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Preface

Lipoproteins have key roles in human growth and development, along with promoting, pre‐
venting, and/or participating in the pathogenesis or in the treatment of various diseases.
This book presents a systematic and comprehensive review about the structure and metabo‐
lism of lipoproteins, particularly highlighting the crucial role of these molecules in the body
and considering the interest of some lipids in health and disease.

This book is about lipoproteins, the structures for water-insoluble lipid transportation in the
circulation. Lipoprotein particles not only take roles in a variety of normal physiological
processes but also play essential roles in various pathological conditions. They are impor‐
tant structures that show varying patterns that correlate with the risk of fatal cardiovascular
events associated with a high risk of atherosclerosis, while high HDL is correlated with re‐
duced cardiovascular risk. Lipoproteins are now known to be important in other conditions
like inflammatory situations, as well. It was assumed that the reader is familiar with the
general aspects of lipoproteins.

The book is made up of four main sections: “Lipoproteins in Metabolism," containing the
subtopics about metabolic regulations of lipoproteins; “Genetic Variations of Lipoprotein
Metabolism," about the genetic polymorphisms affecting the lipoproteins; “Inflammatory
Conditions and Lipoproteins," the relationship of lipoproteins and inflammation; and “Lipo‐
proteins in Specific Diseases," roles of lipoproteins especially in brain diseases and cancers.
This book edition aims to provide integrative approach and enables understanding of the
lipoprotein metabolism. Distinguished international experts contribute six chapters on the
genetic variations, plasma lipoprotein components, and molecular relations of lipoproteins
with cognition and obesity.

Prof. Dr. Turgay İsbir, Ph.D.
Chairman, Department of Medical Biology

Yeditepe University, Faculty of Medicine
Director, Department of Molecular Medicine

Yeditepe University, Institute of Health Science
Istanbul, Turkey
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Circulating Atherogenic Multiple-Modified Low-
Density Lipoprotein: Pathophysiology and Clinical 
Applications

Nikita G. Nikiforov, Emile R. Zakiev, 
Alexandra A. Melnichenko and Alexander N. 
Orekhov

Additional information is available at the end of the chapter

Abstract

Low-density lipoprotein (LDL) circulating in human bloodstream is the source of lipids 
that accumulate in arterial intimal cells in atherosclerosis. In-vitro–modified LDL (acet-
ylated, exposed to malondialdehyde, oxidized with transition metal ions, etc.) is ath-
erogenic, that is, it causes accumulation of lipids in cultured cells. We have found that 
LDL circulating in the atherosclerosis patients’ blood is atherogenic, while LDL from 
healthy donors is not. Atherogenic LDL was found to be desialylated. Moreover, only the 
desialylated subfraction of human LDL was atherogenic. Desialylated LDL is generally 
denser, smaller, and more electronegative than native LDL. Consequently, these LDL 
types are multiply modified, and according to our observations, desialylation is probably 
the principal and foremost cause of lipoprotein atherogenicity. It was found that desi-
alylated LDL of coronary atherosclerosis patients was also oxidized. Complex formation 
further increases LDL atherogenicity, with LDL associates, immune complexes with anti-
bodies recognizing modified LDL and complexes with extracellular matrix components 
being most atherogenic. We hypothesized that a nonlipid factor might be extracted from 
the blood serum using a column with immobilized LDL. This treatment not only allowed 
revealing the nonlipid factor of blood atherogenicity but also opened the prospect for 
reducing atherogenicity in patients.

Keywords: atherosclerosis, multiple-modified LDL, desialylated LDL, atherogenicity, 
circulating immune complexes, therapeutic approach

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



1. Introduction

Early stages of atherosclerosis development are characterized by abnormally high lipid accu-
mulation in the arterial intima [1]. Formation of foam cells filled with lipids may be con-
sidered as the onset of the disease [2]. Low-density lipoprotein (LDL) circulating in human 
bloodstream is the origin of lipids that accumulate in the arterial intima cells [3]. However, 
intracellular cholesteryl ester accumulation could not be induced in vitro by native LDL [4]. On 
the other hand, in vitro –modified LDLs (acetylated, exposed to malondialdehyde, oxidized 
with transition metal ions, etc.) were demonstrated to cause lipid accumulation in cultured 
cells [5, 6]. Moreover, the question whether the modified LDL forms obtained in vitro fully 
correspond to the profile of modified LDL existing in vivo remains controversial. Therefore, 
the research community faces here a paradox: on one hand, a well-grounded opinion indi-
cates LDL as the main source of lipid accumulation in the arterial wall, and on the other hand, 
native LDL failed to induce intracellular lipid accumulation in cultured cells. At the same 
time, in vitro–modified LDL was found to be atherogenic. However, detection of modified 
LDL in the bloodstream appeared to be challenging: acetylated LDL could not be found in the 
bloodstream, and the existence of oxidized LDL in vivo could not be demonstrated directly. 
Auto-antibodies against LDL modified by malondialdehyde, which is considered as a model 
of oxidized LDL, have been found in circulation [7]. It has to be kept in mind, however, that 
LDL conjugated with malondialdehyde (MDA-LDL) is a purely artificial modification, which 
cannot form in a living organism. Despite the fact that oxidized LDL has not been found in the 
bloodstream, the occurrence of antibodies against MDA-LDL is usually regarded as evidence 
of the existence of oxidized LDL in vivo [7].

2. Discovery of desialylated LDL in blood

In order to study modified LDL in atherosclerosis, we isolated LDL fraction from the blood 
of healthy subjects and atherosclerotic patients. We aimed to demonstrate that LDL from ath-
erosclerotic patients can induce lipid accumulation in cultured cells. As a model, we used 
smooth muscle α-actin-positive cells, isolated from the intima of human aorta. These cells 
have been demonstrated to deposit lipids in atherosclerotic lesions in situ [8]. The method 
for isolation and cultivation of these cells has been previously established by our group [8]. 
After being cultured for 7 days, smooth muscle α-actin-positive cells (SMA(+) cells) origi-
nating from uninvolved intima of human aorta were subjected to a 24-hour incubation in 
Medium 199 supplemented with 10% lipoprotein depleted serum from a normal subject, as 
well as with LDL fraction with concentration 5–500 μg of apolipoprotein B (apo B)/ml. In the 
majority of experiments with the LDL samples isolated from normal subjects, there was no 
significant intracellular accumulation of phospholipids and neutral lipids [9]. By contrast, in 
the majority of experiments with LDL obtained from the plasma of coronary atherosclerosis 
patients, the intracellular levels of free cholesterol and triglycerides increased by 1.5 times and 
of the level of cholesteryl esters increased 1.5 to 5 times. Higher concentrations of LDL had 
no added effect on the intracellular lipid level. The results of the described experiments have 
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demonstrated that LDL fractions isolated from the blood of patients with atherosclerosis, but 
not from normal subjects, induced deposition of lipids in human vascular cells. This feature 
of LDL was referred to as atherogenicity [10].

What is the possible explanation of LDL atherogenicity? We focused on comparing the prop-
erties of atherogenic LDL circulating in the patients’ blood and nonatherogenic LDL from 
healthy donors. One of the major observations we made was the significantly (2 to 3 times) 
decreased sialic acid (N-acetylneuraminic acid) in LDL isolated from patients with coronary 
atherosclerosis [11]. Sialic acid is a terminal residue of asparagine-bound biantennary carbo-
hydrate chains in LDL glycoconjugate moiety. In case of its removal, galactose becomes the 
terminal exposed residue. It is therefore possible to use Ricinus communis agglutinin (RCA120), 
which has a strong affinity to the terminal galactose to specifically isolate desialylated LDL 
[12]. We applied the total LDL preparation on a column containing CNBr-activated agarose-
bound RCA120. LDL with sialylated carbohydrate chains passed freely through the column, 
while desialylated LDL bound to the lectin sorbent and could later be eluted with 5–50 mM 
galactose. This method allowed us extracting subfractions of both sialylated and desialylated 
LDL from the total LDL preparation isolated from the blood of patients. Desialylated LDL 
was found to be only a fraction of the total LDL pool circulating in patients’ blood. Using the 
lectin affinity columns and lectin sorbent assay, we demonstrated that the ratio of desialylated 
LDL in blood of patients with coronary atherosclerosis was 20–60% of the total LDL level, 
while for normolipidemic subjects, desialylated LDL accounted for 5–15% [89]. The sialic acid 
content in desialylated LDL subfraction isolated by lectin chromatography was 2–3 times 
lower than that of sialylated LDL [12].

We next studied the atherogenic properties of desialylated LDL. Cultured SMA(+) cells, 
derived from the intima of human aorta and incubated with sialylated LDL subfraction, had 
unaltered intracellular contents of phospholipids and neutral lipids [12]. By contrast, cells 
incubated with desialylated LDL demonstrated a 1.5- to 2-fold increase in the contents of 
lipids and nonesterified cholesterol, as well as a 2- to 7-fold surge in the cholesteryl esters con-
tent. Therefore, only the desialylated subfraction of human LDL was found to be atherogenic. 
Normally, sialylated LDL had no atherogenic effect and could be regarded as native unmodi-
fied LDL. In summary, we have isolated a subfraction of naturally occurring desialylated LDL 
that was able to induce lipid deposition in human arterial subendothelial cells.

3. Trans-sialydase: the unknown LDL-modifying enzyme

More than 98% of the sialic acid cleaved from LDL is not present in the free form in the blood 
but is transferred to various protein acceptors [13]. Therefore, the enzyme responsible for 
desialylation of LDL works as a trans-sialidase.

We found that, apart from LDL, other lipoproteins, glycoproteins, and gangliosides are also 
affected by the trans-sialidase activity. Free sialic acid can be transferred to glycoproteins and 
sphingolipids of human serum. It can also be transferred to a protein or a lipid moiety of lipo-
protein particles. Both lipoprotein fraction of human blood serum and lipoprotein-deficient 
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serum had sialidase activity, as demonstrated by gel-filtration chromatography. Trans-
sialidase activity was shown to be present in lipoproteins, as well as in a free form. The mech-
anism of trans-sialidase interaction with lipoproteins remains to be elucidated.

Using affinity chromatography, we succeeded in extracting a 65-kDa protein from lipopro-
tein deficient serum, which was a likely candidate to be the trans-sialidase [13]. The isolated 
enzyme was present in quantities from 20 to 200 μg/ml of human serum. The enzyme had 
three pH optima: 3.0, 5.0, and 7.0. The optimal pH spectrum indicated that the trans-sialidase 
would be active both in blood and in cellular organelles with low pH. Calcium and mag-
nesium ions at millimolar concentrations could influence the enzyme activity in vitro. Thiol 
groups were found to be essential for normal enzyme functioning. Various blood proteins 
could serve as substrates for trans-sialidase activity. The enzyme successfully cleaved sialic 
acids from HDL, LDL, IDL, and VLDL particles. Trans-sialidase could also cleave sialic acid 
residues from glycoconjugates found in plasma, proteins (fetuin and transferrin), and gan-
gliosides (GM3, GD3, GM1, GD1a, and GD1b). The rate of sialic acid transfer from these gly-
coconjugates was, however, much slower as compared to LDL. Among the sialylated LDL, 
VLDL, IDL, and HDL, the former has the highest affinity to the trans-sialidase. The mecha-
nism trans-sialidase preference for LDL is unclear. It is possible that trans-sialidase activity is 
affected by the particle volume.

Importantly, isolated naturally occurring trans-sialidase was able to desialylate native LDL, 
which resulted in formation of desialylated LDL, which could induce cholesteryl ester accu-
mulation in SMA(+) human aortic intimal cells [13]. This underscores the possible role of the 
enzyme in foam cell formation.

The role of plasma trans-sialidase remains to be established. Possible functions of trans-siali-
dase may include regulation of plasma proteins activities, cell-to-cell interactions, lifespan of 
glycoproteins, lipoproteins, and cells, etc [14].

Given its role in the formation of modified LDL, trans-sialidase activity may be an important 
component in the onset and progression of atherosclerosis. Trans-sialidase can also affect the 
interaction of lipoproteins with the arterial wall. Lipid accumulation induced by lipoproteins 
processed by trans-sialidase can be associated with the induction of proliferation and extra-
cellular matrix synthesis. In conclusion, trans-sialidase may participate in all currently known 
cellular manifestations of atherosclerosis.

4. Physical properties of desialylated LDL

LDL is defined as a lipoprotein fraction with densities spanning from 1.019 to 1.063 g/l. Using 
ultracentrifugation and gradient gel electrophoresis, LDL particles can be segregated into 
four subfractions, including large, intermediate, small, and very small LDL [15].

4.1. Size and density

We first separated LDL particles based on their flotation rate using analytical ultracentrifuga-
tion [16].
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We have determined densities of both native and desialylated LDL using gradient density 
ultracentrifugation [17]. Desialylated LDL fraction tended to have higher density than native 
LDL. Increased density was caused by lower amounts of phospholipids, free and esterified 
cholesteryl, and triglycerides.

Another method of LDL analysis, gradient gel electrophoresis, allows for separation of LDL 
subfractions by their electrophoretic mobility, which depends on the particle size and shape 
[18]. Gradient gel electrophoresis separation allows distinguishing 4 subclasses: large, inter-
mediate, small, and very small LDL [19]. Correlation of LDL particle size and density is 
highly significant, as shown using ultracentrifugation, as well as gradient gel electrophoresis. 
However, these parameters are not always equal. Another method to analyze the weight and 
size of LDL particles is capillary gel electrophoresis is also used [20].

Another relatively new method for analysis of LDL is nuclear magnetic resonance (NMR). 
It is sometimes used for analyzing LDL subfractions in blood plasma, although the results 
obtained using this method cannot be compared directly with those obtained by ultracentri-
fugation of gel electrophoresis [21]. Other available methods of LDL analysis include high-
performance liquid chromatography [22], dynamic light scattering [23], ion mobility analysis 
[24], and homogenous assay analysis [25].

Desialylated and native LDL particle size was estimated by our group using quasi-elastic 
laser scattering in a lipoprotein suspension followed by electrophoresis in polyacrylamide gel 
and scanning densitometry [26]. Native LDL particles from healthy subjects and atheroscle-
rotic patients had sizes of 26.5 and 26.8 nm, respectively. Desialylated LDL of healthy subjects 
and atherosclerotic patients were 24.8 and 24.5 nm, respectively. The results of polyacryl-
amide gel electrophoresis were similar, with average diameters of native LDL being 26.3 and 
26.2 nm for controls and for patients and those of desialylated LDL being 23.5 and 22.9 nm for 
controls and patients, respectively [17]. These results demonstrated that desialylated LDL had 
a reduced particle size in comparison with native LDL.

The origins of LDL subfractions remain unclear. According to Berneis, two types of precursors 
are secreted by the liver: triglyceride-poor apoB and triglyceride-rich apoB [27]. Triglyceride-
poor lipoprotein gives rise to the large LDL subfraction while triglyceride-rich lipoprotein is 
a precursor for small dense LDL. This hypothesis explains the formation of small dense LDL 
from liver-secreted precursors and is supported by clinical results [27].

Genome-wide association studies have been used to search the factors affecting small dense 
LDL production. The available results indicate that small dense LDL metabolism is connected 
to genetic factors that may be considered as potential therapeutic targets for treatment of 
atherosclerosis [24].

Small dense LDL has a higher lifetime than large LDL, which is retrieved from the blood-
stream through the LDL receptor pathway [28]. Small dense LDL tends to have lower levels 
of vitamins and antioxidatants than normal LDL. This means that small dense LDL is more 
oxidation prone than the larger forms of LDL [29].

It has been demonstrated that incubation of native LDL particles with atherosclerosis patients’ 
blood plasma results in a significant decrease of the sialic acid contents [13]. Small dense 
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LDL particles have been shown to contain less sialic acid than larger LDL particles [30]. The 
increased ability of small dense LDL to form complexes with proteoglycans leads to the pro-
longed residence time of these particles in the subendothelial space or the arterial wall, where 
LDL may contribute to the development of atherosclerotic lesion [31]. In summary, LDL par-
ticle density reversely correlates with the particle size and sialic acid contents and directly 
correlates with atherogenicity.

4.2. Electronegativity

Desialylated LDL has been demonstrated to have a 1.2- to 1.4-times increased electrophoretic 
motility in comparison to native LDL [17]. Therefore, desialylated LDL has a lower charge 
than native LDL, that is, is more electronegative.

Agarose gel electrophoresis allows for specific isolation of electronegative LDL (LDL(−)). 
Isotachophoresis or ion exchange chromatography can be used as well [32]. The group of 
Avogaro was the first to discover and isolate atherogenic LDL(−) fraction [32] using ion-
exchange chromatography.

More recent studies have revealed heterogeneity of LDL(−) particles, defining as many as five 
subclasses of LDL(−) [33]. The majority of electronegative subfractions correlated with cardio-
vascular (CV) risks, including, but not limited to hypercholesterolemia, smoking, myocardial 
infarction, and diabetes mellitus type II [34].

Several methods have been developed for isolation and analysis of LDL(−). Capillary iso-
tachophoresis is another method used for LDL(−) extraction and analysis [35]. This technique 
allows for separation of LDL(−) from other LDL particles by its migration rate. Heparin pre-
cipitate LDL(−) was analyzed using capillary isotachophoresis [36]. Monoclonal antibodies 
allow for distinguishing LDL(−) by specific epitopes [37]. LDL(−) ELISA method is based on 
this technique and may prove to be useful in clinical practice [38].

It has been demonstrated that LDL(−) particles tend to aggregate [32], and the LDL particle 
aggregates have been shown to be atherogenic [39]. Gnarled structure of the lipoprotein was 
shown to be the principal cause of LDL(−) association [40]. The secondary structure of apoB 
in LDL(−) appears to be disturbed [70], with tryptophan residues abnormally exposed to the 
aqueous environment [41] and lysine residues having an altered ionization state [42]. Lipid 
moieties of LDL(−) particles also affect their surface tension/fluidity, rendering the particles 
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Moreover, improper folding of apolipoprotein of LDL(−) particles affects its affinity to LDL 
receptors, which in turn leads to extended blood circulation times of LDL(−) [44]. On the other 
hand, the most electronegative fraction of LDL(−) is able to bind to lectin-like oxidized LDL 
receptor 1 (LOX-1) [45]. That subfraction of LDL(−) when added to cultured endothelial cells 
is able to increase the production of reactive oxygen species and to upregulate C-reactive 
protein levels via LOX-1 signaling pathway [46].

Therefore, LDL(−) is able to provoke pro-inflammatory and immune responses that contrib-
ute to the progression of atherogenesis. LDL(−) forms complexes with proteoglycans in the 
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take up LDL(−) via scavenger receptors, which leads to saturation of their cytoplasm with 
lipid deposits and results in foam cell formation. Autoantibodies to LDL(−) can contribute 
to the development of atherosclerosis as well [47]. LDL(−) is cytotoxic to endothelial cells, 
inducing apoptosis and provoking production of inflammatory molecules such as IL-8, 
VCAM-1, and MCP-1 [47]. Therefore, LDL(−) was demonstrated to be pro-atherogenic and 
pro-inflammatory.

