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Preface

One of the most effective ways to ensure confidentiality and data integrity during transmis‐
sion is cryptography. The purpose of the cryptographic system is to provide key distribu‐
tion, authentication, legitimate user authorization, and encryption. Today, key distribution
is one of the most important problems of cryptography. This problem can be solved with the
help of the following schemes: classical information-theoretic scheme, classical public-key
cryptographic scheme, classical computationally secure symmetric-key cryptographic
scheme, trusted courier key distribution, and quantum key distribution (QKD).

QKD includes the number of protocols (such as BB84, SARG04, E91, B92, six-state protocol,
Goldenberg-Vaidman protocol, and Koashi-Imoto protocol), and the main task of these is en‐
cryption key generation and distribution between the two users connecting through quantum
and classical channels. The main advantages of all QKD protocols are as follows: (1) these
protocols always allow eavesdropping to be detected because eavesdropper’s connection
brings much more error level (compared with natural error level) to the quantum channel. The
laws of quantum mechanics allow eavesdropping to be detected, and the dependence between
error level and intercepted information to be set. This allows to apply the privacy amplifica‐
tion procedure that decreases the quantity of information about the key, which can be inter‐
cepted by eavesdropper. Thus, QKD protocols have an unconditional (information-theoretic)
security. (2) The information-theoretic security of QKD allows using an absolutely secret key
for further encryption using the well-known classical symmetrical algorithms. Thus, the entire
information security level increases. It is also possible to synthesize QKD protocols with the
Vernam cipher (one-time pad), which, in complex with unconditionally secured authenticated
schemes, gives a totally secured system for transferring the information.

Besides, there are also disadvantages of QKD protocols that are as follows: (1) a system
based only on QKD protocols cannot serve as a complete solution for key distribution in
open networks because additional tools for authentication are needed. (2) The limitation of
quantum channel length is caused by the fact that there is no possibility of amplification
without quantum properties being lost. However, the technology of quantum repeaters
could overcome this limitation in the near future. (3) There is a need for using the weak-co‐
herent pulses instead of single-photon pulses. This decreases the efficiency of protocol in
practice. However, this technological limitation might be defeated in the near future. (4) The
data-transfer rate decreases rapidly with an increase in the quantum channel length. (5) Pho‐
ton registration problem leads to a key rate of decrease in practice. (6) Photon depolarization
in the quantum channel leads to errors during data transfer. Now, the typical error level
equals a few percent, which is much greater than the error level in classical information and
communication systems. (7) Difficulty in the practical realization of QKD protocols for d-lev‐
el (multilevel) quantum systems. (8) The high price of commercial QKD systems (more than
$100,000 for two subscriber systems).
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The book “Advanced Technologies of Quantum Key Distribution” contains the results of
scientific research eliminating the abovementioned disadvantages. In view of this, the book
was divided into two sections—the first one “Modern QKD Technologies” is devoted to ad‐
vanced protocols and systems for key distribution using quantum technologies, and the sec‐
ond part “Quantum Channel Construction” is related to corrective measures for improving
the quantum channel efficiency.

There are also other quantum technologies of information security (such as quantum secure
direct communication, quantum secret sharing, quantum stream cipher, and quantum digi‐
tal signature), but in practice, these have not been extended beyond the laboratory experi‐
ments. However, practical implementation of these quantum technologies is also faced by
some technological difficulties.

QKD and other quantum technologies, therefore, represent an important step toward im‐
proving the security of modern (and future) information and communication systems
against cyberattacks, but many theoretical and practical problems must be solved for a wide
practical use of them.

Professor Sergiy Gnatyuk
National Aviation University

Ukraine
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Abstract

Quantum key distribution (QKD), another name for quantum cryptography, is the most
advanced subfield of quantum information and communication technology (QICT). The
first QKD protocol was proposed in 1984, and since then, more protocols have been
proposed. It uses quantum mechanics to enable secure exchange of cryptographic keys. In
order to have high confidence in the security of the QKD protocols, such protocols must be
proven to be secure against any arbitrary attacks. In this chapter, we discuss and demon-
strate security proofs for QKD protocols. Security analysis of QKD protocols can be
categorised into two techniques, namely infinite-key and finite-key analyses. Finite-key
analysis offers more realistic results than the infinite-key one, while infinite-key analysis
provides more simplicity. We briefly provide the background of QKD and also define the
basic notion of security in QKD protocols. The cryptographic key is shared between Alice
and Bob. Since the key is random and unknown to an eavesdropper, Eve, she is unable to
learn anything about the message simply by intercepting the ciphertext. This phenomenon
is beyond the ability of classical information processing. We then study some tools that are
used in the derivation of security proofs for the infinite- and finite-length key limits.

Keywords: quantum cryptography, QKD, protocols, security, finite-security,
entanglement, QKD schemes

1. Introduction

Quantum cryptography, specifically QKD, has been built based on physical concepts associ-
ated with quantum mechanics. In contrast to conventional cryptography, whose security is
based on the complex computational and mathematical algorithms for security, it is founded
on the uncertainty relations, Bell’s inequalities, entanglement or non-locality [1]. The imple-
mentation of QKD consists of detectors, repeaters, quantum memories and decoy states [2–4].
These concepts form the basis of security proofs [5]. In order for Eve to obtain the secret key,
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she needs to break the laws of physics, but this is impossible without her presence being
detected. Since there is great need for security in a communication system, it is necessary to
investigate security proofs for QKD systems.

Regardless of the challenges that come with developing unconditional security proofs, a lot of
progress has been realised in the last two decades. An unconditional security proof considers all
kinds of attacks that Eve can perform and incorporating this into the security proof is a difficult
task. However, a new technique for analysing collective attacks due to an eavesdropper was
developed in 1995 by Yao [6]. Later, Bennett et al. realised that if the legitimate parties possess a
reliable quantum computer, they can implement an entanglement distillation (ED) protocol to
obtain a secure version of an EB key distribution [7]. In 1998, based on this idea, Lo and Chau
then developed a formal security proof for the protocol [8]. By using the ideas of Mayers, Lo and
Chau then Shor and Preskill developed a simple proof of security for the BB84 protocol in 2000
[9]. This was followed by a proof of Biham who was the second to show an unconditional
security proof [10]. In 1991, Biham’s proof was then used by Gottesman and Preskill to prove
the unconditional security proof of a continuous variable protocol where Alice’s signals are
sufficiently squeezed [11]. In the same spirit, Inamori et al. showed the unconditional security
proof of BB84 protocol where Alice’s source emits weak coherent states and Bob’s detector
remains uncharacterised [12]. However, a complete security proof that is secure against arbitrary
attacks by the eavesdropper and full realistic implementation of the QKD protocol remains
missing. But this progress depicts that major achievements have been made in this field to prove
that protocols used in quantum communication are secure for sending messages. Amongst
different approaches to security proofs, a number of publications on composable security [13],
de Finetti’s theorem [5, 14], post-selection technique [15] and recently the finite-length key
analysis [16] are now available.

Regardless of enormous progress that has been made in QKD, there are still some theoretical
and experimental problems of communicating in absolute secrecy in the presence of an eaves-
dropper. In particular, matching the theoretical security proofs to real devices still remains
unknown. The security proofs still contain assumptions concerning the behaviour of devices
used by the communicating parties [17]. As a result of this mismatch, an eavesdropper can
learn part of the key shared by Alice and Bob, thus rendering some schemes insecure over
large distances. Moreover, the existing security proofs have been derived in the asymptotic
limit which is not very realistic. In fact, the bits which are processed in QKD are necessarily of
finite length. Therefore, thanks to Valerio and Renner for introducing the general framework
for the security analysis of QKD with finite resources [16]. The security study is mainly based
on the framework introduced by Devetak-Winter, Csiszar-Körner and Renner security [5, 18].
For a detailed overview of QKD, we refer the reader to [2, 4].

2. Quantum features

2.1. Detection of measurements

Based on the measurement postulate of quantum mechanics [19], it is impossible to perform a
measurement on an unknown quantum state without introducing a disturbance unless the
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state is an eigenstate to the observable being measured [20]. This means that Eve is unable to
perform a measurement on an unknown quantum state without introducing a disturbance that
can be discovered by Alice and Bob.

2.2. Uncertainty principle

The uncertainty principle states that a measurement of one quantum observable intrinsically
creates an uncertainty in other properties of the system. This means that it is impossible to
measure the simultaneous values of non-commuting observables on a single copy of a quan-
tum state [21]. This ensures that an eavesdropper cannot perform measurements that leave the
quantum state undisturbed [22]. This automatic detection of an eavesdropper is impossible
with classical cryptography.

2.3. No-cloning theorem

In quantum mechanics, it is impossible to make a perfect copy of an unknown state with
perfect fidelity. This is called the no-cloning theorem [23]. This prevents an eavesdropper from
simply intercepting the communication channel and making copies (so as to make measure-
ments on them later) of the transmitted quantum states, while passing on an undisturbed
quantum state to Bob [24, 25]. Therefore, the no-cloning theorem forms an important property
in the security of QKD protocols [26].

2.4. Non-orthogonality principle

Suppose, we have quantum states |ψi⟩ which are not orthogonal, then it can be proved that
there exists no quantum measurement that is able to distinguish states [19]. In this case, a non-
zero component of the state |ψ1⟩ parallel to the state |ψ2⟩ always gives a non-zero probability of
the measurement outcome associated with the state |ψ2⟩ also occurring when the measurement
is applied to the state |ψ1⟩. This is because |ψ2⟩ can be decomposed into a non-zero component
parallel to |ψ1⟩ and a component orthogonal to |ψ1⟩. Then, there is no measurement of any
kind that can reliably determine which of the two non-orthogonal quantum states were mea-
sured [27]. This feature is very useful for cryptographic applications such as QKD [20].

3. QKD schemes

There are two major types of QKD schemes, namely prepare and measure (P&M) and
entanglement-based (EB) schemes [2, 4]. A P&M scheme is based on individual qubits, while
an EB scheme is based on entangled qubits. Either of these schemes can be used by two parties
in order to end up with a shared secret key. However, a P&M scheme can immediately be
translated into an EB scheme [4, 28]. However, there exists another family of protocols called
continuous-variable protocols and distributed-phase-reference (DPR) protocols [4], which con-
sist of the coherent-one-way protocol [29, 30] and the distributed-phase-reference protocols
[31, 32]. In the following sections, we briefly describe the processes for each scheme.

Security of Quantum Key Distribution Protocols
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3.1. Prepare and measure (P&M) scheme

In a P&M scheme, Alice encodes some classical information into a set of quantum states and
sends them via an insecure quantum channel to Bob. Bob then performs measurements on the
quantum states he receives. This results in classical data generated by quantum means being
shared between Alice and Bob. Examples of protocols that use this scheme are BB84 [33], B92
[27], six-state [34] and SARG04 [35] protocols.

3.2. Entanglement-based (EB) scheme

In an EB scheme, a source prepares and distributes a maximally entangled quantum state
where one system is sent to Alice and another to Bob. Alice and Bob then perform measure-
ments in two mutually unbiased bases on their system, respectively. Upon measurement, they
obtain perfectly correlated outcomes which are completely random. Since the source prepares
a pure state, it means that this state cannot be correlated with an eavesdropper. This implies
secrecy of the key. An example of a protocol which uses this scheme is the E91 protocol [36].

4. QKD procedure

In this section, we describe what happens in a P&M scheme, specifically in the BB84 protocol
[33]. In this protocol, Alice and Bob are connected by two communication channels, namely an
insecure quantum channel and an authenticated classical channel [2]. The quantum channel is
used for the transmission of qubits and is controlled by the eavesdropper. The classical channel
is authenticated so that the eavesdropper can only listen to the communication but cannot alter
the messages being transmitted. This ensures that Alice and Bob can prove that they are
communicating between each other. Otherwise, an eavesdropper could simply block all quan-
tum and classical communication between Alice and Bob and perform QKD with Alice while
taking on Bob’s role and vice versa. Therefore, Alice and Bob have to identify each message
they send as originating from themselves before any post-processing can begin.

4.1. Quantum phase

In the quantum phase, Alice and Bob make use of the quantum channel. They employ the
quantum mechanical signals (i.e. qubits) and they also perform measurements. Three sub-
protocols take place which are as follows:

a. Signal preparation: Alice prepares a random sequence of strings which are drawn from a
set of four signal states and encodes each bit value in the state of a quantum system. The
basis states are horizontal, vertical, diagonal and anti-diagonal.

b. Transmission: The encoded quantum system is sent to Bob via the quantum channel.

c. Measurement: Bob applies a quantum measurement on the quantum system to decode a
bit value. The signals are measured in a random sequence of polarisation bases, either in
the horizontal/vertical or diagonal/anti-diagonal bases.
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Afterwards, Alice keeps the record of signal choices; Bob keeps the record of his basic choices
and the corresponding measurement results.

4.2. Classical phase

In this phase, Alice and Bob use some classical communication protocol in order to distil a
secret key from their correlated data. They achieve this by means of a discussion over the
authenticated classical channel. The key extraction procedure is described as follows:

a. Parameter estimation: Alice randomly chooses some fraction of her signal slots and
announces for these slots to Bob which signal she sent. Bob announces the measurement
he performed and the outcome which he obtains. Depending on the amount of errors
which they obtain from their comparisons, they may also decide whether to continue or
abort the protocol.

b. Sifting: In the sifting protocol, Alice and Bob announce the polarisation bases they used for
the preparation of the signals and which bits are discarded. In order to prevent Eve from
modifying the transmitted messages, Alice and Bob use the authentication scheme. The
remaining data are called sifted data. Alice and Bob proceed to the reconciliation phase or
error correction phase.

c. Key map: Alice and Bob discard the basis which they were using so that Eve may not learn
any information about the encoding. During key map, Alice and Bob map their event
records of the sifted data into a raw key. This step applies to prepare andmeasure protocol.

d. Error correction: The sifted data may still contain some errors; therefore, Alice and Bob
execute a classical error correction protocol in order to reconcile their data. They need to
exchange additional information about their respective data over the public channel. In
addition, they need to authenticate this phase because Eve is still able to modify the
messages in this step. As a result of this protocol, Alice and Bob agree now on a key which
is identical with very high probability but Eve might still have some small additional
information about the key. After this stage, privacy amplification takes place.

e. Privacy amplification: After Alice and Bob have reconciled their key, they can cut the
correlations between their key and Eve by using the so-called privacy amplification. In
this stage, Alice and Bob map their string via a special family of functions called universal
hash functions to a shorter final key [5].

5. Security in QKD

5.1. Security definition

A good definition of security would allow the key generated by a QKD protocol to deviate by a
small parameter ε, from a perfect key [2]. This definition should be able to bound Eve’s
knowledge about the final key. A perfect key refers to a uniformly distributed bit string whose
value is completely independent and remains unknown to an eavesdropper [16]. The main
requirement that the definition of security must fulfil is composability [5]. The composable

Security of Quantum Key Distribution Protocols
http://dx.doi.org/10.5772/intechopen.74234

7



3.1. Prepare and measure (P&M) scheme

In a P&M scheme, Alice encodes some classical information into a set of quantum states and
sends them via an insecure quantum channel to Bob. Bob then performs measurements on the
quantum states he receives. This results in classical data generated by quantum means being
shared between Alice and Bob. Examples of protocols that use this scheme are BB84 [33], B92
[27], six-state [34] and SARG04 [35] protocols.

3.2. Entanglement-based (EB) scheme

In an EB scheme, a source prepares and distributes a maximally entangled quantum state
where one system is sent to Alice and another to Bob. Alice and Bob then perform measure-
ments in two mutually unbiased bases on their system, respectively. Upon measurement, they
obtain perfectly correlated outcomes which are completely random. Since the source prepares
a pure state, it means that this state cannot be correlated with an eavesdropper. This implies
secrecy of the key. An example of a protocol which uses this scheme is the E91 protocol [36].

4. QKD procedure

In this section, we describe what happens in a P&M scheme, specifically in the BB84 protocol
[33]. In this protocol, Alice and Bob are connected by two communication channels, namely an
insecure quantum channel and an authenticated classical channel [2]. The quantum channel is
used for the transmission of qubits and is controlled by the eavesdropper. The classical channel
is authenticated so that the eavesdropper can only listen to the communication but cannot alter
the messages being transmitted. This ensures that Alice and Bob can prove that they are
communicating between each other. Otherwise, an eavesdropper could simply block all quan-
tum and classical communication between Alice and Bob and perform QKD with Alice while
taking on Bob’s role and vice versa. Therefore, Alice and Bob have to identify each message
they send as originating from themselves before any post-processing can begin.

4.1. Quantum phase

In the quantum phase, Alice and Bob make use of the quantum channel. They employ the
quantum mechanical signals (i.e. qubits) and they also perform measurements. Three sub-
protocols take place which are as follows:

a. Signal preparation: Alice prepares a random sequence of strings which are drawn from a
set of four signal states and encodes each bit value in the state of a quantum system. The
basis states are horizontal, vertical, diagonal and anti-diagonal.

b. Transmission: The encoded quantum system is sent to Bob via the quantum channel.

c. Measurement: Bob applies a quantum measurement on the quantum system to decode a
bit value. The signals are measured in a random sequence of polarisation bases, either in
the horizontal/vertical or diagonal/anti-diagonal bases.

Advanced Technologies of Quantum Key Distribution6

Afterwards, Alice keeps the record of signal choices; Bob keeps the record of his basic choices
and the corresponding measurement results.

4.2. Classical phase

In this phase, Alice and Bob use some classical communication protocol in order to distil a
secret key from their correlated data. They achieve this by means of a discussion over the
authenticated classical channel. The key extraction procedure is described as follows:

a. Parameter estimation: Alice randomly chooses some fraction of her signal slots and
announces for these slots to Bob which signal she sent. Bob announces the measurement
he performed and the outcome which he obtains. Depending on the amount of errors
which they obtain from their comparisons, they may also decide whether to continue or
abort the protocol.

b. Sifting: In the sifting protocol, Alice and Bob announce the polarisation bases they used for
the preparation of the signals and which bits are discarded. In order to prevent Eve from
modifying the transmitted messages, Alice and Bob use the authentication scheme. The
remaining data are called sifted data. Alice and Bob proceed to the reconciliation phase or
error correction phase.

c. Key map: Alice and Bob discard the basis which they were using so that Eve may not learn
any information about the encoding. During key map, Alice and Bob map their event
records of the sifted data into a raw key. This step applies to prepare andmeasure protocol.

d. Error correction: The sifted data may still contain some errors; therefore, Alice and Bob
execute a classical error correction protocol in order to reconcile their data. They need to
exchange additional information about their respective data over the public channel. In
addition, they need to authenticate this phase because Eve is still able to modify the
messages in this step. As a result of this protocol, Alice and Bob agree now on a key which
is identical with very high probability but Eve might still have some small additional
information about the key. After this stage, privacy amplification takes place.

e. Privacy amplification: After Alice and Bob have reconciled their key, they can cut the
correlations between their key and Eve by using the so-called privacy amplification. In
this stage, Alice and Bob map their string via a special family of functions called universal
hash functions to a shorter final key [5].

5. Security in QKD

5.1. Security definition

A good definition of security would allow the key generated by a QKD protocol to deviate by a
small parameter ε, from a perfect key [2]. This definition should be able to bound Eve’s
knowledge about the final key. A perfect key refers to a uniformly distributed bit string whose
value is completely independent and remains unknown to an eavesdropper [16]. The main
requirement that the definition of security must fulfil is composability [5]. The composable

Security of Quantum Key Distribution Protocols
http://dx.doi.org/10.5772/intechopen.74234

7



definition characterises the security of a protocol with respect to the ideal functionality. This
means that the security of the key generated could be used in any subsequent cryptographic
task such as the one-time pad for message encryption, where an ideal key is expected. How-
ever, there always exist some challenges in constructing security proofs without making any
assumptions either about the devices or the parties. For example, attacks against practical
schemes exist, such as photon-number-splitting attacks (PNS) [37], time-shift attacks [38], large
pulse attacks [17, 39], blinding attacks [40] and high-power damage attack [41]. Some of the
assumptions made in the definition of QKD security are as follows:

a. there should be no side channels. Side channels are basically discrepancies between the
theoretical model and a practical implementation. They always exist if some information
about the raw key is encoded in degrees of freedom not considered in the theoretical
model. Therefore, this leads to a wrong assessment of the dimension of the Hilbert space
which describes the protocol,

b. there should be access to perfect or almost perfect randomness (locally) and

c. quantum theory is correct and complete.

If there is randomness and quantum theory is correct, then this leads to completion of the
security proofs. However, in classical cryptography, the security is based on the difficulty or
complication of a certain mathematical algorithm to afford security of the protocol. Therefore,
the security is mainly based on the failure to solve the algorithm. This can fail in four ways that
are as follows:

a. conjecture of hardness/difficulty in this case is wrong,

b. underlying computation model could be wrong or could be unphysical,

c. the algorithm is easy for many instances and.

d. the computation could be small.

5.2. Security requirements

In this section, we follow closely the definitions in [5, 42]. A QKD protocol outputs a key SA on
Alice’s side and also a key SB on Bob’s side. The length of the key is l > 0, otherwise no key is
extracted. The length of the key depends on the noise level of the communication channel as
well as security and on the correctness requirements of the protocol. Depending on the devia-
tion of the output key from the ideal one, the protocol aborts in which case SA = SB = ⊥ [42].

1. Correctness: A QKD protocol is called “correct”, if, for any strategy by the eavesdropper
SA = SB. This occurs whenever Alice and Bob output the classical keys SA and SB, respec-
tively, such that Pr[SA 6¼ SB] ≤ εcor. The term εcor is the maximum probability that the
protocol deviates from the behaviour of the correct protocol. In order for correctness to be
achieved, the QKD devices must perform what they are supposed to do according to a
specified model. The devices generate the correct correlations which they are supposed to
output, otherwise the protocol aborts. In other terms, the devices should not send any
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other information to the outside world, in which it is not supposed to do (i.e. devices work
according to their specification),

2. Secrecy: A random variable S drawn from the set S is said to be ε-secure with respect to an
eavesdropper holding a quantum system E, if.

min∈σE
1
2
tr∣rSE � rU ⊗σE∣ ≤ ε, (1)

where rSE = ∑s∈S Ps(s)|s⟩⟨s| ⊗ rE |S = s is the actual state that contains some correlations
between the final key and Eve and ε gives the maximum failure probability of the key
extraction process. The state rU = ∑s∈S |s⟩⟨s||S| is the completely mixed state on S and |S|
is the size of S. Since the trace distance, that is, 1

2tr|r0 � r1| refers to the maximum
probability of distinguishing between the two quantum states (r0,r1), this composable
security definition naturally gives rise to the operational meaning that the protocol is ε-
secure, that is, S is identical to an ideal key U except with probability ε [5]. Again,
according to Helstrom’s Theorem, the probability of distinguishing between the two
quantum states r0 and r1 is bounded by 1

2 +
1
4 tr|r0 � r1| [43].

3. Robustness: A QKD protocol is said to be “not robust” if the protocol aborts even though
the eavesdropper is inactive. While correctness and secrecy are difficult to prove, robust-
ness can simply be proven by running the protocol.

5.3. Infinite-length key security in QKD

Over the last decade, a lot of work in QKD has been devoted to the derivation of unconditional
security proofs [8, 16, 44–47]. One of the main problems is that Eve has the power to perform
any type of eavesdropping strategy. In particular, she can evade detection by attributing noise
caused by her eavesdropping attack to normal noise in the channel. Therefore, it remains
difficult to accurately bound the amount of information that Eve may obtain from the commu-
nication channel. The most important resource which should be determined when constructing
security proofs for QKD protocols is the secret key rate. Therefore, all QKD protocols must be
able to provide a clear expression for the secret key rate. In the asymptotic limit, the secret key
rate is expressed as

r ¼ limn!∞
l
n
, (2)

where l is the length of the final secret key and n is a list of symbols called r raw keys [2]. This
rate was established by Devetak and Winter [18]. The secret key rate against collective attacks
was derived by Kraus, Gisin and Renner [48] and is expressed as

r ¼ I X : Yð Þ � χ X : Eð Þ (3)

where I(X: Y) = H(X) � (X|Y) quantifies the amount of bits need to be satisfied for error
correction. The term χ(X: E) = H(X) + S(E) � S(X, E) refers to the Holevo quantity, where H is
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the Shannon entropy and S is the von Neumann entropy [49, 50]. The Holevo quantity refers to
the amount of privacy amplification required in order to eliminate Eve’s information.

The upper bound on the secret key rate r, can be expressed as.

r ≤ I A : B↓Eð Þ, (4)

where I(A: B ↓ E) is the intrinsic conditional mutual information (intrinsic information for
short) between two information sources held by Alice and Bob after Eve has performed an
optimal individual attack [51]. The intrinsic information between two information sources A
and B given E ̄ is defined as, I(A : B ↓ E) = infE ̄ I(A : B|E ̄), where the infimum is taken over all
discrete random variables E such that AB! E! E ̄ is a Markov chain [52]. It has been shown
that I(A: B ↓ E) is an upper bound on the rate S = S(A;B||E) at which such a key can be
extracted [51].

5.4. Finite-length key security

Many efforts have been made to improve the bounds on the secret key rates for a finite amount
of resources [5, 16, 53–58]. Since the tools for analysing the security under non-asymptotic
regime have become available, there is need to provide new security definitions. In this section,
we follow closely the techniques demonstrated in [16] to discuss some of the parameters used
in the security of QKD for finite-length key limit. The main goal of finite-length key security is
to obtain a secret key rate r, based on a certain number of signals, a security parameter ε, and
certain losses from the error correction without making any assumptions about the post
processing (sifting, error correction and privacy amplification). For example, one can recognise
that the limit in this expression of Eq. (2) is unrealistic because in all implementations of QKD
protocols finite resources are used. This is because in this scenario, N is assumed to be large,
that is, it approaches infinity, while in practice Alice and Bob exchange a limited number of
symbols or signals. In the non-asymptotic limit, the secret key rate can be expressed as.

r ¼ n=N Sξ XjEð Þ �△� leakEC=n½ �: (5)

This shows that only a fraction of n out of N signals exchanged contributes to the key. This is
because of the fact that m = N� n is used for parameter estimation thus leading the presence of a
pre-factor of n/N. The expression Sξ (X |E) takes into account the finite precision of the parameter
estimation. Eve’s information is calculated by using measured parameters, for example, error
rates. In the finite-key scenario, these parameters are estimated on samples of finite length. The
parameter△ is related to the security of privacy amplification. Its value is given by.

△ � 2log dþ 3ð Þ√ log 2 2=εð Þ=n½ � þ 2=nlog2 1=εPA, (6)

where d is the dimension of the Hilbert space, ε ̄ is a smoothing parameter and εPA is the
failure probability of the privacy amplification procedure. Eve’s uncertainty is quantified by a
generalised conditional entropy called the smooth min-entropy and is denoted as Hmin

ε ̄ (X(n)|
E(N)) [5]. The smoothing parameters, ε ̄ and εPA, are parameters which should be optimised
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numerically. The square-root term corresponds to the speed of convergence of the smooth-min
entropy, which is used to measure the key length of an identical and independently distributed
(i.i.d) state toward the von Neumann entropy. In the asymptotic limit, the smooth-min entropy
of an i.i.d state is equal to the von Neumann entropy. The second term εPA is directly linked to
the failure probability of the privacy amplification procedure. Finally, leakEC/n corresponds to
the amount of information which needs to be exchanged by Alice and Bob during the recon-
ciliation phase. This quantity may not reach the Shannon limit, so leakEC ≥ nH(X|Y). Typically,

leakEC ≈ fECH XjYð Þ þ 1=n log 2 2=εECð Þ, (7)

where fEC > 1 depends on the code and εEC refers to the failure probability of the error
correction procedure.

Unlike in the asymptotic scenario, one needs to fix an overall security parameter ε for the QKD
protocol. The parameter ε corresponds to the maximum probability failure that is tolerated on
the key extraction protocol. This can be expressed as ε = εPE + εEC + ε ̄ + εPA, where εPE is the
error in the parameter estimation step and the other terms are as previously defined. All the
parameters, εPE, εEC, ε ̄, εPA, can be independently fixed at arbitrarily low values.

As a result, the overall security parameter ε can be chosen arbitrarily small, to a value
corresponding to Alice and Bob’s wishes, but this comes at a cost of decreasing the final secret
key rate. If m signals have been used to estimate the parameter λ, then the deviation of
measurement outcomes λm obtained from measuring the m samples from the ideal estimate
λ∞ can be quantified by using the law of large numbers resulting [5, 59].

∣λm � λ∞∣ ≤ ξ m;dð Þ ¼ √ ln 1=εPEð Þ þ dln mþ 1ð Þ=2 m½ � (8)

The objective of the privacy amplification step is to minimise the quantity of correct informa-
tion which the eavesdropper may have obtained about Alice and Bob’s reference raw key.
After privacy amplification, the length of the raw key that remains will be.

l ≤Hmin
ε XjEð Þ � 2log2 1=εPAð Þ, (9)

where Hmin (X |E) expresses Eve’s uncertainty and εPA is the error in the privacy amplification
step.

6. Conclusion

In the general philosophy of proving the security of QKD protocols, standard methods are
known to exist. However, these seem to fail for other classes of protocols, for example, the
distributed phase reference protocols. In this chapter, we discussed that QKD is a technique,
which uses the power of quantum mechanics to establish a string of random bits called a key.
We also showed how the secret key is generated and shared between Alice and Bob. Since the
key is random and unknown to an eavesdropper, Eve, she is unable to learn anything about
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because of the fact that m = N� n is used for parameter estimation thus leading the presence of a
pre-factor of n/N. The expression Sξ (X |E) takes into account the finite precision of the parameter
estimation. Eve’s information is calculated by using measured parameters, for example, error
rates. In the finite-key scenario, these parameters are estimated on samples of finite length. The
parameter△ is related to the security of privacy amplification. Its value is given by.

△ � 2log dþ 3ð Þ√ log 2 2=εð Þ=n½ � þ 2=nlog2 1=εPA, (6)

where d is the dimension of the Hilbert space, ε ̄ is a smoothing parameter and εPA is the
failure probability of the privacy amplification procedure. Eve’s uncertainty is quantified by a
generalised conditional entropy called the smooth min-entropy and is denoted as Hmin

ε ̄ (X(n)|
E(N)) [5]. The smoothing parameters, ε ̄ and εPA, are parameters which should be optimised
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numerically. The square-root term corresponds to the speed of convergence of the smooth-min
entropy, which is used to measure the key length of an identical and independently distributed
(i.i.d) state toward the von Neumann entropy. In the asymptotic limit, the smooth-min entropy
of an i.i.d state is equal to the von Neumann entropy. The second term εPA is directly linked to
the failure probability of the privacy amplification procedure. Finally, leakEC/n corresponds to
the amount of information which needs to be exchanged by Alice and Bob during the recon-
ciliation phase. This quantity may not reach the Shannon limit, so leakEC ≥ nH(X|Y). Typically,

leakEC ≈ fECH XjYð Þ þ 1=n log 2 2=εECð Þ, (7)

where fEC > 1 depends on the code and εEC refers to the failure probability of the error
correction procedure.

Unlike in the asymptotic scenario, one needs to fix an overall security parameter ε for the QKD
protocol. The parameter ε corresponds to the maximum probability failure that is tolerated on
the key extraction protocol. This can be expressed as ε = εPE + εEC + ε ̄ + εPA, where εPE is the
error in the parameter estimation step and the other terms are as previously defined. All the
parameters, εPE, εEC, ε ̄, εPA, can be independently fixed at arbitrarily low values.

As a result, the overall security parameter ε can be chosen arbitrarily small, to a value
corresponding to Alice and Bob’s wishes, but this comes at a cost of decreasing the final secret
key rate. If m signals have been used to estimate the parameter λ, then the deviation of
measurement outcomes λm obtained from measuring the m samples from the ideal estimate
λ∞ can be quantified by using the law of large numbers resulting [5, 59].

∣λm � λ∞∣ ≤ ξ m;dð Þ ¼ √ ln 1=εPEð Þ þ dln mþ 1ð Þ=2 m½ � (8)

The objective of the privacy amplification step is to minimise the quantity of correct informa-
tion which the eavesdropper may have obtained about Alice and Bob’s reference raw key.
After privacy amplification, the length of the raw key that remains will be.

l ≤Hmin
ε XjEð Þ � 2log2 1=εPAð Þ, (9)

where Hmin (X |E) expresses Eve’s uncertainty and εPA is the error in the privacy amplification
step.

6. Conclusion

In the general philosophy of proving the security of QKD protocols, standard methods are
known to exist. However, these seem to fail for other classes of protocols, for example, the
distributed phase reference protocols. In this chapter, we discussed that QKD is a technique,
which uses the power of quantum mechanics to establish a string of random bits called a key.
We also showed how the secret key is generated and shared between Alice and Bob. Since the
key is random and unknown to an eavesdropper, Eve, she is unable to learn anything about
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the message simply by intercepting the ciphertext. This phenomenon is beyond the ability of
classical information processing.

In this chapter, we provided a background study of QKD and also defined the basic notion of
security in QKD protocols. In particular, the tools for analysing the security proofs for both
infinite- and finite-key QKD protocols were discussed and demonstrated. Further, we
discussed that the finite-key analysis offers more realistic results than the infinite-key one,
while the infinite-key analysis provides more simplicity.
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Abstract

Fingerprinting and cryptographic hashing have quite different usages in computer
science, but have similar properties. Interpretation of their properties is determined by
the area of their usage: fingerprinting methods are methods for constructing efficient
randomized and quantum algorithms for computational problems, whereas hashing
methods are one of the central cryptographical primitives. Fingerprinting and hashing
methods are being developed from the mid of the previous century, whereas quantum
fingerprinting and quantum hashing have a short history. In this chapter, we investigate
quantum fingerprinting and quantum hashing. We present computational aspects of
quantum fingerprinting and quantum hashing and discuss cryptographical properties
of quantum hashing.
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1. Introduction

Fingerprinting and hashing are well-known techniques. Fingerprinting is widely used in
various meanings in different areas of computer science. We restrict ourselves to the area of
computational complexity theory where the notion of fingerprinting is more or less formal-
ized. Cryptographic hashing allows to securely present objects and mathematically is more
formalized. Fingerprinting and cryptographic hashing have quite different usages in computer
science, but have similar properties. Interpretation of their properties is determined by the area
of their usage: fingerprinting methods are methods for constructing efficient randomized and
quantum algorithms for computational problems, whereas hashing methods are one of the
central cryptographical primitives.

Fingerprinting and hashing methods are being developed from the mid of the previous cen-
tury, whereas quantum fingerprinting and quantum hashing have a short history.
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In this chapter, we present computational aspects of quantum fingerprinting, discuss crypto-
graphical properties of quantum hashing, and present the possible use of quantum hashing for
quantum hash-based message authentication codes (QMAC).

1.1. Classical and quantum fingerprinting

Fingerprinting in complexity theory is a procedure that maps a large data item to a much
shorter string, its fingerprint, that identifies the original data (with high probability). The key
properties of classical fingerprinting methods are (i) they allow to build efficient randomized
computational algorithms and (ii) the resulting algorithms have bounded error [1].

Rusins Freivalds was one of the first researchers who introduced methods (later called finger-
printing) for constructing efficient randomized algorithms (which are more efficient than any
deterministic algorithm) [2, 3].

In quantum case, fingerprinting is a procedure that maps classical data to a quantum state that
identifies the original data (with high probability). One of the first applications of the quantum
fingerprinting method is due to Ambainis and Freivalds [4]: for a specific language, they have
constructed a quantum finite automaton with an exponentially smaller size than any classical
randomized automaton. An explicit definition of the quantum fingerprinting was introduced
by Buhrman et al. [5] in (2001) for constructing efficient quantum communication protocol for
equality testing. It is worth noting that the fingerprinting by Buhrman et al. has been used as a
cryptographic hash function in [6, 7].

1.2. Cryptographic quantum hashing

Cryptographic hashing has a lot of fruitful applications in cryptography. Note that in cryptog-
raphy functions satisfying (i) one-way property and (ii) collision resistance property (in differ-
ent specific meanings) are called hash functions, and we propose to do so when we are
considering cryptographical aspects of quantum functions with the above properties. So, we
suggest to call a quantum function that satisfies properties (i) and (ii) (in the quantum setting),
a cryptographic quantum hash function or just quantum hash function. Note, however, that
there is only a thin line between the notions of quantum fingerprinting and quantum hashing.
One of the first considerations of a quantum function (that maps classical words into quantum
states) as a cryptographic primitive, having one-way property and collision resistance prop-
erty is due to [6], where the quantum fingerprinting function from [5] was used. Another
approach to constructing quantum hash functions from quantum walks was considered in
[8, 9, 10], and it resulted in privacy amplification in quantum key distribution and other useful
applications.

1.3. The chapter organization

In Section 3, we consider quantum fingerprinting as a mapping of classical inputs to quantum
states, which allows to construct efficient quantum algorithms for computing Boolean func-
tions. We consider the quantum fingerprinting function from [5] as well as the quantum
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fingerprinting technique from [11]. The latter was motivated by the paper [4] and its general-
ization [12].

We define a notion of quantum (δ, ε)-hash function that is quantumly one-way δ-resistant and
quantumly collision ε-resistant.

We show that one-way property and collision resistance property are correlated for a quantum
hash function. The more the function is one-way, the less it is collision resistant and vice versa.
We show that such a correlation can be balanced.

We present an approach for quantum hash function constructions by establishing a connection
with small-biased sets [13] and quantum hash function constructions: we prove that each ε-
biased set allows to generate quantum collision ε-resistant function. Note that one-way prop-
erty of this function depends on the size of such ε-biased set: the smaller ε-biased set allows to
generate a quantum function with the better one-way characteristics. Such a connection adds
to the long list of small-biased sets’ applications.

In particular, it was observed in [13, 14] that the ε-bias property is closely related to the error-
correcting properties of linear codes. In particular, for the binary case, a set S is ε-biased iff
every pair of distinct code words of corresponding error correcting code CS has relative
Hamming distance (1� ε)/2.

Note that the quantum fingerprinting function from [5] is based on a binary error-correcting
code, and so it solves the problem of constructing quantum hash functions for the binary case.
For the general (nonbinary) case, ε-bias does not correspond to Hamming distance. Thus, in
contrast to the binary case, an arbitrary linear error correcting code cannot be used directly for
quantum hash functions.

Note that one-way property of function means computational effectiveness of this func-
tion. We show that considered construction of quantum (δ, ε)-hash function is computed
effectively in the model of quantum branching programs. We consider two complexity
measures: a number width(Q) of qubits that QBP Q uses for computation and a number
time(Q) of computational steps of QBP Q. Such QBP Q is of width(Q) =O(log log q) and
time(Q) = log q.

We prove that such QBP construction is optimal. That is, we prove lower bounds Ω(log log q)
for QBP width and Ω(log q) for QBP time for quantum (δ, ε)-hash function presentation.

2. Preliminaries

We recall that mathematically a qubit is described as a unit vector in the two-dimensional
Hilbert complex space ℋ2. Let s ≥ 1. Let ℋd be the d = 2s-dimensional Hilbert space, describing
the states of s qubits. Another notation for ℋd is (ℋ2)⊗s, i.e., ℋd is made up of s copies of a
single qubit space ℋ2.

ℋ2� �⊗ s ¼ ℋ2 ⊗ ,…, ⊗ℋ2 ¼ ℋ2s : (1)
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In this chapter, we present computational aspects of quantum fingerprinting, discuss crypto-
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fingerprinting technique from [11]. The latter was motivated by the paper [4] and its general-
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Conventionally, we use notation |i〉 for the vector from Hd, which has a 1 on the i-th position
and 0 elsewhere. An orthonormal basis |1〉, … ,|d〉 is usually referred to as the standard
computational basis.

We let ℤq to be a finite additive group of Z/qZ, the integers modulo q. Let Σk be a set of words
of length k over a finite alphabet Σ. Let X be a finite set. In this paper, we let X ¼ Σk or X ¼ ℤq.
For K ¼ ∣X∣ and integer s ≥ 1, we define a (K; s) classical-quantum function (or just quantum
function) to be mapping

ψ : X! ℋ2� �⊗ s
or ψ : w↦ ψ wð Þi:j (2)

In order to outline a computational aspect and present a procedure for quantum function ψ,
we define ψ to be a unitary transformation (determined by an element w∈X) of the initial state
|ψ0〉∈ (ℋ2)⊗s to a quantum state |ψ(w)〉∈ (ℋ2)⊗s

ψ : f ψ0

�g � X! ℋ2� �⊗ s
ψ wð Þi ¼ U wð Þ ψ0

�
,

������� (3)

where U(w) is a unitary matrix.

Extracting information on w from |ψ(w)〉 is a result of measurements of quantum state |ψ(w)〉.
In this chapter, we consider quantum transformations and measurements of quantum states
with respect to computational basis.

3. Quantum fingerprinting

The ideas of the fingerprinting technique in the quantum setting for the first time appeared in
[4]. The authors used a succinct presentation of the classical input by a quantum automata
state, which resulted in an exponential improvement over classical algorithm. Later in the
works of [12] the ideas were developed further to give an arbitrarily small probability of error.
This was the basis for the general quantum fingerprinting framework proposed in [11].

However, the term “quantum fingerprinting” is mostly used in scientific literature to address a
seminal paper [5], where this notion first appeared explicitly. To distinguish between different
versions of the quantum fingerprinting techniques, the fingerprinting function from [5] is
called as “binary” (since it uses some binary error-correcting code in its construction), whereas
the fingerprinting from [11] is called “q-ary” for it uses presentation of the input in ℤq.

3.1. Binary quantum fingerprinting

The quantum fingerprinting function was formally defined in [5], where it was used for
quantum equality testing in a quantum communication model. It is based on the notion of a
binary error-correcting code.
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An (n, k, d) error-correcting code is a map C :Σk!Σn such that, for any two distinct words w ,
w
0
∈Σk, the Hamming distance d(C(w),C(w

0
)) between code words C(w) and C(w

0
) is at least d.

The code is binary if Σ = {0, 1}.

The construction of the quantum fingerprinting function is as follows.

• Let c > 2 and ε < 1. Let k be a positive integer and n = ck. Let E : {0, 1}k!{0, 1}n be a (n, k, d)
binary error-correcting code with Hamming distance d ≥ (1� ε)n.

• Define a family of functions FE = {E1, … ,En}, where Ei : 0; 1f gk ! F2 is defined by the rule:
Ei(w) is the i-th bit of the codeword E(w).

• Let s = log n + 1. Define the quantum function ψFE
: {0, 1}k!(ℋ2)⊗s, determined by a

word w as

jψFE
wð Þ〉 ¼ 1ffiffiffi

n
p
Xn

i¼1
ii Ei wð Þi:jj (4)

Original paper of [5] used this function to construct a quantum communication protocol
that tests equality in the simultaneous message passing (SMP) model with no shared
resources. This protocol requires O(log n) qubits to compare n-bit binary strings, which is
exponentially smaller than any classical deterministic or even randomized protocol in the
SMP setting with no shared randomness. The proposed quantum protocol has one-sided
error of 1/2(1 + 〈ψFE

(x)|ψFE
(y)〉2), where |ψFE

(x)〉 and |ψFE
(y)〉 are two different quantum

fingerprints. Their inner product |〈ψFE
(x)|ψFE

(y)〉| is bounded by ε, if the Hamming
distance of the underlying code is (1� ε)n. Thus, ε is determined by the chosen error-
correcting code. For instance, Justesen codes mentioned in the paper give ε < 9/10 + 1/(15c)
for any chosen c > 2.

In the same paper, it was shown that this result can be improved by choosing an error-
correcting code with Hamming distance between any two distinct code words (1� ε)n/2 and
(1 + ε)n/2 for any ε > 0 (however, the existence of such codes can only be proved nonconstruct-
ively via probabilistic argument).

Further research on this topic mostly used the following phase presentation version of quan-
tum fingerprinting. We define the quantum fingerprinting function ψ : {0, 1}k!(ℋ2)⊗s deter-
mined by a word w as

ψFE
wð Þ ¼ 1ffiffiffi

n
p
Xn

i¼1
�1ð ÞEi wð Þ iij (5)

This function gives the following bound for the fingerprints of distinct inputs

ψFE
xð ÞjψFE

yð Þ
D E���

��� ¼ 1
n

Xn

i¼1
�1ð ÞEi wð Þ⊕Ei w0ð Þ ¼ n� d E wð Þ;E w0ð Þð Þ

n
≤ ε (6)
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�
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where U(w) is a unitary matrix.

Extracting information on w from |ψ(w)〉 is a result of measurements of quantum state |ψ(w)〉.
In this chapter, we consider quantum transformations and measurements of quantum states
with respect to computational basis.

3. Quantum fingerprinting

The ideas of the fingerprinting technique in the quantum setting for the first time appeared in
[4]. The authors used a succinct presentation of the classical input by a quantum automata
state, which resulted in an exponential improvement over classical algorithm. Later in the
works of [12] the ideas were developed further to give an arbitrarily small probability of error.
This was the basis for the general quantum fingerprinting framework proposed in [11].

However, the term “quantum fingerprinting” is mostly used in scientific literature to address a
seminal paper [5], where this notion first appeared explicitly. To distinguish between different
versions of the quantum fingerprinting techniques, the fingerprinting function from [5] is
called as “binary” (since it uses some binary error-correcting code in its construction), whereas
the fingerprinting from [11] is called “q-ary” for it uses presentation of the input in ℤq.

3.1. Binary quantum fingerprinting

The quantum fingerprinting function was formally defined in [5], where it was used for
quantum equality testing in a quantum communication model. It is based on the notion of a
binary error-correcting code.
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for any chosen c > 2.

In the same paper, it was shown that this result can be improved by choosing an error-
correcting code with Hamming distance between any two distinct code words (1� ε)n/2 and
(1 + ε)n/2 for any ε > 0 (however, the existence of such codes can only be proved nonconstruct-
ively via probabilistic argument).
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mined by a word w as
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3.2. q-ary quantum fingerprinting

In this section, we demonstrate the generalization of binary fingerprinting function to the q-ary
case. General technique is presented in [11, 15]. Here, we present the idea using specific
Boolean function g : {0, 1}n!{0, 1} where g(σ) = 1 iff σ = 0mod sq. We treat σ also as an integer
encoded by binary string σ.

To test g, we rotate the initial state |0〉 of a single qubit by an angle θ =πσ/q:

0i ! ψ σð Þi ¼ cosθ 0i þ sinθ 1ijjjj (7)

Then, this state |ψ(σ)〉 is measured and the input σ is accepted iff the result of the measurement
is |0〉.

Obviously, this quantum state is �|0〉 iff σ = 0mod q. In the worst case, this algorithm gives the
one-sided error of cos2π(q� 1)/q, which can be arbitrarily close to 1.

The above description can be presented as follows using log t + 1 = (log log q) + 1 qubits:

j0〉⊗⋯⊗ j0〉|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
log t

⊗ j0〉! 1ffiffi
t
p
Xt

i¼1
ii cosθi 0i þ sinθi 1ij Þ,jðj (8)

where θi ¼ 2πsiσ
q and the set S = {s1, … , st}⊆ℤq is chosen in order to guarantee the small proba-

bility of error [11, 15]. That is, the last qubit is simultaneously rotated in t different subspaces
by corresponding angles θi.

The above q-ary quantum fingerprinting method can be presented in the following procedure:

1. The initial state of the quantum register is |0〉⊗ log t|0〉.

2. The Hadamard transform creates the uniform superposition 1ffiffi
t
p
Pt
j¼1

ji 0ijj of the basis states

{|j〉|0〉 : j∈ {1, … , t}}.

3. Based on the input σ, its fingerprint is created: 1ffiffi
t
p
Pt

j¼1 jj〉 cos 2πsjσ
q j0〉þ sin 2πsjσ

q j1〉
� �

.

4. The Hadamard transform turns the fingerprint into the state jψ〉 ¼ 1
t

Pt
l¼1

�

cos 2πslσ
q Þj0i⊗ log t 0i þ…j

5. The quantum state |ψ〉 is measured and the input is accepted iff the result is |0〉⊗ log t|0〉.

In [11, 15, 16], we have applied this technique to construct efficient quantum algorithms for a
certain class of Boolean functions in the model of read-once quantum branching programs [17].

3.2.1. Quantum branching programs

Branching program is a well-known computational model in computer science, also known as
a binary decision diagram in Applied Computer Science. Informally speaking, branching
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program is a circuit with ability to test in each of its computational step a needed bit of an
input. Such circuit is a realization of a program that uses only “if then else” and “go to”
primitives. We use the definition from [18]

Definition 1 ([18]) A Quantum Branching Program Q over the Hilbert space ℋd is defined as

Q ¼ T; ψ0

��� �
,

�
(9)

where T is a sequence of l instructions: Tj = (xij,Uj(0),Uj(1)) is determined by variable xij tested on the
step j, and Uj(0) and Uj(1) are unitary transformations in ℋd.

Vectors |ψ〉∈ℋd are called states (state vectors) of Q, |ψ0〉∈ℋd is the initial state of Q.

We define a computation of Q on an input σ =σ1 , … , σn∈ {0, 1}n as follows:

1. A computation of Q starts from the initial state |ψ0〉.

2. The j-th instruction of Q reads the input symbol σij (the value of xij) and applies the transition
matrix Uj =Uj(σij) to the current state |ψ〉 to obtain the state |ψ

0
〉 =Uj(σij)|ψ〉.

3. The final state is

jψ σð Þ〉 ¼
Y1

j¼l
Uj σij
� �0

@
1
Ajψ0〉: (10)

Accepting of an input sequence is a result of measuring of final state |ψ(σ)〉 in computational
basis and is formalized as follows. Let Accept⊆ {1, 2,…d} be the set of indices of accepting basis
states. After the l-th (last) step of quantum transformation, Qmeasures its configuration |ψσ〉 =
(α1, … ,αd)

T and the input σ is accepted with probability

Figure 1. Branching program in the form of circuit. Variables xi1 , … , xil denoting classical control (input) bits. Single
wires carry quantum information, and double wires denote classical information and control.
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Praccept σð Þ ¼
X

i∈Accept

αij j2: (11)

3.2.2. Circuit representation

Quantum circuits are good formalism for quantum algorithms representation [19, 20]. A
quantum branching programs can be viewed as a quantum circuit aided with an ability to
read classical bits as control variables for unitary operations (see Figure 1).

4. Quantum hashing

In this section, we present notion of quantum (δ, ε)-resistant hash function based on [21].

4.1. One-way δ resistance

We present the following definition of a quantum δ-resistant one-way function. Let “information

extracting” mechanism M be a function M : ℋ2� �⊗ s ! X. Informally speaking, mechanism M
makes some measurements to state |ψ〉∈ (ℋ2)⊗s and decodes the result of measurement to X.

Definition 2 ([21]) Let X be a random variable distributed over X Pr X ¼ w½ � : w∈Xf g. Let

ψ : X! ℋ2� �⊗ s be a quantum function. Let Y be any random variable over X obtained by some
mechanismM making measurement to the encoding ψ of X and decoding the result of the measurement
to X. Let δ > 0. We call a quantum function ψ a one-way δ-resistant function if

1. it is easy to compute, i.e., a quantum state |ψ(w)〉 for a particular w∈X can be determined using a
polynomial-time algorithm.

2. for any mechanism M, the probability Pr[Y =X] that M successfully decodes Y is bounded by δ

Pr Y ¼ X½ � ≤ δ: (12)

For the cryptographic purposes, it is natural to expect (and we do this in the rest of the paper)
that random variable X is uniformly distributed.

A quantum state of s ≥ 1 qubits can theoretically record an infinite amount of information. On
the other hand, the Holevo’s theorem [22] states that by a quantum measurement, one can
extract O(s) bits of information about the state. Here, we use the result of [23] motivated by the
Holevo’s theorem.

Property 1 ([23]) Let X be a random variable uniformly distributed over {0, 1}k. Let ψ : {0, 1}k!(ℋ2)⊗s

be a quantum function. Let Y be a random variable over {0, 1}k obtained by some mechanism M making
some measurement of the encoding ψ of X and decoding the result of measurement to {0, 1}k. Then, the
probability of correct decoding is given by
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Pr Y ¼ X½ � ≤ 2s

2k
: (13)

So, extracting an information on input σ from state |ψ(σ)〉 in conditions of Property 1 is “hard.”
The effectiveness of computation |ψ(σ)〉 depends on construction of quantum hash function ψ.
In Section 4.4, we consider quantum hash function construction based on small-biased sets and
prove effectiveness of this construction.

4.2. Collision ε resistance

The following definition was presented in [24].

Definition 3 Let ε > 0. We call a quantum function ψ : X! ℋ2� �⊗ s a collision ε-resistant function if
for any pair w ,w

0
of different inputs, |〈ψ(w)|ψ(w

0
)〉| ≤ ε.

Informally speaking, we need two states |ψ(w)〉 and |ψ(w
0
)〉 that is almost orthogonal in order

to get small probability of collision, that is, if one tests states |ψ(w)〉 and |ψ(w
0
)〉 for equality,

then a testing procedure should give positive result with a small probability. We start with
quantum testing procedures.

4.2.1. Testing equality

The crucial procedure for quantum hashing is an equality test for |ψ(v)〉 and |ψ(w)〉 that can be
used to compare encoded classical messages v and w. This procedure can be a well-known
SWAP test [5] or something that is adapted for specific hashing function, like REVERSE test,
see for example [6].

The SWAP test is the known quantum test for the equality of two unknown quantum states
|ψ〉 and |ψ

0
〉 (see [6, 25] for more information).

We denote PrSWAP[v =w] a probability that the SWAP test having quantum hashes |ψ(v)〉 and
|ψ(w)〉 outputs the result “v =w” (outputs the result “|ψ(v)〉 = |ψ(w)〉”).

Property 2 ([6]) Let function ψ :w↦|ψ(w)〉 satisfy the following condition. For any two different
elements v, w∈X, it is true that |〈ψ(v)|ψ(w)〉| ≤ ε. Then,

Prswap v ¼ w½ � ≤ 1
2

1þ ε2
� �

: (14)

Proof. From the description of SWAP test, it follows that

Prswap v ¼ w½ � ¼ 1
2

1þ j〈ψ vð Þ ψ wð Þ〉j j2
� �

: (15)

4.2.1.1. REVERSE test

The test for equality, which we are presenting here, was first mentioned in [6]. In our paper
[25], we call this test a REVERSE test. This test checks if a quantum state |ψ〉 is a hash of an
element v by applying the procedure that inverts the creation of a quantum quantum
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X
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αij j2: (11)
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see for example [6].
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hash. That is, the REVERSE test procedure transforms the quantum hash to the initial
quantum state.

Formally, let the procedure of quantum hashing, given initial state |0〉, maps the input w by
unitary transformation U(w): i.e., quantum hashing produces quantum state |ψ(w)〉 = U(w)|
0〉. Then, the REVERSE test, given v and |ψ(w)〉, applies U�1(v) to the state |ψ(w)〉 and
measures the resulting state with respect to initial state |0〉. The output of REVERSE test is
“v =w” iff the measurement outcome is |0〉. The output of REVERSE test is “v=¼ w” iff the
measurement outcome is different from |0〉. The probability that the REVERSE test having
quantum state |ψ(w)〉 and an element v outputs the result v =w are denoted by
PrREVERSE[v =w] .

Property 3 ([23]) Let hash function ψ :w↦|ψ(w)〉 satisfies the following condition. For any two
different elements, v and w∈X, it is true that |〈ψ(v)|ψ(w)〉| ≤ ε. Then,

PrREVERSE v ¼ w½ � ≤ ε2: (16)

PrREVERSE[v =w] = ∣〈0|U�1(v)ψ(w)〉|2 = ∣〈U�1(v)ψ(v)|U�1(v)ψ(w)〉|2

¼ ∣ ψ vð Þ ψ wð Þj ij2 ≤ ε2:
D

(17)

4.3. Balanced quantum (δ, ε) resistance

The combination of one-way and collision-resistant function definitions gives the definition of
quantum cryptographic function.

Definition 4 ([21]) Let K ¼ ∣X∣ and s ≥ 1. Let δ > 0 and ε > 0. We call a function ψ : X! ℋ2� �⊗ s a
quantum (δ, ε)-hash function iff ψ is one-way δ-resistant and is collision ε-resistant function.

We present below the following two examples to demonstrate how one-way δ resistance and
collision ε resistance are correlated. The first example was presented in [4] in terms of quantum
automata.

Example 1 Let v∈ {0, … , 2k� 1}. Number v is encoded by a single qubit as follows:

ψ : v↦ cos
2πv
2k

� �
0j i þ sin

2πv
2k

� �
1i:j (18)

Extracting information from |ψ〉 by measuring |ψ〉with respect to the basis {|0〉, |1〉} gives the
following result. The function ψ is one-way 2

2k
resistant (see Property 1) and collision

cos(π/2k� 1) resistant. Thus, the function ψ has a good one-way property but has a bad collision
resistance property for large k.

Clearly, that one can store (to hash) in this way an arbitrary large amount of classical informa-
tion, that is, for arbitrary large k one can store all numbers from {0, … , 2k� 1} in a single qubit.
Holevo bound [22] proves that given s ≥ 1 qubits, the amount of classical information that can
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be retrieved, i.e., accessed, can be only up to s classical bits. This is a quantum mechanical
approach for the one-way property.

The map ψ is one to one. So, there is no collision in a “quantum level.” But extracting the result
from quantum state is a probabilistic procedure. This means that one can get the situation when
some procedure that tests the equality of different quantum hashes |ψ(v)〉, |ψ(w)〉 outputs “the
hashes are the same” (equivalently “the numbers v, w are the same”), while the numbers v and w
are different. For example, two numbers 0 and 2k� 2 generate orthogonal states |ψ(0)〉 = |1〉 and
|ψ(2k� 2)〉 = |0〉. So, numbers 0 and 2k� 2 are distinguishably reliable in respect of the above
encoding. But two numbers 0 and 1 cannot be reliably distinguished by encoding ψ.

Example 2 Binary word v =σ1 , … ,σk∈ {0, 1}k encoded by k qubits (each bit encoded by a qubit): ψ :
v↦|v〉 = |σ1〉 , ⋯ , |σk〉.

Clearly, we have that such encoding is collision one-way, 1-resistant, and 0-resistant. So, in
contrast to Example 1, the encoding ψ from Example 2 for different words v and w, their
images (quantum states) |ψ(v)〉 and |ψ(v)〉 are orthogonal and therefore reliably distinguished;
but ψ is easily invertible: the function ψ is not one-way resistant.

The following result [24] proves that a quantum collision ε-resistant function needs at least
log log K� c(ε) qubits.

Property 4 ([24]) Let s ≥ 1 and K ¼ ∣X∣ ≥ 4. Let ψ : X! ℋ2� �⊗ s be a collision ε-resistant quantum
hash function. Then,

s ≥ log log K � log log 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= 1� εð Þ

p� �
� 1: (19)

Proof. First, we observe that from the definition ∣∣ ψi∣∣ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ψjψh ip�� of the norm, it follows that

∣∣∣ψi � ∣ψ0i∣∣2 ¼ ∣∣∣ψi∣∣2 þ ∣∣∣ψ0i∣∣2 � 2 ψjψ0h i: (20)

Hence, for an arbitrary pair w ,w
0
of different elements from X, we have that

∣∣∣ψ wð Þi � ∣ψ w0ð Þi∣∣ ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� εð Þ

p
: (21)

We let Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� εð Þp

. For short, we let (ℋ2)⊗s =V in this proof. Consider a set Φ ¼ ψ wð Þi :jf
w∈Xg. If we draw spheres of radius Δ/2 with centers |ψ〉∈Φ, then spheres do not pairwise
intersect. All these K spheres are in a large sphere of radius 1 +Δ/2. The volume of a sphere of
radius r in V is cr2

s+1
for the complex space V. The constant c depends on the metric of V. From this,

we have that the number K is bonded by the number of “small spheres” in the “large sphere”

K ≤
c 1þ Δ=2ð Þ2sþ1

c Δ=2ð Þ2sþ1
: (22)

Hence,
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hash. That is, the REVERSE test procedure transforms the quantum hash to the initial
quantum state.
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0〉. Then, the REVERSE test, given v and |ψ(w)〉, applies U�1(v) to the state |ψ(w)〉 and
measures the resulting state with respect to initial state |0〉. The output of REVERSE test is
“v =w” iff the measurement outcome is |0〉. The output of REVERSE test is “v=¼ w” iff the
measurement outcome is different from |0〉. The probability that the REVERSE test having
quantum state |ψ(w)〉 and an element v outputs the result v =w are denoted by
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following result. The function ψ is one-way 2
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resistant (see Property 1) and collision

cos(π/2k� 1) resistant. Thus, the function ψ has a good one-way property but has a bad collision
resistance property for large k.

Clearly, that one can store (to hash) in this way an arbitrary large amount of classical informa-
tion, that is, for arbitrary large k one can store all numbers from {0, … , 2k� 1} in a single qubit.
Holevo bound [22] proves that given s ≥ 1 qubits, the amount of classical information that can
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be retrieved, i.e., accessed, can be only up to s classical bits. This is a quantum mechanical
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from quantum state is a probabilistic procedure. This means that one can get the situation when
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but ψ is easily invertible: the function ψ is not one-way resistant.

The following result [24] proves that a quantum collision ε-resistant function needs at least
log log K� c(ε) qubits.

Property 4 ([24]) Let s ≥ 1 and K ¼ ∣X∣ ≥ 4. Let ψ : X! ℋ2� �⊗ s be a collision ε-resistant quantum
hash function. Then,

s ≥ log log K � log log 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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of different elements from X, we have that

∣∣∣ψ wð Þi � ∣ψ w0ð Þi∣∣ ≥
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we have that the number K is bonded by the number of “small spheres” in the “large sphere”
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s ≥ log logK � log log 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= 1� εð Þ

p� �
� 1: (23)

Properties 1 and 4 provide a basis for building a “balanced” one-way δ-resistance and collision
ε-resistance properties. That is, roughly speaking, if we need to hash elements w from the
domain X with ∣X∣ ¼ K and if one can build for an ε > 0 a collision ε-resistant (K; s) hash
function ψ with s ≈ loglogK� c(ε) qubits, then the function f is one-way δ resistant with
δ ≈ (logK/K). Such a function is balanced with respect to Property 4.

To summarize the above considerations, we can state the following. A quantum (δ,ε)-hash func-
tion is a function that satisfies all of the properties that a “classical” hash function should satisfy.
Preimage resistance follows from Property 1. Second preimage resistance and collision resistance
follow, because all inputs are mapped to states that are nearly orthogonal. Therefore, we see that
quantum hash functions can satisfy the three properties of a classical cryptographic hash function.

4.4. Quantum hash functions construction via small-biased sets

This section is based on the paper [26]. We first present a brief background on ε-biased sets. For
more information, see [27]. Note that ε-biased sets are generally defined for arbitrary finite
groups, but here we restrict ourselves to ℤq.

For an a∈ℤq, a character χa of ℤq is a homomorphism χa :ℤq!μq, where μq is the (multiplica-

tive) group of complex q-th roots of unity. That is, χa(x) =ω
ax, where ω ¼ e

2πi
q is a primitive q-th

root of unity. The character χ0� 1 is called a trivial character.

Definition 5 A set S⊆ℤq is called ε biased, if for any nontrivial character χ∈ {χa : a∈ℤq}

1
∣S∣
j
X
x∈ S

χ xð Þj ≤ ε: (24)

These sets are interesting when ∣S∣≪ ∣ℤq∣ (as S =ℤq is 0 biased). In their seminal paper, Naor
and Naor [13] defined these small-biased sets, gave the first explicit constructions of such sets,
and demonstrated the power of small-biased sets for several applications.

Remark 1 Note that a set S of O(log q/ε2) elements selected uniformly at random from ℤq is ε biased
with positive probability [28].

Many other constructions of small-biased sets followed during the last decades.

Vasiliev [26] showed that ε-biased sets generate (δ,ε)-resistant hash functions. We present the
result of [26] in the following form.

Theorem 1 Let S⊆ℤq be an ε-biased set. Let HS = {ha(x) = ax(mod q), a∈S, ha :ℤq!ℤq} be a set of
functions determined by S. Then, a quantum function ψHS

:ℤq!(ℋ2)⊗ log ∣S∣

jψHS
xð Þ〉 ¼ 1ffiffiffiffiffiffi

∣S∣
p

X
a∈S

ωha xð Þ aij (25)

is a (δ, ε)-resistant quantum hash function, where δ ≤ ∣S∣/q.
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Proof. One-way δ-resistance property of ψHS
follows from Property 1: a probability of correct

decoding an x from a quantum state |ψHS
(x)〉 is bounded by ∣S∣/q.

Collision ε-resistance property of ψHS
follows directly from the corresponding property of [26].

Note that

jψHS
xð Þ〉 ¼ 1ffiffiffiffiffiffi

∣S∣
p

X
a∈S

ωha xð Þja〉 ¼ 1ffiffiffiffiffiffi
∣S∣
p

X
a∈ S

χx að Þ ai:j (26)

We will prove that for arbitrary different elements v, v
0
∈ℤq, it is true that

ψHS
vð ÞjψHS

v0ð Þ
D E���

��� ¼ 1
∣S∣
j
X
a∈S

χ∗
v að Þχv0 að Þj ≤ ε: (27)

Let χv(x) and χv0(x) be characters of group ℤq. Then, χ∗
v xð Þ is also a character of ℤq and so the

following function is χ xð Þ ¼ χ∗
v xð Þχv0 xð Þ. χ(x) is nontrivial character of ℤq, since χv xð Þ=� χv0 xð Þ

and χ xð Þ ¼ χ∗
v xð Þχv0 xð Þ=� χ∗

v xð Þχv xð Þ � 1, where 1 is a trivial character of ℤq. Thus, the state-
ment of Theorem 1 follows from the definition of an ε-biased set.

j〈ψHS
vð ÞjψHS

v0ð Þ〉j ¼ 1
∣S∣
j
X
a∈ S

χ∗
v að Þχv0 að Þj ¼

1
∣S∣
j
X
a∈ S

χ að Þj ≤ ε: (28)

4.5. Quantum fingerprinting functions as hash functions

In this section, we give two explicit examples of the quantum hashing for specific finite abelian
groups, which turn out to be the known quantum fingerprinting schemas.

