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Preface

This book presents recent studies of acoustic wave propagation through different media in‐
cluding the atmosphere, Earth’s subsurface, complex dusty plasmas, porous materials, and
flexible structures. Mathematical models of the underlying physical phenomena are intro‐
duced and studied in detail. With its seven chapters, the book brings together important
contributions from renowned international researchers to provide an excellent survey of re‐
cent computational and experimental studies of acoustic waves. The first section consists of
four chapters that focus on computational studies, while the next section is composed of
three chapters that center on experimental studies.

This book is divided into two sections that are focused on the recent studies of acoustic
waves. The first section consists of four chapters that focus on applications of computational
techniques. Chapter 1 emphasizes application of finite difference (FD) methods to the acous‐
tic wave equation, considering both the first-order velocity-stress acoustic equation and sec‐
ond-order wave equation. To mitigate the effects of grid dispersion, the chapter introduces a
new staggered grid FD scheme that improves computational efficiency while preserving
high accuracy. The effectiveness of this method is demonstrated via numerical simulations
of seismic waves. Chapter 2 is devoted to acoustic analysis of a rectangular acoustic cavity.
A unified structural-acoustic coupling analysis framework is introduced for the cavity and
its coupled panel structure. The Fourier series with supplementary terms are constructed as
the admissible functions, which are smoothed in the whole solution domain including the
elastic structural and/or impedance acoustic boundary and coupling interface. All the un‐
known coefficients and higher-order variables are determined via a Rayleigh-Ritz procedure
and differential operation. Numerical examples are then presented to demonstrate the valid‐
ity and effectiveness of the proposed model. Chapter 3 evaluates wave properties of strong‐
ly coupled complex dusty (SCCD) plasmas using a new equilibrium molecular dynamics
(EMD) simulation technique. It presents several interesting simulation results, which show
that the fluctuation of waves increases with increasing Coulomb coupling parameter and
decreases with increasing screening strength. The new results obtained through the EMD
method introduced in the chapter for complex dusty plasma are discussed and compared
with earlier simulation results based on other numerical methods. It is demonstrated that
the proposed model constitutes a highly feasible tool for estimating the behavior of waves in
strongly coupled complex dusty plasmas over a range of parameters. Chapter 4 studies the
problem of modeling a seismic field acoustic approximation in a layered medium with in‐
clusions of a hierarchical structure, where the inclusion density of each rank differs from the
density of the enclosing medium and the elastic parameters coincide with the elastic param‐
eters of the enclosing layer. The chapter also considers the case when the inclusion density
of each rank coincides with the density of the host medium and the elastic parameters of the



inclusion of each rank differ from the elastic parameters of the enclosing layer.An iterative
process of solving the theoretical inverse problem for the case of determining configurations
of 2D hierarchical inclusions is developed.

The second section of the book is composed of three chapters that center on experimental
studies.

Chapter 5 presents the design and implementation of in-fiber acousto-optic (AO) devices
based on acoustic flexural waves. The AO interaction is demonstrated to be an efficient
mechanism for the development of AO tunable filters and modulators. The implementation
of tapered optical fibers is proposed to shape the spectral response of in-fiber AO devices.
Experimental results demonstrate that the geometry of the tapered fiber can be regarded as
an extra degree of freedom for the design of AO tunable attenuation filters. It is shown that
such filters operate as an amplitude modulator when acoustic reflection is induced. As a
particular case, an in-fiber AO modulator composed of a double-ended tapered fiber is re‐
ported. Chapter 6 explores wave propagation in porous materials. Acoustic propagation in
porous media involves a large number of physical parameters when the structure is elastic.
This number is reduced when the structure is rigid because the mechanical part does not
intervene with the wave propagation. The study of high and low frequencies separately sol‐
ves the inverse problem and characterizes the porous materials in the domain of influence of
the physical parameters. The proposed methods are simple and effective and allow an
acoustic characterization of porous materials using transmitted or reflected experimental
waves. Finally, Chapter 7 introduces a new method of inducing atmospheric refractivity
fluctuations using coherent acoustic waves. The distribution of the artificial atmospheric re‐
fractive index is quantitatively calculated, and the feasibility of purposefully affecting radio
wave propagation is demonstrated via experiments. The potential applications of syntheti‐
cally controlling the radio wave propagation by the artificial refractivity fluctuation struc‐
ture are explained, and future research directions are summarized.

Mahmut Reyhanoglu, PhD
University of North Carolina Asheville,
Mechatronics Engineering Laboratory,

Asheville, North Carolina,
USA
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Optimized Finite Difference Methods for Seismic
Acoustic Wave Modeling

Yanfei Wang and Wenquan Liang

Additional information is available at the end of the chapter
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Provisional chapter

Optimized Finite Difference Methods for Seismic
Acoustic Wave Modeling

Yanfei Wang and Wenquan Liang

Additional information is available at the end of the chapter

Abstract

The finite difference (FD) methods are widely used for approximating the partial deriva-
tives in the acoustic/elastic wave equation. Grid dispersion is one of the key numerical
problems and will directly influence the accuracy of the result because of the discretization
of the partial derivatives in the wave equation. Therefore, it is of great importance to
suppress the grid dispersion by optimizing the FD coefficient. Various optimized methods
are introduced in this chapter to determine the FD coefficient. Usually, the identical sta-
ggered grid finite difference operator is used for all of the first-order spatial derivatives in
the first-order wave equation. In this chapter, we introduce a new staggered grid FD
scheme which can improve the efficiency while still preserving high accuracy for the first-
order acoustic/elastic wave equation modeling. It uses different staggered grid FD opera-
tors for different spatial derivatives in the first-order wave equation. The staggered grid FD
coefficients of the new FD scheme can be obtained with a linear method. At last, numerical
experiments were done to demonstrate the effectiveness of the introduced method.

Keywords: finite difference scheme, optimized finite difference coefficient, staggered
grid, regularization, wave equation

1. Introduction

The propagation of seismic waves through the Earth’s subsurface is described by the wave
equation, one of the partial differential equations (PDEs), which describe many of the funda-
mental natural laws. When the subsurface earth structure is complex, it is difficult to obtain the
analytic results. The finite difference (FD) method is one of most widely used numerical
methods for wave equation modeling because of its high efficiency, smaller memory require-
ment, and easy implementation [1–7].

The first application of the FD method to wave equation modeling can be possibly traced back
to Alterman and Karal [1]. Alford et al. took the grid dispersion analysis for the second-order
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and fourth-order FD operators and stated that it is necessary to use high-order FD operators
[8]. Kelly et al. further illustrated the grid dispersion, absorbing boundary condition, and other
implementation aspects of the FD method [9].

Madariaga developed a staggered grid FD scheme to solve a rupture propagation problem
[10]. Virieux adapted this scheme to elastic SH waves and P-SV waves in a 2D Cartesian system
[2, 3]. Levander introduced a fourth-order staggered grid FD operator in the space domain to
improve accuracy [11].

Grid dispersion is one of the key numerical problems affecting practical usage when utilizing
the FD method. Since the traditional FD coefficient obtained in the space domain with the
Taylor expansion method is only accurate for a very limited wavenumber range [4], many
efforts are paid to reducing the grid dispersion with optimized FD coefficient. Yang et al.
proposed the nearly analytic discrete method for wave equation and later improved this
method [12, 13]. Chen proposed high-order time discretization method to reduce the disper-
sion caused by the temporal discretization [14, 15]. The Fourier FD was introduced by Song
and Fomel with the combination of fast Fourier transform and finite difference operators [16].
Chu and Stoffa improved the FD methods with a scaled binomial windowed FD scheme that
leads to more precise discrete operators [17]. Fomel et al. introduced low-rank approximation
of the wave propagator matrix to reduce the cost of wave extrapolation [18].

Generally, the FD coefficients of the spatial derivative are determined only in the spatial
domain. However, wave equations are solved in the temporal and spatial domains simulta-
neously. Finkelstein and Kastner propose a systematic design methodology for obtaining FD
coefficients to reduce dispersion, which allows the exact phase velocity or (and) group velocity
dispersion relationship to be satisfied at some designated frequencies in the temporal-spatial
domain [19, 20]. Etgen proposed minimizing the phase velocity error using the least squares
(LS) method [21]. Liu and Sen propose a new time-space domain method to determine the
higher order FD coefficients for 1D, 2D, and 3D wave equations [22], and then they use this
method to get the staggered grid FD coefficients [23]. Zhang and Yao proposed the use of the
simulated annealing algorithm and gave an error limitation for determining the FD coefficients
in the space or the time-space domain [24]. Liang et al. proposed utilizing the linear method to
determine the FD coefficient in the time-space domain [25]. Ren and Liu developed a novel
optimal time-space domain staggered grid FD scheme and used least squares method to get
the FD coefficients [26]. Wang et al. proposed the regularized optimization method to get the
staggered grid FD coefficient in the time-space domain [27]. Chen et al. used K space operator-
based high-order staggered grid FD method to improve accuracy [28]. Yong et al. proposed
using the optimized equivalent staggered grid FD method with three sets of FD coefficients to
improve the simulation accuracy [29]. Compared with the traditional high-order staggered
grid FD coefficient obtained by the Taylor expansion method, these methods greatly improved
the accuracy with the optimized FD coefficient.

Another way to improve the accuracy and efficiency of the FD methods is using new FD
stencil. Liu and Sen studied the rhombus stencil and found that it can reach high-order
accuracy along all directions [30]. Liu et al. formulated an explicit time evolution scheme with
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high temporal accuracy by using a new FD stencil for the second-order wave equation [31].
Tan and Huang propose a staggered grid FD stencil with added points in the diagonal direc-
tion for the first-order wave equation [32, 33]. Compared with the traditional staggered grid
FD stencil, these methods improved the efficiency by using a larger time step while still pre-
serving high accuracy.

2. Acoustic/elastic wave equations

The first-order velocity-stress acoustic wave equation can be described as

∂P
∂t

¼ �v2
∂vz
∂z

þ ∂vx
∂x

� �
, (1)

∂vx
∂t

¼ � ∂P
∂x

, (2)

∂vz
∂t

¼ � ∂P
∂z

: (3)

where P is the acoustic pressure fluctuation, v is the wave propagation speed, and vx and vz are
the particle velocities.

Substituting Eqs. (2) and (3) into Eq. (1), the second-order acoustic wave equation can be
written as

∂2p
∂x2

þ ∂2p
∂z2

¼ 1
v2

∂2p
∂t2

(4)

The first-order elastic wave equations in 2D heterogeneous media are [3]

∂vx
∂t

¼ ∂τxx
∂x

þ ∂τxz
∂z

, (5)

∂vz
∂t

¼ ∂τxz
∂x

þ ∂τzz
∂z

, (6)

∂τxx
∂t

¼ α2 ∂vx
∂x

þ α2 � 2β2
� � ∂vz

∂z
, (7)

∂τzz
∂t

¼ α2 ∂vz
∂z

þ α2 � 2β2
� � ∂vx

∂x
, (8)

∂τxz
∂t

¼ β2
∂vx
∂z

þ ∂vz
∂x

� �
: (9)

where (vx, vz) is the velocity vector,(τxx, τzz, τxz) is the stress vector, and α and β are the P- and S
wave propagation speeds, respectively.

Optimized Finite Difference Methods for Seismic Acoustic Wave Modeling
http://dx.doi.org/10.5772/intechopen.71647

5



Substituting Eqs. (7)–(9) into Eqs. (5)–(6), the second-order elastic wave equation can bewritten as

∂2vx
∂t2

¼ α2 ∂
2vx
∂x2

þ α2 � β2
� � ∂2vz

∂x∂z
þ β2

∂2vx
∂z2

, (10)

∂2vz
∂t2

¼ α2 ∂
2vz
∂z2

þ α2 � β2
� � ∂2vx

∂x∂z
þ β2

∂2vz
∂x2

: (11)

3. Finite difference operators

The commonly used staggered grid FD scheme for the first-order acoustic wave equation is as
follows:

∂P
∂t

¼ �v2

h

XM1

m¼1

cm vz0,m�1=2 � vz0,�mþ1=2

� �
þ
XM1

m¼1

cm vxm�1=2,0 � vx�mþ1=2,0

� � !
, (12)

∂vx
∂t

¼ �1
h

XM2

m¼1

cm P0
m�1=2,0 � P0

�mþ1=2,0

� �
, (13)

∂vz
∂t

¼ �1
h

XM2

m¼1

cm P0
0,m�1=2 � P0

0,�mþ1=2

� �
, (14)

Qn
m, j ¼ Q xþmh; zþ jh; tþ nτð Þ; Q ¼ vx, vz, P (15)

where M1 and M2 are the length of the FD operators, cm is the staggered grid FD coefficients,
and h is the spatial grid interval.

The second-order FD operator is usually used for the first-order time derivative:

∂P
∂t

¼ 1
Δt

P1
0,0 � P0

0,0

� �
: (16)

where Δt is the time step.

The commonly used staggered grid FD scheme for the first-order elastic wave equation is as
follows:

∂vx
∂t

¼ 1
h

XM1

m¼1

cm τxx0m�1=2,0 � τxx0�mþ1=2,0

h i
þ 1
h

XM1

m¼1

cm τxz00,m�1=2
� τxz00,�mþ1=2

h i
(17)

∂vz
∂t

¼ 1
h

XM1

m¼1

cm τxz0m�1=2,0 � τxz0�mþ1=2,0

h i
þ 1
h

XM1

m¼1

cm τzz00,m�1=2
� τzz00,�mþ1=2

h i
(18)

∂τxx
∂t

¼ α2

h

XM2

m¼1

cm vx0m�1=2,0 � vx0�mþ1=2,0

h i
þ α2 � 2β2

h

XM2

m¼1

cm vz00,m�1=2
� vz00,�mþ1=2

h i
(19)
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h i
(18)

∂τxx
∂t

¼ α2

h

XM2

m¼1

cm vx0m�1=2,0 � vx0�mþ1=2,0

h i
þ α2 � 2β2

h

XM2

m¼1

cm vz00,m�1=2
� vz00,�mþ1=2

h i
(19)
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∂τzz
∂t

¼ α2 � 2β2

h

XM2

m¼1

cm vx0m�1=2,0 � vx0�mþ1=2,0

h i
þ α2

h

XM2

m¼1

cm vz00,m�1=2
� vz00,�mþ1=2

h i
(20)

∂τxz
∂t

¼ β2

h

XM2

m¼1

cm vz0m�1=2,0 � vz0�mþ1=2,0

h i
þ β2

h

XM2

m¼1

cm vx00,m�1=2
� vx00,�mþ1=2

h i
(21)

Qn
m, j ¼ Q xþmh; zþ jh; tþ nτð Þ; Q ¼ vx, vz, τxx, τzz, τxz (22)

where M1 and M2 are the length of the FD operators, cm is the staggered grid FD coefficient to
be determined, and h is the spatial grid interval.

4. Optimizing finite difference operators

4.1. Optimizing finite difference operators for the acoustic wave equation

Using the plane wave theory, let

Pj
m,n ¼ ei kx xþmhð Þþkz zþjhð Þ�ω tþnτð Þ½ �: (23)

The following dispersion relation can be obtained by substituting Eqs. (13)–(14) into Eq. (12)
[23, 26, 27]:

XM
m¼1

cm sin m� 0:5ð Þkxhð Þ
" #2

þ
XM
m¼1

cm sin m� 0:5ð Þkzhð Þ
" #2

≈
1
2r2

1� cos kvτð Þ½ �: (24)

where r = vΔt/h, M1 = M2 = M, and(kx, kz) = k(cosθ, sinθ). It can be observed from Eq. (24)
that the dispersion relation is complex and optimized methods are needed to address this
problem.

Let c be the vector form of the FD coefficients, and denote the left side of Eq. 24 by [27]:

F cð Þ ¼
X2π

θ¼0

XM
m¼1

cm sin m� 0:5ð Þkxhð Þ
" #2

þ
XM
m¼1

cm sin m� 0:5ð Þkzhð Þ
" #28<

:

9=
; (25)

and the right side of Eq. 24 by

d ¼
X2π

θ¼0

1
2r2

1� cos kvτð Þ½ �: (26)

The aim is to minimize the dispersion error for a fixed range of wavenumbers:
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Φ cð Þ ¼
XK
�

k¼0

F cð Þ � d½ �2 ! min (27)

The upper limit of the wavenumber range used for calculating the FD coefficients is based on
the source frequency, the space grid interval, and the wave propagation speed [25]:

Ratio ¼ K
�

Ktotal
¼ 2πfmax=v

π=h
¼ fmax

v=2h
: (28)

The direct minimization of the objective function Φ for the FD coefficient may lead to unstable
results. Therefore, regularizing technique was applied to restore stability. The regularization
model is established as

Jα cð Þ ¼ Φ cð Þ þ 1
2
α Dck k2, (29)

where α > 0 is a user-defined regularization parameter and D is a scale operator. The new task
is the minimization of J(c), and then the regularized optimization staggered grid FD coefficient
can be obtained.

Another way to improve the efficiency and accuracy of the staggered grid FD methods is the
utilization of the new staggered grid FD scheme. Different with the previous staggered grid
FD scheme, the simplest centered second-order staggered grid FD operator can be used for the
spatial derivatives in Eqs. (2) and (3), for example,

∂P
∂t

¼ �v2

h

XM
m¼1

cm vz0,m�1=2 � vz0,�mþ1=2

� �
þ
XM
m¼1

cm vxm�1=2,0 � vx�mþ1=2,0

� � !
, (30)

∂vx
∂t

¼
� P0

1=2,0 � P0
�1=2,0

� �

h
, (31)

∂vz
∂t

¼
� P0

0,1=2 � P0
0,�1=2

� �

h
: (32)

The staggered grid FD scheme in Eqs. (30)–(32) can be seen as a new staggered grid FD scheme
for the first-order acoustic wave equation. The new staggered grid FD scheme is exactly the
same as the traditional staggered grid FD scheme except if the staggered grid FD operator
length is shorter for Eqs. (31) and (32). By carefully comparing Eqs. (12) and (14) with Eqs. (30)
and (32), we find that the new staggered grid FD scheme is more efficient and can save about
45% of simulation time whenM equals 7. It looks like the particle velocities vx and vz in Eqs. (31)
and (32) are inaccurate since only the second-order staggered grid FD operators are used.
However, this is not true since the staggered grid FD coefficient in Eq. (30) is optimized with
Eqs. (31) and (32) in consideration. In the following, the huge advantage of the new staggered
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grid FD scheme will be demonstrated because it can reduce the simulation time while still
preserving high accuracy compared with the traditional staggered grid FD scheme.

To get the staggered grid FD coefficient in Eq. (30), we substitute Eqs. (31) and (32) into Eq. (30),
using the plane wave theory. Then we get

eikz
h
2 � e�ikzh2

� �XM
m¼1

cm eikz m�1
2ð Þh � e�ikz m�1

2ð Þh� �

þ eikx
h
2 � e�ikxh2

� �XM
m¼1

cm eikx m�1
2ð Þh � e�ikx m�1

2ð Þh� �
¼ h2

v2
eiωτ þ e�iωτ � 2

Δt2

(33)

From Eq. (33), the following dispersion relation can be obtained in the frequency-wavenumber
domain (it is a special case of Eq. (24)):

�2 sin
kzh
2

XM
m¼1

cm sin m� 0:5ð Þkzhð Þ � 2 sin
kxh
2

XM
m¼1

cm sin m� 0:5ð Þkxhð Þ ¼ r�2 cos ωτð Þ � 1½ �: (34)

Using the basic trigonometric function

sinα sin β ¼ � cos αþ β
� �� cos α� β

� �� �
2

, (35)

we obtain Eq. (36) from Eq. (34):

XM
m¼1

cm cos mkxhð Þ � cos m� 1ð Þkxhð Þ þ cos mkzhð Þ � cos m� 1ð Þkzhð Þ½ � ¼ r�2 cos ωτð Þ � 1½ �:

(36)

Similarly, the new dispersion relation for the 3D first-order acoustic wave equation in the
frequency-wavenumber domain is

XM
m¼1

cm cos mkxhð Þ � cos m� 1ð Þkxhð Þ þ cos mkyh
� �� cos m� 1ð Þkyh

� �þ cos mkzhð Þ � cos m� 1ð Þkzhð Þ� �

¼ r�2 cos ωτð Þ � 1½ �
(37)

where kx; ky; kz
� � ¼ k sinθ cosφ; sinθ sinφ; cosθ

� �
:

Compared with the traditional dispersion relation in Eq. (24), the new dispersion relation in
Eqs. (36) and (37) is linear and much simpler.

We assume that there are M equally distributed wavenumber points satisfying the dispersion
relation within the wavenumber range specified by Eq. (28). Then, we establish the linear equation
from Eq. (37) for the 3D case [25]:
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X2π

φ¼0

X2π

θ¼0

ahk1,x,1 þ ahk1,y,1 þ ahk1, z,1 … ahk1,x,M þ ahk1,y,M þ ahk1,x,M

⋮ ⋮

ahkM,x,1 þ ahkM,y,1 þ ahkM,z,1 … ahkM,x,M þ ahkM,y,M þ ahkM,x,M

0
BBBB@

1
CCCCA

c1

⋮

cM

0
BBBB@

1
CCCCA

¼ 1
r2
X2π

φ¼0

X2π

θ¼0

cos k1vτð Þ � 1

⋮

cos kMvτð Þ � 1

0
BB@

1
CCA

(38)

where ahkl,m ¼ cos mklhð Þ � cos m� 1ð Þklhð Þ, the ith component of kl(l = x, y, z) is represented as
ki, l, kx = k cosθ cosφ, ky = k cosθ sinφ, kz = k sinθ, and k(i) for each i = 1,2,…,M + 1 is equally
distributed between 0 and Ratio�π / h, where Ratio is determined by Eq. (28). In the following,
we will demonstrate that the new staggered grid FD scheme in Eqs. (30)–(32) has similar
accuracy compared with the computational intensive traditional staggered grid FD scheme in
Eqs. (12)–(14).

The 2D dispersion error δ of the new staggered grid FD scheme is defined as

δ ¼ vFD
v

¼ 1
rkh

arccos 1þ r2q2
� �

: (39)

where

q2 ¼
XM
m¼1

cm cos mkxhð Þ � cos m� 1ð Þkxhð Þ þ cos mkzhð Þ � cos m� 1ð Þkzhð Þ½ � (40)

The difference between the FD propagation time and the exact propagation time through one
grid is defined as [23]

ε ¼ h
vFD

� h
v
¼ h

v
v
vFD

� 1
� �

¼ h
v

1
δ
� 1

� �
(41)

Figures 1 and 2 show the dispersion error curves of the traditional and the new staggered grid
FD schemes for the homogeneous acoustic model in 2D. All the FD coefficients are determined
in the time-space domain with M = 7. From Figures 1 and 2, we get the conclusion that the new
staggered grid FD scheme can also preserve the dispersion relation in a pretty wider range
compared with the traditional staggered grid FD methods. For example, with r = 0.0075 in the
2D case, both of them can preserve the dispersion error under 10�5 within 80% of kh range.
However, the new staggered grid FD scheme saves wave equation simulation time because
Eqs. (31) and (32) are much simpler than Eqs. (13) and (14).

Let the left part of Eq. (36) as.

g ¼
XM
m¼1

cm cos mkxhð Þ � cos m� 1ð Þkxhð Þ þ cos mkzhð Þ � cos m� 1ð Þkzhð Þ½ �: (42)
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XM
m¼1
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From dispersion relation Eq. (36), it is obvious that.

g < 0; r2g ≥ � 2: (43)

Then, the stability condition of the new staggered grid FD scheme is (from Eq. (36) with kh =π).

Figure 1. Dispersion error curves of the traditional staggered grid FD schemes. (a) r = 0.075 and (b) r = 0.225.

Figure 2. Dispersion error curves of the new staggered grid FD schemes. (a) r = 0.075 and (b) r = 0.225.
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r ≤
ffiffiffiffiffiffiffiffi
�2=g

q
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=PM

m¼1

4cm �1ð Þm

s
¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
XM
m¼1

cm

vuut
�1

: (44)

Figure 3 shows the stability condition of the traditional and the new staggered grid FD scheme
in 2D. We can see that the stability condition becomes stricter with the increase of the FD
operator length. It also shows that the new staggered grid FD scheme’s stability condition is a
little bit better than the previous staggered grid FD scheme. For example, the stability condi-
tions are r < 0.54 and r < 0.57, respectively, for the traditional and the new staggered grid FD
scheme with M = 7.

4.2. Optimizing finite difference operators for the elastic wave equation

Eqs. (10) and (11) can be written as [11].

α2Dxx þ β2Dzz �Dtt α2 � β2
� �

Dxz

α2 � β2
� �

Dxz α2Dzz þ β2Dxx �Dtt

 !
vx
vz

� �
¼ 0: (45)

The two roots give the following dispersion relation [11]:

Dtt ¼ 1
2

α2 þ β2
� �

Dxx þDzzð Þ � 1
2

α2 � β2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dxx þDzzð Þ2 � 4 DxxDzz �DxzDxzð Þ
q

: (46)

Suppose DXXDzz = DXZDXZ, then two equations can be obtained from Eq. (46):

(a)                                (b) 
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Figure 3. Stability condition in 2D. (a) The traditional staggered grid FD scheme and (b) the new staggered grid FD
scheme.
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Figure 3. Stability condition in 2D. (a) The traditional staggered grid FD scheme and (b) the new staggered grid FD
scheme.
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α2Dxx þ α2Dzz �Dtt ¼ 0: (47)

β2Dxx þ β2Dzz �Dtt ¼ 0: (48)

Usually, Eq. (48) is used to determine the FD coefficient. For the first-order staggered grid FD
scheme, the following dispersion relation can be obtained from Eq. (48):

XM
m¼1

cm sin m� 0:5ð Þkxhð Þ
" #2

þ
XM
m¼1

cm sin m� 0:5ð Þkzhð Þ
" #2

≈
1
2r2

1� cos kvτð Þ½ �: (49)

where r = βΔt/h, M1 = M2 = M, and (kx, kz) = k(cosθ, sinθ). It can be observed from Eq. (49) that
the dispersion relation is nonlinear and regularized optimized methods can address this
problem similarly.

Different with previous staggered grid FD scheme for the first-order elastic wave equation, the
simplest centered second-order staggered grid FD operator can be used for the spatial deriva-
tives in Eqs. (7)–(9):

∂vx
∂t

¼ 1
h

XM1

m¼1

cm τxx0m�1=2,0 � τxx0�mþ1=2,0

h i
þ 1
h

XM1

m¼1

cm τxz00,m�1=2
� τxz00,�mþ1=2

h i
(50)

∂vz
∂t

¼ 1
h

XM1

m¼1

cm τxz0m�1=2,0 � τxz0�mþ1=2,0

h i
þ 1
h

XM1

m¼1

cm τzz00,m�1=2
� τzz00,�mþ1=2

h i
(51)

∂τxx
∂t

¼ α2

h
vx01=2,0 � vx0�1=2,0

h i
þ α2 � 2β2

h
vz00,1=2 � vz00,�1=2

h i
(52)

∂τxx
∂t

¼ α2 � 2β2

h
vx01=2,0 � vx0�1=2,0

h i
þ α2

h
vz00,1=2 � vz00,�1=2

h i
(53)

∂τxz
∂t

¼ β2

h
vz01=2,0 � vz0�1=2,0

h i
þ β2

h
vx00,1=2 � vx00,�1=2

h i
(54)

The staggered grid FD scheme in Eqs. (52)–(54) is more efficient than the staggered grid FD
scheme in Eqs. (19)–(21). It will be demonstrated later that the staggered grid FD scheme in
Eqs. (52)–(54) is accurate for the stress vector (τxx, τzz, τxz) even when only second-order
staggered grid FD operator is used.

Then, the new dispersion relation can be obtained from Eq. (49) in the frequency-wavenumber
domain:

XM1

m¼1

cm cos mkxhð Þ � cos m� 1ð Þkxhð Þ þ cos mkzhð Þ � cos m� 1ð Þkzhð Þ½ � ¼ r�2 cos ωτð Þ � 1½ �:

(55)

The staggered grid FD coefficient can be obtained similarly using the linear method.
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5. Experiments

5.1. Acoustic wave equation

5.1.1. Numerical modeling in the layered velocity model

We first consider a layered velocity model. The velocity is 1500 m/s for the first layer and
2500 m/s for the second layer as shown in Figure 4. The sponge boundary code in CREWES
Toolbox is used to reduce artificial reflection waves [34]. A Ricker wavelet with the main
frequency as 14.3 Hz was used as the seismic source. The seismic source position is denoted
as a asterisk, and the receivers A and B are denoted as a circle and a diamond from top to
bottom, respectively. The space grid interval is 20m, the FD operator lengthM is 7 and the time
step is 1.5 ms. The staggered grid FD coefficients used in Figure 4 are shown in Table 1.