4.3. Similarity of desialylated LDL with small dense LDL and LDL(−)

As discussed above, small dense LDL and LDL(−) are the forms of modified LDL that have 
been detected in human blood plasma [48]. Our group has performed a series of experiments 
comparing the properties of LDL particles modified in vivo. In a study conducted in collabora-
tion with the group of Avogaro (Italy), we have demonstrated that the more electronegative 
LDL corresponds by its properties to desialylated LDL [49]. Desialylated LDL subfraction also 
turned out to be more electronegative [50]. Therefore, it is likely that desialylated LDL and 
electronegative LDL subfractions are similar if not identical. We have found desialylated LDL 
to be smaller and denser as compared to native LDL. Simultaneously, La Belle and co-authors 
have shown that sialic acid centent was reduced in small dense LDL [51]. Therefore, converg-
ing evidence demonstrates that all modified LDL subfractions isolated by different methods 
may be the same subfraction that underwent multiple modifications.

4.4. Which of the LDL modifications conveys atherogenicity?

Atherogenic LDL naturally present in the blood was found to be small, dense, and highly 
electronegative. Atherogenic LDL is also characterized by altered protein, lipid, and car-
bohydrate compositions. Consequently, these LDL particles can be referred to as multi-
ply modified. To understand which modifications convey LDL atherogenicity, we have 
investigated the relationship between changes in chemical and physical parameters of LDL 
and its ability to induce lipid accumulation in SMA(+) cells of human aortic intima. A sig-
nificant reverse correlation (r = −0.66, p < 0.05) between LDL atherogenicity and the sialic 
acid content was observed. By contrast, no correlation was observed between atherogenic-
ity and the LDL particle size and charge, as well as with the levels of phospholipids and 
neutral lipids. Levels of lipophilic antioxidants, lipid peroxidation products, free lysine 
amino groups, and susceptibility of LDL to oxidation did not correlate with atherogenicity 
significantly [50]. It is therefore likely that desialylation is the principal cause of lipoprotein 
atherogenicity.

5. Is oxidized LDL just a myth?

According to the mainstream current opinion, oxidized LDL is the main trigger of athero-
sclerosis [52]. However, oxidized LDL had never been found in blood. One of the possible 
explanations that has been proposed to explain this discrepancy was that LDL oxidation takes 
place not in the bloodstream but in the arterial wall. The oxidized LDL theory is based on the 
following observations:
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• Antibodies against LDL-oxidized in vitro were able to bind to substrates originating from 
atherosclerotic lesions, where LDL was found to be co-localized with oxidation products 
[53].

• Part of LDL isolated from atherosclerotic plaques corresponds by its properties to oxidized 
LDL [54].

• Autoantibodies recognizing malondialdehyde-LDL have been found in the blood [7].

Worth noting here is the fact that circulating autoantibodies have affinity not to the oxidized 
LDL but rather to MDA-LDL, a model of oxidized LDL. Interestingly, antibodies recognizing 
MDA-LDL were demonstrated to have an even higher affinity to desialylated LDL [55]. It is 
therefore possible that anti-LDL autoantibodies that primarily react with desialylated LDL also 
show cross-reactivity with MDA-LDL. This observation, together with other facts, challenges 
the concept of the oxidative modification of LDL being the principal in vivo modification that 
causes the onset and progression of atherosclerotic lesions. Other modified LDL species that 
have been found in the blood probably deserve more attention from the scientific community.

5.1. Circulating atherogenic desialylated LDL is oxidized

The degree of lipoprotein oxidation is estimated by measuring the contents of hydroperoxides 
or thiobarbituric acid-reactive substances (TBARS). These compounds are usually formed in 
course of lipid peroxidation. However, chemical instability and hydrophilic nature of these 
substances may cause their loss from LDL particles during lipoprotein isolation and purifica-
tion stages. We have established a new technique to evaluate the degree of LDL oxidation based 
on the assumption that chemically active lipid derivatives formed in the process of peroxida-
tion are able to covalently bind to apoprotein B and thus may serve as a marker of lipoperoxi-
dation occurring in vivo in lipoprotein particle [56]. We have discovered sterol and phosphates 
covalently bound to apoB in delipidated preparations of LDL oxidized by copper ions, azo-ini-
tiators, sodium hypochlorite, or cultured cells. Newly extracted and isolated LDL from healthy 
individuals contained no apoB-lipid adducts. It has been revealed that contrary to other param-
eters used to estimate the degree of lipid peroxidation in LDL, the level of cholesterol covalently 
bound to apoB of copper-oxidized LDL rised monotonously during incubation [50]. Therefore, 
the level of apoB-bound cholesterol is a parameter that reflects the degree of LDL oxidation.

Native LDL and desialylated LDL isolated from healthy subjects had apoB-bound cholesterol 
levels of 0.25 ± 0.08 and 0.28 ± 0.05 mol/mol apoB, respectively. ApoB-bound cholesterol level 
in native LDL of atherosclerotic patients did not differ significantly from its level in native 
LDL of healthy individuals. The content of apoB-bound cholesterol in desialylated LDL of 
patients was 7 times higher than in native LDL. Therefore, we have shown that desialylated 
LDL of coronary atherosclerosis patients is oxidized.

5.2. Desialylated LDL is oxidation prone

Desialylated LDL contains 2- to 4-fold more oxysterols compared to native LDL [17], which 
indicates the increased susceptibility of desialylated LDL to oxidation.
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In addition to a high degree of in vivo oxidation, desialylated LDL possesses a higher sus-
ceptibility to in vitro oxidation, which was evaluated using the duration of lag-phase upon 
oxidation by copper ions [57]. Average duration of lag-phase of native LDL isolated from 
atherosclerotic patients did not differ from that of native LDL taken from healthy individuals. 
The lag-phase of desialylated LDL of healthy subjects and patients was significantly shorter 
(3- and 6-fold, respectively) than that of native LDL, indicating a higher in vitro proneness to 
oxidation of desialylated LDL. It should be noted that proneness to oxidation of total LDL 
preparations from healthy subjects and patients positively correlates with the proportion of 
desialylated LDL in the lipoprotein preparation.

In an attempt to find out the causes of increased degrees of in vivo oxidation and proneness 
to oxidation of desialylated LDL, we estimated the contents of major fat-soluble antioxidants 
in lipoprotein particles, analyzed dependences among the levels of tocopherols and carot-
enoids, coenzyme-Q10, and the concentration of cholesterol bound to apoB and duration of 
lag-phase.

The levels of all major antioxidants, including coenzyme Q10, lycopene, α-and y-tocopherols, 
and β-carotene, were 1.5 to 2 times lower in desialylated LDL than in native LDL. The amount 
of cholesterol bound to apoB in desialylated LDL positively correlated with the amount of 
ubiquinone and showed a negative correlation with ubiquinol and β-carotene concentrations. 
At the same time, a positive correlation was found between the amount of cholesterol bound 
to apoB and the ubiquinol level in native LDL. The length of lag-phase for desialylated LDL 
was positively associated with α-tocopherol and β-carotene amounts and negatively associ-
ated with the ubiquinone content. On the other hand, proneness to oxidation of native LDL 
positively correlated with ubiquinone level.

Based on these observations, we hypothesized that a) the levels of examined lipophilic anti-
oxidants in desialylated LDL are lower than in native lipoproteins, which leads to the high 
proneness of desialylated LDL to oxidation; b) coenzyme-Q10 might play a pro-oxidational 
role in native LDL; c) in vivo lipid peroxidation in desialylated LDL is enhanced by the 
increased proportion of oxidized form of coenzyme-Q10; and d) the severity of in vivo oxida-
tion in desialylated LDL is associated with oxidation degree of ubiquinoI and the amount of 
carotenoids loss.

6. Mechanisms increasing LDL atherogenicity

Based on the known rates of LDL uptake and degradation by the arterial wall cells, we esti-
mate the time necessary for a normal intimal cell to become a foam cell, give 130 years . 
This estimation implies that there occurs no cholesterol efflux from the cell. The same esti-
mation for desialylated LDL brings the result reduced to 15 years. However, according to 
angiographic and ultrasonographic data, atherosclerotic plaque can reduce the carotid artery 
lumen by one half within several weeks or months. Therefore, the actual rate of foam cell 
formation should be much higher than the estimated one, indicative of some processes that 
enhance the atherogenicity of desialylated LDL.
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6.1. Self-association of LDL

It has been demonstrated that modified LDL particles are susceptible of self-association [58]. 
A positive correlation between atherogenicity of modified LDL and the degree of LDL asso-
ciation was demonstrated [59]. A dramatic increase of lipid accumulation rate by SMA(+) cells 
cultured from human aortic intima was observed upon incubation with lipoprotein associ-
ates. LDL associates removal from the incubation medium by filtration through filters with 
pore diameter 0.1 μm, completely eliminated any intracellular lipid accumulation. Therefore, 
association enhances LDL atherogenicity.

The absorption rate of associated LDL was 5–20 times higher than that of nonassociated LDL 
particles [39]. Latex beads (competiting phagocytic cargo) and cytochalasin B (inhibitor of 
phagocytosis) both inhibited the uptake of LDL associates [39]. It is therefore likely that LDL 
associates are absorbed via phagocytosis. The intracellular degradation rate of associated 
modified LDL apoB was 2–5 times slower than the rate of degradation of apoB of nonassoci-
ated particles. Therefore, high atherogenicity of lipoprotein associates is a result of enhanced 
absorption via phagocytosis and slow intracellular degradation rate.

6.2. LDL complexes with extracellular matrix

We have also demonstrated that LDL can form complexes with collagen, elastin, and proteo-
glycans of human aortic intima, as well as with cellular debris [60]. These complexes, once 
added cell culture, stimulated intracellular accumulation of lipids. Experiments with iodin-
ated LDL have shown an increased absorption and diminished intracellular degradation rate 
of lipoprotein complexes, as compared to individual lipoprotein particles.

6.3. LDL-immune complexes

Multiply-modified lipoproteins are likely to be immunogenic. We succeeded in isolating cir-
culating complexes containing LDL and anti-LDL autoantibodies from the blood of the major-
ity of patients with coronary atherosclerosis [61].

We have observed a positive correlation between the levels of LDL-containing immune com-
plexes in blood serum and the severity of coronary and extra-coronary atherosclerosis [62].

We have extracted LDL from circulating immune complexes by affinity chromatography on aga-
rose with immobilized goat polyclonal antibodies against human LDL [63]. LDL from circulat-
ing immune complexes appeared to be desialylated, small, dense, more electronegative and with 
decreased contents of neutral lipids and phospholipids, as well as neutral saccharides. ApoB ter-
tiary structure was also altered. Therefore, the LDL particles isolated from circulating immune 
complexes were similar if not identical to the desialylated LDL characterized previously.

We isolated antibodies to modified LDL from blood plasma of patients with coronary athero-
sclerosis [55]. These autoantibodies were identified as immunoglobulin G with an isoelectric 
point of about 8.5 (8.1–9.0), capable of interacting with the protein but not the lipid moiety 
of LDL. These autoantibodies were able to interact with native, glycosylated, acetylated, and 
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oxidized LDL, showing the highest affinity for malondialdehyde-treated LDL, desialylated 
LDL, and LDL isolated from patients with coronary atherosclerosis.

Autoantibodies bound to native LDL forming complexes that could induce lipid aggregation 
in SMA(+) cells cultured from uninvolved intima of human aorta. Moreover, autoantibodies 
enhanced the atherogenic properties of desialylated LDL via complex formation [55]. It was 
found that C1q complement component and fibronectin could bind to the LDL-antibody com-
plexes leading to a more pronounced lipid aggregation in SMA(+) human aortic intimal cells. 
C1q complement component is produced by dendritic cells in the spleen, where C1q is binds 
to immune complexes [64]. Antigen-presenting dendritic cells are also present in atheroscle-
rotic plaques [65]. Moreover, dendritic cells expressing C1q have been found in atherosclerotic 
plaques [66]. C1q was also expressed in macrophages, foam cells, and in neovascular endothe-
lial cells [66]. Thus, C1q expression might be an important feature of cells located in the vessel 
wall of atherosclerotic lesions, causing them to capture and retain immune complexes [66].

In vitro interaction of mouse peritoneal and human pericardial macrophages with immune 
complexes isolated from blood serum of ischemic heart disease patients led to the transforma-
tion of macrophages into foam cells [67]. Macrophages incubated with immune complexes for 
3 days acquired cytoplasmic lipid vacuoles, and the cisterns of endoplasmic reticulum (ER) 
in these cells were dramatically enlarged and filled with lipids. The accumulation of lipids 
within ER cisterns in macrophages may be accompanied by ER stress, which also plays a role 
in the development of atherosclerosis [68].

From Alexander N. Orekhov, Alexandra A. Melnichenko, and Igor A. Sobenin, “Approach to 
Reduction of Blood Atherogenicity,” Oxidative Medicine and Cellular Longevity, Vol. 2014, 
Article ID 738679, 8 pages, 2014. doi:10.1155/2014/738679. (This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited.)

7. Revealing a nonlipid factor of blood atherogenicity

We hypothesized that a nonlipid factor could be extracted from the serum using a column 
with immobilized LDL. We applied atherogenic serum, which has previously been shown to 
induce a nearly 5-fold increase of cholesterol content in cultured cells, to a column with LDL 
covalently bound to agarose. We found that the eluted serum lost its atherogenicity, i.e. it 
failed to induce a statistically significant lipid accumulation in cultured cells (Figure 1, from 
Ref. [69]). The substances retained on the column were eluted with glycine buffer and mixed 
with the sera samples that were previously treated by passing though the column, which 
resulted in the recovery of serum atherogenicity up to the initial level (Figure 1). It is therefore 
likely that patients’ blood serum contains unknown atherogenic factors that can be absorbed 
on immobilized LDL.

We next used this method was to reduce atherogenicity of the blood of patients by extracorpo-
real perfusion. Four male volunteers aged 46–59 years with CHD, normal cholesterol levels, 
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functional class II–III angina pectoris, and angiographically documented stenosis of 2 to 3 
coronary arteries have agreed to take part in the study [69]. Three individuals were smokers, 
and one had mild arterial hypertension. A pronounced decrease of plasma atherogenicity was 
registered after a 2-hour extracorporeal perfusion through a column with autologous LDL 
(Figure 2(a), from Ref. [69]).

The analysis of serum atherogenicity demonstrated that, in all four cases, it was reduced to a 
near-zero level 24 hours after the procedure and then gradually reappeared, reaching a sig-
nificant level within 1 week. Repeated procedure resulted in a pronounced decrease of serum 
atheorgenicity, with the 2nd and the 3rd procedures reducing it for prolonged periods sufficient 
for reducing the frequency of the treatment. When applied once every 2 to 3 weeks, the pro-
cedure provided low levels of plasma atherogenicity for long periods (Figure 2(b), from Ref. 
[69]). The procedure has been applied twice a month in one patient for 9 months and in another 
patient for more than 7 months. Each patient was examined taking into account the general state 
of health, number of angina pectoris episodes, the amount of medicine (nitrates) taken, and 

Figure 1. Elimination of serum atherogenicity with LDL-agarose column. Five milliliters of the serum were passed 
through the LDL sepharose column at a flow rate of 1 ml/min for 30 min. The sorbent was then eluted with 2-ml glycine 
buffer (pH 2.7), and the eluate was dialyzed against a 2000-fold excessive volume of medium 199 for 24 hours at 4°C. 
The cells were cultured in the presence of the initial or treated serum and with the proper volume of the dialyzed eluate.
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capacity for exercise. Bicycle test, 24-hour Holter ECG monitoring, and control of hematological 
and biochemical parameters have been performed every 3 months. During this trial, the patients 
have felt better, moved from functional class III to II (according to Canadian classification), and 
endured greater physical loads in the bicycle test [69]. Arterial blood pressure of patient 1 stabi-
lized and reached a nearly normal level. Both patients have noted a heightened sexual activity 
and have associated this with reduced angina pectoris [69]. The repeated angiograms have been 
assessed after 20–25 months of treatment. There were no new stenoses, 50% stenoses have pro-
gressed, 25% regressed, and 25% remained unchanged. These observations suggest an improved 
disease progression in comparison to the normal course of coronary atherosclerosis [70].

From Alexander N. Orekhov, Alexandra A. Melnichenko, and Igor A. Sobenin, “Approach 
to Reduction of Blood Atherogenicity,” Oxidative Medicine and Cellular Longevity, Vol. 
2014, Article ID 738679, 8 pages, 2014. doi:10.1155/2014/738679. (This is an open access 
article distributed under the Creative Commons Attribution License, which permits unre-
stricted use, distribution, and reproduction in any medium, provided the original work is 
properly cited.)

Figure 2. Monitoring of atherogenicity. The patient’s plasma was subjected to 2-hour extracorporeal perfusion through 
a column with 200 mL of the sorbent; the flow rate was 30 ml/min. The total plasma volume of 2–3 liters was perfused 
through the column during the procedure. Blood serum atherogenicity after 3 procedures was assessed daily ((a), patient 
3) and once or twice a week afterwards ((b), patient 1). Ordinate (atherogenicity), percent of cholesterol accumulation in 
the cells cultured in the presence of the serum from the CHD patient.
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8. Multiple-modified LDL: which type of LDL modification occurs early 
in the blood?

What are the mechanisms of multiple modifications of LDL? Do they take place in the 
blood plasma? A round the clock exposure of LDL to hepatocytes, intact endotheliocytes, 
smooth muscle cells, macrophages, or cell homogenates has not affected properties of 
native LDL [13].

After incubation for 24 hours at 37°C with whole blood or plasma taken from patients with 
coronary atherosclerosis, the sialic acid content of LDL became 2 times lower than that of LDL 
incubated with whole blood or plasma obtained from healthy individuals. Incubation with 
red and white blood cells had no effect on the sialic acid content. This points out that LDL 
modification takes place in the blood plasma [13].

A detailed analysis of LDL modification processes has been performed by our group [13]. 
Native LDL was extracted from the blood plasma using ultracentrifugation followed by 
lectin chromatography. Serum was cleared from apoB-containing lipoproteins by defibri-
nation of the remaining LDL-deficient plasma. Afterwards, LDL and serum were reconsti-
tuted in the same proportion in the original plasma and incubated for different time points 
at 37°C.

After incubation, LDL was re-isolated by ultracentrifugation. The described method allowed 
for elimination of the effects of LDL originating from VLDL and IDL in the process of incu-
bation. After 1 hour of incubation of native LDL with autologous plasma samples, a sharp 
decrease of sialic acid content was observed. At the same time, desialylated LDL concentra-
tion increased, as determined by lectin-sorbent chromatography (Table 1, from Ref. [13]). In 
parallel to the decrease of the sialic acid content, LDL acquired capability to induce a pro-
nounced accumulation of cholesterol in SMA(+) cells cultured from unaffected human aortic 
intima. This could be registered as early as after 3 hours of incubation. After 6 hours of incuba-
tion with plasma, a steady decrease of phospholipid and neutral lipid contents, as well as LDL 
particle size could be observed.

After 36 hours of incubation, negative charge of lipoprotein particles became obvious. Longer 
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coronary atherosclerosis, the sialic acid content of LDL became 2 times lower than that of LDL 
incubated with whole blood or plasma obtained from healthy individuals. Incubation with 
red and white blood cells had no effect on the sialic acid content. This points out that LDL 
modification takes place in the blood plasma [13].

