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Preface

Firstly, I want to thank each of the authors for their contributions to this interesting and
unique book project.

It certainly represents a tour de force and expansive review of cardiac electrogram interpre‐
tation intended for the advanced reader but highlighting certain basic concepts as well.
These individual sections represent both works that are directly derived from clinical stud‐
ies and relevant anecdotal cases as well as chapters on clinically relevant basic science.

Individual manuscripts have been compiled and edited to constitute the chapters. Each
chapter tries to maintain the focus on interpreting the studies and data in a clinically rele‐
vant format that can be translated to patient care. The latter chapters in this body of work
focus on the potential of innovative electrograms that have been mathematically derived
and correlated to patient outcomes.

The first section examines the surface ECG. This is by no means a basic review of an ap‐
proach to ECG readings but rather assumes that the reader is at an advanced level and starts
off by introducing a diagnostic algorithm that Dr. Chacko et al. propose for diagnosing su‐
praventricular tachycardias.

Left axis deviation on the ECG is explored by Dr. Madhur.

I am pleased to also include a chapter that addresses the diagnostic potential of the signal-
averaged ECG.

This highly useful surface of electrogram derivation has certainly been neglected by general
physicians as well as cardiologists alike and is a useful way of amplifying low amplitude
cardiac potentials that can explain the mechanism or assess the potential risk of ventricular
arrhythmias. This manuscript by Ioana et al. starts by reinforcing the diagnostic criteria of
the signal-averaged ECG and thereafter explores its application.

The contribution by Dr. Xin Gao looks specifically at the fetal ECG and the filtering required
in order to discern more clearly fetal heart rate monitoring. This potential may lead to the
detection of fetal arrhythmias in utero.

In the second section of this book, manuscripts that interpret electrograms from intracardiac
pacemakers and implantable cardioverter-defibrillators (ICDs) are examined in closer detail.

Both Dr. Erik Wissner et al. and Dr. Sadiq Ali et al. look at the interpretation of these device
electrograms for the purposes of diagnosis and troubleshooting of ICDs, and Dr. Cismaru
Gabriel et al. specifically examine the intracardiac electrograms from ICDs implanted in pa‐
tients with Brugada syndrome. This section is not only relevant for the elimination of inap‐
propriate therapies, which still plague patients with ICDs and various studies quote



incidences of up to 16%, but also addresses the concept of a more standardized program‐
ming for both primary and secondary indications.

The concept of mere “shock box” single-zone programming for primary prevention is chal‐
lenged and summarized by examining all recent randomized controlled trials. The strategy
proposed is to employ multiple VT detection zones and apply advanced detection algo‐
rithms in all zones given the advancement and high specificity of these algorithms, which
include morphological discriminators in most devices.

The section on the Brugada syndrome examines specifically the morphological interpreta‐
tion of the specific intracardiac signals during ventricular arrhythmias in this disease.

This is brought to clinical relevance by proposing to use the stored ICD events and electro‐
grams (EGMs) to plan and guide mapping and catheter ablation both in the case of mono‐
morphic re-entry ventricular tachycardia and in the case of Brugada syndrome, ablation of
PVC triggers that initiate VF. Each of these concepts is well illustrated with case studies and
actual patient intracardiac electrograms (EGMs).

The final section in this book looks at various basic science concepts in a clinically applied
context. Catalina Tobón et al. review complex fractionation from intracardiac EGM sources
using nonlinear signal analysis. The concept of targeting complex fractionated electrograms
(CFE) during ablation for persistent and long-standing persistent atrial fibrillation (AF) has
been controversial. More recently, ablation of cardiac ganglia, specific optical mapping and
ablation AF rotors have entered the arena. Various studies have been proposed that examine
atrial fibrillation CFE signals in order to see if they exhibit temporospatial stability and if
these signals can be used as a surrogate marker to identify rotors.

The final manuscript in this book proposes a controversial concept of using a bioelectrical
signal derived from surface electrocardiograms in patients to predict the prognosis in pa‐
tients. It is not a replacement for the 12 lead ECGs but is an interesting additional concept
that has been explored in other studies. The data are at best anecdotal and need refinement,
but nevertheless warrant closer scrutiny.

In summary, this book as a collation of manuscripts incorporates clinical data and basic sci‐
ence concepts in relation to cardiac signal processing and interpretation.

Kevin A. Michael, MBChB, MPhil, MD
Associate Professor, Department of Medicine, Queen’s University

Kingston, Ontario, Canada
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Abstract

Supraventricular tachycardia (SVT) is a general term describing a group of arrhythmias 
whose mechanism involves the atria and atrioventricular nodal tissue for its initiation 
and maintenance. SVT is a common entity in clinical practice with a prevalence of 2.25 
cases per 1000 in general population. Atrial fibrillation and atrial flutter are the most 
common presentations of SVTs. Of the remaining subtypes of SVT, atrioventricular nodal 
re-entrant tachycardia (AVNRT) accounts for 60% of the cases. The atrioventricular re-
entrant tachycardia (AVRT) and atrial tachycardia (AT) represent approximately 30 and 
10% of the cases, respectively. The mechanisms of different forms of SVT have been elu-
cidated and are caused by either re-entrant circuit, increased automaticity or triggered 
activity. This chapter provides an overview of how to systematically approach a narrow 
complex tachycardia.

Keywords: supraventricular tachycardia, atrioventricular nodal re-entry tachycardia, 
atrioventricular re-entry tachycardia, atrial tachycardia, atrial fibrillation, atrial flutter

1. Introduction

A systematic approach in the interpretation of ECG is important to arrive at a definitive 
diagnosis of the subtype of supraventricular tachycardia (SVT). Narrow complex tachycar-
dias (NCT) are broadly divided as regular or irregular tachycardia. Irregular NCT are either 
atrial fibrillation or atrial flutter with variable ventricular response. For a regular NCT, the 
next key step would be to identify the presence of a P wave, positive or negative P waves, 
and its morphology and location of the P wave with respect to the cardiac cycle. Absence of 
P wave in a regular NCT narrows the differential diagnosis to either typical atrioventricular 
nodal re-entrant tachycardia (AVNRT) or junctional tachycardia. If the P waves are positive 
and are located before the QRS complex, it is likely to be sinus tachycardia. On the other 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



hand, if the P waves are negative, that excludes a sinus origin of the rhythm. A negative 
P wave in front of the QRS complex implies a low atrial tachycardia (LAT). If the P waves 
embedded in the QRS complex have a short RP interval, it is described as short RP tachy-
cardia, and the differentials would include typical AVNRT or atrioventricular re-entrant 
tachycardia (AVRT). If the RP interval is longer than the PR interval, the tachycardia is 
termed as long RP tachycardia, and the differentials would include atypical AVNRT or atrial 
tachycardia (AT) [1, 2]. The algorithm in Figure 1 shows the flow chart of how to systemati-
cally approach a NCT.

2. Subtypes of NCTs

1. Sinus tachycardia

2. Atrial fibrillation

3. Atrial flutter

4. Low atrial tachycardia

5. Typical AVNRT

6. Atypical AVNRT

7. Orthodromic AVRT

8. Junctional tachycardia

Figure 1. Algorithm for narrow complex tachycardia.
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2.1. Sinus tachycardia

Sinus tachycardia is a normal physiological response to exercise or pathology in which catechol-
amine release is enhanced. Sinus tachycardia is described as inappropriate sinus tachycardia 
(IST), when individuals present with chronic non-paroxysmal sinus tachycardia, with a struc-
turally normal heart and with no apparent causes for sinus tachycardia. Sinus tachycardia is 
also noted in young individuals with structurally normal heart, in whom there is an exaggerated 
heart rate response to upright position, termed as postural orthostatic tachycardia syndrome 
(POTS). ECG in Figure 2 is an example of a regular narrow complex tachycardia with upright 
P-waves in front of QRS complex, in leads I and II indicating a sinus origin with 1:1 relation-
ship, consistent with sinus tachycardia. Vagal maneuvers or atrioventricular (AV) nodal block-
ing agents may be useful in further determining the mechanism of tachycardia. Figure 3 is an 
ECG of a patient with cardiac tamponade, showing sinus tachycardia with electrical alternans.

2.2. Atrial tachycardia (AT)

AT is a regular atrial rhythm originating from an ectopic focus either from the right or left 
atrium. Focal AT is usually paroxysmal but can also present as incessant tachycardia, causing 
left ventricular systolic dysfunction. Right ATs are usually located in the tricuspid annulus 
followed by crista terminalis, coronary sinus ostium, and perinodal tissues in the order of fre-
quency. Similarly, the left ATs predominantly originate from the pulmonary veins followed 
by mitral annulus, interatrial septum, and left atrial appendage. Classically, an ECG reveals 
negative P waves in the inferior leads, suggesting a caudo-cranial atrial activation (Figure 4).

Figure 2. ECG showing sinus tachycardia with upright P-wave before the QRS complex (blue arrow) indicating sinus 
origin with 1:1 AV relationship.

An Approach to Diagnosing Supraventricular Tachycardias on the 12-Lead ECG
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2.3. Atrioventricular nodal re-entrant tachycardia (AVNRT)

Patients with AVNRT demonstrate dual AV nodal physiology, fast pathway with long refractory 
period and slow pathway with short refractory period. While 25–30% of the general population 

Figure 3. ECG showing sinus tachycardia with low QRS voltage and electrical alternans in a patient with cardiac 
tamponade.

Figure 4. ECG showing negative P-waves in the inferior leads and lead I with caudo-cranial activation consistent with 
low atrial tachycardia.
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has dual AV nodal physiology, only a minority of them develop AVNRT. Typically, a critically 
timed premature atrial contraction (PAC) initiates the tachycardia and the classical symptom 
involves abrupt onset and offset of palpitations. Typical AVNRT accounts for 80–90% of all 
AVNRTs. In slow–fast AVNRT, the antegrade conduction occurs through the slow pathway and 
retrograde conduction through the fast pathway. The 12-lead ECG typically shows a narrow 
complex tachycardia with absent P waves or retrograde P waves and RP interval of <100 ms 
(Figure 5) [3]. In atypical AVNRT, the antegrade conduction occurs down the fast pathway and 
retrograde conduction up the slow pathway [4], and the 12-lead ECG will reveal a narrow com-
plex tachycardia, with RP > PR interval, termed as long RP tachycardia.

2.4. Atrioventricular re-entrant tachycardia (AVRT)

AVRT is a re-entrant tachycardia with a circuit that consists of two distinct pathways, nor-
mal AV nodal conduction system and the accessory pathway. The accessory pathway may 
manifest as preexcitation in the surface ECG (delta wave) if the antegrade conduction is exclu-
sively through the pathway or a combination of pathway and AV node or concealed (without 
preexcitation) if the conduction is exclusively through the AV node. AVRT is classified as 
orthodromic if the antegrade conduction occurs via the AV node and antidromic if antegrade 
conduction occurs through the accessory pathway. Orthodromic AVRT accounts for 90–95% 
of the AVRTs associated with Wolf-Parkinson-White (WPW) syndrome [5]. Figure 6 shows 
a routine surface ECG of a young patient performed prior to a dental extraction. An ECG 
reveals preexcitation with positive delta wave in inferior leads, I, aVL, and negative delta 

Figure 5. ECG showing regular narrow complex tachycardia with retrograde P waves. Short RP (RP < PR) tachycardia 
with a RP interval of <100 ms.
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Figure 7. SVT with longer VA time (>100 ms) consistent with orthodromic AVRT.

wave in V1 consistent with possible right anteroseptal accessory pathway. Figures 7 and 8 
show a narrow complex tachycardia with retrograde P waves and long ventriculoatrial (VA) 
time consistent with orthodromic AVRT.

Figure 6. Surface ECG showing preexcitation with positive delta wave in inferior leads and I, aVL and negative delta 
wave in V1 consistent with a right anteroseptal accessory pathway.
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3. SVT with aberrancy

Narrow complex SVT may present as wide complex rhythm in the setting of aberrant conduction 
or the presence of accessory pathway. This can pose a diagnostic dilemma in differentiating from 
ventricular tachycardia (VT). Accurate differentiation of SVT-A from VT is challenging but is key to 
decision making and management in the emergency setting. In an effort to distinguish between VT 
and SVT with aberrancy, Brugada and Wellen proposed criteria to help determine the diagnosis [6].

Brugada and Wellen’s criteria

1. Absence of RS complexes in all precordial leads

2. R to S interval >100 ms in one precordial lead

3. AV dissociation

4. Morphology criteria of VT in precordial leads

5. Precordial QRS concordance

6. Capture or fusion beats

7. Left axis deviation

An ECG in Figure 9 is an example of SVT with aberrant conduction, on a patient who presented 
with palpitation. Rhythm strip shows regular P waves with 1:1 atrioventricular  conduction. In 
addition, an ECG does not meet any of the above criteria for VT. An ECG in Figure 10 shows 
a wide complex tachycardia with pseudo “RBBB” morphology, R to S >100 ms in the pseudo 
“LBBB” morphology leads, and 2:1 VA conduction, consistent with VT.

Figure 8. Regular narrow complex tachycardia with retrograde P-waves (black arrows), RP < PR and RP > 100 ms.

An Approach to Diagnosing Supraventricular Tachycardias on the 12-Lead ECG
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4. Conclusion

SVT includes a variety of tachycardias originating from the atria and atrioventricular nodal 
tissues. The subtypes of SVT differ in their physiological mechanism and presentation. The 

Figure 10. ECG showing wide complex tachycardia, RBBB morphology, R to S >100 ms in V2, and 2:1 VA (blue arrows) 
conduction consistent with VT.

Figure 9. SVT with aberrancy.
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unpredictability of the episodes and inability to control the disabling symptoms can render 
the patient incapacitated. Accurate diagnosis of the subtypes of SVT is essential to deliver 
the most appropriate therapy. Despite the highly specified symptomatic and ECG diagnostic 
criteria, arriving at a diagnosis is not always straightforward. A systematic approach to inter-
preting ECG is therefore crucial to narrow the differential diagnosis. Careful interpretation of 
ECGs can unfold important information, depict the underlying mechanism, and aid with the 
diagnosis and management.

Author details

Sanoj Chacko1 and Adrian Baranchuk2*

*Address all correspondence to: barancha@kgh.kari.net

1 Heart Rhythm Service, Kingston General Hospital, Queen’s University, Kingston, Ontario, 
Canada

2 Division of Cardiology, Department of Medicine, Kingston General Hospital, Queen’s Uni-
versity, Kingston, Ontario, Canada

References

[1] Antzelevitch C, Burashnikov A. Overview of basic mechanisms of cardiac arrhythmia. 
Cardiac Electrophysiology Clinics. 2011 Mar 1;3(1):23-45

[2] Kistler PM, Roberts-Thomson KC, Haqqani HM, et al. P-wave morphology in focal atrial 
tachycardia: Development of an algorithm to predict the anatomic site of origin. Journal 
of the American College of Cardiology. 2006 Sep 5;48(5):1010-1017

[3] Katritsis DG, Camm AJ. Classification and differential diagnosis of atrioventricular 
nodal re-entrant tachycardia. Europace. 2006;8:29-36

[4] Katritsis DG, Camm AJ. Atrioventricular nodal reentrant tachycardia. Circulation. 2010 
Aug 24;122(8):831-840

[5] Blomström-Lundqvist C, Scheinman MM, Aliot EM, et al. ACC/AHA/ESC guidelines for 
the management of patients with supraventricular arrhythmias—executive summary: A 
report of the American College of Cardiology/American Heart Association Task Force 
on Practice Guidelines and the European Society of Cardiology Committee for Practice 
Guidelines (writing committee to develop guidelines for the management of patients with 
supraventricular arrhythmias) developed in collaboration with NASPE-Heart Rhythm 
Society. Journal of the American College of Cardiology. 2003 Oct 15;42(8):1493-1531

[6] Brugada P, Brugada J, Mont L, et al. A new approach to the differential diagnosis of a 
regular tachycardia with a wide QRS complex. Circulation. 1991;83:1649

An Approach to Diagnosing Supraventricular Tachycardias on the 12-Lead ECG
http://dx.doi.org/10.5772/intechopen.70143

11





Chapter 2

Examining Left Axis Deviation
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Additional information is available at the end of the chapter
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Abstract

Axis deviation indicates possible presence of various conditions. It also affects the QRS 
and T morphologies. The limits of axis deviations are as such arbitrary and the approxi-
mate degree of axis itself can be easily determined. Various conditions often shift the QRS 
axis without fulfilling the defined limits of deviations in the initial stage. The associations 
with various conditions may be missed if such partial shift of the axis is disregarded. 
Isolated left axis deviation is relatively common in the general population and left ante-
rior fascicular conduction delay is the most common cause of such isolated leftward shift 
of axis. Vulnerability of left anterior fascicle to interruption makes it likely to be affected 
by both atherosclerosis and fibrodegeneration. Glucose intolerance may increase the risk 
of both atherosclerosis and fibrodegeneration. The association of glucose intolerance 
with leftward shift of axis has been increasingly noticed. Research studies to get further 
evidences are required; however, utilizing the already available evidences to protect the 
susceptible population is equally essential. Documenting the approximate degree itself of 
the axis is the bottom line to study the association with the levels of various possible risk 
factors like glycated hemoglobin.

Keywords: ECG axis, left axis deviation, left anterior fascicular block, glucose intolerance, 
diabetes, diabetes prevention, indigenous population, ageing, Bachmann's bundle, 
neuropathy, white matter hyperintensities

1. Introduction

The limits for mean frontal plane QRS axis deviations are considered variedly [1–11] and are 
 necessarily arbitrary [5]. In this chapter, determination of left axis deviation and its effects on QRS‐T 
morphology and its causes will be discussed. The left axis deviation and leftward shift of axis have 
been increasingly noticed in asymptomatic relatively younger adults with diabetes. Next in the 
chapter, the epidemiology, pathogenesis, correlation with other related factors, and implications 
of the possible association between glucose intolerance and left axis deviation will be discussed.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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Figure 1. Different parts (shown in the boxes) of specialized cardiac conducting system from the sinoatrial node to the 
His‐Purkinje system.
*Interatrial tract or the Bachmann’s bundle is a branch of the anterior internodal tract to the left atrium which serves as 
the preferential path for electrical activation of the left atrium.
**Fibrous ring does not conduct electrical impulse.

2. The conducting system of the heart

In the heart, apart from ordinary myocardium and supporting fibrous skeleton, there are 
small groups of specialized neuromuscular cells in the myocardium which initiate and 
conduct cardiac electrical impulse [9, 12]. Figure 1 shows the different parts of the spe-
cialized cardiac conducting system from the sinus node to the atrioventricular (AV) node 
with three internodal tracts in‐between and then from the AV node to the His‐Purkinje 
system [9, 12]. The atria and the ventricles are separated by a ring of fibrous tissue, which 
does not conduct electrical impulse. Thus, the electrical activity from the atria can only 
spread to the ventricles through the atrioventricular node and the atrioventricular bundle. 
Atrioventricular bundle (Bundle of His) originates from atrioventricular node and divides 
at the upper end of the ventricular system into right and left bundle branch [12]. The right 
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bundle branch does not divide, but the left bundle branch further divides into three sepa-
rate fascicles, namely septal (median or medial) fascicle, left anterior fascicle, and left pos-
terior fascicle. Right bundle branch and different fascicles of left bundle branch ultimately 
break up within the ventricular myocardium into fine fibers as the network of Purkinje 
fibers [12]. The left anterior fascicular block (or the left anterior hemiblock) causes left 
axis deviation and the left posterior fascicular block (or left posterior hemiblock) causes 
right axis deviation. Isolated left posterior fascicular block is extremely rare [2, 5]. Septal 
fascicle is found in nearly two‐thirds of people [13]. Delay or block of left septal fascicle 
may occur in diabetes, Chagas disease, and various cardiac diseases and may manifest in 
the ECG with prominent R waves in leads V1–V3, loss of septal Q waves, initial q waves in 
leads V1 and V2, and normal QRS axis [2]. However, the term left septal fascicular block 
is not recommended because of the lack of universally accepted criteria [3].

3. The normal mean frontal plane QRS axis range

An electrocardiogram is a record of the origin and propagation of the electric action poten-
tial through heart muscle. Depolarization spreads throughout the heart to stimulate the 
myocardium to contract and the vector demonstrates the direction in which depolarization 
is moving. The general, mean, or dominant direction of all these vectors is known as the 
mean vector and is expressed electrocardiographically as the mean QRS axis [2] which is 
located by degrees [1]. The direction of the mean QRS axis on the frontal plane is known as 
the mean frontal plane QRS axis and is determined by the six frontal plane limb leads; they 
are three standard bipolar limb leads I, II, and III and three augmented unipolar limb leads 
aVR, aVL, and aVF. The frontal plane limb leads are conventionally represented on a hex-
axial reference system (Figure 2).

In most normal adults, the mean QRS vector points downward and to the left [1] with the 
electric axis of the QRS complex almost parallel to the anatomic base‐to‐apex axis of the heart 
in the direction of the lead II [6]. Most normal frontal plane QRS axes in the adults are directed 
within a narrower range between +40° and +60° [2], around 5 o’clock position [7] (Figure 2). 
Such range has been reported particularly at sea level from studies of axes conducted at dif-
ferent altitudes [14, 15]. Leads I and aVF, II and aVL, and III and aVR are at right angles to 
each other; that is, each of the pair is the right‐angled partner leads. The concept of the right‐
angled partner leads (Figure 2) is helpful to quickly find the lead with the relatively tall R 
wave after looking at the lead with the equiphasic QRS complex. Coincidentally, but useful 
for remembering easily the pairs of the right‐angled partner leads, the letters F, L, and R of the 
augmented limb leads are in the increasing alphabetic order like the numbers I, II, and III of 
the bipolar limb leads.

There are variations not only in the conventionally considered limits of normal axis and left, 
right, and extreme axis deviations in the adults but also in the nomenclature of the deviations 
and in the use of positive and negative signs of the degrees of the axis. The indicated limits of 
normal axis and left, right, and extreme axis deviations in the adults by various publications 
are shown below; for example
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• Normal axis as 0° to +90° [1, 2], –30° to +90° [4, 6, 7, 10], and –30° to +100° [5, 9, 16].

• Left axis deviation as 0° to –90° [1, 2] and –30° to –90° [4–6, 10] with axis between 0° and 
–30° as slight left axis deviation [2], and between –30° and –45° as moderate, and between –45° 
and –90° as marked left axis deviations [3].

• Right axis deviation as +90° to 180° [2–4, 6], +90° to +150° [11], +100° to 180° [5, 16], +110° 
to 180° [9], +90° to –150° [10], and +90° to –90° [7].

• Extreme axis deviation as –90° to 180° [1, 2, 4–6] and –90° to –149° [10].

The extreme axis deviation [4–6] has also been

• included under right axis deviation [7],

• called as the northwest region axis [2], extreme right axis deviation [1], and extreme left 
axis deviation [9], and

• even indicated as the marked left or right axis deviation [5].

Similarly, there are variations in the use of + and – signs. For 180°,

• many use ± [2, 6, 9],

• some use both +180° and –180° in their axis range figure [7],

• others use + sign [5], and

• still others use no + or – sign to 180° [4, 16].

For other positive axis degrees many use + signs [2, 5–7, 9, 16] and some do not use + sign 
[3, 4].

In this chapter, + sign has been used for positive degree and – sign for negative degree. As 0° and 180° 
are common to both positive and negative degree sides and there is no other similar degree to 
cause confusion, no sign has been indicated for 0° and 180°.

The consensus in these issues will help the communication among clinicians and between 
students and teachers especially during the examination of the student. However, even 
the consensually defined limits of normal axis and left, right, and extreme axis deviations 
should not make the clinicians and researchers to disregard the leftward or rightward shift 
of the axis from its usual range of degree (between +40° and +60°) in the adults (Figure 2). 
Otherwise the important correlation of the shift of axis with the patients’ clinical condi-
tion or with the various factors in the research study may be missed; this is also further 
discussed later. With the possibility of easy determination of the approximate degree of 
axis by any clinicians and researches (see Section 4) and with the support of the computer 
interpretation of ECG readings at hand, the approximate degrees of the axis should be 
recorded.
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4. Determination of frontal plane QRS axis

4.1. Method of determining the approximate degree of mean axis

When depolarization moves in a direction with the cardiac axis toward the positive pole 
of a lead, the deflection recorded by the lead is upward (positive), if it is away from the 
positive pole it is negative (downward) and if it is perpendicular to the orientation of a 
lead the deflection recorded by the lead is isoelectric or equiphasic (QR or RS) QRS with 
equal magnitudes of upward (positive) and negative (downward) deflection [5]. The leads 
between the one recording the equiphasic (QR or RS) deflection and the other recording the 
maximum upward deflection will record the increasing degree of upward deflection; this 
area can be designated as “positive‐half area of the mean axis” (Figure 3). Similarly, the leads 

Figure 2. The frontal plane limb leads conventionally represented on a hexaxial reference system showing the range 
of degrees (between +40° and +60°) of most normal frontal QRS axes in the adults (shown as the shaded area). Note: 
The positive and negative poles of each lead: The arrow head on the solid line designates the positive pole of the 
corresponding lead axis and the dotted line the negative pole. The 30° differences: There are 30° differences between the 
positive or negative poles of the nearby leads. The right‐angled partner leads: Leads I and aVF, II, and aVL, and III and 
aVR are at right angles to each other and the axis causing equiphasic deflections of QRS complex in one lead will cause 
maximum upward and downward deflections in the opposite ends of the other partner lead at right angle.
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between the one recording the equiphasic (QR or RS) deflection and the other recording the 
maximum downward deflection will record the increasing degree of downward deflection; 
this area can be designated as “negative‐half area of the mean axis.” The mean QRS axis can, 
thus, be determined on the basis of one or both of the two rules [5]. As a general rule the 
mean QRS points

• midway between the axes of two extremity leads that show tall R waves of equal ampli-
tude, and

• at 90° (right angle) to any extremity lead that shows a biphasic (QR or RS) complex and in 
the direction of leads that show relatively tall R waves [5].

With these considerations, the mean frontal plane QRS axis can be determined with an error 
of 10–15° [5]. Thus, to determine the approximate degree of axis, one has to find the lead in 
which the QRS complex is most equiphasic (QR or RS); the axis is directed perpendicular to 
this lead (Figure 4). If the lead with clear equiphasic QRS complex is not seen, then the lead 
having the QRS with the largest positive amplitude should be looked for. If there are two 
nearby leads which have almost equal tall R wave, the axis is mostly directed in between them 
(Figure 4).

The degree of the mean axis can be further reconfirmed by considering whether it is in accord 
or not with the QRS direction and amplitude in other leads in the areas in front of the line 
of the equiphasic complex, that is, in the positive‐half area of the mean axis (Figure 3), and/or 
behind the line of the equiphasic complex, that is, in the negative‐half area of the mean axis. This 

Figure 3. Varying degrees of upward or downward deflections recorded by different leads at various places in relation 
to the direction of cardiac axis (shown as the big central arrow). The leads in the “positive‐half area of the mean axis” 
and “negative‐half area of the mean axis” will record predominantly positive and negative QRS complex, respectively, 
increasingly so as per the distance from the points of equiphasic deflection (QR or RS).
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method is perhaps the most appropriate observational technique to follow in the routine set-
ting. The other method of the mean axis determination by plotting the net height or depth of 
two standard bipolar (not the augmented) limb leads [8, 9] is generally not practiced.

Sometimes an electrocardiogram with indeterminate QRS axis is encountered. In indetermi-
nate QRS axis, the algebraic sum of major positive and major negative QRS waves is zero in 
each of leads I, II, and III, or the information from these three leads is incongruous [10]. In the 
absence of a dominant QRS deflection, as in an equiphasic QRS complex, the axis is said to be 
indeterminate [9]. The separate determination of the axes of the initial and later part of QRS 
complex may indicate, or help to correlate with, other findings. For example, in right bundle 
branch block (RBBB) the axis determination is of importance in diagnosing associated left 
anterior or posterior fascicular block, as right bundle branch on its own will not cause axis 
deviation. In right bundle branch block, estimating the frontal plane QRS based on the first 
80–100 ms of the QRS deflection, primarily reflecting activation of the left ventricle, may help 
[4]. For left bundle branch block (LBBB) and other intraventricular delays, the entire QRS or 
just the initial 80–100 ms can be used [4].

4.2. An example of determination of the mean axis

An ECG with the recordings of the limb leads in an asymptomatic person is shown in Figure 5 
with left axis deviation. The QRS complex in II (which is at +60° in the hexaxial reference sys-
tem) is most equiphasic; thus, the axis will be 90° to it, either in –30° or +150° (Figure 2). Since 
R wave in the lead aVL is positive and has almost the largest R wave amplitude, it dictates the 
direction of the vector. Thus, the QRS axis is leftward between around –30°. However, if we 
look carefully the lead II is not exactly equiphasic but it has slightly more negative complex 
especially the second QRS complex, so the lead II lies in the “negative‐half area of the mean axis” 
(Figure 3). Similarly, the lead aVR is also near equiphasic with slightly more negative QRS 
complex, that is, the lead aVR is also in the “negative‐half area of the mean axis” (Figure 3). As the 

Which lead shows the equiphasic (QR or RS) complex?

Look at right angle to the lead with the equiphasic (QR or RS) complex

Axis in the lead showing the relatively tall R* or in-between the two leads showing the equal tall R waves

Which two leads show the tall R waves of equal amplitude?

Figure 4. Method of determination of the approximate degree of the frontal plane QRS axis—The degree of the mean 
axis can be further reconfirmed by considering whether it is in accord or not with the QRS direction and amplitude in 
other leads in the areas in front of and/or behind the line of the equiphasic complex. *For example, if the relatively tall R 
wave is in the lead aVL the axis is approximately –30°, if in I it is 0°, if in II it is +60°, if in aVF it is +90°, if in III it is +120°, 
and if in aVR it is –150°.
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lead II has slightly less negative QRS complex than the lead aVR, the lead II is slightly nearer 
to the mean axis than the aVR. So the mean axis is most likely around –40°.

In this example, we have determined the mean axis by first looking at the lead with the equi-
phasic QRS complex as described in Figure 4 and later also reconfirm the degree of the mean 
axis by considering whether the QRS direction and amplitude in the leads in the negative‐half 
area of the mean axis are in accord or not with it. As discussed above, the approximate deter-
mination of the axis with such method entails an error of 10–15° [5]. Moreover, minor degrees 
of change in the height of QRS complex may also occur due to the difference in the relative 
voltage and magnitude of the bipolar and augmented unipolar leads [9] or due to cardiac or 
respiratory movement.

4.3. Other axes

When cardiac axis is referred, it usually indicates the mean frontal plane QRS axis. But there 
are also other axes to consider, for example, T wave and P wave axes. Though even axis of 
ST segment [2] and the QRS axis in the horizontal plane [1, 6, 9] are also discussed, such axes 
are not used in the routine ECG interpretation. The axes of T wave and P wave are also not 
routinely determined. However, in the computer interpretation in modern electrocardiogram 
tracings the axes of P and T waves are now easily available. Thus, routine consideration of T 
and P wave axes is possible and may be helpful. T wave axis is discussed later in Section 5.3. 
The normal mean manifest frontal plane P wave axis is also directed generally within the region of 
+40° to +60° [2] with the normal limits between 0° and +75° [6]. The axis of P wave is affected by 
different conditions [2, 6], for example,

• +60° to +90° or even more to right axis deviation in acquired right heart diseases including 
due to chronic obstructive pulmonary disease (COPD) with tall upright P wave in II, aVF, 
and III leads with near equiphasic or equiphasic P waves in lead I,

• +45° to –30° in left atrial diseases with upright in I and aVL leads, and

• –80° to –90° in the retrograde activation of the atria by an impulse from AV node or below 
with inverted P wave in II, aVF, and III leads.

Figure 5. An electrocardiogram recording of the limb leads in an asymptomatic person.
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4.4. Usefulness and limitations of the computer interpretations in modern 
electrocardiograms

The computer interpretations in modern electrocardiogram tracings help to note if any-
thing is missed or to crosscheck the findings. But that does not decrease the responsibility 
of the physicians. In the textbook on electrocardiogram prepared on behalf of the council 
on clinical cardiology of the American Heart Association, it is emphasized: “Even though 
computer interpretations of ECGs are readily available, the clinician's role as overseer and final 
interpreter has not and must not be diminished” [9]. On the other hand, one should also not 
totally ignore the computer interpretations. The computer interpretations are particularly 
useful for rate, axes of QRS, P and T waves, intervals and amplitude, or voltage and duration of 
different waves. Though in the computer interpretation the range of normal values is not 
given, the possible abnormal findings are indicated. The overall computer interpretation in 
the modern electrocardiogram machines, however, cannot incorporate the various clinical 
conditions to be considered in each individual patient. The rhythm, P, QRS, and T wave 
morphology, and ST segment need to be given particular attention by the clinicians and the 
conclusion should be drawn considering all the clinical conditions of the individual patient.

5. Effect of axis deviation on QRS‐T morphology

5.1. Variations in the QRS pattern and usually negative waves in aVR

The QRS pattern in the extremity leads may vary considerably from one normal subject to 
another depending on the electrical axis of the QRS, which describes the mean orientation of 
the QRS vector with reference to the six frontal plane leads [16]. The effects on QRS and T mor-
phologies by different frontal plane QRS axes may thus cause confusion in the interpretation of 
ECG. A shift, even a pronounced one, of the heart to the right due to pneumothorax or pleural 
effusion, however, does not necessarily affect the frontal plane QRS axis [17]. The effect of axis 
in the QRS and T morphologies can also be utilized for the efficient interpretation of electrocar-
diogram. The frontal plane QRS axis in most people are directed away from aVR, thus in the 
lead aVR the QRS complex is mostly negative. Marked left axis (<–60°) or right axis (>+120°) or 
extreme axis deviation will cause positive QRS complex in aVR. And the dominantly upright 
QRS as well as P waves in aVR along with the inverted ones in leads I and aVL indicate the 
presence of reversal of the left and right arm electrodes or rarely the dextrocardia, a common 
form of cardiac malposition [2, 18]. Thus, while interpreting any ECG it is helpful to look first 
at aVR to quickly detect the incorrectly placed arm electrodes or the marked left or right axis 
deviation.

5.2. An example of the effect on QRS complex due to left axis deviation

The ECG with the recordings of the limb leads shown in Figure 5 is used as an example to 
discuss the effect of left axis deviation on the appearance of QRS complex. In the ECG shown 
in Figure 5, the QRS complexes in III and aVF appear mostly negative raising the possibility 
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of inferior wall ischemia. But this pattern in the asymptomatic person is most likely due to 
the frontal plane mean axis being at around –40°. The equiphasic points for this mean axis of 
–40° are at right angle, that is, at +50° and at –130°. The leads aVF and III are away from the 
equiphasic point at +50° toward the opposite pole of mean axis in the “negative‐half area of the 
mean axis” (Figure 3) and are recording the increasingly negative QRS complex. Thus, the QRS 
complexes in III and aVF appear mostly negative. An ECG with right axis deviation is simi-
larly likely to cause predominantly negative QRS complex in the leads I and aVL.