The seismograms recorded at positions A and B by different methods are presented in Figure 5.
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c1 c2 c3 c4 c5 c6 c7

1.22861 �0.102384 0.0204768 �0.00417893 0.000689454 �0.0000769225 0.00000423651

1.25438 �0.1235307 0.03467231 �0.01192915 0.00405709 �0.001191005 0.0002263204

v = 1500 m/s 1.57866 �0.296598 0.0949307 �0.0344762 0.0120067 �0.00344529 0.000605554

Table 1. Staggered grid FD coefficient used to obtain the seismograms in Figure 4 with the space grid interval equals
20m, and the time step equals 1.5ms. In the first row is the traditional staggered grid FD coefficient obtained fromTable 3 of
Chu and Stoffa [17]; in the second row is the least squares staggered grid FD coefficient obtained from Table 3 of Liu [35];
and in the last rows are the staggered grid FD coefficients used for Eq. (30). Eqs. (31) and (32) use the simplest second-order
staggered grid FD operator.
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Figure 5. Seismograms recorded by different simulation methods. (a) The traditional staggered grid FD scheme with FD
coefficients determined in the space domain by Taylor expansion method, (b) the traditional staggered grid FD scheme
with FD coefficients determined in the space domain by least squares method, (c) the new staggered grid FD scheme with
FD coefficients determined in the time-space domain by the linear method, and (d) the pseudo-spectrum method.
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coefficient provided by Liu is one of the best staggered grid FD coefficient provided in recent
years [35]. Figure 5(c) is obtained with the new staggered grid FD scheme with the coefficient
determined in the time-space domain by the linear method. Figure 5(d) is obtained with the
pseudo-spectrum method with the second-order acoustic wave equation. We observe that the
grid dispersion in Figure 5(b) and (c) is similar to each other and is close to the nearly analytic
results obtained with the pseudo-spectrum method in Figure 5(d). However, the required
simulation time is reduced by using the new staggered grid FD scheme because Eqs. (31) and
(32) are much simpler than Eqs. (13) and (14).

5.1.2. Numerical modeling in the salt model

Figure 6 shows the salt model from Society of Exploration of geophysicists with variations of
velocities from 1486 to 4790 m/s. The seismic source function is the same as the previous
example. The spatial sampling interval is 20 m, temporal step is 1 ms, andM = 7 for the staggered
grid FD operators in Figure 7(a) and (b). In Figure 7(c), the parameters are M = 7 for the spatial
derivatives in Eq. (1), and M = 1 for the spatial derivatives in Eqs. (2) and (3). The pseudo-
spectrummethod is used for the second-order acoustic wave equation as shown Figure 7(d).

Figure 7(a) is obtained the with the traditional staggered grid FD scheme with the coefficient
obtained in the space domain by Taylor expansion method. The grid dispersion is obvious.
Figure 7(b) is obtained with the traditional staggered grid FD scheme with the coefficient
obtained in the time-space domain by the least squares method [27]. Most of the grid

Figure 6. SEG BP salt model.
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dispersion is suppressed. Figure 7(c) is obtained the with the new staggered grid FD scheme
with the coefficient obtained in the time-space domain by the linear method. The grid disper-
sion in Figure 7(c) is very similar to the grid dispersion in Figure 7(b). However, the simulation
time to get Figure 7(c) is reduced compared with the simulation time to get Figure 7(b). Both

Figure 7. Seismic records obtained with different methods. (a) The traditional staggered grid FD scheme with FD
coefficients determined in the space domain by Taylor expansion method, (b) the traditional staggered grid FD scheme
with FD coefficients determined in the time-space domain by least squares method, (c) the new staggered grid FD scheme
with FD coefficients determined in the time-space domain by the linear method, and (d) the pseudo-spectrum method.
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seismic records in Figure 7(b) and (c) are close to seismic record in Figure 7(d). We want to
mention that the linear method is faster than the LS method to determine the FD coefficients.

Figure 8 Further compares the seismograms in Figure 7 at position x/dx = 400. It is also observed
that with the coefficient obtained in the space domain by Taylor expansion method, the grid
dispersion is serious in the simulation result. The simulation results are almost overlapped for
the traditional staggered grid FD scheme and new staggered grid FD schemewith optimized FD
coefficient. However, the required simulation time is reduced by using the new staggered grid
FD scheme because Eqs. (31) and (32) are much simpler than Eqs. (13) and (14).

Figure 9 compares snapshots of particle velocity vx with the different staggered grid FD
schemes at 2500 ms. it is also observed that with the coefficient obtained in the space domain
by Taylor expansion method, the grid dispersion is most serious. The grid dispersion in
Figure 9(c) is very similar to the grid dispersion in Figure 9(b). It demonstrated that the new
staggered grid FD scheme is accurate for the particle velocities in Eqs. (32) and (33) even when
only second-order staggered grid FD operator is used.

5.2. Elastic wave equation

5.2.1. Numerical modeling in the homogeneous media

We first consider a homogeneous model. The P wave propagation speed is 2598 m/s, and the S
wave velocity is 1500 m/s. The seismic source position is at the center of the model. The grid

Figure 8. Seismograms at x/dx = 400 from Figure 4(a)–(d).
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space interval is 20 m, the time step is 1 ms, and the operator length M is 7. A Ricker wavelet
with the main frequency as 14.3 Hz was used as the seismic source.

The snapshots of the horizontal component obtained by different staggered grid FD methods
are presented in Figure 10(a)–(c). Figure 10(a) is obtained with the traditional staggered grid

Figure 9. Particle velocity snapshots vx obtained with different methods. (a) The traditional staggered grid FD scheme
with the traditional FD coefficients, (b) the traditional staggered grid FD scheme with FD coefficients determined in the
time-space domain by the least squares method, and (c) the new staggered grid FD scheme with FD coefficients
determined in the time-space domain by the linear method.
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FD scheme with the traditional FD coefficient. The grid dispersion is obvious. Figure 10(b) is
obtained with the traditional staggered grid FD scheme with the new FD coefficient. Com-
pared with Figure 10(a), the grid dispersion is suppressed. Figure 10(c) is obtained with the
new staggered grid FD scheme. The grid dispersion curves in Figure 10(b) and (c) are very

Figure 10. Snapshots and slices of snapshots of the horizontal component at 698 ms obtained by different simulation
methods. (a) The traditional staggered gird FD scheme with traditional FD coefficient, (b) the traditional staggered gird
FD scheme with new FD coefficient, (c) the new staggered grid FD scheme with new FD coefficient, and (d) slices of
snapshots at x/dx = 125.
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similar, which is further demonstrated in Figure 10(d). However, with the new staggered grid
FD scheme, we can save about 45% of the modeling time.

5.2.2. Numerical modeling in the homogeneous media

Figure 11 shows the salt model from Society of Exploration of geophysicists. The S wave velocity
is obtained from the P wave velocity. The seismic source function is plotted as a red asterisk. The
spatial sampling interval is 12.5 m, the temporal step is 1 ms, and M = 7 for staggered grid FD
operators.

Figure 12 displays the seismic records of the horizontal component obtained by different
staggered grid FD methods. Figure 12(a) is obtained with the traditional FD scheme with the
traditional staggered grid FD coefficient. The grid dispersion is severe. Figure 12(b) is obtained
with the traditional FD scheme with the staggered grid FD coefficient obtained by the least
squares method. Figure 12(c) is obtained the with the new FD scheme with the staggered
grid FD coefficient obtained by the linear method. It is observed that the grid dispersion in
Figure 12(b) and 12(c) is smaller than the grid dispersion in Figure 12(a). Figure 12(d) is
seismograms obtained from Figure 12(a)–(c). It further demonstrated that the grid dispersion
in Figure 12(b) and (c) is similar to each other and smaller than the grid dispersion in Figure 12(a).
However, with the new FD scheme, the simulation time is reduced about 45%. In our simulation,
there are 525 grids in the z direction and 850 grids in the x direction. With the traditional

Figure 11. SEG BP salt model. (a) P wave velocity and (b) S wave velocity.
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FD scheme, the simulation time is 920 seconds. With the new staggered FD grid scheme, the
simulation time is 530 seconds. The huge reduction in simulation time is due to using the shorter
staggered FD operator for the spatial derivatives in Eqs. (7)–(9). Figure 13 is the seismic records of
the vertical component obtained by different FDmethods. The same pattern can be observed from
Figure 13(a)–(d).

Figure 12. Seismic records of the horizontal component obtained with different staggered grid FD methods. (a) Seismic
records obtained by traditional FD scheme with traditional staggered grid FD coefficient, (b) seismic records obtained by
the traditional FD scheme with new staggered grid FD coefficient, (c) seismic records obtained by the new FD scheme
with new staggered grid FD coefficient, and (d) seismograms obtained from (a) to (c) at position x/dx = 355.
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6. Discussion and conclusion

The FD method is the most commonly used numerical method for wave equation modeling.
Suppressing the grid dispersion is an important research area. Optimization method is usually
used to determine the FD coefficients which could preserve the dispersion relation in a wider
range of wavenumber (Zhang and Yao [24]; Ren and Liu [26]; Tan and Huang [32, 33]). We

Figure 13. Seismic records of the vertical component obtained with different staggered grid FD methods. (a) The
traditional FD scheme with traditional staggered grid FD coefficient, (b) the traditional FD scheme with new staggered
grid FD coefficient, (c) the new FD scheme with new staggered grid FD coefficient, and (d) seismograms obtained from (a)
to (c) at position x/dx = 200.
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introduced the regularized optimization method to determine the FD coefficient which would
be more robust for extreme conditions. The other way to suppress the grid dispersion is the
utilization of the new FD scheme for the spatial derivatives. We introduce to use different FD
operators for different spatial derivatives in the first-order wave equation. With the new
staggered grid FD scheme, the wave equation modeling speed was accelerated while still
preserving high accuracy. Through numerical modeling, we conclude that the introduced
methods are more efficient while still preserving high accuracy for the first-order acoustic/
elastic wave equation modeling. As a result, the introduced methods can be a substitute for the
traditional FDmethods used in acoustic/elastic wave equation modeling, which are essential in
forward seismic wave modeling and reverse-time migration.
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Abstract

Combustion instability is often encountered in various power systems, a good under-
standing on the sound field in acoustic cavity as well as its coupling with boundary
flexible structure will be of great help for the reliability design of such combustion
system. An improved Fourier series method is presented for the acoustic/vibro-acoustic
modelling of acoustic cavity as well as the panel-cavity coupling system. The structural-
acoustic coupling system is described in a unified pattern using the energy principle.
With the aim to construct the admissible functions sufficiently smooth for the enclosed
sound space as well as the flexible boundary structure, the boundary-smoothed auxil-
iary functions are introduced to the standard multi-dimensional Fourier series. All the
unknown coefficients and higher order variables are determined in conjunction with
Rayleigh-Ritz procedure and differential operation term by term. Numerical examples
are then presented to show the correctness and effectiveness of the current model. The
model is verified through the comparison with those from analytic solution and other
approaches. Based on the model established, the influence of boundary conditions on
the acoustic and/or vibro-acoustic characteristics of the structural-acoustic coupling
system is addressed and investigated.

Keywords: enclosed sound space, acoustics analysis, structural-acoustic coupling,
flexible boundary structure

1. Introduction

Combustion instability is often encountered in various power systems, which will further
cause the combustion noise or even the dynamic damage of combustion chamber structure [1].
A good understanding on the vibro-acoustic coupling between the bounded flexible structure
and the thermo-driven acoustic oscillation will be of great significance for the correct design of
combustion system of various power plants. As an important part of such whole thermos-acoustic
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coupling system, the acoustics in cavity and its coupling with its flexible boundary also plays
an important role. For many years, a lot of research effort has been devoted to the coupled
structural-acoustic system.

The acoustic analysis in enclosed space is a classical research topic in acoustics community, and
the rectangular cavity is widely used as the theoretical model. Morse and Bolt [2] first intro-
duced the normal modes theory into room acoustics, and developed a non-linear transcenden-
tal characteristic equation through combining the assumed sound pressure modes with
complex impedance boundary conditions on the walls. Maa [3] derived the transcendental
equation for a rectangular room with non-uniform acoustical boundaries which took the same
form as that of a uniform acoustic admittance case, while the impedance term was conse-
quently non-uniform on certain wall. Recent studies have been mainly focused on developing
more effective root searching algorithms for finding eigensolutions. For instance, Bistafa and
Morrissey [4] compared two different numerical procedures: one is the Newton’s method and
the other is referred to as the homotopic continuation technique based on the numerical
integration of differential equations. The roots are searched for the cases from soft walls to the
terminal impedance with small increments. They found that the latter procedure is much faster
in finding all the possible roots. Naka et al. [5] utilized an interval Newton/generalized
bisection (IN/GB) method to find the roots of the non-linear characteristic equation within
any given interval for the modal analysis of rectangular room with arbitrary wall impedances.

In many occasions, the acoustic cavity is bounded by the flexible structure, and the interaction
between the structural vibration and the acoustic cavity should be taken into account simulta-
neously for the determination of acoustic field characteristics. Among the existing studies, the
most popular modelling approach is the so-called modal coupling theory [6] in which the
structural modes in vacuo and the acoustic cavity modes with rigid walls need to be deter-
mined a priori. The two sets of modes are then combined together, via spatial coupling coeffi-
cients, to find the response of the coupled system. However, as pointed out by Pan et al. [7, 8],
there are two main limitations with the modal coupling theory. One is that such an approach is
only suitable for weak coupling and will be inadequate in dealing with strong coupling
conditions as in the cases where a very thin plate, a shallow cavity depth or a heavy medium
is involved. The other one is related to the use of the rigidly walled cavity modes since then the
particle vibrational velocity on contacting surface cannot be determined from the pressure
gradient, causing the discontinuity of velocity from the cavity to the vibrational panel. In other
words, the basic requirement of velocity continuity on the panel-cavity coupling interface
cannot be satisfied by the modal coupling theory. Then, this approach may be problematic
when the energy transmission is needed for the analysis, since it will be difficult to calculate
the high-order variable using the acoustic mode with rigid wall.

In this chapter, a unified structural-acoustic coupling analysis framework will be introduced
for the representative rectangular cavity and its coupled panel structure. The fully coupling
system is described in the framework of energy. The Fourier series with supplementary terms
is constructed as the admissible functions, which are smoothed in the whole solving domain
including the elastic structural and/or impedance acoustic boundary and coupling interface.
All the unknown coefficients are solved in conjunction with Rayleigh-Ritz procedure. Since the
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field functions are sufficiently smooth, the corresponding high-order variables can be calcu-
lated straightforwardly.

2. Theoretical formulations

2.1. Acoustic cavity with impedance boundary condition

A rectangular acoustical cavity of dimensions Lx � Ly � Lz and the associated coordinate
system are sketched in Figure 1. In this study, it is assumed that an arbitrary impedance
boundary condition is specified on each of the cavity surfaces, that is,

∂p
∂n

¼ �j
ρc
Zi

kp (1)

where j ¼ ffiffiffiffiffiffiffi�1
p

, p is the sound pressure, n denotes the outgoing normal of the surface, ρ and c
are respectively the mass density and the sound speed in the acoustic medium, k (= ω/c) is the
wavenumber with ω being angular frequency, and Zi represents the acoustic impedance on the
ith surface.

2.2. Improved Fourier series representation of admissible function

It is well known that the modal functions for rigid-walled rectangular cavity are simply the
products of cosine functions in three dimensions. Based on the modal superposition principle,
the corresponding sound pressure field inside the cavity can be generally expressed as a 3-D
Fourier cosine series. However, such a Fourier series representation will become problematic
when an impedance boundary condition is specified on one or more of the interior walls. This
assertion is evident from Eq. (1) because the left side of the equation is identically equal to zero
regardless of the actual value of the right side. This problem is mathematically related to the
inability to converge of the traditional Fourier series on the boundaries of a domain under
general boundary conditions. To overcome this difficulty, in this study, a 3-D version of an

Figure 1. A rectangular cavity with general impedance boundary conditions.
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improved Fourier series representation previously developed for the in-plane vibrations of
elastically restrained plates will be used to expand the sound pressure inside the cavity [9].

pðx, y, zÞ ¼
X∞
mx¼0

X∞
my¼0

X∞
mz¼0

Amxmymz cosλmxx cosλmyy cosλmzz
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z¼0

þ ξ2Lz ðzÞbmxmy|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
z¼Lz

2
64

3
75 cosλmxx cosλmyy

þ
X∞
mx¼0

X∞
mz¼0

ξ1LyðyÞcmxmz|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
y¼0

þ ξ2LyðyÞdmxmz|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
y¼Ly

2
664

3
775 cosλmxx cosλmzz

þ
X∞
my¼0

X∞
mz¼0
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(2)

where λms = msπ/Ls, (s = x, y or z), and the supplemental functions are defined as

ξ1LsðsÞ ¼ Lsζsðζs � 1Þ2, ξ2LsðsÞ ¼ Lsζ2s ðζs � 1Þ, ðζs ¼ s=LsÞ (3)

It is easy to verify that

ξ1Lsð0Þ ¼ ξ1LsðLsÞ ¼ ξ
0
1LsðLsÞ ¼ 0, ξ

0
1Ls ð0Þ ¼ 1 (4)

ξ2Lsð0Þ ¼ ξ2LsðLsÞ ¼ ξ
0
2Lsð0Þ ¼ 0, ξ

0
2LsðLsÞ ¼ 1 (5)

In light of Eqs. (3)–(5), one can understand that the 2-D Fourier series expansions in Eq. (2)
mathematically represent the possible non-zero (normal) derivatives of the acoustic pressure
on each of the cavity walls, and the 3-D Fourier series a residual pressure field as if the
impedance boundary conditions on the cavity walls were modified to being infinite rigid.
Mathematically, it can be proved that the modified series solution converges faster and uni-
formly over the entire solution domain including the boundary walls [10, 11].

Since the pressure solution is constructed sufficiently smooth in the current formulation, the
unknown expansion coefficients can be solved in a strong form by letting the series solution
simultaneously satisfy both the governing differential equation (Helmholtz equation) inside
the cavity and the boundary conditions, on the cavity walls on a point-wise basis. In such a
case, because of the boundary conditions, the expansion coefficients for the 2-D series are not
fully independent of those for the 3-D series. While such a procedure may be preferred in the
context of ‘exact’ solution, an alternative procedure for obtaining a weak form of solution will
be employed here because of its potential benefits in modelling complex acoustic systems
consisting of many cavities. The corresponding Lagrangian for the rectangular cavity with
arbitrary impedance boundary conditions can be written as
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L ¼ V � T �Wext (6)

where V denotes the total acoustic potential energy stored in the enclosed volume, T represents
the total kinetic energy and Wext represents all the work done by the applied sources which
include the energy dissipation on the wall surfaces in the current case. These terms can be
explicitly expressed as [12].

The total potential energy V is

V ¼ 1
2ρ0c20

ð

V

p2dV ¼ 1
2ρ0c20

ðLx
0

ðLy
0

ðLz
0
p2ðx, y, zÞdxdydz (7)

where c0 is the speed of sound, and ρ0 is the mass density of the medium in the cavity.

The total kinetic energy T is given as

T ¼ 1
2ρ0ω2

ð

V

ðgrad pÞ2dV

¼ 1
2ρ0ω2

ð

V

∂p
∂x

� �2

þ ∂p
∂y

� �2

þ ∂p
∂z

� �2
" #

dV

¼ 1
2ρ0ω2

ðLx
0

ðLy
0

ðLz
0

∂p
∂x

� �2

þ ∂p
∂y

� �2

þ ∂p
∂z

� �2
" #

dxdydz

(8)

where grad p means the gradient of sound pressure.

By using the relationship between the sound pressure and the particle velocity on impedance
surface, the dissipated acoustic energy can be calculated from

Wwall ¼ � 1
2

ð

S

p2

jω
1
Z
dS ¼ � 1

2

ð

S

p2

jω
YdS (9)

where Z is the complex acoustic impedance of the wall surface, and Y is the complex acoustic
admittance which is defined as the inverse of impedance, namely, Y = 1/Z. For the non-uniform
distributed on a wall surface to account for practical complications, for example, the acoustic
admittance on wall z = 0 can be generally described as Yz0(x, y) = YA � hz0(x, y) where YA is the
complex amplitude and hz0(x, y) is a strength distribution function. In this study, to unify the
formulations and simplify the subsequent calculations, any specified admittance distribution,
such as Yz0(x, y), will be expanded into double Fourier series as

Yx0ðy, zÞ ¼
X∞
ny¼0

X∞
nz¼0

~Y
nynz
x0 cosλnyy cosλnzz (10)

where λns = nsπ/Ls, (s = y or z). In actual numerical calculations, all such Fourier series
expansions will be truncated to ny = Ny and ny = Nz. The non-uniform impedance distributions
on other wall surfaces can be treated in the same way.
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The work done by a sound source inside cavity can be represented as

WS ¼ � 1
2

ð

V

pQ
jω

dv (11)

where Q is the distribution function of a sound source. For a point source located at (xe, ye, ze)
inside the cavity, we have

Q ¼ Q0δðx� xeÞδðy� yeÞδðz� zeÞ (12)

where Q0 is the volume velocity amplitude of the sound source, and δ is Dirac delta function.

Substituting Eqs. (7)–(12) into the acoustic Lagrangian, Eq. (6), and applying the Rayleigh-Ritz
procedure against each of the unknown Fourier series coefficient, a system of linear algebra
equations can be derived as

ðKþ ωZþ ω2MÞE ¼ Q (13)

whereK andM are the stiffness and mass matrixes of the acoustic system, respectively; Z is the
damping matrix due to the dissipative effect of the impedance boundary conditions over the
cavity walls and Q is the external load vector.

In order to determine the modal characteristics of the acoustic cavity, one needs to solve the
characteristic equation by setting the external load vector Q (on the right side of Eq. (14)) to
zero. Since the resulting equation will involve the first-order and second-order terms of oscil-
lation frequency, it is usually rewritten in state space form [13]

ðR� ωSÞG ¼ 0 (14)

where R ¼ � ½0� K
K Z

� �
, S ¼ �K ½0�

½0� M

� �
, G ¼ E

F

� �
and F = ωE.

2.3. Vibro-acoustic coupling of panel-cavity system

The above formulation is mainly about the modelling of pure acoustic cavity, in many situa-
tions, the cavity is bounded by the flexible structure, such as the combustion chamber. For such
structural-acoustic coupling system, the vibration of flexible boundary structure and the
acoustic filed will couple together. As a classical example, the rectangular panel-cavity is often
used as the analysis example for the structural-acoustic coupling study.

As shown in Figure 2, an elastically restrained plate is one of the surfaces enclosing a rectan-
gular acoustical cavity (other five surfaces are assumed to be perfectly rigid for simplicity).
Suppose that the plate is excited by a normal concentrated force F. The vibration of the plate
will cause sound waves radiated into the cavity, and the cavity will in turn affect the panel
vibration by applying sound pressure to the fluid-structure interface. While the phenomenon
is described as causal event, it actually defines a coupled structure-acoustical system in which
the two different physical processes affect each other and have to be determined simulta-
neously by considering the coupling conditions at the interface.
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Although such structural-acoustic coupling system can be analysed by solving the governing
equation and boundary conditions, simultaneously. Similar to the above acoustic analysis of
enclosed sound space, the energy principle can also give the sufficiently accurate prediction of
vibro-acoustic behaviour, when the admissible functions are constructed smooth enough. For
the transverse vibration of a rectangular plate with general elastic boundary supports, its
displacement function will be invariantly expanded into an improved Fourier series as [14].

wðx, yÞ ¼
X∞
m¼0

X∞
n¼0

Ap
mn cosλLxmx cosλLynyþ

X4

l¼1

�
ζlLy ðyÞ

X∞
m¼0

clm cosλLxmxþ ζlLxðxÞ
X∞
n¼0

dln cosλLyny
�

(15)

where λLxm = mπ/Lx, λLyn = nπ/Ly and the superscript pwith Amn means the Fourier coefficients
for the panel displacement. The supplementary functions ζlLx(x) and ζlLy(y) are introduced to
account for all the possible discontinuities with the first and third partial derivatives (with
respect to x or y) of the displacement function along each edge of the plate.

For the panel cavity considered here, the main attention will be paid to the structural-acoustic
continuity, with the other walls kept as rigid. The acoustic pressure filed function is constructed
as [15]

pðx, y, zÞ ¼
X∞
mx¼0

X∞
my¼0

X∞
mz¼0

Aa
mxmymz

cosλmxx cosλmyy cosλmzz

þ ξ2LzðzÞ
X∞
mx¼0

X∞
my¼0

bamxmy
cosλmxx cosλmyy

(16)

where mx, my and mz are all integers, describing the spatial characteristic of a particular mode,
Amxmymz is the complex modal amplitude corresponding to the (mx, my, mz) mode, and λms

= msπ/Ls (s = x, y or z).

Figure 2. A rectangular acoustic cavity bounded by a flexible panel with general boundary conditions.
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The Lagrangian for the plate structure can be expressed as

Lpanel ¼ Upanel � Tpanel �Wpanel þWa&p (17)

where Upanel is the total potential energy associated with the transverse deformation of the panel
and the potential energy stored in the restraining springs; Tpanel denotes the total kinetic energy of
the plate;Wpanel is the work done by the external force F; andWa&p represents the work done by
the sound pressure acting on the structural-acoustic interface which is calculated from

Wa&p ¼
ð

S

wpdS ¼
ðLx
0

ðLy
0
wpdxdy (18)

The total potential and kinetic energy for the elastic plate can be explicitly expressed as
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and

Tpanel ¼ 1
2

ðLx
0
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0
ρh

∂w
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2
ρhω2
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0
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0
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where ρ and h are the mass density and thickness of the plate structure, respectively.

The Lagrangian for the acoustic cavity is

Lcavity ¼ Ucavity � Tcavity �Wp&a (21)

whereUcavity is the total potential energy for the acoustic cavity, Tcavity is the total kinetic energy
of the particle vibrations inside the cavity and Wp&a denotes the work due to the panel
vibration. The (pressure and velocity) continuity conditions the solid-fluid interface implies a
reciprocity relationship, that is, Wp&a = Wa&p.

Substituting Eqs. (15) and (16) into Eqs. (17) and (21) and minimizing them against the
unknown Fourier coefficients, one is able to obtain the final system in matrix form as

Kp Ca&p

0 Ka

" #
� ω2

Mp 0

�CΤ
a&p Ma

" #( )
W
P

� �
¼ Fp

0

� �
(22)
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Once the Fourier coefficient vectors W and P are solved from Eq. (22), the structural displace-
ment on the plate and the sound pressure in the cavity can be readily determined by using
Eqs. (15) and (18). If one is only interested in the modal parameters of the coupled structural-
acoustic system, they can be simply obtained from solving a standard matrix characteristic
equation by setting to zero the loading vector on right hand side of Eq. (22), instead of
searching the singularities (the poles) of the modal coefficients or extracting the resonant peaks
from the frequency response functions of the coupled system. It should be noted that although
only one of cavity surfaces is considered movable in the above discussion, the present method
can be readily extended to an acoustic cavity bounded by multiple plate structures.

3. Numerical examples and discussion

In this section, numerical examples will be presented to demonstrate the effectiveness and
reliability of the proposed method, then based on model established, the vibro-acoustic behav-
iour of the cavity as well as its coupling system with the flexible panel will be studied. The first
example involves a rectangular cavity with each of its walls being perfectly rigid. The related
parameters are as follows: the dimensions are Lx � Ly � Lz = 0.7 � 0.6 � 0.5 m3, the air density
is ρair = 1.21 kg/m3 and the speed of sound is c0.= 340 m/s. For a non-dissipative wall, its
acoustic impedance is described only by an imaginary part.

Table 1 shows a comparison of the first six natural frequencies using the familiar analytic
solution and from the current method. It should be mentioned that the current results were
calculated by truncating the series expansions in Eq. (2) to Mx = My = Mz = 3. The ‘perfect’
match between the current results and the exact solution partially indicates the excellent
mathematical characteristic of the proposed series solution in terms of its convergence and
accuracy. Although only the first six modes were compared in Table 1, a nice agreement for
other higher order modes is also evident from the acoustic response curves presented in
Figure 3. In the subsequent calculations, all the Fourier series expansions will be truncated to
M = 3 in each direction unless otherwise specified.