A detailed analysis of LDL modification processes has been performed by our group [13]. 
Native LDL was extracted from the blood plasma using ultracentrifugation followed by 
lectin chromatography. Serum was cleared from apoB-containing lipoproteins by defibri-
nation of the remaining LDL-deficient plasma. Afterwards, LDL and serum were reconsti-
tuted in the same proportion in the original plasma and incubated for different time points 
at 37°C.
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for elimination of the effects of LDL originating from VLDL and IDL in the process of incu-
bation. After 1 hour of incubation of native LDL with autologous plasma samples, a sharp 
decrease of sialic acid content was observed. At the same time, desialylated LDL concentra-
tion increased, as determined by lectin-sorbent chromatography (Table 1, from Ref. [13]). In 
parallel to the decrease of the sialic acid content, LDL acquired capability to induce a pro-
nounced accumulation of cholesterol in SMA(+) cells cultured from unaffected human aortic 
intima. This could be registered as early as after 3 hours of incubation. After 6 hours of incuba-
tion with plasma, a steady decrease of phospholipid and neutral lipid contents, as well as LDL 
particle size could be observed.

After 36 hours of incubation, negative charge of lipoprotein particles became obvious. Longer 
incubation times (48 and 72 hours) led to a loss of α-tocopherol and to an increase of LDL 
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susceptibility to oxidation, as well as to aggregation of cholesterol covalently bound to apoB. 
Degradation of apoB was also registered at this point.

It can be concluded that desialylation is likely to be the primary and most important LDL 
modification that conveys its atherogenicity. Other known modifications may further increase 
the LDL atherogenicity.

9. Conclusion

We have obtained an LDL subfraction that was able to induce accumulation of lipids, primar-
ily cholesteryl esters, in cultured SMA(+) cells. This helped to reconcile the facts that native 
LDL is not atherogenic and in vitro–modified LDL not present in circulation.

We have shown that atherogenic LDL is characterized by numerous alterations of carbo-
hydrate, protein, and lipid moieties, and can therefore be termed multiple-modified LDL. 
Multiple modifications of LDL occur in human blood plasma. It was shown that circulating 
multiple-modified LDL loses the affinity for the B,E-receptor and acquires the ability to inter-
act with a number of other cellular membrane receptors and proteoglycans. The enhanced 
cellular uptake of desialylated LDL, low degradation rate of apolipoprotein and cholesteryl 
esters, as well as stimulation of re-esterification of free cholesterol, cause the intracellular 
accumulation of intracellular-esterified cholesterol.

The formation of LDL-containing large complexes (associates, immune complexes, and com-
plexes with the extracellular matrix components) can stimulate lipid accumulation in intimal 
smooth muscle cells. In addition to cholesteryl ester accumulation, desialylated LDL stimu-
lates cell proliferation and synthesis of the connective tissue matrix.

Therefore, we have been able to obtain and describe naturally occurring multiple-modified 
LDL capable of provoking all atherosclerotic manifestations at the cellular level.

Immune complexes, consisting of LDL and autoantibodies, have been discovered in the human 
blood stream circulation [71]. Amount of LDL-containing circulating immune complexes was 
directly correlated with the severity of atherosclerosis [71]. We hypothesize that anti-LDL auto-
antibodies and circulating immune complexes containing LDL can be the factors that convey blood 
atherogenicity. Although the anti-LDL cannot be proven the only atherogenic factor adsorbed on 
the column with immobilized LDL, the substances binding to LDL should be thoroughly studied. 
Columns with immobilized LDL allowed not only distinguishing and collect nonlipid factors of 
atherogenicity, but also opening a prospect for reducing atherogenicity in patients.
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Abstract

Apolipoprotein D (ApoD) is an extracellular glycoprotein of the lipocalin protein family, 
involved in different functions such as immune response, cell proliferation regulation, 
chemoreception, retinoid metabolism, axon growth, and proteolysis regulation. This 
lipocalin is expressed predominantly in the nervous system (NS), both prenatally (vascu-
lar pericytes) and postnatally (glia and neurons) and in adulthood. It is also expressed in 
other tissues and is carried by high-density lipoprotein (HDL) in plasma, so it could inter-
fere in cholesterol and other lipids regulation. ApoD increases considerably in systemic 
apocrine gland tumors and also in some primary brain tumors. Although the specific bio-
logical role of ApoD is unknown, the presence of ApoD in tumors appears to be a prog-
nostic factor in their evolution. Regarding the NS, increased ApoD expression observed 
in many neurodegenerative diseases could be used to make an early diagnosis thereof.

Keywords: oxidative stress, apolipoprotein, nervous system, colorectal cancer

1. Introduction

Apolipoprotein D (ApoD) is an extracellular glycoprotein of the lipocalin protein  family, 
involved in different functions such as immune response, cell proliferation regulation, 
chemoreception, retinoid metabolism, axon growth, and proteolysis regulation [1, 2]. This 
lipocalin is expressed predominantly in the nervous system (NS), both prenatally (vascular 
pericytes) and postnatally (glia and neurons) and in adulthood [3, 4]. It is also expressed in 
other tissues and is carried by high-density lipoprotein (HDL) in plasma, so it could interfere 
in cholesterol and other lipid regulation [5].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



ApoD increases considerably in systemic apocrine gland tumors and also in some primary 
brain tumors [6]. Although the specific biological role of ApoD is unknown, the presence 
of ApoD in tumors appears to be a prognostic factor in their evolution. Regarding the NS, 
increased ApoD expression observed in many neurodegenerative diseases could be used to 
make an early diagnosis thereof [6].

Under cellular stress conditions, ApoD presents extra- and intracellular overexpression [7, 8], 
suggesting that it plays a fundamental role in cell proliferation, survival, and death.

2. Structure and metabolism of ApoD

ApoD gene is located on human chromosome 3 and chromosome 16 in rodents. Its amino acid 
sequence does not maintain similarity to other apolipoproteins but is highly similar to some 
members of the lipocalins family [6, 9].

The molecular weight of mature human ApoD is 19 kDa. It consists of 169 amino acids 
with glycosylation sites at residues 45 and 178, corresponding to asparagine. Its molecular 
weight is 32 kDa calculated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE), and approximately 18% of them are carbohydrates. The glycosylation pattern 
of ApoD varies depending on the site; these values correspond to plasma ApoD, where carbo-
hydrates are less complex and extensive and glycosylation is therefore smaller than ApoD in 
other body secretions and tissues [6].

Secondary structure has been proposed as a small β-barrel structure constituted by eight anti-
parallels β-leaves (Figure 1B). Within this framework, hydrophobic residues are situated in 

Figure 1. Tertiary structure of apolipoprotein D in three-dimensional vision. A. Model of protein surface. The pocket 
where hydrophobic ligands bind is indicated with an arrow. B. Model of α-carbon skeleton of the protein, also showing 
the eight β-chains that constitute the barrel of this lipocalin. Both figures have been set up with the program Weblab 
ViewerLite.
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the inner surface of a central pocket (arrow in Figure 1A). This location would be the binding 
site for the ApoD ligand. Other hydrophobic residues could also participate in the association 
of ApoD with HDL particles [6].

It has been found both on a molecular as gene scale that ApoD is a heterogeneous pro-
tein. It has different isoforms and there is evidence of the presence of two alleles that are 
expressed in a codominant way in a single gene locus. The first fact can be explained, 
partly, by a posttranslational process, consisting sometimes in the addition of sialic acid. 
With respect to the gene, two different alleles were identified by digestion with enzymes 
Taq1 and Msp1.

Population studies show variations in ApoD gene as polymorphisms that may affect the func-
tion of ApoD, the lipoprotein metabolism, and plasma concentrations thereof. In fact, certain 
ApoD gene alleles show a significant correlation with the predisposition to certain neurode-
generative diseases [10].

The ApoD is also found in various mammals, with very similar functions to human ApoD, 
and whose similarity in amino acids is shown in Table 1. But it is found not only in mammals 
but also in birds with even greater similarity to human lipocalin than that of some mammals. 
There are homologous genes in insects and is even located in prokaryotes. In Escherichia Coli, 
there is a lipocalin (Blc) present in the outer membrane of the bacteria that maintain a 31% 
similarity with human ApoD. It is the first lipocalin located in bacteria and its expression 
occurs mainly during the stationary phase interacting with the response to hunger during this 
phase of bacterial cycle.

2.1. Location, synthesis, and expression of ApoD

ApoD has been detected in a variety of organs, tissues, and fluids, reflecting its importance 
and suggesting that it may play different roles depending on the organ in which it is located. 
It has been detected in plasma, tear fluid, in the eye ciliary body, in the cerebrospinal fluid (in 
concentrations without relation to plasma concentration), in the perilymph (in similar concen-
tration to plasma), in the middle ear fluid, in urine, and in sweat [6].

Among the mammals, many interspecific differences in the ApoD expression can be found in 
different organs and tissues (see Table 2).

In contrast to other lipoproteins, the main synthesis of ApoD is not produced in the intes-
tine and liver but in the adrenal glands, kidney, and central nervous system (CNS) [6]. Cells 
expressing as many ApoD mRNAs are perivascular fibroblasts, glial cells, pial and perivascu-
lar CNS, and some neurons [3, 4].

Human Rabbit Guinea pig Rat Mouse E. coli

Human – 80% 78% 69% 71% 31%

Mouse 71% 82.6% – 92.6% – –

Table 1. Similarity of the amino acid sequence in apolipoprotein D found in different species.
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2.2. Ligands and functions of ApoD

The ApoD is mainly part (83%) of the high density lipoproteins (HDL) [11], but can also be 
found in small amount in very low-density (VLDL) and low-density lipoproteins (LDLs) [6]. 
As a component of HDL, it was observed that ApoD is associated to cholesterol ester trans-
ferase protein (CETP), to Apo AI or Apo A-II (over 50% of ApoD present in HDL is form-
ing part of these complexes with Apo A-II) [11]. In HDL, ApoD is also forming part of the 
complex responsible for the transport of cholesterol from peripheral tissues to the liver for 
its metabolism, especially with the lecithin-cholesterol acyltransferase (L-CAT). It is believed 
that ApoD could stabilize the enzymatic activity of the L-CAT or act as a substrate or reac-
tion products carrier, such as cholesterol or cholesteryl esters, as an increase in the activity of 
cholesterol esterification by L-CAT in the presence of ApoD has been observed. All this sug-
gests that interactions between cholesterol metabolism and ApoD exist, but there is evidence 
that cholesterol is not the main ligand of ApoD as initially believed. This is supported by the 
low affinity existing between them and by the fact that in the cyst fluid of breast cancer ApoD 
concentration increases up to 1000 times, while cholesterol increases only twice [6].

The ApoD can also be free or bound to other small molecules as it interacts with many ligands 
such as progesterone and other progestins, pregnenolone, bilirubin, arachidonic acid (AA), 
estrogens, androgens, and E-3-methyl-2-hexanoic acid (major component of underarm odor). 
Of all these, ApoD is the molecule that has a higher affinity for arachidonic acid, which make 
us believe that through the L-CAT, ApoD could join in the metabolism regulation,  removing it 

Human Monkey Rabbit Guinea pig Rat Mouse Hamster

Brain + + + + + + +

Liver + + nd + + + −

Kidney + + nd + + - −

Intestine + + nd nd + − −

Pancreas + + nd nd + nd nd

Placenta + nd nd nd nd nd nd

Adrenal + nd + + + + nd

Spleen + + + + + − −

Heart nd nd nd nd + − +

Bladder nd + nd nd + nd nd

Skin nd + nd nd + nd nd

Lung nd nd + + + + nd

Testicles nd + + + + + nd

Ovaries nd nd + + − + nd

+: presence; −: Not present; nd: not determined.

Table 2. Differences in the expression of ApoD in different organs and tissues of several mammals.
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in order to prevent its transformation into cholesterol esters [6]. It is also important to mention 
that other linking molecule is retinoic acid, a molecule that plays a major role in the develop-
ment of nervous system. Indeed, ApoD is the human lipocalin with higher affinity for retinoic 
acid [12].

Belonging to the family of lipocalin and the variety of tissues in which ApoD is expressed, 
Makes us pose the hypothesis that this apolipoprotein is multiligand and multifunction and 
that both function as ligands vary depending on the organ in which it is expressed [6].

2.3. Expression regulation of ApoD

Transcriptional regulation of the expression of ApoD seems to be very complex due to the 
many factors that modulate this protein [13]. Overall, we could say that there are changes 
in cell proliferation which modulate the expression of ApoD, or vice versa. Do Carmo et al. 
have studied in detail the ApoD promoter and determined the genomic region required for 
the induction of ApoD when cell senesces (when the crop exceeds the confluence). In this 
genomic region, there is a purine-pyrimidine fragment alternation and octanucleotide SRE 
(serum-responsive element) that appear to be essential for the induction. Curiously, SRE sites 
are present in sites related to cholesterol and fatty acids metabolism and mediate the regula-
tion of transcription of these genes depending on sterol genes [13].

3. ApoD as a protective agent against oxidative stress

To conclude this section, we note that in studies conducted in animal models (particularly in 
the fruit fly Drosophila melanogaster and the mouse), in which the expression of ApoD has been 
genetically modified, ApoD deficit involves behavioral defects and neuronal death by apop-
tosis. Also, there is less resistance to NS stimuli that induce oxidative stress (OS). Moreover, 
lipocalin overexpression leads to increased resistance to factors which induce increased oxi-
dative stress [14–16].

In summary, ApoD is a protein with multiple functions depending on the location in which it 
is expressed. It is a multiligand protein, but it does not mean that it has a specific role, so many 
studies are still needed to unravel the functional role of ApoD at different levels in which it 
operates. It has an important role in CNS pathologies, as it behaves as an acute phase protein, 
rising in neuronal damage. However, we cannot yet say that it acts as a neuroprotective or 
neurotoxic protein.

We also checked that oxidative stress induces the expression of ApoD in the nervous system 
[14]. This and the fact that many of the diseases mentioned above occur with increased oxida-
tive stress made us think that this lipocalin plays an important role in controlling this stress 
when it occurs in pathological conditions.

Evidence from animal models supports this hypothesis. It is specifically carried out with 
experiments in Drosophila fly and mice. In the fly, the Glial Lazarillo protein (Glaz) is the 
homologous protein to ApoD. In Glaz mutant flies that inactivate its expression, subjected to 
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a stimulus that induces oxidative stress, neuronal death and degeneration are increased. By 
contrast, in flies with excess of ApoD there is a greater resistance to oxidative stress [16]. In 
experiments conducted in knockout ApoD mice (in which the gene is inactivated), we have 
found that these have also a lower resistance to oxidative stress and behavioral changes [17].

4. ApoD in nervous system and its relationship with neurodegenerative 
pathologies

We can find ApoD both in the central nervous system (CNS) and in the peripheral nervous 
system (PNS) and is part of the small group of apolipoproteins that are synthesized in the NS 
close to Apo E, J and C-I [6].

ApoD’s role as a conveyor of lipid molecules suggests that it might play an important role in 
lipid transport during neuronal regeneration [6].

The ApoD accumulates in the peripheral nerve after its injury. Its concentration is much 
higher there than other apolipoproteins and also has been shown to be synthesized locally 
and not from the bloodstream, such as Apo A-I and Apo A-IV. In rat sciatic nerve injury, the 
concentration is increased 500-fold relative to baseline, and mRNA is elevated up to 40 times. 
Its mission might be to transport cholesterol to remyelination and new membrane formation. 
It could also carry bilirubin, which is found in damaged nerves, thereby preventing toxic 
accumulation of the same [6].

In adult animals, ApoD expression is primarily located in the pial and perivascular cells, 
astrocytes and oligodendrocytes and, inconsistently, in neurons [6].

ApoD has been observed attached to oligodendrocytes in the white matter of the human cere-
bral cortex. In the gray matter of young individuals, ApoD expression of both glial cells and 
neurons is limited; this expression increases with normal aging. It seems that ApoD synthesis 
could be linked to the phenomenon of cellular activation in astrocytes, taking place in astro-
gliosis. ApoD is constitutively secreted by mouse astrocyte cultures.

In neurons, labeling studies indicate that ApoD is more abundant in some areas than in oth-
ers. In cerebrum and cerebellum, its labeling is poor and inconsistent, while in the vestibular 
nuclei, bulbar olive and raphe marking are abundant and constant.

In the nervous system, ApoD could participate in the process of regeneration and remyelin-
ation. It has also been proposed as lipids and other substances carrier through the blood-brain 
barrier. It could also play a significant role in maintaining appropriate levels of cholesterol in 
compartments not directly exposed to blood. Finally, as a function of this lipocalin the local 
transport of steroid hormones has also been proposed, which modulate the formation of syn-
aptic connections [6].

4.1. ApoD and nervous injury

The relation between ApoD processes and nerve regeneration has conducted several studies 
in which injuries are reproduced in the CNS. In all of them, an increase in the ApoD marking 
has been observed, quite possibly of a local origin as ApoD concentration in the bloodstream 
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was low. This may be due to the need of increased lipid traffic during the period of recon-
struction and restructuration following serious injuries. However, in a study conducted in 
deficient ApoE mice subjected to hypoxia To cause a stroke, no change was seen in the levels 
of ApoD with respect to wild strains, where this apolipoprotein would not be involved in 
cleaning lipid material in the area of the lesion and not be a part of the compensatory mecha-
nism against the absence of ApoE.

4.2. ApoD and nervous pathologies

There are some nerve pathologies in which ApoD is elevated with respect to normal healthy 
individuals (see Table 3).

4.2.1. Niemann-Pick disease type C

In the mouse, this disease is a hereditary disorder of cholesterol homeostasis, which accumu-
lates in unesterified form in the lysosomes. We found progressive dementia and development 
of neurofibrillary tangles. It was observed that the amount of ApoD in brains of diseased indi-
viduals was greater than that in healthy individuals and it was mainly secreted by astrocytes. 
This suggests ApoD intervention in cholesterol metabolism, acting as a conveyor of lipids 
released in demyelinating disease processes.

4.2.2. Alzheimer’s disease

This disease is a disease of pathology substrate constituent of senile plaques and neurofibril-
lary tangles. These lesions are clinically reflected in a consistent mental decline in dementia, 
disorientation, memory loss, and learning capacity.

In these patients, increased ApoD is found in the hippocampus and CSF compared with 
control subjects. Also, a correlation was found between ApoD and the presence or absence 
of the ApoE4 allele, so that high concentrations of ApoD were interpreted as a compensa-
tory mechanism against the absence of a particular allele of ApoE in nerve regeneration and 
maintenance and CNS repair. The ApoD would act in transporting different substances. This 
theory has been challenged by studies with ApoE-deficient mice in which the expression of 
ApoD was not altered by the absence of ApoE.

Other studies indicate an ApoD increase in the entorhinal and temporal cortex in elderly 
subjects. According to some authors, ApoD could participate in the neurochemical cascade 
associated with chronic CNS neuronal degeneration. Other studies indicate that there is no 
correlation between ApoE and ApoD and both are involved in neurodegeneration in this dis-
ease independently.

Moreover, the analysis of senile plaques and neurofibrillary tangles has resulted in conflict-
ing data, some authors find ApoD presence while in other cases not. This may be due to the 
employed antibodies. In case of ApoD found in senile plaques, ApoD suggests an important 
role in fibrillogenesis and deposition of amyloid peptide. The presence of ApoD in neurofi-
brillary tangles is little or null although we have found a correlation between the number of 
tangles and the amount of ApoD in patients. It has been interpreted as the injured cortical neu-
rons increase the expression of ApoD before tangles accumulate inside. The  concentration of 
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this protein in the hippocampus appears to be related to the severity of intraneuronal neuro-
fibrillary changes, but not with extracellular amyloid peptide level. Thus, the most advanced 
patients (according to the scale of Braak) have a higher content of ApoD.

