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Preface

This edited volume is a collection of reviewed and relevant research chapters, concerning
the developments within the electroencephalography field of study. The book includes
scholarly contributions by various authors and edited by a group of experts pertinent to
medicine and health sciences. Each contribution comes as a separate chapter complete in
itself but directly related to the book’s topics and objectives.

This book includes chapters dealing with the topics: “Understanding Neural Mechanisms of
Action Observation for Improving Human Motor Skill Acquisition,” “Hippocampal Theta
Activity during Stimulus Discrimination Task,” “Intraoperative Electroencephalography
during Aortic Arch Surgery,” “Mathematical Foundation of Electroencephalography,” “Fil‐
ter Band Multicarrier-Based Transmission Technology for Clinical EEG Signals,” and “Re‐
view of Artifact Rejection Methods for Electroencephalographic Systems.”

The target audience comprises scholars and specialists in the field.
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Understanding Neural Mechanisms of Action 
Observation for Improving Human Motor Skill 
Acquisition

Hideki Nakano and Takayuki Kodama
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Abstract

Action observation is a useful approach for improving human motor skill acquisition. 
This process involves the mirror neuron system that consists of the ventral premotor area, 
inferior parietal lobule, and superior temporal sulcus. The interaction between these areas 
produces the effect of action observation. This chapter presents neurophysiological and 
brain imaging studies of action observation, and their application to human motor learn‐
ing. For action observation, the mirror system appears to map the intention in the ventral 
premotor area and the goal in the inferior parietal lobule. These features of action repre‐
sentation may be useful for refining conditions of practice, based on the mirror system,  
for acquiring new motor skills.

Keywords: action observation, electroencephalography, mirror neuron system, motor 
learning

1. Introduction

Previous neurophysiological and brain imaging studies have revealed that neural activity 
associated with observation of another person’s movement was elicited in the motor‐related 
cortical areas [1–3]. The motor‐related cortical areas that get active during such motion per‐
ception, constitute the mirror neuron system. Characteristically, this system is activated not 
only when a person performs a goal‐oriented movement by himself/herself, but also when the 
person observes the same movement performed by others (Figure 1) [4]. Action observation 
automatically creates a similar simulation of movement in the brain of the observer [5, 6]. In 
other words, action observation induces functional reorganization of the brain, and facilitates 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



motor learning via the mirror neuron system (Figure 2) [7, 8]. Thus, observation of another per‐
son’s actions and behavior alters the neuronal activity of the observer. This chapter discusses 
neurophysiological and brain imaging studies of action observation, and their application  
to human motor learning.

Figure 1. Mirror neurons in monkeys [4]. Top indicates the neural activity in area F5 when the monkey grasps food. 
Bottom indicates the neural activity in are F5 when the monkey observes the human grasping food.

Figure 2. Mirror neuron system in humans [7]. Purple areas (PMD and SPL) are involved in reaching movements. Yellow 
areas (IFG, PMV, IPL and IPS) are involved in transitive distal movements. Blue areas (STS) are involved in observation 
of upper‐limb movements. Green areas (A) are involved in intransitive movements. Orange areas (B) are involved in 
tool use. PMD indicates dorsal premotor cortex; SPL, superior parietal lobule; IFG, inferior frontal gyrus; PMV, ventral 
premotor cortex; IPL, inferior parietal lobule; IPS, intraparietal sulcus; STS, superior temporal sulcus.

Electroencephalography2
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2. Neural mechanism of action observation

The mirror neuron system is concerned with the neural mechanism of action observation. 
The mirror neuron system is a neural system that consists of the ventral premotor area, infe‐
rior parietal lobule, and superior temporal sulcus, and the interaction between these areas 
produces the effect of action observation (Figure 3) [9]. The mirror neuron system converts 
sensory information obtained through observation to a specific motion pattern, which is an 
objective [10]. Thus, decryption of the action and behavior of other individuals are facilitated. 
Additionally, the encoding of the meaning and objective of an action facilitates understanding 
of the purpose of the action performed by others, internally, without requiring higher cogni‐
tive processes, such as reasoning. The understanding of other’s intentions [11], empathy [12], 
and theory of mind [13] are known functional characteristics of the mirror neuron system, and 
dysfunction of the mirror neuron system is associated with autism [14].

Fadiga et al. investigated the mirror neuron system using transcranial magnetic stimulation 
(TMS) [5]. They measured the motor evoked potential (MEP), which is the index of excitatory 
change of the corticospinal tract, from finger muscles, by stimulating the motor area by means 
of TMS, while the subject was observing the action. The results showed that the MEP ampli‐
tude of the finger muscle involved in the observed action, increased significantly, and these 
phenomena were not observed in the MEP amplitude of another finger muscle that was not 
concerned with the observed action. Thus, the peripheral motor system also prepares for per‐
forming the observed action, and the temporal consistency between the muscle group con‐
cerned with the action that is an objective and the muscle activation patterns indicate that the 
mirror neuron system couples action execution and observation [15]. The same motor repre‐
sentations are activated during both action execution and observation; this indicates the possi‐
bility that the reorganization of the motor system network that is induced by action observation 
and that which is induced by actual physical practice involve the same mechanisms [16].

Figure 3. ALE meta‐analysis of action observation in the human brain [9]. Significant meta‐analysis results for action 
observation, summarized over all effectors. All results are displayed on the left and right lateral surface view of the MNI 
single subject template.
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Many previous studies have investigated the excitatory changes in the corticospinal tract dur‐
ing a single action observation, and some of these have examined the excitatory change in the 
corticospinal tract during repetitive action observation. Stefan et al. revealed that repetitive 
action observation changes the motor representation in the cerebral cortex as it does with 
physical practice [17]. Moreover, they disclosed that these changes of the motor representation 
in the cerebral cortex, were induced by physical practice along with brief action observation. 
Furthermore, it has been reported that repetitive action observation increased the excitability 
of the corticospinal tract, and that there was a significant positive correlation between the 
increased excitability of the corticospinal tract and the change in motion patterns [16].

Watanabe et al. examined the effect of observation viewpoint on brain activity and perfor‐
mance [18]. There are two observation perspectives. One involves observing another per‐
son’s action from the same side as that of the subject’s perspective, termed the “first‐person 
perspective” and the other involves observing the other person’s action on the opposite side 
as that of the subject’s perspective, termed the “third‐person perspective” (Figure 4). Their 
study investigated the difference between reaction time and brain activity from first‐ person 
and third‐person perspectives, while the subject observed the action and imitated the action 
of another, using functional magnetic resonance imaging (fMRI). They showed that the 
motor‐related areas involve the mirror neuron system, including the ventral premotor 
area, supramarginal gyrus, and supplementary motor area, in the first‐person perspective 
significantly more than in the third‐person perspective. Thus, action observation from the 
first‐person perspective activates the mirror neuron system advantageously, and facilitates 
the intracerebral simulation of the action that is the objective, and enhances motor learning. 
This information should be applied to motor learning, considering the various conditions 
of action observation.

3. Mirror neuron system and EEG studies

Many studies have investigated the mirror neuron system using electroencephalography (EEG) 
[19]. A specific EEG rhythm, called the mu rhythm (8–13 Hz), is observed in the human senso‐
rimotor cortex [20]. The characteristics of the mu rhythm are blocked during actual  movement 

Figure 4. First‐person perspective (left) and third‐person perspective (right).

Electroencephalography4
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[20] as well as observation of action [21] and motor imagery [22]. Therefore, numerous  
EEG studies have used the mu rhythm as an electrophysiological marker of the mirror neuron 
system in humans, after Altschuler et al. [23] first investigated this possibility. Those stud‐
ies found that the mu rhythm represents the activity of the mirror mechanism in humans. 
An fMRI study also showed a significant correlation between mu rhythm desynchronization 
(Figure 5) [24] and BOLD activity in typical mirror neuron system regions.

Many studies have examined the reactivity of the mu rhythm during action observation. 
Avanzini et al. [25] investigated the dynamics of sensorimotor cortical oscillations during 

Figure 5. Mu rhythm desynchronization [24]. Simulation of mu rhythm desynchronization in the 8–13 Hz frequency 
band. There is a decrease in amplitude in the electroencephalogram from baseline during action observation or execution.

Figure 6. EEG rhythms during action observation [25]. The graph shows the EEG power time‐course for each frequency 
band: alpha band (8–13 Hz) in green, lower beta (13–18 Hz) in red, and upper beta (18–25 Hz) in cyan.
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the observation of hand movements using EEG (Figure 6). A desynchronization of alpha and 
beta rhythms was observed in the central and parietal regions. Notably, there was a large 
post‐stimulus power rebound present in all bands. Furthermore, the velocity profile of the 
observed movement and beta band modulation correlated, indicating a direct matching of the 
stimulus parameter to motor activity.

4. Action observation and motor learning

Schmidt defined that motor learning is a “process of acquiring the capability for producing 
skilled actions” [26], and “the changes associated with practice and experiences, in an internal  
process that determines a person’s capability for producing motor skill” [27]. Moreover, 
Guthrie stated that motor learning is a “relatively permanent change, resulting from practice 
or a novel experience, in the capability for responding” [28]. In other words, motor learning is 

Figure 7. Cortical activation patterns in the action observation (AO), motor imagery (MI), and control (C) groups [34]. 
Average TRPow (task‐related power) changes with respect to resting baseline, within the two frequency bands showing 
significant group effects, were interpolated and projected onto an average brain cortical surface.

Electroencephalography6
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the capability acquired from practice and experience, and the change is relatively permanent. 
How can then action observation contribute to motor learning?

Motor imagery is similar to action observation. It is the mental simulation of movement with‐
out physical movement of body parts [29]. Action observation and motor imagery have been 
shown to share the same neural basis as that used for the execution of the actual physical 
movement [30]. However, the process of action observation and motor imagery are different. 
Action observation is a bottom‐up process (process from perception), while motor imagery 
is a top‐down process (process from memory). Nevertheless, these processes are not clearly 
divided, and a feed‐forward model was constructed by complementing these processes [31]. 
In addition, action observation has an effect of promoting motor imagery [32].

In the early stages of new complex motor learning, action observation is superior to motor 
imagery as a strategy for motor learning, as revealed by behavioral [33] and EEG data 
(Figure 7) [34]. Motor imagery is influenced by the environment and personal imaging abil‐
ity and requires mental effort. In contrast, action observation is easier to apply than motor 
imagery, despite targeting activation of the same neural network as motor imagery [35]. We 
have also reported that the left sensorimotor and parietal areas of the high‐motor learning 
group showed a greater decrease in the alpha‐2 and beta‐2 rhythms than those of the low‐
motor learning group during observation and execution. These results suggested that the 
decreases in the alpha‐2 and beta‐2 rhythms in these areas during observation and execution 

Figure 8. Changes in EEG activity durings observation and execution of a motor learning task [36]. Alpha‐2 (A) and 
beta‐2 (B) rhythms in the left sensorimotor and parietal areas during action execution from the 1st trial to the 5th trial 
were significantly decreased in the high‐motor learning group compared with in the low‐motor learning group.
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are associated with motor skill improvement (Figure 8) [36]. Accordingly, action observation 
may be an effective tool as an intervention method during the early stage of motor learning.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP26750208 and ASTEM RI / 
KYOTO.

Author details

Hideki Nakano* and Takayuki Kodama

*Address all correspondence to: nakano‐h@tachibana‐u.ac.jp

Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, 
Kyoto, Japan

References

[1] Rizzolatti G, Fadiga L, Gallese V, Fogassi L. Premotor cortex and the recognition of 
motor actions. Brain Research. Cognitive Brain Research. 1996 Mar;3(2):131‐41

[2] Gallese V, Fadiga L, Fogassi L, Rizzolatti G. Action recognition in the premotor cortex. 
Brain. 1996 Apr;119(Pt 2):593‐609

[3] Hari R, Forss N, Avikainen S, Kirveskari E, Salenius S, Rizzolatti G. Activation of human 
primary motor cortex during action observation: A neuromagnetic study. Proceedings 
of the National Academy of Sciences of the United States. 1998 Dec 8;95(25):15061‐15065

[4] Iacoboni M, Dapretto M. The mirror neuron system and the consequences of its dysfunc‐
tion. Nature Reviews Neuroscience. 2006 Dec;7(12):942‐51

[5] Fadiga L, Fogassi L, Pavesi G, Rizzolatti G. Motor facilitation during action observation: 
A magnetic stimulation study. The Journal of Neurophysiology. 1995 Jun;73(6):2608‐11

[6] Rizzolatti G, Craighero L. The mirror‐neuron system. Annual Review of Neuroscience. 
2004;27:169‐92

[7] Cattaneo L, Rizzolatti G. The mirror neuron system. Archives of Neurology. 2009 May;66(5): 
557‐60

[8] Buccino G, Vogt S, Ritzl A, Fink GR, Zilles K, Freund HJ, Rizzolatti G. Neural circuits 
underlying imitation learning of hand actions: An event‐related fMRI study. Neuron. 
2004 Apr 22;42(2):323‐34

Electroencephalography8



are associated with motor skill improvement (Figure 8) [36]. Accordingly, action observation 
may be an effective tool as an intervention method during the early stage of motor learning.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP26750208 and ASTEM RI / 
KYOTO.

Author details

Hideki Nakano* and Takayuki Kodama

*Address all correspondence to: nakano‐h@tachibana‐u.ac.jp

Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, 
Kyoto, Japan

References

[1] Rizzolatti G, Fadiga L, Gallese V, Fogassi L. Premotor cortex and the recognition of 
motor actions. Brain Research. Cognitive Brain Research. 1996 Mar;3(2):131‐41

[2] Gallese V, Fadiga L, Fogassi L, Rizzolatti G. Action recognition in the premotor cortex. 
Brain. 1996 Apr;119(Pt 2):593‐609

[3] Hari R, Forss N, Avikainen S, Kirveskari E, Salenius S, Rizzolatti G. Activation of human 
primary motor cortex during action observation: A neuromagnetic study. Proceedings 
of the National Academy of Sciences of the United States. 1998 Dec 8;95(25):15061‐15065

[4] Iacoboni M, Dapretto M. The mirror neuron system and the consequences of its dysfunc‐
tion. Nature Reviews Neuroscience. 2006 Dec;7(12):942‐51

[5] Fadiga L, Fogassi L, Pavesi G, Rizzolatti G. Motor facilitation during action observation: 
A magnetic stimulation study. The Journal of Neurophysiology. 1995 Jun;73(6):2608‐11

[6] Rizzolatti G, Craighero L. The mirror‐neuron system. Annual Review of Neuroscience. 
2004;27:169‐92

[7] Cattaneo L, Rizzolatti G. The mirror neuron system. Archives of Neurology. 2009 May;66(5): 
557‐60

[8] Buccino G, Vogt S, Ritzl A, Fink GR, Zilles K, Freund HJ, Rizzolatti G. Neural circuits 
underlying imitation learning of hand actions: An event‐related fMRI study. Neuron. 
2004 Apr 22;42(2):323‐34

Electroencephalography8

[9] Caspers S, Zilles K, Laird AR, Eickhoff SB. ALE meta‐analysis of action observation and 
imitation in the human brain. Neuroimage. 2010 Apr 15;50(3):1148‐67

[10] Rizzolatti G, Fogassi L, Gallese V. Neurophysiological mechanisms underlying the under‐
standing and imitation of action. Nature Reviews Neuroscience. 2001 Sep;2(9):661‐70

[11] Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G. Parietal lobe: From 
action organization to intention understanding. Science. 2005 Apr 29;308(5722):662‐7

[12] Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD. Empathy for pain involves 
the affective but not sensory components of pain. Science. 2004 Feb 20;303(5661):1157‐62

[13] Gallese V, Goldman A. Mirror neurons and the simulation theory of mind‐reading. 
Trends in Cognitive Sciences. 1998 Dec 1;2(12):493‐501

[14] Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, Pineda 
JA. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain 
Research. Cognitive Brain Research. 2005 Jul;24(2):190‐8

[15] Small SL, Buccino G, Solodkin A. The mirror neuron system and treatment of stroke. 
Developmental Psychobiology. 2012 Apr;54(3):293‐310

[16] Ray M, Dewey D, Kooistra L, Welsh TN. The relationship between the motor system 
activation during action observation and adaptation in the motor system following 
repeated action observation. Human Movement Science. 2013 Jun;32(3):400‐11

[17] Stefan K, Cohen LG, Duque J, Mazzocchio R, Celnik P, Sawaki L, Ungerleider L, Classen 
J. Formation of a motor memory by action observation. The Journal of Neuroscience. 
2005 Oct 12;25(41):9339‐46

[18] Watanabe R, Higuchi T, Kikuchi Y. Imitation behavior is sensitive to visual perspective 
of the model: An fMRI study. Experimental Brain Research. 2013 Jul;228(2):161‐71

[19] Rizzolatti G, Cattaneo L, Fabbri‐Destro M, Rozzi S. Cortical mechanisms underlying the 
organization of goal‐directed actions and mirror neuron‐based action understanding. 
Physiological Reviews. 2014 Apr;94(2):655‐706

[20] Gastaut H, Terzian H, Gastaut Y. Etude d’une activite electroencephalographique meco‐
nnue: le rythme rolandique en arceau. Mars Med. 1952;89(6):296‐310

[21] Gastaut HJ, Bert J. EEG changes during cinematographic presentation; moving picture 
activation of the EEG. Electroencephalography and Clinical Neurophysiology. 1954 
Aug;6(3):433‐44

[22] Pfurtscheller G, Neuper C. Motor imagery activates primary sensorimotor area in 
humans. Neuroscience Letters. 1997 Dec 19;239(2‐3):65‐8

[23] Altschuler EL, Vankov A, Wang V, Ramachandran VS, Pineda JA. Person see, person do: 
Human cortical electrophysiological correlates of monkey see monkey do cells. Poster 
Session Presented at the 27th Annual Meeting of the Society for Neuroscience; New 
Orleans: LA. 1997

Understanding Neural Mechanisms of Action Observation for Improving Human Motor Skill...
http://dx.doi.org/10.5772/intechopen.69266

9



[24] Fox NA, Bakermans‐Kranenburg MJ, Yoo KH, Bowman LC, Cannon EN, Vanderwert 
RE, Ferrari PF, van IJzendoorn MH. Assessing human mirror activity with EEG mu 
rhythm: A meta‐analysis. The Psychological Bulletin. 2016 Mar;142(3):291‐313