5.3. An example of the effect on T wave due to left axis deviation

Similarly the T waves in leads aVF and III in the ECG in Figure 3 appear flat or inverted rais-
ing the possibility of inferior wall ischemia. However, as a rule the mean T wave axis and the 
mean QRS axis normally point in the same general (but not identical) direction [5]. Thus, in 
general when the main QRS deflection is positive (upright), the T wave is normally also posi-
tive [5] and vice versa. In the adult, the QRS‐T angle normally does not exceed 45° in the frontal 
plane [6]. When the angle is greater than 60°, the electrocardiogram is abnormal and disease is usually 
present [2]. In the ECG in Figure 5, the mean axis is directed at around –40° with the QRS com-
plexes in III and aVF appearing more negative. In the asymptomatic person with this ECG, 
the mean frontal plane T wave axis is likely to be directed as the mean frontal plane QRS axis 
with the T wave appearing flat or inverted like the QRS complex. The T wave axis given in the 
computer interpretation in the modern electrocardiogram may provide additional informa-
tion to correlate with the clinical condition of the patient.

5.4. The variations in the QRS‐T pattern and its implications

The mean axis of the QRS complex causing the variations in the QRS‐T pattern is just one of 
the many factors to do so. Minor degrees of or apparent ST segment or T wave changes can 
also occur due to many general medical or cardiac conditions other than the ischemic ones. 
Various such conditions related to each individual patient are not incorporated in the com-
puter interpretation of the ECG tracing. The clinician has to correlate the ECG findings with 
the clinical conditions of the patient.

The US Preventive Services Task Force (USPTF) recommends against screening with resting 
or exercise ECG for the prediction of coronary heart disease events in asymptomatic adults at 
low risk for coronary heart disease events. The USPSTF concludes that the current evidence 
is insufficient to assess the balance of benefits and harms of screening with resting or exercise 
ECG for the prediction of coronary heart disease events in asymptomatic adults at intermedi-
ate or high risk for coronary heart disease events [19]. The overall risk for a serious adverse 
event, one that requires hospitalization or causes sudden death, with exercise ECG is esti-
mated to be up to 1 in 10,000 tests [20].

Moreover, up to 71% of asymptomatic adults with abnormal exercise treadmill ECG results 
have no angiographically demonstrable coronary artery stenosis [21] and revascularization 
as such has also not been shown to reduce coronary heart disease events in asymptomatic 
persons [19]. And the risk for any serious adverse event from angiography is up to 1.7%, 
including risk for death (0.1%), myocardial infarction (0.05%), stroke (0.07%), or arrhythmia 
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(0.4%) [19, 22]. Such complications are more likely in the countries where the skills of angi-
ography and angioplasty are not certified with appropriate criteria (considering the learning 
curve required for the particular skill) and in the situation where the volume of the procedures 
performed by the operator or in the institutions are not sufficient.

6. Causes of left axis deviation

The conditions which are likely to fulfill the criteria of the defined cut‐off points and are con-
ventionally considered as the causes of left axis deviation [1, 2, 4–8, 17] are shown in Table 1. 
An individual patient may have more than one medical condition; in such conditions, the 
resultant axis deviation may not reflect the typical pattern of one cause.

Axis deviation in conditions like right bundle branch block (RBBB) and left bundle branch 
block (LBBB) also depends on their underlying causes. LBBB is commonly a sign of organic 
heart disease [2] and most patients with LBBB have underlying left ventricular hypertrophy 
[5]. Thus, left axis deviation is usually seen in LBBB. Though LBBB is even emphasized to be 
always a sign of heart disease usually of the left ventricle [7], it is rarely seen in normal indi-
viduals without any organic heart disease [5]. Some other congenital heart diseases where left 
axis deviation is seen include

• tricuspid atresia,

• single ventricle,

• congenitally corrected transposition of the great arteries, and

• double outlet right ventricle with infracristal ventricular septal defect [17].

• Left anterior fascicular block (left anterior hemiblock) (see Table 2)

• Inferior wall myocardial infarction

• Left ventricular hypertrophy due to various causes

• Left bundle branch block (see text)

• Ventricular tachycardia from a focus in the apex of the left ventricle

• Pacing from the apex of the right or left ventricle

• Primum atrial septal defect and endocardial cushion defect

• Other congenital heart diseases (see text)

• Wolff‐Parkinson‐White (WPW) syndrome: Less common type (previously called type B) affecting the right‐sided 
accessory bypass pathways

• Hyperkalemia

• Emphysema and chronic obstructive pulmonary disease in about 10% (see text)

Table 1. Causes of left axis deviation.
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In chronic obstructive pulmonary disease (COPD) with development of pulmonary hyperten-
sion, the frontal plane QRS axis shifts to the right side, even to +150° [2]. In very severe cases, 
extreme axis deviation may occur. Occasionally, in about 10% cases, there may be left axis devia-
tion, the frontal plane QRS axis being directed upwards and to the left in the vicinity of –60° to 
–90° [2]. The exact mechanism is uncertain, but it is also supposed to be an axis illusion and the 
term pseudo‐left axis deviation has also been applied [17]. In an individual patient with COPD, 
the presence of left axis deviation rather points out the need to look for other conditions, espe-
cially coronary heart disease, due to the common etiological factor of smoking shared by both 
diseases.

7. The leftward shift of axis

While enumerating the causes of axis deviation there may be confusion to

• whether the conditions mentioned are just likely to shift the axis toward one or other side 
of the usual normal axis between +40° and +60° (Figure 2) but within the conventionally 
considered limits or

• whether the conditions mentioned shift the axis frankly toward the right or left side fulfill-
ing the defined limits of the axis deviations.

There are different physiological and pathological conditions which may shift the axis to one 
side or the other.

7.1. Effect of breathing

When a person breathes in, the diaphragm descends and the heart becomes more vertical and 
QRS electrical axis generally shifts toward right side, and when the person breathes out, the 
diaphragm ascends, heart assumes a more horizontal position, and the axis shifts toward the 
left side [5]. This may be more pronounced in maximum inspiration and expiration.

7.2. Body habitus and obesity

The mean frontal plane electrical axis also depends on body habitus [3]. The axes are more 
vertical in thin individuals and more horizontal in heavy individuals [6]. Obesity may deviate 
the frontal plane QRS axis toward the left side but not further to the left than 0° and a left axis 
deviation to –30° or further leftwards in an obese person probably represents a pathological 
abnormality [2, 23].

7.3. Pregnancy

A small rightward QRS axis shift may occur in the first trimester [24]. Similarly, some degree 
of leftward shift of QRS axis by about 15–30° has been reported in the third trimester of preg-
nancy by different studies [24–26] and the axis shifting back to normal side after delivery [26]. 
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However, in some cases of pregnancy, a slight rightward shift of QRS axis (within the normal 
range) may occur at full term [27]. It is emphasized that pregnancy is not associated with left 
axis deviation or any significant change of QRS axis [2]. Thus, in general some degree of left-
ward shift of QRS axis may occur in the third trimester of pregnancy. However, an isolated 
rightward QRS axis change may be encountered in normal pregnant patients and cannot be 
viewed as a definite abnormality or used as a sole criterion for heart disease [24].

7.4. The causes of left axis deviation

The conditions which are likely to fulfill the criteria of the defined cut‐off points and are con-
ventionally considered as the causes of left axis deviation [1, 2, 4–8, 17] (Table 1) may also not 
fulfill the defined criteria especially in the initial stages but they may shift the axis to one side 
from its usual range of the degrees between +40° and +60° (Figure 2). Most causes of left axis 
deviation (Table 1) are well‐known clinical entities. Isolated left axis deviation and leftward 
shift of axis have been increasingly noticed by the author especially in relatively young adults 
with diabetes. There are many points to consider regarding leftward shift of axis and particu-
larly the isolated left anterior fascicular block.

8. The isolated left anterior fascicular conduction delay

There are different causes of left axis deviation (Table 1). Left axis deviation may also occur in 
the absence of apparent cardiac disease and it is not necessarily a sign of significant underly-
ing heart disease [5]. Left axis deviation is relatively common with advancing age even in the 
absence of clinically overt heart disease and rare during early adult years [17, 28–40]. In a pop-
ulation‐based study of the people 20 years and above, almost half of the people with left axis 
deviation had isolated left axis deviation without evidence of heart diseases [28]. Left anterior 
fascicular block is the most common cause of left axis deviation [2]. The classical criteria of 
left anterior fascicular block are frontal plane axis between –45° and –90°, qR pattern in lead 
aVL, R peak time in lead aVL of 45 ms or more, and QRS duration less than 120 ms [3]. There 
are different causes of left anterior fascicular block or conduction delay [2, 5, 17, 27] (Table 2). 
In neuromuscular diseases like myotonia dystrophica, the involvement appears to be in the 
cardiac conduction system as a sort of nonmyopathic manifestations [17]. Hyperkalemia as 
well as a sudden increase in serum potassium levels are sometimes accompanied by left axis 
deviation ascribed to left anterior fascicular block due to changes in resting membrane poten-
tial and transmembrane potassium gradient; similar mechanism is held responsible for the 
generalized QRS widening with hyperkalemia [17].

The finding of isolated left anterior fascicular block is a very common, nonspecific abnormality 
[5]. The QRS axes which range from 0° to –30° probably reflect minor degrees of left anterior fas-
cicular block or incomplete left anterior fascicular block [2]. An axis of +29° is also considered as 
already reflecting some degree of left axis deviation [2]. Complete block of conduction in the left 
anterior fascicle is not necessary to produce left axis deviation; presumably, all that is required 

Examining Left Axis Deviation
http://dx.doi.org/10.5772/intechopen.69435

25



is enough delay in anterior fascicular conduction to result in the activation of the anterior left 
ventricular solely via the posterior fascicle [17]. In fascicular block, left axis deviation can be 
interpreted as either delayed conduction or complete block in the left anterior fascicle [17], 
which may explain the leftward shift of axis from minor degrees to frank left axis deviation.

9. Vulnerability of left anterior fascicle

The left anterior fascicle is more vulnerable to interruption than the left posterior fascicle 
because of many reasons [2, 17] (Table 3). The left anterior fascicle is often supplied by septal 
branch of descending artery only or by septal branch of descending artery and atrioventricu-
lar node artery or rarely by atrioventricular node artery alone [17]. A total occlusion of the 
left anterior descending artery may cause a subsequent right bundle branch block with left 
anterior fascicular block [1]. This is one of the reasons for the frequent manifestation of right 
bundle branch block with left anterior fascicular block [2].

Clinical cardiac diseases Other conditions

• Coronary heart disease

• Left ventricular hypertrophy

• Chronic cardiac failure

• Cardiomyopathies

• Aortic valve diseases

• Various congenital heart diseases

• Cardiac surgery (especially aortic valve surgery)

• Infiltrative diseases

• Focal pathological lesions

• Ageing

• Atherosclerosis

• Long‐standing hypertension

• Other secondary degenerative disorders of the con-
duction system

• Primary sclerodegenerative disorders, for example, 
Lenegre disease or Lev disease

• Congenital isolated left anterior fascicular block

• Neuromuscular diseases like myotonia dystrophica, 
peroneal muscular atrophy, limb‐girdle dystrophy

• Rarely in hyperkalemia

Table 2. Causes of left anterior fascicular block or conduction delay.

Left anterior fascicle Left posterior fascicle

Length and width Relatively long and thin Relatively short and thick

Blood supply Mostly single blood supply (see text) Dual blood supply

Proximity to aortic valve Closer (so likely to be affected by 
aortic valve disease and surgery)*

Further away from aortic valve*

*Left anterior fascicle is situated superiorly and left posterior fascicle inferiorly.

Table 3. Reasons of left anterior fascicular being more vulnerable to interruption than the left posterior fascicle.
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10. Isolated left anterior fascicular conduction delay due to 
atherosclerosis and degenerative conditions

The causes and clinical significance of left axis deviation have always been of interest since 
the early days of electrocardiography [17]. In regards to the causation of isolated left ante-
rior fascicular delayed conduction or block, the possible mechanisms are fibrosis related to 
atherosclerosis and degenerative conditions [17]. The vulnerability of left anterior fascicle to 
interruption (Table 3) indicates the possibility of atherosclerosis with resultant coronary heart 
diseases. The possibility has, thus, been pointed out that left anterior fascicular block which 
occurs in the elderly may be due to subclinical coronary artery disease [2]. Ischemic heart dis-
ease in its own right causes fibrosis that partially or completely interrupts conduction in one 
or more fascicles [17]. On the other hand, fibrosis and degenerative disorder of the anterior 
fascicle of left bundle branch are postulated to be the cause of left axis deviation in the older 
population without associated cardiovascular abnormalities [17, 37–41]. The ECG trend of 
the gradual leftward migration of the frontal QRS axis has been concluded to be a common 
sequel of aging, independent of the population prevalence of coronary atherosclerosis. Thus, 
isolated, age‐related degenerative disease is also considered to cause a variety of infranodal 
conduction defects that are unrelated to coexisting myocardial disease or coronary artery 
obstruction, which may be negligible or absent [17].

Interatrial conduction block by fibrosis: It is interesting to note here that the association 
between conduction delays and block in Bachmann's bundle (Figure 5) and atrial fibrilla-
tion has been reported [42]. The Bachmann's bundle is recognized as a muscular bundle 
and shares electrophysiological properties of both Purkinje and atrial fibers; it is not sur-
rounded by a fibrous tissue sheath. Fibrosis of the interatrial tract or Bachmann's bundle 
has been suggested as the mechanism underlying interatrial conduction block. Areas of 
conduction block may not be confined to Bachmann's bundle alone [42]. The association 
of such changes with the left axis deviation and left anterior fascicular conduction delay 
deserves study.

11. Left axis deviation and glucose intolerance

In a study of almost the entire population aged 16 years and above in a town in 1959–1960 
among people with left axis deviation, more than 25%, and among those less than 40 years 
of age, 36–40%, have hyperglycemia with blood glucose value above the 80th percentile for 
the age group [32]. Similarly, in another study of people with diabetes and control group, 
diabetic men have more leftward frontal QRS axis than their nondiabetic counterparts 
when the effect of confounding factors (age, obesity, coronary heart disease, hypertension, 
and drugs) was taken into account [43]. In a population study, among people with isolated 
left axis deviation almost half (47.4%) of the persons less than 40 years age have blood glu-
cose in the upper quintile values in comparison to 20.7% of those more than 50 years [28]. 
In a study of asymptomatic people aged 30 years or more not on any medication attending 
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outdoor clinics for health checkup, the mean (SD) values of fasting plasma glucose are 101.0 
± 18.3 mg/dL in the slight left axis deviation group with QRS axis 0° to –30° (mean age 40.3 
± 8.5) and 122.9 ± 27.5 mg/dL in moderate‐to‐marked left axis deviation group with QRS 
axis –30° to –90° (mean age 54.5 ± 6.3). The frequency of glucose intolerance is 48.9% in the 
slight left axis deviation group with QRS axis 0° to –30° and 84.9% in moderate‐to‐marked 
left axis deviation group with QRS axis –30° to –90°, the difference being significant after 
conditioning the effects of age and sex (P ≤ 0.03) and after conditioning the effect of BP 
(P = 0.02) [44, 45]. In a recent study with 85% of participants less than 55 years of age, left 
axis deviation was present in 8% of control group and 43.3% of type 2 diabetes [46]. The 
frequency of left axis deviation in the control nondiabetic group mostly below the age of 55 
years in this report is also relatively high. The control group, though do not have diabetes, 
may have higher level of glucose or glycated hemoglobin (HbA1c) which could be related 
to the increasing glucose intolerance in the population now.

12. Why glucose intolerance as a cause of left anterior fascicular 
conduction delay was not much reported in earlier reports?

12.1. Difficulty in conducting fasting and 2‐hour glucose estimation for diagnosis  
in the studies

In many reports of different findings in ECG of varied populations, plasma glucose estima-
tion was mostly not done [29, 31, 33–40]. Conducting fasting and 2‐hour glucose estimation 
in the field situation may not be easy as people have to come in the fasting state and wait for 
further 2 hours after taking glucose. Glycated hemoglobin (HbA1c) has been recently recom-
mended for diagnosis of glucose intolerance.

12.2. A relatively new phenomenon

The epidemic of glucose intolerance in the world is relatively a new phenomenon starting 
since the latter half of twentieth century [47, 48]. It is now increasingly affecting the younger 
population [47]. The situation of the epidemic of diabetes could have led to observe and report 
the association of glucose intolerance and left axis deviation in relatively younger people 
more explicitly now [45, 46].

12.3. Data collection only as the normal axis or as the left axis deviation mostly with –30° 
to –90°

In most studies, including that of people with hyperglycemia or diabetes, only the presence of 
left axis deviation with QRS frontal plane axis –30° to –90° is considered [29–34, 36–39, 49], not 
the leftward shift of axis from its usual normal position (Figure 2), and thus the lower range 
of leftward shift is likely to be missed. The process of gradual shifting of the ECG axis toward 
left could be associated with the period of exposure to different grades and combination of 
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the related factors like increasing age, glucose level, and other factors. Focusing only on the 
left axis deviation criteria as –30° to –90° by the studies also appears as one reason of dearth 
of evidences about the association of different degrees of QRS axis with possible factors. The 
arbitrary limits of the axis deviations have already been discussed.

13. Left axis deviation in school children in indigenous population

High prevalence of left axis deviation, 6–9‐fold higher than the control group, in healthy 
American‐Indian Navajo and Apache school children has been reported, the possible cause 
of which was considered unexplained [50]. Mean frontal plane QRS axis between –1° and 
–90° was present in 19% of the Navajo and 12% of the Apache school children. The preva-
lence of the lesser degree of leftward shift of axis is also likely to be higher. Even the lesser 
degree of leftward shift of axis is also quite significant in children as compared to adults, as 
the normal QRS axis is more on the right in children. For example, in the neonate the normal 
frontal plane QRS axis is between +60° and +190°, and the axis then shifts to the left and by 
ages 1–5 years, it is generally between +10° and +110°. Between 5 and 8 years of age, the nor-
mal QRS axis may extend to +140°, and between ages 8 and 16 years, the range of normal QRS 
extends to +120° [3]. The indigenous populations like the American‐Indian are the ones who 
are affected the most since the middle of the twentieth century by the global diabetes epi-
demic [47, 48], and there is high prevalence of diabetes in the American‐Indian indigenous 
population affecting even children [47, 51]. The high prevalence of leftward shift of axis in 
the children in such population is most likely related to the glucose intolerance which needs 
to be studied.

14. Brain white matter hyperintensities and left anterior fascicular block 
similarly related to glucose intolerance

White matter of the brain consists mostly of glial cells and myelinated axons for the transmis-
sion of neuronal electrical activity. With the wide availability of magnetic resonance imaging, 
there is often incidental discovery of white matter lesions appearing as hyperintensities on T2 
weighted image [52, 53]. Pathological findings in the regions of white matter hyperintensities 
include myelin pallor, tissue rarefaction associated with loss of myelin and axons, and mild 
gliosis [52]. The factors associated with the brain white matter hyperintensities include age-
ing, hypertension, and diabetes [52, 53], as in the case of left anterior fascicular block. It may 
be relevant to note here that neuropathy, including the autonomic one, is a well‐known com-
mon complication of diabetes and it may also be linked with, for example, as a later clinical 
manifestation of, white matter hyperintensities. A new study shows that even the impaired 
fasting glycemia, with the fasting plasma glucose below the diabetic range, is associated with 
a higher burden of brain white matter hyperintensities [54]. Among the people with isolated 
left axis deviation almost half of the persons less than 40 years of age have blood glucose in 
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the upper quintile values [28]. Left anterior fascicle is similarly involved in the transmission of 
cardiac electrical activity and its vulnerability to the interruption (Table 3) could make it likely 
to be susceptible to oxidative injury due to the accumulation of various metabolic products of 
hyperglycemia.

Hyperglycemia is associated with fibrodegeneration of the left anterior fascicle, brain white 
matter, and other tissues. Chronic hyperglycemia affects various growth factors including 
fibroblast, collagen, fibronectin, contractile proteins, and extracellular matrix proteins in the 
body through different mechanisms. The various possible mechanisms of hyperglycemia 
leading to complications include nonenzymatic glycosylation, polyol pathway, abnormal 
microvascular blood flow, thickening and leakage of basement membrane of blood vessels, 
formation of reactive oxygen species, formation of vascular endothelial growth factors, and 
overproduction of superoxide by the mitochondrial electron chain [11, 12, 55]. Ageing associ-
ated with the fibrodegeneration of various tissues also involves insulin signaling pathways, 
reactive oxygen species, and oxidative damage at number of sites [55]. The final pathways of 
mechanism of complications and fibrodegeneration of various tissues due to hyperglycemia 
and ageing appear similar. Ageing is a known risk factor of glucose intolerance. And look-
ing at the similar final pathways of mechanisms of complications and fibrodegeneration of 
the tissues in hyperglycemia and ageing, there could also be reciprocal relation between the 
two conditions.

15. Future perspectives—from research and public health point of views

From the point of view of leftward shift of axis, correlation of various degrees of frontal plane 
QRS axis (not just the presence or absence of left axis deviation) with fasting and 2‐hour glu-
cose and/or glycated hemoglobin levels

• in the general population [45],

• in the children of the indigenous population where left axis is observed [50], and

• in the people with higher brain white matter hyperintensities [52–54] (along with magnetic 
resonance imaging of heart and/or nerve conduction studies and/or tests of autonomic 
neuropathy)

will help to provide further evidences and thus to correlate various factors with leftward shift 
of axis and glucose intolerance. The value of research lies in its utility. In the situation of pan-
demic of glucose intolerance also affecting the leftward shift of axis in younger population, to 
utilize the already available evidences especially of the risk of obesity or glucose intolerance 
in the offspring of mother with obesity or with undernutrition [56], the control programs to 
protect the susceptible populations need to be implemented [47] (Table 4). In the background 
of inherent insulin resistance during pregnancy and increasing age of mothers, maintenance 
of the optimum prepregnancy weight in the population appears to the key in hand in the con-
trol program of diabetes epidemic [47]. This will also help to benefit the children of the indig-
enous population where the research on left axis deviation and diabetes has been conducted.
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16. Conclusion

The frontal plane QRS axis and especially the left axis deviation have always been the areas 
of interest in electrocardiogram. There are different physiological and pathological condi-
tions which affect the axis and the axis shift itself also affects the QRS and ST morphologies. 
The approximate degree of axis can be easily determined by observing the electrocardio-
gram. Most causes of left axis deviation are well‐known clinical entities. Isolated left axis 
deviation and leftward shift of the axis have increasingly been reported to be possibly asso-
ciated with glucose intolerance. There are reasons why such association was previously not 
reported. The left anterior fascicle is as such vulnerable to interruption. The possible relation 
of glucose intolerance with brain white matter hyperintensities and even ageing also indi-
cate the need to conduct research in these areas. However, the already available evidences 
should also be simultaneously utilized to protect the susceptible population. The bottom 
line of the frontal plane QRS axis is to record the actual degrees of the axes (not just the pres-
ence or absence of normal axis or left, right, or extreme axis deviations) and correlate the 
changes in the degrees of axis with the levels of the various possible factors in the individual 
patient or the study populations.

Examples in the communicable 
disease

Possible examples in diabetes**

Prevention programs for individuals • Immunization

• Personal protective measures

• Chemprophylaxis

• Primary prevention programs

• Campaign and programs to help 
achieve by the people the recom-
mended body mass index of the 
respective populations

Control programs to protect the 
other susceptible populations*

• Isolation

• Quarantine

• Vector control (e.g., mosquito con-
trol for various diseases, cyclops 
control for guinea worm, chicken 
and poultry culling for avian 
influenza)

• Treatment of case (e.g., tuberculo-
sis) and carrier

Campaign and programs for

• Maintenance of optimal prepreg-
nancy body weight, as per the 
recommended body mass index of 
the respective populations, espe-
cially in the affluent and/or urban 
parts of the societies and

• Nutritional support for the girls 
and women of childbearing age 
in rural and poorer sections of the 
societies

*The vulnerable populations to be protected by the control program of diabetes include the offspring of malnourished 
or overweight mothers.
**National and international health and diabetes agencies should clearly spell out the control programs, with appropriate 
budget allocation, for control of diabetes epidemic to protect the progeny.

Table 4. Examples of prevention and control programs in the communicable diseases as a model for similar strategies for 
individuals and susceptible populations in diabetes epidemic.
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Abstract

Signal-averaged ECG (SAECG) is a high-resolution, noninvasive electrocardiographic 
method enabling detection of late ventricular potentials (LVP), which are low-amplitude 
and high-frequency signals, predicting reentry ventricular arrhythmias, and sudden car-
diac death (SCD). Three criteria are used to detect late ventricular potentials as follows: 
signal-average ECG QRS duration (SAECG-QRS), the duration of the terminal part of the 
QRS complex with an amplitude below 40 μV (LAS40) and the root mean square (RSM) 
signal amplitude of the last 40 ms of the signal < 20 μV (RMS40). Late ventricular poten-
tials can be detected not only at the end of a QRS complex but also as intra-QRS (IQRS) 
potentials. Signal-averaged ECG was modified to enable the analysis of the P-wave and 
to detect atrial late potentials (ALPs), low-amplitude potentials at the terminal part of the 
filtered P-wave, and predictors of atrial fibrillation (AF). Late atrial and ventricular poten-
tials originate from areas of delayed, fragmented, and heterogenous conduction within 
atrial or ventricular myocardium. This chapter reviews the most important mechanisms 
explaining the occurrence of late ventricular, intra-QRS, and atrial potentials; their pre-
dictive value for arrhythmia, focusing on recent clinical data, long-term follow-up, and 
outcome; and analysis of SAECG variables in cardiac and noncardiac diseases.

Keywords: late ventricular potentials, atrial late potentials, ventricular arrhythmia risk, 
atrial fibrillation

1. Introduction

Cardiovascular disorders are leading mortality causes worldwide. Prophylactic methods and 
early detection deserve special attention. The standard 12-lead electrocardiogram (ECG) is 
a simple, reliable, and cost-effective method, used in clinical practice and trials for sudden 
cardiac death (SCD) risk stratification, considering QT and QRS duration, fragmented QRS 
complexes, and Tpeak-tend interval. Signal-averaged ECG (SAECG) can detect very small, 
subtle signals (microvolt level), which are not visible when using standard 12-lead ECG, by 
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averaging and filtering multiple ECG complexes [1–3]. The high-resolution or signal-averaged 
ECG has been recommended by the European Society of Cardiology, the American Heart 
Association, and the American College of Cardiology as a useful tool to improve the diagnosis 
and risk stratification of patients with ventricular arrhythmias or those at risk of developing 
life-threatening ventricular arrhythmias [4].

The substrate for SCD varies from advanced cardiomyopathic injuries, myocardial infarction 
scars to no obvious sign of structural damage [4]. The most common cause of SCD is coronary 
heart disease, but several cardiomyopathies, heart failure, and genetic influences, as well as 
myocarditis, pericardial diseases, pulmonary arterial hypertension, rheumatic disease, end-
stage renal failure, endocrine disorders, obesity, anorexia, hypertension, lipid abnormali-
ties, diabetes mellitus, several drugs, and physical and toxic agents can also be involved [4]. 
Several inherited abnormalities, including long and short QT interval, Brugada syndrome, 
and catecholaminergic ventricular tachycardia (VT), can precipitate SCD without any struc-
tural changes in the heart, triggered by external events [4].

Atrial fibrillation (AF) is the most frequent arrhythmia in the general population, with poorly 
understood underlying mechanisms of structural and electrical atrial remodeling [5]. It is 
associated with an increased risk of stroke, heart failure, and mortality [5].

The aim of this chapter is to review the most important mechanisms explaining the occur-
rence of late ventricular, intra-QRS (IQRS), and atrial potentials; their predictive value for 
arrhythmia, focusing on recent studies, long-term follow-up, and outcome; and analysis of 
SAECG variables in cardiac and noncardiac diseases.

2. Late ventricular potentials

LVPs are low-amplitude, high-frequency signals, occurring in the terminal part of the QRS 
complex, as markers of electrophysiological cardiac substrates for reentry ventricular 
arrhythmia, favored by structural heterogeneity due to myocardial necrosis, fibrosis, or dys-
trophy [6]. LVPs appear if conduction is slow enough to enable reentry and a unidirectional 
block is present [6]. They assess ventricular depolarization, and the signal is more stable and 
reproducible than the repolarization process [6]. Arrhythmia triggers are autonomic imbal-
ances (increased sympathetic activity), acute ischemia, or electrolyte disorders. Temporal and 
frequency domain analysis can be performed to detect arrhythmia risk.

Three criteria are used to detect LVPs as follows: SAECG-QRS duration , the duration of the 
terminal part of the QRS complex with an amplitude below 40 μV (LAS40), and the root mean 
square signal amplitude of the last 40 ms of the signal < 20 μV (RMS40) [7].

SAECG-QRS was considered prolonged if it exceeds 120 [7] or 114 ms according to other 
authors [8, 9]. LAS40 is pathological if exceeding 38 ms and RMS40 if less than 20 μV [7]. Late 
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ventricular potentials are defined by the presence of one or two of the  mentioned positive 
criteria (Figures 1, 2) [7, 10].

Considering their low amplitude, LVPs can only be detected if amplified, filtered, and averaged 
using high-resolution SAECG or body surface mapping. Electronic filters can further reduce 
signal noise by eliminating high-frequency signals such as skeletal muscle potentials [3]. The 
filters used in SAECG provide different numerical and diagnostic results, with a higher sen-
sitivity for 40–250-Hz filters compared to 40-Hz filters [1]. The authors of the present chapter 
have experience only with 50–250 Hz filters. ECG signals are collected for 5–20 min, followed 
by averaging the QRS complexes through the temporal technique to reduce the signal-to-noise 
ratio [3].

The most important limitations in SAECG are related to electrical interference causing false 
results and the low positive predictive value for arrhythmic events [6, 11, 12]. However, they 
have a high negative predictive value for arrhythmic events [12]. Their presence predicts 
inducibility of ventricular tachycardia at invasive electrophysiology studies, and if they are 
combined with low ejection fraction, they enable detection of patients at high risk of sudden 
cardiac death [3].

Besides time-domain (TD) analysis of SAECG, frequency domain analysis may also provide 
valuable data. Abrupt changes in the frequency contents between adjacent overlapping seg-
ments of the QRS complex are the markers of the arrhythmogenic substrate in spectral turbulent 
analysis (STA) [13].

Figure 1. Late ventricular potentials with two positive criteria (LAS40 and RMS40).
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The sensitivity of SAECG is higher compared to standard 12-lead ECG for identifying patients 
with acute coronary syndrome [14]. LVPs were initially used in patients with myocardial 
infarction. They appear in the heterogenous tissue at the border of a myocardial infarction 
scar [6], very frequent in nonseptal myocardial segments, and were abolished in most patients 
with myocardial infarction after ventricular tachycardia ablation, associated with scar homog-
enization and a low recurrence rate [15]. The utility of SAECG was questioned in the post-
percutaneous coronary intervention era [3]. LVPs have been recorded in several other cardiac 
disorders, especially cardiomyopathies, myocarditis, infiltrative heart disease, arrhythmo-
genic right ventricular dysplasia, congenital heart defects, heart failure, left ventricular hyper-
trophy, Brugada syndrome, early repolarization, bundle branch block, and atrial fibrillation 
[6, 16–18]. Despite improved postinfarction survival due to lifestyle changes, thrombolytic, 
antiplatelet therapy, beta-blockers, and revascularization, LVPs can still be used in selecting 
patients for interventional studies [6]. Dinov et al. [19] found a positive correlation between 
endocardial scar area and filtered QRS in patients with ischemic VT, normalization of SAECG 
after catheter ablation (CA), and abnormal SAECG after CA as a predictor for VT recurrence 
(Table 1). Conduction delay contributed to ventricular dyssynchrony, regardless of LVPs in 
patients with heart failure, and LVPs did not play an important role in ventricular dyssyn-
chrony [16]. Several SAECG studies have been performed in patients who underwent heart 
transplant [20–22]. SAECG distinguished between heart transplant patients with or without 
rejection, especially LAS40 and RMS40 [22]. The association between LVPs and rejection of 
heart transplant is explained by occurrence of areas of myocardial fibrosis, due to cell changes 
caused by alloreactive T lymphocytes against graft antigens and ischemia-reperfusion injuries 
as soon as the blood flow is reestablished [22].

Figure 2. Normal SAECG and no late ventricular potentials.
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Study population Results Follow up References

52 psychiatric patients
30 healthy controls

The prevalence of LVPs was 
significantly higher in psychiatric 
patients, not influenced by age, 
gender, and therapy

46 months, 3 SCD Antoniou  
et al. [28]

50 patients with ischemic VT 
undergoing CA

A significant correlation was 
found between the surface 
SAECG and endocardial scar 
size in patients with ischemic 
VTs. A successful CA can result 
in normalization of SAECG 
and more favorable long-term 
outcomes. SAECG can predict the 
procedural success of VT ablation

Dinov et al. 
[19]

28 heart transplant patients The presence of fibrosis with 
increased LAS40 and decreased 
RMS40 showed a good ability to 
distinguish between patients  
with and without rejection

Mendes et al. 
[22]

100 postmyocardial infarction 
patients undergoing 
electroanatomical mapping-based  
VT ablation

LVPs were abolished in 51% 
improving outcome

Tsiachris  
et al. [15]

41 patients with COPD and 63 
patients without any history of 
pulmonary disease, matched for  
age and hypertension history

SAECG parameters and 
LVPs have little value in risk 
stratification for ventricular 
arrhythmias in COPD patients

Buzea et al. 
[27]

26 patients with newly diagnosed 
epilepsy, and no clinical evidence 
of heart disease were examined 
with SAECG and standard 
ECG. 15 patients were treated 
with lamotrigine and 10 with 
carbamazepine

Lack of antiepileptic drug-
induced electrocardiographic 
abnormalities

3–9 months Svalheim  
et al. [31]

45 patients with epilepsy and 19 
healthy volunteers, younger than  
46 years

Epilepsy patients more frequently 
display abnormal SAECGs with 
LVPs compared to the control 
group, and their presence 
correlates with the disease 
duration, refractory epilepsy,  
and polytherapy

Rejdak et al. 
[23]

64 patients with interventricular  
and intraventricular dyssynchronies

Filtered QRS duration provides 
more information to estimate 
ventricular dyssynchrony in 
patients with reduced ejection 
fraction than simple QRS 
duration; LVPs did not correlate 
with ventricular dyssynchrony

Tahara et al. 
[16]

20 young heart transplant patients SAECG is not effective in 
detecting heart transplant 
rejection in young patients

Horenstein  
et al. [21]
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Extracardiac disorders were also associated with LVPs, especially hypertension, metabolic 
syndrome, obesity, eating disorders, diabetes mellitus, renal failure, chronic obstructive pul-
monary disease (COPD), acromegaly, thalassemia, connective tissue diseases, epilepsy, and 
schizophrenia [6, 23–27]. Antiarrhythmic therapy, thrombolytic drugs, statins, steroids, and 
coronary interventions may influence LVPs [6].

