
Motion Tracking  
and Gesture Recognition
Edited by Carlos M. Travieso-Gonzalez

Edited by Carlos M. Travieso-Gonzalez

Photo by justenl / iStock

Nowadays, the technological advances allow developing many applications on different 
fields. In this book Motion Tracking and Gesture Recognition, two important fields are 

shown. Motion tracking is observed by a hand-tracking system for surgical training, 
an approach based on detection of dangerous situation by the prediction of moving 

objects, an approach based on human motion detection results and preliminary 
environmental information to build a long-term context model to describe and predict 

human activities, and a review about multispeaker tracking on different modalities. 
On the other hand, gesture recognition is shown by a gait recognition approach using 
Kinect sensor, a study of different methodologies for studying gesture recognition on 
depth images, and a review about human action recognition and the details about a 
particular technique based on a sensor of visible range and with depth information.
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Preface

Due to the rise of technological devices and smartphones, the visualization of multimedia
content has become a routine. Every day, a large number of images or videos can be viewed
and/or sent, which are already part of our daily lives. This does not go unnoticed for techno‐
logical advances, where the researchers focus their efforts to turn that multimedia content
into something more. Extracting information from videos and images can be very useful,
since you can automatically get more information from the simple visualization.

In fields with security, medicine, and communication of humans, new and advanced techni‐
ques can be applied to facilitate or give more information to multimedia contents. A great
number of tools are being developed in this sense, and in this book, works of high quality
are presented, developed on a scientific methodology, giving validation to the present pro‐
posals. They have focused on motion tracking and gesture recognition. Therefore, it will be a
very attractive reading for the reader.

Motion Tracking and Gesture Recognition is composed of seven chapters, which have been div‐
ided into two sections, motion tracking and gesture recognition. The section "Motion Track‐
ing" has four chapters. Motion tracking is observed by a hand-tracking system for surgical
training, an approach based on detection of dangerous situation by the prediction of moving
objects, an approach based on human motion detection results and preliminary environ‐
mental information to build a long-term context model to describe and predict human activ‐
ities, and a review about multispeaker tracking on different modalities. The section "Gesture
Recognition" has three chapters. Gesture recognition is shown by a gait recognition ap‐
proach using Kinect sensor, a study of different methodologies for studying gesture recogni‐
tion on depth images, and a review about human action recognition and the details about a
particular technique based on a sensor of visible range and with depth information.

As an editor of this book, I would like to thank the authors, their effort, and dedication that
they have made to achieve some works of great quality. The sum of this effort has produced
this book, which has become an inescapable read for all those who want to know the latest
advances in tracking video and gesture recognition.

Carlos M. Travieso-González
University of Las Palmas de Gran Canaria,

Spain
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Chapter 1

Motion Tracking System in Surgical Training

Shazrinizam Shaharan, Donncha M Ryan and

Paul C Neary

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.68850

Abstract

Introduction: Simulation technology is evolving and becoming the focus of attention in 
surgical training. The development of this technology in assessing open surgical skills 
is far behind when compared to minimally invasive surgery (MIS) training. Surgical 
skills such as suturing and tying surgical knots are assessed by an observational tool. 
It is labour-intensive and time-consuming. Therefore, we explored the potential use of 
motion tracking system as a non-observational assessment tool for basic surgical skills.

Methods: We established a motion tracking system using a device called the Patriot™ 
(Polhemus Inc., Colchester, VT) and software created by our co-supervisor which gener-
ates numerical metrics. We validated this system and applied it to the proficiency-based 
skill assessment.

Results: The Patriot™ system was able to differentiate between the different levels of 
expertise (construct validity) and demonstrated significant correlation with the classical 
assessment tool (concurrent validity) in open surgical skills. We demonstrated the poten-
tial application of this system in mapping of trainees’ surgical proficiency.

Conclusion: Overall, we have established the validity of motion tracking in assessing the 
fluidity of the hands when completing fundamental surgical skills. Our research took a 
step forward beyond the validation paradigm by demonstrating its potential application 
in the surgical training programme.

Keywords: surgical skill, motion tracking, motion analysis, surgical skill assessment, construct 
validity, non-observational tool

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



1. Introduction

1.1. The challenges in healthcare and surgical training

The nature of surgical training is consistently evolving in the past decade along with continu-
ous changes in the healthcare system worldwide. The modern healthcare system has been 
pressurized by the current law that involves a restricted number of working hours. The legal 
working hours per week can be as low as 48 hours in the European countries [1] and 80 
hours in North America [2]. These working mandates are deemed necessary to guard against 
human errors that may be related to stress and fatigue in a high-pressured working environ-
ment. In addition, there is also an increasing popularity in reporting medico-legal cases in 
the current media. High profile medical reports such as the Kennedy Report (UK) [3] and the 
Institute of Medicine (US) report ‘To Err is Human’ [4] have highlighted surgical errors that 
turned the spotlight immediately on the adequacy of surgical training and, by extension, the 
quality of surgical trainees [5]. These current changes in healthcare system could be continued 
to cause negative impact upon the surgical training of many aspiring surgeons.

Historically, surgical training has been based on the apprenticeship model throughout many 
years. The trainee surgeons are taught on how to perform procedures by senior surgeons with 
on-the-job training. Therefore, the training is opportunistic and the trainees were expected to 
demonstrate their skills in the operating theatre under supervision of their consultants. This 
was coined by William Halstead who exemplified the training approach as ‘see one, do one 
and teach one’ [6]. The traditional teaching method is largely relying upon variable cases 
that the trainees encounter during their daily work routine. Typically, junior doctors learn 
from their seniors and more experienced colleagues and their consultants. The skill level of 
consultants is perceived as the proficiency level and therefore, the desired precision in surgi-
cal training. The trainees are expected to reach the proficiency level that would allow them to 
perform surgical procedures in the real operating theatre. However, it is a challenge to assess 
surgical skills and obtain an objective proficiency level.

This training model is less favourable in the current climate of healthcare system. Due to the 
restriction, the trainees have limited opportunities to gain competencies, and therefore the 
training period is prolonged. As a direct consequence of these challenges, interest in laborato-
ries with formal curricula, specifically designed to teach surgical skills, has increased dramati-
cally [7]. The attention has been shifted towards training in a simulation lab using inanimate 
bench models, animals (cadaveric or live), hybrid or virtual reality (VR) simulators. In United 
Kingdom, the use of live animals is not permitted under the current law, unlike in Europe, 
United States and other countries [8].

Therefore, simulation technology has gained its popularity among surgical training institu-
tion worldwide. With the advancement of laparoscopic and minimally invasive surgery (MIS) 
and steep learning curve in this specialty, a burst of simulators became available in the market 
for over a decade ago. Some examples of validated virtual reality (VR) simulators available in 
laparoscopy are MIST VR, LapSim, LapMentor and Xitact LS500 [9]. The trainees are able to 
practice their skills in hand-eye co-ordination, intracorporeal suturing and procedures such 
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as laparoscopic cholecystectomy and appendicectomy by using these simulators. In general, 
the laparoscopic instruments used are fitted with sensors that allow the cameras to track their 
movement. The simulator then displays a two-dimensional graphic of an operative field such 
as the internal organs on a computer screen. From this, the simulators are able to track and 
quantify the movement that would be converted into meaningful metrics such as path length, 
smoothness and economy of movement. These metrics provide an objective automated mea-
surement of technical skill proficiency instantaneously.

The advancement of simulation technology has allowed training bodies such as The Society of 
American Gastrointestinal and Endoscopic Surgeons (SAGES) to develop training models for 
both laparoscopic and endoscopic skills. In the recent years, surgical training institutions have 
been incorporating simulators in surgical skills assessment and trainees’ selection process. 
We found that only 56% of the studies in the literature employed simulator-generated objec-
tive metrics in the laparoscopic skills assessment either exclusively or combined with other 
assessment tools [10], unlike other industries, such as the aviation industry, which are more 
advanced in the simulation technology.

The MIS and laparoscopic surgery is only a branch of surgical specialties. In general, the 
progression of simulator development has tended to target minimally invasive surgery (MIS) 
[11]. However, open surgery remains the foundation of all surgical specialties. The surgical 
trainees are expected to master technical skills in open surgery before they are allowed to 
progress to more complex surgical procedures such as MIS and microsurgery. Examples of 
technical skills in open surgery include hand knot tying, suturing skill, repair of nerve or 
tendon and open hernia repair. The surgeon’s ability to tie knots securely is of paramount 
importance as loosening of surgical knots, during or after tying, can compromise the outcome 
of a surgical procedure [12].

Despite its importance, the training of open surgical techniques is largely depending on 
inanimate bench models. The trainees would practice surgical skills on bench models 
such as skin pads and saphenofemoral junction model from Limbs and Things™ (Bristol, 
United Kingdom) and laparotomy model from Simulab Corporation (Seattle, WA). This is 
in contrast with MIS or laparoscopic surgery simulators. Typically, in order to assess their 
competency in this skill, a trainee will perform a specific procedure such as excision of seba-
ceous cyst using an inanimate model and an observer who has extensive experience in the 
field such as a consultant or a senior registrar will watch the trainees and assess their skills 
using observer-dependent assessment tools. This can be done either by face-to-face or video 
recording [13].

The classic observational assessment tool for open surgical skills is the objective structured 
assessment of technical skills (OSATS) (Figures 1 and 2). It was coined by Professor Reznick 
and his research team in Canada [14]. It is based on observation and completing two sets of 
checklists. The first checklist consists of important steps in a specific procedure and trainees 
are assessed whether they have taken all these steps or not. The second checklist is the global 
rating scale (GRS) which examines the global performance of the trainees by using five-point 
Likert scale. It assesses the fluidity and efficiency of movement during completion of a surgi-
cal task.

Motion Tracking System in Surgical Training
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The observational assessment tool requires the recruitment of expert surgeons to assess train-
ees. This proves to be labour-intensive and time-consuming. One would argue that there 
could be human bias or favouritism when scoring trainees using this type of assessment. Data 
in several studies suggested that unblinded raters give higher scores than blinded raters (as 
would be expected if knowledge of a learner subconsciously influences a rater’s behaviour) 
[16]. Therefore, surgical training is moving away from the observer-dependant assessment 
tools but towards more objective and quantifiable analysis of the technical skills. This would 
allow the assessment of the trainees’ skill level and measure their reached precision according 
to their corresponding training years.

1.2. Open surgical skills

Open surgical skills are fundamental in surgery. The skills involve hand dexterity using sur-
gical instruments. Thomas Morstede stated more than 500 years ago that surgeons should ‘be 
dextrous, have steady untrembling hands, and clear sight’ [17]. A good surgeon is perceived 
as having a greater economy and precision of hand and instrument movement [18].

Open surgical skills vary from simple technique, such as hand knot tying and suturing, to 
more complex procedures, such as tendon or nerve repair, laparotomy and vessel anastomo-
sis. All of the surgical trainees are required to master the open basic surgical skills, particu-
larly in suturing and hand knot tying skill. A good technique would ensure that the wound 

Figure 1. A sample of task-specific checklist from OSATS [15].
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edges are approximated neatly without causing any gaping if the sutures are loose or skin 
necrosis if the sutures are too tight. The trainees would hone their skills by practising on 
bench models as shown in Figures 3 and 4.

The movement of the hands and fingers has to be precise and economical to ensure that the 
procedure runs smoothly with minimum complication. However, the assessment of dexterity, 
smoothness and economy of hand movement using surgical instruments has been subjective 
and several attempts have been made to quantify dexterity, but many of these are unsatisfac-
tory [19]. Many have associated dexterity with the time taken to complete a surgical task. It is 
a crude assessment and it is a poor measurement of technical skills. Although operative speed 
is a desirable surgical quality to lower the time spent under anaesthesia, it fails to assess the 
quality of surgical performance [20].

Figure 2. The global rating scale (GRS) of operative performance.
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The objective assessment of open surgical skills is slow to evolve, unlike MIS and laparoscopic 
surgical training. We require an assessment tool that could quantify the hand motion and 
provide an objective scale on the performance when completing a surgical task. Therefore, we 
explored the potential use of motion analysis in assessing open surgical skills. It would be a 
non-observational assessment tool that is automated and objective.

Figure 3. A standard surgical knot tying task performed using the knot tying training jig from Limbs and Things™ 
(Bristol, UK).

Figure 4. A trainee performing a simple interrupted suturing task using skin pads with simulated wound edges.
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2. Materials and methods

2.1. Participants demographics

All medical students in pre-clinical years (Years 1–3) from the Royal College of Surgeons in 
Ireland (RCSI), basic surgical trainees (Years 1 and 2) and consultant surgeons were invited to 
participate in our study. This allowed us to divide the participants into three different subject 
groups: novice, trainees and experts. It was made clear that the participation is voluntary. 
Ethical approval was granted by Research Ethics Committee of RCSI.

Figure 5 showed the demographics of participants in this study.

Figure 5. Participants demographics.
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Figure 6. Flow diagram of the experiment process.
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2.2. Basic surgical skills assessment

Inanimate bench models are used in this study. The bench models were from Limbs and 
Things™ (Bristol, UK) which include the knot tying trainer jig, skin pads, skin pad jig and cyst 
pads. All participants were required to perform two fundamental tasks. Below are the tasks 
involved and their description.

Task 1: One-handed knot tying skill

The participants were required to perform surgical knots using the one-handed technique. 
They were given a standardised length of 2/0 Mersilk (Ethicon) suture tie. The surgical knots 
were performed on the knot tying trainer jig.

Task 2: Suturing simple interrupted technique

The participants were required to perform simple interrupted sutures on a simulated wound. 
This task was performed on skin pads (Limbs and Things, Bristol, UK). A 3/0 Mersilk suture 
(Ethicon) and surgical instruments were provided.

The participants’ performances were assessed using observational tool (GRS) and non-obser-
vational tool (motion tracking device). The data allowed us to analyse the validity of motion 
tracking device as an assessment tool in comparison with the well-established GRS scoring 
system. During the experiment, videos were recorded in anonymous fashion. Each video was 
labelled by a random code generator so that the assessor could not identify the level of experi-
ence of each participant. The participants also had a sensor attached to their right index finger 
to track hand motion and this will be discussed in detail in the next section.

As for observational assessment, two assessors were selected to assess each video using the 
GRS. The assessors were expert surgeons with greater than 10 years of consultant experience 
and are involved in teaching and educating surgical trainees in Ireland. The experiment pro-
cess is outlined in Figure 6.

3. Motion analysis in surgical skill assessment

3.1. The role of motion analysis

Surgical specialties have initiated a trend towards a more objective and quantifiable measure 
of technical skill proficiency [21]. In minimally invasive surgery (laparoscopy and endos-
copy), simulators have been developed with the ability to quantify the associated skills with 
specific metrics including total path length, movement efficiency and smoothness. Motion 
smoothness in handling surgical tools is an essential skill that surgical residents must acquire 
before independently operating on patients [22].

The use of motion analysis has been pioneered in gait analysis [23]. It is used in tracking 
the movement of body parts. These methods usually make use of markers located on body 
articulations to garner movement information from a particular limb [18]. Its application is 
evident in various areas including sports such as golf, training an apprentice in spray painting 
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and also in diagnostic simulators such as ultrasound simulation [24]. Undoubtedly, one of the 
most promising technological tools in medical training are the simulators for the acquisition 
of clinical skills using motion sensors [25]. The surgical arena has used this technology to try 
and quantify surgical performance. Motion analysis allows assessment of surgical dexterity 
using parameters that are extracted from movement of the hands or laparoscopic instruments 
[26]. The motion analysis provides parameters that measure the precision of hand motion 
when performing surgical skills. Hence, surgical competencies, particularly in surgical train-
ees, can be ascertained by using these parameters.

Lord Ara Darzi and his researchers [27] pioneered the use of an electromagnetic motion track-
ing device in surgery, called the Imperial College Surgical Assessment Device (ICSAD). This 
is the combination of a commercially available electromagnetic tracking system (Isotrak, 
Polhemus Inc, Colchester, VT) and a bespoke computer software program [28]. This motion 
analysis device uses an alternating current electromagnetic system with passive receiver 
attached to the dorsum of the hand over the mid-shaft of the third metacarpal [29]. It mea-
sures the time taken, the number of movements and the path length. All of these metrics 
have been shown to change with experience in laparoscopic surgery [30] and in open surgery 
(bowel anastomosis and vein patch insertion) [18].

We used a commercially available motion tracking device called The Patriot™ from Polhemus 
Inc., Colchester, VT. This device utilises electromagnetic technology and tracks 6 degrees of free-
dom (6DOF) measurements of the sensor’s movement. In our study, we attached the sensor on 
to the participants’ right index finger. Figure 7 showed the airplane image that indicates the sen-
sor. It will move to the position and orientation of the right index finger. The retrieved position 
and orientation are displayed as numbers in six columns (upper part of screenshot), from left to 
right, positions in X-, Y- and Z-axis and orientation in yaw, pitch and roll. The Patriot™ collects 
these raw data which in turn convert to a set of meaningful metrics using our bespoke software.

3.2. Construct validity of motion analysis in surgical skills assessment

Every evaluative tool needs to provide invaluable information on what it measures or exam-
ines and that the conclusions drawn from the tool are dependable. A validated assessment 
device should be able to differentiate level of surgical skills according to the level of com-
petency and this is classified as construct validity. One inference of construct validity is the 
extent to which a test discriminates between various levels of expertise [31]. Mason et al. [32] 
have reviewed the published evidence as it relates to motion analysis and the assessment of 
surgical performance. This systematic review reported construct validity of ICSAD and other 
forms of motion analysis devices such as ProMIS augmented reality simulator and Hiroshima 
University Endoscopic Surgical Assessment Device (HUESAD) in assessing laparoscopic skills.

Our research further assessed the use of a novel electromagnetic tracking system in basic sur-
gical skill tasks by using our own in-house computer software with a finger sensor. Figures 8 
and 9 showed the standard set up for knot tying task and suturing task, respectively, with the 
Patriot™ motion tracking device. Our in-house software was designed to generate the classic 
metrics that are time and total path length (TPL). In addition, new metrics were developed: 
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Our research further assessed the use of a novel electromagnetic tracking system in basic sur-
gical skill tasks by using our own in-house computer software with a finger sensor. Figures 8 
and 9 showed the standard set up for knot tying task and suturing task, respectively, with the 
Patriot™ motion tracking device. Our in-house software was designed to generate the classic 
metrics that are time and total path length (TPL). In addition, new metrics were developed: 
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average deviation distance from X-, Y- and Z-axis and average distance from centre of the 
bench model. The centre of the bench model is labelled as a point of interest (POI), as we 
believe that hand motion is most efficient when the hands are at certain distance away from 
the centre of the workstation. Subjectively, when performing a certain task in open surgery, 
such as tying surgical knots or suturing, a novice would have unnecessary movement of their 
hands which include moving hands further away from the field of surgery. This is thought to 
be inefficient in view of the economy of the hand movement.

Our results demonstrated construct validity for both fundamental skills which were one-
handed knot tying task (Figure 10) and the simple interrupted suturing skill (Figure 11) for 
the metrics of time, total path length, point of interest and deviation from the Z-axis.

The box and whiskers plot shows a significant difference between experts, trainees and nov-
ices (p < 0.001). This was analysed using Kruskal Wallis statistical test. The horizontal lines 
within boxes are the median. The boxes and whiskers represent interquartile range and range, 
respectively. The dot represents outlier.

The novel parameters were able to differentiate subjects according to level of experience along 
with the validated metrics as reported in literature [18, 33]. This implies that a surgical novice 

Figure 7. A screenshot of the PiMgr software.
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moved his or her hand further away from the virtual Z-axis and mid-point of the workstation 
than experts or surgical trainees, as seen subjectively in the video recordings. Therefore, it is 
postulated that this pattern of movement is less efficient. The lack of significant change in X- and 
Y-axis may reflect the standard suture tie length used in this experiment. This limits the move-
ment of the hand in these axes.

Figure 8. Knot tying model with the Patriot™ motion tracking device.

Figure 9. Simple interrupted suturing model and instruments with the Patriot™ motion tracking device.
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3.3. Concurrent validity of motion analysis in surgical skills assessment

A further validation of the motion analysis device was required to prove that it is a robust 
assessment tool. It is important that the metrics from motion analysis have a good correlation 
with the gold standard assessment tool, which is the global rating scale (GRS), as mentioned 
previously. This would prove the concurrent validity of this novel device.

Datta et al. [34] revealed that there was a strong correlation between number of hand 
movements analysed using the ICSAD and the GRS in suturing vein patch on an inani-
mate model (Spearman coefficient of −0.587, p < 0.01). In another study by Ezra et al. [33], 
concurrent validity was demonstrated between these two assessment tools in microsur-
gery suturing task. The metrics used in this study were path length, hand movements and 
time.

In our chapter, for the one-handed knot tying skill, our results demonstrated a significant 
correlation between all the metrics generated by the Patriot™ motion tracking device and 
the items of the GRS scoring tool. The only parameter that failed to demonstrate a significant 
relationship was deviation from the x-axis and ‘respect for tissue’. For the simple interrupted 

Figure 10. Distribution of the time taken (a) and total path length (b), average distance from the POI (c) and Z-axis  
(d) between the three subject groups in completing one-handed knot tying skill.

Motion Tracking System in Surgical Training
http://dx.doi.org/10.5772/intechopen.68850

15



suturing skill, we found a significant correlation between time, total path length and devia-
tion from the z-axis and the total GRS score.

However, the metrics from Patriot™ motion tracking system failed to show a more convincing 
correlation with the scale assessing tissue handling. This may be explained by the fact that the 
‘respect for tissue’ component on the GRS is a very subjective parameter. This is reflected in the 
poor inter-rater reliability of the GRS scoring system. Apart from this, the metrics correlated 
well with the GRS items especially items involving motion and flow of operation. We could 
safely suggest that the Patriot provides more objective score than the observer-dependant scale.

4. Application of motion analysis in surgical training

The use of motion tracking and analysis in assessing surgical skills has been described mainly 
in laparoscopic skills [11, 35]. There is a lack of literature that describes the integration of such 
technology in surgical training curricula across the globe, despite a myriad of validation studies.

Figure 11. Distribution of the time taken (a), total path length (b), average distance from the POI (c) and Z-axis  
(d) between the three subject groups in completing simple suturing task.
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The surgical trainees learn fundamental basic skills at an early stage. Open basic skills remains 
to be the principal skills across all surgical specialties. Therefore, any aspiring surgeons are 
expected to be proficient in these skills before they can proceed to perform simple procedures 
such as excision of skin or subcutaneous lesion or more complex procedures such as repair of 
tendon or nerve. The trainees would require direct guidance and abundance of practice in order 
to be proficient in these skills, as the saying goes ‘practice makes perfect’. By having an expert 
or supervisor to observe them consistently during practice session is not feasible when clinical 
work takes priority. Therefore, motion analysis system would be necessary to provide an auto-
mated system that allows the trainees to practice and record their performance in their own time.

Proficiency-based training has been described as learning environments in which the trainee 
progresses from less to more technically demanding skills and tasks only after achieving 
predefined criteria [36, 37]. One widely available simulation-based assessment and certifica-
tion program is the fundamentals of laparoscopic surgery (FLS) developed by the Society 
of American Gastrointestinal and Endoscopic Surgeons (SAGES) and now administered by 
SAGES and the American College of Surgeons [38]. The FLS program incorporates tasks from 
the McGill Inanimate System for Training and Evaluation of Laparoscopic Skills (MISTELS) 
program, including laparoscopic suturing, and uses well-described, low-fidelity inanimate 
models [39]. The proficiency scores were determined by a group of experts in the skills and 
the trainees or users are required to reach these predetermined scores before they could pro-
ceed to the next level or task. These proficiency scores act as an aim for the trainees to achieve 
and subsequently motivate them to keep practising until a high standard of surgical skills is 
accomplished. In order to do this, an automated objective measurement is much desirable, as 
it does not require any expert surgeons or observers to monitor and assess the performance.

We applied the concept of proficiency-based training by using the validated metrics from the 
Patriot™ motion tracking system. We determined the proficiency goals or desired precision 
for each of these metrics in knot tying and suturing skills. This was achieved by gathering 
the experts’ scores from the motion analysis and calculating the proficiency target as follows:

 Proficiency level = Mean score of the expert surgeons + 1 standard deviation. (4.1)

The performance of surgical trainees in Years 1 and 2 of the surgical training programme was 
assessed using the Patriot™ device. Their scores were then analysed against these predeter-
mined proficiency goals. Our intention was to have an objective automated tool that can be 
integrated into the national training curricula as part of the training module. This will help the 
trainees to practise and eventually achieve the desired precision or performance in the most 
fundamental skills in surgery.

Figure 12 showed a sample of trainees’ performance in suturing which was mapped out 
against the proficiency target. The dashed line represents the proficiency level of 143.6 mm. 
The diamond shape points below the dashed line are the trainees who have shorter path 
length and considered as proficient in their skill (n = 13, 52%). The round shape points above 
the dashed line are the trainees with longer path length and did not reach proficiency level 
(n = 22.48%).The performance graph is very useful when there is a group of surgical trainees 
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assessing their suturing technique and they are able to compare their reached precision with 
the desired precision.

The main advantage of motion analysis system in surgical training is that it is capable of pro-
ducing automated objective scoring system and does not require a group of observers to assess 
the performance in any particular surgical skills. In our study, the Patriot™ motion analysis 
system has shown a promising potential in a learner-oriented proficiency curriculum [40]. By 
providing an objective and numerical rating, trainees could benchmark and aim to improve 
their score through enhancement of surgical skill [41]. As surgical educators, this assessment 
tool is useful in identifying any surgical trainees who are underperform according to the pro-
ficiency standard at an early stage of their training years. A remedial session can be offered to 
these surgical trainees and their training module can be customized for them in order to be 
able to reach proficiency as required. The motion analysis system can be used continuously by 
the trainees during practice session and also in any departmental assessment settings.

The learning curve in surgical skills is steep. The trainees are required to improve their skills 
or reached precision over time and progress in their surgical training. They are expected to 
practice the skills, preferably in the simulation lab until they achieve the desired precision. 
The training programmes are designed to teach the trainees skills that are appropriate to their 
levels. The early part of the learning curve is associated with a higher complication rate [42]. 
The improvement in their reached precision in the simulation lab will allow them to perform 
procedures on patients in real operating room with confidence. They will also progress to a 
more complex procedure such as tendon repair, vessel anastomosis and bowel resection.

Figure 12. The total path length (TPL) of all the trainees in the study who performed simple interrupted suturing skill.

Motion Tracking and Gesture Recognition18



assessing their suturing technique and they are able to compare their reached precision with 
the desired precision.

The main advantage of motion analysis system in surgical training is that it is capable of pro-
ducing automated objective scoring system and does not require a group of observers to assess 
the performance in any particular surgical skills. In our study, the Patriot™ motion analysis 
system has shown a promising potential in a learner-oriented proficiency curriculum [40]. By 
providing an objective and numerical rating, trainees could benchmark and aim to improve 
their score through enhancement of surgical skill [41]. As surgical educators, this assessment 
tool is useful in identifying any surgical trainees who are underperform according to the pro-
ficiency standard at an early stage of their training years. A remedial session can be offered to 
these surgical trainees and their training module can be customized for them in order to be 
able to reach proficiency as required. The motion analysis system can be used continuously by 
the trainees during practice session and also in any departmental assessment settings.

The learning curve in surgical skills is steep. The trainees are required to improve their skills 
or reached precision over time and progress in their surgical training. They are expected to 
practice the skills, preferably in the simulation lab until they achieve the desired precision. 
The training programmes are designed to teach the trainees skills that are appropriate to their 
levels. The early part of the learning curve is associated with a higher complication rate [42]. 
The improvement in their reached precision in the simulation lab will allow them to perform 
procedures on patients in real operating room with confidence. They will also progress to a 
more complex procedure such as tendon repair, vessel anastomosis and bowel resection.

Figure 12. The total path length (TPL) of all the trainees in the study who performed simple interrupted suturing skill.

Motion Tracking and Gesture Recognition18

Motion analysis provides an objective measurement of the skills that can be used to map out 
the learning curve. In order to reach proficiency in the learning curve, using time only as a 
metric is not reliable. It measures how fast someone completes a task. This does not include 
how efficient it was performed. Therefore, it is regarded as an adjuvant tool to assess surgical 
technical skills due to its unique properties including non-observer dependent, automated 
and feasibility.

4.1. Limitation of motion analysis and future research

The main limitation of motion analysis is that its inability to detect surgical errors. Hand-
tracking data appear to confirm that skilled individuals demonstrate a shorter path length, 
make fewer movements and take less time to perform an operation, but with the caveat that 
this improved performance is not accompanied by an increase in error [43]. In minimally 
invasive surgical training such as laparoscopic skills, the technology in VR simulators such 
as LapSim and LapMentor is more advanced than open surgical skills training. These simula-
tors are programmed to identify any surgical errors as well as analysing the movement of the 
instruments.