4.5.1. Hashing the elements of the Boolean cube

For G ¼ ℤn
2, its characters can be written in the form χa(x) = (�1)(a, x), and the corresponding

quantum hash function is the following

jψS að Þ� ¼ 1ffiffiffiffiffiffi
∣S∣
p

X∣S∣

j¼1
�1ð Þ a;sjð Þ ji:j (29)

The resulting hash function is exactly the quantum fingerprinting by Buhrman et al. [5], once
we consider an error-correcting code, whose matrix is built from the elements of S. Indeed, as
stated in [29] an ε-balanced error-correcting code can be constructed out of an ε-biased set.
Thus, the inner product (a, x) in the exponent is equivalent to the corresponding bit of the code
word, and altogether, this gives the quantum fingerprinting function that stores information in
the phase of quantum states de Wolf [30].

4.5.2. Hashing the elements of the cyclic group

For group G =ℤq, the corresponding quantum hash function is given by
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s ≥ log logK � log log 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= 1� εð Þ

p� �
� 1: (23)

Properties 1 and 4 provide a basis for building a “balanced” one-way δ-resistance and collision
ε-resistance properties. That is, roughly speaking, if we need to hash elements w from the
domain X with ∣X∣ ¼ K and if one can build for an ε > 0 a collision ε-resistant (K; s) hash
function ψ with s ≈ loglogK� c(ε) qubits, then the function f is one-way δ resistant with
δ ≈ (logK/K). Such a function is balanced with respect to Property 4.

To summarize the above considerations, we can state the following. A quantum (δ,ε)-hash func-
tion is a function that satisfies all of the properties that a “classical” hash function should satisfy.
Preimage resistance follows from Property 1. Second preimage resistance and collision resistance
follow, because all inputs are mapped to states that are nearly orthogonal. Therefore, we see that
quantum hash functions can satisfy the three properties of a classical cryptographic hash function.

4.4. Quantum hash functions construction via small-biased sets

This section is based on the paper [26]. We first present a brief background on ε-biased sets. For
more information, see [27]. Note that ε-biased sets are generally defined for arbitrary finite
groups, but here we restrict ourselves to ℤq.

For an a∈ℤq, a character χa of ℤq is a homomorphism χa :ℤq!μq, where μq is the (multiplica-

tive) group of complex q-th roots of unity. That is, χa(x) =ω
ax, where ω ¼ e

2πi
q is a primitive q-th

root of unity. The character χ0� 1 is called a trivial character.

Definition 5 A set S⊆ℤq is called ε biased, if for any nontrivial character χ∈ {χa : a∈ℤq}

1
∣S∣
j
X
x∈ S

χ xð Þj ≤ ε: (24)

These sets are interesting when ∣S∣≪ ∣ℤq∣ (as S =ℤq is 0 biased). In their seminal paper, Naor
and Naor [13] defined these small-biased sets, gave the first explicit constructions of such sets,
and demonstrated the power of small-biased sets for several applications.

Remark 1 Note that a set S of O(log q/ε2) elements selected uniformly at random from ℤq is ε biased
with positive probability [28].

Many other constructions of small-biased sets followed during the last decades.

Vasiliev [26] showed that ε-biased sets generate (δ,ε)-resistant hash functions. We present the
result of [26] in the following form.

Theorem 1 Let S⊆ℤq be an ε-biased set. Let HS = {ha(x) = ax(mod q), a∈S, ha :ℤq!ℤq} be a set of
functions determined by S. Then, a quantum function ψHS

:ℤq!(ℋ2)⊗ log ∣S∣

jψHS
xð Þ〉 ¼ 1ffiffiffiffiffiffi

∣S∣
p

X
a∈S

ωha xð Þ aij (25)

is a (δ, ε)-resistant quantum hash function, where δ ≤ ∣S∣/q.
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Proof. One-way δ-resistance property of ψHS
follows from Property 1: a probability of correct

decoding an x from a quantum state |ψHS
(x)〉 is bounded by ∣S∣/q.

Collision ε-resistance property of ψHS
follows directly from the corresponding property of [26].

Note that

jψHS
xð Þ〉 ¼ 1ffiffiffiffiffiffi

∣S∣
p

X
a∈S

ωha xð Þja〉 ¼ 1ffiffiffiffiffiffi
∣S∣
p

X
a∈ S

χx að Þ ai:j (26)

We will prove that for arbitrary different elements v, v
0
∈ℤq, it is true that

ψHS
vð ÞjψHS

v0ð Þ
D E���

��� ¼ 1
∣S∣
j
X
a∈S

χ∗
v að Þχv0 að Þj ≤ ε: (27)

Let χv(x) and χv0(x) be characters of group ℤq. Then, χ∗
v xð Þ is also a character of ℤq and so the

following function is χ xð Þ ¼ χ∗
v xð Þχv0 xð Þ. χ(x) is nontrivial character of ℤq, since χv xð Þ=� χv0 xð Þ

and χ xð Þ ¼ χ∗
v xð Þχv0 xð Þ=� χ∗

v xð Þχv xð Þ � 1, where 1 is a trivial character of ℤq. Thus, the state-
ment of Theorem 1 follows from the definition of an ε-biased set.

j〈ψHS
vð ÞjψHS

v0ð Þ〉j ¼ 1
∣S∣
j
X
a∈ S

χ∗
v að Þχv0 að Þj ¼

1
∣S∣
j
X
a∈ S

χ að Þj ≤ ε: (28)

4.5. Quantum fingerprinting functions as hash functions

In this section, we give two explicit examples of the quantum hashing for specific finite abelian
groups, which turn out to be the known quantum fingerprinting schemas.

4.5.1. Hashing the elements of the Boolean cube

For G ¼ ℤn
2, its characters can be written in the form χa(x) = (�1)(a, x), and the corresponding

quantum hash function is the following

jψS að Þ� ¼ 1ffiffiffiffiffiffi
∣S∣
p

X∣S∣

j¼1
�1ð Þ a;sjð Þ ji:j (29)

The resulting hash function is exactly the quantum fingerprinting by Buhrman et al. [5], once
we consider an error-correcting code, whose matrix is built from the elements of S. Indeed, as
stated in [29] an ε-balanced error-correcting code can be constructed out of an ε-biased set.
Thus, the inner product (a, x) in the exponent is equivalent to the corresponding bit of the code
word, and altogether, this gives the quantum fingerprinting function that stores information in
the phase of quantum states de Wolf [30].

4.5.2. Hashing the elements of the cyclic group

For group G =ℤq, the corresponding quantum hash function is given by
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jψS að Þ〉 ¼ 1ffiffiffiffiffiffi
∣S∣
p

X∣S∣

j¼1
ωasj j〉:j (30)

The above quantum hash function is essentially equivalent to the one we have defined earlier
in [25], which is in turn based on the quantum fingerprinting function from [11].

• In the content of the definition of quantum hash generator [24] and the above consider-
ation, it is natural to call the set HS of functions (formed from ε-biased set S) a uniform
quantum (δ, ε)-hash generator for δ =O(| S| /(q log q)).

As a corollary from Theorem 1 and the above consideration, we can state the following.

Property 5 For an ε-biased set S ¼ a1;…; aTf g⊂Fq with T =O(logq/ε2), for s = logT, for δ =O(1/(qε2)),
a quantum uniform (δ, ε)-hash generator HS generates quantum (δ, ε)-hash function

ψHS
: Fq ! ℋ2� �⊗ s

(31)

jψHS
xð Þ〉 ¼ 1ffiffiffiffi

T
p

XT�1

j¼0
ωajx, (32)

5. Computing a quantum hash |ψHS
(x)〉 by QBP

Theorem 2 Quantum (δ, ε)-hash function (6)

ψHS
: Fq ! ℋ2� �⊗ s

(33)

can be computed by quantum branching program Q composed from s =O(log log q) qubits in log q
steps.

Proof. Quantum function ψHS
(6) for an input x∈Fq determines quantum states (7)

jψHS
xð Þ〉 ¼ 1ffiffiffiffi

T
p

XT�1

j¼0
ωajx ji,j (34)

which is a result of quantum Fourier transformation (QFT) of the initial state

jψ0〉 ¼
1ffiffiffiffi
T
p

XT�1

j¼0
ji:j (35)

Such a QFT is controlled by the input x. QBP Q for computing quantum hash |ψHS
(x)〉 deter-

mined as follows.We represent an integer x∈ {0, … , q� 1} as the bit-string x = x0… xlogq� 1 that is,
x = x0 + 2

1x1 + … + 2logq� 1xlogq� 1. For a binary string x = x0… xlogq� 1 a quantum branching pro-
gram Q over the space (ℋ2)⊗s for computing |ψHS

(x)〉 (composed of s = logT qubits) is defined as
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Q ¼ T; ψ0

��� �
,

�
(36)

where |ψ0〉 is the initial state and T is a sequence of log q instructions:

Tj ¼ xj;Uj 0ð Þ;Uj 1ð Þ
� �

(37)

is determined by the variable xj tested on the step j, and Uj(0) and Uj(1) are unitary trans-
formations in (ℋ2)⊗s. More precise Uj(0) is T�T identity matrix. Uj(1) is the T�T diagonal
matrix whose diagonal entries are ωa02j ,ωa12j, …, ωaT� 12j and the off-diagonal elements are all
zero. That is,

Uj 1ð Þ ¼

ωa02j

ωa12j

⋱
ωaT�12j

2
6666664

3
7777775
: (38)

We define a computation of Q on an input x = x0 , … , xlogq� 1∈ {0, 1}logq as follows:

1. A computation of Q starts from the initial state |ψ0〉.

2. The j-th instruction of Q reads the input symbol xj (the value of x) and applies the transition
matrix Uj(xj) to the current state |ψ〉 to obtain the state |ψ

0
〉 =Uj(xj)|ψ〉.

3. The final state is

jψHS
xð Þ〉 ¼

Ylog q�1

j¼0
Uj xj
� �

0
@

1
A ψ0

�
:

�� (39)

5.1. Complexity measures

We consider the following notations. For the QBP Q from Theorem 2, we let width(Q) = s and
time Qð Þ ¼ ∣T∣. Next for quantum hash function ψHS

(6), we let

widthðψHS
Þ ¼ minwidth Qð Þ, timeðψHS

Þ ¼ mintime Qð Þ (40)

where minimum is taken over all QBPs that compute ψHS
.

5.1.1. Upper bounds

Then from Theorem 2, we have the following corollary

Theorem 3
widthðψHS

Þ ¼ O log log qð Þ, (41)

timeðψHS
Þ ¼ O log qð Þ: (42)

On Quantum Fingerprinting and Quantum Cryptographic Hashing
http://dx.doi.org/10.5772/intechopen.70692

31



jψS að Þ〉 ¼ 1ffiffiffiffiffiffi
∣S∣
p

X∣S∣

j¼1
ωasj j〉:j (30)

The above quantum hash function is essentially equivalent to the one we have defined earlier
in [25], which is in turn based on the quantum fingerprinting function from [11].

• In the content of the definition of quantum hash generator [24] and the above consider-
ation, it is natural to call the set HS of functions (formed from ε-biased set S) a uniform
quantum (δ, ε)-hash generator for δ =O(| S| /(q log q)).

As a corollary from Theorem 1 and the above consideration, we can state the following.

Property 5 For an ε-biased set S ¼ a1;…; aTf g⊂Fq with T =O(logq/ε2), for s = logT, for δ =O(1/(qε2)),
a quantum uniform (δ, ε)-hash generator HS generates quantum (δ, ε)-hash function

ψHS
: Fq ! ℋ2� �⊗ s

(31)

jψHS
xð Þ〉 ¼ 1ffiffiffiffi

T
p

XT�1

j¼0
ωajx, (32)

5. Computing a quantum hash |ψHS
(x)〉 by QBP

Theorem 2 Quantum (δ, ε)-hash function (6)

ψHS
: Fq ! ℋ2� �⊗ s

(33)

can be computed by quantum branching program Q composed from s =O(log log q) qubits in log q
steps.

Proof. Quantum function ψHS
(6) for an input x∈Fq determines quantum states (7)

jψHS
xð Þ〉 ¼ 1ffiffiffiffi

T
p

XT�1

j¼0
ωajx ji,j (34)

which is a result of quantum Fourier transformation (QFT) of the initial state

jψ0〉 ¼
1ffiffiffiffi
T
p

XT�1

j¼0
ji:j (35)

Such a QFT is controlled by the input x. QBP Q for computing quantum hash |ψHS
(x)〉 deter-

mined as follows.We represent an integer x∈ {0, … , q� 1} as the bit-string x = x0… xlogq� 1 that is,
x = x0 + 2

1x1 + … + 2logq� 1xlogq� 1. For a binary string x = x0… xlogq� 1 a quantum branching pro-
gram Q over the space (ℋ2)⊗s for computing |ψHS

(x)〉 (composed of s = logT qubits) is defined as
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Q ¼ T; ψ0

��� �
,

�
(36)

where |ψ0〉 is the initial state and T is a sequence of log q instructions:

Tj ¼ xj;Uj 0ð Þ;Uj 1ð Þ
� �

(37)

is determined by the variable xj tested on the step j, and Uj(0) and Uj(1) are unitary trans-
formations in (ℋ2)⊗s. More precise Uj(0) is T�T identity matrix. Uj(1) is the T�T diagonal
matrix whose diagonal entries are ωa02j ,ωa12j, …, ωaT� 12j and the off-diagonal elements are all
zero. That is,

Uj 1ð Þ ¼

ωa02j

ωa12j

⋱
ωaT�12j

2
6666664

3
7777775
: (38)

We define a computation of Q on an input x = x0 , … , xlogq� 1∈ {0, 1}logq as follows:

1. A computation of Q starts from the initial state |ψ0〉.

2. The j-th instruction of Q reads the input symbol xj (the value of x) and applies the transition
matrix Uj(xj) to the current state |ψ〉 to obtain the state |ψ

0
〉 =Uj(xj)|ψ〉.

3. The final state is

jψHS
xð Þ〉 ¼

Ylog q�1

j¼0
Uj xj
� �

0
@

1
A ψ0

�
:

�� (39)

5.1. Complexity measures

We consider the following notations. For the QBP Q from Theorem 2, we let width(Q) = s and
time Qð Þ ¼ ∣T∣. Next for quantum hash function ψHS

(6), we let

widthðψHS
Þ ¼ minwidth Qð Þ, timeðψHS

Þ ¼ mintime Qð Þ (40)

where minimum is taken over all QBPs that compute ψHS
.

5.1.1. Upper bounds

Then from Theorem 2, we have the following corollary

Theorem 3
widthðψHS

Þ ¼ O log log qð Þ, (41)

timeðψHS
Þ ¼ O log qð Þ: (42)
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5.1.2. Lower bounds

Here, we show that the quantum branching program from Theorem 2 is optimal for
function ψHS

Theorem 4
widthðψHS

Þ ¼ Ω log log qð Þ, (43)

timeðψHS
Þ ¼ Ω log qð Þ: (44)

Proof. Let Q be a QBP for the function ψHS
computation. ψHS

presented by Q as follows:

ψHS
: fjψ0〉g � 0; 1f g log q ! ℋ2� �⊗ s

: (45)

The lower bound (10) for width(ψHS
) follows immediately from Property 4

s ≥ log log q� log log 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= 1� εð Þ

p� �
: (46)

The lower bound (11) for time(ψHS
) follows from the fact that ψHS

is collision ε-resistant
function. Indeed, the assumption that QBP Q for ψHS

can test less than logq (that is, not all
logq) variables of inputs x∈Fq means existence of (at least) two different inputs w,w0 ∈Fq such
that Q produces the same quantum hashes |ψ(w)〉 and |ψ(w

0
)〉 for w and w

0
, that is, |ψ(w)〉 =

|ψ(w
0
)〉 = |ψ〉. The last contradicts to the fact that states |ψ(w)〉 and |ψ(w

0
)〉 are ε orthogonal.

ψ wð Þjψ w0ð Þh ij j ≤ ε: (47)

6. Concluding remarks

To conclude, we first like to mention the results of the paper [31], which presents further
development of quantum hash functions construction.

Recall that any ε-biased set gives rise to a Cayley expander graph [28]. We show how such
graphs generate balanced quantum hash functions. Every expander graph can be converted to
a bipartite expander graph. The generalization of these bipartite expander graphs is the notion
of extractor graphs. Such point of view gives a method for constructing quantum hash func-
tions based on extractors. This construction of quantum hash functions is applied to define the
notion of keyed quantum hash functions. The latter is used for constructing quantum hash-
based message authentication codes (QMAC). The security proof of QMAC is based on using
strong extractors against quantum storage developed by Ta-Shma [32].

Secondly, in [24], we offered a design that allows to build a large amount of different quantum
hash functions. The construction is based on composition of classical δ-universal hash family
and a given family Hδ , q, a quantum hash generator. A resulting family of functions is a new
quantum hash generator. In particular, we present a quantum hash generator GRS based on
Reed-Solomon code.
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5.1.2. Lower bounds

Here, we show that the quantum branching program from Theorem 2 is optimal for
function ψHS

Theorem 4
widthðψHS
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timeðψHS
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Proof. Let Q be a QBP for the function ψHS
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ψHS
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: (45)

The lower bound (10) for width(ψHS
) follows immediately from Property 4

s ≥ log log q� log log 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= 1� εð Þ

p� �
: (46)

The lower bound (11) for time(ψHS
) follows from the fact that ψHS

is collision ε-resistant
function. Indeed, the assumption that QBP Q for ψHS

can test less than logq (that is, not all
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To conclude, we first like to mention the results of the paper [31], which presents further
development of quantum hash functions construction.

Recall that any ε-biased set gives rise to a Cayley expander graph [28]. We show how such
graphs generate balanced quantum hash functions. Every expander graph can be converted to
a bipartite expander graph. The generalization of these bipartite expander graphs is the notion
of extractor graphs. Such point of view gives a method for constructing quantum hash func-
tions based on extractors. This construction of quantum hash functions is applied to define the
notion of keyed quantum hash functions. The latter is used for constructing quantum hash-
based message authentication codes (QMAC). The security proof of QMAC is based on using
strong extractors against quantum storage developed by Ta-Shma [32].

Secondly, in [24], we offered a design that allows to build a large amount of different quantum
hash functions. The construction is based on composition of classical δ-universal hash family
and a given family Hδ , q, a quantum hash generator. A resulting family of functions is a new
quantum hash generator. In particular, we present a quantum hash generator GRS based on
Reed-Solomon code.
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Abstract

Despite the unconditionally secure theory of quantum key distribution (QKD), several
attacks have been successfully implemented against commercial QKD systems. Those
systems have exhibited some flaws, as the secret key rate of corresponding protocols
remains unaltered, while the eavesdropper obtains the entire secret key. We propose a
new theoretical approach called quantum flows to be able to detect the eavesdropping
activity in the channel without requiring additional optical components different from the
BB84 protocol because the system can be implemented as a high software module. In this
approach, the transmitter interleaves pairs of quantum states, referred to here as parallel
and orthogonal (non-orthogonal) states, while the receiver uses active basis selection.

Keywords: quantum key distribution, photon number splitting attack, intercept resend
faked states attack

1. Introduction

Quantum key distribution (QKD) is a technique to distribute securely a cryptographic key
between two remote users, usually called Alice and Bob. The first QKDmethod was conceived
by Charles Bennett and Gilles Brassard in 1984, usually referred to in literature as BB84 [1].
Figure 1 shows a simplified representation of the two-dimensional Bloch sphere, the quantum
states, and the measurement bases of BB84.

QKD systems are designed to serve the purpose of generating secret bits, usable to encrypt
plain-text messages based on a simple X – Or logical function between the message and a
secret key. The use of this system provides the availability to detect any eavesdropper, com-
monly called Eve, trying to intercept the quantum channel to get the key. In this case, the
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whole process will be discarded before a key can be established [2]. On the other hand, if no
eavesdropping activity is detected, the quantum measurements are used to derive the secret
key. When the transmission is finished, Alice and Bob compare a fraction of the exchanged key
in order to detect any transmission errors caused by eavesdropping. Experimentally, QKD
systems have been proved using dedicated optical fibers, across free space, weak laser pulses
or single photons, entangled photon pairs, or continuous variables [3].

We propose a new approach for QKD protocols called quantum flows where the transmitter
interleaves pairs of quantum states, referred to here as parallel and orthogonal (non-orthogonal)
states, while the receiver applies active basis selection to perform state measurement. In a
study by Lizama et al. [4], a brand new QKD protocol, called ack-state and referred to also as
ack-QKD, is introduced. This protocol uses weak coherent states and active basis measurement
and has the capability to detect photon number splitting (PNS) eavesdropping activity, and its
strengths against the PNS attack are discussed by Lizama-Pérez et al. [5]. The ack-state protocol
was extended by Lizama-Pérez et al. [6] to the dual protocol known as nack state protocol in
order to have an analysis of its security when facing an intercept and resend with faked states
(IRFS) attack.

One of the main advantages of these protocols is that they protect against the PNS and the
IRFS attacks without requiring any changes in the hardware; only software changes are
required.

2. Quantum hacking in QKD systems

In ideal conditions, QKD protocols’ security is based on the attributes of quantum mechanics,
as it makes eavesdropping activities detectable in the middle of the quantum channel [1, 7].
But the technological implementation brings serious concerns as most of the QKD systems
have vulnerabilities to quantum hacking due to loopholes in the optical detection system [8–18].
Given this condition, it is necessary to develop newQKD protocols that are able to resist different
attacks due to such vulnerabilities as the photon number splitting (PNS) and the intercept and
resend with faked states (IRFS) attacks [19, 20].

Figure 1. The BB84 qubits are the non-orthogonal states: the measurement bases, Z and X, are shown as vertical and
horizontal lines, correspondingly. When basis X (Z) is used by Bob, to measure Alice’s state ∣iXi jiZð iÞ, the result gotten by
Bob is bit i i ¼ 0; 1ð Þ; otherwise, if basis X Zð Þ is applied to measure ∣iZi (∣iXi) the probability to get i reduces to 1

2. So, if Bob
measures the ∣0Xi state with Z basis, he has the same probability to obtain ∣0Zi or ∣1Zi.

Advanced Technologies of Quantum Key Distribution38

A variety of attacks have been conceived of as exploiting the security of BB84-based systems,
either theoretically or technologically. The photon number splitting (PNS) attack belongs to the
first category. In the second class, commonly referred to as quantum hacking, the intercept
resend with faked states (IRFS) attack can be included, which exploits loopholes in the ava-
lanche photo diodes (APDs) of the electronic detection system. We will briefly describe each of
them.

1. In the PNS attack the eavesdropper blocks the 1-photon states but she stores the multi-
photon states allowing at least one photon to reach Bob’s detection system. Ideally, in the
BB84 protocol [1], the quantum states sent by Alice to Bob contain single photons. Never-
theless, perfect single photon sources are not technologically available nowadays [21], so,
to get the implementation of QKD, laser pulses attenuated to very low levels have been
used. Such laser pulses contain very short numbers of photons, in average typically
around 0.2 photons per pulse in a Poissonian distribution; that means that most pulses
contain no photons, a few pulses contain just one photon, and a really short amount of
pulse contains two or more photons. If a pulse contains more than one photon, Eve can get
from it the extra photons and transmit a single photon to Bob. Eve can store the photons
she obtained from the multi-photonic pulses and wait until Bob reveals the measurement
basis he has applied. Then Eve can measure the photons she stored by using the same
measurement basis as Bob did. In this way she obtains information about the key without
being noticed by Alice and Bob. This is called the photon number splitting (PNS) attack,
and some related references with security proofs of the PNS attack can be found in [1, 7,
22–24].

To overcome the PNS attack a few protocols have been developed: Decoy QKD [18],
SARG04 [25], the differential phase shift (DPSK) [26], and coherent one way (COW) [27].
One of the most promissory alternatives is the decoy QKD. In this protocol Alice prepares
a set of quantum states in addition to the typical states of the BB84 protocol. These extra
states are called decoy states. Decoy states are used only with the purpose to detect the
eavesdropping activity, rather than establishing the key. In order to produce the decoy
states, Alice randomly uses different mean photon numbers on the photonic source. For
example, she could send the first pulse with a mean photonic pulse of μ ¼ 0:1, the second
pulse with μ ¼ 0:4, the third pulse with μ ¼ 0:05, and so on. To each mean photon number
a different probability of producing more than one photon in the correlated pulse corre-
sponds. The difference between the standards BB84 states and the decoy states is the mean
photon numbers. Given this, Eve is not able to distinguish a decoy state from a quantum
key related state and the only information she gets is the number of photons in a pulse.
Thus, decoy states can be introduced to secure the BB84 protocol from PNS attacks,
allowing at the same time high key rates. In both, BB84 and decoy QKD protocols, a single
photonic gain in the quantum channel is established. Lamentably, Eve can set successful
attacks to the decoy QKD if it is able to set the QBER to zero by adjusting the gain of the
quantum channel.

2. Intercept Resend (IR) attack: In this attack, Eve measures each photon pulse sent by Alice
and replaces it with a different pulse prepared in the quantum state that she has

Quantum Flows for Secret Key Distribution
http://dx.doi.org/10.5772/intechopen.75964

39



whole process will be discarded before a key can be established [2]. On the other hand, if no
eavesdropping activity is detected, the quantum measurements are used to derive the secret
key. When the transmission is finished, Alice and Bob compare a fraction of the exchanged key
in order to detect any transmission errors caused by eavesdropping. Experimentally, QKD
systems have been proved using dedicated optical fibers, across free space, weak laser pulses
or single photons, entangled photon pairs, or continuous variables [3].

We propose a new approach for QKD protocols called quantum flows where the transmitter
interleaves pairs of quantum states, referred to here as parallel and orthogonal (non-orthogonal)
states, while the receiver applies active basis selection to perform state measurement. In a
study by Lizama et al. [4], a brand new QKD protocol, called ack-state and referred to also as
ack-QKD, is introduced. This protocol uses weak coherent states and active basis measurement
and has the capability to detect photon number splitting (PNS) eavesdropping activity, and its
strengths against the PNS attack are discussed by Lizama-Pérez et al. [5]. The ack-state protocol
was extended by Lizama-Pérez et al. [6] to the dual protocol known as nack state protocol in
order to have an analysis of its security when facing an intercept and resend with faked states
(IRFS) attack.

One of the main advantages of these protocols is that they protect against the PNS and the
IRFS attacks without requiring any changes in the hardware; only software changes are
required.

2. Quantum hacking in QKD systems

In ideal conditions, QKD protocols’ security is based on the attributes of quantum mechanics,
as it makes eavesdropping activities detectable in the middle of the quantum channel [1, 7].
But the technological implementation brings serious concerns as most of the QKD systems
have vulnerabilities to quantum hacking due to loopholes in the optical detection system [8–18].
Given this condition, it is necessary to develop newQKD protocols that are able to resist different
attacks due to such vulnerabilities as the photon number splitting (PNS) and the intercept and
resend with faked states (IRFS) attacks [19, 20].

Figure 1. The BB84 qubits are the non-orthogonal states: the measurement bases, Z and X, are shown as vertical and
horizontal lines, correspondingly. When basis X (Z) is used by Bob, to measure Alice’s state ∣iXi jiZð iÞ, the result gotten by
Bob is bit i i ¼ 0; 1ð Þ; otherwise, if basis X Zð Þ is applied to measure ∣iZi (∣iXi) the probability to get i reduces to 1

2. So, if Bob
measures the ∣0Xi state with Z basis, he has the same probability to obtain ∣0Zi or ∣1Zi.

Advanced Technologies of Quantum Key Distribution38

A variety of attacks have been conceived of as exploiting the security of BB84-based systems,
either theoretically or technologically. The photon number splitting (PNS) attack belongs to the
first category. In the second class, commonly referred to as quantum hacking, the intercept
resend with faked states (IRFS) attack can be included, which exploits loopholes in the ava-
lanche photo diodes (APDs) of the electronic detection system. We will briefly describe each of
them.

1. In the PNS attack the eavesdropper blocks the 1-photon states but she stores the multi-
photon states allowing at least one photon to reach Bob’s detection system. Ideally, in the
BB84 protocol [1], the quantum states sent by Alice to Bob contain single photons. Never-
theless, perfect single photon sources are not technologically available nowadays [21], so,
to get the implementation of QKD, laser pulses attenuated to very low levels have been
used. Such laser pulses contain very short numbers of photons, in average typically
around 0.2 photons per pulse in a Poissonian distribution; that means that most pulses
contain no photons, a few pulses contain just one photon, and a really short amount of
pulse contains two or more photons. If a pulse contains more than one photon, Eve can get
from it the extra photons and transmit a single photon to Bob. Eve can store the photons
she obtained from the multi-photonic pulses and wait until Bob reveals the measurement
basis he has applied. Then Eve can measure the photons she stored by using the same
measurement basis as Bob did. In this way she obtains information about the key without
being noticed by Alice and Bob. This is called the photon number splitting (PNS) attack,
and some related references with security proofs of the PNS attack can be found in [1, 7,
22–24].

To overcome the PNS attack a few protocols have been developed: Decoy QKD [18],
SARG04 [25], the differential phase shift (DPSK) [26], and coherent one way (COW) [27].
One of the most promissory alternatives is the decoy QKD. In this protocol Alice prepares
a set of quantum states in addition to the typical states of the BB84 protocol. These extra
states are called decoy states. Decoy states are used only with the purpose to detect the
eavesdropping activity, rather than establishing the key. In order to produce the decoy
states, Alice randomly uses different mean photon numbers on the photonic source. For
example, she could send the first pulse with a mean photonic pulse of μ ¼ 0:1, the second
pulse with μ ¼ 0:4, the third pulse with μ ¼ 0:05, and so on. To each mean photon number
a different probability of producing more than one photon in the correlated pulse corre-
sponds. The difference between the standards BB84 states and the decoy states is the mean
photon numbers. Given this, Eve is not able to distinguish a decoy state from a quantum
key related state and the only information she gets is the number of photons in a pulse.
Thus, decoy states can be introduced to secure the BB84 protocol from PNS attacks,
allowing at the same time high key rates. In both, BB84 and decoy QKD protocols, a single
photonic gain in the quantum channel is established. Lamentably, Eve can set successful
attacks to the decoy QKD if it is able to set the QBER to zero by adjusting the gain of the
quantum channel.

2. Intercept Resend (IR) attack: In this attack, Eve measures each photon pulse sent by Alice
and replaces it with a different pulse prepared in the quantum state that she has

Quantum Flows for Secret Key Distribution
http://dx.doi.org/10.5772/intechopen.75964

39



previously measured. In 50% of the measurements, Eve successfully chooses the correct
measurement basis, while Bob chooses the same basis as her half of the time. Given that,
she generates a quantum bit error rate (QBER) of 50%� 50% ¼ 25% (see Figure 2 and a
study by Bennett et al. [7]).

3. Intercept resend with faked states (IRFS) attack.

In the intercept resend with faked states (IRFS) attack, the eavesdropper does not want to
reconstruct the original states. Instead, it produces pulses of light controlled by her that are
detectable by Bob as she stays unnoticed in the quantum channel. Due to imperfections in
their optical system, Alice and Bob assume that the quantum states they are detecting are
the original ones while they are actually detecting light pulses generated by the eaves-
dropper. Those light pulses are known as faked states [10]. There are several weaknesses in
Bob’s detector than can be exploited to perform this attack such as time shift [11–13] or
quantum blinding [10–12]. When using quantum blinding (quantum blinding attack), the
QKD system is controlled by an eavesdropper who uses bright photon pulses during the
linear mode operation of the APDs. Using this attack, Eve can eavesdrop on the full secret
key but it will not increase the QBER of the protocol. To do this, Eve sends bright pulses to
Bob and those are detected by the APD. It will then operate like a classical photo diode
instead of operating in Geiger mode and allowing Eve to obtain the key [14, 15].

Resulting from this, as shown in Figure 3a, when Bob selects the same measurement basis
Eve has chosen, a detection event occurs in the corresponding APD detector. On the other
hand, if Bob measures using the opposite basis, as in Figure 3b, the two detectors get a
part of the optical power and no event is detected. In this way, the eavesdropper blinds
Bob’s APD detectors and makes them work as classical photo diodes. In the final stage of
the protocol, Eve uses the announcements made by Bob on the public channel to execute
the classical post-processing, getting the same secret bit as Alice and Bob.

A watchdog detector that can detect bright faked states can be used as a very simple
countermeasure and it can be applied in the electronic detection system [16]. In the
University of Singapore an intercept resend attack with faked states and quantum blinding
over a commercial QKD system was for the first time implemented [15].

Figure 2. An intercept resend (IR) attack toward the BB84 protocol causes a quantum bit error rate (QBER) of 25% that
can be detected. The figure shows Alice sending a ∣0Zi state to Bob. In the middle of the quantum channel is Eve applying
an X basis measurement and she gets ∣1Xi. Consequently, she makes a copy of that state and sends it to Bob who gets ∣1Zi
as he used the Z basis measurement. The process introduces an error in the secret bit given that Alice expects Bob to get
∣0Zi.

Advanced Technologies of Quantum Key Distribution40

It is important to note that the IRFS attack works dangerously well on widely used QKD
protocols, namely SARG04, BB84, coherent one way (COW), differential phase shift (DPSK),
Ekert [12], and the decoy state method, as described by Wiechers et al. [16] and Sun et al. [28].
The attack shows an extra 3 dB loss due to the basis of mismatch between Eve and Bob. In the
practice, Eve compensates it easily as she can use better detector efficiencies and surpass the
loss in the channel. Demonstrations of blinding attacks on detectors have been implemented in
two commercially available QKD systems [14]. Reports show that Eve obtains the entire secret
key for the time she remains unnoticed by the legitimate parties [15]. We should finally remark
that due to control detector attacks with active basis selection, the gain from Eve to Bob is
reduced by a half compared to the gain from Alice to Bob.

i. For Bob’s basis choice matching Eve’s, the detector clicks deterministically and.

ii. For Bob’s basis choice not matching Eve’s, the faked state is not detected.

3. The ack-state protocol

Consider a BB84-based protocol encoding a classical bit that uses one of the four non-orthogonal
quantum states ∣þXi, ∣�Xi, ∣þZi, and ∣�Zi (see Figure 1). When using the SARG04 protocol
[25], Alice produces one of the four BB84 quantum states she will send to Bob, it means, she
produces a state associated with two conjugate basis (X and Z). Classical bits on SARG04

Figure 3. In the intercept resend with faked states (IRFS) and quantum blinding attack, Eve and Bob use the same optical
receiver unit so that she can detect Alice’s states in a random basis. Then, Eve prepares the quantum states but sends them
to Bob as bright light pulses instead of quantum pulses. (a) Bob and Eve are using the same basis; (b) the basis Bob is using
is the opposite to ve.
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two commercially available QKD systems [14]. Reports show that Eve obtains the entire secret
key for the time she remains unnoticed by the legitimate parties [15]. We should finally remark
that due to control detector attacks with active basis selection, the gain from Eve to Bob is
reduced by a half compared to the gain from Alice to Bob.

i. For Bob’s basis choice matching Eve’s, the detector clicks deterministically and.

ii. For Bob’s basis choice not matching Eve’s, the faked state is not detected.

3. The ack-state protocol

Consider a BB84-based protocol encoding a classical bit that uses one of the four non-orthogonal
quantum states ∣þXi, ∣�Xi, ∣þZi, and ∣�Zi (see Figure 1). When using the SARG04 protocol
[25], Alice produces one of the four BB84 quantum states she will send to Bob, it means, she
produces a state associated with two conjugate basis (X and Z). Classical bits on SARG04

Figure 3. In the intercept resend with faked states (IRFS) and quantum blinding attack, Eve and Bob use the same optical
receiver unit so that she can detect Alice’s states in a random basis. Then, Eve prepares the quantum states but sends them
to Bob as bright light pulses instead of quantum pulses. (a) Bob and Eve are using the same basis; (b) the basis Bob is using
is the opposite to ve.
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protocol are encoded as follows: 0 is coded with∣þZi and ∣�Zi and 1 is coded with ∣þXi and
∣�Xi (see Figure 4) where black dots in the bidimensional Bloch sphere represent the qubits
(the non-orthogonal states are right angled and the orthogonal states are represented as diamet-
rically opposed and the parallel states have the same position in the sphere). The basis mea-
surement X and Z appear as horizontal and vertical lines, respectively. In contraposition, the
BB84 protocol encodes the bit 0 as ∣þZi and ∣�Xi and the bit 1 with ∣�Zi and ∣þXi.
In the sifting phase of the SARG04 protocol, the basis used by Alice is not revealed as this
would reveal the bit. As a substitute, she declares to which sifting set the state belongs in
accordance with the following four sifting sets: S þ;þð Þ ¼ jþXi; jþZif g, S þ;�ð Þ ¼ jþXi; j�Zif g,
S �;þð Þ ¼ j�Xi; jþZif g, and S �;�ð Þ ¼ j�Xi; j�Zif g. For instance, consider that Alice sends ∣þXi
and she announces the set S þ;þð Þ. Bob makes his measurements on the X basis and he gets the

Figure 4. The non-orthogonal states used in the SARG04 protocol encodes the bit 0 with the states ∣þZi and ∣�Zi and the bit
1 is encoded with ∣þXi and ∣�Xi.
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result ∣þXi; and as this result can be obtained for both states in the set S þ;þð Þ; he needs to
dispose of the bit 1 from ∣þXi. In case Bob measures using the Z basis measurement and
obtains ∣þZi, once more, he is not able to distinguish the state sent by Alice. In the opposite
way, if he measures in the Z basis and gets ∣�Zi, he is sure Alice sent ∣þXi and adds a 0 to his
key. On her side, Eve needs to perform a measurement using the conjugate basis X and Z to
obtain the same secret bit as Bob, demanding multi-photonic pulses with at least three pho-
tons.

Similar to the BB84, in the ack-state protocol, Alice encodes a classical bit as: 0 is encoded with
∣þZi and ∣�Xi and 1 is encoded with ∣�Zi and ∣þXi. And also, in the same manner as the
SARG04 protocol, the ack-state uses the four sets of non-orthogonal states S þ;þð Þ ¼ jþXi; jþZif g,
S þ;�ð Þ ¼ jþXi; j�Zif g, S �;þð Þ ¼ j�Xi; jþZif g, and S �;�ð Þ ¼ j�Xi; j�Zif g. But in the ack-state pro-
tocol the set Alice used, S þ;þð Þ, S þ;�ð Þ, S �;þð Þ or S �;�ð Þ, is never revealed. As an illustration,
suppose Alice chooses the set S þ;þð Þ ¼ jþXi; jþZif g rather than transmitting one of the two
states, say ∣þXi, and publishing the sifting instance, S þ;þð Þ, she transmits the two states ∣þXi
and ∣þZi. At that point, Bob measures the states using the same basis, X or Z, one by one, as the
two states reach successively. If Bob measures with the X basis, he surely will obtain ∣þXi (after
he measures the first state) but he can obtain ∣þXi or ∣�Xi on the second measurement, with a
probability of 0.5 for each event. If Bob obtains jþXi; j�Xif g after the second measurement, the
result is unclear to him and he has to discard it. On the other hand, if he gets jþXi; jþXif g the
result is unambiguous and he should add a bit 1 to his key. With the purpose of allowing Alice
to recover the same bit, Bob makes the announcement of the basis measurement X and the
matching condition in accordance with the following criterion: 2Mð Þ if the two detection events
make clicks on the same detector; it includes the cases jþXi; jþXif g, j�Xi; j�Xif g, jþZi;f
jþZig, j�Zi; j�Zif g and (2nM) if the detection event makes clicks on the opposite detectors,
for example, jþXi; j�Xif g, j�Xi; jþXif g, jþZi; j�Zif g, j�Zi; jþZif g. Alice obtains the secret bit
given that the jþXi; jþZif g states she sent, the X basis, and the 2Mð Þ measurement result
permit her to conclude that Bob definitely got þX;þXf g (consider the cases depicted in
Table 1).

Contrarily, in the case Bob measured the two states ∣þXi and ∣þZi with the Z basis, he would
acquire one of the two possible results: 2Mð Þ ¼ jþZi; jþZif g or 2nMð Þ ¼ j�Zi; jþZif g. In the
first case, he publishes the Z basis and the 2Mð Þ result; then Alice and Bob add a 0 to the key. In
the second case, Bob makes the announcement of the Z basis and the 2nMð Þ result but in this
case, they discard the result. When using the ack-state protocol the 2Mð Þ results can be used to

Alice sends Bob obtains a 2Mð Þ Secret bit

jþXi; jþZif g jþXi; jþXif g 1

jþXi; j�Zif g jþXi; jþXif g 1

j�Xi; jþZif g j�Xi; j�Xif g 0

j�Xi; j�Zif g j�Xi; j�Xif g 0

Table 1. Using the X basis, Bob measures the two states sent by Alice and he obtains a (2M) result.
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protocol are encoded as follows: 0 is coded with∣þZi and ∣�Zi and 1 is coded with ∣þXi and
∣�Xi (see Figure 4) where black dots in the bidimensional Bloch sphere represent the qubits
(the non-orthogonal states are right angled and the orthogonal states are represented as diamet-
rically opposed and the parallel states have the same position in the sphere). The basis mea-
surement X and Z appear as horizontal and vertical lines, respectively. In contraposition, the
BB84 protocol encodes the bit 0 as ∣þZi and ∣�Xi and the bit 1 with ∣�Zi and ∣þXi.
In the sifting phase of the SARG04 protocol, the basis used by Alice is not revealed as this
would reveal the bit. As a substitute, she declares to which sifting set the state belongs in
accordance with the following four sifting sets: S þ;þð Þ ¼ jþXi; jþZif g, S þ;�ð Þ ¼ jþXi; j�Zif g,
S �;þð Þ ¼ j�Xi; jþZif g, and S �;�ð Þ ¼ j�Xi; j�Zif g. For instance, consider that Alice sends ∣þXi
and she announces the set S þ;þð Þ. Bob makes his measurements on the X basis and he gets the

Figure 4. The non-orthogonal states used in the SARG04 protocol encodes the bit 0 with the states ∣þZi and ∣�Zi and the bit
1 is encoded with ∣þXi and ∣�Xi.
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result ∣þXi; and as this result can be obtained for both states in the set S þ;þð Þ; he needs to
dispose of the bit 1 from ∣þXi. In case Bob measures using the Z basis measurement and
obtains ∣þZi, once more, he is not able to distinguish the state sent by Alice. In the opposite
way, if he measures in the Z basis and gets ∣�Zi, he is sure Alice sent ∣þXi and adds a 0 to his
key. On her side, Eve needs to perform a measurement using the conjugate basis X and Z to
obtain the same secret bit as Bob, demanding multi-photonic pulses with at least three pho-
tons.

Similar to the BB84, in the ack-state protocol, Alice encodes a classical bit as: 0 is encoded with
∣þZi and ∣�Xi and 1 is encoded with ∣�Zi and ∣þXi. And also, in the same manner as the
SARG04 protocol, the ack-state uses the four sets of non-orthogonal states S þ;þð Þ ¼ jþXi; jþZif g,
S þ;�ð Þ ¼ jþXi; j�Zif g, S �;þð Þ ¼ j�Xi; jþZif g, and S �;�ð Þ ¼ j�Xi; j�Zif g. But in the ack-state pro-
tocol the set Alice used, S þ;þð Þ, S þ;�ð Þ, S �;þð Þ or S �;�ð Þ, is never revealed. As an illustration,
suppose Alice chooses the set S þ;þð Þ ¼ jþXi; jþZif g rather than transmitting one of the two
states, say ∣þXi, and publishing the sifting instance, S þ;þð Þ, she transmits the two states ∣þXi
and ∣þZi. At that point, Bob measures the states using the same basis, X or Z, one by one, as the
two states reach successively. If Bob measures with the X basis, he surely will obtain ∣þXi (after
he measures the first state) but he can obtain ∣þXi or ∣�Xi on the second measurement, with a
probability of 0.5 for each event. If Bob obtains jþXi; j�Xif g after the second measurement, the
result is unclear to him and he has to discard it. On the other hand, if he gets jþXi; jþXif g the
result is unambiguous and he should add a bit 1 to his key. With the purpose of allowing Alice
to recover the same bit, Bob makes the announcement of the basis measurement X and the
matching condition in accordance with the following criterion: 2Mð Þ if the two detection events
make clicks on the same detector; it includes the cases jþXi; jþXif g, j�Xi; j�Xif g, jþZi;f
jþZig, j�Zi; j�Zif g and (2nM) if the detection event makes clicks on the opposite detectors,
for example, jþXi; j�Xif g, j�Xi; jþXif g, jþZi; j�Zif g, j�Zi; jþZif g. Alice obtains the secret bit
given that the jþXi; jþZif g states she sent, the X basis, and the 2Mð Þ measurement result
permit her to conclude that Bob definitely got þX;þXf g (consider the cases depicted in
Table 1).

Contrarily, in the case Bob measured the two states ∣þXi and ∣þZi with the Z basis, he would
acquire one of the two possible results: 2Mð Þ ¼ jþZi; jþZif g or 2nMð Þ ¼ j�Zi; jþZif g. In the
first case, he publishes the Z basis and the 2Mð Þ result; then Alice and Bob add a 0 to the key. In
the second case, Bob makes the announcement of the Z basis and the 2nMð Þ result but in this
case, they discard the result. When using the ack-state protocol the 2Mð Þ results can be used to

Alice sends Bob obtains a 2Mð Þ Secret bit

jþXi; jþZif g jþXi; jþXif g 1

jþXi; j�Zif g jþXi; jþXif g 1

j�Xi; jþZif g j�Xi; j�Xif g 0

j�Xi; j�Zif g j�Xi; j�Xif g 0

Table 1. Using the X basis, Bob measures the two states sent by Alice and he obtains a (2M) result.

Quantum Flows for Secret Key Distribution
http://dx.doi.org/10.5772/intechopen.75964

43



distill secret bits but 2nMð Þ is unclear causing those measurement outcomes to be useless and
so they have to be discarded.

The ack-state protocol was introduced in [4]. In such a reference, the non-orthogonal states are
called protocol states while parallel states are named decoy states. The ack-state protocol encodes
one classical bit using two quantum states. Such encoding is done by means of non-orthogonal
or parallel states. In quantum physics, if X ¼ j0Xf i; j1Xig and Z ¼ j0Zf i; j1Zig are orthonormal
bases, then the magnitude of each basis vector is the unity and any vector in such a space can
be written as a linear combination of such basis. For instance, ∣0Xi can be rewritten as
1ffiffi
2
p ∣0Zi þ 1ffiffi

2
p ∣1Zi. Two qubits ∣0Xi and ∣0Zi are non-orthogonal if the inner product between them

is different from zero, symbolically 0X∣0Z 6¼ 0. In consequence, 0X∣0Z ¼ 1ffiffi
2
p 1ð Þ þ 1ffiffi

2
p 0ð Þ and

0X∣0Z ¼ 1ffiffi
2
p . The inner product of orthogonal qubits is zero, for example, 0X∣1X ¼ 0 and identical

(or parallel) qubits produce the unity under the inner product; thus, 0X∣0X ¼ 1.

Using this protocol, Alice chooses at random between sending a pair of parallel or non-
orthogonal states. At the opposite side, Bob makes the measurement of the two successive
pulses he receives with the same basis measurement, X or Z (see Figure 5). In this context, the
pair of quantum states sent by Alice is called biqubit. Parallel biqubits define the parallel
quantum flow and non-orthogonal biqubits define the non-orthogonal quantum flow. Summariz-
ing the ack-state protocol with non-orthogonal and parallel states, we have the following:

1. Alice randomly selects between a non-orthogonal biqubit and a parallel bi-qubit. In case she
selects a non-orthogonal biqubit, she has to select at random one of the following states:

0Xj i; 0Zj ið Þ; 0Xj i; 1Zj ið Þ; 1Xi; 0Zj ij Þ; 1Xj i; 1Zj ið Þð gf , where the order between states X or Z is
as well picked at random. In case she selects a parallel biqubit, she should randomly choose
a biqubit from the set: 0Xj i; 0Xj ið Þ; 1Xj i; 1Xj ið Þ; 0Zi; 0Zj ij Þ; 1Zj i; 1Zj ið Þð gf . and then she gets it
ready and transmits it to Bob.

2. At random, Bob chooses the basis X or Z to measure the received biqubit.

3. Bob’s basis of measurement is announced by him over the public channel and he also
declares if the result obtained is either a double-detected event (2M or 2nM), a single-
detected event (S-1 or S-2), or a lost biqubit 2Lð Þ (see the discussion below).

4. After analyzing those results, Alice tells Bob which cases to discard.

Table 2 shows the results after Bob measures two consecutive states. Thus, one of the follow-
ing detection events can be obtained:

i. The states generate a double-detection event: The symbol þ;þð Þ is used to designate the
photonic gain in a double-detection event. When both events are registered in a same
detector, we call it a double-matching 2Mð Þ detection event. If the results of the measure-
ments of the states are opposite, then we face a double non-matching 2Mð Þ detection
event. Whereas 2Mð Þ non-orthogonal outcomes are useful to distill secret bits, the 2Mð Þ
results cannot be used and are disposed. When we have a 2Mð Þ detection event, we may
say that the second measurement is the acknowledgment (the ack) of the first measure-
ment. In Figure 5 (top-right) the qubit ∣0Xi is the first one sent by Alice and then she sends
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the qubit ∣0Zi. As the X basis is used by Bob to measure both qubits, the qubit ∣0Xi is
measured as ∣0Xi but the qubit ∣0Zi is measured as ∣0Xi or ∣1Xi with an equal probability
of 50%. When Bob’s measurement generates ∣0Xi, we say that this measurement is the ack
of the first ∣0Xi state. Vice versa, if Bob gets ∣1Xi, we say that ∣1Xi is the negative
acknowledgment (the nack) of ∣0Xi.
In a channel with losses, we have two more possible results.

ii. The single-detection event occurs when one state is lost and Bob obtains only one detection
event. The symbol �; ∓ð Þ is used to designate the single-detection event. More specifi-
cally, Bob uses the symbol S-ið Þ to represent the single-detection event, where i can be 1 or

Figure 5. In this representation, two concentric circles define the order in which the states are prepared and sent.
Therefore, the state that is first sent is contained in the inner circle state, and the outer circle state is prepared and
transmitted. Alice at random interleaves orthogonal (non-orthogonal) and parallel states, given that she can verify the
matching cases after Bob measurements. In the ack-state protocol, Bob uses the basis X Zð Þ to measure the two Alice’s
non-orthogonal states jiXf i; jjZig. He effectively gets the bit i jð Þ provided he measures jiXf i; jiXig or jjZ

� �
; jjZig which

occurs with 1
2 probability. For instance, if Bob uses the Z basis to measure the incoming states j0Xf i; j1Zig he can obtain

j0Zf i; j1Zig or j1Zf i; j1Zig with the same probability. Alice decides to send at random two consecutive non-orthogonal
states from the set: j0Xð i; j0Zf iÞ; j0Xð i; j1ZiÞ; j0Zð i; j1XiÞ; j1Zð i; j1XiÞg. Bob will measure those states using the same
measurement basis (X or Z). The parallel biqubits involve the following states: j0Xð i; j0Xf iÞ; j1Xð i; j1XiÞ; j0Zð i;
j0ZiÞ; j1Zð i; j1ZiÞg. In the nack-state protocol Alice chooses randomly two consecutive parallel states as the case depicted in
(c) j1Zð i; j1ZiÞ. They produce a compatible measurement if Bob chooses, X for ∣iXi or Z for ∣iZiwhere i ¼ 0, 1. We represent
in (b) the case of quantum orthogonal states. Two cases are possible here: j0Xð i; j1Xf iÞ; j0Zð i; j1ZiÞg.
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distill secret bits but 2nMð Þ is unclear causing those measurement outcomes to be useless and
so they have to be discarded.

The ack-state protocol was introduced in [4]. In such a reference, the non-orthogonal states are
called protocol states while parallel states are named decoy states. The ack-state protocol encodes
one classical bit using two quantum states. Such encoding is done by means of non-orthogonal
or parallel states. In quantum physics, if X ¼ j0Xf i; j1Xig and Z ¼ j0Zf i; j1Zig are orthonormal
bases, then the magnitude of each basis vector is the unity and any vector in such a space can
be written as a linear combination of such basis. For instance, ∣0Xi can be rewritten as
1ffiffi
2
p ∣0Zi þ 1ffiffi

2
p ∣1Zi. Two qubits ∣0Xi and ∣0Zi are non-orthogonal if the inner product between them

is different from zero, symbolically 0X∣0Z 6¼ 0. In consequence, 0X∣0Z ¼ 1ffiffi
2
p 1ð Þ þ 1ffiffi

2
p 0ð Þ and

0X∣0Z ¼ 1ffiffi
2
p . The inner product of orthogonal qubits is zero, for example, 0X∣1X ¼ 0 and identical

(or parallel) qubits produce the unity under the inner product; thus, 0X∣0X ¼ 1.

Using this protocol, Alice chooses at random between sending a pair of parallel or non-
orthogonal states. At the opposite side, Bob makes the measurement of the two successive
pulses he receives with the same basis measurement, X or Z (see Figure 5). In this context, the
pair of quantum states sent by Alice is called biqubit. Parallel biqubits define the parallel
quantum flow and non-orthogonal biqubits define the non-orthogonal quantum flow. Summariz-
ing the ack-state protocol with non-orthogonal and parallel states, we have the following:

1. Alice randomly selects between a non-orthogonal biqubit and a parallel bi-qubit. In case she
selects a non-orthogonal biqubit, she has to select at random one of the following states:

0Xj i; 0Zj ið Þ; 0Xj i; 1Zj ið Þ; 1Xi; 0Zj ij Þ; 1Xj i; 1Zj ið Þð gf , where the order between states X or Z is
as well picked at random. In case she selects a parallel biqubit, she should randomly choose
a biqubit from the set: 0Xj i; 0Xj ið Þ; 1Xj i; 1Xj ið Þ; 0Zi; 0Zj ij Þ; 1Zj i; 1Zj ið Þð gf . and then she gets it
ready and transmits it to Bob.

2. At random, Bob chooses the basis X or Z to measure the received biqubit.

3. Bob’s basis of measurement is announced by him over the public channel and he also
declares if the result obtained is either a double-detected event (2M or 2nM), a single-
detected event (S-1 or S-2), or a lost biqubit 2Lð Þ (see the discussion below).

4. After analyzing those results, Alice tells Bob which cases to discard.

Table 2 shows the results after Bob measures two consecutive states. Thus, one of the follow-
ing detection events can be obtained:

i. The states generate a double-detection event: The symbol þ;þð Þ is used to designate the
photonic gain in a double-detection event. When both events are registered in a same
detector, we call it a double-matching 2Mð Þ detection event. If the results of the measure-
ments of the states are opposite, then we face a double non-matching 2Mð Þ detection
event. Whereas 2Mð Þ non-orthogonal outcomes are useful to distill secret bits, the 2Mð Þ
results cannot be used and are disposed. When we have a 2Mð Þ detection event, we may
say that the second measurement is the acknowledgment (the ack) of the first measure-
ment. In Figure 5 (top-right) the qubit ∣0Xi is the first one sent by Alice and then she sends
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the qubit ∣0Zi. As the X basis is used by Bob to measure both qubits, the qubit ∣0Xi is
measured as ∣0Xi but the qubit ∣0Zi is measured as ∣0Xi or ∣1Xi with an equal probability
of 50%. When Bob’s measurement generates ∣0Xi, we say that this measurement is the ack
of the first ∣0Xi state. Vice versa, if Bob gets ∣1Xi, we say that ∣1Xi is the negative
acknowledgment (the nack) of ∣0Xi.
In a channel with losses, we have two more possible results.

ii. The single-detection event occurs when one state is lost and Bob obtains only one detection
event. The symbol �; ∓ð Þ is used to designate the single-detection event. More specifi-
cally, Bob uses the symbol S-ið Þ to represent the single-detection event, where i can be 1 or

Figure 5. In this representation, two concentric circles define the order in which the states are prepared and sent.
Therefore, the state that is first sent is contained in the inner circle state, and the outer circle state is prepared and
transmitted. Alice at random interleaves orthogonal (non-orthogonal) and parallel states, given that she can verify the
matching cases after Bob measurements. In the ack-state protocol, Bob uses the basis X Zð Þ to measure the two Alice’s
non-orthogonal states jiXf i; jjZig. He effectively gets the bit i jð Þ provided he measures jiXf i; jiXig or jjZ

� �
; jjZig which

occurs with 1
2 probability. For instance, if Bob uses the Z basis to measure the incoming states j0Xf i; j1Zig he can obtain

j0Zf i; j1Zig or j1Zf i; j1Zig with the same probability. Alice decides to send at random two consecutive non-orthogonal
states from the set: j0Xð i; j0Zf iÞ; j0Xð i; j1ZiÞ; j0Zð i; j1XiÞ; j1Zð i; j1XiÞg. Bob will measure those states using the same
measurement basis (X or Z). The parallel biqubits involve the following states: j0Xð i; j0Xf iÞ; j1Xð i; j1XiÞ; j0Zð i;
j0ZiÞ; j1Zð i; j1ZiÞg. In the nack-state protocol Alice chooses randomly two consecutive parallel states as the case depicted in
(c) j1Zð i; j1ZiÞ. They produce a compatible measurement if Bob chooses, X for ∣iXi or Z for ∣iZiwhere i ¼ 0, 1. We represent
in (b) the case of quantum orthogonal states. Two cases are possible here: j0Xð i; j1Xf iÞ; j0Zð i; j1ZiÞg.
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2, depending on the state number that makes clicks after the basis measurement X or Z is
applied to the two consecutive incoming states. This way, the number i will be published
by Bob.

iii. The two pulses are lost. This case is denoted as �;�ð Þ or alternatively as 2L.

When applying the ack-state protocol, two consecutive non-orthogonal states are used by Alice
and Bob to distill one secret bit. The basis measurement X or Z is declared publicly by Bob
along with the sifting instances; he obtained 2Mð Þ, 2Mð Þ, S-1ð Þ, S-2ð Þ, and 2Lð Þ. Furthermore,
the bits acquired from the single-detection events S-1ð Þ and S-2ð Þ are used by Alice to confirm
the single photonic gain of the quantum channel.

4. The nack-state protocol

The nack-state protocol is the dual version of the ack state protocol discussed in [5]. Both
protocols constitute a generalization of the well-known BB84. The nack state protocol uses
couples of parallel and orthogonal states rather than just single non-orthogonal states utilized as
a part of BB84. This straightforward distinction makes the nack state strong when facing the
IRFS attack, as we will demonstrate later on. We selected the nack prefix to indicate that,
provided Alice transmits two quantum states to Bob, the second measurement behaves as the
negative acknowledgment (nack) of the one before, since it yields the opposite bit result.

The pair of quantum states is denoted as a biqubit. More specifically, the following biqubits are
defined in the nack state protocol: four parallel biqubits j0Xð i; j0XiÞ, j0Zð i; j0ZiÞ, j1Xð i; j1XiÞ,

Alice’s bi-qubit Bob’s side

basis used Detection event Public disclosure Result

∣0Xi, ∣0Zi X ∣0Xi, ∣0Xi X, 2Mð Þ Useful

X ∣0Xi, ∣1Xi X, 2nMð Þ Discard

X ∣0Xi,� X, S-1ð Þ Useful

X �, ∣0Xi X, S-2ð Þ Discard

X �, ∣1Xi X, S-2ð Þ Discard

X �,� X, 2Lð Þ Discard

Z ∣0Zi, ∣0Zi X, 2Mð Þ Useful

Z ∣1Zi, ∣0Zi X, 2nMð Þ Discard

Z �, ∣0Zi Z, S-2ð Þ Useful

Z ∣0Zi,� Z, S-1ð Þ Discard

Z ∣1Zi,� Z, S-1ð Þ Discard

Z �,� Z, 2Lð Þ Discard

Table 2. Alice sends to Bob the non-orthogonal states j0Xð i; j0ZiÞ and it shows all the possible measurement results at
Bob’s side.
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j1Zð i; j1ZiÞ and two orthogonal biqubits j0Xð i; j1XiÞ, j0Zð i; j1ZiÞ. The parallel and orthogonal
biqubits are interleaved at random by Alice. The performance of the protocol is not altered by
order of the quantum states within the biqubit (see Figure 5). On the opposite side of the

Alice’s Bob’s Detection Public Description

Biqubit Basis Event Disclosure

X ∣0Xi, ∣1Xi X, 2nM Compatible double non-matching, useful

As two compatible single-detection events

X ∣0Xi,� X, S1 Compatible single matching, useful

X �, ∣1Xi X, S2 Compatible single matching, useful

X �,� X, Lost Biqubit lost

Z ∣0Zi, ∣0Zi Z, 2M Non-compatible double matching, useless

Z ∣1Zi, ∣1Zi Z, 2M Non-compatible double matching, useless

∣0Xi, ∣1Xi Z ∣0Zi, ∣1Zi Z, 2M Non-compatible double non-matching, useless

Z ∣1Zi, ∣0Zi Z, 2M Non-compatible double non-matching, useless

Z ∣0Zi,� Z, S1 Non-compatible single matching, useless

Z ∣1Zi,� Z, S1 Non-compatible single matching, useless

Z �, ∣0Zi Z, S2 Non-compatible single matching, useless

Z �, ∣1Zi Z, S2 Non-compatible single matching, useless

Z �,� Z, Lost Biqubit lost

Z ∣1Zi, ∣1Zi Z, 2M Compatible double matching, useful

Z ∣1Zi,� Z, S1 Compatible single matching, useful

Z �, ∣1Zi Z, S2 Compatible single matching, useful

Z �,� Z, Lost Biqubit lost

X ∣0Xi, ∣0Xi Z, 2M Non-compatible double matching, useless

X ∣1Xi, ∣1Xi Z, 2M Non-compatible double matching, useless

∣1Zi, ∣1Zi X ∣0Xi, ∣1Xi Z, 2nM Non-compatible double non-matching, useless

X ∣1Xi, ∣0Xi Z, 2nM Non-compatible double non-matching, useless

X ∣0Xi,� X, S1 Non-compatible single matching, useless

X ∣1Xi,� X, S1 Non-compatible single matching, useless

X �, ∣0Xi X, S2 Non-compatible single matching, useless

X �, ∣1Xi X, S2 Non-compatible single matching, useless

X �,� X, Lost Biqubit lost

We expect Alice to send the biqubits ∣0Xi, ∣1Xi and ∣1Zi, ∣1Zi; at that point, every conceivable measurement result at Bob’s
detector is written. We exhibit the detection event and Bob’s corresponding advertisement over the public channel
according to Bob’s basis selection. Notice that the number of the single detections inside the biqubit, first or second, is
openly declared by Bob.

Table 3. The nack-state protocol running without blunders in the quantum channel is shown with each of the possible
measurement results at Bob’s detectors.
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2, depending on the state number that makes clicks after the basis measurement X or Z is
applied to the two consecutive incoming states. This way, the number i will be published
by Bob.

iii. The two pulses are lost. This case is denoted as �;�ð Þ or alternatively as 2L.

When applying the ack-state protocol, two consecutive non-orthogonal states are used by Alice
and Bob to distill one secret bit. The basis measurement X or Z is declared publicly by Bob
along with the sifting instances; he obtained 2Mð Þ, 2Mð Þ, S-1ð Þ, S-2ð Þ, and 2Lð Þ. Furthermore,
the bits acquired from the single-detection events S-1ð Þ and S-2ð Þ are used by Alice to confirm
the single photonic gain of the quantum channel.

4. The nack-state protocol

The nack-state protocol is the dual version of the ack state protocol discussed in [5]. Both
protocols constitute a generalization of the well-known BB84. The nack state protocol uses
couples of parallel and orthogonal states rather than just single non-orthogonal states utilized as
a part of BB84. This straightforward distinction makes the nack state strong when facing the
IRFS attack, as we will demonstrate later on. We selected the nack prefix to indicate that,
provided Alice transmits two quantum states to Bob, the second measurement behaves as the
negative acknowledgment (nack) of the one before, since it yields the opposite bit result.

The pair of quantum states is denoted as a biqubit. More specifically, the following biqubits are
defined in the nack state protocol: four parallel biqubits j0Xð i; j0XiÞ, j0Zð i; j0ZiÞ, j1Xð i; j1XiÞ,

Alice’s bi-qubit Bob’s side

basis used Detection event Public disclosure Result

∣0Xi, ∣0Zi X ∣0Xi, ∣0Xi X, 2Mð Þ Useful

X ∣0Xi, ∣1Xi X, 2nMð Þ Discard

X ∣0Xi,� X, S-1ð Þ Useful

X �, ∣0Xi X, S-2ð Þ Discard

X �, ∣1Xi X, S-2ð Þ Discard

X �,� X, 2Lð Þ Discard

Z ∣0Zi, ∣0Zi X, 2Mð Þ Useful

Z ∣1Zi, ∣0Zi X, 2nMð Þ Discard

Z �, ∣0Zi Z, S-2ð Þ Useful

Z ∣0Zi,� Z, S-1ð Þ Discard

Z ∣1Zi,� Z, S-1ð Þ Discard

Z �,� Z, 2Lð Þ Discard

Table 2. Alice sends to Bob the non-orthogonal states j0Xð i; j0ZiÞ and it shows all the possible measurement results at
Bob’s side.
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j1Zð i; j1ZiÞ and two orthogonal biqubits j0Xð i; j1XiÞ, j0Zð i; j1ZiÞ. The parallel and orthogonal
biqubits are interleaved at random by Alice. The performance of the protocol is not altered by
order of the quantum states within the biqubit (see Figure 5). On the opposite side of the

Alice’s Bob’s Detection Public Description

Biqubit Basis Event Disclosure

X ∣0Xi, ∣1Xi X, 2nM Compatible double non-matching, useful

As two compatible single-detection events

X ∣0Xi,� X, S1 Compatible single matching, useful

X �, ∣1Xi X, S2 Compatible single matching, useful

X �,� X, Lost Biqubit lost

Z ∣0Zi, ∣0Zi Z, 2M Non-compatible double matching, useless

Z ∣1Zi, ∣1Zi Z, 2M Non-compatible double matching, useless

∣0Xi, ∣1Xi Z ∣0Zi, ∣1Zi Z, 2M Non-compatible double non-matching, useless

Z ∣1Zi, ∣0Zi Z, 2M Non-compatible double non-matching, useless

Z ∣0Zi,� Z, S1 Non-compatible single matching, useless

Z ∣1Zi,� Z, S1 Non-compatible single matching, useless

Z �, ∣0Zi Z, S2 Non-compatible single matching, useless

Z �, ∣1Zi Z, S2 Non-compatible single matching, useless

Z �,� Z, Lost Biqubit lost

Z ∣1Zi, ∣1Zi Z, 2M Compatible double matching, useful

Z ∣1Zi,� Z, S1 Compatible single matching, useful

Z �, ∣1Zi Z, S2 Compatible single matching, useful

Z �,� Z, Lost Biqubit lost

X ∣0Xi, ∣0Xi Z, 2M Non-compatible double matching, useless

X ∣1Xi, ∣1Xi Z, 2M Non-compatible double matching, useless

∣1Zi, ∣1Zi X ∣0Xi, ∣1Xi Z, 2nM Non-compatible double non-matching, useless

X ∣1Xi, ∣0Xi Z, 2nM Non-compatible double non-matching, useless

X ∣0Xi,� X, S1 Non-compatible single matching, useless

X ∣1Xi,� X, S1 Non-compatible single matching, useless

X �, ∣0Xi X, S2 Non-compatible single matching, useless

X �, ∣1Xi X, S2 Non-compatible single matching, useless

X �,� X, Lost Biqubit lost

We expect Alice to send the biqubits ∣0Xi, ∣1Xi and ∣1Zi, ∣1Zi; at that point, every conceivable measurement result at Bob’s
detector is written. We exhibit the detection event and Bob’s corresponding advertisement over the public channel
according to Bob’s basis selection. Notice that the number of the single detections inside the biqubit, first or second, is
openly declared by Bob.

