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Preface

From the earliest times, humanity, pushed by curiosity, seeks ways to observe the depths of
the oceans, seas, and inland waters. Our senses, adapted to the physical properties of the
environment in which we live, that is, the surface of the earth and the surrounding atmos‐
phere, generally do not work when we want to use them underwater. In addition, the hu‐
man body is not adapted to unfavorable underwater conditions, especially at deep depths.
Therefore, the only possibility is to use technical means of observation that will not only
replace our senses but will also allow us to increase the area of observation and provide data
that are not available in the environment to which we are adapted. To obtain information or
to transmit data on the surface of the earth and in the surrounding atmosphere, we most
often use electromagnetic waves, primarily because of their low attenuation. Unfortunately,
the damping of electromagnetic waves in water is very strong, and therefore they cannot be
used in this environment. Fortunately, the acoustic waves are much less attenuated, so they
perform the same functions as electromagnetic waves in the air. Acoustic waves have sever‐
al important features that make them a basic underwater observation tool and information
medium. These include, among others, low attenuation of low-frequency acoustic waves;
ease of radiation and reception of narrow beam of waves; and propagation over long distan‐
ces especially at low frequency, due to the difference in propagation velocity of the acoustic
wave in water compared to the electromagnetic wave in the air, less frequency is required to
achieve a similar wavelength.

Underwater acoustics is a part of acoustics dealing with the propagation of elastic waves in
the water and their production and reception in the frequency range of sound and ultra‐
sound. It should be emphasized that the range of interest covers not only technical aspects
but also biological, medical, and much more. Hence, dealing with underwater acoustics re‐
quires appropriate knowledge and skills most often resulting from several areas of science
and technology. Underwater acoustics, because of its interdisciplinary character, is one of
the most productive fields of acoustics and one that stimulates useful interchanges between
different disciplines of science and attracts the attention of a large number of researchers all
over the world.

The beginnings of underwater acoustics are related to the development of shipping, which
occurred in the second half of the nineteenth century, after the introduction of steam propul‐
sion of ships. More frequent collisions with navigational obstacles have resulted in increas‐
ing financial and, above all, human losses. It is commonly believed that the direct
contribution to the construction of the first underwater acoustic device was the Titanic dis‐
aster. As a result of this incident in 1917, Pierre Langevin built the first sonar to detect ice‐
bergs and sea bottom observation. In his solution, he used the piezoelectric effect discovered
by the Curie brothers in 1880. This allowed for the efficient conversion of electrical signals to



acoustic wave and vice versa. Over time, using increasingly improved materials, the natural
barrier of conversion of electric to acoustic energy has been minimized. Solving the problem
of energy conversion with rapid advances in electronic technology, especially digital signal
analysis, has enabled the development of efficient and compact underwater acoustic devi‐
ces. The main motive behind the development of hydroacoustic systems was, as usual, mili‐
tary needs. The first qualitative progress was made in World War II and was directly related
to the efficient and massive use of submarines by Germany in the battle for supremacy in
the seas and oceans. Another significant progress was made during the Cold War and was
directly related to the threat posed by submarines equipped with missiles with nuclear war‐
heads. At present, this is due to the threat of terrorism and the related need to detect small
submarines, scuba divers, mines, and other objects threatening marine transport and infra‐
structure. Not without significance is the development of digital technology that allows the
use of a wider range of computational tools, thus achieving a new quality in processing of
acquired data. More and more important is the need for underwater communication, espe‐
cially in regions that are detrimental to the propagation of sound waves, such as shallow
waters, channels, harbors, etc.

Although advances in underwater acoustics are primarily based on military needs, the re‐
sults are rapidly transferring to the civilian sphere of life. Hydroacoustic systems are now
widely used in navigation, fishing, ocean engineering, hydrography, or biology. According
to the maritime law, each vessel must have a navigation echo sounder on its equipment. The
group directly interested in the use of underwater acoustic systems is very large. Besides the
ship’s commanders, merchant fleet officers, fishing boat shippers, or divers, the scientists
use broadly underwater acoustic systems in marine researches. It is also used by the institu‐
tions involved with the maintenance of the fairways, harbors, channels, as well as govern‐
ment and nongovernmental institutions dealing with internal and external security. This
collection is complemented by police or firefighters, as well as employees of underwater en‐
gineering companies that extract seabed raw materials and employees of commercial and
advisory companies operating in the submarine acoustic industry.

The main objective of this book is to present the latest achievements in the field of underwater
acoustics and a better understanding of the involved key issues. Moreover, the presented
practical solutions of problems allow the same to become familiar with the technical and non‐
technical aspects of various applications as well as the latest developments in underwater
acoustic systems used for exploration of the marine environment. For this reason, scientists
from research institutions and universities of various countries of the world present their ach‐
ievements in the field of underwater acoustics. According to the information presented in this
book, the impact of these systems on the improvement of human life is invaluable in particu‐
lar due to the wide field of application. I expect that this book will bring some of the problems
associated with underwater acoustics and will be an inspiration for further research. I also
hope that this publication will be received by the acoustic community with great interest.

Andrzej Zak
Polish Naval Academy

Poland

XII Preface



acoustic wave and vice versa. Over time, using increasingly improved materials, the natural
barrier of conversion of electric to acoustic energy has been minimized. Solving the problem
of energy conversion with rapid advances in electronic technology, especially digital signal
analysis, has enabled the development of efficient and compact underwater acoustic devi‐
ces. The main motive behind the development of hydroacoustic systems was, as usual, mili‐
tary needs. The first qualitative progress was made in World War II and was directly related
to the efficient and massive use of submarines by Germany in the battle for supremacy in
the seas and oceans. Another significant progress was made during the Cold War and was
directly related to the threat posed by submarines equipped with missiles with nuclear war‐
heads. At present, this is due to the threat of terrorism and the related need to detect small
submarines, scuba divers, mines, and other objects threatening marine transport and infra‐
structure. Not without significance is the development of digital technology that allows the
use of a wider range of computational tools, thus achieving a new quality in processing of
acquired data. More and more important is the need for underwater communication, espe‐
cially in regions that are detrimental to the propagation of sound waves, such as shallow
waters, channels, harbors, etc.

Although advances in underwater acoustics are primarily based on military needs, the re‐
sults are rapidly transferring to the civilian sphere of life. Hydroacoustic systems are now
widely used in navigation, fishing, ocean engineering, hydrography, or biology. According
to the maritime law, each vessel must have a navigation echo sounder on its equipment. The
group directly interested in the use of underwater acoustic systems is very large. Besides the
ship’s commanders, merchant fleet officers, fishing boat shippers, or divers, the scientists
use broadly underwater acoustic systems in marine researches. It is also used by the institu‐
tions involved with the maintenance of the fairways, harbors, channels, as well as govern‐
ment and nongovernmental institutions dealing with internal and external security. This
collection is complemented by police or firefighters, as well as employees of underwater en‐
gineering companies that extract seabed raw materials and employees of commercial and
advisory companies operating in the submarine acoustic industry.

The main objective of this book is to present the latest achievements in the field of underwater
acoustics and a better understanding of the involved key issues. Moreover, the presented
practical solutions of problems allow the same to become familiar with the technical and non‐
technical aspects of various applications as well as the latest developments in underwater
acoustic systems used for exploration of the marine environment. For this reason, scientists
from research institutions and universities of various countries of the world present their ach‐
ievements in the field of underwater acoustics. According to the information presented in this
book, the impact of these systems on the improvement of human life is invaluable in particu‐
lar due to the wide field of application. I expect that this book will bring some of the problems
associated with underwater acoustics and will be an inspiration for further research. I also
hope that this publication will be received by the acoustic community with great interest.

Andrzej Zak
Polish Naval Academy

Poland

PrefaceVIII
Chapter 1

Localization of Buried Objects Using Reflected Wide-
Band Underwater Acoustic Signals

Salah Bourennane and Caroline Fossati

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71272

Provisional chapter

Localization of Buried Objects Using Reflected
Wide-Band Underwater Acoustic Signals

Salah Bourennane and Caroline Fossati

Additional information is available at the end of the chapter

Abstract

This chapter deals with the localization of wide-band underwater acoustic sources. A
combination of high resolution methods with scattering acoustic model are proposed.
The bearing and the range sources at each sensor are expressed as a function to those at
the first sensor. We present the noneigendecomposition methods fixed-point algorithm,
projection approximation subspace tracking (PAST) algorithm, PAST with deflation
(PASTD) algorithm and orthogonal PAST (OPAST) algorithm to track the signal sub-
space to compute leading eigenvectors. The proposed algorithms are faster than singu-
lar value decomposition (SVD) for MUSIC. The spatial smoothing operator is used to
decorrelate the received signals and to estimate the coherent signal subspace. The
performance of the different methods are evaluated by both computer simulations and
experimental and data recorded during underwater acoustic experiments.

Keywords: array processing, source localization, wide-band, fast algorithm

1. Introduction

Non-invasive detection and localization of sources is an important application area in many
application domains, such as radar, sonar, seismology and communications. Thus there has
been a growing interest in developing techniques for the estimation wavefronts of the
direction-of-arrival (DOA) in order to detect and localize the emitting sources [1]. Support
vector machine (SVM) based on electromagnetic approach [2–4] and conventional neural
networks (NN) based on inverse scattering technique [5] are proposed for buried object
detection. Ground penetrating radar (GPR) is used to improve the detection of weak-scattering
plastic mines [6]. But electromagnetic filed inversion require more computational effort. The
inversion of measured scattered acoustical waves is used to image buried objects, but it needs
high frequencies and the application in a real environment is difficult [7]. Therefore, the
acoustic imagery technique is not suitable because the high frequencies are strongly attenuated
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inside the sediment. Using a low frequency, synthetic aperture sonar (SAS) has been recently
applied on partially and shallowly buried cylinders in a sandy seabed [8]. The bearing and the
range estimation using correlated signals scattered from nearfield and farfield objects, in a
noise environment, still a challenging problem. The MUSIC algorithm is one of the most
thoroughly studied and best understood subspace based high resolution methods. It divides
the observation space into two signal-subspaces: the signal subspace and the noise subspace
[9]. MUSIC uses the orthogonality property between the two areas to locate sources. Different
approaches exist to detect and localize buried objects but acoustic techniques will be consid-
ered in our study. Match field processing (MFP) [10] has been successfully used for localization
sources in ocean acoustic. We discuss the proposed approach based on MUSIC associated with
acoustic scattering model referred to MFP [10]. We take into account the water-sediment
interface [11]. This means that we attempt to combine both the reflection and refraction of
wave in the model [12]. From the exact solution of the acoustic scattered field [13], we have
derived a new source steering vector including both the ranges and the bearings of the objects.
This source steering vector is employed in objective function instead of the classical plane
wave model [14, 15] which have extended the 1-D MUSIC to 2-D MUSIC. The acoustic scatter
field model has been addressed in many published researches with different configurations.
For example, the configurations can be single [16] or multiple objects [17], buried or partially
buried objects [18] with cylindrical [16] or spherical shape [19]. All those scattering models can
be used with the proposed source steering vector. In this chapter a spatial smoothing operator
is proposed to estimate the coherent signal subspace [20]. Inverse power method, which allows
to find an approximate eigenvector when an approximation to corresponding eigenvalue is
already known, is proposed to estimate the required noise variance. In high resolution method,
we use singular value decomposition (SVD) in music for obtaining the eigenvectors noise
subspace. However, the main drawback is the inherent complexity and computational time
load [21]. So a large number of approaches have been introduced for fast subspace tracking in
order to overcome this difficulty. We propose to replace SVD by Fixed Point for computing
leading eigenvectors from the spectral matrix [22, 23]. We propose another methods to accel-
erate MUSIC, such as projection approximation subspace tracking (PAST) [24, 25], which
makes the expectation of square difference between the input vector and the projected vector
minimum. With proper projection approximation, the PAST derives a recursive least squares
(RLS) algorithm for tracking the signal subspace. The PAST algorithm computes an asymptot-
ically orthogonal basis of the signal subspace. PAST with deflation (PASTD) is derived from
PAST by applying the deflation technique in order to get the signal eigenvectors and eigen-
values [24, 26]. It has been shown that these subspace trackers are closely linked to the classical
power iterations method, but does not guarantee the orthonormality at each iteration [27, 28].
Orthogonal PAST (OPAST) algorithm is another fast implementation of the power method
which outperforms both PAST and PASTD to reduce computation time [29, 30]. The perfor-
mance of the proposed algorithms are evaluated by several numerical simulations and the data
has been recorded using an experimental water tank.

The remainder of the chapter is as follows: Section 2 introduces the problem formulation.
Section 3 presents the scattering acoustic model of generating the received signals. Then
proposed algorithm for fast localization of underwater acoustic in presence of correlated noise
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is presented in Section 4. Section 5 proposes the new versions of “MUSIC”without eigendecom-
position. Some numerical results and Experimental tests are shown in Sections 6 and 7, respec-
tively. Finally, Section 8 summarizes the main conclusions of this chapter.

Throughout the chapter, we use to denote: transpose operation “T,” complex conjugate trans-
pose “+, ” complex conjugate “∗,” expectation operator E[.], cumulant Cum(.), Kronecker
product ⊗, determinant ∣�∣ and Frobenius norm ∥�∥F.

2. Problem formulation

Consider a transmitter that generates a plane wave with an angle θinc. The incident plane wave
will propagate and be reflected by P objects. For example, when it is located in the bottom of a
tank filled with sand and water. We name the objects, which reflect the signals, is the sources.
An array composed ofN sensors receives K signals emitted by the sources (P <N). The received
signals are grouped into a vector r( f ), which is the Fourier transform of the array output vector
at frequency f, is written as [31, 32]:

r fð Þ ¼ A fð Þs fð Þ þ b fð Þ (1)

where A( f ) = [a( f,θ1), a( f,θ2),…, a( f,θK)], matrix of dimensions (N�P) is the transfer matrix of
the source-sensor array systems with respect to some chosen reference point, s(f) = [s1( f ), s2( f ),
…, sK( f )]

T is the vector of signals, b( f ) = [b1( f ), b2( f ),…, bK( f )]
T is the vector of Gaussian white

noise. We define the matrix interspersals by:

Γ fð Þ ¼ E r fð Þrþ fð Þ½ � (2)

This matrix is estimated by bΓ fð Þ ¼ 1
Lr

PLr
l¼1 rl fð Þrþl fð Þ where Lr represents the number of reali-

zations. Thus the spectral matrix Γ fð Þ is formed:

Γ fð Þ ¼ A fð ÞΓs fð ÞAþ fð Þ þ Γb fð Þ, (3)

where Γb( f ) =E[b( f )b+( f )] is the spectral matrix of noise vector, the spectral matrix of signal
vector is given as:

Γs fð Þ ¼ E s fð Þsþ fð Þ½ � ¼ V fð ÞΛ fð ÞVþ fð Þ þ Γb fð Þ (4)

where Λ( f ) = diag {λ1( f ),…,λP( f )} and V( f ) = [v1( f ),…, vP( f )]. Assuming that the columns of
A( f ) are linearly independent, in other words, A( f ) is full rank, it follows that for nonsingular
Γs( f ), the rank of A( f )Γs(f)A

+( f ) is P. This rank property implies that:

• the (N�P) multiplicity of its smallest eigenvalues: λP + 1( f ) =… =λN( f )ffi σ2( f ).

• the eigenvectors corresponding to the minimal eigenvalues are orthogonal to the columns
of A( f ), namely, Vb( f ) is equal to by the definition of {VP + 1( f )…VN( f )} orthogonal to {a
( f,θ1)…a( f,θP)}.
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The eigenstructure-based techniques are based on the exploitation of these properties. When
the objects are far away from the array, the wavefront is assumed to be plane. Then DOA of the
sources are obtained, at the frequency f, by the peak positions in a so-called spectrum (MUSIC)
defined as:

Z f ;θð Þ ¼ 1
aþ f ;θð ÞVb fð ÞVþb fð Þa f ;θð Þ (5)

where a f ;θð Þ ¼ 1; e�2jπf
d sin θð Þ

c ;…; ; e�2jπf N�1ð Þd sin θð Þ
c

h i
is the steering vector of plane wave model,

Vb is the eigenvectors of the noise subspace, c is the sound speed, d is the interspacing of the
sensors and j is the complex operator. In the presence of P objects, the 1-D MUSIC(f,θ)
algorithm cannot solve all the P angles because the signals are correlated. In the following
sections, we use simultaneously all the information contained in the signals to estimate the
coherent signal subspace which extends the conventional 1-D MUSIC(f,θ) algorithm to 2-D
MUSIC(f,θ,ρ) for joint range ρ and DOA θ estimation when the objects are buried in the sand
with small depth.

3. Scattering acoustic model: to generate the received signals

In this section, we will present how to fill the vector of the scattering model. We consider a
sedimentary covered with water and the interface is treated as a plane. An object of cylindrical
or spherical shell is buried in the sediment. An incident plane wave propagating in the water
reaches the interface with an angle of incidence θinc as show in Figure 1. The incident plane
wave generates a wave reflecting plane in the water and refracted plane wave propagating in
the sediment. So the array located in the water receives three components [18]:

• the incident plane wave,

• the reflecting plane wave,

• the transmitter plane wave diffused by the object.

The array-interface height h and the nature of the sediment are known or can be determined.
Also, the speed of wave propagation in the sediment c2 is assumed to be known. Because the
object is buried, the pressure in the water and sediment will not be expressed directly in
terms of θ1 and ρ1, but in terms of five unknown parameters θ11, ρ11, θ12, ρ12 and yc (the
depth of buried object). So we will express θ11, ρ11, θ12, ρ12 and yc based on θ1 and ρ1 (see
Figure 2). We use the law of Snell-Descartes and generalize the Pythagorean theorem to
obtain the expressions:

yc ¼ ρ1 cos θ1ð Þ � h (6)

θ12 ¼ arcsin
c2
c1

sin θincð Þ
� �

(7)

Advances in Underwater Acoustics4
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Also, the speed of wave propagation in the sediment c2 is assumed to be known. Because the
object is buried, the pressure in the water and sediment will not be expressed directly in
terms of θ1 and ρ1, but in terms of five unknown parameters θ11, ρ11, θ12, ρ12 and yc (the
depth of buried object). So we will express θ11, ρ11, θ12, ρ12 and yc based on θ1 and ρ1 (see
Figure 2). We use the law of Snell-Descartes and generalize the Pythagorean theorem to
obtain the expressions:

yc ¼ ρ1 cos θ1ð Þ � h (6)

θ12 ¼ arcsin
c2
c1

sin θincð Þ
� �

(7)
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ρ12 ¼
ρ1 cos θ1ð Þ � h

cos arcsin c2
c1
sin θincð Þ

� �h i (8)

θ11 ¼ arctan
ρ1 cos θ1ð Þ � ρ12 cos θ12ð Þ
ρ1 sin θ1ð Þ � ρ12 sin θ12ð Þ

� �
(9)

ρ11 ¼
h

cos arctan ρ1 cos θ1ð Þ�ρ12 cos θ12ð Þ
ρ1 sin θ1ð Þ�ρ12 sin θ12ð Þ
� �h i (10)

3.1. Cylindrical shell

Assume a cylindrical shell long enough which is buried in the sediment with axis parallel to
the interface plane. Thus the acoustic pressure wave received by the first sensor of the array
Pcyl(f,θk1,ρk1) contains three acoustic pressure components:

Figure 1. Geometry configuration of buried object.

Figure 2. Configuration of the buried object-1st sensor.
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Pcyl f ;θk1;ρk1

� � ¼ Pinwater�cyl þ Prefwater�cyl þ Pdiff�cyl (11)

where Pinwater� cyl = e
jk1(�(ρk1 sin(θk1)) sin(θinc) +hcos(θinc)) is the pressure incident in the water, Prefwater� cyl

=R(θinc)e
jk1((ρk1 sin(θk1)) sin(θinc)� hcos(θinc)) is the pressure reflected by the sediment-water interface,

where R(θinc) is the reflection coefficient of the interface, Pdiff�cyl ¼
Pþ∞

m¼�∞ ξTc I�Dcð Þ�1Ψ t
cyl is

the diffused acoustic pressure wave transmitted in the water, where I is the identity matrix,Dc is a
linear operator, Tc is the transition diagonal matrix, Ψ t

cyl is the vector of transmitted wave and ξ=

[ξ1,ξ2,…,ξm] is defined by ξm =Twater� sed(θinc)e
jk2yc cos(θk11)jme�jm(π�θk11), where Twater� sed(θinc) is the

transmission coefficient.

3.2. Spherical shell

In this section Psph(f,θk1,ρk1) is the acoustic pressure wave received by the first sensor and is
expressed as follows [12, 18]:

Psph f ;θk1;ρk1

� � ¼ Pinwater�sph þ Prefwater�sph þ Pdiff�sph (12)

where Pinwater�sph ¼
Pþ∞

m¼�∞ jm Pm cos θincð Þð Þe2j cos θincð Þyc
� �

is the incident wave generates in the

water, Prefwater�sph ¼
Pþ∞

m¼�∞ R θincð ÞPm � cos θincð Þð Þe2j cos θincð Þyc is the reflected wave, where R
(θinc) is the reflection coefficient of the interface. We define the acoustic wave of the diffused

by spherical shell by Psphsediment ¼ T�1s � Cm� ��1
Pinwater�sph, where Ts is the transition matrix and

C is the matrix containing the conversion coefficients. The diffused acoustic pressure
wave transmitted in the water is given by: Pdiff�sph ¼

P∞
m¼0 εmY cos m θk1 � θ12ð Þð Þ, where Y =

[PsphsedimentPm(cos(θk1))hm(k2ρk1) +Xm], εm = 2 for m > 0, ε0 = 1.

The vector a(f,θK,ρK) is filled with cylindrical or spherical scattering model considering the
sources shape. For example, when the sources are cylindrical shells, the vector is given by:

a f ;θK;ρK

� � ¼ Pcyl f ;θk1;ρk1
� �

;…;Pcyl f ;θkN;ρkN

� �� �
(13)

Eq. (11) or (12) give the first component of the vector. The other Pcyl(f,θki,ρki) for i = 1, 2,…,N
associated with the ith sensors can be formed by a geometric recursive relationship. The
relationship allows to express (θki,ρki) according to (θki� 1,ρki� 1) (see Figure 1). This recursive
calculate is done as follows:

ρki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2ki�1 þ d2 � 2ρki�1d cos

π
2
þ θki�1

� �r
(14)

θki ¼ �π
2
þ cos �1

d2 þ ρ2ki � ρ2ki�1
2ρki�1d

 !
, i ¼ 2,…, N (15)

These equations are employed in Eq. (5) to estimate simultaneously range and bearing of the
objects.
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In the following section, we summarize the proposed algorithm for fast localization of under-
water acoustic sources using a wide-band transmitter to receive the signals at different fre-
quencies, then the coherent signal subspace can be applied to decorrelate the source signals.

4. Proposed algorithm for fast localization of underwater acoustic sources

We use spatial smoothing to deal with narrow band correlated signal, we divide the array into
Ls overlapping subarrays. The spatially smoothed covariance matrix is the average of the
subarray covariances [33]. The step-by-step proposed algorithm for fast localization of under-
water acoustic sources is given as following:

Algorithm 1 Proposed Algorithm for Bearing and Range Estimation of Buried Objects

1. use the beamformer method to find an initial estimate of cθ0k , where k = 1,…,P0, with P0 ≤ P.

2. compute the initial values of ρk ¼ X
cos θkð Þ for k = 1,…,P0, where X = h + yc represents the

distance between the receiver and the bottom of the tank (seabed),

3. fill the transfer matrix, bA fð Þ ¼ a f ;θ1; ρ1
� �

; a f ;θ2;ρ2

� �
;…; a f ;θK;ρK

� �� �
, where each source

steering vector is filled using Eq. (11),

4. estimate the spectral matrix Γ fð Þ ¼ E r fð Þrþ fð Þ½ � ¼ 1
Lr

PLr
l¼1 rl fð Þrþl fð Þ, where Ll is the realiza-

tion number,

5. estimate noise covariance matrix Γb(f) =E[b(f)b
+(f)]. When the noise is white noise, that is,

estimate noise variance σ2 fð Þ ¼ 1
N�P0

PN
i¼P0þ1 λi, where λi is the i

th eigenvalue of Γ(f). Then

we calculate Γb(f) = σ
2I, where I is the identify matrix,

6. calculate the spectral matrix of the signals reflected on the objects by Γs fð Þ ¼ bAþ fð ÞbA fð Þ
� ��1

bAþ fð Þ � Γ fð Þ � Γn fð Þð ÞbA fð Þ bAþ fð ÞbA fð Þ
� ��1

,

7. compute the average of the spectral matrices Γs fð Þ ¼ 1
Ls

PLS
S¼1

Γs fð Þ, where Ls represents the

number of subarrays, then calculate Vs fð Þ by SVD,

8. calculate the spatial spectrum of theMUSICmethod for bearing and range object estimation:

MUSIC ¼ 1

∣∣a f 0;θk; ρk
� �þVb f 0

� �
V
þ
b f 0
� �

a f 0;θk;ρk

� �
∣∣
, (16)

where Vb is the eigenvector matrix of noise subspace associated with the (N�P) smallest
eigenvalues.
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Inverse Power method can be used to estimate the noise power λN(f) = σ
2(f). This variance can

be used at step 5 in Alg. 1 for estimating the noise variance in case of white noise. The principle
of this method is recalled in the following, using the maximum norm.

1. Let qo a complex vector of N elements, ∥qo∥∞ = 1;

2. For l = 1, 2, 3,…;

3. Calculate xl :Γxl =ql� 1

μl = ∥ xl∥∞

ql ¼ xl
μl;

It is shown that: liml!∞μl ¼ 1
λN
, where λN is the smallest eigenvalue of Γ.