Therefore, this vital limitation of motion analysis may be overcome by incorporating an 
assessment of the end-product following a completion of surgical task. For instance, the qual-
ity of the surgical knots can be assessed by a force gauge device in order to ensure that the 
knots do not slip under certain tension. It is important that the surgical knots are secure as 
knot slippage in a real operating setting can cause catastrophic bleeding which leads to mor-
bidity towards patients.

This shortcoming highlights that the surgical competency is multimodal and there is no sin-
gle solution for surgical assessment. We propose that surgical educators should incorporate 
motion analysis and assessment of the end-product quality when assessing surgical tech-
niques. Further research should be focused on creating an all-in-one package in assessing 
surgical competency that would be objective, automated and most importantly independent 
from any observers.

Another limitation of motion analysis is that its use in the real operating setting. All the 
studies in the literature showed the use of motion analysis system in a simulation lab [10]. 
The fundamental assumption of simulation-based training is that the skills acquired in 
simulated settings are directly transferable to the operative setting [44]. The current motion 
tracking devices that are readily available use electromagnetic field to track sensors on the 
hands. These devices are sensitive to surrounding metal objects such as electronic machines, 
metal bars or large electrical cables in the walls that can cause erratic reading. These metal 
objects are certainly present in all real operating theatres in the hospitals. In addition, the 
sensors on the devices are attached via cables, which potentially could interfere with the 
sterility of the operating field. Due to these limitations, it is not feasible to utilize these 
devices in assessing surgical skills in a real operating theatre. Therefore, a new invention 
of a system that is wireless and not susceptible to the surrounding metal objects is much 
desired.
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5. Summary

Open surgical skill training requires an assessment tool that is independent, automated and 
objective. The validity of motion analysis in assessing fundamental surgical skills has been 
proven and showed positive results. It has demonstrated its potential use in a proficiency-based 
training as a step away from the traditional method of surgical training. The future of simula-
tion-based surgical training in open surgical skills appears promising and it will finally shape 
the pathway towards creating top quality surgeons in the current climate of healthcare system.
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Abstract

Reactively planning a path in a dynamic and unstructured environment is a key
challenge for mobile robots and autonomous systems. Planning should consider fac-
tors including the long-term and short-term prediction, current environmental situa-
tion, and human context. In this chapter, we present a novel robotic path-planning
method with human activity information in a large-scale three-dimensional (3D) envi-
ronment. In the learning stage, this method uses human motion detection results and
preliminary environmental information to build a long-term context model with a
hidden Markov model (HMM) to describe and predict human activities in the envi-
ronment. In the application stage, when a robot detects humans in the environment, it
first uses the long-term context model to generate impedance areas in the environ-
ment. Then, the robot searches each area of the environment to find paths between key
locations, such as escalators, to generate a Reactive Key Cost Map (RKCM), whose
vertexes are those key locations and edges are generated paths. The graphs of all areas
are connected using the key nodes in the subgraphs to build a global graph of the
whole environment. Finally, the robot can reactively plan a path based on the current
environmental situation and predicted human activities. This method enables robots
to navigate robustly in a large-scale 3D environment with regular human activities,
and it significantly reduces computing workload with proposed RKCM.

Keywords: motion detection and tracking, path planning, mobile robot navigation

1. Introduction

Autonomous and intelligent navigation in a dynamic and unstructured environment is a
critical capability for mobile robots and autonomous systems. It integrates lots of technologies
from sensing, environmental modeling, object tracking, planning, decision making, control,
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and so on, to deal with the challenges from a dynamic and uncertain environment, so that
robots are capable of planning paths to avoid moving obstacles and human beings in a real-
world environment.

Lots of researchers have proposed various methods of addressing path-planning problems,
which have been applied successfully in various domains. However, most of those methods
targeted at finding a path-planning solution in a two-dimensional (2D) environment, or an
oversimplified three-dimensional (3D) environment. As more and more mobile robots and
autonomous systems are placed in buildings to provide services for human beings, an emerg-
ing and interesting problem is how to plan paths for robots to navigate effectively across floors
in a multistorey building.

Consider a multistorey building with multiple elevators or escalators on the same floor. If we
ask a robot to deliver a box from the first floor to the fifth floor in the building, there will be
multiple paths for the robot to navigate via the elevators or the escalators. For example, the
robot can take the elevator to go to the fifth floor directly and then go to the destination. Or if
the fifth floor is very crowded with people, it can use the elevator on the first floor to go to the
second floor, and then go to another elevator at a different location on the second floor to reach
the destination on the fifth floor. Then, it becomes a practical and important problem to choose
which elevators the robot should take, based on the dynamic environment and human context
information.

Additionally, the final state on one floor is the initial state of the next floor, toward which the
robot is navigating. While the cost function on each floor can be minimized locally based on
some criteria, how to minimize the global cost is also an interesting question that we need to
answer. Since there will be people walking in a building, the environment is changing constantly,
and thus the cost of moving from one location to another location varies based on timing,
business schedule, and other factors. The scenario described above can be extended to other
industrial domains, such as transporting in rail yard (multiple 2D environment), health-care
service robotics (hybrid 2D environment), and aerial service robotics (full 3D path planning).

The motivation of this chapter is to propose a solution to address the two major problems
mentioned above. First, we present a method of building a global graph to describe the environ-
ment, which takes human motion in the environment into consideration. Human motion can be
detected and its 2D spatial distribution can be estimated by the state-of-the-art radio tomo-
graphic imaging (RTI) technology. Then, we use a hidden Markov model (HMM) to represent a
long-term context model. In the application stage, when humans are detected, we use the long-
term context model to predict the short-term activities of humans in the environment. Then, we
build Reactive Key Cost Maps (RKCMs) for all the floors using the predicted human activities.

Second, we present a hierarchy planning framework for robots to find a path to minimize the
global cost. This method considers the whole map as a graph, and the adjacent subgraphs for
corresponding floors are connected using elevator or stairs, which are also associated with
costs. By planning on the higher layer of the global graph, we can optimize the global cost.
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The rest of the chapter is organized as follows: Section 2 summarizes previous work on indoor
human detection and motion planning, Section 3 explains our methodology in detail, Section 4
uses some experimental results to validate our proposed methodology, and Section 5 proposes
some future work and summarized this paper.

2. Motivation

In a Veteran Affairs (VA) hospital, thousands of surgical tools are transported between the
operating rooms and the sterilization facilities every day. Currently, the logistics of the periop-
erative process is labor intensive, with medical instruments being processed manually by
people. This manual process is inefficient and could lead to improper sterilization of instru-
ments. A systematic approach can dramatically improve surgical instrument identification and
count, sterilization, and patient safety.

A fully automated robotic system involves multiple mobile and static robots for both manip-
ulation and transportation. The overall robotic system is shown in Figure 1. A key task
throughout the sterilization process is to move robots in the hospital from one location to
another location while avoiding hitting any obstacles including assets and people. It is a
typical indoor robot navigation task. However, due to the dynamic human activities in a
hospital, we need to address two challenges: one is to detect and track human motion and
activities in the hospital, and the other is to plan the motion trajectories for robots to navigate
through multiple floors.

Figure 1. Overall robotic system.
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3. Related work

Robot navigation is one of the most important topics in robotics; many sensors and techniques
have been studied in the past few decades [1]. Odometer and inertial sensors such as acceler-
ometer and gyroscope have been used for dead reckoning, that is, relative position estimation.
For absolute position measurements, various systems have been developed using sensors such
as magnetic compasses, active beacons, and global positioning system (GPS) chips. Combining
relative and absolute position measurements, GPS-aided inertial navigation systems have
achieved satisfying performance for many outdoor robotic applications. However, accurate
and robust localization is still an open problem in the research community for an indoor
environment and GPS-denied situation.

As wireless devices and networks become more pervasive, radio-based indoor localization
and tracking of people becomes a practical and cost-effective solution. Extensive research
has been performed to investigate different wireless devices and protocols such as ultra-
wide band (UWB), Bluetooth, Wi-Fi, and so on to locate people carrying radio devices at
indoor or GPS-denied environments [2–4]. A few recent studies even measure and model the
effect of the human body on the antenna gain pattern of a radio [5, 6], and use the model and
the effect to jointly track both the orientation and position of the person wearing a radio
device such as an radio-frequency identification (RFID) badge [6, 7]. However, all these
methods require people to participate in the motion capture and tracking system by carrying
devices with them all the time.

With respect to motion planning, there are some existing methods that use the historical
human activity data to assist robotic motion planning. Awell-known example is the planning
engine in the Google Map, which relies on crowd-sourced user data [8, 9]. However, we are
targeting on robot motion planning at indoor environments [10, 11], where we cannot collect
human activity data from Google Map or GPS. We also cannot expect that everyone in a
building can hold a device for us to collect the human-associate data [12]. A natural and
noncooperative method [13] is to obtain such data by actively detecting and tracking human
activities in the environment without mounting any sensors on human bodies, and that is the
basic innovation point and contribution of our method proposed in this book chapter. The
technology we used in this book chapter successfully helps us build a model to describe
human activities in the environment.

For robots to interact with human beings, human motion detection and tracking is a critical
problem to solve. Recently, a novel sensing and localization technique called radio tomo-
graphic imaging (RTI) was developed to use received signal strength (RSS) measurements
between pairs of nodes in a wireless network to detect and track people [14]. Various methods
and systems have been developed to improve the system performance at different situations.
For example, a multichannel RTI system was developed by exploring frequency diversity to
improve the localization accuracy [15]. A variance-based RTI (VRTI) was developed to locate
and track moving people even through nonmetal walls [16, 17]. Further, to locate stationary
and moving people even at non–line-of-sight (NLOS) environments, kernel distance-based RTI
(KRTI) was developed that uses the histogram distance between a short-term and a long-term
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RSS histogram [18]. The state-of-the-art RTI technology has been used to locate and track
people in buildings, but we are not aware of any research effort in using RTI to assist human
robot interaction and robot path planning.

RTI technology could help us describe human activities in the environment, especially in
buildings. The next step is to use appropriate methods to represent the information
obtained [19]. When building a model of describing human activities, some researchers
focused on building a mathematical field model, for example, Gaussian Mixture Model
(GMM) [20]. Given a position, the model returns a density of humans in the environment.
Some researchers use nodes to represent humans. One well-accepted and popular method is
hidden Markov model (HMM) [21]. Both discrete [21] and continuous HMMs [22] have been
proposed to describe states and transitions. In our system, we choose to use discrete HMM to
simplify the model and reduce the computing time when the robot is moving. Lots of litera-
tures can be found in this paper for using HMMs in robotics research [23]. In our method, we
used HMMs, but we describe human activities using the costs, not the nodes. Our contribution
is to successfully integrate the human detection results into an HMM and reduce the number
of nodes in the HMMs for robotic path planning.

Based on the representation model that we chose, a motion-planning algorithm is used to
enable robots to find a path from the current location to the target position by searching the
reachable space and finding a path to satisfy task constraints [24]. The path-planning process
can be done in a configuration space or a task space. Current path-planning methods are
categorized into three types [24, 25]: (1) roadmap [26], which samples the configuration of a
task space and finds a shortest or an optimal path to connect the sampled points; (2) potential
field [27], which generates a path in the configuration or a task space by moving a particle
attracted by the goal and repelled by impedance areas; and (3) strategy searching [28], which
searches the policy or strategy database to find a solution that describes the path.

4. Methodology

The proposed system includes several subsystems such as robot navigation, human activity
and motion detection, long-term context model, and so on. The overall system architecture is
shown in Figure 2. We explain each subsystem in detail in this section.

First, we need to detect human activities in the environment. The detection result is used for
building a long-term context model in the learning stage and predicting the current human
activities in the environment in the application stage. Most of human activities could be
simplified as human motions and locations if we do not want to consider what humans are
doing. In the human detection part, we choose to use the KRTI technology to record the
locations of humans in the environment. The locations are recorded together with timing
information to construct a hidden Markov model, which is stored as our long-term context
model, after the model is learnt and built. In the application stage, whenever a human is
detected in the environment, robots use the context model to predict the human’s activity in
the future a few minutes/hours depending on the use cases. The descriptions of current and
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predicted humans’ activities are combined to generate impedance areas. The impedance areas
will be used to generate Reactive Key Cost Maps describing the cost between the key locations
including elevators and the stairs. All the RKCMs are connected by elevators and stairs, where
robots can use to move from one floor to another. The connected graph is the global graph
describing the current paths and connections in the multifloor environment.

When a target is defined in the cost map, which does not belong to elevators and the stairs, we
add the target location to the graph and use a Gaussian model to compute the cost of moving
from key locations to the target location. The robot then tries to search a shortest path from its
current location to the target location in the global graph. Please notice that the path maps are
changing all the time, because the information on the heat map changes continuously based on
the current and predicted human activities, which are detected by our indoor localization
sensors.

4.1. Human motion and activity detection

This part is the first step of the whole system. All the following analysis, planning, and
decision making are based on the detection results coming from this step. The input of this
step is the locations detected by the sensors, and the output of this step is different in the
learning stage and the application stage. In our system, we propose to use kernel distance-
based radio tomographic imaging (KRTI) to detect human beings and track their positions in
the environment. First, we give a simple introduction to the KRTI system.

4.1.1. Human motion detection and tracking

Assume we have a wireless network with L links. For each link, received signal strength (RSS)
is measured at the receiver from the transmitter, and we use ql to denote the histogram of the
RSS measurements recorded during a calibration period, and use pl to denote the RSS

Figure 2. System architecture.
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histogram in a short time window during the online period. Then, we can calculate the kernel
distance between two histograms ql and pl for each link as [18]

dlðpl, qlÞ ¼ pl
TKpl þ ql

TKql � 2pl
TKql ð1Þ

where K is a kernel matrix from a kernel function such as a Gaussian kernel.

Let d ¼ ½d0,⋯dL�1�T denote a kernel distance vector for all L links of a wireless network, and let

x ¼ ½x0,⋯, xM�1�T denote an image vector representing the human motion and presence in the
network area. Then, the previous RTI work has shown the efficacy of a linear model W to
relate RSS measurements with the image vector x [14, 16, 17]:

d ¼ Wxþ n ð2Þ

where n is a vector representing the measurement noise and model error.

Finally, a KRTI image x̂can be estimated from the kernel distance vector d using the general-
ized least-squares solution [17, 18]:

x̂ ¼ ðWTCn
�1W þ Cx

�1Þ�1WTCn
�1d ð3Þ

where Cx is the covariance matrix of x, and Cn is the covariance matrix of n. More details of the
KRTI formulation can be found in Ref. [18].

4.1.2. Modeling stage of human activity detection

In the learning stage, the goal is to build a heat map describing long-term human activities.
The process is to put the sensor in the environment for a long and meaningful time and record
the human locations with temporal information. In our experience, the duration of this process
depends on the situational environment and the requirements of applications. Normally, we
put the sensors in the environment for one whole week to collect weekly based data. The
reason is that we find the daily human activities to be largely different and the weekly human
activities have some trackable patterns. Figure 3 displays an example of detected human
activities in a small environment.

To simplify the modeling process, we use Gaussian Mixture Model (GMM) [29] to model the
locations. The ‘hot’ locations are described as Gaussian models whose centers are the peak
points of activities that happen every day. It is easy to understand that those peak points are
some public spaces in the environment. Mathematically, the location of each Gaussian model is
described as

GkðjÞ ¼ fðx, yÞ, σg ð4Þ

where k represents the kth floor, j is the index number of the Gaussian model on the kth floor,
(x, y) is the location of the center of the Gaussian model w.r.t. the local coordinates of the kth
floor, and σ is the variance.
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Then, based on the temporal information, a Hidden Markov Model [30] can be built. The
HMM model describes the relationship between each location, especially when a human is
within an area described using Gaussian model, where he/she will move to.

Assuming on kth floor, we haveNGaussian models and is monitored from the starting time: t1,
and the current state qt is Si at time t. The probability of the transition from qt = Si to qt+1 = Sj at
time t + 1 is

P
�
qtþ1 ¼ GkðjÞjqt ¼ GkðiÞ, qt�1 ¼ GkðpÞ,…, q1 ¼ Sl

�
¼ P

�
qt�1 ¼ GkðjÞjqt ¼ GkðiÞ

�
, 1 ≤ i, j ≤N

ð5Þ

The state transition matrix is defined as A, where

aij ¼ P
�
qtþ1 ¼ GkðjÞjqt ¼ GkðiÞ

�
, 1 ≤ i, j ≤N ð6Þ

Then, the observation matrix defined as B is given by
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bik ¼ P
�
okjqt ¼ GkðiÞ

�
, 1 ≤ i ≤N, 1 ≤ k ≤M ð7Þ

It means that the measured value is vk at time t while the current state is Gk(i).

The initial state distribution is defined as

πi ¼ P
�
q1 ¼ GkðiÞ

�
1 ≤ i ≤N ð8Þ

The complete Hidden Markov Model then is defined as

λ ¼ ðA, B,πÞ ð9Þ

Then, this model describes the transition between two locations based on the observations. As
mentioned in Ref. [20], the Bayesian method is used to determine the number of states in a
HMM model by minimizing the equation:

BIC ¼ �2Lf þ nplogðTÞ ð10Þ

where Lf is the likelihood of the model given the observed demonstration, np is the number of
the independent parameters in the model, and T is the number of observations. The model,
which has the smallest value according to Eq. (10), will be chosen.

An example of a HMM built for our system is shown in Figure 4.

4.1.3. Application stage of human activity detection

Given an observation Ok, the nearest Gaussian model is computed:

l ¼ argminjjOk � GkðiÞjj ð11Þ

which is used to define the current state Gk(i).

Figure 4. Example of HMM of human activities.
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The most probable area where the human will move to is determined by the equation:

m ¼ P
�
qtþ1 ¼ GkðjÞjqt ¼ GkðiÞ

�
ð12Þ

then the area covered by Gk(l) and Gk(m) will be masked as high-impedance area in the map in
the next step.

One important thing we want to mention is that there are lots of people moving in a business
building. Then from thedetection side, therewill be lots of areasmasked as high-impedance areas.

4.2. Reactive Key Cost Map

After we have the high-impedance areas obtained from the application stage of human activity
detection, the next step is to use a map or a graph, which is associated with costs between two
key locations, to describe the current environmental information. In our method, Gaussian
models are used to describe human activities at hot locations in the environment. However, we
do not need to use all of them in the global shortest path searching. What we care about is the
cost between key locations, not all the locations. The key locations in our definition are (1)
elevators and stairs, which connect two floors and (2) target locations, which may not be the
hot locations we detected in the above sections but the robot needs to move to.

We segment the free space of a static map into grids. Then, we overlay the high-impedance
areas to the static grid-based map as shown in Figure 5.

The cost of moving from one grid to an adjacent free grid is always 1, and the cost of moving
from one grid to an adjacent impedance grid is defined using the following equation:

cði, jÞ ¼ η � ðimpedancecurrent þ 1Þ þ ð1� ηÞimpedancehistoryðtÞ ð13Þ

Figure 5. Map overlay.
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impedancecurrent is defined by the number of people. And impedancehistory is defined by the
number of people detected at t from the historical data.

Using c(i, j), we can build a Reactive Key Cost Map for each floor. As we mentioned earlier, we
do not care about the path between each location, but it is necessary to find the cost of paths
between key locations.

However, most of the time, a target location in a navigation task is a public space like a
conference room, an office, and so on, which are not close to the key locations. So before we
build our cost graph, we need to build one additional key location in the map. Then, we
connect the closest neighbors to the target node. The cost is computed using the Gaussian
impedance area:

cði, tÞ ¼ impedanceðiÞ �N xjxi,
X� �

ð14Þ

where x is the target location, xi is the center of the Gaussian impedance area, and Σ is the
variance matrix. Figure 6 displays the cost map generated from Figure 5.

Then, we apply a shortest path-searching algorithm to find the shortest paths between all the
key locations on each floor. In our system, we used A* algorithm [31], since the map is known
and the heuristic and current cost are all known. Specifically, A* selects the path that mini-
mizes

f ðnÞ ¼ gðnÞ þ hðnÞ ð15Þ

where n is the last node on the path, g(n) is the cost of the path from the start node to n, and h
(n) is a heuristic that estimates the cost of the cheapest path from n to the goal.

After the searching, a Reactive Key Cost Map is built and all the paths are described with cost,
which is shown in Figure 7.

The next step is to connect all the maps of floors together and the connection points are
elevators and stairs. This is a simple matching and connection process.

4.3. Path searching

After the maps of the whole building is built, path searching and planning can all be done in
the global map.

Since we largely reduce the complexity of the map by building a Reactive Key Cost Map, the
computing task on the path-searching part is not very difficult. We use Dijkstra’s algorithm [32]
to find a shortest path in a constructed directed map. Dijkstra’s algorithm is a greedy searching
algorithm to find a shortest path in a directed graph by repeatedly updating the distances
between the starting node and other nodes until the shortest path is determined. Let the node
at which we are starting be called the initial node. Let the distance of node Y be the distance
from the initial node to Y. Dijkstra’s algorithm will assign some initial distance values and will
try to improve them step by step as follows:
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1. Assign to every node a tentative distance value: set it to zero for our initial node and to
infinity for all other nodes.

2. Mark all nodes unvisited. Set the initial node as current. Create a set of the unvisited
nodes called the unvisited set consisting of all the nodes except the initial node.

3. For the current node, consider all its unvisited neighbors and calculate their tentative
distances. For example, if the current node A is marked with a distance of six, and the
edge connecting it with a neighbor B has length 2, then the distance to B (through A) will

Figure 6. Cost map with three key points.

Figure 7. Example of Reactive Key Cost map.
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be 8, the summation of the above two numbers. If this distance is less than the previously
recorded tentative distance of B, then overwrite that distance. Even though a neighbor has
been examined, it is not marked as “visited” at this time, and it remains in the unvisited
set.

4. When we are done considering all the neighbors of the current node, mark the current
node as visited and remove it from the unvisited set. A visited node will never be checked
again.

5. If the destination node has been marked visited (when planning a route between two
specific nodes) or if the smallest tentative distance among the nodes in the unvisited set is
infinity (when planning a complete traversal), then stop. The algorithm has finished.

6. Select the unvisited node that is marked with the smallest tentative distance, and set it as
the new “current node,” then go back to step 3.

Using Dijkstra’s algorithm, in a map, a shortest path can be generated from the “Starting” node
to a destination node. In our testing, we found some issues when applying Dijkstra’s algorithm
in 3D path searching. Then, we simplify our case by confining that the global map can be
represented as a 2D graph. This paper does not focus on proposing a novel planning algo-
rithm, so improving the motion-planning algorithm is not the concentration.

5. Experiments and results

To evaluate our system, we need to have two types of evaluation. One is to make sure the path
can be generated. We tested this part in a static environment assuming that the human motion
and activities have been detected and remained the same for a certain amount of time. The
second testing is to test the reactive planning. Assuming that humans are moving in the
environment, then we generate a path plan reactively based on the current environmental
situation. This part is to validate that the system is responsive quickly enough to deal with
the uncertain and unexpected human activities in the environment. First, we describe how we
perform experiments to evaluate our human motion-tracking system.

5.1. Human detection results and dataset of RTI localization

We use the TelosB motes [33] as our wireless nodes to form a wireless network as our testbed.
We deploy nodes at static locations around an area of interest, as shown in Figure 8. All
nodes are programmed with TinyOS program Spin [34] so that each node can take turns to
measure the received signal strength from all the other nodes. A base station is connected to
a laptop to collect pairwise RSS measurements from all nodes of the wireless network. Once
we collect RSS from the network, we feed the RSS vector to our KRTI formulation as
described in Section 4.1.1.

We describe our experiment in a controlled environment to evaluate our motion-tracking
system. As shown in Figure 8, 34 TelosB nodes were deployed outside the living room of a
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residential house. Before people started walking in the area, we collect pairwise RSS measure-
ments between anchor nodes as our calibration measurements. During the online period, people
walked around a marked path a few times in the living room, so that we know the ground truth
of the locations of the people to compare with the estimate from RTI. The reconstructed KRTI
image is shown in Figure 8 with the black triangle indicating the location of the pixel with the
maximum pixel value, which is the location estimate of a person. Note that KRTI can detect
human presence by choosing a threshold of the pixel value based on the calibration measure-
ments. KRTI is also capable of tracking multiple people, as shown in Figure 3. More details of the
experiments and dataset can be found in Refs. [17, 18].

5.2. Simulation results

We tested our proposed algorithm in simulation. After detecting the human activities, the
robot builds the heat map and the 2D RKCM of each floor. Figure 9 displays three 2D graphs
of three floors, which are labeled by shadowed circles. They are connected by stairs or eleva-
tors. The cost of moving from one floor to another floor using the elevators or stairs is
manually defined as three in our graphs.

The distance matrix used for Dijkstra’s searching algorithm is shown in Eq. (16). Each row
represents the distance from one node to other nodes. The elements represent the distance
values. Given a task of the start point i1 on map 1 and the goal state k3 on map 3, the robot finds
a path from i1 to k3 as shown in Figure 10. The cost of the path is 25 which is the global
minimum cost.

Comparing the time spent on movement and detection, the time of finding path based on
RKCM can almost be ignored. There are lots of papers describing the algorithm complexities of
Dijkstra’s algorithm and other algorithms, where readers can refer to [32]

Figure 8. Experimental layout with reconstructed RTI image (anchor nodes shown as bullets, true person position shown
as a cross, RTI position estimate shown as a triangle, and robot’s orientation and position are shown as arrow and square
for illustration purpose).
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We still use traditional online sense-plan-act algorithms when the robot is moving. However,
the experiments here largely reduce the computing workload on the robot side. The robot
knows in advance what is happening in the environment based on the HMMmodel built from
historical data, then it uses the HMM to find a path which is optimal based on the historical

Figure 9. Reactive Key Cost map.

Figure 10. Experimental results.
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information, under the assumption that the current situation is similar to the historical situa-
tion during the same time every day or every week.

5.3. Discussion

5.3.1. Discussion on the results

From the above experimental results, we can clearly see that our system builds the global
graph using the monitored human activities and generates a shortest path for robots to move
to the target locations.

In most indoor robotic navigation challenges, especially in crowded environment, researchers
tend to equip robots with various sensors to make sure that they can detect everything in the
environment. Then based on the comprehensive detection and recognition process, a smart
decision-making mechanism can help robots to plan the motion, switch strategies, and move
freely in the environment. This method enforces large workload on the online-computing
component. The motivation of this book chapter is to find a method to reduce such workload
based on historical data of human motion and activity.

Based on the collected human activity data, we use a simple HMM to describe the cost of
movement in the environment. Then, robots can plan the motion in advance to avoid moving
to a very crowded area. We have seen lots of cases that robots run into a crowd of human and
have lots of difficulty in moving out of that area, which generates concerns on safety, cost, and
efficiency. Our method can avoid such a situation based on the modeling results as seen from
the last section.

5.3.2. Future work

We do find some situations that the system does not work very well. When the robot moves
too fast, and the humans nearby are walking, the planning is not fast enough to reflect the
current changes of the environment, and thus collision happens. We have not done much
testing on this part and we plan to have more testing to make the system more robust in such
situations.

Additionally, we cannot expect that static HMM model can provide satisfying information for
robots to use. Every day, new patterns of human activities may appear in the environment and
the model needs to be updated accordingly. Thus, it is desirable to perform data collection and
modeling when robots are moving, which enables robots to have the lifelong learning capabil-
ity. This capability could help robots to have up-to-date information to use and make the
planning more efficient and useful.

Moving one robot in a building is challenging, but motion planning for a group of robots is
even more complex [35, 36]. Sharing latest updated human activity models among robots is
key to the success to realize coordinated and collaborated robotic motion planning. The critical
technical problem is to design a method of fusing models into one for all the robots to use.
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6. Conclusion

This book chapter proposes a hybrid method of planning paths in a global graph composed of
subgraphs. We take the human activity into consideration to build a cost graph. This method
significantly reduces the computing workload because it avoids planning in a global graph
with lots of grids and possibilities. We also carry out experiments in simulation to validate our
proposed method. The methods proposed in this chapter provide a solution to enable auton-
omous systems/robots to navigate effectively and robustly in human-existing multistorey
buildings.
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Abstract

Target motion tracking found its application in interdisciplinary fields, including but not
limited to surveillance and security, forensic science, intelligent transportation system,
driving assistance, monitoring prohibited area, medical science, robotics, action and
expression recognition, individual speaker discrimination in multi-speaker environ-
ments and video conferencing in the fields of computer vision and signal processing.
Among these applications, speaker tracking in enclosed spaces has been gaining rele-
vance due to the widespread advances of devices and technologies and the necessity for
seamless solutions in real-time tracking and localization of speakers. However, speaker
tracking is a challenging task in real-life scenarios as several distinctive issues influence
the tracking process, such as occlusions and an unknown number of speakers. One
approach to overcome these issues is to use multi-modal information, as it conveys
complementary information about the state of the speakers compared to single-modal
tracking. To use multi-modal information, several approaches have been proposed
which can be classified into two categories, namely deterministic and stochastic. This
chapter aims at providing multimedia researchers with a state-of-the-art overview of
tracking methods, which are used for combining multiple modalities to accomplish
various multimedia analysis tasks, classifying them into different categories and listing
new and future trends in this field.