Now, place a point source of strengthQ0 = 2� 10�5 m3/s into the acoustic cavity at position (Lx/10,
Ly/10 and Lz/10). To account for the air absorption, a modal damping ratio η = 0.01 is assumed
for each acoustic mode. For a relatively small acoustic damping ratio, the dissipative effect can
be accounted for simply through introducing a complex wavenumber k’ = k(1 � jξ) [16]. In this

Natural frequency (Hz)

1 2 3 4 5 6

Current 0.00 242.86 283.33 340.00 373.17 417.83

Analytical 0.00 242.86 283.33 340.00 373.17 417.83

Table 1. The six lowest natural frequencies for a cavity with perfectly rigid walls.
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method, a complex sound speed ~c ¼ cð1� jηÞ is used instead. Since k0 ¼ ω=~c (or, ω/[c(1 � jη)]
= k(1 � jξ)), it is easy to see that η = �ξ/(1 � jξ). The sound pressure levels at two observation
points, (3Lx/10, 4Ly/10, 5Lz/10) and (9Lx/10, 9Ly/10, 9Lz/10), are plotted in Figure 3 in the
frequency range of 0–500 Hz. For comparison, the results obtained based on the superposi-
tion of 245 analytical modes are also presented. An excellent comparison between the two
predictions is seen over the entire frequency range [16].

Another extreme case of the non-dissipative boundary conditions is the so-called pressure
release (or zero-pressure), which is described by infinitely small pure imaginary impedance
on surface (j10�5 in the actual calculations). Suppose that a cavity of 2.12� 6.06� 2.12 m3 has a
pressure-release condition at surface y = Ly (= 6.06 m), and the rest walls are perfectly rigid. A
point source with strength as Q0 = 2 � 10�5 m3/s is placed at (1.86, 0.26 and 0.26 m). To account
for the larger dimension in the y direction, more expansion terms are retained accordingly, that
is, My = 7 as compared with M x= Mz = 3.

The sound pressure at (0.1, 5.96 and 2.02 m) is plotted in Figure 4 as a function of frequency.
This problem was previously solved by using an equivalent source technique, and the result
was also shown in Figure 4 as a reference. It is seen that the two predictions are in a good
agreement. However, slight separation between them can be noticed as frequency increases.
This is probably caused by the possible loss of the accuracy of the equivalent source technique
due to the use of an insufficient number of equivalent sources at higher frequencies. Plotted in
Figure 5 are sound pressure fields inside the cavity at 14 and 42 Hz, respectively. Since two
frequencies are very close to the first two resonance frequencies (refer to Figure 4), the distri-
butions essentially resemble the first and second acoustic mode shapes. It is observed from
Figure 5 that the sound pressure decreases rapidly in approaching to (and eventually vanishes
on) the wall of y = Ly. The pressure fields are basically uniform on the cross-section perpendic-
ular to y-axis. These two pressure patterns may be considered to evolve the familiar (1, 0, 0)
and (2, 0, 0) modes for the cavity with each wall being perfectly rigid. The existence of the zero-
pressure wall at y = Ly causes the nodal surfaces to shift towards it.

(a) (b)

Figure 3. Sound pressure responses inside the cavity at: (a) (3Lx/10, 4Ly/10, 5Lz/10) and (b) (9Lx/10, 9Ly/10, 9Lz/10).
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To better understand the effect of impedance boundary conditions on the acoustical character-
istic of an enclosed space, the frequency responses at the observing point (0.1, 5.96 and 2.02 m)
are plotted in Figure 6 for a wide range of impedance values from j10�5 to j105 specified on
surface y = Ly (= 6.06 m), while the other walls are kept acoustically rigid. For small imped-
ances, Zi ≤ j104, both the resonance frequencies and response amplitudes show a strong

Figure 4. Soundpressure at (0.1, 5.96 and 2.02m) inside the cavitywith pressure release boundary specified on thewall y = Ly.

Figure 5. Sound pressure fields with a pressure release described by an infinitely small impedance on the surface (j10�5 in
the actual calculations) on surface y = Ly (=6.06m) at: (a) 14 Hz and (b) 42 Hz.
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dependence on the specified impedance value. However, when the wall becomes sufficiently
rigid, Zi > j104, a further increase of the impedance will have little effect on the pressure field.

In the aforementioned examples, the results are mainly on the acoustic cavity analysis, as
demonstrated in the above formulations, the current modelling framework can be used for
the treatment of vibro-acoustics analysis of panel-cavity system by simply including the
vibrational energy in the whole description. The model will be first valeted, and then, the main
emphasis will be put on the model validation and the influence of structural boundary condi-
tion on the coupling characteristics of such panel-cavity system.

For the model verification on the modal parameter prediction, consider a problem previously
studied in Ref. [17] where an acoustic cavity (Lx � Ly � Lz = 0.2032 m � 0.4064 m � 0.6096 m) is
coupled to a simply supported rectangular plate (Lx � Ly = 0.2032 m � 0.4064 m) of thickness
1.524 mm. The other five walls of the cavity are considered as acoustically rigid. The material
properties of the plate are specified as: Poisson’s ratio μ = 0.3, Young’s modulus E = 71 � 109 Pa
and mass density ρpanel = 2700 kg/m3. The density of and sound speed in the air cavity are ρair
= 1.21 kg/m3 and c0 = 344 m/s, respectively. In the current solution method, the simply
supported boundary condition can be easily realized by respectively setting the stiffnesses of
the rotational and translational springs to zero and infinity which is actually represented by a
very large number, 5 � 109, in the numerical calculations.

Table 2 shows the first 20 natural frequencies of the coupled panel-cavity system. The data
from Ref. [17] were also listed there for comparison. A nice agreement can be observed
between these two sets of results with the largest difference being less than 0.35%. In this
example, the Fourier series is truncated to Mp = Np = 12 for plate displacement and to Mxa =
Mya = Mza = 3 for the cavity pressure.

Figure 6. Effect of varying impedance boundary condition on the sound pressure response at observing position (0.1, 5.96
and 2.02 m), in which the impedance variation is specified on surface y = Ly (=6.06 m) while the other walls are kept
acoustically rigid.
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Next, we will examine the effect of cavity depth on the modal parameters. As in Ref. [18], the
cavity dimensions are chosen as: Lx � Ly � Lz = 0.2 m � 0.2 m �Hdepth. The cavity is enclosed at
z = Lz by a simply supported copper panel, and its remaining five walls are assumed to be
perfectly rigid. The panel thickness is 0.9144 mm, and its material properties are mass density
ρs = 8440 kg/m3, Poisson’s ratio μ = 0.35 and Young’s modulus E = 105 � 109 Pa. The acoustic
medium is air having the same properties as in the first example. Table 2 gives the first six
modal frequencies of the coupled system with a good comparison with the results previously
presented in Ref. [18].

From the standpoint of structural vibration, the acoustic cavity may be approximately viewed
as Winkler springs with a probably non-uniform stiffness distribution over the area of the
panel, depending upon frequency. To understand its significance, the effects of varying edge
restraining stiffnesses on the fundamental frequency of the coupled system are studied for a
range of cavity depths. In this analysis, the copper panel is assumed to be uniformly supported
along all four edges. Shown in Figure 7(a) are the results for a configuration in which, by
keeping the rotational stiffness to zero, the stiffness for the translational spring is increased
from zero (completely free) to infinity (simply supported). It is evident that reducing the cavity

Mode order Ref. [17] (Hz) Current (Hz) Difference (%)

1 113.91 114.06 0.13

2 177.48 178.04 0.32

3 280.71 281.02 0.11

4 295.97 296.62 0.22

5 379.77 379.71 0.02

6 423.05 423.11 0.01

7 447.32 447.96 0.14

8 448.06 449.21 0.26

9 511.5 511.52 0.00

10 559.9 561.49 0.28

11 565.89 565.9 0.00

12 650.43 652.6 0.33

13 706.59 706.6 0.00

14 717.41 719.91 0.35

15 829.09 826.97 0.26

16 846.99 847 0.00

17 847.03 847.04 0.00

18 850.95 850.59 0.04

19 892.84 892.92 0.01

20 893.4 893.39 0.00

Table 2. The first 20 modal frequencies for the coupled panel-cavity system.
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depth is equivalent to increasing the stiffness of the Winker springs. For small restraining
stiffness, k ≤ 103, the first mode is manifested in a piston-like motion, and the fundamental
frequency is primarily determined by the edge restraints. However, as the edge springs
become sufficiently strong, k ≥ 107, the air cavity starts to take over as a dominating factor in
affecting the value of the fundamental frequency. For intermediate values, 104 ≤ k ≤ 106, the
fundamental frequency tends to show a strong dependence on the stiffness of the edge
restraints.

By letting the translational springs be infinitely rigid, we now add rotational restraints to the
edges. The fundamental frequency curves are plotted in Figure 7(b) for various combinations
of cavity depths and spring stiffnesses. Again, it is seen that the decreasing the cavity depth is
equivalent to increasing the stiffness of the Winkler springs and hence the fundamental fre-
quency of the panel wall. The above results also indicate that there tends to exist stronger
structural acoustic coupling for a thinner air gap. This statement may have a meaningful
implication to the design of double-walled sound isolation.

We will now direct our attention to the vibro-acoustic responses of the coupled system. For
validation, the cavity dimensions will be modified to: Lx � Ly � Lz = 1.5 m� 0.3 m� 0.4 m. The
top surface of the cavity is a simply supported plate of thickness h = 5 mm. Other relevant
material properties are given as: ρAl = 2770 kg/m3, Young’s modulus E = 71 � 109 Pa, Poisson’s
ratio μ = 0.33, air density ρair = 1.21 kg/m

3 and speed of sound v = 340 m/s. The damping ratio ξ =
0.01 is used for both the plate and air cavities. A unit force is applied to the plate at point
(13Lx/30, Ly/2). This model was studied before by Kim and Brennan [19] using an impedance
and mobility approach which is essentially the same as the modal coupling theory. Figure 8
shows the velocity responses at two separate locations, (13Lx/30, Ly/2) and (16Lx/30, Ly/3).
Plotted in Figure 9 are the sound pressures inside the cavity at (4Lx/10, Ly/2, Lz/2) and (Lx/2,
Ly/2, Lz/2). The reference values in the dB scales are 10�9 m/s for velocity and 2 � 10�5 Pa for
sound pressure. It is seen that both the resonant peaks (namely, natural frequencies of the
coupled system) and magnitude of the calculated vibrational and acoustic responses match
very well with the analytical predictions from the impedance and mobility approach [19],

Figure 7. Effect of the boundary restraining stiffness on the first modal frequency of the coupled system: (a) varying the
stiffness of the translational springs; (b) varying the rotational stiffness.
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which are plotted as the dotted curves in Figures 8 and 9. In this analysis, the Fourier series is
truncated toMp = Np = 12 for the plate displacement and toMxa = 5,Mya =Mza = 3 for the cavity
pressure.

As mentioned earlier, the conventional modal coupling theory suffers a velocity discontinuity
problem at the fluid-structure interface, that is, the particle velocity on/near the interface
cannot correctly calculated from the pressure gradient. However, this velocity continuity
requirement is faithfully enforced in the current method. To illustrate this point, Figure 10(a)
shows the velocity response at (3Lx/10, Ly/4, Lz) on the panel. Because of the relatively large
length-to-width ratio (Lx/Ly = 1.5/0.3 = 5), it is reasonable to include more x-related terms in the
Fourier series for the cavity pressure to better capture the faster variation of pressure gradient
in the x-direction. It is seen that setting the truncation number to Mx = 10 has effectively
ensured the velocity continuity on the interface. The direct and indirect velocities are also
compared in Figure 10(b) at a different point, (Lx/4, Ly/4, Lz), on the interface. Plotted in
Figure 11 are the comparisons of the velocity responses at (3Lx/10, 4Ly/5, z) predicted by the

Figure 8. Velocity responses of the plate at: (a) (13Lx/30, Ly/2) and (b) (16Lx/30, Ly/3).

Figure 9. Sound pressure responses at: (a) (4Lx/10, Ly/2, Lz/2) and (b) (Lx/2, Ly/2, Lz/2).
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Figure 10. Velocity responses on the interface at: (a) (3Lx/10, Ly/4) and (b) (Lx/4, Ly/4).

Figure 11. Comparison of the current method and modal coupling theory on predicting the particle velocity response at
(3Lx/10, 4Ly/5, z) with different spatial coordinates along z-axis: (a) z = 0.85Lz; (b) z = 0.90Lz; (c) z = 0.95Lz; and (d) z = 0.99Lz.
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current method and modal coupling theory for different z-values: z = 0.85Lz, 0.90Lz, 0.95Lz and
0.99Lz. It is observed that the particle velocity can be better estimated by using the current
method, particularly for the cases very close to the panel-cavity interface. Once the reliable
prediction has been made for the particle velocity, other variables of interest such as sound
intensity can be calculated. Figure 12 presents the calculated sound intensity near the interface
at (3Lx/10, 4Ly/5, 0.99Lz). Since sound intensity is a vector, the negative value indicates that its
direction is opposite to the z-axis. It can be found that the acoustic energy is not always
transmitted from the vibrating panel into acoustical cavity in the whole frequency range at
this observing point. The calculated results using modal coupling theory are also shown there;
obviously, such an approach cannot be correctly used to predict sound intensity due to its poor
accuracy with predicting particle velocity from pressure gradient in the vicinity of the vibrat-
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4. Conclusions

An improved Fourier series method is presented for the acoustic/vibro-acoustic modelling of
acoustic cavity as well as its coupling with flexible boundary structure. The coupled system is
described in a unified pattern by using the energy description. With the aim to construct the
structural-acoustic admissible functions smooth sufficiently in the whole solving domain,
boundary-smoothed auxiliary functions are introduced to the standard multi-dimensional Fou-
rier series on the system boundary as well as the coupling interface. In conjunction with

Figure 12. Sound intensity at (3Lx/10, 4Ly/5, 0.99Lz) predicted by current method and modal coupling theory.
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Rayleigh-Ritz procedure, all the unknown coefficients can be easily derived, and the relevant
higher order acoustic variables, such as energy power flow, can be determined straightforwardly.

The theoretical formulation is implemented in the Matlab environment. Numerical results are
presented to illustrate the effectiveness and efficiency of the proposed model. The correctness
and reliability is then verified by comparing with those from other method or numerical
solution. Based on the model established, influence of boundary condition on the acoustic or
structural-acoustic coupling characteristics is addressed and investigated in details. This work
can present an efficient analysis tool for the acoustic or structural-acoustic analysis of the
enclosed sound space and flexible structure. This work shows that the desired modal charac-
teristics of coupling system can be obtained by adjusting boundary conditions properly.
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Abstract

Wave properties of strongly coupled complex dusty (SCCD) plasmas evaluated using the 
equilibrium molecular dynamics (EMD) simulation technique. In this work, the plasma 
normalized longitudinal current correlation function CL(k,t) and transverse current CT(k,t) 
are calculated for a large range of plasma parameters of Coulomb coupling parameter 
(Γ) and screening strength (κ) with varying wave’s number (k). In EMD simulations, we 
have analysed different modes of wave propagation in SCCD plasmas with increasing 
and decreasing sequences of different combinations of plasmas parameters (κ, Γ) at vary-
ing simulation time step (Δt). Our simulation results show that the fluctuation of waves 
increases with an increase of Γ and decreases with increasing κ. Additional test shows 
that the presented results for waves are slightly dependent on number of particles (N). 
The amplitude and time period of CL(k,t) and CT(k,t) also depend on different influenced 
parameters of κ, Γ, k and N. The new results obtained through the presented EMD method 
for complex dusty plasma discussed and compared with earlier simulation results based 
on different numerical methods. It is demonstrated that the presented model is the best 
tool for estimating the behaviour of waves in strongly coupled complex system (dusty 
plasmas) over a suitable range of parameters.

Keywords: wave properties, plasma parameter, current correlation function, dynamic 
structure factor, strongly coupled complex (dusty) plasmas, equilibrium molecular 
dynamics

1. Introduction

Transport properties of complex dusty plasma have been very actively investigated in the 
laboratory and by computer simulations, and wave properties have played a dominated role 
in both system monitoring and optimization. Waves in complex system have a dynamical 
role for understanding the behaviours of individual particles in different applications, for 
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example, instabilities and wave propagation during flow. The subject of complex liquids or 
dusty plasmas containing micron-size charged condensed particles has recently been actively 
investigated in the physics and chemistry of plasmas, ionized gases, and the space environ-
ment, environmental sciences, semiconductor plasma processing industries, nuclear energy 
generation and materials research. Dust in atmosphere and in the entire universe is in differ-
ent shapes and sizes. Mostly, it is in solid form and also in liquid and gaseous forms. Dust 
particle coexists with plasma and then forms dusty (complex) plasma. In the plasma when an 
electron is displaced from their equilibrium position, the electrostatic forces due to ions pull 
the electron back. Due to small mass of electron, overshoot the ions and oscillation in plasma 
is started.

1.1. Plasma

There are four states of matter: liquid, solid, gas and plasma. The Irving Langmuir, an American 
physicist, defines plasma first time as “plasma is a quasi-neutral gas of the charged particles 
that show collective behaviors.” He received Noble prize in 1927 first time using the term 
“plasma” [1]. The quasi neutral means “when the number of ions is equal to the number of elec-
trons then gas becomes electrically neutral (ni ≈ ne)”. Collective behaviour means that charged 
particle collides with each other due to electric field and coulomb potential. Applications of 
plasma in industries, science and technology and in our daily life are very significant [2, 3].

1.1.1. History of plasma

In 1922, the term plasma is used and defined by an American scientist Irving Langmuir. In 
1930, a few isolated researchers, each motivated by some specific practical problems, began 
the study of what is now called plasma physics. In 1940, Hanes Alfven developed theory 
of hydrodynamic waves and gives the future prospectus of waves in astrophysical plasma 
(now called Alfven’s waves). In 1950, research on magnetic fusion energy was started based 
on plasma physics in the USA, Soviet and Britain. The end decade of 1960 Russian Tokomak 
configuration empirically developed and created plasma with different parameters. In 1970 
and 1980, the performance of tokomak was improved at the end of twentieth century and 
fusion break-even nearly achieved in tokomak. In the 1980s, many new applications of plasma 
in different fields of science and technology appeared. In the 1990s, study on dusty plasma 
was started (when the dust particles are immersed in plasma, they change the properties of 
plasma, which is known as dusty plasma) [4, 5].

1.1.2. Types of plasma

Plasma classified on the basis of temperature of electrons, ions and degree of ionization as 
well as density.

1.1.3. Cold plasma

Ti, Te and Tg are the temperatures of ions, electron and gas respectively, if the plasmas satisfy 
Te > > Ti > > Tg condition is called cold plasma. The pressure of the cold plasma is low than 
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collisions between electrons, ions and gases molecule that are not frequent. In this plasma, 
non-thermal symmetry between energies of gas molecules and electrons are not existed. 
Temperature of electrons is higher than ions and has greater energy than ions. Similarly, ions 
have greater energy than gas molecules. In this type of plasma, the effect of magnetic field 
is very weak and also can be ignored; only charge particles are affected by electric field. It is 
created in the laboratory on positive column of the glow discharge tube. Applications of cold 
plasma in food processing, sterilization of tooth, hand and self-decontaminating filter. It is 
used as a convenient descriptor to distinguish one-atmosphere. Examples of cold plasma are 
fluorescent lamps and neon signs [6].

1.1.4. Ultracold plasma

If the plasma having very low temperature approximately 100 mK to 10 μK, density 2×109cm3, 
interaction between particles is strong and the thermal energy of the particles is low com-
pared with Coulomb energy between interacting particles known as ultracold plasma. It is 
created by pulsed lasers, laser-cooled atoms and photo ionization [7].

1.1.5. Hot plasma

If the plasmas have very high temperature, the collision between interacting particles is very 
frequent also thermal equilibrium obtains, if plasma satisfies Te ≅ Ti, this condition is known 
as hot plasma or thermal plasma. It is created in laboratory with high gas pressure in the dis-
charge tube. Hot plasma acquired local thermodynamic equilibrium (LTE). Examples of hot 
plasma are atmospheric arcs, sparks and flame. In the hot plasma, the thermal equilibrium 
occurs between the gas molecules and electrons when electron collides with the gas molecules 
at a high pressure in the discharge tube.

1.1.6. Ideal plasma

It is defined by a plasma parameter which is known as Coulomb coupling and denoted by  Γ =   P . E ____ K . E   . 
Whenever, Γ< 1, then that plasma is called ideal plasma. In ideal plasma, the kinetic energy (KE) of 
the plasma is greater than potential energy (PE) at low density and high temperature. In the ideal 
plasma, the value of Coulomb coupling is negligible. Due to low density, the collisions between 
particles are less, and ideal plasma does not have a specific structure [8, 9].

1.1.7. Non-ideal complex (dusty) plasma

When dust particles are immersed in the plasma, then the properties of plasma become com-
plex known as complex (dusty) plasma. The dust particles are charged and much larger than 
electrons, ions and neutral atoms, and their size varies from millimetre to nanometre. The 
properties of dust particles are investigated in different fields of research such as plasma 
physics, plasma chemistry, ionized gases, material research and astrophysics and also in 
space physics. Dust particle changes different properties of plasma dominate in current car-
rier, form liquid and crystalline states. Comets, exposed dusty surfaces, planetary rings and 
zodiacal dust cloud are the examples of dusty plasma [10–12].
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1.2. Dust particle in plasma

Dust in atmosphere and in the entire universe is in different shapes and sizes. Mostly, it is 
in solid form and also presents in liquid and gaseous forms. If dust particle coexists with 
plasma, it forms dusty (complex) plasma. Dust particle acquires charge and is affected by 
electric and magnetic fields. Temperature on the dust particle is approximately 10 K, and 
electric potential varies from 1 to 10 V is mostly negatively potential. Charge on dust particle 
depends on the flow of electrons and ions. It can be grown or inserted in low-temperature 
plasma at low degree of ionization in the laboratory. It becomes a dominant component of 
dusty plasma for transports of energy, momentum and mass. In these days, dusty plasma 
becomes more significant in the field of research of science and technology by investigating 
its transport properties in the laboratory. Currently, complex plasma becomes more interest-
ing field of research. The major ratio of plasma in the universe is dusty plasma. It is a huge 
occurrence in magneto and ionosphere of earth, atmosphere of stars, sun, solar wind, galaxies 
cosmic radiations, planetary rings comet tails and nebulae. Dusty plasma also known as com-
plex plasma has electrons, ions, neutral and dust particles components [12].

1.2.1. Charge on dust particle

Dust particles in plasma gain the electric charge, which they obtained in the plasma. The 
charge on dust particle can range from zero to hundreds of thousands of electrons depending 
on the size and shape of the dust particle. When a dust grain immersed in an ionized medium, 
soon it gains a charge when its surface is contact with plasma. This is valid for small floating 
objects like dust particles, also for electrode surfaces and macroscopic objects inserted into 
the discharge tube. This charge determines by balancing positive ion and the electron current. 
These currents must be equal in a steady state. Due to high mobility of the electrons as com-
pared to ions, the surface collects negative charges, which attracts positive ions and repel the 
electrons until an immobile state is reached. Therefore, by equating fluxes between electrons 
and ions, the charge on particle can be obtained. This charge is responsible for confinement 
and long lifetimes of particles in plasmas. Due to interactions between these particles, waves, 
instabilities and other collective phenomena are produced.

1.2.2. Size of dust particle

Dust particles are much larger than electrons and ions, and its size varies from 10−3 m to 
10−9 m. A typically used particle may have a diameter of 3.50±0.05 μm and a mass ~3×10−11 kg. 
Such particles are named mono disperse. It has any shape, mostly spherical, and also easily 
observed in laboratory without any microscope. It is made by conducting or dielectric mate-
rial [12, 13].

1.2.3. Nature of dust particle

Dust particles that collect the plasma particles such as electrons and ions on their surface 
become an interacting particle. In the dusty plasma energy, momentum and mass are trans-
ferred through dust particle. Dust particle may be in liquid, solid and gaseous forms.
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1.3. Application of plasma in daily life

Plasma is widely used in the field of science, technology and in our daily life. Plasma science 
also affects human life in different fields and ways. It plays a very important role in the steril-
izing of medical instruments, laser, developments of fusion energy, intense particle beams, 
plasma processing, lightening, development fusion energy controlling, high-power energy 
sources, high-power radiations sources and water purification plant [3]. X-ray and ultraviolet 
electron beams and radiations, which are emitted by plasma-centered sources, have a diver-
sity of applications in different fields.

1.3.1. Application of plasma in textiles

In textile industries, plasma used for surface treatment shows a large number of advan-
tages. Different plasma treatments were used to modify the surface of fabrics, such as cold 
plasma treatments, which modify the large and reliable systems in fabrics. Three effects 
are found on the textile surfaces during plasma treatments: (1) cleaning effect, (2) increase 
of micro roughness and (3) produce deliquescent surfaces. The plasma polymerization 
is a process in which solid polymeric materials are deposited on textile substrate with 
required properties; currently, this technique is under development, and in this technique 
only upper surface is modified. This treatment also has optimistic effects on printing and 
dying of wool and has proved to be successful in shrink-resist. Improvement of surface 
wetting technique in artificial polymers is done with treatment in oxygen-, air- and NH3 
plasma. Hydrophilic treatment used as a dirt-repellent and antistatic finish [Sparavigna, 
2008]. Plasma treatment is environmental friendly in which only upper layer of surface is 
modified without changing its bulk properties. Vacuum plasma is used on a small scale 
as is used in reel-to-reel machinery at the industrial scale; it plays a vital role to enhance 
a number of properties, including liquid repellency, the specific surface functionality and 
improved wet ability.

1.3.2. Application of plasma in industry

The surfaces of optics and contact lenses can be cleaned by plasma treatment. In this pro-
cess, thin layer of the organic impurity is removed almost from all surfaces. Plasmas are 
used for the manufacturing of semiconductor chips in discharge tube, and the dust particles 
are essentially formed from the reactive gases used for the creation of plasmas. These dust 
particles are used for the manufacturing of semiconductor chips and give the significant 
results for the conduction of electric current. In the aerospace industries, plasma treatment 
of composite and polymer materials are commonly used. This treatment has advantages in 
adhesive and cleaning bonding of the dissimilar materials. In the automotive industries, 
adhesion of the exterior and interior parts is increased by the plasma treatment appara-
tus and plasma treatment procedures without any heat effect that commonly facing with 
flames. The Henniker is well known as a great leader in this field because he controlled 
plasma systems with low cost for almost in every common automotive development mis-
sion [2, 3, 11].
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1.4. Waves in plasma

1.4.1. Plasma oscillation

In the plasma, when an electron is displaced from their equilibrium position, the electrostatic 
forces due to ions pull the electron back. Due to small mass of electron, overshoot the ions and 
oscillation in plasma are started. The plasma oscillation leads to plasma frequency which is 
denoted by ωpe. When the amplitude of oscillation is small, then oscillation forms a sinusoidal 
waveform. Mathematically, oscillation is represented as:

  n =   n ¯¯   exp  [i (k . r − 𝜔𝜔t) ]   (1)

where n is the density,    n ¯¯    is the constant that tells about the amplitude of waves and k is propa-
gation constant that describes the direction of waves and t is the time. The propagation con-
stant in Cartesian coordinates

  k . r =  k  x   x +  k  y   y +  k  y   y  (2)

The phase velocity is    dx ___ dt   =   ω __ k   =  ν  
φ
    that gives the direction of waves negatively or positively. 

Sometimes the phase velocity in plasma exceeds the velocity of light c. The group velocity is   
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   that depends upon the density of plasma and does 
not depend on k.

1.4.2. Classification of waves in plasma

In this chapter, we classified plasma waves with respect to direction of motion of charge par-
ticles (electron, ion), which are perpendicular or parallel to the direction of propagation. The 
longitudinal waves consist of electrostatic (ion and electron) waves and transverse wave con-
sists of electromagnetic (ion and electron) waves, mostly transverse component and sometime 
longitudinal component also.

1.5. Electron waves (electrostatic)

1.5.1. Plasma oscillation

Plasma oscillation, also known as Irving Langmuir waves, is discovered by American sci-
entists Irving Langmuir and Lewi Tonks in 1920, and the frequency of plasma oscillation 
is high due to low electron density in the conducting materials such as metal and plasma. 
It is found in interstellar gas clouds and earth atmosphere. Mathematically, it is written as   
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1.5.2. Upper hybrid oscillation

The upper hybrid oscillation is a resonance phenomenon in plasma which the electric field 
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1.6. Ions waves (electrostatic)

1.6.1. Acoustic waves

It is a type of longitudinal waves in magnetized plasma that propagates due to compression 
mode and its direction along the magnetic field lines. The particle velocity, sound pressure, 
sound intensity and particle displacement are the important quantities of acoustic waves. It 
exhibits the interference, diffraction and reflection phenomenon. In general, ion acoustic wave 
formula is [1, 14],   ω   2  =  k   2    ν  

s
     2  =  k   2    

 γ  e    KT  e   +  γ  i    KT  i   __________ M   .