[25] Avanzini P, Fabbri‐Destro M, Dalla Volta R, Daprati E, Rizzolatti G, Cantalupo G. The 
dynamics of sensorimotor cortical oscillations during the observation of hand move‐
ments: an EEG study. PLoS One. 2012;7(5):e37534

[26] Schmidt RA. Motor Control and Learning: A Behavioral Emphasis. 2nd ed. Champaign: 
Human Kinetics Publisher; 1988. p. 346

[27] Schmidt RA. Motor Learning & Performance: From Principles to Practice. Champaign: 
Human Kinetics Publisher; 1991. p. 51

[28] Guthrie ER. The Psychology of Learning. New York: Harper & Row; 1952

[29] Decety J, Perani D, Jeannerod M, Bettinardi V, Tadary B, Woods R, Mazziotta JC, Fazio F. 
Mapping motor representations with positron emission tomography. Nature. 1994 Oct 
13;371(6498):600‐2

[30] Grèzes J, Decety J. Functional anatomy of execution, mental simulation, observation, and 
verb generation of actions: a meta‐analysis. Human Brain Mapping. 2001 Jan;12(1):1‐19

[31] Holmes P, Calmels C. A neuroscientific review of imagery and observation use in sport. 
Journal of Motor Behavior. 2008 Sep;40(5):433‐45

[32] Conson M, Sarà M, Pistoia F, Trojano L. Action observation improves motor imagery: 
Specific interactions between simulative processes. Experimental Brain Research. 2009 
Oct;199(1):71‐81

[33] Gatti R, Tettamanti A, Gough PM, Riboldi E, Marinoni L, Buccino G. Action observation 
versus motor imagery in learning a complex motor task: A short review of literature and 
a kinematics study. Neuroscience Letters. 2013 Apr 12;540:37‐42

[34] Gonzalez‐Rosa JJ, Natali F, Tettamanti A, Cursi M, Velikova S, Comi G, Gatti R, Leocani 
L. Action observation and motor imagery in performance of complex movements: 
Evidence from EEG and kinematics analysis. Behavioural Brain Research. 2015 Mar 
15;281:290‐300

[35] Buccino G. Action observation treatment: A novel tool in neuro rehabilitation. 
Philosophical transactions of the Royal Society of London. Series B, Biological Sciences. 
2014 Apr 28;369(1644):20130185

[36] Nakano H, Osumi M, Ueta K, Kodama T, Morioka S. Changes in electroencephalo‐
graphic activity during observation, preparation, and execution of a motor learning task. 
International Journal of Neuroscience. 2013 Dec;123(12):866‐75

Electroencephalography10



[24] Fox NA, Bakermans‐Kranenburg MJ, Yoo KH, Bowman LC, Cannon EN, Vanderwert 
RE, Ferrari PF, van IJzendoorn MH. Assessing human mirror activity with EEG mu 
rhythm: A meta‐analysis. The Psychological Bulletin. 2016 Mar;142(3):291‐313

[25] Avanzini P, Fabbri‐Destro M, Dalla Volta R, Daprati E, Rizzolatti G, Cantalupo G. The 
dynamics of sensorimotor cortical oscillations during the observation of hand move‐
ments: an EEG study. PLoS One. 2012;7(5):e37534

[26] Schmidt RA. Motor Control and Learning: A Behavioral Emphasis. 2nd ed. Champaign: 
Human Kinetics Publisher; 1988. p. 346

[27] Schmidt RA. Motor Learning & Performance: From Principles to Practice. Champaign: 
Human Kinetics Publisher; 1991. p. 51

[28] Guthrie ER. The Psychology of Learning. New York: Harper & Row; 1952

[29] Decety J, Perani D, Jeannerod M, Bettinardi V, Tadary B, Woods R, Mazziotta JC, Fazio F. 
Mapping motor representations with positron emission tomography. Nature. 1994 Oct 
13;371(6498):600‐2

[30] Grèzes J, Decety J. Functional anatomy of execution, mental simulation, observation, and 
verb generation of actions: a meta‐analysis. Human Brain Mapping. 2001 Jan;12(1):1‐19

[31] Holmes P, Calmels C. A neuroscientific review of imagery and observation use in sport. 
Journal of Motor Behavior. 2008 Sep;40(5):433‐45

[32] Conson M, Sarà M, Pistoia F, Trojano L. Action observation improves motor imagery: 
Specific interactions between simulative processes. Experimental Brain Research. 2009 
Oct;199(1):71‐81

[33] Gatti R, Tettamanti A, Gough PM, Riboldi E, Marinoni L, Buccino G. Action observation 
versus motor imagery in learning a complex motor task: A short review of literature and 
a kinematics study. Neuroscience Letters. 2013 Apr 12;540:37‐42

[34] Gonzalez‐Rosa JJ, Natali F, Tettamanti A, Cursi M, Velikova S, Comi G, Gatti R, Leocani 
L. Action observation and motor imagery in performance of complex movements: 
Evidence from EEG and kinematics analysis. Behavioural Brain Research. 2015 Mar 
15;281:290‐300

[35] Buccino G. Action observation treatment: A novel tool in neuro rehabilitation. 
Philosophical transactions of the Royal Society of London. Series B, Biological Sciences. 
2014 Apr 28;369(1644):20130185

[36] Nakano H, Osumi M, Ueta K, Kodama T, Morioka S. Changes in electroencephalo‐
graphic activity during observation, preparation, and execution of a motor learning task. 
International Journal of Neuroscience. 2013 Dec;123(12):866‐75

Electroencephalography10

Chapter 2

Hippocampal Theta Activity During Stimulus
Discrimination Task

Yuya Sakimoto and Dai Mitsushima

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.68461

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

DOI: 10.5772/intechopen.68461

Hippocampal Theta Activity During Stimulus 
Discrimination Task

Yuya Sakimoto and Dai Mitsushima

Additional information is available at the end of the chapter

Abstract

The configural association theory and conflict resolution model both propose that hip-
pocampal function plays role in the solving a negative patterning task but not simple 
discrimination task. Some hippocampal lesion study showed that inactivity of rats’ hip-
pocampal CA1 area induced impairment of performance of a negative patterning task. 
Other previous studies, however, showed that the lesion did not affect the performance 
of the task. Thus, it did not reveal whether hippocampal function was important for 
solving the negative patterning task. Our recent research using an electrophysiological 
approach showed that the hippocampal theta power decreased with a compound stimu-
lus of a negative patterning task, and that the hippocampal theta power was decreased 
by a compound stimulus of a feature negative task. These results indicate that a decrease 
in hippocampal theta activity is elicited by behavioral inhibition for conflict stimuli with 
overlapping elements. This finding strongly supports the conflict resolution model and 
suggests a hippocampal role in learning behavioral inhibition for conflict stimuli during 
nonspatial stimulus discrimination tasks.

Keywords: hippocampal theta power, negative patterning task, feature negative task, configural 
association theory, conflict resolution model

1. Hippocampal memory functions

After report of a patient H.M. [1], the various areas of research, including psychology, neurosci-
ence, cognitive science, and behavioral science, have researched the hippocampal function for 
learning and memory. The patient H.M. suffered epileptic seizures as a child. He receives a 
resection of a portion of temporal lobe including hippocampus for treating the seizures when 
he was 27 years old. Although the treatment reduced the symptom of seizure without lack of 
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some his cognitive and memory functions, such as intelligence quotient (IQ), conversational 
ability, perceptual capability, working memory, semantic memory formed before surgery, and 
procedure memory, the patient H.M. had minor symptoms of retrograde amnesia and severs 
anterograde amnesia [1]. Thus, Scoville and Milner [1] suggested that the hippocampus is nec-
essary for the encoding of episode memory but not retrieval and storage of the memory. After 
then, for understanding the hippocampal function in detail, animal researchers have examined 
what kind of learning task is necessary for being solved by hippocampal functions. In the elec-
trophysiology study, O’Keefe and Nadel [2] showed that the rodents’ hippocampal CA1 neuron 
was activated by the memory of placement. They named “place cell” as hippocampal CA1 neu-
ron which associated information of placement and suggested the cognitive theory that hippo-
campus was important for solving spatial learning by using eight arms radical maze and Morris 
water maze. In the hippocampal lesion study, Bouffard and Jarrard [3] compared hippocampal 
lesion rat and control rat without hippocampal lesion on eight arms radical maze. For solving 
this task, rats need to learn the arms that were choose once time by using peripheral environ-
mental cue outside of the maze. The performance of the rats with hippocampal lesion was less 
than that control rats. Also, it has examined on the Morris water maze. For solving the task, the 
rats need to understand own position and goal position from some environmental stimuli out-
side the maze and reach the goal position by cueing these stimuli. The rats with hippocampal 
lesion increase a latency that reached an invisible goal platform as compared with control rats on 
the maze [4]. In addition, several research studies showed the universal function that hippocam-
pus plays role in a spatial learning over other species, such as fishes [5], birds [6, 7], and primate 
[8, 9], suggesting that the cognitive map theory is one of the popular hippocampal function 
theories having adaptive possibility for various species. On the other hand, some researchers 
have reported that hippocampal function was important for solving a certain type of nonspatial 
stimulus discrimination task.

2. Negative patterning task

Configural association theory suggests that the hippocampus plays role in learning the 
relationship between multiple sensory stimuli [10]. According to the theory, animals 
have two systems, elemental and configural association systems, for processing sensory 
information, and they adapt successfully to various situations in the external world by 
using them. The elemental association system forms representation of single stimulus, 
such as the single stimulus associated with reinforcement or punishment. However, in the 
external world, a compound stimulus combining multiple stimuli may sometimes have a 
significant meaning. The configural association system forms one of the configural rep-
resentations by associating between multiple stimuli when some of them are presented 
simultaneously or serially. Sutherland and Rudy [10] proposed that hippocampal function 
was necessary for the formation of configural representations for compound stimuli. After 
then, the theory was revised by some researchers [11–13] and latest theory that the hip-
pocampus is important for configural presentation for compound stimulus in exclusive-or 
(XOR) tasks such as negative patterning task and positive patterning task. In the negative 
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patterning task, rats are reinforced for operant responses when either one of two different 
sensory single stimuli, such as tone (T) or light (L), is presented (T+ or L+). In contrast, 
rats are not reinforced when both stimuli are presented (TL−). In this task, compound 
stimulus had overlapping element with single stimuli. For solving this task, rats need to, 
thus, form the configural representation for compound stimulus and discriminate between 
compound stimulus and single stimuli.

Gray and McNaughton [14] proposed the conflict resolution model for the hippocampal func-
tion and behavioral inhibition. The model suggests that the hippocampal function plays role 
in the resolution of conflict between incompatible goals or response tendencies. According to 
this model, the hippocampal function modulates the weight of negative information and, spe-
cifically, increases it, thereby inducing behavioral inhibition [14, 15]. Interestingly, this theory 
may also explain why the hippocampus is important for solving the compound stimulus in 
the negative patterning task. In the negative patterning task, either one of stimuli A and B is 
presented alone when they signal a “go” response, but the stimuli are presented simultane-
ously when they signal a “no-go” response. Thus, the compound stimulus had incompatible 
goals or response tendencies. Animals need to increase the weight of negative information 
and inhibit operant response for compound stimulus. Both the conflict resolution model and 
the configural association theory suggest a role of the hippocampus in solving the negative 
patterning task.

3. Hippocampal lesion and negative patterning task

Several previous studies reported that hippocampal lesions impair the negative patterning 
task performance [10, 16–18]. However, some studies have reported no effects of hippocampal 
lesions on the negative patterning task [19]. Davidson et al. [19] reported abnormal behavioral 
inhibition of the operant response after hippocampal lesions, suggesting a lack of learning 
ability for compound stimuli. Moreover, hippocampal lesions result in an abnormal operant 
response, such as response persistence [20]. Therefore, in order to build a more solid foun-
dation for the configural association theory and conflict resolution model, the relationship 
between hippocampal activity and the negative patterning task needs to be investigated by 
means other than hippocampal lesions.

4. Hippocampal theta activity during negative patterning

It has been known that electroencephalography (EEG) was useful for neural activity of hippo-
campus without extensive hippocampal lesions in rodents. When we implanted a recording 
polar into the rats’ hippocampal CA1 area, we can observe rhythmic EEG patterns. The EEG 
activity was grouped: theta waves (6–12 Hz), beta waves (12–30 Hz), gamma waves (30–100 
Hz), and ripple waves (100–200 Hz). Specifically, it was known that hippocampal theta wave 
is related to psychological state and behavior. Several studies have reported that hippocampal 

Hippocampal Theta Activity During Stimulus Discrimination Task
http://dx.doi.org/10.5772/intechopen.68461

13



theta waves strongly are related to locomotor behavior such as running, jumping, ricking, 
and operant response [21–24]. In addition, it has reported that hippocampus theta activity is 
related to learning and memory [25–43]. Masuoka et al. [29] showed that rats’ hippocampal 
theta activity increased during elevated radical eight mazes. Also, Olvera-Cortés et al. [30, 31] 
revealed that the hippocampal theta waves change during performance of spatial learning 
task. Thus, in addition, theta waves are thought to occur by the synchronization of neurons 
in the whole hippocampal formation [44], which would reflect hippocampal neural activity 
[45–48].

Recently, we have examined hippocampal theta activity in rats during the acquisition stages 
(early, middle, and late) of the negative patterning task (T+, L+, TL−) [38]. We observed a 
transient decrease in hippocampal theta power immediately after the presentation of a com-
pound stimulus during the late stage of learning in the negative patterning task (Figure 1). 
In addition, the magnitude of the decrease in theta power strongly correlated with improved 
performance in the negative patterning task (Figure 2). Grastyán et al. [49] examined the rela-
tionship between hippocampal theta activity and the acquisition of an orientative conditioned 
response (CR) for a tone stimulus presentation in cats. Although the hippocampal theta activ-
ity increased with an association between stimulus and orientative CR, the hippocampal theta 
wave decreased after the formation of this association. Thus, the transient decrease in hippo-
campal theta activity during the late stage of learning in the negative patterning task observed 
in the current study may be related to mastery of the negative patterning task. However, our 
previous reports showed a greater decrease in hippocampal theta activity in the late learn-
ing stage of a negative patterning task compared to the simple discrimination task [32, 38]. 
Therefore, we suggest that the decrease in hippocampal theta power is induced by hippo-
campus-mediated information processing for compound stimuli in the negative patterning 
task. This is in agreement with the concepts of the configural association theory and conflict 
resolution model.

Further studies revealed characteristics of compound stimuli inducing a decrease in theta 
power by comparing simultaneous feature-negative (T+, TL−) and compound stimulus 
discrimination tasks (T1+, T2L−) [32]. In feature negative tasks, the compound stimulus 
had overlapping elements with single stimuli because these stimuli were composed of 
tone stimuli with the same frequency component. However, the compound stimulus in the 
compound stimulus discrimination task did not have overlapping elements with single 
stimuli because they were composed of tone stimuli with different frequency components 
(T1: 2000 Hz, T2: 4000 Hz). These studies reported a transient decrease in hippocampal 
theta activity following the presentation of a compound stimulus during the simultane-
ous feature-negative task compared to the simple discrimination task but not during the 
compound stimulus discrimination task. The compound stimulus of the simultaneous 
feature-negative task had an overlapping element shared with the single stimulus. This 
may justify the transient decrease in hippocampal theta activity during response inhibi-
tion for the compound stimulus of negative patterning and simultaneous feature-negative 
tasks. Therefore, we proposed that the decrease in hippocampal theta power is related to 
behavioral inhibition for conflict stimulus discrimination in which the single stimuli have 
overlapping elements.
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Figure 1. The change in theta power during a presentation of compound stimuli of the negative patterning task by using 
wavelet analysis (A). Upper side shows the change in hippocampal theta activity along a time course during compound 
stimulus on the early stage, Middle side shows theta activity on the middle stage, and Lower side shows theta activity on 
late stage of negative patterning task. The x-axis is time (ms), and the y-axis is frequency (Hz). In each panel, the period 
is from 500 ms before stimulus onset to 4000 ms after stimulus onset. The mean hippocampal theta power during 500 ms 
before stimulus onset was counted as the −500-ms period (no stimuli were present and no rats pressed the lever during 
this period), and the relative theta power calculated for each period (per 250 ms) was normalized to that during the −500-
ms period (relative theta activity of each period = theta power of each period/theta power at the −500-ms period). Panel B 
contains a comparison of the mean (± S.E.M.) relative hippocampal theta activity at 6–12 Hz among each learning stage 
(early, middle, and late) throughout the time course of the experiment during compound stimuli of the negative patterning 
task. Two-way within-subjects ANOVA suggests that there is a significant interaction of learning stages (early, middle, and 
late) × epochs (−500 to 4000 ms, with each 250 ms; F(36,180) = 2.37, p < 0.05) and a significant effect of epochs (F(18,90) = 
4.80, p < 0.05), but no significant effect of stages (F(2,10) = 0.97, n.s.) on relative hippocampal theta power during compound 
stimulus of the negative patterning task. Post-hoc tests showed that there was a significant simple main effect in the 250- 
and 500-ms epochs during compound stimulus. Multiple comparisons revealed that hippocampal theta power decreased 
in the 250-ms epochs during nonRFTs in the late stage compared with the early stage (p < 0.05) and in the 500-ms epochs 
during nonRFTs in the middle and late stages compared with the early stage (* p < 0.05). Panel C contains a comparison 
of the mean (± S.E.M.) relative hippocampal theta activity at 6–12 Hz among each learning stage (early, middle, and late) 
throughout the time course of the experiment during nonreinforced stimulus of the simple discrimination task. This figure 
was referred to Sakimoto et al. [38].
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5. Why does hippocampal theta amplitude decline?