Keywords: audio-visual tracking, multi-speaker tracking, deterministic, stochastic
approaches

1. Introduction

Speaker tracking aims at localizing the moving speakers in a scene by analysing the data
sequences captured by sensors or arrays of sensors. It gained relevance in the past decades
due to its widespread applications such as automatic camera steering in video conferencing
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[1], individual speaker discriminating in multi-speaker environments [2], acoustic beam-
forming [3], audio-visual speech recognition [4], video indexing and retrieval [5], human-
computer interaction [6], and surveillance and monitoring [7] in security applications. There
are numerous challenges, which make speaker tracking a difficult task including, but not
limited to, the estimation of the variable number of speakers and their states, and dealing with
various conditions such as occlusions, limited view of cameras, illumination change and room
reverberations [8–10].

Using multi-modal information is one way to address these challenges since more comprehen-
sive observations for the state of the speakers can be collected in multi-modal tracking as
compared to the single-modal case, and the collection of the multi-modal information can be
achieved by sensors such as audio, video, thermal vision, laser-range finders and radio-fre-
quency identification (RFID) [11–13]. Among these sensors, audio and video sensors are
commonly used in speaker tracking compared to others, because of their easier installation,
cheaper cost and more data-processing tools [9, 14, 15].

Earlier methods in speaker tracking employ either visual-only or audio-only data, and each
modality offers some advantages but is also limited by some weaknesses [16, 17]. Tracking
with only video [16–18] offers robust and accurate performance when the camera field of view
covers the speakers. However, it degrades when the occlusion between speakers happens,
when the speakers go out of the camera field of view, or any changes on illumination or target
appearance have occurred. Although audio tracking [19–21] is not restricted by these limita-
tions, it has a tendency to non-negligible-tracking errors because of intermittency of audio
data. In addition, audio data may be corrupted by background noise and room reverberations.
Nevertheless, the combination of audio and video data may improve the tracking performance
when one of the modalities is missing or neither provides accurate measurements, as audio
and visual modalities are often complementary to each other which can be exploited to further
enhance their respective strengths and mitigate their weaknesses in tracking.

Previous techniques were focused on tracking a single person in a static and controlled envi-
ronment. However, theoretical and algorithmic advances together with the increasing capabil-
ity in computer processing have led to the emergence of more sophisticated techniques for
tracking multiple speakers in dynamic and less controlled (or natural) environments [22–24]. In
addition, the type of sensors used to collect the measurements is advanced from single- to
multi-modal.

In the literature, there are many approaches for speaker tracking using multi-modal informa-
tion, which can be categorized into two methods as one is deterministic and data-driven while
the other is stochastic and model-driven [25, 26]. Deterministic approaches are considered as
an optimization problem by minimizing a cost function, which needs to be defined appropri-
ately. A representative method in this category is the mean-shift method [27, 28], which defines
the cost function in terms of colour similarity measured by Bhattacharyya distance. The
stochastic and model-driven approaches use a state-space approach based on the Bayesian
framework as it is suitable for processing of multi-modal information [29]. Representative
methods are the Kalman filter (KF) [30], extended KF (EKF) and particle filter (PF) [31]. The
PF approach is more robust for non-linear and non-Gaussian models as compared with the KF
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and EKF approaches since it easily approaches the Bayesian optimal estimate with a suffi-
ciently large number of particles [11].

One challenge in the implementation of the PF to tracking problem is to choose an optimal
number of particles [9, 32]. An insufficient number may introduce a particle impoverishment,
while a larger number (than required) will lead to extra computational cost. Therefore, choos-
ing the optimal number of particles is one of the issues that affect the performance of the
tracker. To address this issue and to find the optimal number of particles for the PF to use,
adaptive particle filtering (A-PF) approaches have been proposed in Refs. [9, 32–35]. Fox [34]
proposed KLD sampling, which aims to bind the error introduced by the sample-based repre-
sentations of the PF using the Kullback-Leibler divergence between maximum likelihood
estimates (MLEs) of the states and the underlying distribution to optimize the number of
particles. The KLD-sampling criterion is improved in Ref. [35] for the estimation of the number
of particles, leading to an approach for adaptive propagation of the samples. Subsequent work
[33] introduces the innovation error to estimate the number of particles by employing a
twofold metric. The particles are removed by the first metric in case their distance to a
neighbouring particle is smaller than a predefined threshold. The second metric is used to set
the threshold on the innovation error in order to control the birth of the particles. These two
thresholds need to be set before the algorithm is run. A new approach is proposed in Refs.
[9, 32], which estimates noise variance besides the number of particles in an adaptive manner.
Different from other existing adaptive approaches, adaptive noise variance is employed in this
method for the estimation of the optimal number of particles based on tracking error and the
area occupied by the particles in the image.

One assumption in the traditional PF used in multi-speaker tracking is that the number of
speakers is known and invariant during the tracking. In practice, the presence of the speakers
may change in a random manner, resulting in time-varying number of speakers. To deal with
the unknown and variable number of speakers, the theory of random finite sets (RFSs) has been
introduced, which allows multi-speaker filtering by propagation of the multi-speaker posterior
[36–39]. However, the computational complexity of RFS grows exponentially as the number of
speakers increases since the complexity order of the RFS is OðMΞÞ where M is the number of
measurements and Ξ is the number of speakers. The PHD filtering [40] approach is proposed to
overcome this problem, as the first-order approximation of the RFS whose complexity scales
linearly with the number of speakers since the complexity order of the PHD is OðMΞÞ. This
framework has been found to be promising for multi-speaker tracking [36]. However, the PHD
recursion involves multiple integrals that need to have closed-form solutions for implementa-
tion. So far, two analytic solutions have been proposed: Gaussian mixture PHD (GM-PHD)
filter [41, 42] and sequential Monte Carlo PHD (SMC-PHD) filter [43, 44]. Applications of GM-
PHD filter are limited by linear Gaussian systems, which lead us to consider SMC-PHD filter to
handle non-linear/non-Gaussian problems in audio-visual tracking [15, 45].

Apart from the stochastic methodologies mentioned above, the mean-shift [28] is a determin-
istic and data-driven method, which focuses on target localization using representation of the
target. The mean-shift easily convergences to peak of the function with a high speed and a
small computational load. Moreover, as a non-parametric method, the solution of the mean
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shift is independent from the features used to represent the targets. On the other hand, the
performance of the mean-shift is degraded by occlusion or clutter as it searches the densest
(most similar) region starting from the initial position in the region of interest. In this sense, the
mean-shift trackers may fail easily in tracking small- and fast-moving targets as the region of
interest may not cover the targets, which results in a track being lost after a complete occlusion.
Also, it is formulated for single-target tracking, so it cannot handle a variable number of
targets. Therefore, several methods [14, 15, 46–49] have been proposed by integrating both
deterministic and stochastic approaches to benefit their respective strengths which will be
discussed in Section 4.

2. Tracking modalities

2.1. Visual cues

Visual tracking is a challenging task in real-life scenarios, as the performance of a tracker is
affected by the illumination conditions, occlusion by background objects and fast and compli-
cated movements of the target [50, 51]. To address these problems, several visual features, that
is, colour, texture, contour and motion [52], are employed in existing tracking systems.

Using colour feature is a very intuitive approach and commonly applied in target tracking as
the information provided by colour helps to distinguish between targets and other objects.
Several approaches can be found in the literature which employs colour information to track
the target. In Ref. [53], a colour mixture model based on a Gaussian distribution is used for
tracking and segmentation, while in Ref. [58], an adaptive mixture model is developed. Target
detection and tracking can be easily maintained using colour information if the colour of the
target is distinct from those of the background or other objects.

Another approach for tracking is contour-based where shape matching or contour-evolution
techniques [54] are used to track the target contour. Active models like snakes, geodesic-active
contours, B-splines or meshes [55] can be employed to represent the contours. Occlusion of the
target by other objects is the common problem in tracking. This problem can be addressed by
detecting and tracking the contour of the upper body [56] rather than tracking the contour of
the whole bodies, which leads to the detection of a new person as the upper bodies are often
distinguishable from back and front view for different people.

Texture is another cue defined as a measure for surface intensity variation. Properties like
smoothness and regularity can be quantified by the texture [57–59]. The texture feature is used
with Gabor wavelet in Ref. [60]. The Gabor filters can be employed as orientation and scale-
tunable edge and line detectors, and the statistics of these micro-features are mostly used to
characterize the underlying texture information in a given region [61]. For improved detection
and recognition, local patterns of image have gained attention recently. Local patterns are used
in several application areas such as image classification and face detection since they offer
promising results. In Ref. [62], the local binary patterns (LBPs) method is used to create a type
of texture descriptor based on a grey-scale-invariant texture measure. Such a measure is
tolerant to illumination changes.
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Another cue used in tracking, particularly in indoor environments, is motion which is an
explicit cue of human presence. One way to extract this cue is to apply foreground detection
algorithms. A simple method for foreground detection is to compute the difference of two
consecutive frames which gives the moving part of the image. Although it has been used in
multi-modal-tracking systems [63], it fails when the person remains stationary since the person
is considered part of background after some time.

The scale-invariant feature transform (SIFT) proposed in Ref. [64] has found wide use in
tracking applications. SIFT uses local features to transform the image data into scale-invariant
coordinates. Distinctive invariant features are extracted from images to provide matching
between several views of an object. The SIFT feature is invariant to scaling, translation, clutter,
rotation, occlusion and lighting which makes it robust to changes in three-dimensional (3D)
viewpoint and illumination, and the presence of noise. Even a single feature has high matching
rate in a large database because the SIFT features are generally distinctive. On the other hand,
non-rigid targets [65] in noisy environments degrade the SIFT matching rate and recognition
performance.

So far, several visual cues were introduced, and among them colour cues have been used more
commonly in tracking applications due to their easy implementation and low complexity.
Colour information can be used in the calculation of the histogram of possible targets at the
initialization step as reference images which can be used in detection and tracking of the
target. There are two common colour histogram models, RGB or HSV [66] in the literature
and HSV is more preferable since it is observed to be more robust to illumination variation [9].

2.2. Audio cues

There are a variety of audio information that could be used in audio tracking such as sound
source localization (SSL), time-delay estimation (TDE) and the direction of arrival (DOA) angle.

The audio source localization methods can be divided into three categories [67], namely
steered beamforming, super-resolution spectral estimation and time-delay estimation.
Beamformer-based source localization offers comparatively low resolution and needs a search
over a highly non-linear surface [20]. Also, it is computationally expensive which may be
limited in real-time applications. Super-resolution spectral estimation methods are not well
suited for locating a moving speaker since it is under the assumption that the speaker location
is fixed for a number of frames [68]. However, the location of a moving speaker may change
considerably over time. In addition, these methods are not robust to modelling errors caused
by room reverberation and mostly have high computational cost [20, 69]. The time-delay of
arrival (TDOA)-based location estimators use the relative time delay between the wave-front
arrivals at microphone positions in order to estimate the location of the speaker. As compared
with the other two methods, the TDOA-based approach has advantages in the following two
aspects. The first one is its computational efficiency and the second one its direct connection to
the speaker location.

The problem of DOA estimation is similar to that of the TDOA estimation. To estimate the
DOA, the TDOA needs to be determined between the sensor elements of the microphone
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array. Estimation of source locations mainly depends on the quality of the DOA measure-
ments. In the literature, several DOA estimation techniques such as the MUSIC algorithm [70]
and the coherent signal subspace (CSS) [71] have been proposed. The main differences
between them are the way of dealing with reverberation, background noise and movement of
the sources [20]. The following three factors influence the quality of the DOA estimation. The
spectral content of the speech segment is considered as the first one which is used for deriva-
tion of the DOAs. The reverberation level of the room is the second one which causes outlier in
the measurements because of the reflections from the objects and walls. The positions of the
microphone array to the speakers and the number of simultaneous sources in the field are
considered the third factor.

3. Audio-visual speaker tracking

Speaker tracking is a fundamental part of multimedia applications which plays a critical role to
determine the speaker trajectories and analyse the behaviour of speakers. Speaker tracking can
be accomplished with the use of audio-only, visual-only or audio-visual information.

Audio-only information based approaches for speaker tracking have been presented in
[19, 20, 37, 72–74]. An audio-based fusion scheme was proposed in Ref. [20] to detect multiple
speakers where the locations from multiple microphone arrays are estimated and fused to
determine the state of the same speaker. Separate KFs are employed for all the individual
microphone arrays for the location estimation. To deal with motion of the speaker and mea-
surement uncertainty, the probabilistic data association technique is used with an interacting
model.

One issue in Ref. [20] is that it cannot deal with the tracking problem for a time-varying
number of speakers. Ma et al. [37, 72] proposed an approach based on random finite set to
track an unknown and time-varying number of speakers. The RFS theory and SMC implemen-
tation are used to develop the Bayesian RFS filter, which tracks the time-varying number of
speakers and their states. The random finite set theory can deal with a time-varying number of
speakers; however, the maximum number of speakers that can be handled is limited as its
computational complexity increases exponentially with the number of speakers. In that sense,
a cardinalized PHD (CPHD) filter is proposed in Ref. [74], which is the first-order approxima-
tion of the RFS, to reduce the computational cost caused by the number of speakers. The
positions of the speakers are estimated using TDOA measurements from microphone pairs
by asynchronous sensor fusion with the CPHD filter.

A time-frequency method and the PHD filter are used in Ref. [73] to localize and track
simultaneous speakers. The location of multiple speakers is estimated based on the time-
frequency method, which uses an array of three microphones, then the PHD filter is employed
to the localization results as post-processing to handle miss-detection and clutters.

Speaker tracking with multi-modal information has also gained attention, and many approaches
have been proposed in the past decade using audio-visual information [2, 6, 23, 29, 75–81],
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providing the complementary characteristics of each modality. The differences among these
existing works arise from the overall objective such as tracking either single or multiple speakers
and the specific detection/tracking framework.

Audio-visual measurements are fused by graphical models in Ref. [23] to track a moving
speaker in a cluttered and noisy environment. Audio and video observations are used jointly
by computing their mutual dependencies. The model parameters are learnt using the expecta-
tion-maximization algorithm from a sequence of audio-visual data.

A hierarchical Kalman filter structure was proposed in Refs. [2, 80] to track people in a three-
dimensional space using multiple microphones and cameras. Two independent local Kalman
filters are employed for audio and video streams, and then the outputs of these two local filters
are combined under one global Kalman filter.

Unlike [2, 80], particle filters are used in Ref. [81] to estimate the predictions from audio- and
video-based measurements and audio-visual information fusion is performed at the feature
level. In other words, the independent particle coordinates from the features of both modalities
are fused for speaker tracking. These works [2, 23, 80, 81] have focused on the single-speaker
case which cannot directly address the tracking problem for multiple speakers.

Two multi-modal systems are introduced in Ref. [75] for the tracking of multiple persons. A
joint probabilistic data association filter is employed to detect speech and determine active
speaker positions. Two systems are performed for visual features where a particle filter is
applied first using foreground, colour, upper body detection and person region cues from
multiple camera images and the latter is a blob tracker using only a wide-angle overhead view.
Then, acoustic and visual tracks are integrated using a finite state machine. Unlike [75], a
particle filtering framework is proposed in Ref. [29, 77] which incorporates the audio and
visual detections into the particle filtering framework using an observation model. It has the
capability to track multiple people jointly with their speaking activity based on a mixed-state
dynamic graphical model defined on a multi-person state space. Another particle filter based
multi-modal fusion approach is proposed in Ref. [78] where a single speaker can be identified
in the presence of multiple visual observations. Gaussian mixtures model was adopted to fuse
multiple observations and modalities. Compared to [29, 75, 77, 78], particle filtering frame-
work is not used in Ref. [6]; instead, hidden Markov model based iterating decoding scheme is
used to fuse audio and visual cues for localization and tracking of persons.

In Refs. [14, 76, 79], the Bayesian framework is used to handle the tracking problem for a varying
number of speakers. The particle filter is used in Ref. [76], and observation likelihoods based on
both audio and video measurements are formulated to use in the estimation of the weights of the
particles, and then the number of people is calculated using the weights of these particles. The
RFS theory based on multi-Bernoulli approximations is employed in Ref. [79] to integrate audio
and visual cues with sequential Monte Carlo implementation. The nature of the random finite set
formulation allows their framework to deal with the tracking problem for a varying number
of targets. Sequential Monte Carlo implementation (or particle filter) of PHD filter is used in
Ref. [14] where audio and visual modalities are fused in the steps of particle filter rather than
using any data fusion algorithms. Their work substantially differs from existing works in AV
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multi-speaker tracking with respect to the capabilities for dealing with multiple speakers, simul-
taneous speakers, and unknown and time-varying number of speakers.

4. Tracking algorithms

In this section, a brief review of tracking algorithms is presented which covers the following
topics: Bayesian statistical methods, visual and audio-visual algorithms and non-linear filter-
ing approaches.

Recall that in Section 1, tracking methods are either stochastic and model-driven or determin-
istic and data-driven [25].

The stochastic approaches are based on the Bayesian framework which uses a state-space
approach [82]. Representative methods in this category are the Kalman filter (KF) [30],
extended Kalman filter (EKF) [83, 84] and particle filter (PF) [11]. The PF approach is more
robust as compared to the KF and EKF approaches as it can approach the Bayesian optimal
estimate with a sufficiently large number of particles [11]. It has been widely applied to
speaker tracking problems [29, 76, 81]. The PF is used to fuse object shapes and audio infor-
mation in Refs. [29, 81]. In Ref. [76], independent audio and video observation models are
fused for simultaneous tracking and detection of multiple speakers. However, one challenge in
PF is to choose an appropriate number of particles. While an insufficient number may lead to
particle impoverishment (i.e. loss of diversity among the particles), a larger number (than
required) will induce additional computational cost. Therefore, the performance of the tracker
depends on the number of particles that are estimated as an optimal value.

The PHD filter [85] is another stochastic method based on the finite-set statistics (FISST) theory,
which propagates the first-order moment of a dynamic point process. The PHD filter is used in
many application areas after its proposal and some applications with speaker tracking are
reported in Refs. [37, 73]. It has an advantage over other Bayesian approaches such as Kalman
and PF filters, in that the number of targets does not need to be known in advance since it is
estimated in each iteration. The issue in the PHD filter is that it is prone to estimation error in
the number of speakers in the case of low signal-to-noise ratio [36]. The reason is that the PHD
filter restricts the propagation of multi-target posterior to the first-order distribution moment,
resulting in loss of information for higher order cardinality. To address this issue, the cardinal-
ity distribution is also propagated with PHD distribution in the cardinalized PHD (CPHD)
filter which improves the estimation of the target number [36, 86] and state of the speakers
[74]. However, additional distribution for cardinality requires extra computational load, which
makes the CPHD computationally more expensive than the PHD filter. Moreover, the
spawning of new targets is not modelled explicitly in the CPHD filter.

As a deterministic and data-driven method, the mean-shift [28] uses representation of the
target for localization, which is based on minimizing an appropriate cost function. In that
sense, a similarity function is defined in Ref. [32] to reduce the state estimation problem to a
search in the region of interest. To obtain fast localization, a gradient optimization method is
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performed. The mean-shift works under the assumption that the representation of the target is
sufficiently distinct from the background which may not be always true. Although the mean-
shift is an efficient and robust approach, in occlusion and rapid motion scenarios [87, 88], it
may fail when the target is out of the region of interest, in other words, the search area.

Many approaches have been proposed in the literature to address these problems in mean-shift
tracking, which can be categorized into two groups. One group [87, 89–91] improves the mean-
shift tracking by, for example, introducing adaptive estimation of the search area, iteration
number and bin number. In the other group, the mean-shift algorithm is combined with other
methods such as particle filter [46–49]. The stochastic and deterministic approaches are inte-
grated under the same framework in many studies. Particle filtering (stochastic) is integrated
with a variation approach (deterministic) in Ref. [25] where the ‘switching search’ algorithm is
run for all the particles. In this algorithm, the momentum of the particles is compared with a
pre-determined threshold value, and if it is smaller than the threshold, the deterministic search
is run; otherwise, the particles are propagated in terms of a stochastic motion model.

The particle filtering and mean-shift are combined in Ref. [48] under the name of mean-shift
embedded particle filter (MSEPF). It is inspired by Sullivan and Rittscher [25], but the mean
shift is used as a variational method. It is aimed to integrate the advantages of the particle
filtering and mean-shift method. The MSEPF has a capability to track the target with a small
number of particles as the mean-shift search concentrates on the particles around local modes
(maxima) of the observation. To deal with the possible changes in illuminations, a skin colour
model is used and updated for every frame. As an observation model, colour and motion cues
are employed. To use a multi-cue observation model, the mean-shift analysis is modified and
applied to all the particles. Resampling (selective resampling) is, then, applied when the
effective sample size is too small. The mean-shift and particle filtering methods are used
independently in Ref. [46]. The estimated positions of the target obtained by these two
methods are compared using the Bhattacharyya distance at every iteration and the best value
is chosen as the estimated position of the target to avoid the algorithm from being trapped to a
local maximum, and thus finding the true maximum beyond the local one.

A hybrid particle with a mean-shift tracker is proposed in Ref. [92] which works in a similar
manner to that in Ref. [48]. Alternatively, [92] uses the original application of the mean-shift
and performs the mean-shift process on all the particles to reach the local maxima. Moreover,
an adaptive motion model is used to deal with manoeuvring targets, which have a high speed
of movement. The kernel particle filter is proposed in Ref. [93] where small perturbations are
added to the states of the particles after the mean-shift iteration to prevent the gradient ascent
from being stopped too early in the density. Kernel radius is calculated adaptively every
iteration and this method is applied to multiple target tracking using multiple hypotheses
which are then evaluated and assigned to possible targets. An adaptive mean-shift tracking
with auxiliary particles is proposed in Ref. [49]. As long as the conditions are met, such as the
target remaining in the region of interest, and there are no serious distractions, the mean-shift
is used as the main tracker. When sudden motions or distractions are detected by the motion
estimator, auxiliary particles are introduced to support the mean-shift tracker. As the mean
shift may diverge from the target and converge on the background, background/foreground
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feature selection is applied to minimize the tracking error. Even though this study is inspired
by Sullivan and Rittscher [25], where the main tracker is a particle filter, in Ref. [49], the main
tracker is the mean-shift. In addition, the switched trackers are used to handle sudden move-
ments, occlusion and distractions. Moreover, to maintain tracking even when the target
appearance is affected by illumination or view point, the target model is updated online.

In the literature, several frameworks have been proposed to combine the mean-shift and
particle filters. However, it is still required to have an explicitly designed framework for a
variable number of targets. Both the mean-shift and particle filter were derived for tracking
only a single target. To address this issue, the PHD filter is found as a promising solution as it
is originally designed for multi-target tracking. However, the PHD filter does not have closed-
form solutions as the recursion of the PHD filter includes multi-dimensional integrals. To
derive analytical solution of the PHD filter, the particle filter or sequential Monte Carlo (SMC)
implementation [44] is introduced which leads to SMC-PHD filtering. In Ref. [14], the mean-
shift is integrated with standard SMC-PHD filtering, aiming at improving computational
efficiency and estimation accuracy of the tracker for a variable number of targets.

Besides the tracking methods explained so far, speaker tracking with multi-modal usage
introduces a problem which is known as data association. Each measurement coming from
multi-modality needs to be associated with an appropriate target. Data association methods
are divided into two classes [94]. Unique neighbour is the first data association, and a repre-
sentative method in this class is multiple hypothesis tracking (MHT). Here, each existing track
is associated with one of the measurements. All-neighbours data association belongs to the
second class which uses all the measurements for updating the entire track estimate, for
example, the joint probabilistic data association (JPDA). In MHT, the association between a
target state and the measurements is maintained by multiple hypotheses. However, the
required number of hypotheses increases exponentially over time [95]. In JPDA, separate
Gaussian distributions for each target [96] are used to approximate the posterior target distri-
bution which results in an extra computational cost. Data association algorithms in target-
tracking applications with Bayesian methods and the PHD filter can be found in [20, 97–100].
However, it is found that classical data association algorithms are computationally expensive
which lead to the fusion of multi-modal measurements inside the proposed framework
[8, 9, 29, 73, 80, 81, 83]. As in Refs. [8, 9], audio and visual modalities are fused in the steps of
the visual particle filter.

Among the methods explained above, the PF, RFS, PHD filter and mean-shift are the main
methods discussed throughout this chapter and the main concepts of the methods are
presented below.

4.1. Particle filtering

The PF became widely used tools in tracking after being proposed by Isard et al. [31] due to its
ability to handle non-linear and non-Gaussian problems. The main idea of the PF is to repre-
sent a posterior density by a set of random particles with associated weights, and then
compute estimates based on these samples and weights [101]. The principle of the particle
filter is illustrated in Figure 1. Ten particles are initialized with equal weights in the first step.
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In the second step, the particles are weighted based on given measurements, and as a result,
some particles require small weights while others require larger weights represented by the
size of the particles. The state distribution is represented by these weighted particles. Then, a
resampling step is performed which selects the particles with large weights to generate a set of
new particles with equal weights in the third step. In step four, these new particles are
distributed again to predict the next state. This loop continues from steps two through four
until all the observations are exhausted.

Although there are various extensions of the PF in the literature, the basic concept is the same
and based on the idea of representing the posterior distribution by a set of particles.

4.2. Random finite set and PHD filtering

The generic PF is designed for single-target tracking. Multi-target tracking is more complicated
than single-target tracking as it is necessary to jointly estimate the number of targets and the
state of the targets. One multi-target tracking scenario is illustrated in Figure 2a, where five
targets exist in state space (bottom plane) given at the previous time with eight measurements
in observation space (upper plane). In this scenario, the number of measurements is larger than
the number of targets due to clutter or noise. When the targets are passed to the current time,
the number of targets becomes three and two targets no longer exist.

In that sense, the variable number of targets and noisy measurements need to be handled for
reliable tracking in multi-target case. The RFS approach [36] is an elegant solution to address
this issue. The basic idea behind the RFS approach is to treat the collection of targets as a set-
valued state called the multi-target state and the collection of measurements as a set-valued
observation, called multi-observation. So, the problem of estimating multiple targets in the
presence of clutter and uncertainty is handled by modelling these set-valued entities as

Figure 1. Steps of the particle filter. The first step is particle initialization with equal weights. The particles are weighted in
the second step. After a resampling step is performed in the third step, the particles are distributed to predict the next state
in the fourth step. This figure is adapted from Ref. [102].
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random finite sets [41]. The point here is to generalize the tracking problem from single target
to multiple targets.

Figure 2b illustrates the RFS approach where all the targets are collected in one target set and
all the measurements are considered as one measurement set. The RFS propagates the full
multi-target posterior for multi-target filtering. The state model of the RFS incorporates indi-
vidual target dynamics which are target birth, target spawn and target death. In addition, the
observation model of the RFS incorporates the measurement likelihood as target detection
uncertainty (miss-detection) and clutter (false alarm). These incorporations are implemented
by assigning hypotheses, and all possible associations between hypotheses and measurement/
targets need to be repeated at every time step, resulting in increased computational cost in the
case of a high number of targets and measurements.

To alleviate the computational cost, the PHD filter is introduced which is a computationally
cheaper alternative to the RFS. The PHD filter is the first-order approximation of the RFS and
propagates only the first-order moments instead of the full multi-target posterior [44, 104]. The
PHD filter function is denoted as the intensity vðxÞ whose integral on any region of the state
space gives the expected number of targets. The peaks of the PHD function point the highest
local concentration of the expected number of targets, which can be used to provide estimates
of individual targets [36]. The PHD filter is illustrated in Figure 3 by a simple example [36]
which corresponds to Eq. (1)

(a)

(b)

Figure 2. An illustration of the RFS theory in a multi-target tracking application. One possible multi-target tracking
scenario is given in (a), and (b) represents the RFS approach to multi-target tracking. The figures are adapted from Ref.
[103].

Motion Tracking and Gesture Recognition56



random finite sets [41]. The point here is to generalize the tracking problem from single target
to multiple targets.

Figure 2b illustrates the RFS approach where all the targets are collected in one target set and
all the measurements are considered as one measurement set. The RFS propagates the full
multi-target posterior for multi-target filtering. The state model of the RFS incorporates indi-
vidual target dynamics which are target birth, target spawn and target death. In addition, the
observation model of the RFS incorporates the measurement likelihood as target detection
uncertainty (miss-detection) and clutter (false alarm). These incorporations are implemented
by assigning hypotheses, and all possible associations between hypotheses and measurement/
targets need to be repeated at every time step, resulting in increased computational cost in the
case of a high number of targets and measurements.