Table 3. The nack-state protocol running without blunders in the quantum channel is shown with each of the possible
measurement results at Bob’s detectors.
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quantum channel, Bob measures two incoming states of a biqubit utilizing the same measure-
ment basis (X or Z). The following steps depict the nack state protocol:

1. Alice is equipped with a photon source with an expected photon number μ showing
Poisson distribution. A parallel or an orthogonal biqubit is selected at random by Alice, and
she arranges the biqubit to be sent to Bob through the quantum channel.

2. The biqubit (two incoming pulses) is measured by Bob using the same measurement basis
X (or Z) that he selects haphazardly (in a further section, we discuss the convenience of
avoiding consecutiveness of states and how it can be prevented if Alice forwards a burst of
the first states of each pair, followed by a burst of the second states of each pair).

3. Bob declares publicly his measurement basis decisions.

4. Alice and Bob perform sifting utilizing single compatible events and double compatible
matching detection events (from parallel states) in order to share secret bits. Likewise,
sifting is applied to the double-detection events that contain a single compatible detection
event. With this aim, Bob indicates if the single detection is the first or the second inside the
biqubit.

Table 3 exhibits a case of the nack state protocol. Here, two biqubits are transmitted to Bob from
Alice. The first biqubit is the orthogonal pair j0Xð i; j1XiÞ, and the second biqubit is the parallel
pair j1Zð i; j1ZiÞ. In case the two states sent by Alice reach Bob’s detection system with no
failure, a double-detection event is generated. In the situation that just one of the two states of
the biqubit reaches Bob’s station, he gets a single-detection event.

The nack-state protocol has been conceived of to use the same optical hardware of the BB84
protocol; thus, it can be configured in most QKD systems as a software module application.
However, two additional tasks must be implemented: the random computation of biqubits
before preparing and sending the quantum states and the sifting stage of the protocol, which
must include (1) sifting of single matching (compatible or non-compatible), where Bob
announces the number of the single-detections inside the biqubit and (2) sifting of double
detection, matching or non-matching, from parallel or orthogonal states. The error correction
and privacy amplification stages of the QKD protocol do not require changes.

5. The photon number splitting attack

In the PNS attack, the eavesdropper captures no less than one photon from each of the multi-
photon states with the purpose of storing them in quantum memory, at the same time that she
hinders the single photon states in the quantum channel. When Bob has uncovered over public
channels the measurement basis he has used, the eavesdropper executes the same measure-
ments on the quantum states she has stored [25].

When the PNS attack is applied to the ack-state protocol, the eavesdropper captures no less
than one photon of the multi-photon states (parallel and non-orthogonal), and she stands by
Bob’s declarations about the measurement bases he has utilized with the aim of applying the
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same measurements on her stored states. In Bob’s side, a distribution over the following sifting
events is achieved 2Mð Þ, 2nMð Þ, S-1ð Þ, S-2ð Þ and 2Lð Þ, where every one may originate in parallel
or non-orthogonal states; however, just Alice knows those outcomes.

After Bob declares both the measurement bases (X or Z) and the sifting occurrences, Eve
executes the measurements utilizing the same measurement bases and she gets the same bits
from the multi-photonic single sifting instances: S-1ð Þ and S-2ð Þ, parallel and non-orthogonal.
Moreover, the same outcomes from the 2Mð Þ measurements of the parallel and (a half of the)
non-orthogonal multi-photonic states are acquired by the eavesdropper. However, she cannot
acquire the secret bits from the 1-state S-ið Þ and 2Mð Þ sifting occurrences, given that the
eavesdropped cannot discriminate parallel and non-orthogonal states.

In order to get the secret bits, Eve obstructs the 1-photon states which incorporate single and
double-detection events from parallel and non-orthogonal states. In doing that, an error gain in
the photonic gain of the single and double-detection events is introduced by Eve. At that point,
Eve executes a channel substitution expanding the transmittance of the channel. The fiber

channel transmittance among Alice and Bob is written as TAB ¼ 10�
αl
10 where α is the loss

coefficient measured in dB=km and the length l is measured in km. Moreover, the local trans-
mittance at Bob’s side, ηB, is defined as tBηD where tB is the internal transmittance of optical
components and ηD is the quantum efficiency of Bob’s detectors. Then, the general transmis-
sion and detection efficiency at Bob’s side ηBT is computed as ηBT ¼ tBηDTAB [18]. A mathe-
matical description of the gain of detection events will be presented in the following section.

5.1. The gain of detection events

In Table 4 (upper part), the gain of the single-detection events is depicted with the Q þð Þ
symbol. According to Ma et al. [18], the gain of detection events is acquired from two origins:
the photon source and the quantum channel. The photon source presents an expected photon
number μ, and it adopts Poisson distribution. Contrastively, the quantum channel exhibits a
distribution that is computed for every i photons’ state (where i is the quantity of photons in
each pulse) that is named yield. The gain Qi of i photons’ state is the product of the probability
of Alice sending an i photons’ state (that adopts Poisson distribution) and the yield of i
photons’ state (and background states). It will generate a gain at Bob’s side provoked by the

detection of events corresponding to the relation Qi ¼ Yi
μi

i! e
�μ where Yi is the yield of i

photons’ state.

The yield Yi is computed across the following steps:

1. The fiber channel transmittance among Alice and Bob is denoted as TAB ¼ 10�
αl
10 where α is

the loss coefficient measured in dB/km, and the length l is measured in km. Moreover, the
local transmittance at Bob’s side, ηB, is written as tB � ηD where tB is the internal transmit-
tance of optical components and ηD is the quantum efficiency of Bob’s detectors. Then, the
overall transmission and detection efficiency at Bob’s side, ηBT , is computed as

ηBT ¼ tB � ηD � TAB and typically ηBT ranges to 10�3 [18];
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quantum channel, Bob measures two incoming states of a biqubit utilizing the same measure-
ment basis (X or Z). The following steps depict the nack state protocol:

1. Alice is equipped with a photon source with an expected photon number μ showing
Poisson distribution. A parallel or an orthogonal biqubit is selected at random by Alice, and
she arranges the biqubit to be sent to Bob through the quantum channel.

2. The biqubit (two incoming pulses) is measured by Bob using the same measurement basis
X (or Z) that he selects haphazardly (in a further section, we discuss the convenience of
avoiding consecutiveness of states and how it can be prevented if Alice forwards a burst of
the first states of each pair, followed by a burst of the second states of each pair).

3. Bob declares publicly his measurement basis decisions.

4. Alice and Bob perform sifting utilizing single compatible events and double compatible
matching detection events (from parallel states) in order to share secret bits. Likewise,
sifting is applied to the double-detection events that contain a single compatible detection
event. With this aim, Bob indicates if the single detection is the first or the second inside the
biqubit.

Table 3 exhibits a case of the nack state protocol. Here, two biqubits are transmitted to Bob from
Alice. The first biqubit is the orthogonal pair j0Xð i; j1XiÞ, and the second biqubit is the parallel
pair j1Zð i; j1ZiÞ. In case the two states sent by Alice reach Bob’s detection system with no
failure, a double-detection event is generated. In the situation that just one of the two states of
the biqubit reaches Bob’s station, he gets a single-detection event.

The nack-state protocol has been conceived of to use the same optical hardware of the BB84
protocol; thus, it can be configured in most QKD systems as a software module application.
However, two additional tasks must be implemented: the random computation of biqubits
before preparing and sending the quantum states and the sifting stage of the protocol, which
must include (1) sifting of single matching (compatible or non-compatible), where Bob
announces the number of the single-detections inside the biqubit and (2) sifting of double
detection, matching or non-matching, from parallel or orthogonal states. The error correction
and privacy amplification stages of the QKD protocol do not require changes.

5. The photon number splitting attack

In the PNS attack, the eavesdropper captures no less than one photon from each of the multi-
photon states with the purpose of storing them in quantum memory, at the same time that she
hinders the single photon states in the quantum channel. When Bob has uncovered over public
channels the measurement basis he has used, the eavesdropper executes the same measure-
ments on the quantum states she has stored [25].

When the PNS attack is applied to the ack-state protocol, the eavesdropper captures no less
than one photon of the multi-photon states (parallel and non-orthogonal), and she stands by
Bob’s declarations about the measurement bases he has utilized with the aim of applying the
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same measurements on her stored states. In Bob’s side, a distribution over the following sifting
events is achieved 2Mð Þ, 2nMð Þ, S-1ð Þ, S-2ð Þ and 2Lð Þ, where every one may originate in parallel
or non-orthogonal states; however, just Alice knows those outcomes.

After Bob declares both the measurement bases (X or Z) and the sifting occurrences, Eve
executes the measurements utilizing the same measurement bases and she gets the same bits
from the multi-photonic single sifting instances: S-1ð Þ and S-2ð Þ, parallel and non-orthogonal.
Moreover, the same outcomes from the 2Mð Þ measurements of the parallel and (a half of the)
non-orthogonal multi-photonic states are acquired by the eavesdropper. However, she cannot
acquire the secret bits from the 1-state S-ið Þ and 2Mð Þ sifting occurrences, given that the
eavesdropped cannot discriminate parallel and non-orthogonal states.

In order to get the secret bits, Eve obstructs the 1-photon states which incorporate single and
double-detection events from parallel and non-orthogonal states. In doing that, an error gain in
the photonic gain of the single and double-detection events is introduced by Eve. At that point,
Eve executes a channel substitution expanding the transmittance of the channel. The fiber

channel transmittance among Alice and Bob is written as TAB ¼ 10�
αl
10 where α is the loss

coefficient measured in dB=km and the length l is measured in km. Moreover, the local trans-
mittance at Bob’s side, ηB, is defined as tBηD where tB is the internal transmittance of optical
components and ηD is the quantum efficiency of Bob’s detectors. Then, the general transmis-
sion and detection efficiency at Bob’s side ηBT is computed as ηBT ¼ tBηDTAB [18]. A mathe-
matical description of the gain of detection events will be presented in the following section.

5.1. The gain of detection events

In Table 4 (upper part), the gain of the single-detection events is depicted with the Q þð Þ
symbol. According to Ma et al. [18], the gain of detection events is acquired from two origins:
the photon source and the quantum channel. The photon source presents an expected photon
number μ, and it adopts Poisson distribution. Contrastively, the quantum channel exhibits a
distribution that is computed for every i photons’ state (where i is the quantity of photons in
each pulse) that is named yield. The gain Qi of i photons’ state is the product of the probability
of Alice sending an i photons’ state (that adopts Poisson distribution) and the yield of i
photons’ state (and background states). It will generate a gain at Bob’s side provoked by the

detection of events corresponding to the relation Qi ¼ Yi
μi

i! e
�μ where Yi is the yield of i

photons’ state.

The yield Yi is computed across the following steps:

1. The fiber channel transmittance among Alice and Bob is denoted as TAB ¼ 10�
αl
10 where α is

the loss coefficient measured in dB/km, and the length l is measured in km. Moreover, the
local transmittance at Bob’s side, ηB, is written as tB � ηD where tB is the internal transmit-
tance of optical components and ηD is the quantum efficiency of Bob’s detectors. Then, the
overall transmission and detection efficiency at Bob’s side, ηBT , is computed as

ηBT ¼ tB � ηD � TAB and typically ηBT ranges to 10�3 [18];
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2. The transmittance ηi of i photons’ state at Bob’s, that is, ηBTi ¼ 1� 1� ηBT
� �i for i ¼ 0, 1,…,

assuming independence among the i photons of the i photons’ state;

3. The yield Yi of the i photons’ state is acquired from two sources, the background noise Y0ð Þ
and the true signal. Presuming that the background counts are independent from the
signal photon detection, Yi is given by Yi ¼ Y0 þ ηBTi � Y0ηBTi. However, assuming Y0 is

small (around 10�5) and ηBT � 10�3, the above equation can be reduced to Yi � Y0 þ ηBTi.

The overall gain Q þð Þ is the summation of each Qi contribution, thus: Q þð Þ ¼
P∞

i¼1 Qi ¼
P∞

i¼1

Yi
μi

i! e
�μ, which leads to the relation Y0 þ 1� e�μηBT . Finally, the quantum bit error rate (QBER)

between Alice and Bob has been derived by Ma et al. [18] through the relation

QBERAB ¼ 0:5Y0þed 1�e�μηBTð Þ
Y0þ1�e�μηBT , where ed is the error probability of the detector ed � 10�2

� �
.

With the aim to obtain the gain of double-detection events Q �;�ð Þ, Q �;∓ð Þ, and Q þ;þð Þ, we
consider that each gain has independence of any other, that is, Q �;�ð Þ ¼ Q �ð Þ �Q �ð Þ,
Q þ;�ð Þ ¼ Q þð Þ �Q �ð Þ, Q þ;�ð Þ � Q �;þð Þ, and Q þ;þð Þ ¼ Q þð Þ �Q þð Þ. From the previous discussion,

we know that the gain of the double-detection events decreases quadratically:Q þ;þð Þ � Q2
þð Þ. In

practical implementations of QKD, the single-matching events have the order of 10�5, while
the double-matching events reach the order of 10�10.

5.2. Detecting the photon number splitting attack

In replacing TAB, the photonic gain of the single-detection events or the double-detection
events can be adjusted by Eve but not both at the same time. In contrast, Alice utilizes the

Photonic-Gain Alice Alice � Bob Eve � Bob

Q �ð Þ e�μ e�μηBT � Y0 —

Q þð Þ 1� e�μ Y0 þ 1� e�μηBT 1
2 Y0 þ 1� e�μηETð Þ

Q �;�ð Þ e�2μ e�μηBT � Y0ð Þ2 —

Q �;∓ð Þ 2e�μ� 2 e�μηBT � Y0ð Þ� e�μηET � Y0ð Þ�

1� e�μð Þ Y0 þ 1� e�μηBTð Þ Y0 þ 1� e�μηETð Þ
Q þ;þð Þ 1� e�μð Þ2 Y0 þ 1� e�μηBTð Þ2 1

2 Y0 þ 1� e�μηETð Þ2

Here, ηBT and ηET are the overall efficiency of Bob and Eve, respectively. In the IRFS attack, Eve remains undetected given

that she meets the condition ηET ≥
ln 2e�μηBT �Y0�1ð Þ

�μ . At the lower part of the table, the gain of the double þ;þð Þ-detection
events is shown, which is denoted as Q þ;þð Þ, and the gain of single �; ∓ð Þ detection events is represented as Q �;∓ð Þ. In the
IRFS attack, Eve can effectively forward half of her biqubits to Bob’s detectors. The “�” symbol denotes multiplication
inside the Q �;∓ð Þ relation. The factor of 1/2 is a result of Bob using an active basis choice, compelling Eve to blind his
detector when his basis differs from her own (half the time), and considering that each pair of pulses is detected in the
same basis, Bob will always be blinded by Eve for both pulses or neither pulses, resulting in the same factor 1/2 for both
single and double-detection events

Table 4. The background noise is defined as the gain of the single (non-empty) and empty pulses, Q þð Þ and Q �ð Þ,
respectively, where μ is the expected photon number of the source and Y0.
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double-matching detection events 2Mð Þ and the S-ið Þ sifting instances which are consistent
with the states she fixed, to verify corresponding photonic gains, parallel and non-orthogonal.

As mentioned before, the one-photon states are blocked by eavesdropper and she performs a
channel substitution to adjust the transmittance of the channel, TAB. Nevertheless, this activity
produces error gains in the single- and double-detection events that Alice can verify.

The QPEG after Eve blocks the one-photon states and can be written as ΔQ ¼ Q1 where Q1 is
the gain of the one-photon states and it must be computed for the single- and the double-
detection events. The error gain is ΔQ þ;þð Þ ¼ Q2

1 þð Þ ¼ Q2
1 and ΔQ �;∓ð Þ ¼ Q1 �Q �ð Þ for double-

detection events and single-detection events, respectively, where Q1 þð Þ ¼ Y0 þ η� Y0ηð Þμe�μ,
Q �ð Þ ¼ e�μη � Y0, η is the transmittance of the channel, and the detectors at Bob’s side of the
one-photon states and Y0 is the background noise according to Ma et al. [18].

The eavesdropper must adjust the transmittance, TAB, in order to remain hidden in the channel
to achieve the two reference photonic gains, Q þ;þð Þ and Q �;∓ð Þ, for the double-detection events

and single-detection events, respectively. Given Q þ;þð Þ 6¼ Q �;∓ð Þ Eve can adjust TAB to Q2
1 or

Q1 �Q �ð Þ but not both simultaneously. In other words, she is not able to fulfill the conditions
ΔQ þ;þð Þ ¼ 0 and ΔQ �;∓ð Þ ¼ 0; in this manner, the attack becomes detectable. If the eavesdrop-
per adjusts TAB to make it produce a photonic deviation in one or in both gains, she will
introduce a detectable QBER to the system.

Consequently, Eve knows that she must be careful and makes no changes in TAB; otherwise,

she will be detected. Now, the QBER that Eve produces is 0:5Q0þ0:52Q1þ0:53Q2þ…
Q0þQ1þQ2þ… because the

QBER of single-detection events is 0:52 as in BB84. In contrast, when no attack is produced

the QBER of the system is given by 0:5Q0þed Q1þQ2þQ3þ…ð Þ
Q0þQ1þQ2þ… where ed is the detection error

according to Ma et al. [18].

Given that the probability of obtaining a (compatible) matching measurement from the non-
orthogonal double-detection events is 0:52, we derived the error rate of the non-orthogonal

double-detection events as 0:5 Q0þQ1ð Þþ0:52Q2þ0:53Q3þ…
Q0þQ1þQ2þ… . The QBER from the multi-photonic non-

orthogonal states decreases one-half for each copy of quantum states in Eve’s memory. In
contrast, no contribution is made by the multi-photonic parallel states to increase the QBER
because Bob makes public the basis measurements used by him.

6. The IRFS attack

What should Alice and Bob expect from the nonappearance of the IRFS attack? For illustrative
purposes, consider the situation where μ ¼ 0:2, ηBT ¼ 0:8, which is the general efficiency
among Alice and Bob and zero dark counts Y0 ¼ 0ð Þ. In such a case, the great majority of the
total biqubits sent by Alice to Bob ends up in Bob’s station as lost biqubits � 72:61%ð Þ; single-
detection events are � 25:2%, and just � 0:0219% of the measurement cases are double-
detection events. Despite the double-detection gain being very low, it ought not be viewed as
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2. The transmittance ηi of i photons’ state at Bob’s, that is, ηBTi ¼ 1� 1� ηBT
� �i for i ¼ 0, 1,…,

assuming independence among the i photons of the i photons’ state;

3. The yield Yi of the i photons’ state is acquired from two sources, the background noise Y0ð Þ
and the true signal. Presuming that the background counts are independent from the
signal photon detection, Yi is given by Yi ¼ Y0 þ ηBTi � Y0ηBTi. However, assuming Y0 is

small (around 10�5) and ηBT � 10�3, the above equation can be reduced to Yi � Y0 þ ηBTi.

The overall gain Q þð Þ is the summation of each Qi contribution, thus: Q þð Þ ¼
P∞

i¼1 Qi ¼
P∞

i¼1

Yi
μi

i! e
�μ, which leads to the relation Y0 þ 1� e�μηBT . Finally, the quantum bit error rate (QBER)

between Alice and Bob has been derived by Ma et al. [18] through the relation

QBERAB ¼ 0:5Y0þed 1�e�μηBTð Þ
Y0þ1�e�μηBT , where ed is the error probability of the detector ed � 10�2

� �
.

With the aim to obtain the gain of double-detection events Q �;�ð Þ, Q �;∓ð Þ, and Q þ;þð Þ, we
consider that each gain has independence of any other, that is, Q �;�ð Þ ¼ Q �ð Þ �Q �ð Þ,
Q þ;�ð Þ ¼ Q þð Þ �Q �ð Þ, Q þ;�ð Þ � Q �;þð Þ, and Q þ;þð Þ ¼ Q þð Þ �Q þð Þ. From the previous discussion,

we know that the gain of the double-detection events decreases quadratically:Q þ;þð Þ � Q2
þð Þ. In

practical implementations of QKD, the single-matching events have the order of 10�5, while
the double-matching events reach the order of 10�10.

5.2. Detecting the photon number splitting attack

In replacing TAB, the photonic gain of the single-detection events or the double-detection
events can be adjusted by Eve but not both at the same time. In contrast, Alice utilizes the

Photonic-Gain Alice Alice � Bob Eve � Bob

Q �ð Þ e�μ e�μηBT � Y0 —

Q þð Þ 1� e�μ Y0 þ 1� e�μηBT 1
2 Y0 þ 1� e�μηETð Þ

Q �;�ð Þ e�2μ e�μηBT � Y0ð Þ2 —

Q �;∓ð Þ 2e�μ� 2 e�μηBT � Y0ð Þ� e�μηET � Y0ð Þ�

1� e�μð Þ Y0 þ 1� e�μηBTð Þ Y0 þ 1� e�μηETð Þ
Q þ;þð Þ 1� e�μð Þ2 Y0 þ 1� e�μηBTð Þ2 1

2 Y0 þ 1� e�μηETð Þ2

Here, ηBT and ηET are the overall efficiency of Bob and Eve, respectively. In the IRFS attack, Eve remains undetected given

that she meets the condition ηET ≥
ln 2e�μηBT �Y0�1ð Þ

�μ . At the lower part of the table, the gain of the double þ;þð Þ-detection
events is shown, which is denoted as Q þ;þð Þ, and the gain of single �; ∓ð Þ detection events is represented as Q �;∓ð Þ. In the
IRFS attack, Eve can effectively forward half of her biqubits to Bob’s detectors. The “�” symbol denotes multiplication
inside the Q �;∓ð Þ relation. The factor of 1/2 is a result of Bob using an active basis choice, compelling Eve to blind his
detector when his basis differs from her own (half the time), and considering that each pair of pulses is detected in the
same basis, Bob will always be blinded by Eve for both pulses or neither pulses, resulting in the same factor 1/2 for both
single and double-detection events

Table 4. The background noise is defined as the gain of the single (non-empty) and empty pulses, Q þð Þ and Q �ð Þ,
respectively, where μ is the expected photon number of the source and Y0.
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double-matching detection events 2Mð Þ and the S-ið Þ sifting instances which are consistent
with the states she fixed, to verify corresponding photonic gains, parallel and non-orthogonal.

As mentioned before, the one-photon states are blocked by eavesdropper and she performs a
channel substitution to adjust the transmittance of the channel, TAB. Nevertheless, this activity
produces error gains in the single- and double-detection events that Alice can verify.

The QPEG after Eve blocks the one-photon states and can be written as ΔQ ¼ Q1 where Q1 is
the gain of the one-photon states and it must be computed for the single- and the double-
detection events. The error gain is ΔQ þ;þð Þ ¼ Q2

1 þð Þ ¼ Q2
1 and ΔQ �;∓ð Þ ¼ Q1 �Q �ð Þ for double-

detection events and single-detection events, respectively, where Q1 þð Þ ¼ Y0 þ η� Y0ηð Þμe�μ,
Q �ð Þ ¼ e�μη � Y0, η is the transmittance of the channel, and the detectors at Bob’s side of the
one-photon states and Y0 is the background noise according to Ma et al. [18].

The eavesdropper must adjust the transmittance, TAB, in order to remain hidden in the channel
to achieve the two reference photonic gains, Q þ;þð Þ and Q �;∓ð Þ, for the double-detection events

and single-detection events, respectively. Given Q þ;þð Þ 6¼ Q �;∓ð Þ Eve can adjust TAB to Q2
1 or

Q1 �Q �ð Þ but not both simultaneously. In other words, she is not able to fulfill the conditions
ΔQ þ;þð Þ ¼ 0 and ΔQ �;∓ð Þ ¼ 0; in this manner, the attack becomes detectable. If the eavesdrop-
per adjusts TAB to make it produce a photonic deviation in one or in both gains, she will
introduce a detectable QBER to the system.

Consequently, Eve knows that she must be careful and makes no changes in TAB; otherwise,

she will be detected. Now, the QBER that Eve produces is 0:5Q0þ0:52Q1þ0:53Q2þ…
Q0þQ1þQ2þ… because the

QBER of single-detection events is 0:52 as in BB84. In contrast, when no attack is produced

the QBER of the system is given by 0:5Q0þed Q1þQ2þQ3þ…ð Þ
Q0þQ1þQ2þ… where ed is the detection error

according to Ma et al. [18].

Given that the probability of obtaining a (compatible) matching measurement from the non-
orthogonal double-detection events is 0:52, we derived the error rate of the non-orthogonal

double-detection events as 0:5 Q0þQ1ð Þþ0:52Q2þ0:53Q3þ…
Q0þQ1þQ2þ… . The QBER from the multi-photonic non-

orthogonal states decreases one-half for each copy of quantum states in Eve’s memory. In
contrast, no contribution is made by the multi-photonic parallel states to increase the QBER
because Bob makes public the basis measurements used by him.

6. The IRFS attack

What should Alice and Bob expect from the nonappearance of the IRFS attack? For illustrative
purposes, consider the situation where μ ¼ 0:2, ηBT ¼ 0:8, which is the general efficiency
among Alice and Bob and zero dark counts Y0 ¼ 0ð Þ. In such a case, the great majority of the
total biqubits sent by Alice to Bob ends up in Bob’s station as lost biqubits � 72:61%ð Þ; single-
detection events are � 25:2%, and just � 0:0219% of the measurement cases are double-
detection events. Despite the double-detection gain being very low, it ought not be viewed as
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insignificant given that the amount of pulses sent by Alice is high (1011 � 1013 [29]), and the
transmission interim can be legitimately upgraded. However, for practical purposes, we will
presume that the secret bits in the nack state protocol are delivered by single-detection events,
and the key rate is at most the BB84 key rate. Nevertheless, we assert that double-detection
events can be utilized to identify the IRFS attack, so in this section, we defend the security of
the protocol, in spite of Eve’s endeavors to enhance her attack.

6.1. Detecting the IRFS attack with blinding pulses and quantum channel substitution

Within the sight of the IRFS attack with blinding pulses, Eve is amid the quantum channel
utilizing an optical detection system comparable to Bob’s station. Eve is challenged to repro-
duce gains of single- and double-detection events at Bob’s side to pass unnoticed in the
quantum channel. However, the gain of the single-detection events decreases directly with
the channel efficiency, but the double-detection gain drops quadratically. In the next section we
demonstrate that, for practical parameters of the quantum channel, the two gains cannot be
adjusted by the eavesdropper at the same time. Eve cannot control the two gains because of the
fact that:

1. the transmittance of the channel can be adjusted to a unique value by the eavesdropper
either to adjust the single or the double-detection gain and

2. Eve’s station receives Alice’s optical pulses sequentially. In this manner, once a pulse is
detected in the eavesdropper station, she is not able to knowwhether the next pulse will be
likewise detected or lost. That is, Eve has no form to know when a single or a double-
detection event will occur.

Eve still has the possibility to adjust the efficiency of the quantum channel to the gain of the
double-detection events. Therefore, with the purpose of removing the excess of the single-
detection gain, Eve could eliminate pulses in proportion to some probability (e.g., 0.5). How-
ever, in accordance with the second statement given previously in this section, the eavesdrop-
per would lose double-detection pulses (a quarter in this example). Eve could be more selective
discarding only single-detection events on which the detection occurred in the second pulse.
By using this scheme, the double-detection gain is unaltered for Eve. However, given that the
number of single detections inside the biqubit, first or second (see Table 3), is announced by
Bob publicly, the presence of Eve becomes evident.

Both strategies could be combined by Eve to increase the efficiency of the channel to produce an
overabundance of the double-detection gain, but it would also increase the single-detection gain.
The issue for Eve is that once a strategy to remove pulses is chosen, it affects equally the single-
and the double-detection gains. Such gains obey diverse rates: while the first decreases linearly, the
second fluctuates quadratically with the transmittance of the channel. Moreover, at the receiver
station, the single- and double-detection events are registered as haphazard interleaved events.

In the following sections, a convenient method to compute the photon gain deviation caused
by the IRFS attack at a practical level is discussed.
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6.2. Detecting the IRFS attack with quantum channel substitution

It is expected that the eavesdropper would endeavor to adjust both gains, from single- and
double-detection events, applying a quantum channel substitution and tuning it to a specific
transmittance. We define the quantum photon error gain (QPEG or simply ΔQ) as the devia-
tion from the reference gain that is caused by Eve’s apparatus at Bob’s receiver station when
she performs the IRFS attack. In ordinary conditions, it is ideally expected that ΔQ � 0, for the
single- and the double-detection events.

QPEG of double þ;þð Þ-detection events is written as ΔQ þ;þð Þ, while we denote the QPEG of
single �; ∓ð Þ-detection events as ΔQ �;∓ð Þ. ΔQ þ;þð Þ is computed as the difference Q þ;þð ÞAB�
Q þ;þð ÞEB where the symbol þ;þð ÞAB defines the reference gain of the double-detection events

and þ;þð ÞEB denotes the gain of the double-detection events at Bob’s side but in the presence
of Eve. Similarly, ΔQ �;∓ð Þ is computed as Q �;∓ð ÞAB �Q �;∓ð ÞEB , where we apply the sub-index of

�; ∓ð ÞAB and �; ∓ð ÞEB with the same intention.

Using the relations of Table 4, the possibility of the eavesdropper to fulfill simultaneously the
conditions ΔQ þ;þð Þ ¼ 0 and ΔQ �;∓ð Þ ¼ 0 can be established. Allow Eve to adjust freely ηBT and
ηET . Thus, the eavesdropper’s goal is to make ΔQ þ;þð ÞAB ¼ ΔQ þ;þð ÞEB and ΔQ �;∓ð ÞAB ¼
ΔQ �;∓ð ÞEB . The following equation system is obtained:

2 e�μηBT � Y0ð Þ Y0 þ 1� e�μηBTð Þ ¼ e�μηET � Y0ð Þ Y0 þ 1� e�μηETð Þ (1)

Y0 þ 1� e�μηBTð Þ2 ¼ 1
2

Y0 þ 1� e�μηETð Þ2 (2)

Solving the system for ηET, we get lnY0
�μ and ln 1þY0ð Þ

�μ , which, in the practice, cannot be satisfied,

given that the second relation yields ηET as negative and the first relation cannot be fulfilled for

typical parameters, for example, Y0 ¼ 10�5, μ ¼ 0:1 produces ηET ¼ 1:15. Consider also the
cases depicted in Figure 6.

6.3. The photon and the vacuum ratios

We will introduce a convenient method to detect the presence of the eavesdropper without
requiring one to compute deviations from the reference gain, that is, ΔQ þ;þð Þ ¼ 0 or
ΔQ �; ∓ð Þ ¼ 0. For this purpose, let us define the photon ratio R as the relation between the

gains QEB
QAB

where the subscript EB denotes the presence of the eavesdropper and AB indicates its

absence. For double-detection events, we represent R as Q þ;þð ÞEB
Q þ;þð ÞAB, while Q �;∓ð ÞEB

Q �;∓ð ÞAB for single-

detection events. In addition, we will define the vacuum ratio r as e�μηET�Y0
e�μηBT�Y0

.If the eavesdropper

adjusts the channel to achieve Q þ;þð ÞAB ¼ Q þ;þð ÞEB, then Eq. (2) is satisfied. We get that

R �;∓ð Þ ¼ rffiffi
2
p , but r ¼ e�μηET�Y0

e�μηBT�Y0
and ηET ≥ ηBT ; thus, r ≤ 1 and R �;∓ð Þ ≤ 1ffiffi

2
p . To discard Eve’s pres-

ence, it is not necessary to verify that ΔQ �; ∓ð Þ ¼ 0, but it must be confirmed that R �;∓ð Þ > 1ffiffi
2
p .
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insignificant given that the amount of pulses sent by Alice is high (1011 � 1013 [29]), and the
transmission interim can be legitimately upgraded. However, for practical purposes, we will
presume that the secret bits in the nack state protocol are delivered by single-detection events,
and the key rate is at most the BB84 key rate. Nevertheless, we assert that double-detection
events can be utilized to identify the IRFS attack, so in this section, we defend the security of
the protocol, in spite of Eve’s endeavors to enhance her attack.

6.1. Detecting the IRFS attack with blinding pulses and quantum channel substitution

Within the sight of the IRFS attack with blinding pulses, Eve is amid the quantum channel
utilizing an optical detection system comparable to Bob’s station. Eve is challenged to repro-
duce gains of single- and double-detection events at Bob’s side to pass unnoticed in the
quantum channel. However, the gain of the single-detection events decreases directly with
the channel efficiency, but the double-detection gain drops quadratically. In the next section we
demonstrate that, for practical parameters of the quantum channel, the two gains cannot be
adjusted by the eavesdropper at the same time. Eve cannot control the two gains because of the
fact that:

1. the transmittance of the channel can be adjusted to a unique value by the eavesdropper
either to adjust the single or the double-detection gain and

2. Eve’s station receives Alice’s optical pulses sequentially. In this manner, once a pulse is
detected in the eavesdropper station, she is not able to knowwhether the next pulse will be
likewise detected or lost. That is, Eve has no form to know when a single or a double-
detection event will occur.

Eve still has the possibility to adjust the efficiency of the quantum channel to the gain of the
double-detection events. Therefore, with the purpose of removing the excess of the single-
detection gain, Eve could eliminate pulses in proportion to some probability (e.g., 0.5). How-
ever, in accordance with the second statement given previously in this section, the eavesdrop-
per would lose double-detection pulses (a quarter in this example). Eve could be more selective
discarding only single-detection events on which the detection occurred in the second pulse.
By using this scheme, the double-detection gain is unaltered for Eve. However, given that the
number of single detections inside the biqubit, first or second (see Table 3), is announced by
Bob publicly, the presence of Eve becomes evident.

Both strategies could be combined by Eve to increase the efficiency of the channel to produce an
overabundance of the double-detection gain, but it would also increase the single-detection gain.
The issue for Eve is that once a strategy to remove pulses is chosen, it affects equally the single-
and the double-detection gains. Such gains obey diverse rates: while the first decreases linearly, the
second fluctuates quadratically with the transmittance of the channel. Moreover, at the receiver
station, the single- and double-detection events are registered as haphazard interleaved events.

In the following sections, a convenient method to compute the photon gain deviation caused
by the IRFS attack at a practical level is discussed.
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6.2. Detecting the IRFS attack with quantum channel substitution

It is expected that the eavesdropper would endeavor to adjust both gains, from single- and
double-detection events, applying a quantum channel substitution and tuning it to a specific
transmittance. We define the quantum photon error gain (QPEG or simply ΔQ) as the devia-
tion from the reference gain that is caused by Eve’s apparatus at Bob’s receiver station when
she performs the IRFS attack. In ordinary conditions, it is ideally expected that ΔQ � 0, for the
single- and the double-detection events.

QPEG of double þ;þð Þ-detection events is written as ΔQ þ;þð Þ, while we denote the QPEG of
single �; ∓ð Þ-detection events as ΔQ �;∓ð Þ. ΔQ þ;þð Þ is computed as the difference Q þ;þð ÞAB�
Q þ;þð ÞEB where the symbol þ;þð ÞAB defines the reference gain of the double-detection events

and þ;þð ÞEB denotes the gain of the double-detection events at Bob’s side but in the presence
of Eve. Similarly, ΔQ �;∓ð Þ is computed as Q �;∓ð ÞAB �Q �;∓ð ÞEB , where we apply the sub-index of

�; ∓ð ÞAB and �; ∓ð ÞEB with the same intention.

Using the relations of Table 4, the possibility of the eavesdropper to fulfill simultaneously the
conditions ΔQ þ;þð Þ ¼ 0 and ΔQ �;∓ð Þ ¼ 0 can be established. Allow Eve to adjust freely ηBT and
ηET . Thus, the eavesdropper’s goal is to make ΔQ þ;þð ÞAB ¼ ΔQ þ;þð ÞEB and ΔQ �;∓ð ÞAB ¼
ΔQ �;∓ð ÞEB . The following equation system is obtained:

2 e�μηBT � Y0ð Þ Y0 þ 1� e�μηBTð Þ ¼ e�μηET � Y0ð Þ Y0 þ 1� e�μηETð Þ (1)

Y0 þ 1� e�μηBTð Þ2 ¼ 1
2

Y0 þ 1� e�μηETð Þ2 (2)

Solving the system for ηET, we get lnY0
�μ and ln 1þY0ð Þ

�μ , which, in the practice, cannot be satisfied,

given that the second relation yields ηET as negative and the first relation cannot be fulfilled for

typical parameters, for example, Y0 ¼ 10�5, μ ¼ 0:1 produces ηET ¼ 1:15. Consider also the
cases depicted in Figure 6.

6.3. The photon and the vacuum ratios

We will introduce a convenient method to detect the presence of the eavesdropper without
requiring one to compute deviations from the reference gain, that is, ΔQ þ;þð Þ ¼ 0 or
ΔQ �; ∓ð Þ ¼ 0. For this purpose, let us define the photon ratio R as the relation between the

gains QEB
QAB

where the subscript EB denotes the presence of the eavesdropper and AB indicates its

absence. For double-detection events, we represent R as Q þ;þð ÞEB
Q þ;þð ÞAB, while Q �;∓ð ÞEB

Q �;∓ð ÞAB for single-

detection events. In addition, we will define the vacuum ratio r as e�μηET�Y0
e�μηBT�Y0

.If the eavesdropper

adjusts the channel to achieve Q þ;þð ÞAB ¼ Q þ;þð ÞEB, then Eq. (2) is satisfied. We get that

R �;∓ð Þ ¼ rffiffi
2
p , but r ¼ e�μηET�Y0

e�μηBT�Y0
and ηET ≥ ηBT ; thus, r ≤ 1 and R �;∓ð Þ ≤ 1ffiffi

2
p . To discard Eve’s pres-

ence, it is not necessary to verify that ΔQ �; ∓ð Þ ¼ 0, but it must be confirmed that R �;∓ð Þ > 1ffiffi
2
p .
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Contrarily, if Eve modifies the channel to achieve Q �; ∓ð ÞAB ¼ Q �; ∓ð ÞEB, we get that
R þ;þð Þ ¼ 2

r2. Since r ≤ 1, we obtain that the IRFS attack causes R þ;þð Þ ≥ 2. To make sure that the
system is protected against the IRFS attack, it is not necessary to check ΔQ þ;þð Þ ¼ 0 but it is
enough verifying its equivalent R þ;þð Þ < 2.

6.4. The QBER of one-photon states

As quoted previously, in the nack state protocol, the great majority of the pulses sent by Alice to
Bob behave as BB84 signal pulses. Each time a compatible basis measurement is applied by
Bob, the result, either from single detection or double detection, is useful as in BB84. Thus, for
practical purposes, the nack state protocol has an efficiency comparable to the BB84. However, a
partial reduction of the bit rate can be expected, as Alice reduces the optical pulse rate to avoid
the eavesdropper to record double-detection events. In this way, Eve is detected if she stays
waiting for double-detection events before she can forward them.

Given that it decreases quadratically, the rate of the double-detection event is small. Neverthe-
less, at the same time, it is extraordinary that the QBER of the double-matching detection
events from parallel and orthogonal states also decreases quadratically. To see this, let us recall

Figure 6. The deviation from the reference gain is shown on the y-axis. The upper and bottom left graphs represent
double detections, while the right graphs correspond to single detections. Considering that ηBT ¼ 0:001 and Eve uses
ηET ¼ 0:0014, she accomplishes in (a), ΔQ þ;þð Þ ¼ 0, however, in (b), ΔQ �;∓ð Þ 6¼ 0. Conversely, if Eve adjusts ηET ¼ 0:002,
she gets in (d)) ΔQ �;∓ð Þ ¼ 0, but in (c), she provokes simultaneously that ΔQ þ;þð Þ 6¼ 0.
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that in the BB84 protocol, the probability to get the correct bit is pc ¼ 1þ Vð Þ=2, and the
probability to obtain an erroneous bit is pe ¼ 1� Vð Þ=2, where V is the visibility of the optical
system. To calculate the QBER of the one-photon states, the relation QBER ¼ pe= peþ pcð Þ is
applied [31].

Now, suppose that the two parallel states are sent by Alice j1Zð i; j1ZiÞ to Bob who measures
them using the Z basis. Those states are depicted in Figure 7a. The probability to get the two
states j1Zð i; j1ZiÞ is p2c , and the probability to get the opposite values j0Zð i; j0ZiÞ is p2e , case II of
Figure 7a. Since the measurement cases j0Zð i; j1ZiÞ and j1Zð i; j0ZiÞ, Cases III and IV of
Figure 7a, are always disposed because they are non-matching cases, the final probabilities

are pcparallel ¼ p2c
p2cþp2e and peparallel ¼ p2e

p2cþp2e . The same reasoning can be applied to the orthogonal

biqubits case as depicted in Figure 7b.

Those relations forward us to the QBER of the parallel and orthogonal states QBER ¼ 1�Vð Þ2
1�Vð Þ2þ 1þVð Þ2.

Figure 8 gives an illustration of the QBER of one-photon states of such protocols. Considering
the QBER of the nack state is lower than BB84, it is interesting to acknowledge that the double-

Figure 7. The QBER of parallel and orthogonal states: Cases III and IV of (a) and (b) can be discarded by Alice, so they do
not produce errors.
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Contrarily, if Eve modifies the channel to achieve Q �; ∓ð ÞAB ¼ Q �; ∓ð ÞEB, we get that
R þ;þð Þ ¼ 2

r2. Since r ≤ 1, we obtain that the IRFS attack causes R þ;þð Þ ≥ 2. To make sure that the
system is protected against the IRFS attack, it is not necessary to check ΔQ þ;þð Þ ¼ 0 but it is
enough verifying its equivalent R þ;þð Þ < 2.

6.4. The QBER of one-photon states

As quoted previously, in the nack state protocol, the great majority of the pulses sent by Alice to
Bob behave as BB84 signal pulses. Each time a compatible basis measurement is applied by
Bob, the result, either from single detection or double detection, is useful as in BB84. Thus, for
practical purposes, the nack state protocol has an efficiency comparable to the BB84. However, a
partial reduction of the bit rate can be expected, as Alice reduces the optical pulse rate to avoid
the eavesdropper to record double-detection events. In this way, Eve is detected if she stays
waiting for double-detection events before she can forward them.

Given that it decreases quadratically, the rate of the double-detection event is small. Neverthe-
less, at the same time, it is extraordinary that the QBER of the double-matching detection
events from parallel and orthogonal states also decreases quadratically. To see this, let us recall

Figure 6. The deviation from the reference gain is shown on the y-axis. The upper and bottom left graphs represent
double detections, while the right graphs correspond to single detections. Considering that ηBT ¼ 0:001 and Eve uses
ηET ¼ 0:0014, she accomplishes in (a), ΔQ þ;þð Þ ¼ 0, however, in (b), ΔQ �;∓ð Þ 6¼ 0. Conversely, if Eve adjusts ηET ¼ 0:002,
she gets in (d)) ΔQ �;∓ð Þ ¼ 0, but in (c), she provokes simultaneously that ΔQ þ;þð Þ 6¼ 0.
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that in the BB84 protocol, the probability to get the correct bit is pc ¼ 1þ Vð Þ=2, and the
probability to obtain an erroneous bit is pe ¼ 1� Vð Þ=2, where V is the visibility of the optical
system. To calculate the QBER of the one-photon states, the relation QBER ¼ pe= peþ pcð Þ is
applied [31].

Now, suppose that the two parallel states are sent by Alice j1Zð i; j1ZiÞ to Bob who measures
them using the Z basis. Those states are depicted in Figure 7a. The probability to get the two
states j1Zð i; j1ZiÞ is p2c , and the probability to get the opposite values j0Zð i; j0ZiÞ is p2e , case II of
Figure 7a. Since the measurement cases j0Zð i; j1ZiÞ and j1Zð i; j0ZiÞ, Cases III and IV of
Figure 7a, are always disposed because they are non-matching cases, the final probabilities

are pcparallel ¼ p2c
p2cþp2e and peparallel ¼ p2e

p2cþp2e . The same reasoning can be applied to the orthogonal

biqubits case as depicted in Figure 7b.

Those relations forward us to the QBER of the parallel and orthogonal states QBER ¼ 1�Vð Þ2
1�Vð Þ2þ 1þVð Þ2.

Figure 8 gives an illustration of the QBER of one-photon states of such protocols. Considering
the QBER of the nack state is lower than BB84, it is interesting to acknowledge that the double-

Figure 7. The QBER of parallel and orthogonal states: Cases III and IV of (a) and (b) can be discarded by Alice, so they do
not produce errors.
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detection gain could be increased by future technologies. Even though there is not yet a formal
derivation of the secret key rate for double-detection events, we can expect that the small QBER
would lead to reaching longer QKD distances.

6.5. The non-structured nack-state protocol

In the argument of Point 2 of Section 6.1, it is implicit that Eve uses only a single station, but
this is not a practical restriction. Eve could use two stations, one near to Alice to detect and one
near to Bob to generate fake pulses. In the event that quantum channel utilizes optical fibers
(the most widely recognized useful channel for ground-based QKD), everything required by
Eve is a radio connection between her two stations to “catch up” with the quantum link. Even
assuming a low source rate of 1 MHz, the time delay between pulses is only 1 microsecond,
which can be easily compensated using a 600 m link (traveling in free space takes 2 microsec-
onds; traveling in fiber takes 3 microseconds). Any practical QKD system will operate over
distances greater than 600 m, making it entirely achievable for Eve to detect both pulses of a
pair before transmitting her fake state to Bob using a second station.

A 100 km link in optical fiber would limit the source rate to 6 kHz, and much less if the fiber is
not straight, which is almost always the case. To truly be secure the period between two pulses
would have to be the full travel time of the pulse over the quantum channel. For 100 km, it

Figure 8. The nack state protocol uses pairs of parallel and orthogonal states. The QBER of parallel and orthogonal states is
derived using the probabilities of two consecutive BB84 measurements.
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would be 500 microseconds, forcing a source rate of 2 kHz. Given the conservative fiber link
loss of 0.2 dB/km the detection rate after 100 km (20 dB) would be less than 20/s, not counting
detection efficiency. Shorter distances would be more favorable, but this implies the protocol is
limited to short distances. There also is not any point in randomly adding delays as Eve would
still be able to perfectly replicate the gains when the delay is insufficient and could choose to
simply not intercept when the delay is too long, giving her partial information without any
hint of her presence.

Unfortunately for Eve, Alice can apply a reduction in the optical pulse rate forcing Eve to
introduce a delay in the arrival time of the pulses at Bob’s station. As a matter of fact, Alice
could adjust such delay sending slow pulses as a random burst. Furthermore, slowing pulses
can enhance the double-detection rate at Bob’s side by reducing after-pulsing errors.

However, there is no reason why each pair must be sent in sequence. We call this protocol the
non-structured nack-state. If Alice were to transmit a burst of the first states of each pair,
followed by a burst of the second states of each pair, she would create a separation between
the pairs equal to the length of the bursts and she would not reduce the pulse rate. Consider a
100 km fiber optic link; it would be able to send the first states of each pair for 500 microsec-
onds, followed by the second state of each pair for the next 500 microseconds, with Bob
rechoosing the same basis for both 500 microsecond bursts. Since the 500 microsecond delay
is at least the full travel time in the quantum channel, Eve would always be compelled to fake
the first state of each pair before receiving the second. If there is no issue with this approach,
the authors can use it to justify Point 2 of Section 6.1, which in turn justifies Point 1 of the same
section.

6.6. Faking double-detection events

Another possibility for the eavesdropper is to fake double-detection events. After all, we may
inquire why Eve cannot fake double-detection events as she stays covered up in the channel.
First of all, let us recall that Alice knows which biqubits contain parallel or orthogonal states.
Second, consider the cases portrayed in Table 5. Assume the j0Zð i; j0ZiÞ biqubit has been sent
to Bob by Alice. The first pulse reaches Eve’s station, who measures it with the X (or Z) basis,
but the second pulse arrives as a vacuum state either by the effect of the quantum channel, the
detection system, or the photon source. Thus, Eve gets a single-detection event. In this
moment, Eve determines to fake the second state, but she realizes that there are six potential
outcomes to fake the j0Zð i; j0ZiÞ biqubit; such cases are listed in Table 5. Additionally, one of
those cases is erroneous because no orthogonalmeasurement can be derived from parallel states.
In this example, j1Zð i; j0ZiÞ cannot be obtained from j0Zð i; j0ZiÞ. Likewise, j0Zð i; j0ZiÞ cannot be
derived from j1Zð i; j0ZiÞ. Consequently, if Eve tries to fake a double-detection event, she will
produce a bit error of 1

6. In this situation, a bit error is produced when Alice expects a double
non-matching event but Bob announces a double-matching event or vice versa.

According to Collins et al. [30], Bob’s visibility of Alice’s quantum state is computed as

VAB ¼ P signalð Þ
P totalð Þ where P signalð Þ ¼ TAB � η� Vopt and P totalð Þ ¼ TAB � ηþ 1� TAB � ηð Þ�

2� Y0. Here, Vopt is the optical visibility with a perfect source and detectors; η is the probability
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would be 500 microseconds, forcing a source rate of 2 kHz. Given the conservative fiber link
loss of 0.2 dB/km the detection rate after 100 km (20 dB) would be less than 20/s, not counting
detection efficiency. Shorter distances would be more favorable, but this implies the protocol is
limited to short distances. There also is not any point in randomly adding delays as Eve would
still be able to perfectly replicate the gains when the delay is insufficient and could choose to
simply not intercept when the delay is too long, giving her partial information without any
hint of her presence.

Unfortunately for Eve, Alice can apply a reduction in the optical pulse rate forcing Eve to
introduce a delay in the arrival time of the pulses at Bob’s station. As a matter of fact, Alice
could adjust such delay sending slow pulses as a random burst. Furthermore, slowing pulses
can enhance the double-detection rate at Bob’s side by reducing after-pulsing errors.

However, there is no reason why each pair must be sent in sequence. We call this protocol the
non-structured nack-state. If Alice were to transmit a burst of the first states of each pair,
followed by a burst of the second states of each pair, she would create a separation between
the pairs equal to the length of the bursts and she would not reduce the pulse rate. Consider a
100 km fiber optic link; it would be able to send the first states of each pair for 500 microsec-
onds, followed by the second state of each pair for the next 500 microseconds, with Bob
rechoosing the same basis for both 500 microsecond bursts. Since the 500 microsecond delay
is at least the full travel time in the quantum channel, Eve would always be compelled to fake
the first state of each pair before receiving the second. If there is no issue with this approach,
the authors can use it to justify Point 2 of Section 6.1, which in turn justifies Point 1 of the same
section.

6.6. Faking double-detection events

Another possibility for the eavesdropper is to fake double-detection events. After all, we may
inquire why Eve cannot fake double-detection events as she stays covered up in the channel.
First of all, let us recall that Alice knows which biqubits contain parallel or orthogonal states.
Second, consider the cases portrayed in Table 5. Assume the j0Zð i; j0ZiÞ biqubit has been sent
to Bob by Alice. The first pulse reaches Eve’s station, who measures it with the X (or Z) basis,
but the second pulse arrives as a vacuum state either by the effect of the quantum channel, the
detection system, or the photon source. Thus, Eve gets a single-detection event. In this
moment, Eve determines to fake the second state, but she realizes that there are six potential
outcomes to fake the j0Zð i; j0ZiÞ biqubit; such cases are listed in Table 5. Additionally, one of
those cases is erroneous because no orthogonalmeasurement can be derived from parallel states.
In this example, j1Zð i; j0ZiÞ cannot be obtained from j0Zð i; j0ZiÞ. Likewise, j0Zð i; j0ZiÞ cannot be
derived from j1Zð i; j0ZiÞ. Consequently, if Eve tries to fake a double-detection event, she will
produce a bit error of 1

6. In this situation, a bit error is produced when Alice expects a double
non-matching event but Bob announces a double-matching event or vice versa.

According to Collins et al. [30], Bob’s visibility of Alice’s quantum state is computed as

VAB ¼ P signalð Þ
P totalð Þ where P signalð Þ ¼ TAB � η� Vopt and P totalð Þ ¼ TAB � ηþ 1� TAB � ηð Þ�

2� Y0. Here, Vopt is the optical visibility with a perfect source and detectors; η is the probability
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Alice’s Biqubit Eve’s Basis Eve’s Detection Forwarded States Eve’s Result

j0Zð i; j0ZiÞ Z �; j0Zð iÞ j0Zð i; j0ZiÞ Hidden

j1Zð i; j0ZiÞ Detected

X �; j0Xð iÞ j0Xð i; j0XiÞ Hidden

j1Xð i; j0XiÞ Hidden

�; j1Xð iÞ j0Xð i; j1XiÞ Hidden

j1Xð i; j1XiÞ Hidden

j1Zð i; j0ZiÞ Z �; j0Zð iÞ j0Zð i; j0ZiÞ Detected

j1Zð i; j0ZiÞ Hidden

X �; j0Xð iÞ j0Xð i; j0XiÞ Hidden

j1Xð i; j0XiÞ Hidden

�; j1Xð iÞ j0Xð i; j1XiÞ Hidden

j1Xð i; j1XiÞ Hidden

However, she can use six possible states, but one of them is erroneous, so she introduces an error probability of 1
6. Here,

the six choices for j0Zð i; j0ZiÞ and j1Zð i; j0ZiÞ biqubits are shown

Table 5. As soon as Eve detects the first state of a biqubit, she tries to fake the second state.

Figure 9. The error rate of double-detection events caused by the IRFS attack is 1
6. When it is compared to the QBER of the

quantum channel, the maximum secure distance to detect the IRFS attack is 176 km. In the presence of the IRFS attack,
perfect visibility and zero dark counts are assumed in the link between Alice and Eve and from her to Bob.
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of detecting the photon when it arrives; TAB is the transmittance between Alice and Bob; and Y0

is the background noise. On practical experimental parameters: α ¼ 0:25 dB� km�1, η ¼ 0:3,
Y0 ¼ 10�4, and Vopt ¼ 0:99. Figure 9 shows the visibility as a function of the distance.

On the other hand, the QBER in BB84 can be computed as QBER ¼ pe
peþpc, where pc (pe) is the

probability to get, correctly or erroneously, the quantum bit sent by Alice, respectively. If we
write such probabilities as a function of the optical visibility V, we have pc ¼ 1þ Vð Þ=2 and
pe ¼ 1� Vð Þ=2.

Therefore, pc ¼ p2c
p2cþp2e and pe ¼ p2e

p2cþp2e , and we derived the QBER of the parallel and orthogonal

states as QBER ¼ 1�Vð Þ2
1�Vð Þ2þ 1þVð Þ2.

IfQBER of double-detection events produced by the quantum channel is compared against the
1
6 error rate caused by the eavesdropper, we can find that the maximum secure distance for
detecting the IRFS attack when the eavesdropper fakes double-detection events is 176 km,
which is within the range of the BB84 key rate, as it appears in Figure 9.

7. Conclusions

In the quantum flows approach, the transmitter interleaves pairs of quantum states, parallel
and orthogonal (non-orthogonal), while the receiver applies active basis selection to perform state
measurement. The QKD protocols based on quantum flows uses the same optical hardware of
the BB84 protocol, and they can be implemented in most QKD systems as a software module
application.

The ack-QKD protocol can be useful to detect the PNS attack. If the eavesdropper adjusts the
transmittance TAB of the channel it produces a deviation in one or in both photonic gains; thus,
she will introduce a detectable QBER to the system.

On the other side the intercept resend with faked (blinding) states (IRFS) attack is detected by
the nack-state protocol using the gain of single- and double-detection events where theQBER of
double-detection events of the quantum channel is compared against the 1

6 error rate caused by
the eavesdropper, so the maximum secure distance results in 176 km.

Although double-detection events represent a small fraction of the total detection events, they
are useful to detect the IRFS attack. In addition, the smaller QBER can be useful in future
implementations to distill secret bits at longer distances.
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1. Introduction

Quantum entanglement plays the fundamental role in quantum information and computa-
tion [1, 2]. The resource theory of quantum entanglement, entanglement distillation [3] and
entanglement cost [4] revealed one of the most fundamental aspects of quantum mechanics.
Entanglement distillation protocol consists in converting a number of copies of an entangled state
into few copies of maximally entangled states, by means of local operations and classical commu-
nication (LOCC) [5]. As maximally entangled states are the main resource of the quantum
information, entanglement distillation protocol has many applications in this scenario, as quan-
tum teleport [6], quantum error correction [7] and quantum cryptography [8]. A family of quan-
tum information protocol arises from distillation of quantum entanglement and secret keys [3, 9]

However independently Ollivier and Zurek [10], and Henderson and Vedral [11] found a new
quantum property, without counterpart in classical systems. They named it as the quantumness of
correlations. This new kind of correlation reveals the amount of information destroyed during the
local measurement process and goes beyond the quantum entanglement. There are many
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equivalent formulations for characterization and quantification of quantumness of correlations:
quantum discord [10, 11], minimum local disturbance [12–14] and geometrical approach [15–17].

This chapter presents in detail two different ways to relate quantum entanglement and
quantumness of correlations. The main purpose of this chapter is to discuss that quantumness
of correlations plays an interesting role in entanglement distillation protocol. Entanglement
and quantumness of correlations connect each other in two different pictures. The relation
derived by Koashi and Winter [18] demonstrates the balance between quantumness of corre-
lations and entanglement in the purification process [19]. This balance leads to a formal proof
for the irreversibility of the entanglement distillation protocol, in terms of quantumness of
correlations [20]. In the named activation protocol, the quantumness of correlations of a given
composed system can be converted into distillable entanglement with a measurement appara-
tus during the local measurement process [21, 22].

The chapter is organized as follow. In Section 2, a mathematical overview is presented, and the
notation is defined. Section 3 introduces some important concepts about the notion of quan-
tum correlations: entanglement and quantumness of correlations. Section 4 presents the
Koashi-Winter relation and its role in the irreversibility of quantum distillation process. Sec-
tion 5 is intended to the description of the activation protocol, and the demonstration that
quantumness of correlation can be activated into distillable entanglement.

2. Mathematical overview

This section introduces some quantum information concepts and defines the notation used in
the chapter.

2.1. Density matrix and quantum channels

As the convex combination of positive matrices is also positive, then the space of positive opera-
tors forms a convex cone in Hilbert-Schmidt L CN� �

[23]. If we restrict the matrices in the positive
cone to be trace = 1, we arrive to another set of matrices, that is named the set of density matrices.
This set of operators also originates a vector space, this space is denoted asD CN� �

. Therefore, the
matrices that belong to this set, or the vectors in this vector space, are named density matrices.

Definition 1. A linear positive operator ρ∈D CN� �
is a density matrix and represents the state of a

quantum system, if it satisfies the following properties:

• Hermitian: ρ = ρ†

• Positive semi-definite: ρ ≥ 0;

• Trace one: Tr(ρ) = 1

As the convex combination of density matrices is a density matrix, the vector space D is a
convex set whose pure states are projectors onto the real numbers. A given density matrix
ρ∈D CN� �

is a pure state if it satisfies:

ρ ¼ ρ2; (1)
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then the state ρ is a rank-1 matrix and it can be written as:

ρ ¼ ψj i ψh j: (2)

The set of pure states is a 2(N � 1)-dimensional subset of the (N2 � 2)-dimensional boundary of
D CN� �

. Every state with at least one eigenvalue equal to zero belongs to the boundary [23]. For
two-dimensional systems (it is alsonamedqubit [24]), the boundary is just composedof pure states.

Consider a linear transformationΦ : L CN� �! L CM� �
. This map represents a physical process, if

it satisfies some conditions, determined by the mathematical properties of the density matrices.
Indeed, to represent a physical process, the transformation must map a quantum state into
another quantum state, Φ : D CN� �! D CM� �

. It holds if Φ satisfy the following properties:

• Linearity: As a quantum state can be a convex combination of other quantum states, the
map must be linear. For two arbitrary operators ρ, σ∈D CN� �

Φ ρþ σ
� � ¼ Φ ρ

� �þ Φ σð Þ; (3)

• Trace preserving: The eigenvalues of the density matrix represent probabilities, and it
sum must be one, then a quantum channel must to keep the trace of the density matrix:

Tr Φ ρ
� �� � ¼ 1: (4)

• Completely positive: Consider a channel Φ : D CAð Þ ! D CAð Þ and a quantum state
ρ, σ∈D CA ⊗CBð Þ, then

I⊗Φ ρ
� �

≥ 0: (5)

The map that satisfies this property is named completely positive map. The linear transforma-
tions mapping quantum states into quantum states are named completely positive and trace
preserve (CPTP) quantum channels. The space of quantum channels that maps N � N density
matrices onto M �M density matrices is denoted as C CN;CM� �

.

2.2. Measurement

Measurement is a classical statistical inference of quantum systems. The measurement process
maps a quantum state into a classical probability distribution.

We can define a measurement as a function Π : Σ! P CΓð Þ1, associating an alphabet Σ to
positive operators Πxf gx ⊂P CΓð Þ. For a given density matrix ρ∈D CΓð Þ, the measurement
process consists in to chose an element of Σ randomly. This random choice is represented by a

1Just to clarify the notation, when we write a subscript in the complex euclidean vector space, as CΓ, it represents a label to
the space, it shall be very useful when we study composed systems. When we write a superscript on it, it represents the

dimension of the complex vector space. For example, if dim(CΓ) = N, we can also represent this space as CN , the usage of
the notation will depend on the context.
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probability vector p! ∈RN
þ, with N being the cardinality of the random variable described by p!.

The elements of the probability vector p! are given by:

px ¼ Tr Πxρ
� �

; (6)

where Πx is the measurement operator associated to x ∈ Σ. The alphabet Σ is the set of measure-

ment outcomes, and the vector p! is the classical probability vector associated to the measure-
ment process Π of a given density matrix ρ. As the outcomes are elements of a probability
vector, these elements must be positive and sum to one. Which implies that the measurement
operators must sum to identity:

X
x
Πx ¼ IΓ; (7)

where IΓ is the identity matrix in CΓ. It is easy to check that this condition implies ∑xpx = 1:

X
x
px ¼

X
x
Tr Πxρ
� � ¼ Tr

X
x
Πxρ

 !
¼ Tr ρ

� � ¼ 1: (8)

For instance, we shall restrict the measurements to a subclass of measurement operators
named projective measurements. As it is shown later, its generalization can be performed via

the Naimark’s theorem. For projective measurements, the cardinality of p! is at least the
dimension of ρ, and the measurement operators are projectors:

Π2
x ¼ Πx; (9)

for any x ∈ Σ. If we consider an orthonormal basis {|ex〉}, where the vectors |ex〉 span CΓ, this
set represents a projective measurement for Πx = |ex〉〈ex|. The output state is described by the
expression:

ρx ¼
ΠxρΠx

Tr Πxρ
� � : (10)

The set of operators defines a convex hull in P CΓð Þ, then a measured state represents a pure
state in this convex hull. In this way, the post-measurement state can be reconstructed by the
convex combination of the output states ρ = ∑xpxρx.

As physical processes are described by quantum channels, it is possible to describe the classical
statistical inference of the quantum measurements as a CPTP channel. A channel that maps a
quantum state into a probability vector is the dephasing channel. Therefore, the post-
measurement state is the state under the action of the dephasing channel.

Theorem 2. A given map Φ∈ C CΓ;CΓ0ð Þ is a measurement if and only if:

Φ ρ
� � ¼

X
x
Tr Mxρ
� �

exj i exh j; (11)

where ρ∈D CΓð Þ, Mx ∈P CΓð Þ and exj i∈CΓ0 .
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In order to differ the set of measurement channels from a general CPTP channel, this set is
represented as P. A given measurement map M∈P CΓ;CΓ0ð Þ is a quantum channel that maps
a density matrix in a probability vector, M : D CΓð Þ ! RþΓ0 . This probability vector is described
by a diagonal density matrix as in Eq. (11). The dimension of CΓ0 is the number of outcomes of
the measurement.

For general measurements, described by positive operators valued measure (POVM), the
measurement process can be described by a measurement channel Φ∈P CΓ;CΓð Þ. The descrip-
tion performed above can be followed to describe these general measurements, indeed projec-
tive measurements are a restriction for a POVM composed by orthogonal operators. Consider
a set of positive operators {Mx}x, representing a POVM, then Tr[Mxρ] = px are the elements of a

probability vector p! ∈RþΓ , then the post-measurement state is:

Φ ρ
� � ¼

X
x
px exj i exh j: (12)

Where {|ex〉}x is an orthonormal basis in CΓ.

Using the Naimark’s theorem, the measurement channel is described as a dephasing channel
on a state in a enlarged space. In other words, for POVMs whose elements are rank-1
and linearly independent, it is possible to associate a projective measurement on an enlarged
space.

Theorem 3 (Naimark’s theorem). Given a quantum measurement M∈P CΓ;CΓ0ð Þ, with POVM

elements Mxf gMx¼0, there exists a projective measurementΠ∈P CΓ0ð Þ, with elements Πy
� �M

y¼0 such that:

Tr Mxρ
� � ¼ Tr ΠxVρV†

� �
; (13)

where V ∈U CΓ;CΓ0ð Þ is an isometry.