Sudden cardiac death is higher in psychiatric patients, especially those with depression and 
schizophrenia than in the general population [28]. Several factors influence the relationship with 
cardiovascular disorders in patients with depression: social factors (poverty, social inequality, 
reduced access to healthcare), biological factors (endothelial dysfunction, impaired heart rate vari-
ability and platelet function, inflammation, hyperactivity of hypothalamic-pituitary-adrenal axis), 
higher prevalence of cardiovascular risk factors, and therapy (side effects of tricyclic, lower adher-
ence) [29]. Both schizophrenia and depression impair the autonomic tone, ion channels, alter con-
nexin 43 expression, and may cause drug-induced cardiac fibrosis [28].

Several factors enable ventricular arrhythmias in patients with epilepsy, such as sympathova-
gal imbalance, impaired cardiac repolarization, mutations of ionic channels affecting both the 
brain and the heart, dysfunctional cortical networks, ictal hypoxemia and hypercapnia, stress 
hormones, therapy, cardiorespiratory interactions, and associated cardiovascular diseases 
[24, 30]. Epilepsy patients more frequently displayed abnormal SAECGs with LVPs compared 
to healthy controls, correlated with disease duration, uncontrolled seizures, and polytherapy 
[23]. Svalheim et al. [31] reported no electrocardiographic changes (in standard ECG and 
SAECG) after antiepileptic drugs (carbamazepine and lamotrigene) in 26 epileptic patients.

COPD was associated with cardiovascular morbidity and mortality, considering negative car-
diac effects of hyperinflation, exercise limitation, smoking, and hypoxemia [6]. Carjea found a 
higher prevalence of LVPs in patients with COPD, especially in moderate and severe cases [32]. 
Yildiz et al. [33] reported a significantly increased total QRS duration in patients with COPD 
compared to control subjects and LVPs but no significant association with premature ven-
tricular contractions. Despite higher prevalence of LVPs, premature ventricular contractions, 
and complex ventricular arrhythmias in patients with COPD compared to healthy controls, 
SAECG had little value in stratification of ventricular arrhythmia risk in a study including 41 
patients with COPD and 63 patients without any history of pulmonary disease [27].

Study population Results Follow up References

70 acromegalic patients and 
70 control subjects, age- and 
sex-matched

A higher prevalence of LVPs in 
acromegaly which significantly 
correlated with Lown scale 
of premature ventricular 
contractions

Maffei et al. 
[34]

48 patients with acromegaly: 16 active 
disease, 32 cured or 'well controlled', 
under treatment with sandostatin 
analogs, and 38 healthy volunteers

LVPs are frequently seen in 
active acromegaly as an early and 
sensitive parameter of myocardial 
injury

Herrmann  
et al. [36]

Table 1. LVP studies.
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Persistent, life-threatening ventricular arrhythmias may occur in several endocrine disor-
ders, such as pheochromocytoma, acromegaly, primary aldosteronism, Addison disease, 
hypo- and hyperparathyroidism, and hypothyroidism [4]. Ventricular arrhythmias may 
occur due to excess or insufficient hormone activity on myocardial receptors, myocardial 
changes, electrolyte imbalances, or acceleration of progression of structural cardiac disor-
ders [4]. Sudden death and increased prevalence of ventricular arrhythmias and LVPs have 
been described in acromegaly [34]. Ventricular arrhythmia risk in acromegaly is related 
to the specific cardiomyopathy associated with left ventricular hypertrophy, myocardial 
fibrosis, comorbidities, especially hypertension and sleep apnea, and, possibly, to the 
direct effects of the growth hormone and insulin growth factor 1 on myocardial cells and 
cardiac ion channels [34, 35]. The prevalence of LVPs was significantly higher in patients 
with acromegaly compared to healthy controls, related to a longer duration of the disease, 
premature ventricular contractions, and left ventricular hypertrophy [34]. Herrmann et al. 
[36] also reported LVPs in patients with active and well-controlled acromegaly, as a sensi-
tive and early sign of myocardial injury, not related to muscle mass and body mass index, 
age, gender, and duration of the disease.

Thyroid hormone exerts several effects on the cardiovascular system [37]. Ventricular arrhyth-
mia and sudden cardiac death may occur especially in hypothyroidism, probably related to 
prolonged QT interval [4]. LVPs have been described in hypo- and hyperthyroidism, accord-
ing to a study including 278 patients with thyroid disorders even in subclinical dysfunctions 
[38]. A case of severe primary hypothyroidism was presented with an abnormal SAECG with 
LVPs, which disappeared with thyroxine therapy [37].

Future SAECG studies should also include patients with Cushingʼs syndrome, considering 
impaired cardiac function and structure due to the direct toxic effect of cortisol, increased 
blood pressure, central obesity, metabolic syndrome, hyperglycemia, and chronic hypokale-
mia [39]. Subclinical structural and functional cardiac alterations are very common but under-
diagnosed [39].

3. Intra-QRS potentials

IQRSPs are low-amplitude notches (the order of microvolts), usually invisible in the stan-
dard ECG, which may occur anywhere in the signal-averaged QRS [2] and may not pro-
long the normal QRS duration [40]. They were described as the signals with sudden slope 
changes [40]. Extracting IQRSPs is challenging, considering that they are very weak signals, 
with abrupt changes in slope, approximation errors, and the differences among patients with 
ventricular arrhythmias [41]. The root mean square values were highly correlated with the 
parameters of the abnormal intra-QRS potentials in healthy controls but not in patients with 
ventricular tachycardia [40].

A combination of IQRSPs and LVPs can improve predictive accuracy for patients of high risk 
of ventricular arrhythmias.
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4. P-wave potentials

P-wave signal-averaged electrocardiography, atrial late potentials (ALP), and abnormal intra-
P-wave potentials could detect patients at risk of supraventricular arrhythmias, especially 
atrial fibrillation [42, 43]. ALP originates from areas of delayed and heterogenous conduction 
within the atrial myocardium, responsible for the occurrence of AF [44].

Prolonged filtered P-wave duration (FPD) in P-wave signal-averaged electrocardiography has 
been used as a noninvasive, powerful predictor of AF, the first episode and recurrences, in lone, 
occult or silent atrial fibrillation, in stroke, heart failure, hypertension, hypertrophic cardiomy-
opathy, hypothyroidism and in patients undergoing coronary artery bypass surgery [44–46]. 
A prolonged SAECG P-wave duration was also mentioned in septal atrial defect, especially in 
patients who experienced AF, not corrected after atrial septal defect closure, and it was dem-
onstrated that atrial conduction disturbances occur early, requiring an early intervention to 
prevent the development of late AF (Table 2) [47].

There is no consensus about the cut-off point for FPD, which was 121 ms in hypertensive 
patients Auriti et al. [48], 124 ms in patients in sinus rhythm, 136 ms in hypertensive patients 
with a history of atrial fibrillation, 132 ms in patients with COPD, and 155 ms in several other 
studies [43, 45, 46, 49], differences related to different averaging and filtering methods [45]. 

Study population Results Follow up References

45 patients with exacerbation of 
COPD and 58 age-matched patients 
with no history of pulmonary 
disease in a control group

The patients with acute exacerbation 
of COPD have a higher incidence of 
supraventricular arrhythmias. P-wave 
SAECG analysis has little value in the 
arrhythmic risk evaluation of these  
patients

Isolated atrial 
premature 
beats (APB) and 
supraventricular 
tachycardia (SVT)

Buzea  
et al. [43]

37 hypertensive patients with a first 
AF episode
37 age- and sex-matched 
hypertensive controls without AF

P-wave temporal and energy 
characteristics can identify hypertensive 
patients at risk of AF recurrence

Dakos  
et al. [50]

68 stroke patients in sinus rhythm, 
without history of AF

ALP is a novel predictor of AF in  
stroke patients. P-SAECG should be  
considered in stroke

11±4 months Yodogawa 
et al. [44]

35 patients with atrial  
septal defect

Prolonged P-wave duration does not 
change after atrial septal defect closure

8±6 months after 
atrial septal defect 
closure

Thilen  
et al. [47]

4 generations kindred of 27 
individuals, 8 with AF on the ECG

Persons with AF and mutation carriers  
(on chromosome 5p15) can be identified  
by a prolonged P-SAECG duration

Darbar  
et al. [49]

41 patients with two or more 
symptomatic episodes of idiopathic 
and persistent atrial fibrillation after 
successful electrical cardioversion 
and 25 healthy controls

Fragmented electrical activity, use of 
amiodarone, and positive terminal portion 
of the Z-lead of the P-SAECG were 
independent predictors of recurrence of 
idiopathic and persistent atrial fibrillation

6 months, 12 
months, atrial 
fibrillation 
recurrences

Barbosa  
et al. [42]
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Besides FPD, Buzea et al. [43] also used the RMS voltages in the last 40, 30, and 20 ms of the 
filtered P-wave (RMS 40, RMS 30, and RMS 20), the root mean square voltage of the filtered 
P-wave potentials (RMS-p), and the integral of the potentials during the filtered P-wave 
(Integral-p), and defined ALP as FPD > 132 ms and RMS 20 < 2.3 μV.

Fragmentations are expected to occur throughout atrial depolarization and not only in its 
terminal part, and inter- and intra-atrial conduction may be impaired [42]. High-frequency 
fragmented electrical activity on the P-wave in patients with recurrent AF is the expression 
of atrial electrical heterogeneity, responsible for reentry circuits in the atria [42]. Barbosa et al. 
[42] used spectral turbulence analysis of the P-SAECG to detect abnormal intra-P-wave poten-
tials, demonstrating that fragmented electrical activity is an independent predictor of early AF 
recurrence.

5. Limitations

Most of the reviewed studies were observational, retrospective, with a low sample size and 
event rate, but careful statistical analysis may compensate the mentioned limitations. LVPs 
were detected using various equipment, commercially available or not, using different aver-
aging and filtering methods. On the other hand, filtered QRS duration was not measured 
sequentially, considering therapy in all studies, and there was a lack of uniformity of the 
normality criteria for the diagnosis of LVPs.

False positive LVPs were reported in patients with junctional rhythm with retrograde 
P-waves, atrial flutter, and incomplete bundle branch block [51–53]. Combined TD and spec-
tral turbulence analysis of the SAECG could improve its predictive value for fatal arrhyth-
mias [54]. The positive predictive accuracy nearly doubled compared to TD or STA, without 
loss in sensitivity and specificity [54]. A high number of false positive LVPs was reported 
in myocardial infarction, as well, and in the early postinfarction period; in inferior myocar-
dial infarction in time-domain analysis and anterior myocardial infarction according to STA 
[54, 55]. Delayed terminal conduction may increase the incidence of false positive results in 
SAECG, but the incidence of false positive LVPs was significantly lower if the combination of 
SAECG-QRS, LAS40, and RMS40 was used in patients with incomplete bundle branch block 
[53]. LVPs detected during sinus rhythm and lost after premature ventricular contractions 

Study population Results Follow up References

101 patients in sinus rhythm before 
coronary artery bypass grafting 
(CABG)

The risk of AF after CABG can be 
predicted preoperatively with P-wave 
SAECG

Budeus  
et al. [46]

55 hypertensive patients with a 
history of atrial fibrillation
40 hypertensive patients without a 
history of atrial fibrillation.

Hypertensive patients with paroxysmal 
atrial fibrillation can be detected while 
in sinus rhythm by signal-averaged ECG 
P-wave duration

Aytemir 
et al. [45]

Table 2. Atrial late potentials (ALP) and fragmented electrical activity on the P-wave.
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may be responsible for false positive LVPs, and those revealed by ventricular extrastimuli 
and concealed during sinus rhythm may cause false negative LVPs [56]. Sensitivity might 
be low in patients with ventricular tachycardia due to early activation of potential sites of 
ventricular tachycardia in sinus rhythm, falling within the normal QRS duration [56]. The 
number of false positive results may be reduced by signal-averaging during premature ven-
tricular stimulation [56].

Larger follow-up studies are needed to confirm the significance and usefulness of LVPs in 
different cardiac and noncardiac disorders.

6. Conclusions

This chapter brought back into focus SAECG, a noninvasive, low-cost, simple, and rapid 
method as a predictor of sudden cardiac death, using amplified ECG signals. Even though 
SAECG is not a routine screening test for sudden cardiac death risk and despite its low posi-
tive predictive value for arrhythmic events, LVPs and intra-QRS potentials provide valuable 
information not only in cardiac but also in extracardiac disorders, including psychiatric dis-
orders, epilepsy, chronic obstructive pulmonary disease, and endocrine disorders. P-wave 
signal-averaged electrocardiography predicts atrial fibrillation episodes in patients with sev-
eral disorders, such as hypertension, atrial septal defect, stroke, and chronic obstructive pul-
monary disease.
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Abstract

Noninvasive detection of fetal electrocardiogram (FECG) from abdominal ECG record-
ings is highly dependent on typical statistical signal processing techniques such as
independent component analysis (ICA), adaptive noise filtering, and multichannel blind
deconvolution. In contrast to the previous multichannel FECG extraction methods,
several recent schemes for single-channel FECG extraction such as the extended Kalman
filter (EKF), extended Kalman smoother (EKS), template subtraction (TS), and support
vector regression (SVR) for detecting Rwaves on ECG, are evaluated via the quantitative
metrics such as sensitivity (SE), positive predictive value (PPV), F-score, detection error
rate (DER), and range of accuracy. A correlation predictor that combines with multivar-
iable gray model (GM) is also proposed for sequential ECG data compression, which
displays better percent root mean-square difference (PRD) than those of Sabah’s scheme
for fixed and predicted compression ratio (CR). Automatic calculation on fetal heart rate
(FHR) on the reconstructed FECG from mixed signals of abdominal ECG recordings is
also experimented with sample synthetic ECG data. Sample data on FHR and T/QRS for
both physiological case and pathological case are simulated in a 10-min time sequence.

Keywords: noninvasive detection, FECG, FHR, gray prediction, data compression

1. Introduction

Fetal electrocardiogram (FECG) and fetal heart rate (FHR) represent crucial indices for clinical
examination and medical diagnosis during pregnancy [1–7, 9–11, 20, 31–36]. In the past
decades, multiple systems dynamically monitoring FECG [5, 6, 15, 19, 20, 25–27, 29–31, 35]
had been designed for the use of prenatal diagnosis in fetal heart disease, real-time surveillance
during both natural and cesarean delivery, as well as the antenatal and intrapartum assess-
ment. Due to the large amount of FECG data for processing in successive monitoring time,
enormous storage equipment with durable maintenance is necessary in the design of practical
devices [8]: for instance, the double-channel Holter system requires a memory of 82 megabits
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for sampled data storage with the resolution of 11 bits and 360 Hz for sampling rate per
channel every day. Hence, the design of dynamic system urges solutions for better improve-
ments in practical use for noninvasive FECG detection and compression in portable devices
and sensing utilities. A variety of typical FECG extraction techniques [2–5, 9, 14–17, 19, 20,
23–26, 35, 36] had been established for both theoretical study and subsequent practical hard-
ware design [18, 25, 29]. A few classical compression methods [13] introduced for efficient data
restoration include polynomial fitting, predictive coding, and orthogonal transform-domain
compression, where the principle of data compression is to minimize redundancy at compar-
atively low penalty of distortion and losing useful information [8]. The correlative models
exploiting the correlation information between adjacent QRS waves for sequential prediction
suggest an efficient scheme for FECG data compression [8].

The classical schemes for noninvasive FECG extraction over the past 30 years mainly comprise
of adaptive signal processing with noise cancellation, spatial filtering techniques, and singular-
value decomposition (SVD), to name a few [19, 25]; while the major shortcomings of these
schemes were high sensitivity of fetal location and maternal movements, difficulties in
extracting P/Twaves, and incomplete capture of ECG diagrams [19, 35, 36]. In statistical signal
processing, independent component analysis (ICA) [10, 16] aims at computationally separat-
ing a mixed signal (with multivariate components) into non-Gaussian signals, where the
decomposed signals are assumed to be statistically independent within each other. A variety
of methods have been developed for noninvasive FECG extraction since the ICA technique
was applied in this research field such as the fourth-order cumulant-based scheme with
diagonal approximation proposed by Lathauwer et al. [16], the Joint Approximate Diagonali-
zation of Eigen-matrices (JADE) scheme by Zarzoso [34], Hyvarinen’s fast invariant-point
method with the ICA principle [10], and the wavelet transform-based infomax algorithm by
Jafari and Chambers [12]. Theoretical study on noninvasive FECG extraction methods also
employed the ICA-based JADEmethod with high-order blind identification, the joint detection
schemes such as the JADE algorithm with multiple unknown signal extraction, multichannel
blind deconvolution [37], and applying the sparse representation of FECG components
derived from ICA in the compressed domain [21]. While some previous techniques for nonin-
vasive FECG detection had been considerably mature enough, the challenging issues [4, 28]
that have been recognized consist of saving computational cost in abdominal ECG recordings,
performing efficient restoration on ECG data, and realizing the practical design (as oriented for
low cost, low power, and high integration [29]) for portable FECG monitoring systems. As a
result, meeting the balance of recent technical advances with the experimental design on
practical systems for noninvasive FECG data-processing devices becomes a crucial task within
our investigation.

In this chapter, we present a general study on several categories of algorithms in the field of
noninvasive FECG detection, and carry out a performance analysis via several metrics on the
state-of-the-art schemes for extracting FECG using sample databases [2, 19, 21]. We proposed a
unified approach for the dynamic system design on FECG detection, with a block diagram on
noninvasive ECG extraction by collaborating data-processing techniques on weak signal detection
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and parameter estimation [8]. Utilizing the correlations between adjacent QRS waves of mixed
FECG and maternal ECG (MECG), we derived an improved scheme for ECG compression by
predicting minimum mean-square error (MMSE), performing integer wavelet transform, quanti-
zation, run-length coding, and arithmetic coding for better realization of FECG data compres-
sion [8]. Considerably high compression ratio (CR) with feasible lower distortion in contrast to
Sabah’s scheme is achieved in condition of preserving the most useful message in the compressed
FECG data sequence. Simulations rely on the GM(1, 1) model for gray prediction on CR and
percent root mean-square difference (PRD) [8]. We also use the sample synthetic ECG data to
fulfill the task of automatic estimation on fetal heart rate (FHR) from the reconstructed FECG.

2. Methodology

The waveform of ECG as depicted in Figure 1 comprises P, T waves, and the central QRS
interval in a regular period of time [8, 24]. Since continuous ECG monitoring explicitly indi-
cates the exposure of regular heart rate, heartbeat rate with amplitude and duration, prior
information on the symptoms of potential heart disease is the most important data reference
on medical diagnosis. FECG represents weak signals containing a few strong interferences
such as MECG with baseline wander, power line interference and additive noise, while the

Figure 1. A diagram on the waveform of ECG in a normal period.
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noninvasive techniques aim to eliminate these strong disturbances by directly or indirectly
measuring FECG via a few properly located electrodes on the maternal abdomen during
pregnancy.

Previous schemes such as fetal scalp electrode monitoring, belong to the category of invasive
FECG detection (by either scalp electrode or vaginal ultrasound). However, the invasive
schemes have obvious shortcomings such as causing pains and injury to the maternal body,
and inducing potential risks on uterus infection to the developing fetus. The fetal ECG detec-
tion schemes discussed in this chapter belong to noninvasive techniques, indicating no damage
or penetration through maternal or fetal skins.

In general cases on noninvasive detection, the mixed ECG was acquired by multiple electrodes
in different locations from both thoracic and abdominal regions on a pregnant woman. For
instance, the common diagnostic tool for noninvasive ECG recordings usually adopts 8-lead or
12-lead electrode placement (with symmetric electrodes) [2, 20, 41], which had been derived via
clinical validation in a couple of periods. The FECG components in multi-lead abdominal
recordings are mutually dependent with each other on the fetal position and the electrical
conduction toward the maternal abdominal skin. Due to the variations of each component,
calculating linear combinations of multichannel outputs generally enhance the signal-to-noise
ratio (SNR) of FECG [20]. Meanwhile, since the main electrical axis of the fetal heart position is a
priori uncertain, in order to increase the possibilities that the calculated nonphysiological leads
contain significant FECG components, it is often chosen to compute a set of four linear combi-
nations for equal weights, that is, the position angles correspond with 0�, 45�, 90�, and 135� for
the 8-lead placement [2, 20]. Similarly, a 12-lead ECG placement (12 leads calculated using 10
electrodes, in which 6 chest electrodes provide information on the heart’s horizontal plane and 4
limb electrodes on the heart’s vertical plane) illustrates a more cohesive diagram on the accurate
electrical activity of the heart by recording information through 12 different perspectives, where
the instruction with specific details on the 12-lead placement guide was illustrated in Ref. [41].
Figure 2(a) and (b) illustrate the typical 8-lead electrode placement [2, 20] for noninvasive FECG
detection and 12-lead electrode replacement [41] for ECG monitoring, respectively.

Among the representative FECG extraction schemes as mentioned above, while blind source
separation (BSS) through ICA [16] was previously regarded as having achieved considerably
satisfactory results, the demands for multiple signal inputs (typically 8 channels), in addition
to the pre-assumption of linearity between MECG and maternal component in the abdominal
ECG recordings and monitoring, were put forward as setbacks toward real-time needs in
practical implementations [19]. While simulations on the actual relationship between MECG
and maternal component in the abdominal ECG were recorded as single-channel inputs, a few
other nonlinear schemes proposed recently can be enumerated as given below: the Bayesian
filtering framework using the modified dynamic models via several model-based filters such
as the extended Kalman filter (EKF), extended Kalman smoother (EKS), unscented Kalman
filter (UKF), and wavelet denoising for synthetic ECG data [22, 26]; the ANFIS system [4], in
contrast to normalized least mean squares and polynomial networks, for the identification and
extraction of FECG from the aligned MECG; the cascaded framework of EKF (for MECG
estimation) with ANFIS (for FECG extraction) on both synthetic and actual ECG data in
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contrast to single EKF, EKS [3], template adaptation (TA) [2], nonparametric detection scheme,
and modified template subtraction on sequential data processing [19]; the singular spectrum
analysis-based fetal heart signal extraction [9], the fetal heartbeat detection algorithm by the
integration of Hilbert transform and nonlinear state-space projections [36], and by supporting
vector regression [35]; and a few other clinically adopted noninvasive FECG detection methods
from multilead abdominal ECG recordings, see Refs. [4, 5, 15, 17, 20, 33], and the references
therein.

For nonstationary signals such as ECG, classical evaluation criteria such as the MMSE princi-
ple and predictive coding may generate considerably large prediction errors especially when
the amplitude of signal depicts quick fluctuation [8]. Consider two adjacent QRS waveforms
with strong relativity in successive phases, let x(n) and y(n) be the input and output of ECG
signals, respectively; we observe a sequential data of p points of the former QRS waveform in
order to predict the present waveform at the minor cost of generating prediction errors. The
predictor output is expressed as [8]:

yðnÞ ¼
Xp

i¼1

αixðn� i� TÞ (1)

where αi denotes the coefficients of system cascades which can be obtained by Yule-Walker
equations and T stands for the average time period between the intervals of R waves.

The prediction error ε(n) can be calculated via [8]

εðnÞ ¼ xðnÞ � yðnÞ ¼ xðnÞ �
Xp

i¼1

αixðn� i� TÞ (2)

where a set of consecutive p points represents the orders of correlation predictor.

Figure 2. The illustrations of electrodes on: (a) configuration of 8-lead placement for fetal ECG detection; (b) configura-
tion of 12-lead placement for ECG monitoring: the 6 chest electrodes V1–V6 show the locations on precordial placements,
the 4 limb electrodes show the locations on extremity placements (RA–right arm, LA–left arm, RL–right leg, LL–left leg).
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Since the prediction is processed between two adjacent QRS waveforms, let us denote such
kind of prediction as the twin-R correlative prediction [8]. In mean-square scales, we express
the energy Ep of prediction errors as [8]

Ep ¼ E½ε2ðnÞ� ¼ E xðnÞ �
Xp

i¼1

αixðn� i� TÞ
" #28<

:

9=
;

¼ E x2ðnÞ � 2
Xp

i¼1

αixðnÞxðn� i� TÞ þ
Xp

i¼1

αi

Xp

j¼1

αjxðn� i� TÞxðn� j� TÞ
8<
:

9=
;

¼ Rð0Þ � 2
Xp

i¼1

αiRðiþ TÞ þ
Xp

i¼1

αi

Xp

j¼1

αjRðj� iÞ

(3)

The correlation coefficients of input ECG waves can be calculated via [8]

RðmÞ ¼ 1
N

XN�1

n¼1

xðnÞxðn�mÞ (4)

Simplifying Eq. (4) by taking ∂Ep

∂αi
¼ 0 to obtain a minimum for Ep (m ¼ 0, 1,…, p �1) yields [8]

Xp�1

i¼1

αiRðm� iÞ ¼ Rðmþ TÞ, i ¼ 0, 1,…, p–1 (5)

Constructing the matrix of correlation coefficients by combining Eqs. (3)–(5) yields the linear
algebraic equations as follows [8]

Rð0Þ Rð1Þ ⋯ Rðp� 1Þ
Rð1Þ Rð0Þ ⋯ Rðp� 2Þ
⋮ ⋮ ⋱ ⋮

Rðp� 1Þ Rðp� 2Þ ⋯ Rð0Þ

2
664

3
775

α0

α1

⋮
αp�1

2
664

3
775 ¼

RðTÞ
RðT þ 1Þ

⋮
RðT þ p� 1Þ

2
664

3
775 (6)

Solving the equation group in Eq. (6) as above yields the numerical coefficients of each αi.

The lifting wavelet transform (LWT) has been recognized as a strong implementation when
combined with a few algorithms such as integer square zero-tree wavelet coding [8]. Splitting,
predicting, and updating symbols, are three steps in the lifting scheme of a typical LWT. The
proposed scheme is presented as follows: the first step is to split the ECG data sequence {ej}
into two sequences {oj-1} and {ej-1} that stands for odd and even numerals via [8]

split ðejÞ ¼ ðej�1, oj�1Þ (7)

Second, with respect to the predictor filter group P and the earlier even sequence {ej-1}, the odd
sequence {oj-1} is predicted by exploiting correlativity information such as [8]
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oj�1 :¼ oj�1 � Pðej�1Þ (8)

The last step of updating claims that some integral characteristics as those of integrity for the
original {ej} need to be preserved for constructing a better subset {ej-1}. As a result, we adopt an
updating filter U that exploits the discrepancy between a specific parameter (i.e., mean, vari-
ance, or wavelet vanishing moments) and {ej}, where this step is proceeded by [8]

ej�1 :¼ ej�1 þUðoj�1Þ (9)

The inverse transform of LWT for signal reconstruction can be similarly expressed via [8]

ej�1 :¼ ej�1 �Uðoj�1Þ
oj�1 :¼ oj�1 þ Pðej�1Þ
ej ¼ Merge ðej�1, oj�1Þ

8<
: (10)

The iteration procedures as performed in Ref. [8], applied a (4, 2) LWT for the decomposition
and reconstruction of ECG signals, which can be proceeded by [8]

oj½n� :¼ ej�1½n� þ 1
16

ðej�1½nþ 2�Þ � 9ðej�1½nþ 2�Þ þ ej�1½n� 1�Þ þ ej�1½n� 1�� �þ 1
2

� �

ej½n� :¼ ej�1½n� þ 1
4
ðoj½n� þ oj½n� 1�Þ þ 1

2

� �

8>>><
>>>:

(11)

where ⌊:⌋ denotes the execution of the round-off operation.

The advantages of LWT compared to other wavelet transform methods are displayed in the
following scenarios [8]: (i) less dependence for the down-sampling of low pass and high pass
signal components and easier realization on the inverse operation of LWT; (ii) reduced execu-
tion times by avoiding calculating floating points coming from the integer coefficients; (iii) the
implementation of hardware circuits is also much easier; and (iv) guaranteed quality for signal
recovery free of boundary continuation in any type.

The procedure of our proposed twin-R correlation predictor for improving sequential ECG
compression is presented as below [8]: let us denote the implement D as the first-order time
delay and Pi as the location of the ith R-wave;Aj ¼ {αj,0, αj,1,…, αj,p-1} stands for the aggregated
coefficients for the twin-R interval of the jth ECG sequence. We take the following steps to
perform this task:

Step 1. For the original ECG signal with length N, initially perform the first-order prediction to
reduce the DC components of the signals; let z(n) be the redundancy within smooth district of
the ECG samples calling for elimination, the residual term z(n) is now expressed as

zðnÞ ¼ xðnÞ � xðn� 1Þ, n ¼ 0, 1, …, N � 1: (12)

Step 2.While Pi, the locations of R-wave for each QRS waveform, have been identified, compute
each Ti by deducing Ti ¼ Piþ1 � Pi, and estimate the central position of the adjacent twin-R
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waves, where mi ¼ (Piþ1 þ Pi)/2. This step speeds up higher recognition rate and operation time,
and bears negative effects such as noise interference or baseline shift.

Step 3. Perform the correlation prediction for z(n) similar to Eq. (2):

dðnÞ ¼ zðnÞ �
Xp�1

k¼0

αj, kzðn� i� Ti�1Þ, mi � l ≤mi þ l, l ¼ min mi�1 �mi�2, mi �mi�1ð Þ=2, i ¼ 1,…, Nj:

(13)

where d(n) denotes the signal of prediction error, p and Nj stand for the order of predictor and
the R-wave counts of the jth ECG data sequence, respectively. Without loss of generality, we
adopt p ¼ 4. The kth prediction coefficient αj,k of each compressed 16-bit ECG sequence was
obtained via the splitting process in Step 1. Due to the slow drift for the QRS waveform, an
interval of 30 seconds was used to partition this data stream. Note that we implemented the
same predictors for continuous QRS waveforms of the same ECG data in order to reduce
computational cost and enhance the efficiency for ECG data compression.

Step 4. Update the (4, 2) LWT on the signal d(n) via Eq. (12), where the length of w(n) is
preserved as N. For the subband signal w(n) containing {oi(n) ¼ 1,2,3,4} and the approximated
signal e4(n), their length are constructed as N/2, N/4, N/8, N/16, and N/16, respectively.

Step 5. Perform scalar quantization, run-length coding, and arithmetic coding for w(n). While a
few zero-coefficients appear after quantization toward w(n), these successive zeros can be
removed via run-length searching so as to shorten the ECG data sequence. Variable quantiza-
tion coefficients are selected in this procedure; after run-length coding each ECG data sequence
is merged by three parts: the constructed bit streams, vector Pi for R-wave localization, and the
twin-R predictor coefficients Aj ¼ {αj,0, αj,1, …, αj,p-1}.

The flowchart of this scheme as described above is depicted in the block diagram of Figure 3,
where the prediction step is associated with the compressed ECG data stream.

Since the proposed scheme is invertible for decompression, we need to observe the correlativity
and fluctuation tendency between two sequential ECG data; hence, a Lemma is presented for the
derivation of ECG data prediction via the single-variable gray model [8].
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Lemma 1 [8]: Consider a stationary sequence T0 ¼ {T0(k)| k ¼ 1,…, n} ¼ {T0(1),…, T0(n)},
where k represents the time point. Let us observe a number of m sequences as reference where
Ti ¼ {Ti(k) | k ¼ 1, 2,…, n} ¼ {Ti(1), Ti(2),…, Ti(n)}, i ¼ 1, 2,…, n. Define ξk as the correlation
coefficient of the kth reference sequence with respect to the starting sequence T0 at time k,

ξk ¼ mini mink jT0ðkÞ � TiðkÞj þ ρmaxi maxk jT0ðkÞ � TiðkÞj
jT0ðkÞ � TiðkÞj þ ρmaxi maxk jT0ðkÞ � TiðkÞj (14)

where ρ ∈ [0,1) denotes the resolution coefficient (and without loss of generality it is often
taking expectation of ρ¼ 0.5), mini minkjT0ðkÞ � TiðkÞj and maxi maxi jTiðkÞ � T0ðkÞj represents
the minimum and maximum difference value between two-levels, respectively. In the gray

system theory, ri ¼ 1
n

Pn
k¼1 ξk denotes the relevance of sequence Ti to T0. Geometric similarity

on two sequences reflects the degree of correlativity.

Consider the ith sequence Ti¼ {Ti(1), Ti(2),…, Ti(n)}, the initialized sequence of original Ti is
written as T ¼ ð1, Tð2Þ=Tð1Þ,…TðnÞ=Tð1ÞÞ, and the correlation factor σi can be computed via

σi ¼
XN

k¼1

kTiðkÞ �
XN

k¼1

TiðkÞ
XN

k¼1

k
n
, which has the possibility of being either positive or negative.

For instance, in the simplest case of i ¼ 1, 2, the sequential expression of Ti is formulated as [8]

Ti ¼ 1,
Tið1Þ
Tið2Þ ,

Tið1Þ
Tið3Þ ,…,

Tið1Þ
TiðkÞ

� �
, i ¼ 1, 2; k ¼ N (15)

According to Lemma 1, the degree of correlativity is measured by solving Eq. (14). Note that if
signðσ1=σnÞsignðσ2=σnÞ ¼ 1, a positive relevance is justified between T1 and T2; conversely, a
negative relevance is justified when signðσ1=σnÞsignðσ2=σnÞ ¼ �1. In more general cases such
as ECG data sequence, the correlation factor σn can be approximately estimated via [8]

σn ¼
Xn

k¼1

k2 �
Xn

k¼1

k2
 !,

n (16)

In the gray system theory, the single variable GM(1, 1) model is often applied to predict the
upcoming sequence number and estimate the missed numerical values between time intervals,
for the processing of ECG data, we just equalize the corresponding parameters in the time
domain, and deduce the gray predictor in the scenario as follows:

The least square (LS) update consists of a whitening procedure through constructing a differ-
ential equation in the whitening process with its estimate, and a discretization process for the
residuals, which is formulated as [8]:

dTð1Þ
i

dt
þ aTð1Þ

i ¼ u, â ¼ ða,uÞT (17)

â ¼ ðBT
i BiÞ�1BT

i Y1 (18)
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Bi ¼

� 1
2
ðTð1Þ

i ð1Þ þ Tð1Þ
i ð2ÞÞ 1

� 1
2
ðTð1Þ

i ð2Þ þ Tð1Þ
i ð3ÞÞ 1

⋮ ⋮

� 1
2
ðTð1Þ

i ðn� 1Þ þ Tð1Þ
i ðnÞÞ 1

2
66666664

3
77777775
,Yi ¼

Tð1Þ
i ð2Þ

Tð1Þ
i ð3Þ
⋮

Tð1Þ
i ðnÞ

2
666664

3
777775

(19)

where Bi and Yi denote the data matrix and data vector of GM(1, 1) model, respectively.