To alleviate the computational cost, the PHD filter is introduced which is a computationally
cheaper alternative to the RFS. The PHD filter is the first-order approximation of the RFS and
propagates only the first-order moments instead of the full multi-target posterior [44, 104]. The
PHD filter function is denoted as the intensity vðxÞ whose integral on any region of the state
space gives the expected number of targets. The peaks of the PHD function point the highest
local concentration of the expected number of targets, which can be used to provide estimates
of individual targets [36]. The PHD filter is illustrated in Figure 3 by a simple example [36]
which corresponds to Eq. (1)

(a)

(b)

Figure 2. An illustration of the RFS theory in a multi-target tracking application. One possible multi-target tracking
scenario is given in (a), and (b) represents the RFS approach to multi-target tracking. The figures are adapted from Ref.
[103].

Motion Tracking and Gesture Recognition56

vðxÞ ¼ N σ2ðx� aÞ þN σ2ðx� bÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2πσ

p exp �ðx� aÞ2
2σ2

 !
þ exp �ðx� bÞ2

2σ2

 !" #
ð1Þ

Figure 3 is plotted for Eq. (1) with σ ¼ 1, a ¼ 1 and b ¼ 4. The peaks of vðxÞ is near the target
locations x ¼ 1 and x ¼ 4.

The integral of vðxÞ computes the actual number of targets Ξ:

Ξ ¼
Z
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4.3. Mean-shift tracking

Different from stochastic approaches such as the PF, RFS and PHD filter, the mean-shift is a
deterministic method [28]. The mean-shift can be defined as a simple iterative procedure that
shifts each data point to the average of data points in its neighbourhood [105].

Common application areas are clustering [106], mode seeking [107], image segmentation [108]
and tracking [109]. Simple implementation of the mean-shift method is illustrated in Figure 4
where the purpose is to find the densest region of the distributed balls. The first step is to select
an initial point with the region of interest as shown in Figure 4a where the circle indicates the
region of interest centred on the initial point. In Figure 4b, the centre of the mass is calculated
using the balls inside the region of interest. To get the distance and direction for shifting the
initial point, the mean-shift vector is calculated in Figure 4c. The initial point is shifted to a new
point together with the region of interest in Figure 4d. The centre of the mass is calculated
again using the balls inside the region of interest which leads to new mass point in Figure 4e.
The mean-shift vector is calculated to obtain the direction and distance for shifting and the
region of interest is shifted to a new point as illustrated in Figures 4f and g, respectively. This
iteration continues until the mean-shift method reaches the densest point in Figure 4h.

Figure 3. A simple example for the PHD filter. This figure is adapted from Ref. [36].
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(c) (d)

(e) (f)

(g) (h)

Figure 4. Simple descriptions of the mean-shift process. These figures are adapted from Ref. [110].
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Figure 4. Simple descriptions of the mean-shift process. These figures are adapted from Ref. [110].
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5. Relevant datasets

In order to perform a quantitative evaluation of the audio-visual tracker, both audio and video
sequences are required. In that sense, several datasets are presented in the literature that
combine multiple audio and video sources for tracking.

The augmented multi-party interaction (AMI) [111] corpus includes 100 h of meetings, which
were recorded in English using three different rooms. Natural conversations are included in
some of the meetings, and many others, in particular those using a scenario in which the
participants play different roles in a design team, are also reasonably natural. The number of
speakers in the natural conversations varies from three to five. In one artificial meeting, four
speakers are involved, taking four pre-arranged roles (as industrial designer, interface designer,
marketing and project manager). Other artificial meetings also appear in the AMI corpus, such
as a film club scenario. Generally, the speakers are mostly static or with small movements. In
addition, calibration information is not available which is required for 3D tracking as it is needed
to project the coordinates from the two-dimensional (2D) image into 3D space.

CLEAR (CLassification of Events, Activities and Relationships) is the next dataset created for
people identification, activities, human-human interaction and relevant scenarios [112].
Recordings are captured with multiple users in realistic meeting rooms equipped with a
multitude of audio-visual sensors. The rooms have five calibrated cameras, and four of them
are mounted to the corners of the room while the last panoramic camera is mounted to the
ceiling of the room. All cameras are synchronized with the audio streams collected by the
linear microphone array placed on the walls. In most scenarios, the speakers are generally still
and seated around the table. They speak one by one.

Another dataset is SPEVI (Surveillance performance evaluation initiative) [113] created for
single- and multi-modal people detection and tracking. Sequences are captured by a video
camera and two linear microphone arrays. The SPEVI dataset has three sequences. The
sequences motinas_Room160 and motinas_Room105 are captured in rooms with reverbera-
tion. The sequence motinas_Chamber is captured in a reduced reverberation room. In this
dataset, audio signals were recorded with linear microphone arrays and the calibration infor-
mation is not available.

One of the most challenging datasets that can be used for the evaluation of audio-visual
tracking algorithm is AV16.3 corpus which is developed by the IDIAP research institute [114].
The corpus AV16.3 involves various scenarios where subjects are moving and speaking at the
same time whilst being recorded by three calibrated video cameras and two circular eight-
element microphone arrays.

Recordings in the AV16.3 involve challenging scenarios such as object initialization, partial and
total occlusion, overlapped speech, illumination change, close and far locations, variable num-
ber of objects, and small and large angular separations. Circular microphone arrays were used
to record the audio signals at 16 kHz and video sequences were captured at 25 Hz. The
recordings of audio and video were performed independently from each other. Each video
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frame is a colour image of 288 · 360 pixels and some sequences are annotated to get the
ground truth (GT) speaker position which allows one to measure the accuracy of each tracker
and to compare the performance of the algorithms. In addition, it provides calibration infor-
mation of the cameras and challenging scenarios like occlusions and moving speakers.

The most recently released dataset is ‘S3A speaker tracking with Kinect2’ [115, 116] which uses a
Kinect for Windows V2.0 for recording the visual data and dummy head for recording the audio
data. It contains four sequences in a studio where people are talking and walking slowly around
a dummy head which is located at the centre of the room. Different from other cameras, Kinect
sensor provides in-depth information besides the colour which helps to extract the 3D position of
the speaker without using additional view of the scene. In addition, annotated data are provided
which can be used as ground truth data to estimate the performance of the tracker.

6. Performance metrics

Several metrics have been proposed to evaluate the performance of tracking methods in the
literature. In this section, four metrics are introduced.

The first one is the mean absolute error (MAE), which is computed as the Euclidean distance in
pixels between the estimated and the ground truth positions, and then divided by the number
of frames. This metric offers simplicity and explicit output for the performance comparison.

The multiple object tracking (MOT) metric is the next metric which was proposed in Ref. [117].
It is defined with MOT precision (MOTP) andMOTaccuracy (MOTA) quantities. The precision
is measured with the MOTP using a pre-defined threshold value

MOTP ¼
X

i, k
dikX

k
ck

ð3Þ

where dik is the distance between the ith object and its corresponding hypothesis and ck is the
number of matches between the objects and hypotheses for time frame k.

Tracking errors are measured with the MOTAwhich covers the false positives, false negatives
and mismatches. If the error is greater than the threshold value, it is assumed that the false
positive and false negative count if the speaker is not tracked with the accuracy measured by
the threshold. Mismatches are the case where the speaker identity is switched [117]

MOTA ¼ 1�
X

k
ðmk þ f pk þmmkÞX

k
gk

ð4Þ

where mk, f pk, mmk and gk define the number of misses (false negatives), false positives,
mismatches and objects present, respectively, for the time frame k.

The next metric is the trajectory-based measures (TBMs) proposed in Refs. [118, 119], where
the performance is measured based on trajectory. It categorizes the trajectories as mostly

Motion Tracking and Gesture Recognition60



frame is a colour image of 288 · 360 pixels and some sequences are annotated to get the
ground truth (GT) speaker position which allows one to measure the accuracy of each tracker
and to compare the performance of the algorithms. In addition, it provides calibration infor-
mation of the cameras and challenging scenarios like occlusions and moving speakers.

The most recently released dataset is ‘S3A speaker tracking with Kinect2’ [115, 116] which uses a
Kinect for Windows V2.0 for recording the visual data and dummy head for recording the audio
data. It contains four sequences in a studio where people are talking and walking slowly around
a dummy head which is located at the centre of the room. Different from other cameras, Kinect
sensor provides in-depth information besides the colour which helps to extract the 3D position of
the speaker without using additional view of the scene. In addition, annotated data are provided
which can be used as ground truth data to estimate the performance of the tracker.

6. Performance metrics

Several metrics have been proposed to evaluate the performance of tracking methods in the
literature. In this section, four metrics are introduced.

The first one is the mean absolute error (MAE), which is computed as the Euclidean distance in
pixels between the estimated and the ground truth positions, and then divided by the number
of frames. This metric offers simplicity and explicit output for the performance comparison.

The multiple object tracking (MOT) metric is the next metric which was proposed in Ref. [117].
It is defined with MOT precision (MOTP) andMOTaccuracy (MOTA) quantities. The precision
is measured with the MOTP using a pre-defined threshold value

MOTP ¼
X

i, k
dikX

k
ck

ð3Þ

where dik is the distance between the ith object and its corresponding hypothesis and ck is the
number of matches between the objects and hypotheses for time frame k.

Tracking errors are measured with the MOTAwhich covers the false positives, false negatives
and mismatches. If the error is greater than the threshold value, it is assumed that the false
positive and false negative count if the speaker is not tracked with the accuracy measured by
the threshold. Mismatches are the case where the speaker identity is switched [117]

MOTA ¼ 1�
X

k
ðmk þ f pk þmmkÞX

k
gk

ð4Þ

where mk, f pk, mmk and gk define the number of misses (false negatives), false positives,
mismatches and objects present, respectively, for the time frame k.

The next metric is the trajectory-based measures (TBMs) proposed in Refs. [118, 119], where
the performance is measured based on trajectory. It categorizes the trajectories as mostly

Motion Tracking and Gesture Recognition60

tracked (MT), mostly lost (ML) and partially tracked (PT). MT is defined as if the tracker
follows at least 80% of its ground truth (GT) trajectory. If the tracker follows less than 20% of
its GT, it is called ML. If the followed trajectory is between 20 and 80% of the GT trajectory, it is
called PT. Also, track fragmentation (Frag) is defined as the total number of times that GT is
interrupted. Identity switches (IDs) are computed by calculating change in GT identity.

OSPA-T (Optimal Subpattern Assignment for Tracks) [120] is the last performance metric
designed for the evaluation of multi-speaker tracking systems. It is an improved version of
the OSPA metric [121] by extending it for tracking management evaluation. To transfer the
cardinality error into the state error, a penalty value is used in the OSPA. So its performance
evaluation includes both source number estimation and speaker position estimation:

eOSPAðX̂ k,X kÞ ¼ min
π∈ΠΞ̂k,Ξk
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where X̂ k ¼ fx̂1, k,…, x̂Ξ̂k, kg is an estimation of the ground-truth state set X k ¼ fx1, k,…, xΞk, kg
and ΠΞ̂k,Ξk

is the set of maps π : 1,…, Ξ̂k ! 1,…,Ξk. The state cardinality estimation Ξ̂k may

not be the same as the ground truth Ξk. The OSPA error defined in Eq. (5) is for Ξ̂k ≤Ξk. If

Ξk < Ξ̂k, then eOSPAðX̂ k,X kÞ ¼ eOSPAðX k, X̂ kÞ. The function d
ðcÞ

is denoted as min ðc, dð�ÞÞ. Here,
c is defined as the cut-off value in order to weight the penalties for cardinality and localization
errors. Additionally, the metric order is defined by a which determines the sensitivity to
outliers. The OSPA-T metric differs from other metrics since it considers not only the position
estimation of the speaker but also the estimation of the number of speakers in the evaluation of
the tracking results. As OSPA-T measures the error based on these two terms, state (position
estimation) and cardinality (number of speaker estimation), it causes ambiguities about how
much error is contributed from each term to the final error. In addition to the x1 and x2
variables of the state vector, the scale variable, s, may be considered in the evaluation. How-
ever, this will cause more ambiguities in the contributions of the terms to the final error and
deteriorate the reliability of the metric.

As a summary, four metrics are introduced which evaluate the methods from their own
perspectives. To see howwell the tracker follows its trajectory, the TBM can be used to measure
its performance. If the tracking error needs to be estimated, the MAE or the more advanced
option MOT can be used to see how accurately the tracker follows the target. If an unknown
and variable number of targets need to be tracked, then the OSPA-T metric is more suitable
than the others as it considers both position estimation and the estimated number of targets in
the performance evaluation.

7. Experimental results and analysis

In this chapter, six trackers are included to cover the recent paradigms. The trackers are
restricted to the ones either for which access to the source code has been permitted or tracker
performance has been reported on commonly used datasets.
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To deal with the tracking problem for unknown and time-varying number of speakers, Kılıç et al.
[14] propose to use particle PHD (SMC-PHD) filter. DOA information is employed as an audio
cue and it is integrated with video data under SMC-PHD filter framework. Audio data are used
to determine when to propagate and re-allocate surviving, spawned and born particles based on
their types. The particles are concentrated around the DOA line, which is drawn from the centre
of the microphone array to the estimated speaker position by audio information.

As a baseline algorithm, the visual SMC-PHD (V-SMC-PHD) filter, which uses colour informa-
tion as a visual cue, is compared with the audio-visual SMC-PHD (AV-SMC-PHD) to see the
advantage of using multi-modal information in challenging tracking scenarios like occlusion.
Sequence 24 from AV16.3 dataset is run for V-SMC-PHD and AV-SMC-PHD, and tracking
results are given in Figure 5.

The first row shows the results of V-SMC-PHD filter which fails to track after occlusion. Also, it
shows poor performance before the occlusion in terms of the detection of the speakers. It is
reported in Ref. [14] that the AV-SMC-PHD filter tracks the speakers more accurately and
shows better performance than the V-SMC-PHD filter in terms of accuracy and ability for re-
detection of the speakers after lost.

The same experiments are repeated for three-speaker case using Sequence 45 camera #3 from
the AV16.3 dataset and the results are given in Figure 6. It is reported in Ref. [14] that AV-SMC-

Figure 5. AV16.3, sequence 24 camera #1: occlusions with two speakers [14]. Performance of the V-SMC-PHD filter is
shown in the first row. The second row is given for the AV-SMC-PHD filter.

Figure 6. AV16.3, sequence 45 camera #3: occlusions with three speakers [14]. The tracking results of the V-SMC-PHD and
the AV-SMC-PHD filters are shown in the first and second rows, respectively.
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PHD filter has better capability in detecting and following all the speakers even after the
occlusions.

To improve the estimation accuracy of the AV-SMC-PHD filter, [12] integrates the mean-shift
method in order to shift the particles to a local maximum of the distribution function which
drives particles closer the speaker position. The generic mean-shift algorithm is modified for
multiple-speaker case and applied after the audio contribution to the particles, and this algo-
rithm is named as AVMS-SMC-PHD filter.

Even though the integration of the mean-shift improves the estimation accuracy, applying the
mean-shift process to all the particles introduces extra computational cost [12]. To address this
problem, [12] proposes a sparse sampling scheme which chooses sparse particles and runs the
mean-shift method only on those particles rather than all the particles which results in a
significant reduction in computational cost. This method is named as sparse-AVMS-SMC-
PHD filter. Another tracking algorithm is given in Ref. [122], which uses the merits of dictio-
nary learning for multi-speaker tracking. It is tested using some sequences (seq24, seq25 and
seq30) of the AV16.3 dataset.

The results of these five trackers on sequences of AV16.3 are given in Table 1 and the OSPA-T
metric is used for comparison. The tracker in Ref. [122] outperforms the V-SMC-PHD; how-
ever, the AVMS-SMC-PHD shows better performance than the others.

These tracking results are compared with those of [123] which uses the PHD filter for tracking
and reports the results only for seq24 cam1 and cam2 in terms of Wasserstein distance. Table 2
shows the results of six trackers.

Tracking algorithm #1
[122]

V SMC-PHD
[14]

AV SMC-PHD
[14]

AVMS SMC-PHD
[14]

Sparse AVMS
SMC-PHD [14]

seq24 cam1 22.28 27.12 17.71 13.93 14.50

cam2 17.60 25.91 19.83 14.97 15.35

cam3 28.18 24.32 18.94 14.12 15.72

seq25 cam1 21.49 25.84 19.13 15.72 17.17

cam2 19.17 25.66 18.47 13.93 15.39

cam3 29.35 29.99 21.61 17.07 17.62

seq30 cam1 35.98 35.60 25.22 16.65 19.27

cam2 28.40 24.97 19.37 14.86 16.16

cam3 34.60 37.64 25.31 19.29 19.67

seq45 cam1 NA 48.68 29.46 22.95 23.40

cam2 NA 39.24 29.47 21.47 23.16

cam3 NA 39.09 28.43 22.43 23.80

Average 26.34 32.01 22.75 17.28 18.43

Table 1. Comparison results of the tracking algorithms for the AV16.3 dataset using the OSPA-T metric [14].
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Among six trackers, the AVMS-SMC-PHD outperforms the other trackers in terms of the
average accuracy.

The trackers of [14] are also tested in different datasets. One sequence from each AMI and
CLEAR dataset is used to test the trackers. Figure 7 shows the results of V-SMC-PHD and AV-
SMC-PHD for a sequence of the AMI dataset. In this dataset, the speakers talk one by one.
Hence, one DOA line is drawn per time instance. Since the speakers remain still, the visual
trackers do not fail to track the speakers.

Other sequence is UKA_20060726 from the CLEAR dataset where the speakers talk one by one
and mostly sit around the table. The performance of visual and audio-visual trackers is given
in Figure 8.

The average error of the trackers for sequences IS1001a and UKA_20060726 is given in Table 3
in terms of the OSPA-T metric. It is reported in Ref. [14] that there is no significant difference
on the performance of the visual and audio-visual trackers since the speakers talk one by one.
The audio-visual tracker runs as a visual tracker for the silent speakers, while it is more

seq24 Tracking
algorithm #1 [122]

Tracking
algorithm #2 [123]

V SMC-PHD
[14]

AV SMC-
PHD [14]

AVMS SMC-PHD
[14]

Sparse AVMS
SMC-PHD [14]

cam1 9.02 7.20 16.96 7.94 6.67 7.45

cam2 6.40 4.80 19.17 7.59 5.24 5.73

Average 7.71 6.00 18.06 7.76 5.96 6.59

Table 2. Tracking algorithms are compared in terms of mean Wasserstein distance (in pixel) [14].

Figure 7. AMI dataset, sequence IS1001a. The first and second rows show the results of the V-SMC-PHD and the AV-
SMC-PHD filter, respectively [14].
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effective for the talking speakers because of the additional information coming from audio
modality.

8. Chapter summary

In this chapter, a review of multi-speaker tracking has been provided on modalities, existing
tracking techniques, datasets and performance metrics that have been developed over the past
few decades.

After a broad survey of the tracking methods, a technical background of the methods such as
particle filtering, random finite set, PHD filter and mean-shift, which are commonly used as
baseline methods in the literature, is introduced with their basic mathematical, statistical
concepts and definitions, which are required for understanding the mathematics and tech-
niques behind the proposed tracking algorithms.

In order to perform a quantitative evaluation of the proposed algorithms, both audio and
video sequences are required. Publicly available datasets such as AV16.3, CLEAR, AMI, SPEVI
and S3Awere introduced with the fundamental differences including physical setup, scenarios
and challenges.

Figure 8. CLEAR dataset, sequence UKA_20060726. The first and second rows show the results of the V-SMC-PHD and
the AV-SMC-PHD filters, respectively [14].

Sequences V SMC-PHD [14] AV SMC-PHD [14] AVMS SMC-PHD [14] Sparse AVMS SMC-PHD [14]

IS1001a 25.32 21.51 18.91 20.37

UKA_20060726 28.33 25.94 23.14 24.82

Table 3. Comparison results of the tracking algorithms for the AMI and CLEAR dataset.
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Moreover, performance metrics were analysed in order to see which aspects are considered
more in the evaluation and impacts of these perspectives on the evaluation results.
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Abstract

In recent years, video surveillance systems have been playing a significantly important
role in the human safety and security field by monitoring public or private areas. In this
chapter, we have discussed the development of an intelligent surveillance system to
detect, track and identify potentially hazardous events that may occur at level crossings
(LC). This system starts by detecting and tracking objects on the level crossing. Then, a
danger evaluation method is built using hidden Markov model in order to predict
trajectories of the detected objects. The trajectories are analyzed with a credibility model
to evaluate dangerous situations at level crossings. Synthetics and real data are used to
test the effectiveness and the robustness of the proposed algorithms and the whole
approach by considering various scenarios within several situations.

Keywords: video surveillance system, tracking and recognition, level crossing, hidden
Markov model (HMM)

1. Introduction

Improving safety at level crossing (LC) became an important academic research topic in the
transportation field and took increasingly railway undertaking concerns. European countries
and European projects try to upgarde level crossing safety which is quite weak today. These
projects, like SELCAT “Safer European Level Crossing Appraisal and Technology” [1], has set
up some databases of accidents at European level. United States presents very well equipped
level crossing with advanced means for sensing and telecommunication [2]. Selectra Vision
Company in Italy [3] has developed a surveillance system for detecting obstacles in the moni-
tored area of a level crossing using a 3D laser scanner. Nevertheless, developing a new LC safety

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



system which allows quantifying the risk within the LC environment and transmitting it to road
users, rail managers and even train drivers still is the main focus for technical solutions.

One of the objectives of the proposed work is to perform a video analysis-based system in order
to evaluate the degree of danger of each detected and tracked moving object at level crossing.

The first step of our proposed video surveillance system starts by robustly detecting and
separating moving objects crossing the LC. Many approaches are used in the literature to
detect objects in real time; examples are Independent Components Analysis [4], Histogram of
Oriented Gradients [5], Wavelet [6], Eigen backgrounds [7], kernel and contour tracking [8, 9]
or Kalman and particle filters [10, 11]. However, these techniques require further development
to distinguish between detected objects.

That is why our approach consists of detecting all moving pixels based on a background subtrac-
tion approach. To obtain separated objects, we propose a model based on clustering the detected
pixels, affected bymotion, by comparing a specific energy vector associated to each target. Finally,
the tracking of each pixel detected within a moving object is achieved by using a Harris corners-
based optical flow propagation technique, followed by a Kalman filtering-based rectification.

The second step is focused on predicting trajectories of the detected moving objects such as to
avoid potentially dangerous level crossing accident scenarios (vehicle stopped at LC for exam-
ple). Gaussian mixture model (GMM) [12], hidden Markov model (HMM) [13], Hierarchical
and Couple Hidden Markov Model [14, 15] are usually used for representing and recognizing
objects’ trajectories. However, these methods need a high number of statistical measures to be
accurate. Using a real-time hidden Markov model, the degree of dangerousness related to each
object is instantly estimated by analyzing each object’s trajectory considering different sources
of danger (position, velocity, acceleration…). All the information obtained from the sources of
danger is fused using Dempster-Shafer technique [16]. Figure 1 illustrates the synopsis of the
proposed video surveillance security system.

Figure 1. Synoptic of the video surveillance security system installed at Level crossing.
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The remaining of the chapter is organized as follows. Section2 is dealing with object detection
and separation. In Section3, the tracking process is developed. Section4 describes the proposed
method for evaluating and recognizing dangerous situations in a level crossing environment.
In Section5, some evaluation results are provided based on typical accident scenarios played in
a real level crossing environment. Finally, in Section6, some conclusions and short-term per-
spectives are provided.

2. Object detection and separation

In this section, a method has been developed to detect and separate moving objects in the level
crossing surveillance zone. This method starts by detecting pixels affected by motion, by using
background subtraction technique as a preprocessing phase; each image processed at each
step, a subtraction from the background image is carried out. The main aim of this procedure is
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tion between all created bounding boxes in the current frame and those representing the
targets extracted from the previous frame is analyzed in order to determine the number and
the shape of all moving objects (targets) in the current frame; a bounding box created from the
current frame is considered as a new target if and only if it does not intersect any existing
bounding box representing a target extracted from the previous frame. On the other case, if a
bounding box created from the current frame intersects existing targets, an iterative separation
method is applied. During each iteration, a pixel in the current bounding box should be
assigned to one of the existing targets.

The pixels clustering process starts by defined two energy vectors. The first energy vector

Ei
target, initialized to zero, is concerned with each existing target number i. This energy is then

updated iteratively. The second energy vector Ei
pixel is defined for each pixel located at the

position ðx,yÞ with respect to the target number i. This energy is expressed as follows:

Figure 2. Detection of moving pixels. (a) Current image. (b) Detected moving pixels. (c) Moving pixels situated in the
contour of the objects.

Motion Tracking and Potentially Dangerous Situations Recognition in Complex Environment
http://dx.doi.org/10.5772/68141

77



Ei
pixel ¼ Ei

D, Ei
F, E

i
I , E

i
G

� �T ð1Þ

where Ei
G, E

i
I , E

i
F, E

i
D are, respectively, the distance, optical flow, intensity and gradient ener-

gies.

For each iteration, the pixel ðx, yÞ is assigned to the target that provides the maximum number

of closest components between the energy vectors Ei
pixel and Ei

target, if the pixel ðx, yÞ is assigned
to the target number p. The energy vector Ep

target is then updated as follows:

Ep
target ¼

N�Ep
target þ Ei

pixel

N þ 1

 !
ð2Þ

where N is the number of pixels in the target number p, before adding the pixel ðx, yÞ. Figure 4
shows the results of the multiobjects separation method.

Figure 3. Bounding boxes extraction.

Figure 4. Multiobjects separation result. (a) Original frame with five moving objects. (b) Objects separation result.
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3. Event tracking

3.1. Objects tracking

Once the targets are extracted from the current frame, the objective is to develop a dense optical
flow computation algorithm to track them. We firstly estimate the optical flow of Harris points
using an iterative Lucas-Kanade algorithm [17]. We consider that these particular points have a
stable optical flow. The optical flow for every pixel of the detected objects is then estimated by
propagating the optical flow of Harris points using a Gaussian distribution. The mean and
standard deviation of the distribution are taken as the mean and standard deviation of the Harris
points’ optical flow [19]. The results of the optical flow propagation process are then processed
by Kalman filtering to correct the optical flow of all the pixels of the detected objects [18, 19].

The tracking process is tested and evaluated in [18, 19]. Figure 5 shows an example of multiobjects
tracking by combining the objects detection and separation method, and the tracking process.

3.2. Optical flow–based object segmentation

Given a target, the objective is to partition it into multiple rectangular boxes representing
different regions based on optical flow of its pixels. To achieve that, we use a recursive algorithm,
which compares neighboring pixels to extract regions in which the pixels have a homogeneous
optical flow. Only regions with a significant size are conserved (determined experimentally in
dependence of the camera’s view around the level crossing area and the resolution of the
camera). Figure 6 presents optical flow–based segmentation results for a moving object tracked
in an image sequence. In order to predict the normal (supposed) trajectories, the extracted
regions are represented by the gravity centers of the boxes surrounding them. Then, each specific
trajectory should be linked to the gravity center of its extracted region.

3.3. Ideal trajectory prediction

Let us consider, thanks to optical flow, an extracted region. When we consider the center of the
region, two trajectories could be defined: current ideal trajectory and predicted ideal trajectory.
The current ideal trajectory corresponds to the trajectory that the center of the region should
follow to avoid potential dangerous situations (Figure 9). The predicted ideal trajectory corre-
sponds to the trajectory that should be followed to come back toward the current ideal
trajectory (Figure 7). A statistical approach based on a hidden Markov model (HMM) is

Figure 5. Tracking process: from right to left.
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proposed to predict the new ideal trajectory: the predicted ideal trajectory of the considered
region center at time instant t (state qt: initial state of the HMM) is constructed from the states
ðqtþ1,…, qtþtf

Þ generated by the HMM using Forward-Backward, Viterbi and Baum-Welch

algorithms [20, 21]. We also associate to the considered region center the four following
parameters: velocity ðVtþ1,…, Vtþtf Þ, acceleration ðatþ1,…, atþtf Þ, orientation ðotþ1,…, otþtf Þ,
position ðptþ1,…, ptþtf

Þ and the distance ðDtþ1,…, Dtþtf Þ from the region center to the current

ideal trajectory.

Figure 8 shows the general architecture of the proposed HMM and how the predicted ideal
trajectory is performed from the considered region center.

As shown in Figure 8a, the random hidden state variable qt corresponds to the position of the
considered region center at time t. The random observation variable ut represents simulta-
neously the acceleration, orientation, velocity and position of the considered region center at
time t. attþ1 represents the transition probability from state qt to state qtþ1, and bt represents the
distribution of the observation at time t.

As illustrated in Figure 8b, given the velocity vector Vt
!

at time t, calculated from optical flow,
the state qtþ1 in the HMM is reached from the state qt with a probability of 1. Given the

acceleration, orientation and velocity at time t, the velocity Vtþ1
�!

at time tþ 1 is then predicted.

Figure 6. Segmentation of an object using optical flow procedure.
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Figure 7. Ideal trajectory prediction by using HMM.