Hippocampal theta power is affected by the activity of cholinergic and γ-aminobutyric acid 
(GABA) neurons of the medial septal/diagonal band area [44]. Monmaur and Breton [50] dem-
onstrated that theta activity increases when the cholinergic agonist, carbachol, is injected into 
the intra septum in freely moving rats. In addition, Sun et al. [51] reported that hippocampal 
theta activity is abolished by the GABA antagonist bicuculline. Thus, we propose that the tran-
sient decrease in hippocampal theta activity during compound stimulus learning in the nega-
tive patterning task is induced by the activity of septal cholinergic or GABAergic neurons, or 
their interaction. In future studies, the relationship between the negative patterning task and 
septal cholinergic and/or GABAergic activity should be examined. Because septo-hippocampal 
GABAergic input to CA1 is essential for the generation of theta waves [52], the transient decrease 

Figure 2. A comparison of the mean relative hippocampal theta activity between tasks. Panel A shows the relative 
hippocampal theta power during the 500-ms epochs between the negative patterning and simple discrimination task 
groups. A group (negative patterning task and simple discrimination task groups) × stage (early, middle, and late) 
ANOVA for hippocampal theta activity during a 500-ms epoch in the nonRFT showed a significant interaction (F(2,20) 
= 6.12, p < 0.05). Multiple comparisons revealed that hippocampal theta power decreased during the late stage in the 
negative patterning task compared to the simple discrimination task group (p < 0.05; *: p < 0.05). Hippocampal theta 
power during the 500 ms nonRFT correlated with the discrimination rate in the negative patterning task (r = −0.70, p < 
0.05; panel B) but not the simple discrimination task (r = −0.06, p = n.s; panel C). This figure was referred to Sakimoto et 
al. [38].
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in presynaptic GABA release may cause a transient decrease in the hippocampal theta power 
immediately after stimulus presentation. We recently analyzed synaptic plasticity using the slice 
patch-clamp technique and measured a rapid decrease in presynaptic GABA release at hip-
pocampal CA1 synapses immediately after the nonspatial contextual learning task, inhibitory 
avoidance (IA) [53]. Compared to untrained controls, the paired pulse ratio (PPR) of evoked 
inhibitory postsynaptic current (IPSC) increased immediately after IA training (at 0 min), sug-
gesting an acute decrease in the probability of presynaptic GABA release. As the PPR returned 
to baseline 5 min after the training, the decrease in presynaptic GABA release seems to be tran-
sient. Moreover, we observed a sustained increase in the miniature excitatory postsynaptic cur-
rent (mEPSC) and miniature inhibitory postsynaptic current (mIPSC) amplitudes 5–30 min after 
the IA task, suggesting long-term postsynaptic strengthening of α-amino-3-hydroxy-5-methyl-
4-isoxazole propionic acid (AMPA) and GABAA receptor-mediated synapses. In addition, the 
long-term increase in mIPSC frequency is probably due to an increase in the number of GABAA 
receptor-mediated inhibitory synapses after the training [53].

6. Conclusion

We discussed hippocampal function in a nonspatial stimulus discrimination task with a focus 
on the configural association theory and conflict resolution model. These functions were 
strongly supported by the observations that hippocampal theta power decreased during 
the presentation of a compound stimulus in a negative patterning task [32, 38]. A transient 
decrease in hippocampal theta activity was also observed during the presentation of a com-
pound stimulus in the simultaneous feature-negative task but not in the compound stimulus 
discrimination task [32]. These results suggest that the decrease in hippocampal theta activ-
ity was elicited by behavioral inhibition of a conflict stimulus with overlapping elements. 
Therefore, we conclude that the hippocampus may play a role in this cognitive process. This 
conclusion strongly supports the conflict resolution model, in which the hippocampus plays 
a role in negative information processing for conflict stimuli in the nonspatial discrimination 
task. Moreover, data suggest a link between a decreased in theta power and decreased septal 
cholinergic activity and increased septal GABAergic activity. Finally, we conclude that the 
hippocampal neural activity derived from septal cholinergic and GABAergic activities plays 
a central role in behavioral inhibition for conflict stimuli with overlapping elements.
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Abstract

Since its introduction, deep hypothermic circulatory arrest has been widely used for cere-
bral protection during aortic arch surgery. The use of electroencephalogram plays an 
important role in intraoperative neurophysiologic monitoring. Systemic cooling to the 
point of electrocerebral inactivity has been thought to ensure optimal neuroprotection 
from the ischemic injury during circulatory arrest. Therefore, electroencephalogram can 
guide surgeons to induce deep hypothermic circulatory arrest at an optimal timing. In 
the meantime, along with the advent of adjunctive cerebral perfusion techniques, there 
is a certain trend that circulatory arrest is induced at higher degrees than traditional 
deep hypothermic approach, called moderate hypothermic circulatory arrest. The role of 
electroencephalogram in this approach has not been well established yet, but some stud-
ies suggested the importance of intraoperative electroencephalogram in this approach 
as well. Electroencephalogram is also utilized in emerging operative techniques called 
hybrid arch repair. To conclude, intraoperative use of electroencephalogram can greatly 
contribute to cerebral protection in the field of aortic arch surgery, and surgeons should 
be familiar with its mechanism, indication, and interpretation.

Keywords: circulatory arrest, neurophysiological monitoring, aortic arch surgery, 
hypothermia

1. Introduction

Since its introduction, deep hypothermic circulatory arrest has been widely utilized for cere-
bral protection during aortic arch operations [1]. By inducing hypothermia to the brain and 
visceral organs, tissue oxygen and metabolic demands are reduced to the extent that the 
period of ischemia resulting from circulatory arrest can be well withstood [2–5]. Because the 
brain is particularly sensitive to transient periods of hypoxia, cerebral protection is essential 
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during aortic arch operations. Despite the advancement of surgical techniques, perioperative 
neurological complications following aortic arch operations are still reported to be as high as 
5–8% in the current era [6–8]. Therefore, optimal methods how to induce circulatory arrest 
safely are still debated.

It has been shown that body temperature measurement is not a sufficient indicator of brain 
temperature [9]. Stone and colleagues reported that when profound hypothermia is rapidly 
induced and reversed, temperature measurements made at standard monitoring sites may 
not reflect cerebral temperature. Although a number of modalities, such as near-infrared 
spectroscopy and transcranial cerebral oximetry, have been introduced to monitor the brain 
during aortic arch operations, no single technique has proven to be a perfect monitoring tool. 
A method of physiological monitoring, intraoperative electroencephalography (EEG), was 
introduced by Ganzel and colleagues in 1997 [10]. The viewpoint is that maximal cerebral 
protection is achieved at temperatures sufficient to induce electrocerebral inactivity on EEG, 
under the assumption that maximal suppression of cerebral metabolic activity is achieved at 
electrocerebral inactivity [2, 11]. Stecker and colleagues reported that the process of cooling 
to electrocerebral inactivity produced a uniform degree of cerebral protection, independent 
of the actual nasopharyngeal temperature [12]. Consequently, many institutions have intro-
duced intraoperative EEG to allow for the identification of electrocerebral inactivity before 
initiating circulatory arrest [13–16], which leads to average minimum temperatures of less 
than 16°C [17, 18].

2. The intraoperative use of EEG during aortic arch operations

2.1. EEG changes during systemic cooling and rewarming

Keenan and colleagues provided a review about neurological monitoring during aortic arch 
surgery [19]. EEG is monitored through the process of systemic cooling to provide occurring 
assessment of electrocerebral activity as a marker for the extent of hypothermia-mediated 
metabolic suppression in the brain. EEG monitoring is generally provided by using gold disc 
electrodes attached to the scalp according to the International System of Electrode Placement. 
Baseline EEG needs to be obtained after anesthetic induction but before initiation of cardio-
pulmonary bypass and systemic cooling. Baseline EEG gives us the identification of base-
line asymmetry or other abnormal findings in electrocerebral activity. With the initiation 
of systemic cooling, EEG amplitude begins to diminish. The sensitivity of EEG should be 
increased for better assessment of low-amplitude activity. Because electrocerebral activity is 
significantly influenced by anesthesia, anesthetic agents are usually discontinued during the 
systemic cooling in order to mitigate the confounding impact these drugs have on interpret-
ing EEG.

Stecker and colleagues reported the pattern of EEG electrocerebral activity during aortic arch 
operations requiring deep hypothermic circulatory arrest [12, 18]. Between a nasopharyn-
geal temperature of 21.5 and 34.2°C, a majority of patients are found to have either lateral-
ized, generalized, or bilateral independent periodic discharges, or transient and synchronous 
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increases in EEG wave amplitude, against a background of continuous electrocerebral activ-
ity. Along with further systemic cooling, a gradual decrease in EEG continuity is found until 
the onset of a burst suppression pattern between 15.7 and 33.0°C. Finally, a progression to 
complete electrocerebral inactivity is found between 12.5 and 27.2°C (Figure 1).

During systemic rewarming, a reversed progression from electrocerebral inactivity back to 
normal amplitude continuous activity is found; however, the temperature points at which 
changes in EEG pattern tend to occur are different compared with the process of systemic 

Figure 1. Distribution of nasopharyngeal temperatures at which various electroencephalogram landmarks occur: (A) appear-
ance of periodic complexes, (B) appearance of burst suppression, and (C) electrocerebral inactivity. Examples of typical 
electroencephalogram patterns during systemic cooling are also shown: (D) precooling, (E) appearance of periodic complexes, 
(F) appearance of burst suppression, and (G) electrocerebral inactivity. Each of the electroencephalogram samples represent 
the following four channels from the left hemisphere (Fp1–F7, F7–T3, T3–T5, and T5–O1).
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cooling. Therefore, while the changes of EEG pattern through the process of systemic cool-
ing and rewarming are somewhat predictable, the temperature at which these EEG changes 
occur is significantly variable between patients. The required time for systemic cooling and 
rewarming is also variable and much depends of the patient and procedural factors [17, 18].

2.2. EEG findings during deep hypothermic circulatory arrest

The optimal degree of hypothermia before conducting circulatory arrest is still debated and 
remains a controversy in the field of aortic arch operations. Traditionally, the patient is cooled 
until electrocerebral inactivity is achieved prior to circulatory arrest, because electrocerebral 
inactivity is thought to be associated with minimal cerebral metabolic demand [2, 11]. Cooling 
to the point of electrocerebral inactivity has been thought to ensure optimal neuroprotection 
from the ischemic injury during circulatory arrest. Because the required time for achieving 
electrocerebral inactivity varies between patients and cannot be ensured by a specific tem-
perature or a fixed duration (Figure 2), intraoperative EEG monitoring is crucial for surgeons 
to identify electrocerebral inactivity precisely before conducting circulatory arrest.

Previous reports regarding aortic arch operations have demonstrated increasingly good peri-
operative surgical outcomes, including low neurological complications and low mortality 
[13–16, 20–22]. In these reports, patients were cooled to the point of electrocerebral inactivity 
prior to initiation of circulatory arrest. This approach is generally called deep hypothermic 
circulatory arrest because deeper degrees of hypothermia and longer periods of systemic 
cooling are required to reach electrocerebral inactivity compared with alternative circulatory 
management strategies.

Murashita et al. reported the EEG findings during aortic arch operations performed under 
deep hypothermic circulatory arrest [22]. In their report, 135 out of 141 patients (95.7%) had 
normal recovery of EEG after termination of circulatory arrest and rewarming. Among them, 
3 (2.2%) developed minor stroke. Overall 6 patients (4.3%) showed abnormal recovery of 
EEG, such as continuous suppression or asymmetric recovery. Of whom, 2 (33.3%) developed 
major stroke leading to 30-day mortality. Therefore, they concluded that patients who have 
abnormal EEG recovery are at high risk for postoperative major neurological complications.

Figure 2. (A) The cumulative probability of electrocerebral silence on electroencephalogram as a function of cooling 
time. (B) The cumulative probability that electrocerebral silence is not achieved for temperatures above that indicated.
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2.3. EEG findings during moderate hypothermic circulatory arrest

Although a deep hypothermic circulatory arrest is an established method in the field of aortic 
arch operations, there are concerns that the extremely low temperature can lead to adverse 
outcomes, such as hypothermia-related coagulopathy [23, 24], prolonged periods of cardio-
pulmonary bypass, or direct hypothermic neuronal injury [25–27]. In addition, the introduc-
tion of adjunctive cerebral perfusion techniques, such as retrograde and antegrade cerebral 
perfusion has allowed continued perfusion and cooling of the brain after systemic circulatory 
arrest. As a result, a number of institutions have been using a circulatory strategy of more 
moderate degrees of systemic hypothermia with adjunctive cerebral perfusion in aortic arch 
operations [28–33]. This circulatory strategy, generally called as moderate hypothermic cir-
culatory arrest, has provided comparable or better surgical outcomes than traditional deep 
hypothermic circulatory arrest [34, 35]. There is a great deal of controversy regarding the 
superiority of moderate versus deep hypothermia. However, a trend of using higher degrees 
of hypothermic circulatory arrest than traditional deep hypothermia seems likely to continue.

Unlike deep hypothermic circulatory arrest, the role of intraoperative EEG monitoring in the 
setting of moderate hypothermic circulatory arrest has not well been established. In the set-
ting of moderate hypothermic circulatory arrest, the timing of induction of circulatory arrest 
is usually determined based on the nasopharyngeal temperature between 20 and 28°C. There 
is a wide variety in the current literature regarding the definition of moderate hypothermia as 
well as the location of temperature measurement [36]. Most of the patients still demonstrate 
some form of electrocerebral activity in EEG at moderate temperatures, and the electrophysi-
ological behavior of the brain around the time of circulatory arrest and the establishment of 
adjunctive cerebral perfusion techniques remains in the discovery phase.

Keenan and colleagues reported EEG findings during moderate hypothermic circulatory 
arrest during hemiarch replacement [37]. Their study included 71 patients who underwent 
hemiarch replacement with moderate hypothermic circulatory arrest. Nobody reached 
to electrocerebral inactivity at the time of circulatory arrest. Among 71 patients, 32 (45%) 
demonstrated an abrupt loss of electrocerebral activity immediately after circulatory arrest, 
indicative cerebral ischemia. However, the majority of them restored electrocerebral activity 
following establishment of unilateral antegrade cerebral perfusion (Figure 3). In the cases 
where unilateral selective antegrade cerebral perfusion (SACP) did not resolve the loss of 
electrocerebral activity, bilateral antegrade cerebral perfusion or further systemic cooling 
were required. Figure 4 shows the case where unilateral selective antegrade cerebral perfu-
sion did not restore the electrocerebral activity, but bilateral antegrade cerebral perfusion 
showed partial return of activity. In the remaining 39 patients (55%), electrocerebral activity 
was maintained in the brief period between circulatory arrest and selective antegrade cere-
bral perfusion and persisted after cerebral perfusion was established. There were no baseline 
characteristics between patients who had an abrupt loss of electrocerebral activity and those 
who did not. There were no postoperative stroke, transient ischemic attack, or permanent 
mental status change in both groups. They concluded that loss of electrocerebral activity fol-
lowing moderate hypothermic circulatory arrest can be restored by using adequate antegrade 
cerebral perfusion technique.
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2.4. EEG use in emerging operative techniques

With the technical advancement of thoracic endovascular aortic repair, an innovative strat-
egy that can avoid cardiopulmonary bypass and hypothermic circulatory arrest has emerged 
and become available for the surgical management of aortic arch pathology. That approach 

Figure 3. Restoration of electroencephalography (EEG) activity after circulatory arrest with the establishment of 
unilateral selective antegrade cerebral perfusion (SACP). (A) EEG before arrest shows burst suppression (nasopharyngeal 
temperature: 26.6°C). (B) EEG immediately after arrest demonstrates loss of electrocerebral activity. (C) EEG after 
unilateral SACP shows return of burst suppression pattern.
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is known as a “hybrid” arch repair [38–42]. This technique usually consists of two distinct 
operations. The first operation is the open procedure for extra-anatomical bypasses of the 
great arch vessels. When there is concomitant ascending or proximal arch pathology, they 
need to be replaced. In that case, cardiopulmonary bypass and circulatory arrest will be nec-
essary in the same way with conventional aortic arch operations. Therefore, intraoperative 
neurological monitoring using EEG needs to be taken into consideration. However, when 
ascending aorta and proximal arch replacement are not required, the first operation of hybrid 
arch repair does not require cardiopulmonary bypass or circulatory arrest. In that case, EEG 
with or without near-infrared spectroscopy is often used to detect brain ischemia, especially 
when innominate artery or left common carotid artery is bypassed [42]. The second opera-
tion consists of deployment of a stent-graft in which the proximal landing zone is within the 
ascending aorta or proximal aortic arch and the distal landing zone is within the descending 
aorta. Because the great arch vessels are already bypassed in the first operation, there is little 
or no concern for brain ischemia during the second operation. The use of EEG in the second 
operation is not as important as the first operation, and the attention is usually more paid to 
spinal cord ischemia in the second operation.

2.5. The effect of anesthetic agents on EEG

Anesthetic agents have a significant impact on the findings of EEG [43]; therefore, the intra-
operative management of anesthetic agents is very important during aortic arch operations. 
Generally, intravenous anesthetic drugs, such as propofol, benzodiazepines, and barbiturates 
can have significant effects on EEG findings. Even at small doses, these drugs can induce burst 
suppression in EEG, and these changes can mislead physicians during the process of systemic 

Figure 4. Persistent loss of left-sided electrocerebral activity after establishment of selective antegrade cerebral perfusion 
(SACP). (A) Electroencephalogram (EEG) before arrest shows a continuous pattern with diffuse wave slowing 
(nasopharyngeal temperature: 28.1°C). (B) EEG after arrest demonstrates loss of electrocerebral activity. (C) EEG after uni-
lateral SACP shows persistent loss of electrocerebral activity in the left-sided leads. (D) EEG after transition to bilateral SACP 
shows partial return of left-sided activity.
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cooling. Therefore, intravenous anesthetic drugs should usually be avoided, and their use 
should be discontinued by the time body temperature gets to 30–33°C.

Instead of intravenous anesthetic drugs, low doses of the halogenated inhalational agents 
including desflurane, isoflurane, and sevoflurane with opioids for analgesia generally consist 
of the basis of anesthesia during aortic arch operations. Although high dose of these agents 
can lead to increasing suppression in electrocerebral activity, low dose of these agents gener-
ally required for adequate surgical anesthesia is not associated with significant effects on EEG 
amplitude and frequency. Therefore, detection of shifts toward lower frequency and ampli-
tude can be indicative of cerebral ischemia or other neurophysiological issues.

Besides anesthetic agents, non-pharmacological factors can also affect EEG findings. For 
example, reduction in systemic and local blood pressure induced by general anesthesia can 
affect EEG. Changes in partial pressure of oxygen and carbon dioxide induced by mechanical 
ventilation can change EEG findings as a result of either altered oxygen delivery or changes 
in cerebral blood flow. Therefore, it is crucial to take these effects into consideration when 
interpreting EEG findings.