In the high resolution noise subspace based methods, the DOA’s are given by the local maxi-
mum points of a cost function, for example Eq. (16) of MUSIC. Vb(f) is the orthogonal projector
onto the noise subspace given by the eigenvectors associated with the smallest eigenvalues of
the covariance matrix of the received data. This requires an enormous computational load
which limits its use for tracking by SVD [34]. In many applications, only a few eigenvectors
are required. Since the number of sensor N is often larger than the number of sources P. It
means that the vector dimension of noise subspace is larger than signal subspace. It is more
efficient to work with the lower dimensional signal subspace than with the noise subspace.
That is to say, it is not necessary to obtain Vb(f) exactly. We can calculate signal subspace Vs(f) =
[v1(f),v2(f),…,vP(f)] whose columns are the P orthonormal basis vectors. The projector onto the
noise subspace spanned by the (N�P) eigenvectors associated with the (N�P) smallest eigen-
values is Vb fð ÞVþb fð Þ, given by:

Vb fð ÞVþb fð Þ ¼ I�Vs fð ÞVþs fð Þ (17)

On the other hand, the additive noise is assumed to be white. But in practice, the noise is not
always spatially white noise. In generally, the noise is correlated or unknown.

So in the next two sections, we will introduce the algorithms to replace SVD in MUSIC for
reduce computation times and propose a new algorithm for estimating the spectral matrix of
an unknown limited length spatially correlated noise.

5. MUSIC without eigendecomposition

In this section, we propose the noneigenvector versions of “MUSIC” to replace SVD to accel-
erate computation times.

5.1. Fixed point algorithm

One way to compute the P orthonormal basis vectors is to use Gram-Schmidt method. The
eigenvector with dominant eigenvalue will be measured first. Similarly, all the remaining P� 1
basis vectors will be measured one by one in a reducing order of dominance. The previously
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measured (p� 1)th basis vectors will be utilized to find the pth basis vector. The algorithm for
pth basis vector will converge when the new value vþp and old value vp are such that vþp vp ¼ 1.

It is usually economical to use a finite tolerance error to satisfy the convergence criterion

vþp vp � 1
���

���
���

��� < ηwhere η is a prior fixed threshold. The proposed algorithm is given as follows:

Algorithm 2 Fixed Point Algorithm

1. Choose P, the number of principal axes or eigenvectors required to estimate. Consider
covariance matrix Γ and set p 1.

2. Initialize eigenvector vp of size d� 1, e.g. randomly;

3. while vHp vp � 1
���

���
���

��� < η

a. Update vp as vp  Γvp;

b. Do the Gram-Schmidt orthogonalization process vp  vp �
Pj¼p�1

j¼1 vTpvj
� �

vj;

c. Normalize vp by dividing it by its norm: vp  vp
vpj jj j.

4. Increment counter p p + 1 and go to step 2 until p equals K.

5.2. Projection approximation subspace tracking (PAST) algorithm

Suppose that we have an estimation of the signal subspace W(t) where each column is an
eigenvector. The Linear Principal Analysis Criterion gives the definition of the scalar cost
function J(W(t)).

J W tð Þð Þ ¼ E r tð Þ �W tð ÞWþ tð Þr tð Þk k2
n o

(18)

where W(t)W+(t)r(t) is the projection of r(t) into the subspace W(t). The error surface of the
function has several local minimal and one global minimum. When W(t) is equal to a basis for
the signal subspace, J(W(t)) has a global minimum which can estimate the signal subspace by
Eq. (18). Note thatW(t) is not equal to the signal subspace itself, but merely provides a possible
basis. If W(t) is a signal column vector, it does indeed become equal to the Principal Compo-
nent (dominant eigenvector) under minimization.

The cost function J(W(t)) can be minimized by the application of a gradient-descent technique
or recursive least squares variant. We can replace the expectation operator in Eq. (18) by an
exponentially weighted sum over n samples. The estimation is given as follows:

bJ J W tð Þð Þð Þ ¼
Xn
t¼1

βn�t r tð Þ �W tð ÞW tð Þþr tð Þ�� ��2 (19)

where β is the forgetting factor (0 < β < 1). The forgetting factor allows the subspace estimation
to track geostationary signal over time.
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We get another cost function by approximating W(t)+r(t) with W(t� 1)+r(t), using the previous
value of W(t)+ in the iteration, giving:

bJ
0
W tð Þð Þ ¼

Xn
t¼1

βn�t r tð Þ �W tð ÞW t� 1ð Þþr tð Þ�� ��2 (20)

This function resembles the cost function used to define a recursive least squares (RLS) filter:

C W tð Þð Þ ¼
Xn
t¼1

βn�t e tð Þj j2 (21)

where e(t) is the error signal. The error signal is the difference between the “desired” signal r(t)
and its projection into the subspace W(t)W(t� 1)+r(t). Consequently, the PAST algorithm may
be summarized by the following equations:

Algorithm 3 PASTAlgorithm

1. Initialization:

W(0) and P(0)

2. for t = 1,2…

y(t) =W+(t� 1)r(t)

h(t) =P(t� 1)∗y(t)

g tð Þ ¼ h tð Þ
βþy tð Þð Þh tð Þ

P tð Þ ¼ 1
βTri{P(t� 1)� g(t)r+(t)}

e(t) = r(t)�W(t� 1)y(t)

W(t) =W(t� 1) + e(t)g+(t)

end

The operator Tri indicates that only the upper (or lower) triangular part of the matrix is
calculated and its Hermitian transposed version is copied to the another lower (or upper)
triangular part.

5.3. Projection approximation subspace tracking with deflation (PASTD) algorithm

The PAST algorithm provides a method to estimate only a basis for the dominant subspace. The
exact eigenvectors (singular vector) are not calculated unless W(t) is a column vector in which
case only the dominant eigenvector (principal component) is estimated. We present a second
subspace tracking algorithm - PAST with deflation (PASTD) which is derived from the PAST
approach. The PASTD algorithm is based on the deflation technique which is the sequential
estimation of the principal components. According to the Karhunen-Loève expansion
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r tð Þ ¼
XN

i¼1
Wþi tð Þr tð ÞWi tð Þ (22)

tells that any r(t) may be expressed as a linear combination of the eigenvector of the correlation
matrix.

The first step of PASTD is to update the most dominant eigenvector by applying PAST with
i = 1, then the contribution of the dominant eigenvector in Eq. (22) is removed by subtraction.
So the second dominant eigenvector becomes the most dominant and can be extracted in the
same way. Then we repeat the procedure until all desired eigencomponents are estimated. This
iterative process is called deflation. So the algorithm may be summarized as follows:

Algorithm 4 PASTD Algorithm

1. Initialization:

Wi(0) and di(0)

2. for n = 1,2…

r1(t) = r(t)

for i = 1,2,…,P yi tð Þ ¼Wþi t� 1ð Þri tð Þ
di(t) = βdi(t� 1) + |yi(t)|

2

ei(t) = ri(t)�Wi(t� 1)yi(t)

Wi tð Þ ¼Wi t� 1ð Þ þ ei tð Þy∗i tð Þ=di tð Þ
ri + 1(t) = ri(t)�Wi(t)yi(t)

end

end

where estimates are made of P eigenvectors with the largest eigenvalues. In practice since
P < <N, this indicates an important optimization compared to the eigendecomposition or
SVD. The eigenvector projection estimates Wi are initialized to the columns of some nonzero
orthogonal matrix. di(t) is initialized to arbitrary nonzero constants. When PASTD has con-
verged, the Wi(t) will contain estimates of the eigenvector of the correlation matrix of the data

in r(t). The corresponding eigenvalues may be calculated by multiplying the di(t) by
1�β
β .

5.4. Orthogonal projection approximation subspace tracking (OPAST) algorithm

The OPAST algorithm is the modification of PAST. The weight matrix W(t) is forced to be
orthonormal to each iteration. So we can get:

W tð Þ ¼W tð Þ Wþ tð ÞW tð Þð Þ�1=2 (23)
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where (W+(t)W(t))�1/2 denotes an inverse square root of (W+(t)W(t)). (W+(t)W(t))�1/2 can be
calculated by using the updating equation of W(t). Note that W(t� 1) is now an orthonormal
matrix, we have

Wþ tð ÞW tð Þ ¼ Iþ ∥p tð Þ∥2q tð Þqþ tð Þ (24)

where I is the identity matrix, W+(t� 1)p(t) = 0 and r¼def∥p tð Þ∥q tð Þ. Thus

Wþ tð ÞW tð Þð Þ�1=2 ¼ Iþ 1
∥r∥2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∥r∥2

p � 1

 !
xxH

¼ Iþ τ tð Þq tð Þqþ tð Þ
(25)

where

τ tð Þ
def
¼ 1

∥q tð Þ∥2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ∥p tð Þ∥2∥q tð Þ∥2
q � 1

0
B@

1
CA (26)

Using Eqs. (23) and (26), and the updating equation of W(t), we obtain

W tð Þ ¼ W t� 1ð Þ þ p tð Þqþ tð Þð Þ Iþ τ tð Þq tð Þqþ tð Þð Þ
¼W t� 1ð Þ þ p0 tð Þqþ tð Þ

(27)

where p'(t) = τ(t)W(t� 1)q(t) + (1 + τ(t) ∥q(t)∥2)p(t). Thus, the OPAST algorithm can be written
as the PAST (see Algorithm 3):
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6. Simulations results

6.1. Complexity

The traditional MUSIC method estimate the noise subspace eigenvectors by SVD. From the
computational point of view, the well-known SVD method is the cyclic Jacobi’s method which
requires around N3 computations. The computational complexity of fixed-point algorithm,
PAST, PASTD and OPAST is (NP2 +N2P), 3NP +O(P2), 4NP +O(P) and 4NP +O(P2) respectively.
If the number of sensors N is larger compared to the number of objects P, the computational
complexity can be estimated to be around N2P for fixed-point algorithm, 3NP for PAST, 3NP

Advances in Underwater Acoustics12



where (W+(t)W(t))�1/2 denotes an inverse square root of (W+(t)W(t)). (W+(t)W(t))�1/2 can be
calculated by using the updating equation of W(t). Note that W(t� 1) is now an orthonormal
matrix, we have

Wþ tð ÞW tð Þ ¼ Iþ ∥p tð Þ∥2q tð Þqþ tð Þ (24)

where I is the identity matrix, W+(t� 1)p(t) = 0 and r¼def∥p tð Þ∥q tð Þ. Thus

Wþ tð ÞW tð Þð Þ�1=2 ¼ Iþ 1
∥r∥2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∥r∥2

p � 1

 !
xxH

¼ Iþ τ tð Þq tð Þqþ tð Þ
(25)

where

τ tð Þ
def
¼ 1

∥q tð Þ∥2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ∥p tð Þ∥2∥q tð Þ∥2
q � 1

0
B@

1
CA (26)

Using Eqs. (23) and (26), and the updating equation of W(t), we obtain

W tð Þ ¼ W t� 1ð Þ þ p tð Þqþ tð Þð Þ Iþ τ tð Þq tð Þqþ tð Þð Þ
¼W t� 1ð Þ þ p0 tð Þqþ tð Þ

(27)

where p'(t) = τ(t)W(t� 1)q(t) + (1 + τ(t) ∥q(t)∥2)p(t). Thus, the OPAST algorithm can be written
as the PAST (see Algorithm 3):

Algorithm 5 OPASTAlgorithm

W(t) =W(t� 1) +p'(t)q+(t)

τ tð Þ ¼ 1
∥q tð Þ∥2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ∥p tð Þ∥2∥q tð Þ∥2
p � 1
� �

W(t) = τ(t)W(t� 1)q(t) + (1 + τ(t) ∥q(t)∥2)p(t)

6. Simulations results

6.1. Complexity

The traditional MUSIC method estimate the noise subspace eigenvectors by SVD. From the
computational point of view, the well-known SVD method is the cyclic Jacobi’s method which
requires around N3 computations. The computational complexity of fixed-point algorithm,
PAST, PASTD and OPAST is (NP2 +N2P), 3NP +O(P2), 4NP +O(P) and 4NP +O(P2) respectively.
If the number of sensors N is larger compared to the number of objects P, the computational
complexity can be estimated to be around N2P for fixed-point algorithm, 3NP for PAST, 3NP

Advances in Underwater Acoustics12

10 15 20 25 30

1

2

3

4

5

6

7

8

Number of sensors

C
om

pu
ta

tio
na

l t
im

e 
(s

)

0  

SVD
Fixed−point
PAST
OPAST
PASTD

Figure 3. Computational times, SVD (red), Fixed–point (green), PAST (Black), OPAST(blue) and PASTD (pink).

10 15 20 25 30

Time SVD (second) 0.95 1.3 2.4 4.4 7.1

Time fixed point (second) 0.5 0.6 1.1 1.8 2.8

Time PAST (second) 0.4 0.5 0.8 1.4 2.2

Time PASTD (second) 0.3 0.4 0.7 1.3 2.0

Time OPAST (second) 0.5 0.7 1.3 2.1 2.9

Ratio SVD/fixed point 1.9 2.2 2.2 2.4 2.5

Ratio SVD/PAST 2.4 2.6 3.0 3.1 3.2

Ratio SVD/PASTD 3.2 3.3 3.4 3.4 3.6

Ratio SVD/OPAST 1.9 1.9 1.8 2.1 2.4

Table 1. Computational time needed to run MUSIC for various numbers of sensors.
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for PASTD and 4NP for OPAST. Several experiments are carried out with various numbers of
sensors, to study the computational load of the proposed algorithm with SNR= 0 dB and P = 8
sources. DOA values are: 5∘, 10∘, 20∘, 25∘, 35∘, 40∘, 50∘ and 55∘.

The number of realizations is 1000, and the number of observations is 1000. Choosing a
number of snapshots equal to 100, such as in [14, 21, 22, 29, 30], does not change the results.
The mean computational load is then up to 2.5 times less with fixed point algorithm than with
SVD (see Figure 3 and Table 1, N = 10 up to 30). Both versions of MUSIC provide the same
results (see Figure 4, take fixed-point algorithm for example).

7. Experimental setup

The studied signals are recorded during an underwater acoustic experiment in order to esti-
mate the developed method performance. The experiment is carried out in an acoustic tank
under the conditions similar to those in a marine environment. The bottom of the tank is filled
with sand. The experimental device is presented in Figure 5. The tank is topped by two mobile
carriages. The first carriage supports a transducer issuer and the second supports a transducer
receiver pilot by the computer.

Four couples of spherical and cylindrical shells (see Figure 6) are buried between 0 and 0.05 m
under the sand. The considered objects have the following characteristics, where δ represents
the distance between the two objects of the same couple and ∅a the outer radius (the inner
radius ∅b =∅a� 0.001 m):

1. the 1st couple (O1,O2): spherical shells, ∅a = 0.3 m, δ = 0.33 m, full of air,

2. the 2nd couple (O3,O4): cylindrical shells, ∅a = 0.01 m, δ = 0.13 m, full of air,

3. the 3rd couple (O5,O6): cylindrical shells, ∅a = 0.018 m, δ = 0.16 m, full of water,

4. the 4th couple (O7,O8): cylindrical shells, ∅a = 0.02 m, δ = 0.06 m, full of air,

The considered objects are made of dural aluminumwith densityD2 = 1800 kg/m
3, the speed of

the wave in the water c1 is 1500 m/s and in the sediment c2 is 1700 m/s, the longitudinal and
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Figure 4. (a) Pseudospectrum of MUSIC obtained using fixed point, (b) pseudospectrum of MUSIC obtained using SVD.
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transverse-elastic wave velocities inside the shell medium are cl = 6300 m/s and ct = 3200 m/s,
respectively. The speed of the wave in the water c1 is 1500 m/s and in the sediment c2 is 1700 m/s,
The external fluid is water with densityD1 = 1000 kg/m

3 and the internal fluid is water or air with
density D3air = 1.2�10�6 kg/m3 or D3water = 1000 kg/m3.

In addition to estimate the performance of the propose method, the signal source a spatially
correlated noise is emitted with K = 10. The objective is to estimate the directions of arrival of
the signals during the experiment. The signals are received on one uniform linear array. The
observed signals come from various reflections on the objects being in the tank. Generally the
aims of acousticians is the detection, localization and identification of these objects. In this
experiment we have recorded the reflected signals by a single receiver. This receiver is moved
along a straight line between position Xmin = 50mm and position Xmax = 150mm with a step of
α = 1mm in order to create a uniform linear array. The experimental setup is shown in Figure 7.
We have measured eight times Ei(Oii,Oii + 1) with i = 1,…, 8 and ii = 1, 3, 5, 7. At first, the receiver
horizontal axis XX' is fixed at 0.2 m, we performed the experiments E1(O1,O2),…,E4(O7,O8)

(a) (b)

Figure 5. Experimental setup: (a) Data acquisition system, (b) Experimental tank.

Figure 6. Experimental objects.
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associated to the 1st, 2nd, 3rd and the 4th couple, respectively. Then we performed the other
four experiments E5(O1,O2),…,E8(O7,O8) with XX' fixed at 0.4 m. RR' is the vertical axis which
goes through the center of the first object of each couple. For each experiment, the transmitted
signal had the following properties: pulse duration is 15 μs, the frequency band is, the fre-
quency of the band is [fmin = 150, fmax = 250] kHz and the center frequency f0 is f0 = 200 kHz. The
sampling rate is 2 MHz. The duration of the received signal was 700 μs. The variance of
Gaussian white noise σ2 is 100 and the angle of incidence θinc is 60

∘.

At each sensor, time-domain data corresponding only to target echoes are collected with signal
to noise ratio equal to 20 dB. The typical sensor output signals recorded during one experiment
is shown in Figure 8.

The proposed algorithms were applied on each experimental data set. Forming the directional
vector by the model of acoustic diffusion appropriate to locate the objects and the spectral
matrix of the simulated data. We use the focusing operator on the signals by dividing the

Figure 7. Experimental setup.

Figure 8. Example of observed signals during experiment Exp. 1.
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frequency band [150, 250] kHz in 11 frequencies and Alg. 2, Alg. 3, Alg. 4 and 5 to calculate the
noise subspace, respectively. Finally we apply Eq. (16) to estimate DOA of objects and object-
1st sensor distance.

Figure 9. Example of object localization with different methods: (a)-(b) SVD, (c)-(d) Fixed-point, (e)-(f) PAST, (g)-(h)
PASTD and (i)-(j) OPAST.
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As is shown in Figure 9, X axis is the object-1st sensor distance ρ, Y axis is the DOA of object-
1st sensor θ. The white points and the peak positions, which present the maximum values,
correspond to the coordinate of 2 objects (29∘, 0.31m) and (33∘, 0.34m). The bearings and the
ranges of buried objects are (28.1∘, 0.298m) and (33.9∘, 0.361m) if we use conventional SVD (see
Figure 9(a) and (b)). The results of the proposed algorithms are (29.5∘, 0.301m) and (33.3∘,
0.351m) for fixed-point algorithm (see Figure 9(c) and (d)), (29.2∘, 0.312m) and (32.8∘, 0.343m)
for PAST algorithm (see Figure 9(e) and (f)), (29.8∘, 0.313m) and (33.3∘, 0.355m) for PASTD
algorithm (see Figure 9(g) and (h)) and (29.3∘, 0.306m) and (32.5∘, 0.334m) for OPAST algo-
rithm (see Figure 9(i) and (j)).

We have done statistical study in order to a posteriori verify the quality of estimation of the
proposed method. Standard Deviation (Std) is defined as follows:

std ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
Xiexp � Xiest
� �2

vuut (28)

where Xiexp (respectively Xiest) represents the ith expected (respectively the ith estimated) value
of θ or ρ. Standard deviation of the bearing and the range estimation at different signal-to-
noise ratio (SNRs) (from �10 to 20 dB) are given in Figure 10.
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Figure 10. Standard deviation versus SNR of the bearing and the range estimation.
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8. Conclusion

The main target of array processing is the estimation of the parameters: DOA of objects and the
objects-sensors distance. In this chapter, we have proposed a new fast localization algorithm to
estimate both the ranges and the bearings of buried sources underwater acoustic in presence of
correlated noise. This algorithm takes into account both the reflection and refraction of water-
sediment interface. We develop fixed point algorithm in MUSIC instead of SVD to keep the
small computational time load. A new focusing operator is proposed to estimate the coherent
signal subspace. Some simulations have been done to test our method. We compare the
computation time of MUSIC with SVD and fixed point, it shows that fixed point is faster than
SVD. The proposed method performance was investigated through scaled tank tests associ-
ated with some cylindrical and spherical shells buried in an homogenous fine sand. The
obtained results are promising and the RE calculated between the expected and the estimated
bearings and ranges errors is weep.
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Abstract

Underwater acoustic communications are different from terrestrial radio communica‐
tions; acoustic channel is asymmetric and has large and variable end‐to‐end propaga‐
tion delays, distance‐dependent limited bandwidth, high bit error rates, and multi‐path 
fading. Besides, nodes’ mobility and limited battery power also cause problems for net‐
working protocol design. Among them, routing in underwater acoustic networks is a 
challenging task, and many protocols have been proposed. In this chapter, we first clas‐
sify the routing protocols according to application scenarios, which are classified accord‐
ing to the number of sinks that an underwater acoustic sensor network (UASN) may use, 
namely single‐sink, multi‐sink, and no‐sink. We review some typical routing strategies 
proposed for these application scenarios, such as cross‐layer and reinforcement learning 
as well as opportunistic routing. Finally, some remaining key issues are highlighted.

Keywords: underwater acoustic sensor networks (UASNs), application scenarios, 
routing protocol strategies

1. Introduction

Almost 71% of our plant is covered by oceans, and underwater networks become more and 
more important since they can be used for underwater information exchange, surveillance, 
ocean explorations and disaster prevention, etc., [1].

There are several challenges for underwater acoustic communication. First, because electro‐
magnetic wave does not perform well in underwater environments due to the serious attenu‐
ation, acoustic communication is used as a major communication technology in underwater 
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networks [2, 3]. The acoustic channel is asymmetric with large end‐to‐end propagation delays 
and limited bandwidth as well as high bit error rates due to multi‐path fading. Second, under‐
water sensor nodes’ mobility caused by ocean currents brings intermittent connective links. 
Third, underwater sensor nodes are prone to failure because of corrosion, fouling, and limited 
battery power that is available. Furthermore, the speed of the sound can change with water 
temperature, which leads to changes in the transmission path and may be the cause of the 
data not being forwarded to the sea surface on time. Therefore, the routing protocols avail‐
able for terrestrial wireless sensor networks are not suitable for underwater acoustic sensor 
networks (UASNs), and many new routing protocols have been studied.

There are several surveys on routing protocols for UASNs reported in the literature, which 
provide overviews about the basic ideas of the related protocols mainly following the tax‐
onomy for terrestrial wireless sensor networks. In Ref. [4], the authors investigated the char‐
acteristics and algorithms of routing protocols and classified them into the non–cross‐layer 
design, the traditional cross‐layer design, and the intelligent algorithm design. The work in 
Ref. [5] discussed the current state of the art on the UASN protocol design and provided a 
detailed overview on the current solutions for medium access control, network, and transport 
layer protocols. A review and comparison of different algorithms was proposed in Ref. [6] to 
fulfill different application requirements with dynamic environmental conditions. All these 
investigations show that it is almost impossible to conclude that any particular routing strat‐
egy can cost‐effectively support all underwater applications because each of them has certain 
strengths and weaknesses and is only applicable to specific situations.

In this chapter, we conduct a review mainly from an application perspective. An optimal 
protocol design must take into account different favorable features available in different sce‐
narios to maximize routing performance, especially the characteristics of various network 
topologies. Therefore, it is interesting to investigate how each protocol exploits these features 
to maximize protocol performance and the feasibility of the proposed schemes.

The rest of the chapter is organized as follows. In Section 2, we briefly introduce the character‐
istics of application scenarios and routing strategies. In Sections 3–5, we discuss typical routing 
protocols of different strategies in single‐sink–, multi‐sink–, as well as zero‐sink–based UASNs. 
In Sections 6–8, we discuss typical routing protocols based on cross‐layer and reinforcement 
learning as well as opportunistic routing protocols. Finally, in Section 9, we draw the conclusions.

2. Major application scenarios and routing strategies

2.1. Application scenarios

Most applications of UASNs are related to underwater collection, where the surface units are 
used to collect data transmitted by underwater sensor nodes. Therefore, application scenarios 
can be classified into single‐sink, multi‐sink, and zero‐sink according to the number of sinks 
that a UASN uses. As shown in Figure 1, in a single‐sink–based UASN, there is only one sink 
node which can be static or mobile. A static sink node is fixed on the surface (in some cases on 
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the bottom) of the ocean as shown in Figure 1 [1]. A mobile sink node moves to collect data 
from the sensor nodes deployed in the ocean as shown in Figure 2. The topology of a multi‐
sink–based UASN is shown in Figure 3, where two or more sink nodes are used to receive 
packets collected by sensor nodes [1]. A sensor node only needs to transmit the packets to 
one of the sink nodes close to the node. Sensor nodes in a multi‐sink–based UASN can also 
be static or mobile. In a zero‐sink–based UASN, several functionally identical autonomous 
underwater vehicles (AUVs) usually work as a team collaboratively, which requires commu‐
nicating with each other, as illustrated in Figure 4.

Major factors that can affect the design of a routing protocol include the number of sink nodes 
and the topology of the corresponding UASN. Arranging multiple sink nodes in the network 
can improve the routing performance by shortening transmission path. A sensor node only 
needs to transmit the packets to the sink closer to it [1]. Deploying a UASN with static topol‐
ogy or a single‐sink can simplify the design of a routing protocol. A zero‐sink–based UASN 
may have several AUVs to work as a team, and it is more difficult to design routing protocols 
for this kind of UASN to achieve good performance.

Figure 1. A static single‐sink–based UASN.

Figure 2. A mobile single‐sink–based UASN.
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Figure 4. A zero‐sink–based UASN.

Figure 3. A multi‐sink–based UASN.
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Figure 4. A zero‐sink–based UASN.

Figure 3. A multi‐sink–based UASN.
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2.2. Routing strategies

Table 1 lists routing strategies under reviewing.

2.2.1. Geo‐based routing

Geo‐based routing uses the position information of sensor nodes to find the best route from a 
source node to a destination node. Each node has to be aware of the target area, its own posi‐
tion, and all neighbors’ positions. A node forwards packets to the target area in accordance 
with a certain policy based on the location information. At present, two common ways to obtain 
position information are using signal strength to estimate the relative coordinates and GPS. 
However, GPS cannot work well in underwater environments, and the relative coordinate 
of a node estimated by signal strength suffers from signal attenuation and noise interference.