Figure 8. Schematic representation of the HMM for ideal trajectory prediction. (a) HMM model. (b) Trajectory prediction
model.
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As illustrated in Figure 8b, we next define a circle C. The center of the circle C is the end point

of the velocity vector Vtþ1
�!

and the radius of this circle is the maximum absolute acceleration.

4. Evaluation of the level of dangerousness (recognition of dangerous
situations)

On the basis of the previous steps, we present in this section a method to evaluate and
recognize potential dangerous situations when a moving object is detected within the moni-
tored area of a level crossing.

To analyze the predicted ideal trajectory, various sources of dangerousness are considered
based on Dempster-Shafer theory [16]. This theory combines the dangers produced by the
different sources in order to obtain a measure of the degree of danger.

For each region center, five sources of danger are considered: acceleration, orientation, velocity,
position and distance between the predicted and the current ideal trajectories. A mass assign-
ment is then defined for each source of danger. Let mi be the belief mass related to the danger
source number i. The belief masses are defined as follows:

The mass assignment m1 (position) is computed from the distance between the predicted
position ptþtf

at time instant tþ tf and the barrier of the level crossing:

m1 ¼ jPd � 0:5j
0:5

ð3Þ

Pd ¼
ðdtfc

�∞

GdN,σdðxÞdx σd ¼
ffiffiffiffiffiffiffiffiffiffi
Dmax

p
dN ¼ 0 ð4Þ

where GdN,σdðxÞ is a Gaussian distribution of the variable x. dN ¼ 0 and σd are, respectively, its
mean and standard deviation. Dmax is the maximum distance that an object can traverse in the

image. dtfc is a function given as follows:

dtfc ¼ W if Dp
!

: Vtf
c

!
≤ 0

Wþ D�
p

!
: Vtf

c

!
if Dp

!
: Vtf

c

!
> 0

8><
>:

ð5Þ

W ¼ coef �sqrtðDsÞ Ds ¼ Dmax

5
ð6Þ

coef ¼ Ds

Dp þDi
Di ¼ 0 if inside prohibited zone

Dmax if outside prohibited zone

�
ð7Þ

D�
p

�! ¼ 1
Dpx

1
Dpy

h iT
ð8Þ
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where Dp
! ¼ ½Dpx Dpy �T is the distance from the region center to the barrier of the level

crossing. Vtf
c

!
is the velocity of the considered region center at time tf . The parameter W

depends on the position of the region center in the level crossing zone (inside or outside a

prohibited LC zone). More the value of dtfc is greater than zero more the belief mass m1 will
increase (degree of dangerousness increments).

The mass assignment m2 (velocity) is computed from the difference between the predicted

velocity Vtf
c at time instant tf and a prefixed nominal velocity VN.

m2 ¼
0:01 if ðVtf

c � VNÞ ≤ 0
Pv � 0:5

0:5
if ðVtf

c � VNÞ > 0

8<
: ð9Þ

Pv ¼
ðVtf
c

�∞

GVn,σv ðxÞdx σv ¼ VN

4
ð10Þ

where Vtf
c is the velocity of the considered region center at time tf . VN represents the maximal

velocity that a target can reach in the image. GVn,σvðxÞ is a Gaussian distribution, with a mean
equal to VN and a standard deviation equal to σv.

The mass assignment m3 (orientation) is computed by comparing the angle of the predicted
velocity Vt at time instant t and the angle of the current ideal trajectory.

m3 ¼ jPo � 0:5j
0:5

ð11Þ

Po ¼
ðotfc

�∞

GoN,σoðxÞ dx σo ¼ 2�π
7

ð12Þ

where otfc is the velocity orientation of the considered region center at time tf . ON is the
orientation of the current ideal trajectory. GoN,σoðxÞ is a Gaussian distribution, with a mean
equal to ON and a standard deviation equal to σo.

The mass assignment m4 (acceleration) is computed from the difference between the predicted
accelerations at and atþtf at time instants t and tþ tf respectively.

m4 ¼
0:01 if ðatfc � aNÞ ≤ 0

Pa � 0:5
0:5

if ðatfc � aNÞ > 0

8<
: ð13Þ

Pa ¼
ðatfc

�∞

GaN,σaðxÞ dx σa ¼ aN
4

ð14Þ
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atfc ¼ Vtf
c � Vti

c

n�Tmisejour
ð15Þ

where atfc is the acceleration of the considered region center at time tf . aN represents the
maximal acceleration that a target can reach in the image. GaN,σaðxÞ is a Gaussian distribution,
with a mean equal to aN and a standard deviation equal to σa.

Finally, the mass assignment m5 (distance) is computed from the distance between the
predicted position ptf at time instant tf and the current ideal trajectory:

m5 ¼ jPD � 0:5j
0:5

ð16Þ

PD ¼
ðDtf

�∞

GDN,σDðxÞ dx σD ¼ 2�Vn DN ¼ 0 ð17Þ

where Dtf is the the distance between the predicted position ptf of the considered region center

at time tf and the current ideal trajectory. GDN,σDðxÞ is a Gaussian distribution, with a mean
equal to DN ¼ 0 and a standard deviation equal to σD.

Once the degrees of dangerousness are computed for the five sources, Dempster-Shafer [16]
combination is used to determine the degree of danger related to the considered region center:

Danger ¼ Dempster� Shaf erðm1, m2, m3, m4, m5Þ ð18Þ

To determine the degree of danger of the target, we take simply the maximum value among
the degrees of danger of all regions composing the target.

5. Video surveillance experimental results

To validate our work, we apply the proposed dangerous situation method on four typical
accidental scenarios. These scenarios, registered at a level crossing in the north of France
(Mouzon), correspond to real situations occurred in LC accidents (dangerous situations: vehicle
zigzagging between the closed half barriers, presence of obstacle in the level crossing and
pedestrian crossing level crossing area). Each analyzed scenario includes a sequence with more
than 500 frames. Table 1 presents the datasets and materials used in the analysis of our method.

5.1. Experimental methodology

In the framework of this chapter, we determine a pure quantitative degree of dangerousness
from different scenarios identified at level crossing (see Eq. (18)). This system is able to detect
potentially dangerous situations occurring at the LC both in the two cases (states of the
barriers): barriers opened or barriers closed.
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In the case of closed barriers, when train approaching, we provide a level of dangerousness
(see Eq. (18)), between 0 and 100%, which could be transmitted all the time to the drivers
approaching the level crossing (LC). We could also send additional security advices when the
level is greater than a threshold (for instance 75%). In any situation, the presence of any kind of
moving objects between the barriers is not allowed. So, the velocity of cars or moving objects
should decrease to zero when approaching the LC.

In the case of opened barriers, the surveillance system is working as well. Vehicles or moving
objects could traverse the level crossing zone but they couldn’t stop on the LC. In case of
detection of dangerous situations, we can send information like: barriers open with a pedes-
trian, a vehicle or an object stopped on the rails.

Table 2 shows different situations that are taken into account by the system to measure the
level of dangerousness. In both cases, it all depends on the way of the rail transport operator
wants to monitor the LC. For the moment, the final system was not integrated in the daily
management of a level crossing. So, when the system will be integrated in a rail network, we

Number of
images analyzed

Processing power Number of images
analyzed per second

States of the
barriers

Test site

Sequence 1 (Vehicle
zigzagging LC)

520 Intel Core i5 – 2.67
GHz/3.7GB

7–10 Barriers closed Mouzon-France

Sequence 2
(Presence of obstacle
on LC)

1015 Intel Core i5 – 2.67
GHz/3.7GB

7–10 Barriers opened Mouzon-France

Sequence 3
(Vehicles stopped on
LC)

1380 Intel Core i5 – 2.67
GHz/3.7GB

7–10 Barriers opened Mouzon-France

Sequence 4
(Pedestrians crossing
LC)

1325 Intel Core i5 – 2.67
GHz/3.7GB

7–10 Barriers closed Mouzon-France

Table 1. Dataset and materials.

Closed barriers Opened barriers

Position of objects inside the LC zone (between the
barriers)

Not allowed Allowed

Velocity of objects inside the LC zone (between the
barriers)

Presence of objects not allowed Different from zero

Acceleration of objects inside the LC zone
(between the barriers)

Presence of objects not allowed Different from zero and positive

Position of objects outside the LC zone (near the
barriers)

Allowed only on the right side of
the road

Allowed only on the right side of
the road

Velocity of objects outside the LC zone (near the
barriers)

Close to zero Different or equal to zero

Acceleration of objects outside the LC zone (near
the barriers)

Close to zero or negative
(deceleration)

Different or equal to zero

Table 2. Situations allowed for open and closed barriers.
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could imagine that the measure of the level of dangerousness will be validated qualitatively by
the rail safety experts.

5.2. Scenarios of accident analyzed by the system

Vehicle zigzagging between two closed barriers of LC (Figure 9): In this scenario, a vehicle is
approaching the LC, while the barriers are closed. The vehicle crosses the LC, zigzagging
between the closed barriers (Figure 9). The purple lines in Figure 9 represent the current ideal
trajectory of the center of each extracted region from the object. The white points in the figure
represent the instantly predicted displacement of the center of the extracted regions. As shown
in Figure 9, if a detected vehicle is approaching the LC and using an abnormal trajectory, the
degree of danger is going to increase gradually to reach 70%. Then, when the vehicle enters the
LC, this degree continues to grow until reaching 100%. The level of danger begins to decrease
when the vehicle is moving away from the LC (Degree of danger DV1 ¼ 40%).

Vehicle stopped (Figure 10): In this scenario, a vehicle crosses the level crossing while the
barriers are open (Figure 10). Suddenly, the vehicle stops inside the dangerous zone and
becomes a fixed obstacle. After a while, the vehicle moves and leaves the LC. Concerning
danger evaluation, the degree of dangerousness related to the detected vehicle increases when
it moves toward the level crossing. It reaches 46% during the crossing of the zone of danger.
When the vehicle stops in the zone of danger, the stationary is detected and the degree of
dangerousness takes a value of 100%. When the vehicle begins to leave the LC, the level of
danger decreases progressively.

Queuing across the rail level crossing (Figure 11): In this scenario, a first vehicle stops just after
the dangerous zone. Sometime later, two other vehicles find themselves blocked behind the
first vehicle, which is motionless. This situation leads to a queue of cars inside the LC
(Figure 11). When the two vehicles detected inside the LC are stopped inside the zone of
danger, their degree of dangerousness increases progressively and reach their maximum
(100%). When the two vehicles restart moving, the degree of dangerousness drops to 46% and
decreases gradually, as the vehicles leave away the level crossing.

Pedestrians’ scenario (Figure 12): In this scenario, three pedestrians (P1, P2 and P3) are walking
around the level crossing zone as the barriers are closed. Pedestrian P1 is moving toward the
zone of danger (Degree of danger DP1 ¼ 26%), while pedestrian P2 is crossing is crossing the
level crossing area (DP2 ¼ 100%), and Pedestrian P3 is stopped on the middle part of the level
crossing near from the rails (DP3¼ 100%). After a moment, pedestrian P1 arrives near pedestrian
P2, and they are stopped on the rails of the LC, taking into account that the stationary inside the
level crossing is always detected by the system. So, the degree of dangerousness related to the
pedestrian P1 increases progressively from DP1¼ 26% and reaches their maximumDP1¼ 100%
on the rails. At the end of the scenario, pedestrian P2 is leaving the level crossing zone (Degree of
danger DP2 decreases to 11%), when pedestrian P1 is moving toward the stopped pedestrian P3.
A vehicle passing near from the LC is also detected in this scenario (DV ¼ 13%).

As a conclusion of these tests, the measure of the prediction system that calculates the level of
dangerousness for each moving or stopped object around the LC is able to detect different kind
of dangerous scenarios in the case of closed or opened barriers (vehicle zigzagging, stopped
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Figure 9. Vehicle zigzagging. DV1 represents the degree of danger associated with the vehicle.
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Figure 10. The presence of obstacle (vehicle) in the level crossing. DV1 represents the degree of danger associated with
the vehicle.
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Figure 11. The presence of stopped vehicles line on the LC. DVi represents the degree of danger associated with the
vehicle number i. DP represents the degree of danger associated with a pedestrian outside the LC zone.
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Figure 12. Three pedestrians walking around the level crossing area.
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vehicles, pedestrians around the LC). Then, this system proves his effectiveness as a measure
of the level of dangerousness but it also requires to be validated qualitatively after installing
this system definitely on a rail transport.

6. Conclusion

Detection of moving objects is an important and basic task for video surveillance systems, for
which you can define the initial position of the moving objects in a surveillance scene. However,
the detection and separation of the moving objects process become difficult when the objects are
close to each other in the scene. In our approach, we propose a method to completely separate
the corresponding pixels of each defined target. One of the other objectives of this project is to
develop a video surveillance system that will be able to detect and recognize potential dangerous
situation around level crossings. Different typical LC accident scenarios (e.g., presence of obsta-
cles, zigzagging between the barriers, stopped cars line) acquired in real conditions are experi-
mentally evaluated by applying the proposed dangerous situation recognition system.
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Abstract

Human action recognition, also known as HAR, is at the foundation of many different 
applications related to behavioral analysis, surveillance, and safety, thus it has been a 
very active research area in the last years. The release of inexpensive RGB-D sensors 
fostered researchers working in this field because depth data simplify the processing 
of visual data that could be otherwise difficult using classic RGB devices. Furthermore, 
the availability of depth data allows to implement solutions that are unobtrusive and 
privacy preserving with respect to classic video-based analysis. In this scenario, the aim 
of this chapter is to review the most salient techniques for HAR based on depth signal 
processing, providing some details on a specific method based on temporal pyramid of 
key poses, evaluated on the well-known MSR Action3D dataset.

Keywords: kinect, human action recognition, bag of key poses, RGB-D sensors

1. Introduction

The topic known as human action recognition (HAR) has become of interest in the last years 
mainly because different applications can be developed from the understanding of human 
behaviors. The technologies used to recognize activities can be varied and based on different 
approaches [1]. The use of environmental and acoustic sensors allows to infer the activity from 
the interaction of the user with the environment and the objects located in it, but vision-based 
solutions [2] and wearable devices [3] are usually the most used technologies to detect human 
body movements. RGB-D sensors, i.e., Red-Green-Blue and depth sensors, can be considered 
as enhanced vision-based devices since they can additionally provide depth data that can 
facilitate the detection of human movements. In fact, depth information may help to improve 
the performance of HAR algorithms because it is easier to implement a crucial process such as 
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the extraction of human silhouette, reducing its dependence from shadows, light reflections, 
and color similarity [4]. Skeleton joints, which can be even exploited to calculate features for 
action recognition, are extracted from depth data [5].

The aim of this chapter is to discuss HAR algorithms exploiting RGB-D sensors, providing 
a review of the most salient methods proposed in literature and an overview of nonvision-
based devices. A method for HAR exploiting skeleton joints and known as temporal pyra-
mid of key poses is described and experimental results on a well-known RGB-D dataset are 
provided.

Section 2 of this chapter aims to review methods for human action recognition based on dif-
ferent technologies, with a particular focus on RGB-D data. An algorithm based on histo-
grams of key poses exploiting skeleton joints extracted by Kinect is presented in Section 3. 
Finally, the last section of the chapter highlights the main conclusion on the proposed topic.

2. Methods and technologies for HAR

HAR methods can be implemented on data gathered from different technologies, which can 
infer the action from the movements made by the person, or from the interaction with objects 
or the environment. A review of sensors and technologies for detection of different human 
activities in smart homes can be found in Ref. [6], where the aim is to face the phenomenon of 
aging population. Following the same unobtrusive approach, researchers are working also on 
radio-based techniques [7], where they take advantage of signal attenuation due to the body, 
and channel fading of wireless radio. Other works have been also published considering 
wearable devices, such as smartphones, that can be used to collect data and to classify actions 
[8]. A more general architecture implemented with wearable devices requires the usage of 
small sensors with sensing and communication capabilities that can acquire data (usually 
related to acceleration) and send them to a central unit [9].

2.1. Related works on not vision-based devices

HAR based on data generated by environmental devices in home environment may exploit 
unobtrusive sensors equipping objects with which people usually interact, or other sensors 
that are installed in the rooms. State-changes sensors, which activate and deactivate if they 
detect a change, can provide powerful clues about movements in the apartment if placed on 
windows or doors. If attached to ovens and fridges, or toilet and washing machines, they can 
reveal kitchen-related activities or activities associated to toileting and doing laundry [10]. 
Passive infrared sensors (PIRs) detect the presence of a person in a room and a set of activi-
ties can be inferred if they are jointly used with other sensors, such as state-changes sensors 
and flush sensors, to detect the use of the toilet [11]. Multiple binary sensors such as motion 
detectors, contact switches, break-beam sensors, and pressure mats have been used in Ref. 
[12]. Using an approach based on particle filter and an ID sensor (RFID) to detect people’s 
identity, the system can reveal information about the occupied rooms and the number of 
occupants, and recognize if they are moving or not and track their movement. An integrated 
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platform including PIRs, magnetic sensors, force sensors, gas and smoke detection sensors, 
water and gas flux meters, power meters connected to some objects has been implemented 
in a laboratory environment [13]. Some simple activities, such as cooking, sitting, watching 
TV, can be easily inferred by processing the output data of sensors. Environmental sensors 
can be installed also in nursing homes, to support and help assistance of Alzheimer’s disease 
patients [14]. In this scenario, even the detection of simple events such as “presence in bed” 
or “door opening” may be relevant to ensure comfort and safety of patients. Environmental 
sensors are completely unobtrusive and privacy preserving but they usually require some 
time for the installation. Furthermore, the amount of information that can be obtained from 
the sensors is limited, and does not include the extraction of human movements.

Other unobtrusive sensors revealing the interaction with the environment can be audio 
sensors. In fact, some activities generate sounds that can be captured using one or mul-
tiple microphones. Characteristic sounds are generated for example by chatting or read-
ing newspapers activities, as well as drink and food intake events, that can be classified 
considering their features [15]. Tremblay et al. [16] proposed an algorithm to recognize a 
limited set of activities from six microphones installed at different positions in a test apart-
ment. Two activities of daily living (ADLs), i.e., breakfast and household, constituted by 
multiple steps have been recognized with a promising accuracy. Multiple audio sensors 
in the same apartment could constitute a wireless sensor network (WSN), addressing the 
challenges of limited amount of memory and processing power of the nodes. However, it 
has been proven that low complexity features extraction algorithms can be adopted with 
good performance considering the indoor scenario [17]. Vuegen et al. [18] proposed a WSN 
constituted by seven nodes placed in different rooms: living room/kitchen, bedroom, bath-
room and toilet, covering the entire apartment. A set of 10 ADLs has been recorded consid-
ering two test users and an artificial dataset to examine the influence of background noise. 
Acoustic sensors can be adopted in assistive environments to detect dangerous events such 
as falls [19, 20].

Radio-based techniques do not require any physical sensing module and they may work with-
out the need of wearing any device, but only exploiting the existing WiFi links between the 
access point and connected devices. With one access point and three devices, a set of nine in-
place activities (such as cooking, eating, washing dishes, etc.) and eight walking activities (dis-
tinguishing the direction of movement within the apartment) can be recognized [21]. Another 
radio-based technique is represented by micro-Doppler signatures (MDS). Commercial radar 
motes can be used to discern among a small set of activities, such as walking, running, and 
crawling, with high accuracy values [22]. A larger set of MDS captured from humans per-
forming 18 movements has been collected and presented in Ref. [23]. Activities have been 
grouped in three categories: stationary, forward-moving and multitarget, and characterized 
both in free-space and through-wall environments, associating the general properties of the 
signatures to their phenomenological characteristics. Björklund et al. [24] included a set of 
five activities (crawling, creeping on their hands and knees, walking, jogging, and running) in 
their study. They evaluated the performance of an activity recognition algorithm based on a 
support vector machine (SVM) with features in the time-velocity domain and in the cadence-
velocity domain, obtaining comparable results of about 90% of accuracy.
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Wearable sensors can be used to extract the human movements since they usually provide accel-
eration data. Considering inertial data, many different features for human action recognition 
have been proposed, with the aim to reduce the complexity of the features extraction process 
and to enhance the separation among the classes [25]. Wearable inertial sensors are quite cheap 
and generate a limited amount of data that can be processed easily with respect to video data, 
even if they do not provide information about the context. The placement of wearable sensors 
can be an issue and this step has to be carefully addressed [26]. This choice mainly depends 
on the movements constituting the set of activities that have to be recognized. The placement 
on the waist of the subject is close to the center of mass, and can be used to represent activities 
involving the whole body. With this configuration, sitting, standing, and lying postures can be 
detected with a high degree of accuracy considering a dataset acquired in a laboratory environ-
ment [27]. The placement on the subject’s waist, as well as the one on the subject’s chest or knee, 
gives good results with transitional activities also in Ref. [28]. On the other hand, high level 
activities such as running (in a corridor or on a treadmill) and cycling are revealed mostly by 
an ear worn sensor, since it measures the change in body posture. The placement of wearable 
unit on the dominant wrist may help the discrimination of upper body movements constituting 
for example the activities of brushing teeth, vacuuming, and working at computer [29]. On the 
other hand, the recognition of gait-related activities, such as normal walking, stair descending, 
stair ascending, and so on, requires the positioning of the devices on the lower limbs. In par-
ticular, even if the shank’s sensor could be enough to predict the activities, the usage of other 
IMUs, placed on tight, foot and waist, can enhance the final accuracy [30]. A multisensor system 
for activity recognition usually allows to increase the accuracy with respect to a single-sensor 
system, even if the latter employs a higher sampling rate, more complex features and a more 
sophisticated classifier [31]. The main drawback is the increasing level of obtrusiveness for the 
subject being monitored. Furthermore, if it may be acceptable to ask people to wear a device for 
a limited amount of time, for example to extract some parameters during movement assessment 
tests [32], it may be unacceptable to request wearing several IMUs to continuously track ADLs.

2.2. Related works on RGB-D sensors

Video-based devices (and especially RGB-D sensors) allow to extract activities from body 
movements but they are not obtrusive and they do not pose many issues about installation 
as environmental sensors do. Furthermore, RGB-D sensors do not raise problems related to 
radiation impact, differently from radar-based techniques, which can limit their acceptability. 
On the other hand, video-based sensors may be deemed not acceptable for privacy concerns 
but RGB-D sensors provide not negligible advantages from this point of view. In fact, when 
the data processing algorithms exploit only depth information, the privacy of the subject is 
preserved because no plain images are collected, and many details cannot be extracted from 
depth signal only. Different levels of privacy can be considered according to the user’s pref-
erences, thanks to the possibility to extract the human silhouette, or even to represent the 
human subject only by means of the skeleton [33].

Many different reviews on HAR based on vision sensors have been published in the past, 
each of which proposing its own taxonomy to classify different approaches [34–36]. Aggarwal 
and Xia [37], in their review, considered only methods based on 3D data that can be obtained 
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from three different technologies: marker-based systems, stereo images or range sensors, and 
organizing the papers in five categories based on the features considered.

The review of action recognition algorithms based on RGB-D sensors is organized consider-
ing the data processed by the algorithms, separating methods based on depth data from others 
exploiting skeleton information. Due to the simple extraction process of the silhouette from depth 
data, approaches based on this information may exploit features extracted from silhouettes. Li et 
al. [38] calculate a bag of 3D points from human silhouette, sampling the points on the contours 
of the planar projections of the 3D depth map. An action graph, where each node is associated 
to a salient posture, is adopted to explicitly model the dynamics of the actions. Features from 
2D silhouettes have been considered in Ref. [39], where an action is modeled as a sequence of 
key poses, extracted by means of a clustering algorithm, from a training dataset. Dynamic time 
warping (DTW) is suitable in this case because sequences can be inconsistent in terms of time 
scale, but they preserve the time order, and DTW can associate an unknown sequence of key 
poses to the closest sequence in the training set, thus performing the recognition process. Other 
approaches exploiting depth data considered the extraction of local or holistic descriptors. Local 
spatio-temporal interest points (STIPs), which have been used with RGB data, can be adapted 
to depth including additional strategies to reduce the noise typical of depth data, such as the 
inaccurate identification of objects’ borders, or the presence of holes in the frame [40]. A spatio-
temporal subdivision of the space in multiple segments has been proposed in Ref. [41], where 
the occupancy patterns are extracted from a 4D grid. Holistic descriptors, namely histogram of 
oriented 4D normals (HON4D) and histogram of oriented principal components (HOPC) have 
been exploited respectively in Refs. [42, 43]. HON4D is based on the orientation of normal sur-
faces in 4D while HOPC can represent the geometric characteristics of a sequence of 3D points.

Skeleton joints represent a compact and effective description of the human body, for this rea-
son they are assumed and exploited as input data by many action recognition algorithms. 
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[45] proposed an algorithm constituted by three steps: features detection, where the skeleton 
coordinates are elaborated to extract features; posture analysis, that consists in the detection of 
salient postures through a clustering algorithm and their classification with a support vector 
machine (SVM); and activity recognition, where a sequence of postures is modeled by an hid-
den Markov model (HMM). In Ref. [46], the coordinates of human skeleton models generate 
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algorithm and, following a representation through an improved Fourier temporal pyramid, the 
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joints are translated into a spherical coordinate system and, after a reprojection of the HOJ3D 
vectors using linear discriminant analysis (LDA), a number of key postures are extracted from 
training sequences. The temporal evolution of postures is modeled through HMM.

Research on HAR using RGB-D sensors has been fostered by the release of many datasets. 
An extensive review of the datasets collected for different purposes, going for example from 
camera tracking and scene reconstruction to pose estimation or semantic reasoning, can be 
found in Ref. [49]. Another review, which is focused on RGB-D datasets for HAR, has been 
published in Ref. [50]. In the latter work, the datasets have been organized considering the 
methods applied for data collection, which can include a single view setup, with one captur-
ing device, a multiview setup with more devices, or a multiperson setup where some interac-
tions among different people are included in the set of classes.

A list of the most used datasets for HAR is provided in Table 1, where different features of each 
dataset are highlighted. Many datasets provide the most important data streams available with 
a RGB-D device, i.e., the color and depth frames along with skeleton coordinates. They are usu-
ally featured by a number of actions between 10 and 20, performed by different subjects (around 
10), and repeated 2 or 3 times. Considering the set of actions included in the datasets, they can 
be used for two main applications that are the detection of daily activities (DA) and the human 

Name Data Application Actions Actors Times Samples Citations Year

MSR 
DailyActivity3D [51]

C, D, S DA 16 10 2 320 614 2012

MSR Action3D [38] D, S HCI 20 10 2 or 3 567 603 2010

UTKinect Action [48] C, D, S HCI/DA 10 10 2 200 444 2012

MSR ActionPairs [42] D DA 6 10 3 180 338 2013

CAD-60 [52] C, D, S DA 12 2 + 2 – 60 281 2012

CAD-120 [53] C, D, S DA 10 2 + 2 – 120 219 2013

RGBD-HuDaAct [54] C, D DA 12 30 2 or 4 1189 211 2011

MSRC-12 
KinectGesture [55]

S HCI 12 30 – 594 197 2012

MSR Gesture3D [56] D HCI 12 10 2 or 3 336 159 2012

Berkeley MHAD [57] C, D, M, Au, Ac HCI 11 7 + 5 5 ~660 110 2013

G3D [58] C, D, S HCI 20 10 3 – 61 2012

Florence 3D Action 
[59]

C, S DA 9 10 2 or 3 215 54 2012

ACT4 Dataset [60] C, D DA 14 24 >1 6844 53 2012

LIRIS Human 
Activities [61]

C, D DA 10 21 – – 49 2012

3D Online Action 
[62]

C, D, S DA 7 24 – – 41 2014

UPCV Action [46] S DA 10 20 – – 39 2014

WorkoutSu-10 
Gesture [63]

D, S DA 10 15 10 1500 32 2013
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computer interaction (HCI). Datasets belonging to the first group usually include actions like 
walking, eating, drinking, and sometimes they are recorded in a real scenario, which introduces 
partial occlusions and a complex background [51, 52]. Datasets focused on HCI applications 
may contain actions like draw x, draw circle, side kick, and they are usually captured with a sim-
pler background, even if they can be challenging, due to the similarity of many gestures and to 
the differences in speeds and way to perform the movement, considering different actors.