2. EMD model for correlation relations and numerical technique

In this section, we introduce the molecular dynamic simulation technique and its theoretical 
background that was needed in this work. We introduced a system of mathematical model 
that used and applied in the computer simulations and also explained steps for molecu-
lar dynamics simulation codes. In addition, it also explains the simulation parameters and 
techniques. Yukawa potential was first time proposed by a scientist Hideki Yukawa in 1930. 
Through this potential, charged particles do interact, which is defined as

  φ ( |r| )  =    Q   2  ____ 4  𝜋𝜋𝜋𝜋  o  
      e    − |r| ⁄ λ  D     ___  |r|     (3)

where Q is the charge on dust particle interacts with other charge particle, ε0 is the permit-
tivity of free space, r is the distance of interacting particle and λD is Debye screening length.

2.1. Current correlation functions

The particle current or momentum current for single atomic (molecule) species in MD unit is 
given as:

  π (r, t)  =  Σ  
j
     v  j   δ (r −  r  j   (t) )   (4)

where vj and rj are the velocity and position of jth particle. By using the Fourier transforma-
tion, Eq. (4) should be written as:

  π (k, t)  =  Σ  
j
     v  j    e   −ik. r  j   (t)    (5)

The correlation function of the current vector component is defined as:

    C  𝛼𝛼𝛼𝛼   (k, t)  =    k   2  _  N  m     (    π  α   (k, t)   π  β   (− k, 0)    (6)

For the isotropic fluid under the consideration of symmetry, Eq. (6) can be expressed in terms 
of longitudinal current correlation and transverse current correlation in the relative direction 
of k, where k is the wave vector.

   C  𝛼𝛼𝛼𝛼   (k, t)  =   
 k  α    k  β   ____  k   2     C  L   (k, t)  +  ( δ  𝛼𝛼𝛼𝛼   −   

 k  𝛼𝛼𝛼𝛼   ___  k   2   )   C  T   (k, t)   (7)

Sound Waves in Complex (Dusty) Plasmas
http://dx.doi.org/10.5772/intechopen.71203

53



By setting  k = k z ̂   , we obtain longitudinal and transverse current functions in X, Y and Z direc-
tion relative to the k and −k.

2.2. Normalized longitudinal current correlation function CL(k,t)

Eq. (7) split into longitudinal current and transverse current by using the Fourier transformation as:

   C  L   (k, t)  =    k   2  ___  N  m      〈  π  z   (k, t)   π  z  (− k ,  0) 〉   (8)

Inserting the value of πz in Eq. (8), we have

   C  L   (k, t)  =    k   2  ___  N  m     〈 Σ  v  i    e   −ik. z  j   (t)   (k, t) ∑  v  j    e   −ik.Z (k ,  t) 〉   (9)

Longitudinal current correlation function explains the direction of propagates along Z-axis in 
the positive and negative directions of Z-axis with wave number. This equation also specifies 
about longitudinal motion of charge particle.

2.3. Time-dependent normalized transverse current correlation CT(k,t)

Using the Fourier transformation for Eq. (7), the transverse current correlation is defined as:

   C  T   (k, t)  =    k   2  ____ 2  N  m     〈 π  x    (k, t)      π  x   (− k, 0)  +  π  y  (k ,  t)  π  y  (− k , t)〉   (10)

where

   π  x   (k, t)  =  Σ  
j
     v  j    e   −ik. x  j   (t)    (11)

   π  y   (k, t)  =  Σ  
j
     v  j    e   −ik. y  j   (t)    (12)

Eq. (12) states about the directions of propagation of electromagnetic waves with respect to 
wave number along the positive and negative X- and Y-axes. The transverse current correla-
tions also describe us about transverse motion of charge particle in complex system or com-
plex (dusty) plasma [15–17].

2.4. Parameters and simulation techniques

In this section, we select a system of choice having number of particles N = 500–4000: these 
existing particles in a cube volume (V) interact with each other by pairwise Yukawa potential 
given in Eq. (3). In this chapter, the EMD simulation technique has been used to investigate the 
longitudinal current correlation and transverse current correlation that are given in Eqs. (9) 
and (10), respectively. The dimensions of simulation box are chosen as Lx, LY, LZ. The periodic 
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boundary condition is used to minimize the surface size effect and applied to the simulation 
box. In our case, the main calculations are performed for N = 500 particles at κ = 1.4, 2, 3 and 4 
with plasma coupling parameters Γ (temperature of the Yukawa system) varies from 1 to 300 
and waves numbers k = 0, 1, 2 and 3. The simulation time step is taken as Δt = 0.005/ωp that 
allows to compute the important data for sufficient long simulation run. The EMD method 
is reported for the current correlation of SCCD plasma over reasonable domain of plasma 
parameters of Debye screening (1 ≤ κ ≤ 4) and Coulomb coupling (1 ≤ Γ ≤ 300). Particle veloc-
ity thermostat is used to control the temperature of systems. The reported simulations are 
performed between 5.0 × 105/ωp and 2.0 × 105/ωp time units in the series of data recording of 
correlation functions [16, 17].

3. EMD simulation results

3.1. Time-dependent longitudinal current correlation function CL(k,t), at κ = 1.4

Figure 1. Variation of CL(k,t) as a function of simulation time step (Δt) of strongly coupled complex plasma at κ =1.4, 
N = 500, waves number k = 0, 1, 2 and 3 for (a) Γ =1, (b) Γ =2, (c) Γ =50 and (d) Γ =100.

Sound Waves in Complex (Dusty) Plasmas
http://dx.doi.org/10.5772/intechopen.71203

55



3.2. Time-dependent longitudinal current correlation function CL(k,t) at κ = 2

3.3. Time-dependent longitudinal current correlation function CL(k,t) at κ = 3

Figure 3. Variation of CL(k,t) as a function of simulation time step (Δt) of strongly coupled complex plasma at κ =3, 
N = 500, waves number k = 0, 1, 2 and 3 for (a) Γ =1, (b) Γ =2, (c) Γ =50 and (d) Γ =100.

Figure 2. Variation of CL(k,t) as a function of simulation time step (Δt) of strongly coupled complex plasma at κ =2, 
N = 500, waves number k = 0, 1, 2 and 3 for (a) Γ =1, (b) Γ =2, (c) Γ =50 and (d) Γ =100.
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To illustrate the behaviour of correlation function of SCCD plasma using EMDS, the 
time-dependent normalized longitudinal current correlation (CL(k,t) from Eq. (9) spectra 
is plotted against simulation time step (Δt), as shown in Figures 1–3, for waves number 
(k = 0, 1, 2 and 3), plasma parameter (Coulomb coupling) Γ = 1, 2, 50 and 100 and for 
screening parameter (κ = 1.4, 2 and 3), respectively. It is observed from four panels of 
Figure 1 that the wavelength decreases and amplitude of longitudinal current increases 
with increasing waves numbers (k), as CL= 0.2875, 0.9220, 2.5143 and 3.7139 for waves 
numbers k = 0, 1, 2 and 3, respectively, at same values of Γ =1 and κ =1.4. It has been 
shown that the value of CL(k,t) decreases with increasing of Γ as CL(k,t) = 0.2875 (0.9220), 
0.1179 (0.4369), 0.0044 (0.0148) and 0.0020 (0.0148) for Γ =1, 2, 50 and 100, respectively, at 
k = 0 (1) and for κ =1.4. In case of wave number k = 2(3), the value of CL is 2.5142(3.7139), 
1.0661(2.0954), 0.0591(0.1020) and 0.0271(0.0463), respectively. The fluctuation of sound 
waves in SCCD plasma is observed from Figures 1–3 that increases with decreasing the 
plasma temperature, and it is noted that the amplitude, fluctuation and wavelength for 
simulation time step (Δt) of longitudinal current correlation in SCCD plasma gradually 
decrease with increasing of κ. We have noted from simulation results that the propagation 
of sound waves in dusty plasma is frequently propagated at higher value of Γ =50 and 100 
and at lower value of κ =1.4 and 2.

3.4. Time-dependent transverse current correlation function CT(k,t), κ = 1.4

Figure 4. Variation of CT(k,t) as a function of simulation time step (Δt) of strongly coupled complex plasma at κ =1, 
N = 500, waves number k = 0, 1, 2 and 3 for (a) Γ =1, (b) Γ =2, (c) Γ =50 and (d) Γ =100.
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3.5. Time-dependent transverse current correlation function CT(k,t), κ = 2

3.6. Time-dependent transverse current correlation function CT(k,t), κ = 4

Figure 6. Variation of CT(k,t) as a function of simulation time step (Δt) of strongly coupled complex plasma at κ =4, 
N = 500, waves number k = 0, 1, 2 and 3 for (a) Γ =1, (b) Γ =2, (c) Γ =50 and (d) Γ =100.

Figure 5. Variation of CT(k,t) as a function of simulation time step (Δt) of strongly coupled complex plasma at κ =2, 
N = 500, waves number k = 0, 1, 2 and 3 for (a) Γ =1, (b) Γ =2, (c) Γ =50 and (d) Γ =100.
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Figures 4–6 demonstrate that the simulation results are obtained for CT(k,t) of SCCD plasma 
using EMD simulation at k = 0, 1, 2 and 3, Γ =1, 2, 50 and 100 and κ =1.4, 2 and 4, respectively, 
at N = 500. The presented simulation results of CT(k,t) spectra are compared with increas-
ing and decreasing sequence of Γ, κ and k. It is noted that the fluctuation, wavelength and 
amplitude of CT(k,t) (transverse or shear waves) in complex (dusty) plasma immediately 
depend on plasma temperature, Coulomb coupling and system size. We have observed 
from simulation results of transverse waves in dusty plasma that wavelength of these 
waves decreases with increasing wave number, plasma parameters, Coulomb coupling and 
number of particles. The amplitude of CT(k,t) increases with increasing wave number as 
CT = 0.2655, 0.9679, 2.0914 and 3.8960 for k = 0, 1, 2, and 3, respectively, at κ =1.4 shown in 
Figure 4(a) and decreases with increasing Γ as for k = 0(1), CT = 0.2655(0.9679), 0.1395(0.5607), 
0.0074(0.0197) and 0.0040(0.0081) and for the case k = 2(3), CT = 2.0914(3.8960), 1.0590(1.8826), 
0.0537(0.0929) and 0.0259(0.0366) at Γ =1, 2, 50 and 100, respectively, shown in four panels 
of Figures 4 at κ =1.4 and N = 500. We have observed from 12 simulated results, which are 
displayed in Figures 4–6, that fluctuations in CT(k,t) increase with decreasing plasma tem-
perature and decrease with increasing κ, N. We have concluded from 24 simulated results 
that amplitude and wavelength of transverse waves in SCCD plasma are directly propor-
tional to the plasma temperature and inversely proportional to the screening strength. 
Shear waves are frequently propagated at higher value of Γ.

4. Summary

The EMD simulation method is used to investigate the CL(k,t) and CT(k,t) for SCCD plasma 
over a wide range of plasma parameters κ, Γ, N and k (wave number). The first involve-
ment of presented simulation is that it delivers and understands the propagation of waves 
in SCCD plasma. In general, the amplitude and frequency of waves with different modes 
are analysed. The presented simulation specifies that the waves are frequently propagated 
at intermediate and high value of Γ. These investigations show that the values of frequency 
and amplitude depend on Γ, κ, N and k. The EMD simulation investigation shows the 
plasma wave behaviors that are observed at low and intermediate values of Γ and does not 
show at higher value of Γ and at lower value of κ =1.4. It has been shown that the presented 
EMD method and earlier EMD techniques have comparable performance over the wide 
range of plasma points, both yielding reasonable results for correlation parameters. New 
simulations yield more reliable and excellent data for the CL(k,t) and CT(k,t) for a wider 
range of κ (= 1, 4) and Γ (= 1, 100), respectively. The existing simulation delivers more reli-
able data for the existence of waves and dynamical structure in SCCD plasma. These simu-
lation results show that in the absence of structure in dusty plasma, the shear wave does 
not support. The sound wave frequently propagates at medium and higher values of Γ in 
SCCD plasma. It is suggested that the presented EMD technique based on the Ewald sum-
mation described here can be used to explore other ionic and dipolar materials. It is very 
interesting to note what other types of interaction potentials support correction parameters 
of strongly coupled plasmas and how its strengths depend on the range of new interaction 
potentials.
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Abstract

The geological environment is an open system, on which external and internal factors
act. They lead it to an unstable state, which, as a rule, manifests itself locally in the form
of zones, called dynamically active elements, which are indicators of potential cata-
strophic sources. These objects differ from the host geological environment by structural
forms, which are often forming of a hierarchical type. The process of their activation can
be observed using monitoring with wave fields, for mathematical support of which new
modeling algorithms have been developed using the method of integral and integral-
differential equations. A new approach to the interpretation of wave fields has been
developed, to determine contours or surfaces of locally stressed hierarchical objects. An
iterative process of solving the theoretical inverse problem for the case of determining
configurations of 2D hierarchical inclusions of the k-th rank is developed. When
interpreting monitoring results, it is necessary to use data from such monitoring systems
that are tuned to study the hierarchical structure of the environment.

Keywords: hierarchical structures, acoustic wave fields monitoring, anomaly density,
stressed, plastic, fluid saturated hierarchic inclusions, equation of theoretical inverse
problem

1. Introduction

It is known that the geological environment is an open dynamic system that is influenced by
natural and artificial effects at various scale levels that change its state, resulting to a complex
multi-ranked hierarchical evolution. That is one of the subjects of geosynergetic study [1], see
the bibliography. Using the synergetic approach, it is necessary to clear distinguish the scale of
natural phenomena. The paradigm of physical mesomechanics introduced by academician
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Panin V. and his school, which includes the synergetic approach, is a constructive tool for
studying and changing the state of heterogeneous materials.

Determining the state and its dynamics of the massif is a more complex problem than mapping
its structure. Individual parts of themassif can be in a different stress state, and the corresponding
deformations can be either elastic or plastic. The medium can be multiphase. A sharp change
of the state of the blocks can lead to loss of stability of the whole massif and to a rock shock. The
change of the state is determined both by natural and technogenic influence on the massif
and manifests itself by the formation of man-made cavities and pumping by mechanical energy
during mass explosions provided for mining technologies. The phenomenon of non-stationary
state of the rock massif for today is a well-known fact [2, 3]. Manifestations of it can be from
insignificant ones in the form of increase in permeability due to increase in fracturing of rocks,
which are already registered in the form of shocks, micro-impacts, rock impacts, mountain-
tectonic impacts [4]. The latter refer already to catastrophic phenomena, which are initiated by
both internal and external technogenic causes. In our studies of the non-stationary geological
environment in the framework of natural experiments in real rock massive under strong man-
made influence, it was shown that the dynamics of the state can be detected using synergetic
effect in hierarchical environments. An important role for the study of the state of dynamic
geological systems consists on a combination of active and passive geophysical monitoring,
which can be carried out using electromagnetic and seismic fields. The change of the system state
on the investigated spatial bases and times is manifested in parameters related to the structural
features of the medium of the second and higher ranks. Thus, the study of the state dynamics, its
structure and the phenomenon of self-organization of the massif should be studied by geophys-
ical methods tuned to the multi-rank hierarchical nonstationary model of the environment.

In the work [1] the results of the method of studying synergetic manifestations of a geological
environment under active external influence were generalized using the method of phase
portraits for researching the problem of reflecting the synergetic properties of a geological
medium in the data of active electromagnetic and seismic monitoring. The results, obtained
from the analysis of the detailed seismological catalog from the point of view of the mathe-
matical foundations of synergetics and open dynamical systems possessing the properties of
nonlinearity and dissipativity lead us to the necessity of formulating a new mathematical
modeling problem different from the one previously performed [5, 6].

The processes of development of oil and gas fields are associated with the motion of multi-
phase multicomponent media that are characterized by no equilibrium and non-linear rheo-
logical properties. The real behavior of reservoir systems is determined by the complexity of
the rheology of moving fluids and the morphological structure of the porous medium, as well
as by the variety of processes of interaction between the liquid and the porous medium [7].
Accounting for these factors is necessary for a meaningful description of filtration processes
due to nonlinearity, non-equilibrium and in homogeneity inherent in real systems. In this case,
new synergetic effects are revealed (loss of stability with the appearance of oscillations, the
formation of ordered structures). This allows us to propose new methods for monitoring and
managing complex natural systems that are tuned to account for these phenomena. Thus, the
reservoir system from which to extract oil is a complex dynamic hierarchical system.
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A major result of studies of the last century was the conclusion about the fundamental role of
the block-hierarchical structure of rocks and massive for explaining the existence of a wide
range of nonlinear geomechanical effects and the emergence of complex self-organizing
geosystems in the analysis of the formation of large and super-large deposits. The hierarchical
structure is characteristic for many systems, especially for the Earth’s lithosphere, where more
than 30 hierarchical levels from tectonic plates with a length of thousands of kilometers to
individual mineral grains of millimeter size were identified by geophysical studies. Thus, the
Earth’s crust is a continuous medium that includes a discrete block system and, like any
synergetic discrete ensemble, has hierarchical and self-similar properties. This must be taken
into account when creating new complex geophysical systems for studying the Earth’s litho-
sphere. Iterative algorithms of 2-D modeling for sound diffraction and a linearly polarized
transverse elastic wave on inclusion with a hierarchical elastic structure located in the J-th layer
of the N-layer elastic medium are constructed.

In the present chapter we consider the case where the inclusion density of each rank differs
from the density of the enclosing medium, and the elastic parameters coincide with the elastic
parameters of the enclosing layer. We consider also the case when the inclusion density of each
rank coincides with the density of the host medium, and the elastic parameters of the inclusion
of each rank differ from the elastic parameters of the enclosing layer. We used the method
of integral and integral-differential equations for the spatial-frequency representation of
the distribution of wave fields. It follows from the constructed theory that when combin-
ing acoustic, geomechanical and gravitational fields, it is necessary to use such data that are
obtained within the framework of observation systems that are tuned to the study of the
hierarchical structure of the medium. The use of density values obtained from the correlation
between the values of the longitudinal wave velocity determined from the kinematic interpre-
tation of seismic data and the density to construct a density model for gravity data may lead to
a mismatch between this model and the real composition of the geological medium studied.
The use of values of elastic parameters without taking into account density anomalies can lead
to a discrepancy between the geomechanical model and the acting stresses in the geological
environment.

The algorithm developed in [8] is based on Hooke’s law [9]. Equations of motion are obtained
by equating the elastic forces of the products of masses with accelerations, and the action of the
other forces is not assumed. This assumption is completely justified for small deformations
and quite often agrees well with the experimental data. However, if vibrations occur in the
medium, then part of the elastic energy passes into heat due to internal friction. At the present
time, the theory of internal friction in solids is developing [9]. There are several indirect
methods of determining internal friction that arise in the samples, which are associated with
the assumption that the restoring forces are proportional to the amplitude of the oscillation,
and the dissipative forces are proportional to the velocity.

The present work is devoted to the developing an algorithm for the propagation of the seismic
field in the acoustic approximation in a layer-block elastic medium with a hierarchical plastic
inclusion (the case of taking into account internal friction in viscoelastic inclusion), with
anomaly density, anomaly stressed and fluid-saturated hierarchical inclusion.
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2. Algorithms of mathematical modeling of acoustic wave distribution in
block layered hierarchical structure with different physical properties

2.1. Modeling of sound diffraction on 2D plastic hierarchic heterogeneity, located in N-
layered elastic medium

In the book [9], considering the motion equation:

P ¼ M€ξ þ η _ξ þ Eξ (1)

for oscillating body it was made an assumption, that the elastic reducing force E is propor-

tional to the displacement ξ, and the dissipative force is proportional to the velocity _ξ, by that E
in (1) depends from the elastic constants, and η depends from the dissipative forces, the nature
of these in [9] did not been discussed. Let us consider the Voigt model [9] for an elastic-viscous
environment that in contrary of the Hookers model introduces in the relations for the elastic
constants of Lame such expressions:

λþ λ
0
ω1;μþ μ

0
ω2 (2)

In the paper [10] it is described the algorithm of sound diffraction modeling on elastic 2D
homogeneous inclusion, located in the J-th layer of the N-layered medium.

GSp , j(M,M0) – a source function of seismic field, the boundary problem of it is formulated in
the paper [10], k21ji ¼ ω2 σji=λji

� �
– wave number for the longitudinal wave, in the cited expres-

sions index ji identifies the medium properties inside the inclusion, ja – outside the inclusion,

λ – constant of Lame, σ – medium density, ω – cycle frequency, u
!¼ gradϕ – displacement

vector, ϕ0 – potential of the normal seismic field inside the layered medium without the
inclusion: ϕ0

ji ¼ ϕ0
ja.

k21ji � k21j
� �

2π

ðð

Sc

ϕ Mð ÞGSp, j M;M0� �
dτM þ σja

σji
ϕ0 M0� ��

� σja � σji
� �

σji2π
∮ cGSp, j

∂ϕ
∂n

dc ¼ ϕ M0� �
,M0 ∈ Sc

σji k21ji � k21j
� �

σ M0� �
2π

ðð

Sc

ϕ Mð ÞGSp, j M;M0� �
dτM þ ϕ0 M0� ��

� σja � σji
� �

σ M0� �
2π

∮ cGSp, j
∂ϕ
∂n

dc ¼ ϕ M0� �
,M0 ∉ Sc:

(3)

Let us use the expression (2), k21ji ¼ ω2 σji= λji þ λ
0
jiω1ji

� �� �
, where ω 6¼ ω1ji and λji 6¼ λ'ji, that

identifies the influence of the inner friction in the inclusion in the Voigt model. If the inclusion
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has a structure of the l-th rank then according to Ref. [10] and (2) the system (3) can be
rewritten as follows:

k21jil � k21j
� �

2π

ðð

Scl

ϕl Mð ÞGSp, j M;M0� �
dτM þ σja

σjil
ϕ0
l�1 M0� ��

� σja � σjil
� �

σjil2π
∮
cl
GSp, j

∂ϕl

∂n
dc ¼ ϕl M

0� �
,M0 ∈ Scl

σjil k21jil � k21j
� �

σ M0� �
2π

ðð

Scl

ϕl Mð ÞGSp, j M;M0� �
dτM þ ϕ0

l�1 M0� ��

� σja � σjil
� �

σ M0� �
2π

∮
cl
GSp, j

∂ϕl

∂n
dc ¼ ϕl M

0� �
,M0∉Scl,

(4)

where GSp,j(M,M0) – source function of the seismic field, it coincides with the function of the

expressions (3), k21ji ¼ ω2 σji= λji þ λ
0
ji ω1ji

� �� �
–wave number for the longitudinal wave, ji and ja

coincides with expressions from (3), l = 1…L – number of the hierarchic level, u
!
l
¼ gradϕl, ϕ

0
l –

potential of the normal seismic field in the layeredmedium by absent of heterogeneity of previous
rank, if l = 2…L ϕ0

l ¼ ϕl�1, if l = 1, ϕ
0
l ¼ ϕ0, that coincides with the corresponding case (3).

If by transition on the next hierarchic level the axis of two-dimensionality does not change and
only the geometry of the sections of included structures change, then similarly (4) we can
develop the iteration process of seismic field modeling (the case of distribution only longitudi-
nal wave). The iteration process relates to modeling of displacement vector by transition from
previous (rank) level to a next (rank). Inside each hierarchic rank the integral-differential
equation and the integral-differential expression is calculated using the algorithm (4). If on
some hierarchical rank the structure of the local heterogeneity divides on some heterogeneities,
then the integrals in the expression (4) are calculated over all heterogeneities. In that algorithm
we consider the case when the physical properties for one and the same rank are equal, the
boundaries cab be only different.

It must be noted, that the structure of the integral-differential equations remain the same also

for the case of elastic inclusion, but the vector u
!
l ¼ gradϕl now depends from two additional

parameters for each rank: λ'jil ,ω1jil, that can lead the system to a resonant state.

2.2. Modeling of elastic transversal wave diffraction on 2D plastic hierarchic heterogeneity
located in the N-layered medium

Similarly to (4) it can be developed the same process for modeling an elastic transversal wave
in N-layered medium with 2D hierarchic structure with arbitrary section morphology with use
the integral equations from the paper [10] and (2), where μjil ¼ μe

jil þ μ0
jil ω2jil.
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k22jil � k22j
� �

2π

ðð

SCll

uxl Mð ÞGSs, j M;M0� �
dτM þ

μja

μjil
u0x l�1ð Þ M0� �þ

þ
μja � μjil

� �

μjil2π
∮
Cl
uxl Mð Þ ∂GSs, j

∂n
dc ¼ uxl M0� �

,M0 ∈SCl

μjil k22jil � k22j
� �

μ M0� �
2π

ðð

SCll

uxl Mð ÞGSs, j M;M0� �
dτM þ u0x l�1ð Þ M0� �þ

þ
μja � μjil

� �

μ M0� �
2π

∮
Cl
uxl Mð Þ ∂GSs, j

∂n
dc ¼ uxl M0� �

,M0 ∈SCl

(5)

where GSs , j(M,M0) – source function of the seismic field for the considering problem, it coin-
cides with the Green function formulated in the paper [10] for the appropriate problem,

k22jil ¼ ω2 σjil=μjil

� �
– wave number of the transversal wave, , μ – constant

of Lame, uxl – component of the displacement vector of the rank l,, l = 1…L – number of the
hierarchic rank, u0xl – component of the displacement vector of the previous rank in the
layered medium when the heterogeneity of the previous rank is absent, if l = 2…L,
u0xl ¼ ux l�1ð Þ, if l = 1, u0xl ¼ u0x, that coincides with the corresponding expression for the normal
field in the paper [10].

Thus the iteration processes (4) and (5) allow to define by given modules of elasticity inside the
layered medium that include the hierarchic heterogeneity with additional plastic parameters
which depend from the frequency of inner oscillations of the medium inclusion the space
frequency distribution of the components of the acoustic field on each hierarchic level. Then,
using the known formula of the book [11], for each hierarchic level we can define the distribu-
tion of the components of the deformation tensor and stress tensor using the distribution of the
components of the displacement vector, that depends not only from the influenced frequency,
but from the frequency that is defined by the inner friction. On each hierarchic level it can be
itself. Interacting with the influenced frequency medium creep state or resonant excitations can
be occurred. That information plays a significant role for estimation of medium state,
depending from the hierarchic structure and degree of its change.

2.3. Modeling sound diffraction on 2D anomaly dense hierarchical heterogeneity, located in
a N-layered elastic medium

In the paper [6] it was described the algorithm of modeling of sound diffraction on elastic
hierarchic inclusion, located in the J-th layer of the N-layered medium. GSp , j(M,M0) – is a
source function of the seismic field, for which is formulated the boundary problem in the
paper [6], k21ji ¼ ω2 σji=λji

� �
– wave number for the longitudinal wave, indexes ji and ja, λ, σ,

ω, u
!¼ gradϕ, ϕ0, ϕ0

ji ¼ ϕ0
ja are the same, that are described in the paragraph 1. Let us consider

that the elastic parameters of the hierarchic inclusion for all ranks and the layer, where it is
located are equal, but the density of the hierarchic inclusion for all ranks differs from the
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density of the layer where the inclusion is located. Then the system of equations [6] can be
rewritten as follows:

k21ji � k21j
� �

2π

ðð

Scl

ϕl Mð ÞGSp, j M;M0� �
dτM þ σja

σji
ϕ0
l�1 M0� ��

� σja � σjil
� �

σjil2π
∮
Cl
GSp, j

∂ϕl

∂n
dc ¼ ϕ M0� �

,M0 ∈SCl

σjil k21jil � k21j
� �

σ M0� �
2π

ðð

Scl

ϕl Mð ÞGSp, j M;M0� �
dτM þ ϕ0

l�1 M0� ��

� σja � σjil
� �

σ M0� �
2π

∮
Cl
GSp, j

∂ϕl

∂n
dc ¼ ϕl M

0� �
,M0∉SCl,

(6)

where GSp ,j(M,M0) – a source function of seismic field, the boundary problem of it is formu-
lated in the paper [6], k21jil ¼ ω2 σjil= λjil

� �
; λjil ¼ λja;

�
–wave number for the longitudinal wave,

l = 1…L – number of the hierarchical level, ϕ0
l – potential of the acoustic field in the layered

medium when the inclusion of the previous rank is absent, if l = 2…L, ϕ0
l ¼ ϕl�1, if l = 1,

ϕ0
l ¼ ϕ0, that coincides with the corresponding expression (3).