A general solution to the matrix equations above is given by [8]

Tð1Þ
i ðkþ 1Þ ¼ Tð0Þ

i ð1Þ � u
a

� �
eak þ u

a
(20)

Determining the model parameters (a, u) yields the past or upcoming numerical values from
this predictive GM(1, 1) model. Note that the constructed gray model indicates coincidence
with the time-variant extrapolate prediction. In harsh conditions, due to the scarcity of prior
information and ambiguity of system on ECG data processing, this predictive GM model is
useful since only four adjacent continuous data points are needed from the least data sample.

Because the quality of FECG reflects crucial information on fetal heart rate (FHR) and its beat-to-
beat variability [9], the cascaded system design for noninvasive FECG extraction may often
involve apost-processing stage such as adaptive noise cancellation orwavelet denoising [12, 22, 34].
FHR is usually estimated via the ratio of 60 to the average time period (s) on a sequence of
adjacent intervals from R waves, while estimating FHR technically requires shaping fetal QRS
complexes by capturing data via multichannel maternal abdominal ECG recordings [2, 15, 19–
21, 23, 26, 30, 32], and by adopting a few other sensing technologies through the Doppler
ultrasound devices [37], fetal phonocardiography [1], as well as superconducting magneto-cardi-
ography [33]. Wearable devices on ECG rhythm recording via potential mapping on the wrist/
arm surface skin [42] also urge collaborative concerns from industry field toward our theoretically
proposed algorithmic study.

3. Performance metrics

The diagnostic tests in biomedical engineering often employ a set of performancemetrics in order
to evaluate the validity of tests in the subjects on study. In ECG detection, the parameters of true
positive (TP), false negative (FN), and false positive (FP) are called from the counts of detected
R-peaks. We denote TP as the number of correctly detected R peaks, FN stands for the number of
missed R peaks, and FP represents the number of noise spikes detected as R peaks. Hence, the
measures of sensitivity (SE) and positive predictive values (PPV) are formulated as [19, 30]:

SE ¼ TP
TPþ FN

� 100% (21)
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PPV ¼ TP
TPþ FP

� 100% (22)

The F-score, known as the harmonic mean of SE and PPV, is expressed as [2, 21]:

F–score ¼ 2 � SE� PPV
SEþ PPV

¼ 2� TP
2� TPþ FPþ FN

(23)

Since the total number of R-wave peaks is the sum of TP, FN, and FP, the detection error rate
(DER) is now denoted as [30]:

DER ¼ FPþ FN
TPþ FPþ FN

� 100% (24)

For each DER, the metric of accuracy ¼ 1 – DER yields the same expression as defined in
Ref. [19].

The percent root mean-square difference (PRD) represents a fidelity measure for some data
compression scheme on the reconstructed/predicted signal in contrast to the original ECG,
where the PRD value is numerically calculated as follows [13]:

PRD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

n¼1

½xðnÞ � yðnÞ�2
s

Xp

n¼1

x2ðnÞ
� 100 (25)

where x(n) and y(n) correspondingly represent samples of the original and the reconstructed/
predicted ECG data sequences and the length of sequence is p.

Regarding the compression ratio (CR) defined as the proportion of uncompressed size to
compressed size for a finite data sequence, or the ratio of uncompressed data rate to com-
pressed data rate for streaming media signals of infinite size such as video or audio [38], for
each compression scheme, there is a PRD value corresponding to a required CR.

For synthetic ECG data, consider the abdominal ECG w(n) in case of a single-channel dynamic
model, which is nonlinearly synthesized via the MECG m(n), FECG f(n), and the additive
white noise η(n), and hence, the composite signal is modeled as [19]:

wðnÞ ¼ m̂ðnÞ þ f̂ ðnÞ ¼ m̂ðnÞ þ f ðnÞ þ ηðnÞ (26)

where m̂ðnÞ and f̂ ðnÞ denote the nonlinear expressions of MECG and FECG, respectively. Since
the noise power in η(n) can be adjusted to test the performance of each noninvasive FECG
detection scheme [19, 30], for some ECG data sequence with a length of p periodical R peaks,
the fetal to maternal signal-to-noise ratio (fmSNR) can be calculated via [19]:
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f mSNR ¼ 10 log10

Xp

n¼1

½f̂ ðnÞ�2

Xp

n¼1

½m̂ðnÞ�2

0
BBBB@

1
CCCCA

(27)

Up till now, we have presented a concise study for the keynote noninvasive techniques and
quantitative metrics on FECG detection, with an emphasis on single-channel FECG extraction
via nonlinear dynamic models. We proposed a flowchart of processing ECG data sequence by
means of LWT and the unified twin-R correlation predictor by implementing GM(1,1) model
for ECG data compression.

In the next section, we will present three sets of experiments for the qualitative and quantita-
tive evaluation on several noninvasive FECG detection schemes [2, 19, 21], the proposed twin-
R correlative ECG compression scheme via a widely used ECG database [8], and automatic
FHR estimation over a sample sequence of synthetic ECG data [40].

4. Experimental results

We employ sample ECG data from several databases to perform our experimental study: the
CinC Challenging Data as referenced in Ref. [2] (also known as the Physionet challenge dataset
in Ref. [21]), a noninvasive fetal ECG database in Ref. [19], sample ECG sequences from MIT-
BIS Arrhythmia Dataset [8], and some synthetic ECG data from Dr. Igal A. Sebag’s exam-
ple [39]. The main set of experiments with demographic data on sample patients with clinical/
synthetic information were summarized in Table 1.

The first set of experiments mainly recorded the quantitative evaluations on several represen-
tative noninvasive FECG detection schemes based on single-channel abdominal ECG record-
ings. We studied the test by Panigrahy and Sahu [19] where the QRS complex of FECG
displays the most visible features after the preprocessing step of eliminating baseline wander
and power line interference from MECG, then each scheme using noninvasive FECG database
was implemented to test the detection performance within 60 s of measuring R waves.

The numerical results for SE, PPV, F-score, and DER on nine methods for FECG detection are
illustrated in Table 2, where the first column chronologically enumerated the tested FECG
detection schemes which correspond to the average score on each measure for the recorded R
waves, and the last column specified the range of accuracy over a certain length of time
duration [2, 19, 21].

From Table 2, we justify that the SE metric on eight FECG detection schemes achieved over
90% except the TA scheme; the metrics of PPVand F-score on seven schemes reached over 90%
except for SVD and TA; regarding DER, SVD shows the worst performance while it is still as
low as 18.7%. Among all the five parameters on the referred quantitative analysis, EKS þ
ANFIS displays the best overall scores for each metric, while EKF þ ANFIS indicates the
second best results on F-score, DER, and other range of accuracy.
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The second set of experiments was conducted by using the standard database on MIT-BIS
Arrhythmia [8] with some original sample data of mixed MECG and FECG. We first investi-
gate the predicted output of errors in comparison to real data from a mixed ECG sequence.
Figure 4 displays four subplots, where (a) depicts an original sequence in time interval [0:1600]

Datasets Techniques Demographic data Comments

Set 1: CinC
Challenging [2];
and Set 2:
Noninvasive FECG
databases [19]

Nine schemes on
noninvasive FECG detection

Set 1: 10 pregnant women, ages
ranging from 21 to 33 years
(27.1 � 4.3 years), gestational
age: 20–28 weeks (25.0 � 2.5
weeks).
Set 2: Uncertain number of
patients, gestational age: 21–40
weeks

Set 1: Comprises of 24 clinically
acquired abdominal recordings
(20-min each), healthy and
pathological patients were both
present while no ectopic beats
detected for either mother or fetus.
Set 2: Includes 55 multichannel
ECG recordings

Set 3: MIT-BIS
Arrhythmia
database

Both linear and twin-R
correlative predictors;
(4, 2) LWT compression;
GM(1, 1) grey prediction

Set 3: Sequential ECG data on
25 men aged 32–89 years and
22 women aged 23–89 years
were included in the subjects, in
which approximately 60% were
inpatients.

Set 3: Contains a sum of 48 half-
hour excerpts of two-channel, 24-
hour ECG recordings selected from
47 subjects (there are two records
from the same subject) studied by
the BIH Arrhythmia Laboratory at
MIT in 1975–1979.

Set 4 and Set 5:
both samples on
synthetic maternal
and fetal ECG
data;

Adaptive least-mean-square
(LMS) or recursive-least-
square (RLS) noise
cancellation; dynamic
thresholding

Set 4: Provides no specific
details on the average
gestational age, typically in the
third trimester (28–40 weeks),
normal pregnancy;
Set 5: Gestational age of fetus
are �40 weeks (right before
delivery), including samples of
physiological and pathological
fetus.

Set 4: Synthetic data simulating
maternal heart rate of 80–90 bpm
with peak voltage 3.5 millivolts and
fetal heart rate distributed from 120
to 160 bpm with peak voltage
�0.2 millivolts.
Set 5: similar synthetic data with
maternal heart rate of 65–85 bpm
and fetal heart rate of 110–150 bpm
and T/QRS range of 0.05–0.1 [43].

Table 1. Summary on the main set of experiments for noninvasive techniques on ECG detection and monitoring.

Detection scheme SE (%) PPV (%) F-score (%) DER (%) Range of accuracy (%)

SVD 90.2 89.2 89.7 18.7 70.6–88.3

EKF 91.5 93.3 92.4 14.2 78.1–97.5

TS 92.0 90.9 91.5 15.7 71.3–91.9

Nonparametric 93.2 92.1 92.7 13.7 79.1–92.3

EKS 92.6 93.6 93.1 13.0 79.1–92.5

TA 86.3 85.5 85.9 16.9 74.8–93.1

EKF þANFIS 92.8 94.9 93.8 11.8 81.1–94.2

EKS þ ANFIS 93.8 96.0 94.9 9.80 83.8–97.6

CS-based ICA 92.5 92.0 92.2 16.5 80.2–96.4

Table 2. Quantitative scores of average SE, PPV, F-score, DER, and range of accuracy on noninvasive FECG detection
schemes using a sample FECG database (duration ¼ 60 s).
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of the extracted FECG, (b) illustrates the first-order linear prediction, (c) presents the fourth-
order linear prediction, and (d) shows the output of twin-R correlative prediction. We justify
that the fourth-order predictor contains more false detections but less average errors compar-
ing to the first-order predictor, while the proposed twin-R correlation predictor shows reduced
average errors in contrast to the former two linear predictors [8].

We applied LWT for sequential ECG compression in time interval [400:1000] with additive
randomwhite noise (fmSNR¼�10 dB). Figure 5 displays the original ECG and its compressed
output. Comparing Figure 5(b) to Figure 5(a), we justify that the compressed ECG preserved
most details of the original data with mild penalty of energy lost in the amplitude which comes
from the quantization error as well as the loss from round-off decomposition in LWT.

Let us employ the compression ratio (CR) and percent root mean-square difference (PRD)
[8, 12] to measure the quantitative compression performance on sequential ECE data: the tests
as described below randomly selected 24 cases out of 48 from MIT-BIS Arrhythmia Database
as testing samples. The proposed scheme recorded PRDs in a range of variable CRs with
different quantization coefficients in comparison to those obtained by the Sabah’s method.

(a)

(b)

(c)

(d)

Figure 4. (a) Originally detected FECG; sequential data output by: (b) single linear prediction; (c) fourth-order linear
prediction; (d) twin-R correlative prediction. Peak voltage denotes the location of R waves.

Figure 5. Proposed scheme: (a) original samples (SNR ¼ 10 dB); (b) compressed output via (4, 2) LWT.
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We averaged each numerical value of PRD that corresponds to different CR, and enumerated
the numbers on both the two schemes in Table 3. From the column comparison, we justify that
by gaining the same CR ranging from 2.0 to 19.0, our scheme achieved much smaller PRDs
than those of Sabah’s, which suggests availability of achieving lower distortion rate by the
proposed correlative prediction.

While the CR is under determination for both schemes on compression, let us consider CR as
time points and PRD as the sequential output, a GM(1, 1) for the “time-sequence” T1, T2 is now
constructed in order to obtain the predictive value of PRDs. From Eqs. (14) to (16), we are able
to justify the positive correlativity between T1 and T2. From Eqs. (17) to (20), the solution to
predictive GM(1, 1) model after LS updates and iterations is formulated as [8]:

T1 : T1
ð1Þðkþ 1Þ ¼ ð2:10� 328:91Þe�0:0026784k þ 328:91 (28)

T2 : T2
ð1Þðkþ 1Þ ¼ ð1:49� 150:95Þe�0:0049531k þ 150:95 (29)

Table 4 illustrates each value of the predicted PRDs obtained by our scheme versus Sabah’s in
condition of “extrapolated” and “interpolated” CRs. From column comparison, we justify that
the GM(1, 1) prediction model performs well for the “extrapolated” CRs and presents closer
predicted results in contrast with those of real PRD values in Table 3; most notably, if CRs
become large enough, higher order polynomial fittings can be less reliable than predicting the
“interpolated” time points while the functional fittings make less sense for extrapolated points,
that is an auxiliary reason for using the gray system model on prediction.

CR 2.0 3.0 5.0 7.0 9.0

PRD Sabah 2.10 3.22 4.71 6.09 7.68

Proposed 1.49 1.81 2.75 3.78 5.01

CR 11.0 13.0 15.0 17.0 19.0

PRD Sabah 9.33 11.1 12.3 14.0 16.8

Proposed 6.32 7.67 9.20 11.3 13.6

Table 3. PRD comparison: the proposed scheme versus Sabah’s.

CR 4.0 8.0 12.0 16.0 20.0

PRD Sabah 3.85 7.31 10.7 14.1 17.5

Proposed 2.96 5.87 8.24 11.5 14.2

CR 21.0 23.0 25.0 27.0 29.0

PRD Sabah 18.3 20.0 21.6 23.3 24.9

Proposed 14.9 16.3 17.6 18.9 20.2

Table 4. Predicted PRD (by GM(1,1)) of the proposed scheme versus Sabah’s.
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The third set of experiments illustrates the simulations of extracting FECG from MECG with
additive noise with an adaptive least mean square (LMS) noise canceller to perform this task,
which are depicted in Figure 6 as modified from Dr. Igal A. Sebag’s example [39] on both
maternal and fetal heartbeat detections using sample synthetic ECG data. The six subplots
permuted in the top row and in the middle row of Figure 6 show the measuring procedure till
the recovery of fetal heartbeat, where the convergence of adaptive noise cancellation takes up
to 5–6 s on average. With the assumptions on a sampling rate of 4000 Hz and time duration of
40 s, the maternal heart rate is 89 beats per minute (bpm), and the fmSNR is adjusted as
approximately �11.5 dB so as to simulate a test example on the third trimester of pregnancy.
The fetal heart rate (FHR) is apparently faster than that of the mother’s, normally ranging from
120 to 160 bpm and descending with the progress of gestational weeks. Since the measured
FECG via abdominal recordings is often dominated by the maternal heartbeat signal propa-
gating from the chest cavity to maternal abdomen, such path of propagation is constructed as a
finite impulse response (FIR) filter with 10 randomized coefficients, with uncorrelated additive
random noise which is 0.02 time of the original signal. While the reference signal of MECG is
still surrounded with noise, an adaptive LMS filter with 15 coefficients and a step size of
0.00007 can be applied for simplicity of use. Note that the remainder of the error signal after
the convergence of the system indicates an estimate of the fetal heartbeat signal associated
with the measurement noise.

The bottom row of Figure 6 comprises three subplots, where the left one shows the filtered
FECG in contrast to its reference, the middle one indicates peak detection by applying dynamic
thresholds to the filtered FECG and using vertical lines to mark each peak on any FECG signal

Figure 6. Automatic fetal heart rate detection on the reconstructed FECG from the original heartbeat signals of both
mother and fetus.
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crossing the threshold, and the right one depicts the reconstructed FECG data with variations
and the automatically calculated FHR equals 135 bpm during the time interval of 36–40 s,
which coincides with those normal diagnostic examples in FHR monitoring before delivery.

The experiments were conducted and retested via the software platform of MATLAB R2011a
and higher versions in a Dell laptop with Core i7-4500U 1.80G CPU and 8GB RAM. We plan to
include some specific analysis on the single-channel recordings for both healthy and patholog-
ical patients during the second and third trimester of pregnancy, and how the theoretical
noninvasive FECG extraction algorithms influence the reconstruction accuracy of ECG signals
from clinical experiments in later investigations.

Simulations on a real-life monitoring case were included in the two diagrams of Figure 7,
where the occurrence of a typical scene on fetal hypoxia was illustrated in types of two
parameters such as FHR (ranging from 70 to 150 bpm) and T/QRS (30 samples) in a 10-min

Figure 7. Simulations of sample data on FHR and T/QRS [43] in a 10-min time sequence for cases of: (a) physiological
recordings (top); and (b) pathological recordings (bottom).
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recording [43]. The top diagram and the bottom diagram depict recordings of a physiological
sample and a pathological sample, respectively. Relatively steady FHR in Figure 7(a) indicates
fetus in good condition, while the large valley in the waveform of FHR (especially at around
the time of minute 06:00) in Figure 7(b) exhibits the abnormal oscillations of fetal heartbeats
resulting from intrauterine hypoxia. For the physiological sample, the parameters are compar-
atively stable in which FHR displays fluctuations around 140 bpm at most of the time and T/
QRS indicates minor numerical vibrations around 0.1; for the pathological sample, FHR
exhibits larger amplitude of oscillations ranging from 70 to 140 bpm, while the numerical value
of balance point on T/QRS fluctuations is around 0.2. In this trial, it is concluded that the value
of fmSNR represents the most crucial factor affecting the quality of filtration, while both the
parameter settings on the adaptive filtering system and the locations of electrodes contribute to
the signal outputs on abdominal recordings [43].

5. Conclusions

A concise study of recent noninvasive FECG detection schemes has been established in this
chapter. We have investigated a variety of algorithms for both single-channel and multichannel
noninvasive FECG separation from MECG in abdominal recordings. The extended Kalman-
based approach with algorithm variations modeled nonlinearity in single-channel cases,
achieved considerably good performance on both synthetic and real-life ECG data. The
extended Kalman smoother with ANFIS displays the best overall results on the set of perfor-
mance metrics among nine noninvasive methods for FECG detection.

We have proposed a scheme of twin-R correlative prediction by applying (4, 2) LWT that effec-
tively exploits correlation characteristics of time-domain ECG for sequential data processing. We
have feasibly realized the parameter evaluation of ECG compression by building up a predictive
GM(1, 1) model in order to give solutions to PRDs with both extrapolated and interpolated CRs,
and achieved lower distortion rates in contrast to those of Sabah’s. The correlation predictor with
the multivariable gray model displays validity and efficiency for compression, suggesting a
prospective technique for ECG data prediction and parameter evaluation. The modified simula-
tion trials on fetal heartbeat detection by reconstructing FECG from maternal abdominal record-
ings via adaptive noise cancellation, provide an example on automatic FHR estimation on
synthetic ECG data [39]; sample trials for either physiological case or pathological case on FHR
recordings with modeling of hypoxia on mature fetus were included and reported in adaptive
control systems for noninvasive monitoring [43].

As future work, we plan to improve one of the recent noninvasive FECG detection schemes
by collaborating high-order dimensional data mining (i.e., inducing robust tensor decomposi-
tions to the dynamic filter-based models) to the ICA-based JADE scheme for FECG extraction
from multichannel abdominal recordings, and updating the prediction system via statistical
machine learning other than ANFIS, where the cocktail party-based solutions suggest a feasi-
ble tool for technical improvements [40]. We also plan to design an analytical software plat-
form using the wavelet toolbox, which is oriented for detecting fetal cardiac arrhythmias with
more practical trials on real data toward the multilead system for abdominal ECG recordings.
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Abstract

Continuous advancements in technology and software algorithms for pacemakers and 
implantable cardioverter‐defibrillators (ICDs) have improved functional reliability and 
broadened their diagnostic capabilities. At the same time, understanding management 
and troubleshooting of modern devices has become increasingly complex for the device 
implanter. This chapter provides an overview of the underlying physics and basic prin‐
ciples important to pacemaker and ICD function. The second part of this chapter outlines 
common device problems encountered in patients with pacemakers and ICDs and pro‐
vides solutions and tips for troubleshooting.

Keywords: signal processing, filters, pacemaker troubleshooting, ICD troubleshooting

1. Introduction: Device physics

1.1. Signal processing

Signal processing refers to the science of analyzing time‐varying physical processes [1]. Signal 
processing is divided into two categories: analog signal processing and digital signal processing. 
An analog signal is continuous in time and can take on a continuous range of amplitude values. 
A discrete‐time signal is an independent time variable that is quantized so that only the value of 
the signal at the discrete instant in time is known. This can be illustrated in the following exam‐
ple: a continuous sinewave with peak amplitude of 1 and frequency of ƒ is described in Eq. (1):

  x(t ) = sin (2πft)  (1)

where the frequency ƒ is measured in Hertz (Hz).

By plotting Eq. (1) a continuous curve is obtained (Figure 1a). If the continuous waveform repre‐
sents a continuous physical voltage sampling every ts seconds, using an analog‐to‐digital converter 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



would result in a sinewave represented as a sequence of discrete values shown in Figure 1(b). 
Figure 1(b) represents the digitization of the continuous signal in Figure 1(a). Variable t in Eq. (1) 
and Figure 1(a) is a continuous and independent variable. Variable n in Figure 1(b) is a discrete 
and independent variable that can take only integer values. As a result, the index n identifies the 
elements of the digital signal in Figure 1(b). All naturally occurring intracardiac signals are con‐
tinuous and all signals stored by pacemakers and defibrillators are digital.

1.2. Filtering

Filters are used for two general purposes: (1) separation of signals that have been combined and 
(2) restoration of signals that have been distorted in some form. Signal separation is needed when 
if the signal is contaminated by interference, noise or other signals. As an example, filtering is 
used to separate nonphysiologic high‐frequency pulmonary vein potentials recorded during 
catheter ablation of atrial fibrillation (AF) from physiologic signals. Signal restoration is used 

Figure 1. A time‐domain sinewave: (a) continuous waveform representation and (b) discrete sample representation.
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when a signal has been distorted in some form. For example, an audio recording obtained with 
poor equipment may be filtered to improve fidelity so the actual sound is better reproduced.

For raw signal data to be analyzed, information must be represented in either the time or frequency 
domain. The most commonly used filters applied in intracardiac devices are in the frequency 
domain. Figure 2 summarizes the four most common basic frequency responses. These filters 
allow unaltered passing of some frequencies, while other frequencies are completely blocked. 
Those frequencies that pass through are called “passband,” while frequencies that are blocked 
are referred to as “stopband.” The band in‐between is called the “transition band.” A very narrow 
transition band is called “fast roll‐off,” “The cut‐off frequency” is the frequency that separates the 
“passband” from the “transition band,” Analog filters use a cut‐off frequency that is decreased to 
0.707 from the original amplitude. Digital filters are less strict, and usually the cut‐offs used are 99, 
90, 70.7, and 50% of the original amplitude levels.

The example shown in Figure 3 highlights the three parameters described above. An example 
of a “fast roll‐off,” is shown in (a) and (b). A “passband ripple” example is shown in (c) and 
(d), and finally, “stopband attenuation” is shown in (e) and (f).

1.3. Chebyshev filters

Chebyshev filters are used to separate one band of frequencies from another. They are the 
most commonly used in cardiac electrophysiology applications. The primary attribute of 
Chebyshev filters is their speed. The Chebyshev response is a mathematical strategy for 
achieving a faster “roll‐off” by allowing “ripple” in the frequency response.

Figure 2. The four common frequency responses.
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Figure 4 shows three ripple values, 0, 0.5, and 20%, for a low‐pass Chebyshev filter. If the 
ripple decreases (good) the roll‐off becomes less sharp (bad). The Chebyshev filter design 
is an optimal balance between these two parameters. If the ripple is 0%, the filter is called 
“Butterworth filter.” A ripple of 0.5% is often a good choice for digital filters. This matches 
the typical precision and accuracy of the analog electronics that the signal has passed 
through.

Figure 3. The three parameters important for evaluating frequency domain performance: (1) roll‐off sharpness, (a) and 
(b); (2) passband ripple, (c) and (d); and (3) stopband attenuation, (e) and (f).
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1.4. Unipolar versus bipolar recordings

All electrical circuits must have a cathode (negative pole) and an anode (positive pole) [2]. In gen‐
eral, there are two types of electrical circuits used in pacing systems depending on the location of 
the anode. In a unipolar system, as shown in Figure 5(a), the metal can of the pacemaker is used 
as the anode (+), and the distal electrode of pacemaker lead as the cathode (−). In a unipolar sys‐
tem, the pacing lead has only one electrical pole. Figure 5(b) shows the other type, a BIPOLAR 
system where both the anode (+) and cathode (−) are located on the same pacing lead. In all pac‐
ing systems, the distal pole that is in direct contact with cardiac tissue is negative. All currently 
available ICDs are bipolar, however, based on the lead utilized, the system may be dedicated 
bipolar or integrated bipolar. In a dedicated bipolar design, the anode is separate from the shock 
coil. In an integrated design, the distal shock coil also serves as the anode for pacing and sensing. 
An integrated design allows for more simple lead construction, as the distal shock coil serves 
two purposes. A dedicated bipolar system may provide more reliable sensing than an integrated 
design with a shared coil, as the anode is not affected by the high‐voltage shock. Unipolar pacing 
systems have the advantage of a simpler and more reliable single‐coil lead construction. It is also 
much easier to appreciate the pacing artifact of a unipolar system due to the anatomic distance 
between lead and pulse generator with parts of the electrical circuit closer to the skin surface. 
In some instances, sensing and capture thresholds are better than those obtained from a bipolar 
system, although lower lead impedance may result in higher current drain from the battery. In 
order to reduce the risk of pacemaker stimulation of the pectoralis muscle and/or device over‐
sensing of electrical signals generated by the pectoralis muscle, many of the older pacemaker 
models incorporated a layer of protective coating on the device side facing the muscular tissue.

Figure 4. The Chebyshev response: Chebyshev filters achieve a faster roll‐off by allowing ripple in the passband. When 
the ripple is set to 0%, it is called a maximally flat or Butterworth filter.
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Bipolar pacing systems offer several advantages that have made this polarity choice increas‐
ingly popular, especially as dual‐chamber pacing has become more prevalent in clinical 
practice. Because the distance between the individual electrodes is small (short antenna) 
and since both are located deep within the body, bipolar devices are less susceptible than 
unipolar systems to electrical interference caused by skeletal muscle activity or electro‐
magnetic interference (EMI). Also, higher output settings required for unipolar pacing 
may result in stimulation of the pocket around the pacemaker. This problem is virtually 
unknown in normally functioning bipolar systems. One downside to using bipolar pacing 
is that the pacing artifact is very small and often difficult to discern on the surface electro‐
cardiogram. This makes determination of proper function and malfunction more difficult. 
For this reason, it is not uncommon to see a pacemaker programmed to unipolar pacing but 
bipolar sensing.

1.5. Sensing

Sensing is the ability of the device to detect the intrinsic cardiac activity [3]. This is measured 
in millivolts (mV). The larger the signal in mV, the easier it is for the device to sense the event 
as well as to discriminate normal intrinsic from spurious electrical signals. Setting the sensitiv‐
ity of a pacemaker is often confusing. When programming this value, it must be understood 
that the value programmed is the smallest amplitude signal that will be sensed (Figure 6). 
There is an inverse relation between sensing and sensitivity. The higher the sensing value, the 
lower the sensitivity to detect the intrinsic electrical signal. Thus, a setting of 8 mV requires at 
least an 8 mV electrical signal for the pacemaker to detect. A 2 mV setting will allow any signal 
above 2 mV to be sensed by the pacemaker.

1.6. Slew rate

Measurement of the intrinsic electrical signal for sensing is not simple, as the pacemaker does 
not use the entire electrical signal that is present. This “raw” electrical signal is filtered to 
eliminate a majority of noncardiac signals as well as portions of the cardiac signals that are 
not needed. Because filtering allows only certain frequencies to pass through to the sens‐
ing circuit, the final “filtered” signal may be substantially different from the original signal 

Figure 5. (a) Unipolar pacing system: the lead tip is the cathode and the pacemaker is the anode. (b) Bipolar pacing 
system: the lead tip is the cathode and the proximal ring is the anode. The pacemaker is not part of the circuit.
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(Figure 7). One way of measuring the quality of a sensed signal is to look at the slew rate. 
The slew rate refers to the slope of the intrinsic signal (Figure 8) and is measured in volts/
second. High slew rates (>1.0 V/s in the ventricle and >0.5 V/s in the atrium) are desirable for 
consistent sensing.

Figure 6. Concept of sensitivity. Electrogram A is 3 mV in size and electrogram B is 10 mV in size. At sensitivity of 2 mV, 
both electrical signals have sufficient amplitude to be sensed. At setting of 8 mV, only the larger signal will be sensed.

Figure 7. Raw and filtered electrograms sensed by a pacemaker. The top tracing is the filtered signal used by the 
pacemaker for sensing. Filtering of the raw signal is necessary to prevent (over)sensing of the T‐wave, far‐field signals, 
and myopotentials.
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1.7. Automaticity

As pacing systems become increasingly sophisticated, programming optimal pacing and sens‐
ing parameters for individual patients also becomes more difficult [4]. In addition, biological 
systems by nature are constantly changing, making settings that are appropriate at one point 
in time inappropriate at other times. Some pacemakers now have algorithms to automati‐
cally adjust one or more parameters. Automaticity is commonly applied to the rate response 
sensor function and sensitivity. There are different sensitivity adjusting algorithms for pace‐
makers and ICDs. For pacemakers, these algorithms assess the size of the sensed signal, and 
then attempt to provide a safety margin by adjusting the sensitivity. This tends to result in a 
less sensitive setting for the ventricle, as much of the time ventricular signals are very large. 
Lowering the susceptibility to EMI, it may in turn cause occasional undersensing of ectopic 
intrinsic beats. For a bipolar pacing system, the nominal (“out of the box”) sensitivity settings 
are usually acceptable and rarely result in under‐ or oversensing. Some pacemakers utilize an 
automatic gain feature similar to that of ICDs, which differs from the automatic adjustment 
feature currently in use in that the programmed sensing values remain unaffected (Figure 9).

Sensing the intrinsic heart rate is very important as this is the primary method for the ICD to 
detect the presence of a tachycardia. Typically, true bipolar and integrated bipolar configura‐
tions are used, while unipolar pacing and sensing have no role in ICD programming. True 
bipolar sensing in ICDs uses the same methodology as for conventional pacing leads. The 
dedicated pacing and sensing cathode and anode are located toward the distal tip of the lead 
within the ventricle (Figure 10a) and kept separate from the high‐voltage shocking circuit. In 
an integrated bipolar configuration, the lead tip serves as the cathode and the distal shocking 
coil as the anode (Figure 10b) allowing for simpler lead design. However, since the shock 
coil doubles as the sensing coil, suboptimal sensing may result immediately after a shock has 
been delivered. Normal sensing resumes shortly after shock delivery once physiologic car‐
diac depolarization has returned. Some devices use true bipolar sensing and integrated bipo‐
lar pacing to overcome this limitation. The use of standard sensing protocols applying fixed  

Figure 8. Slew rate measured in volt/second. The more rapid the voltage increase, the sharper the electrogram, the higher 
the slew rate.
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sensitivity values works well for pacemakers but not for ICDs because of the need to reliably 
sense and differentiate between varying clinically relevant rhythms such as sinus rhythm, pre‐
mature ventricular (PVC) beats, and ventricular fibrillation where extreme variation in ampli‐
tude of intracardiac electrograms may occur. A fixed sensitivity level would be unable to adapt 
to these changes. Most ICDs use some variation of automatic sensitivity control, allowing for 
a “most sensitive value” to be programmed either as an absolute number or as a general term 
such as “least” or “most” sensitive. After a sensed event, the device reverts to higher sensing 
threshold in order to prevent T‐wave oversensing or inadvertent oversensing of noncardiac 

Figure 9. (a) Auto gain is a method to automate the sensing function. Sensitivity increases with the length of the sensing 
interval. Once a signal is sensed, the sensitivity abruptly decreases to avoid oversensing of the evoked response and 
the T‐wave. (b) Autosensing adjustment is a method to automatically set the sensitivity. An inner and upper target is set 
for sensing. When a beat is sensed on both the inner and upper targets, the upper target is moved further out (made less 
sensitive) until sensing no longer occurs. The upper target is then moved back. In this way, the device can determine the 
signal amplitude and set the overall sensitivity of the device appropriately.

Figure 10. (a) True bipolar sensing occurs between the lead tip (cathode) and proximal ring (anode) independent of 
the defibrillation coil. (b) Integrated bipolar sensing utilizes the lead tip as the cathode and the defibrillation coil as the 
sensing anode. Sensing is more with a true bipolar configuration.

Pacemaker and ICD Troubleshooting
http://dx.doi.org/10.5772/intechopen.69998

85



Figure 11. (a) A typical example of a bipolar right ventricular intracardiac electrogram from a pacemaker. The 
electrogram peak value is determined and the sensitivity is decreased to a fixed programmed value or a programmed 
average percentage of the peak value. (b) An example of a bipolar right ventricular intracardiac electrogram from a 
defibrillator. The electrogram peak value is determined and stored. Then a stepwise decay algorithm is used to the 
maximum programmed sensitivity. Sensitivity algorithms differ between device manufacturers.
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events. The longer the period the device monitors for a sensed event, the more sensitive it 
becomes. This function provides the ability to determine if the patient has gone into fine ven‐
tricular fibrillation that might otherwise be missed if the device was set at less sensitive set‐
tings. Figure 11 shows a comparison of the sensing algorithms between pacemakers and ICDs.

2. Device troubleshooting

2.1. Pacemaker troubleshooting

The first step in evaluating pacemaker malfunction is to determine whether the function of 
the device is truly abnormal [5]. If a pacemaker malfunction has been confirmed, the next step 
consists of a detailed patient history. The history may provide important clues to the likely 
diagnosis. If the problem or complaint occurs shortly after device implant, lead dislodgment, 
loose set screws, misalignment of the lead within the connector block or poor lead placement 
should be suspected as potential causes [2]. In the acute period, battery depletion or lead frac‐
ture is highly unlikely. Conversely, a patient presenting with an older device is more likely to 
experience lead failure or battery depletion rather than lead dislodgment or connection issues.

A tachycardia driven by the pacemaker presents a more difficult situation. In most cases, appli‐
cation of a magnet or reprogramming the device will terminate the abnormal rhythm. In rare 
cases, the pacemaker will not respond to these simple measures, and urgent surgical interven‐
tion may be required for “runaway pacemaker” (Figure 12). This uncommon malfunction is 
caused by a major component failure in the pacing circuit. The vast majority of rapid ventricu‐
lar‐paced rhythms in Dual pacing, Dual sensing, Dual action (DDD) or Ventricular pacing, Dual 
sensing, Dual action (VDD) devices are due to tracking of atrial fibrillation or atrial flutter. The 
pacemaker will attempt to track the rapid atrial rate to the programmed upper rate limit (URL) 
if mode switching is not enabled or fails to respond appropriately. Placing a magnet over the 
device will drop the pacing rate to the magnet rate of the device until a nontracking mode such 
as DDI or Ventricular pacing, Ventricular sensing, Inhibited (VVI) is programmed. Sensor‐driven 
devices may cause rapid pacing as well. After the patient is stabilized, a history is obtained, and 
the initial device data collected, the 12‐lead surface Electrocardiogram (ECG) should be evalu‐
ated. An approach to determine the general function of the pacing system is detailed below:

i. Pacing

a. Spike present

1. Verify appropriate rate interval

2. Verify appropriate depolarization response

a. capture

b. pseudo‐fusion

c. fusion
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b. Spike absent

1. Apply magnet (magnet function must be enabled)

(Note: a ventricular pacemaker spike falling in the absolute refractory period of 
the myocardium will NOT result in capture.)