The oldest and the newest datasets included in the list are deeply discussed because of 
their characteristics. MSR Action3D [38] was the first relevant dataset for HAR, it has been 
released in 2010 and it includes 20 actions that are suitable for HCI. The following activi-
ties are included in the dataset: high arm wave, horizontal arm wave, hammer, hand catch, for-
ward punch, high throw, draw x, draw tick, draw circle, hand clap, two hand wave, side boxing, 
bend, forward kick, side kick, jogging, tennis swing, tennis serve, golf swing, pick-up, and throw. As 
described in Ref. [38], the dataset has been often evaluated considering three subsets of 8 
actions each, namely AS1, AS2, and AS3. As can be noticed from Table 2, AS1 and AS2 are 
built by grouping actions with similar movements, and AS3 includes actions that require 
more complex movements. From Figure 1 it is possible to observe sequences of frames con-
stituting two similar actions in AS1: hammer and forward punch. Sequences of frames from 

Name Data Application Actions Actors Times Samples Citations Year

KARD [45] C, D, S HCI/DA 18 10 3 540 23 2014

UTD-MHAD [64] C, D, S HCI 27 8 4 861 22 2015

IAS-Lab Action [65] C, D, S DA 15 12 3 540 21 2013

NTU RGB+D [66] C, D, S, IR HCI/DA 60 40 – 56880 14 2016

Note: In the column related to data, each label represents the availability of a different type of data: RGB (C), Depth (D), 
Skeleton (S), Acceleration (Ac), Audio (Au), Mocap (M). The datasets can be oriented to two main applications: Daily 
Activities (DA) and Human Computer Interaction (HCI).

Table 1. List of the most important RGB-D datasets for Human Action Recognition, listed considering the number of 
citations according to Google Scholar on January 3rd 2017.

AS1 AS2 AS3

(a02) Horizontal arm wave (a01) High arm wave (a06) High throw

(a03) Hammer (a04) Hand catch (a14) Forward kick

(a05) Forward punch (a07) Draw x (a15) Side kick

(a06) High throw (a08) Draw tick (a16) Jogging

(a10) Hand clap (a09) Draw circle (a17) Tennis swing

(a13) Bend (a11) Two-hand wave (a18) Tennis serve

(a18) Tennis serve (a12) Side boxing (a19) Golf swing

(a20) Pick-up and throw (a14) Forward kick (a20) Pick-up and throw

Table 2. Actions constituting the three subsets of MSR Action3D: AS1, AS2, AS3.
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Draw x and Draw tick, two similar actions in AS2, are shown in Figure 2. The dataset has 
been collected using a structured light depth sensor and the provided data are represented 
by depth frames, at a resolution of 320 × 240, and skeleton coordinates. The entire dataset 
includes 567 sequences but, considering that 10 of them are affected by wrong or miss-
ing skeletons, only 557 sequences of skeleton joint coordinates are available. The evalua-
tion method usually adopted on this dataset is called cross-subject test [38] and takes into 
account samples from actors 1-3-5-7-9 for training, and the remaining data for testing. NTU 
RGB+D [66] is one of the most recent datasets for HAR and, to the authors’ best knowledge, 
the largest. In fact, it includes 60 different actions that can be grouped in 40 daily actions 
(reading, writing, wear jacket, take off jacket), 9 health-related actions (falling down, touch head, 
touch neck), and 11 interactions (walking toward each other, walking apart from each other, hand-
shaking). A number of 40 actors have been recruited to perform the actions multiple times, 
involving also 17 different setups of the Kinect v2 sensors adopted for data collection. Each 

Figure 1. Sequences of frames constituting similar actions in AS1 subset of MSR Action3D: hammer (top) and forward 
punch (bottom).

Figure 2. Sequences of frames constituting similar actions in AS2 subset of MSR Action3D: draw x (top) and draw tick 
(bottom).
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action has been captured from three sensors simultaneously, having three different views of 
the same scene (0°, +45°, −45° directions). All the data provided by Kinect v2 (RGB, depth, 
infrared frames and skeleton coordinates) are collected and included in the released dataset. 
Two evaluation methods have been proposed in Ref. [66], aiming to test the goodness of 
HAR methods with unseen subjects and new views. In the cross-subject test, a specific list 
of subjects is used for training and the remaining represent the test data, while in the cross-
view test the sequences from devices 2 and 3 are used for training and the ones from camera 
1 are adopted for testing.

3. Human action recognition based on temporal pyramid of key poses

A HAR method that allows to achieve state-of-the-art results has been proposed in Ref. [67] 
and can be defined as temporal pyramid of key poses. It exploits the bag of key poses model 
[68] and it adopts a temporal pyramid to model the temporal structure of the key poses con-
stituting an action sequence.

3.1. Algorithm overview

The algorithm based on temporal pyramid of key poses can be represented by the scheme 
shown in Figure 3. It performs four main steps that include the extraction of posture features, 
the adoption of the bag of key poses model, and the representation of the action sequence 
through a temporal pyramid of key poses; finally, the classification by a multiclass SVM 
takes place.

The algorithm takes as an input the coordinates of skeleton joints, that can be seen as a 
3-dimensional vector Ji for the i-th joint of a body with P joints. The aim of the first step is to 
obtain view- and position-invariant features from the raw coordinates. The feature computa-
tion scheme derives from the one proposed in Ref. [69], but here a virtual joint called center-
of-mass is introduced. Considering all the skeleton joints stored in the vector Pn related to the 
n-th frame of a sequence, the center-of-mass Jcm is calculated by averaging the coordinates 
of all the P joints. In order to normalize coordinates with respect to the size of the body, the 
normalization factor s is computed by averaging the L-2 norm between the skeleton joints and 
Jcm, as follows:

  s =   1 __ P     ∑ i=0  P−1     ‖   J  i   −  J  cm   ‖     2    (1)

The normalization with respect to the position of the skeleton is implemented considering the 
displacement between each joint position and the center-of-mass, normalized by the factor s. 
Each joint is thus represented by a 3 dimensional vector di:

   d  i   =   
 J  i   −  J  cm  

 _____ s    (2)

Finally, as can be noticed in the first part of Figure 3, each vector pn corresponding to the 
coordinates of the skeleton in the n-th frame, is translated into a vector fn which includes the 
features related to that skeleton.

Human Action Recognition with RGB-D Sensors
http://dx.doi.org/10.5772/68121

105



Once the features related to the skeleton have been obtained, the bag of key poses method 
is adopted to extract the most significant postures and the action is then represented as a 
sequence of key poses. In more detail, the clustering algorithm k-means is applied consider-
ing separately the training sequences of each class, setting a different number of key poses for 
each action of the dataset, i.e., K1 for class 1, K2 for class 2, up to KM if the dataset is constituted 
by M classes. Following the clustering process performed separately for each class, the key 
poses, which are the centres of the clusters, have to be merged to obtain a unique codebook. 
Finally, each posture feature vector is associated to the closest key pose in terms of Euclidean 
distance, and a sequence of key poses S = [k1, k2, k3, …, kN] represents an action of N frames.

The temporal structure of an action can be represented with the adoption of a temporal pyramid. 
The idea is to provide different representations of the action: the most general one is provided at 
the first level of the pyramid, whereas the most detailed one is given at the last level. For each level, 
the computation of the histograms of key poses is implemented, having at the end of the process 
a histogram for each segment at each level. Starting from the consideration of the entire sequence 
at the first level of the pyramid, two segments are considered in the second level and they are split 
again in two at the third level, giving a number of seven histograms when three levels are consid-
ered. These histograms H represent the input data to the final step, which is the classifier.

The classification step aims to associate the data extracted from an unknown data sequence to 
the correct action label, knowing the training set. In particular, the classifier has to be trained 
with a set of histograms H for which the action labels L are known. Then, in the testing phase, 
an unknown H has to be associated to the corresponding L. A multiclass SVM has been cho-
sen for classification purpose. The approach considered for the implementation of the mul-
ticlass scheme is defined as “one-versus-one,” where a set of M(M – 1)/2 binary SVMs are 
required for a dataset of M classes, each of which has to distinguish two classes. The output 
class is elected with a voting strategy considering the result of each binary SVM.

3.2. Experimental results and discussion

This method has been evaluated on one of the most used RGB-D dataset for HAR: MSR Action3D 
[38]. The test scheme adopted is the cross-subject test, described in the previous section.

Figure 3. Global scheme of the algorithm based on temporal pyramid of key poses. Step 1 extracts the feature vectors 
related to posture while step 2 is represented by the bag of key poses model. The third phase exploits the temporal 
pyramid to model the temporal structure of the sequences and the last step is the classification phase.
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The algorithm requires to set different parameters in order to be executed, which are the num-
ber of key poses per class (clusters), the set of skeleton joints (features) and the set of training 
sequences (instances). These parameters can be chosen randomly or using some optimization 
strategies in order to maximize the performance. In this chapter, results are shown using both 
the options, adopting the optimization process, based on evolutionary [70] and coevolutionary 
[71] algorithms. These optimization strategies are applied as wrapper methods, associating the 
fitness of each individual in the population to the accuracy of the action recognition algorithm.

Since the idea is to optimize three parameters, the structure of each individual is constituted by 
three parts [72]. The first one is related to features, and it is a binary vector of length P, which is 
the number of joints in a skeleton. A bin is featured by a 1 value if the associated joint has to be 
considered by the action recognition algorithm; otherwise it is featured by a 0 value. The same 
approach is used for the part related to training instances, which is therefore represented by a 
binary vector of length I. Regarding the optimization of the number of key poses, it is necessary 
to adopt a vector of integer values with a length of M, where each bin is associated to a class of 
the dataset, and contains the number of its clusters. Crossover and mutation operators have to be 
used to evolve the population’s individuals, and a standard 1-point crossover operator is applied 
for the subindividuals related to instances and clusters. A specific crossover operator which 
takes into account the structure of the skeleton joints is applied to the features part. Finally, three 
different mutation probabilities are considered, for the three parts of the individual.

In addition to the evolutionary algorithm, a cooperative coevolutionary optimization method can 
be also implemented. The main difference between evolutionary and coevolutionary approaches 
is in the organization of the population of individuals. In particular, in the latter case, each sub-
individual is part of a different population, thus generating a set of three populations. The selec-
tion of one element from each population is necessary to execute the action recognition algorithm 
and to extract the fitness value, which is associated to each subindividual. Crossover and muta-
tion operators can be applied according to the same considerations made for the evolutionary 
computation. In order to improve the performance of the optimization process, different priori-
ties are given to the individuals of the populations. In particular, in the populations related to 
features and instances, the individuals with a lower number of ones are preferred, while in the 
populations related to clusters, the individuals featuring a lower number of key poses are favored.

The three parameter selection methods can be described as follows:

 - Random selection: the number of clusters required by the bag of key poses method is selected 
randomly within the interval [4, 26] for the subsets AS1 and AS2 and the interval [44, 76] for 
AS3. All the skeleton joints and training instances are included in the processing.

 - Evolutionary optimization: the evolutionary algorithm selects the best combination of skel-
eton joints and clusters, considering all the training sequences. The same intervals adopted 
in the random selection are used for the optimization of the number of key poses.

 - Coevolutionary optimization: the optimization method selects all the parameters required 
by the HAR algorithm: features, clusters, and instances. In this case, the intervals for clusters 
optimization are [4, 16] for AS1 and AS2, and [4, 64] for AS3.
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The results are summarized in Table 3, where it can be noticed that, for all the parameters 
selection methods, the best results are obtained for AS3, AS1, and finally AS2. In fact, as 
already stated, subsets AS1 and AS2 group have similar gestures (Figures 1 and 2). More in 
detail, from Figure 2 it is quite evident that Draw x and Draw tick involve the same poses, and 
the main cue to differentiate them is their order.

An average accuracy of 92.45% can be achieved considering the random selection of num-
ber of key poses. The subset AS2 is the most critical one, with an accuracy of 86.61% due 
to the aforementioned reasons. Considering evolutionary optimization, where the evaluated 
parameters are the number of key poses and the set of skeleton joints, there is a noticeable 
improvement in AS2 and AS3, and the HAR algorithm shows an average accuracy of 95.14%. 
Similar average results are obtained with the adoption of the coevolutionary optimization 
method, including also the set of training instances in the optimization process. In particular, 
there is a further improvement in AS2, which shows an accuracy of 91.96%, while a subopti-
mal result (98.2%) is achieved in AS3.

Table 4 aims to compare the results obtained by different HAR methods on MSR Action3D 
considering the cross-subject evaluation protocol and averaging the results on AS1, AS2, and 

AS1 AS2 AS3 Avg

Random selection 95.24 86.61 95.5 92.45

Evolutionary 
optimization

95.24 90.18 100 95.14

Coevolutionary 
optimization

95.24 91.96 98.2 95.13

Table 3. Results in terms of accuracy (%) obtained on MSR Action3D by the method based on temporal pyramid of key 
poses.

AS1 AS2 AS3 Avg

Li et al. [38] 72.9 71.9 79.2 74.67

Chaaraoui et al. [68] 92.38 86.61 96.4 91.8

Lo Presti et al. [73] 90.29 95.15 93.29 92.91

Tao and Vidal [74] 89.81 93.57 97.03 93.5

Du et al. [75] 93.3 94.64 95.5 94.49

Temporal pyramid of 
key poses

95.24 90.18 100 95.4

Lillo et al. [76] 94.3 92.9 99.1 95.4

Xu et al. [77] 99.1 92.9 96.4 96.1

Liang et al. [78] 98.1 92.9 99.1 96.7

Shahroudy et al. [79] – – – 98.2

Table 4. Results in terms of accuracy (%) obtained by main HAR algorithms evaluated on cross-subject tests.
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AS3 [38]. Only the works in which the use of cross-subject test with actors 1-3-5-7-9 for train-
ing and the rest for testing is clearly stated are included in the table.

Some recently published works outperform the performance achieved by the method based 
on temporal pyramid of key poses. Lillo et al. [76] proposed an activity recognition method 
based on three levels of abstraction. The first level is dedicated to learning the most represen-
tative primitives related to body motion. The poses are combined to compose atomic actions 
at the mid-level, and more atomic actions are combined to create more complex activities at 
the top-level. As input data, the aforementioned proposal exploits angles and planes from 
segments extracted from joint coordinates, adding also histograms of optical flow calculated 
from RGB patches centered at the joint locations. Xu et al. [77] proposed the adoption of depth 
motion map (DMM), which is computed from the differences among consecutive maps, to 
describe the dynamic feature of an action. In addition to this method, the depth static model 
(DSM) can describe the static feature of an action. The so-called TPDM-SPHOG descriptor 
encodes DMMs and DSM represented by a temporal pyramid and histogram of oriented gra-
dient (HOG) extracted using a spatial pyramid. DMM and multiscale HOG descriptors are 
also exploited by Liang et al. [78], and they are combined with local space-time auto-corre-
lation of gradients (STACOG), which compensates the loss of temporal information. l2-regu-
larized collaborative representation classification (CRC) is adopted to take as inputs for the 
proposed descriptors and classify the actions. In Ref. [79], a joint sparse regression learning 
method, which models each action as a combination of multimodal features from body parts, 
is proposed. In fact, each skeleton is separated into a number of parts and different features, 
related to the movement and local depth information, are extracted from each part. A small 
number of active parts for each action class are selected through group sparsity regulariza-
tion. A hierarchical mixed norm, which includes three levels of regularization over learning 
weights, is integrated into the learning and selection framework.

The comparison of the algorithm based on temporal pyramid of key poses to other approaches 
achieving higher accuracies on MSR Action3D allows to conclude that all the considered works 
exploit not only skeleton data but also RGB or depth information. One approach is based on 
the extraction of the most important postures considering skeleton joints and RGB data [76], 
DMM and HOG descriptors calculated from depth data are exploited by more papers [77, 78], 
and a heterogeneous set of depth and skeleton-based features has been considered in Ref. [79].

4. Conclusion

Human action recognition performed exploiting data collected by RGB-D devices has been 
an active research field and many researchers are developing algorithms exploiting the prop-
erties and characteristics of depth sensors. The main advantages in using this technology 
include unobtrusiveness and privacy preservation, differently from video-based solutions; 
additionally, it does not extract movements from interaction with objects, as environmental 
sensors do, and it does not require the subject to wear any device, differently from systems 
based on wearable technologies.
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Among the HAR algorithms based on RGB-D data, the chapter provided a detailed discus-
sion of a method exploiting a temporal pyramid of key poses that has been able to achieve 
state-of-the-art results on the well-known MSR Action3D dataset.
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Abstract

In this chapter, the problem of gesture recognition in the context of human computer
interaction is considered. Several classifiers based on different approaches such as neu-
ral network (NN), support vector machine (SVM), hidden Markov model (HMM), deep
neural network (DNN), and dynamic time warping (DTW) are used to build the gesture
models. The performance of each methodology is evaluated considering different users
performing the gestures. This performance analysis is required as the users perform
gestures in a personalized way and with different velocity. So the problems concerning
the different lengths of the gesture in terms of number of frames, the variability in its
representation, and the generalization ability of the classifiers have been analyzed.

Keywords: gesture recognition, feature extraction, model learning, gesture segmentation,
human-robot interface, Kinect camera

1. Introduction

In the last decade, gesture recognition has been attracting a lot of attention as a natural way to
interact with computer and/or robots through intentional movements of hands, arms, face, or
body. A number of approaches have been proposed giving particular emphasis on hand
gestures and facial expressions by the analysis of images acquired by conventional RGB
cameras [1, 2].

The recent introduction of low cost depth sensors, such as the Kinect camera, allowed the
spreading of new gesture recognition approaches and the possibility of developing personal-
ized human computer interfaces [3, 4]. The Kinect camera provides RGB images together with
depth information, so the 3D structure of the scene is immediately available. This allows us to

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



easily manage many tasks such as people segmentation and tracking, body part recognition,
motion estimation, and so on. Recently human activity recognition and motion analysis from
3D data have been reviewed in a number of interesting works [5–8].

At present, Gesture Recognition through visual and depth information is one of the main active
research topics in the computer vision community. The launch on the market of the popular
Kinect, by the Microsoft Company, influenced video-based recognition tasks such as object
detection and classification and in particular allowed the increment of the research interest in
gesture/activity recognition. The Kinect provides synchronized depth and color (RGB) images
where each pixel corresponds to an estimate of the distance between the sensor and the closest
object in the scene together with the RGB values at each pixel location. Together with the sensor
some software libraries are also available that permit to detect and track one or more people in
the scene and to extract the corresponding human skeleton in real time. The availability of
information about joint coordinates and orientation has promoted a great impulse to research
on gesture and activity recognition [9–14].

Many papers, presented in literature in the last years, use normalized coordinates of proper
subset of skeleton joints which are able to characterize the movements of the body parts
involved in the gestures [15, 16]. Angular information between joint vectors has been used as
features to eliminate the need of normalization in Ref. [17].

Different methods have been used to generate gesture models. Hidden Markov Models (HMM)
are a common choice for gesture recognition as they are able to model sequential data over time
[18, 19]. Usually HMMs require sequences of discrete symbols, so different quantization schemes
are first used to quantize the features which characterize the gestures. Support vector machines
(SVM) reduce the classification problem into multiple binary classifications either by applying a
one-versus-all (OVA-SVM) strategy (with a total of N classifiers for N classes) [20, 21] or a one-
versus-one (OVO-SVM) strategy (with a total of N · ðN � 1Þ=2 classifiers for N classes) [22, 23].
Artificial neural networks (ANNs) represent another alternative methodology to solve classifica-
tion problems in the context of gesture recognition [24]. The choice of the network topology, the
number of nodes/layers and the node activation functions depends on the problem complexity
and can be fixed by using iterative processes which run until the optimal parameters are found
[25].

Distance-based approaches are also used in gesture recognition problems. They use distance
metrics for measuring the similarity between samples and gesture models. In order to apply
any metric for making comparisons, these methods have to manage the problem related to the
different length of feature sequences. Several solutions have been proposed in literature:
Dynamic Time Warping technique (DTW) [26] is the most commonly used. It calculates an
optimal match between two sequences that are nonlinearly aligned. A frame-filling algorithm
is proposed in Ref. [27] to first align gesture data, then an eigenspace-based method (called
Eigen3Dgesture) is applied for recognizing human gestures.

In the last years, the growing interest in automatically learning the specific representation
needed for recognition or classification has fostered the recent emergence of deep learning
architectures [28]. Rather than using handcrafted features as in conventional machine learning
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techniques, deep neural architectures are applied to learn representations of data at multiple
levels of abstractions in order to reduce the dimensionality of feature vectors and to extract
relevant features at higher level. Recently, several approaches have been proposed such as in
Refs. [29, 30]. In Ref. [29], a method for gesture detection and localization based on multiscale
and multimodel deep learning is presented. Both temporal and spatial scales are managed by
employing a multimodel convolutional neural network. Similarly in Ref. [30], a multimodel
gesture segmentation and recognition method, called deep dynamic neural networks, is
presented. A semisupervised hierarchical dynamic framework based on a Hidden Markov
Model is proposed for simultaneous gesture segmentation and recognition.

In this chapter, we compare different methodologies to approach the problem of Gesture
Recognition in order to develop a natural human-robot interface with good generalization
ability. Ten gestures performed by one user in front of a Kinect camera are used to train several
classifiers based on different approaches such as dynamic time warping (DTW), neural net-
work (NN), support vector machine (SVM), hidden Markov model (HMM), and deep neural
network (DNN).

The performance of each methodology is evaluated considering several tests carried out on
depth video streams of gestures performed by different users (diverse from the one used for
the training phase). This performance analysis is required as users perform gestures in a
personalized way and with different velocity. Even the same user executes gestures differently
in separate video acquisition sessions. Furthermore, contrarily to the case of static gesture
recognition, in the case of depth videos captured live the problem of gesture segmentation
must be addressed. During the test phase, we apply a sliding window approach to extract
sequences of frames to be processed and recognized as gestures. Notice that the training set
contains gestures which are accompanied by the relative ground truth labels and are well
defined by their start and end points. Testing live video streams, instead, involves several
challenging problems such as the identification of the starting/ending frames of a gesture, the
different length related to the different types of gestures and finally the different speeds of
execution. The analysis of the performance of the different methodologies allows us to select,
among the set of available gestures, the ones which are better recognized together with the
better classifier, in order to construct a robust human-robot interface.

In this chapter, we consider all the mentioned challenging problems. In particular, the funda-
mental steps that characterize an automatic gesture recognition system will be analyzed: (1)
feature extraction that involves the definition of the features that better and distinctively
characterize a specific movement or posture; (2) gesture recognition that is seen as a classifica-
tion problem in which examples of gestures are used into supervised and semisupervised
learning schemes to model the gestures; (3) spatiotemporal segmentation that is necessary for
determining, in a video sequence, where the dynamic gestures are located, i.e., when they start
and end.

The rest of the chapter is organized as follows. The overall description of the problem and the
definition of the gestures are given in Section 2. The definition of the features is provided in
Section 3. The methodologies selected for the gesture model generation are described in Section
4. Section 6 presents the experiments carried out both in the learning and prediction stage.
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Furthermore, details on gesture segmentation will be given in the same section. Finally, Section 7
presents the final conclusions and delineates some future works.

2. Problem definition

In this chapter, we consider the problems related to the development of a gesture recog-
nition interface giving a panoramic view and comparing the most commonly used meth-
odologies of machine learning theory. At this aim, the Kinect camera is used to record
video sequences of different users while they perform predefined gestures in front of it.
The OpenNI Library is used to detect and segment the user in the scene in order to obtain
the information of the joints of the user’s body. Ten different gestures have been defined.
They are pictured in Figure 1. Throughout the chapter the gestures will be referred by
using the following symbols G1, G2, G3, … GN , where N ¼ 10. Some gestures are quite
similar in terms of variations of joint orientations; the only difference is the plane in which
the bones of the arm rotate. This is the case, for example, of gestures G9 and G4 or G1, and
G8. Furthermore, some gestures involve movements in a plane parallel to the camera (G1,
G3, G4, G7) while others involve a forward motion in a plane perpendicular to the camera
(G2, G5, G6, G8, G9, G10). In the last case, instability in detecting some joints can occur due
to autoocclusions.

The proposed approaches for gesture recognition involve three main stages: a feature selection
stage, a learning stage and a prediction stage. Firstly the human skeleton information, cap-
tured and returned by the depth camera, is converted into representative and discriminant

Figure 1. Ten different gestures are shown. Gestures G1, G3, G4, and G7 involve movements in a plane parallel to the
camera. Gestures G2, G5, G6, G8, G9, and G10 involve a forward motion in a plane perpendicular to the camera.
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features. These features are used during the learning stage to learn the gesture model. In this
chapter, different methodologies are applied and compared in order to construct the gesture
model. Some methodologies are based on a supervised or semisupervised process such as
neural network (NN), support vector machine (SVM), hidden Markov model (HMM), and
deep neural network (DNN). Dynamic time warping (DTW) is a distance-based approach,
instead. Finally, during the prediction stage new video sequences of gestures are tested by
using the learned models. The following sections will describe in detail each stage previously
introduced.

3. Feature selection

The complexity of the gestures strictly affects the feature selection and the choice of the
methodology for the construction of the gesture model. If gestures are distinct enough, the
recognition can be easy and reliable. So, the coordinates of joints, which are immediately
available by the Kinect software platforms, could be sufficient. In this case a preliminary
normalization is required in order to guarantee invariance with respect to the height of the
users, distance and orientation with respect to the camera. On the other hand, the angular
information of joint vectors has the great advantage of maximizing the invariance of the
skeletal representation with respect to the camera position. In Ref. [31], the angles between
the vectors generated by the elbow-wrist joints, and the shoulder-elbow joints, are used to
generate the models of the gestures. The experimental results, however, prove that these
features are not discriminant enough to distinguish all the gestures.

In our approach, we use more complex features that represent orientations and rotations of a
rigid body in three dimensions. The quaternions of two joints (shoulder and elbow) of the left
arm are used. A quaternion comprises a scalar component and a vector component in complex
space and is generally represented in the following form:

q ¼ aþ biþ cjþ dk ð1Þ

where the coefficients a, b, c, d are real numbers and i, j, k are the fundamental quaternion
units. The quaternions are extremely efficient to represent three-dimensional rotations as
they combine the rotation angles together with the rotation axes. In this work, the quater-
nions of the shoulder and elbow joints are used to define a feature vector Vi for each
frame i:

Vi ¼ ½asi , bsi , csi , dsi , aei , bei , cei , dei � ð2Þ

where the index s stands for shoulder and e stands for elbow. The sequence of vectors of a
whole gesture execution is defined by the following vector:

V ¼ ½V1, V2,…, Vn� ð3Þ

Where n is the number of frames during which the gesture is entirely performed.
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4. Learning stage: gesture model construction

The learning stage regards the construction of the gesture model. As introduced in Section 1,
machine learning algorithms are largely and successfully applied to gesture recognition. In this
context, gesture recognition is considered as a classification problem. So, under this perspective,
a number of gesture templates are collected, opportunely labeled with the class labels (supervised
learning) and used to train a learning scheme in order to learn a classification model. The
constructed model is afterwards used to predict the class label of unknown templates of gestures.

In this chapter, different learning methodologies are applied to learn the gesture model. For
each of them, the best parameter configuration and the best architecture topology which
assure the convergence of each methodology are selected. Artificial neural networks (ANNs),
support vector machines (SVMs), hidden Markov models (HMMs), and deep neural networks
(DNNs) are the machine learning algorithms compared in this chapter. Furthermore a dis-
tance-based method, the dynamic time warping (DTW), is also applied and compared with the
aforementioned algorithms. The following subsections will give a brief introduction of each
algorithm and some details on how they are applied to solve the proposed gesture recognition
problem.

4.1. Neural network

A neural network is a computational system that simulates the way biological neural systems
process information [32]. It consists of a large number of highly interconnected processing
units (neurons) typically distributed on multiple layers. The learning process involves succes-
sive adjustments of connection weights, through an iterative training procedure, until no
further improvement occurs or until the error drops below some predefined reasonable thresh-
old. Training is accomplished by presenting couples of input/output examples to the network
(supervised learning).

In this work, 10 different neural networks have been used to learn the models of the defined
gestures. The architecture of each NN consists of an input layer, one hidden layer and an
output layer with a single neuron. The back-propagation algorithm is applied during the
learning process. Each training set contains the templates of one gesture as positive examples
and those of all the others as negative ones. As each gesture execution lasts a different number
of frames, a preliminary normalization of the feature vectors has been carried out by using a
linear interpolation. Linear interpolation to resample the number of features is a good com-
promise between computational burden and quality of results. The length of a feature vector
V, which describes one single gesture, has been fixed to n ¼ 60. This length has been fixed
considering the average time of execution of each type of gesture which is about 2 seconds and
the sample rate of the Kinect camera which is 30 Hz.

4.2. Support vector machine

Support vector machine is a supervised learning algorithm widely used in classification prob-
lems [33]. The peculiarity of SVM is that of finding the optimal separating hyperplane between
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the negative and positive examples of the training set. The optimal hyperplane is defined as
the maximum margin hyperplane, i.e., the one for which the distance between the hyperplane
(decision surface) and the closest data points is maximum. It can be shown that the optimal
hyperplane is fully specified by a subset of data called support vectors which lie nearest to it,
exactly on the margin.

In this work, SVMs have been applied considering the one-versus-one strategy. This strategy
builds a two-class classifier for each pair of gesture classes. In our case, the total number of
SVMs is defined by:

M ¼ NðN � 1Þ
2

ð4Þ

where N is the number of gesture classes. The training set of each SVM contains the examples
of the two gesture classes for which the current classifier is built. As in the case of NNs, the
feature vectors are preliminary normalized to the same length n.