3. Conclusions

Aortic arch operation is one of the most complex surgeries in the current era. The introduction 
of hypothermic circulatory arrest has provided a great safety in protection of organs, espe-
cially for brain. Neurophysiological monitoring using intraoperative EEG plays a critical role 
in this field to help surgeons direct circulatory management and give clues about conditions 
of brain ischemia. With the traditional deep hypothermic circulatory arrest approach, electro-
cerebral inactivity is usually achieved, and surgeons are ensured that circulatory arrest can be 
achieved safely. However, with the advent of adjunctive cerebral perfusion techniques, there 
is a certain trend that hypothermic circulatory arrest is achieved at higher degrees (moderate 
hypothermic circulatory arrest) than deep hypothermia where electrocerebral inactivity is 
not achieved, and the surgical outcomes with moderate hypothermia have been favorable. 
Moderate hypothermic technique can avoid the issues associated with deep hypothermia, 
such as coagulopathy, prolonged cardiopulmonary bypass, and direct neuronal injury. The 
electrophysiological findings in moderate hypothermic circulatory arrest have not been estab-
lished and need to be studied further. It is highly likely that neurological monitoring using 
EEG in the aortic arch operations will continue to be viewed as a crucial modality to ensure 
optimal patient safety and as the field continues to develop with new circulatory management 
strategies and operative techniques.
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Abstract

Electroencephalography (EEG) has evolved over the years to be one of the primary
diagnostic technologies providing information concerning the dynamics of spontaneous
and stimulated electrical brain activity. The core question of EEG is to acquire the precise
location and strength of the sources inside the human brain by knowledge of an electri-
cal potential measured on the scalp. But in what way is the source recovered? Leaving
aside the biological mechanisms on the cellular level responsible for the recorded EEG
signals, we pay attention to the mathematical aspects of the narrative. Our goal is to
provide a brief and concise introduction of the mathematical terminology associated
with the modality of EEG. We start from the very beginning, presenting step by step the
mathematical formulation behind EEG in a simple and clear manner, keeping the math-
ematical notation to a minimum. Whilst we serve only the key relations for the
described problems, we focus specifically on the limitations of each modelling approach.
In this fashion, the reader can appreciate the beauty of the formulas presented and
discover every single piece of information encoded within these formulas.

Keywords: EEG, mathematical analysis, forward problem, inverse problem, spherical
conductor, ellipsoidal conductor

1. Introduction

The human brain is a remarkable and fascinating organ exhibiting a tremendous complexity. It
makes us unique and defines who we are. In spite of our scientific and technological progression,
we do not know the particulars of its operating, and as we delve into its secrets, various surprises
emerge, for example, nearly 100 previously unidentified brain areas have been recently discov-
ered [1]. Consisting of an inconceivable network of interconnected nerve cells and fibres,
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continuously transporting and processing information, the brain is extremely vulnerable and
requires paramount protection. Several layers of safety are incorporated starting with three
connective sheets of tissue, called the meninges containing the cerebrospinal fluid, followed by
plates of bones, the skull. Above machinery safeguards the brain from mechanical damage. On
the other hand, a sophisticated barrier within the brain provides a natural defence against toxic
or infective agents.

Examining the anatomy of the brain, we recognize three distinct regions. The largest part of the
brain is the cerebrum, divided into two hemispheres. The outermost layer of the cerebrum is
the cerebral cortex, consisting of four lobes. Cognitive awareness has its origins here. The
second largest part of the brain is the cerebellum, located underneath the cerebrum and
responsible for motor control and learning. Last, but not least, an integral part of the brain
connecting the cerebrum with the spinal cord is the brainstem, regulating reflexes and crucial,
basic life functions. Detailed information can be found in [2].

The operational status of the brain is based on an alternating chain of electrical and chemical
events. On the microscopic level, encoding and transmitting of information via electrochemical
signals is achieved by the active participation of neuronal and non-neuronal constituents. Brain
cells communicate through synaptic transmissions by controlling chemical transmitters or ionic
currents which flow across their membranes. As a consequence, an electromagnetic field is gener-
ated. For a far-reaching introduction on the subject, see [3]. The question at hand now lies in the
possibility exploiting these provoked fields. It seems only reasonable that if a substantial number
of cells form a critical mass, which activates synchronously, the emerging electric and magnetic
field should be detectable. This is indeed the case and a deeply rooted concept in electrophysiol-
ogy [4, 5]. From an electrofunctional point of view, the ionic micro-flow within a single brain cell
creates an opposite polarity between two point electrical charges very close together, leading to the
notion of a dipole, a physical quantity one could say consists of the ‘fundamental unit', which
produces the observed fields. Dipoles are characterized by a vector called moment, the product of
the charge and distance, visualized as an arrow pointing from a minimum (negative charge) to a
maximum (positive charge), ergo featuring direction and magnitude. For that reason, it may be
argued that the macroscopic description of the brain's activity is best achieved when simulated as
an array of dipoles, that is, a non-uniform distribution of positive and negative charges. According
to the latter, if a small neighbourhood is stimulated, an excessive number of dipoles concur and
their electric fields would add or cancel one another depending on the direction. This complicated
and difficult situation can be avoided by introducing the concept of the equivalent current dipole
(ECD), namely a single dipole which generates the identical electric field as all of the individual
dipoles together, hence summarizing the net effect of all microscopic currents located in the
distinct region of the brain under consideration. This is a widely used approximation concept in
the framework of neuroelectromagnetism [6, 7]. On the other hand, when the exertion is no longer
confined to a focal region of the brain, then every one of these regions is simulated by an
equivalent current dipole, leading to a distribution of sources.

The main task and problem is to correlate active regions with associated generated electric
fields. This essential step is closely connected with the installation of physical structures,
namely a boundary or number of boundaries enclosing distinct regions with specific physical
characteristics, such as conductivity. The head model obtained is termed the volume conductor
model. Clearly, the level of details incorporated into the head model provides an analogous
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degree of operational freedom when it comes to investigate how the fields generated by brain
cells are transmitted through various biological tissues towards measurement apparatus. As a
result, the volume conductor model consists of the physical foundation for source analysis,
which is categorized into two major problems. The first one is associated with the calculation
of the electric potential, generated by known electrochemical sources within the brain, at
precise points at the surface of the scalp. This is the forward electroencephalographic (EEG)
problem [8–11]. The forward EEG problem has been extensively scrutinized for over 60 years
since Wilson and Bayley [12] attempted to quantify the interplay between neuronal activity
and the potentials they generate at the scalp. The reconstruction of the sources responsible for
the recorded values is called the corresponding inverse EEG problem [13].

As of today, a high level of details can only be achieved with the aid of numerical models,
which are generally categorized into boundary element models (BEMs) and finite element
models (FEMs). Whereas boundary element models are adequate to portray major tissue
compartments, such as the cerebrum and skull, they fail to represent detailed anatomical
information within the compartments, such as the cerebral folding [14, 15]. Finite element
models, on the other hand, are efficient in capturing these details, but are labour intensive
and computationally demanding [16, 17].

Nonetheless, in order to gain a deeper comprehension of the problem a rigorous mathematical
analysis is essential in providing a vital step towards the recognition of the underlying phenomena
as well as identifying the limitations of the developed algorithms. The importance of mathematical
analysis cannot be emphasized enough, since (i) it allows testing the impact of modifications
regarding various variables upon the output of the system and provides further insight into
underlying physical behaviour. (ii) It serves as validation tools for the numerical models.

2. The mathematical formulation of the EEG problem

Think of the following scenario. You are conducting a series of experimental or clinical
studies, but out of curiosity and foremost for a better understanding of the way the system
under consideration behaves, you desire to build a mathematical model interpreting as best
as possible your measurements. But, where to begin? First of all, we will need a framework
which is capable of, at least to a degree, explaining what happens and why. If such a
framework does not exist, we have to formulate one. As mentioned in Section 1, the electro-
chemical activity of brain cells results in bioelectric sources which generate an electric field
in the neighbourhood of the cells. This field varies generally in time. Consequently, electro-
magnetic phenomena materialize. Luckily for us, the framework interpreting this kind of
phenomena and the starting point of our endeavour are Maxwell's equations, a set of four
equations, namely

∇� Eþ ∂B
∂t

¼ 0, ∇�H ¼ Jþ ∂D
∂t

, ∇ � B ¼ 0, ∇ �D ¼ ρ: ð1Þ

The inverted delta present in Eq. (1) is called del, or nabla, and consist of a mathematical device
named operator, a symbol indicating that an action must be performed on what follows. The
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algebraic operations of the dot (�) and cross (�) product between two vectors should not be
confused with the elementary operation of multiplication.

Maxwell equations connect the electric fields E and B, the displacement field D and the
magnetizing field H with their sources, that is, the charge density ρ and the current density J:
These fields have direction and magnitude and must be represented as vector functions (bold
capital letters). The above set of equations is also called Maxwell's macroscopic equations, and
in order to apply them, a relation between D and E, as well as H and B must be specified. For
materials without polarization and magnetization, they are

D ¼ εE, H ¼ μ�1B, ð2Þ

where ε is the relative permittivity (dielectric constant) of the material and shows how strong
the material influences the electric field E: Similarly, μ is the magnetic permeability of the
material and provides the corresponding influence on the magnetic field B:

In what follows, we shall consider the following instance. For a finite medium, we introduce the
characteristic dimension R, namely the smallest sphere with radius R which envelopes the
medium under consideration. On the special occasion where the wavelength λ of the wave
generated by the electromagnetic field is much larger than the characteristic dimension of the
medium, namely λ>>R, then the corresponding time rates of change are very small. The latter
observation leads to the quasi-static theory of Maxwell's equations, which take the form (see Ref.
[18] for details)

∇� E ¼ 0, ∇�H ¼ J, ∇ � B ¼ 0, ∇ �D ¼ ρ: ð3Þ

It can be shown [19] that for a medium the size of the brain, R equals about 20 cm whereas λ
about 400 m. Therefore, λ ffi 2000R and the application of Maxwell's quasi-static equations are
justified. Replacing Eq. (2) into Eq. (3), we immediately find

∇� E ¼ 0, ∇� B ¼ μJ, ∇ � B ¼ 0, ∇ �D ¼ ε�1ρ: ð4Þ

Let us focus on the first of Eq. (4). The curl of a vector, that is, the operator ∇� captures the idea
of how the vector field is circulating around a central axis. From this point of view, the electric
field is irrotational. By a well-known identity of vector calculus, if the curl of a vector is zero,
then the vector field in question can always be expressed as the gradient of a scalar field. In our
case, the absence of circulation of E is caused by a continuously decreasing electric potential U
along the direction of the electric field,

E ¼ �∇U: ð5Þ

An inherit characteristic of linear systems is the principle of superposition. Here, the electric
fields are superposable, meaning that the electric field generated by a number of charges can
be expressed as the vector sum of the electric fields generated by each charge separately; it
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follows from Eq. (5) that the electric potentials are superposable as well. As a result, it is much
easier to compute the provoked potential than the corresponding electric field.

At this point, the benefit of Eq. (5) is not clear yet. To show the usefulness of Eq. (5), we utilize a
theorem of vector calculus stating that the divergence of the curl of a vector always vanishes.
Applying the latter on the second of Eq. (3), we are left with

∇ � J ¼ 0 ð6Þ

and the current density of J is said to be solenoidal and expresses the steady-state condition
that the charge density ρ is not changing in time. Moreover, an applied field in a resistive
material, such as the brain, will induce a current of density Ji, directly proportional to the
applied field provided by a generalization of Ohm's law due to Kirchhoff (for a detailed
historical analysis see Ref. [20]),

Ji ¼ σE, ð7Þ

where the proportionality constant σ is termed conductivity. Therefore, the total current is
given as the sum of the primary current Jp responsible for the electric field, and the induced,

or secondary, current Ji given by Eq. (8), as

J ¼ Jp þ σE: ð8Þ

Combining Eqs. (5), (6) and (8), we arrive at the following differential equation:

∇ � ðσ ∇UÞ ¼ ∇ � Jp, ð9Þ

which must be satisfied by the electric potential U: Simple vector calculus shows that

∇ � ðσ ∇UÞ ¼ ∇U � ∇σþ σ ΔU, ð10Þ

where the symbol Δ is called the Laplacian operator.

When the conductivity varies in space, that is, the medium under consideration is inhomoge-
neous, consisting of compartments which are not of the same material, the quantity ∇σ differs
from zero. On the other hand, when the conductivity is constant in space (homogeneous,
isotropic) or constant by direction (anisotropic), then the gradient of σ vanishes. In the latter
case, the electric potential U is related to the primary current Jp by Poisson's equation,

ΔU ¼ σ�1∇ � Jp: ð11Þ

Note that the ‘source term’, namely the right-hand side of Eq. (11), is not the primary current per
se, but the divergence of Jp multiplied by 1 over σ. In view of Eq. (11), the forward EEG problem

is now formulated as follows. Given the primary current density Jp, calculate the electric potential
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on the surface of the medium. On the contrary, calculating Jp from the knowledge of U consists

of the inverse EEG problem.

So far, we managed to derive at an equation which allows the computation of the electric
potential, but our framework is still incomplete. Because the medium under consideration is
finite, that is, confined in space by a closed surface-boundary, we need a set of additional
constrains, the so-called boundary conditions, which U has to satisfy as well. This stems from
the fact that when the medium, in which a wave propagates, displays alterations in its material
properties (e.g. different conductivities), the wave is reflected, transmitted or both. In any case,
at the interface S separating two regions V1, V2 the wave and its normal derivative must be
continuous at the interface, namely

U1 ¼ U2 and σ1∂νU1 ¼ σ2∂νU2 on S, ð12Þ

where σ1, σ2 denote the conductivity of V1, V2, respectively. Above relations are valid only if
no charged layer near the interface exists, that is, the absence of primary currents in the vicinity
of S is secured. The first of Eq. (12) is known as Dirichlet condition, whereas the second is
called a Neumann condition. Neumann conditions must be supplemented by the compatibility
condition that the sum of all contributions of the normal derivative ∂νU on S must cancel out,
that is,

∮ ∂νU dS ¼ 0: ð13Þ

Further note that, by virtue of ∂νU, the value of the electric potential is non-unique up to an
additive constant. Eqs. (11)–(13) are all we need in order to tackle the EEG problem.

3. The brain modelled as a volume conductor

The next step in our journey is to introduce a geometry simple enough in order to carry out the
mathematics associated, still adequate realistic in order to illustrate what happens. In practice,
above specifications are never met. On the grounds that our interest is focused on the deriva-
tion of analytic formulas which will allow us to identify and recognize underlying phenomena,
we restrain ourselves to the study of two particular geometries: (i) the spherical and (ii) the
ellipsoidal. The distinctness of these two geometries lies in a different representation of the
same point in space.

Before we continue, we have to incorporate our assumption regarding the nature of the
primary current. For a single, localized dipole at point r0 and moment Q, we consider

Jp ¼ Qδðr� r0Þ, ð14Þ

where the functional δðrÞ is the Dirac measure, a concept included in the analysis by the reason
of representing the concentration of Jp to a single point [21].
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3.1. The homogeneous spherical brain

The simplest possible geometry in order to represent the brain consists of a spherical homoge-
neous conductor with radius a and conductivity σ. The reasons are twofold. First of all, it is a
good fit to the actual brain. Secondly, it is the only geometry for which data regarding
geometrical and physical aspects are immediately available. For example, knowledge of the
brains volume can be directly translated into the radius of the corresponding sphere. Impor-
tantly, the spherical geometry allows the deduction of explicit expressions for the quantities
involved and therefore permits a thorough investigation of the behaviour of the system under
scrutiny without running every single time a—mostly time-consuming—computer simulation.

The obvious question at hand is what part of the brain do we model? Clearly, since our initial
model is based on homogeneity, it cannot represent the brain en masse, as mentioned in
Section 1. So we start with the uppermost region of the human central nervous system, the
cerebrum. It is therefore of uttermost importance to be aware of the strengths and weaknesses
of the proposed model(s). Without any doubt, the homogeneous spherical model presents an
unrealistic assumption of the brain-head system. So why should we bother with theoretical
models? The answer is relatively simple. We need them in order to be able to draw conclusions
when we move to build models of higher complexity. They serve the important task revealing
gaps between forthcoming models, but more substantially they allow us to test the reliability
of the introduced algorithms in a straightforward and timely matter. On the other hand, with
the homogeneous model, activity in subcortical structures is impossible to detect. Moreover,
the influence of the bone architecture enclosing the brain cannot be assessed as well. The latter
implies that we actually do not record EEG data at all, but rather monitor the electrophysiol-
ogy of the (exposed) cerebrum by electrocorticography (ECoG), or intracranial electroenceph-
alography (iEEG).

3.1.1. Forward and inverse problem for a single dipole and multiple dipoles

Having aforementioned remarks in mind, let's begin finding a relation which connects the
electric potential on the surface of our conductor model with the electric activity of cells inside.
Our goal is achieved solving Eq. (11) combined with expression (14), namely

ΔU ¼ σ�1Q � ∇δðr� r0Þ, r < a ð15Þ

supplemented by the condition

∂rU ¼ 0, r ¼ a, ð16Þ

which follows at once from the second condition (12) expressing the circumstance that the
conductivity outside the brain vanishes, and expresses the ‘reality’ that no current exists
outside the brain.1 Note that the compatibility condition (13) is automatically satisfied by
Eq. (16).

1This statement is true only for a homogeneous conductor as described in Section 3.
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Employing analytic techniques, the interested reader can find all details in Ref. [22]; it is
not hard to show that the solution regarding Eqs. (15) and (16) evaluated at the surface is
given as

Usurfðr̂, r0Þ ¼
X∞
n¼1

Xn
m¼�n

Am
n ðr̂0ÞYm

n ðr̂Þ, Am
n ðr̂0Þ ¼

Q
σnanþ1 � ∇r0

�
rn0Y

m
n ðr̂0Þ

�
, ð17Þ

where a hat ‘^’denotes the unit vector, Y and Y are the spherical harmonics and corresponding
complex conjugate, respectively, which are complex-valued functions, the latter with equal real
part and imaginary part equal in magnitude but opposite in sign [23].