The action of the isometry on the state ρ, in the Naimark’s theorem, is named as embedding
operation. In this way, the isometry will be V ¼ IΓ ⊗ 0j iE and the enlarged space CΓ0 ¼ CΓ ⊗CE.
For this simple case, the relation between the POVM elements {Mx}x and the projective mea-
surement on the enlarged space {Πx}x:

Mx ¼ IΓ ⊗ 0h jE
� �

Πx IΓ ⊗ 0j iE
� �

: (14)

As the measurement can be described by a quantum channel, we can study how quantum
measurements can be performed locally.

Definition 4. Given a N-partite composed system, represented by the state ρA1, :: .; AN
∈

D CA1 ⊗⋯⊗CANð Þ, we define the measurement on each subsystem applied locally:

ΦA1 ⊗⋯⊗ΦAN ρA1, ::.; AN

� �
¼
X

k
!
Tr MA1

k1 ⊗⋯⊗MAN
kN ρA1, ::.; AN

h i
k
!
〉〈 k
!���
���; (15)

where k
!���
E
¼ k1j i⊗⋯⊗ kNj i and the label k

!
in the sum represents the set of indexes k1,…, kN.

MAx
kx

n o
kx
are the measurement operators on each subsystem.
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Suppose the measurement is performed on some subsystems, the remaining other subsystems
are unmeasured. Consider a bipartite system ρAB ∈D CA ⊗CBð Þ and a measurement acting on
the system B, then the measurement map will be written as:

IA ⊗ΦB ρAB

� � ¼
X
x
TrB IA ⊗MB

xρAB
� �

⊗ bxj i bxh j: (16)

As the measurement is not acting on A, the post-measured state on A will remain the same. If

we write px ¼ TrAB IA ⊗MB
xρAB

� �
and ρA

x ¼
TrB IA ⊗MB

xρAB½ �
TrAB IA ⊗MB

xρAB½ �, the post-measured state will be:

IA ⊗ΦB ρAB

� � ¼
X
x
pxρ

A
x ⊗ bxj i bxh j: (17)

As the measurement is a classical statistical inference process, the local measurement process
destroys the quantum correlations between the systems. Indeed the post-measured state is not
a classical probability distribution, although it only has classical correlations.

2.3. Quantum entropy

Consider that one can prepare an ensemble of quantum states ξ = {px, ρx}x, accordingly to some
random variable X. Classical information can be extracted from the ensemble of quantum
states, in the form of a variable Y, performing measurements on the quantum system. The
conditional probability distribution to obtain a value y, given as input the state ρx is:

p yjxð Þ ¼ Tr Myρx

� �
; (18)

where {My}y is a POVM. The joint probability distribution X and Y is given by:

p x; yð Þ ¼ pxTr Myρx

� �
: (19)

The probability distribution of Y is obtained from the marginal probability distribution:

p yð Þ ¼
X
x
p x; yð Þ ¼

X
x
pxTr Myρx

� � ¼ Tr My

X
x
pxρx

 !
: (20)

Considering the Bayes rule:

p x; yð Þ ¼ pxp yjxð Þ ¼ p yð ÞP xjyð Þ; (21)

it is possible to obtain the conditional probability distribution with elements:

P xjyð Þ ¼ pxp yjxð Þ
p yð Þ : (22)

Even in the case the system is always prepared in the same state, there exists an uncertainty
about the measured of an observable. The probability distributions presented above are
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evidencing this uncertainty, for the measurement observables of a POVM. These probability
distributions are classical probability distributions extracted from the quantum systems, and
the Shannon entropy quantifies the degree of surprise related to a given result.

It is also possible to define a quantum analogous to the Shannon entropy. This quantum
entropy is named as von Neumann entropy, and in analogy with Shannon entropy, it is
defined as the expectation value of the operator log2(ρ).

Definition 5 (von Neumann entropy). Given a density operator ρ∈D CN� �
, the quantum version of

the Shannon entropy is defined as the function:

S ρ
� � ¼ �Tr ρ log2ρ

� �
: (23)

The von Neumann entropy can be rewritten as:

S ρ
� � ¼ �

X
k

λk log2 λkð Þ; (24)

where {λk}k are the eigenvalues of ρ = ∑kλk|k〉〈k|. The von Neumann entropy has the same
interpretation of the Shannon entropy for the probability distribution composed by the eigen-
values of the density matrix. The von Neumann entropy is zero of pure states, and it is
maximum for the maximally mixed state I=N, where it is S I=Nð Þ ¼ log2N.

For composed systems, the von Neumann entropy is analogous to the Shannon entropy of the
joint probability. For a bipartite state ρAB, the joint von Neumann entropy is:

S ρAB

� � ¼ �Tr ρAB log2ρAB

� �
: (25)

Follow some interesting, and useful, properties about von Neumann entropy:

1. (Pure states) For a bipartite pure state |ϕ〉AB ∈ CA ⊗CB, the partitions have the same von
Neumann entropy:

S ρA
� � ¼ S ρB

� �
; (26)

where ρA = TrB(|ϕ〉〈ϕ|AB).

2. (Additivity) von Neumann entropy is additive:

S ρ⊗ σ
� � ¼ S ρ

� �þ S σð Þ; (27)

where ρ and σ are density matrices.

3. (Concavity) von Neumann entropy is a concave function:

S
X
i

piρi

 !
≥
X
i

piS ρi

� �
; (28)

for a convex combination ρ = ∑ipiρi.
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entropy is named as von Neumann entropy, and in analogy with Shannon entropy, it is
defined as the expectation value of the operator log2(ρ).

Definition 5 (von Neumann entropy). Given a density operator ρ∈D CN� �
, the quantum version of

the Shannon entropy is defined as the function:

S ρ
� � ¼ �Tr ρ log2ρ

� �
: (23)

The von Neumann entropy can be rewritten as:

S ρ
� � ¼ �

X
k

λk log2 λkð Þ; (24)

where {λk}k are the eigenvalues of ρ = ∑kλk|k〉〈k|. The von Neumann entropy has the same
interpretation of the Shannon entropy for the probability distribution composed by the eigen-
values of the density matrix. The von Neumann entropy is zero of pure states, and it is
maximum for the maximally mixed state I=N, where it is S I=Nð Þ ¼ log2N.

For composed systems, the von Neumann entropy is analogous to the Shannon entropy of the
joint probability. For a bipartite state ρAB, the joint von Neumann entropy is:

S ρAB

� � ¼ �Tr ρAB log2ρAB

� �
: (25)

Follow some interesting, and useful, properties about von Neumann entropy:

1. (Pure states) For a bipartite pure state |ϕ〉AB ∈ CA ⊗CB, the partitions have the same von
Neumann entropy:

S ρA
� � ¼ S ρB

� �
; (26)

where ρA = TrB(|ϕ〉〈ϕ|AB).

2. (Additivity) von Neumann entropy is additive:

S ρ⊗ σ
� � ¼ S ρ

� �þ S σð Þ; (27)

where ρ and σ are density matrices.

3. (Concavity) von Neumann entropy is a concave function:

S
X
i

piρi

 !
≥
X
i

piS ρi

� �
; (28)

for a convex combination ρ = ∑ipiρi.

The Role of Quantumness of Correlations in Entanglement Resource Theory
http://dx.doi.org/10.5772/intechopen.70396

69



4. (Classical-quantum states) For bipartite state in the form ρAB = ∑xpx|x〉〈x| ⊗ ρx, the von
Neumann entropy will be:

S
X
x
px xj i xh j⊗ρx

 !
¼ H Xð Þ þ

X
x
pxS ρx

� �
; (29)

where H(X) = � ∑xpx log2px

For composed system, it is possible to define a quantum analogous to the mutual information
for bipartite states.

Definition 6 (Mutual information). Given a bipartite state ρAB ∈D CA ⊗CBð Þ, the quantum mutual
information is defined as:

I A : Bð ÞρAB ¼ S ρA
� �þ S ρB

� �� S ρAB

� �
: (30)

The quantum mutual information of ρAB quantifies the correlations in quantum systems. It can
be interpreted as the number of qubits that one part must send to another to destroy the
correlations between the entire system. As the amount of correlations in a quantum state must
be positive, it is possible to conclude that:

S ρA
� �þ S ρB

� �
≥S ρAB
� �

: (31)

From property 2, it is easy to see that mutual information is zero for product state ρAB = ρA⊗ ρB.
The mutual information of pure states will be equal to:

I A : Bð ÞψAB
¼ 2S ρA

� � ¼ 2S ρB
� �

; (32)

where ψAB = |ψ〉〈ψ|AB is pure state.

The quantum version of the relative entropy quantifies the distinguishability between quan-
tum states.

Definition 7 (Quantum relative entropy). Given two density matrices ρ, σ∈D CN� �
, the distin-

guishability between them can be quantified using the quantum relative entropy:

S ρjjσ� � ¼ Tr ρ log2ρ� ρ log2σ
� �

: (33)

It will be zero if ρ = σ.

The quantum relative entropy is a positive function for supp(ρ) ⊆ supp(σ), otherwise it diverges
to infinity. The quantum mutual information can also be written as a quantum relative entropy.

Proposition 8. Consider a bipartite state ρAB, the following expression holds:

I A : Bð ÞρAB ¼ S ρABjjρA ⊗ ρB

� �
; (34)

where ρA and ρB are the reduced states of ρAB.
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In contrast with the von Neumman entropy, the relative entropy always decreases under the
action of a quantum channel. This property has an operational meaning: two states are always
less distinguishable under the action of noise.

Theorem 9. Given two density matrices ρ, σ∈D CAð Þ and a quantum channel Γ∈ C CA;CBð Þ, the
following inequality holds:

S ρjjσ� �
≥S Γ ρ

� �jjΓ σð Þ� �
(35)

This theorem implies into another property of the quantum mutual information: it decreases
monotonically under local CPTP channels. As mutual information quantifies correlations, this
means that the amount of correlations reduce under local noise.

Corollary 10. Given a bipartite state ρAB ∈D CA ⊗CBð Þ and quantum channel ΦB ∈ C CB;CB0ð Þ, the
mutual information satisfies:

I A : Bð ÞρAB ≥ I A : B0ð ÞI⊗Φ ρABð Þ: (36)

Proof. Given the mutual information:

I A : Bð ÞρAB ¼ S ρABjjρA ⊗ρB

� �
(37)

using the theorem above:

I A : Bð ÞρAB ≥ S IA ⊗ΦB ρAB

� �jjρA ⊗ΦB ρB

� �� � ¼ I A : B0ð ÞI⊗Φ ρABð Þ: (38)

Analogous to the classical conditional entropy, it is possible to define a quantum version of it.
For a bipartite system ρAB, the quantum conditional entropy quantifies the amount of infor-
mation of A that is available when B is known.

Definition 11 (Conditional entropy). Consider a bipartite system ρAB, the quantum conditional
entropy is defined as the function:

S AjBð ÞρAB ¼ S ρAB
� �� S ρB

� �
: (39)

One interesting property of the quantum conditional entropy is that it can be negative. For

example, if we consider a bipartite pure state ϕ
�� �

AB ¼ 00j i þ 11j ið Þ= ffiffiffi
2
p

, von Neumann entropy
of the pure state is zero: S(|ϕ〉〈ϕ|AB) = 0. Nonetheless the reduced state is the maximally mixed
state: ρB ¼ I=2, whose von Neumann entropy is S I=2ð Þ ¼ 1. Therefore, the conditional entropy
of this state is negative S AjBð Þ ϕj i ϕh jABÞ ¼ �1. The negative value of the quantum conditional

entropy is defined as the coherent information:

I Að iBÞ ¼ �S AjBð Þ: (40)

The conditional entropy has an operational meaning in the state merging protocol, where a
tripartite pure state is shared by two experimentalists, one will send part of its state through a
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quantum channel to the other. The coherent information quantifies the amount of entangle-
ment required to the sender be able to perform the protocol. If it is positive, they cannot use
entanglement to perform the state merging, and in the end the amount of entanglement
grows [25–27]. The coherent information also quantifies the capacity of a quantum channel,
optimizing over all input states ρA, the output state is known to be ρB. This result is named as
LSD theorem [28–31].

3. Quantum correlations

3.1. Entanglement

This section introduces the concept of quantum entanglement, presenting its characterization
and quantification.

3.1.1. Separable states

Consider two systems A and B, often named the experimentalists responsible by the systems as
Alice and Bob, respectively. The state of the systems A and B is described by a density matrix on a
Hilbert space. In this way considering two finite Hilbert spacesCA andCB, and a basis in each one:

aij if gjAj�1i¼0 ∈CA; (41)

bkj if gjBj�1k¼0 ∈CB; (42)

where |A| = dim(CA) and |B| = dim(CB). The global system, composed of A and B, can be
obtained through the tensor product between the basis in the Hilbert space of each system:

ai; bkj if gjABj�1i, j¼0 ¼ aij i⊗ bkj if gjAj�1, jBj�1i, k¼0 ; (43)

hence the dimension of the composed system is the product of the dimension: |AB| = dim
(CAB) = dim(CA) � dim(CB). The Hilbert space of the composed system is denoted as
CAB =CA⊗CB. A pure state of the composed system can be decomposed in the basis in Eq. (43):

ψj iAB ¼
X
i, k

ci, k aij i⊗ bkj i: (44)

From this expression, one can realize that: in general a pure state, which describes a composed
system, cannot be written as the product of the state of each system. In other words, suppose
the system A and B described by the states |α〉A = ∑iai|ai〉 ∈ CA and |β〉B = ∑kbk|bk〉 ∈ CB, the
composed system is described by the state:

αj i⊗ β
�� � ¼

X
i, k

aibk aij i⊗ bkj i: (45)

It is the particular case where the coefficients in Eq. (44) are ci,k = ai � bk. If a composed system
can be written as Eq. (45), it is called a product state, and there is no correlations between A and
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B. It can be checked easily via the mutual information of the state, which is clearly zero once
that the von Neumman entropy of the pure state is zero [32–34].

The concept of product state can be generalized for mixed state. Considering a comp-
osed system represented by the state ρAB ∈D CA ⊗CBð Þ, it is called a product state if can be
written as:

ρAB ¼ ρA ⊗ρB; (46)

where ρA ∈D CAð Þ and ρB ∈D CBð Þ are the states of the systems A and B, respectively. The
product state for mixed states is also no correlated, as its mutual information is zero. As the
space of quantum states is a convex set, the convex combination of states will also be a
quantum state. The convex combination of product states generalizes the notion of product
states, that is named as separable state [35].

Definition 12 (Separable states). Considering a composed system described by the state
σ∈D CA ⊗CBð Þ, it is a separable state if and only if can be written as:

σ ¼
X
i, j

pi, jσ
A
i ⊗ σBj ; (47)

where σAi ∈D CAð Þ and σBj ∈D CBð Þ.

The set of quantum channels that let separable states invariant is named local operations
and classical communication (LOCC). The set of separable states form a subspace in the space
of density matrices, it can be denoted as Sep(CAB). The separable state can be easily extended
to multipartite systems. Considering a n-partite system, it is named m-separable if it can be
decomposed in a convex combination of product states composed by m parties.

3.1.2. Entanglement quantification

A measure of entanglement for mixed state can be obtained from the quantification of entan-
glement for pure states. It is possible to construct a measure of entanglement in this sense
calculating the average of entanglement taken on pure states needed to form the state.
The most famous measure which follow this idea is named as entanglement of formation. The
entanglement of formation is interpreted as the minimal pure state entanglement required to
build the mixed state [7].

Definition 13. Considering a quantum state ρ∈D CA ⊗CBð Þ, the entanglement of formation is
defined as:

Ef ρ
� � ¼ min

ξρ

X
i

piE ψi

�� �� �
; (48)

where the optimization is performed over all ensembles ξρ ¼ pi; ψi

�� �
ψi

� ��� �M
i¼1, such that ρ = ∑ipi|ψi〉

〈ψi|, ∑ipi = 1 and pi ≥ 0.
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quantum channel to the other. The coherent information quantifies the amount of entangle-
ment required to the sender be able to perform the protocol. If it is positive, they cannot use
entanglement to perform the state merging, and in the end the amount of entanglement
grows [25–27]. The coherent information also quantifies the capacity of a quantum channel,
optimizing over all input states ρA, the output state is known to be ρB. This result is named as
LSD theorem [28–31].

3. Quantum correlations

3.1. Entanglement

This section introduces the concept of quantum entanglement, presenting its characterization
and quantification.

3.1.1. Separable states

Consider two systems A and B, often named the experimentalists responsible by the systems as
Alice and Bob, respectively. The state of the systems A and B is described by a density matrix on a
Hilbert space. In this way considering two finite Hilbert spacesCA andCB, and a basis in each one:

aij if gjAj�1i¼0 ∈CA; (41)

bkj if gjBj�1k¼0 ∈CB; (42)

where |A| = dim(CA) and |B| = dim(CB). The global system, composed of A and B, can be
obtained through the tensor product between the basis in the Hilbert space of each system:

ai; bkj if gjABj�1i, j¼0 ¼ aij i⊗ bkj if gjAj�1, jBj�1i, k¼0 ; (43)

hence the dimension of the composed system is the product of the dimension: |AB| = dim
(CAB) = dim(CA) � dim(CB). The Hilbert space of the composed system is denoted as
CAB =CA⊗CB. A pure state of the composed system can be decomposed in the basis in Eq. (43):

ψj iAB ¼
X
i, k

ci, k aij i⊗ bkj i: (44)

From this expression, one can realize that: in general a pure state, which describes a composed
system, cannot be written as the product of the state of each system. In other words, suppose
the system A and B described by the states |α〉A = ∑iai|ai〉 ∈ CA and |β〉B = ∑kbk|bk〉 ∈ CB, the
composed system is described by the state:

αj i⊗ β
�� � ¼

X
i, k

aibk aij i⊗ bkj i: (45)

It is the particular case where the coefficients in Eq. (44) are ci,k = ai � bk. If a composed system
can be written as Eq. (45), it is called a product state, and there is no correlations between A and

Advanced Technologies of Quantum Key Distribution72

B. It can be checked easily via the mutual information of the state, which is clearly zero once
that the von Neumman entropy of the pure state is zero [32–34].
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The most famous measure which follow this idea is named as entanglement of formation. The
entanglement of formation is interpreted as the minimal pure state entanglement required to
build the mixed state [7].

Definition 13. Considering a quantum state ρ∈D CA ⊗CBð Þ, the entanglement of formation is
defined as:

Ef ρ
� � ¼ min

ξρ

X
i

piE ψi

�� �� �
; (48)

where the optimization is performed over all ensembles ξρ ¼ pi; ψi

�� �
ψi

� ��� �M
i¼1, such that ρ = ∑ipi|ψi〉

〈ψi|, ∑ipi = 1 and pi ≥ 0.
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The entanglement entropy E(|ψi〉) is defined as:

E ψi

�� �� � ¼ S TrB ψi

�� �
ψi

� ��� �� �
; (49)

where S(TrB[|ψi〉〈ψi|]) is the von Neumann entropy of the reduced state of |ψi〉. The entangle-
ment of formation is not easy to evaluate. Indeed the minimization process implies in to find
an optimal convex hull, in function of a nonlinear function. For two qubits systems, it can be
calculated analytically [36].

Quantum entanglement also enables an operational interpretation. This interpretation has two
different ways: the resource required to construct a given quantum state and the resource
extracted from a quantum system. The resource here refers to the amount of copies of maxi-
mally mixed state. Then, one can define the measure of this resource as a measure of entangle-
ment in the limit of many copies.

The number of copiesm of maximally entangled states required to construct n copies of a given
state ρ, by means of LOCC protocols, is named entanglement cost [7]. The entanglement cost can
be written as the regularized version of the entanglement of formation [4].

Definition 14 (Entanglement cost). The number of copies of the maximally entangled states required
to build the state ρ is given by:

EC ρ
� � ¼ lim

n!∞

Ef ρ⊗ n
� �
n

; (50)

where Ef(ρ
⊗n) is the entanglement of formation of the n copies of ρ.

The number of copies m of the maximally entangled state which can be extracted from n copies
of a given state ρ, by LOCC, is named as distillable entanglement [7].

Definition 15 (Distillable entanglement). The distillable entanglement of a given state ρ is defined as:

ED ρ
� � ¼ lim

n!∞

m
n
; (51)

where m is the number of maximally entangled states that can be extracted from ρ in the limit of many
copies.

The distillable entanglement is a very important operational measure of entanglement, because
it quantifies how useful is a given quantum state, for the quantum information purpose.

The operational meaning of the entanglement cost and the distillable entanglement compose
the research theory of quantum entanglement. The entanglement cost and the distillable
entanglement of a given state are not the same. Indeed the cost of entanglement is greater
than the distillable entanglement. The point is: it is more expensive to create a state ρ with
copies of maximally entangled state than is possible to extract entanglement from ρ. One
example is the bound entangled state, even it is entangled it is not possible to extract any
maximally entangled state, although it requires an amount of maximally entangled states to
build it.
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3.2. Quantumness of correlations

This section presents a revision about some basic concepts of quantumness of correlations for
distinguishable systems. The notion of classically correlated states and quantum discord is
presented.

3.2.1. Classically correlated states

Consider a flip coin game with two distinct events described by the states {|0〉〈0|, |1〉〈1|}, each
with the same probability 1/2. It is known that it is possible to distinguish the faces of the coin,
with a null probability of error. The probability of error to distinguish two events, or two
probability distributions, depends on the trace distance of the probability vectors of the events:

PE 0j i 0h j; 1j i 1h jð Þ ¼ 1
2
� 1
4
jj 0j i 0h j � 1j i 1h jjj1; (52)

as the states are orthogonal |||0〉〈0|� |1〉〈1|||1 = 2, therefore the probability of error PE(|0〉〈0|, |
1〉〈1|) = 0, as one expected. Now suppose a quantum coin flip, which coherent superposition
between the two faces of the coin, described by the events: {|ϕ〉〈ϕ|, |ψ〉〈ψ|}, with equal proba-

bility 1/2, where |ϕ〉, |ψ〉 ∈ C2. As an example, consider the states ϕ
�� � ¼ 0j i þ 1j ið Þ= ffiffiffi

2
p

and

|ψ〉 = |1〉. For this case, the overlap is ϕjψ� � ¼ 1=
ffiffiffi
2
p

. The trace distance of these states is simply:

jj ϕ�� � ϕ
� ��� ψj i ψh jjj1 ¼

ffiffiffi
2
p

;

then the probability of error to distinguish the events is not zero. Superposition of states in
quantummechanics creates events that cannot be perfectly distinguished. The distinguishability
of quantum or classical events can be quantifier by the Jensen-Shannon divergence. For
two probability distributions (or events), it is defined as the symmetric and smoothed version of
the Shannon relative entropy, or in the quantum case the vonNeumman relative entropy [37, 38].

Definition 16. The Jensen-Shannon divergence for two arbitrary events |ψ〉, |ϕ〉 is defined as:

J ψj i; ϕ
�� �� � ¼ 1

2
S

ϕ
�� � ϕ
� ��þ ψj i ψh j

2
∥ ϕ
�� � ϕ
� ��

� �
þ 1
2
S

ϕ
�� � ϕ
� ��þ ψj i ψh j

2
∥ ψj i ψh j

� �
: (53)

For the classical coin flip game, the Jensen-Shannon divergence will be just J(|0〉, |1〉) = 1. On the
other hand, for the quantum coin flip with states ϕ

�� � ¼ 0j i þ 1j ið Þ= ffiffiffi
2
p

and |ψ〉 = |1〉, it will be

J ϕ
�� �; ψj i� � ¼ ffiffiffi

2
p

. The Jensen-Shannon divergence is related to the Bures distance and induces a
metric for pure quantum states related to the Fisher-Raometric [39], it is lager formore distinguish-
able events, and the largest distance characterizes complete distinguishable events. The Jensen-
Shannon divergence for two arbitrary events |ψ〉, |ϕ〉 is related to the mutual information [37]:

J ψj i; ϕ
�� �� � ¼ I R : Eð ÞρRE ; (54)

where R represents a register, E represents the events and ρRE ∈D CR ⊗CEð Þ characterizes the
existence of two distinct events:
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2
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2
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2
S

ϕ
�� � ϕ
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2
∥ ϕ
�� � ϕ
� ��

� �
þ 1
2
S

ϕ
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2
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� �
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2
p
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ρRE ¼
1
2
0j i 0h jR ⊗ ϕ

�� � ϕ
� ��

E þ
1
2
1j i 1h jR ⊗ ψj i ψh jE: (55)

For the classical coin flip game, it is ρcRE ¼ 1
2 0j i 0h j⊗ 0j i 0h j þ 1

2 1j i 1h j⊗ 1j i 1h j, with mutual infor-

mation I R : Eð ÞρcRE ¼ 1. For the quantum coin, the state will be ρqRE ¼ 1
2 0j i 0h j⊗ ϕ

�� � ϕ
� ��

þ1
2 1j i 1h j⊗ ψj i ψh j, where for ϕ

�� � ¼ 0j i þ 1j ið Þ= ffiffiffi
2
p

and |ψ〉 = |1〉, and the mutual information is

I R : Eð ÞρqRE ¼
ffiffiffi
2
p

. As the mutual information is a measure of correlations between two proba-

bility distributions, one realizes that there are more correlations between the register and the
events for not completely distinguishable registers, in comparison with orthogonal registers.
However, two binary classical distributions cannot share more than one bit of information; in
other words, their mutual information cannot be greater than one [31]. As the correlations
between the quantum coin events and the register are bigger than one, it means that there are
correlations beyond the classical case. A quantum state is classically correlated if there exists a
local projective measurement such that the state remains the same [10–12]. The state ρcRE is an
example of classical-classical state. In general, these states are defined as:

Definition 17 (classical-classical states). Given a bipartite state ρAB ∈D CA ⊗CBð Þ, it is strictly
classically correlated (or classical-classical state) if there exists a local projective measurement ΠAB with
elements ΠA

l ⊗ΠB
k

� �
k, l such that the post-measured state is equal to the input state:

Π ρAB
� � ¼

X
k, l

ΠA
l ⊗ΠB

kρABΠ
A
l ⊗ΠB

k ¼ ρAB; (56)

therefore ρAB ¼
X

k, l
pk, lΠ

A
l ⊗ΠB

k , and ΠY
x ¼ exj i exh jY is a projetor in the orthonormal basis

{|ex〉Y}x ∈ HY.

The state ρq
ER is an example of a classical-quantum state, because there exists a projective

measurement, with elements {|0〉〈0|, |1〉〈1|}, over partition E that keep the state unchanged.
On the other hand, there is not a projective measurement over partition Rwith this property. In
general, a state ρAB is classical-quantum if there exists a projective measurement ΠA with
elements {Πk}k such that:

ΠA ⊗ IB ρAB

� � ¼ ρAB ¼
X
k

pkΠk ⊗ρk: (57)

The set o classically correlated states is not convex, once that combination of block diagonal
matrices cannot be block diagonal. As the identity matrix is block diagonal, or just diagonal,
this set is connected by the maximally mixed state, and it is a thin set [40].

3.2.2. Quantum discord

The amount of classical correlations in a quantum state is measured by the capacity to extract
information locally [41]. As the measurement process is a classical statistical inference, classical
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correlations can be quantified by the amount of correlations that are not destroyed by the local
measurement.

Definition 18. For a bipartite density matrix ρAB ∈D CA ⊗CBð Þ, the classical correlations between A
and B can be quantified by the amount of correlations that can be extracted via local measurements:

J A : Bð ÞρAB ¼ max
I⊗B∈P

I A : Xð ÞI⊗B ρABð Þ ¼ max
I⊗B∈P

S ρA

� ��
X
x
pxS ρA

x

� �
( )

; (58)

where the optimization is taken over the set of local measurement maps I⊗B∈P HAB;HAXð Þ, and
I⊗B ρAB

� � ¼
X

x
pxρ

A
x ⊗ bxj i bxh j is a quantum-classical state in the space B HA ⊗HXð Þ.

Originally, Ollivier and Zurek [10] have defined this expression restricting the optimization to
projective measurements. Independently, Henderson and Vedral [11] have defined the optimi-
zation of the classical correlations over general POVMs. As the mutual information quantifies
the total amount of correlations in the state, it is possible to define a quantifier of quantum
correlations as the difference between the total correlations in the system, quantified by mutual
information, and the classical correlations, measured by Eq. (58). This measure of quantum-
ness of correlations is named as quantum discord:

Definition 19. The quantum discord D A : Bð ÞρAB of a state ρAB is defined as:

D A : Bð ÞρAB ¼ I A : Bð ÞρAB � J A : Bð ÞρAB ; (59)

where I A : Bð ÞρAB is the von Neumann mutual information.

Quantum discord quantifies the amount of information, that cannot be accessed via local
measurements. Therefore, it measures the quantumness shared between A and B that cannot
be recovered via a classical statistical inference process. The optimization of quantum discord
is a NP-hard problem [42]. A general analytical solution for quantum discord is not known or a
criterion for a giving POVM to be optimal. Nonetheless, there are some analytic expressions
for some specific states [43–45]. It is a natural generalization of quantum discord for the case
the measurement is performed locally on both subsystems.

Definition 20. Given a bipartite state ρAB ∈D CA ⊗CBð Þ the quantum discord over measurements on
both systems is:

D A : Bð ÞρAB ¼ min
A⊗B∈P

I A : Bð ÞρAB � I A : Bð ÞA⊗B ρABð Þ
n o

; (60)

where A∈P CA;CYð Þ and B∈P CB;CXð Þ.
This generalization of quantum discord was first discussed in [46] in the context of the non-
local-broadcast theorem. This definition is often named WPM-discord, because it was also
studied by Wu et al. [47]. It was also studied restricting to projective measurements by some
authors [48, 49].
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X
x
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x

� �
( )
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3.2.3. Relative entropy of quantumness and work deficit

For a given dephasing channel Π∈P CN� �
, acting on any state ρ∈D CN� �

, the support of the
dephased state contains the support of the input state: supp(ρ) ⊆ supp(Π[ρ]); therefore, the
measure of quantumness of correlations based on the relative entropy remains finite for every
composed state [23, 31].

Suppose Alice and Bob have a common composed system described by the state
ρAB ∈D CA ⊗CBð Þ, they would like to extract work from this system. To accomplish their task,
they can perform the closed set of local operations and classical communication (CLOCC). This class
of operations is composed of: (i) addition of pure ancillas, (ii) local unitary operations and (iii)
local dephasing channels. Classical communication is represented by a local dephasing chan-
nel. If Alice and Bob are together in the same laboratory, they can extract work globally from
the total system, then the total amount of information that Alice and Bob can extract from ρAB
together is defined as the total work [12].

Definition 21. The work that can be extracted from a quantum system, described by the state
ρ∈D CN� �

, is defined as the change in the entropy:

Wt ρ
� � ¼ log2N � S ρ

� �
; (61)

log2N is the entropy of the maximally mixed state, and S(ρ) is the von Neumann entropy of the state.

This function can be interpreted as a quantifier of information, such that if the state is a
maximally mixed state no information can be extracted from it. Therefore, if the state is a pure
state, we have the maximum amount of information [12, 50]. The entropy function represents
the amount of information that one can get to know about the system; therefore, the function
Eq. (61) represents the amount of information that one already knows. On the other hand, if
Alice and Bob cannot be in the same laboratory, the information that can be extracted from the
total state is restricted to be locally accessed. In the same way, it is possible to define the total
information, named local work. Then, Alice and Bob should perform CLOCC operation in order
to obtain the maximal amount of local information [50]:

Wl ρAB

� � ¼ log2N � sup
Γ∈CLOCC

S Γ ρAB

� �� �
; (62)

where the state Γ(ρAB) is the state after the protocol. As CLOCC consist in sending one part of
the state in a dephasing channel, at the end of the protocol, the whole state is with the receiver:
Γ(ρAB) = ρAA.

One can be interested in the amount of information that cannot be extracted locally by Alice
and Bob. This function is named work deficit and it quantifies the amount of work that is not
possible to extract locally [12].

Definition 22. Given a bipartite state ρAB, the information which two parts Alice and Bob cannot
access, via CLOCC, is the work deficit:
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Δ ρAB

� � ¼Wt ρAB
� ��Wl ρAB

� �
: (63)

From the definition of the total work and the local work, we can define the work deficit as the
diference of them:

Δ ρAB

� � ¼ inf
Γ∈CLOCC

S Γ ρAB

� �� �� S ρAB

� �� �
: (64)

Even though the total and the local work depend explicitly on the dimension of the system, the
work deficit should not depend on the dimension of Γ[ρAB]. Adding local pure ancillas belongs to
the CLOCC cannot change the amount of work deficit. The work deficit can quantify quantum
correlations, then it must not change by the simple addition of a uncorrelated system [16, 50].

In the asymptotic limit (the limit of many copies), the work deficit quantifies the amount of
pure states that can be extracted locally [51, 52]. However, as a resource cannot be created
freely, the addition of pure local ancillas is not allowed, then it is replaced by the addition of
maximally mixed states. The set of operations that contains: (i) addition of maximally mixture
states, (ii) local unitary operations and (iii) local dephasing channels, is named noise local
operations and classical communication (NLOCC) [51]. The extraction of local pure states is a
protocol, whose goal is to extract resource (coherence). The set of available operations are
NLOCC operations, and the set of free resource states is composed only by the maximally
mixture state. It is the only state without local purity [53]. It remains an open question if the
CLOCC class and the NLOCC class are equivalent classes [50].

In the limit of one copy, the work deficit can quantify quantum correlations present in a given
composed system [54]. The scenario where Alice and Bob can perform many steps of classical
communication one each other is named two way, and the work deficit is named two-way work
deficit. In this case, they can perform measurements and communicate in each step of the
protocol. Mathematically, the two-way work deficit does not have a closed expression [50]. As
discussed above, it is possible to activate quantum correlations performing operations on the
measured system. Therefore, this many step scenario cannot quantify quantum correlations.
Because if Alice and Bob can implement a sequence of non-commuting dephasing channels,
the only invariante state is the maximally mixed state. In this way, it is necessary a one round
description, where Alice and Bob can communicate at the end of the protocol. Following this
idea, it is possible to define the one-way work deficit, which just one side can communicate. If
Bob communicates to Alice, the state created at the end of the protocol is a quantum-classical
state (or a classical-quantum state if Alice communicates at the end of the protocol).

Definition 23 (one-way work deficit). Given a bipartite state ρAB, the work deficit with just one side
communication is named one-way work deficit [12]:

Δ! ρAB

� � ¼ min
ΠB ∈P

S IA ⊗ΠB ρAB

� �� �� S ρAB

� �� �
; (65)

where ΠB ∈P CBð Þ is a local dephasing on subsystem B. The notation Δ!(ρAB) means that the
communication is from A to B and Δ (ρAB) in the opposite direction.
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3.2.3. Relative entropy of quantumness and work deficit

For a given dephasing channel Π∈P CN� �
, acting on any state ρ∈D CN� �

, the support of the
dephased state contains the support of the input state: supp(ρ) ⊆ supp(Π[ρ]); therefore, the
measure of quantumness of correlations based on the relative entropy remains finite for every
composed state [23, 31].
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Definition 21. The work that can be extracted from a quantum system, described by the state
ρ∈D CN� �

, is defined as the change in the entropy:

Wt ρ
� � ¼ log2N � S ρ

� �
; (61)

log2N is the entropy of the maximally mixed state, and S(ρ) is the von Neumann entropy of the state.

This function can be interpreted as a quantifier of information, such that if the state is a
maximally mixed state no information can be extracted from it. Therefore, if the state is a pure
state, we have the maximum amount of information [12, 50]. The entropy function represents
the amount of information that one can get to know about the system; therefore, the function
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Wl ρAB

� � ¼ log2N � sup
Γ∈CLOCC

S Γ ρAB

� �� �
; (62)

where the state Γ(ρAB) is the state after the protocol. As CLOCC consist in sending one part of
the state in a dephasing channel, at the end of the protocol, the whole state is with the receiver:
Γ(ρAB) = ρAA.

One can be interested in the amount of information that cannot be extracted locally by Alice
and Bob. This function is named work deficit and it quantifies the amount of work that is not
possible to extract locally [12].

Definition 22. Given a bipartite state ρAB, the information which two parts Alice and Bob cannot
access, via CLOCC, is the work deficit:
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protocol, whose goal is to extract resource (coherence). The set of available operations are
NLOCC operations, and the set of free resource states is composed only by the maximally
mixture state. It is the only state without local purity [53]. It remains an open question if the
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In the limit of one copy, the work deficit can quantify quantum correlations present in a given
composed system [54]. The scenario where Alice and Bob can perform many steps of classical
communication one each other is named two way, and the work deficit is named two-way work
deficit. In this case, they can perform measurements and communicate in each step of the
protocol. Mathematically, the two-way work deficit does not have a closed expression [50]. As
discussed above, it is possible to activate quantum correlations performing operations on the
measured system. Therefore, this many step scenario cannot quantify quantum correlations.
Because if Alice and Bob can implement a sequence of non-commuting dephasing channels,
the only invariante state is the maximally mixed state. In this way, it is necessary a one round
description, where Alice and Bob can communicate at the end of the protocol. Following this
idea, it is possible to define the one-way work deficit, which just one side can communicate. If
Bob communicates to Alice, the state created at the end of the protocol is a quantum-classical
state (or a classical-quantum state if Alice communicates at the end of the protocol).
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Another definition for the work deficit is defined when both Alice and Bob communicate at the
end of the protocol, this is named zero-way work deficit. The state created at the end of the
protocol is a classical-classical state.

Definition 24 (zero-way work deficit). Given a bipartite state ρAB, the work deficit with no
communication until the end of the protocol is named zero work deficit [12]:

Δ∅ ρAB
� � ¼ min

ΠA ⊗ΠB ∈P
S ΠA ⊗ΠB ρAB

� �� �� S ρAB
� �� �

; (66)

where ΠA ⊗ΠB ∈P CA ⊗CBð Þ is a local dephasing on subsystems A and B.

In analogy with the work deficit, Modi et al. proposed a measure of quantumness of correla-
tion defined as the relative entropy of the state and the set of classical correlated states [16].
This measure is named relative entropy of quantumness.

Definition 25 (relative entropy of quantumness). The relative entropy of quantumness D(ρAB)QC for
a given state ρAB is defined as the minimum relative entropy over the set of quantum-classical states [16]:

D ρAB

� �
QC ¼ min

ξAB ∈ΩQC

S ρAB∥ξAB
� �

; (67)

where ΩQC is the set of quantum-classical states.

The relative entropy of quantumness for classical-classical states is denoted as D(ρAB)CC. It is
analogous to Eq. (67) when the optimization is taken over the set of classical-classical states
ΩCC:

D ρAB

� �
CC ¼ min

ξAB ∈ΩCC

S ρAB∥ξAB
� �

: (68)

As discussed previously, in the limit of one copy, the one-way and the zero-way work deficits
quantify quantumness of correlations of the system. It is possible to obtain the equivalence
between one-way work deficit and relative entropy of quantumness.

Theorem 26. The one-way work deficit is equal to the relative entropy of quantumness for quantum-
classical states [16, 50]:

D ρAB

� �
QC ¼ Δ! ρAB

� �
; (69)

The same equivalence holds for zero-way work deficit and the relative entropy of quantum-
ness of classical-classical states:

D ρAB

� �
CC ¼ Δ∅ ρAB

� �
: (70)

The one-way and zero-way work deficits quantify quantumness correlations beyond the quan-
tum entanglement; therefore, we should be able to compare these two classes of quantum
correlations. For the relative entropy, this comparison is natural of the fact that CLOCC is a
subclass of LOCC operations, which naturally implies that [12]:
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Δ ρ
� �

≥Er ρ
� �

; (71)

where Δ(ρ) is the work deficit and Er(ρ) is the relative entropy of entanglement. The equality is
attached for bipartite pure states: |ψ〉AB ∈ CA ⊗ CB:

Δ ΨABð Þ ¼ Er ΨABð Þ ¼ S ρA
� �

; (72)

whereΨAB = |ψ〉〈ψ|AB. An interesting corollary of this proposition is that the quantum discord
is equal to the work deficit for pure states, because it is also equal to the entropy of entangle-
ment for pure states.

In this section, the concept of local disturbance was introduced by the definition of the work
deficit. That is the smallest relative entropy between the state and its local disturbed version
(obtained performing a local dephasing channel on the state). Indeed there are many other
local disturbance quantumness of correlation quantifiers, which can be obtained defining a
quantum state discrimination measure, for example, Bures distance [55], Schatten p-norm [17],
trace distance [56] and Hilbert-Schmidt distance [15, 57].

4. Monogamy relation: entanglement, classical correlations and
quantumness of correlations

Given a bipartite system ρAB ∈D CA ⊗CBð Þ, then it is possible to purify the state in a larger
space CABE of the dimension: dim(CABE) = dim(A) � dim(B) � rank(ρAB). The purification process
creates quantum correlations between the system AB and the purification system E, unless the
state is already pure. Intrinsically, there is a restriction in the amount of correlations that can be
shared by the systems. This balance between the correlations for tripartite states can be
understood by the Koashi-Winter relation.

Given the definition of the classical correlations for a bipartite state ρAB:

J A : Bð ÞρAB ¼ max
I⊗ ∈P

I A : Xð ÞI⊗⊞ρABÞ
; (73)

where I A : Xð ÞI⊗⊞ρAB
Þ is the mutual information of the post-measured state I⊗⊞ρABÞ, and the

optimization is taken over all local POVM measurement maps ∈P CB, BCXð Þ.
Given also the definition of the entanglement of formation of a bipartite state ρAB:

Ef ρAB

� � ¼ min
ξρ¼ pi; ψij i ψih jf gi

X
i

piE ψi

�� �� �
; (74)

where the optimization is taken over all possible convex hull defined by the ensemble
ξ = {pi, |ψi〉〈ψi|}i, such that ρAB = ∑ipi, |ψi〉〈ψi|, and E(|ψi〉) is the entropy of entanglement of
|ψi〉.
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analogous to Eq. (67) when the optimization is taken over the set of classical-classical states
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As discussed previously, in the limit of one copy, the one-way and the zero-way work deficits
quantify quantumness of correlations of the system. It is possible to obtain the equivalence
between one-way work deficit and relative entropy of quantumness.
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classical states [16, 50]:
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; (69)
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ness of classical-classical states:
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: (70)

The one-way and zero-way work deficits quantify quantumness correlations beyond the quan-
tum entanglement; therefore, we should be able to compare these two classes of quantum
correlations. For the relative entropy, this comparison is natural of the fact that CLOCC is a
subclass of LOCC operations, which naturally implies that [12]:
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In this section, the concept of local disturbance was introduced by the definition of the work
deficit. That is the smallest relative entropy between the state and its local disturbed version
(obtained performing a local dephasing channel on the state). Indeed there are many other
local disturbance quantumness of correlation quantifiers, which can be obtained defining a
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Þ is the mutual information of the post-measured state I⊗⊞ρABÞ, and the

optimization is taken over all local POVM measurement maps ∈P CB, BCXð Þ.
Given also the definition of the entanglement of formation of a bipartite state ρAB:

Ef ρAB

� � ¼ min
ξρ¼ pi; ψij i ψih jf gi

X
i
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�� �� �
; (74)

where the optimization is taken over all possible convex hull defined by the ensemble
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Theorem 27 (Koashi-Winter relation). Considering ρABE ∈D CA ⊗CB ⊗CEð Þ a pure state then:
J A : Eð ÞρAE ¼ S ρA

� �� Ef ρAB

� �
; (75)

where ρX = TrY[ρYX].

Proof. Suppose ρAB = ∑ipi|ψi〉〈ψi| is the optimum convex combination, such that Ef(ρAB) = ∑ipiS
(TrB[|ψi〉〈ψi|]). The classical correlations in system AE relates this decomposition with a mea-

surement on the subsystem E. Therefore, there exists a measurement ME
j

n o
on system E such

that ρ0ABE ¼
X

j
TrE ρABE IAB ⊗ME

j

� �h i
⊗ ej
�� � ej
� ��

E and TrE ρ0ABE
� � ¼

X
i
pi ψi

�� �
ψi

� ��. Tracing over

subsystem B, then the post-measurement state will be:

ρ0AE ¼
X
j

pjTrB ψj

���
E

ψj

D ���
h i

⊗ ej
�� � ej
� ��; (76)

In this way, the mutual information of the post-measurement state:

I A : Eð Þρ0AE ¼ S ρA
� �þ S ρ0E

� �� S ρ0AE
� �

; (77)

¼ S ρA

� �þH Eð Þ �H Eð Þ �
X
i

piS TrA ψj

���
E

ψj

D ���
h i� �

; (78)

¼ S ρA

� ��
X
i

piS TrA ψj

���
E

ψj

D ���
h i� �

; (79)

¼ S ρA
� �� Ef ρAB

� �
; (80)

It was used as the property of the Shannon entropy for a block diagonal state, where

TrB[|ψj〉〈ψj|] = TrA[|ψj〉〈ψj|] and Ef(ρAB) = ∑ipiS(TrB[|ψi〉〈ψi|]). By definition J A : Eð ÞρAE ≥ I
A:Eð Þρ0AE , then

J A : Eð ÞρAE ≥ S ρA

� �� Ef ρAB
� �

: (81)

Now, it is proved the converse inequality. Given ρAE, there exists a POVMM∈P CE;CE0ð Þwith
rank-1 elements {Ml}, such that TrE MlρAE

� � ¼ qlρ
A
l that optimizes the classical correlations

J ρAE

� � ¼ S ρA
� ��

X
l
qlS ρA

l

� �
. As the elements of the POVM are rank-1, Ml = |μl〉〈μl|, and the

state ρABE is pure, the state after local measurement on E will be described by an ensemble of
pure states:

ρ0ABE ¼
X
l

TrE ρABE IAB ⊗ μl

�� � μl

� ��� �� �
⊗ elj i elh j ¼

X
ql ϕl

�� �
ϕl

� ��⊗ elj i elh j: (82)

Once that ρABE = |κ〉〈κ|ABE, and the pure state can be written in the bipartite Schmidt decom-
position |κ〉 = ∑ncn|n〉AB ⊗ |n〉E, if 〈μl|n〉 = rln, it is easy to see that:
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TrE ρABE IAB ⊗ μl

�� � μl

� ��� �� � ¼
X
ij

cirlicjr�lj ij i jh jAB ¼
X
i

cirli ij iAB
 ! X

j

cjr�lj jh jAB

0
@

1
A ¼ ql ϕl

�� �
ϕl

� ��:

(83)

Calculating the mutual information of ρ0AE ¼ TrB ρ0ABE
� �

:

I A : Eð Þρ0AE ¼ S ρA
� ��

X
l

qlS TrB ϕl

�� �
ϕl

� ��� �� �
; (84)

As the POVM M is the optimal measurement in the calculation of the classical correlations, it
implies I A : Eð Þρ0AE ¼ J A : Eð ÞρAE . By definition, the entanglement of formation satisfies: Ef(ρAB) ≤

∑lqlS(TrB[|ϕl〉〈ϕl|]) for any decomposition {pl,|ϕl〉〈ϕl|}. Substituting the mutual information in
Eq. (84):

J A : Eð ÞρAE ≤ S ρA

� �� Ef ρAB
� �

: (85)

Given Eqs. (81) and (85), it proves the theorem.

The Koashi-Winter equation quantifies the amount of entanglement among A and B, consider-
ing that the former is classically correlated with another system C. This property is interesting
once that it is related to the monogamy of entanglement [58], where the amount of entangle-
ment shared by three parts is limited, and this limitation is given by the amount of classical
correlations among the parties. This limitation holds for any tripartite state as stated in the
following corollary:

Corollary 28. For any tripartite state ρABC ∈D CA ⊗CB ⊗CCð Þ, it follows:

Ef ρAB

� �þ J A : Cð ÞρAC ≤ S ρA

� �
: (86)

The equality holds for ρABC pure.

Proof. If ρABC is not a pure state, there exists a purification ρABCE, then CA ⊗ CB ⊗ CCE, followed
by the last theorem:

J A : CEð ÞρACE þ Ef ρAB

� � ¼ S ρA
� �

; (87)

Therefore, as the classical correlations are monotonic under local maps, then taking the trace
over the system E we have J A : CEð ÞρACE ≥ J A : Cð ÞρAC .

As the Shannon entropy of ρA represents the effective size of A in qubits [24], this size can be
approached as the capacity of the system A makes correlations with other systems B and C
[18]. In other words, this means that the existence of the quantum or classical correlations
between A and another system B is enough to restrict the amount of quantum or classical
correlations which A can make with a third system C.
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rank-1 elements {Ml}, such that TrE MlρAE

� � ¼ qlρ
A
l that optimizes the classical correlations

J ρAE

� � ¼ S ρA
� ��

X
l
qlS ρA

l

� �
. As the elements of the POVM are rank-1, Ml = |μl〉〈μl|, and the

state ρABE is pure, the state after local measurement on E will be described by an ensemble of
pure states:

ρ0ABE ¼
X
l

TrE ρABE IAB ⊗ μl

�� � μl

� ��� �� �
⊗ elj i elh j ¼

X
ql ϕl

�� �
ϕl

� ��⊗ elj i elh j: (82)

Once that ρABE = |κ〉〈κ|ABE, and the pure state can be written in the bipartite Schmidt decom-
position |κ〉 = ∑ncn|n〉AB ⊗ |n〉E, if 〈μl|n〉 = rln, it is easy to see that:
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TrE ρABE IAB ⊗ μl

�� � μl

� ��� �� � ¼
X
ij

cirlicjr�lj ij i jh jAB ¼
X
i

cirli ij iAB
 ! X

j

cjr�lj jh jAB

0
@

1
A ¼ ql ϕl

�� �
ϕl

� ��:

(83)

Calculating the mutual information of ρ0AE ¼ TrB ρ0ABE
� �

:

I A : Eð Þρ0AE ¼ S ρA
� ��

X
l

qlS TrB ϕl

�� �
ϕl

� ��� �� �
; (84)

As the POVM M is the optimal measurement in the calculation of the classical correlations, it
implies I A : Eð Þρ0AE ¼ J A : Eð ÞρAE . By definition, the entanglement of formation satisfies: Ef(ρAB) ≤

∑lqlS(TrB[|ϕl〉〈ϕl|]) for any decomposition {pl,|ϕl〉〈ϕl|}. Substituting the mutual information in
Eq. (84):

J A : Eð ÞρAE ≤ S ρA

� �� Ef ρAB
� �

: (85)

Given Eqs. (81) and (85), it proves the theorem.

The Koashi-Winter equation quantifies the amount of entanglement among A and B, consider-
ing that the former is classically correlated with another system C. This property is interesting
once that it is related to the monogamy of entanglement [58], where the amount of entangle-
ment shared by three parts is limited, and this limitation is given by the amount of classical
correlations among the parties. This limitation holds for any tripartite state as stated in the
following corollary:

Corollary 28. For any tripartite state ρABC ∈D CA ⊗CB ⊗CCð Þ, it follows:

Ef ρAB

� �þ J A : Cð ÞρAC ≤ S ρA

� �
: (86)

The equality holds for ρABC pure.

Proof. If ρABC is not a pure state, there exists a purification ρABCE, then CA ⊗ CB ⊗ CCE, followed
by the last theorem:

J A : CEð ÞρACE þ Ef ρAB

� � ¼ S ρA
� �

; (87)

Therefore, as the classical correlations are monotonic under local maps, then taking the trace
over the system E we have J A : CEð ÞρACE ≥ J A : Cð ÞρAC .

As the Shannon entropy of ρA represents the effective size of A in qubits [24], this size can be
approached as the capacity of the system A makes correlations with other systems B and C
[18]. In other words, this means that the existence of the quantum or classical correlations
between A and another system B is enough to restrict the amount of quantum or classical
correlations which A can make with a third system C.
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Summing the mutual information I A : Eð ÞρAE on both sides of the Koashi-Winter relation,

Eq. (75), it is possible to obtain a monogamy expression for the entanglement of formation of
the state ρAB in function of the quantum discord [19]:

D A : Eð ÞρAE ¼ Ef ρAB

� �� S AjEð ÞρAE ; (88)

where D A : Eð ÞρAE is the quantum discord of the state ρAE with local measurement on the

subsystem E and S AjEð ÞρAE ¼ S AEð Þ � S Eð Þ is the conditional entropy. As the label in the states

is arbitrary, we can rewrite this expression changing the labels E! B and vice versa to obtain
D A : Bð ÞρAB ¼ S AjBð ÞρAB � Ef ρAE

� �
, taking the sum between this and Eq. (88):

D A : Eð ÞρAE þD A : Bð ÞρAB ¼ Ef ρAE

� �þ Ef ρAB

� �
; (89)

as the total state is pure S AjEð ÞρAE ¼ �S AjBð ÞρAB . This expression means that the sum of total

amount of entanglement that A shares with B and E is equal to the sum of the amount of
quantum discord shared with B and E [19].

From Eq. 88, it is possible to calculate an interesting expression, which relates the irreversibility
of the entanglement distillation protocol and quantum discord [20]. As discussed, the entan-
glement cost is larger than the distillable entanglement. Given the entanglement cost defined
as the regularization of the entanglement of formation [4]:

Definition 29. For a mixed state ρAB ∈D CA ⊗CBð Þ, the regularization of the entanglement of forma-
tion Ef(ρAB) results in the entanglement cost:

EC ρAB

� � ¼ lim
n!∞

1
n
Ef ρ⊗n

AB

� �
: (90)

The Hashing inequality says that the distillable entanglement of ρAB is lower bounded by the
coherent information I Að iBÞρAB ¼ �S AjBð Þ [3]. As the coherent information can increase under

LOCC, it is possible to optimize it under LOCC attaining the distillable entanglement [3].

Definition 30. The regularized coherent information after optimization over LOCC for a mixed state
ρAB gives the distillable entanglement:

ED ρAB
� � ¼ lim

n!∞

1
n
I Að iBÞ Vn ⊗ Ið Þρ⊗ n

AB
; (91)

where Vn ⊗ I acts locally on the n copies of ρAB.

It is also possible to define the regularized quantum discord:

Definition 31. The regularized quantum discord can be defined as the quantum discord of a state ρAB
in the limit of many copies:
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D∞ A : Bð ÞρAB ¼ lim
n!∞

1
n
D A : Bð Þρ⊗ n

AB
: (92)

Therefore, similarly to Eq. (88) in the limit of many copies:

D A : Eð Þρ⊗ n
AE
¼ Ef ρ⊗n

AB

� �� S AjEð Þρ⊗ n
AE
; (93)

taking the regularization we have:

D∞ A : Eð ÞρAE ¼ EC ρAB

� �� S AjEð ÞρAE ; (94)

as the conditional entropy is additive S AjEð Þρ⊗ n
AE
¼ nS AjEð ÞρAE . Therefore, the following theo-

rem comes from Eq. (88).

Theorem 32 (Cornelio et al. [20]). For every mixed entangled state ρAB, if

ED ρAB

� � ¼ 1
n
I Að iBÞ Vn ⊗ Ið Þρ⊗ n

AB
(95)

EC ρAB

� � ¼ 1
k
EF ρ⊗ n

AB

� �
; (96)

for a finite number of n and k, the entanglement is irreversible EC(ρAB) > ED(ρAB).

Taking the limit of many copies, the equation can be rewritten as:

D∞ A : Eð ÞσAE ¼ EC σABð Þ � ED σABð Þ; (97)

where σAB ¼ Vk ⊗ Ið ÞρAB and ED(σAB) = kED(ρAB). The quantum discord D∞ A : Eð ÞσAE in this

context can be viewed as the minimal amount of entanglement lost in the distillation protocol,
for states belonging to the class described in the theorem [20]. This expression has an opera-
tional interpretation for quantum discord, where the quantum discord between the system and
the purification system restricts the amount of e-bits lost in the distillation process. A conse-
quence of this result is expressed by the state merging protocol [27], Alice (A), Bob (B) and the
Environment (E) share a pure tripartite state ρABE, she would like to send her state to Bob,
keeping the coherence with the system E. They can perform this protocol consuming an
amount of entanglement in the process; the amount of entanglement is the regularized quan-
tum discord D∞ A : Eð ÞρAE [25, 26].

In addition to the above relations, some upper and lower bounds between quantum discord
and entanglement of formation have been calculated via the Koashi-Winter relation and the
properties of entropy [59–62]. Equation (88) was also used to calculate the quantum discord
and the entanglement of formation analytically for systems with rank-2 and dimension 2 ⊗ n
[41, 63, 64]. Experimental investigations of Eq. (88) were performed in the characterization of
the information flow between system and environment of a non-Markovian process [65].
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5. Activation protocol

Physically, a measurement process can be described as an interaction between the measure-
ment apparatus and the system, followed by a projective measurement on the apparatus.

Consider a state ρS ¼
X

k
λk kj i kh j∈D CSð Þ. The input state is described as ρS:M ¼

ρS ⊗ 0j i 0h jM, by coupling a pure ancilla, that represents the measurement apparatus. The
interaction between the system and the ancillary state is performed by a unitary evolution:

US:M ∈U CS ⊗CMð Þ, such that TrM US:MρS:MU†
S:M

� � ¼
X

l
ΠlρSΠ

†
l . A unitary operation sat-

isfying this condition is given by:

US:M kj iS 0j iM ¼ kj iS kj iM; (98)

where {|k〉} is an orthonormal basis in CS . If the orthogonal basis {|k〉〈k|} is the canonical basis,
this interaction is a Cnot gate [1]. Therefore, after the interaction, the state will be:

~ρS:M ¼ US:M ρS:M
� �

U†
S:M ¼

X
k

λk kj i kh jS ⊗ kj i kh jM: (99)

The interaction between the system and the measurement apparatus results in a classically
correlated state between the system and the apparatus. Hence performing a projective mea-
surement on the state of the apparatus, the state of the system can be recovered.

Suppose now that the state of the system is composed, for example a bipartite system
CS ¼ CA ⊗CB. The measurements are performed locally in each system; therefore, the ancilla
is also a bipartite system CM ¼ CMA ⊗CMB . The unitary operator representing the interaction
between the system and the measurement apparatus is US:M ¼ UA:MA ⊗UB:MB . Then, the
post-measured state is:

~ρS ¼ TrM US:M ρS ⊗ 0j i 0h j� �
U†

S:M

� � ¼
X
k, l

ΠA
k ⊗ΠB

l ρABΠ
†A
k ⊗Π†B

l : (100)

As aforementioned, the measurement process consists in interacting the system with an
ancilla, which represents the measurement apparatus, and then perform a projective measure-
ment over the ancilla. However, as the dimension of the ancilla is arbitrary, to represent a
general measurement (POVM), it is necessary to couple another ancilla with the same size of
the state: ρS0:M ¼ ρS ⊗ 0j i 0h jE ⊗ 0j i 0h jM, where |0〉〈0|E is an ancillary state on space CE. Then,
the interaction with the apparatus, given by a unitary evolution US0:M, results in the post-
measured state

~ρS ¼ TrM US0:MρS0:MU†
S0:M

� � ¼
X
l

Πl ρS ⊗ 0j i 0h jE
� �

Πl: (101)

By the Naimark’s theorem Tr Πl ρS ⊗ 0j i 0h jE
� �� � ¼ Tr ElρS

� �
, where El ¼ I⊗ 0h jð ÞΠl I⊗ 0j ið Þ is a

element of a POVM.
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A general bipartite state can be written as ρ = ∑i,j|i〉〈j| ⊗ Oi,j, where Oi,j is an Hermitian
operator with trace different from zero. Then if the measurement is performed only on the
subsystem A, the state ~ρS:M after the interaction with the measurement apparatus will be:

~ρS:M ¼ US:M ρS:M

� �
U†

S:M (102)

¼ UA:MA ⊗ IB
X
i, j

ij i jh jA ⊗ 0j i 0h jMA
⊗OB

i, j

0
@

1
AU†

A:MA
⊗ IB (103)

¼
X
i, j

ij i jh jA ⊗ ij i jh jMA
⊗OB

i, j: (104)

Differently of the global measurement process, for local measurements, entanglement can be
created during the measurement process. For example, if Oij ¼ 1

2 ij i jh j, the interaction with the
measurement apparatus creates a maximally entangle state. different from the case where the
measurement is performed on the A quantum state cannot create quantum entanglement with
the measurement apparatus, if it is classically correlated. As proved in the following theorem.

Theorem 33 ([21, 22]). A state is classically correlated (has no quantumness of correlations), if and
only if there exists an unitary operation such that the post interaction state is separable with respect to
system and measurement apparatus.

Proof. The proof is performed for the general case, for measurements on both systems.

If: If the state is classically correlated:

ρS ¼
X
k, j

pk, j ak, bj
�� �

ak, bj
� ��

S ; (105)

the state after the interaction with the measurement apparatus represented by the unitary
operation UA:MA ⊗UB:MB will be:

~ρS:M ¼
X
k, j

pk, j ak, bj
�� �

ak, bj
� ��

S ⊗ ak, bj
�� �

ak, bj
� ��

M; (106)

which is clearly separable.

Only if: Given a general separable state between the system and the measurement apparatus:

~ρS:M ¼
X
α

pα ϕα

�� �
ϕα

� ��
S ⊗ ψα

�� �
ψα

� ��
M; (107)

and the fact that the interaction is unitary, there is a convex combination such that

ρS ¼
X

α
pα καj i καh j; therefore, the interaction must act in the following way:

US:M καj i 0j i ¼ ϕα

�� �
ψα

�� �
: (108)
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On the other hand, as the state ρS is bipartite, the pure states {|κα〉} can be written in general

as: καj i ¼
X

l, i
cαl, i a

α
l

�� �
bαi
�� �

, and after the interaction, the states will be:

US:M καj i 0j i ¼
X
l, j

cαl, j a
α
l ; b

α
j

���
E
S
⊗ aαl ; b

α
j

���
E
M
: (109)

As the state in Eq. (109) must be separable, it implies that the coefficients must satisfy:

cαi, j ¼ cf αð Þδi, j; f αð Þ and jcf αð Þj ¼ 1 (110)

where f(α) ∈ N2. As f(α) are orthogonal, it proves the theorem.

If the state of the system has quantum correlations, the local measurement process creates
entanglement between the system and the measurement apparatus, for a every unitary inter-
action. Then, it is possible to fix the base of the ancilla and change the base of the system. Then,
rewriting the evolution as US:M ¼ CS:M US ⊗ IMð Þ, where for bipartite systems UM = UA ⊗ UB

is a local unitary operation and CS:M ¼ CA:MA ⊗CB:MB is a Cnot gate acting on the system as
the control, and the apparatus as the target. It is possible to quantify the amount of quantum
correlation in a given system starting on the amount of entanglement created with the mea-
surement apparatus.

Definition 34 ([21, 22]). Each measure of entanglement used to quantify the entanglement between the
system and the apparatus will result in a measure of quantumness of correlations.

QE ρS

� � ¼ min
US

EQ ρS:M

� �
: (111)

Different entanglement measures will lead, in principle, to different quantifiers for the
quantumness of correlations. The only requirement is that the entanglement measure must be
an entanglement monotone [21, 22, 66]. Some quantifiers of quantumness of correlations can
be recovered with the activation protocol: the quantum discord [22], one-way work deficit [22],
zero-way work deficit [21] and the geometrical measure of discord via trace norm [66], are
some examples. Taking the distillable entanglement in Eq. (111) is quite simple to see that it
results in zero-way work deficit. As shown in Eq. (106), the interaction with the measurement
apparatus results in the state

~ρS:M ¼
X
k, j

pk, j ak, bj
�� �

ak, bj
� ��

S
⊗ ak, bj
�� �

ak, bj
� ��

M
: (112)

That is named maximally correlated state, and as showed in Ref.[67], the distillable entanglement
of this state attach the Hashing inequality [68]:

ED ~ρS:M

� � ¼ �S SjMð Þ; (113)

where S SjMð Þ ¼ S ~ρS

� �� S ~ρS:M

� �
is conditional entropy of ~ρS:M. On the other hand, the zero-

way work deficit for ρS is:
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Δ∅ ρS

� � ¼ min
ΠSA ⊗ΠSB ∈P

S ΠSA ⊗ΠSB ρS

� �� �� S ρS

� �� �
; (114)

where ΠSA ⊗ΠSB ∈P CSA ⊗CSB

� �
is a local dephasing on subsystem A and B. As ~ρS is the

measured state of the system and ~ρS:M ¼ US:MρS:MU†
S:M, then:

S ~ρS

� �� S ~ρS:M

� � ¼ S ΠSA ⊗ΠSB ρS

� �� �� S ρS

� �
:

Therefore:

Δ∅ ρS

� � ¼ min
UM

ED ~ρS:M

� �
: (115)

This equation means that the activation protocol creates distillable entanglement between the
system and the measurement apparatus during a local measurement. In other words,
quantumness of correlations of the system can be converted resource for quantum information
protocol, and this conversion is ruled by the activation protocol.

From Eq. (111), it is possible to show that quantum entanglement is a lower bound for
quantumness of correlations.

Proposition 35 (Piani and Adesso [66]). For ρAB ∈D CA ⊗CBð Þ:

QE ρAB

� �
≥EQ ρAB

� �
; (116)

where QE and EQ are related by Eq. (111).

To compare two measures of different quantities as quantumness of correlation and quantum
entanglement, it is necessary a common rule. The activation protocol gives the rule to compare
these two quantities and this rule says that the measures of quantumness of correlations and
quantum entanglement must be related from Eq. (111). Entanglement is a lower bound for
quantumness of correlations also in the geometrical approach [17, 56].

Activation protocol determines that a composed state is classically correlated if and only if it
cannot create entanglement during the measurement process, for a given unitary interac-
tion [21, 22, 66]. This result provides an important tool for characterization of quantum
correlations in identical particle systems (bosons and fermions), once that system and appara-
tus are distinguishable partitions, even if the particles in the system are identical. This
approach have been applied to identical particles systems to prove how are the classically
correlated states of bosons and fermions [69]. The activation protocol device also allows to
determine the class of classically correlated states of the modes of a fermionic system and its
relation to the correlations of the fermions [70].

The entanglement generation by means of quantumness of correlations, as stated by the
activation protocol, was experimentally evidenced using programmable quantum measure-
ment [71]. In the experiment setup, the optimization on the unitary operations was performed
by a set of programable quantum measurements in different local basis. As quantumness of
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On the other hand, as the state ρS is bipartite, the pure states {|κα〉} can be written in general

as: καj i ¼
X

l, i
cαl, i a

α
l

�� �
bαi
�� �

, and after the interaction, the states will be:

US:M καj i 0j i ¼
X
l, j

cαl, j a
α
l ; b

α
j

���
E
S
⊗ aαl ; b

α
j

���
E
M
: (109)

As the state in Eq. (109) must be separable, it implies that the coefficients must satisfy:

cαi, j ¼ cf αð Þδi, j; f αð Þ and jcf αð Þj ¼ 1 (110)

where f(α) ∈ N2. As f(α) are orthogonal, it proves the theorem.
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system and the measurement apparatus during a local measurement. In other words,
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From Eq. (111), it is possible to show that quantum entanglement is a lower bound for
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where QE and EQ are related by Eq. (111).