2.2.2. Source routing

Source routing allows the sender of a packet to specify the route that the packet takes in the 
network partially or completely. The transmission path in is determined by the source node, 

Routing strategy Characteristics Application scenarios Advantages Disadvantages

Geo‐based routing It is based on GPS All scenarios Network architecture 
is simple

Positioning may be 
not accurate

Source routing The transmission 
path is determined 
by the source node

Single‐sink–based 
UASN with a static sink

It reduces the cost of 
route maintenance

It increases the 
packet overhead 
and routing cost

Hop‐by‐hop routing The next‐hop is 
determined by relay 
nodes

Except zero‐sink–based 
UASN

Network is more 
scalable and flexible

The final path may 
be not optimal

Clustered routing The nodes are 
usually divided into 
groups

Single‐sink–based 
UASN

It has a good 
adaptability and 
can reduce data 
redundancy

It needs to select 
the cluster head

Cross‐layer routing It considers the 
characteristics of 
other layers

Single‐sink–based 
UASN with a static sink 
and zero‐sink–based 
UASN

It can minimize 
energy costs while 
maximizing the 
performance of the 
entire network

Routing protocol is 
more complex

Reinforcement 
learning scheme

Each node selects 
next hop via an 
iterative calculation 
of the reinforcement 
function

Single‐sink–based 
UASN

It extends the lifetime 
of the network

More powerful 
nodes are required

Opportunistic 
routing

Each node selects 
several suitable 
neighbor nodes as 
a set of candidate‐
forwarding nodes

Multi‐sink–based 
UASN with mobile 
topology

It improves the 
end‐to‐end success 
delivery rate of 
packet forwarding.

More powerful 
nodes are required

Table 1. Comparisons of major routing strategies.
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and the identification of all relay nodes in the path is embedded in the packets. Relay nodes 
can forward packets according to the planned path instead of selecting next hop by them‐
selves [1]. During the route construction phase, a source node establishes a route by flooding 
route request packets (RREQs) in the network. Upon receiving an RREQ, the destination node 
responds by sending a route reply packet (RREP), which carries the route attached in the 
RREQ back to the source node. It supports asymmetric channel and reduces the cost of route 
maintenance. However, it increases the packet overhead and the routing cost. In addition, the 
performance degrades rapidly with the increase of mobility.

2.2.3. Hop‐by‐hop routing

Hop‐by‐hop routing allows each relay node to select its next hop by itself. The selection of 
next hop is usually based on its local view of the network. It can make the network more scal‐
able and flexible, but the final path may not be optimal.

2.2.4. Clustered routing

Clustered routing divides the sensor nodes into geographical or logical groups, and the selec‐
tion of cluster head considers the position distribution of nodes and residual energy. In each 
group, a cluster head is used as a gateway to communicate with other groups, and sensor 
nodes in each group only need to transmit packets to the cluster head. This strategy has a 
good adaptability and reduces data redundancy.

2.2.5. Cross‐layer routing

Although the hierarchical protocol stack structure is clear, scalable, robust, and easy to imple‐
ment, the inter‐layer information is difficult to be shared and not conducive to the global 
optimization of network performance. Cross‐layer routing strategies take into account the 
functions and information available on other layers. Through the power control and frame 
collision control, it can achieve the relevant hierarchical interaction and minimize energy 
costs while maximizing the performance of the entire network [7].

2.2.6. Reinforcement learning‐based routing

Reinforcement learning‐based routing aims to find the most suitable route by using Q‐learn‐
ing algorithm to learn the network states and adapts to topology changes at runtime intelli‐
gently without any off‐line training. During the routing process, a node analyzes its residual 
energy and energy distribution of a group of nodes, establishes a reinforcement function, and 
selects the appropriate node to forward packets [8]. This strategy can extend the lifetime of 
the network as much as possible.

2.2.7. Opportunistic routing

Opportunistic routing takes advantages of the packet transmission opportunities due to 
mobility and broadcast of nodes, not only determining the next hop but also selecting suitable 
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neighbor nodes as a set of candidate forwarding nodes based on certain routing metrics. All 
nodes in the set receive packets and then the node with the highest priority completes the 
following transmission. It makes full use of channel broadcast characteristics to improve 
throughput and transmission reliability [9].

3. Single‐sink–based UASNs

3.1. Static sink

A multi‐path grid‐based geographic routing protocol (MGGR) is proposed in Ref. [10]. It 
assumes that there is a sink fixed at the top in the middle of the grid, and the other sensor 
nodes are mobile and equipped with locator. Routing is performed in a grid‐by‐grid manner 
through gateways that use disjoint paths to relay data packets [10]. The disjoint paths and 
gateway election algorithm adopted in the protocol are helpful for balancing energy while 
achieving high delivery ratio and small end‐to‐end delay.

In Ref. [11], a location‐based adaptive routing protocol (CARP) selects different paths for 
different levels of data packets, relying on the dynamic characteristics of underwater envi‐
ronments. CARP can adapt dynamic underwater environments, improve the quality of the 
network communication, and have better performance in transmission delay, energy con‐
sumption, and packet acceptance rate.

The hop‐by‐hop vector‐based forwarding routing protocol (HH‐VBF) is homogeneous to 
VBF which uses the notion of a “routing vector” to act as the axis of the “virtual pipe” [12]. 
However, it constructs different virtual pipes for the per‐hop vector from each individual for‐
warder to the sink, instead of a single virtual pipe from the source to the sink as VBF. HH‐VBF 
is less sensitive to the routing pipe radius threshold and has much better performance such as 
energy consumption and successful delivery rate than VBF in sparse networks.

A solution for routing joint control and node replacement decisions is proposed in Ref. [13] to 
minimize the node replacement costs and develop effective methods for practical implemen‐
tation. Sensor nodes in the network are laid on the ocean floor to collectively gather and trans‐
mit seismic information. As the results indicate, it provides a lower average node replacement 
cost and meets higher service‐level requirements, while it has a higher degree of simplicity.

A fault tolerant routing protocol (FTR) [14] assumes that the topology of the network is static 
and only a small fraction of the nodes is involved in routing. It detects substitutive links 
to revise the main path and build backup path. Simulations show that FTR achieves higher 
packet delivery ratio, small end‐to‐end delay, higher network throughput, and lower energy 
consumption than VBF and epidemic routing (ER) protocols.

3.2. Mobile sink

In Ref. [15], the authors proposed a mobicast routing protocol. All sensor nodes are randomly 
distributed in a 3‐D environment, and an AUV travels along a user‐defined route as a mobile 
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sink to collect data from sensor nodes within a 3‐D zone of relevance (ZOR) and wakes up 
sensors in the next 3‐D ZOR [15]. In addition, only sensor nodes in the 3‐D ZOR can be noti‐
fied to enter the active mode to transmit collected data. For this reason, it has better perfor‐
mance such as a successful delivery rate, power consumption, and message overhead.

3.3. Geo‐based routing

In Ref. [16], the authors proposed an integration method between localization and routing by 
using an AUV as an anchor node and “iterative localization”. Each sensor node establishes multi‐
ple routes to the sink by extending control packets exchanged for localization and creates routing 
table to the sink in parallel with the localization process [16]. This method provides robustness to 
communication failure and decreases energy consumption between each localization.

A reliable and energy efficient vector‐based forwarding protocol (REE‐VBF) was proposed in 
Ref. [17]. The transmission way of data packets is local flooding, and an optimal node with the 
smallest desire coefficient is selected by establishing a set of adaptive selection mechanisms 
[17]. The optimal node forwards the packet at first to prohibit others transmitting repeatedly. 
Therefore, REE‐VBF has a better performance on energy efficiency and reliability than others. 
In addition, it is suitable for the communication in shallow water areas.

In the directional flooding‐based routing protocol (DFR) [18], a node knows its own loca‐
tion, its one‐hop neighbors’ location, and the location of a sink. It relies on a packet flooding 
scheme, with which the flooding zone is determined dynamically by the link quality among 
neighbors to increase the successful delivery ratio instead of relying on a path establishment 
between the source and sink node. The results show that DFR has a higher packet delivery 
ratio, less communication overhead, and shorter end‐to‐end delay than VBF.

A geographical optimized reflection‐enabled routing protocol immune to link ambiguity 
(GORRILA) is proposed in Ref. [19], aiming to establish the best stable route from a source to 
a destination. It utilizes directional antennas to incorporate surface‐reflected non‐line‐of‐sight 
(NLOS) links in the routing process, instead of relying on the LOS link between one‐hop 
neighbors, which adds delay to the data delivery time in establishing routes. In addition, 
a physical and medium access cross‐layer scheme was also designed to optimize the route 
selection for maximum network throughput.

A sector‐based routing with destination location prediction (SBR‐DLP) protocol [20] was 
designed for a fully mobile topology network, in which each node is mobile and the destina‐
tion node moves along a pre‐planned route. In the routing process, the area around the cur‐
rent forwarder is divided into a plurality of sectors, wherein the first sector is halved by the 
vector from the transponder to the destination vector and the other sectors are tagged accord‐
ing to their angular differences from that vector. The SBR‐DLP is highly adaptive to network 
dynamics and can improve the packet delivery ratio.

3.4. Source routing

A reliable and energy‐efficient routing protocol (RER) was proposed in Ref. [21]. In the route 
discovery phase, a simple next‐hop selection is introduced to select a node with the minimum 
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a physical and medium access cross‐layer scheme was also designed to optimize the route 
selection for maximum network throughput.

A sector‐based routing with destination location prediction (SBR‐DLP) protocol [20] was 
designed for a fully mobile topology network, in which each node is mobile and the destina‐
tion node moves along a pre‐planned route. In the routing process, the area around the cur‐
rent forwarder is divided into a plurality of sectors, wherein the first sector is halved by the 
vector from the transponder to the destination vector and the other sectors are tagged accord‐
ing to their angular differences from that vector. The SBR‐DLP is highly adaptive to network 
dynamics and can improve the packet delivery ratio.

3.4. Source routing

A reliable and energy‐efficient routing protocol (RER) was proposed in Ref. [21]. In the route 
discovery phase, a simple next‐hop selection is introduced to select a node with the minimum 
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packet transmission delay to the current node as its next‐hop node. After a route is set up, 
multiple nodes in the network can also send data packets to the sink through the same estab‐
lished route instead of building a new route. As a result, it allows the real‐time data to arrive 
at the destination earlier and extends the network lifetime. The simulations show that RER 
performs better than the traditional routing protocols in terms of packet delivery ratio, aver‐
age end‐to‐end delay, and average energy consumption.

Another source routing protocol called local area source routing (LASR) [22] is proposed for 
a small area of UASN. In this case, a source node does not need to care about the outside area 
of its transmission range. For this reason, each node just needs to share information of its 
neighboring nodes and finds a minimum cost path up to a determined sub‐destination within 
its transmission range. Simulation results show that the proposed solution can reduce energy 
consumption, in comparison with other 3‐D on‐demand routing protocols.

3.5. Hop‐by‐hop routing

In channel‐aware depth‐adaptive routing protocol (CDRP) [23], the source node constructs a 
virtual ideal path to the sink node when it has data to send. Besides, the noise and the speed 
of sound under different water depths are taken into account in the selection of forwarders to 
reduce end‐to‐end delay and improve packet delivery ratio.

In view of the impact of the beam width and 3‐D direction of underwater sensors in UASNs, 
beam width and direction concerned routing (BDCR) proposed in Ref. [24] can achieve rela‐
tively high packet delivery rate and ensure reasonable energy consumption. On the selection 
of forwarder, the sensor node makes its preliminary decision not only on its own distance to 
the sink node but also on the distance of the previous sender to the sink node. Then, a correc‐
tion mechanism based on beam width and direction is designed to make the final decision.

Chen et al. proposed a per‐hop‐based routing protocol called depth adaptive routing protocol 
(DARP) in Ref. [25], which takes not only the sound speed in different water depths but also 
the depth and the distance to the sink into consideration. In the routing process, a source node 
broadcasts the packets and then the neighbors wait for some time to decide whether they are 
eligible to forward the packets or not. The simulation results verify that DARP outperforms 
other routing protocols in terms of end‐to‐end delay.

UASNs‐MIMO (UMIMO)‐routing [26] utilizes multiple‐input multiple‐output‐orthogonal 
frequency division multiplexing (MIMO‐OFDM) links to adaptively leverage the trade‐off 
between multiplexing and diversity gain. With cross‐layer design, it adapts its behavior to the 
noise and interference in underwater channels to choose a suitable transmission mode and 
allocate transmit power on subcarriers [26]. Moreover, the energy consumption is minimized 
according to the cooperation of transmitter and receiver to achieve the desired QoS (quality of 
service) according to application needs and channel condition.

SEANAR [27] is an energy‐efficient and topology‐aware routing protocol. It assigns larger 
weights to nodes with higher connectivity to the sink and adopts a simple yet effective greedy 
approach for making routing decisions. Although this is a simple greedy approach that uses 
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the degree information (i.e., the number of neighbors) as the criteria to choose the succes‐
sor, simulation results show that SEANAR achieves higher packet delivery ratio and a lower 
energy consumption in comparison with greedy forwarding and VBF‐based routing protocol.

Redundancy‐based adaptive routing (RBAR) [28] is a routing protocol designed for underwa‐
ter delay tolerant networks (DTNs). It adopts a binary tree‐based forwarding procedure for the 
packet replication process, which allows a node to hold a packet as long as possible until it has 
to make another copy to satisfy its delay requirements [28]. Simulations show that RBAR can 
meet different delay requirements and achieve a good balance between delivery ratio, delay, 
and energy consumption.

3.6. Clustered network

A location‐based clustering algorithm for data gathering (LCAD) [29] is a cluster‐based rout‐
ing protocol. The whole network is divided into 3‐D grids and the sensor nodes are fixed at 
different depths. The sensor nodes at each tier are organized in clusters with multiple cluster 
heads. Data gathered from the sensor nodes are sent to their respective cluster heads and then 
cluster heads deliver the data to the sink via AUVs. Its performance depends on the position‐
ing of the cluster heads. The simulation shows that it improves the network lifetime by at least 
five times as against a scenario, which does involve clustering.

A distributed underwater clustering scheme (DUCS) without GPS support was proposed in 
Ref. [30]. The nodes organize themselves into local clusters. A non‐cluster head node forwards 
the packets to cluster heads in a single hop and then the cluster head transmits the packets 
to a sink via the relay of other cluster heads in a multi‐hop mode. In order to solve a battery 
draining problem for the cluster head, the routing protocol performs random rotation of the 
cluster head. The simulation shows that DUCS can achieve a very high packet delivery ratio 
and minimize the proactive routing message exchange.

An energy optimized path unaware layered routing protocol (E‐PULRP) [31] puts the sensor 
nodes into different layers in the form of concentric shells around a sink node. In each layer, an 
intermediate relay node is selected to deliver packets from the source node to the sink node. A 
mathematical framework is developed for energy consumption optimization. In comparison 
with other routing protocols for UASNs, E‐PULRP is simpler and more topology independent.

The location unaware multi‐hop routing protocol based on a hybrid, energy‐efficient, dis‐
tributed clustering approach (LUM‐HEED) [32] is a new, homogeneous, multi‐hop routing 
protocol. It can be adaptive to a hierarchal structure network model in which each node is 
initialized with a certain degree according to its distance to the sink. The difference between 
LUM‐HEED and HEED protocols is that the nodes in HEED protocol must be location aware 
for communicating with the sink node. Note that the sensor nodes nearer to the sink have a 
higher degree. Simulation results show that LUM‐HEED has better performance than HEED 
in terms of network lifetime and network traffic.

A mobility aware routing protocol, called temporary cluster‐based routing (TCBR) [33], divides 
the sensor nodes in different clusters according to their locations. Ordinary nodes collect and 
forward the packets to a nearer cluster head and then courier nodes can move vertically and 
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deliver them to the multiple sinks deployed on the water surface with a piston module. TCBR 
takes the advantage of multiple‐sink architecture with requiring any location information of 
sensor nodes. This makes it suitable not only for stationary and mobile networks but also for 
the hybrid networks [33].

A staggered time division multiple access (TDMA) underwater medium access control (MAC) pro‐
tocol with routing (STUMP‐WR) [34] is a distributed and channel‐scheduling routing protocol 
and designed for heavily loaded underwater networks. The sensor nodes select and schedule 
links to overlap communications by using a distributed algorithm for leveraging the long prop‐
agation delays [34]. The simulation shows that STUMP‐WR outperforms several protocols pro‐
posed for underwater networks in terms of bits delivered per unit of energy and throughput.

4. Multi‐sink–based UWSNs

4.1. Static UASNs

The depth‐controlled routing protocol (DCR) in Ref. [35] uses the distance of the nodes to 
its nearest sink in a greedy forwarding strategy. In the network initialization phase, a sensor 
node moves to get a good and stable topology to improve the connectivity and routing per‐
formance. DCR shows better results than the current depth‐based routing protocol (DBR) in 
terms of data delivery ratio, delay, and average number of redundant packets with the same 
energy per packet consumption.

Focused on energy balancing, the dual‐sink efficient and balanced energy consumption tech‐
nique (DSEBET) in Ref. [36] first establishes links between nodes based on their optimum 
distance value and then picked relay nodes based on their minimum distance value for the 
transmission of data. Long‐distance nodes from one sink will share their data to another sink 
if they come in range of sink; otherwise, they will establish a multi‐hop path for transmission 
of data to the respective sink [36]. In this way, energy is balanced to improve network lifetime 
and throughput.

A new routing protocol called MobiSink was proposed in Ref. [37] to tackle the problem of 
high energy consumption and reduce the instability period based on the deficiencies of depth‐
based routing and energy‐efficient depth‐based routing. Each of the four mobile sinks moves 
in its own region, following linear motion in the horizontal region to collect data from the 
nodes [37]. If the sink enters the transmission range of these nodes, the packet is forwarded 
directly from the high‐level node to the sink. In this way, the data forwarding load is reduced 
on the middle node.

4.2. Mobile UASNs

In the dual‐sink (DS) VBF protocol [38], all nodes are dynamic, and dual‐sink architecture 
is deployed to increase the number of nodes that are participating in the data‐forwarding 
procedure. In comparison with VBF, in DS‐VBF, each node calculates its distance from the 
nearest sink and transmits the packets to it. It considers both residual energy and location 
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information instead of just location information to discover an optimized path to save energy 
[38]. Thus, it can improve the packet delivery ratio, reduce end‐to‐end delay, and balance total 
energy consumption to prolong network lifetime.

The hop–by‐hop dynamic addressing‐based (H2‐DAB) routing protocol in Ref. [2] chooses the 
next hop node in a greedy strategy for broadcasting based on the hop count, called HopID, from 
source nodes to sink nodes on the surface water. H2‐DAB can easily handle the node move‐
ments and support multiple sink architecture. However, the problem of multi‐hop routing still 
exists with which nodes near the sink drain more energy because they are used frequently.

4.3. Geo‐based routing

Similar to the geo‐based routing in single‐sink–based UASNs, the geo‐based routing in multi‐
sink UASNs uses the position information too. The difference is that in multi‐sink–based 
UASNs, packets are sent to one of the sink nodes [1].

In Ref. [35], the DCR is a centralized and distributed geographic routing protocol, with depth 
adjustment‐based topology control for recovery of invalid communication area. A greedy for‐
warding strategy is proposed for geographic routing.

The DS‐VBF in Ref. [38] is a dynamic and geographical routing protocol, considering both 
residual energy and location information as priority factors to discover an optimized routing 
path to save energy. Every sensor node is aware of its own location, and each data packet con‐
tains the location information of the source, forwarder, and destination nodes. In addition, a 
range of fields used for node mobility notion is also known by each sensor node. Based on the 
simulation results in comparison with VBF, average end‐to‐end delay is reduced but remain‐
ing energy and packet reception ratio are increased.

5. Zero‐sink–based UWSNs

A trajectory‐aware communication scheme based on statistical inference to model position 
uncertainty, combined with a practical cross‐layer optimization for a WHOI acoustic micro‐
modem, is adopted in a paradigm‐changing geographic routing protocol [39] to minimize 
energy consumption. Acoustic communications are used to transfer information between 
gliders and finally to a surface station. Implemented and tested in the proposed underwater 
communication test bed, it shows improvement over other routing protocols with only sta‐
tistical approach or cross‐layer approach in terms of end‐to‐end reliability, throughput, and 
energy consumption [39].

An AUV‐aided routing method integrated path planning (AA‐RP) protocol [40] uses AUVs 
to collect data from sensor nodes following a dynamic path, which is planned by AUVs. It 
utilizes the cooperation of multi‐tasks to reduce energy consumption and avoid hot spot and 
zone problem with a dynamic gateway node scheme. The simulation shows that, although 
the AA‐RP does not require location information in the routing process, it can balance energy 
consumption, avoid hot point and hot zone problem, and save energy by combining multi‐
tasks with a good delivery ratio.
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6. Cross‐layer routing

The energy‐efficient interference‐aware routing protocol in Ref. [41] is a centralized cross‐
layer heuristic solution for an efficient use of the scarce resources of UASNs. It provides a 
class of scheduling, power control, and routing policies and selects the next transmission 
node by considering different delays in packet delivery, maximal node buffer size, distance to 
the sink, and channel usage. Such routing can increase the overall network throughput and 
outperforms others in terms of energy consumption and throughput.

A new geographical and distributed routing algorithm was tailored for the characteristics 
of 3‐D underwater environment in Ref. [42]. A model characterizing the acoustic channel 
utilization efficiency allows setting the optimal packet size for underwater communication. 
Moreover, the problem of data gathering was investigated at the network layer by consider‐
ing the cross‐layer interactions with MAC layers, forward error correction schemes between 
the routing functions, and the characteristics of underwater acoustic channels [42]. In the light 
of different application requirements, two distributed routing algorithms were introduced to 
minimize energy consumption.

The gossiping in underwater acoustic mobile ad‐hoc networks (GUWMANET) scheme in Ref. 
[43] realizes medium access and routing functionalities in a cross‐layer design. It is based on 
impulse communication as a physical layer method. GUWMANET needs only 10 bits of addi‐
tional overhead in combination with the generic underwater application language (GUWAL), 
which has a 16‐bit header with a multi‐cast source and destination address.

A multi‐path power‐control transmission (MPT) scheme [44] smartly combines power con‐
trol with multi‐path routing and packets at the destination. MPT is divided into three parts: 
multi‐path routing, source‐initiated power‐control transmission, and destination packet com‐
bining. With carefully designed power‐control strategies, MPT consumes lesser energy than 
the conventional one‐path transmission scheme without retransmission [44]. Besides, since no 
hop‐by‐hop retransmission is allowed, MPT introduces much shorter delays than the tradi‐
tional one‐path scheme with retransmission.

The CARP in Ref. [45] is a distributed cross‐layer solution for multi‐hop delivery of data to a 
sink in underwater networks. Next‐hop selection takes explicitly into account the history of 
data packet delivery, the link quality, and how successful a neighbor has been in forwarding 
data toward the sink [45]. The results show that CARP can achieve throughput efficiency that 
is up to twice the throughput of focused beam routing (FBR) and almost three times that of 
DBR. It also obtains remarkable performance improvements over FBR and DBR in terms of 
end‐to‐end packet latency and energy consumption.

7. Reinforcement learning‐based routing

A novel Q‐learning‐based delay tolerant routing (QDTR) protocol [8] with predictions 
empowered by adaptive filters is adaptive and energy efficient. The adaptive filters are used 
to predict future neighbor contact. With the Q‐learning agent, the routing protocol can adapt 
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to changes in the network. Since the routing problem is formulated as a Markov decision 
process (MDP), in which the state space is composed by all the nodes in the network, QDTR is 
fully distributed without any central control. The simulation results have shown that QDTR 
yields significantly better network performance in energy consumption, end‐to‐end delay, 
and delivery ratio in comparison with most of the existing DTN routing protocols.

A multi‐level routing protocol for acoustic‐optical hybrid underwater wireless sensor net‐
works (MURAO) [46] is a multi‐level Q‐learning‐based routing protocol for a novel acoustic‐
optical hybrid UASN. The network is physically partitioned into several groups and logically 
divided into two layers. Taking advantage of the long range but slow acoustic transmission 
and fast optical communications with multi‐level Q‐learning, MURAO performs better than 
the flat Q‐learning‐based routing.

In Ref. [47], a Q‐learning‐based tracking scheme based on the buffer size and residual energy 
of the individual node was used to find the next forwarder. It aims to reduce the dropping 
on the packets, the number of forwarders, and energy consumption of the sensor nodes. The 
lifetime of the network is expected to increase.

Another Q‐learning‐based energy‐efficient and lifetime‐aware routing protocol (QELAR) was 
proposed in Ref. [48] to prolong the lifetime of networks. The residual energy of each sensor 
node as well as the energy distribution among a group of nodes is factored in the throughput 
routing process to calculate the reward function, which aids in selecting the adequate for‐
warders for packets. Compared with VBF, QELAR has a longer lifetime.

8. Opportunistic routing

The geographic and opportunistic routing with depth adjustment‐based topology control 
for communication recovery over void regions (GEDAR) in Ref. [49] adjusts the topology by 
moving void nodes to new depths and using greedy opportunistic forwarding mechanisms 
to transmit packets. The communication void region occurs whenever the data is transferred 
to a node that is not closer to the destination than the node; the node located in a communica‐
tion void region is called void node. Compared with the baseline routing protocols, GEDAR 
outperforms in data packet delivery ratio.

The void‐aware pressure routing protocol (VAPR) in Ref. [50] exploits periodic beaconing to 
build directional trails toward the closest sonobuoy and features greedy opportunistic direc‐
tional forwarding mechanisms for packet delivery. It can be efficiently performed even in the 
presence of voids [50]. The simulations show that VAPR outperforms existing schemes by sig‐
nificantly lowering the frequency of recovery fallbacks and effectively handling node mobility.