ApoD has also been located in the vascular preamyloid and amyloid deposits of cerebral amy-
loid angiopathy, present in most Alzheimer's patients and which is common in the elderly. 
These patients are at an increased risk of vascular rupture. An inverse behavior has been 

Pathology/alteration nervous system Overexpression site Detected Increase Ref.

mRNA Protein

Cerebellar ataxia (two mouse models) - Cerebellum + [18]

Unverricht-Lundborg disease (Mouse 
model: progressive ataxia)

- Cerebellum + [19]

Niemann-Pick disease – type C (mouse 
model: progressive neurodegeneration, 
ataxia)

- Cerebellum, fraction myelinated
- Globus pallidus, thalamus, 
substantia nigra. White matter in 
the internal capsule and cerebellum. 
oligodendrocyte precursors
- Brain

+ +
+

[20]
[21]
[22]

Alzheimer’s disease - Cerebral spinal fluid
- Pyramidal neurons with 
granulovacuolar degeneration
- Cortex with neurofibrillary changes
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+
+
+
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+
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[7, 28]
[7]
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[36]
[37]
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Table 3. Pathological situations or cell damage which overexpresses the ApoD gene and/or protein accumulates in the SN.
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shown between ApoD and ApoE which would indicate that both proteins have different roles 
in the development of the disease.

It has also been shown the existence of an increased ApoD expression in rats expressing the 
mutated protein of human amyloid peptide precursor (characteristic of this disease). These 
changes were most striking in the hippocampus fimbria, corpus callosum, and other white 
matter tracts. This may represent a compensatory glial response to amyloid peptide deposi-
tion in Alzheimer.

4.2.3. Spongiform encephalopathies

An increase in ApoD expression has been shown, especially in later stages, possibly as a result 
of cellular stress.

4.2.4. Demyelinating diseases

In all of them, the elevation of ApoD is found in CSF, possibly due to rupture of the blood-
brain barrier, but showed an inconstant behavior in relation to the plasma protein levels. In 
multiple sclerosis, there is also an increase in ApoD intrathecal production in the early stages 
of the disease. This has been considered a consequence of demyelination and remyelination 
processes that characterize the disease in the early stages. Also, increased ApoD has been 
described in patients treated with steroid.

4.2.5. Schizophrenia and bipolar disorder

In these psychiatric disorders, the expression of ApoD also increases in serum and brain, acting 
as disease marker. In schizophrenia and schizoaffective disorders, a decrease of arachidonic 
acid is found in the membrane of blood cells, fibroblasts, and brain tissues. We also found cal-
cium-independent phospholipase A2 increased activity in psychiatric illnesses as a decrease of 
calcium-dependent phospholipase A2 activity [7]. It has shown an increase in the expression of 
ApoD in the striatum of rodents treated with clozapine and in various regions of white matter. 
In control animals, ApoD is mainly expressed in astrocytes while in treated animals the increase 
occurred mainly in neurons. This indicates a contribution of ApoD to antipsychotic mechanisms 
of this neuroleptic [6]. In addition, arachidonic acid also increases with treatment [7].

There are regional differences in ApoD expression when comparing schizophrenia with bipo-
lar disorder, whereby ApoD could intervene in a natural response to the targeted effects of 
this neuropathology. In treated patients with schizophrenia, ApoD levels descend compared 
to normal values. The low concentration of ApoD in serum confirms the association of ApoD 
with a systemic deficiency in lipid metabolism. Serum ApoD levels of patients with schizo-
phrenia are greater than those of control subjects, which may indicate the onset of the disease. 
Arachidonic acid (AA) is the precursor of eicosanoid synthesis and prostaglandin metabolism 
and relates to the formation of the second messenger cAMP. ApoD could link to transport 
and union of AA, prevent peroxidation and make it accessible for the synthesis of membrane 
phospholipids, protecting the neuronal membrane functions [7].

Finally, we should note that in studies carried out in animal models (particularly, in the 
D. melanogaster fly and mouse), in which ApoD expression has been genetically modified, 
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the deficit of ApoD involves behavioral defects and neuronal death by apoptosis. Also, 
there is less resistance to SN stimuli that induce oxidative stress. Moreover, lipocalin over-
expression leads to increased resistance to factors which induce increased oxidative stress 
[9, 15, 16].

In summary, ApoD is a protein with multiple functions depending on the location in which 
it is expressed. The fact that it is also multiligand does not allow us to point a specific role 
for this protein; so, many studies are still needed to unravel the functional role of ApoD at 
different levels in which it operates. What we can say is that it has an important role in CNS 
pathologies. We cannot yet determine if it acts as a neuroprotective or neurotoxic protein, but 
we can affirm that it behaves as an acute phase protein, rising in neuronal damage.

4.2.6. ApoD gene polymorphisms

As mentioned earlier, we have determined four gene polymorphisms ApoD in the patients 
in our study.

Polymorphism rs1467282, c.334 + 718T > C in intron 4 of the gene was determined as genetic 
variation ApoD in Alzheimer's disease in Finnish population [10]. The theoretical European 
population frequencies given in Table 4 are as NCBI database—single nucleotide polymor-
phism (http://www.ncbi.nlm.nih.gov/projects/SNP).

The polymorphism rs 5952 c.44T> C showed increase risk of sporadic Alzheimer's disease in 
Chinese population. Rs rs 1568566 haplotype T 5952 C showed lower risk and could be inter-
preted as a protective factor against Alzheimer's disease [40]. No data frequency in European 
population was seen.

With respect to Rs1568565 polymorphism c.124-352A > G  (intron 2), the -352G allele was 
associated with a threefold increase risk of Alzheimer's disease early onset (≤65 years) Finnish 
population [10]. The theoretical European population frequencies given in Table 5 are as NCBI 
database—single nucleotide polymorphism (http://www.ncbi.nlm.nih.gov/projects/SNP):

As we see, ApoD could confer protection against damage in the body by oxidative stress, cer-
tain polymorphisms ApoD could act in these diseases protecting the carriers of said damage. 
That is why we think that variations of this gene may confer susceptibility to damage caused 
by oxidative stress.

Genotype/allele CC CT TT C T

Frequency 0.860 0.116 0.023 0.919 0.081

Table 4. Data of theoretical frequencies of rs1467282 in European population.

Genotype/allele CC CT TT C T

Frequency 0.833 0.125 0.042 0.896 0.104

Table 5. Data of theoretical frequencies of rs1568565 in European population.
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5. Vascular actions of ApoD

As mentioned above, the 1–2% of HDL is formed by ApoD. Likewise, we can say that 83% of 
plasmatic ApoD is found forming part of HDL particles. Thus, it has been found that decreas-
ing ApoD in HDL before it descends in serum increases the risk of stroke. The fact that the 
HDLs are responsible for transporting cholesterol from peripheral tissues to the liver and that 
most ApoDs are present in these lipoproteins makes us think about its beneficial effects from 
the cardiovascular standpoint [11].

The presence of ApoD has been detected in the atheromatous plaque, but not in normal 
coronary arteries [11]. An important finding is the large amount of ApoD in quiescent cells 
[13]. However, its expression is greatly reduced in proliferating cells. In vitro studies show 
that ApoD inhibits cell proliferation, obtaining a similar effect to that produced by calcium 
antagonists, demonstrating its beneficial effects in the cardiovascular field. Also in his role of 
inhibiting proliferation could play an important role in cancer [11].

It has been observed that ApoD is related to the cell migration of vascular smooth muscle for 
closing the ductus arteriosus and the platelet-derived growth factor—BB (PDGF-BB)—may 
mediate its expression and localization. It has also been found that ApoD is necessary for the 
migration of pulmonary artery in response to PDGF-BB.

6. ApoD and tumor pathology

ApoD is associated with reduced proliferative activity of cancer cells, and is abundantly 
raised in senescent cells. In breast cancer, ApoD expression is associated with favorable his-
tology and clinical stage, whereas in adjacent tumor stromal ApoD expression is a marker of 
adverse prognosis. Estrogen receptor expression in breast cancer is inversely related to ApoD 
expression. Therefore, a combined estrogen receptor positivity/ApoD positivity could reflect 
a nonfunctional estrogen receptor pathway, and this subset of breast cancer patients does not 
react to adjuvant tamoxifen treatment [41].

Our group has conducted studies in the field of colorectal cancer (CRC) and ApoD. In CRC, 
tumor growth coincides with increased inflammation, COX-2, and nuclear factor kappa 
B-mediated, which triggers the release of tumor necrosis factor alpha and interleukin-6 [42]. 
This inflammation increment corresponds to increased levels of reactive oxygen species 
(ROS) and their reactive derivatives, inducing in turn oxidative stress (OS) [43–45]. CRC cells 
show an increase in lipid peroxidation by products that could be triggered by the increased 
arachidonic acid levels attained by the increased activity of COX-2 [46, 47]. The accumula-
tion of lipid peroxidation results in cell damage and death. However, cancer cells tend to 
reduce the levels of the ant proliferative cytokine TGF-β1 and the lipid peroxidation adduct 
4-hydroxynonenal (4-HNE) as a way to prevent apoptosis.

We have seen that ApoD is related to protection against oxidative stress. It has also been 
linked to decreased cell proliferation in models [11, 48]. Its expression is regulated by p73 and 
p63, both p53 family members, which is tumor suppressor so that its expression shows an 
inverse correlation with tumor growth [49].
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As we can see, ApoD levels are increased in the oxidative stress as a defense mechanism but in 
turn are reduced in advanced stages of cancer. Our group has studied mechanisms that con-
tribute to this paradox and the influence of ApoD in cancer progression and patient survival.

Our results show a repression of ApoD gene expression in CRC, particularly in the initial 
stages of the disease, which correlates with an elevation of lipid peroxide, adducts in the tis-
sue. In normal mucosa, ApoD protein is present in lamina propria and enteroendocrine cells. 
In CRC, ApoD expression is heterogeneous, with low expression in stromal cells commonly 
associated with high expression in the dysplastic epithelium. ApoD promoter is basally meth-
ylated in HT-29 cells but retains the ability to respond to OS. Exogenous addition of ApoD 
to HT-29 cells does not modify proliferation or apoptosis levels in control conditions, but it 
promotes apoptosis upon paraquat-induced oxidative stress [50].

Our results show ApoD as a gene responding to oxidative stress in the tumor microenviron-
ment. Besides using ApoD as marker of initial stages of tumor progression, it can become a 
therapeutic tool promoting death of proliferating tumor cells suffering oxidative stress [50].
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Abstract

Advances in molecular techniques have shown that genetic factors predispose individu‐
als to cardiovascular diseases (CVD). These techniques have made it possible to iden‐
tify disease‐causing genes, prediction to disease susceptibility and responsiveness to 
drug interventions. For the purpose of this review, therapeutic intervention (niacin) was 
conducted in a nonhuman primate model to assess the impact of six coincident single 
nucleotide polymorphisms (cSNP) identified in prioritised reverse cholesterol transport 
(RCT) and high‐density lipoprotein (HDL) metabolism genes. Gene expression findings 
confirmed that these genetic variants may have a direct impact on the RCT pathway and 
drug intervention (niacin) response.

Keywords: cardiovascular disease (CDV), candidate genes, HDL‐C metabolism, 
sequence variants, reverse cholesterol transport (RCT)

1. Introduction

Cardiac and vascular complications are complex multifactorial pathologies and difficult to 
prevent since are associated with both genetic and environmental factors [1]. Research on car‐
diovascular diseases (CVDs) is constantly evolving and the current focus is directed towards 
lipid metabolism, molecular and cellular mechanisms, as well as preventive strategies. Most 
research in the field of lipid metabolism is motivated by an interest to understand normal lipid 
transport and preventative measures for atherosclerosis abnormalities [2]. Specific genes and 
apolipoproteins that are involved in lipid metabolism and lipoprotein synthesis have been 
isolated, sequenced and mapped in the human genome [3]; however, their role in the lipid 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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metabolism and lipid transport can only be inferred by physiological and genetic  studies. To 
determine their overall function, further exploration of genetic alterations must be investigated.

Since the molecular regulation of lipid metabolism and reverse cholesterol transport (RCT) 
pathway is complex, numerous studies in humans, animals and in vitro have been focusing 
on the protective action of high‐density lipoprotein cholesterol (HDL‐C), RCT and cholesterol 
efflux, which can also be augmented for potential therapeutic strategies of CVDs [4, 5].

2. Overview of RCT and cholesterol efflux

The RCT pathway represents an important process involving the transfer of excess cholesterol 
by HDL particles to the liver for excretion. The ability of HDL to remove cholesterol from cells 
such as macrophages is linked to the anti‐inflammatory and immunosuppressive functions of 
this lipoprotein [6]. However, the functionality of HDL is impaired in humans with chronic 
inflammatory diseases and this causes a reduction in the anti‐inflammatory and cholesterol 
transport properties. Studies have shown that apolipoprotein A‐I (ApoA‐1), lecithin‐choles‐
terol acyltransferase (LCAT), ATP‐binding cassette transporter A1 (ABCA1) and scavenger 
receptor class B type 1 (SR‐B1) serve as important cofactors for a number of RCT pathway con‐
stituents [7]. The initial step of the pathway involves ApoA‐1 being produced by the liver and 
released into the plasma where it is involved in all stages, including the formation of nascent 
HDL particles, HDL remodelling by LCAT and delivery of HDL cholesterol directly to the 
liver via SR‐BI or indirectly via CETP‐mediated transfer to apoB‐containing lipoproteins [8]. 
Through this process, cholesterol efflux is promoted from the macrophages via ABCA1 and 
also by the ABCG1 transporter using the action of LCAT (Figure 1).

Figure 1. Reverse cholesterol transport (RCT) pathway. Major components of RCT include apolipoprotein A‐I (apoA‐I), 
high‐density lipoprotein (HDL), lecithin: cholesterol acyltransferase (LCAT), ATP‐binding cassette transporter (ABCA1/
ABCG1) and cholesterol ester transfer protein (CETP). Free cholesterols (FC) in the HDL are delivered to the liver for 
excretion through scavenger receptor B1 (SR‐B1). Alternatively, the cholesteryl esters (CE) could also be delivered to the 
liver through the low‐density‐lipoprotein receptor (LDLR). Figure modified from Rader et al. [4].
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3. Vervet monkey as an animal model for CVDs

As with most areas of human biology, studies of human CVDs have been enriched and com‐
plemented by investigations of animal models. Among the nonhuman primates (NHP), the 
vervet monkey (Chlorocebus aethiops) has been validated to be an excellent research model for 
the study of CVDs [9]. For the purpose of this investigation, we used this NHP model to deter‐
mine the protective action of HDL, its role in the reverse cholesterol transport (RCT) pathway 
and the expression profile of genes regulating HDL metabolism.

This study was conducted in compliance with the Public Health Service (PHS) Policy on 
Humane Care and Use of Laboratory Animals (A5726‐01) and approved by the Ethics 
Committee of the South African Medical Research Council (SAMRC) (REF 11/07). The 
selected subjects (25) were healthy adult female monkeys with normal plasma HDL. All 
individuals were kept under identical housing conditions according to the South African 
National Standard for the Care and Use of Animals for Scientific Purposes (The SANS 
10386:2008).

3.1. Laboratory analysis

3.1.1. Candidate genes and sequence variants selection

The genetic variations were evaluated in 10 genes implicated in lipid metabolism (CETP, 
ABCA1, CYP7A1, apoA‐1, apoB, apoE, SR‐B1, LCAT, apoCI and apoCII). Twenty‐two coin‐
cident single nucleotide polymorphisms (cSNPs) were selected for genotyping. These cSNPs 
were prioritised based on their function and location within their respective candidate gene 
and their association with CVD.

3.1.2. Gene expression

Blood (2 ml) was collected in EDTA‐containing tubes from 25 animals using a femoral vene‐
puncture after ketamine anaesthesia at 10 mg/kg bodyweight. DNA was extracted from 
whole blood using the Nucleospin Genomic Blood DNA Purification Kit (MACHEREY‐
NAGEL, Germany) and PAXgene Blood RNA Kit (PreAnalytiX, Qiagen) was used for 
RNA extraction. The extracted DNA was used for Sanger sequencing while RNA was 
for gene expression experiments. Turbo DNase treatment (Ambion, USA) was used for 
RNA purification before cDNA conversion (high‐capacity cDNA kit, Applied Biosystems, 
USA). The effects of niacin treatment on the expression of the 10 prioritised genes were 
determined using quantitative real‐time PCR (qRT‐PCR). The gene expression data were 
normalised to the average of phosphoglycerate kinase 2 (PGK2: QT00219023) and glycer‐
aldehyde‐3‐phosphate dehydrogenase (GAPDH: QT01192646), which were used as house‐
keeping genes.

Since the levels of high‐density lipoprotein‐cholesterol (HDL‐C) are a significant determi‐
nant of a cholesterol efflux capacity, a correlation analysis was conducted to determine the 
relationship between the levels of HDL‐C and mRNA expression of the 10 selected RCT can‐
didate genes.
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4. Effects of mutations, drug intervention and gene expression on RCT

A major area in HDL‐based therapeutics is focusing on the development of pharmacological 
approaches to improve the activity of the RCT pathway. One of these strategies involves the 
combination of genetic variations and individual responsiveness to drugs [10]. Subsequently, 
genetic variations in gene encoding transporters contribute to individual differences in drug 
absorption, elimination and cellular uptake, thereby affecting drug response and toxicity [11].

Among several types of genetic variations, single‐nucleotide polymorphisms (SNPs) are the 
most abundant throughout the genome [12]. SNPs have lately received much attention as they 
serve as markers of individual risk for adverse drug reactions or susceptibility to complex 
diseases [13]. Small‐scale studies have focused on the effects of polymorphisms on physi‐
ological or biochemical factors and have provided useful information on possible mechanistic 
links between variation at the gene level and risk factors for CVDs [14]. For the purpose of 
this review, 10 ‘candidate’ genes known to be involved in RCT and HDL metabolism were 
screened in the vervet model and only six cSNPs (I405V, I883M, A233S, cL96R, ‐62A>C and 
A350A) were identified in CETP, ABCA1, CYP7A1, apoCII and SR‐B1, respectively (Table 1).

For effective changes in lipid metabolism, niacin, as the most potent available lipid‐regulat‐
ing drug [7] was used as a tool to increase HDL levels (Figure 2). A strong inverse correlation 
was observed with CETP, SR‐B1 and CYP7A1 concentrations (r = ‐0.14, ‐0.27, ‐0.30; p < 0.001). 
Concurrently, gene expression profile showed that all three genes were down‐regulated when 
correlated with the three cSNPs (I405V, A350A and A233S) (Figure 3). Since I405V is known 
to lower plasma CETP concentration and elevate HDL‐C concentration [5, 9], the presence of 
this variant confirmed the same effect in the vervet model. With a similar expression profile 
observed in SR‐B1 and CYP7A1, the presence of A350A may suggest a possible influence on 
RCT and HDL‐C synthesis and a plausible involvement of A233S in drug metabolism [6]. The 
remaining cSNPs (I883M, cL96R and ‐62A>C), however, did not influence the  expression of 
their respective genes (ABCA1 and APOCII) despite being known to alter plasma lipid levels 
and influence cholesterol efflux [15, 16]. Therefore, these findings suggest that some of these 
identified sequence variants have significant impact on gene expression which can be corre‐
lated with biochemistry levels (HDL‐C, LDL‐C and triglycerides) following drug intervention.