If by transition on the next hierarchic level the axis of two-dimensionality does not change and
only the geometry of the sections of included structures change, then similarly (4) we can
develop the iteration process of seismic field modeling (the case of distribution only longitudi-
nal wave). The iteration process relates to modeling of displacement vector by transition from
previous (rank) level to a next (rank). Inside each hierarchic rank the integral-differential
equation and the integral-differential expression is calculated using the algorithm (6). If on
some hierarchical rank the structure of the local heterogeneity divides on some heterogeneities,
then the integrals in the expression (6) are calculated over all heterogeneities. In that algorithm
we consider the case when the physical properties for one and the same rank are equal; the
boundaries can be only different.

2.4. Modeling of elastic transversal wave diffraction on 2D anomaly dense hierarchical
heterogeneity, located in a N-layered elastic medium

Similarly to (6) it can be developed the same process for modeling distribution elastic trans-
versal wave in N-layered medium with 2D hierarchic structure with arbitrary section mor-
phology with use the integral equations from the paper [6].

k22jil � k22j
� �

2π

ðð

SCll

uxl Mð ÞGSs, j M;M0� �
dτM þ u0x l�1ð Þ M0� � ¼ uxl M0� �

,M0 ∈ SCl

μjil k22jil � k22j
� �

μ M0� �
2π

ðð

SCll

uxl Mð ÞGSs, j M;M0� �
dτM þ u0x l�1ð Þ M0� � ¼ uxl M0� �

,M0∉SCl

(7)
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where GSs ,j(M,M0) – source function of the seismic field for the considering problem, it coin-
cides with the Green function formulated in the paper [6] for the appropriate problem,

– wave number of the transversal wave, μjil=μja, μ – constant of Lame,

uxl – component of the displacement vector of the rank l, l = 1…L – number of the hierarchic
rank, – component of the displacement vector of the previous rank in the layered medium

when the heterogeneity of the previous rank is absent, if l = 2…L, , if l = 1, ,

that coincides with the corresponding expression for the normal field in the paper [10].

It must be noted that the structure of the system (6) coincides with the general case, when the
hierarchical heterogeneity had not only density parameters that differ from the density of its
included layer, but also the elastic parameters for all ranks differ from the elastic parameters of
the included layer. The difference of the system (6) consists only in the values of the wave
number. Thus more sensitive to the hierarchical inclusions of anomaly density in the massif is
the medium response, linked with the longitudinal wave that is also sensitive to the form of the
hierarchical inclusion, than the transversal wave. That must be taken into account by mapping
and monitoring such complicated geological medium.

2.5. Modeling sound diffraction on 2D anomaly stressed hierarchical heterogeneity, located
in an N-layered elastic medium

In the paper [6] was described the algorithm of modeling of sound diffraction on elastic
hierarchic inclusion, located in the J-th layer of the N-layered medium. GSp , j(M,M0) – source
function of the seismic field, for which is formulated the boundary problem in the paper [6],

– wave number for the longitudinal wave, indexes ji and ja, λ, σ, ω,

, , are the same, that are described in the paragraph 1. Let us consider

that the density parameters of the hierarchic inclusion for all ranks and the layer, where it is
located are equal, but the elastic parameters in the hierarchic inclusion for all ranks differ from
the elastic parameters of the layer where the inclusion is located. Then the system of equations
[6] can be rewritten as follows:

k21jil � k21j
� �

2π

ðð

Scl

ϕl Mð ÞGSp, j M;M0� �
dτM þ ϕ0

l�1 M0� � ¼ ϕl M
0� �
,M0 ∈SCl

σjil k21jil � k21j
� �

σ M0� �
2π

ðð

Scl

ϕl Mð ÞGSp, j M;M0� �
dτM þ ϕ0

l�1 M0� � ¼ ϕl M
0� �
,M0∉SCl

(8)

The designations in (8) are the same as for the system of equations (6).

2.6. Modeling of elastic transversal wave diffraction on 2D anomaly stressed hierarchical
heterogeneity, located in an N-layered elastic medium

Similarly to (4) it can be developed the same process for modeling distribution elastic trans-
versal wave in N-layered medium with 2D hierarchic structure with arbitrary section mor-
phology with use the integral equations from the paper [6].
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k22jil � k22j
� �

2π

ðð

SCll

uxl Mð ÞGSs, j M;M0� �
dτM þ

μja

μjil
u0x l�1ð Þ M0� �þ

þ
μja � μjil

� �

μjil2π
∮
Cl
ux1 Mð Þ ∂GSs, j

∂n
dc ¼ uxl M0� �

,M0 ∈SCl

μjil k22jil � k22j
� �

μ M0� �
2π

ðð

SCll

uxl Mð ÞGSs, j M;M0� �
dτM þ u0x l�1ð Þ M0� �þ

þ
μja � μjil

� �

μ M0� �
2π

∮
Cl
ux1 Mð Þ ∂GSs, j

∂n
dc ¼ uxl M0� �

,M0 ∈SCl

(9)

where GSs , j(M,M0) – source function of the seismic field for the considering problem, it coin-
cides with the Green function formulated in the paper [6] for the appropriate problem,

k22jil ¼ ω2 σjil=μjil

� �
– wave number of the transversal wave, μjil 6¼μja, σjil=σja, μ – constant of

Lame, uxl – component of the displacement vector of the rank l,, l = 1…L – number of the
hierarchic rank, u0xl – component of the displacement vector of the previous rank in the layered
medium when the heterogeneity of the previous rank is absent, if l = 2…L, u0xl ¼ ux l�1ð Þ, if l = 1,

u0xl ¼ u0x, that coincides with the corresponding expression for the normal field in the paper [6].

It must be noted that the structure of the system (9) coincides with the general case, when the
hierarchical heterogeneity had not only density parameters that differ from the density of its
included layer, but also the elastic parameters for all ranks differ from the elastic parameters of
the included layer. The difference of the system (9) consists only in the values of the wave
number. Thus more sensitive to the hierarchical inclusions of anomaly density in the massif is
the medium response, linked with the transversal wave. That must be taken into account by
mapping and monitoring such complicated geological medium.

2.7. Algorithm of modeling the distribution of the longitudinal wave in the layered medium
with fluid saturated hierarchic inclusions

The idea, written in the paper [6] for solution of the direct problem for 2D case of longitudinal
wave distribution through the local elastic heterogeneity with hierarchic structure, located in
the J-the layer of N-layered medium, let us spread on the case when on the L-th hierarchic layer
a fluid saturated porous inclusion will occur. GSp , i(M,M0) – source function of the seismic field,
it coincides with the function from the paper [6]. k21jil ¼ ω2 σjil=λjil

� �
– wave number for the

longitudinal wave. Indexes ji and ja, λ, σ, ω, u
!¼ grad ϕ, ϕ0, ϕ0

ji ¼ ϕ0
ja are the same, that are

described in the paragraph 1. l = 1…L-1 – number of the hierarchic level.

If by transition on the next hierarchic level the axis of two-dimensionality does not change and
only the geometry of the sections of included structures change, then similarly (4) we can
develop the iteration process of seismic field modeling (the case of distribution only longitudi-
nal wave). The iteration process relates to modeling of displacement vector by transition from
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previous (rank) level to a next (rank). Inside each hierarchic rank the integral-differential
equation and the integral-differential expression is calculated using the algorithm (4). If on
some hierarchical rank the structure of the local heterogeneity divides on some heterogeneities,
then the integrals in the expression (4) are calculated over all heterogeneities. In that algorithm
we consider the case when the physical properties for one and the same rank are equal; the
boundaries can be only different. If l = L, inside these hierarchic level the porous fluid saturated
inclusion occurred. Then the system (4) with account [12] will be rewritten:

k21jil � k21j
� �

2π

ðð

Scl

ϕl Mð ÞGSp, j M;M0� �
dτM þ σja

σjil
ϕ0
l�1 M0� ��

� σja � σjil
� �

σjil2π
∮
cl
GSp, j

∂ϕl

∂n
dc ¼ ϕl M

0� �þ αp2
� �

,M0 ∈ Scl

σjil k21jil � k21j
� �

σ M0� �
2π

ðð

Scl

ϕl Mð ÞGSp, j M;M0� �
dτM þ ϕ0

l�1 M0� ��

� σja � σjil
� �

σ M0� �
2π

∮
cl
GSp, j

∂ϕl

∂n
dc ¼ ϕl M

0� �
,M0∉Scl,

(9a)

where α ¼ 1� χ� K
K0
,K=λ – module of all-around compression, χ – porosity, K0 – true modu-

lus of phase compressibility, pore hydrostatic pressure p2. If l = L + 1 and on the next level the
hierarchic heterogeneity is again elastic, for continuing the iteration process we can use again
the equations (4).

3. Defining of the 2-D surface of the anomaly stressed hierarchical
object, located in the layered blocked geological medium using the
data of acoustic monitoring

In Ref. [13], the concept of a step-by-step interpretation of a variable electromagnetic field was
proposed. At the first stage, the parameters of the normal section, or the parameters of the
enclosing one-dimensional non-magnetic medium, are anomalous conductive or magnetic
inclusions. In the second stage, an anomalous alternating electromagnetic field is selected by
a system of singular sources placed in a horizontally layered medium with geoelectrical
parameters determined at the first stage. At the third stage, the theoretical inverse problem is
solved, i.e. At given geoelectrical parameters of the host environment for a set of parameters of
non-homogeneities, the contours of this heterogeneity are determined. We obtain explicit
integral-differential equations of the theoretical inverse scattering problem for two-dimensional
and three-dimensional alternating and three-dimensional stationary electromagnetic fields in
the framework of models: a conductive or a magnetic body in the ν-th layer of a conductive
N-layered half-space.

In this chapter, using the approach presented [14, 15], an algorithm is developed for obtaining
the equation of the theoretical inverse problem for an acoustic field (transverse acoustic wave)
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for the elastic anomaly stressed hierarchical heterogeneity of the k-th rank, whose density
coincides with the density of the host medium for all hierarchical ranks, located in the ν-th
layer of the elastic N-layered half-space.

Let a simply connected domain D of the Euclidean space R2, bounded by a continuously
differentiable closed curve is located in the ν-th layer of the N-layered half-space. Suppose that
this domain contains inside K simply connected hierarchical inclusions, bounded by continu-
ously differentiable closed curves ∂Dk and extending parallel to the axis OX. The boundaries li
of the layers Pj (j = 1, …, N) are parallel to the OY axis of the XOY plane of the Cartesian
coordinate system. The axis OZ is directed vertically downward. We place the origin of the
coordinate system on the upper boundary of the surface of the first layer and match it with the
point that is the projection onto OY of the point, with respect to which the domain D is stellar.
Let U (y, z) be complex-valued twice continuously differentiable function that satisfy the two-
dimensional scalar Helmholtz equation:

ΔU þ c Mð ÞU ¼ �f Mð Þ, (10)

where Δ ¼ ∂2

∂y2 þ ∂2

∂z2 ;

c Mð Þ ¼ cj;M∈Пj=D j ¼ 0;…nð Þ
cak;M∈Dk k ¼ 1;…Kð Þ :

�
(11)

Let the function U1(y, z) satisfies the equation:

ΔU1 þ p Mð ÞU1 ¼ �f Mð Þ, (12)

p Mð Þ ¼ cj;M∈Пj=D j ¼ 0;…nð Þ
cν;M∈Dk k ¼ 1;…Kð Þ :

�
(13)

Let us first consider the case, when k = 1. For M∈R2 D j ¼ 0;…Nð Þ.We shall define:

Uþ Mð Þ ¼ U Mð Þ �U1 Mð Þ (14)

Function U+(M) satisfies the Eq. (10). On the boundaries lj of the layers Pj the following
boundary conditions are fulfilled:

Uj ¼ Ujþ1;
Uþ

j ¼ Uþ
jþ1;M∈ lj j ¼ 1;…; n� 1ð Þ;

U1
j ¼ U1

jþ1;
(15)

bj
∂Uj

∂n
¼ bjþ1

∂Ujþ1

∂n
; bj

∂Uþ
j

∂n
¼ bjþ1

∂Uþ
jþ1

∂n
; bj

∂U1
j

∂n
¼ bjþ1

∂U1
jþ1

∂n
;M∈ lj, (16)

bj are complex coefficients (j = 0,…,N) and in general case:bj 6¼bj+1; on the contour ∂Dk: for k = 1:

Uν ¼ Uþ
ν þU1

ν: (17)

Function Uν satisfies the equation:
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ΔUν þ cν Mð ÞUν ¼ �f Mð Þ: (18)

Uþ
ν – is a function U+ in the layer Pν∉D; U1

ν – is a function U1 in the layer Pν∉D; in the domain
D for k = 1:

Ua ¼ Uþ
a þU1

a ;M∈D;ΔUa þ caUa ¼ 0: (19)

Boundary conditions on ∂D (k = 1):

Uþ
a ¼ Uþ

ν , ba
∂Ua

∂n
� bν

∂Uþ
ν

∂n
þ ∂U1

ν

∂n

 !
¼ 0, (20)

By M!∞ the functions U(M),U+(M),U1(M) satisfy the radiation condition [16]. The algorithm
of calculation of function U1 for the electromagnetic case is written [13].

Let us introduce the function G(M,M0), that satisfies the following equation:

ΔGþ p Mð ÞG ¼ �δ M;M0ð Þ, (21)

and the boundary conditions (15, 16), by M!∞ the function G satisfies the radiation condition
[16], by M!M0 the function G has a singularity as: ln1/ρ(M,M0):

ρ M;M0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� y0
� �2 þ z� z0ð Þ2:

q
(22)

Algorithm of calculation of function G for the case, when the domain D is located in the ν – th
layer, is written [13]. Let us introduce the function Ga, that coincides with the fundamental
solution of the Eq. (11) for k = 1. Let us use the Green formula [16] for two functions
Uþ, G; M∈R2\D;M0 ∈Pi

� �
in each layer Pj(j=0,… ,N). Let us fulfill the procedure similarly

[17]: let us multiply the defined expressions for each layer on bj reciprocally, j=0,… ,N and add
them term by term with account (11–14), (16) and (17). As a result we receive:

2πUþ M0ð Þ ¼ � bν=bið Þ
ð

∂D

Uþ
ν Mð Þ ∂G M;M0ð Þ

∂n
� G M;M0ð Þ ∂U

þ
ν

∂n

� �
;M∈Пν;M0 ∈Пi: (23)

In the domain D let us use the Greens formula for the two functions Ua(M) ,Ga(M,M0). As a
result we receive:

0 ¼
ð

∂D

Ua Mð Þ ∂G
a M;M0ð Þ
∂n

� Ga M;M0ð Þ ∂Ua

∂n

� �
dl: (24)

Let us add expressions (23) and (24), taking into account (20) and (21), and also the expression (13):

0 ¼ �bν=bi

� � ð

∂D

U1
ν Mð Þ ∂G M;M0ð Þ

∂n
� G M;M0ð Þ ∂U

1
ν

∂n

 !
dl;M∈D;M0 ∈Пi: (25)
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∂n
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� �
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∂n
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1
ν

∂n
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Then we shall receive:

2πUþ M0ð Þ ¼
ð

∂D

Uþ
ν Mð Þ þU1

ν Mð Þ� � ∂Ga M;M0ð Þ
∂n

� bν=bi

�� �
∂G M;M0ð Þ

∂n

� �
�

�bν
∂Uþ

ν

∂n
þ ∂U1

ν

∂n

 !
1 ba=
� �

Ga M;M0ð Þ � 1 bi= ÞG M;M0ð Þ� �� �
dl:

(26)

Eq. (26) is the explicit equation of the theoretical inverse problem for the two-dimensional
scalar Helmholtz equation in a layered medium with homogeneous inclusion for given values
of the boundary conditions [13–15]. As a result of the solution of the integral-differential
equation (26) related to the function r (ϕ), that describes the contour of the sought homoge-
neous object, it is possible to determine it for known values of the physical parameters of the
host medium and the desired object, and also for given values of the functions.

According to [5, 8], the problem of diffraction of a linear polarized elastic transverse wave by a
two-dimensional elastic heterogeneity of a hierarchical type located in a layer of an N-layer
medium within the framework of the described model reduces to solving a similar problem
with the following changes. The equation of the theoretical inverse problem (26) for the scalar
Helmholtz equation, to which our problem reduces, remains valid by that:

bν ¼ ξν; bi ¼ ξi; ba ¼ ξa; (27)

ξν ,ξi ,ξa ,ρν ,ρi ,ρa – the values of the parameter Lame and the density in the ν -th layer, in the
layer where the point M0 is located and inside the heterogeneity at k = 1. An important
difference between the present problem and the one considered above is that ρa=ρν for all k,
physically, this means that the anomaly in the acoustic field is created by an anomaly of the
stressed state of the medium and can be associated with a focus of either a rock shock or
earthquakes.

Uþ ¼ uþx ; U
þ
ν ¼ uþxν; U

1
ν ¼ u1xν, (28)

where ux is the component of the displacement vector, different from zero for the selected
model.

G M;M0ð Þ ¼ GSS M;M0ð Þ; Ga M;Mð Þ ¼ Ga
SS M;M0ð Þ; ∂D, dl,

k22a ¼ ω2 ρν

ξa
; k22ν ¼ ω2 ρν

ξν
: (29)

The algorithm for calculating the Green’s function GSS(M,M0) was written in Ref. [18]. Thus,
the equation of the theoretical inverse problem for k = 1 is written in the form:

2πuþx M0ð Þ ¼
ð

∂D1

uþxν Mð Þ þ u1xν Mð Þ� � ∂Ga1
SS M;M0ð Þ

∂n
� ξν=ξi

�� �
∂GSS M;M0ð Þ

∂n

� �
�

�ξν
∂uþx
∂n

þ ∂u1xν
∂n

� �
1 ξa1=
� �

Ga1
SS M;M0ð Þ � 1 ξi= ÞGSS M;M0ð Þ� �� �

dl:

(30)
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Let k = 2, that is the sought object is a hierarchic inclusion with elastic parameter Lame ξ1 and
density ρν, ∂D1 – contour of the external inclusion and with elastic parameter Lame ξ2, density
ρν, ∂D2 – contour of the inner inclusion. The inclusions are uncoordinated. It is needed to
define the two contours. For solution of our problem in the expression (27) we substitute
ξa=ξ1, and in the expression (29):

∂D ¼ ∂D1; dl ¼ dl1; Ga
SS ¼ Ga1

SS;
∂
∂n Ga

SS

� � ¼ ∂
∂n Ga1

SS

� �
; k22a ¼ 2a12

k ¼ ω2 ρν
ξa1
.

Solving Eq. (30) related to the function r1(ϕ), that describes the contour ∂D1, we calculate the
functions: ux; uþx ; u

1
x by the algorithm for solving the direct problem (9), (31) and (32) inside and

outside the heterogeneity placed in a layered medium, u1x the elastic field component in a
layered medium in the absence of a heterogeneity.

ux M0ð Þ ¼ ξν
ξa

u1x M0ð Þ þ k22a � k22ν
2π

ðð

S1

ux Mð ÞGSS M;M0ð ÞdS1þ

þ ξν � ξa
2πξa

ð

∂D1

ux Mð Þ ∂GSS

∂n
dl;M0 ∈ S1,

(31)

ux M0ð Þ ¼ u1x M0ð Þ þ ξa k22a � k22ν
� �
2π ξ M0ð Þ

ðð

S1

ux Mð ÞGSS M;M0ð ÞdS1þ

þ ξν � ξað Þ
2πξ M0ð Þ

ð

∂D1

ux Mð Þ ∂GSS

∂n
dl;M0∉S1:

(32)

This completes the first iteration cycle, and we proceed to the second iterative cycle k = 2. The

calculated function ux(M0) (32) is denoted as: u1 k�1ð Þ
x (33), in the expression (27) ξa=ξ2, in the

expression (29):

∂D ¼ ∂D2; dl ¼ dl2; Ga
SS ¼ Ga2

SS;
∂
∂n

Ga
SS

� � ¼ ∂
∂n

Ga2
SS

� �
; k22a ¼ k22a2 ¼ ω2 ρν

ξa2
: (33)

The Eq. (30) can be rewritten as following:

2πuþx M0ð Þ ¼
ð

∂D2

uþxν Mð Þ þ u1 k�1ð Þ
xν Mð Þ

� � ∂Ga
SS M;M0ð Þ

∂n
� ξν=ξi

�� �
∂GSS M;M0ð Þ

∂n

� �
�

�ξν
∂uþx
∂n

þ ∂u1 k�1ð Þ
xν

∂n

 !
1 ξa2=
� �

Ga
SS M;M0ð Þ � 1 ξi= ÞGSS M;M0ð Þ� �� �

dl2;

(34)

We solve the Eq. (34) relatively the function r2(ϕ) that describes the contour ∂D2.If К = 2, then
the problem is solved, if k > 2, k = k + 1, the iteration process is continued.

We solve the functions:

uk�1
x ; uþ k�1ð Þ

x , (35)
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S1
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∂n

Ga
SS

� � ¼ ∂
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Ga2
SS

� �
; k22a ¼ k22a2 ¼ ω2 ρν
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2πuþx M0ð Þ ¼
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∂D2

uþxν Mð Þ þ u1 k�1ð Þ
xν Mð Þ

� � ∂Ga
SS M;M0ð Þ

∂n
� ξν=ξi

�� �
∂GSS M;M0ð Þ

∂n

� �
�

�ξν
∂uþx
∂n

þ ∂u1 k�1ð Þ
xν

∂n

 !
1 ξa2=
� �

Ga
SS M;M0ð Þ � 1 ξi= ÞGSS M;M0ð Þ� �� �

dl2;

(34)

We solve the Eq. (34) relatively the function r2(ϕ) that describes the contour ∂D2.If К = 2, then
the problem is solved, if k > 2, k = k + 1, the iteration process is continued.

We solve the functions:

uk�1
x ; uþ k�1ð Þ

x , (35)
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using the algorithm of the direct problem inside and outside the hierarchical heterogeneity of
the rank k � 1, located into the layered medium (the physical parameters of the layered
medium are not changed) (9), (36) and (37).

uk�1
x M0ð Þ ¼ ξν

ξa k�1ð Þ
u1 k�2ð Þ
x M0ð Þ þ k22a k�1ð Þ � k22ν

2π

ðð

S k�1ð Þ

uk�1
x Mð ÞGSS M;M0ð ÞdS k�1ð Þþ

þ ξν � ξa k�1ð Þ
2πξa k�1ð Þ

ð

∂D k�1ð Þ1

uk�1
x Mð Þ ∂GSS

∂n
dlk�1;M0 ∈S k�1ð Þ,

(36)

uk�1
x M0ð Þ ¼ u1 k�2ð Þ

x M0ð Þ þ ξa k22a � k22ν
� �
2π ξ M0ð Þ

ðð

S k�1ð Þ

uk�1
x Mð ÞGSS M;M0ð ÞdS1þ

þ ξν � ξað Þ
2πξ M0ð Þ

ð

∂D k�1ð Þ1

uk�1
x Mð Þ ∂GSS

∂n
dlk�1;M0 ∉S k�1ð Þ:

(37)

The calculated function uk�1
x M0ð Þ (28) we denote as:

u1 k�1ð Þ
x (38)

In the expression (27) ξa=ξk, in the expression (29):

∂D ¼ ∂Dk; dl ¼ dlk; Ga
SS ¼ Gak

SS;
∂
∂n Ga

SS

� � ¼ ∂
∂n Gak

SS

� �
; k22a ¼ k22ak ¼ ω2 ρν

ξak
:.

Eq. (30) is rewritten as following:

2πuþx M0ð Þ ¼
ð

∂D

uþxν Mð Þ þ u1 k�1ð Þ
xν Mð Þ

� � ∂Ga
SS M;M0ð Þ

∂n
� ξν=ξi

�� �
∂GSS M;M0ð Þ

∂n
Þ�

�

�ξν
∂uþx
∂n

þ ∂u1 k�1ð Þ
xν

∂n

 !
1 ξa= ÞGa

SS M;M0ð Þ � 1 ξi= ÞGSS M;M0ð Þ� �� �
dl2;

�
(39)

We solve the Eq. (39) relatively the function rk(ϕ) that describes the contour ∂D. k = k + 1.
Iteration process (35–39) continues up to k = K.

4. Conclusions

The chapter considers the problem of modeling a seismic field acoustic approximation in a
layered medium with inclusions of a hierarchical structure. Algorithms of modeling in the
seismic case in the acoustic approximation for 2-D plastic heterogeneity are constructed.

Comparing expressions (6) and (7), (8) and (9), we can draw the following conclusions. When
constructing a complex seismic gravity model without taking into account the anomalous
effect of a stress–strain state inside the inclusion, an analysis of the anomalous acoustic effect
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using data on the propagation of a longitudinal wave shows that it is more sensitive also to the
inclusion form, in comparison with the acoustic effect of the propagation of a transverse wave.
However, it follows from these expressions that elastic parameters in the seismic model cannot
be neglected in the massif, and they influence the interpretation of the values of the unknown
anomalous densities. If these values are used in the construction of a density gravitational
model, then these density values will not reflect the material composition of the analyzed
medium. In the construction of an anomalously stressed geomechanical model without taking
into account the anomalous effect of density heterogeneities within the inclusion, an analysis
of the anomalous acoustic effect using data on the propagation of a transverse wave shows
that it is more sensitive also to the inclusion form, in comparison with the acoustic effect of the
propagation of a longitudinal wave. However, it follows from these expressions that the
influence of density parameters in the massif in the seismic model cannot be neglected, and
they influence the interpretation of the values of the unknown anomalous elastic parameters
that cause the anomalous stress state. If these values are used in the construction of a
geomechanical model, these values of the elastic parameters will not reflect the stress state of
the analyzed medium.

The proposed simulation algorithm, the mapping and monitoring method for a heteroge-
neous, complex two-phase medium, can be used to control the production of viscous oil in
mine conditions and light oil in sub horizontal wells. The requirements of efficient for the most
economic indicators and the most complete extraction of hydrocarbons in the fields dictate the
need for the creation of new geotechnology for the development of oil and gas fields based on
fundamental advances in geophysics and geomechanics [19].

Additionally it is of interest with the use of the obtained algorithms to investigate the question
of studying the connection between the strain and strain tensors at each hierarchical level and
the possible deviation from the generalized Hooke’s law.

In the third part of our chapter we considered the problem of constructing an algorithm for
solving the inverse problem using the equation of the theoretical inverse problem for the 2-D
Helmholtz equation. An explicit equation is obtained for the theoretical inverse problem for the
scattering of a linearly polarized elastic wave in a layered elastic medium with a hierarchical
elastic anomal stressed inclusion, whose density for all ranks is equal to the density of the
enclosing layer. An iterative algorithm for determining the contours of non-axial inclusions of
the k-th rank in a hierarchical structure with successive use of the solution of the direct problem
of calculating the elastic field of k-1 rank is constructed. With the increase in the degree of
hierarchy of the structure of the medium, the degree of spatial nonlinearity of the distribution
of the components of the acoustic field increases, which involves the elimination of methods for
linearizing the problem when creating interpretation methods. This problem is inextricably
linked with the solution of the inverse problem for the propagation of the acoustic field in such
complex media using explicit equations of the theoretical inverse problem. For the first time an
equation for determining the surface of anomalously stressed inclusion in a hierarchical lay-
ered block environment was derived from the data of acoustic monitoring. In practice, using
this algorithm, we can localize from the acoustic monitoring data the area of a potential hotbed
or a forthcoming earthquake and estimate the degree of anomalous elastic stresses.
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Abstract

The design and implementation of in-fiber acousto-optic (AO) devices based on acoustic
flexural waves are presented. The AO interaction is demonstrated to be an efficient mech-
anism for the development of AO tunable filters and modulators. The implementation of
tapered optical fibers is proposed to shape the spectral response of in-fiber AO devices.
Experimental results demonstrate that the geometry of the tapered fiber can be regarded
as an extra degree of freedom for the design of AO tunable attenuation filters (AOTAFs).
In addition, with the objective of expanding the application of AOTAFs to operate as an
amplitude modulator, acoustic reflection was intentionally induced. Hence, a standing
acoustic wave is generated which produces an amplitude modulation at twice the acoustic
frequency. As a particular case, an in-fiber AO modulator composed of a double-ended
tapered fiber was reported. The fiber taper was prepared using a standard fusion and
pulling technique, and it was tapered down to a fiber diameter of 70 μm. The device
exhibits an amplitudemodulation at 2.313MHz, which is two times the acoustic frequency
used (1.1565 MHz); a maximum modulation depth of 60%, 1.3 dB of insertion loss, and
40 nm of modulation bandwidth were obtained. These results are within the best results
reported in the framework of in-fiber AO modulators.