Expression (17) can be simplified using a summation formula [22, 24] yielding the following
closed form:

Usurfðr̂, r0Þ ¼ Q
4πσ

� 2
R
R3 þ

1
aR

Rr̂ þ R
Rþ r̂ � R

� �
, R ¼ ar̂ � r0, ð18Þ

where an italics-type capital letter denotes the magnitude of the corresponding vector. Eq. (18)
consists of the simplest, straightforward expression regarding EEG data.

Let us now concentrate on the most important aspect when it comes to imaging modalities,
such as EEG, namely the problem of identifying the primary source by means of a generated
electromagnetic field. We recall that the notion of an equivalent dipole source has been
adopted in order to summarize the entire microscopic currents located in the vicinity of a
specific area in the brain. Notwithstanding, there does not exist an exclusive source configura-
tion for each set of electroencephalographic measurements, constituting the corresponding
inverse problem non-unique. The only way to eliminate non-uniqueness is to provide supple-
mentary information's, that is, imposing additional assumptions. By introducing the assump-
tion of an equivalent dipole source, the inverse problem can be solved exactly as we will show
in the sequel.

The inverse problem for the homogeneous spherical conductor is formulated as follows. From
surface measurements, we identify the potential Usurf, given via Eq. (17), from which we have
to calculate the position r0 ¼ ðx0, y0, z0Þ and moment Q ¼ ðQx,Qy,QzÞ of the dipole. In our

case, this is easily achieved, noting that every detail regarding r0 and Q are encoded into the
coefficients Am

n of expansion (17). The latter are evaluated with the aid of the orthogonality
condition

Am
n ¼ ∮Usurfðr̂, r0ÞYm

n ðr̂ÞdSðr̂Þ: ð19Þ

A word of caution with respect to Eq. (19). In order to employ the latter, we must know the
surface potential on every single point via Eq. (17). In practice, the function Usurf is acquired as
a continuous function via interpolation of the discrete set of EEG measurements. Moreover,
since each vector contains three coordinates, in order to pinpoint the position and moment of
the dipole, at least six equations are required. As a result, we expand the coefficients Am

n , given
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complex conjugate, respectively, which are complex-valued functions, the latter with equal real
part and imaginary part equal in magnitude but opposite in sign [23].

Expression (17) can be simplified using a summation formula [22, 24] yielding the following
closed form:

Usurfðr̂, r0Þ ¼ Q
4πσ

� 2
R
R3 þ

1
aR

Rr̂ þ R
Rþ r̂ � R

� �
, R ¼ ar̂ � r0, ð18Þ

where an italics-type capital letter denotes the magnitude of the corresponding vector. Eq. (18)
consists of the simplest, straightforward expression regarding EEG data.

Let us now concentrate on the most important aspect when it comes to imaging modalities,
such as EEG, namely the problem of identifying the primary source by means of a generated
electromagnetic field. We recall that the notion of an equivalent dipole source has been
adopted in order to summarize the entire microscopic currents located in the vicinity of a
specific area in the brain. Notwithstanding, there does not exist an exclusive source configura-
tion for each set of electroencephalographic measurements, constituting the corresponding
inverse problem non-unique. The only way to eliminate non-uniqueness is to provide supple-
mentary information's, that is, imposing additional assumptions. By introducing the assump-
tion of an equivalent dipole source, the inverse problem can be solved exactly as we will show
in the sequel.

The inverse problem for the homogeneous spherical conductor is formulated as follows. From
surface measurements, we identify the potential Usurf, given via Eq. (17), from which we have
to calculate the position r0 ¼ ðx0, y0, z0Þ and moment Q ¼ ðQx,Qy,QzÞ of the dipole. In our

case, this is easily achieved, noting that every detail regarding r0 and Q are encoded into the
coefficients Am

n of expansion (17). The latter are evaluated with the aid of the orthogonality
condition

Am
n ¼ ∮Usurfðr̂, r0ÞYm

n ðr̂ÞdSðr̂Þ: ð19Þ

A word of caution with respect to Eq. (19). In order to employ the latter, we must know the
surface potential on every single point via Eq. (17). In practice, the function Usurf is acquired as
a continuous function via interpolation of the discrete set of EEG measurements. Moreover,
since each vector contains three coordinates, in order to pinpoint the position and moment of
the dipole, at least six equations are required. As a result, we expand the coefficients Am

n , given
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via Eq. (17), for n ¼ 1 and 2 providing eight relations in total. The first three of them, namely

A�1
1 , A0

1 and A1
1, are proportional to the components Qx,Qy,Qz of Q, and thus we find

Qx ¼
ffiffiffiffiffiffi
2π
3

r
σa2ðA�1

1 �A1
1Þ, Qy ¼ �i

ffiffiffiffiffiffi
2π
3

r
σa2ðA�1

1 þA1
1Þ, Qz ¼ 2

ffiffiffiffi
π
3

r
σa2A0

1, ð20Þ

where i denotes the imaginary unit. It is not hard to show that whereas the difference A�1
1 �A1

1

is real valued, the corresponding sum is imaginary. The remaining five coefficients Am
2 for n ¼ 2

and m ¼ �2,�1,0,1,2 connect the position of the dipole with its moments which are eliminated
utilizing Eq. (20). Again, after some algebra we have

x0 ¼ affiffiffi
5

p A�2
2

A�1
1

�A2
2

A1
1

 !
, y0 ¼ �i

affiffiffi
5

p A�2
2

A�1
1

þA2
2

A1
1

 !
, z0 ¼ 2affiffiffi

5
p 1

A1
1

A1
2 �

A2
2A

0
1ffiffiffi

2
p

A1
1

 !
: ð21Þ

There is another way to recover the solution to the inverse problem for a single dipole. The
approach illustrated provides a glimpse into the beauty of mathematical analysis. We will
show that the uniqueness of the inverse problem, for a single dipole, is closely connected with
the condition of attaining certain relations connecting the measured data. Considering that we
need six equations to identify the source, we expand Eq. (17) for n ¼ 1, 2 and express the
resulting relation in Cartesian coordinates, yielding [25]

Usurf ¼ A1x0 þ A2y0 þ A3z0 þ B1x02 þ B2y0
2 þ B3z02 þ C1x0y0 þ C2x0z0 þ C3y0z0 þ… ð22Þ

where again the first three coefficients A1, A2, A3 are proportional to the components of Q,
whereas the remaining six involve products of the position of the dipole with its moments.
Substituting the expressions for Qx,Qy,Qz into B1, B2, B3, C1, C2, C3, we arrive at the linear but
overdetermined system Ar0 ¼ b with

A ¼

2A1 �A2 �A3
�A1 2A2 �A3
�A1 �A2 2A3
A2 A1 0
A3 0 A1
0 A3 A2

2
6666664

3
7777775
, b ¼ 6a2

5

B1
B2
B3
C1
C2
C3

2
6666664

3
7777775
: ð23Þ

Adopting Gauss elimination, we find that the position of the dipole is given as

x0 ¼ 3
2A1A2A3

ðA1aÞ � ~b, y0 ¼
3

2A1A2A3
ðA2aÞ � ðℝz

~bÞ, y0 ¼
3

2A1A2A3
ðA3aÞ � ðℝy

~bÞ, ð24Þ

where a ¼ ðA1,A2,A3ÞT, ~b ¼ ð�C1,C2,C3ÞT, T denotes transposition, whereas ℝy and ℝz denote
the rotation matrices about the y- and z-axis, respectively.

A very important aspect, revealed by the above analysis, is evidence that the dipoles position
specified by relations (24) is unique, only if the recorded values for the coefficients present in
Eq. (22) satisfy the following relations:
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2A1A2A3ðB3 � B2Þ þ 3A1ðA2
2 � A2

3ÞC2 þ 3ðA2
2 þ A2

3ÞðA3C1 � A2C3Þ ¼ 0,

�2A1A2A3ðB2 þ 2B3Þ þ 3A2ðA2
3 � A2

1ÞC3 þ 3ðA2
1 þ A2

3ÞðA1C2 � A3C1Þ ¼ 0:
ð25Þ

Indeed, replacing the analytic expressions for the coefficients of Eq. (22) into Eq. (25), these are
trivially satisfied. Complementary, we briefly state that the least-square solution to Eq. (23) is
r0 ¼ Aþbþ ðI� AþAÞY, where Aþ is the pseudoinverse of A, and Y is an arbitrary vector [26].
Evidently, the presence of Y constitutes the solution non-unique. Nonetheless, for a single
dipole the equality AþA ¼ I holds true, leading to the minimum norm solution r0 ¼ Aþb:

However, in ‘reality’ EEG recordings provide values for the coefficients Am
n , as given in

Eq. (17), but our uniqueness criteria (25) are bound to the coefficients of Eq. (22). So, how do
the correlate? Well, connection formulas are established by expanding the first eight terms of
the surface potential (17). These terms are then rearranged to form an expression similar to
Eq. (22). Comparing the resulting relation with Eq. (22) provides the connection. The final
formulas can be found in Ref. [25].

Until now, we attended the situation where brain activity is simulated by a single dipole. What
happens if a larger area or multiple areas are stimulated? Is a single dipole adequate to
describe the event? Multiple areas of the cortex are often expected to be active at the same
time, so the answer must be no. In Section 2, we mentioned that the electric fields are super-
posable. As a consequence, the surface potential due to N-dipole sources is computed as the
sum of the potentials Uj corresponding to dipoles located at r0j and strength Qj: In order to
calculate their positions and moments, we require at least 6N equations. Although an analytic
inversion algorithm can be derived [27], the steps necessary are cumbersome and beyond the
scope of the present document. It remains, however, the question of identifying multiple
localized sources by means of a recorded potential. Is it possible to be led into an erroneous
conclusion when we have to recognize the number of activated areas? This situation can occur
when data (coefficients) received are falsely interpreted as evoked by a single dipole. To show
this, we first rewrite the surface potential resulting from a single dipole (17), in the form

Usurfðr̂, r0Þ ¼ 1
4πσ

X∞
n¼1

2nþ 1
nanþ1 ðQ � ∇r0Þrn0Pnðr̂ � r̂0Þ, ð26Þ

employing the addition theorem for Legendre functions Pn: The same expression is valid on
the occasion of N dipoles, that is,

Usurfðr̂, r0jÞ ¼ 1
4πσ

X∞
n¼1

2nþ 1
nanþ1

XN

j¼1

ðQj � ∇r0jÞrn0jPnðr̂ � r̂0jÞ: ð27Þ

Since we consider the surface potentials to be identical, irrespective of the number of dipoles,
the coefficients of Eqs. (26) and (27) must be equal, namely

ðQ � ∇r0Þrn0Pnðr̂ � r̂0Þ ¼
XN

j¼1

ðQj � ∇r0jÞrn0jPnðr̂ � r̂0jÞ: ð28Þ
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when data (coefficients) received are falsely interpreted as evoked by a single dipole. To show
this, we first rewrite the surface potential resulting from a single dipole (17), in the form
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4πσ
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n¼1

2nþ 1
nanþ1 ðQ � ∇r0Þrn0Pnðr̂ � r̂0Þ, ð26Þ

employing the addition theorem for Legendre functions Pn: The same expression is valid on
the occasion of N dipoles, that is,

Usurfðr̂, r0jÞ ¼ 1
4πσ
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n¼1

2nþ 1
nanþ1

XN

j¼1

ðQj � ∇r0jÞrn0jPnðr̂ � r̂0jÞ: ð27Þ

Since we consider the surface potentials to be identical, irrespective of the number of dipoles,
the coefficients of Eqs. (26) and (27) must be equal, namely

ðQ � ∇r0Þrn0Pnðr̂ � r̂0Þ ¼
XN

j¼1

ðQj � ∇r0jÞrn0jPnðr̂ � r̂0jÞ: ð28Þ
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If Eq. (28) is satisfied, a distinguishing between dipoles is not possible. A thorough investiga-
tion of the latter shows that if the dipoles are parallel to each other, the uniqueness conditions
(25) are fulfilled and it is impossible to decide if the measurements are induced by a single or
finite number of dipoles [25].

3.1.2. Forward and inverse problem for distributed activity

If we abandon the assumption that the primary current Jp is represented by a dipole, the

additional information leading to a unique solution regarding the inverse problem is automat-
ically lost. Notwithstanding, dropping the dipole hypothesis allows us to simulate compli-
cated activation patterns in terms of distributed currents. The potential on the surface is
computed solving Eq. (11) directly, accompanied by proper boundary conditions. For the
inverse source problem, non-uniqueness remains a point of concern.

Albanese and Monk [28] illustrated that it is not possible to recreate a three-dimensional
current based on EEG measurements. This result has been practically demonstrated in Ref.
[27], where the authors show that the radius of a small spherical current cannot be recovered.
For currents having dimensions less than three, the inverse EEG problem admits a unique
solution. In previous sections, we swiftly examined currents of zero dimensionality, namely
dipoles. In what follows, we will explore the forward and inverse EEG problems for one- and
two-dimensional continuously distributed currents [29, 30].

We begin by assuming that the current is a small line segment of length 2L, centred at r0 and
oriented along an arbitrary direction α̂: The primary current is then approximated as
Jp ≃Qþ tA, where t is a variable taking values in the interval [-L,L], whereas A is the direc-

tional derivative of Jp along α̂: Replacing the approximation of Jp into Eq. (11) provides the

surface potential in the case of a linearly distributed current [29]. Knowledge of the surface
measurements enables us to identify the position, moment, orientation and size of the current.
Consequently, we have to determine 13 parameters and require a sufficient number of equa-
tions to be able to perform the identification. Operationally, the procedure in order to obtain
this set of equations is in principle the same as for a single dipole. We expand the surface
potential in a series of harmonic, homogeneous polynomials in Cartesian coordinates, where
the coefficients of each monomial are known. Moreover, each coefficient contains a certain
number of unknown parameters. Here, we must determine 13 unknowns which means we
have to analytically calculate at least 13 coefficients, building the necessary system of equa-
tions. However, as the number of unknowns grows the concluding system of equations turns
highly nonlinear. In the one-dimensional case, the system consists of a total of 19 equations
with four constrains. It is possible to solve the latter at least semi-analytically [29].

When investigating the two-dimensional case, the mathematical complexity takes it up a notch.
Assuming that the current is a small disk of radius ε, centred at r0 and perpendicularly oriented to

the vector r0, the primary current can be approximated as Jp ≃Qþ r � ~D: The quantity ~D is called

dyadic, a second-order tensor containing physical or geometrical information. The surface poten-
tial is provided replacing Jp into Eq. (11) and solving the corresponding boundary value problem.

Reaching that goal facilitates long and tedious manipulations involving integration as well [30].
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The inverse problem, on the other hand, follows the guidelines outlined earlier. Due to the specific
orientation of the primary current, only seven parameters have to be determined. Once more, the
system of equations from which these parameters will be decided is nonlinear [30].

An independent view to the particular problem has been provided by Fokas [31]. After
formulating the surface potential with explicit Q dependence (26), computing the surface
potential for a continuously distributed current is straightforward. One has to replace Q by Jp
and integrate the resulting expression with respect to the volume of the conductor. The
associated manipulations can be simplified by introducing Helmholtz decomposition for the
primary current, which states that any three-dimensional smooth vector field can be resolved
into the sum of an irrotational and solenoidal vector field, ∇Ψ ðr0Þ and Aðr0Þ, respectively. As a
result, assuming Jp ¼ ∇Ψþ ∇�A under the condition that ∇ �A ¼ 0, we find

Usurfðr̂, r0Þ ¼ ∮
X∞
n¼1

Cm
n ðΔΨÞrn0Pnðr̂ � r̂0Þdvðr̂0Þ: ð29Þ

Note that the electric potential depends only on ΔΨ ðr0Þ. The integral in Eq. (29), obtained using
Gauss theorem and integration by parts, can be computed analytically if we expand Ψ ðr0Þ in
terms of spherical harmonics, namely

Ψ ðr0Þ ¼
X∞
n¼1

Xn
m¼�n

ψm
n ðr0ÞYm

n ðr̂0Þ, ð30Þ

furnishing

Usurf ¼
X∞
n¼1

Xn
m¼�n

ðαn _ψm
n � βnψ

m
n ÞYm

n ðr̂Þ: ð31Þ

It is remarkable that the above coefficients can be determined only under the assumption that
Ψ ðr0Þ is a bi-harmonic function, namely a solution to the bi-harmonic operator ΔΔ: However,
the precise description of the coefficients ψm

n remains open.

3.2. The homogeneous ellipsoidal brain

From the point of view of mathematical analysis, any three-dimensional object, such as the brain,
would be best approximated with the aid of a coordinate system with three degrees of freedom,
one in each direction. Fortunately, aforesaid system exists and is called the ellipsoidal coordinate
system. Whereas the spherical coordinate system consists of concentric spheres centred at the
origin, in the ellipsoidal coordinate system, each point is specified by the intersection of three
non-degenerate second-degree surfaces, corresponding to an ellipsoid, a hyperboloid of one
sheet as well as a hyperboloid of two sheets. This constitutes the ellipsoidal system significantly
more complex and demanding than the spherical one (see [32] for an analytic account). For
example, whereas knowledge of the brain's volume can be directly translated into the radius of
the corresponding sphere, the volume of an ellipsoid is proportional to the product of three
parameters a1, a2, a3, the so-called semi-axes of the ellipsoid. Hence, there does not exist a unique
combination of those three parameters providing the volume of the brain. In spite of the
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ramifications, the ellipsoidal system is an environment, which allows the installation and inter-
pretation of analytical algorithms to a great extent as well. This stems from the fact that it is the
most general system where the Laplacian operator assumes a spectral decomposition. As we
dive into this particular system, we recognize that the ellipsoidal geometry is responsible for
drastic variations in the behaviour of EEG when compared to the sphere.