Gene cSNP Accession number Chr Exon Nucleotide change Amino acid change

CETP I405V rs5882 16 14 A/G I/V

ABCA1 Ile883Met rs4149313 9 18 A/G I/M

CYP7A1 Asn233Ser rs8192874 8 3 A/G N/S

APOC‐II Leu96Arg rs5167 19 3 T/G L/R

‐62A>C rs2288911 Promoter

SR‐B1 A350A rs5888 12 8 C/T A/A

Table 1. cSNPs identified in vervet monkeys.
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5. Conclusion

It is a fact that characterisation of polymorphisms in lipid metabolism is challenging, however 
it remains essential for the optimal regulation and functioning of the RCT pathway. This review 
demonstrates that the genetic determinants of lipid transport and metabolism may provide 
additional significant benefit in pharmacological therapy for CVDs. Genetic approaches have 
shown that sequence variants can be correlated with biochemistry levels such as HDL‐C, LDL‐C 
and triglycerides following drug intervention. Although cholesterol lowering alone may explain 
the anti‐atherosclerotic effect of niacin on HDL‐C, in this review, gene expression data has shed 
some light in supporting the hypothesis that genetic variants may influence the expression of 
genes involved in RCT, which may also play a role in the anti‐atherosclerotic effect of niacin.

Figure 2. The effect of niacin treatment on HDL‐C, LDL‐C, triglycerides (Trig) and apoA‐1. *Significant level (p < 0.05).

Figure 3. The effect of niacin treatment on CETP, SR‐B1 and CYP7A1 mRNA expression. The data were expressed as 
mean ± SD and mRNA expression in a.u. (arbitrary units). *Significant level (p < 0.05).
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It is also noteworthy that this is the first report to provide data of a controlled pharmacologi‐
cal intervention linked to genetic determinants of lipid metabolism in vervet monkeys.
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Abstract

Lipoproteins are complexes of lipids and proteins that carry water‐insoluble cholesterol 
in the bloodstream. While cholesterol is required for normal cell function, hypercholes‐
terolemia contributes to the development of cardiovascular disease (CVD). Increased 
low‐density lipoprotein (LDL) is a major risk factor for CVD. Reduced high‐density lipo‐
protein (HDL) levels are inversely related to CVD risk, suggesting a protective role for 
HDL. Several diseases, including atherosclerosis, diabetes, chronic kidney disease and 
rheumatoid arthritis, have been identified where HDL levels are decreased or function is 
compromised. HDLs are spherical particles with a hydrophobic core of cholesteryl esters 
surrounded by a monolayer of phospholipids, proteins and unesterified cholesterol. 
Apolipoprotein (apo) A‐I, the major protein component of HDL, plays an important role 
in the assembly and function of HDL. One of the major functions of HDL is to mediate 
cellular cholesterol efflux and the transfer of cholesterol from extrahepatic tissues to the 
liver for excretion into the bile. In addition to regulating cholesterol metabolism, HDL 
also exhibits antioxidative, antithrombotic and anti‐inflammatory properties. Under cer‐
tain conditions, however, HDL may undergo biochemical modification resulting in the 
formation of a particle with pro‐inflammatory properties. This review will focus on the 
variable properties of HDL under normal physiological conditions and in the context of 
inflammation.

Keywords: HDL, inflammation, lipid composition, protein composition, function, 
macrophage mitochondria

1. Introduction

Hypercholesterolemia is an important determinant of cardiovascular disease (CVD), the lead‐
ing cause of death globally [1]. Cholesterol, among other lipids, is carried in the bloodstream 
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from the liver to different parts of the body by lipoproteins, complex particles composed of 
lipids and proteins. There are four major lipoproteins that can be classified on the basis of 
their density: chylomicrons, very low‐density lipoprotein (VLDL), low‐density lipoprotein 
(LDL) and high‐density lipoprotein (HDL) [2]. Chylomicrons, VLDL and LDL are larger par‐
ticles with densities ranging from 0.95 to 1.063 g/ml. HDL is a mixture of spherical particles 
ranging in size from 7 to 12 nm in diameter and 1.063–1.21 g/ml in density. Epidemiological 
studies have established an inverse relationship between HDL cholesterol and CVD risk [3, 4]. 
Thus, a reduction in plasma HDL levels represents an important risk factor for CVD. Results 
of clinical trials demonstrate that lowering LDL levels reduces CVD risk [5, 6]. Evidence sup‐
porting a role for elevated HDL in reducing CVD risk, however, is still forthcoming. Clinical 
trials have shown that torcetrapib, dalcetrapib and extended‐release niacin significantly 
increase circulating HDL levels; however, this was not associated with improved outcomes 
[7–9]. On the other hand, raising plasma HDL by infusion or overexpression of apoA‐I in 
murine models was shown to reduce atherogenic lesion progression [10]. One hypothesis to 
explain this disparity proposes that the “quality” or functional status of HDL may be a better 
indicator of CVD risk than plasma levels of HDL per se [11]. This review will focus on the 
structure‐function relationship of HDL and how it influences responses to the lipoprotein in 
the context of inflammation.

HDL particles have a neutral core of cholesteryl ester and triglycerides (TG) surrounded 
by a monolayer of phospholipids, free cholesterol (FC) and protein. ApoA‐I is the major 
protein associated with HDL particles and is synthesized in the liver and small intestine. 
Phospholipids and cholesterol are transferred to apoA‐I by a process mediated by the ATP‐
binding cassette transporter type 1 (ABCA1) [12, 13] resulting in the formation of a lipid poor, 
dense particle called preβ‐HDL. This particle plays an important role in reverse cholesterol 
transport, a process by which cholesterol is removed from cells. Although these particles 
have been predominantly studied under in vitro conditions, little information is available 
regarding the presence or functional significance of preβ‐HDL in vivo [14]. HDL isolated 
from plasma by sequential ultracentrifugation yields two major subpopulations: HDL2, a 
large, light, lipid‐rich particle (d1.063–1.125 g/ml), and HDL3, a smaller, denser protein‐rich 
particle (d1.125–1.21 g/ml). These two particles can be further subdivided into five distinct 
populations: HDL2b, HDL2a, HDL3a, HDL3b and HDL3c [15]. These heterogeneous particles 
vary in their lipid and protein composition, forming particles of varying density, charge, and 
antigenicity. They also possess discrete functional properties.

2. HDL structural components

The HDL lipidome: Phospholipids (PL) represent the major lipid component of HDL, con‐
stituting about 50% by weight of all the lipids [15]. Phosphatidylcholine (PC), with a carbon 
backbone of varying length and saturation, is the major PL species. Lysophosphatidylcholine 
(LPC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and plasmalogens are also 
present at lower, but significant, amounts (greater than 1% of total HDL lipids by weight). 
Other phospholipids (phosphatidylglycerol (PG), phosphatidylserine (PS), phosphatidic acid 
(PA) and cardiolipin) constitute less than 1% of total HDL lipids by weight.
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Sphingolipids are also well‐represented in HDL particles. Sphingomyelin (SM) accounts for 
5–10% by weight of total HDL lipids [15]. SM is converted to ceramide by sphingomyelin‐
ase [16]. Ceramide constitutes 0.05% by weight of total HDL lipids. Ceraminidase converts 
ceramide to sphingosine. Finally, the enzyme sphingosine kinase converts sphingosine to 
sphingosine 1‐phosphate (S1P) [16]. S1P, as well as ceramide‐1‐phosphate, are carried by 
HDL and are potent signaling molecules that regulate cell growth, survival and differentia‐
tion [17]. S1P plays an important role in the suppression of inflammation [17]. S1P binding to 
HDL requires its physical interaction with apo M [17, 18]. Sphingosylphosphorylcholine and 
lysosulfatide are additional, biologically active lysosphingolipids carried by HDL [15]. The 
principal lipids associated with HDL particles are summarized in Table 1.

The HDL proteome: The HDL proteome has been characterized by several groups over the 
past 10 years. Using mass spectroscopy, the presence of at least 85 proteins on HDL have been 
reported [19]. These fall into different regulatory categories: lipid metabolism, acute phase 
response (APR), hemostasis, immune response, metal binding, vitamin transport, proteinase 
inhibitor and complement regulation [19, 20]. A representative list of HDL‐associated pro‐
teins is shown in Table 1. Among these, the lipid metabolism group is the largest and con‐
tains apoA‐I as well as other apolipoproteins (Table 1). As mentioned above, HDL exists as 
multiple sub‐species. The proteins, lecithin‐cholesterol acyltransferase (LCAT), phospholipid 
transfer protein (PLTP) and cholesteryl ester transfer protein (CETP), play a major role in 
converting HDL from one sub‐species to another. APR proteins such as apo A‐IV, SAA1 and 
SAA2 regulate lipid metabolism and are also present along with Apo J, a protein involved in 

Proteins Lipids

Apolipoproteins (AI‐II, A‐V, C‐I‐IV, D, E, F, M, H, O) Phospholipids:

CETP PC, PE, PI, PG, PS, PA

PAF‐AH

PLTP Sphingolipids:

LCAT SM

PON1, PON3 Ceramides

SAA1, SAA2, SAA4 S1P

Albumin Sphingosylphosphorylcholine

Transthyretin Lysosulfatide

Hemoglobin

Hemopexin

Transferrin

Ceruloplasmin

Vitamin D binding protein

Complement

Table 1. Normal protein and lipid components of HDL.
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lipid metabolism and complement regulation. Surprisingly, a variety of other proteins with 
diverse functions such as hemoglobin, hemopexin and transferrin (iron metabolism), ceru‐
loplasmin (metal binding), and vitamin D binding protein (vitamin binding) are also seen. 
These are described in detail in the review by Shah et al. [19]. Thus, the protein and lipid cargo 
on HDL significantly influence particle function.

3. Functions of HDL

Reverse cholesterol transport: Under hypercholesterolemic conditions, the accumulation of 
cholesterol in macrophages leads to the formation of “foam cells” which contribute to ath‐
eroma formation. HDL is commonly referred to as the “good cholesterol”. The salutary effect 
of HDL has been attributed to its ability to transfer cholesterol from extra‐hepatic tissues to 
the liver for metabolism and excretion into the bile, a process called reverse cholesterol trans‐
port [21]. This is believed to be a critical antiatherogenic function of HDL. Cholesterol from 
macrophages is transferred to lipid‐poor apoA‐I [22] via ABCA1. The cholesterol is converted 
to cholesterol esters by the action of LCAT present on HDL. Sequestration of cholesterol esters 
in the hydrophobic core of the particle is associated with the formation of spherical HDL2 and 
HDL3. These mature HDL particles also incorporate cholesterol via an alternate transporter, 
the ATP‐binding cassette transporter G1 (ABCG1) as well as the scavenger‐receptor class B, 
type 1 (SR‐BI) pathway [23]. Cholesterol‐enriched HDL is subsequently removed from the 
circulation by hepatocytes and is excreted by the biliary pathway into bile and feces. In addi‐
tion to mediating reverse cholesterol transport, HDL also possesses antioxidant, anti‐inflam‐
matory and antithrombotic properties. These pleiotropic effects of HDL play a major role in 
limiting inflammatory injury associated with leukocyte infiltration in the blood vessel wall.

Antioxidant properties of HDL: Chylomicrons, VLDL and LDL are apoB‐containing lipo‐
proteins which deliver cholesterol and TG to cells and are strongly implicated in atheroma 
formation. The response‐to‐retention hypothesis postulates that [24] LDL is oxidized in the 
arterial wall by enzymes including myeloperoxidase (MPO), NADPH oxidase, nitric oxide 
synthase and lipoxygenase, resulting in the accumulation of lipid hydroperoxides (LOOH) 
[25]. Oxidized LDL (ox‐LDL) is taken up by macrophages leading to the formation of foam 
cells and fatty plaques. Protein and lipid components of HDL inhibit the accumulation of 
LOOH in LDL and prevent the formation of ox‐LDL. LOOH and phosphatidyl choline hydro‐
peroxides (PLOOH) are transferred from LDL to HDL. This process is regulated by the lipid 
composition and rigidity of the HDL surface. Specifically, HDL surface rigidity is determined 
by the ratios of SM:PC, FC:PL and saturated to polyunsaturated fatty acids (SFA:PUFA) [26]. 
Zerrad‐Saadi and colleagues have identified the HDL3 particle as a key mediator of LOOH 
transfer due its optimal surface rigidity and particle content [27].

ApoA‐I is likely the major HDL protein species involved in the removal of LOOH moieties 
from LDL. The methionine (Met) residues 112 and 148 of apoA‐I can reduce LOOHs to inac‐
tive lipid hydroxides (LOH) [28]. In addition, apoA‐I removes seeding LOOH molecules from 
LDL [29]. In addition to apoA‐I, other apolipoprotein and enzyme components of HDL, such 
as, apo E, apo J, apo A‐II, apo L‐1, apo F, apo A‐IV, PON1/3, PLTP and PAF‐AH, play a role in 
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its antioxidant function. Proteomic analyses from the Davidson laboratory [30] demonstrate 
that HDL3c contains all these proteins along with apo M, apo D, apo A‐II, SAA1,2 and 4 and 
apo C‐I and apo C‐II. This corroborates earlier studies showing that HDL3c has more potent 
antioxidant activity than other HDL subspecies [31, 32]. Thus, both lipid and protein compo‐
nents of HDL3c contribute to its antioxidant activity. Kontush et al. [32] have hypothesized 
that the protein components of HDL3c form a pocket which enables the transfer of LOOH 
from LDL which is further reduced by the concerted action of apolipoproteins and enzymes 
in this pocket [26].

Anti‐inflammatory properties of HDL: The role of inflammation in atherogenesis has been 
clearly established [33–35]. Acute and chronic inflammations are associated with monocyte 
adhesion/infiltration and endothelial cell activation [33–35]. HDL is known to suppress the 
lipopolysaccharide (LPS)‐induced secretion of interleukin‐6 (IL‐6), tumor necrosis factor‐α 
(TNF‐α), interferon‐γ (IFN‐γ) and other pro‐inflammatory mediators [36–38]. HDL also 
reduces inflammation by neutralizing endotoxin, further supporting its anti‐inflammatory 
role [39]. Thus, HDL exerts its anti‐inflammatory effect in multiple ways.

Regulation of endotoxicity: In the context of infection, Gram‐negative bacteria release LPS in the 
circulation which binds CD14 located in membrane rafts on cell surfaces. CD14 engagement 
facilitates the activation of toll‐like receptor 4 (TLR4) binding, resulting in the release of pro‐
inflammatory cytokines such as IL‐6 and TNF‐α. HDL is able to inhibit this initial activation 
step via binding to lipid A, a glycolipid component of LPS, thus preventing TLR4 activation. 
Gram‐positive bacteria release lipoteichoic acid (LTA) which, similar to LPS, binds CD14 and 
activates pro‐inflammatory signaling via the TLR2/6 pathway [40, 41]. HDL additionally con‐
tributes to the inactivation of LPS and LTA by disrupting membrane rafts. In this manner, 
HDL mediates cholesterol and phospholipid efflux which destabilizes rafts and prevents the 
assembly of receptor complexes for LPS and LTA [14, 40].

Regulation of macrophage function: Macrophages are a versatile group of cells that play a criti‐
cal role in regulating immunity, inflammation and lipid metabolism. Macrophage phenotype 
and function are regulated, in large part, by their environmental milieu [42–45]. On the basis 
of cell morphology and function, two populations of activated macrophages have been identi‐
fied [46]. The classically activated M1 macrophage is induced by LPS and Th1 cytokines such 
as IFN‐γ, interleukin‐2 (IL‐2) and TNF‐α [43, 44]. These cells are pro‐inflammatory and secrete 
inflammatory mediators (TNF‐α, IL‐1, IL‐6, IL‐15, IL‐18, IL‐23, IFN‐γ), stimulate inducible 
nitric oxide synthase (iNOS) and promote the formation of reactive oxygen and nitrogen spe‐
cies [47]. The second macrophage phenotype, the alternatively activated M2 macrophage, is 
induced by IL‐4, IL‐10, IL‐13 and glucocorticoid hormones [42–45]. M2 macrophages play 
an important role in the resolution of inflammation by inhibiting inflammatory cytokine 
expression and promoting wound healing [42–45]. HDL and apo A‐I have been shown to 
promote the formation of anti‐inflammatory M2 macrophages in human monocyte‐derived 
macrophages [48] and mice [49]. As mentioned in the previous section, HDL3 is a key media‐
tor of reverse cholesterol transport and possesses potent antioxidant properties. Reports 
from several laboratories suggest that HDL‐associated S1P inhibits inflammation via activa‐
tion of the PI3‐kinase/Akt signaling pathway [50–52]. Pretreatment of bone marrow‐derived 
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 macrophages (BMDMs) with S1P suppressed LPS‐induced secretion of TNF‐α, monocyte 
chemoattractant protein (MCP) and IL‐12 [53]. Additionally, Hughes and colleagues reported 
that S1P enhanced the activity of Arg1 and suppressed the NF‐kB‐mediated induction of 
iNOS [53]. These responses to S1P are associated with M2 macrophage polarization.

Regulation of mitochondrial function: The mitochondrion is a double‐membraned, energy‐pro‐
ducing organelle, which contains its own maternally inherited mitochondrial DNA [54–56]. 
Under normal conditions, the mitochondrial respiratory chain shuttles electrons through the 
respiratory complexes, consumes oxygen at Complex IV and pumps hydrogen ions from 
inside the mitochondria to the intermembrane space at Complexes I, III and IV. This allows 
ATP production to proceed at the level of Complex V (ATP synthase). Under normal condi‐
tions, oxidative phosphorylation is a tightly regulated process with heat and reactive oxygen 
species (ROS) being produced as byproducts.

In the presence of ox‐LDL and other oxidized lipids, the mitochondrion increases the for‐
mation of ROS, which can damage the mitochondria and other organelles causing cellular 
dysfunction and death. HDL, by virtue of its antioxidant properties, can decrease the cellu‐
lar damage caused by oxidized lipids. The HDL protein PON1 hydrolyzes cholesterol esters 
and phospholipids in oxidized lipoproteins [52, 57, 58] thus inhibiting mitochondrial damage 
in the presence of oxidized lipids [58]. Further, HDL‐associated apoA‐I has been implicated 
in electron transport chain maintenance and repair [59]. In apoA‐I null mice (apoA‐I‐/‐), an 
increase in coronary ischemia‐reperfusion injury is observed compared to wild‐type mice 
[59] and is associated with a decrease in the content of the mitochondrial protein Coenzyme 
Q (CoQ) in cardiomyocytes. CoQ normally supports oxidative phosphorylation by shuttling 
electrons from Complex II to Complex III. Exogenous administration of CoQ to apo‐A‐I‐/‐ mice 
attenuated myocardial infarct size compared to the injury response in untreated mice. These 
data indicate the importance of HDL, and specifically, apoA‐I in preserving mitochondrial 
structure and function.