2. Observe for pace artifact and capture on 12‐lead surface ECG.

ii. Sensing

a. Patient must have a nonpaced rhythm

b. Appropriate escape interval

iii. Compare function to known technical information, watch for end of service indicators 
and other variations

Oversensing is readily diagnosed by placing a magnet over the device. If the pacemaker was 
not pacing or paced too slow due to oversensing, pacing will resume once the magnet is in 
place. If there is no pacing with the magnet on, then either the pacemaker is not putting out a 
pulse or the pulse is not reaching the heart.

Causes for true pacemaker failure are noted below:

• Depletion of the device battery [6]

• Defibrillation close to or on top of the device

• Device in the radiation field [7]

• Devices on recall or alert with known modes of failure [8]

• Electrocautery use close to or on the device

• Random component failure

• Direct mechanical trauma to the device

2.1.1. Noncapture

This potentially life‐threatening problem is identified by the presence of pacemaker pulse 
artifact without capture in the appropriate chamber following the impulse. Causes of noncap‐
ture are listed below [2]:

Figure 12. Runaway pacemaker: this strip shows VVI pacing at 180 bpm (the runaway protect limit on this device). The 
pacemaker was programmed to the DDD mode with an upper rate limit of 120 bpm. Therapeutic radiation delivered to 
the pacemaker in a patient with breast cancer resulted in circuit failure and rapid pacing. Even magnet application did 
not slow the pacing rate.
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• Exit block (high capture threshold) or inappropriate programming resulting in insufficient 
output or pulse width

• Malfunction or inappropriate programming of automatic capture output algorithms

• Lead dislodgment

• Lead fracture

• Lead insulation failure

• Loose lead‐to‐pacemaker connection

• Low battery output

• Severe metabolic imbalance

• Threshold rise due to drug effect

• “Pseudo‐noncapture” (pacing during the myocardial refractory period due to undersens‐
ing of the preceding complex)

2.1.1.1. Corrective action

Increase pacemaker output if possible. Where appropriate, revise or replace lead or pace‐
maker, correct metabolic imbalances. For pseudo‐noncapture adjust the sensitivity to 
a more sensitive setting, or revise the lead if sensing is very poor. Program to unipolar 
polarity.

2.1.2. Undersensing

Undersensing is recognized by the presence of a pulse artifact that occurs after an intrin‐
sic event, but fails to reset the escape interval. The pacing output may or may not capture 
depending on the timing during the cardiac cycle. Causes of undersensing (thus “overpac‐
ing”) are listed below [9]:

• Poor lead position with poor R‐wave or P‐wave amplitude

• Lead dislodgment

• Lead fracture

• Lead insulation failure

• Lead perforation of the myocardium

• Severe metabolic disturbance

• Defibrillation near pacemaker

• Myocardial infarction of tissue near electrode

• Ectopic beats of low intracardiac amplitude
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• Dual pacing, Ventricular sensing, Inhibited (DVI)‐committed function

• Safety pacing

• Inappropriate programming

• Magnet application

2.1.2.1. Corrective action

Increase pacemaker sensitivity. Where appropriate, revise or replace the lead. Try repro‐
gramming polarity. If the problem is very infrequent then careful observation may be 
acceptable.

2.1.3. Oversensing

A diagram highlighting the different components of a single‐chamber pacemaker and 
ICD is shown in Figure 13. In a single‐chamber system, oversensing is recognized by 
inappropriate inhibition of the pacemaker. Oversensing may result in total inhibition of 
output or prolongation of the escape interval. Myopotentials are a common cause of over‐
sensing, which is seen predominately in unipolar pacemakers and usually results from 
sensing noncardiac muscle activity (e.g. pectoralis muscle or abdominal rectus muscles). 
Myopotentials are triggered by arm movements such as arm lifting in patients with pre‐
pectoral implants, or moving from a lying to sitting position in patients with abdominal 
implants. Oversensing may also occur if the ventricular lead falsely senses the T‐wave. 
Despite an increase in environmental EMI, pacemakers prove fairly resistant to this type 
of interference because of continuous design improvements. Sensing intrinsic or extrane‐
ous EMI results in the device falsely detecting a cardiac event. The pacing output will be 
inhibited as long as these interfering signals continue. A dual‐chamber system may track 
electrical signals such as myopotentials in either the atrium, ventricle or both. The atrial 
channel is usually set to a more sensitive value than the ventricular channel. Tracking may 
result from oversensing of electrical signals on the atrial channel, inhibiting atrial output, 
while these signals are too small to be sensed by the ventricular channel. Each time over‐
sensing occurs on the atrial channel an atrioventricular interval (AVI) is triggered, result‐
ing in ventricular output at a rate up to the programmed upper rate limit (URL). Causes of 
oversensing are listed below [9]:

• Myopotentials

• Electromagnetic interference

• T‐wave sensing

• Far‐field R‐wave sensing (atrial lead)

• Lead insulation failure

• Lead dislodgement
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• Lead fracture (Image 1)

• Loose fixation screw (Image 2)

• Crosstalk

2.1.3.1. Corrective action

Decrease the sensitivity of the device. For far‐field or T‐wave oversensing, prolongation of the 
refractory period will also correct the problem. The sensing polarity may be reprogrammed 
to bipolar if the option is available and the patient has a bipolar lead. In some instances, surgi‐
cal intervention may be indicated to repair the lead, replace the lead or upgrade to a bipolar 
system. Loose set screw almost always needs corrective surgery as well as lead dislodgement. 
Lead fracture, if not complete, can be managed by changing the programming from a bipolar 
lead to a unipolar, using the functioning lead channel.

2.1.4. Diaphragmatic pacing and extracardiac stimulation

Diaphragmatic stimulation may result from inadvertent right phrenic nerve pacing by the right 
atrial lead or by direct stimulation of the diaphragm or chest wall muscle by the ventricular lead. 
Extracardiac stimulation occurs due to poor lead placement and/or high output pacing. Lead 

Figure 13. Basic components of a single‐chamber pacemaker (top) and single‐chamber ICD (bottom) (DF4 lead model shown).
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perforation through the myocardial wall may cause extracardiac stimulation [10]. Unipolar 
pacemakers and leads with failed outer insulation may trigger stimulation of tissue adjacent to 
the site of the exposed conductor coil.

2.1.4.1. Corrective action

Decrease output if possible while maintaining an adequate safety margin for cardiac capture. 
Revision of the culprit lead may be required. Reprogram to bipolar polarity if unipolar.

2.1.5. Pacemaker syndrome

Pacemaker syndrome can occur in patients in sinus rhythm who receive a VVI pacing system 
or in patients with a dual‐chamber device if the atrial lead fails to properly capture or sense 

Image 1. Chest radiography demonstrating a lead fracture (arrow) resulting in high lead impedance.

Image 2. Chest radiography showing two loose set screws (black arrows) resulting in lead noise and high impedance. 
After pocket revision and proper reconnection of both lead device and lead parameters normalized.
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[11]. Ventricular pacing asynchronous to atrial contraction will limit the atrial contribution 
to ventricular filling. The resultant decline in cardiac output may cause patient fatigue and 
discomfort whenever the pacemaker is pacing. The classic example of pacemaker syndrome 
is caused by retrograde AV‐nodal conduction. When the ventricle is paced and contracts, the 
depolarization impulse travels in a retrograde manner up the His bundle through the AV 
node towards the atrium. The atrium then contracts while the mitral and tricuspid valves are 
closed due to simultaneous ventricular contraction. The late atrial contraction causes blood 
to flow retrograde into the venous system resulting in “cannon A‐waves,” dyspnea, hypo‐
tension, fatigue or even syncope. The surface ECG can give important clues to the correct 
diagnosis. In many cases, a retrograde inverted P‐wave is seen embedded in the T‐wave, as a 
sign of ineffective (as well as detrimental) atrial contraction. Patients with diastolic dysfunc‐
tion, pericardial disease or loss of ventricular compliance due to hypertension, ischemic heart 
disease, ventricular hypertrophy or age are more likely to experience pacemaker syndrome.

2.1.5.1. Corrective action

For VVI devices, reduce the pacing rate or program a hysteresis rate to allow more time in 
sinus rhythm. If device reprogramming fails to resolve the problem, upgrade to a dual‐chamber 
pacemaker is indicated. A malfunctioning atrial lead in a dual‐chamber system may either be 
reprogramed or require surgical correction.

2.1.6. Pacemaker‐mediated tachycardia (PMT)

Pacemaker‐mediated tachycardia (PMT), also referred to as endless‐loop tachycardia or ELT, 
is an abnormal state caused by the presence of an accessory conducting pathway (the pace‐
maker) [12]. The mechanism of tachycardia is similar to that seen in patients presenting with 
the Wolff‐Parkinson‐White Syndrome. PMT often begins with a premature ventricular beat 
that is either spontaneous or pacemaker induced (Figure 14). The electrical impulse traverses 
retrograde through the His bundle and AV node to the atrium. The pacemaker will sense the 
retrograde P‐wave if it falls outside of the postventricular atrial refractory period (PVARP). 
This will trigger an AVI after which the pacemaker will pace the ventricle. This cycle will 
repeat itself until one of the following occurs: (1) the retrograde P‐wave blocks at the level 
of the AV node, (2) the retrograde P‐wave falls within PVARP, (3) a magnet is applied to 
the pacemaker (disabling sensing) or (4) the device is reprogrammed to a longer PVARP or 
AV interval. The patient may use standard vagal maneuvers to induce transient AV block, 
thereby terminating the tachycardia. Though not commonly used for this purpose, adenos‐
ine (or any other AV‐nodal blocking agent) may be given to terminate the tachycardia. PMT 
may initiate or restarted if a ventricular‐sensed beat precedes an atrial beat. This includes a 
PVC, premature junctional beat, loss of atrial sensing or capture, and myopotential tracking 
or inhibition in the atrium. Appropriate programming of the PVARP will prevent PMT such 
that any retrograde P‐wave will fall within this interval and therefore not be sensed by the 
atrial channel. However, some patients have markedly prolonged AV‐nodal conduction and 
the long PVARP that is necessary to prevent PMT may severely limit the maximum track‐
ing rate of the device due to the resulting long total atrial refractory period (TARP). Most 
modern pacemakers offer PMT prevention, yet still allow programming a short PVARP. One 
option automatically extends the PVARP for one cardiac cycle whenever a sensed R‐wave is 
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not preceded by a paced or sensed P‐wave (assuming a PVC). An alternative method is to 
disable atrial sensing after a PVC is detected. This is also known as “DVI on PVC” since no 
atrial sensing takes place for one cardiac cycle. When first introduced by Pacesetter, it was 
known as “DDX” (some of these older devices are still in use today). The newest prevention 
algorithm will force an atrial output when sensing a PVC. Pacing the atrium at the time of 
a PVC will result in collision of anterograde and retrograde beats in the AV node, thus pre‐
venting the onset of PMT. Finally, most current devices provide an automatic termination 
algorithm if PMT is suspected. When the pacemaker reaches the upper rate (or a separately 
programmable PMT detection rate) for a specified number of beats, the PVARP is extended 
for a single cycle or alternatively a DVI cycle is introduced or atrial pacing is delivered, ter‐
minating PMT if present.

Figure 15 shows two different scenarios when atrial tachycardia (AT) can be misdiagnosed as 
pacemaker‐mediated tachycardia (PMT).

1. An AT at a rate below the upper tracking limit is sensed on the atrial channel triggering an 
impulse on the ventricular channel.

2. Pacing in the atrial channel can suppress or terminate AT.

3. Prolonging the PVARP may lead to 2:1 atrioventricular conduction without interrupting 
the AT.

Figure 14. Pacemaker‐mediated tachycardia (PMT): a PVC occurs (A) causing the ventricle to contract. The electrical 
impulse conducts retrograde through the AV node (B) resulting in atrial contraction. The retrograde P‐wave is sensed by 
the pacemaker, which initiates an AV interval (AVI). At the end of the AVI, a pacing stimulus is delivered to the ventricle 
(C) and the cycle continues.
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4. In true PMT, ventricular activation causes retrograde atrial activation which is sensed on 
the atrial channel triggering ventricular depolarization.

5. Pacing in the atrium during PMT interrupts the tachycardia but cannot differentiate PMT 
from AT (see [2])

6. Prolonging the PVARP will result in termination of PMT with resumption of sinus rhythm, 
while an underlying AT will conduct to the ventricle at exactly half the tachycardia rate.

In conclusion, prolonging the PVARP is a better method to differentiate AT from PMT and 
effectively terminate PMT.

2.1.7. Crosstalk

This is a potentially dangerous or lethal problem in patients who are pacemaker depen‐
dent [2]. Crosstalk occurs if the ventricular sensing amplifier misinterprets the atrial pacing 
impulse for an intrinsic ventricular beat. Ventricular output is inhibited and in patients with‐
out a ventricular escape rhythm, asystole will occur. On the surface, ECG crosstalk results 
in paced atrial P‐waves without subsequent ventricular output. As a characteristic finding, 
the atrial pacing interval is equal to the atrial escape interval (AEI), rather than AVI and AEI 
combined. The shortened pacing interval results because the AVI is terminated prematurely 
due to the ventricular circuit falsely identifying the atrial pacing pulse for an intrinsic ven‐
tricular beat resetting the pacemaker to the next cycle. However, in a device using atrial‐based 
timing, the AVI will be allowed to complete before the next AEI ensues, thus maintaining 

Figure 15. Differentiating atrial tachycardia (AT) from pacemaker‐mediated tachycardia (PMT)—see the text for details.
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the programmed pacing rate. Crosstalk is more likely to occur if high atrial output pacing is 
combined with very sensitive settings on the ventricular channel.

Most modern pacemakers are very resistant to crosstalk and certain features can prevent or 
reduce the effect of crosstalk. “safety pacing,” also known as “ventricular safety standby” 
or “nonphysiologic AV‐delay” ensures a brief period of ventricular sensing during the early 
postatrial output period. This special sensing interval immediately following the ventricular 
blanking period is known as the “crosstalk‐sensing window” (CTW). An event falling into 
the CTW may be the result of crosstalk or of true ventricular origin. If the ventricular lead 
senses an event during the CTW, a ventricular pacing output is committed at a short AV‐delay 
(usually 100–120 ms), providing ventricular rate support should crosstalk be present. In the 
presence of a PVC or other intrinsic beat, use of a short AV‐delay ensures that the ventricular 
output is not delivered during the relative refractory period (vulnerable period) of the T‐wave 
(Figure 11a). While this feature will avoid the detrimental effects of crosstalk, the underlying 
cause needs be identified and corrected as soon as possible.

Figure 16 represents an example of crosstalk: the atrial impulse delivered by the pacemaker is 
sensed on the ventricular channel resulting in inhibition of a ventricular output. In summary, 
the management of crosstalk includes:

1. Decreasing sensitivity of the ventricular channel

2. Decreasing output of the atrial channel

3. Activating ventricular safety pacing

4. Increasing the ventricular blanking period

5. Decreasing atrial pulse width

6. If the cause of crosstalk is insulation failure, implantation of a new atrial lead is warranted.

2.2. Defibrillator troubleshooting

Failure of the ICD to deliver a shock during ventricular tachycardia or ventricular fibrillation may 
result in presyncope, syncope or death. Conversely, inappropriate shock therapy causes patient 
discomfort, increases health care expenditure due to device clinic visits and/or hospitalization 
and heightens mortality [13]. Since all commercially available ICDs provide anti‐bradycardia 
pacing their use is subject to the same potential problems as regular pacemakers. In addition, 
the dedicated bipolar ICD lead is used for tachycardia detection and treatment. In an “integrated 
bipolar” system, one of the shocking electrodes has the added function of a sensing and pacing 
anode. The ICD gathers information on the low‐voltage impedance of the pacing system and the 
high‐voltage impedance during shock delivery. The ability to evaluate the low‐ and high‐voltage 
components separately can help the physician localize the site of lead failure. Adding a separate 
pacing/sensing lead may be a simple solution when only the low‐voltage conductor is affected. 
However, failure of the high‐voltage component often requires lead extraction and replacement. 
In certain circumstances, a second shocking coil may be added without removing the malfunc‐
tioning lead. The approach to the patient with suspected ICD malfunction is essentially the same 
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as the approach described for the pacemaker patient. Gathering patient data, understanding the 
indication for device implant, ICD interrogation, and evaluating the circumstances surround‐
ing the incident in question are all essential. A common clinical scenario is the need to assess 
whether an ICD shock was appropriately delivered. For ICDs with limited diagnostic capabil‐
ity, elucidating the history surrounding the shock is crucial. The delivery of an appropriate ICD 
shock is often preceded by palpitations, lightheadedness, dyspnea or syncope. However, even 
in the absence of aforementioned symptoms, an appropriate ICD shock may have been deliv‐
ered. Symptomatic hypotension may not ensue if the patient is in a sitting or supine position. 
Alternatively, the patient may simply not recollect the event due to insufficient brain perfusion 
or the patient was asleep at the time of the arrhythmic event. Indeed, nocturnal myoclonus is fre‐
quently misinterpreted by the patient’s spouse as a device discharge. Inappropriate ICD shocks 
most commonly occur in the setting of AF. In the setting of AF with a ventricular response rate 
that exceeds the detection rate of the device, the ICD will charge and deliver one or repetitive 
shocks. Occasionally, the shock will convert AF to sinus rhythm. Dual‐coil ICD leads with the 
proximal coil located within the right atrium are more likely to convert AF to sinus rhythm than 
single‐coil leads. Importantly, these shocks are not the result of device malfunction, but rather 
due to an undesirable patient‐device interaction. The specific categories of device malfunction 
are noted below.

Figure 16. Crosstalk: atrial activation is sensed on the ventricular channel resulting in inhibition of ventricular pacing.
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2.2.1. Failure to shock or deliver anti‐tachycardia pacing

Failure of the ICD to deliver anti‐tachycardia therapy may be lethal. The reasons for failure to 
shock are listed as follows [14]:

1. Undersensing

a. Lead malposition

b. Lead dislodgment

c. Lead perforation

d. Lead fracture

e. Lead insulation failure

f. Lead‐to‐device connector problem

g. Sensitivity set too low (i.e. insensitive)

h. Poor electrogram amplitude due to change in myocardial substrate

i. Myocardial infarction

j. Drug therapy

k. Metabolic imbalance

l. “Fine” ventricular fibrillation

2. Primary circuit failure

3. Battery failure

4. Shock therapy turned off (by programming or magnet)

5. Magnet placed over the device

6. Strong magnetic field present

7. Detection rate set too high

8. Failure to meet additional detection criteria

a. Rate stability

b. Sudden onset

c. Morphology criteria

9. Slowing of tachycardia below detection rate

a. Substrate changes

b. Metabolic changes
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c. Electrolyte changes

d. Drug therapy changes

10.  Interaction with permanent pacemaker

Lead failure or programming the rate detection zone too high is the most common reason 
for failure of the ICD to deliver therapy. The cause for lead failure may be identified on 
fluoroscopy. As older transvenous ICD leads are substantially thicker than conventional 
pacing leads, they are exposed to higher forces below the clavicle when using a subcla‐
vian vein access. Lead fracture typically affects one of the inner conductors of a coaxial 
or triaxial lead. Sometimes an intact outer conductor shielding a fractured inner conduc‐
tor complicates proper diagnosis on fluoroscopy. Fractures can result in two broken ends 
remaining in intermittent contact. Several fluoroscopic projections may be required to 
visualize conductor failure and a slightly over‐penetrated fluoroscopic image with settings 
similar to a dedicated thoracic spine view should be used. Fractures and insulation fail‐
ures are more likely to occur after 1 or more years. If undersensing develops within 30 
days of ICD implant, lead malposition, lead dislodgment or lead perforation need to be 
considered. Rarely, a loose connection between a connector pin and a connector block is 
the cause for ICD failure. Although ICDs are generally very reliable, a number of alerts 
have been reported for different models. Circuit failure, software lock‐up, and other prob‐
lems do occur infrequently and proper device interrogation will usually not be possible if 
any of these situations are present. In some cases, a “system reset” may be able to resolve 
the problem. In other cases, a software patch downloaded to the device will correct the 
problem.

Patient noncompliance with routine device clinic follow‐up may result in ICD failure due to 
battery depletion. The ICD may become nonfunctional or lack sufficient power to charge the 
capacitors to the required voltage for discharge. Most ICDs restrict the time allowed for the 
capacitor to charge. Should the battery reserve be too low or the capacitor be defective (a com‐
mon problem in earlier devices), the charge time may exceed the maximum time allowed and 
the ICD will not deliver a shock.

Occasionally, the rate detection zone is set too high. This may result from inappropriate 
programming or more commonly initiation of antiarrhythmic drug therapy such as amio‐
darone or sotalol. Antiarrhythmic drugs may cause slowing of the ventricular tachycardia 
cycle length below the programmed detection rate [15]. Significant metabolic or electrolyte 
abnormalities can affect the tachycardia cycle length, but may also alter the signal ampli‐
tude resulting in undersensing or failure to detect. Use of additional detection criteria to 
enhance specificity may delay or prevent appropriate ICD therapy and should be applied 
cautiously. Tissue injury due to myocardial infarction may lead to significant changes in the 
intracardiac electrogram and failure to sense.

Asynchronous pacing can be seen if bradycardia backup‐pacing is turned on. In the past, many 
patients requiring pacing support underwent additional pacemaker implantation to prevent 
early ICD battery depletion from frequent pacing. This is usually of no clinical  consequence 
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unless the ICD senses the pacing output delivered by the pacemaker. In a worst‐case scenario, 
the pacemaker may misinterpret ventricular fibrillation for asystole and attempt to pace fibril‐
lating myocardium. If the ICD were falsely interpret the pacing impulse from the pacemaker 
for a regular Waveforms of ventricular depolarization (QRS) complex, device therapy may be 
withheld indefinitely. For this reason, special care is exercised if a pacemaker patient under‐
goes additional ICD implantation or a dedicated pacemaker is indicated in an ICD patient. Be 
aware that, albeit less likely, oversensing of the atrial pacemaker impulse by the ICD may lead 
to similar grave consequences.

2.2.1.1. Corrective action

Defibrillator lead‐related problems virtually always require surgical correction. Most phy‐
sicians argue that lead failure requires lead removal due to the large size of the lead and 
potential interaction with a newly placed lead. A recently implanted ICD lead that has dis‐
lodged or demonstrated poor sensing performance may be repositioned if lead integrity can 
be verified. Immediate device replacement is indicated in the case of battery depletion or if a 
nonfunctional ICD fails software reset. Simple reprogramming of the ICD will resolve prob‐
lems related to inappropriate tachycardia detection zones or if too many specificity criteria 
are applied to diagnose ventricular tachycardia causing delay or failure to deliver appropri‐
ate therapy. Interaction with a permanent pacemaker may be eliminated by reprogramming 
the pacemaker output and pulse width to lower values. Only a bipolar pacemaker should be 
implanted if an ICD is already present. Furthermore, the pacemaker should be a dedicated 
bipolar device or allow bipolar pacing as the “power‐on‐reset” polarity. The latter will prevent 
reset to unipolar polarity and guarantee pacing in the bipolar mode if power is temporarily 
interrupted. Since current ICDs integrate full‐featured pacing capabilities, a separate pace‐
maker is rarely indicated. Noise due to lead fracture can cause oversensing with inhibition of 
output. Acute management includes changing to a unipolar configuration or sensing from a 
wider antenna, for example, lead tip to right ventricle (RV) coil, until the lead can be replaced.

2.2.2. Failure to convert ventricular arrhythmia

Despite proper detection and appropriate ICD therapy, some arrhythmic episodes may fail to 
convert to sinus rhythm with potentially lethal consequences for the patient. Below is a list of 
problems that may prevent restoration of sinus rhythm despite appropriate ICD therapy [15]:

• High defibrillation threshold

• Poor cardiac substrate (fibrosis, scar, etc.)

• Acute myocardial infarction

• Metabolic abnormality

• Electrolyte abnormality

• Drug therapy

• Drug proarrhythmia

• High‐voltage lead fracture
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• High‐voltage lead insulation failure

• High‐voltage lead migration

• Inappropriate device programming

• Low (inadequate) shock energy

• Ineffective polarity

• Sub‐optimal “tilt”

• Ineffective pacing sequence

• Pacemaker polarity switch

• Atrial arrhythmias

• Sinus tachycardia

• “VT Storm”

Changes to the myocardial substrate following successful ICD implantation may result in 
delayed or unsuccessful antiarrhythmic therapy. Acute myocardial infarction, severe elec‐
trolyte or metabolic imbalance or initiation of antiarrhythmic drug therapy may increase the 
defibrillation threshold. Amiodarone is frequently utilized in patients presenting with life‐
threatening arrhythmias and may increase the defibrillation threshold. Some patients will 
require defibrillation threshold testing after amiodarone initiation to verify successful con‐
version with ICD shock delivery. Other drugs may act proarrhythmic to the effect that the 
arrhythmia fails to convert or resumes immediately after conversion. Lead fracture or insula‐
tion failure will reduce the actual amount of energy delivered to the heart and may impact 
the delivery of an effective ICD shock. Lead movement may alter the shock vector resulting in 
suboptimal current flow between anode and cathode.

Programming the shock energy below maximum output will conserve battery life, allow 
quicker shock delivery, and cause less pain to the patient. However, an insufficient safety 
margin between defibrillation threshold and applied energy reduces the probability of suc‐
cessful conversion. The shock duration (pulse width) is programmable on some devices and 
set automatically on others. If set too short or overly long, defibrillation will be unsuccessful. 
The optimal shock duration varies based on the resistance. The positive and negative phases 
of the shock wave may be programmable in duration and can significantly affect efficiency of 
therapy. Furthermore, anti‐tachycardia pacing or low‐energy shock delivery may accelerate 
ventricular tachycardia or cause degeneration into ventricular fibrillation.

2.2.2.1. Corrective action

Immediately correct reversible metabolic, drug or electrolyte abnormalities. Lead or device 
problems will often require surgical revision. Reprogram ICD to a different rate detection zone 
and/or reassess additional criteria applied for tachycardia recognition. Atrial arrhythmias may 
require drug therapy, catheter ablation to definitive treatment of the clinical arrhythmia or abla‐
tion of the AV node. Appropriate pacemaker selection and programming are mandatory if sep‐
arate devices are used in the same patient. Strongly consider replacement for a single device.
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2.2.3. Inappropriate ICD therapy

Inappropriate ICD shocks are far more common than failure to convert or failure to deliver 
therapy. Patients may think an ICD shock was delivered inappropriately, while thorough 
evaluation of telemetry data and stored electrograms confirms proper device therapy. If the 
ICD shock was determined inappropriate, the triggering event needs to be elucidated and 
corrected quickly. Repeat ICD shocks are poorly tolerated by the conscious patient because 
of pain encountered and fear of future episodes. The patient may voice anger and frustration 
or demand device removal. Although inappropriate shocks are less likely to result in patient 
death, immediate diagnosis and correction of the underlying cause are warranted. Causes for 
inappropriate ICD therapy are as follows [16]:

1. Oversensing

a. Electromagnetic interference

b. Interaction with another implanted device

c. Lead fracture

d. Lead insulation failure

e. Loose connections

f. Myopotentials

g. T‐Wave oversensing

h. Pacing impulse from permanent pacemaker

i. “Y” adapted biventricular adapters and connectors

2. Detection rate set too low

3. Supraventricular arrhythmias

a. Paroxysmal supraventricular tachycardia

b. Atrial fibrillation

c. Atrial flutter

d. Sinus tachycardia

Inappropriate shocks are most commonly encountered in the presence of atrial fibrillation. 
Many patients who undergo ICD implantation demonstrate enlarged hearts predisposing 
them to atrial tachyarrhythmias. Patients with a history of slow ventricular tachycardia may 
experience overlap with sinus tachycardia at the lower rate limit of the detection zone. This 
may occur during exercise, sexual intercourse or emotional stress and result in ICD shock. 
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Oversensing may lead to inappropriate detection as detailed above. Interactions may result 
from separate pacemaker and ICD implantation in the same patient. In the presence of a unipo‐
lar and some bipolar pacemakers, the ICD may sense the ventricular and/or atrial pacing spike 
resulting in double‐counting of the ventricular rate during VVI pacing or triple‐counting of the 
ventricular rate during DDD pacing. Double‐sensing may also be seen with some biventricu‐
lar devices if the right and left ventricles are wired into the same sensing circuit, for example, 
when using a “Y” adapter on the pacing lead to connect to a single ventricular connector on 
the device. It may also be the result of an older ICD design where, despite separate connectors 
available for the RV and left ventricle (LV) lead, the leads are interconnected within the device 
and run through a single pace/sense circuit. The net result of both of these configurations is the 
same, with the RV and LV lead being sensed on the same channel. Double‐counting may occur 
due to the long conduction delay between RV and LV if the patient has a heart rate in excess of 
the URL, or one of the leads fails to capture.

2.2.3.1. Corrective action

The ICD detection rate should be increased if the sinus rate overlaps with the lower rate 
limit of the detection zone. Beta‐blocker therapy should be initiated or uptitrated to reduce 
the sinus rate. Furthermore, additional discrimination criteria such as sudden onset, rate 
stability, and QRS morphology should be activated. Catheter ablation to treat the clinical 
atrial arrhythmia or ablation of the AV node may be an option in select patients. Interaction 
between pacemaker and ICD will require reprogramming to a lower output and pulse width, 
using bipolar polarity or upgrading to an integrated pacemaker and ICD system. The latter 
is often necessary if double‐sensing occurs while using retained older leads or ICD connector 
designs. In some situations, the pacing lead may require repositioning. Lead failure and con‐
nection problems will often require urgent surgical correction. If EMI is detected, the patient 
should be advised to avoid the source of interference. For some patients, this may involve 
reassignment of duties at work or even a change in employment. Most ICD malfunctions and 
pseudo‐malfunctions are readily diagnosed after obtaining a careful patient history, use of 
fluoroscopy, and device interrogation. Unnecessary replacement of the ICD will be avoided 
and patient safety and comfort assured if competent personnel addresses the device problem 
in a consistent manner.

3. Conclusion

In order to troubleshoot implantable cardiac devices, the clinician should have a thor‐
ough understanding of the underlying physics and signal processing techniques. Device 
implantation and follow‐up requires knowledge of the most common causes for device 
malfunction. While device reprogramming may offer a permanent solution for some pace‐
maker or ICD malfunctions, others will require surgical correction as appropriate first‐line 
therapy.
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Abstract

In patients with Brugada syndrome, implantable cardioverter‐defibrillator (ICD) is the 
only demonstrated treatment that prevents sudden cardiac death. The progress in ICD 
technology improved the diagnosis and efficacy of implantable devices in the manage-
ment and treatment of ventricular tachycardia (VT) and ventricular fibrillation (VF). 
Recording of electrical events just before and after a delivered or aborted ICD therapy 
permits a more accurate characterization of the rhythm but also provides information 
on the electrical events preceding the arrhythmia. This chapter aims to gain insight into 
the mechanism of initiation and termination of spontaneous VF by analyzing intracar-
diac electrograms (IEGM) in Brugada patients implanted with ICDs. It has two parts: 
(1) update on ICD electrograms in Brugada syndrome patients, where we review the 
medical literature on ICD electrograms and their use for detecting electrical manifesta-
tions of Brugada syndrome, and (2) examples of ICD electrograms, from our own data-
base of patients affected by Brugada syndrome.

Keywords: Brugada syndrome, ICD, defibrillation, ventricular fibrillation, premature 
ventricular contractions, electrophysiological study

1. Introduction

Brugada syndrome is a clinical syndrome associated with ventricular tachycardia (VT) and 
ventricular fibrillation (VF), in patients who have no structural heart disease. ECG is the most 
useful tool for the diagnosis and shows right bundle branch block with ST elevation in right 
precordial leads. Due to the high recurrence rate of ventricular fibrillation, an implantable 
cardioverter‐defibrillator (ICD) is the accepted mode of treatment and it improves the long‐
term prognosis.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Clinical studies suggest that spontaneous episodes of VF are induced by PVCs originating at 
the level of right ventricular outflow tract (RVOT). Abnormal electrophysiological features 
are present in this zone, with fragmented, low amplitude, late potentials. Programed ven-
tricular stimulation at the level of RVOT increases the chance of VF induction compared to 
RV apex.

The progress in ICD technology improved the diagnosis and treatment efficacy of implant-
able devices in the management of VT and VF in Brugada syndrome. Recording of electrical 
events before and after a delivered or aborted ICD therapy permits not only a more accurate 
characterization of the rhythm but also provides information on the electrical events preced-
ing the arrhythmia.

2. Mode of onset of ventricular fibrillation in Brugada syndrome

In Brugada syndrome, VF episodes can be preceded by PVCs or start suddenly without a 
preceding premature ventricular contractions (PVC). This classification assumes distinct 
electrophysiological mechanism for the two types of VF. Although very few PVCs are 
observed on Holter monitoring, in Brugada syndrome PVCs tend to occur more frequently 
before the initiation of VF, as well as ST segment elevation in precordial leads [1]. The 
mechanism that explains the association of the two phenomena is the marked shortening of 
the action potential in the RVOT which gives the ST elevation, and phase 2 reentry respon-
sible for PVC firing from the same area with short action potential, which initiates VF [2, 3]. 
Kofune et al. were able to identify the substrate of the Brugada syndrome by high‐resolu-
tion electroanatomical mapping. In patients with Brugada syndrome, they found that only 
the right ventricle is affected, the left being spared, and only a small area within the RVOT is 
responsible for the syndrome. At this level, they found low‐voltage potential with fraction-
ated electrograms. The conduction abnormality from the RVOT gives the final phenotypic 
expression of right precordial ST segment elevation [4]. Previous studies of Antzelevitch et 
al. demonstrated that at cellular level the action potential dome propagates from the normal 
epicardial sites to the epicardial site without dome leading to phase 2 reentry. As the reen-
try fails to propagate to the endocardium, it leads to closely coupled ventricular premature 
beats [5]. Specific triggers can lead to heterogeneous repolarization: fever or after exercise 
when the body temperature rises, and specific medication like: ajmaline, flecainide, and 
propafenone.

In the study of Kakishita et al., frequent PVCs before the onset of VF were recorded in 67% 
of the patients. The morphology of preceding PVC electrogram (far‐field and near‐field) was 
identical to the PVC that initiated VF. Additionally, different VF episodes seen in the same 
patient were initiated by the same PVC morphology. The rest of 33% of patients had episodes 
of VF without preceding PVCs.