With the opportunistic‐based DARP in Ref. [51], forwarding node selection is dynamic and 
independent for each node. DARP takes different acoustic signal speed, depth, and distance 
to sink into account to find the minimum end‐to‐end delay path, which may not be the short‐
est path directly from the source to the sink. Furthermore, it does not need to continuously 
maintain neighbors’ information or to exchange control packets.
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The HydroCast in Ref. [52] is a hydraulic pressure‐based anycast routing protocol, which 
exploits measured pressure levels to route a packet upward to lower depths. The oppor‐
tunistic routing mechanism can limit co‐channel interference by selecting the subset of 
forwarder. The dead‐end recovery method can guarantee the delivery. Because HydroCast 
uses adaptive timer setting at each hop, it is mainly used for depth‐based communication 
with sparse network and performs better than DBR in terms of delivery ratio and end‐to‐end  
delay.

9. Conclusion and open issues

We summarize the routing strategies mentioned above in Table 2. Most routing strategies are 
suitable for a static UASN, and just a small scale of them can be applied in a mobile UASN. 
However, one of the most important characteristics of UASNs is mobility. From the adapt‐
ability of the application scenarios, geo‐based routing protocols cannot work well in mobile 
UASNs due to frequent localization. In addition, the characteristics of acoustic channels are 
also the limitation of the design of geo‐based routing protocols. Clustered routing protocols 
also do not perform well in mobile UASNs because of the grouping cost.

Cross‐layer routing protocols may have good performance in static UASNs. Source‐routing 
protocols are based on the location of sensor nodes and usually adapted to single‐sink–based 
UASNs. On the opposite, hop‐by‐hop routing protocols can be applied in both single‐sink 
and multi‐sink–based UASNs.

Routing strategy\ Scenarios

Single‐sink–based UASNs Multi‐sink–based UASNs Zero‐sink–based 
UASNs

Static sink Mobile sink Static topology Mobile topology

Geo‐based 
routing

✓ ✓ ✓

Source routing ✓

Hop‐by‐hop 
routing

✓ ✓ ✓ ✓

Clustered 
network

✓ ✓

Cross‐layer 
routing

✓ ✓

Reinforcement 
learning‐based 
routing

✓

Opportunistic 
routing

✓

Table 2. Categories of routing strategies.
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Reinforcement learning‐based routing protocols have good adaptability. It may be applied to 
dynamic networks by the design of reward functions.

The above discussion shows that it is impossible to design just one or two routing protocols 
that can cost‐effectively support all underwater application scenarios. Many routing propos‐
als for UASNs are only in the simulation phase and have not been testified in the actual envi‐
ronments. Researchers still follow the design philosophy of routing protocols for terrestrial 
wireless networks, which is not enough for UASNs. An optimal design must take into account 
each different favorable feature available in different scenarios.
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Reinforcement learning‐based routing protocols have good adaptability. It may be applied to 
dynamic networks by the design of reward functions.

The above discussion shows that it is impossible to design just one or two routing protocols 
that can cost‐effectively support all underwater application scenarios. Many routing propos‐
als for UASNs are only in the simulation phase and have not been testified in the actual envi‐
ronments. Researchers still follow the design philosophy of routing protocols for terrestrial 
wireless networks, which is not enough for UASNs. An optimal design must take into account 
each different favorable feature available in different scenarios.
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Abstract

Secure communication employing chaotic systems is considered in this chapter. Chaos-
based communication uses chaotic systems as its backbone for information transmission
and extraction, and is a field of active research and development and rapid advances in
the literature. The theory and methods of synchronizing chaotic systems employing
unknown input observers (UIOs) are investigated. New and novel results are presented.
The techniques developed can be applied to a wide class of chaotic systems. Applica-
tions to the estimation of a variety of information signals, such as speech signal, electro-
cardiogram, stock price data hidden in chaotic system dynamics, are presented.

Keywords: chaotic secure communication, underwater acoustic communication, chaos,
unknown input observers, nonlinear observers, reduced-order observers

1. Introduction

With the advances in computing and communication technologies, among others, underwater
acoustic communication (UAC) techniques [1–6] have emerged as the predominant mode of
underwater communication because of its one key advantage over conventional electromag-
netic communication, namely, relatively low attenuation of acoustic waves in water. However,
their performance is severely affected by a number of factors, including limited channel
bandwidth, time-varying channel characteristics, complex ambient noise, and multipath dis-
tortion that results from multiple reflections of sound waves from top and bottom surfaces of
water, especially in a relatively shallow waterbody.
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Over the past decade, chaos-based underwater acoustic communication (CUAC) techniques
have attracted a lot of interest from a number of researchers [7–12], because such techniques
are potentially more cost-effective (for example, requiring lesser number of component
modules) compared with conventional communication schemes. The CUAC techniques pro-
posed to date can be broadly divided into two categories, namely, coherent detection based
CUAC methods [7], and non-coherent detection based CUAC techniques. The coherent
detection based methods rely on synchronization to reconstruct a copy of the transmitted
signal at the receiver end, whereas non-coherent detection methods [8–12] utilize a variety of
data recovery methods without requiring any synchronized reconstruction of the transmit-
ted message.

In this chapter, we focus our attention on the synchronization based CUAC techniques, especially
on observer-based synchronization methods, because the underlying theory is very well under-
stood and has proven to be reliable and robust in many control applications. Also, such methods
may potentially turn out to be easier to implement, as compared with many non-coherent CUAC
techniques.

At the outset, we should point out that the main goal of this chapter is to present the funda-
mental concepts of observer-based chaotic synchronization and their applications to secure
chaotic communication. With this in mind and owing to space limitation, we omit discussion
of the robustness issues [13–23] of such techniques here. However, we should point out that
the theory of robust observer design in the presence of noise and uncertainties has been well
researched in control literature, and these ideas are deemed to be useful for synchronized
based CUAC as well [18–23].

The methodologies used for CUAC have many things in common with chaos-based wired
and wireless communication. Research and development in these fields have been advancing
rapidly in the literature [7–16]. In contrast to conventional communication systems which use
sinusoidal carriers to transmit information, chaos-based communication uses chaotic systems
as its backbone for information transmission and recovery. The advantages of employing
chaos-based systems include, among others, (i) the communication is difficult to detect and
decrypt; (ii) the transmission is hidden from unauthorized receivers; (iii) the communication
is more resistant to jamming and interferences because of the broadband characteristics of the
chaos-based carriers. The advantages above are due to the following characteristics: (i) a
chaotic system is dissipative; (ii) chaotic systems have unstable equilibrium points; (iii) its
trajectories are aperiodic and bounded; and (iv) its trajectories have a sensitive dependence on
their initial conditions, i.e., trajectories originated from slightly different initial conditions will
soon become totally different. We remark that some of these characteristics may, in fact, be
undesirable.

The organization of this chapter is as follows. Section 2 introduces three nonlinear chaotic
systems that are utilized for designing chaotic communication systems in follow-up sections.
Next a general discussion of unknown input observers is presented in Section 3. Section 4
presents the theory and design of unknown input observers for chaotic secure communication.
Finally, the conclusions and plan for future research are provided in Section 5.
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2. Nonlinear systems with application in chaotic communication

Consider a general nonlinear system described by

_x ¼ fðx,dÞ
y ¼ hðx,dÞ,

�
(1)

where x∈Rn is the system state vector, y∈Rm the output measurement, d∈Rr an unknown
disturbance vector which can be treated as a message vector that carries useful information;
f : Rn � Rr ! Rn is a smooth vector field, h : Rn � Rr ! Rm a smooth function, fð0, 0Þ ¼ 0 and
hð0, 0Þ ¼ 0.

The unknown disturbance d in (1) is assumed to be generated by the exosystem

d ¼Mm,
_m ¼ fmðm, xÞ,

�
(2)

where m∈Rr is the message state, M∈Rr�r is a “picking matrix” that picks the appropriate
components mi of m to form d, fm : Rr � Rn ! Rr is a smooth vector field, and fmð0, 0Þ ¼ 0.

Eqs. (1) and (2) is widely used for the design of linear and nonlinear observers, unknown input
observers (UIO), and unknown input observers for secure communication [24–46]. When
applied to the design of unknown input observers (UIOs) for secure communication based on
chaotic systems, (1) and (2) can be combined and expressed as

_x ¼ fðx,mÞ ¼ fðxÞ þ BmðxÞMm ¼ Axþ gðxÞ þ BmðxÞMm,
_m ¼ fmðm, xÞ ¼ AmmþΨx,
y ¼ hðx,mÞ, ðd ¼MmÞ,

8<
: (3)

where Ax is the linear part of f(x), gðxÞ∈Rn�1 and BmðxÞ∈Rn�r, while m ðd ¼MmÞ is now
treated as the message signal, and fmðm, xÞ ¼ AmmþΨx, where Am ∈Rr�r is a constant
matrix. The linear model in the second equation is commonly used in the literature, see for
example [25]. In many applications, the message model can be simplified by setting Am ¼ 0
and Ψ ¼ 0. Further, (3) may become a system with state-dependent or multiplicative and/or
additive message signals depending on BmðxÞ. If BmðxÞ ¼ Bm, where Bm is a constant matrix,
then (3) is a system with only additive messages.

The following three chaotic systems in the form of (3) will be utilized for designing chaotic
communication systems in this chapter.

(1) Rossler system [47]

The Rossler system described by

_x ¼ fðxÞ ¼
�x2 � x3
x1 þ ax2

�cx3 þ x1x3 þ b

2
4

3
5 (4)
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can be modified by chaotic parameter modulation resulting in a system with state-dependent
(multiplicative) and additive messages as

_x ¼ fðx,mÞ ¼
�x2 � x3
x1 þ ax2

�ðc�m1Þx3 þ x1x3 þ ðbþm2Þ

2
64

3
75 ¼

0 �1 �1
1 a 0

0 0 �c

2
64

3
75xþ

0

0

m1x3 þ x1x3 þ b

2
64

3
75þ

0 0

0 0

0 1

2
64

3
75m,

_m ¼ Amm,

y ¼ hðx,mÞ,

8>>>>>><
>>>>>>:

(5)

where Ψ ¼ 0, and the chaotic parameters are given by a, b, cf g ¼ {0:2, 0:2, 5:7} [43] or
0:398, 2, 4f g [42]. Note that the Rossler system (4) contains only one nonlinear term. See

also [48] for more details.

(2) Genesio-Tesi system [49]

The Genesio-Tesi system given by

_x ¼ fðxÞ ¼
x2
x3

�cx1 � bx2 � ax3 þ x21

2
64

3
75 (6)

can be modified in the form of (3) with state-dependent and additive message signals as,

_x ¼ fðx,mÞ ¼
x2

x3 þm1

�cx1 � b�m1ð Þx2 � ax3 þ x21 þm2

2
64

3
75 ¼ fðxÞ þ

0

0

�x2

2
64

3
75m1 þ

0 0

1 0

0 1

2
64

3
75

m1

m2

" #
,

_m ¼ Amm,

y ¼ hðx,mÞ,

8>>>>>>><
>>>>>>>:

(7)

where Ψ ¼ 0, a, b and c are the chaotic parameters satisfying ab < c and are given by
{a, b, c}¼{1.2, 2.92, 5.7} [49]. Note that, without the nonlinear term x21, the Genesio-Tesi system
(6) is a linear time-invariant (LTI) system and is a state-space realization of the transfer function
GðsÞ ¼ 1=ðs3 þ as2 þ bsþ cÞ:
(3) Chua circuit [50]

The Chua circuit

_x ¼ fðxÞ ¼
αðx2 � x31 � cx1Þ
x1 � x2 þ x3
�βx2

2
64

3
75 (8)

may be modulated in a form with state-dependent and additive messages as
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_x ¼ fðx,mÞ ¼
αðx2 � x31 � cx1Þ þm1

x1 � x2 þ x3
�ðβþm2Þx2

2
64

3
75 ¼ fðxÞ þ

1
0
0

2
64

3
75m1 þ

0
0
�x2

2
64

3
75m2,

_m ¼ Amm,
y ¼ hðx, mÞ,

8>>>>>><
>>>>>>:

(9)

where α ¼ 10, β ¼ 16 and c ¼ �0.14 are the chaotic parameters. A different modification
scheme is given in Ref. [51].

It is noted that, although chaotic systems are sensitive to variations of their chaotic parameters
p ¼ pi

� �
, most systems do accommodate suitable modifications of some of these parameters.

This property has precisely been exploited for the designs of UIOs for secure communication
and many control-based synchronization schemes in the literature.

3. General unknown-input observers (UIOs)

Consider (3), which can be expressed more compactly as,

_w ¼ fwðwÞ,
y ¼ hðwÞ,

�
(10)

where

w ¼
�
x
m

�
, fwðwÞ ¼ fðx,mÞ

fmðm, xÞ
� �

, and hðwÞ ¼ hðx,mÞ.

Consider a Luenberger-like nonlinear observer for (3) given by [27–31, 34],

_̂x
_̂m

" #
¼ fðx̂, m̂Þ

fmðm̂, x̂Þ
� �

þ L1oð�Þ
L2oð�Þ
� �

½y� hðx̂, m̂Þ�,

y ¼ hðx,mÞ,

8><
>:

(11)

or more compactly as, with (10),

_̂w ¼ fwðŵÞ þ Loð�Þ½y� hðŵÞ�,
y ¼ hðwÞ,

(
(12)

where ŵ ¼ x̂
m̂

� �
is an estimate of w ¼ x

m

h i
, fwðŵÞ ¼ fðx̂, m̂Þ

fmðm̂, x̂Þ
� �

, and Loð�Þ ¼ L1oð�Þ
L2oð�Þ
� �

is the

observer gain matrix to be determined such that the observer has desirable properties, such as
generating an estimate ŵðtÞ that can track (or converge to) wðtÞ asymptotically in the face of
unknown disturbances.

Although (11) and (12) provide a more intuitive form for a Luenberger-like observer, a linear
and nonlinear UIO can be expressed in an alternate form as [31, 52],
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_q ¼ fqðq, yÞ, qð0Þ ¼ qo,

ŵ ¼ ϕðq, yÞ, ŵ ¼ x̂
m̂

� �
,

8><
>:

(13)

where q∈Rn, fq : Rn � Rm ! Rn is a smooth vector field,ϕ a smooth function, fqð0, 0Þ ¼ 0 and
ϕð0, 0Þ ¼ 0.

Three classes of UIOs can be distinguished from the extended state estimate ŵ, namely, (i) if

ŵ ¼ x̂
m̂

� �
, then (13) is a full-order UIO that addresses the estimation of the entire system vector

x and message vectorm; (ii) if ŵ ¼ x̂2
m̂

� �
, where x̂ ¼ x1

x̂2

� �
, x1 is known and x̂2 is an estimate of

x2, then (13) is a reduced-order UIO that deals with partial-state and message estimations; and
(iii) if ŵ ¼ m̂, where the complete state vector xðtÞ is known for all t, then (13) is an UIO for
only message estimation.

The design of all the three classes of UIOs discussed above for secure communication will be
addressed in Section 4.

4. Unknown-input observers (UIOs) for chaotic secure communication

The analysis and design of UIOs for secure communication using a drive-response scheme in
this section will be based on (10)–(13). Hence, (3) or (10) will serve as the drive system, while
(11), (12) or (13) as the response system.

In the drive-response chaotic communication theory and applications, one of the most impor-
tant issues is synchronization, which is closely related to the stability of the UIO. Synchroniza-
tion is a property of the estimation error ~w given by

~w ¼ ~x
~m

� �
, (14)

where ~x ¼ x� x̂ and ~m ¼ m� m̂.

Definition 1: Synchronization

The drive system (3) or (10) and the UIO response system (11), (12) or (13) are said to be synchronized
if the estimation error ~w given by (14) satisfies limt!∞ jj ~wðtÞjj ¼ limt!∞ jjwðtÞ � ŵðtÞjj ¼ 0,

i.e., the UIO is capable of generating an estimate ŵðtÞ that tracks wðtÞ asymptotically as t! ∞. ∎

Remark 1: The condition limt!∞ jj ~wðtÞjj ¼ 0 is similar to the design of linear and nonlinear
observers where it is crucial to ensure the asymptotic stability of the observers. ∎

To proceed, the estimation error (14) satisfies, with (10) and (12),
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_~w ¼ fwðwÞ � fwðŵÞ � Loð�Þ½y� hðŵÞ�
¼ fwðwÞ � fwðw� ~wÞ � Loð�Þ½hðwÞ � hðw� ~wÞ�
≜ fwð ~w, x,m, yÞ:

(15)

It follows that ~w ¼ 0 is an equilibrium point of (15), i.e., fwðwÞ � fwðwÞ � Loð�Þ½hðwÞ � hðwÞ� ¼
fwð0, x,m, yÞ ¼ 0 for all x, m and y. Further, if a gain Loð�Þ can be found such that (15) is
asymptotically stable, then limt!∞½ŵðtÞ� ¼ limt!∞½wðtÞ�, see for example [29].

The results above are stated in the following theorem.

Theorem 1: Consider the error Eq. (15) with an equilibrium point at ~w ¼ 0. If a gain matrix Loð�Þ
exists such that (15) is asymptotically stable, then ŵðtÞ ! wðtÞ as t! ∞. ∎

The next task is to determine the gain Loð�Þ so that the candidate observer (12) or (13) becomes
an asymptotically or exponentially stable observer. The matrix can take on various forms
depending on the type of systems being considered and/or the design techniques. For a general
nonlinear system, Loð�Þ can be determined as a function of the estimate x̂, i.e., Loð�Þ ¼ Loðx̂Þ
[27, 28]; for nonlinear systems under Jacobian linearization, Loð�Þ can be obtained as a constant
matrix Lo [29, 30]; for extended Kalman-Bucy filtering using Jacobian linearization, the filter
gain matrix can be approximated by its steady-state value Lo. We shall focus on Jacobian
linearization in Section 4.1 below with applications to full-order UIOs for state and message
estimations using constant gain Loð�Þ ¼ Lo. Section 4.2 addresses the design of reduced-order
UIOs for message estimation, while the design of reduced-order UIOs for partial-state and
message estimations is considered in Section 4.3.

4.1. Jacobian linearization: full-order UIO

Linearization of (3) or (10) about the equilibrium point wo ¼ 0 yields

ð16Þ

where

A ¼ ∂f
∂x ðx,mÞ

����
wo¼0

, BmM ¼ ∂f
∂m ðx,mÞ

����
wo¼0

, ðBm ¼ Bmð0ÞÞ, Ψ ¼ ∂fm
∂x ðm,xÞ

����
wo¼0

,

Am ¼ ∂fm
∂m m,xð Þ

����
wo¼0

, C ¼ ∂h
∂x ðx,mÞ

����
wo¼0

, Cm ¼ ∂h
∂m ðx,mÞ

����
wo¼0

.

The resulting linearized system is given by

_x
_m

� �
¼ A

x
m

h i
,

y ¼ C
x
m

h i
:

8>><
>>:

(17)

The following assumption is crucial to the construction of UIOs.
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Assumption 1: Observability

The pair ½A,C� in (17) is observable, i.e.,

rank½O� ¼ nþ r,

where O is the observability matrix

O ¼ C
T

A
T
C

T
A

2
� �T

C
T ⋯ A

ðnþr�1Þ� �T
C

T
� �

: ∎

An observer can be constructed for (17) if and only if ½A,C� is an observable pair. Hence when
the Jacobian linearization method yields a pair ½A,C� that is not observable, then the Jacobian
linearization method is not applicable to the system under consideration. However, other
methods may work, such as feedback linearization [53, 54].

Using (17), a linear UIO for full-state and message estimation can be constructed as

_̂x
_̂m

" #
¼ A

x̂
m̂

� �
þ L1o

L2o

� �
y� C

x̂
m̂

� �� �

¼ A� LoC
� � x̂

m̂

� �
þ Loy,

x̂ð0Þ
m̂ð0Þ
� �

¼ x̂o
m̂o

� �
,

y ¼ C
x
m

h i
,

8>>>>>>>><
>>>>>>>>:

(18)

where Lo ¼ L1o

L2o

� �
is the constant UIO gain matrix to be determined. Note that L1o ∈Rn�m and

L2o ∈Rr�m, and (18) is simply a Luenberger observer [57]. Since A,C
� �

is an observable pair by
Assumption 1, then Locan be determined, for example, by pole-placement, such that
A� LoC
� �

is Hurwitz, i.e., all the eigenvalues of A� LoC
� �

are located in the open left half-
complex plane.

Using (17) and (18), the estimation errors ~x ¼ x� x̂ and ~m ¼ m� m̂ satisfy

_~x
_~m

" #
¼ A� LoC
� � ~x

~m

� �
,

~xð0Þ
~mð0Þ
� �

¼ ~xo
~mo

� �
, (19)

which is exponentially stable, i.e., limt!∞ ~xðtÞ½ � ¼ 0 and limt!∞ ~mðtÞ½ � ¼ 0 exponentially for all
~xð0Þ and ~mð0Þ. It follows that x̂ðtÞ ! xðtÞ and m̂ðtÞ ! mðtÞ exponentially.
Once a constant Lo has been determined, it can then be substituted into (12), whereby the
resulting nonlinear UIO has the form

_̂w ¼ fwðŵÞ þ Lo½y� hðŵÞ�, ŵð0Þ¼ŵo,
y ¼ hðwÞ,

�
(20)
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� �

is an observable pair by
Assumption 1, then Locan be determined, for example, by pole-placement, such that
A� LoC
� �

is Hurwitz, i.e., all the eigenvalues of A� LoC
� �

are located in the open left half-
complex plane.

Using (17) and (18), the estimation errors ~x ¼ x� x̂ and ~m ¼ m� m̂ satisfy

_~x
_~m

" #
¼ A� LoC
� � ~x

~m

� �
,

~xð0Þ
~mð0Þ
� �

¼ ~xo
~mo

� �
, (19)

which is exponentially stable, i.e., limt!∞ ~xðtÞ½ � ¼ 0 and limt!∞ ~mðtÞ½ � ¼ 0 exponentially for all
~xð0Þ and ~mð0Þ. It follows that x̂ðtÞ ! xðtÞ and m̂ðtÞ ! mðtÞ exponentially.
Once a constant Lo has been determined, it can then be substituted into (12), whereby the
resulting nonlinear UIO has the form

_̂w ¼ fwðŵÞ þ Lo½y� hðŵÞ�, ŵð0Þ¼ŵo,
y ¼ hðwÞ,

�
(20)
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where ŵð0Þ is an arbitrary initial condition. Further, (15) becomes

_~w ¼ fwðwÞ � fwðŵÞ � Lo½y� hðŵÞ�
¼ fwðwÞ � fwðw� ~wÞ � Lo½hðwÞ � hðw� ~wÞ�, (21)

which can be linearized about ~w ¼ 0 to give (19). Hence the dynamics of (21) close to the origin
are well described by (19) for sufficiently small jjŵð0Þjj [30].
In summary, we have the following theorem.

Theorem 2: Let A,C
� �

be an observable pair so that there exists a constant gain Lo such that

A� LoC
� �

in (19) is Hurwitz. Then (20) is an exponentially stable dynamical system for sufficiently
small jjŵð0Þjj. Further, x̂iðtÞ ! xiðtÞ and m̂iðtÞ ! miðtÞ imply that the drive system (10) and the
UIO response system (20) are synchronized. ∎

Using (10) and (20), the overall chaotic system-based UIO for full-state and message estima-
tions under the Jacobin linearization scheme can be implemented as

_w ¼ fwðwÞ, wð0Þ ¼ wo,
_̂w ¼ fwðŵÞ þ Lo½y� hðŵÞ�, ŵð0Þ ¼ ŵo,

y ¼ hðx,mÞ:

8><
>:

(22)

A block diagram for (22) is shown in Figure 1.

Example 1: Rossler system [47]

Consider the Rossler system with state-dependent and additive messages described by (5),

with the output arranged as y ¼ x1 þm1 x3 þm1½ �T ,

Figure 1. Chaotic secure communication system under Jacobian linearization.
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_x ¼
�x2 � x3
x1 þ ax2
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3
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1 a 0

0 0 �c
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64

3
75
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xþ
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0
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64

3
75
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0 0

0 1

2
64

3
75

|fflfflfflfflffl{zfflfflfflfflffl}
Bm

m,

_m ¼ Amm,

y ¼ x1 þm1

x3 þm1

" #
¼ C

x

m

" #
; C ¼ C Cm½ �, C ¼ 1 0 0

0 0 1

" #
; Cm¼

1 0

1 0

" # !
:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(23)

The preceding equation can be expressed as

ð24Þ

where Am ¼ 0 for simplicity. Note that A,C
� �

is an observable pair for all Am.

It can be shown that the Rossler system _x ¼ fðxÞ given by (4) has two equilibrium points, for
c2 � 4ab ≥ 0,

xo1 ¼

1
2

cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4ab

p� �

1
2a
�c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4ab

p� �

1
2a

cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4ab

p� �
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6666664

3
7777775
¼
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�28:465
28:465
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64

3
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2
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c2 � 4ab
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1
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c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4ab

p� �
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6666664

3
7777775
¼

0:0070262

�0:035131
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2
64

3
75:

The stability status of xo1 and xo2 can be determined by checking the eigenvalues of the Jacobian

matrices Ao
1 ¼

∂f
∂x
ðxo1Þ and Ao

2 ¼
∂f
∂x
ðxo2Þ. We obtain,

∂f
∂x
ðxÞ ¼

0 �1 �1
1 a 0
x3 0 x1 � c

2
4

3
5) Ao

1 ¼
0 �1 �1
1 a 0

28:465 0 �0:007

2
4

3
5 and Ao

2 ¼
0 �1 �1
1 a 0

0:035131 0 �5:693

2
4

3
5:

It follows that A, Ao
1 and Ao

2 are unstable matrices, since their eigenvalues have positive real
parts. Since A, Ao

1 and Ao
2 can all be used for the design of an UIO for full-state and message

estimations, we shall choose A in the sequel. Therefore, using (18) and (24), it follows that the
UIO for full-state and message estimations has the form
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It follows that A, Ao
1 and Ao

2 are unstable matrices, since their eigenvalues have positive real
parts. Since A, Ao

1 and Ao
2 can all be used for the design of an UIO for full-state and message

estimations, we shall choose A in the sequel. Therefore, using (18) and (24), it follows that the
UIO for full-state and message estimations has the form
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_̂x
_̂m

" #
¼ A

x̂
m̂

� �
þ gðx̂, m̂1Þ

0

� �
þ L1o

L2o

� �
y� C

x̂
m̂

� �� �
,

¼ A� LoC
� � x̂

m̂

� �
þ gðx̂, m̂1Þ

0

� �
þ Loy,

x̂ð0Þ
m̂
ð0Þ

� �
¼ x̂o

m̂o

� �
,

y ¼ C
x
m

h i
,

8>>>>>>>><
>>>>>>>>:

(25)

where the gain Lo is to be determined such that A� LoC
� �

is Hurwitz. The next task is then
to find Lo, which may be obtained by using the pole-placement or Kalman-Bucy filter
design method. We shall use the Kalman-Bucy filter technique. We note that in the design
of a Kalman-Bucy filter [55, 56], the known covariance matrices of the system noise and
measurement noise are given by Q and R, respectively, where Q ≥ 0 and R > 0. However,
for the UIO design governed by (24) and (25), there are no system and measurement
noises. Hence, the elements of the Q and R matrices can be treated as free design param-
eters to be chosen and adjusted such that the performance of the UIO is satisfactory. A
general method for choosing Q and R is to set them as diagonal matrices Q ¼ qiiIn and
R ¼ riiIr, where In and Ir are unit matrices, and adjust the values of the diagonal elements
qii and rii until satisfactory responses are obtained. In general, given a set of riif g, larger
values of qii

� �
will lead to larger observer gains that will place the observer poles deeper in

the left half-complex plane.