3.2.1. Forward and inverse problem for a single dipole and distributed activity

In order to acquire the surface potential for an active dipole within an ellipsoidal brain, the
same machinery as for the sphere is utilized. There are, however, some differences. The
spherical coordinates are easily established by fixing the centre of the system and moving a
distance r away. Symmetry will do the rest. In the ellipsoidal system, the procedure works a lot
different. In order to solve boundary value problems in the ellipsoidal coordinate system, such
as the forward EEG problem, it is essential to adopt an ellipsoid in such a way as to fit the
actual boundary of the conductor under consideration, by choosing a particular value of the
ellipsoidal ‘radial’ variable ρ. This is secured if we use the boundary of our domain to be the so-
called reference ellipsoid and construct the ellipsoidal system that is based on it. Further,
denote by h1, h2, h3 the three semifocal distances from which the orthogonal ellipsoidal coordi-
nate system ðρ, ν,μÞ is derived. Each confocal ellipsoidal surface is defined by a constant value
of the ‘radial’ variable ρ∈ ðh2,∞Þ, with ρ ¼ a1 indicating the reference ellipsoid.

Consider in what follows a homogeneous ellipsoidal conductor with semi-axes ai, i¼ 1,2,3 and
conductivity σ which takes the place of the reference ellipsoid for our ellipsoidal coordinate
system. The surface potential is again computed by solving Eq. (11) combined with expression
(14), namely

ΔU ¼ σ�1Q � ∇δðr� r0Þ, h2 < ρ < a1, ð32Þ
∂ρU ¼ 0, ρ ¼ a1: ð33Þ

Employing analytic techniques, the interested reader can find all details in Ref. [33], the
solution regarding Eqs. (29) and (30) evaluated at the surface is

Usurfðr; r0Þ ¼ 1
σ

X∞
n¼1

X2nþ1

m¼1

Bm
n ðr0ÞEm

n ðμÞEm
n ðνÞ, Bm

n ðr0Þ ¼
Q � ∇r0Em

n ðr0Þ
d

: ð34Þ

where Em
n are the Lamé functions, Em

n ðrÞ symbolizes the triple product of these Lamé functions,
and d some constant. Compared to the corresponding solutions for the spherical conductor, the
above formula looks very similar to Eq. (17). As usual, the devil is in the detail.

Before proceeding, we mention that an elegant and straightforward expression connecting the
surface potential with the moment Q and position r0 of the dipole, similar to Eq. (18), does not
exist for the ellipsoidal conductor.

We turn now to the inverse problem. In principle, the procedure described for the sphere is
generally applicable since it is geometry independent. Note again that every detail regarding
the moment Q and position r0 of the dipole is encoded into the coefficients of expansion (31).
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As a result, we expand the coefficients Bm
n for n ¼ 1 and 2 yielding eight relations in total.

Defining a new parameter gmn as

gmn ¼ Q � ∇r0Em
n ðr0Þ ¼ d Bm

n ð35Þ

which incorporates characteristics, such as the geometrical and physical properties of the
conductor, as well as the EEG measurements, the algebraic manipulations leading to the
solution are somewhat a little more painless. Solving a linear system of six equations with six
unknowns, it can be shown [34] that the dipoles position r0 and moment Q depends only on
g11, g

2
1, g

3
1, g

3
2, g

4
2, g

5
2 as

x0 ¼ 1
2h2h3

g32
g21

þ g42
g31

� g11g
5
2

g21g
3
1

� �
, y0 ¼

1
2h1h3

g32
g11

þ g52
g31

� g21g
4
2

g11g
3
1

� �
, z0 ¼ 1

2h1h2

g42
g11

þ g52
g21

� g31g
3
2

g11g
2
1

� �
ð36Þ

and

Qm ¼ hm
h1h2h3

gm1 , ð37Þ

for every m ¼ 1,2,3, respectively. Expressing two of the triple products Em
n ðrÞ in Cartesian

coordinates, namely for n ¼ 2 and m ¼ 1,2, we obtain two constrains similar to Eq. (25), which
are satisfied by the constants g11, g

2
1, g

3
1, g

3
2, g

4
2, g

5
2 as

g12 ¼ 2ðΛ� a21ÞðΛ� a22ÞðΛ� a23Þ
Q1x0
Λ� a21

þ Q2y0
Λ� a22

þ Q3z0
Λ� a23

� �
ð38Þ

and

g22 ¼ 2ðΛ0 � a21ÞðΛ0 � a22ÞðΛ0 � a23Þ
Q1x0
Λ0 � a21

þ Q2y0
Λ0 � a22

þ Q3z0
Λ0 � a23

� �
, ð39Þ

where Λ,Λ0 are ellipsoidal parameters depending on the semi-axes ai, i ¼ 1,2,3.

In the case of a continuously distributed current, we follow the example laid out for the sphere.
Replacing Q by the primary current Jp in Eq. (31) and integrating over the volume of the

conductor gives

Usurfðr; r0Þ ¼ ∮
X∞
n¼1

X2nþ1

m¼1

Dm
n ðr0ÞðΔΨ ÞEm

n ðμÞEm
n ðνÞdvðr̂0Þ, ð40Þ

where Helmholtz's decomposition has been used. We compute the above integral analytically
by expanding Ψ ðr0Þ in terms of the product of Lamè functions Em

n ðμÞEm
n ðνÞ, namely

Ψ ðrÞ ¼
X∞
n¼1

X2nþ1

m¼1

ψm
n ðρÞEm

n ðμÞEm
n ðνÞ: ð41Þ

After a series of cumbersome algebra, it can be shown that [31]
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As a result, we expand the coefficients Bm
n for n ¼ 1 and 2 yielding eight relations in total.

Defining a new parameter gmn as

gmn ¼ Q � ∇r0Em
n ðr0Þ ¼ d Bm

n ð35Þ

which incorporates characteristics, such as the geometrical and physical properties of the
conductor, as well as the EEG measurements, the algebraic manipulations leading to the
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and

Qm ¼ hm
h1h2h3

gm1 , ð37Þ

for every m ¼ 1,2,3, respectively. Expressing two of the triple products Em
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coordinates, namely for n ¼ 2 and m ¼ 1,2, we obtain two constrains similar to Eq. (25), which
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where Λ,Λ0 are ellipsoidal parameters depending on the semi-axes ai, i ¼ 1,2,3.
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�
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As for the spherical conductor, additional information is required in order to evaluate the
coefficients ψm

n : A possible approach to uniquely determine the coefficients ψm
n is to consider

some form of minimizer. For example, a widely used concept in medical imaging is the
minimum principle, the assumption that the current should have minimum ‘strength', mathe-
matically expressed as the minimization of the L2 norm of Jp:

4. Discussion

We presented a brief but concise introduction of the mathematical terminology associated with
the modality of EEG. Having in mind medical and health professionals, we start from the very
beginning, presenting step by step the physics and mathematical formulation behind EEG in a
simple manner, keeping the mathematical notation to a minimum. The tools and techniques
needed in order to derive at the presented results are intentionally not incorporated for two
reasons. First of all, the procedure deriving at these formulas is not an easy task in general.
Secondly, the main focus of this work is to display the beauty of the final expressions for every
problem, showing how every single piece of information is encoded within these formulas and
by what means the extraction of conclusions is accomplished.

Our introduction starts with the most elementary model possible, which, at the same time, is
also the most straightforward and understandable of models. Representing the brain as a
homogeneous sphere is an unrealistic assumption but serves an important task. At present, it
is the only geometry for which the electromagnetic fields generated by a dipole source are
exactly known in closed form. Further, it is needed in order to be able to draw conclusions
when we move to build models of higher complexity. It therefore reveals disparities between
forthcoming models, but more substantially, it allows us to test the reliability of the introduced
algorithms in a straightforward and timely matter. Moreover, an analytic benchmark problem
is provided, which can be used to test existing and new formulations.

For example, based on the homogeneous spherical model it is shown in Ref. [35] to what
degree deformations present at the conductor's surface affect EEG measurements. Although
the EEG data are evaluated in a view to a deformed conductor, the calculations are accom-
plished based on the spherical geometry, furnishing a fast analytic algorithm prone to almost
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minimum error. Another characteristic example of rigorous mathematical analysis is the quan-
titative description of the non-uniqueness for the EEG inverse problem, presented in Ref. [36].
Therein, splitting the current into components, the authors prove that none of those compo-
nents contributes to both the electric and scalar magnetic potential; in other words, recordings
of EEG and MEG do not contain overlapping information about the current. However, afore-
mentioned property holds no longer true if the spherical conductor is disregarded.

Analogous conclusions are valid for the ellipsoidal geometry as well. For example, the authors
consider in Ref. [37] the frequent case when clinical data of unknown origin are implemented in
computational simulations. We mentioned earlier that there exist a plethora of combinations of
the product a1, a2, a3 furnishing the same value for the volume of the brain. If we look at the
instance where EEG measurements originate from a brain with fixed values a1, a2, a3 but are
interpreted in the sequel by different values, what would be the error? Well, it turns out that the
error can reach as high as 20%, depending on the position and strength of the primary current.

The error analysis presented in Ref. [37] can be considered as rather straightforward, since
both ellipsoids under consideration were confocal, that is, members of the same ellipsoidal
system enjoying the same foci. In plain words, no member of a confocal family touches
another. Consequently, there exists a single curve, which cuts both ellipsoids normally, and
the corresponding intersecting points consist of the most proximate pair between the two
ellipsoids in each direction. These two points are employed in the analysis calculating the
aforementioned error. But what would happen if the two ellipsoids would not be considered
to be confocal? This interesting case is also more realistic.

In order to provide an answer to the latter, a sophisticated correspondence is needed connecting
two points on the surface of two ellipsoids which are now non-confocal. This means that there
probably exists a point shared by both ellipsoids. In Ref. [38], the authors investigated the effect
implied by a deviation of the eccentricities of the ellipsoidal model on the electric potentials
registered as the EEG data. In this case, the error reaches high values up to almost 100%.

Turning our attention from the geometrical deformation of the conductor model, to the phys-
ical assumption of homogeneity, we acknowledge the significance of the non-homogeneity
imposed by the layers of different conductivity that cover the host tissue of the EEG source.
The conductive elements that constitute the scalp, the scull and the meninges, which interfere
between the EEG measurements and the cerebrum, are affected by the electromagnetic field
produced by activation of the source. Hence, they induce a volume current that perturbs the
total electric potential registered on the EEG receptors on the scalp. The effect of this physical
perturbation of the potential has been studied by incorporating a layered conductivity profile
in all the models discussed in the present review, by characterizing each layer by a distinct but
constant conductivity value.

Indicatively, we infer that switching to a layered ellipsoidal model of the head-brain system,
the functional form of the electric potential, is basically unaltered. One of the authors has
showed [39] that the conductivity profile of the layered structure enters the potential formula
by normalizing each term by a constant which incorporates the conductivity jumps across the
interfaces and the geometrical characteristics of the layers. Analogous results show a similar
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effect on the inhomogeneous conductor [31]. Hence, the formula of the electric potential that
will serve as the stepping stone for the inverse calculations is the one that corresponds to the
most realistic inhomogeneous models that acknowledge the layered conductivity profile of
the head-brain system. A promising challenge for future investigations refers to incorporating
the anisotropic conductivity profile, where the conductivity varies with the direction into each
separate compartment, modelling, for example, the different conductivity of the white matter
of the brain than that of grey matter.

Using tensor conductivity for modelling the brain anisotropy is one of the many analytical
mathematical challenges of this fascinating area of functional brain imaging while creative
mathematical modelling has a lot to contribute in the close examination of EEG theory and
applications.
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Abstract

A transmission scheme is proposed based on filter band multicarrier (FBMC) transmis-
sion technology for clinical electroencephalogram (EEG) signals. The proposed scheme 
integrates binary phase shift keying (BPSK) and offset quadrature amplitude modula-
tion (OQAM), an FBMC transmission mechanism, and low-density parity-check code 
(LDPC) error protection in an FBMC-based EEG mobile communication system. The 
proposed EEG mobile communication system employs high-speed transmission, with 
schemes providing significant error protection for mobile communication of clinical EEG 
signals requiring a stringent bit-error rate (BER). The performances of BERs and mean 
square errors (MSEs) of the proposed EEG mobile communication system were explored. 
Simulation results show that the proposed scheme is a superior transmission platform as 
compared to existing schemes for clinical EEG signals.

Keywords: EEG, FBMC, OQAM, LDPC

1. Introduction

Noninvasive monitoring of brain activity in daily life is an important research topic in the field 
of healthcare that aims at a comfortable lifestyle. Mihajlovic et al. [1] demonstrated various 
aspects of wireless and intelligent wearable lifestyle electroencephalogram (EEG) solutions, 
and the technology behind the development of convenient, intelligent, and wearable, wire-
less EEG devices was explored. In addition, in their study, personality traits, sensory input, 
neuronal activity, conductive tissues, electrode-tissue interface, miniaturized and ergonomic 
EEG headsets, wireless and wearable EEG system designs, brain activity analysis, and output 
interfaces were discussed. Lin et al [2] proposed a Bluetooth-based real-time  brain-computer 
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interface (BCI) system that can be used to detect drowsiness while driving. This system had 
integrated wireless physiological signal-acquisition and embedded signal-processing mod-
ules, and it featured real-time wireless drowsiness detection, long-term daily life EEG monitor-
ing, high computation capacity, and low power consumption. The design and implementation 
of a Bluetooth-based wearable brain monitoring system was investigated by Sawan et al. [3]. 
A wireless data recording system was utilized for noninvasive and long-term monitoring of 
near-infrared spectrometry (NIRS) EEG signals. In addition, the wireless data recording sys-
tem was applied to the field of invasive cerebral EEG detection. This system has a graphical 
user interface that is user-friendly and can be used to extract brain activity during dynamic 
tasks. The advantages of the designed system are portability, wireless connectivity, high 
throughput, reliable communication, and low-power consumption. Liao et al. [4] proposed a 
design method for the 16-channel EEG measurement system utilizing dry spring-loaded sen-
sors, a Bluetooth-based acquisition system, and a size-adjustable wearable soft cap. Vos et al. 
[5] demonstrated an efficient low-cost mobile EEG system that utilizes a P300-based speller for 
wireless BCI.

The development of high-speed, and reliable EEG transmission schemes are interesting 
research topics. Channel coding is a solution that can be used to achieve a lower error prob-
ability for EEG communication. The fundamental design parameters of channel coding are 
error probability, complexity, and decoding time. Low-density parity-check (LDPC) code 
is a channel coding technology that was proposed by Gallager [6]. Limpaphayom et al. [7] 
proposed a power and bandwidth-efficient communication system that utilizes irregular 
LDPC component codes of block length 100,000, multilevel coding, multistage decoding, 
64-quadrature amplitude modulation, and trellis-based signal shaping schemes. The pro-
posed system achieved a bit-error rate (BER) of 10− 5 at an Eb/No of 6.55 dB. Franceschini et 
al. [8] described the concept ofLDPC codes. The regular (v, c) LDPC codes are linear block 
codes with a sparse parity-check matrix H, In H, the number of nonzero elements in the 
columns is v, while the number of nonzero elements in the rows is c. In addition, the code 
rate is defined as 1 − v/c. In an (N,K) LDPC code, the block length is N and the informa-
tion length is K. Ohtsuki [9] applied LDPC codes to various transmission systems with 
excellent performance, and illustrated some of the LDPC code designs. LDPC codes are 
included in the second-generation specification for satellite broadband applications, and in 
IEEE 802.16e.

Filter bank-based multicarrier modulations (FBMC) is an interesting research topic, and it is 
being considered as a potential candidate for the fifth generation (5G) mobile systems. FMBC 
is a modified version of orthogonal frequency division multiplexing (OFDM), and a tutorial 
review of FBMC modulations was discussed by Boroujeny et al. [10]. Compared to cyclic pre-
fix (CP)-based OFDM modulation, FBMC offers better spectral efficiency in multipath chan-
nels. Bouhadda et al. investigated the BER performance of nonlinear distortion in high-power 
amplifiers for FBMC using offset quadrature amplitude modulation (OQAM) [11]. Caus et 
al. [12] studied the effects of multi-tap filtering on FBMC/OQAM systems to combat inter-
symbol and inter-carrier interferences due to multipath fading. Caus et al. [12] proposed a 
low-complexity transmission power estimation method, and their simulation results show 
that the proposed transmission power estimation method is excellent. Further, Bellanger et al. 
[13] proposed an FBMC-based physical layer solution for 5G mobile systems.
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In previous studies, a survey study of mobile telemedicine [14], mobile telemedicine using 
an advanced wireless multimedia communication application [15], an 802.11n wireless tele-
medicine application [16], a direct sequence ultra-wideband (DS-UWB) wireless telemedi-
cine application [17], a multi-code code division multiple access (CDMA) mobile medicine 
system [18], a Ka band OFDM-based multi-satellite mobile telemedicine system [19], a Ka 
band wideband CDMA mobile telemedicine system [20], and a mobile cloud-based blood 
pressure healthcare system [21] were investigated. In this chapter, an advanced FBMC-based 
EEG transmission scheme is proposed. The design concept of the proposed advanced wireless 
EEG transmission system includes FBMC, LDPC, BPSK or OQAM, and a power assignment 
mechanism. Low power high-speed wireless EEG transmission was achieved.

2. System model

The proposed FBMC-based EEG transmission scheme is shown in Figure 1. The LDPC chan-
nel coding, FBMC transmission method, a BPSK or OQAM adaptive modulation, and a power 
assignment mechanism were used in a new design strategy to achieve low power, high speed, 
and high quality of service transmission capabilities for wireless EEG systems. We performed 
a simulation using the irregular LDPC codes set with a block length of 2000 and a rate of 1/2. 
The digital bit streams of the EEG signal were inputted to the irregular LDPC encoder, and the 
LDPC bit streams were outputted. The OQAM modulation scheme is used at the lower fad-
ing channel in order to achieve high-speed wireless EEG transmission. A BPSK is used at the 
highest fading channel, to achieve robust EEG communication. The LDPC bit streams were 
inputted to an OQAM-based or BPSK-based adaptive modulator, and the LDPC bit streams 
with adaptive modulation were outputted. The LDPC bit streams with adaptive modulation 
were inputted to the serial to parallel converter, and the 64 parallel LDPC adaptive modula-
tion EEG bit streams were outputted. The 64 parallel LDPC adaptive modulation EEG bit 
streams were inputted to the digital filter banks (DFBs). The coefficients of the DFBs were 
determined to be as follows [13].