A long‐short sequence is very unlikely to initiate VF in Brugada syndrome and pause‐depen-
dent VF is very rare [6].
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3. Coupling interval of the VF initiating PVC

It is well known that PVCs occurring near the peak of the T‐wave (ventricular vulnerable 
period) may lead to ventricular fibrillation. However, in Brugada syndrome, the onset of 
PVCs inducing VF are close to the end of the T‐wave. Kakishita et al. found a coupling 
interval of 388 ms for the PVC initiating VF in patients with Brugada syndrome. Kasanuki 
et al found a value of > 300 ms coupling interval for the PVC inducing VF. Spontaneous 
VF is provoked by a single, long >300 ms coupled PVC. Induced VF can be provoked by 
multiple extrastimuli with shorter coupling interval < 200 ms for VF induced during elec-
trophysiological study [7].

4. Ventricular fibrillation interval (VF interval)

For long time, physicians thought that the amplitude of VF waves (“fine” or “coarse”) is sug-
gestive of defibrillation success, but Murakawa et al. demonstrated on dogs [8] that shorter 
ventricular fibrillation intervals are associated with higher energies for internal defibrillation. 
VF interval is a parameter that can be measured using the ICD electrograms. Kerber et al. [9] 
reported that slower polymorphic VT with cycle length >200 ms needs less energy for defibril-
lation than VF with cycle length of less than 200 ms. Cismaru et al. studied VF cycle length in 
patients with Brugada syndrome, induced VF during electrophysiology study, and showed 
that a longer cycle length that progressively increases is a sign of self‐terminating VF [10] 
(Figures 1 and 2).

Figure 1. Patient with Brugada syndrome and polymorphic VT induction during electrophysiology study. VT stops 
spontaneously without any defibrillation.

ICD Electrograms in Patients with Brugada Syndrome
http://dx.doi.org/10.5772/intechopen.70145

109



Hiratsuka et al. demonstrated that symptomatic patients with Brugada syndrome have sig-
nificant shorter VF cycle length than asymptomatic patients. The difference is probably given 
by a different electrophysiological substrate between the two groups [11].

5. Unsuccessful internal defibrillation in Brugada syndrome

Patients with Brugada syndrome have higher rates of unsuccessful internal defibrillation after 
the implantation of ICD. The study of Watanabe et al. [12] examined the incidence of VF not 
responding to internal defibrillation and found an incidence of 18%. One explanation could 
be the origin of the electrical abnormality at the level of RVOT [13] with defibrillation shock 
delivered between the right ventricular apex and left subclavicular can. Alternative explana-
tion is the short effective refractory period and short ventricular fibrillation interval (FVI) in 
patients with Brugada syndrome.

6. Intracardiac electrograms (IEGM) compared to morphological 
changes  of an ECG during provocative tests

Probst et al. [14] compared the surface ECG with the intracardiac electrograms (IEGM) from 
internal defibrillator during an ajmaline test in patients with Brugada syndrome. The ECG 
morphology changed after ajmaline injection with ST elevation and negative T‐waves. The 
IEGM showed different morphological changes: ST deviation changes with negative T‐wave 

Figure 2. Patient with Brugada syndrome and ventricular fibrillation induction during electrophysiology study. Please 
note the short VF interval. VF stops after external defibrillation.
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changes. The changes are in contrast with morphological changes from patients without 
Brugada syndrome where IEGM correlates to ST segment deviation on ECG. In countries 
where ajmaline is not available, procainamide can be used for the provocative test.

In the case report of Moore and Kaye, a change of the intracardiac electrogram after an inter-
nal defibrillation was compatible with a type 1 Brugada pattern and disappeared 1 min after 
the electrical shock [15, 16].

7. T‐wave alternans in patients with Brugada syndrome

T‐wave alternans is the ECG manifestation of action potential repolarization alternans. Beat‐to‐
beat alternation of ventricular action potential in both duration and amplitude reflects the risk of 
ventricular tachycardia and ventricular fibrillation [16]. T wave alternance (TWA) from ICD elec-
trograms are concordant with TWA from the surface ECG because they measure the same alter-
nans phenomenon [17] (Figure 3).

Tada et al. described a patient with Brugada syndrome that presented TWA after administra-
tion of a sodium channel blocker (cibenzoline) [18]. Ohkubo et al. also described TWA in a 
patient with Brugada syndrome after class 1 antiarrhythmic drug (pilsicainide). TWA per-
sisted for 15 min and was followed by microvolt TWA [19].

Tada and colleagues [20] investigated the association between ventricular tachycardia 
and fibrillation with TWA induced by intravenous pilsicainide (sodium channel blocker). 
Pilsicainide provoked visible TWA in 17 of 77 Brugada patients. Those with TWA experienced 
a significantly higher incidence of spontaneous VF (52.9 vs. 8.3%) than those without TWA.

Figure 3. Method for determination of TWA: the amplitude for each T‐wave is calculated as the maximum minus the 
minimum value (horizontal red lines). The difference between the amplitude of the first beat and second beat of each pair 
is calculated using the formula: TWA = [(Ta−Tb)1+(Ta−Tb)2+…(Ta−Tb)x]/x.
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8. Use of stored ICD electrograms for catheter ablation of ventricular 
fibrillation in Brugada syndrome

Stored electrograms can be used for catheter ablation of ventricular fibrillation. Both far‐field 
EGM and near‐field EGM are used [21]. First, the EGM that initiates ventricular fibrilla-
tion should be captured. This is used as a template for subsequent pacemapping (Figure 4). 
Information regarding the morphology and timing of the EGM are used to search for the best 
correlation during pacemap. Both spontaneous QRS complex morphology and far‐field ICD 
morphology are used for comparison with the paced morphology. Timing between far‐field and 
near‐field ICD electrograms is also used for the template when comparing with the paced beat.

Pacemapping is attempted at the level of RVOT with real‐time recording from the ICD elec-
trogram. Both morphology and timing are used to delineate the zone with the best match and 
that zone will be a target for ablation. The study of Almendral et al. [22] showed spatial reso-
lution of 2 cm2 for best match with electrogram morphology and timing. The same resolution 
was confirmed by Lowery et al. in patients with different types of ventricular fibrillation [21].

Substrate epicardial mapping is initiated in sinus rhythm to identify dense scar <0.5 V and 
border zone between 0.5–1.5 V. Abnormal electrograms consist in low amplitude–wide dura-
tion of >80 ms, with multiple or delayed components outside the end of the surface ECG 
QRS. The same RVOT zone is remapped after IV flecainide to determine increase in abnormal 
electrogram area after infusion. Catheter ablation targets the complete elimination of the sub-
strate inside the low‐voltage areas [23].

Figure 4. Example of pacemapping of a trigger arising from the RVOT in a patient with Brugada syndrome. Panel A 
corresponds to the recorded spontaneous PVC inducing VF (A). Panels B and C show near‐ and far‐field electrograms 
with a bad correlation between the spontaneous RVOT (B) and paced electrogram (C).
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Information regarding the morphology and timing of the EGM are used to search for the best 
correlation during pacemap. Both spontaneous QRS complex morphology and far‐field ICD 
morphology are used for comparison with the paced morphology. Timing between far‐field and 
near‐field ICD electrograms is also used for the template when comparing with the paced beat.

Pacemapping is attempted at the level of RVOT with real‐time recording from the ICD elec-
trogram. Both morphology and timing are used to delineate the zone with the best match and 
that zone will be a target for ablation. The study of Almendral et al. [22] showed spatial reso-
lution of 2 cm2 for best match with electrogram morphology and timing. The same resolution 
was confirmed by Lowery et al. in patients with different types of ventricular fibrillation [21].

Substrate epicardial mapping is initiated in sinus rhythm to identify dense scar <0.5 V and 
border zone between 0.5–1.5 V. Abnormal electrograms consist in low amplitude–wide dura-
tion of >80 ms, with multiple or delayed components outside the end of the surface ECG 
QRS. The same RVOT zone is remapped after IV flecainide to determine increase in abnormal 
electrogram area after infusion. Catheter ablation targets the complete elimination of the sub-
strate inside the low‐voltage areas [23].

Figure 4. Example of pacemapping of a trigger arising from the RVOT in a patient with Brugada syndrome. Panel A 
corresponds to the recorded spontaneous PVC inducing VF (A). Panels B and C show near‐ and far‐field electrograms 
with a bad correlation between the spontaneous RVOT (B) and paced electrogram (C).
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9. Examples of ICD electrograms

We present electrograms from our cardiology department in patients with Brugada syndrome:

• Coupling interval of the PVC initiating ventricular fibrillation (Figures 5 and 6).

• Safe terminating ventricular tachycardia (Figures 7 and 8).

• Ventricular fibrillation terminated by an electrical shock (Figure 9).

Figure 5. The same coupling interval 330 ms and the same PVC morphology at the initiation of nonsustained VT in a 
patient with Brugada syndrome. (A) without PVCs; (B) PVC inducing NSVT; (C) same PVC inducing NSVT; (D) same 
PVC inducing NSVT.

Figure 6. The same coupling interval 322 ms and same morphology at the initiation of nonsustained VT in a patient with 
Brugada syndrome. (A) PVCs with ventricular trigeminism; (B) same PVC inducing NSVT; (C) same PVC inducing (D) 
self‐terminating VF.
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Figure 8. Self‐terminating (or nonsustained) ventricular tachycardia. Please note the long cycle length.

Figure 9. Ventricular fibrillation terminated with an external shock. Please note the short VF interval.

Figure 7. Self‐terminating ventricular tachycardia. Please note the long cycle length. Upper electrogram is the far‐field 
ventricular IEGM; in the middle of the strip atrial IEGM; at bottom near‐field ventricular IEGM.
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10. Conclusion

Analysis of intracardiac electrograms during episodes of ventricular arrhythmias is effective 
for clarifying the mechanism of the episode. Many spontaneous episodes of VF are preceded 
by frequent PVCs. The coupling interval usually is long and reaches the end of the T‐wave. 
Ventricular fibrillation interval is short and may be responsible for failure of internal defibril-
lation. Longer VF interval values predict spontaneous termination of VF. A catheter ablation 
technique was described for catheter ablation of PVCs initiating VF in Brugada syndrome and 
uses the stored IEGMs as template for pacemapping.
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Abstract

Intracardiac defibrillator plays a pivotal role in preventing sudden cardiac death; however, 
inappropriate shock delivery remains an important source of morbidity and mortality. 
Advancements in device technology along with various shock reduction strategies play 
a key role in reducing inappropriate and unnecessary shocks. Anti-tachycardia pacing 
(ATP) is the first-line therapy prior to shock delivery. Several trials have validated the effi-
cacy of ATP for both slow and fast ventricular tachycardia without significant increase in 
occurrence of arrhythmia-related syncope. In addition, trials also support that therapy for 
non-sustained tachycardia can be prevented by higher programmed zones and prolonged 
intervals to detect without higher risk of syncope. With this perspective, authors employ a 
customized programming for both primary and secondary prevention to reduce inappro-
priate therapies or unnecessary therapies, in particular, progression to shock but allow for 
spontaneous termination at slower ventricular tachycardia rates. The programming was 
instituted at the time of device implantation or at follow up.

Keywords: intracardiac defibrillator, anti-tachycardia pacing, inappropriate therapies, 
shock, customized programming, ICD programming, ICD therapies, reducing ICD 
therapies, ICD templates

1. Introduction

Implantable cardioverter-defibrillator (ICD) remains the main therapeutic option in reduc-
ing sudden cardiac death (SCD). Several randomized trials and registries have shown that 
ICD extends survival in patients with severe left ventricular function and mild-to-moderate 
heart failure [1–4]. The shocks delivered whether appropriate, inappropriate or unnecessary 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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remain an important source of mortality and morbidity from proarrhythmic potential, heart 
failure, painful delivery of shock causing significant anxiety, depression and post-traumatic 
stress disorder [5–11].

Inappropriate ICD shocks are those delivered for a condition other than true ventricular 
arrhythmias, which most commonly include supraventricular arrhythmias with rapid rates, 
mechanical failure of ICD lead/system like lead conductor fracture resulting in noise detec-
tion and non-mechanical issues such as T-wave over sensing resulting in double-counting 
[3]. Unnecessary or potentially avoidable shocks are those where the ventricular tachycardia 
(VT) was to terminate spontaneously or could have been interrupted by appropriately timed 
pacing stimuli.

Table 1 lists the major clinical trials and registries reporting the incidence of inappropriate 
shocks. We review some of the trials here.

The anti-arrhythmics versus implantable defibrillators (AVID) was a multi-centre trial which 
patients were randomized to receive ICD or anti-arrhythmic drug therapy; 492 patients were 
randomized to receive an ICD over a follow-up period of 22 ± 12 months. Inappropriate 
shocks in this cohort were due to supraventricular tachycardia in 18% and 3% were due to 
ICD malfunction or inappropriate sensing [12].

The Pain FREE Rx II trial was a prospective randomized control trial consisting of 634 patients 
with a mean follow up of 11 ± 3 months. All patients received ICDs and were randomized 
to anti-tachycardia pacing versus shock only programming [13]. There were 4230 spontane-
ous episodes retrieved from all implanted ICDs, 1837 had complete electrogram data and 
were included in the analysis. Of these, 491 episodes (27%) were determined to be inappro-
priately detected supraventricular tachycardia (SVT), and 4 (0.2%) were non-physiological 
artifact. Sweeny et al. performed a subgroup analysis of the PainFree trial and showed that 
the proportion of true ventricular detections that resulted in shocks was similar between pri-
mary and secondary prevention groups (40% versus 32%, respectively) [14]. The proportion 
of inappropriate ventricular detections due to SVT that resulted in shocks was also similar 
between primary and secondary prevention groups (44% versus 42%, respectively).

MIRACLE ICD was a prospective, randomized double-blind trial of 978 patients with a mean 
10-month follow-up [15]. This trial evaluated the safety and efficacy of cardiac resynchroniza-
tion combined defibrillator therapy (CRT-D) versus ICD only therapy in both primary and 
secondary prevention patients. The reported incidence of inappropriate shocks was 30% in 
primary prevention patients and 14% in secondary prevention patients.

In the Multicenter Automatic Defibrillator Implantation Trial II (MADIT-II), inappropriate 
shocks constituted 31.2% (184/590) of the total shock episodes [16]. The most common trig-
gers were atrial fibrillation (44%) and supraventricular tachycardia (36%) with improper 
discrimination by the ICD device, followed by abnormal sensing (20%). The majority of  
inappropriate ICD therapy episodes were delivered for rhythms below or equal to 200 bpm; 
the mean ventricular rate triggering inappropriate shock for atrial fibrillation (AF) or SVT 
was 174 ± 22 bpm. Patients with inappropriate ICD shocks showed a significantly higher 
mortality during the follow-up (HR = 2.29, 95% CI: 1.11–4.71, p = 0.02) than patients with 
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appropriate ICD shocks (HR = 3.36, 95% CI: 2.04–5.55, p < 0.01). This demonstrated that all 
shocks, although demonstrated to save lives, also have a detrimental effect and lead to heart 
failure deterioration and eventual mortality.

Similar data could be extrapolated from the sudden cardiac death in heart failure trial (SCD-
HeFT) [17]. In this trial, 2521 patients with primary prevention indication and with mild-to-
moderate heart failure were randomized in equal proportions to receive placebo, amiodarone 
or a single-chamber ICD programmed to shock-only mode. Follow-up was for an average 
of 46 months. In 811 patients assigned to the ICD arm, the rate of inappropriate shocks was 
17% as compared to 22.4% appropriate shocks during a 46-month follow-up. Patients with an 
inappropriate ICD therapy had a twofold increase in the risk of all-cause mortality (HR = 1.98, 
95% CI: 1.29–3.05, p = 0.002).

The results from the randomized trials were confirmed in larger registries. The ALTura Impact 
on the Treatment of Abdominal Aortic Aneurysms Using a Novel D-stent EVAR Design 
(ALTITUDE) registry involved 39,396 ICD patients and 29,904 patients implanted CRTDs. 
Patients were implanted for both primary and secondary indications [18]. The 1-year inci-
dence of inappropriate shocks was 8% and 6% and at 5 years increased to 16% and 17% for 
ICD and CRT-D patients, respectively. The two most common reasons for shock were atrial 
flutter/atrial fibrillation and sinus tachycardia or supraventricular arrhythmia. Inappropriate 
shock was due to noise, artifact or over sensing in 3% of the episodes.

The Leiden group published a large scale study in 1544 ICD patients and reported an 18% inci-
dence of inappropriate ICD therapy over 41 months of follow-up. This study also confirmed 
the increased risk of death for both inappropriate and appropriate ICD therapy (HR1.60 for 
both, p = 0.01 for inappropriate; p < 0.01 for appropriate ICD therapy) [19].

2. Possible mechanism of increased risk of death with ICD shocks

It may be hypothesized that there is a direct mechanical or hemodynamic effect of the inap-
propriate ICD therapies themselves or that some of the inappropriate ICD therapies lead to 
fatal pro-arrhythmia due to an increase in sympathetic discharge, which in turn leads to rate-
related changes in ventricular refractoriness and worsened myocardial ischemia [20].

It is likely that it is not the inappropriate shock per se that is detrimental, but the sequelae that 
hastens the adverse clinical outcome.

It has been suggested that high shock fields are associated with changes in electrophysiologi-
cal properties of the heart and can be the primary source of activation wave fronts that may 
give rise to idioventricular rhythms after the shock and perhaps may even perpetuate ven-
tricular fibrillation [21]. The cellular injury from intra-cardiac shock delivery whether it be 
appropriate or not is reflected in a rise in cardiac troponin I [22]. Though the result may be a 
rescue from acute ventricular arrhythmia, studies have shown a relationship with increased 
mortality and morbidity from progression to heart failure as a consequence of the myocardial 
stunning [5–11].
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Minimizing the need for shock delivery overall will, therefore, ultimately prevent the down-
stream complications.

3. Shock reducing strategies

There have been several technological advancements to improve ICD therapy delivery and 
to avoid inappropriate and unnecessary ICD therapies. The shock reduction programming 
strategies may be divided into the following categories:

• Optimizing ventricular tachyarrhythmia discrimination by applying advanced detection 
algorithms in all therapy zones.

• Delaying onset of anti-tachycardia therapies either by prolonged detection intervals or set-
ting higher tachycardia detection limits.

• Using anti-tachycardia pacing (ATP) as first-line therapy whenever possible prior to shock 
delivery.

4. Clinical evidence and the rationale to support ATP therapy

Monomorphic VT can be interrupted when an appropriately timed pacing stimulus is deliv-
ered into the excitable gap of a re-entrant circuit where a collision with the orthodromic wave 
front results in termination of the tachycardia.

An alternative explanation is that the paced stimuli result in myocardial depolarization dur-
ing the relative refractory period. This pre-excites the preceding wave front, thereby altering 
myocardial excitability and extinguishing the propagation re-entrant VT [23].

The duration of the excitable gap and the conduction time from the pacing stimulus site to 
the re-entrant circuit are the main factors influencing penetration of the excitable gap and 
termination of the arrhythmia [24].

Ventricular conduction time is influenced by anatomic and functional barriers as well as the 
influence of the sympathetic nervous system [25]. The efficacy of the ATP is improved with 
adequate beta blockade and is not adversely influenced by other anti-arrhythmic drugs as is 
the case with defibrillation thresholds [26].

5. Customized programming

Several trials have validated the efficacy of ATP in terminating slower cycle length of VT.

The Pain FREE Rx II trial was the first trial that extended the use of ATP for fast VT (FVT) 
with heart rates of 188–250 beats/min. This study also used longer intervals to detect VT as 
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compared to the previous conventional programming (Figure 1) [13, 27]. The result was that 
73% of FVT episodes were successfully terminated by the ATP.

It also showed that FVT made up 76% of all ventricular arrhythmias that would have conven-
tionally been treated by shock alone according to conventional ICD programming.

Acceleration of FVT occurred in patients programmed to receive ATP as well as those in the 
shock only group: 4/273 monomorphic VT episodes (2%) in the ATP arm versus 2/145 (1%) 
in the shock arm. There were also three episodes of syncope during treatment for FVT (ATP, 
n = 2; shock, n = 1). This study, therefore, established the safety and efficacy of ATP for both 
slow and FVT as first-line therapy in ICDs with a non-significant occurrence or difference in 
arrhythmia-related syncope in either therapy arm.

The next stage in the evolution of device therapy programming was to defer treatment 
(VT detection) till absolutely necessary. In this regard, the Primary Prevention Parameters 
Evaluation (PREPARE) trial (Figure 2) [28] evaluated a prolonged detection interval duration 
of 30/40 ventricular beats and an increased tachycardia detection interval (TDI) of 182 beats/
min. Supraventricular detection discrimination algorithms and ATP were also optimized 
in this programming strategy. Arrhythmic syncope was only 1.6% in the test programming 
strategy. All-cause mortality in the PREPARE study group was also relatively low (Kaplan-
Meier estimated 12-month mortality of 4.9%). Thus, the overall safety behind the rationale of 
this programming was acceptable.

Figure 1. Programming strategy of experimental and control arm in Pain FREE Rx II trial.
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The multicenter automatic defibrillator implantation trial–reduce inappropriate therapy 
(MADIT-RIT) trial compared three arms: (a) conventional ICD detection of VT with a (b) 
prolonged detection interval and (c) a higher tachycardia detection interval (Figure 3) [29].

The results validated the safety of both the active test arms. There was a 79% reduction in 
the incidence of therapy in the high-rate group than in the conventional therapy group and 
delayed therapy (longer detection interval programming) was associated with a 76% reduc-
tion in overall therapy delivery. Mortality was reduced by 55% in the high-rate group (p = 
0.01) and by 44% in the delayed-therapy group (p = 0.06). Despite withholding therapies till 
absolutely needed, there was a mortality improvement in these active programming options.

The incidence of syncope was similar between the groups and was not clinically significant: 
high rate strategy and delayed therapy versus conventional arm (p = 0.39, p = 0.80).

Both delayed therapy and higher rate programming were shown to be safe and efficacious.

Figure 2. Programming strategy of experimental arm in PREPARE trial with controls from EMPIRIC and MIRACLE 
ICD patients.
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The ADVANCE III (Avoid Delivering Therapies for Nonsustained Arrhythmias in ICD 
Patients III) [30] reinforced the findings from the MADIT-RIT trial and included both primary 
and secondary prevention patients, with or without atrial fibrillation, in whom single-, dual- 
and triple-chamber ICD were implanted [30]. Thus, this randomized control trial applied an 
extended detection interval strategy to a heterogeneous cohort of ICD recipients and more 
likely to resemble a real world setting (Figure 4).

This delayed arrhythmia detection strategy resulted in a reduction in the combined end point 
of all ICD therapies (ATPs and shocks) with 346 delivered therapies (42 therapies per 100 
person-years) in test group (extended-detection interval) versus 557 in the control group 
(standard-detection interval) (67 therapies per 100 person-years); p < 0.001.

The incidence of arrhythmic syncope was low in both groups and did not differ significantly 
with rates of 3.1 versus 1.9 per 100 patient-years (p = 0.220 in the extended detection and 
standard detection groups, respectively). The syncopal episodes were not associated with any 
additional adverse outcomes. The mortality rates were 5.5 versus 6.3 per 100 patient-years 
(p = 0.50) in extended detection and standard detection, respectively. Both were low and com-
parable to what was reported in the MADIT-RIT trial.

Similarly the PROVIDE (Programming Implantable Cardioverter Defibrillators in Patients 
with Primary Prevention Indication to Prolong Time to First Shock) trial was a program-
ming strategy with combination of higher detection rates, prolonged detection intervals, opti-
mized SVT discriminators and empiric ATP therapy compared to conventional parameters in 
patients receiving ICDs for primary prevention (Figure 5) [31]. The primary end point was 
time to first shock delivery. The median time to first shock was significantly longer at 13.1 
months in experimental group versus 7.8 months in the control group. In addition, the 2-year 
shock rate was 12.4% in the experimental group compared to 19.4% in the control group. An 
overall reduction in both appropriate and inappropriate shock and ATP was observed. The 
decrease in ICD therapies was associated with a 30% relative reduction in all-cause mortality.

The incidence of arrhythmic syncope was not significantly different between the two groups 
with overall incidence of 1.7% over 2 years of follow-up.

Figure 3. Programming strategy of MADIT-RIT patients.
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With this perspective, we can summarize the overall current trends in ICD programming:

1. Higher zone thresholds

2. Prolonged detection duration or detection intervals

3. Use of advanced discriminators in all zones

4. Use of tiered therapies with ATP as first line therapy before shock delivery.

The aim of these strategies is to reduce inappropriate therapies (ITS) particularly progression 
to shock and not to over treat ventricular arrhythmias but to allow for spontaneous termina-
tion at ventricular rates that are safe to do so.

Figure 4. Programming strategy in ADVANCE III trial.
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There has been no data to suggest that implanting dual chamber ICDs is more advantageous in 
ventricular arrhythmia over single chamber devices in any of the studies we have mentioned. 
However, there are some practical reasons where one may choose to implant an atrial lead as 
well to enhance discrimination algorithms [32].

• In patients who require pacing for bradycardia, AV sequential pacing would be preferable.

• In patients with bradycardia-induced or pause-dependent ventricular tachyarrhythmia 
(such as patients with long QT syndrome and torsades de pointes).

• In patients with documented history of paroxysmal atrial arrhythmias (atrial EGMS will 
help distinguish the chamber of onset of the tachycardia).

Figure 5. Programming strategy of experimental arm in PROVIDE trial with control population from the PROVE trial.
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• In patients with hypertrophic cardiomyopathy as they are prone to atrial arrhythmias but 
may also require pacing.

With this in mind, we employ the following customized ICD programming (Tables 2 and 3) 
for both primary and secondary prevention of SCD in our patients.

Medtronic St. Jude medical Biotronik Boston scientific Sorin

VF (VF + FVT) 
rate in bpm

230–240 250 250 220 200–240

NID 30 30 12/16 2.5 s initial 
duration

6 cycles

Therapy ATP during 
charge

ATP during 
charge

ATP: Burst 1 ATP: Burst 1 ATP: Burst 1

Shock × 6 Shock × 6 Shock × 6 Shock × 6 Shock × 6

VT2 (FVT via 
VF) CL

250 200 200 200 200

NID 30 30 28 (RD-14) 10 s initial 
duration

6 cycles

Therapy ATP: Burst 1 ATP: Burst 1 ATP: Burst 1 ATP: Burst 1 ATP: Burst 1

Shock × 5 Shocks × 4 Shocks × 5 Shocks × 5 Shocks × 5

VT1 CL in bpm 171 171 171 170 170

NID 28 30 30 (RD-16) 30 s initial 
duration

12 cycles

Therapy ATP: Burst 1 + 
Burst 2

ATP: Burst 1 + 
Burst 2

ATP: Burst 1 + 
Burst 2

ATP: Burst 1 + 
Burst 2

ATP: Burst 1 + 
Burst 2

Shocks × 4 Shocks × 3 Shocks × 4 Shocks × 4 Shocks × 4

Monitor CL in 
bpm

150 150

NID 32 12 cycles

Therapy None None

ATP programming

Medtronic St. Jude Biotronik Boston Sorin

Burst 1 8/88/3 8/88/3 8/85/3 8/88/3 8/85/3

Burst 2 8/84/3 8/84/3 8/85/3 8/84/3 8/85/3

Ramp 8/91 8/91 8/90 8/91 8/90

Time out: OFF (Boston Scientific); ATP smart mode: OFF (Medtronic); progressive therapy: ON (Medtronic >2 active 
zone); ATP optimization: ON (Biotronik); upper rate ATP cut off 260 beats/min (St. Jude); readaptive: ON (St. Jude); 
Ramp OFF unless specified.

NID: Numbers of interval to detect.

Table 2. Suggested customized ICD programming strategy proposed by the authors for primary prevention.
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The programming is instituted at the time of device implantation and refined (if needed) at 
follow-up in the device clinic.

The programming covers all manufacturers’ ICDs that we commonly implant. The custom 
sets are preloaded onto our programmers, thus minimizing the need for tedious reprogram-
ming and only need to be refined if the case warrants this.

Medtronic St. Jude medical Biotronik Boston Scientific Sorin

VF (VF + FVT) 
rate in bpm

200 250 250 220 200–240

NID 30 30 12/16 2.5 s initial 
duration

6 cycles

Therapy ATP during 
charge

ATP during 
charge

ATP: 1 Burst ATP: Burst 1

Shock × 6 Shock × 6 Shock × 6 Shock × 6 Shock × 6

VT2 (FVT via VF) 
rate in bpm

250 200 200 200 200

NID 30 30 28 (RD-14) 10 s initial 
duration

6 cycles

Therapy ATP: Burst 1 ATP: Burst 1 ATP: 1 Burst ATP: Burst 1 ATP: Burst 1

Shock × 5 Shocks × 4 Shocks × 5 Shocks × 5 Shocks × 5

VT1 rate in bpm 171/VT-20 171/VT-20 171/VT-20 170/VT-20 170/VT-20

NID 28 30 30 (RD-16) 30 s initial 
duration

12 cycles

Therapy ATP: Burst 1 + 
Burst 2

ATP: Burst 1 + 
Burst 2

ATP: Burst 1 + 
Burst 2

ATP: Burst 1 + 
Burst 2

ATP: Burst 1 + 
Burst 2

Shocks ×4 Shocks ×3 Shocks ×4 Shocks ×4 Shocks ×4

Monitor rate in 
bpm

150/VT-30 150/VT-30

NID 32 12 cycles

Therapy None None

ATP programming

Medtronic St. Jude Biotronik Boston Sorin

Burst 1 8/88/3 8/88/3 8/85/3 8/88/3 8/85/3

Burst 2 8/84/3 8/84/3 8/85/3 8/84/3 8/85/3

Ramp 8/91 8/91 8/90 8/91 8/90

Time out: OFF (Boston Scientific); ATP smart mode: OFF (Medtronic); progressive therapy: ON (Medtronic >2 active 
zone); ATP optimization: ON (Biotronik); upper rate ATP cut off 260 beats/min (St. Jude); readaptive: ON (St. Jude); 
Ramp OFF unless specified.

Table 3. Suggested customized ICD programming strategy proposed by the authors for secondary prevention.
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In doing so, the work flow both in the implant suite and at the follow-up device visit is facili-
tated and the programming can be delegated to our allied professional nurses and cardiac 
technicians.

6. Conclusion

With the complexity and sophistication of ICD algorithms, the programming of these cardiac 
devices has become a discipline and challenge in its own right. We have found that it has been 
difficult to maintain predictability and consistency in the programming of ICDs in our cen-
tre, hence a need arose to develop a programming template. This was derived from current 
trends in programming and is mentioned here in an extensive review of the literature. There 
is an obvious limitation in which each of the studies has been manufacturer specific. We have 
tried to identify the principles on which the programming was based and then developed a 
generic template. This was however still done with due consultation with the manufacturers 
to ensure applicability and safety with the specific algorithms. There have also been very few 
studies that deal with programming of secondary prevention of ICDs. We have strived to 
maintain a compromise between all manufacturers to reach a consensus on programming for 
primary prevention of ICDs.
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Abstract

Identification of atrial fibrillation (AF) mechanisms could improve the rate of ablation 
success. However, the incomplete understanding of those mechanisms makes difficult 
the decision of targeting sites for ablation. This work is focused on the importance of EGM 
analysis for detecting and modulating rotors to guide ablation procedures and improve 
its outcomes. Virtual atrial models are used to show how nonlinear measures can be used 
to generate electroanatomical maps to detect critical sites in AF. A description of the atrial 
cell mathematical models, and the procedure of coupling them within two‐dimensional 
and three‐dimensional virtual atrial models in order to simulate arrhythmogenic mecha‐
nisms, is given. Mathematical modeling of unipolar and bipolar electrogramas (EGM) 
is introduced. It follows a discussion of EGM signal processing. Nonlinear descriptors, 
such as approximate entropy and multifractal analysis, are used to study the dynamical 
behavior of EGM signals, which are not well described by a linear law. Our results evince 
that nonlinear analysis of EGM can provide information about the dynamics of rotors 
and other mechanisms of AF. Furthermore, these fibrillatory patterns can be simulated 
using virtual models. The combination of features using machine learning tools can be 
used for identifying arrhythmogenic sources of AF.

Keywords: atrial fibrillation, arrhythmogenic sources, electrogram model, computer 
simulation, nonlinear features, electroanatomical mapping

1. Introduction

The most common sustained cardiac arrhythmias in humans are associated with the atria. 
Atrial arrhythmias, mainly atrial fibrillation (AF), frequently provoke incapacitating symp‐
toms and severe complications such as stroke and heart failure [1]. Overall, 20–25% of all 
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strokes are caused by AF [2]. The presence of AF is related to a significant increase in morbid‐
ity and mortality [3]. Electrocardiogram‐based surveys suggest that 1% of the total population 
is affected by AF [4].

There are a large number of clinical conditions that are associated with an increased incidence 
of AF. This contributes to a progressive process of atrial remodeling characterized by a set of 
changes in atrial properties that contributes in sustaining of the arrhythmia. These changes 
include alterations in the electrical cellular activity, calcium handling and in the atrial struc‐
ture such as cellular hypertrophy and fibrosis. They have been described in some animal 
models [5–8] and in humans [9–11]. These alterations may favor the occurrence of triggers 
that initiate the AF and the formation of a substrate that promotes its perpetuation. Changes 
in electrical activity cause a significant shortening of the action potential duration (APD) and 
a decrease in refractoriness [8–10], which may support the initiation and maintenance of mul‐
tiple re‐entrant waves, as suggested by experimental studies [5, 9].