The overall UIO for full-state and message estimations can be implemented as (see (22))

_x ¼ Axþ gðx, m1Þ þ Bmm, xð0Þ ¼ xo,
_̂x ¼ Ax̂ þ gðx̂, m̂1Þ þ Bmm̂ þ L1o y� Cŷ

� �
, x̂ð0Þ ¼ x̂o,

_̂m ¼ Amm̂ þ L2o y� Cŷ
� �

, m̂ð0Þ ¼ m̂o,

y ¼ x1 þm1

x3 þm1

" #
¼ C

x

m

" #
,

8>>>>>>><
>>>>>>>:

(26)

where the messages m1 and m2 are injected into the Rossler system directly (see Figure 1 also),
thereby the message model _m ¼ Am is omitted in (26); however, the model matrix Am is
needed in the message observer equation (third equation).

The key task now is the determination of a suitable UIO gain Lobased on (24) that yields
acceptable performance. The design can be accomplished by using Matlab’s LQR command as

½L P Eo� ¼ lqrðAb0;Cb0;Q;RÞ; Lo ¼ L0;

where Ab and Cb denote A and C, respectively; Lo ¼ PC
T
R�1; Eo ¼ λ A� LoC

� �
; and P is the

solution of the algebraic Riccati equation (ARE)

0 ¼ PA
T þAP� PC

T
R�1CPþQ ¼ PA

T þAP� LoRLT
o þQ,
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where Am ¼ 0 in A (see (24)). The parameter matricesQ and R that produced a suitable Lowere
found to be given by, respectively, (note that the adjustment of Q was nontrivial),

Q ¼ diagð½0; 50; 1000; 5 �107, 1012]), R ¼ diagð½0:01; 0:01�Þ:

We obtain

Note that the eigenvalues λ A� LoC
� �

are spread apart widely and have two complex conju-
gate poles.

The performance of the UIO is displayed in Figures 2 and 3. The initial conditions used in the

simulations were: xð0Þ ¼ x̂ð0Þ ¼ 0:2 �0:4 �0:2½ �T and m̂ ¼ 0 0½ �T . The signals to be esti-
mated are: (a) a voice message m1ðtÞ injected into the drive system at t¼ 100, and (b) the
electrocardiogram (ECG) m2ðtÞ of a person. Figure 2(a) shows m1ðtÞ and its estimate m̂1ðtÞ, and
Figure 2(b) showsm2ðtÞ and m̂2ðtÞ. The estimation errors were small, as can be seen from Figure 2
(c) and (d), where the plots ofm1 vs. m̂1, andm2 vs. m̂2 are displayed. The clean 45-degree trace in
Figure 2(c) shows that the estimate m̂1ðtÞ of m1ðtÞ is almost perfect, while Figure 2(d) shows that
the estimation error ~m2ðtÞ ¼ mðtÞ � m̂2ðtÞ was small. The synchronization of the drive-response
systems is shown in Figure 3(a)–(d), where x1ðtÞ, x̂1ðtÞf g and x2ðtÞ, x̂2ðtÞf g are shown; the clean
45-degree traces of x1ðtÞ vs: x̂1ðtÞ and x2ðtÞ vs: x̂2ðtÞ show that the synchronization was nearly
perfect. Hence, we conclude that the overall synchronization of the drive-response systems and
the message estimation ranges from satisfactory to excellent.

4.2. Reduced-order UIO for message estimation for completely known x(t)

The objective here is to estimate the unknown message signal vectormðtÞ by assuming that the
entire state vector x is accessible by direct measurement, i.e., full-state measurement, and does
not have to be estimated. Hence, without loss of generality, the output can be assumed to be
given by y ¼ x. This leads to the construction of a reduced-order UIO for message (distur-
bance) estimation. In general, a reduced-order observer based on full-state or partial-state
measurement has an interesting structure and is an active area of research in the literature for
system controls and disturbance estimation, see for example [24–26, 57–60]. The reduced-order
UIO designed in this section for message estimation will be based on a derived measurement
derived from y ¼ x and _y ¼ _x; the results will be extended to partial-state and message
estimations in Section 4.3.

Before launching into the design of UIOs for message estimation, let us consider a general
disturbance estimation problem described by

Lo ¼ 0:99979 �0:99977 Eo ¼ �1eþ005

�0:03355 �0:02882 �1884þ1876:6i

�3688:8 3830:5 �1884�1876:6i

51810 48122 �0:4þ0:8i

�6:8055eþ006 7:33Eþ06 �0:4�0:8i
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_x ¼ fðxÞ þ B1ðxÞuþ B2ðxÞd,
y ¼ x,

�
(27)

where x∈Rn is the state vector, u∈Rℓ a known control input vector, d∈Rr an unknown
disturbance vector, and y the measured or known output vector; fðxÞ, B1ðxÞ and B2ðxÞ are
known function and matrices of compatible dimensions. The unknown disturbance d is
assumed to be generated by

_d ¼ fdðd, xÞ, (28)

where fdð0, 0Þ ¼ 0.

The objective is to estimate the unknown disturbance d using the output y ¼ x. The following
lemma shows that d can be estimated based on a derived measurement instead of y.

Lemma 1: Estimation of d based on derived measurement

Figure 2. Responses of Rossler system: (a) m1 and m̂1; (b) m2 and m̂2; (c) m1 vs. m̂1; and (d) m2 vs. m̂2. Figures 2(c) and 2(d)
indicate negligible estimation error m̃1= m1�m̂1 and small m̃2= m2�m̂2, respectively.
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Consider the systems described by (27) and (28). A Luenberger-like nonlinear observer can be constructed
for disturbance estimation as

_̂d ¼ fdðd̂, xÞ þ LoðxÞ _x � fðxÞ � B1ðxÞu� B2ðxÞd̂
h i

, (29)

where d̂ is an estimate of d, and LoðxÞ∈Rr�n is the observer gain to be determined such that

d̂ðtÞ ! dðtÞ asymptotically.

Proof: Define a derived measurement equation derived from the output y ¼ x as

yd ¼ _y � fðxÞ � B1ðxÞu: (30)

Since x is known, _y ¼ _x can be obtained from its time derivative; hence ydðtÞ is known for all
t ≥ 0 for known fðxÞ and B1ðxÞu. Combing (28) and (30) yields, with (27),

_d ¼ fdðd, xÞ,
yd ¼ B2ðxÞd,

�
(31)

Figure 3. Responses of Rossler system: (a) x1 and x̂1; (b) x2 and x̂2; (c) x1 vs. x̂1; and (d) x2 vs. x̂2. Figures 3(c) and 3(d)
indicate negligible estimation errors x̃1= x1�x̂1 and x̃2= x2�x̂2, respectively.
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which constitutes a standard form or “pattern” for constructing a nonlinear observer. Hence, a
candidate Luenberger-like observer can be constructed for estimating d based on yd (or simply
by “pattern recognition”) as

_̂d ¼ fdðd̂, xÞ þ LoðxÞ yd � B2ðxÞd̂
h i

: (32)

Substituting (30) into (32) yields (29). ∎

Remark 2: When fdðd̂, xÞ ¼ 0, (29) is identical to the observer proposed in Ref. [61] (Eq. (3.2),
p. 44) under a versatile disturbance observer-based control (DOBC) technique applicable to both
linear and nonlinear systems. However, it is not clear how and why the derivative term _x
shows up in their Eq. (3.2). In contrast, the formulation in Lemma 1 based on the method of
derived measurement provides a clear insight, specifically, it clearly shows how _x finds its way
into (29). Furthermore, since it is, in general, difficult to access the entire system state vector x
for measurement, the derived measurement formulation will pave the way for the design of
reduced-order observers for joint partial-state and disturbance estimations (see Section 4.3)
using only those state variables that are available by direct measurement, thereby extending
the DOBC technique and applications. ∎

Remark 3: The presence or origin of _y in a linear Luenberger observer is well known in the
literature [57, 58]. It occurs in the construction of reduced-order linear observers, where the
elimination of _y leads to the design of improved or enhanced reduced-order observers. As
shown in (29), the derivative _y also occurs in constructing enhanced reduced-order nonlinear
observers. ∎

To continue further, the derivative _y in (29) can be eliminated by moving the term LðxÞ _y to the
left side of the equation to yield

_z ¼ fdðd̂, xÞ � LoðxÞB2ðxÞd̂
h i

� LoðxÞ fðxÞ þ B1ðxÞu½ �, (33)

where _z ¼ _̂d � LoðxÞ _y. Defining [61],

z ¼ d̂ � pðxÞy) _z ¼ _̂d � ∂pðxÞ
∂x

_y ) LoðxÞ ¼ ∂pðxÞ
∂x

, (34)

where pðxÞ∈Rr�n is to be determined. If fdðd̂, xÞ ¼ 0, then (33) can be expressed as

_z ¼ �LoðxÞB2ðxÞz� LoðxÞ B2ðxÞpðxÞ þ fðxÞ þ B1ðxÞu½ �,
d̂ ¼ zþ pðxÞy,

(
(35)

which is identical to the enhanced observer presented in Ref. [61] (see for example, Eq. (3.5),
p. 44).

We now return to message estimation in chaotic systems. We can start with (3), which can be
expressed as, with full-state measurement given by y ¼ x,
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_x ¼ fðxÞ þ BmðxÞMm,

_m ¼ AmmþΨx,

y ¼ x:

8><
>:

(36)

Since the entire state vector x is known for all t ≥ 0, (36) can be rearranged as

_m ¼ AmmþΨx,

yd ¼ BmðxÞMm,

(
(37)

where

yd ≜ _y � fðxÞ, _y ¼ _xð Þ, (38)

is the derived-measurement in the form of (30). Most importantly, yd can serve as the output
equation for _m ¼ AmmþΨx, so that (37) provides a standard form or pattern for observer
design. Accordingly, a candidate Luenberger-like observer can be constructed based on yd as

_̂m ¼ Amm̂ þΨxþ LoðxÞ yd � BmðxÞMm̂
� �

¼ Am � LoðxÞBmðxÞM½ �m̂ þΨxþ LoðxÞ _y � fðxÞ½ �, m̂ð0Þ ¼ m̂o,
(39)

where LoðxÞ∈Rr�n is the observer gain matrix to be determined.

To proceed, it follows from (37) and (39) that the estimation error defined by ~m ¼ m� m̂
satisfies

_~m ¼ Am � LoðxÞBmðxÞM½ � ~m, ~mð0Þ ¼ ~mo, (40)

which shows that if LoðxÞ is a suitable stabilizing gain, then ~mðtÞ can be made to converge to
zero asymptotically for arbitrary ~mð0Þ, thereby m̂ðtÞ ! mðtÞ.
The results above are summarized in the following theorem.

Theorem 3: Consider (36)–(39). If there exists a gain LoðxÞ such that (40) is asymptotically stable for
all x, then m̂ðtÞ ! mðtÞ asymptotically. ∎

Note that since BmðxÞ is a function of x, it complicates the determination of LoðxÞ to achieve
asymptotic stability. However, if BmðxÞ ¼ Bm, where Bm is a constant matrix, then LoðxÞ can be
determined as a constant Lo, and can be computed by simple methods, such as pole placement,
provided that Am,Bm½ � is an observable pair (see Example 2 below).

Using (36), it follows that (35) takes on the form,

_z ¼ Am � LoðxÞBmðxÞM½ �zþΨxþAmpðxÞ � LoðxÞ BmðxÞMpðxÞ þ fðxÞ½ �,
m̂ ¼ zþ pðxÞ:

(
(41)

Amain task in applying (41) is the determination of p(x). If we set pðxÞas a linear function of x, i.e.,
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pðxÞ ¼ Lox, ðx ¼ yÞ, (42)

where Lo is a constant matrix, then we obtain from (34), LðxÞ ¼ Lo. Further, if BmðxÞ ¼ Bm and
½Am,BmM� is an observable pair, then Lo can be determined readily by, for example, the pole-
placement method, such that Am � LoBmMð Þ is Hurwitz. Moreover, (40) becomes,

_~m ¼ Am � LoBmMð Þ ~m, ~mð0Þ ¼ ~mo, (43)

which shows that ~mðtÞ ! 0, thereby m̂ðtÞ ! mðtÞ exponentially for arbitrary ~mð0Þ. In addi-
tion, in this case, the enhanced UIO (41) reduces to

_z ¼ Am � LoBmMð Þzþ Am � LoBmMð ÞLoxþΨx� LofðxÞ½ �,
m̂ ¼ zþ Loy:

(
(44)

It can be shown that the preceding equation can be obtained by using the linearized system
(17) and setting pðxÞ ¼ Lox) Lo ¼ ∂pðxÞ=∂x.
Once a suitable gain has been determined, such as LoðxÞ ¼ Lo, it can then be substituted into
(41), and the overall chaotic system-based UIO for message estimation can be implemented as,
with (36),

_x ¼ fðxÞ þ BmðxÞMm, xð0Þ ¼ xo,

_m ¼ AmmþΨx, mð0Þ ¼ mo,

_z ¼ Am � LoBmðxÞMð Þzþ Am � LoBmðxÞMð ÞLoxþΨx� LofðxÞ½ �, zð0Þ ¼ zo,

m̂ ¼ zþ Loy,

y ¼ x:

8>>>>>><
>>>>>>:

(45)

We remark that the UIO governed by the third equation in (45) is a nonlinear observer with its
gain LoðxÞ replaced by a constant Lo. Other methods may be used to determine a suitable Lo,
such as linear matrix inequality (LMI), see for example Ref. [34].

Example 2: Genesio-Tesi system [49]

Consider the Genesio-Tesi system described by (7) with additive messages and output y ¼ x

_x ¼
x2

x3 þm1
�cx1 � bx2 � ax3 þ x21 þm2

2
4

3
5 ¼ fðxÞ þ

0 0
1 0
0 1

2
4

3
5

|fflfflfflfflffl{zfflfflfflfflffl}
Bm

m1
m2

� �
,

_m ¼ Amm,
y ¼ x:

8>>>>>><
>>>>>>:

(46)

Using (37) withΨ ¼ 0, the preceding equation can be arranged in the form of an LTI system as

_m ¼ Amm,
yd ¼ Bmm,

�
(47)
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where yd ¼ _y � fðxÞ is the derived measurement, and it can be shown that ½Am,Bm� is an
observable pair for all Am, i.e., rank BT

m AT
mB

T
m

� � ¼ 2.

An observer for (47) can be constructed as

_̂m ¼ Amm̂ þ Lo yd � LoBmm̂
� �

¼ Am � LoBmð Þm̂ þ Lo _y � fðxÞ½ �,
(48)

which is obtainable from (39). Since ½Am,Bm� is an observable pair, a constant gain Lo can be
determined such that Am � LoBmð Þ is Hurwitz. Further, eliminating the derivative term Lo _y in
(48) yields

_z ¼ Am � LoBmð Þzþ Am � LoBmð ÞLoy� LofðxÞ½ �,
m̂ ¼ zþ Loy:

(
(49)

To determine the gain Lo, let the poles of Am � LoBmð Þ be selected as po ¼ � 61 32½ �. Using
Matlab’s pole-placement command,

Lo¼place(Am',Bm',po)',
we obtain, for Am ¼ 0,

The final result for implementation can be obtained by combing Eqs. (46) and (49) as

_x ¼ fðxÞ þ Bmm, xð0Þ ¼ xo,

_z ¼ Am � LoBmð Þzþ Am � LoBmð ÞLoy� LofðxÞ½ �, zð0Þ ¼ zo,

m̂ ¼ zþ Loy,

y ¼ x:

8>>>><
>>>>:

(50)

Sincem1ðtÞ andm2ðtÞ are injected directly into the Genesio-Tesi system (46), the message model
_m ¼ Amm is not needed and is omitted in (50); however, the model matrix Am is required in
the estimation equation (second equation in (50)). The signal m1ðtÞ is the nine-term Fourier
series of a square wave, and m2ðtÞ is a mix signal consisting of a trapezoid, sine wave, and
ramp and exponential functions. It would be difficult to generate these rather complicated
signals, in particular m2ðtÞ, by using the simple model _m ¼ Amm, and/or a more general model
_m ¼ Ammþ δ proposed in Refs. [24–26], where the elements δiðtÞ of δðtÞ are unknown
sequences of random delta functions. For simulation studies, the mix signal m2ðtÞ can easily
be generated by the following Matlab codes and injected into (50):

Mix signal m2ðtÞ:

m2¼0.05*t*((t>0)&(t<10))þ0.5*((t>¼10)&(t<¼20))
-0.05*(t-30)*((t>20)&(t<¼30))þ0.25*sin(t-30)*((t>¼30)&(t<58.27))

Lo ¼ 0 61 0

0 0 32
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þ(1/20)*(t-58.27)*((t>¼58.27)&(t<78.27))
þ1*exp(-0.2*(t-78.27))*((t>¼78.27)&(t<200)).

The performance of the UIO is displayed in Figures 4 and 5. The initial condition of the

Genesio-Tesi system used in the simulation was xð0Þ ¼ 0:2 �0:4 �0:2½ �T , while zð0Þ was

calculated by using zð0Þ ¼ m̂ð0Þ � Loyð0Þ ¼ �Loxð0Þ, which yields zð0Þ ¼ 24:4 6:4½ �T where
m̂ð0Þ ¼ 0. Figure 4(a) shows m1ðtÞ and its estimate m̂1ðtÞ, and Figure 4(b) exhibits m2ðtÞ and
m̂2ðtÞ. The estimation errors were negligible, as can be seen from Figure 4(c) and (d), where the
plots of m1ðtÞ vs. m̂1ðtÞ, and m2ðtÞ vs. m̂2ðtÞ are displayed. Note also the Gibb’s phenomenon
(the “twin-towers”) in Figure 4(a). The Genesio-Tesi attractor is shown in Figure 5. We con-
clude that the performance of the reduced-order UIO for message estimation was satisfactory.

4.3. Reduced-order UIO for partial-state and message estimations

The objective in this section is to extend the design of reduced-order UIO for message estima-
tion to the design of UIO for joint partial-state and message estimations. The results obtained
are believed to be new and novel.

Figure 4. Responses of Genesio-Tesi system: (a) m1 and m̂1; (b) m2 and m̂2; (c) m1 vs. m̂1; and (d) m2 vs. m̂2. Figures 4(c) and
4(d) indicate negligible estimation error m̃1= m1�m̂1 and m̃2= m2�m̂2, respectively.
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Consider a general nonlinear system described by (3) which is expressed here without the
output as (see also (1) and (2))

_x ¼ fðxÞ þ BmðxÞMm,

_m ¼ Amm,

(
(51)

where Ψ ¼ 0. The design will be based on a derived measurement formulation.

Let

x ¼ x1
x2

� �
, w≜ x2

m

� �
, y ¼ x1, (52)

where x1 ∈Rm and x2 ∈Rn�m are, respectively, accessible and inaccessible for direct measure-
ment, and y is the output. Using (52), we assume that (51) can be partitioned as

_x1 ¼ f1ðyÞ þ B1mðyÞMm, ðy ¼ x1Þ,
_x2 ¼ f2ðy, x2,mÞ þ B2mðy, x2ÞMm,

_m ¼ Amm,

8><
>:

(53)

which can be rearranged to give

Figure 5. Genesio-Tesi attractor obtained by using (46).
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_x2
_m

� �
¼ f2ðy, x2,mÞ

Amm

� �
þ B2mðy, x2ÞMm

0

� �
,

yd¼B1mðyÞMm,

8><
>:

(54)

where yd ¼ _y � f1ðyÞ denotes the derived measurement.

Eq. (54) constitutes a standard form that can be used to construct an observer for estimating the
inaccessible partial-state x2 and the unknown message m based on the derived measurement
yd. Hence, a candidate Luenberger-like observer can be constructed as

_̂w ¼ f2ðy, x̂2, m̂Þ
Amm̂

� �
þ B2mðy, x̂2ÞMm̂

0

� �
þ L1oð�Þ

L2oð�Þ
� �

yd � B1mðyÞMm̂
� �

, (55)

where L1oð�Þ and L2oð�Þ are the gain matrices to be determined such that the observer has
desirable performance characteristics, in particular, x̂2ðtÞ ! x2ðtÞ and m̂ðtÞ ! mðtÞ as t! ∞.

Remark 4: In (39), the reduced-order UIO was derived using the output y ¼ x, while the
reduced-order UIO (55) above was constructed by using y ¼ x1 with x1 serving the role of x.
Hence (55) is an extension of the DOBC technique, and is now applicable to partial-state and
message estimations by using only x1 instead of the entire state x.

The estimation error ~w ¼ ~xT2 ~mT
� �T, where ~x2 ¼ x2 � x̂2 and ~m2 ¼ m� m̂, satisfies, with

(54) and (55),

_~w ¼ f2ðy, x2,mÞ � f2ðy, x̂2, m̂Þ
Amm�Amm̂

� �
þ B2mðy, x2ÞMm̂ � B2mðy, x̂2ÞMm̂

0

� �
� L1oð�Þ

L2oð�Þ
� �

yd � B1mðyÞMm̂
� �

:

(56)

The preceding error equation is a version of (15). Hence from Theorem 1, the origin ð0, 0Þ is an
equilibrium point of the unforced equation in (56) for all y ¼ x1. Further, x̂2ðtÞ ! x2ðtÞ and
m̂ðtÞ ! mðtÞ if L1oð�Þ and L2oð�Þ are stabilizing gains.

The next task is to eliminate _y in yd ¼ _y � f1ðyÞ in (55) by moving Loð�Þ _y to the left side of the
equation and defining

_z ¼ _̂w � Loð�Þ _y: (57)

Choosing

z ¼ ŵ � pðx1Þ ) _z ¼ _̂w � ∂pðx1Þ
∂x1

_x1, ð _x1 ¼ _yÞ, (58)

where pðx1Þ ¼ p1ðx1Þ
p2ðx1Þ
� �

, p1ðx1Þ∈Rðn�mÞ�ðn�mÞ and p2ðx1Þ∈Rr�ðn�mÞ are to be determined. It

follows that
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L1oðx1Þ ¼ ∂p1ðx1Þ
∂x1

and L2oðx1Þ ¼ ∂p2ðx1Þ
∂x1

(59)

Using (55), (57), (58) and (59), can be expressed as

_z ¼ f2ðy, x̂2, m̂Þ
Amm̂

" #
þ B2mðy, x̂2ÞMm̂

0

" #
� L1oðx1Þ

L2oðx1Þ

" #
f1ðyÞ þ B1mðyÞMm̂½ �,

ŵ ¼ zþ pðx1Þ,

8><
>:

(60)

which can further be reduced to a form given by, for example (44), once the specific structure of
the chaotic system under consideration is known and pðx1Þ has been determined (see Example
3 for more details).

Using (51) and (60), the main results for the construction of UIO for partial-state and message
estimations are stated in the following theorem.

Theorem 4: Consider the augmented system (54), where yd¼B1mðyÞMm is the derived measurement.
A candidate UIO for partial-state and message estimations is given by

_z ¼ f2ðy, x̂2, m̂Þ
Amm̂

" #
þ B2mðy, x̂2ÞMm̂

0

" #
� L1oðx1Þ

L2oðx1Þ

" #
f1ðyÞ þ B1mðyÞMm̂½ �,

ŵ ¼ zþ pðx1Þ,
y ¼ x1:

8>>>><
>>>>:

(61)

If the gains L1oðx1Þ and L2oðx1Þ exist such that (61) is asymptotically stable, then x̂2ðtÞ ! x2ðtÞ and
m̂ðtÞ ! mðtÞ as t! ∞. ∎

Example 3: Chua’s circuit [50]

Consider the Chua circuit described by (8), modified here with an additive message m as,

_x ¼
αðx2 � x31 � cx1Þ þm

x1 � x2 þ x3
�βx2

2
64

3
75 ¼ fðxÞ þ

1

0

0

2
64

3
75m≜ fðxÞ þ BmðxÞm,

_m ¼ Amm,

8>>>><
>>>>:

(62)

where α ¼ 10, β ¼ 16 and c ¼ �0:14 are the chaotic parameters [50]. A different modification
scheme is given in Ref. [51].

Using (52), let the output be chosen as

y ¼ y1
y2

� �
¼ x1

x2

� �
≜ x1 ) w ¼ x3

m

� �
, (63)

where x3 constitutes the unknown partial state, and the derived measurement can be
obtained as
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m

� �
, (63)

where x3 constitutes the unknown partial state, and the derived measurement can be
obtained as

Advances in Underwater Acoustics66

yd ¼
_y1
_y2

� �

|fflffl{zfflffl}
_y

� αðx2 � x31 � cx1Þ
x1 � x2

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fwðy1, y2Þ

¼ 0 1
1 0

� �

|fflfflfflffl{zfflfflfflffl}
Bw

x3
m

� �

|fflffl{zfflffl}
w

: (64)

Using (62) and (63), the combined partial-state and message system has the form

_w ¼ Awwþ gðy2Þ, (65)

where Aw ¼ 0 if Am ¼ 0, gðy2Þ ¼ �βx2 0½ �T , and ½Aw,Bw� is an observable pair for all Aw, i.e.,
rank BT

w AT
wB

T
w

� � ¼ 2.