To compare two measures of different quantities as quantumness of correlation and quantum
entanglement, it is necessary a common rule. The activation protocol gives the rule to compare
these two quantities and this rule says that the measures of quantumness of correlations and
quantum entanglement must be related from Eq. (111). Entanglement is a lower bound for
quantumness of correlations also in the geometrical approach [17, 56].

Activation protocol determines that a composed state is classically correlated if and only if it
cannot create entanglement during the measurement process, for a given unitary interac-
tion [21, 22, 66]. This result provides an important tool for characterization of quantum
correlations in identical particle systems (bosons and fermions), once that system and appara-
tus are distinguishable partitions, even if the particles in the system are identical. This
approach have been applied to identical particles systems to prove how are the classically
correlated states of bosons and fermions [69]. The activation protocol device also allows to
determine the class of classically correlated states of the modes of a fermionic system and its
relation to the correlations of the fermions [70].

The entanglement generation by means of quantumness of correlations, as stated by the
activation protocol, was experimentally evidenced using programmable quantum measure-
ment [71]. In the experiment setup, the optimization on the unitary operations was performed
by a set of programable quantum measurements in different local basis. As quantumness of
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correlation can be generated by local operations [10], activation protocol was explored exper-
imentally in the generation of distillable entanglement via local operations on the measured
partition of the system [72].

6. Conclusion

This chapter leads to the fundamental aspects of quantum correlations: entanglement and
quantumness of correlations. The purpose of this chapter is to demonstrate that quantumness
of correlations plays an important role in entanglement resource theory and by consequence in
quantum information theory. It was presented that entanglement and quantumness of correla-
tions connect each other in two different pictures. The relation derived by Koashi and Winter
demonstrates the balance between quantumness of correlations and entanglement in the
purification process. This balance leads to a formal proof for the irreversibility of the entangle-
ment distillation protocol, in terms of quantumness of correlations. Indeed in this fashion
quantumness of correlations revealed to play the main role in the state merging protocol,
quantifying the amount of entanglement consumed during the protocol. In the named activa-
tion protocol, the quantumness of correlations of a given composed system can be converted
into distillable entanglement with a measurement apparatus during the local measurement
process. In resume, the entanglement created by the interaction between the system and the
measurement apparatus is limited below by the amount of quantumness of correlations of the
system.
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Abstract

The way data is lost from the wavefunction in quantum dynamics is analyzed. The main
results are (A) Quantum dynamics is a dispersive process in which any data initially
encoded in the wavefunction is gradually lost. The ratio between the distortion’s vari-
ance and the mean probability density increases in a simple form. (B) For any given
amount of information encoded in the wavefunction, there is a time period, beyond
which it is impossible to decode the data. (C) The temporal decline of the maximum
information density in the wavefunction has an exact analytical expression. (D) For any
given time period there is a specific detector resolution, with which the maximum
information can be decoded. (E) For this optimal detector size the amount of informa-
tion is inversely proportional to the square root of the time elapsed.

Keywords: quantum information, quantum encryption, uncertainty principle,
quantum decoding

1. Introduction

The field of quantum information received a lot of attention recently due to major development
in quantum computing [1–5], quantum cryptography, and quantum communications [6–8].

In most quantum computing, the wavefunction is a superposition of multiple binary states
(qubits), which can be in spin states, polarization state, binary energy levels, etc. However,
since the wavefucntion is a continuous function, it can carry, in principle, an infinite amount of
information. Only the detector dimensions and noises limits the information capacity.

The quantum wavefunction, like any complex signal, carries a large amount of information,
which can be decoded in the detection process. Its local amplitude can be detected by measur-
ing the probability density in a direct measurement, while its phase can be retrieved in an
interferometric detection, just as in optical coherent detection [9].
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The amount of information depends on the detector’s capabilities, i.e., it depends on the
detector’s spatial resolution and its inner noise level. Therefore, the maximum amount of
information that can be decoded from the wavefunction is determined by the detector’s
characteristics. However, unlike the classical wave equation, the quantum Schrödinger
dynamics is a dispersive process. During the quantum dynamics, the wavefunction experi-
ences distortions. These distortions increase in time just like the dispersion effects on signals in
optical communications [10, 11].

Nevertheless, unlike dispersion compensating modules in optical communications, there is no
way to compensate or “undo” the dispersive process in quantum mechanics. Therefore, the
amount of information that can be decoded decreases monotonically with time.

The object of this chapter is to investigate the way information is lost during the quantum
dynamics.

2. Quantum dynamics of a random sequence

The general idea is to encode the data on the initial wavefunction. In accordance to signals in
coherent optical communications, in every point in space the data can be encoded in both the
real and imaginary parts of the wavefunction.

The amount of distortion determines the possibility to differentiate between similar values,
and therefore, it determines the maximum amount of information that the wavefunction
carries.

The detector width Δx determines the highest volume of data that can be stored in a given
space, i.e., it determines the data density. All spatial frequencies beyond 1/Δx cannot be
detected and cannot carry information. Moreover, due to this constrain, there is no point in
encoding the data with spatial frequency higher than 1/Δx.

A wavefunction, which consists of the infinite random complex sequence ψn = ℜψn + iℑψn for
n = � ∞, … � 1, 0, 1, 2, … ∞, which occupies the spatial spectral bandwidth 1/Δx (higher
frequencies cannot be detected by the given detector) can be written initially as an infinite
sequence of overlapping Nyquist-sinc functions [12, 13] (see Figure 1), i.e.,

ψ x, t ¼ 0ð Þ ¼
X∞
n¼�∞

ψnsinc x=Δx� nð Þ; (1)

where sinc ξð Þ � sin πξð Þ
πξ is the well-known “sinc” function.

After a time period t, in which the wavefunctions obeys the free Schrödinger equation.

iℏ
∂ψ x; tð Þ

∂t
¼ � ℏ2

2m
∂2ψ x; tð Þ

∂x2
; (2)

the wavefunction can be written as a convolution
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ψ x; tð Þ ¼
ð∞

�∞
K x� x0, tð Þψ x0, 0ð Þdx0 (3)

with the Schrödinger Kernel [14].

K x� x0, tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m

2πiℏt

r
exp

im
2ℏ

x� x0ð Þ2
t

" #
: (4)

Due to the linear nature of the problem, Eq. (3) can be solved directly

ψ x, t > 0ð Þ ¼
X∞
n¼�∞

ψndsinc x=Δx� n, ℏ=mð Þt=Δx2� �
(5)

where “dsinc” is the dynamic-sync function

dsinc ξ; τð Þ � 1
2

ffiffiffiffiffiffiffiffi
i

2πτ

r
exp �i ξ

2

2τ

� �
erf � ξ� πτffiffiffiffiffiffiffi

i2τ
p

� �
� erf � ξþ πτffiffiffiffiffiffiffi

i2τ
p

� �� �
: (6)
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Figure 1. Illustration of the way the data is encoded in the wavefucntion. In every Δx, there is a single complex number
ψn = ℜψn + iℑψn (the circles), while the continuous wavefunction is a superposition of these numbers multiplied by sinc’s
functions (three of which are presented by the dashed curves). The values in the y-axis should be multiplied by the
normalization constant of the wavefucntion.
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normalization constant of the wavefucntion.
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Equation (6) is the “sinc” equivalent of the “srect” function, that describes the dynamics of
rectangular pulses (see Ref. [15]).

Note that limτ!0 dsinc ξ; τð Þ½ � ¼ sinc ξð Þ:
Some of the properties of the dsinc function are illustrated in Figures 2 and 3. As can be seen,
the distortions form dsinc(n, 0) = δ(n) gradually increase with time.

Hereinafter, we adopt the dimensionless variables

τ � ℏ=mð Þt=Δx2and ξ � x=Δx: (7)
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Figure 2. Several plots of the real and imaginary parts of the dsinc function for different discrete values of ξ = 0, 1, 2,… 5.
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Figure 3. The dependence of the absolute value of the dsinc function on τ for different discrete values of ξ = 0, 1, 2, … 5.
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Thus, Eq. (2) can be rewritten

i
∂ψ ξ; τð Þ

∂τ
¼ � 1

2
∂2ψ ξ; τð Þ

∂ξ2
(8)

and Eq. (5) simply reads

ψ ξ, τ > 0ð Þ ¼
X∞
n¼�∞

ψndsinc ξ� n, τð Þ: (9)

Therefore, the wavefunction at the detection point of the mth symbol (center of the symbol at
ξ = m) is a simple convolution

ψ m; τð Þ ¼
X
n

ψnh m� nð Þ ¼ ψm þ
X
n

ψnδh m� nð Þ (10)

where

h nð Þ � dsinc n; τð Þand δh nð Þ � dsinc n; τð Þ � δ nð Þ: (11)

Since

∂2sinc ξð Þ
∂ξ2

����
τ¼n6¼0

¼ 2
n2
�1ð Þnþ1 and

∂2sinc ξð Þ
∂ξ2

����
τ¼0
¼ �π2

3
; (12)

then Eq. (9) can be written as a linear set of differential equations

dψ m; τð Þ
dτ

¼ i
X
n

w m� nð Þψ n; τð Þ � iw mð Þ ∗ψ m; τð Þ (13)

with the dimensionless

w mð Þ � ⋯
1
32
� 1
22

1 �π2

6
1 � 1

22
1
32

⋯
� �

¼ �1ð Þmþ1=m2 m 6¼ 0
�π2=6 m ¼ 0

:

(
(14)

It should be noted that the fact that Eq. (14) is a universal sequence, i.e. it is independent of
time, is not a trivial one. It is a consequence of the properties of the sinc function. Unlike
rectangular pulses, which due to their singularity has short time dynamics is mostly nonlocal
(and therefore, time-dependent) [15, 16], sinc pulses are smooth and therefore, their dynamics
is local and consequently w(m) is time-independent.

3. Quantum distortion noise

After a short period of time, the error (distortion) in the wavefunction (i.e., the wavefunction
deformation)
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Δψ ξ; τð Þ � ψ ξ; τð Þ � ψ ξ; 0ð Þ (15)

can be approximated by

Δψ ξ; τð Þ � ψ ξ; τð Þ � ψ ξ; 0ð Þ ffi τ
∂ψ ξ; τð Þ

∂τ

����
τ¼0

: (16)

Then we can define the Quantum Noise as the variance of the error

N ¼ Δψ ξ; τð Þj j2
D E

ffi τ2
∂ψ ξ; τð Þ

∂τ

����
τ¼0

����
����
2

* +
(17)

where the triangular brackets stand for spatial averaging, i.e., f xð Þh i � 1
X

ðX=2
�X=2

f x0ð Þdx0.

Using the Schrödinger equation, Eq. (17) can be rewritten as follows:

N ¼ Δψ ξ; τð Þj j2
D E

ffi τ2

4
∂2ψ ξ; 0ð Þ

∂2ξ

����
����
2

* +
: (18)

Similarly, we can define the average density as

ρ ¼ ψ ξ; τð Þj j2
D E

: (19)

Now, from the Parseval theorem [12], the spatial integral (average) can be replaced by a spatial
frequency integral over the Fourier transform, i.e.,

N ¼ 1
2π

Δψ κ; τð Þj j2
D E

(20)

and

ρ ¼ 1
2π

ψ κ; τð Þj j2
D E

(21)

where

ψ κ; τð Þ � 2πð Þ�1
ð
dξ exp �iκξð Þψ ξ; τð Þ and Δψ κ; τð Þ � 2πð Þ�1

ð
dξ exp �iκξð ÞΔψ ξ; τð Þ: (22)

Therefore, the ratio between the noise and the density (i.e., the reciprocal of the Signal-to-Noise
Ratio, SNR) satisfies the surprisingly simple expression

N
ρ
¼

Δψ ξ; τð Þj j2
D E

ψ ξ; 0ð Þj j2
D E ffi τ2

1
2π

ð
dκ

κ4

4
ψ κ; 0ð Þj j2

1
2π

ð
dκ ψ κ; 0ð Þj j2

¼ τ2
π4

20
(23)
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and with physical dimensions

N
ρ
¼ t2

Δx4
ℏ
m

� �2 π4

20
: (24)

We, therefore, find a universal relation: the relative noise (the ratio between the noise and the
density) depends only on a single dimensionless parameter τ � (ℏ/m)t/Δx2.

It should be stressed that this is a universal property, which emerges from the quantum
dynamics. This relation is valid regardless of the specific data encoded in the wavefunction
provided the data’s spectral density is approximately homogenous in the spectral bandwidth
[�1/Δx, 1/Δx].
Clearly, since the noise increases gradually, it will becomes more difficult to decode the data
from the wavefucntion. In fact, as is well known from Shannon celebrated equation [17], the
amount of noise determines the data capacity that can be decoded. Therefore, the amount of
information must decrease gradually.

4. The rate of information loss

We assume that at every Δx interval the wavefunction can have one of M different complex
values. In this case, both the real and imaginary parts can have

ffiffiffiffiffi
M
p

different values (this
form is equivalent to the Quadrature Amplitude Modulation, QAM, in electrical and optical
modulation scheme [18]), i.e., any complex ψn = ψ(n) = ℜψn + iℑψn = Ñvp,q can have one of the
values

vp,q ¼ 2p� ffiffiffiffiffi
M
p � 1ffiffiffiffiffi
M
p � 1

þ i
2q� ffiffiffiffiffi

M
p � 1ffiffiffiffiffi
M
p � 1

for p, q ¼ 1, 2,…
ffiffiffiffiffi
M
p

(25)

where Ñ is the normalization constant.

Since b = log2 M is the number of bits encapsulated in each one of the complex symbol, then the
difference between adjacent symbol

Δv ¼ ℜvp,q �ℜvp�1, q ¼ ℑvp,q �ℑvp,q�1 (26)

decreases exponentially with the number of bits, i.e.,.

Δv ¼ 2ffiffiffiffiffi
M
p � 1

¼ 2
2b=2 � 1

ffi 21�b=2 ¼ 2 exp �b ln 2=2ð Þ½ � (27)

Therefore, as the number of bits per symbol increases, it becomes more difficult to distinguish
between the symbols.

Clearly, maximum distortion occurs, when all the other symbols oscillates with maximum
amplitude, i.e.,
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ψn ¼ ψ n; 0ð Þ ¼ ψ m; 0ð Þ n ¼ m
�1ð Þn�m n 6¼ m

;

�
(28)

in which case the differential Eq. (13) can be written (for short periods)

dψmax=min m; τð Þ
dτ

¼ �iw 0ð Þψmax=min m; τð Þ∓ i
X
n6¼0

w m� nð Þ �1ð Þn ¼ i
π2

6
ψmax=min m; τð Þ∓ iπ2=3:

(29)

The solution of Eq. (29) is

ψmax=min m; τð Þ ¼ ψ m; 0ð Þexp iπ2τ=6
� �� 2 1� exp iπ2τ=6

� �� �
: (30)

Therefore, each cluster is bounded by a circle whose center is

ψ m; 0ð Þexp iπ2τ=6
� �

(31)

and its radius is

R ¼ 2 1� exp iπ2τ=6
� ��� �� ¼ 4 sin π2τ=12

� ��� ��: (32)

Since this result applies only for short periods, then the entire cluster is bounded by the radius

R ¼ π2τ=3; (33)

which is clearly larger than the cluster’s standard deviation σ ¼ π2τ=
ffiffiffiffiffi
20
p

< R.

A simulation based on Eq. (1) with 211 � 1 symbols, which were randomly selected from the
pool (25) forM = 16 was taken. That is, the probability that ψn is equal to vp,q is 1/M for all ns, or
mathematically

P ψn ¼ vp,q
� � ¼ 1=M, for n ¼ 1, 2, 3,…, 211 � 1, and p, q ¼ 1, 2,…

ffiffiffiffiffi
M
p

: (34)

The temporal dependence of the calculated SNR is presented in Figure 4. As can be seen,
Eq. (23) is indeed an excellent approximation for short τ.

Since the symbols were selected randomly (with uniform distribution), then when all the
symbols ψ(n, 0) = ψn are plotted on the complex plain, an ideal constellation image is shown
(see the upper left subfigure of Figure 5).

In Figure 5, a numerical simulation for a QAM 16 scenario is presented initially and after a
time period, τ = 0.1. Moreover, the dashed circles represents the standard deviation, i.e., the

noise level (radius π2τ=
ffiffiffiffiffi
20
p

), and the bounding circles (radius R ¼ π2τ=3 > π2τ=
ffiffiffiffiffi
20
p

).

Since the initial distance between centers of adjacent clusters is 2ffiffiffiffi
M
p �1, then decoding is impos-

sible for 1ffiffiffiffi
M
p �1 ¼

π2τmax
3 , i.e., we finally have an expression for the maximum time τmax, beyond
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which it is impossible to encode the data (i.e., to differentiate between symbols). This maxi-
mum time is

τmax ¼ 3ffiffiffiffiffi
M
p � 1
� �

π2
(35)

It should be noted that this result coincides with the On-Off-Keying (OOK) dispersion limit, for

which case
ffiffiffiffiffi
M
p ¼ 2, and then τmax = 1/π ffi 3/π2 (see Ref. [19]).

Similarly, Eq. (35) can be rewritten to find the maximum M for a given distance, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffi
Mmax

p
¼ 1þ 3

π2τ
: (36)

However, it is clear that this formulae for
ffiffiffiffiffiffiffiffiffiffiffiffi
Mmax
p

is meaningful only under the constraint thatffiffiffiffiffiffiffiffiffiffiffiffi
Mmax
p

is an integer.

Since the number of bits per symbol is log2M, then the maximum data density (bit/distance) is

Smax ¼ 2
Δx

log2
ffiffiffiffiffiffiffiffiffiffiffiffi
Mmax

p
¼ 2

Δx
log2 1þ 3=π2τ

� �
: (37)

Using Δx ¼
ffiffiffiffiffiffiffiffiffiffi
ℏ=mð Þt
τ

q
, we finally have
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Figure 4. Plot of the SNR as a function of τ. The solid curve represents the simulation result, and the dashed line
represents the approximation for short τ (the reciprocal of Eq. (23)).
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Smax ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mð Þtp F τð Þ (38)

where F τð Þ � 2
ffiffiffi
τ
p

log2 1þ 3=π2τ
� �

is a universal dimensionless function, which is plotted in
Figure 6 and receives its maximum value F(xmax) ffi 1.28 for xmax ffi 0.0775. However, under the
restriction that

ffiffiffiffiffiffiffiffiffiffiffiffi
Mmax
p

must be an integer, then as can be shown in Figure 6, the maximum bit-
rate is reached for

Mmax ¼ 25; (39)

for which case

τmax ¼ 3
4π2 ffi 0:076; (40)

Which means that for a given time of measurement t, the largest amount of information would
survive provided the detector size (i.e., the sampling interval) is equal to
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Δxmax ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏt=3m

p
: (41)

For this value F τmaxð Þ ¼
ffiffi
3
p
π log2 5ð Þ ffi 1:28, and therefore, the maximum information density

that can last after a time period t is

Smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
ℏ=mð Þt

s
log2 5ð Þ

π
ffi 1:28ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mð Þtp : (42)

This equation reveals the loss of information from the wave function.

It should be stressed that this expression is universal and the only parameter, which it depends
on, is the particle’smass. The higher themass is, the longer is the distance the information can last.

5. Summary and conclusion

We investigate the decay of information from the wavefunction in the quantum dynamics.

The main conclusions are the following:

A. The signal-to-noise ratio, i.e., the ratio between the mean probability and the variance of
the distortion, has a simple analytical expression for short times

SNR ¼ ρ
N
¼ 20

τ2π4

where τ � (ℏ/m)t/Δx2 and Δx is the data resolution (the detector size).
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Smax ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mð Þtp F τð Þ (38)

where F τð Þ � 2
ffiffiffi
τ
p

log2 1þ 3=π2τ
� �

is a universal dimensionless function, which is plotted in
Figure 6 and receives its maximum value F(xmax) ffi 1.28 for xmax ffi 0.0775. However, under the
restriction that

ffiffiffiffiffiffiffiffiffiffiffiffi
Mmax
p

must be an integer, then as can be shown in Figure 6, the maximum bit-
rate is reached for

Mmax ¼ 25; (39)

for which case

τmax ¼ 3
4π2 ffi 0:076; (40)

Which means that for a given time of measurement t, the largest amount of information would
survive provided the detector size (i.e., the sampling interval) is equal to
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B. When there are M possible symbols (as in QAM M), then the maximum time, beyond
which the data cannot be decoded is τmax ¼ 3ffiffiffiffi

M
p �1ð Þπ2

C. For a given symbol density (Δx) and a given measurement time, the maximum data
density (bit/distance) is Smax ¼ 2

Δx log2
ffiffiffiffiffiffiffiffiffiffiffiffi
Mmax
p ¼ 2

Δx log2 1þ 3=π2τ
� �

.

D. For a given measurement time, the sampling interval with the highest amount of decoded

information is Δxmax ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏt=3m

p
,

E. In which case the highest data density is Smax ¼
ffiffiffiffiffiffiffiffiffiffi

3
ℏ=mð Þt

q
log2 5ð Þ

π
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1. Introduction

Quantum communication networks provide a unique opportunity of sharing a random 
sequence of bits between users with guaranteed security not achievable in classical open or 
special systems with cryptographic protection [1]. This is achieved by means of quantum key 
distribution (QKD) technology use.

Nowadays, there are at least four basic photonic QKD technologies: polarization [2], interfero-
metric [3], differential phase shift [4] and frequency encoding [5]. The polarization technol-
ogy is based on the features of four photons’ fundamental states consideration and encoding, 
using one conjugate base of circular polarization and one of linear. The main disadvantage of 
this technology is the inability to maintain the polarization state of the photon along the entire 
length of fiber optic communication lines (FOCL). Interference technology relies on the use of 
optical delay lines and balanced interferometers in FOCL transmitter and receiver. The basic 
requirement for the implementation of this technology is to maintain the phase stroke dif-
ference of interferometers when exposed to temperature, vibration and other factors that are 
hard to realize. A phase technology is an approach based on the methods of differential phase 
shift, which allows implementing the QKD technology at FOCL lengths over 100 km, although 
with limited security [6].

The technology of frequency encoding allows determining the ground states of photons 
through the amplitude value of its carrier frequency, modulated in phase and/or amplitude 
by radiofrequency (RF) signal and the received high-order sidebands (subcarriers). This tech-
nology, based on the modulation conversion of multiphoton optical carrier, is widely used in 
microwave photonics, in its various classic applications [7–9].

Standard implementation of frequency encoding technology in quantum communication net-
works can be described as follows [10]. Alice (legal subscriber, transmitter) randomly changes the 
phase of the RF signal used to modulate the photons, among four discrete values 0;π,…,π/2;3π/2, 
which form a pair of conjugate bases, and sends it by FOCL quantum channel to Bob (legal sub-
scriber, receiver). Bob modulates receiving photons again, using the same frequency RF signal 
as Alice, but with its own discrete phases, independent from Alice, from the same paired bases 
0;π,…,π/2;3π/2. Along with this, the new order photon sidebands on the Bob’s side will interfere 
with photons’ sideband components received from the Alice’s side. The interference result will 
determine the correctness of the adopted phase information and the encoded photon’s state. For 
simplicity, quantum communication channel with sidebands only of first order is considered.

Over the last 20 years, this technology has been substantially modified and improved. Initially, 
it was used to implement the QKD in hardware, based on the modified cryptographic B92 
protocol [11]. In this case, the level of constructive or destructive interference of the two lateral 
components, obtained by means of phase modulation (PM), was determined as a function of 
the cosine-squared type from the phase difference between the Alice and Bob signals. In more 
detailed characteristic consideration, the amplitude modulation (AM) application was used 
instead of phase technology to implement the QKD in hardware, based on the underlying 
cryptographic BB84 protocol [12], although the last one in theory was designed earlier than 
BB92 one. Thus, for the amplitude of the upper lateral components, the function of the sine 
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square of the phases difference is characterized, and for the bottom—cosine-squared one. The 
optimal implementation of the QKD frequency encoding technology and the most clearly 
cryptography protocol BB84 can be obtained by using AM (Alice) and PM (Bob) (or PM-AM), 
which was shown in [13]. In the latter works, a broad understanding of frequency encoding 
principle is used, where to each state of the photons, instead of the phase of the modulating 
signal at a certain frequency, one or more lateral component frequencies either photon optical 
carrier [14] are put into line.

The symmetric pairs of the PM-PM, AM-AM and meshed AM-PM (PM-AM) are described 
by known electro-optical modulation and re-modulation schemes, where the first component 
determines the type of modulation and modulator on the side of Alice, and the other—on 
the side of Bob. The most important features of this type of QKD system are simplicity of 
schemes and phase shift matching decisions on both sides of quantum channel, efficient use 
of its bandwidth and capability to add quantity of subcarriers using one carrier source [15]. 
From another point of view [16], the smallest value of QBER is achieved in circuits with pas-
sive definition of photons states, without re-modulation and using only filter systems based 
on fiber Bragg gratings (FBG) or arrayed waveguide gratings (AWG) for subcarriers or carrier 
selection. Thus, we have to analyze as symmetrical systems with re-modulation, so and asym-
metrical ones without re-modulation and only filter selection.

Disadvantages of above-described QKD systems are connected mainly with strong carrier and 
photon subcarrier levels’ interaction along the optical fiber and its energy meshing. First, in 
[17], it was shown that effects of nonlinear phase modulation (NPM) are small on temporally 
separable sources utilizing symmetric group velocity matching but appreciably change the state 
of temporally entangled sources with the same group velocity-matching scheme. The largest 
changes to the state due to NPM occur in long FOCL with long pulse durations and low repeti-
tion rates (in limit, it is CW-technology of QKD with frequency coding). Second, in [18], it was 
shown that most quantum setups use simple attenuation of laser carrier as a source of quantum 
states. In such cases, average probability of single photon emission per time unit is equal to 
μ ≈ 0.1. The security condition in this case is no longer strict due to Poisson distribution of pho-
tons, so carrier or subcarriers may contain more than one photon. This fact can be easily used by 
Eve—illegal agent. She successfully can perform undetectable beam splitting or photon number 
splitting (PNS) attack without changing QBER and receive a part of the key, which can be sig-
nificant at higher μ. Third, in [15], it was shown that quantum information transfer devices at 
subcarrier frequencies of modulated radiation required an exact separation of the quantum sub-
carrier signal and central wavelength. Inadequate extinction of the signal on the main frequency 
significantly reduces the signal-to-noise ratio of the system and leads to a significant increase in 
the number of errors in the quantum communication channel. Therefore, the QKD technology 
with frequency coding, based on the modulation conversion of an optical carrier with its com-
plete or partial suppressing, is the actual problem to improve quantum channel characteristics.

Due to the natural symmetry of modulated signals and the highest achievable ratio of the 
modulation conversions, amplitude-phase modulation with complete or partial suppression 
of the optical carrier has found a particularly wide application in the systems of microwave 
photonics [19]. Let us apply microwave photonics principles to design of QKD systems with 
frequency encoding.
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it was used to implement the QKD in hardware, based on the modified cryptographic B92 
protocol [11]. In this case, the level of constructive or destructive interference of the two lateral 
components, obtained by means of phase modulation (PM), was determined as a function of 
the cosine-squared type from the phase difference between the Alice and Bob signals. In more 
detailed characteristic consideration, the amplitude modulation (AM) application was used 
instead of phase technology to implement the QKD in hardware, based on the underlying 
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square of the phases difference is characterized, and for the bottom—cosine-squared one. The 
optimal implementation of the QKD frequency encoding technology and the most clearly 
cryptography protocol BB84 can be obtained by using AM (Alice) and PM (Bob) (or PM-AM), 
which was shown in [13]. In the latter works, a broad understanding of frequency encoding 
principle is used, where to each state of the photons, instead of the phase of the modulating 
signal at a certain frequency, one or more lateral component frequencies either photon optical 
carrier [14] are put into line.

The symmetric pairs of the PM-PM, AM-AM and meshed AM-PM (PM-AM) are described 
by known electro-optical modulation and re-modulation schemes, where the first component 
determines the type of modulation and modulator on the side of Alice, and the other—on 
the side of Bob. The most important features of this type of QKD system are simplicity of 
schemes and phase shift matching decisions on both sides of quantum channel, efficient use 
of its bandwidth and capability to add quantity of subcarriers using one carrier source [15]. 
From another point of view [16], the smallest value of QBER is achieved in circuits with pas-
sive definition of photons states, without re-modulation and using only filter systems based 
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metrical ones without re-modulation and only filter selection.

Disadvantages of above-described QKD systems are connected mainly with strong carrier and 
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states. In such cases, average probability of single photon emission per time unit is equal to 
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tons, so carrier or subcarriers may contain more than one photon. This fact can be easily used by 
Eve—illegal agent. She successfully can perform undetectable beam splitting or photon number 
splitting (PNS) attack without changing QBER and receive a part of the key, which can be sig-
nificant at higher μ. Third, in [15], it was shown that quantum information transfer devices at 
subcarrier frequencies of modulated radiation required an exact separation of the quantum sub-
carrier signal and central wavelength. Inadequate extinction of the signal on the main frequency 
significantly reduces the signal-to-noise ratio of the system and leads to a significant increase in 
the number of errors in the quantum communication channel. Therefore, the QKD technology 
with frequency coding, based on the modulation conversion of an optical carrier with its com-
plete or partial suppressing, is the actual problem to improve quantum channel characteristics.

Due to the natural symmetry of modulated signals and the highest achievable ratio of the 
modulation conversions, amplitude-phase modulation with complete or partial suppression 
of the optical carrier has found a particularly wide application in the systems of microwave 
photonics [19]. Let us apply microwave photonics principles to design of QKD systems with 
frequency encoding.
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We present in this chapter the results of the universal QKD system design, based on a tan-
dem electro-optic AMPM-PMAM scheme built on microwave photonics principles applied 
to photon carrier modulation. It allows us to implement all of the above-mentioned classical 
symmetrical schemes PM-PM, AM-AM and meshed AM-PM (PM-AM) and also to review 
the requirements for building a promising tandem AM and phase commutation (PC) scheme 
with the possibility of implementing a nonclassical asymmetric structure with passive filter-
ing (FBG/AWG) on Bob’s side and suppressed carrier.

The chapter in the main is based on the results of analytical review of [1–19], materials of 
Morozov et al. [20] and additional and new results of theoretical and experimental researches 
in QKD theme and miscellaneous applications. Next chapter sections are organized as fol-
lows. The second section shows the principles of design of QKD systems with frequency 
encoding based on the classical approaches; key nodes involved for the implementation of 
PM-PM, AM-AM and meshed AM-PM (PM-AM) schemes are described; the descriptions of 
protocol bases and some experimental results are given; the advantages and disadvantages 
of classical schemes are evaluated, and the ways of its development are discussed. The third 
section discusses the design of promising universal tandem AMPM-PMAM scheme and its 
microwave photonic (MWP) basis; version of QKD system with tandem amplitude modula-
tion and phase commutation of photons is proposed; the capabilities of re-modulation and 
possibilities of re-commutation procedures, or their absent and using only passive filtering 
structure realizations. In conclusion, the received results are analyzed and the key develop-
ment challenges for QKD systems with frequency encoding are highlighted.

2. Implementation of classical QKD schemes with frequency 
encoding

Let us consider implementation of various modulation schemes, relying on the chronology of 
QKD systems with frequency encoding. The protocols BB84 [12] and B92 [11] are two main 
protocols used for their construction. During the BB84 protocol realization, Alice prepares 
and sends to Bob a lot of random qubits, chosen from the four main states:
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The first two states in (1) form one basis of two-dimensional quantum system, and the other 
two form second basis.

It is necessary to fulfill the terms ⟨ψ0│ψ1⟩ = 0 and ⟨ψ+│ψ−⟩ = 0, corresponding to the scalar 
production of their components. At the same time, the mentioned states of different bases are 
not orthogonal and maximum overlap [12]. Therefore, there is no measurement procedure, at 
which Eve can determine the state prepared by Alice and sent to Bob at 100% probability [21]. 
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B92 protocol [11] is the modernization of BB84 protocol and is used to encode one of the two 
presented in (1) bases.

2.1. PM-PM schemes

One of the first PM-PM scheme variants is based on the B92 protocol [22]. Its OptiSystem 
model is presented in Figure 1.

Alice modulates photon |ω0⟩ in left PM by RF signal from sine generator with frequency Ω 
and phase Φ = ΦA, getting:

    |А ⟩  =   ∑ 
n=−∞

  
n=+∞

    J  n    exp   jn Φ  A     | ω  n   ⟩ ,  (2)

where, for simplicity of display, the argument of the Bessel’s function   J  
n
    is not specified. On 

the receiving end, Bob modulates the input radiation synchronized with Alice RF signal from 
its sine generator (right) phase Φ=ΦB. At Bob’s PM output, one will receive:

    |B ⟩  =  ∑ n,k      J  n    J  k−n    exp   jn Φ  A     exp   j (k−n)  Φ  B     | ω  k   ⟩   (3)

It should be noted that modulation effect is to transfer energy from carrier on the sidebands (sub-
carriers). Its effectiveness depends on modulation and corresponding phases ΦA and ΦB. Transfer 
efficiency P(ω0 → ω0 ± Ω) is proportional to the function cos2(∆Φ/2), where ∆Φ = ΦB−ΦA, and is 
at maximum when ∆Φ = 0, which indicates the same basis chosen by Alice and Bob (Figure 2).

Further exchange of information between Alice and Bob allows them to set a secure connec-
tion with the implementation of the B92 protocol. The definition of a key with probability 
equal to one for Eve is impossible.

Determination of phase’s compliance level in the scheme is actually implemented by the 
amplitude of the subcarriers. That is also the evidence of these scheme drawbacks, taking into 
account the small power of optical subcarriers and the presence of noise in the communica-
tion channel and single photon detector (SPD).

Figure 1. Modeling of PM-PM scheme for QKD system with frequency coding.
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A second version of the PM-PM scheme [14] was proposed for elimination of given draw-
backs. It is based on nonlinear interaction of the RF signal and the photon in the electro-optic 
modulator and implements a more advanced BB84 protocol. Notch filter on ω0 frequency is 
set prior to sideband SPD, which reflects the carrier at the corresponding receiver, transmit-
ting all the remaining subcarriers on ω0 ± Ω and ω0 ± 2 Ω frequencies.

For BB84 protocol realization, two bases are set as following:
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Figure 2. Constructive ∆Φ = 0 (a) and destructive ∆Φ = π/2 (b), ∆Φ = 3π/2 (c), ∆Φ = π (d) interferences on the output of 
Bob’s PM, when Alice’s ΦA = 0.
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The |±;2⟩ states are determined without applying the re-modulation, by the use of filter sets 
based on FBG or AWG and logic conditions. Scheme decision shows the lowest QBER value. 
Only sideband SPD also works during the transfer of |±;1⟩ states, because at specified condi-
tions of modulation and re-modulation the component at frequency ω0 is equal to 0. The error 
level in transmission |±;1⟩ states is 4.7%.

AM-AM schemes use for elimination of PM-PM ones shortcomings. One of them was imple-
mented only on the acousto-optic modulators [16].

2.2. AM-AM schemes

The first AM-AM scheme is based on BB84 protocol [23]. Its OptiSystem model is presented in 
Figure 3, and constructive and destructive interferences are shown in Figure 4.

It should be noted that the modulator on the of Alice’s side is modulated according to the law 
cos(Ωt + ΦA), and on the Bob’s side according to sin(Ωt + ΦB). Transfer efficiency P(ω0 → ω0 ± Ω) 
in this case is proportional to function cos2(∆Φ/2) and sin2(∆Φ/2) for the upper and lower side 
bands, respectively, at ΦA = π/2 and ΦB = 3π/2. Determination of phase’s compliance level in 
the scheme is also implemented by the amplitude of the lateral components.

2.3. Meshed AM-PM (PM-AM) schemes

AM-PM or PM-AM scheme implementation intuitively appears to be based on the principles 
set out, respectively, for AM-AM and PM-PM schemes. One of its OptiSystem model is pre-
sented in Figure 5.

Determination of phase’s compliance level in the scheme is also implemented by the ampli-
tude of the lateral components (Figure 6).

It should be noted that we have some conflicting information about the possibility [13] and 
impossibility [23] of meshed AM-PM (PM-AM) scheme realization as for protocol BB84, so 

Figure 3. Modeling of AM-AM scheme for QKD system with frequency coding.
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A second version of the PM-PM scheme [14] was proposed for elimination of given draw-
backs. It is based on nonlinear interaction of the RF signal and the photon in the electro-optic 
modulator and implements a more advanced BB84 protocol. Notch filter on ω0 frequency is 
set prior to sideband SPD, which reflects the carrier at the corresponding receiver, transmit-
ting all the remaining subcarriers on ω0 ± Ω and ω0 ± 2 Ω frequencies.
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Bob’s PM, when Alice’s ΦA = 0.
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Figure 4. Constructive ∆Φ = π (a) and destructive ∆Φ = π/2 (b), ∆Φ = 3π/2 (c); ∆Φ = 0 (d) interferences on the output of 
Bob’s PM, when Alice’s ΦA = 3π/2.

Figure 5. Modeling of AM-PM scheme for QKD system with frequency coding.
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and B92 one. Taking into account that the definition of truth in these statements is not the 
aim of our chapter, let us consider some results of practical experiments for AM-AM schemes 
based on acoustic-optical modulators [16], which show us second attempt to implement QKD 
system without re-modulation.

2.4. Acousto-optic modulation for AM-AM schemes

There is a nonelectro-optical solution of AM-AM scheme based on acousto-optic modulation 
on Alice’s side as well as on Bob’s side [16].

In the case of Bragg diffraction, all orders of diffracted radiation except the first become negli-
gibly small, and the frequency offset depends from the direction of laser radiation and sound 
wave propagation.

For BB84 protocol, two bases are set:

Figure 6. Constructive ∆Φ = 0 (a) and destructive ∆Φ = π/2 (b), ∆Φ = 3π/2 (c), ∆Φ = π (d) interferences on the output of 
Bob’s PM, when phase of Alice’s AM ΦA = 0.
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The first pair of states |+;1⟩ and |−;1⟩ can be identified without re-modulation, using the filter 
block consisted from FBG or AWG, tuned on the frequencies ω0 ± Ω or one of them, similar to 
the filtering implemented in the second variant of PM-PM scheme [14].

The second pair of states |+;2⟩ and |−;2⟩ is transmitted with the help of modulation on Alice’s 
side. If we use filters without re-modulation on Bob’s side, the error can occur, because both 
photosensors with ω0 ± Ω filters will trigger. The given states are determined uniquely if re-
modulation is used.

Replacing status |+;1⟩ and |+;2⟩ to ‘1’ and |+;1⟩ and |−;1⟩ to ‘0’, Alice and Bob will get an exact 
match of the sent qubits. This ensures an exact match of QKD protocol to BB84.

Certain difficulty, associated with spatial alignment of used devices as on Alice’s so and Bob’s 
sides, characterizes using of acousto-optic modulators in QKD system implementation with 
frequency encoding. Search for ways to implement bases, described in (5), with the help of 
electro-optic modulation, led us to use Il’in-Morozov’s method [24, 25] for the photon carrier 
modulation transform.

Il’in-Morozov’s method belongs to the methods with full or partial suppression of optical 
carrier. The theoretical justification for this application and synthesized conjugated bases is 
obtained by amplitude-phase modulation according to Il’in-Morozov’s method we consider 
in the next section.

3. Tandem АМPМ-PМАМ structure of QKD system with frequency 
encoding

3.1. Serial and parallel microwave photonic AMPM one port units

The general model shown in Figure 7 for a single-port parallel system, where either intensity 
or phase modulation (or both simultaneously in parallel) can be applied, can represent all the 
former examples from the point of view of traditional simple microwave photonic (MWP) 
links.

The impact of all intermediate optical components of quantum channel placed between the 
electro-optical (EO) and the optoelectronic (OE) conversion stages can be united into an opti-
cal transfer function H(ω) (in our case, its FBG as filter for carrier, fiber of channel with losses 
and so on). Authors of [26], in order to classify these systems, use the term ‘filtered MWP 
links’ (FMWPL).
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The features of FMWPL are evaluated in terms of figures of merit set: the radiofrequency 
link gain, the noise figure and the spurious free dynamic range [27]. These metrics have been 
computed for a wide variety of configurations in [26].

In principle, the interest was focused on intensity-modulated direct detection (IMDD) point-
to-point links with direct or external modulation, and models were developed detailed 
description of the effects of the electronic biasing circuits and impedance matching networks 
[27]. Paper [28] reciprocally considers the inclusion of an arbitrary optical filter, acting as an 
FM discriminator, for the particular case of directly modulated FMDD links if synchronizing 
channel will change frequency.

For the AMPM feature analysis, classical generalized scheme of single-port FMWPL was con-
verted from parallel to serial circuit type (Figure 8) in order to implement Il’in-Morozov’s 
method.

On the basis of studies carried out in this section, the feasibility of AMPM scheme realized 
on the amplitude, and phase MZM was theoretically demonstrated. We carried out equa-
tions for the calculation of the AMPM scheme output spectrum [29]. The spectrum consists 
mainly from two components, if phase of PM triggered on π in the minimum of envelope of 
amplitude-modulated carrier. The difference frequency is equal to modulating one in syn-
chronizing channel.

Figure 9 shows the spectrums of the original quasi-harmonic oscillations of the amplitude-
modulated signals structure (Figure 9a) and the two frequency structure with partly sup-
pressed carrier obtained by MZM AM in ‘zero’ point (Figure 9b) and fully suppressed carrier 

Figure 8. Schematic representation of a general serial single-port filtered MWP link [28].

Figure 7. Schematic representation of a general parallel single-port filtered MWP link [25].
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The first pair of states |+;1⟩ and |−;1⟩ can be identified without re-modulation, using the filter 
block consisted from FBG or AWG, tuned on the frequencies ω0 ± Ω or one of them, similar to 
the filtering implemented in the second variant of PM-PM scheme [14].

The second pair of states |+;2⟩ and |−;2⟩ is transmitted with the help of modulation on Alice’s 
side. If we use filters without re-modulation on Bob’s side, the error can occur, because both 
photosensors with ω0 ± Ω filters will trigger. The given states are determined uniquely if re-
modulation is used.

Replacing status |+;1⟩ and |+;2⟩ to ‘1’ and |+;1⟩ and |−;1⟩ to ‘0’, Alice and Bob will get an exact 
match of the sent qubits. This ensures an exact match of QKD protocol to BB84.

Certain difficulty, associated with spatial alignment of used devices as on Alice’s so and Bob’s 
sides, characterizes using of acousto-optic modulators in QKD system implementation with 
frequency encoding. Search for ways to implement bases, described in (5), with the help of 
electro-optic modulation, led us to use Il’in-Morozov’s method [24, 25] for the photon carrier 
modulation transform.

Il’in-Morozov’s method belongs to the methods with full or partial suppression of optical 
carrier. The theoretical justification for this application and synthesized conjugated bases is 
obtained by amplitude-phase modulation according to Il’in-Morozov’s method we consider 
in the next section.

3. Tandem АМPМ-PМАМ structure of QKD system with frequency 
encoding

3.1. Serial and parallel microwave photonic AMPM one port units

The general model shown in Figure 7 for a single-port parallel system, where either intensity 
or phase modulation (or both simultaneously in parallel) can be applied, can represent all the 
former examples from the point of view of traditional simple microwave photonic (MWP) 
links.

The impact of all intermediate optical components of quantum channel placed between the 
electro-optical (EO) and the optoelectronic (OE) conversion stages can be united into an opti-
cal transfer function H(ω) (in our case, its FBG as filter for carrier, fiber of channel with losses 
and so on). Authors of [26], in order to classify these systems, use the term ‘filtered MWP 
links’ (FMWPL).
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On the basis of studies carried out in this section, the feasibility of AMPM scheme realized 
on the amplitude, and phase MZM was theoretically demonstrated. We carried out equa-
tions for the calculation of the AMPM scheme output spectrum [29]. The spectrum consists 
mainly from two components, if phase of PM triggered on π in the minimum of envelope of 
amplitude-modulated carrier. The difference frequency is equal to modulating one in syn-
chronizing channel.

Figure 9 shows the spectrums of the original quasi-harmonic oscillations of the amplitude-
modulated signals structure (Figure 9a) and the two frequency structure with partly sup-
pressed carrier obtained by MZM AM in ‘zero’ point (Figure 9b) and fully suppressed carrier 

Figure 8. Schematic representation of a general serial single-port filtered MWP link [28].

Figure 7. Schematic representation of a general parallel single-port filtered MWP link [25].

Universal Microwave Photonics Approach to Frequency-Coded Quantum Key Distribution
http://dx.doi.org/10.5772/intechopen.71974

123



by AMPM method (Figure 9c). If these oscillations expose the amplitude detector, the fre-
quency of their envelopes will be different in two times.

As seen from Figure 9, the difference frequency between two frequency components of radia-
tion is equal to the frequency 2 Ω or modulating waveforms. Components of higher harmon-
ics can be ignored because of the smallness of their amplitudes.

We obtained the doubled narrowing of the difference frequency if compared to classical 
schemes of modulation applicable in practice and using a single-amplitude MZM, operating 
in the ‘zero’ point of the modulation characteristics [29].

3.2. Tandem АМPМ-PМАМ scheme

Functional scheme of tandem AMPM-PMAM QKD system with frequency encoding is pre-
sented in Figure 10.

Alice’s side—transmitter, based on a transmitting part of a single-port serial type FMWPL, 
consists of low-power single mode (frequency) continuous wave laser diode (SM CW LD)—
simulator of single photons with carrier frequency ω, amplitude Mach-Zehnder modulator 
(MZM 1AM) and phase Mach-Zehnder modulator (MZM 1PM).

Figure 9. The spectrums of initial AM radiation (a) and output ones from amplitude MZM (b), operating in ‘zero’ point, 
and AMPM system based on tandem amplitude and phase MZM (c).
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Orthogonal polarization controllers, allowing carrier amplitude modulation and controlling 
the modulator transmission index, when no modulation is needed, can be installed at MZM 
1AM input and output. Amplitude and phase modulation parameters are controlled by gen-
erator of radiofrequency signals GRFS 1 (A or P) with angular frequency Ω ≪ ω and selectable 
phase Ф of a pair of conjugate bases 0;π or π/2;3π/2. A source of DC bias serves to select the 
operating point of the MZM 1 AM modulation characteristics, providing amplitude modula-
tion at zero, quarter-wave and half-wave operating points by submitting to its corresponding 
0, Uπ/2 or Uπ input voltage, where Uπ—half-wave voltage of modulator. The modulation 
factors of MZM 1AM and MZM 1PM are selected to ensure their operation in the linear range. 
Thus, the radiation at the output port in classical schemes will be limited by components in 
the range from ω to ω ± 2 Ω, and the filter on FBG2 additionally selects ω [15]. The setting of 
FMWPL provides the opportunity to work with and without amplitude and phase modula-
tion of photons. In latter, the DC voltage put in MZM 1PM for its opening.

Bob’s side—receiver, based on receiving part of single-port serial FMWPL, consists of MZM 
2PM, MZM 2AM, filter units (FBG1/AWG) and the block of SPD for emission registration at 
frequencies ω, ω ± Ω and ω ± 2 Ω (for classical schemes, half part of SPD is shown) and ω, 
ω ± Ω/2, and ω ± 3 Ω/2 (for advanced schemes, half part of SPD is shown). A more detailed 

Figure 10. Functional scheme of АМPМ-PМАМ QKD system with frequency encoding.
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filter pack description will be given below when discussing the variants of QKD scheme 
implementation.

Special synchronization channel from Alice to Bob [15] serves to transmit information about 
a modulating signal at frequency Ω, which allows to use on Bob’s side radiofrequency modu-
lating signal with the same frequency as Alice and control it with local GRFS 2 (A or P). MZM 
2AM and MZM 2PM Bob’s modulators are controlled analogously to Alice’s ones.

3.3. AMPM-PMAM system implementation for classical QKD schemes

General view of the AMPM-PMAM experimental setup is presented in Figure 11.

For amplitude modulation, an amplitude modulator JDSU APE microwave analog is used 
with operating frequencies band over 4.2 GHz and a half-wave voltage of 3.3 V. The size of 
the modulator reaches a length of 120 mm and a width of 15 mm. Irregularity of frequency 
response in the range of 0.13–20 GHz is 7 dB. For the phase modulation, the phase modula-
tor JDSU APE with the working frequency band above 10 GHz was used. The sizes of phase 
modulator are close to the dimensions of the intensity modulator. It does not require the input 
(bias) of the operating point.

The range of wavelengths includes an operating wavelength of 1550 nm. Losses of both types 
of modulators are about 3 dB. Maximum input power is up to 200 mW. As far as the small 
signal approaches, we are interested in the power of 1 mW, the use of which does not result 
in nonlinear effects in an optical fiber such as stimulated Mandelstam-Brillouin or Raman 
scattering [20].

Let us consider the modeling implementation of PM-PM scheme. Laser radiation from the 
Alice’s side, as the source of which the laser optical spectrum analyzer was used, allowing 
realization of low-power laser analogue, arrived on the MZM 1AM in an open state and a 
phase modulator MZM 1PM. Further on across the bay of optical fiber SMF-28 of 2 km length, 
the radiation was received on the Bob’s side, where it was re-modulated within the MZM 
2PM (MZM 2AM was open) and recorded in the optical spectrum analyzer and photodetector 

Figure 11. General view of the AMPM-PMAM experimental setup.
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devices LSIPD-A75-FA, using filters based on FBG2. The modulation frequency was 4.2 GHz. 
Figure 12 shows signal spectrograms in destructive and constructive interference on the lat-
eral frequencies ω ± Ω.

Thus, it was shown that AMPM-PMAM system could be implemented, for example, as PM-PM 
QKD scheme with frequency encoding based on classical approaches. It should be highlighted 
that in classical approaches transfer efficiency P(ω → ω ± Ω) at low modulation coefficients does 
not reach high values. The main energy is concentrated at the carrier frequency, and the pro-
portion of energy of the side components is very small. Then, in order to compensate NPM, we 
have to extract carrier, so the efficiency of photon registration on subcarriers is very small also.

This factor gave us additional arguments to implement modulation transformation of photon 
carrier based on Il’in-Morozov’s method [24, 25]. The procedures are concluded in ampli-
tude modulation and phase commutation (PC) of optical carrier with its suppression and full 
energy transfer in subcarriers.

Let us evaluate the possibility of perspective AMPC-PCAM system implementation in two 
variants. First is symmetrical structure with amplitude modulation and phase commutation 
at the Alice’s side and amplitude re-modulation and phase re-commutation on the Bob’s side. 
Second is variant, in which the asymmetric structure of the QKD with amplitude modulation 
and phase commutation on the Alice’s side and only passive filtering based on the FBG1/
AWG on the side of Bob are implemented.

3.4. Estimation of possibility AMPC-PCAM scheme implementation

The operation of AMPC-PCAM QKD system with frequency encoding is based on amplitude-
phase modulation conversion of the photon carrier realized with the procedures described by 
Il’in-Morozov’s method and its implementations on one or two modulators [29, 30]. Variants 
of constructive AM interference are shown in Figure 13 in the case of constructive PC on Alice 
and Bob sides.

Figure 12. The spectrogram of the signal in destructive (a) and constructive (b) interference on the lateral frequencies 
ω ± Ω in PM-PM scheme implementation.
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devices LSIPD-A75-FA, using filters based on FBG2. The modulation frequency was 4.2 GHz. 
Figure 12 shows signal spectrograms in destructive and constructive interference on the lat-
eral frequencies ω ± Ω.

Thus, it was shown that AMPM-PMAM system could be implemented, for example, as PM-PM 
QKD scheme with frequency encoding based on classical approaches. It should be highlighted 
that in classical approaches transfer efficiency P(ω → ω ± Ω) at low modulation coefficients does 
not reach high values. The main energy is concentrated at the carrier frequency, and the pro-
portion of energy of the side components is very small. Then, in order to compensate NPM, we 
have to extract carrier, so the efficiency of photon registration on subcarriers is very small also.

This factor gave us additional arguments to implement modulation transformation of photon 
carrier based on Il’in-Morozov’s method [24, 25]. The procedures are concluded in ampli-
tude modulation and phase commutation (PC) of optical carrier with its suppression and full 
energy transfer in subcarriers.

Let us evaluate the possibility of perspective AMPC-PCAM system implementation in two 
variants. First is symmetrical structure with amplitude modulation and phase commutation 
at the Alice’s side and amplitude re-modulation and phase re-commutation on the Bob’s side. 
Second is variant, in which the asymmetric structure of the QKD with amplitude modulation 
and phase commutation on the Alice’s side and only passive filtering based on the FBG1/
AWG on the side of Bob are implemented.

3.4. Estimation of possibility AMPC-PCAM scheme implementation

The operation of AMPC-PCAM QKD system with frequency encoding is based on amplitude-
phase modulation conversion of the photon carrier realized with the procedures described by 
Il’in-Morozov’s method and its implementations on one or two modulators [29, 30]. Variants 
of constructive AM interference are shown in Figure 13 in the case of constructive PC on Alice 
and Bob sides.

Figure 12. The spectrogram of the signal in destructive (a) and constructive (b) interference on the lateral frequencies 
ω ± Ω in PM-PM scheme implementation.

Universal Microwave Photonics Approach to Frequency-Coded Quantum Key Distribution
http://dx.doi.org/10.5772/intechopen.71974

127



To simulate the scheme and carry out the project evaluations, the modeling principles of 
single-port modulation radio photon of serial link type proposed by us in [29, 31, 32] and 
photonic simulation of electro-optic modulators [33] were used.

The implementation of Il’in-Morozov’s method for the modulation conversion P(ω → ω ± nΩ), 
where n is the number of subcarriers, will provide:

1. high-efficiency optical carrier transfer into subcarrier left and right components (up to 0.6–
0.8 amplitude for each of them), high level of spectral purity under the optimal conversion 
parameters (only first or additionally third number subcarriers are existing);

2. NPM decreasing (carrier is absent), to exclude spectrum filter, which separates carrier and 
sidebands, to increase signal-to-noise ratio, because we can register photon by envelope 
amplitude on difference frequency Ω, which lies in SPD spectrum region with minimum 
level of noises;

3. synthesis of whole number subcarriers (n ≥ 1) and fractional ones (n/2, for n ≥ 1) that will 
improve the cryptographic protection level of the communication system, in case of Eve 
discoveries the frequency of synchronization channel;
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Figure 13. Variants of constructive interference with the coincidence of the parameters AM and PC on the side of Alice 
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(d) at the output of modulators on the side of Bob.
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4. implementation of an asymmetric system with a totally passive data filtering sent by Alice, 
on the of Bob’s side without re-modulation or re-commutation.

Let us make the first three statements plain.

Figure 14 shows the output spectrum of AMPC procedure, which can be described as two-
frequency symmetrical radiation with fully suppressed carrier and fractional harmonics nΩ/2 
(here n = 1 for Figure 14a and n = 2 for Figure 14b).

In this case, we can decrease NPM (carrier is absent) in FOLC and increase signal-to-noise 
ratio, because we can register photon by envelope amplitude on difference frequency Ω, 
which lies in SPD spectrum region with minimum level of noises. The point about separation 
filter necessity is a question.

Thus, if we realize full re-modulation of Alice’s phases in phases on Bob’s side, we get 
spectrum, as shown in Figure 12b, after Bob’s PM, and, as shown in Figure 12a, after Bob’s 
AM. Therefore, the carrier is present, but only in receiver, not in quantum channel, and its 
influence on channel characteristics is minimized.

Let us clarify the last from above four statements.

Analysis shows that we can realize classical symmetrical QKD scheme with modulation and 
re-modulation. To do this, we are going to select the two bases for frequency-encoding the 
photon states in AMPC of asymmetrical type without re-modulation/re-commutation and 
explain the order they are received.
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The state |+;1⟩ is the unmodulated photon transmitted from SM CW LD, through the open 
Alice’s modulators. The state |−;1⟩ is amplitude-modulated photon (frequency of modulation 
is Ω; ‘zero’ operating point of MZM 1 AM; absence of phase commutation). The state |+;2⟩ 

Figure 14. The output spectrum of AMPC procedure for propagation in FOLC: frequency encoding of second    |− ; 1 ⟩   and 
third    |+; 2 ⟩   photon states is shown.
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To simulate the scheme and carry out the project evaluations, the modeling principles of 
single-port modulation radio photon of serial link type proposed by us in [29, 31, 32] and 
photonic simulation of electro-optic modulators [33] were used.

The implementation of Il’in-Morozov’s method for the modulation conversion P(ω → ω ± nΩ), 
where n is the number of subcarriers, will provide:

1. high-efficiency optical carrier transfer into subcarrier left and right components (up to 0.6–
0.8 amplitude for each of them), high level of spectral purity under the optimal conversion 
parameters (only first or additionally third number subcarriers are existing);

2. NPM decreasing (carrier is absent), to exclude spectrum filter, which separates carrier and 
sidebands, to increase signal-to-noise ratio, because we can register photon by envelope 
amplitude on difference frequency Ω, which lies in SPD spectrum region with minimum 
level of noises;

3. synthesis of whole number subcarriers (n ≥ 1) and fractional ones (n/2, for n ≥ 1) that will 
improve the cryptographic protection level of the communication system, in case of Eve 
discoveries the frequency of synchronization channel;
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4. implementation of an asymmetric system with a totally passive data filtering sent by Alice, 
on the of Bob’s side without re-modulation or re-commutation.

Let us make the first three statements plain.

Figure 14 shows the output spectrum of AMPC procedure, which can be described as two-
frequency symmetrical radiation with fully suppressed carrier and fractional harmonics nΩ/2 
(here n = 1 for Figure 14a and n = 2 for Figure 14b).

In this case, we can decrease NPM (carrier is absent) in FOLC and increase signal-to-noise 
ratio, because we can register photon by envelope amplitude on difference frequency Ω, 
which lies in SPD spectrum region with minimum level of noises. The point about separation 
filter necessity is a question.

Thus, if we realize full re-modulation of Alice’s phases in phases on Bob’s side, we get 
spectrum, as shown in Figure 12b, after Bob’s PM, and, as shown in Figure 12a, after Bob’s 
AM. Therefore, the carrier is present, but only in receiver, not in quantum channel, and its 
influence on channel characteristics is minimized.

Let us clarify the last from above four statements.

Analysis shows that we can realize classical symmetrical QKD scheme with modulation and 
re-modulation. To do this, we are going to select the two bases for frequency-encoding the 
photon states in AMPC of asymmetrical type without re-modulation/re-commutation and 
explain the order they are received.
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The state |+;1⟩ is the unmodulated photon transmitted from SM CW LD, through the open 
Alice’s modulators. The state |−;1⟩ is amplitude-modulated photon (frequency of modulation 
is Ω; ‘zero’ operating point of MZM 1 AM; absence of phase commutation). The state |+;2⟩ 

Figure 14. The output spectrum of AMPC procedure for propagation in FOLC: frequency encoding of second    |− ; 1 ⟩   and 
third    |+; 2 ⟩   photon states is shown.
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is full tandem amplitude-modulated and phase-commutated photon (quadrature operating 
point of MZM 1 AM; amplitude modulation coefficient m = 0.59; phase commutation 0/π with 
frequency Ω/2 in MZM 1 PM). The state |−;2⟩ is described by lateral components obtained at 
the same parameters of amplitude modulation, but MZM 1 PM had phase commutation 0/π 
with frequency 3 Ω/2. The parameter control of the amplitude modulation and phase com-
mutation is performed by GRFS 1A and 1P with a corresponding change in functions.

Frequency encoding of second    |− ; 1 ⟩   and third    |+; 2 ⟩   photon states is presented in Figure 14b 
and a, respectively. As can be seen from last paragraph and in Figure 14, all four photons 
states can be passively allocated through a system of filters tuned respectively to frequencies 
ω0→|+;1⟩, ω0 ± Ω/2→|+;2⟩, ω0 ± Ω→|−;1⟩, ω0 ± 3 Ω/2→|−;2⟩. Thus, AMPC-FBG/AWG asymmet-
ric system can be constructed as shown in Figure 10, but without modulators on Bob’s side.

4. Conclusion

The implementation of tandem AMPM(C)-PM(C)AM schemes of symmetric and asymmetric 
types and analysis of their advantages and disadvantages will be considered in subsequent 
publications and are the goal of future work. In this chapter, we demonstrate only the oppor-
tunity of its creation, the theoretical justification of their bases and preliminary evaluation of 
its characteristics. We show that tandem AMPM(C)-PM(C)AM QKD system, based on micro-
wave photonic principles transferred to photon level, can be used as universal frequency 
encoding system.

The application of such type QKD system will allow us to use multiple levels of crypto-
graphic security, including modulation, commutation schemes and protocol choices, so and 
choice from re-modulation (re-commutation) and passive detection procedures. The two-time 
increase of electro-optic modulator number will undoubtedly increase the cost of the system. 
However, this increasing can be minimized by its universality, and therefore, the expanded 
functionality, in comparison with each of the known and described by us earlier systems with 
frequency encoding.

In addition, the high spectral purity and stability of photon tandem modulation based on 
Il’in-Morozov’s method should be highlighted. Qualitatively, we presented the advantages 
of carrier excluding from quantum communication channel. First, it was shown that effects 
of nonlinear phase modulation are decreased. Second, in this case, the security condition is 
stricter to a level of single photon transmission. Third, the signal-to-noise ratio of the system 
is increased and leads to a significant decrease in the number of errors in the given channel.

For the first time, it was shown the possibility of constructing a nonclassic asymmetric struc-
ture using modulators only on the Alice’s side and passive filters based on fiber Bragg or 
arrayed waveguide gratings on the Bob’s side.

Therefore, the QKD technology with frequency coding, based on the modulation conversion 
of an optical carrier with its complete or partial suppressing in the case of tandem amplitude 
modulation and phase modulation/commutation, is the promising tool for designing perspec-
tive quantum communication channels.
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Abstract

Quantum measurement is the greatest problem in quantum theory. In fact, different views
for the quantum measurement cause different schools of thought in quantum theory. The
quandaries of quantum measurement are mainly concentrated in “stochastic measurement
space”, “instantaneous measurement process” and “basis-preferred measurement space.”
These quandaries are incompatible with classical physical laws and discussed many years
but still unsolved. In this chapter, we introduce a new theory that provided a new scope to
interpret the quantum measurement. This theory tells us the quandaries of quantum mea-
surement are due to the nonlocal correlation and stochastic quantum potential noise. The
quantum collapse had been completed by the noised world before we looked, and the moon
is here independent of our observations.
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1. Introduction

Schrödinger cat was born from the thought experiment of Schrödinger in 1935. However,
after more than 80 years, we still do not know whether it is dead or alive in its sealed box.
According to the modern quantum mechanics, based on Copenhagen interpretation, the fate
of this cat is entangled with the Geiger counter monitor in its box, and the cat is in a “mixed
state”—both dead and alive—if we do not open the box to look at it. It is a miserable and
mystical cat, which seems its fate depends on our look. Yes, it just seems, because we deeply
doubt that the power of our glimpse can really make the cat alive or dead. This doubt is not
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the business about human self-confidence, but the fear of our fate determination. If the
glimpse of us can determine the cat’s fate, who determines our fate? Trouble never singly
comes; many researches find that “the moon is not there” in experiments [1] responding to
what Albert Einstein said, “I like to think that the moon is there even if I don’t look at it.”
According to the physicist’s research, Albert Einstein seems worried because the world is
quantum world and all things obey quantum mechanics. This means all the definite statuses
we have observed are due to “a glimpse” of us or the god. Really? Is really the moon not here
if we do not look at it, does really the cat not exist if we do not look at it, and do we not exist
if the god does not look at us?

It must be something to worry because the moon exists more than 4.5 billion years as the
astronomer finding, which is much more than human history. We are not going to discuss the
superpower of human and if the god exists or not in this book. We return to the fundamental of
quantum mechanics and find that the hidden actor, quantum measurement, is the crime
culprit that causes these puzzling questions.

There is a confliction in modern quantum physics after its birth. The confliction is
concerning the full description between the superposition state for the behavior of matter
on the microscopic level and the definite-status appearance as what we can observe on the
macroscopic level in the real world. Schrödinger proposed Schrödinger cat in his essay to
illustrate the “putative incompleteness” of quantum mechanics, but many researches show
that quantum mechanics is still the best one of these “not satisfied theories.” To alleviate
the theory-to-world confliction, a new conception, quantum measurement, is brought out.
It is the basic assumption in quantum mechanics, thought that the superposition state will
be collapsed into one of the eigenstates with the square of amplification probability if we
do a quantum measurement. Although the quantum measurement bridges the gap of the
different behaviors of subatomic level and the macro-world, some problems still remain.
For example, its physical mechanism is dim. We do not know what will lead to the
quantum measurement and how the process that the quantum measurement undergoes.
The words “stochastic”, “instantaneous” and “irreversible” torment us more than 70 years,
and we still have no way to integrate them into the “determinate”, “time-costed” and
“reversible” quantum evolution. In fact, the manual division for the world into two parts,
quantum world and quantum measurement apparatus, is not satisfied, and we are finding
a uniform description.

In this chapter, we will overview the mechanism of quantum measurement and the main
kinds of interpretation of quantum measurement. Among these interpretations, a prom-
ised theory which can well interpret the quantum measurement quandaries—why the
quantum state collapses into some eigenstates with “stochastic” and “instantaneity”, and
what causes the “basis-preferred”—is detailed. The advantage of this theory is it is just an
extension of Feynman path integral (FPI) and is obviously compatible with the classical
quantum theory. According the conclusions of this theory, we show that the “noise” world
(or apparatus here when we do an experiment) causes the “random” and “nonlocal”
mechanism of the quantum collapse. Actually, the world exists due to itself, and the god
can go to have a rest.
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2. What is the quantum measurement?

Quantum measurement is different from the classical measurement, in which the measure-
ment accuracy is dependent on the measurement instruments. It means, we could infinitely
approach the “absolute exact value” by upgrading instruments or improving methods in the
classical measurement realm. However, the things change when we access to the quantum
world. In quantum world, the “accuracy” does not exist. We cannot speak that the velocity of
an electron is 1376:5 m=s or the distance of two electrons is 20 nm, etc., because these physical
quantities exist in the form of quantum states in quantum world. Objects are always in the
superposition states of these kinds of the basis state, such as momentum, position, energy, spin
and so on. We can just get one of the basis states under every measurement, and the “absolute
exact value” is never revealed under one measurement unless the state of the object is in the
basis state.