Figure 1. The proposed FBMC-based EEG transmission scheme.
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    H  0   = 1,  H  1   = 0.971960,  H  2   =  √ 
_

 2   /  2,  H  3   = 0.235147   (1)

Further, the 64 DFB output bit streams were inputted to a 64-point inverse fast Fourier trans-
form (IFFT), and the 64 parallel LDPC adaptive modulation FBMC EEG bit streams were out-
putted. The 64 parallel LDPC adaptive modulation FBMC EEG bit streams were inputted to a 
parallel to serial converter, and the serial LDPC adaptive modulation FBMC EEG bit streams 
were output. The proposed power assignment algorithm is summarized below:

Step 1: On the basis of the output information obtained from the object-component Petri Nets 
(OCPN) model, determine throughputs for EEG packets transmission.

Step 2: Select the appropriate modulation mode to satisfy the requirements for transmission 
over a wireless EEG transmission system.

Step 3: Assign the initial value of power weighting as 15/30 for EEG packets.

Step 4: Measure the received signal to noise ratio (SNR) for EEG packets.

Step 5: If the measured SNR of the received signal exceeds the threshold SNR at which the 
required BER for EEG packets is achieved, then update the power weighting as power weight-
ing = power weighting − 1/30; If power weighting ≥1/30, go to Step 4; otherwise, go to Step 7.

Step 6: If the measured SNR of the received signal is less than the threshold SNR at which the 
required BER for EEG packets is achieved, then update the power weighting as power weight-
ing = power weighting + 1/30; If power weighting ≤1, go to Step 4; otherwise, go to Step 8.

Step 7: Change the modulation mode. If the modulation mode is not OQAM, go to Step 4.

Step 8: Increase the modulation mode. If the modulation mode is not BPSK, go to Step 4.

The carrier sense multiple access with collision avoidance (CSMA/CA) technology were used 
for multiuser wireless EEG transmission system.

3. Simulation Results

Figure 2 shows the original EEG signal, and the clinical test signal is an original alcoholic 
EEG (lead FP1) (http://kdd.ics.uci.edu/databases/eeg). The length of the clinical EEG signal 
is 50 s, and the sampling rate is 256 samples/s. Figure 3 shows the received EEG signal 
with a BER of 10− 7 and a mean square error (MSE) of 9.76 × 10− 10. The MSE was defined as 
following:

  MSE =   
 ∑ i=1  N      (   x  i   −  y  i   )     

2
 
 __________ N    (2)

xi: the original EEG signal.

yi: the received EEG signal.

N: the length of original EEG signal.
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The block length of 2000 and rate of 1/2 irregular LDPC encoder, BPSK, and 64-points IFFT 
were used in the simulation, and the coefficients of the tap-delay line multipath channel 
model were [1, 0.5, 0.25, 0.125]. The assumed coefficients of multipath channel estimation 
(ACMCE) were [0.99, 0.495, 0.2475, 0.12375]. Figure 4 shows the received EEG signal with a 
BER of 2.5 × 10− 6 and an MSE of 5.24 × 10− 5. Figure 5 shows the received EEG signal with a BER 
of 2.5 × 10− 5 and an MSE of 1.32 × 10− 2. There was no difference on the human vision. Figure 6 
shows the received EEG signal with a BER of 1.7 × 10− 3 and an MSE of 0.21. Figure 7 shows 
the received EEG signal with a BER of 8.8 × 10− 3 and an MSE of 1044.10. There were obviously 
differences on the human vision.

Our BER performance results for the proposed wireless EEG transmission system are shown 
in Figure 8. The six signs “△,” “□,” “o,” “☆,” “*,” and “x” denote the ACMCE with no error 
using BPSK, ACMCE with no error using OQAM, ACMCE with 1% error using BPSK, ACMCE 
with 1% error using OQAM, ACMCE with 10% error using BPSK, and ACMCE with 10% 
error using OQAM, respectively. As shown in the figure, the BER of BPSK was smaller than 
that of OQAM. Furthermore, the BER of the ACMCE with 10% error was larger than that 
of the ACMCE with no error. The MSE performance results for the proposed wireless EEG 

Figure 2. The original EEG signal.

Figure 3. The received EEG signal with a BER of 10− 7 and an MSE of 9.76 × 10− 10.
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Figure 5. The received EEG signal with a BER of 2.5 × 10− 5 and an MSE of 1.32 × 10− 2.

Figure 6. The received EEG signal with a BER of 1.7 × 10− 3 and an MSE of 0.21.

Figure 4. The received EEG signal with a BER of 2.5 × 10− 6 and an MSE of 5.24 × 10− 5.
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Figure 7. The received EEG signal with a BER of 8.8 × 10− 3 and an MSE of 1044.10.

Figure 8. The BER performance results for the proposed wireless EEG transmission system.
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 transmission system are shown in Figure 9. The six signs “△,” “□,” “o,” “☆,” “*,” and “x” 
denote the ACMCE with no error using BPSK, ACMCE with no error using OQAM, ACMCE 
with 1% error using BPSK, ACMCE with 1% error using OQAM, ACMCE with 10% error 
using BPSK, and ACMCE with 10% error using OQAM, respectively. As shown in the figure, 
the MSE of BPSK was smaller than that of OQAM. Furthermore, the MSE of the ACMCE with 
10% error was larger than that of the ACMCE with no error. The relations of transmission 
power and noise power are shown in Figure 10. The signal to noise ratio, Eb/No, was defined 
as following:

    
 E  b   ___  N  o  

   =    transmission  power   _________________   noise  power       (3)

   E  b   : transmission  power  

   N  o   : noise  power    

Figure 9. The MSE performance results for the proposed wireless EEG transmission system.
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The transmission BER was 10− 7. The four signs “o,” “x,” “△,” and “☆,” denote the ACMCE 
with no error using BPSK, ACMCE with no error using OQAM, ACMCE with 15% error 
using BPSK, and ACMCE with 15% error using OQAM, respectively. When noise power 
was fixed, the transmission power of ACMCE with 15% error using OQAM was the highest, 
the transmission power of ACMCE with 15% error using BPSK was the second highest, the 
 transmission power of ACMCE with no error using OQAM was the third highest, and the 
transmission power of ACMCE with no error using BPSK was the lowest. The relation of 
ratios of the saving transmission power and noise power were shown in Figure 11. The saving 
in transmission power was defined as following:

   power  saving =  (1 −  E  b  )  * 100%   (4)

Figure 10. The relations of transmission power and noise power.
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The transmission BER was 10− 7. The four signs “o,” “x,” “△,” and “☆,” denote the ACMCE 
with no error using BPSK, ACMCE with no error and OQAM, ACMCE with 15% error and 
BPSK, using ACMCE with 15% error and OQAM, respectively. When noise power was fixed, 
the transmission power saving of ACMCE with 15% error using OQAM was the lowest, the 
transmission power saving of ACMCE with 15% error using BPSK was the second lowest, 
the transmission power saving of ACMCE with no error using OQAM was the third lowest, 
and the transmission power saving of ACMCE with no error using BPSK was the highest.

4. Conclusion

In this chapter, a new FBMC-based wireless EEG transmission technology was inves-
tigated. Advanced LDPC, OQAM and BPSK adaptive modulation, FBMC, wireless 

Figure 11. The relation of ratios of the saving transmission power and noise power.
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 communication methods and a power assignment mechanism were integrated. Simulation 
results were obtained for a variety of received EEG signals, with a range of BER results. 
The BER performances of the proposed wireless EEG transmission architectures and the 
MSE performances of the proposed wireless EEG transmission architectures were dem-
onstrated. The beneficial effects of the ACMCE errors were indicated. When the trans-
mission BERs were 10− 7, the  relationship between transmission power and noise power, 
and the relationship between the saving transmission power ratios and noise power were 
discussed. The simulation results confirm that the proposed transmission system is an 
excellent wireless EEG platform that provides the high speed and low power consump-
tion benefits sought.
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Abstract

Technologies using electroencephalographic (EEG) signals have been penetrated into
public by the development of EEG systems. During EEG system operation, recordings
ought to be obtained under no restriction of movement for routine use in the real world.
However, the lack of consideration of situational behavior constraints will cause techni-
cal/biological artifacts that often mixed with EEG signals and make the signal processing
difficult in all respects by ingeniously disguising themselves as EEG components. EEG
systems integrating gold standard or specialized device in their processing strategies
would appear as daily tools in the future if they are unperturbed to such obstructions. In
this chapter, we describe algorithms for artifact rejection in multi-/single-channel. In
particular, some existing single-channel artifact rejection methods that will exhibit ben-
eficial information to improve their performance in online EEG systems were summa-
rized by focusing on the advantages and disadvantages of algorithms.

Keywords: electroencephalographic signal, artifact rejection, blind source separation,
regression, filtering, signal decomposition, non-negative matrix factorization

1. Introduction

Variegated branching patterns and trends of sympathetic neurons for realizing the brain
function/dysfunction have yet to be completely definitized so far. A functional neuroimaging
technique of the human brain has established itself as a trustworthy visible tool to definitize
indeterminate patterns and discover new functions [1]. Indeed, visualized information
through neuroimaging techniques has contributed building intuitive understanding and rela-
tive quantification of brain functions [2, 3].

Key benefits of the electroencephalographic (EEG) modality hold over other neuroimaging tech-
niques (e.g., local field potential, near infrared spectroscopy, and electrocorticogram) are the high
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temporal resolution on the order of milliseconds, the small installation space for operating sys-
tems, and its usability in noninvasive recording [4]. Although the spatial resolution and specificity
are low because it observes the volume conduction effects in brain network [5], this has been
attracted attention as a viable and inexpensive modality to study kaleidoscopic functional states
of the cerebral cortex: where, when, how, and under what our brain functions come into being [6].
Therefore, providing a capacity to adapt EEG systems to real environments is always a major
challenge for neuroscientists and neuroengineers on the final stretch of constructing systems.

Using an extremely small number of electrodes (the single-electrode case would be an extreme
case) for signal acquisition should result in better practical application in daily life. Recently,
specialized (headband type or headset type) devices, which are endowed with small number of
electrodes less than gold standard devices having 16, 32, 64, or more channels, have been devel-
oped as for compact, portable, and feasible EEG systems to use themselves in the real environ-
ments [7]. The devices are usually implemented with dry electrodes and wireless sensor network
technology for recordings. These can diminish the burden on the user caused by oppressive
feeling in the head, eliminate the discomfort from conductive gel or paste, and improve degree
of freedom of movements by doing away with wires plugged into an amplifier [8].

However, technical/biological artifacts, such as active power line interference, eyeblink, and
muscle activity caused by recording mistake, good conductivity of the scalp, and so on, are
often mixed with EEG signals whether the type of device is gold standard or specialized. They
ingeniously disguise themselves as EEG components in observed EEG signals and cause a
discrepancy between research motivation and system realization. Removing mimetic compo-
nents (artifacts) or extracting intrinsic EEG components from observed EEG signals will
become a more important process in all EEG systems for practical use even if single electrode
is integrated with data acquisition module by a specialized device.

Disclosing the meaning of electric signals comprising various neuronal populations (sources)
breaks down the EEG inverse (blind source separation (BSS)) problem [9]. It is well known that
the enormous indeterminacies in brain make the BSS problem ill-posed; however, statistical
natures lead to restoring the well-posedness of the problem in a biosignal processing. By the
properties, theoretically multivariate statistical analysis approaches like independent component
analysis (ICA) can separate observed EEG signals into spatially and temporally distinguishable
components effectively, and then, estimated components will be identified as neuronal or artifac-
tual sources by hard/soft threshold to reconstruct artifact-free EEG matrix [10, 11]. Whereas there
are several reviews on artifact rejection methods including overall procedure (signal separation,
component identification, and signal reconstruction) for multi-channel EEG signals [12–16], we
have never seen review of artifact rejectionmethods for single-channel EEG signals. In this chapter,
we therefore describe algorithms for artifact rejection in multi-/single-channel EEG signals.

2. Concise description of technical/biological artifacts

2.1. Technical artifacts

Technical artifacts such as power line interference, impedance fluctuation, and wire movement
superimpose their energy on observed EEG signals because of faults in setting conditions
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[18, 19]. These can be precluded from easy ways, detaching a charging AC adapter from the
recording device, carefully attaching electrodes to the scalp, and using appropriated electrode
wires or adhesive tapes to stabilize wires shown in Figure 1. The cross mark in the figure
indicates detaching the source of technical artifact from the setting conditions.

2.2. Biological artifacts

Biological artifacts, which are discharged potentials of internal organs, diffuse their energy
over the head and reach each electrode attaching on the surface of the scalp as observed EEG
signal. They contaminate observed signals due to the iron accumulation in the brain and good
conductivity of the scalp can be broadly separated into four categories: (i) muscular, (ii)
cardiac, (iii) eyemovement, and (iv) eyeblink. EEG devices capture comprehensive electric field
which was reached at an electrode even if the potential contains information of electrophysio-
logical actions except neuronal one (see Figure 2). Because all electrical potentials will be
equally and blindly treated, recording information including only EEG components from
electrodes placed on the scalp is hardly realized. Furthermore, frequency characteristics of
biological artifacts and neuronal oscillations could be overlapped. That means that shunning
contact with biological artifacts may seem hopelessly difficult compared with technical

Figure 1. Ways of precluding technical artifacts [17]. (A) Power line interference. (B) Impedance fluctuation. (C) Wire
movement.

Figure 2. Configuration of an observed EEG signal including biological artifacts.
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artifacts. If contaminated epochs are found in visual or quantitative analysis, the EEG system
has to ignore them before deciding control commands. Otherwise, the operator will make a
fatal mistake in its system by counterfeit EEG patterns [12, 17].

Alternatively, signal processing techniques can extract EEG components from observed sig-
nals. Through this process, EEG systems would provide correct outputs for their unique and
beneficial interface. Even today, many works for detection, classification, and removal of
artifacts within observed EEG signals have been reported [20–22].

3. Review of existing methods on artifact rejection

In this section, the standard assumptions of observed cerebral signal for spatially and tempo-
rally separating components are described before introduction of artifact rejection methods to
reach deep understanding of the statistical framework. Then, methods of multi-/single-channel
artifact rejection (principal component analysis (PCA), independent component analysis
(ICA), regression, filtering, ICA-based signal decomposition, and nonnegative matrix factori-
zation) are presented. Each algorithm has specialized approaches for calculating demixing
matrix, identifying separated components, and denoising the artifactual components to com-
plete source separation. We have focused on the advantages and disadvantages of approaches.

3.1. In multi-channel signals

3.1.1. Standard assumption of sources

The first thing that all artifact rejection methods have to do is calculating demixing matrix W
under the standard assumption of sources regardless of the target object. In EEG signal
processing, the observed cerebral signal x(n) is considered as the sum of the cerebral source
(local-field) activity s(n) and the noise/artifact d(n). Neuronal cells have limited their connec-
tion ability to short-range order (less than 500 μm) [23]. Besides, synchrony in local-field
activities diffuses through a contiguous cortical area rather than jump between distant and
weakly connected cortical areas [24].

Therefore, an assumption that cerebral sources and non-cerebral sources are linearly com-
bined, allows the following formulation of the underlying biophysics of the signal generation
and propagation of the potential [25]:

xðnÞ ¼ AsðnÞ þ dðnÞ, ð1Þ

where: xðnÞ ¼ ½x1ðnÞ, x2ðnÞ,…, xPðnÞ�T is the observed P-channel EEG data at the n-th point

(superscript T means the transpose of a vector or matrix); sðnÞ ¼ ½s1ðnÞ, s2ðnÞ,…, sQðnÞ�T is the
Q unknown source data, in which each row means cerebral or non-cerebral source; A is the

P · Q full-rank unknown mixing matrix; and dðnÞ ¼ ½d1ðnÞ, d2ðnÞ,…, dPðnÞ�T is the P additive
zero-mean noise data. In real scenarios, there are likely to be more sources than observations
(Q > P); however, handing the number of sources the same as the number of observations
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(Q = P) does not normally become a fatal problem. Thus, most algorithms extract a linear
combination of sources belonging to the same subspace [26, 27].

All algorithms have a common disadvantage that they can only handle over-determined
mixture for the inverse process while having no priori information on the characteristics of
the sources. Additional three assumptions are reluctantly accepted: (i) the noise/artifact is

spatially uncorrelated with the observed data (E½AsðnÞdðnÞT� ¼ 0, where E½�� is the expectation
operator), and temporally uncorrelated (E½dðnÞdðnþ τÞT� ¼ 0, where τ is lag time and ∀τ > 0);
(ii) the number of sources is equal to or less than the number of observations (Q ≤ P); and (iii)
the mixing matrix A is stationary [28].

3.1.2. Blind source separation algorithms

Under aforementioned assumptions, BSS approaches estimate sources Ŝ ¼ ½ŝð1Þ,…, ŝðNÞ�
from observed EEG data X ¼ ½xð1Þ,…, xðNÞ�. Unsupervised learning methods such as PCA

and ICA jointly estimate demixing matrix W ð¼ A�1Þ:
ŝðnÞ ¼ WxðnÞ: ð2Þ

Each unsupervised learning method has an algorithm that is subject to various indices:
uncorrelatedness, independence, non-Gaussianity, instantaneous propagation, and linearity
[29]. Linear mixture concept of blind EEG source separation is shown in Figure 3 that presents
a demixing matrix W(=W1W2) as two-step estimator because some methods firstly decorrelate
an observed matrix by W1 and then demix it by W2. Given a mixing matrix A is composed of
the three blind cerebral sources s(n) and provides the same number of observations x(n) in the
figure.

PCA converts the observed matrix of possibly correlated variables into values of linearly
uncorrelated variables (principal components (PCs)) with the first-and second-order statics
[30]. This algorithm conducts the eigenvalue decomposition to get the directions u of greater

Figure 3. Linear mixture concept of blind EEG source separation [15, 17].
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variance in the input space of the EEG data X based on assumptions that data are jointly
normally distribution, and the sources are uncorrelated. In order to satisfy the assumptions,
obtained matrix Xold should be standardized to decorrelate samples of the same dimension

(E½xðnÞxðnþ τÞT� ¼ 0) and to uniform unit (V½Xp� ¼ 1).