4.3. Hidden Markov model

Hidden Markov model is a statistical model which assumes that the system to be modeled is a
Markov process. Even if the theory of HMMs dates back to the late 1960s, their widespread
application occurred only within the past several years [34, 35]. Their successful application to
speech recognition problems motivated their diffusion in gesture recognition as well. An
HMM consists of a set of unobserved (hidden) states, a state transition probability matrix
defining the transition probabilities among states and an observation or emission probability
matrix which defines the output model. The goal is to learn the best set of state transition and
emission probabilities, given a set of observations. These probabilities completely define the
model.

In this work, one discrete hidden Markov model is learnt for each gesture class. The feature
vectors of each training set, which represent the observations, are firstly normalized and then
discretized by applying a K-means algorithm. A fully connected HMM topology and the
Baum-Welch algorithm have been applied to learn the optimal transition and emission proba-
bilities.

4.4. Deep neural network

Deep learning is a relatively new branch of machine learning research [28]. Its objective is to
learn features automatically at multiple levels of abstraction exploiting an unsupervised learn-
ing algorithm at each layer [36]. At each level a new data representation is learnt and used as
input to the successive level. Once a good representation of data has been found, a supervised
stage is performed to train the top level. A final supervised fine-tuning stage of the entire
architecture completes the training phase and improves the results. The number of levels
defines the deepness of the architecture.

In this work, a deep neural network with 10 output nodes (one for each class of gesture) is
constructed. It comprises two levels of unsupervised autoencoders and a supervised top level.
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The autoencoders are used to learn a lower dimensional representation of the feature vectors at a
higher level of abstraction. An autoencoder is a neural network which is trained to reconstruct its
own input. It is comprised of an encoder, that maps the input to the new representation of data,
and a decoder that reconstruct the original input. We use two autoencoders with one hidden
layer. The number of hidden neurons represents the dimension of the new data representation.
The feature vectors of training set are firstly normalized, as described in Section 4.1, and fed into
the first autoencoder. So the features generated by the first autoencoder are used as input to the
second one. The size of the hidden layer for both the first and second autoencoder has been fixed
to half the size of the input vector. The features learnt by the last autoencoder are given as input
to the supervised top level implemented by using a softmax function trained with a scaled
conjugate gradient algorithm [37]. Finally the different levels are stacked to form the deep
network and its parameters are fine-tuned by performing backpropagation using the training
data in a supervised fashion.

4.5. Dynamic time warping

DTWis a different techniquewith respect to the previously described ones as it is a distance-based
algorithm. Its peculiarity is to find the ideal alignment (warping) of two time-dependent sequences
considering their synchronization. For each pair of elements of the sequences, a cost matrix, also
referred as local distancematrix, is computed by using a distancemeasure. Then the goal is to find
the minimal cost path through this matrix. This optimal path defines the ideal alignment of the
two sequences [38]. DTW is successfully applied to compare sequences that are altered by noise or
by speed variations. Originally, the main application field of DTW was automatic speech
processing [39], where variation in speed appears concretely. Successively DTW found its appli-
cation in movement recognition, where variation in speed is of major importance, too.

In this work, DTW is applied to compare the feature vectors in order to measure how different
they are for solving the classification problem. Differently from the previously described meth-
odologies, the preliminary normalization of feature vectors is not required due to the warping
peculiarity of DTWalgorithm. For each class of gesture, one target feature vector is selected. This
is accomplished by applying DTW to the set of training samples inside each gesture class. The
one with the minimum distance from all the other samples of the same class is chosen as target
gesture. Each target gesture will be used in the successive prediction stage for classification.

5. Prediction stage: gesture model testing

In prediction stage, also referred as testing stage, video sequences with unknown gestures are
classified by using the learnt gesture models. This stage allows us to compare the recognition
performance of the methodologies introduced in the learning stage. These methodologies have
been applied by using different strategies as described in the following.

In the case of NN, 10 classifiers have been trained, one for each class. So the feature vector of a
new gesture sample is inputted into all the classifiers and is assigned to the class with the
maximum output value.

Motion Tracking and Gesture Recognition126



The autoencoders are used to learn a lower dimensional representation of the feature vectors at a
higher level of abstraction. An autoencoder is a neural network which is trained to reconstruct its
own input. It is comprised of an encoder, that maps the input to the new representation of data,
and a decoder that reconstruct the original input. We use two autoencoders with one hidden
layer. The number of hidden neurons represents the dimension of the new data representation.
The feature vectors of training set are firstly normalized, as described in Section 4.1, and fed into
the first autoencoder. So the features generated by the first autoencoder are used as input to the
second one. The size of the hidden layer for both the first and second autoencoder has been fixed
to half the size of the input vector. The features learnt by the last autoencoder are given as input
to the supervised top level implemented by using a softmax function trained with a scaled
conjugate gradient algorithm [37]. Finally the different levels are stacked to form the deep
network and its parameters are fine-tuned by performing backpropagation using the training
data in a supervised fashion.

4.5. Dynamic time warping

DTWis a different techniquewith respect to the previously described ones as it is a distance-based
algorithm. Its peculiarity is to find the ideal alignment (warping) of two time-dependent sequences
considering their synchronization. For each pair of elements of the sequences, a cost matrix, also
referred as local distancematrix, is computed by using a distancemeasure. Then the goal is to find
the minimal cost path through this matrix. This optimal path defines the ideal alignment of the
two sequences [38]. DTW is successfully applied to compare sequences that are altered by noise or
by speed variations. Originally, the main application field of DTW was automatic speech
processing [39], where variation in speed appears concretely. Successively DTW found its appli-
cation in movement recognition, where variation in speed is of major importance, too.

In this work, DTW is applied to compare the feature vectors in order to measure how different
they are for solving the classification problem. Differently from the previously described meth-
odologies, the preliminary normalization of feature vectors is not required due to the warping
peculiarity of DTWalgorithm. For each class of gesture, one target feature vector is selected. This
is accomplished by applying DTW to the set of training samples inside each gesture class. The
one with the minimum distance from all the other samples of the same class is chosen as target
gesture. Each target gesture will be used in the successive prediction stage for classification.

5. Prediction stage: gesture model testing

In prediction stage, also referred as testing stage, video sequences with unknown gestures are
classified by using the learnt gesture models. This stage allows us to compare the recognition
performance of the methodologies introduced in the learning stage. These methodologies have
been applied by using different strategies as described in the following.

In the case of NN, 10 classifiers have been trained, one for each class. So the feature vector of a
new gesture sample is inputted into all the classifiers and is assigned to the class with the
maximum output value.

Motion Tracking and Gesture Recognition126

In the case of SVM, instead, a max-win voting strategy has been applied. The trained SVMs are 45
two-class classifiers.When each classifier receives as input a gesture sample, classifies it into one of
the two classes. Therefore, the winning class gets one vote. When all the 45 votes have been
assigned, the instance of the gesture is classified into the classwith themaximumnumber of votes.

In the case of HMM, 10 HMMs have been learnt during the learning stage, one for each class of
gesture. As introduced in Section 4.3 the model of each class is specified by the transition and
emission probabilities learnt in the learning stage. When a gesture instance is given as input to
the HMM, this computes the probability of that instance given the model. The class of the
HMM returning the maximum probability is the winning class.

In the case of DNN, as described in Section 4.4, the deep architecture, constructed in the learning
stage, has 10 output nodes. So, when a gesture sample is inputted in the network for prediction,
the winning class is simply the one relative to the node with the maximum output value.

Finally, for what concerns the DTW case, the target gestures, found during the learning stage,
are used to predict the class of new gesture instances. The distances between the unknown
gesture sample and the 10 target gestures are computed. The winning class is that of the target
gesture with minimum distance.

6. Experiments

In this section the experiments carried out in order to evaluate the performance of the analyzed
methodologies will be described and the obtained results will be shown and compared. In
particular, the experiments conducted in both the learning stage and the prediction stage will
be detailed separately for a greater clarity of presentation.

Several video sequences of gestures performed by different users have been acquired by using
a Kinect camera. Sequences of the same users in different sessions (e.g., in different days) have
been also acquired in order to have a wide variety of data. The length of each sequence is about
1000 frames. The users have been requested to execute gestures standing in front of the Kinect,
by using the left arm and without pause between one gesture execution and the successive one.
The distance between Kinect and user is not fixed. The only constraint is that the whole user’s
body has to be seen by the sensor, so its skeleton data can be detected by using the OpenNi
processing Library. These data are recorded for each frame of the sequence.

6.1. Learning stage

As described in Section 4, the objective of the learning stage is to construct or, more specifically,
to learn a gesture model. In order to reach this goal, the first step is the construction of the
training datasets. The idea of using public datasets has been discarded as they do not assure
that real situations are managed. Furthermore, they contain sample gestures which are
acquired mainly in the same conditions. We have decided to use a set of gestures chosen by
us (see Figure 1), which have been selected from the “Arm-and-Hand Signals for Ground
Forces” [40].
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The video sequences of only one user (afterward referred as Training User) are considered for
building the training sets. Each sequence contains several executions of the same gesture
without idle frames between one instance and the other. In this stage, we manually segment
the training streams into gesture instances in order to guarantee that each extracted subse-
quence contains exactly one gesture execution. Then each instance is converted in feature
vector by using the skeleton data as described in Section 3. Notice that feature vectors V can
have different lengths, because either gesture execution lasts a different number of frames or
users execute gestures with different speeds. Part of the obtained feature vectors are used for
training and the rest for validation.

The second step of the learning stage is the construction of the gesture model by using the
methodologies described in Section 4. A preliminary normalization of feature vectors to the
same length is needed in the cases of NN, SVM, HMM, and DNN. As described in Section 4.1,
n has been fixed to 60. So each normalized feature vector V has 480 components which have
been defined by using the quaternion coefficients of shoulder and elbow joints (see Eqs. (2) and
(3)). In the case of DTW this normalization is not required.

For each methodology, different models can be learnt depending on the parameters of the
methodology. These parameters can be structural such as the number of hidden nodes in the
NN architecture or in the autoencoder or the number of hidden states in a HMM; or they can
be tuning parameters as in the case of SVM. So, different experiments have been carried out for
selecting the optimal parameters inside each methodology. Optimal parameters have to be
intended as those which provide a good compromise between over-fitting and prediction error
over the validation set.

6.2. Prediction stage

The prediction stage represents the recognition phase which allows us to compare the perfor-
mance of each methodology. In this phase the class labels of feature vectors are predicted based
on the learnt gesture model. Differently from the training phase that can be defined as an off-
line phase, the prediction stage can be defined as an on-line stage. In this case the video
sequences of six different users (excluded the Training-User) have been properly processed by
using an approach that works when live video sequences have to be tested. Differently from
the learning stage, where gesture instances were manually selected from the sequences and
were directly available for training the classifiers, in the prediction stage the sequences need to
be opportunely processed by applying a gesture segmentation approach. This process involves
several challenging problems such as the identification of the staring/ending points of a
gesture instance, the different length related to the different classes of gestures and finally the
different speeds of execution.

In this work, the sequences are processed by using a sliding window approach, where a
window slides forward over the sequence by one frame per time in order to extract sub-
sequences. First, the dimension of the sliding window must be defined. As there are no idle
frames among successive gesture executions, an algorithm based on Fast Fourier Transform
(FFT) has been applied in order to estimate the duration of each gesture execution [41]. As
each sequence contains several repetitions of the same gesture, it is possible to approximate

Motion Tracking and Gesture Recognition128



The video sequences of only one user (afterward referred as Training User) are considered for
building the training sets. Each sequence contains several executions of the same gesture
without idle frames between one instance and the other. In this stage, we manually segment
the training streams into gesture instances in order to guarantee that each extracted subse-
quence contains exactly one gesture execution. Then each instance is converted in feature
vector by using the skeleton data as described in Section 3. Notice that feature vectors V can
have different lengths, because either gesture execution lasts a different number of frames or
users execute gestures with different speeds. Part of the obtained feature vectors are used for
training and the rest for validation.

The second step of the learning stage is the construction of the gesture model by using the
methodologies described in Section 4. A preliminary normalization of feature vectors to the
same length is needed in the cases of NN, SVM, HMM, and DNN. As described in Section 4.1,
n has been fixed to 60. So each normalized feature vector V has 480 components which have
been defined by using the quaternion coefficients of shoulder and elbow joints (see Eqs. (2) and
(3)). In the case of DTW this normalization is not required.

For each methodology, different models can be learnt depending on the parameters of the
methodology. These parameters can be structural such as the number of hidden nodes in the
NN architecture or in the autoencoder or the number of hidden states in a HMM; or they can
be tuning parameters as in the case of SVM. So, different experiments have been carried out for
selecting the optimal parameters inside each methodology. Optimal parameters have to be
intended as those which provide a good compromise between over-fitting and prediction error
over the validation set.

6.2. Prediction stage

The prediction stage represents the recognition phase which allows us to compare the perfor-
mance of each methodology. In this phase the class labels of feature vectors are predicted based
on the learnt gesture model. Differently from the training phase that can be defined as an off-
line phase, the prediction stage can be defined as an on-line stage. In this case the video
sequences of six different users (excluded the Training-User) have been properly processed by
using an approach that works when live video sequences have to be tested. Differently from
the learning stage, where gesture instances were manually selected from the sequences and
were directly available for training the classifiers, in the prediction stage the sequences need to
be opportunely processed by applying a gesture segmentation approach. This process involves
several challenging problems such as the identification of the staring/ending points of a
gesture instance, the different length related to the different classes of gestures and finally the
different speeds of execution.

In this work, the sequences are processed by using a sliding window approach, where a
window slides forward over the sequence by one frame per time in order to extract sub-
sequences. First, the dimension of the sliding window must be defined. As there are no idle
frames among successive gesture executions, an algorithm based on Fast Fourier Transform
(FFT) has been applied in order to estimate the duration of each gesture execution [41]. As
each sequence contains several repetitions of the same gesture, it is possible to approximate

Motion Tracking and Gesture Recognition128

the sequence of features as a periodic signal. Applying the FFT and by tacking the position of
the fundamental harmonic component, the period can be evaluated as the reciprocal value of
the peak position. The estimated period is then used to define the sliding window’s dimen-
sion in order to extract subsequences of features from the original sequence. Each subse-
quence represents the feature vector which is then normalized (if required) and provided as
input to the classifier which returns a prediction label for the current vector. In order to
construct a more robust human computer interface, a further verification check has been
introduced before the final decision is taken. This process has been implemented by using a
max-voting scheme on 10 consecutive answers of the classifier obtained testing 10 consecu-
tive subsequences. The final decision is that relative to the class label with the maximum
number of votes.

6.3. Results and discussion

In Figures 2–7, the recognition rates obtained by testing the classifiers on a number of
sequences performed by six different users are reported. For each user the plotted rates have
been obtained by averaging the results over three testing sequences. As can be observed the
classifiers behave in a very different way due to the personalized execution of gestures by the
users. Furthermore, there are cases where some classifiers fail in assigning the correct class.
This is, for example, the case of gestures G2 and G4 performed by User 6 (see Figure 7). DTW
has 0% detection rate for G2, whereas NN has 0% detection rate for G4. The same happens for
gesture G9 performed by User 2 (see Figure 3) which is rarely recognized by all the classifiers,
as well as G3 performed by User 5 (see Figure 6).

Figure 2. Recognition rates obtained by testing each method on sequences of gestures performed by User 1.

Gesture Recognition by Using Depth Data: Comparison of Different Methodologies
http://dx.doi.org/10.5772/68118

129



Figure 3. Recognition rates obtained by testing each method on sequences of gestures performed by User 2.

Figure 4. Recognition rates obtained by testing each method on sequences of gestures performed by User 3.
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Figure 4. Recognition rates obtained by testing each method on sequences of gestures performed by User 3.
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Figure 6. Recognition rates obtained by testing each method on sequences of gestures performed by User 5.

Figure 5. Recognition rates obtained by testing each method on sequences of gestures performed by User 4.
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In order to analyze the performance of classifiers when the same user is used in the learning
and prediction phases, an additional experiment has been carried out. So the Training User has
been asked to perform again the gestures. Figure 8 shows the obtained recognition rates. These

Figure 7. Recognition rates obtained by testing each method on sequences of gestures performed by User 6.

Figure 8. Recognition rates obtained by testing each method on sequences of gestures performed by the Training User in
a session different from the one used for the learning phase.
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results confirm the variability of classifiers performance even if the same user is used for
training and testing the classifiers.

The obtained results confirm that it is difficult to determine the superiority of one classifier
over the others because of the large number of variables involved that do not guarantee a
uniqueness of gesture execution. These are for example: the different relative positions
between users and camera, the different orientations of the arm, the different amplitude of
the movement, and so on. All these factors can greatly modify the resulting skeletons and
joint positions producing large variations in the extracted features.

Some important conclusions can be drawn from the experiments that have been carried out: the
solution of using only one user to train the classifiers can be pursued as the recognition rates are
quite good even if the gestures are performed in personalized way.

Another point concerns the complexity of the gestures used in our experiments. The results
show that the failures are principally due either to the strict similarity between different
gestures or to the fact that the gestures which involve a movement perpendicular with respect
to the camera (not in the lateral plane) can produce false skeleton postures and consequently
features affected by errors.

Moreover, some gestures have parts of the movement in common. Figures 9 and 10 have been
pictured to better explain these problems.

Figure 9 shows the results obtained by testing the first 1000 frames of a sequence of gesture G3

executed by User 1. Each plot in the figure represents the output of each classifier DTW, NN,
SVM, HMM, and DNN, respectively. As can be seen in the case of DTW, SVM, and DNN,
gesture G3 is frequently misclassified as gesture G4. Both gestures are executed in a plane
parallel to the camera: G3 involves the rotation of the whole arm, whereas G4 involves the
rotation of the forearm only (as can be seen in Figure 11). Notice that the misclassification
happens principally in the starting part of gesture G3, which is very similar to the starting part
of G4; therefore, they can be easily mistaken.

Furthermore in Figure 9, it is worth to notice the good generalization ability of NN and HMM.
As can be seen in these cases, both classifiers are always able to recognize the gesture even
when the sliding windows cover the frames between two successive gesture executions.

An additional observation can be taken considering G1 and G8 as an example. In Figure 12, notice
that gesture G1 and gesture G8 involve the same rotations of the forearm, but performed in
different planes with respect to the camera (the lateral one in the case of G1 and the frontal one
in the case of G8). It is evident that a slight different orientation of the user in front of the camera
while performing gestureG1 (risp.G8), could generate skeletons quite similar to those obtained by
performing gesture G8 (risp. G1). Figure 10 shows the results relative to this case. As can be seen
gesture G8 is sometimes misclassified as gestureG1 by DTWand SVM. A fewmisclassifications of
gesture G8 as G6 are also present since G8 and G6 have some parts of movement in common.

6.4. Statistical evaluation

The analysis of the performance of the different methodologies, presented above, allows us to
draw some important conclusions thatmust be considered in order to build a robust human-robot

Gesture Recognition by Using Depth Data: Comparison of Different Methodologies
http://dx.doi.org/10.5772/68118

133



Figure 9. Recognition results relative to the first 1000 frames of a test sequence relative to gesture G3 performed by User 1.
The x-axis represents the frame number of the sequence and the y-axis represents the gesture classes ranging from 1 to 10
(the range 0–11 has been used only for displaying purposes). The red line denotes the ground truth label (G3 in this case),
whereas the blue one represents the predicted labels obtained from the classifiers.
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interface. The recognition is highly influenced by the following elements: the subjectivity of the
users, the complexityof thegestures, and the recognitionperformanceof theappliedmethodology.
In order to give an overall evaluation of the experimental results, a statistical analysis of the
conducted tests has to be done. The F-score, also known as F-measure or F1-score, has been
considered as global performancemetrics [42]. It is defined by the following equation:

F ¼ 2TP
2TPþ FPþ FN

ð5Þ

where TP, FP, and FN are the true positives, false positives, and false negatives, respectively.
The best values for the F-score are those close to 1, whereas the worst are those close to 0. This
measure captures information mainly on how well a model handles positive examples.

Figure 13 shows the F-score values obtained for each methodology and for each gesture,
averaged over all users. As can be seen each methodology behaves differently among the set
of available gestures: SVM, for example, has an F-score close to 1 for G1 and G8, whereas DNN
has maximum F-score in the case of G2 or G4. Figure 13 highlights another important aspect:
some gestures are better recognized instead of others. This is the case, for example of G8 or G4

for which the F-scores reaches high values whatever methodology is applied. On the contrary,
gestures such as G5 or G7 are generally badly recognized by each methodology. These consid-
erations are very useful as allows us to select a subset of gestures and for each of them the best
methodology in order to build a robust human robot interface. To this aim, a threshold
ð¼ 0:85Þ can be fixed for the F-score values and the gestures that have at least one classifier
with F-score above this threshold can be selected. By seeing Figure 13, these gestures are:
G1, G2, G4, G8, G9, and G10. For each selected gesture the classifier with the maximum F-score
can be chosen: so SVM for G1, DNN for G2 and G4, SVM for G8, DTW for G9, and finally SVM
for G10. These set of gestures with the relative best classifiers can be used to build the human-
robot interface.

Figure 10. Gesture G3 and G4. Both gestures involve a rotation of the arm in a plane parallel to the camera.
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Figure 11. Recognition results relative to the first 1000 frames of a test sequence relative to gesture performed by User 6.
The x-axis represents the frame number of the sequence and the y-axis represents the gesture classes ranging from 1 to 10
(the range 0 -11 has been used only for displaying purposes). The red line denotes the ground truth label ( in this case),
whereas the blue one represents the predicted labels obtained from the classifiers.
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7. Conclusions

In this chapter the problem of Gesture Recognition has been considered. Different methodologies
have been tested in order to analyze the behaviors of the differently obtained classifiers. In
particular, neural network (NN), support vector machine (SVM), hidden Markov model (HMM),
deep neural network (DNN), and dynamic time warping (DTW) approaches have been applied.

The results obtained during the experimental phase prove the great heterogeneity of tested
classifiers. In this work, the majority of problems arise in part from the complexity of the

Figure 13. F-score values of all methodologies for each gesture averaged over all users.

Figure 12. Gestures G1 and G8. Gesture G1 involves a movement in a plane parallel to the camera, whereas gesture G8

involves a movement in a plane perpendicular to the camera.
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gestures and in part from the variations coming from the users. The classifiers perform differ-
ently often preserving complementarity and redundancy. These peculiarities are very impor-
tant for fusion. So, encouraged by these observations, we will concentrate our further
investigations on the fusion of different classifiers in order to improve the overall performance
and reduce the total error.
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Abstract

Gait recognition has received increasing attention as a remote biometric identification 
technology, i.e. it can achieve identification at the long distance that few other identifica‐
tion technologies can work. It shows enormous potential to apply in the field of crimi‐
nal investigation, medical treatment, identity recognition, human‐computer interaction 
and so on. In this chapter, we introduce the state‐of‐the‐art gait recognition techniques, 
which include 3D‐based and 2D‐based methods, in the first part. And considering the 
advantages of 3D‐based methods, their related datasets are introduced as well as our 
gait database with both 2D silhouette images and 3D joints information in the second 
part. Given our gait dataset, a human walking model and the corresponding static and 
dynamic feature extraction are presented, which are verified to be view‐invariant, in the 
third part. And some gait‐based applications are introduced.

Keywords: gait recognition, gait dataset, 2D‐based, 3D‐based, view invariant

1. Introduction

Gait recognition has been paid lots of attention as one of the biometric identification technolo‐
gies. There have been considerable theories supporting that person’s walking style is a unique 
behavioural characteristic, which can be used as a biometric. Differing from other biometric 
identification technologies such as face recognition, gait recognition is widely known as the 
most important non‐contactable, non‐invasive biometric identification technology, which is 
hard to imitate. Since these advantages, gait recognition is expected to be applied in scenar‐
ios, such as criminal investigation and access control. Usually gait recognition includes the 
following five steps, which are shown in Figure 1.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Step 1: acquisition of gait data

The ways of acquiring the original gait data depend on how to recognize the gait. Usually 
the gait is acquired by single camera, multiple cameras, professional motion capture system 
(e.g. VICON) and camera with depth sensor (e.g. Kinect).

Step 2: pre‐processing

The methods of pre‐processing are quite different corresponding to the terms of acquiring 
gait. For instance, in some single camera‐based methods, the pre‐processing is usually the 
background subtraction, which is to get the body silhouette of walking people. However, in 
Kinect‐based methods, the pre‐processing is to filter the noise out of the skeleton sequences.

Step 3: period extraction

Since human gait is a kind of periodic signal, a gait sequence may include several gait cycles. 
Gait period extraction is helpful to reduce the data redundancy because all the gait features 
can be included in one whole gait cycle.

Step 4: feature extraction

Various gait features are used in different kinds of gait recognition methods and they influ‐
ence the performance of gait recognition. Gait features can be divided into hand‐crafted and 
machine‐learned features. The hand‐crafted ones are easy to be generalized to different data‐
sets, while the machine‐learned ones are usually better for the specific dataset.

Step 5: classification

Gait classification, i.e. gait recognition, is to use the classifiers based on the gait features. The 
classifiers range from the traditional one, such as kNN (k‐nearest neighbour), to the modern 
one, such as deep neural network, which has achieved success in face recognition, handwrit‐
ing recognition, speech recognition, etc.

Figure 1. The steps in gait recognition.
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Generally, gait recognition methods can be divided into 3D‐based and 2D‐based ones. The 
2D‐based gait recognition methods depend on the human silhouette captured by one 2D 
camera, which is the normal situation of the video surveillance. The 2D‐based gait recogni‐
tion methods are dominant in this field of gait recognition and they are usually divided into 
model‐based and model‐free methods.

The model‐based methods extract the information of the shape and dynamics of the human 
body from video sequences, establish the suitable skeleton or joint model by integrating the 
information and classify the individuals based on the variation of the parameters in such a 
model. Cunado et al. [1] modelled gait as an articulated pendulum and extracted the line via 
the dynamic Hough transform to represent the thigh in each frame, as shown in Figure 2a. 
Johnson et al. [2] identified the people based on the static body parameters recovered from 
the walking action across multiple views, which can reduce the influence introduced by varia‐
tion in view angle, as shown in Figure 2b. Guo et al. [3] modelled the human body structure 
from the silhouette by stick figure model, which had 10 sticks articulated with six joints, as 
shown in Figure 2c. Using this model, the human motion can be recorded as a sequence of 
stick figure parameters, which can be the input of BP neural network. Rohr [4] proposed a 
volumetric model for the analysis of human motion, using 14 elliptical cylinders to model 
the human body, as shown in Figure 2d. Tanawongsuwan et al. [5] projected the trajectories 
of lower body joint angles into walking plane and made them time‐normalized by dynamic 
time warping (DTW). Wang et al. [6] made a fusion between the static and dynamic body fea‐
tures. Specifically, the static body feature is in a form of a compact representation obtained by 
Procrustes shape analysis. The dynamic body feature is extracted via a model‐based approach, 
which can track the subject and recover joint‐angle trajectories of lower limbs, as shown in 
Figure 2e. Generally, the model‐based gait recognition methods have better invariant proper‐
ties and are better at handling occlusion, noise, scaling and view‐variation. However, model‐
based methods usually require a high resolution and a heavy computational cost.

On the other hand, model‐free methods generate gait signatures directly based on the sil‐
houettes, which are extracted from the video sequences, without fitting a model. Gait energy 
image (GEI) [7] is the most popular gait representation, which represents the spatial and tem‐
poral gait information in a grey image. GEI is generated by averaging silhouettes over a com‐
plete gait cycle and represents human motion sequence in a single image while preserving 

Figure 2. Examples of model‐based methods.
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the temporal information, as shown in Figure 3a. Motion silhouette image (MSI) [8] is like GEI 
and is a grey image too. The intensity of an MSI is determined by a function of the temporal 
history of the motion of each pixel, as shown in Figure 3b. The intensity of an MSI repre‐
sents motion information during one gait cycle. Because GEI and MSI represent both motion 
and appearance information, they are sensitive to the changes in various covariate conditions 
such as carrying and clothing. Shape variation‐based (SVB) frieze pattern is proposed in [9], 
as shown in Figure 3c, to improve their robustness against these changes. SVB frieze pat‐
tern projects the silhouettes horizontally and vertically to represent the gait information, and 
uses key frame subtraction to reduce the effects of appearance changes on the silhouettes. 
Although it has been shown that SVB frieze pattern can get better results when there are sig‐
nificant appearance changes, it does not outperform in the case of no changes, and it requires 
temporal alignment pre‐processing for each gait cycle, which brings more computation load. 
Gait entropy image (GEnI) [10] is another gait representation, which is based on Shannon 
entropy. It encodes the randomness of pixel values in the silhouette images over a complete 
gait cycle, and it is more robust to appearance changes, such as carrying and clothing, as 
shown in Figure 3d. Wang et al. [11] propose the Chrono‐Gait image (CGI), as shown in 
Figure 3e, to compress the silhouette images without losing too much temporal relationship 
between them. They utilize a colour mapping function to encode each gait contour image in 
the same gait sequence, and average over a quarter gait cycle to one CGI. It is helpful to pre‐
serve more temporal information of a gait cycle.