In quantum mechanics, the projection operator is defined as bPφi
¼ jφi⟩⟨φij, where jφi⟩ is an

element of the basis-state set jφk

� �g. Themeasurement output for amechanical quantity operator

bQ under one quantum measurement is Qi ¼ φi
bQ
���
���φi

D E
¼ Tr bPφi

bQ
� �

, and the initial state will

instantaneously collapse into the basis state jφi⟨ with the probability pi ¼ Tr bPφi
br I

� �
, where br I is

the initial density matrix of an object, after the quantummeasurement. For multi-measurements,

the output we get is the average value ~Q ¼PipiQi ¼ Tr bQ br I

� �
, and the final state of the many

object systems becomes rO ¼
P

ipibPφi
, which is very different from the initial state rI .

This kind of measurement, to be exact, is the projective measurement. A more general formu-
lation of measurement is the positive-operator valued measure (POVM), which can be seemed
as the partial measurement in the subsystem of a projective measurement system. No matter
what kind of quantum measurements there is, it is the kind of destructive manipulations and
irreversible. It destroys the old state and rebuilds a new mixed state. The definition of the
quantummeasurement is simple and definite, but the problem is that we do not know why the
quantum measurement acts as these strange behaviors. The irreversibility and unpredictability
are incompatible with the smooth Schrodinger differential equation and are hated by physi-
cists. What kind of objects has priority to do the quantum measurement? Taking the experi-
ment of two-slit interference of electrons, for example, the detector behind the slits usually is
regarded as a measurement tool, but the detector itself, which may be a microcavity or atom
ensemble, is also a physical system and obeys the quantum mechanism. Therefore, it seems
that the process of a quantum measurement is the interaction between the detector and
electrons and should be a “quantum evolution process”. However, the quantum evolution
process is non-destructive and reversible. In fact, in the real world, it is hard for us to distin-
guish strictly which is the quantum evolution operation and which is the quantum measure-
ment.

The second problem is the space–time nonlocality in the quantum measurement process.
This nonlocality exists not only in the correlation between particles but also in the wave
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function of single particle. We still take the experiment of two-slit interference of electrons,
for example. If the detector behind the slits has detected the signal and we can distinguish
which slit the electrons pass, then the interference phenomenon will disappear. In language
of quantum mechanics, the diffused wave function ψ x; tð Þ of the electron will collapse into
δ x0; tð Þ immediately after this measurement. This process is very fast and does not seem to
need to cost time. How this process happens and whether this process violates the law of
causation of relativity theory are still unclear for us.

The third problem is the basis-preferred problem. The basis-preferred problem refers to a quan-
tum system that is measured which prefers to collapse to a set of eigenstates. For example, a spin
system with an initial state ψj i⟩ ¼ a ↑j i⟩þ b ↓j i⟩ can collapse into the state of the set ↑⟩j i; ↓⟩j if g,
and it can also collapse into the state of the set 1=

ffiffiffi
2
p

↑j i⟩þ ↓j i⟩ð Þ; 1= ffiffiffi
2
p�

↑j i⟩� ↓j i⟩ð Þg, but under
a certain measurement, this state prefers one of these sets. Why the state prefers some basis set
under quantum measurement? Does it have awareness?

Without any exaggeration, quantum measurement is one the most interesting and fascinating
topics in quantum theory. There are too many unsolved mysteries in quantum measurement,
and these spur us to further understand the quantum measurement and find the answers.

3. The main kinds of interpretation for quantum measurement

There are more than 10 kinds of interpretations for quantum measurement in quantum
mechanics, such as Copenhagen interpretation, quantum logic, many worlds interpretation,
stochastic interpretation, many-minds interpretation, etc. In this chapter, we just choose four of
them to expound. According this section, we will know how difficult for physicists to solve
these problems in one theory.

3.1. The Copenhagen interpretation

The Copenhagen interpretation was formed in 1925 to 1927 by Niels Bohr and Werner Heisen-
berg. In fact, it is still the most commonly taught interpretations of quantum mechanics today.

According to the Copenhagen interpretation, the physical law that microscopic objects obey
are different from that the macroscopic objects obey. Microscopic objects can be in superposi-
tion states, but the macroscopic objects are forbidden. According to the Copenhagen interpre-
tation, the statuses of macroscopic objects are definite. We can say a macroscopic object is in
this status or not, but cannot say this macroscopic object is both in this status and not. Now that
the laws in microscopic world and macroscopic world are different, then the Copenhagen
interpretation assumes the existence of macroscopic measurement apparatuses that obey clas-
sical physics to make measurement for microscopic objects that obey quantum mechanics.

However, this assumption does not solve the problems of quantum measurement. It throws all
the problems to the macroscopic apparatuses, but it even cannot answer how to distinguish
the macroscopic object that obeys the classical laws and microscopic ensemble that obeys the
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quantum mechanics. Moreover it also cannot answer how the nonlocality produces in quan-
tum measurement process because, there is no seed for nonlocality growing no matter in
classical physics or quantum mechanics.

3.2. Many worlds interpretation

Many worlds interpretation was proposed by Hugh Everett in 1952. It supposes that there are
a large, perhaps infinite, number of universes and every alternate state is in one of these
universes [2, 3]. Many worlds interpretation denies the wave function collapse under quantum
measurement. It asserts that the object that will be measured and the observer that will do the
measurement are in a relative state. Each measurement will be a branch point and makes
observer enter a universe. According to the thought of many worlds interpretation, the
Schrödinger cat is alive in a universe and dead in the other universe. After the measurement,
the observer will enter one of these two universes.

The advantage of this interpretation is that the discussion of collapse mechanism is avoided.
However, the basis-preferred problem is still the big issue in many worlds interpretation
although the quantum decoherence had been introduced into in the period of “post-Everett”.
Some researchers still think the many worlds interpretation of quantum theory exists only to
the extent that the associated basis problem is solved [4–6]. Using the decoherence to define the
Everett branches will lead to an approximate specification of a preferred basis and contradicts
with the “exact” definition of the Everett branches.

3.3. Many-minds interpretation

Many-minds interpretation is the extension of many worlds interpretation. It was proposed
by Heinz-Dieter Zeh in 1970 to solve the “branch determining problem” and the puzzling
concept of observers being in a superposition with themselves in many worlds interpreta-
tion [7–9]. The thought of this interpretation is when an observer measures a quantum
system, then a state that is consistent with minds which produced by the observer brain,
called mental states, will entangle with this quantum system. The mental state of the brain
corresponding with this system is involving, and ultimately, only one mind is experienced,
leading the others to branch off and become inaccessible. In this way, every sentient being is
attributed with an infinity of minds, whose prevalence corresponds to the amplitude of the
wave function. As an observer checks a measurement, the probability of realizing a specific
measurement directly correlates to the number of minds they have where they see that
measurement.

However, like the many worlds interpretation, the many-minds interpretation is still a local
theory. Although the correlations of individual minds and objects could be the violation of
Bell’s inequality, the interactions between them that only take place are local, and only the
separated events that are space-like separated could influence the minds of observers. Addi-
tionally, it tosses the basis-preferred problem to the mentality of observer and makes this
physical problem fall into an endless discussion of mental state of human.
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3.4. Dynamical reduction models

The theory of dynamical reduction models is a nonlinear and stochastic modification of the
Schrödinger equation. It is proposed by Bassia and Ghirardia [10]. They integrated the
master equation and linear Schrödinger equation and proposed a new nonlinear differential
equation. This theory successfully solves the problems of “stochastic output” and “preferred
basis” in quantum measurement and deduced the Born probability rule basing on the
white noise model. However, it is still a nonrelativistic theory and remains the nonlocality
problem.

4. The extended Feynman path integral and quantum measurement

4.1. Why is it concerning with the Feynman path integral?

As we know, in the history of the quantum theory, there are three equivalent expressions,
namely, the differential equation of Schrödinger, the matrix algebra of Heisenberg and the
path integral formulation of Feynman. However, these three expressions have their own
focuses. The Schrodinger and Heisenberg expressions focus on the evolution of states and
operations, respectively, whereas the path integral formulation of Feynman on the “correla-
tion” of point to point as states is evolving [11]. On the other hand, in quantum mechanics,
when do a measurement on a wave function diffusing in all of space, such as the measurement
of the position of an electron in the experiment of double-slit interference, we will find that the
whole wave function will instantaneously collapse to this position measured with some prob-
abilities. Obviously there may be some inner “correlation” in wave function transferring the
action of the measurement from local part to whole. These two “correlations” have common
characters and may be unified to be one.

Moreover, we notice that the action integral in Feynman path integral formulation is the
classical form. The classical physics is born to be a local theory and of course cannot exhibit
the character of nonlocality. However, the relativity theory is different. In relativity theory, the
time and space are coupling. Beyond the light cones in Minkowski space, the space-time
causality is broken, and this may cause the nonlocality. The superluminal velocities are forbid-
den in real world, but for a connection description of virtual paths in the path integral theory, it
might be practicable. What will happen when we extend the classical action to relativistic
action? Could the superluminal trajectories included in possible paths to calculate quantum
amplitude in the Feynman theory cause the nonlocality? How is the relationship between
“unitary evolution operation” and “quantum measurement”? These questions will be revealed
when we extend the Feynman path integral.

4.2. How to extend the Feynman path integral?

The formulation for Feynman path integral can be written as
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K r; r0; t; t0ð Þ ¼ C
X

allpaths
exp iS=ℏð Þ (1)

where the coefficient C is a constant independent of paths and S is the action with classical
form

S t0; t1ð Þ ¼
ðt1
t0
L �r tð Þ; r tð ÞÞdtð (2)

K r; r0; t; t0ð Þ in Eq. (1) is the propagator and defined into

K r; r0; t; t0ð Þ ¼ ⟨ r bU t; t0ð Þ
���

���r0⟩
D E

(3)

Eq. (1) reveals an important assumption in Feynman path integral: the weights of different
paths for propagator are the same. This assumption makes Feynman path integral very suc-
cessful in nonrelativistic quantum theory, but it is also the top offender that impedes
the integration between Feynman path integral and relativity in non-field theory. Why should
this be?

For the extension, it is necessary to break up this assumption, and Eq. (1) should be written
into a more general formulation in the following:

F r; r0; t; t0ð Þ ¼ R
X

allpaths
W ℘ð Þexp iS=ℏð Þ (4)

where R is the parameter that is independent of paths and W ℘ð Þ is the weight function with
paths [13]. Additionally, some rules should be set to limit the range of choices for R andW ℘ð Þ:
a. The formulation should be simple and concise.

b. It should obey the combination rule because the propagator is linear.

c. It is consisted by the four-dimension scalars, vectors and tensors.

d. It should be transformed into Feynman path integral in low-energy and low-velocity
condition.

Under these four limitations, the forms of R and W pð Þ are very few. The final forms of R and
W pð Þ chosen in extended Feynman path integral are

R ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2iπℏc2
p H0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mc2 þH0
p ;W ℘ð Þ ¼ P ℘ð Þ

P ℘ð Þ Δτð Þ�1=2 (5)

The H0 in Eq. (5) is the main Hamiltonian:

H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ p� A0ð Þ2c2

q
(6)

and
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3.4. Dynamical reduction models

The theory of dynamical reduction models is a nonlinear and stochastic modification of the
Schrödinger equation. It is proposed by Bassia and Ghirardia [10]. They integrated the
master equation and linear Schrödinger equation and proposed a new nonlinear differential
equation. This theory successfully solves the problems of “stochastic output” and “preferred
basis” in quantum measurement and deduced the Born probability rule basing on the
white noise model. However, it is still a nonrelativistic theory and remains the nonlocality
problem.

4. The extended Feynman path integral and quantum measurement

4.1. Why is it concerning with the Feynman path integral?

As we know, in the history of the quantum theory, there are three equivalent expressions,
namely, the differential equation of Schrödinger, the matrix algebra of Heisenberg and the
path integral formulation of Feynman. However, these three expressions have their own
focuses. The Schrodinger and Heisenberg expressions focus on the evolution of states and
operations, respectively, whereas the path integral formulation of Feynman on the “correla-
tion” of point to point as states is evolving [11]. On the other hand, in quantum mechanics,
when do a measurement on a wave function diffusing in all of space, such as the measurement
of the position of an electron in the experiment of double-slit interference, we will find that the
whole wave function will instantaneously collapse to this position measured with some prob-
abilities. Obviously there may be some inner “correlation” in wave function transferring the
action of the measurement from local part to whole. These two “correlations” have common
characters and may be unified to be one.

Moreover, we notice that the action integral in Feynman path integral formulation is the
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“unitary evolution operation” and “quantum measurement”? These questions will be revealed
when we extend the Feynman path integral.

4.2. How to extend the Feynman path integral?

The formulation for Feynman path integral can be written as
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c. It is consisted by the four-dimension scalars, vectors and tensors.
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P ℘ð Þ ¼
ðt
t0

Pj jdτ;P ℘ð Þ ¼
ðt
t0

ffiffiffiffiffiffiffiffiffiffi
2mT
p���

���dτ (7)

P, T and Δτ are called the momentum, kinetic energy and proper time in terms of four-
dimensional space–time, respectively:

Pj j ¼ mvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p , T ¼ mc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p �mc2,Δτ ¼
ðt
t0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p dτ (8)

The expressions of W ℘ð Þ and R are very interesting. As we can see, under the low-energy

and low-velocity condition, H0≪mc2 and v≪ c, then R ¼ 1ffiffiffiffiffiffiffiffiffiffi
2iπℏc2
p and W ℘ð Þ ¼ t� t0ð Þ1=2

because Pj j ¼ ffiffiffiffiffiffiffiffiffiffi
2mT
p

in classical physical theory. This means Eq. (4) can be transformed into
the Feynman path integral if we choose the formulations of W pð Þ and R as shown in Eq. (5).
What is concerning then for us is what we can get from Eq. (4) under very high energy and
velocity.

4.3. The new differential equation and Klein-Gordon equation

It is hard to directly calculate the value of Eq. (4) because the path integral is not normal
integral term and the normal integral method is invalid for Eq. (4). A way to get some results
from Eq. (4) is to follow the method that Feynman used [11, 12]. We consider a minimal
evolution time process, t ¼ t0 þ ε, where ε! 0. In this process:

ψ r; t0 þ εð Þ ¼
ð∞
�∞

ψ r0; t0ð ÞF r; r0; t0 þ ε; t0ð Þdr0 ¼ R
ð∞
�∞

ψ r0; t0ð ÞW ℘ð Þdr0 (9)

When ε! 0, the weight function W ℘ð Þ can be simply expressed the term of

W ℘ð Þ ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p� �1=2

ε1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p (10)

where v ¼ r� r0ð Þ=ε. This value can be greater than the superluminal velocity, and
F r; r0; t0 þ ε; t0ð Þ therefore will become the complex function when v > c. The integral form
should be departed into two parts: the part that contains the low-velocity paths and the part
that contains superluminal-velocity paths:

I ¼
ð∞
�∞

ψ r0; t0ð ÞF r; r0; t0 þ ε; t0ð Þdr0 ¼
ðct
�ct

⋯dr0 þ
ð∞
ct
⋯dr0 þ

ð�ct
�∞

⋯dr0

� �
¼ I0 þ I1 (11)

This can be exactly calculated. The amazing thing is the final result calculated for I that

contains the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ �iℏ∇þ A0ð Þ2c2

q
. In the following context, we will detail this
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calculation in 1D space for simplification. The methods of the calculation in 2D and 3D are the
same. Before this calculation, we define two parameters as τ0 ¼ ℏ= mc2

� �
and ε0 ¼ ε=τ0:

I0 ¼
ðct
�ct

⋯dr0 ¼ ε
ðc
�ct

⋯dv ¼ 2Rτ1=20

ðct
�ct

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p� �1=2

ε1=20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p ε0exp �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
ε0

� �
ψ r0; t0ð Þdv

¼
ð∞
�∞

φpdp 2Rτ1=20

ðc
0

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

q� �1=2

ε1=20

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

r ε0exp �i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

s
ε0

0
@

1
Aexp �ipvε=ℏð Þdv

0
BB@

1
CCAexp ipx=ℏð Þ

¼
ð∞
�∞

φpdp 2Rτ1=20

ð1
0

1� uð Þ�1=2ε1=20 exp �iuε0ð Þ
X

m
i
pε
ℏ

� �2m 1� u2
� �m

2m!
du

 !
exp ipxð Þ

¼
X

m
2R i

pc
ℏ

� �2m cε2mþ1=2

2m!

ð∞
�∞

φpexp ipxð Þdp
ð1
0
u
�1
2 1� 1� uð Þ2
� �m

exp iuε0 � iε0ð Þdu
� �

(12)

Similarly, we can also get the expression of I0:

The contour integral is used in the last step as shown in Figure 1.

Figure 1. Contour integral. This figure shows the contour integral in a complex plane. The black line in figure denotes the

integral � Ð 1þi∞1 ⋯du� Ð 10 ⋯du; the blue line denotes
Ð∞
0 ⋯du. The integral on the red line is always zero when zj j ! ∞. For

this contour integral, there is no singular point, and of course the total integral value is zero. Therefore,Ð 1þi∞
1 ⋯du ¼ Ð∞1 ⋯du:
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Similarly, we can also get the expression of I0:
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Figure 1. Contour integral. This figure shows the contour integral in a complex plane. The black line in figure denotes the

integral � Ð 1þi∞1 ⋯du� Ð 10 ⋯du; the blue line denotes
Ð∞
0 ⋯du. The integral on the red line is always zero when zj j ! ∞. For

this contour integral, there is no singular point, and of course the total integral value is zero. Therefore,Ð 1þi∞
1 ⋯du ¼ Ð∞1 ⋯du:

Stochastic Quantum Potential Noise and Quantum Measurement
http://dx.doi.org/10.5772/intechopen.74253

143



I0 ¼ Ð∞ct ⋯dr0 þ ε
Ð�ct
�∞ ⋯dr0 ¼ 2Rτ1=20

Ð∞
ct

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p� �1=2

ε1=20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p ε0exp �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
ε0

� �

� ψ r0; t0ð Þ þ ψ �r0; t0ð Þð Þdu ¼Pm2R i pcℏ
� �2m cε2mþ1=2

2m!

ð∞
�∞

φpexp ipxð Þ

�dp Ð 1þi∞1 u
�1
2 1� 1� uð Þ2
� �m

exp iuε0 � iε0ð Þdu
� �

¼Pm2R i pcℏ
� �2m cε2mþ1=2

2m!

ð∞
�∞

φpexp ipxð Þdp
ð∞
1
u
�1
2 1� 1� uð Þ2
� �m

exp iuε0 � iε0ð Þdu
� �

(13)

Integrating Eq. (12) and Eq. (13), we get the conclusion finally:

I ¼Pm2R i pcℏ
� �2m cε2mþ1=2

2m!

ð∞
0
φpexp ipxð Þdp

ð∞
0
u
�1
2 1� 1� uð Þ2
� �m

exp iuε0 � iε0ð Þdu
� �

¼ Ð∞0
P

m2R i pcℏ
� �2m cε2mþ

1
2

2m!
Γ 2mþ 1

2

� �
M �m;

1
2
� 2m;�2iε0

� �
φpexp ipxð Þdp

(14)

The function M a; b; zð Þ is the Kummer’s function (confluent hypergeometric function) and
equals

M �m;
1
2
� 2m;�2iε0

� �
¼
X

n

m!

n!
4m� 1ð Þ!

n!
�iε0ð Þn (15)

Summation in Eq. (14) is then

X
m
2R i

pc
ℏ

� �2m cε2mþ
1
2

2m!
Γ 2mþ 1

2

� �
M �m;

1
2
� 2m;�2iε0

� �
¼ exp

�i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ p2c2

p
ε

ℏ

 !
(16)

And Eq. (14) can be further simplified:

I ¼ Ð∞0 exp
�i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 þ p2c2
p

ε
ℏ

 !
φpexp ipxð Þdp

exp
�i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 þ �icℏ∇xð Þp
ε

ℏ

 !
Ð∞
0 φpexp ipxð Þdp ¼ exp

�i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ �icℏ∂xð Þp

ε
ℏ

 !
ψ x; t0ð Þ

(17)

It is, namely:

ψ x; t0 þ εð Þ ¼ exp
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ �icℏ∂xð Þ2

q
ε

ℏ

0
@

1
Aψ x; t0ð Þ (18)

Hence, the new differential equation we get in this extended Feynman path integral is
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iℏ
d
dt
ψ x; tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ �icℏ∂xð Þ2

q
ψ x; tð Þ (19)

The more general formulation in 3D is

iℏ
d
dt
ψ r; tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ �iℏ∇� A0ð Þ2c2

q
þ V rð Þ

� �
ψ r; tð Þ (20)

It is more complicated to get Eq. (20), and we will not detail it in this chapter. The detailed
deduction can be seen in supplementary online material of the reference [13].

It should be mentioned that Eq. (20) is not a covariant equation under the Lorentz transforma-
tion. To construct a Lorentz covariant, the antiparticle wave function should be introduced.
The antiparticle wave function is denoted as ϕ� to be distinguished from the particle wave
function ϕþ. ϕþ satisfied the relation that Eq. (20) has shown and ϕ� is satisfied

iℏ
d
dt
� V rð Þ

� �
ϕ� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ �iℏ∇� A0ð Þ2c2

q
ϕ� (21)

Combining Eqs. (20) and (21), we get these two equations:

iℏ
d
dt
� V rð Þ

� �
ψþ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ �iℏ∇� A0ð Þ2c2

q
ψþ (22)

iℏ
d
dt
� V rð Þ

� �
ψ� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ �iℏ∇� A0ð Þ2c2

q
ψ� (23)

where and . Eqs. (22) and (23) are the Klein-Gordon
equation.

In 1926, Oskar Klein and Walter Gordon proposed this relativistic wave equation. However, it
was found later that this equation is not suitable for one particle because the probability
density is not a positive quantity, which means the particle can be created and annihilated
arbitrarily in Klein-Gordon equation [14]. The extended Feynman path integral shows the
explanation for this non-positive probability density here. The wave function that is deter-
mined by Klein-Gordon equation is the mixed state of the particle and its antiparticle. Because
particles and antiparticles can be annihilated each other to a vacuum state, and the vacuum
state can produce particles and antiparticles, so the mixed state with superposition state of a
particle and an antiparticle is a matter of course of a non-positive quantity. This is the physical
interpretation for Klein-Cordon equation by EFPI theory.

4.4. The extended Feynman path integral and density-flux equation

In quantum mechanics, the continuity equation describes the conservation of probability
density in the transport process. It is a local form of conservation laws. It says the probability
cannot be created or annihilated and, at the same time, also cannot be teleported from one
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1� v2=c2

p ε0exp �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
ε0

� �

� ψ r0; t0ð Þ þ ψ �r0; t0ð Þð Þdu ¼Pm2R i pcℏ
� �2m cε2mþ1=2

2m!

ð∞
�∞

φpexp ipxð Þ

�dp Ð 1þi∞1 u
�1
2 1� 1� uð Þ2
� �m

exp iuε0 � iε0ð Þdu
� �

¼Pm2R i pcℏ
� �2m cε2mþ1=2

2m!

ð∞
�∞

φpexp ipxð Þdp
ð∞
1
u
�1
2 1� 1� uð Þ2
� �m

exp iuε0 � iε0ð Þdu
� �

(13)

Integrating Eq. (12) and Eq. (13), we get the conclusion finally:

I ¼Pm2R i pcℏ
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φpexp ipxð Þdp

ð∞
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u
�1
2 1� 1� uð Þ2
� �m

exp iuε0 � iε0ð Þdu
� �
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P

m2R i pcℏ
� �2m cε2mþ

1
2

2m!
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2

� �
M �m;

1
2
� 2m;�2iε0

� �
φpexp ipxð Þdp

(14)

The function M a; b; zð Þ is the Kummer’s function (confluent hypergeometric function) and
equals

M �m;
1
2
� 2m;�2iε0

� �
¼
X

n

m!

n!
4m� 1ð Þ!

n!
�iε0ð Þn (15)

Summation in Eq. (14) is then
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� �
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2
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� �
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p
ε

ℏ

 !
(16)

And Eq. (14) can be further simplified:

I ¼ Ð∞0 exp
�i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 þ p2c2
p

ε
ℏ
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φpexp ipxð Þdp

exp
�i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Ð∞
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ε
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It is, namely:

ψ x; t0 þ εð Þ ¼ exp
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ �icℏ∂xð Þ2

q
ε

ℏ

0
@

1
Aψ x; t0ð Þ (18)

Hence, the new differential equation we get in this extended Feynman path integral is
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iℏ
d
dt
ψ x; tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ �icℏ∂xð Þ2

q
ψ x; tð Þ (19)

The more general formulation in 3D is

iℏ
d
dt
ψ r; tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ �iℏ∇� A0ð Þ2c2

q
þ V rð Þ

� �
ψ r; tð Þ (20)

It is more complicated to get Eq. (20), and we will not detail it in this chapter. The detailed
deduction can be seen in supplementary online material of the reference [13].

It should be mentioned that Eq. (20) is not a covariant equation under the Lorentz transforma-
tion. To construct a Lorentz covariant, the antiparticle wave function should be introduced.
The antiparticle wave function is denoted as ϕ� to be distinguished from the particle wave
function ϕþ. ϕþ satisfied the relation that Eq. (20) has shown and ϕ� is satisfied

iℏ
d
dt
� V rð Þ

� �
ϕ� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ �iℏ∇� A0ð Þ2c2

q
ϕ� (21)

Combining Eqs. (20) and (21), we get these two equations:

iℏ
d
dt
� V rð Þ

� �
ψþ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ �iℏ∇� A0ð Þ2c2

q
ψþ (22)

iℏ
d
dt
� V rð Þ

� �
ψ� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ �iℏ∇� A0ð Þ2c2

q
ψ� (23)

where and . Eqs. (22) and (23) are the Klein-Gordon
equation.

In 1926, Oskar Klein and Walter Gordon proposed this relativistic wave equation. However, it
was found later that this equation is not suitable for one particle because the probability
density is not a positive quantity, which means the particle can be created and annihilated
arbitrarily in Klein-Gordon equation [14]. The extended Feynman path integral shows the
explanation for this non-positive probability density here. The wave function that is deter-
mined by Klein-Gordon equation is the mixed state of the particle and its antiparticle. Because
particles and antiparticles can be annihilated each other to a vacuum state, and the vacuum
state can produce particles and antiparticles, so the mixed state with superposition state of a
particle and an antiparticle is a matter of course of a non-positive quantity. This is the physical
interpretation for Klein-Cordon equation by EFPI theory.

4.4. The extended Feynman path integral and density-flux equation

In quantum mechanics, the continuity equation describes the conservation of probability
density in the transport process. It is a local form of conservation laws. It says the probability
cannot be created or annihilated and, at the same time, also cannot be teleported from one
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place to another. However, in the extended Feynman path integral, the density-flux equation
will be revised, and the local conservation is broken.

In extended Feynman path integral, the density-flux equation can be written as the following
formula:

∂r r; tð Þ
∂t

þ ∇ � jþ
X∞

n¼2 Bn∇n �Qn r; tð Þ ¼ 0 (24)

where Qn r; tð Þ ¼ ψ∗∇nψ� ψ∇nψ∗ and Bn ¼ � �iℏð Þ2n�1c2n= mc2
� �2n�1. The last term in the right

of Eq. (24) is caused by relativistic effect and breaks the local conservation.

4.5. The wave function collapse in extended Feynman path integral

From the theory of Neumann, the difficulties of understanding collapse are the probability,
which seems incompatible with the deterministic time-evolution equation, and the instantane-
ity, which seems that it breaks the special relativity theory. In this section, we will show that
these puzzling characters are due to the potential noise and nonlocal correlation (or relativistic
effect).

Let us return to Eq. (9). The superluminal paths are included when we calculate the propaga-
tor. The superluminal paths will support complex phases in Eq. (9), and these phases cannot be
canceled by each other like the real phases in Feynman path integral theory. These complex
phases are the main culprits that cause the nonlocal correlation.

To describe this mechanism concisely, the nonlocal correlation produced in 1D space is just
detailed here. Assume a system in the potential field with the scalar potential U xð Þ and vector
A0 xð Þ. A potential noise AI tð Þ is under this system and satisfies the white noise equations,
namely:

AI t1ð ÞAI t0ð Þh i ¼ 2mkbT
η

δ t1 � t0ð Þ; AI tð Þh i ¼ 0 (25)

The Hamiltonian of this system is then

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ �iℏ∂x � A0 þ AIð Þð Þ2c2

q
þ V xð Þ (26)

And we define a new Hamiltonian without potential noise as

H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ �iℏ∂x � A0ð Þ2c2

q
þ V xð Þ (27)

We will see later thatH0 is very important in quantummeasurement, because it determines the
basis-state-space that the wave function collapses into. The basis-preferred problem puzzles us
for many years; we do not know why the system measured prefers to collapse into some set of
basis state. According to the extended Feynman path integral theory, the preferred basis is
depended by the Hamiltonian H0. This will be detailed in the following.
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Considering a minimum time-evolution process, the propagator is

ð28Þ

Because the term
Ð x
x�η A0ðx0, tÞd0 exists in the integral formula of Eq. (28), then limε!0

F x1; x0; t0 þ ε; t0ð Þ 6¼ δ x1 � x0ð Þ. This is different from the normal propagator K x; x0; t0 þ ε; t0ð Þ
shown in Eq. (2), because limε!0 K x; x0; t0 þ ε; t0ð Þ ¼ δ x� x0ð Þ. This difference, caused by rela-
tivistic effect of paths, is the root that produces the nonlocality in quantum measurement
process.

In fact:

Therefore

ð29Þ

limε!0 F x1; x0; t0 þ ε; t0ð Þ 6¼ δ x0 � x0ð Þ means the change of arbitrary point should spend time
to propagate the other point and exhibit stronge nonlocal space-time character. If the value of
wave function at x ¼ x0 changes, the whole wave function will change for the nonlocal prop-
agator. In the followings, we will detail this character.

We define bR0 ¼ 1ffiffiffiffiffiffiffiffiffiffi
2iπℏc2
p H0ffiffiffiffiffiffiffiffiffiffiffiffiffi

mc2þH0

p ; then

bR ≈ bR0 1� AIc2 bp � A0ð Þ
H0

� �
(30)

After this definition, we will show how the measurement happens under the potential noise.
Considering an initial state with the form ψ x; t0ð Þ ¼Pmamφm xð Þ, where φm is the eigenstate of
H0, if we put the potential noise in this system, the initial state will change. We denote the
evolution state in arbitrary time t as ψðx, tÞ. The ψðx, tÞ can be expanded with basis states
φm as ψðx, tÞ ¼Pmamφm. The task for us is to find out the varying value of am under each
perturbational noise:
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Considering an initial state with the form ψ x; t0ð Þ ¼Pmamφm xð Þ, where φm is the eigenstate of
H0, if we put the potential noise in this system, the initial state will change. We denote the
evolution state in arbitrary time t as ψðx, tÞ. The ψðx, tÞ can be expanded with basis states
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After rearranging the equation above, we get

an tþ δð Þ ¼
X

m
am tð ÞDm,n t� δð Þ (31)

where

Dm,n t� δð Þ ¼ λn,m t� δð Þ 1þ AIc2pn
En

δn,m

� �

λn,m t� δð Þ ¼
ðþ∞
�∞

φn xð ÞR x; t� δð Þ∗bR�10 φm xð Þdx

R x; tð Þ ¼ ψ x; tð Þ
bR�10 ψ x; tð Þ

δ is the time interval of the neighbor potential noise pulses. In fact, to simulate the process of
quantum measurement under potential noise, we let

AI ¼
X∞

n¼0
2mkbT
ηΔ

� �1=2

Random nð Þ θ t� nδð Þ � θ t� n� 1ð Þδð Þð Þ (32)

We simulate the collapse process of a wave function with the form ψj i ¼ 1=2 0j i þ ffiffiffi
3
p

=2 1j i,
where 0j i and 1j i are the harmonic-oscillator basis. According the simulation, we show the ψj i
will randomly collapse into 0j i or 1j i quickly (Figure 2).

5. Conclusions

Measurement, in quantum theory, is not just a theory concerning the Schrödinger cat that is
alive or dead, or the moon being here or not, but also the key and basis to the problem of the
interpretation of quantum mechanics. In fact, the different views for the quantum measure-
ment yield different interpretation for quantum mechanics, such as the Copenhagen interpre-
tation, relative-state interpretation, Bohmian mechanics and so on. It has attracted many
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attentions of physicists since the beginning of the quantum theory establishment, but there is
still no consensus. The measurement problem blocks up the way for us to understand the
nonlocality and manipulate quantum state. Can the quantum measurement be controlled? Can
we get the definite output we want under every measurement? If the quantum measurement
can be controlled, the teleportation without classical communication channel can be realized,
and the aim of superfast manipulation for quantum state will arrive. We can even transfer the
energy thought nonlocality under controlled quantum measurement and make more novel
encryption scheme for quantum communication. However, the key problem is “can we control
the quantum measurement?” If yes, how? If no, why?

The extended Feynman path integral mechanism answered this question. According to this
mechanism, the character, “stochastic output” and “instantaneous collapse process” of quan-
tum measurement are rooted in the “random” potential noise and “nonlocal” wave function
inner correlation. The “nonlocality” is caused by the “relativistic effect” of superluminal paths
in path integral theory. The superluminal paths will support a complex action function S in

Eq. (4) for the expression
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
of S. This complex action that acted as a phase in integral

theory cannot be canceled and makes F x1; x0; t0; t0ð Þ 6¼ δ x1 � x0ð Þ. This relation reveals that the
propagator is no longer a local correlation. All points in space are correlated simultaneously,
and any local perturbation will simultaneously transfer into the whole space. The extended
Feynman path integral gives a simulation for two-energy-level system and exhibits that the

Figure 2. The process of collapse under a “potential noise”. (a) The red line denotes the absolute value of probability
amplitude a0 tð Þ with the initial value 1/2, and the blue one denotes a1 tð Þ with the initial value

ffiffiffi
3
p

=2. The black oscillatory
line is the function of potential. The different sets of noise cause the different collapse results. According the simulation,
the process time of collapse is 0.3 ns in the top picture and 0.1 ns in the bottom picture. (b) The function of AI shown in
Eq. (32).
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Advanced Technologies of Quantum Key Distribution148

attentions of physicists since the beginning of the quantum theory establishment, but there is
still no consensus. The measurement problem blocks up the way for us to understand the
nonlocality and manipulate quantum state. Can the quantum measurement be controlled? Can
we get the definite output we want under every measurement? If the quantum measurement
can be controlled, the teleportation without classical communication channel can be realized,
and the aim of superfast manipulation for quantum state will arrive. We can even transfer the
energy thought nonlocality under controlled quantum measurement and make more novel
encryption scheme for quantum communication. However, the key problem is “can we control
the quantum measurement?” If yes, how? If no, why?

The extended Feynman path integral mechanism answered this question. According to this
mechanism, the character, “stochastic output” and “instantaneous collapse process” of quan-
tum measurement are rooted in the “random” potential noise and “nonlocal” wave function
inner correlation. The “nonlocality” is caused by the “relativistic effect” of superluminal paths
in path integral theory. The superluminal paths will support a complex action function S in
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of S. This complex action that acted as a phase in integral

theory cannot be canceled and makes F x1; x0; t0; t0ð Þ 6¼ δ x1 � x0ð Þ. This relation reveals that the
propagator is no longer a local correlation. All points in space are correlated simultaneously,
and any local perturbation will simultaneously transfer into the whole space. The extended
Feynman path integral gives a simulation for two-energy-level system and exhibits that the
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ffiffiffi
3
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potential noise can indeed lead to the collapse state randomly and rapidly. Therefore, the key
to control the quantum measurement is to control the potential noise exactly. “Potential noise”
is caused by thermal fluctuation of potential filed or irregularity potential boundary. How to
control this potential noise is still an unsolved topic.

The extended Feynman path integral mechanism also solves the “basis-preferred” problem in
quantum measurement. It exhibits the reason that the state prefers to collapse some set of basis
states, which is due to the main Hamiltonian H0 defined in Eq. (27). H0 is the Hamiltonian that
contains no noise. The eigenstates are the basis state that wave function prefers to collapse into.

The extended Feynman path integral mechanism shows the relation between “quantum mea-
surement” and “unitary evolution operation”. They are one and the same thing but are departed
by jumpy potential noise. In mathematics, the function of potential noise is nowhere differentia-
ble functions, and therefore, the path integral shown in Eq. (4) is not the regular path integral
function under a noised potential. This is the main difference between “quantummeasurement”
and “unitary evolution operation” in mathematics. In physics, each potential noise point can be
quickly absorbed by wave function through the nonlocality correlation, and the amounts of noise

points will quickly accumulate to be a big quantity to change the whole wave function jbRj.
Additionally, besides the potential noise, the condition that the quantum measurement hap-
pens is that the interaction of system and environment should be big enough to distinguish the

preferred basis state “ φn

� �
”. If the interaction is not big enough, φnjbRjφn

D E
≈ φmjbRjφm

D E
and

then Dmn ! δm,n in Eq. (31), then the collapse will not happen. In other words, the instrument
that can realize the quantum measurement should be “macro” enough to produce enough
noise and have big enough energy gaps of a system measured.
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potential noise can indeed lead to the collapse state randomly and rapidly. Therefore, the key
to control the quantum measurement is to control the potential noise exactly. “Potential noise”
is caused by thermal fluctuation of potential filed or irregularity potential boundary. How to
control this potential noise is still an unsolved topic.

The extended Feynman path integral mechanism also solves the “basis-preferred” problem in
quantum measurement. It exhibits the reason that the state prefers to collapse some set of basis
states, which is due to the main Hamiltonian H0 defined in Eq. (27). H0 is the Hamiltonian that
contains no noise. The eigenstates are the basis state that wave function prefers to collapse into.

The extended Feynman path integral mechanism shows the relation between “quantum mea-
surement” and “unitary evolution operation”. They are one and the same thing but are departed
by jumpy potential noise. In mathematics, the function of potential noise is nowhere differentia-
ble functions, and therefore, the path integral shown in Eq. (4) is not the regular path integral
function under a noised potential. This is the main difference between “quantummeasurement”
and “unitary evolution operation” in mathematics. In physics, each potential noise point can be
quickly absorbed by wave function through the nonlocality correlation, and the amounts of noise

points will quickly accumulate to be a big quantity to change the whole wave function jbRj.
Additionally, besides the potential noise, the condition that the quantum measurement hap-
pens is that the interaction of system and environment should be big enough to distinguish the

preferred basis state “ φn

� �
”. If the interaction is not big enough, φnjbRjφn

D E
≈ φmjbRjφm

D E
and

then Dmn ! δm,n in Eq. (31), then the collapse will not happen. In other words, the instrument
that can realize the quantum measurement should be “macro” enough to produce enough
noise and have big enough energy gaps of a system measured.
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discrete non-uniform localization of energy portions (quanta’s) within conjugated space
and time phases. The model connects electromagnetism with the space-time and shows
that electromagnetic energy is the Planck’s scale product of the generation of asymmetric
space and time phases. In the reverse order, at the Black Hole’s scale with complete
consumption of electromagnetic energy, decay of space-time frame takes place with accu-
mulation of energy in virtual space phase, which translates energy to the background in
the form of gravitation. Huge amounts of negative energy accumulated within back-
ground space leads to the generation of elementary space-time unit, which carries non-
uniform energy conservation in the form of electromagnetic energy. Translation of back-
ground uniform energy, accumulated within minimum space, to the non-uniform energy
conservation phase generates a non-baryonic heavy particle, which is the precursor of the
ingredients of elementary space-time frame of matter. The background spontaneous sym-
metry break is a phenomenon, related to the discrete translation of uniform energy
conservation phase to the phase of non-uniform conservation, carried by electromagnetic
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However, many questions related to Standard Model of particle physics are waiting for
answers, such as locality of elementary particles in space-time frame and its connection with
the principles of quantum mechanics.

In our previous papers [1–4], we showed that discrete performance of space-time frame is the
necessary background for unification of quantum physics with the relativity theory. In the
present paper, we will expand our analysis on non-uniform conservation of energy to show
that the space-time phenomenon arises from the non-uniform conservation of energy to carry
locality of photons within space and time frame. The non-uniform conservation of energy
becomes the only reason for generation of mass and gravity within asymmetric boundaries of
space-time frame to eliminate singularities from physical laws.

In this paper, we will describe that the elementary particles appear as an energy portions,
distributed within conjugated asymmetric space-time fields, where energy contents of space
and time phases generate different particles, such as bosons and leptons, emerging from the
asymmetric background translation of space-time phases and energy content of the space-time
frame. On this basis, we will discuss performance of space-time as an energy-mass carrying
non-invariant field, generated from background coupling of space and time ingredients of
light photons.

2. The concept of mass

Mechanism of symmetry breaking and generation of mass is the main problem of particle
physics. Three independent groups, Higgs [5], Englert and Brout [6], and Guralnik et al. [7–10],
published mechanisms on how particles get mass. All three, starting from very different
viewpoints, proposed essentially the same mechanism based on spontaneous symmetry break-
ing. It postulates that matter obtains mass by interacting with a field, known as Higgs field.

In accordance with that mechanism, universe is filled with remarkable new Higgs field and
Higgs boson of the field gives mass to gauge bosons and to all other particles. The mass of the
Higgs particle itself is not explained in the theory, but appears as a free parameter [10]. Higgs
mechanism does not describe how Higgs boson itself gets a mass and the origin of mass in all
its forms is not clear [10, 11]. A standard model does not involve gravity therefore, the primary
role of mass in this model is not known. The reason why spontaneous symmetry breaking
causes and leads to generation of mass remains one of the questions of quantum physics
[12–18].

It is necessary to note that the concept of mass needs understanding of the true nature of space-
time. The space-time phenomenon was the hot subject of long debates between Newtonian
and Leibniz physics [19, 20]. Later, Kant analyzed Newtonian and Leibniz space-time concepts
within his metaphysical principles. Kant’s metaphysical understanding of space-time was
close to the Newtonian absolute space and time representation. In accordance with Kant’s
metaphysics, “space and time are substances in their own right (as Newtonian absolute space)
and they exist independently of all objects and relations” [19].
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Leibniz’s view on space and time was different [20]. By Leibniz’s opinion, the space-time is
“inhere” in objects and relations [19], which is close to Einstein’s representation of space-time
[21, 22].

In accordance with Einstein’s general relativity theory, space and time are relative and consist
in the form of space-time unit. The gravitational force between masses leads to the warping of
space-time. However, Einstein’s space-time is geometric and does not give explanation as to
where space-time comes from.

Zeeya, in his paper published in nature [23], very correctly concluded that, “many researchers
believe that physics will not be complete until it can explain not just the behavior of space and
time, but where these entities come from.”

Raamsdonk [23] suggested, “In some sense, quantum entanglement and space-time are the
same thing.” By Maldacena’s opinion “quantum is the most fundamental and space-time
emerges from it [23]. However, Barbouir [24] believes that if time is removed from the founda-
tion of physics, we shall not all suddenly feel that the flow of time has ceased”.

Therefore, our present knowledge does not give any information about the origin of space-time
and what we know is only our representation of space, produced from Euclidean geometry.

Description of locality of a matter and energy within space-time frame is the main problem for
unification of physical laws. First, for description of mass it is necessary to understand the
main principle of Newton’s law: when a system having constant velocity tends to continue its
constant velocity in a straight line. Where does a system get this behavior from and what are
the energy resources that a system uses for motion in space with the non-vanishing constant
velocity in straight line in infinite time? It is clear that conservation of energy at this particular
condition of Newton’s physics becomes a very abstract concept.

If a system tends to keep its constant velocity in straight line in infinite time during its motion
in abstract space, as Newton’s first law states, it has to consume constant amount of energy to
carry a body within space in time independent infinite uniform motion otherwise it cannot
keep constant velocity.

Newton’s first law is valid only in inertial frame of reference, but the inertial frame itself needs
condition to be in a state of uniform motion. We can expand the above-mentioned discussion
on energy resources for uniform motion of time independent inertial frame as well, which also
has to follow principles of energy conservation. Here appears one important question, which
needs clarification. If different frames of reference have different uniform velocities, there
should not be any preference in selection of the particular reference frame. In this case,
translation from one reference frame with constant velocity to another one with the other
constant velocity will change space-time coordinates and produce acceleration, which will
vary with the variation of reference frames. The difference between inertial frames with
different uniform velocities appears in the form of different space-time frame and generation
of some identity, which we call mass.

From an energy point of view, when different inertial frames have the same velocity, they are
not energetically different inertial frames. In accordance with the energy conservation
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principle, frame of references comprise the set of space-time coordinates and the difference
between such a frame of reference has to be related to the energy, distributed in space-time
structure of that reference frames. As we have shown [1–4], to be the same reference frame,
these frames should have the same energy/momentum relation. It is clear that when energy
applied to the systems is completely consumed, all reference frames moved from some state of
constant velocity by application of energy, and have to “fall back” to the initial state for
restoration of energy. In this case [1–4], there should be a uniform “gravitational free fall” for
all of the reference frames to the initial state, which is the only reference frame, produced by
the non-uniform conservation of energy. This statement is the modification of Newton’s sec-
ond law, where the uniform acceleration is explained through the cancelation of each other’s
ingredients in the formula of F/m.

In our earlier papers, we showed [1–4] that conservation of energy does not exist without
localization in space-time frame and the localization has to be non-uniform. It is easy to show
that the space and time are the resulting non-unitary portions of non-uniform distribution of
energy, consumed in space phase (forming mass) and restored in time phase:

ΔS
S1

Δt
t1

¼ Eap � Es

Es
(1)

where Eap is the applied energy, and Es is the local energy of a body. When carrying of energy,
the parameters ΔS/S1 and Δt/t1 represent the changes of space and time variables in relation to
their local values as spinning of the change around their local state, respectively. The detailed
features of the model will be explained later. Model (1) can be written as follows:

ΔS
S1
Δt
t1

¼ Eap

Es
� 1 (2)

S1

t1
þ ΔS

Δt
S1

t1

¼ Eap

Es
(3)

We will consider that due to the carrying of energy, the space and time phases are energetic
fields, having all the behavior that is a characteristic for any energy field. The special feature of
the model (3) is that acceleration as a phenomenon appears as the change of space-time in
relation to the initial local space-time position. The special feature of this approach is that the
effect of the action is determined as the result of exchange interaction (Eqs. (1) and (2)). When
Eap-Es 6¼ 0, change of velocity is proportional to the applied energy (Eap) and while at Eap = 0,
“inertial” and “local” energy contents of different masses cancel each other.

This concept is completely different from Newton’s acceleration, which describes acceleration
as the derivative of the velocity or second-order derivative of space-time in abstract space
within universal time.
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The left side of Eq. (3) shows addition of change of a position to the initial space-time frame in the
form of acceleration. The right side of Eq. (3), in the form of non-unitary energy portion, is the
relation of the energy of a force carrier field to the initial energy content of a body of the space-
time frame.

Equation (3) at ΔS/Δt = 0, could be considered as the symmetry of an energy carrier field with
the energy of a particle or unification of energy-mass relation within space-time frame. In this
case, use of equivalence between energy and mass of a particle in simple form is not an
approximation. Later, we will show that during exchange interaction, Eap and Es may
exchange their behavior, and Es of Eq. (3) describes inertial energy of a particle, which at
background state of space-time frame is equivalent to the mass. Using this principle in conver-
sion of entities, we can get the equation of classic physics:

a ¼ F
m

(4)

In accordance with Eqs. ((1)–(3)), the portion of energy, consumed for locality of a zero mass
virtual particle in space-time frame, can be described as “transformation of energy to mass,”
which presents the non-uniform conservation of energy within energy-mass relations. The
non-consumed portion of energy determines the local strength of the “force carrier particle.”
This approach explains the nature of mass in more details than that of Newtonian inertia of a
body. Here, mass appears as the response of an initial local energy state of a body to the change
of its space-time frame, which appears as an exchange interaction with the applied energy. On
this basis, mass in the dynamical model (3) changes with the content of the energy portion,
which is consumed in the space-time frame of a particle.

Description of an event as a change of velocity in relation to the local initial space-time frame
gives more information on the dynamics of an event and nature of mass than that of descrip-
tion of force as a change of the momentum or double change of space-time with the non-
vanishing mass in the abstract space within change of universal time.

The effect of a force is the action and the local initial content of the energy of a body (Eq. (1))
describes conservation of action through the action-response exchange relation, while Newton’s
effect of force does not involve action-response exchange relation that iswhyNewtonian response
appears in the formof independent uniform inertia. That iswhyaction inNewton’s formulation is
not conserved. Model (1) describes the response of a system in exchange interaction (Eap� Es)/Es
in the form of Es, which appears as the carrier of dynamic inertia (or gravitational mass) of a body
to the non-uniform flux of the available portion of energy to the space-time field.

It is necessary to note that presently there is no complete theory of dynamics, which may
describe change phenomenon where action is conserved. The action is the integral of a
Lagrangian over time between the initial and final time of the system. For the action integral
to be well defined, the trajectory should have its boundary simultaneously in time and space.
However, Lagrangian action principle does not cover these requirements, therefore is not a
complete theory for analysis of the simultaneous change of variables and cannot be a proper
law for conservation of energy. Feynman applied Lagrangian action to quantum mechanics.
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which presents the non-uniform conservation of energy within energy-mass relations. The
non-consumed portion of energy determines the local strength of the “force carrier particle.”
This approach explains the nature of mass in more details than that of Newtonian inertia of a
body. Here, mass appears as the response of an initial local energy state of a body to the change
of its space-time frame, which appears as an exchange interaction with the applied energy. On
this basis, mass in the dynamical model (3) changes with the content of the energy portion,
which is consumed in the space-time frame of a particle.

Description of an event as a change of velocity in relation to the local initial space-time frame
gives more information on the dynamics of an event and nature of mass than that of descrip-
tion of force as a change of the momentum or double change of space-time with the non-
vanishing mass in the abstract space within change of universal time.

The effect of a force is the action and the local initial content of the energy of a body (Eq. (1))
describes conservation of action through the action-response exchange relation, while Newton’s
effect of force does not involve action-response exchange relation that iswhyNewtonian response
appears in the formof independent uniform inertia. That iswhyaction inNewton’s formulation is
not conserved. Model (1) describes the response of a system in exchange interaction (Eap� Es)/Es
in the form of Es, which appears as the carrier of dynamic inertia (or gravitational mass) of a body
to the non-uniform flux of the available portion of energy to the space-time field.

It is necessary to note that presently there is no complete theory of dynamics, which may
describe change phenomenon where action is conserved. The action is the integral of a
Lagrangian over time between the initial and final time of the system. For the action integral
to be well defined, the trajectory should have its boundary simultaneously in time and space.
However, Lagrangian action principle does not cover these requirements, therefore is not a
complete theory for analysis of the simultaneous change of variables and cannot be a proper
law for conservation of energy. Feynman applied Lagrangian action to quantum mechanics.

The Concept of Mass Based on Accelerated Conservation of Energy within Asymmetric Space-Time Phases
http://dx.doi.org/10.5772/intechopen.75988

157



However, Feynman’s Lagrangian action is not conserved and even modified Lagrangian for
strong interactions needs renormalization [25].

Another important feature of the model (3) is that from classic physics position it is possible to get
limitation of velocity by the speed of light, which cannot follow from Newton’s second law and
does not need special relativity formulation. When energy of a body is equal to the light energy
(Eap/Es = 1), ΔS/Δt parameter in Eq. (3) became zero, and therefore there is no change of velocity in
relation to the initial state (background state) and there is no acceleration. Besides that, with the
expansion of space (1) and accumulation of energy in space in the form of mass, more energy is
required tomove a bodywith the same velocity therefore a bodynever can reach the speed of light.

It is the boundary of maximum velocity. Such an outcome from Eq. (3) on the limitation of
maximum velocity to the speed of light is completely different from principles of special
relativity. Model (3) describing the velocity in relation to the initial local space-time frame and
the relation of the action energy to the initial energy content of a particle in the form of
exchange interaction unifies F/m formulation of classic physics and E/m relation of special
relativity. Model (3) shows that if a particle will have velocity equals to the speed of light, there
will be no acceleration and universe will not undergo the change.

The above-mentioned analysis of model (1) reveals one very important question: a particle to
feel the effect of force or effect of any type of field should have minimum non -zero mass,
otherwise a particle will not have limited velocity.

It is necessary to explain one question, which has no explanation in the special relativity
theory. The question is why there should be a maximum velocity, which is limited by the speed
of light. In accordance with our concept, maximum velocity of light is necessary to hold
conservation of energy, elimination of infinite energy and space-time singularity. In addition,
the finite maximum velocity limit needed for translation of space-time variables to each other
through ΔS/Δt. Without boundary velocity, there cannot be finite space-time frame and no
energy conservation. It is obvious that boundary of light velocity leads to the boundary of
space-time frame, which correlates this boundary through translation of variables.

Based on model (1), we may analyze energy-mass equivalence and the concept why energy
conversion to mass is needed. This question has a connection to the discussion given above.
Our concept shows that there is no static Noether’s conservation of energy [26], and only non-
uniform conversion of energy from one form to another can hold conservation principle. The
non-invariance of energy-mass relation is the only way for conservation of energy during its
conversion from one form to another, which is carried within non-uniform space-time frame.
This is an alternative approach on the existence of mass and energy-mass equivalence for
limitation of velocity to the speed of light. This approach is different from the relativity concept
of increase of relativistic mass with the increase of velocity.

3. Generation of classic space-time field model

The new concept, which we present, involves conjugation of the change of a function (Δf) with
the local value which is the relative locality of a particle (fn). In this formulation, the reciprocal

Advanced Technologies of Quantum Key Distribution158

discrete transform within change (Δf) and function (fn) can be generalized within boundary of
canonical variables. In this case, we have a purpose eliminating problem of classic physics and
quantum mechanics, which describes an event as a change of state of something without
relation to something itself. The formulation (Δf)/f1 is useful while it allows description of an
interaction of a body and force carrying field through exchange interaction.

The formulation (Δf)/f1 has also “quantum mechanics behavior:” the new classic operator in
the form of (Δf)/f1 describes change (spinning or vibration) of the function around dynamical
initial locality to repeat its origin. Similarly, the operator ΔS/S1 describes the fluctuation of
space around its origin due to the applied force, while operator Δt/t1 describes the fluctuation
of time about instant of action. On this basis, space and time phases, which carry energy, get
features of an energetic field.

In the conjugated space-time field, a position of a particle, located within space-time frame is
not a point; it exists within very certain discrete non-virtual space-time manifold, commuting
dynamic energy, and is distributed within space and time fields.

In accordance with the non-uniform energy conservation concept, the space-time is the resulting
non-unitary inner product of energy distribution, which comprises portions of energy consumed
in space phase (event mass) and restored in time phase.

ΔS
S1
Δt
t1

¼ Eap � Es

Es
(5)

ΔS
Δt
¼ S1

t1

Eap

Es
� 1

� �
(6)

λ ¼ Eap

Es
� 1 (7)

at λ = 1, Eap = 2Es.

where S1 and t1 are the space and time variables corresponding to the dynamic local boundary,
Eap and Es are the energies of action and under action systems of interaction at conditions
corresponding to the local boundaries of S1 and t1. In accordance with model (5), energy
portion inserted to the space-time frame, travels through wave of exchange interaction, which
determines the exact pathway of a particle. The right side of the model describes the frequency
of energy consumption by the matter particles, while the left side shows the frequency of the
change of space and time waves fields. The entities Δt, t1 and ΔS, S1 perform as the same
identities of energy carrier, existing differently in the opposite phases.

Model (5) treats the matter field through space phase, while antimatter field with the time
phase which couples in space-time unit carries the non-uniform conservation of energy. Later,
we will show in detail how the boundary mapped space-time frame, involving limitation of
maximum velocity to the speed of light is the requirement for conservation of energy. Model
(5) presents the boundary of space-time by the local position, dynamically growing in
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However, Feynman’s Lagrangian action is not conserved and even modified Lagrangian for
strong interactions needs renormalization [25].

Another important feature of the model (3) is that from classic physics position it is possible to get
limitation of velocity by the speed of light, which cannot follow from Newton’s second law and
does not need special relativity formulation. When energy of a body is equal to the light energy
(Eap/Es = 1), ΔS/Δt parameter in Eq. (3) became zero, and therefore there is no change of velocity in
relation to the initial state (background state) and there is no acceleration. Besides that, with the
expansion of space (1) and accumulation of energy in space in the form of mass, more energy is
required tomove a bodywith the same velocity therefore a bodynever can reach the speed of light.

It is the boundary of maximum velocity. Such an outcome from Eq. (3) on the limitation of
maximum velocity to the speed of light is completely different from principles of special
relativity. Model (3) describing the velocity in relation to the initial local space-time frame and
the relation of the action energy to the initial energy content of a particle in the form of
exchange interaction unifies F/m formulation of classic physics and E/m relation of special
relativity. Model (3) shows that if a particle will have velocity equals to the speed of light, there
will be no acceleration and universe will not undergo the change.

The above-mentioned analysis of model (1) reveals one very important question: a particle to
feel the effect of force or effect of any type of field should have minimum non -zero mass,
otherwise a particle will not have limited velocity.

It is necessary to explain one question, which has no explanation in the special relativity
theory. The question is why there should be a maximum velocity, which is limited by the speed
of light. In accordance with our concept, maximum velocity of light is necessary to hold
conservation of energy, elimination of infinite energy and space-time singularity. In addition,
the finite maximum velocity limit needed for translation of space-time variables to each other
through ΔS/Δt. Without boundary velocity, there cannot be finite space-time frame and no
energy conservation. It is obvious that boundary of light velocity leads to the boundary of
space-time frame, which correlates this boundary through translation of variables.

Based on model (1), we may analyze energy-mass equivalence and the concept why energy
conversion to mass is needed. This question has a connection to the discussion given above.
Our concept shows that there is no static Noether’s conservation of energy [26], and only non-
uniform conversion of energy from one form to another can hold conservation principle. The
non-invariance of energy-mass relation is the only way for conservation of energy during its
conversion from one form to another, which is carried within non-uniform space-time frame.
This is an alternative approach on the existence of mass and energy-mass equivalence for
limitation of velocity to the speed of light. This approach is different from the relativity concept
of increase of relativistic mass with the increase of velocity.

3. Generation of classic space-time field model

The new concept, which we present, involves conjugation of the change of a function (Δf) with
the local value which is the relative locality of a particle (fn). In this formulation, the reciprocal
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discrete transform within change (Δf) and function (fn) can be generalized within boundary of
canonical variables. In this case, we have a purpose eliminating problem of classic physics and
quantum mechanics, which describes an event as a change of state of something without
relation to something itself. The formulation (Δf)/f1 is useful while it allows description of an
interaction of a body and force carrying field through exchange interaction.

The formulation (Δf)/f1 has also “quantum mechanics behavior:” the new classic operator in
the form of (Δf)/f1 describes change (spinning or vibration) of the function around dynamical
initial locality to repeat its origin. Similarly, the operator ΔS/S1 describes the fluctuation of
space around its origin due to the applied force, while operator Δt/t1 describes the fluctuation
of time about instant of action. On this basis, space and time phases, which carry energy, get
features of an energetic field.

In the conjugated space-time field, a position of a particle, located within space-time frame is
not a point; it exists within very certain discrete non-virtual space-time manifold, commuting
dynamic energy, and is distributed within space and time fields.

In accordance with the non-uniform energy conservation concept, the space-time is the resulting
non-unitary inner product of energy distribution, which comprises portions of energy consumed
in space phase (event mass) and restored in time phase.
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(5)
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� 1
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(6)

λ ¼ Eap

Es
� 1 (7)

at λ = 1, Eap = 2Es.

where S1 and t1 are the space and time variables corresponding to the dynamic local boundary,
Eap and Es are the energies of action and under action systems of interaction at conditions
corresponding to the local boundaries of S1 and t1. In accordance with model (5), energy
portion inserted to the space-time frame, travels through wave of exchange interaction, which
determines the exact pathway of a particle. The right side of the model describes the frequency
of energy consumption by the matter particles, while the left side shows the frequency of the
change of space and time waves fields. The entities Δt, t1 and ΔS, S1 perform as the same
identities of energy carrier, existing differently in the opposite phases.

Model (5) treats the matter field through space phase, while antimatter field with the time
phase which couples in space-time unit carries the non-uniform conservation of energy. Later,
we will show in detail how the boundary mapped space-time frame, involving limitation of
maximum velocity to the speed of light is the requirement for conservation of energy. Model
(5) presents the boundary of space-time by the local position, dynamically growing in
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accordance with the available portion of energy. In a simple form, if there is a local position,
there should be a boundary of the change of the energy that carries a space-time field.

The left side of model (5) involves the dynamic conservation of space-time frame as the non-
unitary “grains,” while the right side shows the non-uniform conservation of energy-mass
exchange relation, carrying the dynamic flux of energy portion to the local S1/t1 metric of
space-time frame (6). The gradient of energy in relation to the initial state (Eap � Es)/Es as an
equivalent form of space-time “grains” becomes the non-unitary quanta, which describe
change of local space-time frame as an exchange interaction of a particle with the applied
force. The portion of energy, distributed in space and time phases, determines the strength of
a force and repulsive reaction of a matter.

The model of non-uniform energy conservation (5) shows that space-time is the energetic field,
which carries localization of energy conservation within dynamical space-time frame. The
space-time, which has to carry conservation of energy, generates a non-virtual local frame,
and moves it relative to the state of energy restoration.

The condition Eap = 0 of model (5) is the background state of discrete space-time field, where
asymmetric space and time variables, for holding of conservation cycles, undergoes to the
discrete translation as the portions of energy in the different fields. At this state, all types of
the interactions discretely unified.

In accordance with model (5), energy appears as the non-uniform inner product of coupling of
space and time fields (right-handed translation) and in reverse order, the origin of space-time
variables is the decay of space-time into virtual space and time entities (left-handed transla-
tion), with the discrete restoration of energy at background state. This is the non-uniform non-
static conversion of energy from one form to another. On this basis, time appears as the
product and boundary of the discrete non-Noetherian dynamic conservation of energy, carry-
ing energy within space-time frame.

Time takes its origin only from discrete energy conservation cycle and starts when energy,
accumulated in time phase, translated to the formation and expansion of space-time frame
with exchange interaction, controlling the boundary of space-time framework. Due to the
relation of motion to the discrete local frame of space-time, description of time only by unitary
intervals leads to the uncertainty.

Model (5) eliminates singularity in space-time frame and energy: the zero boundary of energy
Eap = 0 and its product zero time instant (t1, frequency) cancel each other. The zero Es and its
product zero space (S1) similarly cancel each other, which generates singularity free dynamic
model of an event.

4. Gravity

Model (5) shows that when the entire available energy portion is consumed for expansion of
space (Eap = 0), space-time decays which has to radiate energy, accumulated in the space-time
frame (negative λ = �1). In this case, the energy, consumed in space-time frame of any scale,
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has to move to the initial state through translation of asymmetric boundaries of space-time
variables. While space and time are the phase fields of energy conservation, translation of
variables presenting conversion of energy from one form to another became an obvious event.
The space-time frame in this case decays to virtual space and time field particles moving to the
background state, where generation of new space-time frame takes place.

In accordance with these principles, gravity is not a space-time geometric curvature itself, but a
result of discrete non-uniform conservation of energy, localized within finite space-time field.
The parameter (Eap/Es � 1) of Eq. (6), in the form of energy-mass exchange interaction,
generates gravity for controlling of space-time and energy boundaries. Therefore, gravity is
not a result of simple existence of energy itself in space-time, but it is the result of non-uniform
conservation of energy through space-time field.

The right side of model (5) as the energy-momentum content of space-time frame leads to the
“warping of space-time structure” as general relativity suggests.

The flux of energy to space-time frame expands Planck scale space in direction of localization
of background energy in the expanded space-time frame. The non-uniform conservation of
energy (5) involves two space-time structures: non-uniform conservation of energy in differen-
tial form within discrete, non-virtual space-time frame and in integral form when space-time
decays to virtual space and time phases with restoration of energy at background state with
the continuous spectrum (Eap = 0) of uniform conservation. At this condition, there is no
exchange interaction and the difference between inertial and gravitational masses disappears.
Therefore, the key ingredient of the space-time is not the gravity itself, but non-uniform
conservation of energy, which generates mechanism (gravity) restoring energy at its origin.
On this basis, gravity appears as the gradient of the energy between background vacuum state
and the condition where energy portion transformed to the local space-time phase with
generation of space mass.

In the non-uniform energy conservation concept, energy and mass appear as two forms of the
same unit, distributed differently within asymmetric coordinates of space-time field. This
approach is different from special relativity concept, which connects energy-mass relation with
the uniform speed of light. Without mass, there is no non-virtual space-time frame, which has
to carry conservation energy. At the background state, emerged non-virtual space-time frame
leads to the consumption of energy and growth of the non-virtual space-time frame of the
matter.

The statement of general relativity (GR) that “space-time of GR is the gravitational field” [27]
does not explain origin of space-time. GR does not explain why space-time has to involve
gravity and curvature if its space-time has no boundary. These questions have direct connec-
tion with the classic physics concept of inertia, which does not explain why a body resists in its
uniform motion to the applied force. In accordance with Eq. (5), the dynamics of a body is the
result of the coupling of energy with the space-time frame: a body has a tendency to keep its
local state, but it cannot hold this state uniformly because energy applied to a system is non-
uniformly conserved. This leads to the growth of the internal force of inertia (called gravita-
tion), which has a trend to return a system uniformly back to the energy restoration state.
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accordance with the available portion of energy. In a simple form, if there is a local position,
there should be a boundary of the change of the energy that carries a space-time field.

The left side of model (5) involves the dynamic conservation of space-time frame as the non-
unitary “grains,” while the right side shows the non-uniform conservation of energy-mass
exchange relation, carrying the dynamic flux of energy portion to the local S1/t1 metric of
space-time frame (6). The gradient of energy in relation to the initial state (Eap � Es)/Es as an
equivalent form of space-time “grains” becomes the non-unitary quanta, which describe
change of local space-time frame as an exchange interaction of a particle with the applied
force. The portion of energy, distributed in space and time phases, determines the strength of
a force and repulsive reaction of a matter.