In PCA algorithm, the first PC, which has the largest variance in the standardized input space,

is a linear combination of X defined by weights u1 ¼ ½u1 ,…, uP�T:

PC1 ¼ XTu1, ð3Þ

V½PC1� ¼ V½XTu1� ¼ u1T
X

u1, ð4Þ

where ∑ (¼ XXT=ðN � 1Þ) is covariance matrix of X. Therefore, this algorithm formulates the
given problem in an optimization problem:

max u1T
X

u1, ð5Þ

subject to u1Tu1 ¼ 1: ð6Þ

It can be solved by Lagrange multiplier method:

Lðu1,λ1Þ ¼ u1T
X

u1 þ λ1ð1� u1Tu1Þ, ð7Þ

∂Lðu1,λ1Þ
∂u1

¼ 2
X

u1 � 2λ1u1 ¼ 0, ð8Þ

u1T
X

u1 ¼ λ1u1Tu1 ¼ λ1: ð9Þ

The covariance matrix ∑ is sequentially decomposed into eigenvector up and eigenvalue λp by
an assumption that the PCs are orthogonal. The eigenvector up is similar to the column of the
inverse demixing matrix W�1. PCA-based methods have an advantage over stationary data;
however, satisfying their assumption for EEG data is difficult [31]. On the other hand, PCA
algorithm is often incorporated into a first decorrelation or whitening step of some ICA
algorithms [32].

ICA is the most famous and prevalent unsupervised learning algorithm to decompose multi-

channel EEG data X into independent components (ICs) Ŝ with high-order (spatial) moments,
beyond the second-order statics used in PCA, whereas some algorithms use the statics as well
as PCA [4]. A state-of-the-art topical review published on 2015 reported that second order
blind interference (SOBI) and information maximization (InfoMax) are the most commonly
used algorithm for EEG signal processing [15]. In this chapter, we describe InfoMax algorithm.

The fundamental problem tackled by InfoMax ICA is how to minimize the mutual information
(MI) of the output vector ŝ,
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MIðŝÞ ¼
XP
p¼1

HðŝpÞ �HðŝÞ: ð10Þ

Probability density functions of observed signal p(x) and estimated signal pðŝÞ have following
relationship:

pðŝÞdŝ ¼ pðxÞdx, ð11Þ
dŝ ¼ JðxÞdx ¼ jWjdx, ð12Þ

pðŝÞ ¼ pðxÞdx ¼ pðW�1ŝÞjWj�1, ð13Þ

where J(x) is Jacobian matrix. The estimating entropy HðŝÞ is given by:

HðŝÞ ¼ �
ð
pðŝÞ log pðŝÞdŝ

¼ �
ð �

log pðxÞ � log jWj
�
pðxÞdx

¼ �
ð
pðxÞ log pðxÞdxþ log jWj

¼ HðxÞ þ log jWj:

ð14Þ

Therefore, the MI can be rewritten as following:

MIðŝÞ ¼
XP
p¼1

HðŝpÞ �HðxÞ � log jWj: ð15Þ

By partially differentiating this index on parameters W, optimized solution for source separa-
tion will be obtained.

∂MIðŝÞ
∂W

¼
XP
p¼1

∂ð�
ð
pðŝÞ log pðŝpÞdŝÞ

∂W
� ðWTÞ�1 ¼ �E½ϕðŝÞxT� � ðWTÞ�1, ð16Þ

where

ϕðŝpÞ ¼
d log p ðŝpÞ

dŝp
: ð17Þ

As analytical computation of equation as mentioned above is difficult, this algorithm uses a
gradient update rule based on the natural gradient [33] and learning rate η that is a positive
constant:
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W←W þ ηΔW, ð18Þ

ΔW ¼
�
E½ϕðŝÞxT� þ ðWTÞ�1

�
WTW ¼

�
E½ϕðŝÞŝT� þ I

�
W: ð19Þ

3.1.3. Component identification after source separation

After source separation, estimated sources Ŝ have to be continuously identified as neuronal or

artifactual sources to reconstruct artifact-free EEG matrix X̂ . Visual inspection of scalp topog-
raphy and empirical judgment was given the credit for identification of components [10, 14].
The overused techniques are still examined in an expedient manner for checking the results.
That leads to increase in workload; therefore, hard/soft-threshold function, probability
approach, and machine learning algorithm with features of the prepared material have been
used for automatically identifying artifacts in estimated sources to reduce the workload and to
get more repeatable labels [34, 35]. Proposing automatic and unsupervised component identi-
fication algorithm to characterize more precisely and flexibly has still been an active research
area [36, 37]. Once estimated sources are identified, they advance to next step called denoising
step, and then an underlying EEG matrix will be reconstructed using inverse linear demixing
process (see Figure 4).

3.2. In single-channel signals

3.2.1. Discrepancy among standard assumptions about multi-/single-channel data

We can easily imagine that single-channel data do not always satisfy the assumptions for BSS
techniques. Calculating demixing matrix W is especially difficult with single-channel artifact
rejection methods (see Figure 5), so that researchers are forced to select whether to add
information by using the reference channel before applying a method or to separate data by
using only one-channel.

3.2.2. Regression

Regression algorithm was most frequently used to remove artifact up to the mid-1990s [38, 39].
In this algorithm, an observed EEG signal x(n) can be expressed as

Figure 4. Block diagram of the blind source separation [11].
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W: ð19Þ

3.1.3. Component identification after source separation
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xðnÞ ¼ xEEGðnÞ þ xArtðnÞ þ dðnÞ, ð20Þ

where xEEGðnÞ, xArtðnÞ, and d(n) are intrinsic EEG data, artifact, and noise. It is assumed that
the expected value of d(n) is 0.

The artifact would be corrected by calculating propagation factors to estimate the relationship
between the reference signal xRefðnÞ and the observed EEG signal and subtracting the
regressed portion [40]. The rationale of the procedure is as follows:

Step 1. Separately average over observed EEG and reference signals of T trials to estimate the
artifact waveform related variation for the channels:

xðnÞ ¼ 1
T

XT
t¼1

xtðnÞ, ð21Þ

Step 2. Subtract the averages from every trial data to obtain deviations:

x0ðnÞ ¼ xðnÞ � xðnÞ, ð22Þ

where xðnÞ is duplicated T · 1 matrix of the observed EEG average,

Step 3. Calculate the propagation factor C by linear least-square regression whereby the
observed EEG data are considered as a dependent variable and the reference data are
considered as the independent variable:

X ¼ CðXRefÞ, ð23Þ

where

Figure 5. Procedure of signal separation in single-channel artifact rejection methods.
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X ¼ ½x0ð1Þ,…, x0ðtÞ,…, x0ðTÞ�T, ð24Þ

x0ðtÞ ¼ ½x0
�
1þNðt� 1Þ

�
, …, x0ðtNÞ�, ð25Þ

Step 4. Correct the observed EEG data by subtracting the reference data scaled by the propa-
gation factor C:

x̂ðnÞ ¼ xðnÞ � C
�
xRefðnÞ

�
: ð26Þ

Because averaging operator emphasizes a time-locked activity in observed EEG signals, this
method requires a reference channel and is powerful only if the operating system treats event-
related brain potentials. Cerebral activities are usually not time-locked that means that impor-
tant nontime-locked components will be lost by the averaging operation. Furthermore, this
method does not take bidirectional contamination into account and cancels the cerebral infor-
mation from each observed EEG signal upon linear subtraction [41]. Despite its disadvantages,
regression is still used as the ”gold standard”method to which the performance of any artifact
rejection algorithms may be compared.

3.2.3. Filtering

Band-pass is one of the classical and simple separation attempts to remove artifacts from an
observed EEG signal. This method is effective if the spectral distributions of the EEG compo-
nent and artifact do not overlap, and there are small band artifacts such as power line noise
(50/60 Hz interference) [42]. However, fixed-gain filtering is not effective for biological artifacts
because it will attenuate EEG component and change both amplitude and phase of signal if the
filtering keeps doing that [43]. Some adaptive algorithms try to adapt the filter parametersw to
minimize the error between the artifact-free EEG signal x̂ðnÞ and the desired original signal x
(n) to suppress the limitations of this method.

Adaptive filtering assumes that the intrinsic EEG signal and artifact are uncorrelated; there-
fore, the artifact is considered to be an additive noise within the observed signal:

xtðnÞ ¼ stðnÞ þ n0tðnÞ, ð27Þ

where xt(n) is the observed EEG signal of t-th trial, n0(0) is the additive noise to offset and is
uncorrelated with intrinsic EEG signal st(n). The filter parameters w are iteratively adjusted by
a feedback (recursive) process designed to make the output as close as possible to some desired
response with an additive noise interference [44, 45]. Figure 6 shows the noise canceller system
using adaptive filtering. In this system, the primary input xt(n) and the reference input xRef tðnÞ
are the observed EEG and reference signals. A reference input xRef tðnÞ ¼ n1tðnÞwhich is a noise
correlated with n0tðnÞ and uncorrelated with intrinsic EEG signal st(n), adds information to
minimize the error et(n) between the response yt(n) and the desired response.
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Recursive least squares (RLS)-based adaptive filtering presents a superior performance than
least mean squares-based one [46]. The algorithm can be implemented using the following
equations:

gðnÞ ¼ Rðn� 1ÞxRefðnÞ
λþ xRefTðnÞRðn� 1ÞxRefðnÞ , ð28Þ

eðnÞ ¼ xðnÞ � yðnÞ, ð29Þ
yðnÞ ¼ wðnÞxRefðnÞ, ð30Þ

RðnÞ ¼ Rðn� 1Þ � gðnÞxRefTðnÞRðn� 1Þ
λ

, ð31Þ

wðnÞ ¼ wðn� 1Þ þ gðnÞeðnÞ, ð32Þ

where g(n) and w(n) are the gain vector and the filtering parameters. The initial value of cross-
correlation R(0) is δI, where δ and I are some sufficiently large positive value and identity
matrix. The updated filter parameters lead to output artifact-free EEG signal.

Consequently, adaptive filtering approach has a potential to recover “pure” EEG signal more
rapidly and accurately than linear regression for ocular and cardiac artifacts [48]. However, it
is rather difficult to converge to the solution of filtering parameters if muscular and vibration
artifacts have contaminated in the observed EEG signal. In that situation, the algorithm some-
times does not converge because of their convulsive burst.

Figure 6. Noise canceller system using adaptive filtering [17, 47].
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Optimal filtering like Kalman filtering can capture non-stationary properties of artifacts. The
framework has flexibility for non-linear system due to approximating the probability density
function that might lead to more effective artifact rejection method. Many works on filtering
algorithms have developed this approach for more useful module in real-time applications
[49, 50].

3.2.4. ICA-based signal decomposition

ICA will achieve an artifact rejection with an outstanding performance if the number of
independent sources is equal to or lower than observations. Unfortunately, this method is only
applicable to multi-channel data; however, some works extended the idea to single-channel
data to unmix a set of observed signals (components) into intrinsic sources [51–53]. These
methods decompose a single-channel into multiple components by dividing into a sequence
of blocks or different spectral modes before applying ICA so that we call these methods ICA-
based signal decomposition approaches (see Figure 7).

Single-channel ICA is the oldest method for single-channel data under an assumption that
stationary sources are being disjoint in the frequency domain [54]. An observed signal x(n) is
split up into K short segments X, a sequence of contiguous blocks of length L which is to be
handled as a set of observations.

X ¼ ½xð1Þ,…,xðkÞ,…,xðKÞ�T, ð33Þ

xðkÞ ¼ ½x
�
Lðk� 1Þ þ 1

�
,…, xðkLÞ�T, ð34Þ

where k is the block index. A standard ICA algorithm than performs to the matrix X to derive
the demining matrix W. The artifacts overlap with EEG components and EEG signal has non-
periodic components; therefore, this method can be applied within limited situations. Wavelet
transform (WT)-based and empirical mode decomposition (EMD)-based ICA have already
been reported successful in removing artifacts for solving the similar problem than single-
channel ICA [42].

WT-based ICA transforms an observed signal into components of disjoint spectra (a matrix)
instead of signal (a vector) via discrete WT [55].

Figure 7. Procedure of separation method using ICA-based signal decomposition.
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Wða, bÞ ¼ 1ffiffiffi
a

p
ð
xðnÞψa,bðnÞdn, ð35Þ

ψa,b ¼ ψ
n� b
a

� �
, ð36Þ

where W(a, b) and ψa, b denote that the wavelet representation of x(n) and the mother wavelet
with a and b defining the time-scale and location. The decision of parameters is hard if the user
does not have a priori knowledge of the signal of interest. Each IC using wavelet coefficients is,
respectively, identified as either neuronal or artifactual by manually. The artifactual ICs are
replaced their values with arrays of zeros and then reconstructed to wavelet components.
Finally, artifact-free signal is acquired by inverse discrete WT.

EMD-based ICA decomposes an observed signal into a number of K intrinsic mode functions
(IMFs) hk(n),

xðnÞ ¼
XK

k¼1

hkðnÞ þ dðnÞ, ð37Þ

where d(n) is a residue of the original data and a nonzero mean slowly varying function with
only a few or no extreme [56]. This method can remove artifacts without a priori knowledge
regarding characteristics of the signal embedded in the data [57]. Each IMF has
monocomponent of the original data and is estimated by an iterative process called “shifting
process”:

Step 1. Find the local maxima and minima in xk(n),

Step 2. Connect all of the local maxima and minima by cubic splines to form an upper and a
lower envelope,

Step 3. Calculate the mean of the two envelopes, respectively,

Step 4. Obtain improved IMF hk+1(n) by subtracting the mean of the two envelopes from the
current IMF hk(n),

Step 5. Go to Step 1 until the residue is below a stopping criterion.

This decomposition is based on the three conditions: (i) the number of extreme and the number
of zero-crossing must be equal or up to plus/minus one; (ii) zero mean; and (iii) all the maxima
and all the minima of IMF will be positive and negative everywhere. Each IC using IMFs is,
respectively, identified as either neuronal or artifactual by manually as well as WT-based ICA.
The artifactual ICs are replaced their values with arrays of zeros. Finally, reconstructed IMFs
are summed simply together to acquire artifact-free signal.

WT-based and EMG-based ICA have been reported as superb methods for artifact rejection
[51, 58, 59]. Therefore, a certain number of researchers tends to select them over recent years.
However, separating intrinsic EEG components and artifacts are not successfully completed by
this approach because frequency characteristics of biological artifacts and EEG components
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could be overlapped. In addition, a presence of similar oscillations in different modes or a
presence of disparate amplitude oscillations in the same mode, named “mode mixing” makes
the performance of artifact rejection worse [60]. Signal distortion or attenuation typically
occurs according to the above-mentioned methods by excessive interference. Thus, these
approaches are not suitable for real-time applications.

3.2.5. Nonnegative matrix factorization

In linear regression, filtering, and ICA-based signal decomposition approaches, parameters W
cannot often converge to a solution for perfectly demixing the mixtures. This implies that
partially restricting the active space should be determined for single-channel signals.

Meanwhile, non-negative matrix factorization (NMF) [61] has recently attracted attention as
effective algorithms to remove artifacts from single-channel signals because it can find the
latent features underlying the interactions between EEG components and artifacts. An M-
dimensional non-negative data vector xn is placed in the column of M · N matrix X, where N
is number of data vectors. The matrix X is based on short-time Fourier transform and approx-
imately factorized into an M · K nonnegative matrix H and a K · N nonnegative matrix W
where K is the number of “basis” which is optimized for linear approximation of the input
vectors. It can be represented by the following equation:

xn ≈yn ¼
XK

k¼1

hkwk,n, ð38Þ

where an hk and a wk,n denote an entry of H and W. This equation means that respective non-
negative EEG feature (power spectrum or amplitude spectrum) vector is approximated by
linear combination of the basis vector hk weighted by the component of wk,n. Therefore, it can
be rewritten as

X ≈HW: ð39Þ

Some works reported that the supervised NMF could effectively factorize the observed EEG
signals into the brain activity components and the artifacts if the user has artifact data in advance
[62, 63]. Before applying supervised learning, template matrix XArt has been factorized into HArt

and WArt. The matrix X is continuously factorized into H and W where H contains the elements
of matrix HArt. The matrix HArt has no relation to the elements of H while using standard NMF
algorithm because the initial values are set randomly and updated by multiplicative rules. In
supervised learning algorithm, the matrix HArt is used as a fixed value that will partially restrict
the active space. By contrast, activity components in the matrixWArt are variable values. For this
constraint, the matrix H can attempt to express EEG components in the matrix X with the
remaining based K0. EEG components will be stored in the bases (see Figure 8).

After theseprocessing, non-negative data of artifact-free EEGare reconstructed from the following
equation:

X̂ ¼ X �
XK

k¼KArtþ1

XN
n¼1

HkWk,n

HW
: ð40Þ
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Eq. (40) and inverse Fourier transform make it possible to acquire artifact-free signal. Super-
vised NMF is still in its infancy, showed high performance for artifact rejection. However,
epoch detention step, which is not part of normal procedures in artifact rejection, must be
embedded in the epoch-based method. This leads to increase the computational cost inevita-
bly. Some low-cost (real-time) artifact detection algorithms for single-channel EEG signal
[64, 65] are a silver lining in a dark cloud.

4. Conclusions

By the properties of artifacts, theoretically multivariate statistical analysis approaches such
as PCA and ICA, which separate multi-channel EEG signals into spatially and temporally
distinguishable components, are useful for extracting EEG components from the scalp
recordings. In particular, ICA is a powerful tool for separating observed EEG signals into
maximally independent activity patterns derived from cerebral or non-cerebral (artifactual)
sources. However, ICA is unsuitable for analyzing EEG signals recorded by specialized EEG
device because of mismatching of its assumption in the single (or few) channel case. Thus,
proposing a removal method of artifact from single-channel EEG signals is currently a major
challenge in EEG signal processing for the widespread use of systems as a conventional
technology.

In this chapter, we tried to summarize some existing artifact rejection algorithms (PCA, ICA,
regression, filtering, ICA-based signal decomposition, and NMF) focusing on the advan-
tages and disadvantages of algorithms, which would provide beneficial information to
improve their performance in online EEG systems. Last but not least, muscular artifacts
reflecting body actions are natural enemies of EEG systems. The inevitable encounter must
be solved by artifact rejection techniques. During real-time EEG system operation using
specialized devices, unsupervised learning algorithms cannot separate observed signal into
EEG and EMG components so far. Neuroscientists and neuro-engineers should carefully
analyze the characteristics of artifacts and integrate them in a supervised learning algorithm
for effective rejection of artifacts or extraction of intrinsic EEG components from observed
EEG signals without altering the underlying brain activity to routinely use EEG systems in
the future.

Figure 8. Procedure of supervised NMF.
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