Keywords: acousto-optic interaction, acousto-optic filter, acousto-optic modulator
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1. Introduction

The acousto-optic (AO) effect based on flexural acoustic waves in optical fibers has received a
great deal of attention for the development of many practical AO devices such as frequency
shifters, attenuators, and tunable filters [1–3]. In recent years, novel AO devices have been
proposed and developed to explore applications of in-fiber AO interaction in a different way,
for example, by implementing standing flexural acoustic waves [4, 5] or by the use acoustic
waves in short packets [6]. All these approaches offer the advantages of being dynamic devices
with tunable amplitude and spectral responses. Its operation principle relies on the intermodal
coupling induced by flexural acoustic waves along the fiber. The propagation of the acoustic
field produces a periodic perturbation of the refractive index that leads to an intermodal
resonant coupling between the fundamental core mode and some asymmetric cladding modes
of the fiber [1–3]. This AO effect produces a similar response to that obtained with a conven-
tional long-period grating (LPG), but in this case, the transmission response can be controlled
dynamically by the amplitude and frequency of the acoustic wave.

In the framework of all-fiber modulators that exploit the dynamic properties of AO interaction,
several alternatives have been proposed and demonstrated [4, 6–15]. Among them, we have
proposed a modulation technique based on the intermodal coupling induced by standing
flexural acoustic waves in a standard optical fiber [4, 15]. This novel type of modulator pro-
vides a stable amplitude modulation that can be used to realize mode-locking operation in a
fiber laser system [4, 15]. However, its major shortcoming is the reduced modulation band-
width (~1.5 nm), which could be a detrimental factor for systems that require broader optical
bandwidths. In this chapter we report an improved version of the AO modulator by
implementing tapered optical fibers as the mechanism to optimize the spectral response. The
results demonstrate that the geometry of the tapered fiber can be regarded as an extra degree
of freedom to the design of AO tunable modulators. For the particular case of 70 μm fiber
modulator, high modulation depth of 60%, low insertion loss of 1.3 dB, and 40 nm of modula-
tion bandwidth are achieved. If we compare this result with conventional non-tapered modu-
lators [4, 15], we can appreciate the improvement achieved with the present scheme.

In Section 2, we start with the numerical modeling of acoustically induced LPG formed in a
tapered structure. Then, in Section 3, we describe the experimental results and compare with
numerical simulations to obtain insight into the effect of including tapered optical fiber in the
AO device. Finally, our conclusions are summarized in Section 4.

2. Numerical modeling of the acousto-optic interaction in optical fibers

From the mechanical point of view, optical fibers are homogeneous cylinders immersed in air
that have the ability to guide acoustic waves. These acoustic waves, depending on the dis-
placement of their particles, are classified as flexural, longitudinal, or torsional waves. For
the case of the flexural waves, a vibration is generated in one of the transverse directions
of the fiber, which produces an asymmetric perturbation of the refractive index. In this section,
the numerical technique to simulate the spectral response of the acoustically induced LPG is
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presented. Following the theory developed by Birks et al. in Ref. [3], the transmission matrix to
numerically simulate the intermodal coupling between the core and cladding forward-
propagating modes is reported.

The perturbation of the refractive index, Δn(x,y), is described in terms of the acoustic wave as
follows:

Δn x; y
� � ¼ Δn0 sin Ωt� Kzð Þ, (1)

Δn0 ¼ n0 1� χð Þ K2 u0 y, (2)

where x, y, and z are the Cartesian coordinates. z represents the direction of propagation along
the fiber for both the light and the acoustic wave, K is the acoustic wave number, Ω is the
acoustic wave angular frequency, and Δn0 is the perturbation amplitude (defined in Eq. (2))
with n being the refractive index of the fiber glass, χ is the photoelastic coefficient (χ = 0.22 for
silica), and u0 is the amplitude of vibration of the flexural acoustic wave, which is assumed to
vibrate in the direction of the y-axis. The coupling coefficient (κ) between the fundamental
mode and a cladding mode is evaluated with the expression

κ ¼ ω
2c

ðð

A

Δn0E∗
01Elm dx dy (3)

where ω is the optical angular frequency, c is the speed of light, and Elm is the normalized
amplitude of the electric field of a fiber mode, being l = 0 and m = 1 the fundamental mode
where * denotes the complex conjugate.

The fact that the perturbation has an explicit dependence on the transverse coordinate y implies a
sinusoidal dependence with the azimuthal coordinate φ, y = r sinφ, which leads to an antisym-
metric distribution of the perturbation in the cross section A of the fiber. Because the field
distribution of the fundamental mode (LP01) is symmetrical, to prevent the coupling coefficient
from being null, the energy coupling is restricted to the cladding modes with asymmetric
distribution. The modes that feature this asymmetric distribution feature are the LP1m modes.
Thus, there will be an intermodal coupling between the mode LP01 and the asymmetric modes of
the family LP1m. The total optical field is a superposition of two modes, which correspond to the
core and cladding forward-propagating modes with local amplitudes A(z) and B(z), respectively.
These amplitudes satisfy the following pair of coupled-mode equations:

dA zð Þ
dz

¼ �j κ B zð Þ ejΩt e2jδz (4)

dB zð Þ
dz

¼ �j κ A zð Þ e�jΩt e�2jδz (5)

where j = (�1)1/2; δ = (1/2)(β01: βlm): (π/Λ) is the phase mismatch parameter; β01 and βlm are the
propagation constants for the fundamental core mode and a high-order cladding mode,
respectively; and Λ is the wavelength of the acoustic wave (K = 2π/ Λ). In the regime of low
frequencies, Λ can be expressed as
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Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
πacext
f

r
, (6)

where a is the radius of the fiber, cext is the extensional velocity (5760 m/s for silica), and f is the
acoustic frequency.

The mode amplitudes, and hence the electric fields, can be readily solved from Eqs. (4) and (5)
in terms of a matrix F [16]:

A zð Þe�jβ01z

B zð Þe�jβlmz

� �
¼ F

A 0ð Þ
B 0ð Þ

� �
, (7)

F ¼
cos γzð Þ � j

δ
γ
sin γzð Þ

� �
e�j βþπ

Λð Þz � κ
γ
ejKz sin γzð Þ

� �
e�j βþπ

Λð Þz

κ
γ
e�jKz sin γzð Þ

� �
e�j β�π

Λð Þz cos γzð Þ þ j
δ
γ
sin γzð Þ

� �
e�j β�π

Λð Þz

2
6664

3
7775, (8)

where γ ¼ δ2 þ κ2
� �1=2 and β ¼ 1=2 β01 þ βlm

� �
:

A tapered structure is modeled assuming an acoustically induced LPG composed of N cas-
caded of uniforms LPGs with different fiber diameters and lengths Li, as depicted in Figure 1.

In each section, since both the velocity (v) and the amplitude of the flexural wave depend on
the fiber radius, the acoustic wavelength (Λ) and propagation constant (β) will have to be
computed for each section of fiber. The velocity and amplitude of the acoustic are expressed
in function of the fiber radius as

υ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πRcext f

p
, (9)

u0 Rð Þ ¼ R0

R
u0 R0ð Þ, (10)

where R0 is the original radius of the fiber previous to tapering and where we have assumed
that the acoustic power remains constant along the fiber.

Figure 1. Simulation model for the tapered fiber structure.
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The output from the ith section becomes the input to the (i + 1)th section of the fiber. The
output from the Nth section is therefore given by

A Lð Þ
B Lð Þ

� �
¼ FN⋯F2F1

A 0ð Þ
B 0ð Þ

� �
, (11)

where Fi is the F-matrix for the ith section, as defined by Eq. (8) with z = Li, and L = ΣLi is the
total length of the composite tapered fiber. The length Li is chosen small enough to insure
convergence of the numerical simulations.

Finally, the transmission response of the tapered AO device is modeled assuming that only the
fundamental mode is launched into the fiber, i.e., E01(0) 6¼ 0 and Elm(0) = 0. Thus, the spectral
dependence of the core mode is obtained computing |E01(L)|

2/|E01(0)|
2 for each optical wave-

length. Previously, the specific cladding mode involved in the experiment will be identified
after the theoretical analysis of the phase matching conditions of different cladding modes at
the frequency of the acoustic wave.

3. Acousto-optic devices based on flexural waves

In this section we present experimental results on three different types of AO devices based on
acoustic flexural waves. The first device is a conventional acousto-optic tunable attenuation
filter, whose transmission characteristics are modeled with the previous transfer matrix analy-
sis. Next, the spectral response of the attenuation filter is improved by the use of tapered
optical fibers. The results demonstrate, as it will be shown in Section 3.2, that the geometry of
the taper transitions can be regarded as an extra degree of freedom for the design of AO
devices. A significant improvement in the spectral bandwidth could be achieved by the proper
selection of the fiber transition. Finally, and with the objective of expanding the application of
the AO tunable attenuation filters (AOTAF) to an amplitude modulator, acoustic reflection was
intentionally induced. Thus, a standing acoustic wave is generated which produces an ampli-
tude modulation at twice the acoustic frequency. Our approach permits the implementation of
broad modulation bandwidth (40 nm), high modulation depth (60%), and low optical loss
(1.3 dB) in a 70-μm configuration, operating in the MHz frequency range. These experimental
results are within the best results reported in the framework of in-fiber AO modulators.

3.1. The acousto-optic tunable attenuation filter

A schematic view of the experimental setup to investigate the acousto-optic interaction in
optical fibers is depicted in Figure 2. The AO device consists of a radio frequency (RF) source,
a piezoelectric disk (PD), an aluminum concentrator horn, and an uncoated optical fiber. The
PD is excited by the RF source with a sinusoidal waveform to produce an acoustic wave that is
transmitted into the fiber through the aluminum horn. To prevent attenuation of the acoustic
wave, the fiber is stripped of the outer polymer jacket; and to avoid unwanted acoustic
reflections, the acoustic wave is damped at both ends of the uncoated fiber. The length (L) of
the uncoated optical fiber was selected to be 24 cm. At this length, it is relatively easy to obtain
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a maximum transfer of energy between the core mode and some specific cladding mode of the
fiber. Commercially available corning LEAF fiber was used in the experiments to implement
AO devices.

Initial experiments were prepared to obtain the flexural wave frequencies that satisfy phase-
matching condition between the LP01 mode and some specific higher-order cladding mode
LP1m. The objective is to identify the AO resonances in the experiments to ensure good
agreement between numerical simulations and the observed AO interaction. The AO reso-
nances and the spectral response were measured with a superluminescent diode light source
(SLD) coupled to the optical fiber that provides an optical spectrum from 1450 to 1650 nm, and
the transmission signal is monitored and recorded by an optical spectrum analyzer (OSA).
Experimental results of the AO resonances are shown in Figure 2 for a range of optical wave-
lengths between 1450 and 1650 nm. Working in the frequency range from 1.6 to 2.8 MHz,
LP01-LP11, LP01-LP12, and LP01-LP13 intermodal couplings were observed. The dotted line in
Figure 3(a) indicates the acoustic frequency of 2.33 MHz, at which three AO resonances were
observed with resonant optical wavelengths of 1473, 1537, and 1618 nm, respectively; see
Figure 3(b). The voltage applied to the piezoelectric disk (VPD) was 33 V (whenever we refer to
voltages, it is a peak-to-peak measurement). Beyond this voltage the response of the piezoelectric
disk degrades due to an excessive heating. Most of our experiments were carried out using
voltages around 30 V, where a stable and linear response of the PD was observed.

The strongest mode coupling was found at the acoustic frequency of 2.005 MHz, corresponding
to the LP01-LP12 intermodal coupling. The spectral dependence of the transmission is shown in
Figure 4, where experimental (scatter points) and simulation (solid line) results are included. The
AO resonance exhibits a maximum rejection efficiency of 15 dB at the optical resonant wave-
length of 1596 nm and a 3-dB stopband bandwidth of 1.9 nm. The spectral dependence is
calculated using Eq. (8), after computing the modal indexes of the fundamental and high-order
cladding modes using a standard boundary-value method, applied to a step index fiber. Material
dispersion was estimated assuming a binary silica optical fiber. Experimental results were found

Figure 2. Acousto-optic attenuation filter.
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to be in agreement with simulations by using Sellmeier coefficients for a silica glass doped with
GeO2 in the core and pure silica glass in the cladding [17, 18]. Experimental results were best
fitted with a GeO2 concentration of around 3.1%, maintaining constant the core radius at 9.3 μm.
Simulation parameters were calculated to be closest to the LEAF fiber datasheet.

3.2. The acousto-optic tunable attenuation filter with a double-ended tapered fiber

In this section our purpose is to report an improved scheme of AO tunable attenuation filter
based on the implementation of thin optical fibers. The proposed configuration combines
the advantages of intermodal coupling in a double-ended tapered fiber. The fiber taper was

Figure 3. Acousto-optic resonances. (a) Acoustic frequency versus resonant optical wavelengths. (b) Transmission
response of the AOTAF at the applied frequency of 2.33 MHZ.

Figure 4. Transmittance spectrum at the acoustic frequency of 2.005 Mhz. Scatter points indicate the experimental results,
and solid line indicates the simulated transmission.
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prepared using a standard fusion and pulling technique, and it was stripped of the outer
polymer jacket to prevent the attenuation of the acoustic wave.

In resonance, the resonant wavelength (λR) is directly proportional to the root square of the
fiber radius R, expressed by the following relation:

λR ¼ nco � nclð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πCextR

f

s
, (12)

where nco and ncl represent the effective indexes of the fundamental core mode and the cladding
mode, respectively. From Eq. (12) it is clear that a small variation in R produces a shift in
the resonant wavelength λR. Hence, by imposing a gradual reduction in the fiber diameter,
via the tapered fiber, a gradual shift of the resonant wavelength is expected, contributing to
enrich the spectral response of the AO device. Furthermore, since the AO effect takes place into a
thinner optical fiber, it produces a strong acousto-optic interaction that leads into a more efficient
intermodal coupling [19, 20]. Experiments were realized with the same scheme to that shown in
Figure 2 but including a tapered fiber. The fiber was tapered down to a fiber diameter of 80 μm.
The length of the tapered fiber is 23.7 cm long, and it was fabricated maintaining relatively long
decaying exponential transition profiles. The tapered fiber was composed of 12.5-cm-long uni-
form taper waist and 5.6-cm-long exponential transitions. Figure 5 shows the spectral response
of the AO interaction. For comparison purposes, and to illustrate the improvement in the spectral
response, the transmission spectra for a non-tapered optical fiber are included. In both cases, the
acoustic frequency was selected to produce the maximum transfer of energy at a resonant
wavelength around 1530 nm. Acoustic frequencies were fixed at 1.23 and 2.49 MHz for the
tapered and non-tapered fiber, respectively.

Figure 5. Transmission response of an 80-μm tapered fiber (black line). The blue line indicates the transmission response
for a non-tapered optical fiber. The acoustic frequencies were fixed to 1.23 and 2.49 MHz, respectively.
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The spectral response of the 80-μmtapered fiber exhibits a 3-dBoptical bandwidth of 11.68 nmwith
aminimumtransmittance of�16dBat the resonant opticalwavelengthof 1531.2nm. Ifwe compare
this result with the spectral response of the non-tapered fiber (12 dB of attenuation and 1.5 nm
of optical bandwidth), the improvement achieved by implementing tapered optical fibers is clear.

In order to illustrate how the geometry of the tapered fiber can be used as an extra degree of
freedom in the enhancement of the spectral response, we focus our attention on the effects of
large tapered transitions as a mechanism to shape the transmission spectrum. The fibers were
tapered down to fiber diameters of 80, 70, and 65 μm, respectively. All of them fabricated with
long decaying exponential profiles and uniform waists of around ~10 cm in length. The dimen-
sions of the tapered fibers were selected to produce a spectral response that is dependent on the
taper transition. Table 1 shows the parameters of the tapered fibers used in the experiments.

The transmission response of the AO interaction is shown in Figure 6 for the three tapered fibers.
The acoustic frequency was selected to produce a maximum attenuation resonance around
1550 nm, and that corresponded to 0.540, 1.194, and 1.207 MHz for the three tapers of 80, 70,
and 65 μm, respectively. The rejection efficiency produced by these tapers was measured as 18,
6.2, and 4 dB, respectively. The red solid line in Figure 6 indicates the simulated spectral response.

In these experiments, the notch bandwidth undergoes an improved spectral response that is
dependent on the fiber diameter. For example, the bandwidth increases from 9 to 45 nm when the
waist diameter is reduced from 80 to 70 μm, respectively, and then, the bandwidth reduces to
34 nm for the device with 65-μm waist diameter. This variation in the optical bandwidth can be
associated to the spectral contributions of the taper waist and the taper transitions, as it will be

Waist diameter (μm) Transition length (cm) Waist length (cm)

80 5.06 11

70 5.90 10

65 5.98 9

Table 1. Parameters of the tapered fibers used in the experiments.

Figure 6. Transmission spectra for three different tapered fibers at different acoustic frequencies: (a) 80 μm, (b) 70 μm,
and (c) 65 μm waist diameters. In all cases: simulations (solid curve) and experimental values (scatter points). Arrows
indicate the spectral bandwidth at �3 dB.
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shown below. By comparing these results with a non-tapered single-mode fiber, 1.5 nm of 3-dB
optical bandwidth (see Figure 5), we observe a 6� to a 30� improvement in the optical bandwidth.

From these results (Figure 6) we conclude that our numerical simulations are realistic. There-
fore, numeric simulation can be used to gain insight into the AO effect along the tapered
optical fiber. For this purpose we have computed the contributions of isolated taper transitions
and taper waist. Numerical simulations for the waist and the two taper transitions are shown
in Figure 7 for the three tapered fibers used in the experiments. For the device with 80-μm
diameter in Figure 7(a), the greatest contribution comes from the waist region of the device.
Then, for the device with 70-μm waist diameter in Figure 7(b), we can observe that the
broadening of the notch is enhanced simultaneously by the contribution of both the taper
waist and the taper transitions. Finally, for the device with 65-μm waist diameter, Figure 7(c),
the role of the taper transitions is the dominant to produce the spectral broadening.

Numerical results demonstrate that tapered transitions can play an important role to improve
the optical bandwidth of AO devices. In order to obtain the greatest contribution, the response
of taper transitions must be similar to the resonant wavelength of the taper waist. In this way,
both elements contribute simultaneously to shape the spectral response of the device. We
should also comment that the final transmission of the device is not the simple addition of
isolated transmission sections, since a proper concatenation of the taper sections takes into
account the amount of power already coupled in the previous sections and the phase accumu-
lated in the each mode.

3.3. The acousto-optic amplitude modulator

An important characteristic of the acousto-optic effect occurs when acoustic reflection is
induced. Under the effect of a standing flexural wave, the AOTAF can be operated as an
amplitude modulator. With the objective of expanding the application of the filter to a
broad bandwidth acousto-optic modulator (AOM), we take advantage of the improvements
achieved in the spectral response by implementing tapered optical fibers. By firmly
clamping one end of the fiber, opposite to the aluminum horn, a standing flexural acoustic
wave is generated, and the transmission of the filter can be converted into an amplitude
modulation. Figure 8 illustrates the conversion of the filter into a modulator by the effect of

Figure 7. Numerical simulations of the spectral response considering the taper transitions and the taper waist as
independent parts in the tapered fibers of (a) 80 μm, (b) 70 μm, and (c) 65 μm, respectively.
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induced. Under the effect of a standing flexural wave, the AOTAF can be operated as an
amplitude modulator. With the objective of expanding the application of the filter to a
broad bandwidth acousto-optic modulator (AOM), we take advantage of the improvements
achieved in the spectral response by implementing tapered optical fibers. By firmly
clamping one end of the fiber, opposite to the aluminum horn, a standing flexural acoustic
wave is generated, and the transmission of the filter can be converted into an amplitude
modulation. Figure 8 illustrates the conversion of the filter into a modulator by the effect of

Figure 7. Numerical simulations of the spectral response considering the taper transitions and the taper waist as
independent parts in the tapered fibers of (a) 80 μm, (b) 70 μm, and (c) 65 μm, respectively.
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the standing wave. In this case, the device exhibits a transmission which oscillates in time
as a result of the instantaneous perturbation generated by the standing flexural wave.
Hence, the transmission is amplitude modulated at a frequency two times the frequency of
the acoustic wave.

The AO modulator consists of a 24-cm-long tapered optical fiber, which is composed of two
transition sections of 6.38 cm and a uniform waist of 70 μm with 11 cm in length. Figure 9(a)
shows the spectral dependence including the maximum and minimum transmission for a RF
signal applied to the piezoelectric disk of 1.1565 MHz and 10.2 V. From this result we observe a
maximum attenuation of 9 dB at the resonant optical wavelength of 1541 nm. At this wave-
length the intermodal coupling produces the maximum transfer of energy between the core
and cladding modes and consequently the maximum amplitude modulation. The measure-
ments in Figure 9 were performed with a tunable laser diode (1520–1570 nm) by tuning the
wavelength around the resonant wavelength and detecting the transmitted light in a standard
oscilloscope. Figure 9(b) shows the transmitted light as a function of time at the resonant
optical wavelength, for the same conditions described in Figure 9(a). This result demonstrate
an amplitude modulation at 2.313 MHz, which is two times the acoustic frequency used
in the experiments (1.1565 MHz). The fact that the reflection coefficient for the acoustic wave
is not 1 makes the maximum transmission to be slightly below the reference level, i.e., the

Figure 8. Acousto-optic amplitude modulator.

Figure 9. Transmission response of the AO modulator. (a) Maximum (solid points) and minimum (open points) trans-
mission as a function of wavelength around the resonance located at 1541 nm. (b) Oscilloscope trace of transmitted light at
the resonant optical wavelength; the reference level is the 0 dB line. In both cases f = 1.1565 MHz and VPD = 10.2 V.

In-Fiber Acousto-Optic Interaction Based on Flexural Acoustic Waves and Its Application to Fiber Modulators
http://dx.doi.org/10.5772/intechopen.71411

93



transmission of the fiber when no acoustic wave propagates. Therefore, the maximum transmis-
sion determines the insertion loss of the AOM at a given wavelength, RF frequency, and voltage.
The difference between the maximum transmission and the minimum determines the modula-
tion depth. From the results presented in Figure 9, we emphasize a strong modulation depth
(60.5%), together with a low insertion loss (1.3 dB) and a broad operation bandwidth (~ 40 nm).
By comparing the optical bandwidth with a non-tapered AOM [15] (1.5 nm bandwidth), a
26.67� improvement is achieved just by a small amount of reduction in the fiber diameter.

For practical applications, the modulator has a number of specific characteristics that require to be
properly analyzed. First, we measured the modulation depth as a function of the optical wave-
length, when both the acoustic frequency and the RF voltage were fixed. Figure 10(a) shows the
modulation dependence around the resonant wavelength of 1541 nm when f = 1.1565 MHz and
VPD = 10.2 V are fixed. At the resonant wavelength, the modulation depth is maximal, and
symmetrically decreases for longer and shorter wavelengths. The measured 3-dB bandwidth of
the AO modulator is estimated as 40 nm, with a maximum modulation depth of 60.5%. On the
other hand, since an acoustic resonator is also formed, Figure 10(b) shows the modulation depth
versus the detuning frequency Δf when λR and VPD are maintained at 1545 nm and VPD = 10. 2 V,
respectively. The center frequency in Figure 10(b) corresponds to 1.1565MHz. At this frequency the
modulation depth is maximal, and it drops gradually to values close to zero around frequencies of
�2 kHz. For longer and shorter frequencies, the transmission oscillates and decays to values near to
zero for frequencies around�6 kHz. Therefore, the proper operation of the AOM is determined by
the acoustic frequency f, which is selected to achieve the maximummodulation depth.

From a practical point of view, the AOMmay find practical applications as active mode locker
in all-fiber laser for ultrashort pulse generation. As the results demonstrate, the modulation
bandwidth could be as broad as the Erbium band emission (~40 nm), and it could be operated
with modulation depths higher that 50%. Beside these benefits, the low insertion losses (< 2 dB)
and the inherent advantages of being an all-fiber device should be mentioned. Further
improvements in efficiency and interaction length could be possible by properly selecting the
geometry of the tapered optical fiber in the modulator.

Figure 10. Characteristics of the AO modulation. (a) Modulation depth around the resonant wavelength of 1541 nm
when f = 1.1565 MHz and VPD = 10.2 Vare fixed. (b) Modulation depth versus the detuning frequency Δfwhen λR and VPD

are maintained at 1541 nm and VPD = 10.2 V, respectively. The central acoustic frequency in (b) is 1.1565 MHz.
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4. Conclusions

This chapter demonstrated the potential of in-fiber acousto-optic interaction based on flex-
ural acoustic waves for the design of all-fiber AO devices such as tunable attenuation filters
and modulators. Based on the basic theory of AO interaction, the transmission matrix for
simulating the acousto-optic response is developed. Numerical results demonstrate good
agreement with experimental results. Thus, we can conclude that our numerical simulations
are realistic, so we can use the simulation tool to gain insight into the AO interaction along
the device. From experimental results, it is demonstrated that the geometry of the taper
transitions can be regarded as an extra degree of freedom to the design of AO devices.
Optical bandwidths of up to 45 nm are reported in a tapered fiber with a gradual reduction
of the fiber. Additionally, under the effect of a standing flexural wave, conventional AO
tunable attenuation filters can be operated as an amplitude modulator. As a particular case,
an in-fiber AO modulator composed of a double-ended tapered fiber was reported. The fiber
taper was prepared using a standard fusion and pulling technique, and it was tapered down
to a fiber diameter of 70 μm. The device exhibits an amplitude modulation at 2.313 MHz,
which is two times the acoustic frequency used (1.1565 MHz), a maximummodulation depth
of 60.5%, 1.3 dB of insertion loss, and 40 nm of modulation bandwidth. From the point of
view of implementation, the AOM is well suited for active mode locking in the ultrashort
pulse regime.
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Abstract

This chapter provides different models for the acoustic wave propagation in porous
materials having a rigid and an elastic frames. The direct problem of reflection and
transmission of acoustic waves by a slab of porous material is studied. The inverse
problem is solved using experimental reflected and transmitted signals. Both high- and
low-frequency domains are studied. Different acoustic methods are proposed for mea-
suring physical parameters describing the acoustic propagation as porosity, tortuosity,
viscous and thermal characteristic length, and flow resistivity. Some advantages and
perspectives of this method are discussed.

Keywords: acoustic porous materials, porosity, tortuosity, viscous and thermal
charactertistic lengths, fractional derivatives

1. Introduction

More than 50 years ago, Biot [1, 2] proposed a semi-phenomenological theory which provides
a rigorous description of the propagation of acoustic waves in porous media saturated by a
compressible viscous fluid. Due to its very general and rather fundamental character, it has
been applied in various fields of acoustics such as geophysics, underwater acoustics, seismol-
ogy, ultrasonic characterization of bones, etc. Biot’s theory describes the motion of the solid
and the fluid, as well as the coupling between the two phases. The loss of acoustic energy is
due mainly to the viscosity of the fluid and the relative fluid-structure movement. The model
predicts that the acoustic attenuation, as well as the speed of sound, depends on the frequency
and elastic constants of the porous material, as well as porosity, tortuosity, permeability, etc.
The theory predicts two compressional waves: a fast wave, where the fluid and solid move in
phase, and a slow wave where fluid and solid move out of phase. Johnson et al. [3] introduced
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the concept of tortuosity or dynamic permeability which has better described the viscous
losses between fluid and structure in both high and low frequencies.

Air-saturated porous materials such as plastic foams or fibrous materials are widely used in
passive control and noise reduction. These materials have interesting acoustic properties for
sound absorption, and their use is quite common in the building trade and automotive and
aeronautical fields. The determination of the physical parameters of the medium from reflected
and transmitted experimental data is a classical inverse scattering problem.

Pulse propagation in porous media is usually modeled by synthesizing the signal via a Fourier
transform of the continuous wave results. On the other hand, experimental measurements are
usually carried out using pulses of finite bandwidth. Therefore, direct modeling in the time domain
is highly desirable [4–10]. The temporal and frequency approaches are complementary for study-
ing the propagation of acoustic signals. For transient signals, the temporal approach is the most

Figure 1. Air-saturated plastic foam.

Figure 2. Human cancellous bone sample.
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appropriate because it is closer to the experimental reality and the finite duration of the signal.
However, for monochromatic harmonic signals, the frequency approach is the most suitable [11].

Fractional calculus has been used in the past by many authors as an empirical method to
describe the viscoelastic properties of materials (e.g., see Caputo [12] and Bagley and
Torvik [13]). The fact that acoustic attenuation, stiffness, and damping in porous materials
are proportional to the fractional powers of frequency [4, 5, 7, 9, 10] suggests that
fractional-order time derivatives could describe the propagation of acoustic waves in these
materials.