The model of non-uniform energy conservation (5) shows that space-time is the energetic field,
which carries localization of energy conservation within dynamical space-time frame. The
space-time, which has to carry conservation of energy, generates a non-virtual local frame,
and moves it relative to the state of energy restoration.

The condition Eap = 0 of model (5) is the background state of discrete space-time field, where
asymmetric space and time variables, for holding of conservation cycles, undergoes to the
discrete translation as the portions of energy in the different fields. At this state, all types of
the interactions discretely unified.

In accordance with model (5), energy appears as the non-uniform inner product of coupling of
space and time fields (right-handed translation) and in reverse order, the origin of space-time
variables is the decay of space-time into virtual space and time entities (left-handed transla-
tion), with the discrete restoration of energy at background state. This is the non-uniform non-
static conversion of energy from one form to another. On this basis, time appears as the
product and boundary of the discrete non-Noetherian dynamic conservation of energy, carry-
ing energy within space-time frame.

Time takes its origin only from discrete energy conservation cycle and starts when energy,
accumulated in time phase, translated to the formation and expansion of space-time frame
with exchange interaction, controlling the boundary of space-time framework. Due to the
relation of motion to the discrete local frame of space-time, description of time only by unitary
intervals leads to the uncertainty.

Model (5) eliminates singularity in space-time frame and energy: the zero boundary of energy
Eap = 0 and its product zero time instant (t1, frequency) cancel each other. The zero Es and its
product zero space (S1) similarly cancel each other, which generates singularity free dynamic
model of an event.

4. Gravity

Model (5) shows that when the entire available energy portion is consumed for expansion of
space (Eap = 0), space-time decays which has to radiate energy, accumulated in the space-time
frame (negative λ = �1). In this case, the energy, consumed in space-time frame of any scale,
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has to move to the initial state through translation of asymmetric boundaries of space-time
variables. While space and time are the phase fields of energy conservation, translation of
variables presenting conversion of energy from one form to another became an obvious event.
The space-time frame in this case decays to virtual space and time field particles moving to the
background state, where generation of new space-time frame takes place.

In accordance with these principles, gravity is not a space-time geometric curvature itself, but a
result of discrete non-uniform conservation of energy, localized within finite space-time field.
The parameter (Eap/Es � 1) of Eq. (6), in the form of energy-mass exchange interaction,
generates gravity for controlling of space-time and energy boundaries. Therefore, gravity is
not a result of simple existence of energy itself in space-time, but it is the result of non-uniform
conservation of energy through space-time field.

The right side of model (5) as the energy-momentum content of space-time frame leads to the
“warping of space-time structure” as general relativity suggests.

The flux of energy to space-time frame expands Planck scale space in direction of localization
of background energy in the expanded space-time frame. The non-uniform conservation of
energy (5) involves two space-time structures: non-uniform conservation of energy in differen-
tial form within discrete, non-virtual space-time frame and in integral form when space-time
decays to virtual space and time phases with restoration of energy at background state with
the continuous spectrum (Eap = 0) of uniform conservation. At this condition, there is no
exchange interaction and the difference between inertial and gravitational masses disappears.
Therefore, the key ingredient of the space-time is not the gravity itself, but non-uniform
conservation of energy, which generates mechanism (gravity) restoring energy at its origin.
On this basis, gravity appears as the gradient of the energy between background vacuum state
and the condition where energy portion transformed to the local space-time phase with
generation of space mass.

In the non-uniform energy conservation concept, energy and mass appear as two forms of the
same unit, distributed differently within asymmetric coordinates of space-time field. This
approach is different from special relativity concept, which connects energy-mass relation with
the uniform speed of light. Without mass, there is no non-virtual space-time frame, which has
to carry conservation energy. At the background state, emerged non-virtual space-time frame
leads to the consumption of energy and growth of the non-virtual space-time frame of the
matter.

The statement of general relativity (GR) that “space-time of GR is the gravitational field” [27]
does not explain origin of space-time. GR does not explain why space-time has to involve
gravity and curvature if its space-time has no boundary. These questions have direct connec-
tion with the classic physics concept of inertia, which does not explain why a body resists in its
uniform motion to the applied force. In accordance with Eq. (5), the dynamics of a body is the
result of the coupling of energy with the space-time frame: a body has a tendency to keep its
local state, but it cannot hold this state uniformly because energy applied to a system is non-
uniformly conserved. This leads to the growth of the internal force of inertia (called gravita-
tion), which has a trend to return a system uniformly back to the energy restoration state.
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At Eap = 0 of model (5), the space-time field undergoes to the decay which leads to the loss of
the information, generated by the energy flux. Therefore, generation of a new cycle of space-
time frame is the generation of new event and “an event when it travels backward does not
meet with itself” because an event returns with the loss of space-time information. Without
space-time frame, there is no ordinary matter to carry information.

It is necessary to note very important statement of special relativity (SR) that space and time do
not exist separately, but form a four-dimensional space-time unit. In accordance with the
principles of SR, conservation of energy has to be valid in “flat space-time.” This statement of
SR is based on Minkowsii concept [28] of a flat four-dimensional space-time frame. Special
relativity describes energy-mass equivalence through uniform relation E = mc2 (or Eo = mc2),
but conservation of energy-mass relation within non-uniform space-time field eliminates
invariant features of the conservation laws. The additional statements of SR such as “space
contraction” and “time delay” do not explain mass-velocity relation, while these supplemen-
tary concepts follow from Lorentz’s invariant translation principles.

In accordance with the non-uniform energy conservation model (5), “flat space-time” without
mass does not comprise a frame of the non-virtual space-time and cannot carry any informa-
tion on energy conservation. On this basis, model (5) treats mass as a discrete space-time field
of energy-mass unit of non-uniform conservation of energy.

Different phases of energy conservation in space-time field appear as the virtual fields of
different entities, such as particles and antiparticles, representing energy-mass relationship.
Light energy exists through conservation between two fields, which appears in the form of
particles with positive and antiparticles with negative energy states. However, positive and
negative energy states do not follow invariant translations to each other. At Eapp = 0, model (5)
describes negative energy solution of antimatter, while Eapp � Es ˃ 0 represents positive energy
solution of matter being localized within space-time frame. The condition when energy content
of local state (Eapp � Es) is equal to the energy content of background state Es (Eap = 2Es)
describes space-time symmetry or symmetry of matter-antimatter particles.

Our concept describes space-time in a new representation, responsible for symmetry breaking.
The space-time is the product of energy distribution within two phases, which in reverse order
is the carrier of energy conservation. The “warping of space-time with energy and matter in it,”
suggested by general relativity, is the requirement of cyclic performance of space-time for
conservation of energy and matter.

At background Planck scale, the space-time appears within annihilation of space and time
phases in the form of matter and antimatter annihilation. This transformation leads to the
consumption of photons energy by generated space-time frame with formation of matter
and expansion of it in space-time frame. In accordance with our concept, spontaneous
symmetry breaking is the change of time phase to space-time frame with the generation of
mass, carrying discrete conservation of energy.

As follows from model (7), one energy carrier particle is in symmetry with the two matter
carrying particles which forms three particles tandem (three particles distribution of quarks
in proton and neutron). This is the necessary condition for symmetrical existence of a matter.
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The antimatter having no space-time frame is the “dark” ingredient of energy phase of
Higgs field. Running Eq. (6) at Eap = 0 to background Planck scale generates phase transla-
tion of “dark” ingredient of energy to the visible space-time matter. Dark energy does not
carry space-time frame. It has only time phase in the form of condensate, which after
interaction with the generated space-time frame forms vector bosons with integer spin.
Photon energy is the reversed reflection from space-time frame. Photon transforms to elec-
tron/positron pairs, which absorbs photon to produce vector bosons as the precursors of
quarks.

It is necessary to note that the non-invariant translation of variables of space-time gives
alternative mechanism for generation of spin property of particles. In accordance with quan-
tum mechanics, the spin number is the quantum state where fermions are half spin particles
and have to follow Pauli Exclusion Principle. This means that one fermionic particle can
occupy only one quantum energy state. Quantum theory suggests that spin appears as the
momentum of a particle around its own axis.

Model (5) suggests that the spin is the space-time phenomenon, which appears in the form of
energy-mass and action-response relation (Eap � Es)/Es. Conservation of energy takes place
through its distribution within space-time phases, which generates energy-mass exchange
relation. Consumption of energy in right-handed space expansion is carried by electromag-
netic energy, while accumulation of energy in space-time frame is in the form of mass that
moves the space-time in the left-handed direction. The opposite forces of exchange interaction
curves space-time and produce angular momentum, rotating particles of space-time frame
around local position.

The spin as the identity is the “face” of a particle: every particle with its energy content can
have only one local space-time structure. Fermion has “face” as a particle of baryonic structure
that exists within non-virtual space-time frame in discrete symmetry at Es = 1/2Eap (7) of
nuclear. This structure generates half spin number for fermionic particles. Model (7) shows
that half spin behavior of fermions Es = 1/2Eap and spin one performance of bosons is gener-
ated from exchange interactions to carry discrete symmetry through translation of energy to
space-time field. The full recovery of discrete symmetry of a fermionic particle involves two
pieces of full cycle between discrete exchanges of quarks within n-p frame.

In the absence of Eap, (Es = 0) all the particles lose space-time frame and spin: helicity becomes the
dynamical behavior for conservation of energy at the origin. Later, we will show that without
helicity of neutrinos space-time cannot restore energy conservation at background state.

Based on model (5), we can explain the quantum level particle-antiparticle interactions in
deterministic way. At Eap = 0, particle radiates energy and loses its space-time field (virtual
for non-baryonic particles, non-virtual for baryonic particles), where two states of energy
merge together forming neutral particle. This is the phenomenon which divides fermionic
particles “face” between two states.

From non-uniform conservation of energy follows, that gravitation together with the electro-
weak force holds nuclear stability in discrete mode. On this basis, all the forces unified within
three families: decomposition of strong force generates week and gravitation forces and
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At Eap = 0 of model (5), the space-time field undergoes to the decay which leads to the loss of
the information, generated by the energy flux. Therefore, generation of a new cycle of space-
time frame is the generation of new event and “an event when it travels backward does not
meet with itself” because an event returns with the loss of space-time information. Without
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It is necessary to note very important statement of special relativity (SR) that space and time do
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The antimatter having no space-time frame is the “dark” ingredient of energy phase of
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The spin as the identity is the “face” of a particle: every particle with its energy content can
have only one local space-time structure. Fermion has “face” as a particle of baryonic structure
that exists within non-virtual space-time frame in discrete symmetry at Es = 1/2Eap (7) of
nuclear. This structure generates half spin number for fermionic particles. Model (7) shows
that half spin behavior of fermions Es = 1/2Eap and spin one performance of bosons is gener-
ated from exchange interactions to carry discrete symmetry through translation of energy to
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In the absence of Eap, (Es = 0) all the particles lose space-time frame and spin: helicity becomes the
dynamical behavior for conservation of energy at the origin. Later, we will show that without
helicity of neutrinos space-time cannot restore energy conservation at background state.

Based on model (5), we can explain the quantum level particle-antiparticle interactions in
deterministic way. At Eap = 0, particle radiates energy and loses its space-time field (virtual
for non-baryonic particles, non-virtual for baryonic particles), where two states of energy
merge together forming neutral particle. This is the phenomenon which divides fermionic
particles “face” between two states.

From non-uniform conservation of energy follows, that gravitation together with the electro-
weak force holds nuclear stability in discrete mode. On this basis, all the forces unified within
three families: decomposition of strong force generates week and gravitation forces and
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coupling of these forces in reverse order in cyclic mode re-generates strong force. Later, we will
describe these forces in detail.

5. Unification of quantum mechanics and relativity

It is easy to show that the non-uniform conservation of energy has to be the ground concept for
unification of relativity and quantum physics. Starting from the basic statement of general
physics that energy conserved through its conversion from one form to another, we will arrive
to the concept that a dynamical event of energy conversion has to have locality within finite
space and time coordinates. In principle, the features of energy conservation during its con-
version from one form to another are clear from Planck’s black body radiation, which changes
the frequency of energy with radiation. Change of frequency of radiation is the result of non-
uniform locality of energy within space-time field.

The non-uniform conservation of energy leads to the collapse of the concepts on uniformly
moving different reference frames in relation of which all physical laws are valid. It is clear that
even light cannot be the reference frame, while light energy is non-uniformly conserved.

In this case, the question “in relation to what background state all physical laws are the same”
appears to be a big problem for physics. General relativity, describing space-time “as a geo-
metrical structure, curved by existence in it energy and matter,” does not produce a reference
frame and mechanism of space-time behavior, while mathematical formulation of GR has no
background state. The theory of special relativity, describing constant speed of light in vac-
uum, does not help much; while within non-uniform conservation of energy in space-time,
light is not a space-time independent uniformly moving reference frame.

Within principles of non-uniform conservation of energy, the concept of uniform reference
frames without uniform energy resources has no meaning at all. The main problem of quan-
tum mechanics and relativity is the reference frame: we cannot determine the position and
momentum at the same time because when we determine momentum, position also will
change and its change will be uncertain.

Therefore, the problem described by quantum mechanics appears due to the absence of local
position and deterministic formulation of local position by dynamical laws of classic physics.
The general relativity has the same problem. The importance of local position arises from the
non-uniform conservation of energy, localized in space-time field through change of space and
time coordinates of a local position.

Here, it is necessary to give analysis of uncertainty principles in more detail, where changes in
position and momentum shown as a change of simple gradients. Description of space-time
frame and dynamical events only through gradients of energy and space-time variables or
tensors leads to the problems, associated with the loss of local positions (boundary) of space-
time field, carrying distribution of energy. The boundary or local position is the energy density of
the phase field. The same question related to the change of momentum, which also needs
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description in the form of exchange interaction relative to the local momentum of a particle. It is
clear that in case of mathematical formulation of dynamical events, involving a local position of a
particle in space-time field and its local energy content, the prediction of quantum mechanics
could be completely different.

In accordance with the non-uniform energy conservation principle, coupling of local space-
time field and local energy state of a particle is the necessary approach for elimination of
singularity and for removal of renormalization from particle physics theories. Without involve-
ment of local position and exchange interaction, it is impossible to get mathematic formulation
of conservation laws.

It is necessary to note that Dirac’s relativistic quantum theory [29] on existence of an antipar-
ticle appeared due to the uncertainty in position. Dirac suggested that uncertainty in position
can be solved if there will be another particle (antiparticle) with the different position to
maintain the balance for conservation of quantum number. However, conservation of energy,
involving coupling of local position with the energy flux to the space-time frame leads natu-
rally to the existence of oppositely charged particles.

The concept of non-uniform conservation of energy explains why charges are needed. Cou-
pling of space and time variables within elementary space-time frame of baryonic particle and
distribution of energy in extended space-time structure takes place through involvement of
charged particles. However, restoration of energy at origin takes place through decay of space-
time field and translation of energy in the form of neutral current to the initial background
state. The energy is restored at the origin (Eap = 0) when phase difference, leading to the
generation of charges, disappears (5). Conservation of energy through phase difference is the
origin of generation of discrete performance of physical laws.

In accordance with model (5), relation of an event to local position of space-time is not
separable from the energy flux to space-time frame because local position, which undergoes
to the growth, is the product of energy distribution in space-time frame. In reverse order,
change in relation to the energy flux also is not separable from the local position, while the
outcome of energy flux determined by the consumption of energy in dynamical local position.

Therefore, change of velocity is the product of conjugation of local space-time position of a
particle with the exchange interactions, generated from the energy flux to space-time field.
This is the deterministic physical law of nature. Without conjugation of local position and
energy resources through exchange interactions within space-time field of a particle there is
no conservation of energy and there is no correct concept of mass. The position and momen-
tum conjugate of uncertainty principle does not involve resources of action that is why its
outcome is uncertain.

In accordance with the quantum field theory, during short time intervals violation of energy
conservation is restored. The common view on this statement is that conservation of energy can
be temporarily violated and energy can be borrowed from the universe as long as it is returned
within a short duration of time. However, Griffits [30] showed that “this principle is based on
the false axiom that the energy of the universe is an exactly known parameter at all times.”
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coupling of these forces in reverse order in cyclic mode re-generates strong force. Later, we will
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version from one form to another are clear from Planck’s black body radiation, which changes
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In this case, the question “in relation to what background state all physical laws are the same”
appears to be a big problem for physics. General relativity, describing space-time “as a geo-
metrical structure, curved by existence in it energy and matter,” does not produce a reference
frame and mechanism of space-time behavior, while mathematical formulation of GR has no
background state. The theory of special relativity, describing constant speed of light in vac-
uum, does not help much; while within non-uniform conservation of energy in space-time,
light is not a space-time independent uniformly moving reference frame.

Within principles of non-uniform conservation of energy, the concept of uniform reference
frames without uniform energy resources has no meaning at all. The main problem of quan-
tum mechanics and relativity is the reference frame: we cannot determine the position and
momentum at the same time because when we determine momentum, position also will
change and its change will be uncertain.

Therefore, the problem described by quantum mechanics appears due to the absence of local
position and deterministic formulation of local position by dynamical laws of classic physics.
The general relativity has the same problem. The importance of local position arises from the
non-uniform conservation of energy, localized in space-time field through change of space and
time coordinates of a local position.

Here, it is necessary to give analysis of uncertainty principles in more detail, where changes in
position and momentum shown as a change of simple gradients. Description of space-time
frame and dynamical events only through gradients of energy and space-time variables or
tensors leads to the problems, associated with the loss of local positions (boundary) of space-
time field, carrying distribution of energy. The boundary or local position is the energy density of
the phase field. The same question related to the change of momentum, which also needs
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description in the form of exchange interaction relative to the local momentum of a particle. It is
clear that in case of mathematical formulation of dynamical events, involving a local position of a
particle in space-time field and its local energy content, the prediction of quantum mechanics
could be completely different.

In accordance with the non-uniform energy conservation principle, coupling of local space-
time field and local energy state of a particle is the necessary approach for elimination of
singularity and for removal of renormalization from particle physics theories. Without involve-
ment of local position and exchange interaction, it is impossible to get mathematic formulation
of conservation laws.

It is necessary to note that Dirac’s relativistic quantum theory [29] on existence of an antipar-
ticle appeared due to the uncertainty in position. Dirac suggested that uncertainty in position
can be solved if there will be another particle (antiparticle) with the different position to
maintain the balance for conservation of quantum number. However, conservation of energy,
involving coupling of local position with the energy flux to the space-time frame leads natu-
rally to the existence of oppositely charged particles.

The concept of non-uniform conservation of energy explains why charges are needed. Cou-
pling of space and time variables within elementary space-time frame of baryonic particle and
distribution of energy in extended space-time structure takes place through involvement of
charged particles. However, restoration of energy at origin takes place through decay of space-
time field and translation of energy in the form of neutral current to the initial background
state. The energy is restored at the origin (Eap = 0) when phase difference, leading to the
generation of charges, disappears (5). Conservation of energy through phase difference is the
origin of generation of discrete performance of physical laws.

In accordance with model (5), relation of an event to local position of space-time is not
separable from the energy flux to space-time frame because local position, which undergoes
to the growth, is the product of energy distribution in space-time frame. In reverse order,
change in relation to the energy flux also is not separable from the local position, while the
outcome of energy flux determined by the consumption of energy in dynamical local position.

Therefore, change of velocity is the product of conjugation of local space-time position of a
particle with the exchange interactions, generated from the energy flux to space-time field.
This is the deterministic physical law of nature. Without conjugation of local position and
energy resources through exchange interactions within space-time field of a particle there is
no conservation of energy and there is no correct concept of mass. The position and momen-
tum conjugate of uncertainty principle does not involve resources of action that is why its
outcome is uncertain.

In accordance with the quantum field theory, during short time intervals violation of energy
conservation is restored. The common view on this statement is that conservation of energy can
be temporarily violated and energy can be borrowed from the universe as long as it is returned
within a short duration of time. However, Griffits [30] showed that “this principle is based on
the false axiom that the energy of the universe is an exactly known parameter at all times.”
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The general view of quantum mechanics on conservation of energy is that the energy-time
uncertainty has a meaning that a state of a body that exists only for a short time cannot have a
definite energy because to have a definite energy, the frequency of a state must be accurately
defined. It is easy to show that model (5), which conjugates energy flux of exchange interac-
tions and local position of a state, covers the above-mentioned requirements.

In accordance with the non-uniform conservation of energy, the deterministic state of a body
requires description of an event in the form of exchange interaction, comprising action-
response conservation. The parameter (Eap� Es)/Es of model (5) describes exchange interaction
that conjugates with the local space-time frame for generation of deterministic path of a
particle. In quantum field theory, the space-time metric does not vary with the flux of energy.
However, our concept presents dynamical space-time metric, which is the dynamical local
space-time field.

It is clear that an event can have its own reference frame if its energy-mass conservation is
described by the true mathematical space-time formulation. Model (5) involves interaction of
an event space-time field with its own reference frame. The condition Es 6¼ 0 describes an
acceleration of event dynamics in relation to the initial condition, while the condition Eap = 0 is
the uniform translation of an event to the initial state. In this case, the laws of classic and
relativistic classic physics unified with the quantum mechanics within singularity free deter-
ministic physical frame of non-uniform conservation of energy. In the absence of the energy
flux “moving in space became equivalent to the moving relative to the space,” which restores
the classic physics concept of relation of a motion to the space “ether.”

Thus, the non-uniform conservation of energy comprises the acceleration of space expansion in
forward direction and uniform backward process of energy restoration at the initial state.

6. Unification of space-time frame with the electromagnetism

While energy is non-uniformly conserved within space-time frame with asymmetric bound-
aries, unification of electromagnetism with the space-time frame becomes an obvious con-
cept. The multiple S1/t1 (Eap/Es � 1) of model (6) is the combination of electromagnetic field
(Eap/Es � 1), which describes flux of the energy to the space-time frame and local position in
space-time, where S1/t1 metric is not fixed and changes with the change of the energy flux
field. The energy flux (Eap/Es � 1) is not uniform and presents local energy portion, remained
from the exchange interactions with the particle. That is why electromagnetism is not Galilean
invariant. Due to the coupling of the local energy portion with the local space-time position the
multiple S1/t1 (Eap/Es � 1), as a deterministic function, describes trajectory of a particle. In the
multiple S1/t1 (Eap/Es� 1), the space-time and energy-mass relation have reciprocal relations: the
non-uniformity of energy-mass relation generates asymmetry of space-time variables and in
reverse order, asymmetric space-time leads to the non-uniformity of energy-mass relation.

The asymmetric boundaries of space-time variables allow only global conservation laws. On
this basis, during discrete non-uniform conservation of energy in space-time frame the change
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of energy is non- invariant translation, therefore cannot give local symmetry of general relativ-
ity or even any type of invariant translations. In dynamical events, comprising non-uniform
conservation of energy within space-time frame cannot be any static state of rest or uniform
motion, accepted as a reference frame. The static energy conservation law does not fit with the
conservation of finite amount of energy. Without coupling of local energy state and local space-
time frame, energy conservation in GR is approximate and leads to the singularity.

With the increase of energy of a body Es (classic inertial energy/mass content of a body), the
space-time unit requires more energy flux to keep the initial action of exchange interactions.
This principle appears as a trapping of more energy by the space phase leading to the “accel-
eration of space expansion;” but in reality, it is the acceleration of energy conservation. Con-
sumption of energy and expansion of space leads to the condition, where any amount of
energy trapped in space-time “black hole” structure. When all available portion of energy is
consumed, (Eact = 0), the energy trapped in the space-time frame, has to be radiated back to the
initial state through translation of asymmetric energy conservation phases. The frame called
“black hole” is the boundary of space-time frame, where the entire portion of energy is going
to be consumed. At Eap = 0, the local discreteness of electromagnetism is invariant with the
global discreteness of gravity which is the integral equivalent of Maxwell’s differential invari-
ance dF = 0.

Model (5) shows that for inversion of space-time from one local frame to its previous state
more energy portion than locally available is necessary to apply, therefore the temporal Gali-
lean transformation is non-invariant. This prediction of model (6) is the alternative to the
statement of special relativity that with the increase of mass of a particle, more energy is
necessary to apply to get constant velocity. This effect is the internal “gravitational property”
of energy conversion from one form to another within space-time frame, which can be called
“acceleration of non-uniform conservation of energy.”

Acceleration of non-uniform conservation of energy arises from exchange interaction and
conservation itself produces the exchange interaction. With the growth of space-time frame
and consumption of energy, more flux of energy required to keep the local state. In reverse
order, when space-time collapses, more energy portion than locally available is necessary to
apply to stop decay of space-time of matter, moving to the background to start a new cycle of
discrete conservation of energy.

In relativity theory, the concept of mass is the part of energy-momentum tensor; but in model
(5), mass is the part of energy-momentum exchange interactions (Eap/Es � 1), coupled with the
local position of space-time. The positive value of exchange interaction plays a role of right-
handed Lagrangian.

In accordance with the non-uniform conservation of energy, the main problem of conserva-
tion laws is the description of energy conservation in Lagrangian or Hamiltonian in the form
of sum of energies. Energy exists and conserved as a waves, passing through space and time
fields with formation of different energy density within these phases. That is the reason why
model (5) describes an event dynamics through exchange interaction of the energy portions,
distributed in space and time waves. Eap � Es describes the available portion of energy in
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The general view of quantum mechanics on conservation of energy is that the energy-time
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flux “moving in space became equivalent to the moving relative to the space,” which restores
the classic physics concept of relation of a motion to the space “ether.”

Thus, the non-uniform conservation of energy comprises the acceleration of space expansion in
forward direction and uniform backward process of energy restoration at the initial state.

6. Unification of space-time frame with the electromagnetism

While energy is non-uniformly conserved within space-time frame with asymmetric bound-
aries, unification of electromagnetism with the space-time frame becomes an obvious con-
cept. The multiple S1/t1 (Eap/Es � 1) of model (6) is the combination of electromagnetic field
(Eap/Es � 1), which describes flux of the energy to the space-time frame and local position in
space-time, where S1/t1 metric is not fixed and changes with the change of the energy flux
field. The energy flux (Eap/Es � 1) is not uniform and presents local energy portion, remained
from the exchange interactions with the particle. That is why electromagnetism is not Galilean
invariant. Due to the coupling of the local energy portion with the local space-time position the
multiple S1/t1 (Eap/Es � 1), as a deterministic function, describes trajectory of a particle. In the
multiple S1/t1 (Eap/Es� 1), the space-time and energy-mass relation have reciprocal relations: the
non-uniformity of energy-mass relation generates asymmetry of space-time variables and in
reverse order, asymmetric space-time leads to the non-uniformity of energy-mass relation.

The asymmetric boundaries of space-time variables allow only global conservation laws. On
this basis, during discrete non-uniform conservation of energy in space-time frame the change
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of energy is non- invariant translation, therefore cannot give local symmetry of general relativ-
ity or even any type of invariant translations. In dynamical events, comprising non-uniform
conservation of energy within space-time frame cannot be any static state of rest or uniform
motion, accepted as a reference frame. The static energy conservation law does not fit with the
conservation of finite amount of energy. Without coupling of local energy state and local space-
time frame, energy conservation in GR is approximate and leads to the singularity.

With the increase of energy of a body Es (classic inertial energy/mass content of a body), the
space-time unit requires more energy flux to keep the initial action of exchange interactions.
This principle appears as a trapping of more energy by the space phase leading to the “accel-
eration of space expansion;” but in reality, it is the acceleration of energy conservation. Con-
sumption of energy and expansion of space leads to the condition, where any amount of
energy trapped in space-time “black hole” structure. When all available portion of energy is
consumed, (Eact = 0), the energy trapped in the space-time frame, has to be radiated back to the
initial state through translation of asymmetric energy conservation phases. The frame called
“black hole” is the boundary of space-time frame, where the entire portion of energy is going
to be consumed. At Eap = 0, the local discreteness of electromagnetism is invariant with the
global discreteness of gravity which is the integral equivalent of Maxwell’s differential invari-
ance dF = 0.

Model (5) shows that for inversion of space-time from one local frame to its previous state
more energy portion than locally available is necessary to apply, therefore the temporal Gali-
lean transformation is non-invariant. This prediction of model (6) is the alternative to the
statement of special relativity that with the increase of mass of a particle, more energy is
necessary to apply to get constant velocity. This effect is the internal “gravitational property”
of energy conversion from one form to another within space-time frame, which can be called
“acceleration of non-uniform conservation of energy.”

Acceleration of non-uniform conservation of energy arises from exchange interaction and
conservation itself produces the exchange interaction. With the growth of space-time frame
and consumption of energy, more flux of energy required to keep the local state. In reverse
order, when space-time collapses, more energy portion than locally available is necessary to
apply to stop decay of space-time of matter, moving to the background to start a new cycle of
discrete conservation of energy.

In relativity theory, the concept of mass is the part of energy-momentum tensor; but in model
(5), mass is the part of energy-momentum exchange interactions (Eap/Es � 1), coupled with the
local position of space-time. The positive value of exchange interaction plays a role of right-
handed Lagrangian.

In accordance with the non-uniform conservation of energy, the main problem of conserva-
tion laws is the description of energy conservation in Lagrangian or Hamiltonian in the form
of sum of energies. Energy exists and conserved as a waves, passing through space and time
fields with formation of different energy density within these phases. That is the reason why
model (5) describes an event dynamics through exchange interaction of the energy portions,
distributed in space and time waves. Eap � Es describes the available portion of energy in
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time phase, while Es presents the portion of energy consumed in space phase. The condition
(Eap � Es)/Es ≥ 1 comprises positive electromagnetic energy, while Eap = 0 leads to the
negative energy solution.

The rate of acceleration of energy conservation has a trend to approach the background speed
of light. That is why any event has a trend to move to the maximum velocity through
minimum space and maximum available portion of energy.

The origin of matter in GR has no connection with the space-time frame and GR’s space-time
cannot remove matter from its structure and return to the background space-time state, while
GR has no background state. However, the non-uniform energy conservation concept shows
that any space-time frame, which does not involve mass, is not able to be the energy carrier.

The non-uniform conservation of energy in space-time frame gives very specific concept of
mass: the mass is the energy density in space field. As follows from model (5), discrete non-
uniform energy conservation may generate only non-invariant dynamical mass in the form of
location of energy in the certain space-time frame. The energy flux (Eap/Es � 1) determines the
density of energy in space phase, therefore mass changes with the change of frequency of the
energy conservation. Thus, space is the materialization phase of energy, while time phase
destroys everything material and returns the space matter discretely to the initial state, carry-
ing the phenomenon, called “Poincare paradox” [31].

The discrete, non-uniform conservation of energy, leading to the non-invariance of action-
response parity of energy-mass relation within space-time field and asymmetry of their bound-
aries is the missing quantity in the equation of general relativity.

Due to the discrete non-uniform conservation, energy as the resulting quantity of exchange
interactions, distributed within dynamic space-time phases, has no meaning as the static
quantity. This is the “quantization” of discrete non-uniform energy conservation, which makes
all of the interactions as the “classic resulting quantity,” having the same meaning of quanta.

The forces of virtual space-time frame at λ = �1 annihilates each other as the electromagnetism
and gravity, but in the non-virtual space-time frame they get a new feature—action-response
parity of exchange interactions: electromagnetic force at long distance generates gravity, but at
short range with the weak force leads to the generation of strong nuclear force. Transformation
of energy from space phase to time phase generates gravitational force, while transformation
of energy from time phase to space phase generates electromagnetic interaction.

Later,wewill describe theweak force in detail,which is needed for generation of discrete symmetry
at minimum atomic space scale tomake performance of atomic scale space-time grain stable.

7. Transformation of variables and conservation of energy

Here it is necessary to give Sean Carrol analysis of energy conservation who gave excellent
comments on the conservation of energy in general relativity. By his opinion [32], “if energy and
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momentum evolve in response to the behavior of space-time around it, as GR suggests, when
space-time is not constant, energy will change in a completely unambiguous way. Therefore, you
cannot find the energy or curvature of space-time at every point in space. Photons loss energy as
space expands, so total energy decreases. It leads to the violation of energy conservation. Energy
is not conserved because space-time changes.”

We will show that the problems of conservation of energy within energy-momentum and
space-time framework, described by Carrol [32], cannot be solved without dynamical model,
involving local asymmetric space-time position.

The non-uniform conservation of energy, which holds due to discrete space-time frame (5), is
valid only through transformation of asymmetric space and time variables. Consumption of
energy during non-uniform conservation in space phase (change of space in relation to the local
position—ΔS/S1) generates its conjugate variable—gradient of time in the form of time arrow in
relation to the local origin—Δt/t1. Generation of non-virtual space-time frame through coupling
of its variables and translation of time phase energy to space-time frame leads to the non-
uniform consumption of energy. Consumption of energy in space-time frame and decrease of
frequency of photons energy leads to the decrease of frequency of change of local (instant) time.

If to apply Noether’s theorem to quantum physics, time translational antimatter-matter sym-
metry should be associated with the conservation of energy. However, quantum physics time
independent antimatter-matter annihilation or classic space-time translations need application
of continuous unlimited resources of energy to hold the continuous symmetry.

In accordance with model (6), conversion of energy from one phase to another is possible only
if conversion takes place within asymmetric space-time translations. If there is no uniform
energy resources, space-time translation in any local position will end in space phase. On this
basis, matter-antimatter annihilation ends at the matter formation phase. The amount of
energy repulsed after matter generation phase is less than initial amount of applied energy.
That is why the repulsive energy in the form of electromagnetic force is not translational
invariant.

Model (6) shows that at Eap = 0, decay of space-time and contraction of space back to Planck’s
scale generates negative energy of antimatter (called gravitational energy) which approaches
to its maximum value (vacuum value) where takes place change of sign to positive energy,
distributed in space- time frame with space expansion. The state of zero space has no sense
while it leads to the runaway of energy to infinity. The state of minimum, non-zero space is
needed for change of sign of negative energy of antimatter to positive energy of space-time
frame of matter.

The condition when portion of energy, conserved in space phase is equal to the portion of energy
of time phase (8), we can call this condition as uniform conservation of energy at background
state of “super-symmetry.”At this condition, unlimited fluctuation should lead to the generation
of unlimited amount of energy. On this basis, there cannot be a continuous uniform state of
super-symmetry or even usual symmetry, which can exist on permanent basis. Therefore, the
non-uniform conservation of energy does not allow existence of continuous symmetry.
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Super-symmetry is a theory of particle physics that connects boson with integer spin and
fermions with half integer spin. In accordance with this theory, “each particle from one group
is associated with a particle from the other group known as super partner.”

The non-uniform energy conservation concept, as we described above, gives different require-
ment for symmetry: the symmetry is the condition where total spin numbers of particles,
forming this symmetry is equal. It follows from the condition when energy portions, distributed
within space and time phases are equal (8), which corresponds to the condition Eact = 2Es. This
state corresponds to the discrete symmetric performance of space-time grain containing three
family quarks. The total spin numbers of bosons and fermions and triplet performance of quarks
family arise from the discrete symmetry of space-time variables of baryonic frame at Es = 1/2Eap.

Equation (5) at (Eap/Es � 1) 6¼ 1 describes electromagnetic force, while condition Es = 1/2 Eap

represents the strong force. Model (5) describes the identity of particles as bosons and fermions
through exchange interactions. The energy flux makes position and momentum as separable
variables; but at Eap = 0, these variables merge together to form non-separable boson compen-
sates of indistinguishable particles, occupying the same state.

The non-uniform conservation of energy requires existence of “three particles tandem” only in
discrete mode. The Exclusion Principle on existence of a particle in a certain energy state does
not consider energy conservation principle and does not involve time ingredient of the con-
served energy to keep a particle at this energy state.

Therefore, photons, holding Bose-Einstein statistics, exist in discrete mode within three family
particles frame, which appears in the form of three-color frame. Similar to the existence of bi-
nuclear structure of matter, the antimatter structure of photons exists within discrete flavor of
three colors (Eap = 2Es), changing between two frames. Light photons travel through waves of
space-time color flavors, alternating within two frames of three-color flavors. Therefore,
change of photons’ frequency is not possible without the three family color flavors.

The space-time frame of non-uniform energy conservation explains classic physics clarification
of light photons. The condition Eap = 2Es, produced from energy-mass exchange interaction
shows that coupling of two identical half integer particles produces a particle with the integer
spin, called boson. This prediction of model (5) corresponds to the quantum physics statement
that the wave function of the identical half-integer spin particles changes sign when two
particles swapped.

By quantum mechanics, two fermion particles cannot occupy the same quantum energy state.
However, in accordance with the non-uniform energy conservation principles, two particles
cannot exist unlimited time at the same position of these particles. The particle having certain
space-time position may temporarily move and occupy the state of another particle through
absorption or radiation of energy.

Here we may show that the non-uniform conservation of energy leads to the understanding of
electron self-interaction problem as well. By literature information [33, 34], the electron mass
and spin can be identified with the energy and angular momentum of the electromagnetic self-
interaction.
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However, as we showed earlier, the spin and mass, as the non-separable entities, arrive from
the non-uniform conservation of energy in space-time field. The electron mass is not due to the
electromagnetic self-interaction and its energy is not due to the potential self-energy; its
energy, mass, and spin are results of the energy-mass exchange interaction that carried within
space-tine field.

Hestenes [34] showed that spin may arise from helical world line of space-time, but classical
arguments do not produce the properties of spin. It is necessary to note that the above-
mentioned approach describes quantum level interactions without space-time frame. For exam-
ple, Dirac equation describes energy-momentum relation, spin, and position for a point particle.

The energy-momentum exchange interaction, coupled with the dynamical local space-time
frame, eliminates point particle problem. Model (5), which describes conservation of energy
in space-time field, is the wave function of energy distribution involving asymmetric space and
time variables.

Formation and expansion of space-time takes place by the non-uniform electromagnetic force
with the participation of charged particles, while decay of space-time field and delivery of the
energy to the background takes place by neutral current of weak force. The weak force makes a
distinction between left and right due to the non-uniformity in energy-mass exchange interac-
tion during conversion of energy from one form to another. Conversion of energy from one
form to another does not involve invariant translation.

The non-uniform conservation of energy requires two opposite motions: electromagnetic
acceleration of energy consumption with the expansion of space-time frame, and decay of
space-time frame with the uniform restoration of energy at background state by neutral
current. In accordance with model (5), coupling of space-time variables generates separate
charges and electromagnetic energy, while coupling of charges generates separate space-time
variables moving uniformly to the background state.

The static continuous energy conservation described by Noether’s theorem does not involve
locality of an event and does not limit the boundary of the conserved quantity, therefore leads
to the singularity in the dynamical laws of classic physics.

The traditional concept of continuous energy conservation, described by Noether’s time inde-
pendent frame “energy can be neither created and not be destroyed, but it transforms from one
form to another” is not a complete theory, while it describes conservation of energy in the form
of time independent symmetry in abstract space, similar to Newton’s abstract space. It does
not involve driving force of conservation and transformation of energy from one form to
another in space-time frame that is why continuous conservation of energy within unlimited
time is not a valid concept to use in dynamical laws.

Model (5) has a feature of quantum physics, while energy and the produced space-time entity
within non-uniform energy distribution have discrete performance and are the non-continuum
“quantum portions.”Model (1) at Eap = 0 describes restoration of energy and virtual asymmet-
ric space and time products at background state. It is similar to the asymmetric wave equation
of quantum mechanics:
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at Eap = 0,

ΔS
S1
þ Δt

t1
¼ 0 (8)

In accordance with Eq. (8), the energy consumed in space phase is equal to the energy restored
in time phase. The total energy in opposite phases is conserved E = 0.

When energy is inserted to space-time frame for space expansion, one of time variables (instant
of time) gets performance of space coordinate for expansion of space with the decrease of
frequency of energy: (2;2)! (3;1). Generation of an event starts with the translation one of time
variables to space variable. The arrow of time, which is due to the consumption of energy in
space phase (appears as an energy Eap � Es gradient), generates thermodynamic arrow of heat
loss. Decrease of energy frequency Eap � Es leads to the increase of time arrow Δt, which is the
move from the past to the future, carrying energetic information of the past.

This is the mechanism of generation arrow of time. Therefore, the phenomenon called entropy
is due to the translation of time phase energy to the space-time frame with the loss of
frequency of energy. Due to the maximum frequency of time phase energy in the past and
consumption of energy in space phase, the parameter called “entropy” has its minimum value
in the past.

The condition (Eap � Es)/Es = 1 of model (1) describes the minimum space-time frame, where
the condition Eap = 2Es is in hold. This condition corresponds to the state where space-time
frame exist as Planck’s scale unit, carrying energy portion in discrete symmetry. In this case,
there is no difference in performance of time and space variables. However, this condition
takes place only in discrete mode.

The background state Eap = 0 of model (8) is the vacuum state of particle physics and classic
field, where all the components of stress-energy tensor is zero. At Eap = 0, the space-time frame
is broken to the separate space and time fields and there is no arrow of time. At Eap = 0, the
gravitational energy appears as the separate force through inversion of variables. In this case,
the entire energy portion, distributed in space phase (with negative sign) absorbed by the
initial background state. On this basis, gravitation appears as energy-mass relation of asym-
metric space-time variables rather than mass-mass relation of Newton’s physics.

8. Generation of mass

One of the main problems related to the generation of mass by spontaneous breakdown of
continuous symmetry, given by Higgs mechanism, is that this mechanism does not connect
generation of mass with the space-time locality of a particle, which gets mass and does not
explain why background continuous symmetry has to be broken by un-natural way. The
mechanism of mass generation also has to explain why collision experiments produce more
matter particles than antimatter particles.
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In this chapter, we will discuss how the non-uniform energy conservation concept is to be the
alternative mechanism of mass generation. The non-uniform distribution of energy portions
within asymmetric space and time phases requires generation of the fields with the different
energetic properties (frequency and amplitude), which is the only way for carrying conservation
of energy through these fields. Coupling of two fields with the different energetic properties as
an energy consuming and energy restoration phases generates the non-virtual space-time frame,
which appears to be the non-uniform conservation of energy through energy-mass exchange
transformations (Eap/Es � 1).

The background state of space-time frame is the relation of virtual asymmetric space and time
phases, which proceeds conversion of energy from one form to another (8), through translation
of asymmetric entities, such as ΔS/S1, Δt/t1, carrying energy portions as a virtual matter and
antimatter particles.

We can describe the non-uniform background energy-mass translation by conversion of light
photons to electron/positron pairs, which is well-known quantummechanics translation event.
Quantum mechanics states that during this translation, energy conservation is hold by fluctua-
tions, such as particles borrow energy and after very short time return the borrowed energy back:

γ=γ ¼ eþ=e� (9)

The energy-matter translation given by relation (9) does not count time phase of energy
conservation and locality of the produced particles, while photons-leptons translation takes
place in the abstract space. Equation (9) could be the discrete translation of energy in the form
of infinite fluctuations of the background quantum state. It is clear that in this case there is no
natural way for breaking of the continuous symmetry of discrete fluctuations, forming time
independent infinite symmetry of matter-antimatter relations. Equation (9) does not reflect the
borrowed time in the change of energy.

Conservation of energy requires a certain finite frame for locality that is why space and time
cannot exist as separate variables. Formation of a particle within any time scale without
locality in space phase leads to the missing of energy conservation. By Landau’s opinion [35],
infinite fluctuations of virtual matter-antimatter pairs should lead to the “Ultraviolet Catastro-
phe due to the accumulation of infinite amount of energy of collisions and it is impossible to
prove the mathematical basis of elimination of “Ultraviolet Catastrophe.”

On this basis, we replaced Eq. (9) with the relation:

γ=γ ¼ � eþ=e� þ νe=νe�ð Þ (10)

The right side of Eq. (10) involves additional identity in the form of neutrinos to cover missing
part of energy conservation in time dependent frame. Equation (10) represents mechanism of
energy conservation, which involves decay of energy into asymmetric space and time fields
particles having different energy density. Conversion of light photons from one form to
another for conservation needs generation of phase difference, which appears with the forma-
tion of e+/e� + νe/νe

� pairs.
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independent infinite symmetry of matter-antimatter relations. Equation (9) does not reflect the
borrowed time in the change of energy.

Conservation of energy requires a certain finite frame for locality that is why space and time
cannot exist as separate variables. Formation of a particle within any time scale without
locality in space phase leads to the missing of energy conservation. By Landau’s opinion [35],
infinite fluctuations of virtual matter-antimatter pairs should lead to the “Ultraviolet Catastro-
phe due to the accumulation of infinite amount of energy of collisions and it is impossible to
prove the mathematical basis of elimination of “Ultraviolet Catastrophe.”

On this basis, we replaced Eq. (9) with the relation:

γ=γ ¼ � eþ=e� þ νe=νe�ð Þ (10)

The right side of Eq. (10) involves additional identity in the form of neutrinos to cover missing
part of energy conservation in time dependent frame. Equation (10) represents mechanism of
energy conservation, which involves decay of energy into asymmetric space and time fields
particles having different energy density. Conversion of light photons from one form to
another for conservation needs generation of phase difference, which appears with the forma-
tion of e+/e� + νe/νe

� pairs.
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The space field particles, comprising e�/e+ pairs have more energy density, while time phase
particles, comprising νe/νe

� pairs, have energy portions of high frequency. That is why the mass
for neutrinos is significantly less than that of an electron’s mass. The right-handed antineutrino
and left-handed neutrino pair together with the electron/positron pair represent distribution of
energy within virtual space and time phases. Due to the locality within space, close to Planck’s
size, performance of virtual matter particles became time dependent and it get velocity less than
speed of light photons that is why parity translation (10) became non-invariant.

Generation of e�/e+ + νe/νe
� particles (10) is the translation of photons energy to virtual space

and time phase particles which could be specified as an “empty space” particles. The “empty
space” is the medium where e�/e+ + νe/νe

� particles form fluid with continuum spectrum. In
the absence of energy flux, Eap = 0 (5), takes place loss of the virtual space frame (10) and
translation of virtual particles backward to photons. However, particles before giving the
“borrowed’ energy back should loss localization in space phase and loss some portion of
energy which has to go in parallel with the absorption of photons by e�/e+ pairs. This phe-
nomenon is the main feature of energy non-conservation during return of “borrowed” energy
of quantum fluctuations. Generation of space phase and distribution of energy in space field
leads to the non-uniform conservation of energy in space by absorption of photons by e�/e+

pairs with formation of pairs of heavy bosons:

1. Generation of mass for bosons: passing of photons through e+/e� + νe/νe
� field

mγγ þ eþ=e� þ νe=νe�ð Þ¼nγγ þ eþ=νe Wþð Þ þ e�=νe� W�ð Þ (11)

2. Generation of mass for leptons

nγγ þ eþ=νe Wþð Þ þ e�=νe� W�ð Þ ¼ udd…Gluons…dduð Þ (12)

In accordance with condition (10), the pair of leptons e�/e+ + νe/νe
� has a performance of

virtual bosons (similar to the Nambu Goldstone bosons) and in the form of four leptons
describes the “fermionic quanta” or virtual particles of space phase. From model (5) and
Eqs. (10) and (11), it is followed that photons energy may be conserved only through exchange
interaction with the non-zero mass particles.

The two pair of particles e�/e+ + νe/νe
� in the form of virtual neutral boson field is the

alternative to the Higgs field which absorbing photons generates heavy W bosons.

Exchange interaction of yy photons with the e�/e+ + νe/νe
� particles lead to the observance of

light which became a composite particle. When Eap = 0, the leptons in the form of pair of
particles e�/e+ + νe/νe do not form space-time frame and do not obey Pauli exclusive principle
and perform as bosons condensate with the integer spin number. Composite fermions with
bosonic “face” due to the absence of exchange interactions, has a performance similar to Bose-
Einstein bosons condensate, which in the form of superconductive neutral fluid carry energy to
the background state. The left side of Eq. (10) describes bosons superconductive fluid, while
the right side presents superconductive fermionic medium.
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At Eap = 0, decay of the ordinary matter particles e+/νe + e
�/νe

� takes place with the generation
of gravitational force. The energy, released from the continuous decay of space-time frame,
through longitudinal wave of neutral current e+/e� + νe/νe

� of complex bosons condensate
moves to the background state. The absence of exchange interaction generates longitude wave.

In the absence of energy flux, decay of space-time frame leads pairing of electron/positron and
neutrino/antineutrino pairs to composite bosons with continuous spectrum. The composite
bosons do not obey Pauli Exclusion Principle and can occupy the same ground to form fluid,
which gets peculiar properties of superconductivity.

The empty space is the medium where particles form fluid with continuous spectrum. They
become as massless particles moving with superconductivity to the initial state. The uniform fluid
motion of complex boson to the background state appears as the uniform gravitational field.

Addition of neutrinos to Eq. (9) replaces the concept of electron self-interaction. The condition
of space expansion describes positive energy solution while consuming all the energy in space-
time (Eap = 0) represents negative energy solution.

Separation of e�/e+ + νe/νe
� pairs and transformation to the frame of quarks e+/νe + e�/νe

�

consumes huge amount of energy which makes produced W+, W� bosons very heavy. How-
ever, heavy bosons are not a fermions because they do not have own non-virtual space-time
frame. As in the case of Eq. (10), when there is no energy flux (absence of force carrier scalar
bosons) to hold the condition of Eq. (11), due to the absence of non-virtual space-time frame,
W+,W� vector bosons have a trend to decay back to γ/γ photons in the form of beta decay. The
W+, W� bosons have a performance as left- and right-handed particles, which is why they are
vector bosons. Generation of mass and its stable existence is possible if W+, W� bosons could
form a non-virtual space-time frame. On this basis, non-uniform conservation of energy
requires translation of background asymmetric time phase energy to space-time frame, which
leads to the generation of baryonic space-time structure. Here, it is necessary to give specifica-
tions: baryonic particles are the particles, which have space-time frame, and leptons are the
particles, which in individual form have no space-time frame.

Energy of YY photons converted to energy of massiveW� andW+ vector bosons for generation
of virtual space-time frame. In the second step, flux of the energy for generation of non-virtual
space-time frame of quarks takes place within n-p structure. The energy of exchange interac-
tions composes energy of gluons to hold discrete locality of quarks in the non-virtual space-
time frame. The difference of the energy ofW bosons and quarks in relation to quarks mass (at
discrete symmetry energy-mass equivalence is in hold) becomes the energy flux for discrete
exchange interactions. That is why quarks mass is less than that of W bosons. Due to the three
body interactions (Eact = 2Es) which keeps discrete symmetry of n-p transformations (8), gluons
participate in exchange interactions also in the form of non-zero mass particles in three family
frame comprising of three-color structure.

Due to the existence of quarks family in proton-neutron frame in discrete mode, energy
portion consumed from force carrier scalar in exchange interactions (Eact � Es)/Es generates
the symmetric three particles frame of quarks. In the process of cyclic n-p transformations, the
total energy conserved.
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nγγ þ eþ=νe Wþð Þ þ e�=νe� W�ð Þ ¼ udd…Gluons…dduð Þ (12)

In accordance with condition (10), the pair of leptons e�/e+ + νe/νe
� has a performance of

virtual bosons (similar to the Nambu Goldstone bosons) and in the form of four leptons
describes the “fermionic quanta” or virtual particles of space phase. From model (5) and
Eqs. (10) and (11), it is followed that photons energy may be conserved only through exchange
interaction with the non-zero mass particles.

The two pair of particles e�/e+ + νe/νe
� in the form of virtual neutral boson field is the

alternative to the Higgs field which absorbing photons generates heavy W bosons.

Exchange interaction of yy photons with the e�/e+ + νe/νe
� particles lead to the observance of

light which became a composite particle. When Eap = 0, the leptons in the form of pair of
particles e�/e+ + νe/νe do not form space-time frame and do not obey Pauli exclusive principle
and perform as bosons condensate with the integer spin number. Composite fermions with
bosonic “face” due to the absence of exchange interactions, has a performance similar to Bose-
Einstein bosons condensate, which in the form of superconductive neutral fluid carry energy to
the background state. The left side of Eq. (10) describes bosons superconductive fluid, while
the right side presents superconductive fermionic medium.
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At Eap = 0, decay of the ordinary matter particles e+/νe + e
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� takes place with the generation
of gravitational force. The energy, released from the continuous decay of space-time frame,
through longitudinal wave of neutral current e+/e� + νe/νe

� of complex bosons condensate
moves to the background state. The absence of exchange interaction generates longitude wave.
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bosons do not obey Pauli Exclusion Principle and can occupy the same ground to form fluid,
which gets peculiar properties of superconductivity.
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become as massless particles moving with superconductivity to the initial state. The uniform fluid
motion of complex boson to the background state appears as the uniform gravitational field.

Addition of neutrinos to Eq. (9) replaces the concept of electron self-interaction. The condition
of space expansion describes positive energy solution while consuming all the energy in space-
time (Eap = 0) represents negative energy solution.

Separation of e�/e+ + νe/νe
� pairs and transformation to the frame of quarks e+/νe + e�/νe

�

consumes huge amount of energy which makes produced W+, W� bosons very heavy. How-
ever, heavy bosons are not a fermions because they do not have own non-virtual space-time
frame. As in the case of Eq. (10), when there is no energy flux (absence of force carrier scalar
bosons) to hold the condition of Eq. (11), due to the absence of non-virtual space-time frame,
W+,W� vector bosons have a trend to decay back to γ/γ photons in the form of beta decay. The
W+, W� bosons have a performance as left- and right-handed particles, which is why they are
vector bosons. Generation of mass and its stable existence is possible if W+, W� bosons could
form a non-virtual space-time frame. On this basis, non-uniform conservation of energy
requires translation of background asymmetric time phase energy to space-time frame, which
leads to the generation of baryonic space-time structure. Here, it is necessary to give specifica-
tions: baryonic particles are the particles, which have space-time frame, and leptons are the
particles, which in individual form have no space-time frame.

Energy of YY photons converted to energy of massiveW� andW+ vector bosons for generation
of virtual space-time frame. In the second step, flux of the energy for generation of non-virtual
space-time frame of quarks takes place within n-p structure. The energy of exchange interac-
tions composes energy of gluons to hold discrete locality of quarks in the non-virtual space-
time frame. The difference of the energy ofW bosons and quarks in relation to quarks mass (at
discrete symmetry energy-mass equivalence is in hold) becomes the energy flux for discrete
exchange interactions. That is why quarks mass is less than that of W bosons. Due to the three
body interactions (Eact = 2Es) which keeps discrete symmetry of n-p transformations (8), gluons
participate in exchange interactions also in the form of non-zero mass particles in three family
frame comprising of three-color structure.

Due to the existence of quarks family in proton-neutron frame in discrete mode, energy
portion consumed from force carrier scalar in exchange interactions (Eact � Es)/Es generates
the symmetric three particles frame of quarks. In the process of cyclic n-p transformations, the
total energy conserved.
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Generation of space-time frame of quarks through alignment of “empty space field” particles
e+/e� + νe/νe

� to “Dirac particles” e+/νe + e
�/νe

� requires huge amount of energy flux from force
carrier scalar bosons. The decay of mass and translation of space-time energy back takes place at
Eact = 0, (λ =�1)with transformation of e+/νe + e

�/νe
� ingredients (Dirac particles) to the longitu-

dinal wave of neutral current correlating the helicity of neutrinos with the negative Eigen value:

eþ=νe Wþð Þ þ e�=νe� W�ð Þ ! eþ=e� þ νe=νe�ð Þ þ YY (13)

The transformations, described by Eqs. (10)–(13), are symmetrical only in discrete mode within
closed loop. The absence of invariant translations between ingredients of Eqs. (10)–(13) is due
to the non-uniform conservation of energy. In accordance with model (6), in the presence of
energy for reverse translation, matter particle in exchange interaction (Eact � Es)/Es should
have more energy than that of force carrier scalar (gluons). Due to the same reason, it is
impossible to separate quarks-antiquarks pairs. Separation of individual quarks is possible
only at Eact = 0, when three family space-time frame of proton collapses. This behavior of
quarks describes color confinement phenomenon.

Model (5) explains the phenomenon called “nonlocality” or entanglement paradox of quantum
mechanics. The function Eap� Es/Es of model (5), which describes action-response parity, is the
origin of local action. At Eap = 0, particle has no space-time frame and has no certain locality.
When particle has no space-time (Eap = 0), all particles are the non-distinguishable ingredients
of antimatter “condensate.”

At Eap � Es ˃ 0, particle has its own space-time frame and therefore independent locality. The
condition Eap = 0, eliminates action-response behavior of a particle which losing spin response
moves to the background state with the velocity not less than speed of light.

You cannot isolate virtual space phase from virtual time phase that is why it is impossible to
separate the quark-antiquark frame. Meson alone has no space-time frame that is why it is not
observable as a separate particle, but it is a piece of non-virtual space-time frame of p-n frame,
having a motion in baryon structure.

The exchange interaction of model (5) (Eap � Es)/Es explains why the weak interaction acts
only on left-handed particles and right-handed antiparticles. The right-handed particles in
exchange interactions lead to the expansion of space matter, while left-handed matter particles
generate gravitational force to hold the boundary of the conserved energy. The non-invariant
translation of a body to the initial state takes place with the decay of space-time frame and
realignment of the neutrinos helicity with formation of neutral current. Composite bosons with
the continuum spectrum comprise the phenomenon called gravitation.

The first step described by Eqs. (10) and (11) is the generation of non-zero mass virtual
particles having virtual space-time frame, while the step (12) involves transformation of a
lepton particles from virtual space-time manifold to the minimum grain of non-virtual space-
time frame. That is why mechanism of generation of mass for space-time frame particles
(quarks) and bosons is different.

From model (1), it follows that at zero value of Es, the space-time frame moves to the singular-
ity. Therefore, the inertial energy of a particle in cyclic mode can never have zero value and
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when more energy portion applied to the space-time frame, the gravitational mass added. The
gravitational mass appears as the energy portion distributed in space-time frame to control
conservation of energy within certain boundary of this frame. Eap in energy flux (Eap� Es)/Es is
the bosonic part of the frame, while Es is the fermionic ingredient of exchange interactions. The
energy flux (Eap � Es)/Es through coupling with the local position of space-time S1/t1 describes
interaction of bosonic and fermionic particles through exchange of energy. In case when
interaction takes place between two fermions, the ingredients of the energy flux (Eap � Es)/Es

describes interaction of energy or mass content of these fermions. Therefore, model (5) con-
nects all the interactions of particles physics.

Generation of mass is the combination of electromagnetic and weak forces. The electromag-
netic force needed for generation of non-virtual space-time frame, while weak force is neces-
sary to keep the existence of space-time frame of a matter “grain” through discrete symmetry,
which requires violation of local CPT symmetry. Weak interactions are the result of non-
uniform discrete conservation of energy, which takes place with translation of asymmetric
boundaries of space-time phases, carrying non-uniform conservation of energy.

Now appears a question, why electromagnetic force is carried by charged particles, while
neutral particles are responsible for gravitation. Charged bosons are needed for generation of
non-zero mass quarks of space-time frame to carry conservation of energy in expansion phase
of space, while neutral bosons are needed for translation of space-time energy back to the
background state. At Eap = 0, decay of space-time frame releases graviton in the form of neutral
current back to the initial state.

Within non-uniform conservation of energy in space-time frame we may explain how space-
time, carrying energy distribution may lead to the generation of chargers. The space-time to
carry non-uniform conservation of energy leads to the formation of phase difference between
space and time coordinates which appears in the form of charges.

In non-uniform conservation of energy, boundary of space and time variables is asymmetri-
cally different, and background coupling of asymmetric space-time variables does not produce
symmetrical particles-antiparticles pairs. At Planck scale, when space boundary is small, the
left side of Eq. (8) has a huge trend to change and the duration of change at this scale is very
small. Therefore, space and time variables, carrying the same portions of energy, have very
asymmetric boundaries, which is the driving force for selection of the direction in non-uniform
distribution of energy.

Due to this reason, the symmetry of strong force and permanent performance of the proton-
neutron pairs is possible only through discrete uniform translation of scalar energy to the
“three particles tandem of” space-time-energy frame (5).

Due to the requirement of discrete symmetry Eap = 2Es, neutrinos also exists in three family
mode; Two types of neutrinos couple and produce third type neutrino; asymmetric decay of
the third neutrino leads back to the realization of discrete symmetry of neutrino’s existence. At
Eap = 0, neutrinos do not participate in electromagnetic force but at Eap 6¼ 0, neutrino, being
part of quark structure, participates in the discrete symmetry of baryon frame. The neutrino’s
mass is small for realization of neutron-proton discrete symmetry with high frequency.
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Generation of space-time frame of quarks through alignment of “empty space field” particles
e+/e� + νe/νe

� to “Dirac particles” e+/νe + e
�/νe

� requires huge amount of energy flux from force
carrier scalar bosons. The decay of mass and translation of space-time energy back takes place at
Eact = 0, (λ =�1)with transformation of e+/νe + e

�/νe
� ingredients (Dirac particles) to the longitu-

dinal wave of neutral current correlating the helicity of neutrinos with the negative Eigen value:
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to the non-uniform conservation of energy. In accordance with model (6), in the presence of
energy for reverse translation, matter particle in exchange interaction (Eact � Es)/Es should
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impossible to separate quarks-antiquarks pairs. Separation of individual quarks is possible
only at Eact = 0, when three family space-time frame of proton collapses. This behavior of
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condition Eap = 0, eliminates action-response behavior of a particle which losing spin response
moves to the background state with the velocity not less than speed of light.

You cannot isolate virtual space phase from virtual time phase that is why it is impossible to
separate the quark-antiquark frame. Meson alone has no space-time frame that is why it is not
observable as a separate particle, but it is a piece of non-virtual space-time frame of p-n frame,
having a motion in baryon structure.

The exchange interaction of model (5) (Eap � Es)/Es explains why the weak interaction acts
only on left-handed particles and right-handed antiparticles. The right-handed particles in
exchange interactions lead to the expansion of space matter, while left-handed matter particles
generate gravitational force to hold the boundary of the conserved energy. The non-invariant
translation of a body to the initial state takes place with the decay of space-time frame and
realignment of the neutrinos helicity with formation of neutral current. Composite bosons with
the continuum spectrum comprise the phenomenon called gravitation.

The first step described by Eqs. (10) and (11) is the generation of non-zero mass virtual
particles having virtual space-time frame, while the step (12) involves transformation of a
lepton particles from virtual space-time manifold to the minimum grain of non-virtual space-
time frame. That is why mechanism of generation of mass for space-time frame particles
(quarks) and bosons is different.

From model (1), it follows that at zero value of Es, the space-time frame moves to the singular-
ity. Therefore, the inertial energy of a particle in cyclic mode can never have zero value and
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nects all the interactions of particles physics.
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sary to keep the existence of space-time frame of a matter “grain” through discrete symmetry,
which requires violation of local CPT symmetry. Weak interactions are the result of non-
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of space, while neutral bosons are needed for translation of space-time energy back to the
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cally different, and background coupling of asymmetric space-time variables does not produce
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left side of Eq. (8) has a huge trend to change and the duration of change at this scale is very
small. Therefore, space and time variables, carrying the same portions of energy, have very
asymmetric boundaries, which is the driving force for selection of the direction in non-uniform
distribution of energy.

Due to this reason, the symmetry of strong force and permanent performance of the proton-
neutron pairs is possible only through discrete uniform translation of scalar energy to the
“three particles tandem of” space-time-energy frame (5).

Due to the requirement of discrete symmetry Eap = 2Es, neutrinos also exists in three family
mode; Two types of neutrinos couple and produce third type neutrino; asymmetric decay of
the third neutrino leads back to the realization of discrete symmetry of neutrino’s existence. At
Eap = 0, neutrinos do not participate in electromagnetic force but at Eap 6¼ 0, neutrino, being
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The weak force is needed to hold permanent performance of the “space-time frame of elemen-
tary grain” of the matter in discrete mode within minimum space frame. The conservation of
matter “grain” in the form of proton cannot hold continuous symmetry, while in this case there
cannot be conservation of energy.

The discrete performance of three particles frame Eap = 2Es explains why there are three
families of quarks. For generation of discrete stable performance of an n-p pair the energy flux
to space-time frame of baryon quarks needs to meet the condition Eap = 2Es. The baryon alone
is not stable therefore cannot be the fundamental matter: the two nucleons are coupled with
themeson fieldTB (top-antibottom) to form three flavor structure of space-time frame Eap = 2Es.
In this case, the n-p frame holds discrete symmetry with high frequency and n-p transforma-
tion event which “after the change looks the same” (8).

The non-uniform conservation concept explains “mass gap problem” of Yang-Mills theory
[36], which states “quantum particles have positive mass with regard to the vacuum state.”
The positive Eigen value of (Eap � Es)/Es exchange interactions shows that “quantum” particle
has a positive mass in relation to the vacuumwhile translation of time phase vacuum energy to
the space-time frame generates positive Eigen value (Eap � Es)/Es and positive mass. Conver-
sion of mass to energy produces energy with negative sign and this process does not response
to the change of time.

Description of the energy flux of model (6) in the form Eigen value (Eap/Es � Es/Es) involves
two terms: the term Eap/Es describes performance of charged particles through electromagnetic
flux of energy, while Es/Es involves neutral particles—neutrinos which have self-coupling
performance and do not experience effect of forces.

Recently, due to the dark energy phenomenon of Universe, the subject of energy conservation got
more attention. For example, Ref. [37] suggest that without dark energy and darkmatter, Einstein’s
gravitational field equations should not hold conservation of energy-momentum relation.

In accordance with the non-uniform energy conservation concept, we may give specification of
ordinary and dark energy. The dark energy generated due to the non-invariant translation of
ordinary energy to the virtual space-time frame. Ordinary matter exists when there is space-
time frame; but when space-time frame decays, it disappears with the decay of space-time
frame of ordinary matter. Dark matter is not a baryonic matter and has no non-virtual space-
time frame. Matter may have observance when it has non-virtual space-time frame.

The non-uniform phenomenon of energy conservation and non-invariant weak interaction are
the necessary laws of nature to give different shapes to the different events: without non-
uniform conservation of energy and non-invariant exchange interaction, the events would
form a non-separable dark matter without any shape and structure.

In accordance with model (5), both energy and matter to be observable should have space-time
frame. In the background, energy and space-time are not observable. On this basis, the non-
observable time phase energy has features of dark energy.

Thus, the space and time are the products of non-uniform energy conservation and in reverse
order, energy and mass identities are the inner products of space-time discrete dynamics. This
concept completely changes our views on the fundamental interactions and symmetrical laws
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of nature. Therefore, nature requires description only within very precise energy conservation
principles.