Using (61) or (65) and (62), a UIO for partial-state and message estimations can be constructed
based on yd given by (64) and implemented as

_x ¼ fðxÞ þ BmðxÞm, xð0Þ ¼ xo,

_z ¼ Aw � LoBwð Þzþ gðy2Þþ Aw � LoBwð ÞLoy� Lofwðy1, y2Þ
� �

, zð0Þ ¼ zo,

ŵ ¼ zþ Loy, ðAw ¼ 0, pðx1Þ ¼ Loy, y ¼x1Þ:

8><
>:

(66)

The gain Lo used for the simulations was obtained by choosing the UIO poles as po ¼ � 1000½
500�. Using Matlab’s pole-placement command Lo ¼ placeðAw0;Bw0;poÞ0, we obtain, with
Aw ¼ 0,

The message mðtÞ in (66) is a stock price data consisting of 50 data points where the value
of mð0Þ is mð0Þ ¼ 37. To minimize the effect of mðtÞ on the chaotic nature of the Chua
circuit, it is scaled down to a small signal as mðtÞ ¼ 0:01mðtÞ; this yields mð0Þ ¼ 0:37.
The scaled down signal was then injected into (62) directly. To enhance the estimate

zðtÞ ¼ ŵðtÞ � LoyðtÞ¼ x̂3 ðtÞm̂ðtÞ
� �T � Lo x1ðtÞ x2ðtÞ½ �T , its initial value zð0Þ was calculated by

using zð0Þ ¼ x̂3 ð0Þm̂ð0Þ
� �T�Lo x1ð0Þ x2ð0Þ½ �T , which gave zð0Þ ¼ 498 �999:63½ �T , where

x̂3ð0Þ ¼x3ð0Þ ¼ �2 and m̂ð0Þ ¼ mð0Þ¼ 0:37. We remark that, since the initial condition

xð0Þ ¼ 2 �0:5 �2½ �T of the Chua circuit is known, we can always set x̂3ð0Þ ¼ x3ð0Þ, while
in the event that the value of mð0Þ is not known, then it can be set as mð0Þ ¼ 0 resulting in small

mismatches between m̂ðtÞ andmðtÞ during the transient period. The performance of the reduced-
order UIO is shown in Figures 6 and 7. Figure 6(a) shows x3ðtÞ and its estimate x̂3ðtÞ, while
Figure 6(c) shows the plot of x3ðtÞ vs. x̂3ðtÞ, which indicates an excellent match. Figure 6(b)
displays the message mðtÞ and its estimate m̂ðtÞ, while the plot of mðtÞ vs. m̂ðtÞ in Figure 6(d)
shows a clean 45-degree line indicating an almost perfect match. The plots of xiðtÞ, mðtÞ 6¼ 0f g
vs. xiðtÞ, mðtÞ ¼ 0f g are depicted in Figure 7(a)–(c), showing that the small signal mðtÞ has little
effect on the chaotic nature of the Chua circuit. We conclude that the performance of the reduced-
order UIO for partial-state and message estimations was satisfactory. Further, it is emphasized
that no Jacobian linearization was employed in this example.

Lo ¼ 0 1000

500 0
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Figure 6. Responses of Chua system: (a) x3 and x̂3; (b) m and m̂; (c) x3 vs: x̂3; and (d) m vs: m̂ . Figures 6(c) and 6(d)
indicate negligible estimation errors x̃2= x2�x̂2 and m≃ = m� m̂ , respectively.

Figure 7. Plots of xi m 6¼ 0ð Þ vs: xi m ¼ 0ð Þ showing that m has little effects on the chaotic nature of the Chua system.
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5. Conclusions and plan for future research

In this paper, we showed that secure communication employing chaotic systems can be
achieved by synchronizing the dynamics of the drive and response systems. The results are
obtained by using unknown-input observers (UIOs), which serve as the response systems.
Three classes of UIOs have been designed, namely, (i) full-order UIO for estimating all the
state variables (full state) and messages in the drive system; (ii) reduced-order UIO for mes-
sage estimation based on a derived measurement technique, where the formulation is based on
the disturbance observer-based control (DOBC) theory (recall that the DOBC technique is only
applicable to disturbance estimation based on the assumption that all the state variables (full
state) in a system are known; and (iii) reduced-order UIO for partial-state and message
estimations based on partial-state measurement using the derived-measurement technique.
The reduced-order UIO for partial-state and message estimations is novel, and is an extension
of the DOBC theory, thereby expanding the technique and applications of DOBC. Our future
research and development will be focused on wireless secure communication, robust synchro-
nization in the presence of channel noise and various channel induced distortions, and the
designs and applications of disturbance cancellation nonlinear control systems using the well-
known disturbance accommodation control (DAC) theory, thereby unifying the DAC and
DOBC approaches and techniques.
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Abstract

Underwater ambient noise is primarily a background noise which is a function of time,
location, and depth. It is of prime importance to detect the signals such as sound of a
submarine or echo from a target surpassing this ambient noise. It is also defined as the
residual noise that remains after all easily identifiable sound sources are eliminated. In
the absence of the sound from ships and marine life, underwater ambient noise levels
are dependent mainly on wind speeds at frequencies between 500 Hz and 50 KHz.The
detection of background noise is essential to enhance the signal-to-noise ratio of acous-
tic-based underwater instruments. Since there is a possibility of signal and noise present
in the same frequency, it becomes essential to find out a suitable algorithm to perform
denoising. In this chapter, various denoising techniques such as wavelet, empirical
mode decomposition (EMD) in time domain, ensemble empirical mode decomposition
(EEMD), and frequency domain-based EMD are studied, and the results are compared.
The proposed frequency domain algorithm produced better results in the frequency
ranging from 50 Hz to 25 KHz, with less signal error.

Keywords: underwater acoustics, ambient noise, denoising, wavelet, EMD

1. Introduction

The ocean is filled with sound. Underwater sound is generated by a variety of natural sources,
such as breaking waves, rain, and marine life [1, 2]. It is also generated by a variety of man-
made sources, such as ships and military sonars. Some sounds are present more or less
everywhere in the ocean all of the time. The background sound in the ocean is called ambient
noise [3, 4]. Ambient noise also excludes all forms of self-noise, such as the noise of current
flow around the measurement hydrophone and its supporting structure and obviously must
exclude all forms of electrical noise (Urick). In shallow water (depth of 10–100 m), acoustic
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systems like sonar suffer a huge loss of acoustic signals due to ambient noise [5]. Wind noise is
the most constant and most perennial of all components of ambient noise [3, 6]. Many theore-
ticians have predicted ambient noise that is caused by wind. Different actions are prevailing in
a dissimilar component of the entire frequency band from 1 to 50 KHz [2]. The recovery of the
signal buried in ambient noise is of important significance for target’s signal detection, recog-
nition, and classification at low signal-to-noise ratio.

2. Denoising methods

In science and engineering, noise is defined as an unwanted signal, particularly a stochastic
and persistent form that dilutes the lucidity of a signal. In natural process, noise could be
caused by the process itself, such as local and intermittent instabilities, irresolvable subgrid
phenomena, or some concurrent processes in the environment in which the investigations are
conducted. It could also be generated by the sensors and recording systems when observations
are made. In general, all data are amalgamations of signal and noise, i.e.,

xðtÞ ¼ sðtÞ þ nðtÞ ð1Þ

in which x(t) is the recorded data, and s(t) and n(t) are the true signal and noise, respectively.

The general algorithm of denoising can be written as:

i. Convert the data from a time domain into a suitable domain where signal and noise can
be separated.

ii. Remove noise in the new domain using suitable algorithm.

iii. Then convert the data back to the time domain.

Identifying a suitable domain to eliminate the noise completely is a big challenge. Denoising
has been performed using different denoising methods [wavelet, empirical mode decomposi-
tion (EMD), and ensemble EMD (EEMD)]. Here, a simulated signal was considered to be the
sonar signal, and it was added with a real-time wind noise signal to get a noisy signal. This
signal was applied as the stimulus to the denoising algorithm, and the denoised signal was
obtained.

3. Denoising using wavelets

The wavelet transform is extensively used in several fields of processing a signal. It has the
edge of employing variable sized time window for dissimilar bands of frequency. It has an
advantage of higher resolution in frequency, particularly in lower bands and low resolution,
when it comes to higher frequency bands. For the modeling of nonstationary signals, for
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i. Convert the data from a time domain into a suitable domain where signal and noise can
be separated.

ii. Remove noise in the new domain using suitable algorithm.

iii. Then convert the data back to the time domain.

Identifying a suitable domain to eliminate the noise completely is a big challenge. Denoising
has been performed using different denoising methods [wavelet, empirical mode decomposi-
tion (EMD), and ensemble EMD (EEMD)]. Here, a simulated signal was considered to be the
sonar signal, and it was added with a real-time wind noise signal to get a noisy signal. This
signal was applied as the stimulus to the denoising algorithm, and the denoised signal was
obtained.

3. Denoising using wavelets

The wavelet transform is extensively used in several fields of processing a signal. It has the
edge of employing variable sized time window for dissimilar bands of frequency. It has an
advantage of higher resolution in frequency, particularly in lower bands and low resolution,
when it comes to higher frequency bands. For the modeling of nonstationary signals, for

Advances in Underwater Acoustics76

example, speech that possesses dull temporal variations when it comes to low frequency and
sudden temporal deflections in higher frequency, the wavelet transform is a perfect answer.
This is also used for denoising of the signal as well.

Denoising of underwater acoustic using wavelet is engineered in general with the following
steps in place:

1. Source signal to be taken.

2. Real-time wind noise data are added to the source signal in obtaining the noisy signal.

3. Wavelet decomposition is carried out for the noisy signal using a suitable wavelet.

4. Updating noisy coefficients of a level should be done by setting threshold values. This
setting is done by considering detailed noise coefficients.

5. In a similar manner, to update the approximate noisy coefficients of a level, the last level
approximation noise coefficient is used to set the threshold value.

6. Next step is to compute modified noisy coefficient using different threshold functions
such as hard, soft, and nonnegative garrote.

7. Signal retrieval or denoised signal is done by applying inverse wavelet transform.

8. Calculate the error in the denoised signal for different threshold functions and also for
different wavelets.

Here, a universal method for fixing the threshold value is modified by introducing two
constants ‘k’ and ‘m1’ to obtain higher quality output signal, and it is combined with nonneg-
ative garrote threshold function in the denoising process.

The modified threshold equation is given by Aggarwal et al. [7].

λ ¼ k:m1:σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2log2ðNÞ

q
ð2Þ

Where N denotes the number of samples of noise. It is noted that if two factors, i.e., k and m1
are introduced in the universal threshold equation, then new threshold value gives better
results, especially to recover the original signal [1].

Here, the values of k and m1 are fixed after repeated trials. Initially, m1 value was fixed, and k
value varied to obtain better result. After many trials, k value is fixed as ‘0.5', which gives a
better result when compared to other k values. The root-mean-square error (RMSE) value is
low when k ¼ 0.5, and there is no change in the RMSE value above this k value. So k value
was fixed as 0.5. Then, the value of m1 is varied, and the output was better for the value of
m1 ¼ 3. The RMSE value is less for m1 ¼ 3, and above this value, there is no change in the
RMSE value. So it has been concluded that the value of k is fixed as k ¼ 0.5 and m1 ¼ 3 to get
better results.
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The final step is by enforcing inverse wavelet transform to obtain the original signal. The
denoised signal thus obtained should be similar to the original signal, i.e., RMSE of the signal
should be low.

3.1. Denoising results obtained using wavelets

In this work, sine wave is taken as a sample signal. This signal is added with a real-time wind
noise signal. This noisy signal is processed with the denoising steps, i.e., decomposition,
wavelet thresholding, and inverse wavelet transform for reconstruction. Initially, the signal
decomposition is done for a different level. After a series of test, it was found that the decom-
position level 2 gives better output. Now for each level, the threshold values are calculated
using the modified universal threshold equation. Then thresholding is applied to detailed
noisy coefficient in order to obtain the modified detailed coefficient. The denoised signal was
reconstructed using the true approximation coefficient of level 2 and the modified detailed
coefficient of levels 1– 2.

In this work, decomposition was done using different wavelets. After decomposition by wave-
let, the threshold is applied using different threshold functions, i.e., soft, hard, and nonnega-
tive garrote threshold [8]. The RMSE value was calculated for different wavelet and threshold
function. These values are presented in Table 1. From the table, it is clear that RMSE value is
less for ‘sym8’ wavelet compared with other wavelets and most of the wavelets perform well
along with nonnegative garrote threshold, i.e., RMSE value is less.

Then, the modified universal threshold along with nonnegative garrote threshold is applied to the
decomposed signal. After applying threshold value, inverse wavelet is applied at last to obtain the
original signal. The signal, noise, noisy, and the denoised signals are shown in Figure 1. The
qualitative output, i.e., the comparison of original and denoised signals is presented in Figure 2.

Wavelet type RMSE value for different threshold method

Hard Soft Nonnegative garrote

haar 0.001339103 0.001303089 0.001326211

db2 0.000836217 0.000837207 0.000836016

db4 0.000618673 0.000620417 0.000618689

db5 0.000602552 0.000603077 0.000602235

db8 0.000595174 0.000595174 0.000595174

sym4 0.000617997 0.000619197 0.000617785

sym8 0.000594376 0.000595753 0.000594325

coif4 0.000594698 0.000596959 0.000594531

coif2 0.000615408 0.000617598 0.000615114

dmey 0.000593861 0.000593861 0.000593861

Table 1. RMSE value for different threshold function.
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Figure 1. Process of denoising using wavelet.

Figure 2. Input and denoised output signal comparison graph.
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4. Denoising using EMD

Empirical mode decomposition (EMD) is different from other methods of analyzing data from
nonstationary and nonlinear processes. This has been introduced by Huang et al.. This is used
to decompose signals in an adaptive manner into a sum of AM and FM components containing
raw intrinsic building blocks. These define the complex waveform. There is no need to fix the
functional basis in advance. EMD sifting methods are usually employed to procure these basis
functions in an adaptive manner [9].

EMD identifies the intrinsic oscillatory modes by their characteristic time scales in the data
through empirical observation and then decomposes the data into the corresponding IMFs
through shifting processes. Intrinsic Mode Functions (IMF) may contain variable amplitude
and frequency functions those are dependents of time. It is an algorithm to assign an instanta-
neous frequency to each IMF in order to decompose an arbitrary data set.

Since in EMD, decomposition is based on and derived from the data, it is an adaptive method.
Here, the data x tð Þ is decomposed in terms of IMFs, i.e.,

xðtÞ ¼
Xn

j¼1

cjðtÞ þ rnðtÞ ð3Þ

Here rn is the residue of data x tð Þ, after n number of IMFs being extracted. IMFs are simple
oscillatory functions with varying amplitudes and frequencies [10].

4.1. Denoising using EMD based on existing time domain approach

The importance of a given model is estimated with the information pertained to IMF datum at
times where the noise makes its presence.

In this algorithm, EMDwas applied to the noisy signal. Then, the noisy signal was decomposed
into a set of IMFs. The energy of each IMF had been calculated and then the threshold value.
The IMFs were shrunken using the nonnegative threshold function and then added to get the
denoised output [1, 11, 12].

The energy of the first IMF is defined as

WH 1½ � ¼
XN

n¼1

c21 nð Þ ð4Þ

c1 represents the first IMF coefficients.

The energy of each IMF is defined as

energyðcountÞ ¼ energyð1Þ
0:719

� 2:01�count, count ¼ 2, 3,… ð5Þ

Where energy (1) is the noise energy that can be achieved by the first IMF variance using
equation (4) and count is a variable that specifies the IMF number.
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Then, the threshold value of each IMF can be calculated by

thresholdðcountÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
energyðcountÞ

xsize

� �
� 2 � logðxsizeÞ

s
ð6Þ

The first IMF can be discarded as it captures most of the noise, and for other IMFs, the adaptive
threshold can be calculated using Eq. (6). Then, the coefficients of each IMF was shrunken
using nonnegative garrote threshold function that is calculated for values of IMF greater than
or equal to the threshold value using

mode ðcountÞ ¼ modeðcountÞ � threshold ðcountÞcount
mode ðcountðcount�1Þ

� �
ð7Þ

Where mode represents the IMF, and the variable count specifies the IMF number.

For values of IMF less than the threshold value,

mode ðcountÞ ¼ 0 ð8Þ

Finally, the shrunken IMFs were added to obtain the denoised signal. The denoising algorithm
is shown in Figure 3.

Figure 3. EMD-based denoising algorithm using time domain thresholding.
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A sinusoidal signal was considered as the input test signal, and then, a real-time wind-driven
ambient noise signal that was collected at the wind speed of 5.06 m/s was added with the input
signal to obtain the noisy signal. The input, noise, and noisy signals are presented in Figures 4–6.
The noisy signal was decomposed into a set of IMFs by using EMD function and is shown in
Figure 7. Each of the IMF was shrunken using the nonnegative garrote threshold function. Then,
the denoised signal was reconstructed by adding the shrunken IMFs, which is shown in Figure 8.

This algorithm performs well until the noise amplitude is less than the signal amplitude. The
output is not acceptable whenever the noise amplitude is higher than 50% of the signal

Figure 4. Input signal.

Figure 5. Wind noise signal.
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Figure 6. Noisy signal at 5.06 m/s.

Figure 7. IMFs obtained from the noisy signal.
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amplitude. It is apparent from Figures 4 and 8 that the denoised signal amplitude is lesser than
the actual input signal; even though the denoised signal is similar to the input signal, it is not
an exact resemblance to the input [1].

5. Denoising using EEMD

The output is not satisfactory in the EMD-based time domain method. So to improve the
performance, the same time domain thresholding is used along with ensemble empirical mode
decomposition (EEMD).

Ensemble EMD is a novel noise-assisted method of data analysis that has been proposed to
surpass the scale separation problem without the subjective intermittence test. According to
this, the true IMF components are defined as the mean of the ensemble of trials. Here, every
IMF component comprises the signal along with white noise, whose amplitude is finite. It is
very much feasible to isolate the scale without any selection of advanced subjective criterion in
the ensemble approach. This novel method is reaped from the recent study of statistical
properties of white noise [12] (Wu and Huang, 2004). This exemplifies the fact that EMD is an
efficient adaptive dyadic filter bank when it is applied to white noise. Particularly, this novel
method has the inspiration from the noise added analysis started by Flandrin et al (2005) and
Gledhill (2003). The results of these experiments made it clear that noise is a useful tool in the
analysis of data in the empirical mode decomposition [12].

The main feature of EEMD is the addition of white noise results in populating the whole time-
frequency space equally, while the constituting components of dissimilar scales are isolated by
the filter bank. In this state, the bits of the signal belongs to dissimilar scales would automat-
ically proposed onto proper scales of reference given by the white noise as the background.
Mode mixing can be avoided by the addition of finite noise, and hence, EEMD has an edge
over the EMD method.

Figure 8. Denoised output signal for Time domain EMD.
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EEMD method is as follows:

1. Initially adding a series of white noise to the signal that is considered as a target.

2. Next is extracting IMF through decomposition of noise added data.

3. Repeating steps 1 and 2 several times, with dissimilar series of white noise every time.

4. Final results are the extraction of ensemble of corresponding IMFs of the decomposition [1].

As a matter of fact, the amplitude of the noise that is added is tiny, and it does not necessarily
introduce the change of extreme upon which the EMD is dependent. The effect of white noise
becomes negligible with the increase in ensemble members.

5.1. Denoising using EEMD based on time domain approach

The denoising process using EEMD has the same input signal and noise signal, which is used
in Section 4.1, and is used to get the noisy signal. The noisy signal was applied as an input to
the EEMD-based denoising algorithm. The input and output of EEMD algorithm are shown in
Figure 9. In EEMD-based denoising algorithm, the output amplitude is the same as that of the

Figure 9. Input and output signals of EEMD algorithm.
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input signal amplitude, when compared to EMD-based denoising algorithm output. Even
though the denoised signal amplitude is quite satisfactory, the output signal does not resemble
the input signal exactly.

Comparison, between the input and denoised signal, which is obtained by EEMD, based time
domain denoising algorithm, is presented in Figure 10. This algorithm produces better output
compared to the output of EMD algorithm. But this algorithm takes more time to produce
output, and also the output signal needs improvement.

6. Proposed denoising method using EMD based on frequency domain
approach

In this proposed algorithm, EMD is used as a denoising tool. Earlier EMD-based denoising
methods had been done using time domain thresholding.

The proposed algorithm is based on frequency domain thresholding, and the algorithm is
shown in Figure 11. The proposed algorithm is simple, and it capable of producing better
results than the existing algorithms. As the value of threshold depends on the noise signal, this
algorithm performs well for different wind noise signals, i.e., noise collected for various wind
speeds. From the results, it is concluded that the algorithm works well even if the signal
amplitude and the noise amplitude are same. The signal shown in Figure 12 is considered as
an input signal. Figure 13 shows the real-time wind-driven underwater ambient noise signal,
which is measured at the wind speed of 5.06 m/s. The input signal is added with the noise
signal.

The noisy signal is shown in Figure 14, which is noisier compared to the signal which are
applied in the previous algorithms.

Figure 10. Input and denoised output signals comparison graph (EEMD method).
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The noisy signal is decomposed into a set of IMFs by using EMD function. The IMFs are shown
in Figure 15.

From the figure, it is clear that the IMF1 contains more noise. So we have eliminated IMF1.
Then, we have applied FFT to other IMFs, which is shown in Figure 16.

From the figure, it is clear that IMF 2–4 have more noise components and IMF 5–8 have more
signal components. Different threshold values have been used and better outputs are obtained,
when the threshold value is set as 70–90% of maximum FFT amplitude, i.e., in each IMF, the
coefficients of IMF signal, which have FFTamplitude below the threshold value, were assigned
zero. After applying threshold, IFFTwas taken to each IMF, and then, all the thresholded IMFs
were added to get the denoised signal. The denoised signal is shown in Figure 17 for different
threshold values. The output was good for the threshold values of 70% and above. At 90%
threshold, the output resembles the input signal very well. Compared to the existing time

Figure 11. Proposed denoising algorithm based on EMD.

Figure 12. Input signal (0.0053 ¼ 5 mv).
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domain thresholding algorithm, the proposed frequency domain thresholding algorithm
fetches better results.

In the existing algorithm, the signal amplitude is considered to be 20 mv, and in the proposed
algorithm, the signal amplitude is considered to be 5 mv. In the existing algorithm, the
denoised signal amplitude is much lesser than the actual input signal, and also, the output
does not exactly resemble the input signal. But in the proposed algorithm, the amplitude of
denoised signal (at 90% threshold) is same as that of the input signal, which is shown in
Figure 18. Also, here, the denoised signal resemblance of the input signal is good. In all the
results, the signal amplitude is represented in micropascal, i.e., volt is converted into

Figure 13. Noise signal.

Figure 14. Noisy signal.
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micropascal-based on the sensitivity of the microphone. This result again reveals the reliability
of the algorithm for different wind noise signals.

This algorithm is tested even for chirp input signal. Figure 19 shows the chirp input signal,
noise, and noisy output signal of the proposed algorithm. Figure 20 presents the IMFs of the
noisy signal, which is produced by adding the chirp input with the wind noise signal (5.06 m/s).
This IMF is different from one, which is shown in Figure 15. The comparison between the input
and denoised signal is presented in Figure 21. From this figure, it is clear that the proposed
algorithm performs well even for chirp input signal.

In order to validate the algorithm, the mean square error (MSE) is calculated using the
following equation.

Mean square error MSEð Þ ¼ 1
N

XN

n¼1

ðZðnÞ � ẐðnÞÞ2 ð9Þ

where N is the length of data,Z nð Þ is the actual input signal, and Ẑ nð Þ is the denoised signal.

Figure 15. IMFs of noisy signal.
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Figure 16. FFT of IMFs.

Figure 17. Denoised signal at different threshold.
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In order to compare the performance of different algorithm, the RMSE value is calculated for
different algorithm and various wind speed. It is presented in Tables 2–5. The RMSE value of
the proposed algorithm is given in Table 5 for different threshold values. From the table, it is

Figure 18. Input and denoised output signal comparison graph (EMD method).

Figure 19. Output of proposed algorithm for chirp input signal.
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Figure 20. IMFs for chirp input signal.

Figure 21. Input and denoised output signal comparison graph (for chirp input).
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clear that the RMSE value decreases as the threshold value increases, and there is no change in
the RMSE value for the threshold above 80%.

7. Summary

The proposed frequency domain-based EMD algorithm outperforms all other existing algo-
rithms. Table 6 shows the RMSE, which is calculated for the wind noise signal of 5.06 m/s,

RMSE value at 2.61 m/s RMSE value at 3.52 RMSE value at 5.06 RMSE value at 6.93 m/s

0.0029 0.00061 0.00088 0.0010

Table 2. RMSE in wavelet (signal amplitude ¼ 0.01 mv).

RMSE value at 2.61 m/s RMSE value at 3.52 RMSE value at 5.06 RMSE value at 6.93 m/s

0.0118 0.00141 0.0071 0.00821

Table 3. RMSE in time domain EMD (signal amplitude ¼ 0.01 mv).

RMSE value at 2.61 m/s RMSE value at 3.52 RMSE value at 5.06 RMSE value at 6.93 m/s

0.00060 0.00044 0.00063 0.00079

Table 4. RMSE in time domain using EEMD (signal amplitude ¼ 0.01 mv).

Threshold value
in %

RMSE value
at 2.61 m/s

RMSE value
at 3.52 m/s

RMSE value
at 5.06 m/s

RMSE value
at 6.93 m/s

20 0.002991 0.004051 0.002968 0.005838

40 0.000051 0.002512 0.002343 0.002191

50 0.000051 0.001906 0.001448 0.000780

60 0.000051 0.000919 0.001062 0.000780

70 0.000051 0.000045 0.001062 0.000064

80 0.000051 0.000045 0.000055 0.000064

90 0.0001675 0.000045 0.000055 0.000064

Table 5. RMSE in frequency domain EMD (signal amplitude ¼ 0.005 mv).