Potential mechanisms by which HDL preserves mitochondrial function include activation of 
the Reperfusion Injury Salvage Kinase (RISK) pathway and the Survivor Activating Factor 
Enhancement (SAFE) cascade. These are cell survival pathways which are known to prevent 
mitochondrial damage in models of ischemic pre‐ and postconditioning [60]. Activation of 
STAT3 is an important component of the SAFE pathway and results in the downregulation 
of pro‐apoptotic factors Bax and Bad and upregulation of antiapoptotic factor Bcl‐2 and the 
antioxidants manganese superoxide dismutase and metallothionein [60, 61]. Further, STAT3 
is transported to the mitochondrion by the GRIM‐19 chaperone where it inhibits the release of 
cytochrome c and reduces cell death [62–64]. In a rodent model of coronary artery occlusion, 
the administration of apoA‐I was shown to decrease infarct size and inhibit mitochondrial 
morphological changes seen in the heart [60]. Further analyses showed that apoA‐I increased 
the phosphorylation of Akt and glycogen synthase kinase 3 beta (GSK3β), known mediators 
of the RISK and SAFE survival pathways.

The S1P component of HDL is also able to activate the RISK And SAFE pathways [51, 52, 
65]. Interestingly, studies conducted in neonatal rat cardiomyocytes showed that S1P is criti‐
cally required for the phosphorylation of STAT3. In contrast, STAT3 phosphorylation was 
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electrons from Complex II to Complex III. Exogenous administration of CoQ to apo‐A‐I‐/‐ mice 
attenuated myocardial infarct size compared to the injury response in untreated mice. These 
data indicate the importance of HDL, and specifically, apoA‐I in preserving mitochondrial 
structure and function.

Potential mechanisms by which HDL preserves mitochondrial function include activation of 
the Reperfusion Injury Salvage Kinase (RISK) pathway and the Survivor Activating Factor 
Enhancement (SAFE) cascade. These are cell survival pathways which are known to prevent 
mitochondrial damage in models of ischemic pre‐ and postconditioning [60]. Activation of 
STAT3 is an important component of the SAFE pathway and results in the downregulation 
of pro‐apoptotic factors Bax and Bad and upregulation of antiapoptotic factor Bcl‐2 and the 
antioxidants manganese superoxide dismutase and metallothionein [60, 61]. Further, STAT3 
is transported to the mitochondrion by the GRIM‐19 chaperone where it inhibits the release of 
cytochrome c and reduces cell death [62–64]. In a rodent model of coronary artery occlusion, 
the administration of apoA‐I was shown to decrease infarct size and inhibit mitochondrial 
morphological changes seen in the heart [60]. Further analyses showed that apoA‐I increased 
the phosphorylation of Akt and glycogen synthase kinase 3 beta (GSK3β), known mediators 
of the RISK and SAFE survival pathways.

The S1P component of HDL is also able to activate the RISK And SAFE pathways [51, 52, 
65]. Interestingly, studies conducted in neonatal rat cardiomyocytes showed that S1P is criti‐
cally required for the phosphorylation of STAT3. In contrast, STAT3 phosphorylation was 
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absent in cells treated with HDL that was deficient in S1P [65]. In addition, S1P stimulates 
the phosphorylation of the transcription factor, forkhead box O‐1 (FOXO‐1), which inhibits 
ROS formation and apoptosis in the phosphorylated form [66, 67]. These data suggest that 
HDL activates RISK and SAFE pathways and inhibits ROS, mitochondrial dysfunction and 
cell death.

Interestingly, S1P has also been shown to regulate mitochondrial Complex IV assembly and 
cellular respiration by interacting with mitochondrial prohibitin‐2 (PBH‐2) [68]. PBH‐2 acts 
as a scaffolding protein for mitochondria and its interaction with S1P during ischemic pre‐
conditioning of cardiomyocytes is essential for cardioprotection [68–70]. These data suggest 
that S1P can stabilize mitochondrial complexes and inhibit ROS formation, suggesting an 
alternate cardioprotective mechanism of S1P action.

Recent studies have suggested that other HDL‐associated apolipoproteins play a role in pre‐
serving mitochondrial structure and function. ApoJ is expressed ubiquitously and is present 
on small dense HDL3 particles [71–73]. It is considered to be an antioxidant due to the pres‐
ence of disulfide bonds that inhibit ROS‐induced injury and preserve mitochondrial function 
[74]. Further, apoJ has been implicated in activating Akt and GSK3β and the RISK survival 
pathway [71]. ApoM is found in association with approximately 5% of HDL particles where 
it confers several cytoprotective properties that include stimulating preβ‐HDL formation, 
facilitating reverse cholesterol transport and inhibiting LDL oxidation [75–78]. ApoM also 
plays an important role in the cytoprotective response to S1P by binding the sphingolipid and 
facilitating its incorporation into HDL particles [75, 79, 80]. It follows that overexpression of 
apoM in mice reduces infarct size in response to ischemia‐reperfusion injury and preserves 
mitochondrial function by increasing the HDL content of S1P.

4. Inflammation‐induced alterations in HDL structure

Changes in HDL sub‐species and their function have been reported in several disease states, 
including atherosclerosis [4], rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) 
[81, 82], diabetes [83], hypertension [84] and psoriasis [85–87]. Inflammation/infection triggers 
an APR that causes a reduction in HDL quantity and alterations in both its lipid and protein 
composition. Van Lenten and colleagues [88] first reported that HDL loses its ability to inhibit 
LDL oxidation during the APR, demonstrating that inflammation affects the structure and 
function of HDL.

Lipidome alterations: The phospholipid content of HDL is altered during the APR [89]. This 
may be due to an increase in the activity of secretory phospholipase 2 (sPLA2) [90, 91]. Acute 
phase HDL also contains lower amounts of PE and PI along with several species of LPC with 
different levels of saturation. An important feature of acute phase HDL is that it contains 
oxidized phospholipids generated by the actions of transition metal ions, free radicals and 
hypochlorous acid (HOCl) [92, 93]. Formation of acute phase HDL in patients with coronary 
heart disease is also associated with a reduction in SM content [94]. An increase in triglycer‐
ides with a decrease in cholesteryl esters is also commonly observed in acute phase HDL [89].
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Proteome alterations: Several changes in HDL‐associated proteins arise in response to inflam‐
mation (Table 2). While a reduction in apo A‐I represents perhaps the most prominent change 
in HDL composition, data suggest that the lipoprotein content of SAA may increase up to 1000‐
fold [85]. Endotoxin and inflammatory cytokines (TNF‐α, IL‐1β and IL‐6) decrease the expres‐
sion of apoA‐I which leads to a decrease in circulating HDL concentration [95, 96]. In addition, 
an increase in the synthesis of SAA results in the displacement of apoA‐I from acute phase HDL 
[85]. Inflammation further decreases HDL levels by inducing the upregulation of sPLA2 which 
degrades phospholipid components of the lipoprotein particle [89]. Loss of LCAT activity [97, 
98] reduces the cholesterol carrying capacity of HDL by preventing the formation of cholesterol 
esters. Finally, PON1 activity is reduced by inflammation in patients with RA, SLE and psoriasis 
and infections and is associated with a reduction in the antioxidant capacity of HDL [99–102].

The presence of apoM in HDL particles is thought to contribute to atheroprotection [103]. LPS 
and inflammatory cytokines, however, attenuate apoM mRNA levels and protein expression 
in Hep3B cells [104]. A decrease in serum apoM is also observed in patients with sepsis and 
HIV infections [104]. Further, a reduction in apoM reduces the association of S1P with HDL 
resulting in degradation of anti‐inflammatory function [103].

The association of other apolipoproteins with HDL may impair the function of the lipopro‐
tein. ApoO is incorporated by HDL, LDL and VLDL particles [105]. Data suggest that apoO 
provides structural stability for mitochondria by stabilizing the inner mitochondrial mem‐
brane and cristae [105]. Other data, however, show that overexpression of apoO degrades 
mitochondrial protein and increases cardiac dysfunction in hypercholesterolemic mice [106]. 
In cardiomyocyte cultures, upregulation of apoO was associated with an increase in ROS and 
apoptosis compared to control cells that were apoO‐deficient [106]. ApoC is an additional, 
exchangeable apolipoprotein associated with HDL and apoB‐containing lipoproteins. In iso‐

Proteinsa Lipidsb

Increased Decreased Increased Decreased

Serum Amyloid A (SAA) Apo A‐I Triglycerides Total lipid

Apo J Apo A‐II FC Phospholipids

sPLA2 Apo C LPC CE

Apo E Apo M FFA SM

Ceruloplasmin LCAT

PAF‐AH CETP

LBP Transferrin

Apo A‐IV Hepatic lipase

Apo A‐V Paraoxanase I
a Adapted from Refs. [87, 96, 97, 104].
b Adapted from Refs. [15, 89, 94].

Table 2. Inflammation‐induced changes in HDL composition.
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lated rat liver mitochondria, addition of the apoC‐III isoform was shown to inhibit mitochon‐
drial oxygen consumption and attenuate ATP formation [107]. Another study showed that 
enrichment of HDL with apoC‐I stimulates cytochrome c release, caspase 3 cleavage and cell 
death in human aortic smooth muscle cells [108]. Finally, apoC‐I enrichment of HDL is associ‐
ated with a reduction in HDL‐associated apoA‐I, suggesting that loss of apoA‐I and its cyto‐
protective effects is a component of apoC‐I‐mediated cell injury [107, 108]. Clearly, additional 
in vitro and in vivo studies are required to define the mechanistic role of specific apolipopro‐
tein species in the development of inflammatory injury.

5. Functional consequences of acute phase HDL formation

Changes in HDL lipid and protein composition induced by the APR impair normal HDL 
function resulting in the formation of “dysfunctional” HDL.

Loss of cholesterol efflux ability: Since cholesterol efflux involves the participation of apoA‐I, 
phospholipids, LCAT and CETP, several aspects of dysfunctional HDL inhibit normal reverse 
cholesterol transport. The reduction in apoA‐I and increase in HDL‐associated SAA impair 
cholesterol efflux capacity [109, 110]. The presence of SAA on HDL increases foam cell forma‐
tion by facilitating the uptake of cholesterol esters by macrophages. At the level of the hepa‐
tocyte, this acute phase HDL impairs cholesterol uptake and degradation [111]. Decreased 
content of LCAT, PL and CETP on HDL also contribute to a loss of efflux activity as does the 
oxidative modification of apoA‐I [112, 113].

Impairment of antioxidative activity: An increase in TG and decrease in cholesterol ester 
content in dysfunctional HDL leads to a change in conformation of the HDL particle. The 
formation of a TG‐rich HDL particle induces structural changes in apoA‐I and decreases its 
stability [114]. Additionally, an increase in SAA and loss of PON1 result in a reduced antioxi‐
dant capacity of the HDL particle.

Attenuation of anti‐inflammatory activity: Dysfunctional HDL has an impaired capacity to 
counteract the action of LPS and inflammatory cytokines. The ability to regulate membrane 
raft cholesterol content is reduced and can thus enhance TLR activation in response to pro‐
inflammatory mediators [115]. Oxidation of apoA‐I also results in a loss of functionality with 
respect to its ability to efflux cholesterol. The protein and lipid alterations observed (reduced 
apoA‐I, cholesterol ester, PON1 and LCAT levels and increased TG and SAA levels) are also 
responsible for the attenuated anti‐inflammatory activity observed with dysfunctional HDL.

6. Conclusions

HDL plays an important role in regulating atherogenesis via its ability to mediate reverse 
cholesterol transport. The ability of HDL to reduce inflammatory injury and oxidant stress 
has also been shown to reduce CVD risk. As discussed in this review, both protein and 
lipid components of the lipoprotein particle play critical roles in attenuating inflammation. 
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Identification of these cytoprotective HDL components has been facilitated by recent pro‐
teomic analyses. Under pathological conditions, HDL levels may be reduced and the lipo‐
protein may undergo biochemical and structural modification resulting in the formation of 
dysfunctional HDL with pro‐inflammatory properties. It has been suggested that the anti‐
inflammatory status of HDL may be of greater predictive value for CVD risk than HDL levels 
per se [116, 117]. Therapeutic approaches that increase the functional properties of HDL may 
thus be superior to simply raising circulating HDL. Unfortunately, specific and reliable bio‐
markers for anti‐inflammatory HDL have not been identified. Under ex vivo conditions, the 
quality of HDL can be assessed by studying lipoprotein effects of processes such as mono‐
cyte chemotaxis and endothelial inflammation. These assays, however, are cumbersome and 
time‐consuming. Despite these drawbacks, there is significant interest in developing new 
pharmacotherapies that positively impact circulating lipoproteins. Randomized clinical tri‐
als have assessed effects of several classes of drugs on plasma cholesterol levels in patients at 
risk. Niacin and statins significantly lower LDL and were shown to induce modest increases 
in HDL [8]. Residual risk, however, may be present in patients with persistently low HDL 
despite a reduction in LDL. CETP inhibitors have been shown to increase HDL levels in ani‐
mal models and in human subjects with low HDL [118, 119]. The ILLUMINATE trial tested 
effects of the CETP inhibitor torcetrapib on HDL and outcomes in high risk patients but was 
terminated early due to an increase in mortality due to off‐target effects [7]. In ongoing stud‐
ies, the antiatherogenic and anti‐inflammatory effects of reconstituted HDL therapy as well as 
apolipoprotein mimetics are being evaluated. Recent exciting data also show that HDL serves 
as a carrier for functional miRNAs that suppress inflammation at the level of the endothelial 
cell [120]. miRNAs have also been identified that regulate HDL biogenesis [121]. These recent 
observations may lay the foundation for a new field of miRNA‐based HDL therapeutics.
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Abstract

Interactions between lipoproteins and infectious microorganisms are diverse and 
often multifaceted. There is a growing body of evidence which suggests that circu-
lating plasma lipoproteins play an important role in warding off various infections. 
They are increasingly recognized as vital components of the host immune system. 
The purpose of this chapter is to provide the reader with an overview of this emerging 
domain. We review the anti-infective role of different lipoprotein particles and their 
components and further highlight the known molecular mechanisms involved therein. 
Instances where lipoproteins facilitate infections instead of protecting against them 
are also summarized. Finally, broad implications for the future in this active line of 
research are discussed.

Keywords: lipoproteins, apolipoproteins, lipids, infection, immune system

1. Introduction

Circulating lipoproteins are macromolecular complexes of lipids and specific proteins (known 
as apolipoproteins). They facilitate the transport and distribution of various lipids (such as 
cholesterol, cholesteryl esters, triglycerides, and phospholipids) via blood throughout the 
body. Owing to their hydrophobicity, they are otherwise sparingly soluble in the predomi-
nantly aqueous plasma [1]. Scientific work on plasma lipoproteins has historically focused 
on their role in atherosclerotic changes and cardiovascular health. Much of the impetus in 
this line of enquiry was provided by the Framingham Heart Study (FHS) that was started in 
1948 by the National Heart Institute (NHI). The FHS and a number of large clinico-epidemio-
logical studies thereafter have been instrumental in advancing our knowledge about the link 
between circulating lipoproteins and cardiovascular health [1–5]. There is a growing body 
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of evidence suggesting that plasma lipoproteins are crucial players in a host of other condi-
tions as well, viz. neurodegeneration [6], psychiatric ailments [7], and various cancers [8, 9], 
to name a few.

Although the earliest reports about the relationship of lipids and lipoproteins with various 
infections date back to 1940s and 1950s [10–12], yet the interest on lipoproteins for a long 
time was mostly revolved around noncommunicable disorders. However, in a marked depar-
ture from this conventional outlook, the importance of circulating lipoproteins in relation 
to infectious diseases is now widely recognized. Perhaps the best example in this regard is 
the study of the role of high-density lipoproteins (HDL) particles in conferring immunity 
against Trypanosoma brucei brucei in humans [13]. This change in the outlook is probably due 
to the fact that derangements (quantitative as well as qualitative) in plasma lipoproteins that 
were earlier documented in a variety of infections, viz. bacterial, viral, and parasitic [14–16] 
have now been corroborated by experimental evidence as well [17–19], such that there is an 
improved understanding of the underlying mechanisms at a molecular level.

Lipoproteins represent structurally and functionally a very diverse species of complex particles 
with dynamic interactions that travel throughout the body through circulation. Thus, they are 
increasingly appreciated as components of the innate immune system [15, 17, 20]. Recent evi-
dence suggests that lipoproteins are also involved in adaptive immune responses [21]. On the 
basis of difference in hydrated densities (as determined by their rate in sedimentation on 
ultracentrifugation in salt solutions), human plasma proteins have been traditionally divided 
into four major groups—chylomicrons, very low-density lipoproteins (VLDL), low-density 
lipoproteins (LDL), and high-density lipoproteins (HDL) [1, 4, 5]. Apart from these four major 
groups, sometimes, other lipoprotein classes are also described, such as intermediate-density 
lipoproteins (IDL)—produced by catabolism of VLDL, and lipoprotein(a) [Lp(a)]—which is 
structurally similar to LDL and has a density range that overlaps that of HDL [1, 4, 5]. Many 
of these lipoprotein particles or their components (e.g., lipids or apolipoproteins) have been 
found to exert anti-infective role.

This chapter aims to review this emerging domain where plasma lipoproteins are now widely 
recognized as important players of the host immune system. We have summarized the dif-
ferent types of lipoprotein derangements during various infections, the anti-infective role of 
lipoproteins in conferring protection against pathogens, and the known molecular mecha-
nisms involved therein.

2. Lipoproteins in relation to various infections

Lipoprotein derangements and infections appear to have a bidirectional relationship. This 
means that alterations in circulatory lipoproteins can modulate or predispose to infections, 
and conversely, alterations in circulating lipoproteins can be an outcome of the infections 
themselves. In other words, lipoprotein derangements can both be a contributory cause and 
a resultant effect of infections. The focus of this chapter is predominantly on the former rela-
tionship which underscores the role of lipoproteins in modulating susceptibility to infections. 
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The latter relationship is linked to the active phase of the infection and has been recorded 
in relation to several kinds of infectious agents [10–12, 22–24]. Such lipoprotein derange-
ments are a part of the acute-phase responses (APR) mounted by the body and are beyond 
the scope of this chapter. Similarly, lipoprotein derangements can occur as a result of drug 
therapy against infections (e.g., dyslipidemia in HIV-AIDS patients due to anti-retroviral 
therapy) [25–28] and are outside the purview of this chapter too.

Generally speaking, most of the experimental and clinical evidences suggest that high lev-
els of lipoproteins and lipids are protective against respiratory and gastrointestinal infec-
tions [29–31]. Case studies in homogenous populations residing in high-infection environments 
affirm this view. For instance, the Tsimane people of Bolivian Amazon have very high bur-
den of infection, and this is often attributed to the low levels of lipids and  lipoproteins [32]. 
Likewise, in the Shipibo people, another indigenous group in the Amazon, the density of 
parasitic infection correlates inversely to the HDL levels [33]. Further, reduced levels of apoli-
poproteins in hospital-based studies have been reported to be associated with increased sus-
ceptibility to nosocomial infections following severe trauma [34]. However, generalizations 
are difficult and exceptions to these trends have also been reported [28], and the mechanism 
involved is not clear.

In the account that follows, we give an overview of different infections where lipoproteins 
provide protection.