9. Conclusion

We replaced two pieces of conservation laws, comprising conservation of energy as uniformity
in time and conservation of momentum as uniformity in space by the new conservation
concept suggesting non-uniform conservation of energy within discrete space-time frame. We
replaced particles concept of classic physics and wave equation of quantum physics by the
boundary mapped discrete space-time frame, which carries the non-uniform conservation of
energy. Uniform manifestation of energy in time and uniform manifestation of momentum in
space is not possible within space-time frame, which carries energy conservation within the
non-uniform framework.

Therefore, the energy-mass equivalence, limitation of velocity with the speed of light, breaking
of background symmetry all originate from the non-uniform conservation of energy. The
background state of discrete space-time frame describes quantum level interactions through
discrete transformation of space-time variables to each other with generation of discrete virtual
particle-antiparticle pairs. Consumption of energy from the background field leads to the
formation of the “grain” of the non-virtual space-time frame with generation of mass, energy-
momentum relation of general relativity and classic physics.

With the increase of energy portion consumed in space phase, it consumes more energy to
continue its velocity that is why expansion of space is “accelerated,”which is the result of non-
uniform conservation of energy. Conservation of energy is accelerated which appears in the
form of non-uniform distribution of energy within asymmetric space and time boundaries.

Our concept suggests that the laws of nature comprise simple deterministic formulation of
space-time, which holds conservation of energy in a unique way through non-spontaneous
background translations of space-time phases. The consumption of energy photons by the
space-time matter with the expansion of space generates backup reaction, which becomes the
origin of gravity.

Finally, discrete, non-invariant translation of asymmetric boundaries of space and time vari-
ables to each other for carrying energy portions is the deterministic mathematical beauty of
energy conservation and discrete existence of nature.
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Abstract

The relation between the time scale calculus and quantum calculus and the δ�-periodicity
in quantum calculus with the notion is considered. As an application, in two-dimensional
predator–prey system with Beddington-DeAngelis-type functional response on periodic
time scales in shifts is used.

Keywords: predator prey dynamic systems, Beddington-DeAngelis-type functional
response, δ�-periodic solutions on quantum calculus, periodic time scales in shifts

1. Introduction

The traditional infinitesimal calculus without the limit notion is called calculus without limits
or quantum calculus. After the developments in quantum mechanics, q-calculus and h-calculus
are defined. In these calculi, h is Planck’s constant and q stands for the quantum. These two

parameters q and h are related with each other as q ¼ eih ¼ e2πi~h : This equation ~h ¼ h
2π is the

reduced Planck’s constant. h-calculus can also be seen as the calculus of the differential
equations, and this was first studied by George Boole. Many other scientists also made some
studies on h-calculus, and it was shown that it is useful in a number of fields, among them,
combinatorics and fluid mechanics. The q-calculus is more useful in quantum mechanics, and
it has an intimate connection with commutative relations [1]. In the following, the main
notions and its relation to the time scale calculus will be discussed.
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In [2], in classical calculus when the equation

f xð Þ � f x0ð Þ
x� x0

is considered and as x tends to x0, the differentiation notion is obtained. When the differential
equations are considered, the difference of a function is defined as f xþ 1ð Þ � f xð Þ: In quantum
calculus, the q-differential of a function is equal to the following:

dq f xð Þð Þ ¼ f qxð Þ � f xð Þ

and

dq xð Þ ¼ qx� x ¼ q� 1ð Þx:

Then the q-derivative is defined as follows:

dq f xð Þð Þ
dq xð Þ ¼

f qxð Þ � f xð Þ
q� 1ð Þx :

The differentiation in time scale calculus is given in Theorem 1, and if the differentiation notion
in this theorem is applied whenT ¼ qN, one can easily see that the same q-derivative is obtained.

As an inverse of q-derivative, one can get q-integral that is also very significant for the structure
of this calculus. A function F xð Þ is a q-antiderivative of f xð Þ if DqF xð Þ ¼ f xð Þ is satisfied where

F xð Þ ¼
ð
f xð Þdqx ¼ 1� qð Þ

X∞
0

xqjf xqj
� �

:

This is also called the Jackson integral [3]. When the definition of the antiderivative of a function
in time scale calculus is considered, it can be easily seen that when T ¼ qN0 , these two defini-
tions become equivalent. Therefore, to understand the quantum calculus, it is very important to
understand the time scale calculus. In addition to these, the δ�-periodicity notion in time scale
calculus is defined in Definition 1 in [4] for the application. In this study, by using time scale
calculus, the application of δ�-periodicity notion of qN, which overlaps with the q-calculus, to a
predator–prey system with Beddington-DeAngelis-type functional response is studied.

To understand this application in a much better sense, the following information about the
predator–prey dynamic systems is given. Predator–prey equations are also known as the
Lotka-Volterra equations. This model was initially proposed by Alfred J. Lotka in the theory
of autocatalytic chemical reactions in 1910 [5, 6] which was effectively the logistic Equation [7]
and originally derived by Pierre Françis Verhulst [8]. In 1920, Lotka extended this model to
“organic systems” by using a plant species and a herbivorous animal species. The findings of
this study were published in [9]. In 1925, he obtained the equations to analyze predator–prey
interactions in his book on biomathematics [10] arriving at the equations that we know today.
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After the development of the equations for predator–prey systems, it becomes important to
obtain the type of functional response. The first functional response was proposed by C. S.
Holling in [11, 12]. Both the Lotka-Volterra model and Holling’s extensions have been used to
model the moose and wolf populations in Isle Royale National Park [13]. In addition to these,
there are many studies that use the predator–prey dynamic systems with Holling-type func-
tional responses. These studies especially analyze the permanence, stability, periodicity, and
such different aspects of these systems. The papers [14], [15, 16] can be some of its examples.

Arditi and Ginzburg made some changes and extension on the functional response of Holling,
and this new functional response is known as the ratio-dependent functional response. Also,
from this functional response, the semiratio-dependent functional responses are also derived.
Again, there are many studies that are about the several structures of the predator–prey
dynamic systems such as [14, 17–19], [20, 21].

2. Preliminaries about time scale calculus

The main tool we have used, in this study, is time scale calculus, which was first appeared in
1990 in the thesis of Stephen Hilger [22]. By a time scale, denoted by T, we mean a non-empty
closed subset of R: The theory of time scale calculus gives a way to unify continuous and
discrete analysis.

The following informations are taken from [14, 23]. The set Tκ is defined by Tκ ¼
T= r supT

� �
; supT

� �
, and the set Tκ is defined by Tκ ¼ T= infT; σ infTð Þ½ Þ: The forward jump

operator σ : T! T is defined by σ tð Þ≔in t;∞ð ÞT, for t∈T: The backward jump operator r : T!
T is defined by r tð Þ≔sup �∞; tð ÞT, for t∈T: The forward graininess function μ : T! Rþ0 is
defined by μ tð Þ≔σ tð Þ � t, for t∈T: The backward graininess function ν : T! Rþ0 is defined by
ν tð Þ≔t� r tð Þ, for t∈T: Here, it is assumed that inf0= ¼ supT and sup0= ¼ infT:

For a function f : T! T, we define the Δ-derivative of f at t∈Tκ, denoted by f Δ tð Þ for all e > 0:
There exists a neighborhood U⊂T of t∈Tκ such that

∣f σ tð Þð Þ � f sð Þ � f Δ tð Þ σ tð Þ � sð Þ∣ ≤ e∣σ tð Þ � s∣

for all s∈U:

For the same function, the ∇-derivative of f at t∈Tκ, denoted by f ∇ tð Þ, for all e > 0:, is defined.
There exists a neighborhood V ⊂T of t∈Tκ such that

∣f sð Þ � f r tð Þð Þ � f ∇ tð Þ s� r tð Þð Þ∣ ≤ e∣s� r tð Þ∣

for all s∈V:

A function f : T! R is rd-continuous if it is continuous at right-dense points in T and its left-
sided limits exist at left-dense points in T: The class of real rd-continuous functions defined on
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After the development of the equations for predator–prey systems, it becomes important to
obtain the type of functional response. The first functional response was proposed by C. S.
Holling in [11, 12]. Both the Lotka-Volterra model and Holling’s extensions have been used to
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dynamic systems such as [14, 17–19], [20, 21].

2. Preliminaries about time scale calculus

The main tool we have used, in this study, is time scale calculus, which was first appeared in
1990 in the thesis of Stephen Hilger [22]. By a time scale, denoted by T, we mean a non-empty
closed subset of R: The theory of time scale calculus gives a way to unify continuous and
discrete analysis.

The following informations are taken from [14, 23]. The set Tκ is defined by Tκ ¼
T= r supT

� �
; supT

� �
, and the set Tκ is defined by Tκ ¼ T= infT; σ infTð Þ½ Þ: The forward jump

operator σ : T! T is defined by σ tð Þ≔in t;∞ð ÞT, for t∈T: The backward jump operator r : T!
T is defined by r tð Þ≔sup �∞; tð ÞT, for t∈T: The forward graininess function μ : T! Rþ0 is
defined by μ tð Þ≔σ tð Þ � t, for t∈T: The backward graininess function ν : T! Rþ0 is defined by
ν tð Þ≔t� r tð Þ, for t∈T: Here, it is assumed that inf0= ¼ supT and sup0= ¼ infT:

For a function f : T! T, we define the Δ-derivative of f at t∈Tκ, denoted by f Δ tð Þ for all e > 0:
There exists a neighborhood U⊂T of t∈Tκ such that

∣f σ tð Þð Þ � f sð Þ � f Δ tð Þ σ tð Þ � sð Þ∣ ≤ e∣σ tð Þ � s∣

for all s∈U:

For the same function, the ∇-derivative of f at t∈Tκ, denoted by f ∇ tð Þ, for all e > 0:, is defined.
There exists a neighborhood V ⊂T of t∈Tκ such that

∣f sð Þ � f r tð Þð Þ � f ∇ tð Þ s� r tð Þð Þ∣ ≤ e∣s� r tð Þ∣

for all s∈V:

A function f : T! R is rd-continuous if it is continuous at right-dense points in T and its left-
sided limits exist at left-dense points in T: The class of real rd-continuous functions defined on
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a time scale T is denoted by Crd T;Rð Þ: If f ∈Crd T;Rð Þ, then there exists a function F tð Þ such
that FΔ tð Þ ¼ f tð Þ. The delta integral is defined by

Ð b
a f xð ÞΔx ¼ F bð Þ � F að Þ:

Theorem 1. [23] Suppose that f : T! R is a function and t∈Tκ. Then, we have the following:

1. If f is delta differentiable at t, then f is continuous at t:

2. If f is continuous at a right scattered t, then f is delta differentiable at t with

f Δ tð Þ ¼ f σ tð Þð Þ � f tð Þ
μ tð Þ :

3. If t is right dense, then f is delta differentiable at t if and only if the limit

lim
s!t

f tð Þ � f sð Þ
t� s

exists as a finite number. In this case,

f Δ tð Þ ¼ lim
s!t

f tð Þ � f sð Þ
t� s

:

4. If f is delta differentiable at t, then

f σ tð Þ ¼ f tð Þ þ μ tð Þf Δ tð Þ:

Theorem 2. [23] If a, b, c, d∈T, α∈R, and f , g : T! R are rd-continuous, then

•
Ð b
a f tð Þ þ g tð Þ½ �Δt ¼ Ð ba f tð ÞΔ tð Þ þ Ð ba g tð ÞΔt;

•
Ð b
a αf tð ÞΔt ¼ α

Ð b
a f tð ÞΔt;

•
Ð b
a f tð ÞΔt ¼ � Ð ab f tð ÞΔt;

•
Ð b
a f tð ÞΔt ¼ Ð ca f tð ÞΔtþ Ð bc f tð ÞΔt;

•
Ð a
a f tð ÞΔ tð Þ ¼ 0;

•
Ð b
a f tð ÞgΔ tð ÞΔt ¼ fg bð Þ � fg að Þ � Ð ba f Δ tð Þg σ tð Þð ÞΔt;

•
Ð b
a f σ tð Þð ÞgΔ tð ÞΔt ¼ fg bð Þ � fg að Þ � Ð ba f Δ tð Þg tð ÞΔt:

Theorem 3. [23] If a, b∈T, α∈R, and f : T! R are rd-continuous, then
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• If T ¼ R, then

ðb
a
f tð ÞΔt ¼

ðb
a
f tð Þdt,

where the integral on the right is the Riemann integral from calculus.

• If T consists of only isolated points and a < b, then

X
t∈ a;b½ Þ

f tð Þμ tð Þ:

Theorem 4. [14] (Continuation Theorem). Let L be a Fredholm mapping of index zero and C be L-
compact on Ω. Assume

a. For each λ∈ 0; 1ð Þ, any y satisfying Ly ¼ λCy is not on δΩ, i.e., y∉δΩ

b. For each y∈ δΩ ∩KerL, VCy 6¼ 0 and the Brouwer degree deg JVC; δΩ ∩KerL; 0f g 6¼ 0: Then,
Ly ¼ Cy has at least one solution lying in DomL ∩ δΩ.

We will also give the following lemma, which is essential for this chapter.

Definition 1. [4] Let the time scale T including a fixed number t0 ∈T∗ where T∗ be a non-empty
subset of T, such that there exist operators δ� : t0;∞½ ÞT � T∗ ! T∗ which satisfy the following
properties:

P.1 With respect to their second arguments, the functions δ� are strictly increasing, i.e., if

S0; vð Þ, S0; sð Þ∈D�≔f u; vð Þ∈ t0;∞½ ÞT � T∗ : δ� u; vð Þ∈T∗g,

then

S0 ≤ v < s implies δ� S0; vð Þ < δ� S0; sð Þ,
P.2 If S1; sð Þ, S2; sð Þ∈D� with S1 < S2, then δ� S1; sð Þ > δ� S2; sð Þ, , and if S1; sð Þ, S2; sð Þ∈Dþ with
S1 < S2, then δþ S1; sð Þ < δþ S2; sð Þ,
P.3 If v∈ t0;∞½ ÞT, then v; t0ð Þ∈Dþ and δþ v; t0ð Þ ¼ s: Moreover, if v∈T∗, then t0; vð Þ∈Dþ and
δþ t0; vð Þ ¼ v holds

P.4 If u; vð Þ∈D�, then u; δ� u; vð Þð Þ∈D� and δ∓ u; δ� u; vð Þð Þ ¼ v, respectively.

P.5 If u; vð Þ∈D� and s; δ� u; vð Þð Þ∈D�, then u; δ∓ s; vð Þð Þ∈D� and
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subset of T, such that there exist operators δ� : t0;∞½ ÞT � T∗ ! T∗ which satisfy the following
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δ∓ s; δ� u; vð Þð Þ ¼ δ� u; δ∓ s; vð Þð Þ, respectively

Then the backward operator is δ�, and the forward operator is δþ which are associated with t0 ∈T∗

(called the initial point). Shift size is the variable u∈ t0;∞½ ÞT in δ� u; vð Þ. The values δþ u; vð Þ and
δþ u; vð Þ in T∗ indicate u unit translation of the term v∈T∗ to the right and left, respectively. The sets
D� are the domains of the shift operators δ�, respectively.

Definition 2. [4] Let T be a time scale with the shift operators δ� associated with the initial point
t0 ∈T∗ . The time scale T is said to be periodic in shifts δ� if there exists a q∈ t0;∞ð ÞT∗ such that
q; tð Þ∈D� for all t∈T∗: Furthermore, if

Q≔inf q∈ t0;∞ð ÞT∗ : q; tð Þ∈D� for all t∈T∗� � 6¼ t0

then P is called the period of the time scale T.

Definition 3. [4] (Periodic function in shifts δþ and δ�). Let T be a time scale that is periodic in shifts
δþ and δ� with the period Q. We say that a real valued function g defined on T∗ is periodic in shifts if

there exists a ~T ∈ Q;∞½ ÞT∗ such that

g δ� ~T ; t
� �� � ¼ g tð Þ:

The smallest number ~T ∈ Q;∞½ ÞT∗ such that is called the period of f.

Definition 1, Definition 2, and Definition 3 are from [4].

[24]

Notation 1 δ2þ T;κð Þ ¼ δþ T; δþ T;κð Þð Þ,

δ3þ T;κð Þ ¼ δþ T; δþ T; δþ T; κð Þð Þð Þ,…

δnþ T;κð Þ ¼ δþ , δþ T; δþ T; δþ :…ð Þð Þð Þ:ð

Lemma 1. [24] Let our time scale T be periodic in shifts, and for each t∈T∗, δnþ T; tð Þ� �Δ is constant.

Then,
Ð δþ T;κð Þ
κ

u tð ÞΔt
mes δþ T;κð Þð Þ is also constant ∀κ∈T,

where κ ¼ δm� T; t0ð Þ for m∈N and mes δþ T;κð Þð Þ = Ð δþ T;κð Þ
κ 1Δt: Here, u tð Þ is a periodic function in

shifts.

Proof. We get the desired result, if we can be able to show that for any κ1 6¼ κ2 (κ1,κ2 ∈T).
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Ð δþ T;κ1ð Þ
κ1

u tð ÞΔt
mes δþ T; κ1ð Þð Þ ¼

Ð δþ T;κ2ð Þ
κ2

u tð ÞΔt
mes δþ T;κ2ð Þð Þ :

Since T is a periodic time scale in shifts (WLOG κ2 > κ1), there exits n∈N such that

κ2 ¼ δnþ T;κ1ð Þ: Hence, it is also enough to show that

Ð δþ T;κ1ð Þ
κ1

u tð ÞΔt
mes δþ T;κ1ð Þð Þ ¼

Ð δþ T;δnþ T;κ1ð Þð Þ
δnþ T;κ1ð Þ u tð ÞΔt

mesðδþðT, δnþðT,κ1ÞÞÞ
:

Because of the definition of the time scale and u, u κ1ð Þ ¼ u δnþ T;κ1ð Þ� �
,

u δþ T; κ1ð Þð Þ ¼ u δnþ1þ T;κ1ð Þ� �
, and for each t∈ κ1; δþ T; κ1ð Þ½ �, u tð Þ ¼ u δnþ T; tð Þ� �

: By using
change of variables, we get the result. If s ¼ δnþ T; tð Þ, then by the assumption of the lemma

Δs ¼ ~cΔt: When s ¼ δnþ T; κ1ð Þ, then t ¼ δn� T; sð Þ ¼ κ1, and when s ¼ δnþ1þ T;κ1ð Þ, then t ¼ δn�
T; sð Þ ¼ δþ T;κ1ð Þ:

ðδnþ1þ T;κ1ð Þ

δnþ T;κ1ð Þ
u sð ÞΔs ¼ ~c

ðδþ T;κ1ð Þ

κ1
u tð ÞΔt,

ðδnþ1þ T;κ1ð Þ

δnþ T;κ1ð Þ
1Δt ¼ ~c

ðδþ T;κ1ð Þ

κ1
1Δt,

and

Ð δþ T;κ1ð Þ
κ1

u tð ÞΔt
mes δþ T; κ1ð Þð Þ ¼

~c
Ð δþ T;κ1ð Þ
κ1

u tð ÞΔt
~c mes δþ T; κ1ð Þð Þ:

Hence, proof follows. □

Remark 1. [24] It is obvious that if T ¼ 0f g∪qZ, then mes δþ T; tð Þð Þ is equal for each t in 0f g∪qZ:

The equation that we investigate is

xΔ tð Þ ¼ a tð Þ � b tð Þ exp x tð Þð Þ � c tð Þ exp y tð Þð Þ
α tð Þ þ β tð Þ exp x tð Þð Þ þm tð Þ exp y tð Þð Þ ,

yΔ tð Þ ¼ �d tð Þ þ f tð Þ exp x tð Þð Þ
α tð Þ þ β tð Þ exp x tð Þð Þ þm tð Þ exp y tð Þð Þ ,

(2.1)

In Eq. (2.1), let a tð Þ ¼ a δ� T; tð Þð Þ, b δ� T; tð Þð Þ ¼ b tð Þ, c δ� T; tð Þð Þ ¼ c tð Þ, d δ� T; tð Þð Þ ¼ d tð Þ,
f δ� T; tð Þð Þ ¼ f tð Þ, α δ� T; tð Þð Þ ¼ α tð Þ, β δ� T; tð Þð Þ ¼ β tð Þ, and m δ� T; tð Þð Þ ¼ m tð Þ, andÐ δþ T;κð Þ
κ a tð ÞΔt, Ð δþ T;κð Þ

κ b tð ÞΔt, Ð δþ T;κð Þ
κ d tð ÞΔt > 0: βl ¼ mint∈ κ;δþ T;κð Þ½ �β tð Þ, ml ¼ mint∈ κ;δþ T;κð Þ½ �
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(2.1)

In Eq. (2.1), let a tð Þ ¼ a δ� T; tð Þð Þ, b δ� T; tð Þð Þ ¼ b tð Þ, c δ� T; tð Þð Þ ¼ c tð Þ, d δ� T; tð Þð Þ ¼ d tð Þ,
f δ� T; tð Þð Þ ¼ f tð Þ, α δ� T; tð Þð Þ ¼ α tð Þ, β δ� T; tð Þð Þ ¼ β tð Þ, and m δ� T; tð Þð Þ ¼ m tð Þ, andÐ δþ T;κð Þ
κ a tð ÞΔt, Ð δþ T;κð Þ

κ b tð ÞΔt, Ð δþ T;κð Þ
κ d tð ÞΔt > 0: βl ¼ mint∈ κ;δþ T;κð Þ½ �β tð Þ, ml ¼ mint∈ κ;δþ T;κð Þ½ �
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m tð Þ, βu ¼ maxt∈ κ;δþ T;κð Þ½ �β tð Þ, and mu ¼ maxt∈ κ;δþ T;κð Þ½ �m tð Þ, such that κ ¼ δm� T; t0ð Þ for m∈N:
m tð Þ > 0 and c tð Þ, f tð Þ, b tð Þ > 0 α tð Þ ≥ 0, β tð Þ > 0: Each function is from Crd T;Rð Þ:

Lemma 2. [24] Let t1, t2 ∈ κ; δþ T; κð Þ½ � and t∈ 0f g∪qZ. κ is defined as in Lemma 1. If
g : 0f g∪qZ ! R is periodic function in shifts, then

g tð Þ ≤ g t1ð Þ þ
ðδþ T;κð Þ

κ
∣gΔ sð Þ∣Δs and g tð Þ ≥ g t2ð Þ �

ðδþ T;κð Þ

κ
∣gΔ sð Þ∣Δs:

Proof. We only show the first inequality as the proof of the second inequality is similar to the
proof of the other one. Since g is a periodic function in shifts, without loss of generality, it
suffices to show that the inequality is valid for t∈ κ; δþ T;κð Þ½ �: If t ¼ t1 then the first inequality
is obviously true. If t > t1

g tð Þ � g t1ð Þ ≤ ∣g tð Þ � g t1ð Þ∣ ¼
ðt
t1
gΔ sð ÞΔs

����
���� ≤
ðt
t1
gΔ sð Þ∣Δs ≤

ðδþ T;κð Þ

κ
∣gΔ sð Þ∣Δs:

Therefore,

g tð Þ ≤ g t1ð Þ þ
ðδþ T;κð Þ

κ
∣gΔ sð Þ∣Δs:

If
t < t1

g t1ð Þ � g tð Þ ≥ � ∣g t1ð Þ � g tð Þ∣ ¼ �
ðt1
t
gΔ sð ÞΔs

����
���� ≥ �

ðt1
t
∣gΔ sð Þ∣Δs ≤ �

ðδþ T;κð Þ

κ
∣gΔ sð Þ∣Δs,

that gives g tð Þ ≤ g t1ð Þ þ
Ð δþ T;κð Þ
κ ∣gΔ sð Þ∣Δs:

The proof is complete. □

Remark 2. [14] Consider the following equation:

~x
0
tð Þ ¼ a tð Þ~x tð Þ � b tð Þ~x2 tð Þ � c tð Þ~y tð Þ~x tð Þ

α tð Þ þ β tð Þ~x tð Þ þm tð Þ~y tð Þ ,

~y
0
tð Þ ¼ �d tð Þ~y tð Þ þ f tð Þ~x tð Þ~y tð Þ

α tð Þ þ β tð Þ~x tð Þ þm tð Þ~y tð Þ :
(2.2)

This is the predator–prey dynamic system that is obtained from ordinary differential equations. Let
T ¼ R. In (2.1), by taking exp x tð Þð Þ ¼ ~x tð Þ and exp y tð Þð Þ ¼ ~y tð Þ, we obtain the equality (2.2), which
is the standard predator–prey system with Beddington-DeAngelis functional response.

Let T ¼ Z: By using equality (2.1), we obtain
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x tþ 1ð Þ � x tð Þ ¼ a tð Þ � b tð Þexp x tð Þð Þ � c tð Þexp y tð Þð Þ
α tð Þ þ β tð Þexp x tð Þð Þ þm tð Þexp y tð Þð Þ ,

y tþ 1ð Þ � y tð Þ ¼ �d tð Þ þ f tð Þexp x tð Þð Þ
α tð Þ þ β tð Þexp x tð Þð Þ þm tð Þexp y tð Þð Þ

Here, again by taking exp x tð Þð Þ ¼ ~x tð Þ and exp y tð Þð Þ ¼ ~y tð Þ, we obtain

~x tþ 1ð Þ ¼ ~x tð Þexp a tð Þ � b tð Þ~x tð Þ � c tð Þ~y tð Þ
α tð Þ þ β tð Þ~x tð Þ þm tð Þ~y tð Þ

� �
,

~y tþ 1ð Þ ¼ ~y tð Þexp �d tð Þ þ f tð Þ~x tð Þ
α tð Þ þ β tð Þ~x tð Þ þm tð Þ~y tð Þ

� �
,

(2.3)

which is the discrete time predator–prey system with Beddington-DeAngelis-type functional response
and also the discrete analogue of Eq. (2.2). This system was studied in [25, 26]. Since Eq. (2.1)
incorporates Eqs. (2.2) and (2.3) as special cases, we call Eq. (2.1) the predator–prey dynamic system
with Beddington-DeAngelis functional response on time scales.

For Eq. (2.1), exp x tð Þð Þ and exp y tð Þð Þ denote the density of prey and the predator. Therefore, x tð Þ and y tð Þ
could be negative. By taking the exponential of x tð Þ and y tð Þ, we obtain the number of preys and predators
that are living per unit of an area. In other words, for the general time scale case, our equation is based on
the natural logarithm of the density of the predator and prey. Hence, x tð Þ and y tð Þ could be negative.
For Eqs. (2.2) and (2.3), since exp x tð Þð Þ ¼ ~x tð Þ and exp y tð Þð Þ ¼ ~y tð Þ, the given dynamic systems
directly depend on the density of the prey and predator.

3. Application of δ�-periodicity of Q-calculus

The following theorem is the modified version of Theorem 8 from [24].

Theorem 5. Assume that for the given time scale T ¼ 0f g∪qZ, while T ∈ qZ, mes δþ T; tð Þð Þ is equal for
each t∈T: In addition to conditions on coefficient functions and

Lemma 1 if
Ð δþ T;κð Þ
κ a tð ÞΔt� Ð δþ T;κð Þ

κ
c tð Þ
m tð ÞΔt > 0 and

Ð δþ T;κð Þ
κ a tð ÞΔt� Ð δþ T;κð Þ

κ
c tð Þ
m tð ÞΔtÐ δþ T;κð Þ

κ b tð ÞΔt

0
BB@

1
CCA exp � Ð δþ T;κð Þ

κ ja tð ÞjΔtþ Ð δþ T;κð Þ
κ a tð ÞΔt

� �h i

:
Ð δþ T;κð Þ
κ f tð ÞΔt� βu

Ð δþ T;κð Þ
κ d tð ÞΔt

� �
� αu

Ð δþ T;κð Þ
κ d tð Þ

� �
Δt > 0

are satisfied, then there exist at least one δ�-periodic solution.

Quantum Calculus with the Notion δ±-Periodicity and Its Applications
http://dx.doi.org/10.5772/intechopen.74952

191



m tð Þ, βu ¼ maxt∈ κ;δþ T;κð Þ½ �β tð Þ, and mu ¼ maxt∈ κ;δþ T;κð Þ½ �m tð Þ, such that κ ¼ δm� T; t0ð Þ for m∈N:
m tð Þ > 0 and c tð Þ, f tð Þ, b tð Þ > 0 α tð Þ ≥ 0, β tð Þ > 0: Each function is from Crd T;Rð Þ:

Lemma 2. [24] Let t1, t2 ∈ κ; δþ T; κð Þ½ � and t∈ 0f g∪qZ. κ is defined as in Lemma 1. If
g : 0f g∪qZ ! R is periodic function in shifts, then

g tð Þ ≤ g t1ð Þ þ
ðδþ T;κð Þ

κ
∣gΔ sð Þ∣Δs and g tð Þ ≥ g t2ð Þ �

ðδþ T;κð Þ

κ
∣gΔ sð Þ∣Δs:

Proof. We only show the first inequality as the proof of the second inequality is similar to the
proof of the other one. Since g is a periodic function in shifts, without loss of generality, it
suffices to show that the inequality is valid for t∈ κ; δþ T;κð Þ½ �: If t ¼ t1 then the first inequality
is obviously true. If t > t1

g tð Þ � g t1ð Þ ≤ ∣g tð Þ � g t1ð Þ∣ ¼
ðt
t1
gΔ sð ÞΔs

����
���� ≤
ðt
t1
gΔ sð Þ∣Δs ≤

ðδþ T;κð Þ

κ
∣gΔ sð Þ∣Δs:

Therefore,

g tð Þ ≤ g t1ð Þ þ
ðδþ T;κð Þ

κ
∣gΔ sð Þ∣Δs:

If
t < t1

g t1ð Þ � g tð Þ ≥ � ∣g t1ð Þ � g tð Þ∣ ¼ �
ðt1
t
gΔ sð ÞΔs

����
���� ≥ �

ðt1
t
∣gΔ sð Þ∣Δs ≤ �

ðδþ T;κð Þ

κ
∣gΔ sð Þ∣Δs,
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Remark 2. [14] Consider the following equation:
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(2.2)

This is the predator–prey dynamic system that is obtained from ordinary differential equations. Let
T ¼ R. In (2.1), by taking exp x tð Þð Þ ¼ ~x tð Þ and exp y tð Þð Þ ¼ ~y tð Þ, we obtain the equality (2.2), which
is the standard predator–prey system with Beddington-DeAngelis functional response.

Let T ¼ Z: By using equality (2.1), we obtain
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� �
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(2.3)

which is the discrete time predator–prey system with Beddington-DeAngelis-type functional response
and also the discrete analogue of Eq. (2.2). This system was studied in [25, 26]. Since Eq. (2.1)
incorporates Eqs. (2.2) and (2.3) as special cases, we call Eq. (2.1) the predator–prey dynamic system
with Beddington-DeAngelis functional response on time scales.

For Eq. (2.1), exp x tð Þð Þ and exp y tð Þð Þ denote the density of prey and the predator. Therefore, x tð Þ and y tð Þ
could be negative. By taking the exponential of x tð Þ and y tð Þ, we obtain the number of preys and predators
that are living per unit of an area. In other words, for the general time scale case, our equation is based on
the natural logarithm of the density of the predator and prey. Hence, x tð Þ and y tð Þ could be negative.
For Eqs. (2.2) and (2.3), since exp x tð Þð Þ ¼ ~x tð Þ and exp y tð Þð Þ ¼ ~y tð Þ, the given dynamic systems
directly depend on the density of the prey and predator.

3. Application of δ�-periodicity of Q-calculus

The following theorem is the modified version of Theorem 8 from [24].

Theorem 5. Assume that for the given time scale T ¼ 0f g∪qZ, while T ∈ qZ, mes δþ T; tð Þð Þ is equal for
each t∈T: In addition to conditions on coefficient functions and

Lemma 1 if
Ð δþ T;κð Þ
κ a tð ÞΔt� Ð δþ T;κð Þ

κ
c tð Þ
m tð ÞΔt > 0 and
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BB@
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Proof. X≔
u
v

� �
∈Crd 0f g∪qZ;R2� �

: u δ� T; tð Þð Þ ¼ u tð Þ, v δ� T; tð Þð Þ ¼ v tð Þ
� �

with the norm:

u
v

� �����
���� ¼ maxt∈ t0 ;δþ T;t0ð Þ½ �T ju tð Þj; jv tð Þjð Þ

Y≔
u
v

� �
∈Crd 0f g∪qZ;R2� �

: u δ� T; tð Þð Þ ¼ u tð Þ, v δ� T; tð Þð Þ ¼ v tð Þ
� �

with the norm:

u
v

� �����
���� ¼ maxt∈ t0 ;δþ T;t0ð Þ½ �T ju tð Þj; jv tð Þjð Þ

Let us define the mappings L and C by L : DomL⊂X! Y such that

L
u
v

� �� �
¼ uΔ

vΔ

� �

and C : X! Y such that

C
u
v

� �� �
¼

a tð Þ � b tð Þ exp u tð Þð Þ � c tð Þ exp v tð Þð Þ
α tð Þ þ β tð Þ exp u tð Þð Þ þm tð Þ exp v tð Þð Þ

�d tð Þ þ f tð Þ exp u tð Þð Þ
α tð Þ þ β tð Þ exp u tð Þð Þ þm tð Þ exp v tð Þð Þ

2
6664

3
7775

Then, KerL ¼ u
v

� �
:

u
v

� �
¼ c1

c2

� �� �
, c1 and c2 are constants.

ImL ¼ u
v

� �
:

Ð δþ T;κð Þ
κ u tð ÞΔt
Ð δþ T;κð Þ
κ v tð ÞΔt

2
4

3
5 ¼ 0

0

� �8<
:

9=
;:

ImL is closed in Y: Its obvious that dimKerL ¼ 2. To show dimKerL ¼ codimImL ¼ 2, we have to
prove that KerL⊕ ImL ¼ Y: It is obvious that when we take an element from Ker L, an element
from Im L, we find an element of Y by summing these two elements. If we take an element
u
v

� �
∈Y, andWLOG taking u tð Þ, we have

Ð δþ T;κð Þ
κ u tð ÞΔt ¼ I where I is a constant. Let us define

a new function g ¼ u� I
mes δþ T;κð Þð Þ : Since

I
mes δþ T;κð Þð Þ is constant by Lemma 1, if we take the

integral of g from κ to δþ T;κð Þ, we get

ðδþ T;κð Þ

κ
g tð ÞΔt ¼

ðδþ T;κð Þ

κ
u tð ÞΔt� I ¼ 0:
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Similar steps are used for v:
u
v

� �
∈Y can be written as the summation of an element from Im L

and an element from Ker L. Also, it is easy to show that any element in Y is uniquely expressed
as the summation of an element Ker L and an element from Im L. So, codimImL is also 2, we get
the desired result. Hence, L is a Fredholm mapping of index zero. There exist continuous
projectors U : X! X and V : Y ! Y such that

U
u
v

� �� �
¼ 1

mes δþ T; κð Þð Þ

Ð δþ T;κð Þ
κ u tð ÞΔt
Ð δþ T;κð Þ
κ v tð ÞΔt

2
4

3
5

and

V
u
v

� �� �
¼ 1

mes δþ T;κð Þð Þ

Ð δþ T;κð Þ
κ u tð ÞΔt
Ð δþ T;κð Þ
κ v tð ÞΔt

2
4

3
5

0
@

1
A:

The generalized inverse KU ¼ ImL! DomL ∩KerU is given:

KU
u
v

� �� �
¼

Ð t
κ u sð ÞΔs� 1

mes δþ T;κð Þð Þ
ðδþ T;κð Þ

κ

ðt
κ
u sð ÞΔs

Ð t
κ v sð ÞΔs� 1

mes δþ T;κð Þð Þ
ðδþ T;κð Þ

κ

ðt
κ
v sð ÞΔs

2
66664

3
77775
:

VC
u

v

" # !
¼

1
mes δþ T;κð Þð Þ

Ð δþ T;κð Þ
κ a sð Þ � b sð Þ exp u sð Þð Þ � c sð Þ exp v sð Þð Þ

α sð Þ þ β sð Þ exp u sð Þð Þ þm sð Þ exp v sð Þð ÞΔs

Ð δþ T;κð Þ
κ �d sð Þ þ f sð Þ exp u sð Þð Þ

α sð Þ þ β sð Þ exp u sð Þð Þ þm sð Þ exp v sð Þð ÞΔs

2
66664

3
77775

0
BBBB@

1
CCCCA

Let

a tð Þ � b tð Þ exp u tð Þð Þ � c tð Þ exp v tð Þð Þ
α tð Þ þ β tð Þ exp u tð Þð Þ þm tð Þ exp v tð Þð Þ ¼ C1

�d tð Þ þ f tð Þ exp u tð Þð Þ
α tð Þ þ β tð Þ exp u tð Þð Þ þm tð Þ exp v tð Þð Þ ¼ C2

1
mes δþ T;κð Þð Þ

ðδþ T;κð Þ

κ
a sð Þ � b sð Þ exp u sð Þð Þ � c sð Þ exp v sð Þð Þ

α sð Þ þ β sð Þ exp u sð Þð Þ þm sð Þ exp v sð Þð ÞΔs ¼ C1

and
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66664

3
77775
:

VC
u

v

" # !
¼

1
mes δþ T;κð Þð Þ

Ð δþ T;κð Þ
κ a sð Þ � b sð Þ exp u sð Þð Þ � c sð Þ exp v sð Þð Þ

α sð Þ þ β sð Þ exp u sð Þð Þ þm sð Þ exp v sð Þð ÞΔs

Ð δþ T;κð Þ
κ �d sð Þ þ f sð Þ exp u sð Þð Þ

α sð Þ þ β sð Þ exp u sð Þð Þ þm sð Þ exp v sð Þð ÞΔs

2
66664

3
77775

0
BBBB@

1
CCCCA

Let

a tð Þ � b tð Þ exp u tð Þð Þ � c tð Þ exp v tð Þð Þ
α tð Þ þ β tð Þ exp u tð Þð Þ þm tð Þ exp v tð Þð Þ ¼ C1

�d tð Þ þ f tð Þ exp u tð Þð Þ
α tð Þ þ β tð Þ exp u tð Þð Þ þm tð Þ exp v tð Þð Þ ¼ C2

1
mes δþ T;κð Þð Þ

ðδþ T;κð Þ

κ
a sð Þ � b sð Þ exp u sð Þð Þ � c sð Þ exp v sð Þð Þ

α sð Þ þ β sð Þ exp u sð Þð Þ þm sð Þ exp v sð Þð ÞΔs ¼ C1

and
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1
mes δþ T;κð Þð Þ

ðδþ T;κð Þ

κ
�d sð Þ þ f sð Þ exp u sð Þð Þ

α sð Þ þ β sð Þ exp u sð Þð Þ þm sð Þ exp v sð Þð ÞΔs ¼ C2

KU I � Vð ÞC
u

v

" # !
¼ KU

C1 � C1

C2 � C2

" # !

¼

Ð t
κ C1 sð Þ � C1 sð ÞΔs� 1

mes δþ T;κð Þð Þ
ðδþ T;κð Þ

κ

ðt
κ
C1 sð Þ � C1 sð ÞΔs

Ð t
κ C2 sð Þ � C2 sð ÞΔs� 1

mes δþ T;κð Þð Þ
ðδþ T;κð Þ

κ

ðt
κ
C2 sð Þ � C2 sð ÞΔs

2
66664

3
77775
:

Clearly, VC and KU I � Vð ÞC are continuous. Here, X and Y are Banach spaces. Since for the
given time scale T while T is constant, mes δþ T; tð Þð Þ is equal for each t∈T; then, we can apply
Arzela-Ascoli theorem, and by using Arzela-Ascoli theorem, we can find that KU I � Vð ÞC Ω

� �

is compact for any open bounded set Ω⊂X: Additionally, VC Ω
� �

is bounded. Thus, C is L-

compact on Ω with any open bounded set Ω⊂X:

To apply the continuation theorem, we investigate the below operator equation:

xΔ tð Þ ¼ λ a tð Þ � b tð Þ exp x tð Þð Þ � c tð Þ exp y tð Þð Þ
α tð Þ þ β tð Þ exp x tð Þð Þ þm tð Þ exp y tð Þð Þ

� �

yΔ tð Þ ¼ λ �d tð Þ þ f tð Þ exp x tð Þð Þ
α tð Þ þ β tð Þ exp x tð Þð Þ þm tð Þ exp y tð Þð Þ

� � (3.1)

Let
x
y

� �
∈X be any solution of system (3.1). Integrating both sides of system (3.1) over the

interval 0;w½ �, we obtain

Ð δþ T;κð Þ
κ a tð ÞΔt ¼ Ð δþ T;κð Þ

κ b tð Þ exp x tð Þð Þ þ c tð Þ exp y tð Þð Þ
α tð Þ þ β tð Þ exp x tð Þð Þ þm tð Þ exp y tð Þð ÞΔt ,

Ð δþ T;κð Þ
κ d tð ÞΔt ¼ Ð δþ T;κð Þ

κ
f tð Þ exp x tð Þð Þ

α tð Þ þ β tð Þ exp x tð Þð Þ þm tð Þ exp y tð Þð ÞΔt ,

8>>><
>>>:

(3.2)

From (3.1) and (3.2), we get

Ð δþ T;κð Þ
κ ∣xΔ tð Þ∣Δt ≤ λ

Ð δþ T;κð Þ
κ ja tð ÞjΔtþ Ð δþ T;κð Þ

κ b tð Þ exp x tð Þð Þ þ c tð Þ exp y tð Þð Þ
α tð Þ þ β tð Þ exp x tð Þð Þ þm tð Þ exp y tð Þð ÞΔt

� �
,

≤ λ
Ð δþ T;κð Þ
κ ja tð ÞjΔtþ Ð δþ T;κð Þ

κ a tð ÞΔt
h i

≤
Ð δþ T;κð Þ
κ ∣a tð Þ∣Δtþ Ð δþ T;κð Þ

κ a tð ÞΔt≔M1

(3.3)

Ð δþ T;κð Þ
κ ∣yΔ tð Þ∣Δt ≤ λ

Ð δþ T;κð Þ
κ jd tð ÞjΔtþ Ð δþ T;κð Þ

κ
f tð Þ exp x tð Þð Þ

α tð Þ þ β tð Þ exp x tð Þð Þ þm tð Þ exp y tð Þð ÞΔt
� �

≤ λ
Ð δþ T;κð Þ
κ jd tð ÞjΔtþ Ð δþ T;κð Þ

κ d tð ÞΔt
h i

≤
Ð δþ T;κð Þ
κ ∣d tð Þ∣Δtþ Ð δþ T;κð Þ

κ d tð ÞΔt≔M2

(3.4)
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Since
x
y

� �
∈X, then there exist ηi, ξi and i ¼ 1, 2 such that

x ξ1ð Þ ¼ mint∈ t∈ κ;δþ T;κð Þ½ �x tð Þ, x η1
� � ¼ maxt∈ t∈ κ;δþ T;κð Þ½ �x tð Þ,

y ξ2ð Þ ¼ mint∈ t∈ κ;δþ T;κð Þ½ �y tð Þ, y η2
� � ¼ maxt∈ t∈ κ;δþ T;κð Þ½ �y tð Þ (3.5)

If ξ1 is the minimum point of x tð Þ on the interval κ; δþ T;κð Þ½ � because x tð Þ is a function that is
periodic in shifts for any n∈N on the interval δnþ T;κ1ð Þ; δnþ1þ T;κ1ð Þ� �

, the minimum point of

x tð Þ is δnþ T; ξ1ð Þ and x ξ1ð Þ ¼ x δnþ T; ξ1ð Þ� �
: We have similar results for the other points for ξ2,

η1, and η2:

By the first equation of systems (3.2) and (3.5)

Ð δþ T;κð Þ
κ a tð ÞΔt ≤

Ð δþ T;κð Þ
κ b tð Þ exp x η1

� �� �þ c tð Þ
m tð ÞΔt

� �

¼ exp x η1
� �� � Ð δþ T;κð Þ

κ b tð ÞΔtþ Ð δþ T;κð Þ
κ

c tð Þ
m tð ÞΔt:

Since
Ð δþ T;κð Þ
κ b tð ÞΔt > 0, so we get

x η1
� �

≥ ln

Ð δþ T;κð Þ
κ a tð ÞΔt� Ð δþ T;κð Þ

κ
c tð Þ
m tð ÞΔtÐ δþ T;κð Þ

κ b tð ÞΔt

0
@

1
A≔l1

Using the second inequality in Lemma 2, we have

x tð Þ ≥ x η1
� �� Ð δþ T;κð Þ

κ ∣xΔ tð Þ∣Δt
≥ x η1

� �� Ð δþ T;κð Þ
κ ja tð ÞjΔtþ Ð δþ T;κð Þ

κ a tð ÞΔt
� �

¼ l1 �M1≔H1

(3.6)

By the first equation of systems (3.2) and (3.5)

Ð δþ T;κð Þ
κ a tð ÞΔt ≥

Ð δþ T;κð Þ
κ b tð Þ exp x ξ1ð Þð ÞΔt

¼ exp x ξ1ð Þð Þ Ð δþ T;κð Þ
κ b tð ÞΔt:

Then, we get

x ξ1ð Þ ≤ ln
Ð δþ T;κð Þ
κ a tð ÞΔtÐ δþ T;κð Þ
κ b tð ÞΔt

 !
≔l2

Using the first inequality in Lemma 2, we have
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1
mes δþ T;κð Þð Þ

ðδþ T;κð Þ

κ
�d sð Þ þ f sð Þ exp u sð Þð Þ

α sð Þ þ β sð Þ exp u sð Þð Þ þm sð Þ exp v sð Þð ÞΔs ¼ C2

KU I � Vð ÞC
u

v

" # !
¼ KU

C1 � C1

C2 � C2

" # !

¼

Ð t
κ C1 sð Þ � C1 sð ÞΔs� 1

mes δþ T;κð Þð Þ
ðδþ T;κð Þ

κ

ðt
κ
C1 sð Þ � C1 sð ÞΔs

Ð t
κ C2 sð Þ � C2 sð ÞΔs� 1

mes δþ T;κð Þð Þ
ðδþ T;κð Þ

κ

ðt
κ
C2 sð Þ � C2 sð ÞΔs

2
66664

3
77775
:

Clearly, VC and KU I � Vð ÞC are continuous. Here, X and Y are Banach spaces. Since for the
given time scale T while T is constant, mes δþ T; tð Þð Þ is equal for each t∈T; then, we can apply
Arzela-Ascoli theorem, and by using Arzela-Ascoli theorem, we can find that KU I � Vð ÞC Ω

� �

is compact for any open bounded set Ω⊂X: Additionally, VC Ω
� �

is bounded. Thus, C is L-

compact on Ω with any open bounded set Ω⊂X:

To apply the continuation theorem, we investigate the below operator equation:

xΔ tð Þ ¼ λ a tð Þ � b tð Þ exp x tð Þð Þ � c tð Þ exp y tð Þð Þ
α tð Þ þ β tð Þ exp x tð Þð Þ þm tð Þ exp y tð Þð Þ

� �

yΔ tð Þ ¼ λ �d tð Þ þ f tð Þ exp x tð Þð Þ
α tð Þ þ β tð Þ exp x tð Þð Þ þm tð Þ exp y tð Þð Þ

� � (3.1)

Let
x
y

� �
∈X be any solution of system (3.1). Integrating both sides of system (3.1) over the

interval 0;w½ �, we obtain

Ð δþ T;κð Þ
κ a tð ÞΔt ¼ Ð δþ T;κð Þ

κ b tð Þ exp x tð Þð Þ þ c tð Þ exp y tð Þð Þ
α tð Þ þ β tð Þ exp x tð Þð Þ þm tð Þ exp y tð Þð ÞΔt ,

Ð δþ T;κð Þ
κ d tð ÞΔt ¼ Ð δþ T;κð Þ

κ
f tð Þ exp x tð Þð Þ

α tð Þ þ β tð Þ exp x tð Þð Þ þm tð Þ exp y tð Þð ÞΔt ,

8>>><
>>>:

(3.2)

From (3.1) and (3.2), we get

Ð δþ T;κð Þ
κ ∣xΔ tð Þ∣Δt ≤ λ

Ð δþ T;κð Þ
κ ja tð ÞjΔtþ Ð δþ T;κð Þ

κ b tð Þ exp x tð Þð Þ þ c tð Þ exp y tð Þð Þ
α tð Þ þ β tð Þ exp x tð Þð Þ þm tð Þ exp y tð Þð ÞΔt

� �
,

≤ λ
Ð δþ T;κð Þ
κ ja tð ÞjΔtþ Ð δþ T;κð Þ

κ a tð ÞΔt
h i

≤
Ð δþ T;κð Þ
κ ∣a tð Þ∣Δtþ Ð δþ T;κð Þ

κ a tð ÞΔt≔M1

(3.3)

Ð δþ T;κð Þ
κ ∣yΔ tð Þ∣Δt ≤ λ

Ð δþ T;κð Þ
κ jd tð ÞjΔtþ Ð δþ T;κð Þ

κ
f tð Þ exp x tð Þð Þ

α tð Þ þ β tð Þ exp x tð Þð Þ þm tð Þ exp y tð Þð ÞΔt
� �

≤ λ
Ð δþ T;κð Þ
κ jd tð ÞjΔtþ Ð δþ T;κð Þ

κ d tð ÞΔt
h i

≤
Ð δþ T;κð Þ
κ ∣d tð Þ∣Δtþ Ð δþ T;κð Þ

κ d tð ÞΔt≔M2

(3.4)
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Since
x
y

� �
∈X, then there exist ηi, ξi and i ¼ 1, 2 such that

x ξ1ð Þ ¼ mint∈ t∈ κ;δþ T;κð Þ½ �x tð Þ, x η1
� � ¼ maxt∈ t∈ κ;δþ T;κð Þ½ �x tð Þ,

y ξ2ð Þ ¼ mint∈ t∈ κ;δþ T;κð Þ½ �y tð Þ, y η2
� � ¼ maxt∈ t∈ κ;δþ T;κð Þ½ �y tð Þ (3.5)

If ξ1 is the minimum point of x tð Þ on the interval κ; δþ T;κð Þ½ � because x tð Þ is a function that is
periodic in shifts for any n∈N on the interval δnþ T;κ1ð Þ; δnþ1þ T;κ1ð Þ� �

, the minimum point of

x tð Þ is δnþ T; ξ1ð Þ and x ξ1ð Þ ¼ x δnþ T; ξ1ð Þ� �
: We have similar results for the other points for ξ2,

η1, and η2:

By the first equation of systems (3.2) and (3.5)

Ð δþ T;κð Þ
κ a tð ÞΔt ≤

Ð δþ T;κð Þ
κ b tð Þ exp x η1

� �� �þ c tð Þ
m tð ÞΔt

� �

¼ exp x η1
� �� � Ð δþ T;κð Þ

κ b tð ÞΔtþ Ð δþ T;κð Þ
κ

c tð Þ
m tð ÞΔt:

Since
Ð δþ T;κð Þ
κ b tð ÞΔt > 0, so we get

x η1
� �

≥ ln

Ð δþ T;κð Þ
κ a tð ÞΔt� Ð δþ T;κð Þ

κ
c tð Þ
m tð ÞΔtÐ δþ T;κð Þ

κ b tð ÞΔt

0
@

1
A≔l1

Using the second inequality in Lemma 2, we have

x tð Þ ≥ x η1
� �� Ð δþ T;κð Þ

κ ∣xΔ tð Þ∣Δt
≥ x η1

� �� Ð δþ T;κð Þ
κ ja tð ÞjΔtþ Ð δþ T;κð Þ

κ a tð ÞΔt
� �

¼ l1 �M1≔H1

(3.6)

By the first equation of systems (3.2) and (3.5)

Ð δþ T;κð Þ
κ a tð ÞΔt ≥

Ð δþ T;κð Þ
κ b tð Þ exp x ξ1ð Þð ÞΔt

¼ exp x ξ1ð Þð Þ Ð δþ T;κð Þ
κ b tð ÞΔt:

Then, we get

x ξ1ð Þ ≤ ln
Ð δþ T;κð Þ
κ a tð ÞΔtÐ δþ T;κð Þ
κ b tð ÞΔt

 !
≔l2

Using the first inequality in Lemma 2, we have
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x tð Þ ≤ x ξ1ð Þ þ
Ð δþ T;κð Þ
κ ∣xΔ tð Þ∣Δt

≤ x ξ1ð Þ þ
Ð δþ T;κð Þ
κ ja tð ÞjΔtþ Ð δþ T;κð Þ

κ a tð ÞΔt
� �

¼ l2 þM1≔H2

(3.7)

By Eq. (3.6) and (3.7), maxt∈ κ;δþ T;κð Þ½ �∣x tð Þ∣ ≤max jH1j; jH2jf g≔B1: From the second equation of
system (3.2) and the second equation of system (3.6), we can derive that

Ð δþ T;κð Þ
κ d tð ÞΔt ≤

Ð δþ T;κð Þ
κ

f tð Þ exp x tð Þð Þ
βl exp x tð Þð Þ þml exp y tð Þð ÞΔt

≤
Ð δþ T;κð Þ
κ

f tð ÞeH2

βleH2 þml exp y ξ2ð Þð ÞΔt

¼ eH2

βleH2 þml exp y ξ2ð Þð Þ
ðδþ T;κð Þ

κ
f tð ÞΔt:

Therefore,

exp y ξ2ð Þð Þ ≤ 1
ml

eH2
Ð δþ T;κð Þ
κ f tð ÞΔtÐ δþ T;κð Þ

κ d tð ÞΔt
� βleH2

 !

By the assumption of the Theorem 5, we get,

ðδþ T;κð Þ

κ
f tð ÞΔt� βl

ðδþ T;κð Þ

κ
d tð Þ

 !
Δt > 0 and

y ξ2ð Þ ≤ ln 1
ml

eH2
Ð δþ T;κð Þ
κ f tð ÞΔtÐ δþ T;κð Þ

κ d tð ÞΔt
� βleH2

 ! !
≔L1

Hence, by using the first inequality in Lemma 2 and the second equation of system (3.2)

y tð Þ ≤ y ξ2ð Þ þ
Ð δþ T;κð Þ
κ ∣yΔ tð Þ∣Δt

≤ y ξ2ð Þ þ
Ð δþ T;κð Þ
κ jd tð ÞjΔtþ Ð δþ T;κð Þ

κ d tð ÞΔt
� �

≤ L1 þM2≔H3:

(3.8)

Again, using the second equation of system (3.2), we obtain

Ð δþ T;κð Þ
κ d tð ÞΔt ≥

Ð δþ T;κð Þ
κ

f tð Þ exp x tð Þð Þ
αu þ βu exp x tð Þð Þ þmu exp y tð Þð ÞΔt

≥
Ð δþ T;κð Þ
κ

f tð ÞeH1

αu þ βueH1 þmu exp y η2
� �� �Δt

¼ eH1

αu þ βueH1 þmu exp y η2
� �� �

ðδþ T;κð Þ

κ
f tð ÞΔt,
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exp y η2
� �� �

≥
1
mu

eH1
Ð δþ T;κð Þ
κ f tð ÞΔtÐ δþ T;κð Þ

κ d tð ÞΔt
� βueH1 � αu

 !
:

Using the assumption of the Theorem 5, we obtain

eH1

ðδþ T;κð Þ

κ
f tð ÞΔt� βu

ðδþ T;κð Þ

κ
d tð ÞΔt

 ! !
� αu

ðδþ T;κð Þ

κ
d tð ÞΔt

 !
> 0

and

y η2
� �

≥ ln
1
mu

eH1
Ð δþ T;κð Þ
κ f tð ÞΔtÐ δþ T;κð Þ

κ d tð ÞΔt
� βueH1 � αu

 ! !
≔L2:

By using the second inequality in Lemma 2

y tð Þ ≥ y η2
� �� Ð δþ T;κð Þ

κ ∣yΔ tð Þ∣Δt

≥ y η2
� �� Ð δþ T;κð Þ

κ jd tð ÞjΔtþ Ð δþ T;κð Þ
κ d tð ÞΔt

� �

¼ L2 �M2≔H4:

(3.9)

By Eq. (3.8) and (3.9), we have maxt∈ t0;δþ T;t0ð Þ½ �∣y tð Þ∣ ≤max jH3j; jH4jf g≔B2. Obviously, B1 and B2

are both independent of λ: Let M ¼ B1 þ B2 þ 1. Then, maxt∈ t0 ;δþ T;t0ð Þ½ �
x
y

� �����
���� < M: Let

Ω ¼ x
y

� �����
����∈X :

x
y

� �����
���� < M

� �
; then, Ω verifies the requirement (a) in Theorem 4. When

x
y

� �
∈KerL ∩ ∂Ω,

x
y

� �
is a constant with

x
y

� �����
���� ¼M, ; then,

VC
x

y

" # !
¼

Ð δþ T;κð Þ
κ a sð Þ � b sð Þ exp xð Þ � c sð Þ exp yð Þ

α sð Þ þ β sð Þ exp xð Þ þm sð Þ exp yð ÞΔt

Ð δþ T;κð Þ
κ �d sð Þ þ f sð Þ exp xð Þ

α sð Þ þ β sð Þ exp xð Þ þm sð Þ exp yð ÞΔt

2
66664

3
77775

0
BBBB@

1
CCCCA

6¼
0

0

" #

JVC
x
y

� �� �
¼ VC

x
y

� �� �

where J : ImV ! KerL is the identity operator.

Let us define the homotopy such that Hν ¼ ν JVCð Þ þ 1� νð ÞG where
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x tð Þ ≤ x ξ1ð Þ þ
Ð δþ T;κð Þ
κ ∣xΔ tð Þ∣Δt

≤ x ξ1ð Þ þ
Ð δþ T;κð Þ
κ ja tð ÞjΔtþ Ð δþ T;κð Þ

κ a tð ÞΔt
� �

¼ l2 þM1≔H2

(3.7)

By Eq. (3.6) and (3.7), maxt∈ κ;δþ T;κð Þ½ �∣x tð Þ∣ ≤max jH1j; jH2jf g≔B1: From the second equation of
system (3.2) and the second equation of system (3.6), we can derive that

Ð δþ T;κð Þ
κ d tð ÞΔt ≤

Ð δþ T;κð Þ
κ

f tð Þ exp x tð Þð Þ
βl exp x tð Þð Þ þml exp y tð Þð ÞΔt

≤
Ð δþ T;κð Þ
κ

f tð ÞeH2

βleH2 þml exp y ξ2ð Þð ÞΔt

¼ eH2

βleH2 þml exp y ξ2ð Þð Þ
ðδþ T;κð Þ

κ
f tð ÞΔt:

Therefore,

exp y ξ2ð Þð Þ ≤ 1
ml

eH2
Ð δþ T;κð Þ
κ f tð ÞΔtÐ δþ T;κð Þ

κ d tð ÞΔt
� βleH2

 !

By the assumption of the Theorem 5, we get,

ðδþ T;κð Þ

κ
f tð ÞΔt� βl

ðδþ T;κð Þ

κ
d tð Þ

 !
Δt > 0 and

y ξ2ð Þ ≤ ln 1
ml

eH2
Ð δþ T;κð Þ
κ f tð ÞΔtÐ δþ T;κð Þ

κ d tð ÞΔt
� βleH2

 ! !
≔L1

Hence, by using the first inequality in Lemma 2 and the second equation of system (3.2)

y tð Þ ≤ y ξ2ð Þ þ
Ð δþ T;κð Þ
κ ∣yΔ tð Þ∣Δt

≤ y ξ2ð Þ þ
Ð δþ T;κð Þ
κ jd tð ÞjΔtþ Ð δþ T;κð Þ

κ d tð ÞΔt
� �

≤ L1 þM2≔H3:

(3.8)

Again, using the second equation of system (3.2), we obtain

Ð δþ T;κð Þ
κ d tð ÞΔt ≥

Ð δþ T;κð Þ
κ

f tð Þ exp x tð Þð Þ
αu þ βu exp x tð Þð Þ þmu exp y tð Þð ÞΔt

≥
Ð δþ T;κð Þ
κ

f tð ÞeH1

αu þ βueH1 þmu exp y η2
� �� �Δt

¼ eH1

αu þ βueH1 þmu exp y η2
� �� �

ðδþ T;κð Þ

κ
f tð ÞΔt,
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exp y η2
� �� �

≥
1
mu

eH1
Ð δþ T;κð Þ
κ f tð ÞΔtÐ δþ T;κð Þ

κ d tð ÞΔt
� βueH1 � αu

 !
:

Using the assumption of the Theorem 5, we obtain

eH1

ðδþ T;κð Þ

κ
f tð ÞΔt� βu

ðδþ T;κð Þ

κ
d tð ÞΔt

 ! !
� αu

ðδþ T;κð Þ

κ
d tð ÞΔt

 !
> 0

and

y η2
� �

≥ ln
1
mu

eH1
Ð δþ T;κð Þ
κ f tð ÞΔtÐ δþ T;κð Þ

κ d tð ÞΔt
� βueH1 � αu

 ! !
≔L2:

By using the second inequality in Lemma 2

y tð Þ ≥ y η2
� �� Ð δþ T;κð Þ

κ ∣yΔ tð Þ∣Δt

≥ y η2
� �� Ð δþ T;κð Þ

κ jd tð ÞjΔtþ Ð δþ T;κð Þ
κ d tð ÞΔt

� �

¼ L2 �M2≔H4:

(3.9)

By Eq. (3.8) and (3.9), we have maxt∈ t0;δþ T;t0ð Þ½ �∣y tð Þ∣ ≤max jH3j; jH4jf g≔B2. Obviously, B1 and B2

are both independent of λ: Let M ¼ B1 þ B2 þ 1. Then, maxt∈ t0 ;δþ T;t0ð Þ½ �
x
y

� �����
���� < M: Let

Ω ¼ x
y

� �����
����∈X :

x
y

� �����
���� < M

� �
; then, Ω verifies the requirement (a) in Theorem 4. When

x
y

� �
∈KerL ∩ ∂Ω,

x
y

� �
is a constant with

x
y

� �����
���� ¼M, ; then,

VC
x

y

" # !
¼

Ð δþ T;κð Þ
κ a sð Þ � b sð Þ exp xð Þ � c sð Þ exp yð Þ

α sð Þ þ β sð Þ exp xð Þ þm sð Þ exp yð ÞΔt

Ð δþ T;κð Þ
κ �d sð Þ þ f sð Þ exp xð Þ

α sð Þ þ β sð Þ exp xð Þ þm sð Þ exp yð ÞΔt

2
66664

3
77775

0
BBBB@

1
CCCCA

6¼
0

0

" #

JVC
x
y

� �� �
¼ VC

x
y

� �� �

where J : ImV ! KerL is the identity operator.

Let us define the homotopy such that Hν ¼ ν JVCð Þ þ 1� νð ÞG where

Quantum Calculus with the Notion δ±-Periodicity and Its Applications
http://dx.doi.org/10.5772/intechopen.74952

197



G
x
y

� �� �
¼

Ð δþ T;κð Þ
κ a sð Þ � b sð Þ exp xð ÞΔt
Ð δþ T;κð Þ
κ d sð Þ � f sð Þ exp xð Þ

α sð Þ þ β sð Þ exp xð Þ þm sð Þ exp yð ÞΔt

2
64

3
75

Take DJG as the determinant of the Jacobian of G: Since
x
y

� �
∈KerL, then Jacobian of G is

�ex Ð δþ T;κð Þ
κ b sð ÞΔt 0

Ð δþ T;κð Þ
κ

�exf sð Þ
α sð Þ þ β sð Þex þm sð Þey Δtþ

ðδþ T;κð Þ

κ

exð Þ2f sð Þβ sð Þ
α sð Þ þ β sð Þex þm sð Þey� �2 Δt �

Ð δþ T;κð Þ
κ

exeyf sð Þm sð Þ
α sð Þ þ β sð Þex þm sð Þey� �2 Δt

#
2
64

All the functions in Jacobian of G is positive; then, signDJG is always positive. Hence,

deg JVC;Ω ∩KerL; 0ð Þ ¼ deg G;Ω ∩KerL; 0ð Þ ¼
X

x
y

� �
∈G�1

0
0

� �� � signDJG
x
y

� �� �
6¼ 0:

Thus, all the conditions of Theorem 4 are satisfied. Therefore, system (2.1) has at least a
positive δ�-periodic solution. □

Example 1 Let T ¼ 0f g∪qZ: δ� q; tð Þ is the shift operator and t0 ¼ 1:

xΔ tð Þ ¼ �1ð Þ ln ∣t∣ln qð Þ þ 4
� �

� �1ð Þ ln ∣t∣ln qð Þ þ 0:5
� �

exp x tð Þð Þ � exp y tð Þð Þ
exp x tð Þð Þ þ 2 exp y tð Þð Þ ,

yΔ tð Þ ¼ �0:3þ
�1ð Þ ln ∣t∣ln qð Þ þ 7

� �
exp x tð Þð Þ

exp x tð Þð Þ þ 2 exp y tð Þð Þ ,

(3.10)

Each function in system (12) is δ� q2; t
� �

periodic and satisfies Theorem 1; then, the system has at least

one δ� q2; t
� �

periodic solution. Here, mes δþ q2; t
� �� � ¼ 2:

4. Conclusion

The important results of this study are:

1. The definition of δ�-periodicity notion is adapted to the quantum calculus.

2. The importance of time scale calculus is pointed out for the analysis of quantum calculus.

3. As an application, the δ�-periodicity notion for quantum calculus is used for the predator–
prey dynamic system whose coefficient functions are δ� periodic.
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As a result, it is seen that one can define a periodicity notion that is applicable to the structure
of the quantum calculus. Additionally, it is shown that this notion is useful for different
applications. One of its applications is analyzed in this study with an example.

5. Discussion

There are many studies about the predator–prey dynamic systems on time scale calculus such
as [14, 19, 27, 28]. All of these cited studies are about the periodic solutions of the considered
system on a periodic time scale. However, in the world, there are many different species. While
investigating the periodicity notion of the different life cycle of the species, the w-periodic time
scales could be a little bit restricted. Therefore, if the life cycle of this kind of species is
appropriate to the Beddington-DeAngelis functional response, then the results that we have
found in that study are becoming more useful and important.

In addition to these, the δ�-periodic solutions for predator–prey dynamic systems with
Holling-type functional response, semiratio-dependent functional response, and monotype
functional response can be also taken into account for future studies. In that dynamic systems,
delay conditions and impulsive conditions can also be added for the new investigations.

This is a joint work with Ayse Feza Guvenilir and Billur Kaymakcalan.
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