RMSE value for different denoising methods for wind noise signal of 5.06 m/s

Wavelet EMD time domain algorithm EEMD time domain algorithm Proposed frequency domain based on EMD

0.00088 0.0071 0.00063 0.000055

Table 6. RMSE value comparison for different denoising algorithm.

Denoising Methods for Underwater Acoustic Signal
http://dx.doi.org/10.5772/intechopen.69027

93



value for different denoising methods. The RMSE value in the proposed frequency domain
algorithm is less compared to the other existing algorithms. The RMSE value is calculated for
various wind speeds, and it consistently performs well in the proposed frequency domain
approach. It is concluded that the proposed algorithm produces better results compared to
the existing algorithm. “This algorithm has been developed and duly got tested for the wind
noise and as such could be further extended to include the other constituents of the ambient
noise, as well.”
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Abstract

Recent European strategic plans for the successful monitoring of the status of the ocean 
push on the development of an integrated observing system able to further link existing 
instruments and techniques with the aim to complement each other and answer open 
issues. A more intensive use of acoustic devices could contribute to the knowledge of 
oceanographic processes exploiting the characteristic of sound to travel in the ocean for 
a wide area than in the atmosphere. In this context, the installation of passive acoustic 
instruments, able to listen to ambient noise on fixed or mobile platforms, could contribute 
to provide information on sound budget and to enhance the monitoring capacity of mete-
orological phenomena also in the open ocean. Instead, the deployment of active acoustic 
instruments can be of benefit for monitoring biological activities through the analysis of 
backscatter data as well as for monitoring ocean waves.

Keywords: active underwater acoustics, ocean passive underwater acoustic, underwater 
ambient noise, oceanography, in-situ monitoring

1. Introduction

A fully comprehensive picture of the ocean status can be obtained only by combining different 
methods and monitoring techniques exploiting the characteristics of each approach. The recent 
enhancement of remote sensing capabilities, in terms of a variety of measured parameters 
and accuracy of the corresponding estimates, has been contributing to an effective improve-
ment of the skill of forecasting models and, generally speaking, to the whole domain of opera-
tional oceanography which also benefits in real-time measurements provided by equipped 
buoys, moorings, and mobile platforms (floats, AUV, glider, etc.) that represent the principal 
resources to acquire in-situ ocean measurements.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



While methodologies for the monitoring of the physical properties of the ocean are fully 
assessed and guarantee a good spatial and temporal coverage, techniques to monitor biochem-
ical processes as well as meteorological phenomena over the ocean are still open issues [1].

Underwater acoustic systems, both active and passive, could contribute to fill this gap by 
listening to the ocean noise or by transmitting pulses and interpreting the received echoes 
to improve the knowledge on biological activities or meteorological phenomena at sea such 
as rain and wind and the potential harmful impact of human activities on the ecosystem.

The feasibility of using underwater acoustics to propagate signals date back to 1918 but only 
during the Second World War there was a massive exploitation of devices to detect subma-
rines through sound navigation and ranging system (sonar). The first civilian experiments to 
measure the sea bottom and to detect schools of fishes were carried out in the first half of the 
twentieth century [2]. Since then, the benefits of underwater acoustics were proportional to 
the technological developments in both hardware and software components, especially for 
oceanographic applications.

Several aspects have to be taken into account when planning an underwater acoustics 
 measurement program. The most important factor is the type of noise being measured and, 
accordingly, its expected features in terms of amplitude, frequency, duration, and so on, which 
drive the choice of measurement equipment. Indeed, the sound in the ocean is characterized by 
speed of propagation, attenuation, and presence of obstacles along the path and by the way in 
which the sound is scattered, backscattered, and refracted by both the bottom and the surface.

Ocean stratification is the main responsible event for the generation of beams (convergent 
and/or divergent) and grey areas, depending on the change in the speed due to the depth. 
In turn, sea temperature profiles are influenced by diurnal cycle, season, and weather condi-
tions. During winter months, the surface water that is colder and saltier tends to sink, and it is 
replaced by warmer and deeper water masses. This mixing could originate a layer of isotherm 
water characterized by a homogeneous sound velocity defined as “mixed layer.” Below, the 
thermocline, that is the area in which temperature rapidly decreases with depth, dwells. The 
mixing of the water column implies an enlargement of the mixed layer and an erosion of the 
thermocline. The layer below the thermocline is characterized by a quite constant temperature 
and presents a minimum in the sound speed profile.

In the ocean, sound pressure levels (SPL) are retrieved using the sonar equation (Eq. (1)) as the 
difference between the transmitted power (SL) and the power loss (TL) through the path [3].

  SPL   [  dB ]    = SL  [  dB ]    − TL  [  dB ]    = 10 log   (    
 P  0   __  P  R     )     

2

  −   [  20 log   (    R _  R  0  
   )    + α  (  R −  R  0   )    ]     (1)

P0 is the pressure of the transmitted signal at a known distance R0, PR is the reference pressure 
(generally equal to 1 μPa), and R is the distance of the listener from the source.

Equation (1) allows the quantification of SPL acquired by passive devices that simply listen to 
the numerous and heterogeneous ocean sounds like, among others, those produced by mam-
mals, marine organisms, volcanoes, submarines, human activities, wind, waves, and rain.
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Since active instruments are able to transmit a pulse and listen to its echo, it is necessary to 
consider also the intensity of the echo one meter from the target, that is, relative to the part 
of the sound that hits the target, the so-called target strength (TS). Thus, Eq. (1) is modified 
in Eq. (2)

  SPL   [  dB ]    = SL  [  dB ]    − 2TL  [  dB ]    + TS   [  dB ]    = 10 log   (    
 P  0   __  P  R     )     

2

  − 2  [  20 log   (    R _  R  0  
   )    + α  (  R −  R  0   )    ]    + TS.  (2)

Among the others types of applications, active instruments are commonly used to detect 
schools of fish, mines, and currents.

In the design of an acoustic experiment also, the availability, or the construction, of adequate 
infrastructure for carrying out the measurements for a desired duration is a key requirement. 
The two most common approaches consist of using mobile and fixed platforms.

In vessel-based surveys, hydrophones (either individually or in arrays) are deployed from the 
ship, and the analysis and recording equipment remain on the vessel, which may be either 
anchored or drifting. This solution is relatively easy to implement, the deployments can be 
quick, a relatively large area may be covered, the risk of losing instrumentation is low, the 
configuration of hardware devices can be adjusted online, and data can be monitored in real 
time. Nonetheless, the main disadvantage consists of the pre-defined and limited (usually 
short) period of time during which the measurements can take place. Also, autonomous mov-
ing platforms such as gliders can be equipped with hydrophones to explore the soundscape 
of relatively large areas of the ocean.

When continuous time monitoring is of interest or when the objective is to observe episodic 
and non-predictable phenomena (i.e., biological and geological events), a Eulerian approach is 
preferable. This consists of the use of fixed observatories that can be based on sea bottom sta-
tions cabled to the shore [4] or on instruments deployed on oceanic sub-surface moorings [5] 
or surface buoys. Several large initiatives are currently operational all over the world: Ocean 
Observatories Initiative (OOI) in the USA, Neptune in Canada, European Seas Observatory 
NETwork (ESONET), and the neutrino telescope sites in Europe [6]. Cabled observatories 
allow data to be streamed directly to the shore base and checked in real time [7]. Unless the 
goal is to measure air-sea surface interactions through acoustics or characterize the acoustic 
signature of ships, bottom-mounted deployments offer the advantage of minimizing both the 
influence of surface wave action and the disturbance by surface vessels, reducing the risk 
to keeping the hydrophone away from the pressure-release water-air surface and the risk of 
damage to the equipment.

The characterization of the ambient sound all over the world oceans, through the variety of 
approaches mentioned above, has become more common as interest in the trends in anthro-
pogenic sound in the ocean grows. The European Commission endorsed this issue consid-
ering the introduction of energy, including underwater noise, into the ocean as a pollutant 
[8] and requesting to monitor it with the same operative methodologies like other physical, 
biological, and chemical parameters.
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2. Ocean waves statistics inferred by active acoustic devices

2.1. Ocean waves

Sea surface shows ripples of different dimensions and shapes, depending on the force of the 
wind speed, and on the basis of their characteristics, they can be subdivided in two categories: 
capillary and gravity waves. Ocean capillary waves are strictly connected to surface tension 
and show short wavelength, whereas ocean gravity waves are due to the force of the air-sea 
interface conditions and their wavelength can reach several meters, especially in open oceans 
during storms. The characteristics of the waves, induced by winds, are identifiable by wind 
speed intensity and distance and by the duration of the event [9, 10].

When energy loss due to the air-sea friction is negligible, waves can propagate until one of 
these events occur: wind forcing persists, waves are hindered by the presence of dams or 
consume their energy on the coastline. Dissipations of energy reduce inversely proportional 
to wavelength; thus, large wavelengths, generally faster, smooth slowly and propagate over 
long distance even where wind is absent.

Waves induced by wind force can be modeled by Eq. (3) as Nw sinusoids linearly interact 
each other, where each component is identified by an own amplitude (Am), wavenumber (km), 
direction of propagation (θm), frequency (fm), and initial phase(ϕm).

  z(t ) =  ∑ m=1   N  W       A  m   cos   [   k  m    (  x cos  θ  m   − y sin  θ  m   )    − 2π  f  m   t +  φ  m   ]     (3)

where x is the displacement along x axes, y the displacement along y axes, and ϕ is a random 
uniformly distributed variable between −π and π. Sinusoidal waves with different frequen-
cies propagate with the same speed related to bottom depth in shallow water, whereas they 
have a decreasing speed as the frequency rises in open ocean.

Wind blowing for an extended period of time over a long distance induces a rapid increase of 
both wave steepness and height. The upper limit of the height is reached when wave breaking 
generates a dissipation of energy able to balance the energy supplied by wind and, in this case, 
wave motion can be considered as fully developed. Each component of fully developed waves 
is a random ergodic process characterized by a variance equal to the mean quadratic value 
A2

m/2. The variance of the whole wave field can be expressed as a summation of the Nw compo-
nents in the Δf frequency band through Eq. (4) and it represents the monolateral power spectra.

  S  (  f  )    =   1 __ 2     
 ∑ m=1   N  w       A  m  2  

 ________ Δf    (4)

Through the 0th and 1st spectral moments of S(f), it is possible to estimate the main character-
istics of ocean waves. In fact, the mean pulse is the ratio between the 1st moment and the 0th 
moment, whereas the mean period is obtained dividing 2π by the mean pulse. The significant 
wave height can be defined as the average height of one-third of the highest measured waves 
(H1/3) and can be expressed as 4.005 times the root square of the 0th moment [11].
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2.2. Measuring ocean waves with acoustics

Several methodologies have been developed to estimate wave characteristics for open sea 
and coastal studies. In both environments, the difficulties to obtain measurements also with 
rough sea increased the use of data provided by satellite and, in the meantime, gave rise to a 
growing interest in the autonomous system capable to measure meaningful parameters in a 
continuous way and in all meteo-marine conditions.

In-situ technologies such as wave buoys [12], pressure and acoustic water level sensors [13], 
and upward-looking acoustic Doppler current profilers (ADCPs) [14] are generally employed 
to monitor and estimate ocean waves. Nonetheless, the use of a wave buoy is quite prohibitive 
in real open ocean environment with sea bottom deeper than 1000 m. In this case, the only 
possibility to collect wave estimate on long-term basis is to employ vertically oriented sonar 
installed on spar buoys [15, 16] that do not follow the surface but are designed to allow for 
negligible sensitivity to sea heave and height.

Acoustic wave meter systems are commonly based on a directional array of high frequency 
precision, and acoustic altimeters are installed in an upward-looking configuration. The echo-
sounder transmits a short pulse, and the acoustic returns are amplified and subjected to com-
pensation through a time-varying-gain circuit, which corrects for acoustic losses associated 
with beam spreading and attenuation in sea water. After digitization, the amplitudes of the 
echo are scanned to select a single target for each ping. The selection procedure chooses the 
target with the longest persistence from all targets having amplitudes above a user-specified 
threshold level.

Under the hypothesis of a constant sound speed, each altimeter emits a single beam toward 
the sea surface and measures the time between the emission and the received echo. Under 
stationary conditions of the sea state, wave height process can be considered as a stationary 
and ergodic stochastic process with zero mean. However, a truthful statistical description of 
sea waves is achieved only if the wave height process is supposed to be Gaussian [17].

In a real environment, not all samples satisfy the properties of the Gaussian distribution, and 
the measured echoes of the array of altimeters could be disturbed by reverberation of bubbles, 
dishomogeneity close to sea surface, and the presence of fishes lying between the altimeter 
and the sea surface. To overcome these issues, an ad-hoc processing algorithm has taken into 
account the correction for the motion of the platform hosting the acoustic array.

2.3. Wave meter system on spar buoys

An acoustic wave meter system was installed at a depth of 10 m on the spar buoy part of the 
W1M3A observatory moored in the open Ligurian Sea (Northwestern Mediterranean Sea) [18].

The array was constituted of three brackets, which were 2.5 m long, equally spaced at 120°, 
hosting three high-frequency (500 kHz) altimeters that emit a narrow conical beam (6.0° 
width at −3 dB) which results in a small area being insonified at the surface (about 1.04 m). A  
Transistor-Transistor Logic (TTL) signal triggered the emission of the pulse by each altimeter. 
In order to avoid interferences, the acquisition system, which controlled and collected the 
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output signals from the altimeters, synchronized and slightly shifted in time with the three 
TTL signals so that each ping (and consequently each sample acquisition) was delayed with 
respect to the others of few milliseconds.

The slow motion of the spar buoy, especially in the presence of strong winds and currents, can 
influence the acoustic measurements, thus, the wave mater package was inclusive of vertical 
accelerometers and a couple of two axis orthogonal inclinometers installed along the horizon-
tal axis to correct the acquired data for the buoy motion.

The acquisition system simultaneously collected the time series provided by the three echo-
sounders at a frequency of 2 Hz and buoy motion data (inclination and acceleration). First, the 
time series of the three echosounders was quality controlled in order to identify spikes, outliers, 
and samples not satisfying the Gaussian condition. The detected samples were then interpo-
lated by means of spline functions. In order to preserve the phase-shift information between 
the three time series in all the cases in which the reconstruction of part of the overall time series 
was not possible due to the elevated number of bad samples, all waveforms (provided by the 
altimeters, the inclinometer, and the accelerometer) were adjusted homogeneously.

The obtained time series was then filtered to compensate for platform motion [19], and stan-
dard statistical parameters (i.e., wave height, period) were computed on the basis of the spec-
tral density features of the acoustic profiles [9, 20]. The wave meter system was designed 
to create an equilateral-triangular array (Figure 1), allowing the estimates of the prevalent 
direction of the wave by means of the theory of the direction of arrival [21] valid under the 
assumption of the incoming planar wave.

Let us consider to divide the three altimeters into pairs (i, j), (j, l), and (i, l): the time delay 
between the sensors of each pair when the planar wave passes through can be expressed in 
matrix form through Eq. (5):

    τ ¯¯   =  X ¯¯   ⋅   ̄  k.    (5)

   τ ¯¯  ,  X ¯¯  ,    k ¯¯    represent the matrices of time delay, the displacement between the two devices of each 
pair, and the direction, respectively. If the triangularity condition between the three pairs (i, j), 
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The assessment of the method was carried out comparing simultaneous wave estimates 
obtained by using the acoustic wave meter and acquired by a Datawell Waverider (DWR) 
directional buoy, a spherical one with 0.9 m of diameter, specifically designed to monitor 
wave characteristics. Wave data acquired by DWR buoys are basically displacement signals: 
one (the heave signal) for the non-directional wave rider and three (heave, north, and west 
displacement) for the directional wave rider. The mean, variance, skewness, and kurtosis of 
these signals are also computed. In the wave-statistical processing, zero-upcross waves are 
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constructed from the heave signals, which are sorted by wave height and averaged in several 
fashions. This is the classic method of wave analysis that generates the significant wave height 
H1/3. In the spectral analysis, the power spectral density is computed using Fourier methods. 
The wave direction as a function of wave frequency is calculated from the co-spectral and 
quadrature spectral densities of the three displacement signals. Using a maximum entropy 
method (MEM), the 3D spectrum, that is, the power spectral density as a function of both 
wave frequency and wave direction is computed.

The two buoys were moored at a nominal distance of 4 km for safety reasons, since the main 
buoy of the W1M3A observatory can span a circular area of 2 km by means of its slack moor-
ing. These systems were continuously operational within the time of the validation which 
lasted 2 months from June to August, and all available estimates were used for the validation. 
During the period of the assessment, significant wave heights spanned from a minimum of 
0.14 m to a maximum of 3.20 m and two storms occurred with the corresponding rough sea 
and strong wind speed. Thus, the acoustic wave meter was tested for several sea-state condi-
tions. Although the majority of samples regard a smooth sea-state condition, a statistically 
significant number of samples refer to slight, and a moderate sea-state class was observed.

The validation of the acoustic wave meter system in terms of H1/3 was based on the slope and 
the intercept of the linear regression line, considering the estimates are obtained using the 
acoustic method as the independent variable and the DWR observations as the dependent 
variable. Due to the constraints of the designed array, only sea wave with period greater than 
3.3 s could be successfully measured without aliasing issues. The performed analysis shows 

Figure 1. A sketch of the array of acoustic altimeters.
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a very good agreement between the two time series (Figure 2a) with a correlation coefficient 
of 0.97 and a linear regression defined by a slope of 0.9017 and an intercept of 0.1052. The 
observed small variations can be considered as a feature of the natural sea state since the 
measurements were carried out in two different positions, about two nautical miles far. Wave 
direction estimates were compared considering the results of the direction of the arrival tech-
nique for the W1M3A data and the most powerful direction retrieved by the DWR directional 
spectrum. Results show an overall satisfactory agreement within the error of ± 15° that is 
consistent with the accuracy of the DWR estimates, except for few cases related to changes in 
wind direction and low wind intensity (Figure 2b).

Results demonstrate the feasibility to use an acoustic wave meter array as an affordable tool 
to measure waves on the long term and also in an open ocean where it is difficult to deploy 
discus buoys on deep sea bottom for an extended period of time. The system is still deployed 
on the W1M3A observatory and the collected data were used to indirectly assess the perfor-
mance of the Dust Regional Atmospheric Model (DREAM) model to predict sea salt aerosol 
concentrations [22].

3. Migratory patterns of zooplankton detected by acoustic Doppler 
current profiler

3.1. Acoustic Doppler current profiler data

The first prototypes of acoustic Doppler current profilers were developed at the end of the 1980s 
with the aim of a continuous monitoring of ocean currents along the water column. Initially, 

Figure 2. (a) Time series of significant wave height as estimated trough the acoustic wave meter system and measured 
by the Datawell Waverider buoy. (b) Scatter plot of the wave direction estimated by the acoustic wave meter versus the 
one measured by the Datawell Waverider buoy.
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these instruments transmitted a single narrowband pulse and through the auto-correlation 
technique and provided measurements of the first spectral order. Ten years later, the second 
generation of ADCP was put on market. It was characterized by a wider band and an enhanced 
data processing, exploiting the principle of Doppler effects. Nowadays, ADCP instruments 
transmit a pulse with known frequency and listen to the return echo that is backscattered from 
water drop, sediments, planktonic organisms, and all particles that are freely transported by 
ocean currents.

Part of the transmitted sound is backscattered in all directions, part is dissolved in the ocean, 
and another part comes back to the instrument. This signal is twice phase shifted because 
of the Doppler effect: when the scattering elements present in the ocean move away from 
the transducer, the sound is phase shifted of a quantity proportional to their relative speed 
(S) respect to the ADCP. If source and receiver are approaching or moving along a direction 
maintaining the same distance between them, no Doppler effect is present. For this reason, 
ADCP devices measure the parallel component to the acoustic beam, and the frequency of the 
signal turning back to the instrument (Fd) can be described through Eq. (7).

   F  d   =  2  F  p    (    S _ c   )   cos α  (7)

Fp is the frequency of the transmitted pulse, c is the sound speed in the ocean, and α is the 
angles between the beam and the water speed.

Mathematically, a phase displacement corresponds to dilation in the time domain. The sound 
produced by a single particle and also its backscatter echo remains unchanged until the parti-
cle doesn't move, but in case of a small displacement from the source, the echo will need more 
time to reach the transducer and thus the return signal will be phase shifted. ADCP devices 
measure the phase of the signal to obtain the time dilation exploiting the principle that the 
speed of the particles can be calculated if the interval of time between two pulses is known. 
The only ambiguity is represented by the fact that the phase is measured in the interval 0–360° 
and when the phase exceeds 360°, it starts again at 0°. The easy solution consists of transmit-
ting a train of pulses with very short time delay for each pulse in order to avoid changes in the 
phase of the particles of more than 360°.

Generally, ADCP instruments are constituted of two couples of transducers to measure north, 
east, and vertical components of the ocean current, and the profile is obtained subdividing 
the water column in several segments called bins. The main outputs of the ADCP devices are 
current speed and direction, but several ancillary parameters, used to calculate current char-
acteristics, are also available.

3.2. Diel vertical migration of zooplankton

The diel vertical migration (DVM) can be defined as the cyclic vertical displacement per-
formed by most zooplankton species. Different DWM patterns have been observed, but the 
most common behavior is the swimming upward at sunset and downward at sunrise. Several 
environment causes such as light, temperature, food, and predation pressure, as well as 
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endogenous origins like sex and age, influence DVM characteristics. Generally, the vertical 
distribution of the zooplankton is determined by net tows or pump samples that allow one to 
identify with the different species, but these samples are sparse in time and space and do not 
provide detailed information on the temporal variability, especially in the long-term period.

ADCP instruments are a powerful tool to overcome this issue, guaranteeing a quite continu-
ous monitoring, also in extreme environments such as the Polar regions [23, 24] or highly pro-
ductive basin, such as the Mediterranean Sea [25–27], at the expense of a specific taxonomic 
analysis.

Patterns of DVM can be detected through the analysis of the backscatter strength data (Sv) of 
the signal that, for the current profiler made by [28], can be expressed by Eq. (8).

   

 S  v   = 20 log R + 2αR − A + 10 log   (   10     
 K  c  E _ 10    −  10     

 K  c   E  r   _ 10    )   

     K  c   =   127.3 ______  T  x   + 273     

R=   
B+  (    L+D+La _ 2   )    +   [    (  n-1 )   D ]    +   D __ 4  

  __________________  cosϑ  

    (8)

α is the absorption coefficient, Tx is the internal temperature of the device in °C, B is the distance 
in m beyond which the measure is valid, L is the length in m of the transmitted pulse, D is the 
dimension in m of the bin, La is the lag length of the pulses in m, n is the number of the cell in 
which the measure is taken, and ϑ is the inclination angle of the transducers. E is the raw echo 
signal as measured by the ADCP and Er is the minimum acquired value during the deploy-
ment. R is defined as slant range and represents the spatial coefficient related to the inclination 
of the pulses with respect to the vertical of the instrument. The constant A is the best linear 
regression fit between Eqs. (8) and (9) proposed in Ref. [29] for all samples satisfying the condi-
tion of signal-to-noise ratio exceeding 10 (Kc(E-Er)<10).
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   )   
    (9)

C is a constant typical for each model of Teledyne RD Instruments (RDI) profiler and LBDM and 
PBDM are the logarithms of pulse length in m and of power transmission in Watt, respectively. 
C' is the sound velocity depending on the depth and C1 is the sound speed used by the instru-
ment to calculate the time between the pulse transmission and the received echo.

Equation (8) was applied to high-resolution acoustic ADCP backscatter data acquired during 
winter 2009–2010 in the Ligurian Sea. The used backscatter data were provided by an upward 
looking 300 kHz ADCP (by RDI) deployed at about 150 m depth on a deep sea bed of 1200 
m from November 2009 to April 2010. The device was set to sample every 15 min with a bin 
length of 2 m in order to obtain high resolution data both in time and in space.

Backscatter strength values show a seasonal variability with low values in winter from 70 m 
depth down to 127 m and a gradual increase till 100 m in early spring in correspondence with 
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the increment of the net primary productivity that, in turn, implies more availability of food 
in the water column and less need for the zooplankton population to reach the surface to 
feed themselves. The analysis of the Sv time series clearly evidences a circadian cycle with a 
quite perfect agreement between the decrease of backscatter intensity and the hour of sunrise 
(spanning from 5:08 to 06.38 UTC in the deployment period) and, vice versa, an increase of Sv 

in correspondence to the hours of sunset (ranging from 15:48 to 17:50 during the deployment). 
The analysis of corresponding vertical speed presents negative values around dusk and posi-
tive ones at dawn, showing a well-defined nocturnal DVM pattern with a rapid ascent of zoo-
plankton from the bottom to the sea surface during dusk and a rapid descent from the surface 
to deep water at dawn (Figure 3).

Furthermore, in December and January, the DVM was influenced by moonlight: during full 
moon nights and clear skies ( December 2 and 31, 2009), the backscatter strength decreased in the 
surface layers while greater values extended in the water column down to the maximum ana-
lyzed depth, making the values acquired at different depths quite homogenous along the water 
column (Figures 4a and b). This behavior, in contrast with the common nocturnal DVM of new 
moon periods (Figures 4c and d), is a characteristic of macrozooplankton/micronekton species 
and can be interpreted as a way to escape from visual predators [30]. Indeed, corresponding ver-
tical velocities show more variability in the surface layers and a marked downward movement 
at midnight that is not present during the other moon phases (Figures 4e and f).

Obtained results demonstrate the feasibility to use non-calibrated ADCP data to infer zoo-
plankton behavior with respect to daily seasonal and inter-annual variability as well as to 
astronomic phenomena. In fact, the observed intense DVM signal can be an indication of 
the presence of the Clausocalanus spp., Fritillaria spp., and, among the macrozooplanktons/

Figure 3. (a) Daily averaged backscatter strength with, superimposed, the mean values and (b) daily averaged vertical 
velocity with, superimposed, the mean values, the hours of sunrise and sunset.
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micronektons, of euphausiids (mainly Meganyctiphanes norvegica) that perform nocturnal 
migration and are abundant in the Ligurian Sea from December to March. Furthermore, the 
different patterns of DVM seen during full moon nights further support the hypothesis of the 
presence of euphausiids since, among the main migrators in the Ligurian basin, only euphau-
siids exhibit a sinking closely related to moonrise.