In this chapter, acoustic wave propagation in porous media is studied in the high- and the low-
frequency range. The direct and inverse scattering problems are solved for the mechanical
characterization of the medium. The general Biot model applied to porous materials having
elastic structure is treated, and also the equivalent fluid model, used for air-saturated porous
materials (Figures 1 and 2).

2. Porous materials with elastic frame

In porous media, the equations of motion of the frame and fluid are given by the Euler
equations applied to the Lagrangian density. Here, u and U are the displacements of the solid
and fluid phases. The equations of motion are given by [1, 2]

r11
∂2u
∂t2

þ r12
∂2U
∂t2

¼ P∇: ∇u:ð Þ þQ∇ ∇:Uð Þ �N∇ ∧ ∇ ∧uð Þ, (1)

r12
∂2u
∂t2

þ r22
∂2U
∂t2

¼ Q∇ ∇:uð Þ þ R∇ ∇:Uð Þ, (2)

where P, Q, and R are the generalized elastic constants, φ is the porosity, Kf is the bulk
modulus of the pore fluid, Ks is the bulk modulus of the elastic solid, and Kb is the bulk
modulus of the porous skeletal frame. N is the shear modulus of the composite as well as that
of the skeletal frame. The equations which explicitly relate P, Q, and R to φ, Kf , Ks, Kb, and N
are given by

P ¼
1� φ
� �

1� φ� Kb
Ks

� �
Ks þ φ Ks

Kf
Kb

1� φ� Kb
Ks
þ φ Ks

Kf

þ 4
3
N, Q ¼

1� φ� Kb
Ks

� �
φKs

1� φ� Kb
Ks
þ φ Ks

Kf

, R ¼ φ2Ks

1� φ� Kb
Ks
þ φ Ks

Kf

:

rmn is the “mass coefficients” which are related to the densities of solid (rs) and fluid (rf )

phases by

r11 þ r12 ¼ 1� φ
� �

rs, r12 þ r22 ¼ φrf : (3)

The Young modulus and the Poisson ratio of the solid Es and νs and of the skeletal frame Eb

and νb depend on the generalized elastic constant P, Q, and R via the relations:
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Ks ¼ Es

3 1� 2νsð Þ , Kb ¼ Eb

3 1� 2νbð Þ , N ¼ Eb

2 1þ νbð Þ : (4)

The mass coupling parameter r12 between the fluid and solid phases is always negative:

r12 ¼ �φrf α∞ � 1ð Þ, (5)

where α∞ is the tortuosity of the medium. The damping of the acoustic wave in porous
material is essentially due to the viscous exchanges between the fluid and the structure. To
express the viscous losses, the dynamic tortuosity is introduced [3] α ωð Þ given by

α ωð Þ ¼ α∞ 1� 1
jx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M

2
jx

r !
where x ¼ ωα∞rf

σφ
and M ¼ 8k0α∞

φΛ2 : (6)

where j2 ¼ �1, ω is the angular frequency, σ is the fluid resistivity, k0 is the viscous permeabil-
ity, and Λ is the viscous characteristic length given by Johnson et al. [3]. The ratio of the sizes of

the pores to the viscous skin depth thickness δ ¼ 2η=ωr0ð Þ1=2 gives an estimation of the parts of
the fluid affected by the viscous exchanges. In this domain of the fluid, the velocity distribution
is perturbed by the frictional forces at the interface between the viscous fluid and the motion-
less structure. At high frequencies, the viscous skin thickness is very thin near the radius of the
pore r. The viscous exchanges are concentrated in a small volume near the surface of the frame
δ=r≪ 1. The expression of the dynamic tortuosity α ωð Þ is given by [3]

α ωð Þ ¼ α∞ 1þ 2
Λ

η
jωrf

 !1=2
0
@

1
A, (7)

The range of frequencies such that viscous skin thickness δ ¼ 2η=ωr0ð Þ1=2 is much larger than
the radius of the pores r

δ
r
≫ 1 (8)

is called the low-frequency range. For these frequencies, the viscous forces are important
everywhere in the fluid. When ω ! 0, the expression of the dynamic tortuosity becomes

α ωð Þ ≈α0 1þ ηφ
jωα0rf k0

 !
, (9)

α0 is the low-frequency approximation of the tortuosity introduced by Lafarge in [14] and
Norris [15]:

α0 ¼ < v rð Þ2 >
< v rð Þ>2 (10)
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less structure. At high frequencies, the viscous skin thickness is very thin near the radius of the
pore r. The viscous exchanges are concentrated in a small volume near the surface of the frame
δ=r≪ 1. The expression of the dynamic tortuosity α ωð Þ is given by [3]

α ωð Þ ¼ α∞ 1þ 2
Λ

η
jωrf

 !1=2
0
@

1
A, (7)

The range of frequencies such that viscous skin thickness δ ¼ 2η=ωr0ð Þ1=2 is much larger than
the radius of the pores r

δ
r
≫ 1 (8)

is called the low-frequency range. For these frequencies, the viscous forces are important
everywhere in the fluid. When ω ! 0, the expression of the dynamic tortuosity becomes

α ωð Þ ≈α0 1þ ηφ
jωα0rf k0

 !
, (9)

α0 is the low-frequency approximation of the tortuosity introduced by Lafarge in [14] and
Norris [15]:

α0 ¼ < v rð Þ2 >
< v rð Þ>2 (10)
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where v rð Þ is the microscopic velocity. The angle brackets represent the average of the random
variable over the sample of material. In the time domain, and in the high-frequency domain,
the dynamic tortuosity (Eq. 7) α ωð Þ acts as the operator, and its expression is given by [8]

~α tð Þ ¼ α∞ δ tð Þ þ 2
Λ

η
πrf

 !1=2

t�1=2

0
@

1
A, (11)

δ tð Þ is the Dirac function. In this model the time convolution of t�1=2 with a function is
interpreted as a semi-derivative operator according to the definition of the fractional derivative
of order ν given by Samko et al. [16]:

Dν x tð Þ½ � ¼ 1
Γ �νð Þ

ðt
0
t� uð Þ�ν�1x uð Þdu, (12)

where 0 ≤ ν < 1 and Γ xð Þ is the gamma function. A fractional derivative acts as a convolution
integral operator and no longer represents the local variations of the function. The properties
of fractional derivatives and fractional calculus are given by Samko et al. [16].

The introduction of the tortuosity operator ~α tð Þ (Eq. 11) in Biot’s Eqs. (1) and (2) to describe the
inertial and viscous interactions between fluid and structure will express the propagation
equations in the time domain. When ~α tð Þ is used instead of α∞ in Eqs. (1) and (2), the equations
of motion (1) and (2) will be written as [17]

ðt
0
~r11 t� t0ð Þ ∂

2u t0ð Þ
∂t2

þ
ðt
0
~r12 t� t0ð Þ ∂

2u t0ð Þ
∂t02

dt ¼ P:∇ ∇:u tð Þð Þ þQ∇ ∇:u tð Þð Þ �N∇ ∧ ∇ ∧u tð Þð Þ,

ðt
0
~r12 t� t0ð Þ ∂

2u tð Þ t0ð Þ
∂t2

þ
ðt
0
~r22 t� t0ð Þ ∂

2U t0ð Þ
∂t2

dt ¼ Q∇ ∇:u tð Þð Þ þ R∇ ∇:U tð Þð Þ: (13)

In these equations, the temporal operators ~r11 tð Þ, ~r12 tð Þ, and ~r22 tð Þ represent the mass coupling
operators between the fluid and solid phases and are given by

~r11 tð Þ ¼ 1� φ
� �

rs þ φrf ~α tð Þ � 1Þ, ~r12 tð Þ ¼ �φrf ~α tð Þ � 1Þ, ~r22 tð Þ ¼ φrf ~α tð Þ,
��

where ~α tð Þ is given by Eq. (11).

The wave equations of dilatational and rotational waves can be obtained using scalar and
vector displacement potentials, respectively. Two scalar potentials for the frame and the fluid,
Φs and Φf , are defined for compressional waves giving

r11
∂2

∂t2
þ A

∂3=2

∂t3=2
� PΔ r12

∂2

∂t2
� A

∂3=2

∂t3=2
�QΔ

r12
∂2

∂t2
� A

∂3=2

∂t3=2
�QΔ r22

∂2

∂t2
þ A

∂3=2

∂t3=2
� RΔ

0
BBB@

1
CCCA

~Φs tð Þ
~Φ f tð Þ

 !
¼ 0: (14)
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where A ¼ 2φrf α∞

Λ

ffiffiffiffi
η
rf

q
, Δ is the Laplacian, and ∂3=2

∂t3=2
represents the fractional derivative following

the definition given by Eq. (12).

Two distinct longitudinal modes called fast and slow waves are obtained by the resolution of
the eigenvalue problem of the matrix of Biot (Eq. (14)). On a basis of fast and slow waves Φ1 tð Þ
and Φ2 tð Þ, one can have

Δ
Φ1 tð Þ
Φ2 tð Þ

� �
¼

~λ1 tð Þ 0
0 ~λ2 tð Þ

 !
Φ1 tð Þ
Φ2 tð Þ

� �
, (15)

where ~λ1 tð Þ and ~λ2 tð Þ are the “eigenvalue operators” of the Biot matrix (Eq. (14)). Their
expressions are given by

~λi tð Þ ¼ Ci
∂2

∂t2
þDi

∂3=2

∂t3=2
þ Gi

∂
∂t
, i ¼ 1, 2, (16)

Their corresponding eigenvectors are

~J i tð Þ ¼ Ai þ Biffiffiffiffiffi
πt

p , i ¼ 1, 2, (17)

where

Ci ¼ 1
2

τ1 þ �1ð Þi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 � 4τ3

q� �
, Di ¼ 1

2
τ2 þ �1ð Þi τ1τ2 � 2τ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ21 � 4τ3
q

0
B@

1
CA,

Gi ¼ �1ð Þi: 1
4

τ22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 � 4τ3

q � τ1τ2 � 2τ4ð Þ2
2 τ21 � 4τ3
� �3=2

0
B@

1
CA, Ai ¼

τ1 � 2τ5 þ �1ð Þi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 � 4τ3

q

2τ7
,

Bi ¼ 1
4τ27

τ2 � 2τ6 þ �1ð Þi τ1τ2 � 2τ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 � 4τ3

q

0
B@

1
CA2τ7 þ τ1 � 2τ5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 � 4τ3

q� �
:2τ6

2
64

3
75, i ¼ 1, 2,

and

t

τ1 ¼ R0r11 þ P0r22 � 2Q0r12, τ2 ¼ A P0 þ R0 þ 2Q0ð Þ, τ3 ¼ P0R0 �Q02
� �

r11r22 � r212
� �

,

τ4 ¼ A P0R0 �Q02
� �

r11 þ r22 � 2r12ð Þ, τ5 ¼ R0r11 �Q0r12ð Þ, τ6 ¼ A R0 þQ0ð Þ,

τ7 ¼ R0r12 �Q0r22ð Þ:

Coefficients R0, P0, and Q0 are given by

R0 ¼ R
PR�Q2 , Q0 ¼ Q

PR�Q2 , and P0 ¼ P
PR�Q2 :

The fast and slow waves Φ1 and Φ2 are obeying to the following propagation equations along
the x axis:
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∂2Φi x; tð Þ
∂x2

� 1
v2i

∂2Φi x; tð Þ
∂t2

� hi
∂3=2Φi x; tð Þ

∂t3=2
� d

∂Φi x; tð Þ
∂t

¼ 0, i ¼ 1, 2, (18)

where the coefficients vi, hi i ¼ 1; 2ð Þ, and d are constants, respectively, given by

vi ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 � 4τ3

q
þ �ð Þiτ1

r , hi ¼ 1
2

τ2 þ �1ð Þi τ1τ2 � 2τ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 � 4τ3

q
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B@

1
CA, i ¼ 1, 2
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d ¼ � 1
4

τ22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 � 4τ3

q � τ1τ2 � 2τ4ð Þ2
2 τ21 � 4τ3
� �3=2

0
B@

1
CA,

where Eq. (18) is a fractional propagation equations [17] in time domain of the fast and slow
waves, respectively. These equations describe the attenuation and the spreading of the temporal
signal propagating inside the porous material. These fractional propagation equations have been
solved and well-studied in the case of rigid porous materials using the equivalent fluid model.

3. Porous materials with rigid frame

In the acoustics of porous media, two situations can be distinguished: elastic and rigid frame
materials. In the first case, the Biot [1, 2] theory is best suited. In the second case, the acoustic
wave cannot vibrate the structure. The equivalent fluid model is then used, in which the
acoustic wave propagates inside the saturating fluid [8, 11]. The equations for the acoustics in
the equivalent fluid model are given by

r
∂2Ui

∂t2
¼ �∇ip, p ¼ �Kf∇:U: (19)

In these relations, p is the acoustic pressure. The first equation is the Euler equation, and the
second one is a constitutive equation obtained from the equation of mass conservation associ-
ated with the behavior (or adiabatic) equation. These equations can be obtained from the Biot
Eqs. (1, 2) by canceling the solid displacement. Assuming that the porous medium studied is
homogeneous and has a linear elasticity, we obtain easily the following wave equation (prop-
agation along the x axis) for the acoustic pressure in a lossless porous material:

∂2p x; tð Þ
∂x2

� r

Ka

� �
∂2p x; tð Þ

∂t2
¼ 0: (20)

In Eq. (20), the viscous and thermal losses that contribute to the sound damping in acoustic
materials are not described. The thermal exchanges are generally negligible near viscous
effects in the porous materials obeying to the Biot theory, this is not the case for air-saturated
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porous materials using the equivalent fluid model. To take into account the fluid-structure
exchanges, the density and compressibility of the fluid are “renormalized” by the dynamic
tortuosity α ωð Þ and the dynamic compressibility β ωð Þ, via the relations r ! rα ωð Þ and
Kf ! Kf =β ωð Þ, giving the following wave equation in frequency domain (Helmholtz equation)
for a lossy porous material:

∂2p x; tð Þ
∂x2

þ ω2 rα ωð Þβ ωð Þ
Ka

� �
p x; tð Þ ¼ 0: (21)

The thermal exchanges to the fluid compressions-dilatations are produced by the wave
motion. The parts of the fluid affected by the thermal exchanges can be estimated by the ratio

of a microscopic characteristic length of thermal skin depth thickness δ0 ¼ 2η=ωrPrð Þ1=2 (η is
the fluid viscosity; Pr is the Prandtl number).

The expression of the dynamic compressibility is given by

β ωð Þ ¼ γ� γ� 1ð Þ= 1� 1
jx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M0

2
jx0

r" #
where x0 ¼ ωrf k

0
0Pr

ηφ
and M0 ¼ 8k00

φΛ02 : (22)

where γ is the adiabatic constant, the magnitude k00 introduced by Lafarge [14] called thermal
permeability by analogy to the viscous permeability, and Λ0 is the thermal characteristic
length. The low-frequency approximation of β ωð Þ [14] is given by

β ωð Þ ¼ γþ γ� 1ð Þrf k0
0
Pr

ηφ jω
, when ω ! 0: (23)

where k00, which has the same size (area) that of Darcy’s permeability of k0, is a parameter
analogous to the parameter k0 but is adapted to the thermal problem.

In a high-frequency limit, Allard and Champoux [18] showed the following behavior of β ωð Þ:

β ωð Þ ¼ 1� 2 γ� 1ð Þ
Λ0

η
Prrf

 !1=2
1
jω

� �1=2

, ω ! ∞: (24)

Replacing α ωð Þ and β ωð Þ given by Eqs (18) in Eq. (21), we obtain the following lossy equation
for porous materials in the high-frequency domain:

∂2p x; tð Þ
∂x2

þ ω2 rα
Ka

1�
ffiffiffiffiffiffiffiffi
η
rjω

r
2
Λ
þ 2 γ� 1ð Þ

Λ0 ffiffiffiffiffiPrp
� �� �

p x; tð Þ þ D1 � 1
x

� �
∂p x; tð Þ

∂x
¼ 0: (25)

In the time domain (using the convention ∂=∂t ! �jω), we obtain the following fractional
propagation equation:
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∂2p x; tð Þ
∂x2

� rα
Ka

� �
∂2p x; tð Þ

∂t2
� 2α

ffiffiffiffiffiffi
rη

p
Ka

2
Λ
þ 2 γ� 1ð Þ

Λ0 ffiffiffiffiffi
Pr

p
� �

∂3=2p x; tð Þ
∂t3=2

¼ 0: (26)

In this equation, the term ∂3=2p x;tð Þ
∂t3=2

is interpreted as a semi-derivative operator following the

definition of the fractional derivative of order ν, given by Samko and coll. [16]. The solution of
the wave Eq. (26) with suitable initial and boundary conditions is by using the Laplace
transform. F is the medium’s Green function [9] given by

F t; kð Þ ¼
0 if 0 ≤ t ≤ k

Ξ tð Þ þ Δ
Ð t�k
0 h t; ξð Þdξ if t ≥ k

8><
>:

(27)

with

Ξ tð Þ ¼ b0

4
ffiffiffiffi
π

p k

t� kð Þ3=2
exp � b02k2

16 t� kð Þ

 !
, (28)

where h τ; ξð Þ has the following form:

h ξ; τð Þ ¼ � 1
4π3=2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ� ξð Þ2 � k2

q 1

ξ3=2

ð1
�1

exp �χ μ; τ; ξ
� �

2

� �
χ μ; τ; ξ
� �� 1

� � μdμffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

p , (29)

χ μ; τ; ξ
� � ¼ Δμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ� ξð Þ2 � k2

q
þ b0 τ� ξð Þ

� �2

=8ξ, b0 ¼ Bc20
ffiffiffiffi
π

p
,

and Δ ¼ b02.

Let us consider a homogeneous porous material which occupies the region 0 ≤ x ≤L; the expres-
sions of the reflection and transmission coefficients in the frequency domain are given by

R ωð Þ ¼ 1�D2� �
sinh k ωð ÞLð Þ

2Y ωð Þcoth k ωð ÞLð Þ þ 1þ Y2 ωð Þ� �
sinh k ωð ÞLð Þ , (30)

T ωð Þ ¼ 2Y ωð Þ
2Y ωð Þcoth k ωð ÞLð Þ þ 1þ Y2 ωð Þ� �

sinh k ωð ÞLð Þ , (31)

where

Y ωð Þ ¼ φ

ffiffiffiffiffiffiffiffiffiffi
β ωð Þ
α ωð Þ

s
, and k ωð Þ ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rα ωð Þβ ωð Þ

Ka

s
,

These expressions are simplified by taking into account the reflections at the interfaces x ¼ 0 and
x ¼ L; the expressions of the reflection and transmission operators are given in time domain by
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~R tð Þ ¼
ffiffiffiffiffiffi
α∞

p � φffiffiffiffiffiffi
α∞

p þ φ
δ tð Þ � 4φ

ffiffiffiffiffiffi
α∞

p ffiffiffiffiffiffi
α∞

p � φ
� �
ffiffiffiffiffiffi
α∞

p þ φ
� �3 F t;

2L
c

� �
, (32)

~T tð Þ ¼ 4φ
ffiffiffiffiffiffi
α∞

p

φþ ffiffiffiffiffiffi
α∞

p� �2 F tþ L
c
;
L
c

� �
: (33)

where δ tð Þ is the Dirac function and F is the Green function of the medium given by Eq. (27). In
the next sections, we will use the reflected and transmitted waves for solving the inverse
problem in order to characterize the porous materials.

3.1. Ultrasonic measurement of porosity, tortuosity, and viscous and thermal characteristic
lengths via transmitted waves

The experimental setup consists of two transducers broadband Ultran NCT202 with a central
frequency of 190 kHz in air and a bandwidth of 6 dB extending from 150 to 230 kHz [19]. A
pulser/receiver 5058PR Panametrics sends pulses of 400 V. The high-frequency noise is avoided
by filtering the received signals above 1 MHz. Electronic interference is eliminated by 1000
acquisition averages. The experimental setup is shown in Figure 3. The inverse problem is to
find the parameters α∞, φ, Λ, and Λ0 which minimize numerically the discrepancy function

U α∞;φ;Λ;Λ0� � ¼Pi¼N
i¼1 ptexp x; tið Þ � pt x; tið Þ
� �2

, wherein ptexp x; tið Þi¼1,2,…n is the discrete set of

values of the experimental transmitted signal and pt x; tið Þi¼1,2,…n is the discrete set of values of
the simulated transmitted signal predicted from Eq. (33). The least squares method is used for
solving the inverse problem using the simplex search method (Nelder-Mead) [20] which does
not require numerical or analytic gradients.

pulse generator

Computer

Digital oscilloscope

High frequency filtering

Pre-amplifier

Triggering

Sample

Transducers

Figure 3. Experimental setup of the ultrasonic measurements.
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U α∞;φ;Λ;Λ0� � ¼Pi¼N
i¼1 ptexp x; tið Þ � pt x; tið Þ
� �2

, wherein ptexp x; tið Þi¼1,2,…n is the discrete set of

values of the experimental transmitted signal and pt x; tið Þi¼1,2,…n is the discrete set of values of
the simulated transmitted signal predicted from Eq. (33). The least squares method is used for
solving the inverse problem using the simplex search method (Nelder-Mead) [20] which does
not require numerical or analytic gradients.
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Figure 3. Experimental setup of the ultrasonic measurements.
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Consider a sample of plastic foam M1, of thicknesses 0:8� 0:01cm. Sample M1 was character-
ized using classic methods [21–31] and gave the following physical parameters φ ¼ 0:85� 0:05,
α∞ ¼ 1:45� 0:05, Λ ¼ 30� 1ð Þμm, and Λ0 ¼ 60� 3ð Þμm. Figure 4 shows the experimental inci-
dent signal (dashed line) generated by the transducer and the experimental transmitted signal
(solid line). After solving the inverse problem simultaneously for the porosity φ, tortuosity α∞,
and viscous and thermal characteristic lengthsΛ andΛ0, we find the following optimized values:
φ ¼ 0:87� 0:01, α∞ ¼ 1:45� 0:01, Λ ¼ 32:6� 0:5ð Þμm, and Λ0 ¼ 60� 0:5ð Þμm. The values of
the inverted parameters are close to those obtained by conventional methods [21–31]. We present
in Figures 5 and 6 the variation of the minimization function U with the porosity, tortuosity,
viscous characteristic length, and the ratio betweenΛ0 andΛ. In Figure 7, we show a comparison
between an experimental transmitted signal and simulated transmitted signal for the optimized
values of φ, α∞, Λ, and Λ0. The difference between the two curves is small, which leads us to
conclude that the optimized values of the physical parameters are correct.
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Figure 4. Experimental incident signal (solid line) and experimental transmitted signal (dashed line).
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3.2. Measuring flow resistivity of porous material via acoustic reflected waves at low-
frequency domain

In the low-frequency domain, the viscous forces are important everywhere in all the fluid saturat-
ing the porous material. The thermal exchanges between fluid and structure are favored by the
slowness of the cycle of expansion and compression in thematerial. The temperature of the frame
is practically unchanged by the passage of the soundwave because of the high value of its specific
heat: the frame acts as a thermostat; the isothermal compressibility is directly applicable. In this

domain, the viscous skin thickness δ ¼ 2η=ωr0ð Þ1=2 ismuch larger than the radius of the pores r

δ
r
≫ 1: (34)
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Figure 7. Comparison between the experimental transmitted signal (black dashed line) and the simulated transmitted
signals (black line) using the reconstructed values of ϕ, α∞, Λ, and Λ0.
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Figure 6. Variation of the cost function U with the viscous characteristic length Λ and the ratio Λ0=Λ.
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We consider the low-frequency approximations of the response factor α ωð Þ and β ωð Þ. When
ω ! 0, Eqs. (22) and (6), respectively, become

α ωð Þ ¼ σφ
iωr

, (35)

β ωð Þ ¼ γ: (36)

For a wave traveling along the direction ox, the generalized forms of the basic Eqs. (19) in the
time domain are now

σφV ¼ � ∂p
∂x

and
γ
Ka

∂p
∂t

¼ � ∂v
∂x

(37)

where the Euler equation is reduced to Darcy’s law which defines the static flow resistivity
σ ¼ η=k0. The wave equation in time domain is given by

∂2p
∂x2

þ σφγ
Ka

� �
∂p
∂t

¼ 0 (38)

The fields which are varying in time, the pressure, the acoustic velocity, etc. follow a diffusion
equation with the diffusion constant:

D ¼ Ka

σφγ
: (39)

The diffusion constant D is connected to Darcy’s constant k0 (called also the viscous permeabil-
ity) by the relation

D ¼ Kak0
ηφγ

, (40)

where η is the fluid viscosity.

The expression of the reflection coefficient R zð Þ in Laplace domain (put z ¼ jω for obtaining the
frequency domain of R ωð Þ), is given by [32]

R zð Þ ¼ 1� B2z
� �

sinh L
ffiffiffiffiffiffiffi
Dz

p� �

2B
ffiffiffi
z

p
cosh L

ffiffiffiffiffiffiffi
Dz

p� �þ 1þ B2z
� �

sinh L
ffiffiffiffiffiffiffi
Dz

p� � , (41)

The development of these expressions in exponential series leads to the reflection coefficient:

R zð Þ ¼ 1� B
ffiffiffi
z

p
1þ B

ffiffiffi
z

p
X
n ≥ 0

1� B
ffiffiffi
z

p
1þ B

ffiffiffi
z

p
� �2n

exp �2nL
ffiffiffiffiffiffiffi
Dz

p� �
� exp �2 nþ 1ð ÞL

ffiffiffiffiffiffiffi
Dz

p� �� �
: (42)

The multiple reflections in the material are taken into account in these expressions. As the
attenuation is high in the porous materials, the multiple reflection effects are negligible. Let us
consider the reflections at the interfaces x ¼ 0 and x ¼ L:
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R zð Þ ¼ 1� B
ffiffiffi
z

p
1þ B

ffiffiffi
z

p 1� 4B
ffiffiffi
z

p

1þ B
ffiffiffi
z

pð Þ2
exp �2L

ffiffiffiffiffiffiffi
Dz

p� � !

¼ 1� B
ffiffiffi
z

p
1þ B

ffiffiffi
z

p � 4B
ffiffiffi
z

p
1� B

ffiffiffi
z

pð Þ
1þ B

ffiffiffi
z

pð Þ3
exp �2L

ffiffiffiffiffiffiffi
Dz

p� � (43)

The reflection scattering operator is calculated by taking the inverse Laplace transform of the
reflection coefficient.

We infer [32] that

L�1 1� B
ffiffiffi
z

p
1þ B

ffiffiffi
z

pð Þ
� �

¼ L�1 �1þ 2
B

1ffiffiffi
z

p þ 1=B

� �

¼ �δ tð Þ þ 2
B
ffiffiffiffiffiffi
π t

p � 2
B2 exp t=B2� �

erf
ffiffi
t

p
=B

� �
,

(44)

where erf is the error function. By putting

g zð Þ ¼ Bz� 1

1þ Bzð Þ3 ¼
1
B2

z� 1=B

1=Bþ zð Þ3 ,

we obtain

L�1 g zð Þ½ � ¼ f tð Þ ¼ 1
B2 L

�1 z� 1=B

1=Bþ zð Þ3
" #

¼ 1
B2 t� t2=B
� �

exp �t=Bð Þ:

Using the relation

L�1 ffiffiffi
z

p
g

ffiffiffiffiffiffi
zð Þ

p
Þ

� i
¼ 1

2
ffiffiffiffi
π

p 1
t3=2

ð∞
0
exp � u2

4t

� �
u2

2t
� 1

� �
f uð Þdu

�

¼ 1
2
ffiffiffiffi
π

p
B2

1
t3=2

ð∞
0
exp � u2

4t

� �
u2

2t
� 1

� �
u� u2

B

� �
exp � u

B

� �
du,

which with the variable change u=B ¼ y, yields

L�1 4B
ffiffiffi
z

p
B
ffiffiffi
z

p � 1ð Þ
1þ B

ffiffiffi
z

pð Þ3
" #

¼ 2
B
ffiffiffiffi
π

p 1
t3=2

ð∞
0
exp � u2

4t

� �
u2

2t
� 1

� �
u� u2

B

� �
exp � u

B

� �
du,

¼ 2Bffiffiffiffi
π

p 1
t3=2

ð∞
0
exp �B2y2

4t

� �
y2B2

2t
� 1

� �
y� y2
� �

exp �yð Þdy:

¼ k tð Þ

The reflection scattering operator is then given by

~R tð Þ ¼ f tð Þ þ k tð Þð Þ∗g tð Þ (45)
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3.2.1. Acoustic parameter sensitivity

Consider a sample of porous material having a physical parameters that correspond to quite
common acoustic materials, as follows: thickness L ¼ 4cm, porosity φ ¼ 0:9, flow resistivity
σ ¼ 30000N m�4s, and radius of the pore r ¼ 70μm. Let us study the sensitivity of the main
parameters using numerical simulations of waves reflected by a porous material. Fifty percent
variation is applied to the physical parameters (flow resistivity σ and porosity φ).