It is well known that AF can be caused by different mechanisms, including single‐circuit re‐
entry, multiple‐circuit re‐entry, rapid local ectopic activity and rotors [12–15]. It is very impor‐
tant to know the mechanisms underlying AF, since these have implications in the treatment of 
the disease. An important percentage of patients suffers of paroxysmal AF, which is initiated 
by focal triggers that are localized at preferential sites, mainly in the pulmonary veins (PV) 
[13]. Electrical isolation of pulmonary veins can prevent recurrence of AF in 70–80% of these 
lone AF patients. The rationale for this is the crucial observation, reported in [13], that AF was 
mostly triggered by ectopic beats arising from the muscle sleeves of the pulmonary veins. 
They demonstrated that atrial rapid paces or ectopic activity originated in the proximities or 
in the interior of the pulmonary veins could act like triggers, and, in some cases, they would 
be responsible for the maintenance of paroxysmal AF episodes [16, 17]. A unifying theory 
suggests that rapid focal activity is responsible for generating atrial, which is necessary to 
maintain a substrate for the generation of multiple re‐entrant waves [18, 19]. While parox‐
ysmal AF is maintained predominantly by ectopic focal activity or local re‐entrant circuits 
located in one or more pulmonary veins, as the arrhythmia evolves into more persistent forms 
promoted by atrial remodeling, the mechanisms that maintain AF move toward the atria and 
are increasingly based on re‐entry substrates [11, 20–22]. Based on clinical [23–25] and experi‐
mental [14, 26] results, certain types of AF can be attributed to a stable high‐frequency rotor or 
a small number of rotor waves in left atrium, which maintain the arrhythmia, whose periodic 
activation can be converted into a chaotic pattern when the wavefronts propagate across the 
atrial wall. This phenomenon, known as the mother rotor hypothesis, is the most recently pro‐
posed mechanism of AF [27], which suggests that AF is triggered by a series of ectopic beats, 
whose wave fronts give rise to a rotor. The rotor is a stable re‐entry around a functionally 
unexcitable core [15] that works as a maintenance mechanism with some spatial temporal 
stability, activating the local tissue at high frequency, generating wave fronts that fragment 
and propagate as multiple daughter wavelets. Stable rotors are at diverse locations, mostly in 
the left atrium, including sites outside the pulmonary veins, as well as the posterior, inferior, 
and roof regions. Several studies have observed rotors in in vitro and animal models [14, 28, 
29], and its presence in humans has been reported [27, 30, 31].
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All localized sources of AF as re‐entry circuits, ectopic foci, or rotors, cause fibrillatory conduc‐
tion remote from the source, which is difficult to distinguish from propagation that maintains 
the AF by multiple wavelets, and any of these phenomena may generate rotors registered by 
intracardiac recordings [32, 24]. Studies carried out by [33, 34] have shown evidence that human 
AF can be sustained by localized rotors; however, the existence of stable rotors maintaining AF 
remains a focus of discussion. Hence, the importance of the implementation of virtual models 
and computational tools in the studies of AF sources and its relation with the signals recorded 
from surface. In the same way, the rotors have been shown in computer models of AF [35–38].

Ablation has emerged as an important treatment strategy for AF [39]. Pulmonary veins iso‐
lation reaches single procedure success rates of 60–80% for paroxysmal AF treatment [40]. 
However, for the chronic case, this strategy does not achieve satisfactory outcomes [41]; con‐
sequently, complex ablation lines are added to the procedure [45]. Catheter ablation guided by 
electroanatomic mapping has revolutionized the treatment of permanent AF. Identification of 
AF mechanisms could improve the rate of ablation success. However, the incomplete under‐
standing of those mechanisms makes difficult the decision of targeting sites for ablation. To 
overcome this limitation, two‐dimensional and realistic three‐dimensional human atria com‐
puter models have been developed to investigate the relationship between the characteristics 
of EGM and the propagation pattern associated with them [42–45].

It is thought that the different mechanisms lead to changes in the characteristics of spatiotem‐
poral organization of AF [44, 45]. EGM‐guided ablation procedures have been proposed as an 
alternative strategy, which involves mapping and ablating focal sources or complex fraction‐
ated atrial electrograms (CFAE) [46]. Recent studies have shown that a large number of sites 
representing AF substrates are characterized by a high degree of disorganization in EGM 
signals [29], and therefore, signal processing methods are being designed in order to quantify 
their degree of fractionation [47, 48]. The relationship between the rotor tip and CFAE has 
been published in recent studies [36, 45, 47, 49, 50]; however, automatic rotor mapping meth‐
ods have not been fully developed.

Different mapping techniques are being used to identify target sites for ablation, and some 
of them are activation waves, voltage, dominant frequency [23, 51–55] and CFAE maps [39, 
46, 56]. Nevertheless, there are several limitations with these techniques, and one of the most 
important is that they depend considerably on the electrophysiologist expertise [57].

The term CFAE was introduced by Nademanee [46] as a pathophysiological concept; however, 
its definition is unclear and broad and includes inherent subjectivity [58]. CFAE are formally 
defined as follows: (1) atrial EGM that have fractionated electrograms composed of two deflec‐
tions or more, and/or perturbation of the baseline with continuous deflection of a prolonged 
activation complex over a 10 s recording period; (2) atrial EGM with a very short cycle length 
(<120 ms) over a 10 s recording period. CFAE definition does not distinguish between different 
morphologies; consequently, fractionated EGM according with CFAE definition are not neces‐
sarily related to arrhythmogenic substrates. Moreover, several studies have shown conflicting 
results with Nademanee [56, 59]. This may lead the electrophysiologist to confuse the fractionated 
EGM that are functional in nature [60] with fractionated EGM corresponding to  arrhythmogenic 
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sources, leading to incorrect target sites for ablation. This also makes clinical results difficult 
to compare. Inconsistent results have been found in different studies using the CFAE concept. 
Although the concept of CFAE has made a great contribution to the study of AF, it may fail to 
describe the wide range of fractionation that occurs in the EGM signals in specific cases. Thus, the 
electrogram‐guided approach by mapping and targeting areas of CFAE is a technique that is still 
debated [61], and further studies are needed to strengthen the treatment techniques.

To date, indexes computation from EGM is carried out mostly based on the detection of local 
activation waves and time intervals. However, the concept of EGM fractionation, such as 
CFAE, defined using time criteria, is not enough to describe the complexity of EGM during 
AF. Morphological irregularity and temporal variability of the signal must be included. To 
overcome the limitations of CFAE definition, designation of different degree of fractionation 
has been proposed based on the perturbation of baseline and the presence of continuous 
deflection [36]. Some studies have presented evidence linking the vortex of the rotor with 
a high degree of fractionation in the EGM [36, 47]. However, the patterns of EGM signals 
associated with the rotors are still unknown, and the development of tools for characteriz‐
ing fractionated EGM signals is still a current topic. In addition, there is not a standard for 
description of fractionation degrees, and there are different descriptions in the literature. In 
order to quantify the behavior of different morphologies of EGM signals and the fraction‐
ation degrees, recent studies have helped to understand the concept of EGM fractionation as 
a nonlinear phenomenon [47, 48, 62]. Mathematical descriptors of the nonlinear dynamical 
behavior have been used to study cardiac signals and are based on the description of the state 
of the system and its evolution. If a linear law does not describe the evolution of the system, 
the dynamics is nonlinear. Thus, indexes and features calculated using nonlinear dynamics 
theory become an alternative for enhancing assessment of EGM complexity.

2. Simulated atrial fibrillation dynamics

The mathematical modeling of atrial electrophysiology has become a useful method for study‐
ing the underlying mechanisms responsible for AF. Different models of human atrial elec‐
trophysiology have been published with various formulations of ionic currents and calcium 
handling, therefore, with different electrophysiological properties [63–67]. In our studies, the 
transmembrane potential was based on the Courtemanche‐Ramirez‐Nattel and Kneller [63, 
68] model of human atrial cell kinetics in the presence of 0.005 μM of acetylcholine (ACh). 
Based on the experimental data [9, 10, 69], the cell model was modified in order to reproduce 
electrophysiological conditions of permanent AF: the maximum conductance of delayed rec‐
tifier potassium current (IKur) and transient potassium current (Ito) was decreased by 50%, 
the maximum conductance of potassium time independent current (IK1) was increased by 
100%, and the maximum conductance of L‐type calcium current (ICaL) was decreased by 70% 
(see Table 1). Thus, the action potential duration at 90% of the repolarization (APD90) was 
reduced by 70% (Figure 1A), which is in accordance with experimental studies developed by 
Workman et al. [9] and Bosch et al. [10] in isolated myocytes from patients with permanent 
AF, using the whole cell patch clamp technique.
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(see Table 1). Thus, the action potential duration at 90% of the repolarization (APD90) was 
reduced by 70% (Figure 1A), which is in accordance with experimental studies developed by 
Workman et al. [9] and Bosch et al. [10] in isolated myocytes from patients with permanent 
AF, using the whole cell patch clamp technique.
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The development of multi‐dimensional models has allowed representing fibers, pieces of 
tissue and atrial cavities. These models have served to approach, among other aspects, 
the biophysics of the action potential propagation under physiological and pathological 
conditions.

Different studies have developed and implemented two‐dimensional (2D) models of atrial tis‐
sue to study the action potential propagation dynamics under physiological and pathological 
conditions [36, 37, 68, 70].

We have developed a two‐dimensional model of human atrial tissue. The tissue surface was 
discretized into a 150 × 150 hexahedral mesh (22,500 elements and 45,602 nodes). Spatial reso‐
lution was 0.4 mm. The electrical propagation of the atrial action potential was modeled using 
the monodomain reaction–diffusion equation:

    1 __  S  v  
   ∇⋅  (  D∇ V  m   )    =  C  m     

∂ V  m  
 ____ ∂ t   +  I  ion   −  I  stim    (1)

where Sv corresponds to the surface‐to‐volume ratio, D is the conductivity tensor, Cm is the 
specific membrane capacitance (50 pF), Iion is the total ionic current that crosses the membrane 
cells, Vm is the membrane potential, and Istim is the stimulus current. The electrophysiological 
model was integrated into the two‐dimensional virtual model. The equation was solved using 
the EMOS software, which is a parallel code that implements the finite element method and 
operator splitting [42, 71] for solving the monodomain model of electrical propagation and 
allows to calculate EGM as postprocess. The time step was fixed to 0.001 ms.

The tissue was considered isotropic. A conductivity of 0.3 S/cm was assigned to obtain a real‐
istic conduction velocity of 60 cm/s.

Rotor was generated by S1–S2 cross‐field stimulation protocol. Stimuli pulses were rectan‐
gular with 2 ms of duration and 6 mA of amplitude. The S1 was a train of five plane stimuli 
applied at the left boundary of the model at a basic cycle length of 1000 ms. The S2 stimulus 
was rectangular (3 × 2 cm) and was applied 40 ms after the last S1 in the inferior left corner of 
the model (Figure 1B).

A 4s stable clockwise spiral wave (rotor) was observed in the two‐dimensional model after 
applying the protocol (Figure 1C). The APD shortening due to the atrial remodeling allowed 
the rotor stability over time. Wijffels et al. [8] in goats demonstrated that maintenance of 
AF by pacing in the normal goat heart resulted in the development of sustained AF within 
1–3 weeks. This observation of tachycardia‐induced electrical remodeling creating a back‐
ground for persistent AF led to the concept that “Atrial Fibrillation Begets Atrial Fibrillation.” 
The longer duration and stability of the AF episodes was explained by a shortening of 
the wavelength of the atrial impulse. The simulated rotor pattern agrees with the “rotor 
 hypothesis” proposed by Jalife [15]. The contour map was implemented to show the core of 
the rotor (circular point in Figure 1D).

Virtual models of cardiac structures are needed in the study of atrial arrhythmias that are 
critically dependent on the spatial organization of cardiac structures and fibers. Some atrial 
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arrhythmias, such as AF, need complete structures to perpetuate them. The validity and enor‐
mous potential of multi‐scale heart models in improving diagnosis, prevention and therapy 
of cardiac pathologies are supported by different scientific results. These virtual models have 
opened new horizons in the study of the complex mechanisms underlying atrial arrhythmias 
and their treatment, either pharmacological or surgical. The earliest complex atrial models 
incorporated parts of the anatomical architecture of the atria [72, 73]. During the last few 
years, a significant number of new models of the animal and human atrial anatomy have been 
published [44, 74–88]. Some of these models included the atrial fiber architecture observed 
in histological sections. Studies developed by Seemann et al. [75] and Aslanidi et al. [79] 
included only the main bundles fiber orientation in their human atrial model. An image‐
based anatomical model of the sheep atrial has been published [80] including realistic fiber 
orientation. The model reproduces the whole atria with highly detailed myofiber architecture. 

Figure 1. (A) Action potential under physiological and permanent AF conditions. (B) S1–S2 cross‐field protocol. The 
plane S1 and rectangular S2 stimulus are shown. (C) Stable rotor under permanent AF conditions. (D) Contour map, the 
circular point indicates the rotor tip location.

Conductance Permanent AF

gIKL Increased by 100%

gIKACh –

gIKuv Decreased by 50%

gIto Decreased by 50%

gICaL Decreased by 70%

Table 1. Conductance (g) changes of currents for permanent AF.
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The three‐dimensional models also allow relating the arrhythmic behaviors as focal activity, 
rotors and multiple wavelet reentries, with their manifestation in the electrograms [44, 81].

A realistic three‐dimensional model of human atria including the main anatomical struc‐
tures (Figure 2A), electrophysiological heterogeneity, anisotropy (conduction velocity in the 
direction of myocardial fibers is usually several times larger than that vertical to them), and 
fiber orientation (Figure 2B) was developed in an earlier work [42]. It includes 52,906 hexa‐
hedral elements (polyhedrons with six faces, eight corners or nodes, topologically equivalent 
to cubes). The mathematical atrial cell model coupled within three‐dimensional (3D) virtual 
atria model was used to simulate AF dynamics. AF episodes were generated by the S1–S2 
stimulation protocol as follows [36]: a train of five stimuli with a basic cycle length of 1000 ms 
was applied in the sinus node area for a period of 5 s to simulate the atrial sinus rhythm (S1). 
Based on the study developed by Haissaguerre et al. [13], a burst pacing of 6 ectopic beats to 
high frequency (S2) at cycle length (CL) of 130 ms was delivered into the right superior pul‐
monary vein after the last S1.

During AF activity initiated by the ectopic activity, it was observed the generation of two 
rotors of stable activity during 5 s of simulation. One was located in the posterior wall of the 
left atrium, near the left pulmonary vein (#2 in Figure 2D), and the other was located in the 
superior vena cava (#1 in Figure 2D). The rotors were generated spontaneously, which is in 
agreement with the rotor hypothesis [27]. Additionally, a block line located over the inferior 
right pulmonary vein has been observed (#3 in Figure 2D).

Figure 2. (A) Frontal view of the three‐dimensional model of human atria. (B) Fiber orientation. (C) AP for different 
atrial areas (CT: crista terminalis, PM: pectinate muscles, APG: appendages, AVR: atrioventricular rings, and AWM: 
atrial working myocardium) under physiological conditions. (D) Activation isochronal maps. Stable rotors located in 
the posterior wall of the left atrium (#2) and A in the superior vena cava (#1) are showed. A block line can be seen at the 
right inferior pulmonary vein (#3).
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3. Simulated atrial electrograms

Several studies [21, 60, 82–84] have investigated the effects of factors such as slow conduction, 
anisotropy, conduction blocks, re‐entries, and wave collisions, on the morphology of unipolar 
and bipolar EGM. However, it is still not entirely clear to what extent these factors contribute 
to temporal and spatial variations in EGM morphology as observed during AF.

Calculating atrial EGM from the virtual models allows the study of EGM morphology and 
their relationship with arrhythmogenic sources.

Unipolar EGM are modeled as the register of the extracellular potential measured by a posi‐
tive polarity electrode whose reference (zero potential) is located at infinity. The distance 
from the electrode to the surface quantifies the influence area of the electrode, so the closer 
it is to the tissue, the greater the field uptake. The extracellular potential (Фe) was computed 
using the large volume conductor approximation [85, 86]:

   φ  e    (  r )    = − Kʃʃʃ   ∇   ′   V  m  ( r   ′  ) ⋅  ∇   ′   [    1 _  r   ′  − r   ]   dv  (2)

where K is a constant that includes the ratio of intracellular and extracellular conductivities  
(  σ  

i
   / 4π  σ  

e
   ), ∇′Vm is the spatial gradient of transmembrane potential Vm, r is the distance from the 

source point (x, y, z) to the measuring point (x′, y′, z′) and dv is the differential volume.

Zlochiver et al. [45] investigated the regularity of EGM in the presence of stable rotors, in 
a two‐dimensional atrial model. Jacquemet et al. [87] in a computer model representing a 
monolayer of atrial cells concluded that microscale obstacles cause significant changes to 
EGM waveforms. Using two‐dimensional computer models and cell cultures, Navoret et al. 
[88] detected CFAE using the criteria of cycle length, number of deflections, and amplitude. 
They established a relationship between the detected CFAE and the presence of rotors and 
shock waves, but they failed to differentiate them. Ashihara et al. [89], using a two‐dimen‐
sional myocardial sheet of size 4.5 × 4.5 cm, studied the role of fibroblasts in CFAE during AF. 
Yun et al. [90] reported that CFAE in a homogeneous two‐dimensional AF model were weakly 
correlated with wave break, phase singularity, and local dominant frequency.

We simulated that in the two‐dimensional atrial model, a total of 22,500 virtual electrodes 
(150 × 150, one for each element of the model), spaced by 0.4 mm at a distance of 0.2 mm above 
the atrial surface, unipolar EGM were calculated with temporal resolution of 1 ms.

The 98.9% of EGM, located away from the rotor tip, present simple morphology (Figure 3A). 
The remaining 1.1% of EGM, located at the rotor tip, exhibits potentials composed by two or 
more deflections (Figure 3B).

The mechanism by which fractionation of unipolar EGM occurs in our simulations can be 
explained as follows: the rotor is a singularity point or phase singularity, when the rotor is 
stable it pivots around a circular trajectory forming the core of the spiral wave, afterwards the 
pivot point is affected by the wavefronts from the rotor tip. When the wavefront passes near 
to the pivot point in each rotation cycle, several electrotonic potentials (nonpropagated local 
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potential) are observed; consequently, irregularity and fractionation arise [36]. Our results are 
consistent with other studies, in which unipolar EGM symmetry was affected by the wave‐
front curvature (convex, concave or amorphous) [44] and fractionated unipolar EGM were 
observed at pivot points (functionally unexcitable core around which the rotor turns) [82]. 
Umapathy et al. [50] reported that CFAE were located in the region of a rotor tip and sites 
where wave breaks, using a murine HL‐1 atrial monolayer model.

Most of the in silico studies using three‐dimensional atrial models have characterized the 
simulated arrhythmias by observing the re‐entrant patterns. Few authors [44] have also calcu‐
lated EGM in a circular region on the free wall of the right atrium, using the 16 unipolar vir‐
tual electrodes on a simplified three‐dimensional model of human atria. They suggested that 
analysis of the amplitude and symmetry of unipolar atrial electrograms can provide informa‐
tion about the electrophysiological substrate maintaining AF. Hwang et al. [81] calculated 
bipolar EGM in a personalized three‐dimensional left atrial model in order to applied virtual 
ablation at CFAE points.

We calculated 42,835 EGM in the whole atrial surface of the three‐dimensional atrial model, 
over a 4‐s window and recorded at 1 kHz. Bipolar EGM were calculated by subtracting two 
1 mm‐spaced adjacent unipolar EGM.

Fractionated atrial EGM were shown to be located in rotor tip areas, when the tip of the rotor 
turned on this point, displaying low voltage and irregular morphology with potentials com‐
posed by two or more deflections (Figure 4A and B). The wavefront of the rotor surrounds 
the pivot point, without depolarizing it completely, which results in multiple low amplitude 
deflections in the EGM.

The EGM corresponding to the block line present fractionation; however, the activation pat‐
terns are visible, and their amplitudes are similar to nonfractionated EGM (Figure 4C). The 
EGM from sites with a plain wavefront are regular with potentials composed by one deflec‐
tion (Figure 4D).

We identified the area in the posterior wall of the left atrium where the rotor spins (shaded 
circle in Figure 5A). EGM signals obtained from this area were used. From the selected region 
of the model, a conversion was made from the three‐dimensional coordinate system to the 
two‐dimensional coordinate system (x, z), taking advantage of the very low dispersion in y. 
EGM were converted to bipolar EGM, and this task was accomplished by creating a virtual 
mesh with 1 mm spacing, and performing a match with the two‐dimensional model surface. 
In this way, the difference between two adjacent signals in the mesh was calculated, obtaining 
a bipolar signal. In the same way, the results show that the rotor vortex area is associated with 

Figure 3. (A) Regular EGM calculated in ‘*’ from Figure 1C. (B) Fractionated EGM calculated in the rotor tip.
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signals presenting high degree of fractionation (Figure 5B). For the contrary, the EGM from 
sites with a plain wavefront are regular with potentials composed by one deflection, similarly 
to the unipolar EGM morphology (Figure 5C).

4. Estimation of nonlinear features for electroanatomical mapping

EGM‐guided ablation has been proposed as a strategy to find critical sites of AF as target sites for 
ablation. Multiple clinical trials have shown that ablation of fractionated electrograms adds no 
benefit to conventional AF ablation with pulmonary vein isolation [91, 92]. This is likely because 
sites of electrogram fractionation, according with CFAE definition, not always correlate with 
sites of arrhythmic drivers and can also represent sites of wavefront collision or slow conduction, 
among others. Although CFAE may be relevant to detect areas that maintain AF, further charac‐
teristics apart from fractionation should be important to identify the atrial sites that maintain AF.

To overcome the limitation of CFAE, nonlinear analysis of EGM signals has been proposed by 
several authors to analyze the signals using further characteristics apart from time intervals 
or number of deflection [93, 94]. Nonlinear features are studied using the raw EGM signals, 
and it is not necessary to detect local activation waves. This is an important property, because 
in fragmented signals detection of activation waves is not always feasible. Nonlinear features 

Figure 5. (A) The area in the posterior wall in the model to obtain bipolar EGM. Samples of two bipolar EGM are shown, 
a fractionated signal from the rotor tip (B) and a regular activation pattern from nonrotor area (C).

Figure 4. EGM calculated in the three‐dimensional atrial model, under simulated AF episode. Fractionated EGM 
corresponding to the rotor in the posterior wall of the left atrium (A) and in the vena cava (B). (C) EGM corresponding 
to a functional block line. (D) Regular EGM corresponding to plain wavefront.
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as entropy estimation and fractal analysis are compute over each single EGM, and its value is 
related to the complexity of the signal.

Nonlinear mathematical tools can be used to quantify the irregularity of a signal. During the last 
years, measures have been developed to estimate the complexity of biomedical signals. Main goal 
of these advancements is to provide new theories about the dynamics of biological systems. Such 
is the case of Kolmogorov‐Sinai entropy, Lempel‐Ziv complexity, and correlation dimension, 
among others [95]. However, most of the complexity indexes require long time series to obtain 
reliable and convergent measures. Pincus [96] proposed the statistic approximate entropy (ApEn), 
which solves the issue of short time series, and it is aimed to measure the complexity degree and 
the presence of similarity patterns. Further developments have followed the ApEn, taking this as 
a starting point, such as the sample entropy [97], the fuzzy entropy [98] or hierarchical entropy 
[99]. Some authors have reported the use of nonlinear features to evaluate their suitable for locat‐
ing critical sites in AF. For instances, Ganesas et al. [47] reported that sites near to the rotor tip 
present high values of Shannon Entropy (ShEn) in EGM signals recorded from cell cultures and 
simulated episodes of fibrillatory conduction in two‐dimensional models of atrial tissue.

4.1. Approximate and Shannon entropy definitions

In general words, entropy has been conceived as a measure of the degree of disorganization or 
irregularity of a process. The most organized the process is, the lower the entropy related to it.

The statistic  ApEn  (  m, r, N )     depends on the length N of the time series  x  (  n )     (where n is), the posi‐
tive integer m (where  m ≤ N ) and the positive real number r. Defining:

   Φ   m (r ) =   
 ∑ i=1  N−m+1    log[  C  i  m (r ) ]

  _____________  N − (m − 1 )    (3)

we have that  ApEn(m, r, N ) =  Φ   m (r ) −  Φ   m+1 (r ) . 

The variable   C  
i
  m (r )  counts the number of segments of length m that are within the boundaries 

defined by r. Thus, ApEn(m, r, N) measures the  logarithmic frequency of the tool measures 
the logarithmic frequency that those segments of length m that are close remain close after 
increasing the length of the segments by one. In such a way, the statistic ApEn provides a 
measure of irregularity of the signal, implying strong regularity when ApEn value is small, 
and irregularity when ApEn value is large [96].

In previous work, we have reported the use of ApEn to evaluate the location of rotors and 
block lines in a three‐dimensional model of human atrial [100]; and the use of multifractal 
analysis as a tool to discriminate between four levels of fractionation according with a modi‐
fied Well’s approach [101]. In this work, we tested several nonlinear features using EGM sig‐
nals recorded from a two‐dimensional model of atrial tissue and a three‐dimensional model 
of human atrial. Additional, we test the used of combination of nonlinear features using clus‐
tering method to study the distribution of different EGM patterns over the atrial surface.

Another index that estimates the entropy value from an N‐point signal  x  (  n )     is Shannon entropy 
(ShE) defined as:
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  ShEn = −  ∑ 
i=1

  
N
     p  i    log  2  ( p  i   )  

where pi is the probability of assuming the corresponding x(i) value. Both, ApEn and ShEn, 
consider that a high value of repeated patterns implies order. Thus, they make their respective 
estimations of a signal irregularity by counting repetitive patterns, where the ApEn has a more 
elaborate method of defining and counting these patterns.

4.2. Nonlinear features to complexity estimation for building maps: two‐dimensional 
model case

Nonlinear features such as ShEn and ApEn have been used and tested for locating stables 
rotors in simulated episodes of fibrillatory conduction. We have tested ShEn maps and ApEn 
maps using the EGM signals from the two‐dimensional model. Results of this approach are 
shown in Figure 6A and E. These maps are constructed with high resolution using all the 
 signals  available in the model: 22,500 with spatial resolution of 0.4 mm. However, in the real 
case, the resolution of the electrodes can be lower, so in Ref. [102] was carried out a study 
about the EGM maps analysis reducing their resolution. Figure 6 shows the maps of two‐
dimensional model of AF reconstructed from the entire model with a 75% of reduction of 
the electrodes number (resolution: 37 × 38) and characterized using the features ShEn and 
ApEn of the EGM signals, respectively. A reconstruction of the entire model was developed 
using the interpolation techniques: Inverse distance weighted ‐IDW [103] (Figure 6B and F), 
IDW with Mean Filter–MF [104] (Figure 6C and G), and backpropagation artificial neural 
network—BPANN (Figure 6D and H). The best result is obtained with BPANN algorithm. 
Backpropagation artificial neural network (BPANN) is a type of artificial neural network 
that assumes the function of a common and complex nervous system, and BPANN is widely 
used in machine learning for clinical research [105, 106]. BPANN is trained using Levenberg‐
Marquardt backpropagation algorithm [107]. This technique was applied for predicting the 

Figure 6. (A) Two‐dimensional ShEn map. ShEn map reconstructed 75% using IDW‐MF (B) and BPANN (C). (D) Log 
entropy map. (E) Two‐dimensional ApEn map. ApEn map reconstructed 75% using IDW‐MF (F) and BPANN (G). (H) 
Log entropy map.
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values of unknown points in order to increase the resolution of the two‐dimensional Map. 
BPANN has a structure (layers and neurons—[2 5 4 3 2 1]), which was defined applying a 
heuristic adjustment based on the minimum error for the mean map. The performance was 
assessed using the root mean squared error (RMSE).

5. Approximate entropy for rotor detection: three‐dimensional  
model case

Motivated by the features of the ApEn, as a signal analyzing tool, and its important presence 
in several studies of complex biological systems [108–113]; our group has performed a study 
that relates AF mechanisms, such as rotors, with high degree of irregularity of EGM by means 
of the ApEn. In the following sections, ApEn theoretical definition and its interpretation are 
presented. Moreover, ApEn electroanatomical maps obtained from the virtual models are pre‐
sented, as well as the feasibility of characterize fibrillatory mechanisms in space and time. It 
follows a detailed analysis of our results and their implications.

5.1. Approximate entropy for locating critical sites in AF

As stated earlier, our group has performed numerical experiments to assess the regularity 
of atrial EGM signals by means of the ApEn. Our research is based on three hypotheses: (1) 
Fractionation of EGM increases the ApEn values. (2) High ApEn values can be related to the tip 
of a rotor. (3) Information about spatial and temporal dynamics of a rotor could be obtained 
using moving window ApEn.

In order to calculate the ApEn values from the virtual unipolar EGM, we define the parameters  
m = 2 and r = 0.1 according to the interval of values suggested by Pincus [96], and N = 1000. 
Figure 1 shows three EGM of 1000 points each, corresponding to minimum, intermediate 
and maximum ApEn values. The ApEn corresponds with the morphological complexity of the 
EGM: High values of ApEn mean irregularity or fragmentation of the EGM, and vice versa. 
In Figure 7, the EGM of the bottom present fragmentation of activation waves and baseline 
irregularity. Intermediate values of ApEn represent transitions between nonfragmented and 
fragmented EGM, in which differences between the patterns of activation waves can be seen, 
as can be seen in the EGM of the middle.

Figure 8 (middle) shows the electroanatomical map of ApEn(2, 0.1, 1000) for the first second of 
the episode. The areas of R1 and R2, right inferior pulmonary vein and coronary sinus, have 
high ApEn values (red). The ApEn values (green) increase in the appendix, in pulmonary veins, 
and on the posterior and inferior wall of the left atrium. Rotors are established at the R1 and 
R2 zones. The high ApEn regions in Figure 8 are not specifically related to rotor activity. Some 
authors suggest that the standard ApEn parameters are not suitable for signals of fast dynamics, 
and that to solve these cases, the r and m parameters must be chosen from a larger set than the 
one proposed by Pincus [108, 114]. Following this idea, we designed an optimization process 
for the ApEn parameters obtaining the configuration ApEn(3, 0.38, 1000). Figure 8 (right) shows 
the corresponding ApEn in which the rotors R1 and R2 are highlighted by high ApEn values. 
Moreover, intermediate values of ApEn (green) are related to perturbations in conduction such 
as blockades, at the right inferior pulmonary vein, and shockwaves, at the zone below the coro‐
nary sinus. For additional details of this procedure and the results please refer to Ref. [115].
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The fibrillatory activity presented in Figure 8 includes stable rotors that were characterized 
by the ApEn maps. We move now to the case in which the tip of the rotor meanders. To gain 
in temporal resolution, the parameter N was reduced to 500 points, and a nonoverlapping 
moving window was applied to each EGM of the model to obtain a time‐dependent ApEn 
value (Figure 9). We applied Pincus parameters ApEn(2,0.1,500) and optimized parameters 
ApEn(2,0.3,500). The analysis is performed over window of observation located at the left 
atrial posterior wall, in which a meandering rotor is generated. Figure 10 shows three consec‐
utive frames of the episode (firs two columns) and the ApEn electroanatomical maps for Pincus 
(third column) and optimized (fourth column) parameters. For both parameter configuration, the 
high ApEn region changes as the tip of the rotor meanders through the  observation  window. 
The bottom row shows no rotor within the window that induces a reduction of ApEn for opti‐
mized parameters, while for Pincus parameters, high ApEn values remain.

Under the assumptions of our computational model, we provide evidence that the hypotheses 
stated above: we are able to quantify fragmentation of EGM using the ApEn as a measure of 
regularity and to relate it with the tip of a stable and meandering rotors. Moreover, through 
an optimized version of ApEn parameters setup, other conduction anomalies can be identi‐
fied. There are several works, with similar approach but with different tools of measurement 
of irregularity [54, 26, 88, 116, 50]. The tools used for the fragmentation analysis are mostly 
based on the calculation of the length of the cycle and the amplitude of the EGM, in correspon‐
dence with the definition of Nademanee [46]. Although the concept of CFAE established by 
Nademanee has been an important contribution to the study of AF, it may not describe the wide 
range of EGM fragmentations that occur in different cases. Therefore, we propose to extend the 
concept of fragmentation as a nonstatic and nonlinear phenomenon. The ApEn has already 
been applied in other studies for EGM analysis in AF [117], and in ventricular  fibrillation [118] 

Figure 7. Three degrees of EGM irregularity and the corresponding ApEn value.
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obtaining a single ApEn value for each EGM signal. We applied the Dynamic ApEn using a 
mobile window of 500 and 1000 points. An EGM of 4 s can provide up to 8 ApEn values, aimed 
to gain temporal resolution, and information about the behavior of EGM fragmentation.

The fragmented EGM were characterized by means of the ApEn, using the standard param‐
eters suggested by Pincus and the parameters chosen from the proposed optimization method 
[115]. Both proposals reveal the relationship between CFAE and high values of ApEn, which 
is supported by Novak et al. [94]. Furthermore, EGM fragments with high ApEn values have 
been shown to be related to arrhythmogenic substrates, such as the rotor tip, blocking lines 
and the case of the coronary sinus area influenced by abrupt fiber direction, wave collision 
and passage from a narrow conducting zone to a wide but perpendicular zone. The rela‐
tionship between CFAE and arrhythmogenic substrates has been reported in recent studies  
[61, 82, 87, 50, 49, 119–121]. However, how to differentiate the fragmented EGM according to 
the substrate that generates it? It has been observed that the ApEn maps, calculated from the 
standard parameters (ApEn (2, 0.1, 500) and ApEn (2, 0.1, 1000)), present fragmentation with 
high ApEn levels for the rotors R1 and R2, for the blockade at right inferior pulmonary vein and 
the coronary sinus region; however, they do not present significant numerical differences. This 
has also been observed by Navoret et al. [88], who establish a relationship between detected 

Figure 8. ApEn electroanatomical maps for AF episode. The notations R1 and R2 correspond to the tip of rotors at the 
left atrial posterior wall and superior cava vein.

Figure 9. Nonoverlapping moving window procedure to obtain ApEn values varying in time.
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CFAE and the presence of wave and rotor shock, but they cannot differentiate them, using 
two‐dimensional computational models and cell cultures. They also report the development of 
an algorithm, which extracts five characteristics for the characterization of fragmented EGM. 
The algorithm is tested in two real databases: the first has EGM labeled as fragmented and 
nonfragmented. The algorithm shows good results in the classification. The second has EGM 
labeled as active fragmentation, whose ablation restored sinus rhythm, and fragmentation 
whose ablation did not restore sinus rhythm. The algorithm did not discriminate between both 
classifications [48]. However, the ApEn maps, calculated using the optimized parameters opti‐
mized (ApEn(3, 0.3, 500) and ApEn(3, 0.38, 1000)), assign values by ranges to areas of interest, 
the R1 and R2 rotors being the highest ApEn, followed by the intermediate values of ApEn in  
the zone of the blockade and the coronary sinus, and the smaller values of ApEn to the fibrilla‐
tory EGM of regular morphology. These results suggest that: the ApEn can solve the problem 
described by Navoret et al. [88]. On the other hand, if it is verified that the ablation guided by 
the ApEn maps restores the sinus rhythm, it solves the problem reported in Ref. [28]. Future 
work should focus on evaluating, in computational and experimental models, ablation guided 
by maps of dynamic ApEn.

Some authors have pointed out the disadvantages of ApEn: it is not a stable measure when 
the number of points N varies, and it has an inherent deviation from the real value, due to the 
inclusion of self‐comparison of segments [122, 123]. It has even been proposed a new statisti‐
cal, the sample entropy (SampEn), as an enhancement of the ApEn [97]. However, it has been 
shown that both have a same behavior for time series of fast dynamics [110, 114, 124]. In our 
research, the possible instability that can present the ApEn due to the variation of points does 
not influence the results: specific families of ApEn have been defined, starting from the elec‐
tion of the r y m parameters, using time series of 500 and 1000 points. Although it has been 

Figure 10. Three consecutive frames of propagation (first and second columns) of a meandering rotor and the Pincus 
parameters ApEn map (third column) and optimized parameters ApEn map (fourth column).
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observed that the range of ApEn values varies for each case, the information provided by the 
ApEn is embedded in the continuous scale that it results, given the degrees of irregularity 
that the fibrillatory EGM may present. This feature is important, since it offers adaptability to 
the wide range of EGM morphologies that may present different cases. In addition, it is not 
necessary to define intervals of fixed ApEn values for CFAE identification. It is only necessary 
to define that the ApEn scale, during an AF episode, is proportional to the presence of frag‐
mentation, where the higher values of ApEn suggest the presence of rotors.