4. Ocean monitoring through passive acoustic measurements

4.1. Ocean environmental noise

Within the framework of the “Marine Strategy Directive to save Europe’s seas and oceans” 
edited in June 2008, one of the main challenges of the Europe member state is to adopt mitiga-
tion actions and policy plans aiming at an effective protection of the overall marine environ-
ment by 2020. The increase of the maritime traffic and of anthropogenic activities at sea, such 
as the extensive use of sonar and oil drilling activities, has contributed to modify the natural 
ocean environmental noise so much that in some basins, it is the main cause of changes in the 
behavior of marine mammals.

Underwater environmental noise plays a fundamental role in biodiversity conservation, and 
the first studies date back to the Second World War when acoustic experiments established 
that environmental noise is the sum of several factors including ship traffic, breaking waves, 
wind, rain, mammals' vocalizations, and sound produced by marine organisms. In 1962, 

Figure 4. Temporal series of backscatter strength profiles during the full moon on (a) 2, December 2009 and (b) 31, December 
2009 and (e) the corresponding average vertical velocities. Temporal series of backscatter strength profiles during the new 
moon on (c) 16, November 2009 and (d) 16, December 2009 and (f) the corresponding average of vertical velocities.
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Wenz [31] demonstrated that ships generate noise at low frequencies and proposed curves 
that describe the spectrum level at different frequencies for noise generated by ships and wind 
that were at the base, and still are, of forecasting systems. The National Research Council in 
Ref. [32] introduced a new definition of environmental noise as the “noise associated with the 
background din emanating from a myriad of unidentified sources.” The most common sources can 
be distinguished by their acoustic signatures and can be subdivided into four major groups 
depending on their origin: physical, geological, biologic, and anthropogenic.

Wind is the major physical producer of noise over sea surface, and its spectral characteristics 
span a broadband frequency band, from less than 1 up to 50 kHz. The spectral curves show 
an increment for frequencies below 1 Hz, followed by a decrease as frequencies increase. As 
wind speed increases, the spectral curves maintain the same shape but show greater pressure 
levels. For wind speed > 10 ms−1, the sound produced on the sea surface can be undistin-
guished by the sound due to the passage of a distant ship. Moreover, it is often associated 
with a high wave that is responsible for the generation of small bubbles that, in turn, produce 
sound and make the detection, and especially the quantification, quite difficult.

Also, precipitation contributes to the ocean noise in the frequency band from hundreds of Hz 
to more than 20 kHz, and the corresponding spectra show different characteristics depend-
ing on the type of precipitation. In the case of drizzle, a clear peak originated at the acoustic 
resonance of small drops splashing on the sea surface is observable around 15 kHz. This 
peak tends to disappear with the increase of the drops' dimension that produce sound at a 
frequency lower than 10 kHz and another peak at about 1–2 kHz in case of convective rain.

Tectonic processes, earthquakes, volcanic, and hydrothermal activities are the major geologi-
cal sources contributing to the ocean environmental noise. Their spectra range from 1 to 100 
Hz, show an initial burst, and the same noise persists for several minutes.

Biological sources are strictly related to marine organisms and mammals living in the ocean 
that produce signals spanning from 10 up to 200 kHz, depending on the species. In very 
productive basins, the biological sources are prevalent on the physical and geological com-
ponents, whereas in high anthropological areas, the main responsible events of the noise are 
human activities.

Noise generated by ship passages is characterized by low frequencies (5–500 Hz) and propa-
gates over long distances affecting wide areas. Each type of vessel (research vessels, leisure or 
fishing boats, tankers, commercial ferries, etc.) and also each single vessel are characterized by 
an own acoustic signature depending on cavitation phenomena, on the modulation of blade 
propeller, and on the on-board engines. Furthermore, noise produced by ships is variable 
and could be affected by environmental conditions especially for the interaction with the sea 
bottom.

Measurements of ocean environmental noise are related to the power of the propagating sig-
nal and to the characteristics of the acoustic path between source and receiver that can be 
modified by oceanographic dynamics, sound velocity propagation, and bathymetry. These 
components cause fluctuations in the pressure levels of the environmental noise depending 
on depth, time instants, and areas; thus, it is necessary to perform further experiments and to 
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Figure 5. Average sound spectra for (a) different types of precipitation and (b) wind speed greater than 2 ms-1 subdivided 
in Beaufort classes compared to the average spectrum of the background noise.

continuously monitor environmental noise to deepen the knowledge of its dynamic and the 
impact of the human activities.

4.2. Rainfall and wind speed measurements inferred by acoustic passive measurements

Passive acoustic data of ocean ambient noise consists of measurements of sound pressure as 
a result of the superimposition of sounds generated by several types of events (i.e., rainfall, 
ship passages, or mammals' vocalizations) to background noise, which is the natural noise 
in the absence of any sources, whose level is closely related to the intensity of blowing 
wind. Although background noise levels can be different from basin to basin, each source 
shows unique spectral characteristics that can be used to classify its type (physical, biologi-
cal, anthropogenic) and, in some cases, also to obtain an estimate of atmospheric param-
eters over the sea surface (i.e., wind, rain). Indeed, multivariate analysis techniques can be 
applied to a combination of spectral levels, acquired at specific frequencies and least-square 
fit in different spectral bands to provide insights about the different sources forming the 
environmental noise.

Figure 5 shows the results of the multivariate analysis applied to acoustic data that was 
acquired in the open Ligurian Sea from March to November 2015 by means of a hydrophone 
installed on the W1M3A observatory. The output signal of the hydrophone was band-pass 
filtered and then digitalized at 16 bit with a sampling frequency of 100 kHz. Acoustic data 
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in the absence of any sources, whose level is closely related to the intensity of blowing 
wind. Although background noise levels can be different from basin to basin, each source 
shows unique spectral characteristics that can be used to classify its type (physical, biologi-
cal, anthropogenic) and, in some cases, also to obtain an estimate of atmospheric param-
eters over the sea surface (i.e., wind, rain). Indeed, multivariate analysis techniques can be 
applied to a combination of spectral levels, acquired at specific frequencies and least-square 
fit in different spectral bands to provide insights about the different sources forming the 
environmental noise.

Figure 5 shows the results of the multivariate analysis applied to acoustic data that was 
acquired in the open Ligurian Sea from March to November 2015 by means of a hydrophone 
installed on the W1M3A observatory. The output signal of the hydrophone was band-pass 
filtered and then digitalized at 16 bit with a sampling frequency of 100 kHz. Acoustic data 
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were collected for few seconds, every tens of minutes, due to the large amount of data that 
such a sampling rate produces.

During the analyzed period, wind was continuously blowing over the sea surface and gener-
ated a sound that increased proportionally to the reinforcement of its speed, and, similarly, 
spectral levels tended to increase monotonically from 0.5 to about 25 kHz. Beyond this thresh-
old, the sound produced by strong wind resulted comparable and even lower than the one 
generated by moderate breeze because of the contemporary arising of large waves and, in 
turn, the generation of small bubbles that absorbed the emitted sound. Wind spectra were 
very different to the one obtained during episodes of convective rain but could mask events 
of stratiform and light rain since the spectral levels from 20 up to 30 kHz were very similar 
for wind speed greater than 8 ms−1. Furthermore, the resonance frequency of bubbles splash-
ing on the sea surface is inversely proportional to their size and for this reason, large drops 
associated with heavy rain showed loud sound and, instead, small drops, typical of light rain 
events, presented a peak in the 10–15 kHz frequency band.

Several studies were carried out to quantify wind speed and rainfall amounts through the 
analysis of acoustic data. In Ref. [33], a logarithmic relation based on the sound pressure 
levels acquired at 8 kHz was proposed, and, recently, new parameterizations has been intro-
duced for the Mediterranean region based on the results achieved during the Ionian Sea rain-
fall experiment and Ligurian sea acoustic experiment [34, 35].

The equation proposed in Ref. [35] was applied to the acquired acoustic data and compared 
to the in-situ wind speed observations provided by the W1M3A observatory for wind speed 
greater than 2 ms−1 (Figure 6a). Results show a good agreement between wind speed measure-
ments provided by the anemometer and the estimates obtained using acoustic data, with a 
correlation of 87.5% and a root mean square error of 1.294 ms−1 taking into account that 2 ms−1 
can be considered as the minimum wind speed that is acoustically detectable.

Rainfall rate and sound intensity are related by a logarithmic expression based on the sound 
pressure level at 5 kHz, whose coefficients can vary depending on the area of deployment 
[36]. Available acoustic data acquired in 2015 were processed following the algorithm pro-
posed in Ref. [35] and compared to rainfall observations simultaneously acquired by a rain 
gauge installed on the W1M3A offshore observing system (Figure 6b). Results evidence the 
feasibility to use passive acoustic data to detect rainfall episodes, especially in case of intense 
events and the capability of quantity rainfall amounts with good accuracy, independently 
from rain types and the presence of wind speed.

4.3. Marine mammals monitoring through passive acoustic observations

Passive acoustic observations provide powerful support to complement visual surveys for 
the monitoring of marine mammals due to the fact that acoustic waves propagate for long 
distance. Visual observations are weather dependent, not available in remote or inaccessible 
areas, often limited in their use due to the short times animals may spend at the surface, and 
are sparse in time, whereas passive acoustic devices can be successfully employed for an 
extended period of time and can monitor a wide area providing information about both the 
presence and the species of the animals.
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Vocalizations are the principal sounds generated by marine mammals that use them to com-
municate, to echolocate, and also for predatory or mating purposes [37]. Every species, and 
even each individual, can be recognized by its acoustic signatures, and for this reason, time-
frequency analysis of time series of passive acoustic data is useful for the marine mammals' 
monitoring. This is particularly true for basins where human activities are scarce and the 
environmental noise is dominated by mammals' vocalizations like Thetys Bay in Antarctica or 
in a very productive area such as the “Cetacean Sanctuary” in the Ligurian Sea.

During the 29thItalian Antarctic expedition, a hydrophone was installed under the sea ice in 
Thetys Bay to study sound propagation. The basin is a natural habitat of different pinnipeds 
species (i.e., crabeater seal (Lobodon carcinophaga), leopard seal (Hydrurga leptonyx), Ross seal 
(Ommatophoca rossii), and Weddel seal (Leptonychotes weddellii)), and the vocalizations of some 
of these mammals were the preponderant sound in the collected measurements (Figure 7).

The experiment took place in November, during the Weddel seals mating period [38], and this 
explains the reason why the prevalent types of detected calls from Weddel seals are trills and 
whistles, both ascending or descending as defined in Ref. [39]. Trill calls show a descending 
pattern, are emitted once, last for 15 s and cover a wide frequency range from 6 kHz down 
to few hundreds of Hz. Whistles ascending, although being single pulses, last few seconds 
maximum, and their patterns are characterized by a sharp increase from about 4 up to 5 kHz, 
followed by a smooth rise up to 6 kHz maximum. Whistles descending are a series of pulses 
initially emitted at about 1-s intervals, progressively reducing the interval and dropping from 
10 to 2 kHz. The typical vocalization produced by crabeater seal is known as moan; its spec-
trum has power content lower than trills and whistles in the whole range of frequencies and 
the signal spans from 700 up to 6 kHz.

Figure 6. Time series of (a) wind speed and (b) rainfall as measured by the anemometer and the rain-gauge installed on 
the W1M3A marine observatory, and the estimates obtained from acoustic samples.
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A similar experiment took place in the Ligurian Sea during 2015, allowing one to identify 
the presence of sperm whales (Physeter macrocephalus), striped dolphins (Stenella coeruleoalba), 
and Cuvier’s baked whales (Ziphius cavirostris) through the analysis of their spectrograms 
(Figure 8).

Sperm whales are the most common mysticete species in the Ligurian-Corsican-Provençal 
basin due to the high productivity that characterized the area supported by the permanent 
frontal structure of rich large biomass of krill, especially of Meganyctiphanes norvegica that is 
the favorite prey of the sperm whales. The vocalizations of sperm whale are constituted of 
sequences of clicks, which are brief impulsive sounds, variable in length that can reach 35 kHz 
in frequency. The pattern is depending on the area, the sex, the age of the animal, and also on 
the meaning: train of pulses with a repetition rate of two to three clicks per second are emitted 
during the diving to make recognition of the environment or for hunting, whereas high rate 
clicks referable to creaks are commonly used for echolocation.

Odontocetes calls are much different from mysticete’s vocalization, presenting a wide vari-
ety of patterns of whistles ranging from few Hz up to more than 20 kHz and clicks used for 
echolocation that can extend between 50 and 150 kHz. Using the spectrograms, it is possible 
to distinguish the different species of the odontocetes and, in some cases, the sound emitted 
by the same individual.

The availability of passive acoustic recordings covering a long period of time could really 
improve the knowledge of mammals' vocalizations in their natural environment, especially 
in winter months where it is difficult to carry out visual surveys due to potential bad weather 
conditions.

Figure 7. Spectrograms of vocalizations by Weddel and crabeater seals acquired during the 29th Italian Antarctic 
expedition.
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5. Summary

The combination of active and passive underwater acoustic methods could significantly con-
tribute to the monitoring of the oceanic environment and to a better characterization of the 
ocean status. Analysis of acoustic observations in the time domain allows the detection of 
seasonal trends or inter-annual variability helpful for the identification of climate change’s 
causes and/or impacts, as well as for the definition of mitigation actions and strategic plans 
devoted to the protection of the marine environment. Otherwise, analysis of acoustic data in 
the frequency domain makes possible to distinguish geophysical phenomena, such as wind 
and rain, and biological sources, such as vocalizations of marine mammals and anthropogenic 

Figure 8. Spectrograms of vocalization by (a) sperm whales, (b) Cuvier’s baked whales, and (c) striped dolphins acquired 
in the Ligurian Sea.
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noise by means of their own acoustic signatures. Specifically, the application of Fast Fourier 
Transform (FFT), wavelet, and autocorrelation techniques could provide insights about wave 
fields and give evidence of the presence of several marine mammals or different patterns 
referable to migratory processes, typical of zooplankton and micronekton species.

Indeed, in-situ acoustic measurements provided by a directional array of upward looking 
echosounders, installed on a spar buoy, have been used to obtain estimates of wave height, 
period, and direction in the open Ligurian Sea. Results show the feasibility to use acoustics 
to obtain reliable observations of wave field using a fixed platform not specifically designed 
to follow the slope of the waves. Measurements provided by active devices have been also 
successfully employed to monitor the behavior of zooplankton in relation to daily cycle and 
moon illumination for a long period of time that cannot be obtained using sporadic cruises or 
net samples sparse in time.

Experiments based on the installation of hydrophones carried out in different basins demon-
strated the potentiality of passive acoustic data used to identify a variety of processes. Known 
as the mean noise level of the basin in which the hydrophones are deployed, it was possible 
to apply algorithms to automatically quantify rain and wind by means of the noise produced 
on the sea surface. Furthermore, the application of time-frequency analysis allowed the cre-
ation of spectrograms from which the types of mammals living in a different basin were easily 
detected.
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Abstract

Target strength (TS) of marine fish is a key factor for target identification and stock
quantification. Validation of measurement and model comparisons in fisheries acous-
tics is difficult, due to the uncertainty in ground truth obtained in the ocean. To
overcome this problem is to utilize laboratory measurements, where fish parameter
is more well controlled. In this research, the dorsal-aspect TS of fish was measured as
a function of the incidence angle in a water tank using a quantitative echo sounder.
The measurement was compared with the theoretical prediction using the distorted-
wave born approximation (DWBA) model. TS of fish was proportional to body length
and the directivity of TS was strongly dependent on its orientation. Computational
DWBA modeling, experimental details, and data/model comparison were presented.

Keywords: target strength, high resolution, sonar equation

1. Introduction

Underwater acoustics technologies are frequently used to measure the abundance and biomass
of fish [1]. The quantitative relationship between the size of a fish and its target strength (TS)
and the intensity of the echo returned from the fish are important [2]. The swim bladder of fish
is responsible for most of the reflected sounds [3]. TS of fish was determined also by size and
shape of swim bladder [4, 5]. The acoustic target strength of a fish is required to enable the
performance of present and future sonar equipment to be determinates for fish targets. Target
strength is a logarithmic measure of the energy scattered by an object back toward the source
and is a function of the size, shape, orientation, and material properties of the target [6].
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A physical-based model of the acoustic scattering from the targets is required to convert acoustic
backscatter measurements into units of fish density and biomass [7]. The physics-based scatter-
ing model requires input parameters describing the acoustic frequency of echo sounder system
and the target (shape, length, orientation relative to the acoustic wave, and material properties)
[8]. The properties of fish for acoustic modeling are ratio of fish density and seawater density (g)
and ratio of the speed of sound in fish and the sound speed of seawater (h) [9, 10]. One purpose
of this study was to examine the influence of material properties, specifically g and h, on model
predictions of fish target strength (TS).

2. Material and methods

2.1. Measurement of fish target strength

Acoustic data were collected in the water tank of the Ocean Acoustics Laboratory Department of
Marine Science and Technology Bogor Agricultural University. The echo sounder used in the
studies was 200-kHz single-beam SIMRAD EK15. For the numerical model of distorted-wave born
approximation (DWBA) purpose, we combine this instrument with 50 kHz. The specification of
single-beam echo sounder was shown in Table 1. The echo sounder was calibrated with standard

copper spheres as recommended by the manufacturer. The program designed was used to cali-
brate the single-beam units. Single-beam data were analyzed using Sonar 5 software (developed
by Helge Balk and T. Lindem, Institute of Physics, the University of Oslo, Norway) and Matlab.
This program used the algorithm to derive fish target-strength distributions from the measured
distribution of peak voltage response from single-fish echoes (40 log R TVG function) [11]. Single-
fish echoes are defined as echoes with less than twice the pulse length [11]. Due to the echo
sounder-hardware noise and software limitation, we used �55 dB as the smallest target-strength
group for the single-beam sonar. The method provides information for species identification,
makes it possible to measure the fish length of individual fish, and provides information on fish
behavior. Flow of research was shown in Figure 1. Beam pattern of transducer B(θ) is plotted on a
decibel scale where the sound pressure as a function of spherical angle is

BðθÞ ¼ 20 log
2 J 1ðπ D

λÞ sin θ

π D
λ sin θ

" #
ð1Þ

Frequency [kHz] 200

Pulse duration [μs] 80

Ping rate [Hz] 40

Ping interval [ms] 500

Beam width [degrees] 26

Output power [W] 45

Bandwidth [Hz] 3088

Table 1. Specification of single-beam echo sounder Simrad EK15.
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θ is the angle of sound pressure from an axis perpendicular to the transducer center, D is
transducer diameter, λ is wavelength of the sound, and J1is first order Bessel function.

2.2. Physic-based scattering model

The theoretical scattering model used was distorted wave born approximation (DWBA). The
DWBA model was originally used for weak scatterers such as zooplankton and micronecton.
However, it has also been applied to fish. The DWBA model is valid for all acoustic frequen-
cies, can be evaluated for all angles of orientation [12, 13], and can be applied to arbitrary
shapes. DWBA model is valid when the incident acoustic wave is higher than the scattered
value. Formulation of this model involved the incident acoustic wave number inside the
integral. The amplitude of fish backscattering is given by

Figure 1. Flowchart of data acquisition system.
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f bs ¼
k21
4π

ð ð

V

ð
ðγκ � γρÞe1 i k2:r0dV ð2Þ

The terms γk and γρ are compressibility k and ρ, and subscript v is parameter of the scattering
volume.

γκ �
κ2 � κ1

κ1
¼ 1� g h2

g h2

γρ �
ρ2 � ρ1

ρ2
¼ g� 1

g

ð3Þ

where

κ ¼ ρ c2
� ��1

; h ¼ c2
c1
; g ¼ ρ2

ρ1
ð4Þ

This formulation is simplified to a line integral for underwater target that is axis symmetric at any
point along the deformed axis. The line integral for finite-length cylinders is given by Refs. [14, 15]

f bs ¼
ð

rpos

k21a
4k2

γk � γρ

� �
e2ik2rpos

J1ð2k2a cos βtiltÞ
cos βtilt

jdrposj ð5Þ

where J1 is Bessel function of the first kind, θ is incidence angle, k is incident wave number
¼ 2π/λ, and λ is acoustic wave length. Target strength (TS) is the logarithmic of the
backscattered signal

TS ¼ 10 logσbs ¼ 10 logjf bsj2 ð6Þ

where σbs ¼ jf bsj2 is the backscattering cross section and fbs is backscattering amplitude.

3. Results and discussions

Beam pattern of transducer in linear and decibel scales were shown in Figure 2. The main lobe
has a higher power of about 40 dB from the first side lobes. This pattern is determined by acoustic
frequency, size, shape, and phase of transducer. Maximum sensitivity of transducer along the
main acoustic axis is 0 dB. Amplitude of side lobes is ranged from �80.0 to �40.0 dB. The
maximum detection range of the echo sounder has been computed using signal to noise ratio,
TS, frequency, electro acoustic efficiency, and acoustic power [16]. Figure 3 shows that the
detection range of echo sounder is about 220 m in depth and detectable breadth is 8 m from the
acoustic axis. The noise resulted by research vessel is the largest because of the propeller noise.
Signal to noise ratio (SNR) is the ratio of the echo power of the fish to the received noise power.
Theoretical sphere target strength was numerically simulated for a 38.1-mm-diameter sphere of
tungsten carbide. Theoretical and measurement of sphere ball target strength were shown in
Figure 4. This figure explains that the measurement was suitable with theoretical value.
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Transmission loss measurement was shown in Figure 5. Increasing sound propagation rangewas
followed by increasing transmission loss. The acoustic intensity/energy loss is due to spherical or
geometrical spreading and attenuation. Acoustic ray propagation and its sound intensity level in
several transducer depths were shown in Figures 6 and 7. The refraction of sound was caused by
temperature gradients in the water, reflection from sea surface, sea bottom, and position of the
target. Small changes in the temperature have significant influence on sound propagation.
Acoustic detection of fish and seabed in the raw signal echogram and after filtering were shown
in Figures 8 and 9, respectively. Target strength of fish ranged between �53.0 and �32.9 dB was
shown in Figures 10 and 11, and volume backscattering signal was shown in Figure 12.

Figure 2. Beam pattern of transducer in linear (left) and decibel scale (right).

Figure 3. Detection range and detectable breadth of transducer.
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Figure 4. Measurement (*) and theoretical target strength (�).

Figure 5. Sound transmission loss.
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Figure 6. Acoustic ray propagation.
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Measurement of target strength (TS) in laboratory was conducted using 10 dead fish. The
TS value for fish was determined by the tilt angle and acoustic frequency. The values of
TSmax and TSavg as functions of linear value of fish length are plotted in Figure 13. The
values of TSmax and the TSavg at 50 kHz were higher than those at 200 kHz. Positive

Figure 7. Sound intensity level for transmitter depth of 0.5, 1.5, 2, 3.0, 4.0, and 5.0 m.
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Figure 10. Target strength histogram.

Figure 9. Echogram filtered.

Figure 8. Raw data echogram.
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correlation was found between TS values and fish length at both 50 and 200 kHz. The best
fit regression lines of TSave are TSave ¼ 19.81 log (FL) � 98.2, r ¼ 0.96 (Figure 13; left side)
and TSave ¼ 19.56 log (FL) � 96.47, r ¼ 0.96 (Figure 13; right side). A small discrepancy
was found in TSmax and TSave. The slope of TSmax was close to 20, suggesting that the
acoustic backscattering was proportional to the square of fish or body length. For TS
quantification, acoustic threshold was applied (Figure 14), and application of single echo
detector was shown in Figure 15.

Figure 11. Target strength versus depth.

Figure 12. Volume backscattering (SV) signal.
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Figure 13. Relationship between TS and fish length (FL).

Figure 14. Threshold application for SV and SA modes.
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Typical examples of TS as a function of incidence angle at frequencies 50 and 200 kHz are
shown in Figure 16. The variations of TS value with incidence angle are displayed at 0� (main
lobe) at both frequencies. The side lobes are displayed at a small discrepancy at two frequen-
cies. The peaks were sharp, suggesting that slight changes in the incidence angles of fish have a
major effect on the TS value.

Target strength of fish is important for fish stock estimation. The measurement of fish density
uses TS as a scaling factor and instrument parameters. In fact, individual TS depends upon
physical and biological factors such as tilt angle, length, acoustic frequency, physiology, and
morphology [17].

Acoustic backscattering using the DWBA model requires accurate values of sound speed
and density of fish. This is caused by a weakly scattering organism whose material
properties vary from surrounding water. Acoustic scattering predictions with the tilt angle
are measured for fish of angle increment from 0 to 360o. The comparison between DWBA
model and measurement was agreed upon on the main lobe, but in the side lobe, there is
some discrepancy. It was found the acoustic backscattering is strongly dependent on
incidence angle and frequency. This result is suitable for the previous research using
DWBA for zooplankton and squid applications [18, 19]. Target strength for several fish
were shown to increase significantly from 0� to 90� and from 180� to 270� for all frequencies.
In the future, the phase parameter of DWBA should be included in TS computation. This is the
first research to measure the incidence angle of Indonesian fish in an experimental water tank
and ocean field to apply a theoretical target scattering model using DWBA. We confirm that
application of single-beam echo sounder is possible for accurate TS measurement.

Figure 15. Single echo detector for TS detection.
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Figure 16. DWBA numerical model (-) and measurement (●) of TS values as a function of tilt angle at 50 (upper) and 200
kHz (lower).

Development of Quantitative Single Beam Echosounder for Measuring Fish Backscattering
http://dx.doi.org/10.5772/intechopen.69156

131



4. Conclusion

The results indicated that TS of fish was determined by incidence angle of acoustic wave, fish
length, and frequency of sonar instrument. TS will increase with the length of the animal. TS
information are useful for quantifying fish stock in the field using quantitative echo sounder.
The validation of DWBA model to measure target strength is confirmed with the laboratory
experiment using single-beam echo sounder.
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