To obtain the simulated reflected waves, we use the incident signal given in Figure 8 (dashed
line). The result (reflected wave) is the wave given in the same figure (Figure 8) in solid line.
The spectra of the two waves (incident and reflected) are given in Figure 9. From Figure 8,
we can see that there is just an attenuation of the reflected wave without dispersion, since the
two waves have the same spectral bandwidth (Figure 9). Figure 8 shows the results obtained
after reducing flow resistivity by 50% of its initial value. The wave in dashed line corre-
sponds to the simulated reflected signal for σ ¼ 30000N m�4s and the second one (solid line)
to σ ¼ 15000N m�4s. The values of the porosity φ ¼ 0:9 and thickness L ¼ 4cm have been
kept constant. When the flow resistivity is reduced, the amplitude of reflected wave
decreases by 30% of its initial value. Physically, by reducing the flow resistivity, the medium
is less resistive, since the viscous effects become less important in the porous material, and
thus the amplitude of the reflected wave decreases. No change is observed in the reflected
wave when reducing the porosity by 50% of its initial value. We can conclude that the
porosity has no significant sensitivity in reflected mode.

For the propagation of transient signals at low frequency, a guide (pipe) [32], having a
diameter of 5 cm and of length 50 m, is chosen. The pipe can be rolled without perturbations
on experimental signals (the cutoff frequency of the tube f c � 4kHz). The same microphone
(Brüel & Kjær, 4190) is used for measuring the incident and reflected signals. Burst is
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Figure 8. Incident signal (dashed line) and simulated reflected signal (solid line).
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provided by synthesized function generator Stanford Research Systems model DS345-
30 MHz. A sound source driver unit “Brand” constituted by loudspeaker Realistic 40-9000
is used. The incident signal is measured by putting a total reflector in the same position than
the porous sample. The experimental setup is shown in Figure 10. Consider a cylindrical
sample of plastic foam M1 of flow resistivity value σ ¼ 40000� 6000Nm-4s. This value is
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Figure 9. Spectrum of incident signal (dashed line) and spectrum of reflected signal (solid line).

Figure 10. Experimental setup of acoustic measurements.
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Figure 10. Experimental setup of acoustic measurements.
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obtained using the method of Bies and Hansen [33]. The sample M1 has a diameter of 5 cm
and a thickness of 3 cm. Figure 11 shows the experimental incident wave (solid line) gener-
ated by the loudspeaker in the frequency bandwidth (35–75) Hz, and the experimental
reflected signal (dashed line), with their spectra. There is no dispersion, since the two signals
have practically the same bandwidth. The minimization of the function U gives the solution
if the inverse problem:

U σð Þ ¼
Xi¼N

i¼1

prexp x; tið Þ � pr x; tið Þ
� �2

, (46)

where prexp x; tið Þi¼1,2,…N and pr x; tið Þi¼1,2,…N represent the discrete set of values of the exp-

erimental reflected signal and of the simulated reflected signal, respectively. The optimized
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Figure 11. Experimental incident signal (solid line) and experimental reflected signal (dashed line), and their spectra,
respectively.
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Figure 12. Variation of the minimization function U with flow resistivity σ.

Wave Propagation in Porous Materials
http://dx.doi.org/10.5772/intechopen.72215

115



value of σ ¼ 40500� 2000Nm-4s is obtained by solving the inverse problem. The variation of
the minimization function U with the flow resistivity σ is given in Figure 12. A comparison
between experiment and theory is given in Figure 13. The difference between theory and
experiment is slight, which leads us to conclude that the optimized value of the flow resistivity
is good.

This alternative acoustic method has the advantage of being simple and effective since it
requires the use of only one microphone and therefore no calibration problem. In addition,
this approach is different from conventional methods (Bies and Hansen [33]) that involve the
use of fluid flow measurement techniques and pressure differences. The mathematical analysis
of the reflected wave at low frequency is quite simple, because this wave is not propagative in
the medium but simply diffusive (having the same frequency band with the incident signal).
The wave reflected by the resistive materials has the advantage of being easily detectable
experimentally compared to the transmitted wave.

4. Conclusion

Acoustic propagation in porous media involves a large number of physical parameters when
the structure is elastic. This number is reduced when the structure is rigid, because the
mechanical part does not intervene and thus remains only the acoustic part. The study of high
and low frequencies separately solves the inverse problem and characterizes the porous mate-
rials in the domain of influence of the physical parameters. The proposed methods are simple
and effective and allow an acoustic characterization of porous materials using transmitted or
reflected experimental waves.
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Figure 13. Comparison between experimental reflected signal (dashed line) and simulated reflected signal (solid line) for
the sample M1.
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Abstract

The physical mechanism of generating the lasting tropospheric refractivity fluctuation
with a stable array-distributed structure by coherent acoustic waves is investigated. An
example of the quantitative calculation of atmospheric refractive index is given and
analyzed. Based on the theory of electromagnetic wave propagation and scattering in
the troposphere, the feasibility to purposefully affect radio wave propagation is qualita-
tively demonstrated by the experiment of the coherent acoustic source-induced laser
interference fringe change. The potential application aspects of synthetically controlling
the radio wave propagation by the artificial refractivity fluctuation structure are prelim-
inarily proposed. This chapter will promote the development of the coherent acoustic
wave-induced tropospheric refractivity fluctuation, and it has the important theoretical
significance and potential application value to purposely apply the positive or negative
effects on radio wave propagation.

Keywords: troposphere, atmospheric refractive index, coherent acoustic waves
radio wave propagation, positive or negative effects

1. Introduction

Radio wave propagation is an important part of wireless systems. The investigations into
various environment channel media with different physical properties, different dielectric
properties, and spatiotemporal structures are inevitable to research radio wave propagation.
There are two types of influences induced by the environment media on the radio wave
propagation: the one is to realize particular propagation mode and advanced wireless technol-
ogy, such as to realize the over-the-horizon communication or detection by atmospheric
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turbulence scattering and the multiple-input multiple-output wireless system by multipath
propagation, which is seen as the positive influence; the other is to restrict radio signal
propagation to be received or detected. For instance, the propagation effects of attenuation,
depolarization, scintillation, and atmospheric noise are restrictive effects on communication
systems, which are seen as the negative influence. It is the goal of the research on radio wave
propagation to investigate the propagation environment media-caused positive influence and
negative one and to apply them to the two aspects, based on the precondition of sufficiently
mastering and controlling the physical and dielectric properties of propagation environment
media. On the one hand, it makes the performances of an expected wireless electronic system
perfectly match with its wireless channel, by forecasting, modifying, and applying the positive
effects. On the other hand, it destroys the original perfect match between the hostile wireless
electronic system and its wireless channel during wireless system countermeasures, by fore-
casting, creating, and controlling the negative effects.

The idea of coherent acoustic wave-induced atmospheric refractivity fluctuation is to control
the characteristic parameters of radio wave, such as amplitude, phase, propagation direction,
and polarization, by the propagation effects caused by the artificial atmospheric refractivity
fluctuation. And, the final aim is to purposefully apply the positive effects or the negative
effects. Note that the idea of coherent acoustic wave-induced atmospheric refractivity fluctua-
tion and its application is a new field and is in its infant stage.

The idea of changing the tropospheric refractivity by the disturbance of acoustic wave is first
proposed in [1], in which A. Tonning pointed out the viewpoint that an acoustic wave propa-
gating in the troposphere can cause the atmospheric refractivity fluctuation and theoretically
analyzed the rationality of the viewpoint. In the next 50 years, radio acoustic sounding system
(RASS) began to be established to detect atmospheric temperature, wind profile, and turbu-
lence in the lower troposphere [2–4]. The first RASS system to measure atmospheric tempera-
ture profile was born at Stanford University [5]. By the 1990s, this technique was adopted to
solve the problems of measuring the temperature in indoor environment [6–9], also employed
to detect the wake vortex of aircrafts [10, 11], and even explored to track and detect the taggant
for the soldier identification friend-or-foe application [12]. Currently, RASS can detect the
atmospheric parameters below 20 km [13]. The RASS history was summarized, and the
applications of RASS in the detection of turbulence were analyzed in [14]. The applications
and limitations of RASS system are analyzed in [15]. Afterward, the broadband acoustic pulse
technology [16] and imaging techniques [17] are applied to RASS system.

The idea of coherent acoustic wave-induced tropospheric refractivity fluctuation mentioned in
this chapter is fundamentally different from RASS. The main idea of RASS is to obtain the
parameters of atmospheric physical properties based on the relationship between acoustic
propagation velocity and atmospheric physical property parameters by tracking the velocity
of acoustic wave front which can be seen as an artificial refractivity irregularity. However, the
main idea, in this chapter, is to purposely apply the positive influences and negative ones
induced by artificial array-distributed refractivity irregularity, which is stable, lasting, and con-
trollable because the coherent acoustic source is used. The viewpoint to purposely affect radio
wave propagation by a coherent acoustic source is proposed for the first time in [18]. In this
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chapter, the physical mechanism of generating the lasting tropospheric refractivity fluctuation
with stable array-distributed structure by coherent acoustic waves is elaborated in Section 2,
the distribution of the artificial atmospheric refractive index is quantitatively calculated, and
the feasibility to purposefully affect radio wave propagation is qualitatively demonstrated by
the experiment of the coherent acoustic source-induced laser interference fringe change in
Section 3. The potential application aspects of synthetically controlling the radio wave propa-
gation by the artificial refractivity fluctuation structure are preliminarily proposed in Section 4;
further investigations in the future are listed in Section 5. This chapter will promote the
development of the coherent acoustic wave-induced tropospheric refractivity fluctuation.

2. The mechanism of controlling the atmospheric refractivity fluctuation
by coherent acoustic waves

The real part N of the atmospheric refraction index in the radio band is nearly independent of
frequency. N depends on the atmospheric pressure P in hPa, the absolute temperature T in K,
and the water vapor pressure e in hPa, and the relation among them is [19]

N ¼ 77:6
P
T
þ 373256

e
T2 (1)

Operating the difference algorithm on Eq. (1), the relation amongΔN,ΔT,ΔP, andΔe is given as

ΔN ¼ � 77:6PT�2 þ 746512eT�3� �
ΔT þ 373265eT�2� �

Δeþ 77:6T�1� �
ΔP (2)

Eq. (2) shows that ΔN is closely related to ΔT, ΔP, and Δe. The refractivity fluctuation ΔN can
be steered by controlling one or more parameters among ΔT, ΔP, and Δe according to Eq. (2).

Acoustic wave movement follows the three basic laws: Newton’s second law of motion, law of
conservation of mass, and thermodynamic equation of state [20]. The wave function of an
acoustic wave can be derived from the three basic laws and is written as [21]

∇2p ¼ 1
c0

∂2p
∂t2

(3)

where p is the instantaneous acoustic pressure and c0 denotes the acoustic propagation velocity
in the atmosphere. p and c0 can be expressed as

p ¼ ΔP ¼ P� P0 (4)

c0 ¼ 331:6þ 0:6tt (5)

In Eq. (4), P0 and P are the atmospheric pressure in Pa before and after the disturbance by an
acoustic wave, respectively. And tt in Eq. (5) is the atmospheric temperature in �C. Eq. (3)
shows that when an acoustic wave passes through the atmospheric medium, the additional
periodical variational pressure, that is, acoustic pressure p =ΔP, will be exerted upon the
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medium based on the original atmospheric pressure. It is rational to neglect the temperature
change induced by the additional periodical variational pressure; therefore ΔT = 0. According
to [18], ΔP and Δe satisfy the formula Δe/e =ΔP/P. Therefore, Eq. (2) can be deduced as

ΔN ¼ 77:6T�1 þ 373265e2T�2P�1� � � p (6)

It is shown in Eq. (6) that the refractivity fluctuation ΔN will present a specific spatial and
temporal distributions along with the acoustic pressure p.

The solutions to Eq. (3) for the cases of the plane wave, the cylindrical wave, and the spherical
wave can be, respectively, formulated as

p ¼ pAe
j ωt�krpð Þ (7)

p ¼ pAffiffiffiffiffiffiffiffiffiffiffiffiffi
rc � l0

p ej ωt�k rc�l0ð Þ½ � (8)

p ¼ pA
rs � r0

ej ωt�k rs�r0ð Þ½ � (9)

In Eqs. (7) and (9), p denotes the instantaneous value of the acoustic pressure at a point in their
acoustic pressure field, rp represents the distance between a planar acoustic source to a point in
the acoustic pressure field, rs represents the distance between the center axis of a cylinder-
surface acoustic source to a point in the acoustic pressure field, r0 represents the distance
between the center of a spherical-surface acoustic source and a point in the acoustic pressure
field, rc is the diameter of the spherical-surface acoustic source, l0 is the length of the
cylindrical-surface acoustic source, and pA is the acoustic pressure on the surface of the above
acoustic sources. ω and k denote the angular frequency and wave number of the acoustic
waves, respectively.

pA for the three types of acoustic sources mentioned above can be, respectively, expressed as

pA ¼

2Wρ0c0S
�1� �1=2

For plane acoustic source

2Wρ0c0 2πr0l0ð Þ�1
h i1=2

For cylindrical-surface acoustic source

2Wρ0c0 4πr20
� ��1

h i1=2
For spherical-surface acoustic source

8>>>>>><
>>>>>>:

(10)

whereW is the acoustic wave power radiated by the acoustic sources, S is the area of the plane
acoustic source, and ρ0 is the density of air.

In other words, when a spherical-surface acoustic wave passes through the homogeneous
atmosphere medium, the distribution of acoustic pressure p or atmospheric refractivity fluctu-
ation ΔN at a certain moment in a plane including the point acoustic source shown in Figure 1
is similar to the waveform of a mechanical wave in water surface shown in Figure 2. Corres-
pondingly, the refractivity fluctuation ΔN will present a similar spatial distribution following
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Eq. (6). It is by means of the reflection effect of the acoustic wave front with ΔN that the
purpose of tracking the propagation speed of acoustic wave is realized in RASS.

The principle of independent propagation and superposition of waves indicates that if two
coherent waves meet, the interference phenomenon can be formed. Figure 3 shows the wave-
form when two coherent water surface waves meet. Figure 4 shows the simulation of the
distribution of p or ΔN when two coherent acoustic waves meet.

According to the wave interference theory, interference pattern is closely related to coherentwave
frequency, phase, acoustic source structure, and so on. For any type of coherent acoustic source

with array structure, the acoustic pressure at point r⇀ in the interference area can be expressed as

Figure 1. The spatial distribution of p or ΔN when a spherical-surface acoustic wave travel through the homogeneous
medium.

Figure 2. The waveform of a water surface wave caused by a single source.
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p r⇀
� �

¼ p0 r⇀
� �

Sj j (11)

where p0 r⇀
� �

gives the acoustic pressure of single elements of the acoustic source array and

|S| is the array factor, which presents the interference process. The array factor of the uniform
spherical-surface acoustic source planar array shown in Figure 5 and the uniform cylindrical-
surface acoustic source linear array shown in Figure 6 are, respectively, given as [18]

S θ;φ
� ��� �� ¼

sin Nx
πbx sinθ cosφ

λ þ βx
h i

sin πbx sinθ cosφ
λ þ βx

h i �
sin Ny

πby sinθ sinφ
λ þ βy

h i

sin πby sinθ sinφ
λ þ βy

h i
������

������
(12)

Figure 3. The waveform when two coherent water surface waves meet.

Figure 4. The distribution of p or ΔN when two coherent acoustic waves meet.
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S θð Þj j ¼ sin N b sinθ
λ þ β

� �

sin b sinθ
λ þ β

� �
�����

����� (13)

In Eq. (12), Nx and Ny are, respectively, the number of array elements along the x-axis and
y-axis, and bx and by are, respectively, the inter-element spacing along the x- and y-axes in
Figure 5. In Eq. (13), N and b denote, respectively, the element number and the interval in
Figure 6. λ is the acoustic wavelength. βx and βy are the harmonic vibration phase differences
between the adjacent elements along x-axis and y-axis in Figure 5, respectively. β is the har-
monic vibration phase difference between the adjacent elements in Figure 6. Figures 7 and 8 are
the simulating examples according to Eq. (12) and Eq. (13).

Therefore, the lasting artificial atmospheric refractivity irregularities with a stable, controllable,
and subtle array structure in a specific space can be generated by setting the geometric
structure of acoustic source and adjusting the frequency, amplitude, and phrase of acoustic
waves. In [18], the coherent acoustic source shown in Figure 9 and the short scattering
communication link shown in Figure 10 are used in the experiment. The experimental results
as shown in Figures 11–18 are observed, which further verify the feasibility of perturbation in
the tropospheric atmospheric refractivity by coherent acoustic wave.

Figure 5. The sketch of a uniform spherical-surface acoustic source planar array.

Figure 6. The sketch of a uniform cylinder-surface acoustic source linear array.
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Figure 7. The simulation example of the array factor of the acoustic antenna array in Figure 5.

Figure 8. The simulation example of the array factor of the acoustic antenna array in Figure 6.
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Figure 7. The simulation example of the array factor of the acoustic antenna array in Figure 5.

Figure 8. The simulation example of the array factor of the acoustic antenna array in Figure 6.
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Figure 9. The sketch of the coherent acoustic source adopted in [18].
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Figure 10. The sketch of the radio link adopted in the testing experiment in [18].

Figure 11. The testing result of 8.8 GHz stimulated by the “double-slit” acoustic source.
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Figure 10. The sketch of the radio link adopted in the testing experiment in [18].

Figure 11. The testing result of 8.8 GHz stimulated by the “double-slit” acoustic source.
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Figure 12. The testing result of 9.5 GHz stimulated by the “double-slit” acoustic source.

Figure 13. The testing result of 10.5 GHz stimulated by the “double-slit” acoustic source.
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Figure 14. The testing result of 12 GHz stimulated by the “double-slit” acoustic source.

Figure 15. The testing result of 8.8 GHz stimulated by the “7 � 7 hole” acoustic source.
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Figure 15. The testing result of 8.8 GHz stimulated by the “7 � 7 hole” acoustic source.
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Figure 16. The testing result of 9.5 GHz stimulated by the “7 � 7 hole” acoustic source.

Figure 17. The testing result of 10.5 GHz stimulated by the “7 � 7 hole” acoustic source.
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3. The interaction between a radio wave and the artificial refractivity
fluctuation

According to [18], the spatial distribution of the acoustic pressure caused by the uniform
spherical-surface acoustic source planar array shown in Figure 5 is

p ¼ pA
r� r0

e�α r�r0ð Þej ωt�k r�r0ð Þ½ � S θ;φ
� ��� �� (14)

where α denotes the attenuation coefficient of acoustic wave and |S(θ,φ)| is the array factor of
Eq. (12). The instantaneous ΔNC_I and the effective ΔNC_E of the atmospheric refractivity
fluctuation ΔN at a space point are given by

ΔNC_I ¼ 77:6T�1 þ 373265e2T�2P�1� � � 10�2 � p (15)

ΔNC_E ¼ 0:707 � 77:6T�1 þ 373265e2T�2P�1� � � 10�2 � pj j (16)

where p is the instantaneous acoustic pressure in Pa and |p| denotes the amplitude of the
acoustic pressure harmonically changing over time in Pa. The effective acoustic pressure can be
given as 0.707|p|.

Figures 19 and 20 show the spatial distributions of atmospheric refractivity fluctuation caused
by the 49� 49 hole acoustic source. In the calculation, the attenuation coefficient of acoustic wave
α and the diameter of array element are ignored. The atmospheric pressure P is 1013.25 hPa, the

Figure 18. The testing result of 12 GHz stimulated by the “7 � 7 hole” acoustic source.
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temperature T is 288.15 K, the water vapor pressure eis 10.02 hPa, and the power of each acoustic
source element is 10 W.

As can be seen from Figures 19 and 20, when the coherent acoustic wave travels through the
tropospheric medium, there will be a periodical atmospheric refractivity fluctuation. The

Figure 19. The spatial distribution of atmospheric refractivity parallel to the z-axis.

Figure 20. The spatial distribution of atmospheric refractivity parallel to the X-Y plane.
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mechanism the artificial dielectric irregularities impacting the radio wave propagation is
similar to that the atmospheric turbulence impacting the radio wave propagation. The atmo-
spheric refractivity fluctuation caused by the atmospheric turbulence is stochastic distributed,
and that caused by acoustic wave shows spatial periodic distribution. Therefore, the influences
of atmospheric turbulence on radio wave propagation need to be analyzed by the wave
propagation theory in the random medium [22], and the effects of the artificial dielectric
irregularities on the radio wave propagation need to be studied using the theory of electro-
magnetic scattering, reflection, and refraction by the periodic structure medium. Bragg volume
scattering theory and Fresnel volume scattering theory are mainly used to analyze the impacts
of artificial irregularities on radio wave propagation [23–26].

Our research group is devoted to quantitatively analyzing the influences of the artificial
irregularities on the amplitude, phase, propagation direction, polarization, and other parame-
ters of an electromagnetic wave. The related exploration is possible to implement leap-forward
development in the fields of electronic countermeasure, communications, radar detection, and
other wireless technologies.

An experiment aims to influence Michelson interference fringes by the coherent acoustic wave-
induced atmospheric refractivity fluctuation was carried out, and it qualitatively verifies the
feasibility to purposefully change the phase of the electromagnetic wave by the artificial
refractivity fluctuation. As shown in Figure 21, a light emitted by laser emits hits the beam
splitter G1, which is partially reflective. One part of the light denoted by 1 is reflected, while
another part of the light denoted by 2 is transmitted through G1. The path of light 1 passes
through the region disturbed by the artificial refractivity fluctuation, while the light 2 travels

Figure 21. Artificially changing the phase of the electromagnetic wave with the help of the coherent acoustic wave-
induced atmospheric refractivity fluctuation.
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through the normal air. Both beams meet at a receiving screen to produce an interference
pattern. Comparing the interference fringes when the acoustic source is on and off, the feasi-
bility of artificially changing the phase of the electromagnetic wave is demonstrated.

As shown in Figure 9, the 7 � 7 hole acoustic excitation system working at 300 Hz is adopted
in the testing experiment; its parameters are shown in Table 1. Before the acoustic source is on,
a dark fringe is in the center of the interference fringes as shown in Figure 22. After the acoustic
source is on, the variation of the interference fringes is captured by a high-resolution vidicon.
The typical frame pictures are extracted by a video processing software, which are shown in
Figures 23–26. Figures 23–26 obviously show that the central fringe is gradually changing. So
the experimental results qualitatively verify the feasibility to purposefully change the phase of
the electromagnetic wave by the artificial refractivity fluctuation.

Parameter Total power of the horn
speaker

Diameter of the horn
speaker

Diameter of the inner
cavity hole

Diameter of the
external cavity holes

Value 5 W 0.10 m 5 mm 2 mm

Parameter Structure Distance between the front panels of the inner and
external cavities

Interval of the
external cavity holes

Value 7 � 7 1.2 m 30 mm

Table 1. The parameters of the 7 � 7 hole coherent acoustic source in Figure 9.

Figure 22. The fringe pattern of Michelson interferometer before the acoustic source is on.
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Figure 23. The fringe pattern 1 of Michelson interferometer after the acoustic source is on.

Figure 24. The fringe pattern 2 of Michelson interferometer after the acoustic source is on.
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Figure 23. The fringe pattern 1 of Michelson interferometer after the acoustic source is on.

Figure 24. The fringe pattern 2 of Michelson interferometer after the acoustic source is on.
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Figure 25. The fringe pattern 3 of Michelson interferometer after the acoustic source is on.

Figure 26. The fringe pattern 4 of Michelson interferometer after the acoustic source is on.
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4. The potential application aspects of the artificial refractivity
fluctuation

This chapter proposes a new way to purposely affect radio wave propagation by controlling
and adjusting the artificial atmospheric refractivity irregularity distribution. Based on the
accurate calculation of the electromagnetic wave scattering, reflection, and refraction in the
areas with the artificial atmospheric refractivity irregularities, the amplitude, phase, propaga-
tion direction, polarization, and other parameters of an electromagnetic wave can be controlled
artificially, so that we can purposely exert the environment media-caused positive or negative
effects on radio wave propagation. The method of altering the properties of electromagnetic
waves by a coherent acoustic wave-induced tropospheric refractivity fluctuation is possible to
realize leap-forward development in the fields of emergency troposcatter communication, the
over-the-horizon radar stealth in evaporation duct environments, electromagnetic counter-
measure of coherent imaging technique, and so on. The more applications need to be explored
and discovered by researchers harnessing their clever and wisdom.

The artificial dielectric irregularities are more stable and lasting than the atmospheric turbu-
lence, and its distribution construction can be steered artificially. It is obvious that the artificial
dielectric irregularities can be used to effectively improve the stability of the troposcatter com-
munication channel. Based on the experiment shown in Figures 23, 24, 25, and 26, if the amount
of phase shift caused by the coherent acoustic waves is quantitatively calculated, the interference
fringes on the receiving screen can be artificially controlled. In a similar way, the artificial
dielectric irregularities can be used to disturb the coherent optical imaging radar. In what
follows, the mechanism of the application to the over-the-horizon radar stealth in evaporation
duct environments is briefly discussed.

Because of some natural phenomena, such as the evaporation of sea water, heat exchange
between air, and sea surface, as the height increases, the water vapor pressure rapidly
decreases, and the temperature increases, which causes a steep fall in N. If the refractivity
gradient meets the condition of dN/dh < � 0.157 N - unit/m, the evaporation duct will arise in
the specific region. If the wavelength of a radio wave is short enough and its angle of elevation
is small enough, the super-refraction of radar wave over the sea surface will occur. In other
words, the evaporation duct can be regarded as a natural waveguide which steers the radio
signal from the transmitter to a receiver that may be situated well beyond the radio horizon.

If coherent acoustic sources are set around the target to be protected, the evaporation duct
environment will be destroyed when the acoustic wave-induced refractivity fluctuation makes
the refractivity gradient not accord with dN/dh < � 0.157 N - unit/m, so that the target will not
be detected by the over-the-horizon radar in evaporation duct environment. Figure 27 shows
the simulation of the refractive index profile of evaporation duct environment. Figure 28
shows the simulation of the refractive index profile of evaporation duct when coherent acous-
tic waves are applied. Comparing the results in Figures 27 and 28, it can be concluded that the
refractive index profile of evaporation duct is easily destroyed by coherent acoustic waves.

The potential applications proposed in this section based on the mechanism altering the proper-
ties of an electromagnetic wave by coherent acoustic wave-induced tropospheric refractivity
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fluctuation are still in the infant stage. There is still a long way to go for the technology
development and more applications.

5. Conclusion

The idea of this chapter is logical in theory, and its feasibility is qualitatively verified in [18].
The mechanism the artificial dielectric irregularities impacting radio wave propagation is

Figure 27. The refractive index profile of evaporation duct environment.

Figure 28. The refractive index profile of the disturbed evaporation duct environment.
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similar to that the atmospheric turbulence impacting radio wave propagation. The Bragg
volume scattering theory and Fresnel volume scattering theory provide the theoretical basis
for quantitatively analyzing the influences of the artificial irregularities on the amplitude,
phase, propagation direction, polarization, and other parameters of an electromagnetic wave.
The experiment that effectively controlled Michelson interference fringes by the coherent
acoustic waves further qualitatively verifies the feasibility of purposefully changing the phase
of the electromagnetic wave by the artificial dielectric irregularities. The technique of altering
the properties of an electromagnetic wave by coherent acoustic wave-induced tropospheric
refractivity fluctuation is very possible to realize leap-forward development in the fields of
emergency troposcatter communication and the over-the-horizon radar stealth in evaporation
duct environments. However, the investigation is in its infant stage; there is still a long way to
go for the technology development and more applications. In order to further investigate the
point of view put forward in this chapter, the following issues need to be considered deeply:
quantitatively investigating the spatial distribution of atmospheric refractivity under the inter-
action of coherent acoustic waves and atmospheric turbulence, determining the specific influ-
ence mode of the artificial dielectric irregularities on radio wave propagation, such as reflection,
scattering, refraction, and diffraction, quantitatively calculating the physical and electromag-
netic properties of the artificial dielectric irregularities, quantitatively estimating the impact
degree of the artificial dielectric irregularities on radio wave propagation, and discovering more
application modes of this technique.
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