5.2. Multifractal analysis of EGM signals

Fluctuations in EGM signals are nonperiodic and exhibit nonlinear behavior. Fractal models 
could be used to describe this behavior through the identification of self‐similarity and scale 
invariance in the statistical properties of the signals. Fractal signals present self‐similarities 
and scale invariance properties that can be described by a single quantity, for example, the 
Hausdorff dimension or the Hurst exponent, and it is represented using a power law relation‐
ship. Fractal properties of physiological signals are not homogeneous, which means that local 
scaling properties change with time, and there is necessary to use different local Hurts expo‐
nent to describe the evolution of the system. Therefore, multifractal analysis could capture 
these changes in the global singularity distributions [101]. Then, the power law for multifractal  
behavior is written as follows:

   N  α   ∼  ϵ   −f(α)   (4)

where   N  
α
    corresponds to the number of balls with a singular exponent equal to some value of  

α , necessary to cover a specific set,  ϵ  is the diameter of the balls that covered the set, and  f  (  α )     
corresponds to the Hausdorff dimension. Note that in fractal analysis, the exponent is a scalar, 
while here the exponent is a function that contain different local Hurts exponent.

To compute the singular spectrum  f  (  α )    , we used a method called multifractal detrended fluc‐
tuation analysis proposed and described in Ref. [125]. Using  f  (  α )    , we calculate the h‐fluctua‐
tion index as is described by Orozco‐Duque et al. [101].

5.3. Location of simulated rotors using multifractal analysis

Multifractal analysis can be used to calculate features such as h‐fluctuation index and to 
build electroanatomical maps to located sites fractal or multifractal activity. This measure is 
related to the complexity of the EGM signals recorded over the atrial surface. In this case, we 
work with signals recorded from a simulated episode of AF in the three‐dimensional model 
described above. Figure 11A shows a color map built with the values obtained by the mul‐
tifractal analysis according with Orozco‐Duque et al. [126]. Here, red dots are locating in 
regions where the rotor tip is presented in the model, and in the neighborhood of the rotor tip 
where the tip is meandering.

On the other hand, h‐fluctuation index was calculated in EGM signals recorded from the 
two‐dimensional simulated episode of fibrillatory conduction. For the sake of comparison, 
ApEn map was computed using the two‐dimensional model and the optimized parameters. 

Complexity of Atrial Fibrillation Electrograms Through Nonlinear Signal Analysis: In Silico...
http://dx.doi.org/10.5772/intechopen.69475

153



These features were calculated for each EGM individually, and values were represented in 
a color map. Figure 11B shows the ApEn map and Figure 5 represented the MF map. ApEn 
map exhibits the behavior of the rotor tip and illustrates the dynamics in the vicinity of the 
pivot point. In the central point of the rotor, there is a blue point representing some organized 
signals; however, in the neighborhood of the tip, there are reds dots that represent signals 
with high fragmented activity. A start‐shaped pattern can be identified, which represents the 
movement of the singularity point.

In Figure 11C, multifractal map exhibits an interesting behavior because it captures the 
dynamic of the whole rotor in the atrial tissue, not only the neighborhood of the tip. One can 
note that the direction of the rotation is illustrated and can be interpreted using this map.

6. Combination of features in the same EA map

EGM signals exhibit different morphologies that have not been enough studied. An inad‐
equate characterization of EGM morphologies has limited the success of EGM‐guide ablation 
strategies. Looking for a better description of different EGM patterns, some authors have pro‐
posed the combination of features to detect critical sites in AF. This approach has the advan‐
tage of use different information from the signals and detects patterns that could be associated 
with wave collisions, conduction block, or pivot points.

Ravelli et al. [127] used a logical digital map to combined two indexes, one based on the detec‐
tion of activation rate, the cycle length; and another based on the analysis of similarities between 

Figure 11. (A) Three‐dimensional electroanatomical map using multifractal analysis. (B) Two‐dimensional electro‐
anatomical map using ApEn. (C) Two‐dimensional electroanatomical map using multifractal analysis.
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activation waves, the similarity (S). Logical operator map can discriminate two morphologies: 
rapidly organized and rapidly fragmented. According with Kalifa et al. rapidly organized, 
EGM could be associated with localized source of AF, while rapidly fragmented could be asso‐
ciated with the neighborhood of a pivot point [52]. One limitation of the approach proposed by 
Ravelli et al. is that the computation of cycle length and S requires the segmentation of EGM 
signals and the detection of local activation waves (LAW). This process is not always feasible 
especially with high‐disorganized patterns.

Schilling et al. proposed an approach based on a classifier called Fuzzy decision tree to com‐
bine features and classify the EGM signals among four classes [128]. Classes are assigned 
according to a modified Well’s criteria, where class 0 corresponds to organized and nonfrag‐
mented signal, class 1 is assigned to signals with fragmented waves but periodic activity, class 
2 corresponds to signals with fragmented waves with periodic and nonperiodic activity, and 
class 3 is assigned to signals with high frequency and continuous activity. A limitation for 
using supervised learning is that the classifier depends on the classes selected by the group 
who collected the training database. This could be critical and bias the results because there is 
not a complete understanding about EGM morphologies.

Unsupervised learning has been proposed to combine features and creates maps to show the 
distribution of EGM cluster according with conduction patterns. We have tested some cluster‐
ing methods based on machine learning such as K‐means and Self‐Organized Maps (SOM) in 
previous work. To locate rotors over simulation in two‐dimensional models, the best perfor‐
mance was obtained using the combination of Shannon Entropy and the mean value of the 
EGM signal as an input of K‐means algorithm with three clusters or the SOM algorithm with 
four clusters. Figure 12B and C shows the result of K‐means and SOM applied to signals from 
the two‐dimensional model. The classifiers performance was calculated using the distance 
between the rotor tip location and the mean of the points grouped by the nearest cluster. 
These results evince the capability of the combination of simple features using unsupervised 
algorithms for rotor tip location.

The issues related to the clustering approach are the selection of clusters number and the clas‐
sification of clusters to identify the set of EGM related to a specific pattern. To overcome these 
limitations, Orozco‐Duque et al. [129] have proposed a semisupervised clustering approach to 
combine features. Semisupervised clustering (SC) is not limited to previously defined classes. 
The method selected was spectral clustering with an automatic detection of cluster number. 
In a previous work, it was tested the performance of SC to discriminated between four classes 
according with the scheme proposed by Schilling et al. [130]. We tested SC and its feasibility 
to located pivot points in simulated episodes of AF. We used unipolar signals acquired in an 
AF simulation using the three‐dimensional model of human atrial. Figure 12A shows a map 
built from the results of SC evaluation. Four clusters were detected; the cluster that represents 
regular signals is displayed in blue, and the cluster with the highest disorganized pattern is 
displayed in red. This cluster is located in the areas where the two rotors meander. The distri‐
bution of yellow and green clusters gives us an idea about cluster rotation.
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7. Concluding remarks

Phase maps are, currently, the accepted tools for rotor characterization [131], by tracking the 
tip through the phase singularity. Although it is widely applied in computational studies 
[132, 133] and in vitro experimentation, such as optical mapping [134, 135], clinical applica‐
tion presents technical limitations: high spatial resolution and EGM require a preprocessing 
stage in which information of activation can be lost [136]. Here, we have presented how 
nonlinear features and clustering approaches provide information about the rotor dynamics 
during AF virtual episodes. Translated to a clinical context, these measures can be extracted 
from real EGM without needing special signal conditioning. However, our simulations 
provide high spatial resolution that places the same limitation as phase maps. In a recent 
report [137], we tested the influence of the spatial resolution over the ApEn electroanatomical  
maps in detecting rotors, using a two‐dimensional atrial fibrillation model. Our results  
indicate that the ApEn maps can identify the rotor tip with spatial resolutions close to those 
available in commercial mapping catheters. We also showed that a minor dependence of the 
ApEn maps on the virtual electrode array position, which implies that there is a transition 
of irregularity starting at the rotor tip and spreading to its surroundings. These findings 
encourage considering nonlinear features for EGM analysis. Although experimental valida‐
tion is needed, further in silico studies are needed to enhance and characterize the behavior 
of these tools.

Nonlinear features such as ApEn and indexes calculated from multifractal analysis allow 
the construction of maps to display the distribution of EGM morphologies and to study the 

Figure 12. (A) Electroanatomical map using semisupervised clustering applied to signals from three‐dimensional model. 
(B) Two‐dimensional electroanatomical map using K‐means. (C) Electroanatomical map using SOM.
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dynamic of fibrillatory conduction in the atrial surface. Additionally, application of clustering 
tools allows us to incorporate the information from different features within the same system 
for study the distribution of EGM clusters in the atrial surface. The use of unsupervised learning 
approach has the vantage that does not depend on a training specific dataset, which is an impor‐
tant feature considering the gaps in the knowledge about EGM morphologies. In AF simulated 
models, rotors were located by the proposed methodology; however, further observations and 
clinical studies are needed to associate marked sites with arrhythmogenic substrates in humans.
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Abstract

The loss of complexity of the cardiac bioelectrical signal, measured with tools of
nonlinear dynamics (NLD), is studied in patients with very different pathologies. Two
types of scenarios are studied: (a) patients who enter the critical care unit and recover
from their condition; (b) severe patients whose condition worsen and finally die. It is
shown that as the severity of the patients increases, the complexity of their cardiac
bioelectric signal decreases. On the other hand, if patients, despite being severe, manage
to recover, the cardiac bioelectric signal recovers its complexity.

Keywords: bioelectrical signal, nonlinear dynamics, complexity, variability, critical illness

1. Introduction

The application of tools of the theory of the dynamical systems to the study of physiological
phenomena has a long inheritance. This starts from the original works of van der Pol and his
collaborator [1, 2], passes through important contributions [3, 4], and reaches the comprehen-
sive work by Glass and Mackey [5]. The application of these types of systems to describe the
temporal evolution of the physiological phenomena has been established as a tool frequently
used by researchers in this area of knowledge and is already a common place in the literature.

The initial works in the analysis of the dynamics of the cardiac rhythm showed a nonlinear
dynamic (NLD) behavior. Period-doubling bifurcations, in which the period of a regular oscilla-
tion doubles, were predicted theoretically and observed experimentally in the heart cells of
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embryonic chickens [6]. The tools with a new mathematical approach made it possible to apply
the nonlinear dynamics to basic physiological concepts, proving for the first time evidence of
nonlinear behavior in the electrocardiogram (ECG) [7]. Period multiplying evidence in arterial
blood pressure traces of a dog that had been injected with noradrenaline was reported in 1984 [8].
Since the original reports on ischemic heart disease and arrhythmia [9, 10], the analysis of sponta-
neous variations of beat-to-beat intervals (BBIs) has become an important clinical tool [11–13].

For a long time, the construction of models was based on first principles, being this the main
tool for the understanding of complex physiological phenomena in theoretical models of nerve
and the membrane [14, 15], among which the functioning of the heart occupies a main place.
On the other hand, some studies tried to obtain information about cardiac diseases from the
time series that the measuring instruments offered, although very often they were noisy and
limited data [16]. Procedures have been developed for the study of ventricular fibrillation
using the data of implantable defibrillators [13, 17]. It is well known that these data are often
noisy and only represent the sequence of R-R intervals and is typically morphologically
different from surface electrocardiogram recordings. Many signal-processing algorithms have
been designed to eliminate noise from a system; however, noise (i.e., stochastic processes) is a
critical component of many biological and physiological systems [18]. Given the difficulties
mentioned earlier, some authors tried to use measures of complexity and entropies, as well as
other techniques of the theory of nonlinear phenomena [19, 20].

The initial clinical observation of heart rate variability (HRV), observing changes in the pattern
of the R-R interval, which preceded changes in the heart rate in fetal distress, was reported in
1963 [21]. Later, the first approaches of the heart rate variability analysis based on nonlinear
fractal dynamics were performed in 1987 [4]. It was suggested that self-similar (fractal) scaling
may underlie the 1/f-like spectra [22] seen in multiple systems (e.g., interbeat interval variabil-
ity, daily neutrophil fluctuations). They proposed that this fractal scale invariance may provide
a mechanism for the “constrained randomness” underlying physiological variability and
adaptability. In 1988, it was reported that patients prone to high risk of sudden cardiac death
showed evidence of nonlinear heart rate (HR) dynamics, including abrupt spectral changes
and sustained low-frequency (LF) oscillations. After this report, it has been suggested that a
loss of complex physiological variability could occur under certain pathological conditions
such as reduced HR dynamics before sudden death and aging [23, 24].

Methods of NLD and fractal analysis have opened up new ways for the analysis of HRV.
Although time and frequency domainmethods enable the quantification ofHRVondifferent time
scales, nonlinear methods provide additional information regarding the dynamics and structure
of beat-to-beat time series in various physiological and pathophysiological conditions [25]. The
apparent loss of multiscale complexity in life-threatening conditions suggests a clinical impor-
tance of thismultiscale complexitymeasure. Studies on heart ratemultiscale entropy at 3 h predict
hospital mortality in patients with major trauma [26]. Joint symbolic dynamics, compression
entropy, fractal dimension, and approximate entropy revealed significantly reduced complexity
of heart rate time series and loss of efferent vagal activity in acute schizophrenia [27, 28].

The healthy human heart rate is mainly determined by three major inputs: the sinoatrial node;
and the parasympathetic and sympathetic branches of the autonomous nervous system and
several autocrine, paracrine, and endocrine substances effects on it [29]. The sinoatrial node or

Interpreting Cardiac Electrograms - From Skin to Endocardium170



embryonic chickens [6]. The tools with a new mathematical approach made it possible to apply
the nonlinear dynamics to basic physiological concepts, proving for the first time evidence of
nonlinear behavior in the electrocardiogram (ECG) [7]. Period multiplying evidence in arterial
blood pressure traces of a dog that had been injected with noradrenaline was reported in 1984 [8].
Since the original reports on ischemic heart disease and arrhythmia [9, 10], the analysis of sponta-
neous variations of beat-to-beat intervals (BBIs) has become an important clinical tool [11–13].

For a long time, the construction of models was based on first principles, being this the main
tool for the understanding of complex physiological phenomena in theoretical models of nerve
and the membrane [14, 15], among which the functioning of the heart occupies a main place.
On the other hand, some studies tried to obtain information about cardiac diseases from the
time series that the measuring instruments offered, although very often they were noisy and
limited data [16]. Procedures have been developed for the study of ventricular fibrillation
using the data of implantable defibrillators [13, 17]. It is well known that these data are often
noisy and only represent the sequence of R-R intervals and is typically morphologically
different from surface electrocardiogram recordings. Many signal-processing algorithms have
been designed to eliminate noise from a system; however, noise (i.e., stochastic processes) is a
critical component of many biological and physiological systems [18]. Given the difficulties
mentioned earlier, some authors tried to use measures of complexity and entropies, as well as
other techniques of the theory of nonlinear phenomena [19, 20].

The initial clinical observation of heart rate variability (HRV), observing changes in the pattern
of the R-R interval, which preceded changes in the heart rate in fetal distress, was reported in
1963 [21]. Later, the first approaches of the heart rate variability analysis based on nonlinear
fractal dynamics were performed in 1987 [4]. It was suggested that self-similar (fractal) scaling
may underlie the 1/f-like spectra [22] seen in multiple systems (e.g., interbeat interval variabil-
ity, daily neutrophil fluctuations). They proposed that this fractal scale invariance may provide
a mechanism for the “constrained randomness” underlying physiological variability and
adaptability. In 1988, it was reported that patients prone to high risk of sudden cardiac death
showed evidence of nonlinear heart rate (HR) dynamics, including abrupt spectral changes
and sustained low-frequency (LF) oscillations. After this report, it has been suggested that a
loss of complex physiological variability could occur under certain pathological conditions
such as reduced HR dynamics before sudden death and aging [23, 24].

Methods of NLD and fractal analysis have opened up new ways for the analysis of HRV.
Although time and frequency domainmethods enable the quantification ofHRVondifferent time
scales, nonlinear methods provide additional information regarding the dynamics and structure
of beat-to-beat time series in various physiological and pathophysiological conditions [25]. The
apparent loss of multiscale complexity in life-threatening conditions suggests a clinical impor-
tance of thismultiscale complexitymeasure. Studies on heart ratemultiscale entropy at 3 h predict
hospital mortality in patients with major trauma [26]. Joint symbolic dynamics, compression
entropy, fractal dimension, and approximate entropy revealed significantly reduced complexity
of heart rate time series and loss of efferent vagal activity in acute schizophrenia [27, 28].

The healthy human heart rate is mainly determined by three major inputs: the sinoatrial node;
and the parasympathetic and sympathetic branches of the autonomous nervous system and
several autocrine, paracrine, and endocrine substances effects on it [29]. The sinoatrial node or

Interpreting Cardiac Electrograms - From Skin to Endocardium170

pacemaker is responsible for the initiation of each heart beat; in the absence of other external
stimuli, it is able to maintain an essentially constant interbeat interval. Experiments in which
parasympathetic and sympathetic inputs are blocked reveal that the interbeat intervals are
very regular and average 0.6 s. The parasympathetic fibers conduct impulses that increase the
interbeat intervals. Suppression of sympathetic stimuli, while under parasympathetic regula-
tion, can result in the increase of the interbeat interval to as much as 1.5 s. The activity of the
parasympathetic system changes with external stimuli and with internal cycles. The sympa-
thetic fibers conduct impulses that decrease the interbeat intervals. Abolition of parasympa-
thetic influences when the sympathetic system remains active can decrease the interbeat
intervals to less than 0.3 s. There are several centers of sympathetic activity which are highly
sensitive to environmental influences [30, 31]. All the patients that are analyzed in this work
have as a common factor a suffering of systemic repercussion that influences the dynamics of
the sympathetic-parasympathetic balance and, therefore, of the heart rate. As will be seen
subsequently, whatever the underlying condition, as it worsens, decreases the complexity of
the cardiac bioelectrical signal, while its improvement is accompanied by an increase in the
complexity of the cardiac signal. Hence, the measures of complexity of the heart electrical
signals allow assessing the severity of the patient’s condition, and as we will see later (Figure 3)
they can be used as early warnings of severity episodes. This is why we focus on the observa-
tion of the complexity of the cardiac bioelectric signal.

The increasing availability of physiological data has allowed the study of long-time series with
other techniques also coming from the theory of dynamical systems. The observations received
from some organ of our body, as we have said before, very often are tainted of noise or are
collected in an incomplete way. The signals of electrical activity of the heart are a good example of
this. They are measured on the surface of the patient, in a finite number of places. The electrical
signal from the heart must pass through several layers of tissues with different electrical conduc-
tivities before being measured by traditional devices. What we measure is actually a distorted
observable of the authentic electric signal coming from the surface of the heart. Then the following
question arises; howmuch information of the original phenomenon could be recovered from this
distorted signal? Other relevant questions are how many magnitudes are necessary for a com-
plete description of the phenomenon? In other words, what is the dimension of the attractor of
the dynamical system that describes the evolution of the heart? Is there a difference between a
healthy person and a sick person in the number of variables necessary to characterize their
behavior? Or put in another way, is there a difference in the dimension of the attractor of the
dynamical systems that describe the behavior of a healthy person and a sick person?

The Takens Embedding Theorem [32] answers these questions under certain assumptions
about the recorded time series. In the following lines, we describe the theoretical framework,
the fundamental results, and the techniques of valuation of the different magnitudes.

2. Mathematical theoretical framework

The most frequent problems in the study of the physiological signals of electrical type are that
very often we have incomplete and deformed information of them. This is a very common
problem in many branches of scientific knowledge. As far as the electrical activity of the
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cardiac muscle is concerned, a methodology has been developed, whose theoretical basis is
found in the theory of dynamical systems. This result is known as the Takens’ Embedding
Theorem. This result allows us, under certain hypotheses, to answer the following questions: Is
it possible to reconstruct the bioelectric dynamics of a cardiac phenomenon from incomplete
information? How many variables are necessary to fully characterize this phenomenon?

Let us assume that n measurements would be necessary to fully characterize the phenomenon
under study. We do not know them directly. Rather, we have a macroscopic observable g that is
constructed from them:

gðtÞ ¼ θðx1ðtÞ,…, xnðtÞÞ (1)

Here, we assume that x1ðtÞ,…, xnðtÞ are the measurements necessary to characterize the sys-
tem, measured at time t. The function θ is one that transforms the variables that characterize
the system in the macroscopic observable to which we have access.

Almost all medical devices discreetly take samples with a certain frequency. Therefore, what in
the practice we have is a time series {g1,…, gT}, where gi ¼ gðtiÞ, where very often it is assumed
(as do we) that the times of measurement ti are equally spaced in time.

The Takens Embedding Theorem basically says that under the assumption that function g is
“well behaved,” that is, which can be measured continuously without very sudden jumps
then, there are τ∈Rþ and N∈N such that the set of vectors:

Ad ¼ ðgi, giþτ,…, giþðN�1ÞτÞ, i∈N
n o

(2)

is for any practical purpose similar in its properties to the simultaneous behavior of the vari-
ables x1ðtÞ,…, xnðtÞ. Unfortunately, the theorem does not say how τ andN should be calculated.
So a wide heuristic has been developed to estimate these parameters [33]. In this task, two
concepts play an important role: the mutual information function and the correlation integral.

The mutual information function can be defined as follows:

MðτÞ ¼
XT�τ

t¼1

Pðgt, gtþτÞln
Pðgt, gtþτÞ
PðgtÞPðgtþτÞ
� �

(3)

This concept is closely related to the concept of Boltzmann entropy and the Shannon informa-
tion [34]. It is a measure of nonlinear correlation among the values of the series {gi}.

The values of the mutual information function can be calculated from the {g1,…, gT} series
using appropriate software. The correct value for τ is the first local minimum of the mutual
information function [15, 35]. It is well known that the mutual information function is more
sensitive to correlations of data than other correlation measures [36].

The second important step is the calculation of the so-called embedding dimension N. For this,
it is necessary to use a concept called integral correlation: consider now the collection of vector
of the set Ad:
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Xi ¼ gi, giþτ,…, giþðN�1Þτ
� �

(4)

the correlation integral CmðεÞ is defined as

Cm εð Þ ¼ m
2

� ��1 X
1 ≤ i, j ≤m

H kXi � Xjk < ε
� �

(5)

whereH is the Heaviside function. From this concept, we can define the correlation dimension as

dc ¼ lim
ε!0

lim
m!þ∞

lnCmðεÞ
ln ε

(6)

Now, the criteria for selecting the correct embedding dimension N are as follows: choose
increasing embedding dimension and in each case, calculate the correlation integral. When no
changes are observed in the behavior of the correlation integral with respect to increasing the
embedding dimension, then a suitable dimension immersion [15, 33] will be found.

One of the advantages of this method is its robustness with respect to the noise of the signal
under study. The numerical data obtained through a recording apparatus, in our case a Holter,
are the basis of all the further calculations in this chapter. Despite the fine structures of the
cardiac dynamics, a critical component of many biological and physiological systems [19],
could be lost in conventional Holters [3], the attractor of the system is reconstructed with
adequate embedding and correlation dimensions.

The entire process can be seen in Figure 1.

Figure 1. A representation of the entire embedding process. The phenomenon under study has an attractor which only
has incomplete information through an observable. From this observable, the immersion process is executed, creating a
reconstruction of the attractor.
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3. Method

3.1. Description of the patients under study

We have studied the biological electrical signal of electrocardiogram assuming that its evolu-
tion is governed by a dynamic system. A three-channel, 1-h Holter (Scott Care Corporation.
Chroma: Model RZ153C) Monitor was used to monitor 30 patients to obtain data files which
consist of 900,000 rows and three columns of comma separated values from 1 h of registration.
Holter monitoring was performed on each patient every 24 h for a period of 1 h from admis-
sion until discharge. All admission Holter records were performed with the sedated patients,
with amines and ventilatory mechanical support in the supine position. The Holter records of
the surviving patients also are performed in supine position, without mechanical ventilation or
cardiovascular support with amines. The diagnosis of patients was performed from the clinical
point of view and confirmed by imaging studies such as computed tomography (CT) of the site
topologically involved, such as computed axial tomography of the skull, chest, or abdomen.
Some of the patients were surgically operated on one or more occasions. We studied 30
critically ill patients (18 females, 12 male age 54.8�15.3 years old) of various pathologies,
qualified with APACHE II scale 29.26 � 3.16 on admission to intensive care.
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The vital signs on the admission of these patients were as follows: Heart rate, 91.6 �17.51;
respiratory rate, 21.6 � 6.43; mean arterial pressure, 71.4 � 20.8; and temperature of 37.6 � 1.3.

Seventy percent of the patients were admitted with cardiovascular support based on noradren-
aline infusion and sedated with ventilatory mechanical support. The nonlinear time series [33]
were obtained upon admission to intensive care in the morning every day, until their discharge
for improvement or death. The numerical data obtained from the comma-separated values by
means of the Holter are the data subject to analysis of each patient. The description of patients
is shown in Table 1.

N� Age Sex Diagnosis Surgery N� APACHE II/% Survived/died

1 64 M Severe post traumatic cerebral edema Yes/1 27/55% Died

2 55 F Cerebral Hemorrhage Fisher IV Malformation
Arterio/Venous

Yes/1 24/40% Died

3 60 M Necrotizing Pancreatitis Yes/2 30/75% Died

4 34 F Traumatic Brain Injury—Intraparenchymal
Hemorrhage

Yes/1 20/40% Survived

5 78 F Fisher IV Brain Hemorrhage by Ruptured Cerebral
Aneurism

Yes/1 29/55% Died

6 23 M Wounded by gun fire in right eye No 28/55% Died

7 30 F Postpartum complicated—Eclampsia and
Pulmonary Embolism

Yes/1 27/55% Survived

8 26 M Septic shock by Appendicitis complicated Yes/3 32/75% Died

9 52 M Cerebellar Infarction Yes/1 28/55% Died

10 52 F Septic Shock of Abdominal Origin Yes/4 30/75% Died

11 34 M Colon Necrosis and Septic Shock Yes/3 29/55% Survived

12 69 F Epidural Hematoma Yes/1 25/55% Died

13 40 M Atypical Pneumonia. Acquired Immune Deficiency No 35/85% Died

14 56 M Septic Shock-Pneumonia No 32/75% Died

15 59 M Pulmonary Embolism No 30/75% Died

16 78 F Subarachnoid Hemorrhage—Aneurysm Rupture Yes/1 29/55% Died

17 63 M Acute Myocardial Infarction No 27/55% Died

18 59 M Pulmonary Embolism. No 30/75% Survived

19 47 F Post Cardiorespiratory. Arrest Trans Surgical Yes/1 32/75% Died

20 74 F Pulmonary Embolism. No 27/55% Died

21 62 F Pulmonary Embolism. No 28/55% Died

22 62 M Left cerebellar hemisphere infarction. Yes/1 32/75% Survived

23 47 F Cerebral Hemorrhage - Broken Aneurysm Yes/1 29/55% Died

24 43 F Cerebral Hemorrhage—Broken Aneurysm Yes/1 29/55% Died

25 73 F Traumatic Brain Injury—Intraparenchymal
Hemorrhage

Yes/1 30/75% Died
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The images show a CT scan where two images of patient No. 22 are shown of the posterior
fossa of a 62-year-old man with hypertension treated with captopril 25 mg every 12 h. IMAGE
“A” shows a hypodense zone of the left cerebellar hemisphere, suggesting an ischemic type
lesion. IMAGE “B” shows decompressive craniotomy. The patient on day 10 of intensive care
was without mechanical ventilation and interacting with the staff of the unit. As mentioned
previously in the text, measures of the complexity of their cardiac signal were lower at the time
of entry to the intensive care unit, which was recovered. Later, he was discharge from the
critical medicine unit.

IMAGE “C” displayed is a cut of the cranial computed tomography of a 56-year-old woman with
right occipital arteriovenous malformation. The patient during her stay in intensive care was
complicated by acutemyocardial infarction, cardiogenic shock, dying 12 days after her admission.

4. Results

Let us consider a moving window as shown in Figure 2.

For each moving windows, the correct value of τ and the embedding dimension N are calcu-
lated. Note that the last task means calculating the correlation integral for different dimensions
of immersion, as shown in Figure 2.

N� Age Sex Diagnosis Surgery N� APACHE II/% Survived/died

26 60 F Hemorrhage Fisher III. Flegmásia Cerulea Dolens No 35/85% Died

27 42 F Hemorrhage Subarachnoid Fisher IV Yes/1 30/75% Died

28 62 F Fisher IV Brain Hemorrhage No 29/55% Died

29 71 F Cerebral Stroke No 30/75% Died

30 69 F Traumatic Brain Injury—Intraparenchymal
Hemorrhage

Yes/1 35/85% Died

54.8�15.3 29.2�3.16

Table 1. Estimated mortality in critical patients according with APACHE II score.
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Once the appropriate dimension of embedding for each mobile window was calculated, we
calculated the corresponding correlation dimension. In total, between sick and healthy people
we amount 96,508 mobile windows of 5000 points each. We decided to choose the length of
the mobile window equal to 5000 because we have observed that for that distance the average
value of the mutual information function is practically zero, which indicates that over the time
series, values separated by 5000 units of time or more have any correlation.

With these data, we calculate the probability density functions of the corresponding windows
for healthy and sick behaviors. The results appear in Figure 3.

Figure 2. Correlation integrals for different embedding dimensions.

Figure 3. Probability density functions of correlation dimensions for windows sick (clearer) behavior an healthy (darker)
behavior.
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Note that there is a clear separation between the dimensions of correlation for sick and healthy
behaviors. Finally, we note that small-dimensional correlation magnitudes are related to less
complex behaviors than those with high correlation dimensions. It is important to note that in
our database are records of people who were healthy and became in serious condition, as well
as people who were sick and recovered later.

5. Discussion

The neural regulation of cardiac bioelectric signal has been explored in the frequency domain,
showing the complexity of the sympathovagal balance which is tonically and phasically modu-
lated by the interaction of at least three major factors: (a) central neural integration, (b) peripheral
inhibitory reflex mechanisms (with negative-feedback characteristics), and (c) peripheral excit-
atory reflex mechanisms (with positive-feedback characteristics) [29]. Parasympathetic efferent
nerve fibers come through the parasympathetic ganglia positioned in the periaortic and epicar-
dial fat pad. Efferent sympathetic innervation arrives from superior, middle, and inferior cervical
and the upper four or five thoracic ganglia. Medullary nuclei and reticular formation give both
excitatory and inhibitory preganglionic efferent fibers as well as accept afferent fibers. Afferent
pathways from baroreceptors and the so-called cardiopulmonary receptors to the brain stem are
closing the loop assuring a feedback mechanism. These baroreceptors are located in the wall of
aortic arch and great arteries arising from it, and in the carotid sinus. The hypothalamus is
considered the most important supramedullary compound that integrates autonomic, somatic,
mental, and emotional information via its extensive associations [29].

The applications of entropy on human physiological signals were developed earlier for ana-
lyzing the heart rate and beat-to-beat blood pressure. Heart rate is influenced by numerous
factors including the liquid metabolism, hormonal and temperature variations, physical activ-
ity, circadian rhythms, and autonomic nervous system. As a result, heart rate variations are
extremely complex in healthy individuals [37].

The entropy of heart rate was linked to neurological system since the modulation of heart beat
was associated with the two components of autonomic nervous system: sympathetic and
parasympathetic nerves [38]. Rhythmical oscillations of both heart rate and blood pressure
have been indicated to reflect the sympathetic and parasympathetic modulation [39, 40].

The evaluation of the autonomic function provides important information about the alteration
of the sympathetic-parasympathetic, altered balance in critically ill patients with or without
multiple organ failure. The proven tools are heart rate variability, baroreflex sensitivity, and,
with limitations, cardiac chemoreflex sensitivity [38]. The R-R interval functions as a substitute
for the sympathovagal balance and represents the net result of all autonomic influences in the
sinus node. Both the sympathetic and parasympathetic inputs to the sinus node can be char-
acterized by a tonic level of activity and by the modulation of this activity (e.g., by respiration
in the case of the parasympathetic input). Heart rate variability most reliably provides a
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for the sympathovagal balance and represents the net result of all autonomic influences in the
sinus node. Both the sympathetic and parasympathetic inputs to the sinus node can be char-
acterized by a tonic level of activity and by the modulation of this activity (e.g., by respiration
in the case of the parasympathetic input). Heart rate variability most reliably provides a
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measure of the modulation of the sympathetic and parasympathetic inputs to the sinus node,
although a more precise way to characterize the sympathovagal balance is unknown [41, 42].
With new, nonlinear methods being evaluated, the risk (with prognostic implications) could be
predicted more accurately by providing additional information on autonomic heart rate con-
trol in critically ill patients [29].

6. Conclusions

The results obtained allow us to arrive at the following conclusions: if the time windows
studied belong to a person who is sick, the complexity of the time series is low, the dimension
of embedding is small (below 6), and the dimension of correlation is low (below 2). For healthy
people, the dimension of embedding is higher (above 7), the correlation dimension is also
higher (above 2). The transition from a completely healthy to a completely sick behavior and
vice versa occurs continuously. If the temporary moving windows corresponding to stages of
transit between completely healthy and completely diseased behavior had been included in
the analysis, such marked differences in the distributions of the correlation dimensions in each
of these cases do not happen suddenly. In general, the heart electrical signal of a healthy person
is more complex than that of a sick person. Results similar to these have been obtained by other
methods [25]. In the aforementioned work, the authors affirm that the results obtained by them
show that the cardiac dynamics of a healthy subject is more complex and random compared to
the same for a heart failure patient, whose dynamics is more deterministic [43]. Our results are
more general because we have managed to classify temporary windows in “healthy” or
“diseased” (even for the same person) in terms of the complexity of the time series from their
embedding dimension or their correlation dimension.

Our work opens the possibility of observing with these tools patients, for example, under
anesthesia and relaxation in the operating room and critical care unit where patients often
have no possibility of spoken communication, opening another way to evaluate and monitor
the increase or decrease in the complexity of the cardiac bioelectrical signal, with the future
possibility to evaluate the severity of the sick state or the reduction of this, analyzing in real
time the behavior of the dynamics of that bioelectrical signal by means of the observation of
the loss or recovery of the dimension of that bioelectrical signal, which is getting a numeric
value that suggests the severity of the patient.

The implications of this for the early warning of the episodes of dysfunction are clear. Once the
embedding dimension or the correlation dimension falls below a preset threshold, we may
consider that we are facing an emergency.

Finally, the algorithms must deliver the results in real time in order for early warning to be
effective and this is a challenge that must be faced. The ever-increasing speed of digital devices
will certainly help this goal. On the other hand, the thresholds for early warnings should be
obtained from careful statistical experiments.
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