2.1. Viral infections

Lipoproteins, particularly HDL particles, have been found to account for part of the broad 
nonspecific antiviral activity of human serum [35, 36]. Such antiviral activity of lipoproteins 
has been detected across a wide spectrum of enveloped as well as nonenveloped DNA and 
RNA viruses. Examples include Rabies virus, Rubella virus, Japanese encephalitis virus (JEV), 
Poliovirus, Epstein-Barr virus (EBV), Herpes simplex virus (HSV), Vaccinia virus, New Castle 
disease virus, and Vesicular stomatitis virus (VSV), to name a few [35, 37–41]. This is in tune 
with the protection conferred by other components of the innate immune system, which are 
often nonspecific and broad-based. However, some lipoproteins (e.g., LDL and VLDL) have 
been found to be particularly active against certain viruses (e.g., JEV, Rubella, Rabies, and 
VSV) [35, 38, 40].

2.2. Bacterial infections

Lipoproteins are protective against several toxins produced by pathogenic bacteria. Lipoproteins 
can neutralize lipopolysaccharides (LPS) from Gram-negative bacteria [30, 36, 42]. LPS are impli-
cated in complications of Gram-negative bacteraemia such as endotoxic shock and disseminated 
intravascular coagulation. Several classes of lipoproteins, such as LDL, VLDL, HDL, Lp(a), and 
chylomicrons, can potentially help in neutralizing LPS [30, 36, 43–45]. In fact, infusion of recon-
stituted HDL particles (rHDL) has been shown to protect against Gram-negative bacteraemia 
and endotoxic shock and to further blunt the LPS-induced unregulated activation of the coagula-
tion cascade [46–48].
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Lipoproteins are protective against Gram-positive organisms too. Lipoproteins have been 
shown to inactivate lipotechoic acid (LTA) and alpha-toxin from Gram-positive bacteria such 
as Staphylococcus aureus [30, 36, 49].

In addition to these toxin-neutralizing effects, lipoproteins can directly interact with cell sur-
face virulence factors in bacteria and help in limiting their pathogenicity. Such interactions 
have been noted in infections by Yersinia pestis [50] and many Group A Streptococcus (GAS) 
strains [30, 51]. Besides, experiments in knockout animals have revealed that apoE-/- mice are 
susceptible to infection by Listeria monocytogenes and Mycobacterium tuberculosis [52, 53].

2.3. Parasitic infections

Humans are immune to infection by the parasite Trypanosoma brucei brucei. This protection 
is attributed to a subset of HDL particles called trypanosome lytic factors (TLFs), present in 
human serum [13]. TLFs have also been shown to ameliorate infection by Leishmania sp. [15]. 
However, this protection does not extend against other trypanosomes such as Trypanosoma 
cruzi, Trypanosoma brucei rhodesiense, and Trypanosoma brucei gambiense [13]. Lipoproteins are 
suggested to modulate the infectivity of malaria parasite and Schistosoma as well [36, 54–56].

3. Anti-infective mechanisms of lipoproteins

The biological mechanisms for the anti-infective role of lipoproteins are diverse. While, in some 
instances, the complete ensemble of a lipoprotein particle has been found to contribute to the 
immunological defenses, in some other occasions the individual constituents (such as apopro-
teins or lipid moieties such as phospholipids and cholesterol) are credited to be involved [36, 
41, 57]. A broad scheme of the anti-infective mechanisms with respect to circulating lipopro-
teins is provided below. Experimental evidences from in vivo and in vitro studies suggest that 
these schemes are actually recurring themes. These strategies are common to a variety of anti-
microbial defenses mobilized by circulating lipoproteins against a plethora of infectious agents.

3.1. Inhibiting the entry of intracellular pathogens into host cells

Lipoproteins can inhibit the attachment and subsequent entry of pathogens into their tar-
get cells. This defensive mechanism of lipoproteins has been particularly well described in 
relation to viruses. The presence of HDL is capable of retaining viruses on the cell surface, 
lending credibility to this idea. Apoproteins (such as apoA-I) in host circulatory lipoproteins 
contain stretches of amphipathic residues that have been proposed to interact with amphipa-
thic counterparts in alpha-helices of viral envelope glycoproteins. These interactions interfere 
with membrane fusion and entry of viruses into host cells. Synthetic amphipathic peptide 
analogues of apoA-I can also exert similar effects [36, 58, 59]. In fact, such analogues have been 
found to inhibit HIV-induced syncytium formation [60]. Inhibition of viral penetration inside 
host cells is also supported by VLDL. Recent in vivo studies have revealed that VLDL in serum 
effectively blocks hepatitis C virus (HCV) cell attachment, thereby acting as a restriction factor 
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against HCV infection [18]. Clinical studies have earlier revealed that serum level of apoC-III 
(an integral apolipoprotein in VLDL) was a significant predictor of chronic hepatitis C infec-
tion and associated hepatic fibrosis [16].

Alternatively, viral infection stimulates production of interferons, which in turn induce secre-
tion of some soluble forms of lipoprotein receptors. These soluble receptors can modulate 
viral pathogenesis. For instance, a soluble LDL receptor shed during hepatitis and rhinovirus 
infections is used by the viruses for gaining entry into their respective host target cells [36]. 
However, endogenous LDL competes with these viruses or such similar viruses for cellu-
lar uptake, protecting the host against infection. Such receptors are also implicated in virus 
assembly and budding [61, 62]. Likewise, a VLDL receptor fragment that binds rhinoviruses 
has also been described in cell culture studies [63].

In addition to viruses, circulating lipoproteins have been found to prevent the entry of non-
viral intracellular pathogens. For example, lipoproteins can interfere with the adhesion of 
Salmonella typhimurium to host cells and subsequent organ invasion [64].

3.2. Inactivating the effect of microbial toxins

Lipoproteins effectively neutralize bacterial toxins such as LPS (from Gram-negative  bacteria) 
and LTA (from Gram-positive bacteria) and enhance their clearance. The mechanisms 
involved in inactivating LPS are particularly well established [30, 36, 42–45, 65, 66]. The lipid 
components of lipoproteins are vital in this regard. Ultrastructural studies have shown that 
LPS binding with LDL causes fatty acyl chain of crucial lipid moieties in LPS to be incorpo-
rated into the phospholipid surface of lipoproteins. This masks the active sites of LPS and 
attenuates their toxic action [36, 67].

Binding with lipoproteins also enhances the clearance of LPS. During Gram-negative bacte-
remia, LPS released in the circulation is primarily taken up by macrophages in liver (Kupffer 
cells). The macrophages thus activated cause a splurge of pro-inflammatory cytokines, which 
are responsible for the LPS-induced septic shock. However, binding of LPS with lipopro-
teins prevents this and causes two-pronged benefits. Firstly, on binding with lipoproteins, the 
uptake of LPS by hepatic macrophages decreases, which prevents their activation and cyto-
kine release [36, 68–70]. Lipoproteins can prevent the LPS-mediated activation and release of 
cytokines from peripheral monocytes/macrophages too. Lipoproteins have been found to pro-
mote the release of LPS from the cell surface of monocytes to which they were bound, further 
dampening the cellular response [36, 71]. Secondly, the lipoprotein bound LPS are instead 
taken up by hepatocytes that lead to their rapid secretion into bile [36, 68–70]. Triglyceride-
rich lipoproteins such as chylomicrons and VLDL are especially active in accelerating the 
clearance of LPS in this fashion [36, 68].

In a somewhat analogous manner, lipoproteins are believed to neutralize the toxic effects of 
LTA [72]. Further, potent peptide toxins such as phenol-soluble modulins (PSM) secreted by 
bacteria such as Staphylococcus aureus can also be inactivated by lipoproteins such as HDL, 
LDL, and VLDL. Highest binding and neutralizing potentials of Staphylococcal PSMs are dis-
played by HDL [17].
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3.3. Lysis of pathogens

Certain pathogens are directly lysed by plasma lipoproteins or their components. A good 
example of this is the lysis of the parasite Trypanosoma brucei brucei [13, 36]. This lipoprotein-
mediated lysis is attributed to two distinct trypanosome lytic factors (TLFs), namely TLF1 and 
TLF2. TLF1 is actually a lipid-rich subset of HDL that contains mostly apoA-I and haptoglob-
ulin-related protein (HRP) with some amount of other proteins such as apoA-II, apoL-I, and 
paraoxonase. On the other hand, TLF2 is lipid-poor lipoprotein complex that contains apoA-I, 
HRP, and immunoglobulin M [73–75]. It is believed that apoL-I and HRP in TLFs target the par-
asites within the acidic parasitophorous vacuoles of macrophages and damage them directly 
without taking recourse to macrophage activation [15]. It is noteworthy that Trypanosoma cruzi, 
a trypanosome to which humans are susceptible, cleaves apoA-I, the chief protein constituent 
of HDL using cruzipain, a cysteine protease present in the cell membrane as well as internal 
lysosomal structure of the parasite [76]. Such targeted breakdown of vital lipoprotein constitu-
ents may aid the Trypanosoma cruzi parasite in evading the anti-parasitic action of TLFs.

3.4. Promoting opsonization

Experiments involving in vitro and ex vivo systems have suggested that some lipoproteins 
such as LDL may act as opsonins and enhance phagocytosis of several types of Group A 
Streptococcus (GAS) bacteria by monocytes. Interaction of LDL with CD36 scavenger receptor 
expressed in monocytes and streptococcal collagen such as protein 1 (Scl1) present on the cell 
surface of GAS is believed to underlie this phagocytosis promoting activity [19].

3.5. Activation of complement system

Lipid-free and HDL-associated apoA-I can activate the host complement pathways which is 
effective in killing the gastrointestinal pathogen, Yersinia enterocolitica. The C-terminal domain 
of apoA-I is the primary effector site responsible for this bactericidal property [77].

3.6. Inhibition of plasminogen recruitment

Many pathogens recruit human plasminogen (which is an integral part of the fibrinolytic 
system) in the course of their pathogenesis. This helps them in penetrating tissue barriers 
and facilitate invasion. Some pathogens even secrete plasminogen activators to amplify the 
effect. For example, streptokinase produced by GAS is a highly specific activator for plas-
minogen. Thus, it is believed that many infections can be inhibited and prevented consider-
ably if recruitment and activation of host plasminogen by pathogens can be blocked. Lp(a) is 
believed to be a vital component of the host defense system in this context. Apo(a) present in 
Lp(a) shares a high degree of homology with plasminogen. Thus, it competes for the bind-
ing of plasminogen to pathogens. It reduces the amount of plasminogen immobilized on the 
pathogen surface and further inhibits the activation of plasminogen by activators such as 
streptokinase. In vitro studies have demonstrated the inhibition of streptokinase to catalyze 
the activation of plasminogen. Thus Lp(a) can help in preventing infections and promoting 
wound healing and repair of tissue injuries [29, 51, 78–81].

Advances in Lipoprotein Research78



3.3. Lysis of pathogens

Certain pathogens are directly lysed by plasma lipoproteins or their components. A good 
example of this is the lysis of the parasite Trypanosoma brucei brucei [13, 36]. This lipoprotein-
mediated lysis is attributed to two distinct trypanosome lytic factors (TLFs), namely TLF1 and 
TLF2. TLF1 is actually a lipid-rich subset of HDL that contains mostly apoA-I and haptoglob-
ulin-related protein (HRP) with some amount of other proteins such as apoA-II, apoL-I, and 
paraoxonase. On the other hand, TLF2 is lipid-poor lipoprotein complex that contains apoA-I, 
HRP, and immunoglobulin M [73–75]. It is believed that apoL-I and HRP in TLFs target the par-
asites within the acidic parasitophorous vacuoles of macrophages and damage them directly 
without taking recourse to macrophage activation [15]. It is noteworthy that Trypanosoma cruzi, 
a trypanosome to which humans are susceptible, cleaves apoA-I, the chief protein constituent 
of HDL using cruzipain, a cysteine protease present in the cell membrane as well as internal 
lysosomal structure of the parasite [76]. Such targeted breakdown of vital lipoprotein constitu-
ents may aid the Trypanosoma cruzi parasite in evading the anti-parasitic action of TLFs.

3.4. Promoting opsonization

Experiments involving in vitro and ex vivo systems have suggested that some lipoproteins 
such as LDL may act as opsonins and enhance phagocytosis of several types of Group A 
Streptococcus (GAS) bacteria by monocytes. Interaction of LDL with CD36 scavenger receptor 
expressed in monocytes and streptococcal collagen such as protein 1 (Scl1) present on the cell 
surface of GAS is believed to underlie this phagocytosis promoting activity [19].

3.5. Activation of complement system

Lipid-free and HDL-associated apoA-I can activate the host complement pathways which is 
effective in killing the gastrointestinal pathogen, Yersinia enterocolitica. The C-terminal domain 
of apoA-I is the primary effector site responsible for this bactericidal property [77].

3.6. Inhibition of plasminogen recruitment

Many pathogens recruit human plasminogen (which is an integral part of the fibrinolytic 
system) in the course of their pathogenesis. This helps them in penetrating tissue barriers 
and facilitate invasion. Some pathogens even secrete plasminogen activators to amplify the 
effect. For example, streptokinase produced by GAS is a highly specific activator for plas-
minogen. Thus, it is believed that many infections can be inhibited and prevented consider-
ably if recruitment and activation of host plasminogen by pathogens can be blocked. Lp(a) is 
believed to be a vital component of the host defense system in this context. Apo(a) present in 
Lp(a) shares a high degree of homology with plasminogen. Thus, it competes for the bind-
ing of plasminogen to pathogens. It reduces the amount of plasminogen immobilized on the 
pathogen surface and further inhibits the activation of plasminogen by activators such as 
streptokinase. In vitro studies have demonstrated the inhibition of streptokinase to catalyze 
the activation of plasminogen. Thus Lp(a) can help in preventing infections and promoting 
wound healing and repair of tissue injuries [29, 51, 78–81].

Advances in Lipoprotein Research78

3.7. Chemical modification of lipoproteins

Infections and the associated inflammatory responses lead to oxidative stress and generation 
of reaction oxygen species (ROS). ROS induces chemical modifications in several lipoprotein 
species, most notable of which is oxidative changes in LDL [82]. Oxidized LDL (oxLDL) con-
tributes to immune responses against invading pathogens in several ways. OxLDL upreg-
ulates scavenger receptor expression in macrophages, which facilitates their ingestion of 
Gram-positive and Gram-negative bacteria by phagocytosis. One of the oxidized compo-
nents in oxLDL, namely oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcho-
line (oxPAPC), modulates LPS-mediated signaling pathways in favor of the host. It inhibits 
LPS-induced adhesion of neutrophils to endothelial cells (thereby limiting LPS-induced 
tissue damage) and checks unregulated pro-inflammatory pathways [30, 82–86]. Besides, 
oxLDL has been shown to block cellular entry by several HCV strains [87] and malarial 
sporozoites [88].

Further, oxLDL elicits the production of natural antibodies against the membrane phospho-
lipid, phosphorylcholine (PC). These anti-PC antibodies may target PC epitopes present in 
a broad spectrum of pathogens and provide protection against them. These include Gram-
positive bacteria, Gram-negative bacteria, trematodes, nematodes, and even fungi [30, 89–93].

3.8. Acting in concert with acute-phase responses

The acute-phase response (APR), characterized by acute specific changes in concentration of 
plasma proteins, in response to noxious stimuli (such as infection) serves to protect the host 
from further injury. It helps in neutralizing the invading microbes, limits the extent of tis-
sue damage, and promotes tissue repair and regeneration. In many instances, lipoproteins 
work with players of the APR in tandem and help in projecting antimicrobial defenses of 
the body.

For example, lipoprotein-binding protein (LBP) is an acute-phase protein carried on lipo-
proteins [36, 94]. It is associated with HDL, LDL, VLDL, and chylomicrons. LBP catalyzes 
the detoxification of bacterial toxins such as LPS and LTA by lipoproteins. LBP can modu-
late the effects of LPS by binding to the lipid A moiety of the latter. During infections, very 
high concentrations of LBP are attained, which helps in transferring LPS (and LTA) to lipo-
proteins for inactivation. LBP is also produced in the intestine and in the lungs where it is 
believed to play important roles in mobilizing local immune responses against bacterial LPS 
[36, 72, 94–96].

C-reactive protein (CRP) is another acute-phase protein that is associated with LDL and 
VLDL. Infection by the parasite Schistosoma leads to increase in serum CRP. CRP can acti-
vate platelets, which have cytotoxic effects against schistosomes. Such cytotoxic effects are 
exerted by activated monocytes as well. However, LDL binds to the surface of schistosomes, 
which masks them from activated monocytes. This is circumvented by oxidative changes 
in the parasite-bound LDL brought about by ROS from activated monocytes. OxLDL is 
 endocytosed by the monocytes through scavenger receptors, which exposes the parasite to 
attack by monocytes and other immune cells [54, 55].
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3.9. Redistribution of lipids to immune cells

During infection, there are quantitative and qualitative changes in plasma lipoproteins due 
to redistribution of lipids to the immune cells and areas of cellular injury. These changes 
are believed to potentiate the immune system and enhance healing in the host that helps to 
tide over the infective crisis [36]. For instance, there is an increase in triglyceride-rich VLDL 
particles, which provide lipid substrates to macrophages of the activated immune system. 
Similarly, there is a decrease in HDL levels. Since HDL is the central component of reverse 
cholesterol transport (RCT) pathway, such decrements in its level help in conserving choles-
terol in peripheral sites. It has been found that during the acute phase of infection, there is an 
increase in apolipoprotein serum amyloid A (apoSAA) and concurrent decrease in apoA-I. 
ApoSAA redirects cholesterol away from catabolism in hepatocytes and delivers cholesterol 
to other cells. Cholesterol is required for new membrane synthesis in areas of cellular injury 
that accompany infections. Cholesterol may also be used for activation and proliferation of 
lymphocytes [97–101].

4. Lipoproteins as double-edged sword of the immune system

The immune system is a double-edged sword. Autoimmune diseases and hypersensitivity 
reactions are classic examples in this regard. The lipoproteins (as components of the immune 
system) have no exception. Lipoproteins may facilitate invasion and spread of infection by 
certain pathogens to the detriment of the host. Besides, lipoproteins are important risk factors 
for some other disorders. The following are certain examples:

• The obligate intracellular parasite, Toxoplasma gondii, is dependent on host cholesterol from 
extracellular LDL for growth and replication. The parasite resides in a special parasitopho-
rous vacuole to which cholesterol is delivered by uptake of LDL through receptor-mediated 
endocytosis [102].

• There are tremendous requirements of various lipids for successful replication of the ma-
laria parasite in the host. These requirements are met by the parasite by scavenging and 
modifying lipids from the host itself. Lipids such as phospholipids and free fatty acids 
(FFA) can be obtained from circulating lipoproteins or directly from the serum and used 
without further modification. Or else, the scavenged lipids are modified by elongation and 
desaturation reactions and subsequently incorporated as diacylglycerols and triacylglycer-
ols [103–108].

• Similarly, a large number of viruses can hijack the host lipid and lipoprotein machinery to 
their benefit [109, 110]. It is increasingly appreciated that viruses can modulate lipid me-
tabolism, composition, and signaling in the host to facilitate their entry [111–113], replica-
tion [109, 114, 115], and assembly [116–119].

• Fungal pathogens require ergosterol to grow and thrive in the host tissues. The supply of 
ergosterol is maintained by the endogenous sterol synthesis pathway present in the fun-
gus. The azole group of antifungal drugs inhibits this fungal sterol synthesizing pathway. 
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However, the opportunistic fungal pathogen Candida glabrata can circumvent such ergos-
terol-deprived killing by utilizing host sterols instead. It can take up cholesterol from host 
circulating lipoproteins and use it for its survival in the presence of azole antifungals [120].