The methods mentioned above are all convert the gait sequence into a single image/template. 
There are other methods to keep temporal information of gait sequences, which have good 
performance too. Sundaresan et al. [12] propose the gait recognition methods based on hidden 
Markov models (HMMs) because the gait sequence is composed of a sequence of postures, 
which is suitable for HMM representation. In this method, the postures are regarded as the 
states of the HMM and are identical to individuals, which provide a means of discrimination. 
Wang et al. [13] apply principal component analysis (PCA) to extract statistical spatio‐tempo‐
ral features from the silhouette sequence and recogniz gait in the low‐dimensional eigenspace 
via supervised pattern classification techniques. Sudeep et al. [14] utilize the correlation of 
sequence pairs to preserve the spatio‐temporal relationship between the galley and probe 
sequences, and use it as the baseline for gait recognition.

The advantages of model‐free methods are computational efficiency and simplicity; however, 
the robustness against the variations of illumination, clothing, scaling and views still needs to 
be improved. Here, we focus on the view‐invariant gait recognition methods.

Figure 3. Examples of model‐free methods.
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temporal alignment pre‐processing for each gait cycle, which brings more computation load. 
Gait entropy image (GEnI) [10] is another gait representation, which is based on Shannon 
entropy. It encodes the randomness of pixel values in the silhouette images over a complete 
gait cycle, and it is more robust to appearance changes, such as carrying and clothing, as 
shown in Figure 3d. Wang et al. [11] propose the Chrono‐Gait image (CGI), as shown in 
Figure 3e, to compress the silhouette images without losing too much temporal relationship 
between them. They utilize a colour mapping function to encode each gait contour image in 
the same gait sequence, and average over a quarter gait cycle to one CGI. It is helpful to pre‐
serve more temporal information of a gait cycle.

The methods mentioned above are all convert the gait sequence into a single image/template. 
There are other methods to keep temporal information of gait sequences, which have good 
performance too. Sundaresan et al. [12] propose the gait recognition methods based on hidden 
Markov models (HMMs) because the gait sequence is composed of a sequence of postures, 
which is suitable for HMM representation. In this method, the postures are regarded as the 
states of the HMM and are identical to individuals, which provide a means of discrimination. 
Wang et al. [13] apply principal component analysis (PCA) to extract statistical spatio‐tempo‐
ral features from the silhouette sequence and recogniz gait in the low‐dimensional eigenspace 
via supervised pattern classification techniques. Sudeep et al. [14] utilize the correlation of 
sequence pairs to preserve the spatio‐temporal relationship between the galley and probe 
sequences, and use it as the baseline for gait recognition.

The advantages of model‐free methods are computational efficiency and simplicity; however, 
the robustness against the variations of illumination, clothing, scaling and views still needs to 
be improved. Here, we focus on the view‐invariant gait recognition methods.

Figure 3. Examples of model‐free methods.
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Up to date, 2D‐based view‐invariant gait recognition methods can be divided into pose‐free 
and pose‐based ones. The pose‐free methods aim at extracting the gait parameters indepen‐
dent from the view angle of the camera. Johnson et al. [2] present a gait recognition method 
to identify people based on static body parameters, which are extracted from the walking 
across multiple views. Abdelkader et al. [15] propose to extract an image template corre‐
sponding to the person’s motion blob from each frame. Subsequently, the self‐similarity of 
the obtained template sequence is computed. On the other hand, the pose‐based method 
aims at synthesizing the lateral view of the human body from an arbitrary viewpoint. Kale 
et al. [16] show that if the person is far enough from the camera, it is possible to synthesize 
a side view from any of the other arbitrary views using a single camera. Goffredo et al. 
[17] use the human silhouette and human body anthropometric proportions to estimate 
the pose of lower limbs in the image reference system with low computational cost. After 
a marker‐less motion estimation, the trends of the obtained angles are corrected by the 
viewpoint‐independent gait reconstruction algorithm, which can reconstruct the pose of 
limbs in the sagittal plane for identification. Muramatsu et al. [18] propose an arbitrary view 
transformation model (AVTM) for cross‐view gait matching. 3D gait volume sequences of 
training subjects are constructed, and then 2D gait silhouette sequences of the training sub‐
jects are generated by projecting the 3D gait volume sequences onto the same views as 
the target views. Finally, the AVTM is trained with gait features extracted from the 2D 
sequences. In the latest work [19], the deep convolutional neural networks (CNNs) is estab‐
lished and trained with a group of labelled multi‐view human walking videos to carry out 
a gait‐based human identification via similarity learning. The method is evaluated on the 
CASIA‐B, OU‐ISIR and USF dataset and performed outstanding comparing with the previ‐
ous state‐of‐the‐art methods.

It can be seen from the above‐mentioned methods that the main idea of 2D view‐invariant 
methods is to find the identical gait parameters that are independent from the camera point 
of view or can be used to synthesize a lateral view with arbitrary viewpoint.

2. 3D‐based gait recognition and dataset

2.1. 3D‐based gait recognition

3D‐based methods have the instinctive superiority in the robustness against view variation. 
Generally, multiple calibrated cameras or cameras with depth sensors are used in 3D‐based 
methods, which is necessary to extract gait features with 3D information. Zhao et al. [20] 
propose to build the 3D skeleton model based on 10 joints and 24 degrees of freedom (DOF) 
captured by multiple cameras, and the 3D information provides robustness to the changes of 
viewpoints, as shown in Figure 4a. Koichiro et al. [21] capture the dense 3D range gait from 
a projector‐camera system, which can be used to recognize individuals at different poses, as 
shown in Figure 4b. Krzeszowski et al. [22] build a system with four calibrated and synchro‐
nized cameras, estimate the 3D motion using the video sequences and recognize the view‐
variant gaits based on marker‐less 3D motion tracking, as shown in Figure 4c.
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3D‐based methods are usually better than 2D‐based view‐invariant approaches in not only the 
recognition accuracy but also the robustness against view changing. However, these methods 
have high computational cost due to the calibration of multiple cameras and fusion of mul‐
tiple videos.

The Microsoft Kinect brought about new strategies upon the traditional 3D‐based gait recogni‐
tion methods because it is a consumable RGB‐D (Depth) sensor, which can provide depth infor‐
mation easily. So far, there are two generations of Kinect, which are shown in Figure 5a and b. 
Sivapalan et al. [23] extend the concept of the GEI from 2D to 3D with the depth images captured 
by Kinect. They average the sequences of registered three‐dimensional volumes over a complete 
gait cycle, which is called gait energy volume (GEV), as shown in Figure 6. In Ref. [24], the depth 
information, which is represented by 3D point clouds, is integrated in a silhouette‐based gait 
recognition scheme.

Another characteristic of Kinect is that it can precisely estimate and track the 3D position of 
joints at each frame via machine learning technology. Figure 7a and b shows the differences 
of tracking points between the first and second generation of Kinect.

Araujo et al. [25] calculate the length of the body parts derived from joint points as the static 
anthropometric information, and use it for gait recognition.Milovanovic et al. [26] use the 
coordinates of all the joints captured by Kinect to generate a RGB image, combine such RGB 
images into a video to represent the walking sequence, and identify the gait based on the 

Figure 5. The first and second generation kinects.

Figure 4. Examples of 3D‐based methods.
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spirit of content‐based image retrieval (CBIR) technologies. Preis et al. [27] select 11 skeleton 
features captured by Kinect as the static feature, use the step length and speed as dynamic 
feature and integrate both static and dynamic features for recognition. Yang et al. [28] pro‐
pose a novel gait representation called relative distance‐based gait features, which can reserve 
the periodic characteristic of gait comparing with anthropometric features. Ahmed et al.[29] 
propose a gait signature using Kinect, which a sequence of joint relative angles (JRAs) is cal‐
culated over a complete gait cycle. They also introduce a new dynamic time warping (DTW)‐
based kernel to complete the dissimilarity measure between the train and test samples with 
JRA sequences. Kastaniotis et al. [30] propose a framework for gait‐based recognition using 
Kinect. The captured pose sequences are expressed as angular vectors (Euler angles) of eight 
selected limbs. Then the angular vectors are mapped in the dissimilarity space resulting into 
a vector of dissimilarities. Finally, dissimilarity vectors of pose‐sequences are modelled via 
sparse representation.

2.2. Dataset

Gait dataset is important to gait recognition performance improvement and evaluation. 
There are lots of gait datasets in the current academia and their purposes and characteristics 

Figure 6. Gait energy volume (GEV).

Figure 7. (a) The 20 joints tracked by first generation Kinect and (b) 25 joints tracked by second generation Kinect.
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are different from each other. The differences among these datasets are mainly on the num‐
ber of subjects, number of video sequences, covariate factors, viewpoints and environment 
(indoor or outdoor). Though the number of subjects in gait datasets is much smaller than 
that in the datasets of other biometrics (e.g. face, fingerprint, etc.), the current dataset can still 
satisfy the requirement of gait recognition method design and evaluation. Here, we give a 
brief introduction about several popular gait datasets. Table 1 summarizes the information 
of these datasets.

SOTON Large Database [31] is a classical gait database containing 115 subjects, who are observed 
from side view and oblique view, and walk in several different environment, including indoor, 
treadmill and outdoor.

SOTON Temporal [32] contains the largest variations about time elapse. The gait sequences 
are captured monthly during 1 year with controlled and uncontrolled clothing conditions. 
It is suitable for purely investigating the time elapse effect on the gait recognition without 
regarding clothing conditions.

USF HumanID [14] is one of the most frequently used gait datasets. It contains 122 subjects, 
who walk along an ellipsoidal path outdoor, as well as contains a variety of covariates, includ‐
ing view, surface, shoes, bag and time elapse. This database is suitable for investigating the 
influence of each covariate on the gait recognition performance.

CASIA gait database contains three sets, i.e. A, B and C. Set A, also known as NLPR, is com‐
posed of 20 subjects, and each subject contains 12 sequences, which includes three walking 
directions, i.e. 0, 45 and 90°. Set B [33] contains large view variations from the front view 
to the rear view with 18° interval. There are 10 sequences for each subject, which are six 
normal sequences, two sequences with a long coat and two sequences with a backpack. Set 
B is suitable for evaluating cross‐view gait recognition. Set C contains the infrared gait data 
of 153 subjects captured by infrared camera at night under 4 walking conditions, which are 
walk with normal speed, walk fast, walk slow and walk with carrying backpack.

OU‐ISIR LP [34] contains the largest number of subjects, i.e. over 4000, with a wide age range 
from 1 year old to 94 years old and with an almost balanced gender ratio, although it does 

Name Subject Sequence Covariates Viewpoints In/Outhoor Device

SOTON 115 2128 Yes 2 In/Outdoor Camera(2D)

USF HumanID 122 1870 Yes 2 Outdoor Camera(2D)

CASIA B 124 1240 Yes 11 Indoor Camera(2D)

OU‐ISIR,LP 4007 7842 No 2 Indoor Camera(2D)

TUM‐GAID 305 3370 Yes 1 Outdoor Multimedia

KinectREID 71 483 yes 3 Indoor Kinect

Table 1. List of popular gait datasets.
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not contain any covariate. It is suitable for estimating a sort of upper bound accuracy of the 
gait recognition with high statistical reliability. It is also suitable for evaluating gait‐based age 
estimation.

TUM‐GAID [35] is the first multi‐model gait database, which contains gait audio signals, RGB 
gait images and depth body images obtained by Kinect.

KinectREID [36] is a Kinect‐based dataset that includes 483 video sequences of 71 individuals 
under different lighting conditions and 3 view directions (frontal, rear and lateral). Although 
the original motivation is for person re‐identification, all the video sequences are taken for 
each subject by using Kinect, which contains all the information Kinect provided and is con‐
venient for other Kinect SDK‐based applications.

According to the overview [37] about the gait dataset, most of datasets are based on 2D videos 
or based on 3D motion data captured by professional camera, such as VICON. To our best 
knowledge, there are a few gait datasets containing both 2D silhouette images and 3D joints 
position information. Such a dataset can make the joint position‐based methods, such as the 
method in Ref. [17] directly use the joint positions captured by Kinect, which can make use 
of both advantages of 2D‐ and 3D‐based methods and bring improvement to the recogni‐
tion performance. Meanwhile, the Kinect‐based method such as in Refs. [25–28] will have a 
uniform platform to compare with each other. Therefore, a novel database based on Kinect is 
built, whose characteristics are following:

1. Two Kinects are used for simultaneously obtaining the 3D position of 21 joints (excluding 
4 finger joints) and the corresponding binarized body silhouette images of each frame, as 
shown in Figure 8;

2. There are 52 subjects in the dataset, where each subject has 20 gait sequences and totally 
1040 gait sequences;

3. Each subject has in six fixed and two arbitrary walking directions, which can be used to 
investigate the influence of view variation on the performance of gait recognition;

4. There are 28 males and 24 females with an average age of 22 in the dataset. There is no limi‐
tation for wearing, though most subjects wear shorts and T‐shirts, and few females wear 
dress and high‐heeled shoes, which is recorded in a basic information file.

The reason we choose Kinect V2 is that Kinect V2 has the comprehensive improvement 
over its first generation, such as broader field of view, higher resolution of colour and 
depth image, and more joints recognition ability. The 3D data and 2D RGB images are 
recorded, as shown in Figure 8. The upper area in Figure 8 shows the 3D position of 21 
joints, which means each joint will have a coordinate like (x, y, z) at each frame. We record 
all these original 3D position data at each frame during whole walking cycle. The lower 
area shows the corresponding binary silhouette image sequence after subtracting the sub‐
ject from background.
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The experimental environment is shown in Figure 9. Two Kinects are located mutually perpen‐
dicular at the distance of 2.5 m to form the biggest visual field, i.e. walking area. Considering 
the angle of view, we put two Kinects at 1 m height on the tripod. The red dash lines are the 
maximum and minimum deep that Kinect can probe. The area enclosed by the black solid 
lines is the available walking area.

Figure 8. Two kinds of data in our database: 3D position of 21 joints in the upper area and the corresponding binarized 
silhouette images in the lower area.

Figure 9. The top view of the experimental environment.
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Before we record the data of each subject, we collect the basic information, such as name, 
sex, age, height, wearing (e.g. the high‐heeled shoes, dress for female volunteers) and so on, 
for potential analysis and data mining. Each subject is asked to walk twice on the predefined 
directions shown as the arrows ①–⑤ in Figure 9, particularly ⑤ means the subjects walk in a 
straight line on an arbitrary direction. We can treat all the data as recorded by one Kinect since 
the two Kinects are the same, so that each subject has 20 walking sequences, and the walking 
duration on each predefined direction is shown in Figure 10. The dataset can be accessed at 
the website, https:/sites.google.com/site/sdugait/, and it can be downloaded with application.

3. Kinect‐based gait recognition

3.1. The Kinect‐based gait recognition

The gait features extracted from Kinect captured data contain the static and dynamic features. 
In this part, we will firstly introduce how to extract the static and dynamic features and dem‐
onstrate the properties of these two kinds of features. And then we will show how to extract 
a walking period from the sequence. Finally, we make a feature fusion of these two kinds of 
features for gait recognition.

A static feature is a kind of feature that can barely change during the whole walking process, 
such as height, the length of skeletons and so on. Given the knowledge of anthropometry, the 
person can be recognized based on static body parameters to some extent. Here, we choose 
the length of some skeletons as the static features, including the length of legs and arms. 
Considering the symmetry of human body, the length of limbs on both sides is usually treated 
to be equal. The static feature is defined as an eight‐dimension vector, i.e.    (   d  
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Figure 10. Walking directions and the corresponding walking duration.
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where   d  
i
    is a space distance between Joint_1 and Joint_2 listed in Table 2. Here, the Euclidean 

distance is chosen to measure the space distance referring to the research experiences in Refs. 
[37, 38].

We can acquire the 3D coordinate of the joints listed in Table 2 in each frame and calculate 
each component of the static feature vector.
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When we evaluate the estimation on the position of joints obtained by Kinect, we find that the 
accuracy will change along with the depth range. Given the empirical results, we discover that 
more stable data can be acquired when the depth is between 1.8 and 3.0 m. Hence, we propose 
a strategy to automatically choose the frames in that range. We choose the depth information 
of HEAD joint to represent the depth of whole body, because it can be detected stably and 
keep monotonicity in depth direction during walking. Then we set two depth thresholds, i.e. 
the distance in the Z‐direction, as the upper and lower boundaries, respectively. The frames 
between the two boundaries are regarded as the reliable frames.
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where   H  
f
    denotes the frames of the HEAD,   f  

a
    denotes the reliable frames and   H  

f, z
    represents 

the frame(s) that obtained when the coordinate of HEAD joint is z. We reserve the 3D coordi‐
nates of all the joints during the period when the reliable frames can be obtained. Finally, we 
calculate the length of the skeleton we need at each reliable frame, and take their average to 
calculate the components of the static feature vector.

The subjects are required to walk along the same path for seven times, which can make sub‐
jects walk more naturally later. For each subject, Kinect is turned for 5° started from −15° to 

Component Joint_1 Joint_2

  d  
1
   HIP_RIGHT KNEE_RIGHT

  d  
2
   KNEE_RIGHT ANKLE_RIGHT

  d  
3
   SHOULDER_RIGHT ELBOW_RIGHT

  d  
4
   ELBOW_RIGHT WRIST_RIGHT

  d  
5
   SPINE_SHOULDER SPINE_BASE

  d  
6
   SHOULDER_RIGHT SHOULDER_LEFT

  d  
7
   SPINE_SHOULDER NECK

  d  
8
   NECK HEAD

Table 2. Components of the static feature vector.
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+15°, and the static feature vector on each direction is recorded. These directions are denoted 
by n15, n10, n5, 0, p5, p10 and p15, where ‘0’ denotes the front direction, and ‘n’ and ‘p’ denote 
anticlockwise and clockwise, respectively. Totally 10 volunteers are randomly selected to 
repeat this experiment, and all the results prove that the static feature we choose is robust 
to the view variation. We show an example in Figure 13a, in which each component of these 
static vectors on the seven directions and the average values of these vectors are plotted.

The dynamic feature is a kind of feature that any change along with time during walking, 
such as speed, stride, variation of barycentre, etc. Given many researches [5, 39, 40], the angles 
of swing limbs during walking are remarkable dynamic gait features. For this reason, four 
groups of swing angles of upper limbs, i.e. arm and forearm, and lower limbs, i.e. thigh and 
crus, are defined as shown in Figure 11, and denoted as  a1, … , a8 . Here,  a2  is taken as the exam‐
ple for illustration. The coordinate at KNEE_RIGHT is denoted as    (  x, y, z )    , and coordinate at 
ANKLE_RIGHT is denoted as    (   x   ′ ,  y   ′ ,  z   ′  )    , so  a2  can be calculated as

  tan ∠a2 =   (    x −  x   ′  _ y −  y   ′    )    a2 =  tan   −1   (    x −  x   ′  _ y −  y   ′    )     (3)

Each dynamic angle can be regarded as an independent dynamic feature for recognition. 
Given the research results in Ref. [41] and our comparison experiments on these dynamic 
angles, angle  a2  on the right side or  a4  on the left side is selected as the dynamic angle, accord‐
ing to the side near to the Kinect.

The value of  a2  and  a4  at each frame can be calculated, and the whole walking process can 
be described, as shown in Figure 12. We carried out the verification experiments similar to 
what for the static feature to prove its robustness against the invariant of views, the result 
shown in Figure 13b indicates that the proposed dynamic feature is also robust to the view 
variation.

Gait period extraction is an important step in gait analysis, because gait is a periodical feature 
and majority features could be captured within one period. Silhouette‐based methods usu‐
ally analyse the variation of silhouette width alone with time to obtain the period informa‐
tion. Some methods apply the signal processing to analyse the dynamic feature for period 
extraction, such as peak detection and Fourier transform. Different from them, we propose 
to extract periodicity by combining the data of left limb and right limb together, which can 
be shown in Figure 12.  a2  and  a4  sequences represent the right and left signals, respectively.

It can be concluded that the crossing points between left and right signals can segment the gait 
period appropriately. We use the crossing point between the left and right signals to extract 

Figure 11. Side view of the walking model.
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the gait period. After cutting off the noisy part at the beginning of the signal, we make the 
subtraction on the left and right signals, obtain the crossing point as the zero point and extract 
the period between two interval zero points. The black dash lines show the detected period.

The static and dynamic features have their own advantages and disadvantages, respectively. 
These two kinds of features are fused in the score‐level. Two different kinds of matching 
scores are normalized onto the closed interval [0,1] by the linear normalization.

   s ^   =   
s − min(S )

 ____________  max  (  S )    − min(S )    (4)

Where  S  is the matrix before normalization, whose component is   s , here represent the score,   S 
^
    is 

the normalized matrix, whose component is   s ^   . The two kinds of features are weighted fused as

  F =   ∑  
i=1

  
R
    ω  i     s ^    i  ,    ω  i   =   

 C  i   ______  ∑  j=1  R    C  i  
    (5)

where  F  is the score after fusion,  R  is the number of features used for fusion,   ω  i    is the weight 
of  i th classifier,    s ^    

i
    is the score of  i th classifier, here which is our distance.   C  

i
    is the CCR (correct 

classification rate) of  i th feature used to recognize separately, so the weight can be set accord‐
ing to the level of CCR.

3.2. Comparisons

The cross‐view recognition abilities of the static feature, dynamic feature and their fusion are 
analysed. Four sequences on 180° are used as the training data since both body sides of the 

Figure 12. Period extracted based on dynamic features.

Figure 13. (a) Static feature and (b) dynamic feature of one subject on seven directions.
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subjects can be recorded. The sequences on the other directions are used as the testing data. 
Because the sequences acquired on the nearer side to Kinect have more accuracy, the data on 
the nearer body side is selected automatically for the calculation at each direction.

The static feature is extracted from the right body side on 0, 225 and 270°, and the left body 
side on 90 and 135°. Due to the symmetry, the skeleton lengths on the two sides of the body 
are regarded to be equal. The static feature is calculated as Eq. (1), and NN classifier is used 
for recognition. The results are shown in the first row of Table 3.

The dynamic feature, a2, is calculated from the right side of the limb on 0, 225 and 270°, and 
the dynamic feature, a4, is calculated on 90 and 135°, from the left side of the limb. As we can 
extract both a2 and a4 on the direction of 180°, either of them can be used as the dynamic fea‐
ture on the training set. The results are shown in the second row of Table 3.

The static feature and dynamic feature are fused in the score‐level as we discussed before, 
and the results are tested after feature fusion in situation under view variation. Given the 
CCR of dynamic feature and static feature obtained from different directions, we redistribute 
the weight, get the final score for different subjects and use the NN classifier to get the final 
recognition results as shown in the third row of Table 3. The comparison in Table 3 shows 
that the feature fusion can improve the recognition rate on each direction.

Preis et al. [27] proposed a Kinect‐based gait recognition method, in which 11 lengths of limbs 
are extracted as the static feature, and step length and speed are taken as the dynamic feature. 
Their method was tested on their own dataset including nine persons and the highest CCR 
can reach to 91%. The gait feature they proposed is also based on 3D position joint, so it is 
possible to rebuild their method on our database. In this chapter, we rebuilt their method and 
test on our database with 52 persons and make a comparison with our proposed method. As 
their dataset only include frontal walking sequences, we compare two methods in our data‐
base only on 180° (frontal) directions. We randomly choose three sequences on 180° directions 
as training data and the rest are treated as testing data. The CCR results of both methods are 
shown in Table 4. Our proposed method has about 10% accuracy improvement.

The proposed method is evaluated another Kinect‐based gait dataset, i.e. KinectREID dataset 
in Ref. [36]. Four recognition rate curves are shown in Figure 14, which are front_VS_front, 
rear_VS_rear, front_VS_rear and front_VS_lateral, because there are only three directions in 

Static Feature 0° 90° 135° 225° 270°

88.46 84.61 82.69 84.61 88.46

Dynamic Feature 0° 90° 135° 225° 270°

88.46 86.5 84.61 84.61 90.38

Feature Fusion 0° 90° 135° 225° 270°

94.23 90.38 90.38 88.46 92.31

Table 3. CCR (%) results of the static feature, dynamic feature, and feature fusion on each walking direction.
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KinectREID dataset, i.e. front, rear and lateral. It can be seen from Figure 14 that the cross‐
view recognition rate of the propose method is slightly worse than that on the same direc‐
tions, which demonstrates that the robustness of the proposed method against view variation, 
though the recognition rate, decreases with the increasing of the amount of test subjects.

Given the experimental results we have discussed above, we can say that the static relation 
and dynamic moving relation among joints are very important features that can represent 
the characteristic of gait. In many 2D‐based methods, many researchers also tried to get the 
relation among joints, but the positions of joints have to be calculated from the 2D video 
with all kinds of strategies in advantage. Goffredo et al. proposed a view‐invariant gait rec‐
ognition method in Ref. [17]. They only make use of 2D videos obtained by one single cam‐
era. After extracting the walking silhouette from the background, they estimate the position 
of joints according to the geometrical characteristics of the silhouette and calculate the angle 
between the shins and the vertical axis and the angle between thigh and the vertical axis as 
the dynamic feature, and finally make a projection transformation to project these features 
into the sagittal plane using their viewpoint rectification algorithm. Actually, Goffredo’s 

Figure 14. Gait recognition performance on KinectREID dataset.

CCR

Method in [27] 82.7%

Our method 92.3%

Table 4. Comparison on CCR between the proposed methodand the method in [27].
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method has a lot of similar gait features comparing with our method in logically. As we 
mentioned before, our database not only have the 3D position data but also the 2D silhou‐
ette images at each frame.  Take advantage of our database, we can rebuild their method 
using the 2D silhouette image sequences; meanwhile, we use the 3D joint position data of 
the same person. We compare this method with our method with the varying views on three 
directions. The comparison results in Table 5 show that our proposed method has 14–19% 
accuracy improvement.

3.3. Applications

Gait research is still at an exploring stage rather than a commercial application stage. 
However, we have confidence to say that the gait analysis is promising given its recent 
development. The unique characteristics of gait, such as unobtrusive, non‐contactable 
and non‐invasive, have a powerful potential to apply in the scenarios including criminal 
investigation, access security and surveillance. For example, face recognition will become 
unreliable if there is a larger distance between the subject and camera. Fingerprint and iris 
recognition have proved to be more robust, but they can only be captured by some contact 
or nearly contact equipment.

For instance, gait biometrics has already been used as the evidence for forensics [42]. In 2004, 
a perpetrator robbed a bank in Denmark. The Institute of Forensic Medicine in Copenhagen 
(IFMC) was asked to confirm the perpetrator via gait analysis, as they thought the perpetrator 
had a unique gait. The IFMC instructed the police to establish a covert recording of the suspect 
from the same angles as the surveillance recordings for comparison. The gait analysis revealed 
several characteristic matches between the perpetrator and the suspect, as shown in Figure 15. 
In Figure 15, both the perpetrator on the left and the suspect on the right showed inverted 
left ankle, i.e. angle b, during left leg’s stance phase and markedly outward rotated feet. The 
suspect was convicted of robbery and the court found that gait analysis is a very valuable tool.

Another similar example is in the intelligent airport, where the Kinect‐based gait recogni‐
tion is used during the security check. Pratik et al. [43] established a frontal gait recognition 
system using RGB‐D camera (Kinect) considering a typical application scenario of airport 
security check point, as shown in Figure 16a. In their further work [44], they addressed the 
occlusion problem in frontal gait recognition via the combination of two Kinects, which is 
demonstrated in Figure 16b.

In addition, gait analysis plays an important role in medical diagnosis and rehabilitation. 
For example, assessment of gait abnormalities in individuals affected by Parkinson’s disease 

0° 90° 135°

Method in [17] 80.8 71.15 73.08

Our method 94.23 90.38 90.38

Table 5. CCR (%) result comparing on three directions.

Gait Recognition
http://dx.doi.org/10.5772/68119

159



(PD) is essential to determine the disease progression, the effectiveness of pharmacologic and 
rehabilitative treatments. Corona et al. [45] investigate the spatio‐temporal and kinematics 
parameters of gait between lots of elderly individuals affected by PD and normal people, 
which can help clinicians to detect and diagnose the Parkinson’s disease.
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Nowadays, the technological advances allow developing many applications on different 
fields. In this book Motion Tracking and Gesture Recognition, two important fields are 

shown. Motion tracking is observed by a hand-tracking system for surgical training, 
an approach based on detection of dangerous situation by the prediction of moving 

objects, an approach based on human motion detection results and preliminary 
environmental information to build a long-term context model to describe and predict 

human activities, and a review about multispeaker tracking on different modalities. 
On the other hand, gesture recognition is shown by a gait recognition approach using 
Kinect sensor, a study of different methodologies for studying gesture recognition on 
depth images, and a review about human action recognition and the details about a 
particular technique based on a sensor of visible range and with depth information.
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