.

The flight tests demonstrate the robustness of an adaptive integral sliding mode. The former
ensures a better derivation of the desired input signal in real time, and this ensures a good
accuracy in terms of tracking for a desired reference.
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