• Infusion of lipoproteins in volunteers has been documented to enhance growth of Candida 
albicans as well [14].

• Lipoproteins can undergo changes in their structure and composition during infections, 
which may be harmful to the host. As described earlier, oxLDL can help in protecting the 
host from the adverse effects of bacteria, viruses, and parasites. Though initially these ef-
fects are beneficial and hence desirable, yet prolonged presence of oxLDL may contribute 
to atherosclerosis. OxLDL plays a pivotal role in formation of lipid laden foam cells that 
trigger atherogenic changes [36, 82, 121, 122].

• Besides, PC, which is expressed in a number of pathogens and is targeted by natural an-
tibodies elicited by oxLDL (described earlier), can paradoxically contribute to persistence 
and invasiveness of certain pathogens, such as Haemophilus influenzae [123, 124].

• The cholesterol-rich Lp(a) is notorious for its atherogenic and thrombotic effects. Although 
recent studies have described anti-infective processes in relation to Lp(a), it is nonetheless 
an established risk factor for cardiovascular disorders [1, 4, 5].

5. Conclusion and future directions

As our knowledge about the role of lipoproteins as crucial components of the immune system 
continues to advance, two types of implications for the future have emerged. First, there is the 
possibility of characterizing the lipoprotein-pathogen interactions in greater detail. This will 
lead to an improved understanding of the pathophysiological significance of these interac-
tions and may help in elucidating novel anti-infective mechanisms. For instance, a very recent 
study has described serum lipoproteins as critical components for pulmonary innate defense 
against quorum-sensing-based pathogenesis by Staphylococcus aureus [125]. Second is the 
potential use of drug therapies to modulate lipoprotein-pathogen interactions with the aim of 
controlling infections. As discussed earlier, reconstituted HDL and apoA-I mimetic peptides 
have shown promise in this regard [46–48, 60]. Further, drugs targeting lipid metabolism 
have also been suggested. For example, plant extracts modulating lipoprotein metabolism 
have shown promising antimalarial properties [126]. Similarly, there is potential for develop-
ing therapeutics targeting fatty acid synthesis (which is required by many viruses) as broad-
spectrum antiviral agents [110, 118].

To conclude, lipoproteins are increasingly recognized as important players of the host 
immune system. They offer a multitude of strategies to ward off infections and limit their 
detrimental effects in the body of the host. At times, many of these strategies act together 
in a complementary manner, rather than being mutually exclusive. On the other hand, an 
anti-infective mechanism resulting from a particular lipoprotein-pathogen interaction that 
may be  beneficial for one specific infection may not be applicable sometimes in another 
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 infection [127]. Instead, such an interaction may promote infection and lead to untoward 
effects (as the previous examples show). As seen from the examples in the text, the interac-
tions between host lipoproteins and invading pathogens are complex and multifaceted. This 
warrants further studies and very detailed knowledge of the different lipoprotein-pathogen 
interactions to design effective therapeutic options.
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Abstract

Apolipoprotein E4 (apoE4) and outer surface protein A (ospA) are pathogenic lipopro-
teins involved in the progression of Alzheimer’s disease and Lyme neuroborreliosis, 
respectively. Results from previous studies indicate that apoE4 exhibits neurotoxicity by 
activating amyloid beta pathways, and ospA causes damage to the brain by stimulating 
immune activity of microglia and astrocytes. These results, however, lack information 
about the specific interactions that develop between neurons and these two lipoproteins. 
It is essential to investigate the effect of these lipoproteins on neuronal morphology and 
function to better understand the mechanism of damage and disease of the brain. This 
chapter summarizes previous studies on the role of apoE4 and ospA in diseases of the 
brain and discusses experimental results from our own work that suggests new roles for 
apoE4 and ospA in neuronal outgrowth and synaptic loss.

Keywords: apolipoprotein E4, bacterial outer surface protein A, neurodegeneration, 
neuroinflammation, nerve regeneration, synaptic loss

1. Introduction

Lipoproteins in the brain are involved in the onset and progression of neurodegenerative 
diseases (e.g., Alzheimer’s disease) [1, 2] and neuroinflammatory disorders (e.g., neurobor-
reliosis) [3, 4]. These lipoproteins are either endogenously expressed by astrocytes [5] and 
microglia [6, 7] or exogenously produced by bacterial pathogens (e.g., Borrelia burgdorferi, 
Streptococcus pneumoniae) [8].

The most abundant endogenous lipoproteins in the brain include apolipoprotein E (apoE) and 
apoJ [2]. These endogenous lipoproteins mediate transport of lipids between various cells in 
the brain to maintain and regulate the brain structure and function [9, 10]. The apoE isoform, 
apoE4, has been investigated intensively because previous studies showed that lipidation of 
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apoE4 (i.e., apoE4 carrying cholesterol and phospholipids) is the major risk factor indicative 
of the onset of Alzheimer’s disease (AD) [11].

The exogenous lipoprotein most studied in the brain is the bacterial outer surface protein A 
(ospA), which is produced by B. burgdorferi [12, 13]. B. burgdorferi causes Lyme disease, which 
is the most common tick-borne infection in Europe and in North America [14]. A recent study 
using rats infected with B. burgdorferi demonstrated that B. burgdorferi was observed across the 
blood-brain barrier (BBB) and that the expression level of ospA was augmented significantly 
in the brain [4].

Thus, apoE and ospA have been of interest to both scientists and clinicians who seek to 
develop new strategies for treatment of brain injuries and brain disorders induced by these 
pathogenic lipoproteins. It still remains unclear however, if apoE and ospA interact directly 
with neurons to disrupt the structure and function of the brain, whereas it is documented 
extensively that these lipoproteins induce pathological states via amyloid beta (Aβ) aggre-
gation [15, 16] and immune activation of microglia and astrocytes [17, 18]. To address the 
absence of direct evidence of interaction between lipoproteins and neurons, we have studied 
the effect of apoE4 and ospA on neurons in terms of axonal outgrowth and synaptic loss. This 
chapter discusses these findings and the potential new roles of apoE4 and ospA in the context 
of previous studies on these lipoproteins in neurodegeneration and neuroinflammation.

2. ApoE4 and neuronal outgrowth

2.1. Lipidation of apoE isoforms

ApoE transports and clears lipids from one cell to another to maintain lipid homeostasis of the 
brain [9, 10]. To carry lipids (e.g., cholesterol, phospholipids, and lipoproteins), apoE is lipi-
dated (i.e., lipid-bound apoE) by adenosine triphosphate (ATP)-binding cassette A1 (ABCA1) 
transporters on astrocytes [19] (Figure 1a). The lipidation status of apoE depends on its three 
isoforms (i.e., apoE2, apoE3, and apoE4) coded by three alleles (ε2, ε3, and ε4 of APOE gene) 
on chromosome 19 [20]. The three isoforms of apoE differ from one another by amino acid 
interchanges at two residue sites (Table 1).

These minor variations cause a change in the structure and function of apoE, which eventu-
ally leads to distinct disease mechanisms in AD [21]. ApoE4 has an arginine at residue 112 
that connects the N terminus (Arg 61) to the C terminus (Glu 255) to form a folded structure of 
apoE called domain interaction [22]. ApoE2 and apoE3 have a cysteine at residue 112, which is 
less likely to create the folded structure of domain interaction. The presence of domain interac-
tion results in distinct lipid-bound forms among apoE isoforms. ApoE4 binds preferentially to 
larger lipid particles due to its folded structure, which interferes with internalization of lipids 
into neurons [11]. In contrast, apoE2 and E3 bind to various sizes of lipids in more ways that 
are efficient and thus facilitate lipid transport between cells in the brain. The lipidated apoE 
can be internalized into cells in the brain (i.e., astrocytes, microglia, and neurons) through the 
family of low-density lipoprotein receptors (LDLR), low-density lipoprotein receptor-related 
protein 1 (LRP1), or heparan sulfate proteoglycans (HSPGs) [11, 16].
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When the lipidated apoE is internalized into cells, Aβ monomers and oligomers are also 
cleared because they bind to both lipids and apoE at residues 12–28 [23]. Thus, Aβ clearance is 
dependent on the structural difference of apoE isoforms, and this mechanism helps to  prevent 

Figure 1. The interaction between apoE and neurons illustrated. (a) ApoE transports lipids to neurons by forming 
lipopeptide particles (i.e., lipidation of apoE). ApoE is lipidated by ATP-binding cassette A1 (ABCA1) transporters of 
astrocytes. The lipid-binding affinity of apoE4 is different from that of apoE2 and apoE3 because of structural differences 
in its domain interaction. Both lipid and apoE can bind to Aβ monomers and oligomers. The Aβ-lipidated apoE2/3 
complex can be internalized by LDLR, LRP1, or HSPG, which clears Aβ. The efficiency of internalizing large lipid-
bound apoE4 into cells is low, which increases the probability of Aβ plaque formation because of poor Aβ clearance. 
(b) ApoE alone can bind to Aβ monomers and oligomers regardless of its isoforms. The Aβ-nonlipidated apoE complex 
increases the probability of forming Aβ plaques because nonlipidated apoE cannot be internalized via LDLR or LRP1. 
(c) Nonlipidated apoE4 enhances neuronal adhesion, axon outgrowth, and neurite branching. The receptor in neurons 
that regulates growth-enhancing effects of nonlipidated apoE4 remains unknown. Abbreviations: ABCA1, ATP-binding 
cassette A1 transporter; LDLR, low-density lipoprotein receptor; LRP1, low-density lipoprotein receptor-related protein 1; 
HSPG, heparan sulfate proteoglycans.

 

ApoE isoforms ApoE amino acid residue

112 158

ApoE2 Cys Cys

ApoE3 Cys Arg

ApoE4 Arg Arg

Table 1. Differences of apoE isoforms in amino acid residues.
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the Aβ aggregation that is associated with the progression of AD. The Aβ-bound apoE, how-
ever, forms aggregates regardless of the isoform of apoE when they are not lipidated and 
thus, are not internalized [16, 23] (Figure 1b).

2.2. Nonlipidated apo E4 and neuronal outgrowth

When lipidated, apoE4 is known to be toxic to neurons through various pathogenic pathways 
such as Aβ aggregation and apoE fragment formation [21]. The effect of apoE4 on neurons 
when it is not lipidated, however, remains unclear. To address this knowledge gap, the effect 
of apoE4 on neuronal outgrowth was studied in vitro without lipids in the medium [24]. This 
study compared neuronal responses to various culture substrates including glass, laminin-
coated glass, and apolipoprotein E4-coated glass by quantifying key neuronal outgrowth 
parameters in terms of cell adhesion, axon length, number of neurites, and number of branches 
on axons. The results of this study demonstrated that apoE4 not only enhances neuronal adhe-
sion but also significantly increases axon outgrowth and branching when compared to lam-
inin, a protein that is recognized as one of the best extracellular matrix (ECM) proteins for 
enhancing neuronal growth [25]. As such, results from this study contradict the prevailing 
view that apoE4 has only a degenerative effect on cells in the brain. Although apoE4 when 
lipidated predominantly exhibits neurotoxicity when studied in vivo and in clinical models, it 
should be considered that both lipidated and nonlipidated apoE in these models constantly 
interact with neurons to mediate brain activity. Thus, the results from this study provide a 
complementary mechanism of action of apoE. In addition, the neuron-growing potential of 
apoE4 can be applied to transplantable therapeutic systems using stem cells or microstructure 
devices prior to interaction of lipids in vivo.

The mechanism by which nonlipidated apoE mediates axon outgrowth and branching 
remains elusive, whereas lipidated apoE is known to interact with cells via LRP1, LDLR, or 
HSPG [16]. It has been reported that apoE does not bind to LDLR or LRP1 without lipida-
tion [26, 27]. Integrin and HSPGs also were tested for their involvement in apoE4-induced 
axon outgrowth by inhibiting these receptors. Neither of these receptors was found to be 
responsible for apoE4-induced neuronal outgrowth (Figure 1c). The mechanism of interaction 
between neurons and nonlipidated apoE4 is the subject of ongoing studies.

3. Bacterial lipoprotein and synaptic loss

3.1. Bacterial lipoproteins and neuroinflammation

Bacterial surface components including lipoproteins and lipopolysaccharide (LPS) have 
been reported to be elevated in the cerebrospinal fluid (CSF) of patients suffering from a bac-
terial infection such as bacterial meningitis [28]. These components can cause neuropsychi-
atric manifestations such as lymphocytic meningitis, cranial and peripheral neuropathy, and 
cerebral infarcts [29, 30]. When compared to LPS, bacterial lipoproteins activate inflamma-
tory pathways more vigorously [31], leading to more severe damage to tissue [32]. Bacterial 
lipoproteins still remain in the tissue even after the degradation of bacteria by antibiotic 
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therapies [33, 34]. As a result, many studies suggest that minimizing the production of bac-
terial proteins or inhibiting bacterial protein synthesis is more effective at preventing neu-
ral injury from bacterial infections in animal models or patients [35, 36] than simply using 
antibiotics to kill bacteria. Bacterial lipoproteins in the brain trigger microglia activation via 
the toll-like receptors (TLRs) to produce inflammatory mediators (e.g., cytokines and reac-
tive oxygen species) [37–39] and induce migration of immune cells across the BBB [40, 41]. 
The result is damaged brain tissue including cell death of astrocytes, oligodendrocytes, and 
neurons [42, 43].

The outer surface protein (osp) is the most studied bacterial lipoprotein that includes ospA, 
ospB, and ospC from B. burgdorferi [12, 44, 45]. Three palmitoyl groups (i.e., the lipid portion) 
at the N-terminus of the peptide is responsible for immune activation and tissue injury [46, 47], 
whereas the peptide portion of ospA is not effective at activating immune pathways [32]. Thus, 
tripalmitoyl-S-glyceryl-cysteine (Pam3-Cys), a synthetic lipopeptide mimicking the N-termini 
of osp, is often used for studying bacterial infection in a wide range of research fields involving 
immunology and neuroscience [48, 49]. Although all of ospA, ospB, and ospC share common 
immune pathways (e.g., NF-κB activation) via TLR2, ospA shows higher toxicity to tissues 
when compared with ospB and ospC [32]. The reason for distinct toxic effects among these 
different lipoproteins continues to remain elusive.

3.2. OspA and presynaptic loss

OspA from B. burgdorferi is able to cross the BBB by binding to CD40 of brain-microvascular 
endothelial cells [4]. OspA in the brain activates TLR2 on microglia and astrocytes, which 
initiates immune activity and causes damage to brain tissue [14, 50]. However, information 
regarding the interaction between ospA and neurons is lacking because the expression level 
of TLR2 in neurons is extremely low when compared with that of microglia or astrocytes. 
Thus, the interaction between ospA and neurons has been overlooked [51, 52]. To address 
this question, the effect of ospA on neurons has been investigated with a specific focus on 
synaptic loss. The density and transmission of synapses are considered to be the key param-
eters in determining the functional state of brain tissue (e.g., information processing and 
storage) because neurons transmit electrical and biochemical signals to adjacent neurons 
through the synapse. The signal-sending synapse (i.e., presynapse) is located on the axon 
and the signal-receiving synapse (i.e., postsynapse) is located on the dendrite of a neuron. If 
neurons lose one of these synapses or have misaligned synapses, the brain cannot function 
properly even when neurons survive from brain injuries or diseases. Thus, the change in 
pre- and postsynaptic density was quantified following treatment of cultures of rat E18 hip-
pocampal neurons with ospA (2 μM) for 24 h (Figure 2). The quantification of synaptic den-
sity was determined by counting the number of synaptic sites (i.e., synapsin or postsynaptic 
density protein 95 (PSD-95)) in a randomly selected secondary dendrite. OspA expressed 
from Escherichia coli (prepared by the Biomaterials and Advanced Drug Delivery Laboratory 
at Stanford University) showed that ospA significantly decreased the number of presynaptic 
sites (i.e., synapsin) (p = 0.04), whereas it did not affect the number of postsynaptic sites (i.e., 
PSD-95) (p > 0.05) (Figure 2). This result suggests that ospA directly disrupts neuronal func-
tion by damaging presynapses exclusively.
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3.3. Mechanism of synaptic dysfunction induced by bacterial lipoproteins

A recent study demonstrated that viral infection leads to cognitive dysfunction by microg-
lial engulfment of presynapses via the complement C3 pathway [53]. Another recent study 
showed that viral infection impairs synaptic function via glycogen synthase kinase 3 (GSK-3) 
activation and intracellular accumulation of Aβ [54]. Thus, an increasing number of studies 
are being reported that elucidate the mechanism underlying synaptic dysfunction induced 
by viral infection. Although there is evidence that bacterial lipoprotein ospA also damages 
presynapses (Figure 2), information as to how bacterial infection impairs synaptic func-
tion is lacking. Three possible mechanisms may account for synaptic dysfunction during 
bacterial infection. First, bacterial lipoproteins damage synapses via activation of inflam-
matory pathways (e.g., TLR2 and TLR4) as discussed in Section 3.1. Second, bacterial lipo-
proteins damage synapses through neurotransmitter-mediated excitotoxicity. It has been 
demonstrated that the level of quinolinic acid, the N-methyl-D-aspartate (NMDA) receptor 
agonist, was elevated significantly in the CSF of Lyme neuroborreliosis patients [55]. The 

Figure 2. OspA and synaptic density. (a) Fluorescent images showing rat primary hippocampal neurons treated with 
vehicle (endotoxin-free water). (b) Fluorescent images showing rat primary hippocampal neurons treated with ospA 
(2 μM). (a) and (b) Neurons stained with anti-PSD-95 (postsynaptic protein), anti-synapsin (presynaptic protein), 
merge of PSD-95 and synapsin, merge of PSD-95, synapsin, and MAP2 (dendrite) from left to right are shown. (c) The 
postsynaptic density was measured by the number of postsynaptic sites (puncta) per length of selected dendrite. The 
postsynaptic density was not affected by ospA (P > 0.05). (d) The presynaptic density was measured by the number 
of presynaptic sites (puncta) per length of selected dendrite. The presynaptic density decreased significantly by ospA 
(P = 0.041).
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NMDA receptor mediates synaptic transmission, plasticity, and excitotoxicity in the central 
nervous system (CNS) and it exhibits excitotoxic effects when an excessive flux of calcium 
occurs by the increase of a neurotransmitter such as glutamate [56]. However, it is yet to be 
determined whether the presence of bacterial lipoproteins directly mediates the elevation 
of quinolinic acid. Third, bacterial lipoproteins damage synapses through physical interac-
tion with synapses independent of biochemical pathways (i.e., inflammation and receptor 
activation). It has been suggested that the physical properties of proteins (e.g., aggregate 
pattern and size) is a crucial determinant in mediating pathogenic toxicity [57, 58]. This 
toxicity occurs independent of their sequences or lengths [59] in a manner that is similar to 
the aggregation of Aβ in Alzheimer’s disease [60] or α-synuclein in Parkinson’s disease [61]. 
Previous studies showed that Pam3-Cys, the synthetic N-terminus of ospA, self-assembled 
and showed aggregating potential in vitro assays [58, 62], which can be related to brain tis-
sue damage including the disruption of synaptic function.

4. Conclusions

This chapter describes the new roles of apoE4 and ospA as major pathogenic endogenous 
and exogenous lipoproteins, respectively, in neuronal outgrowth and function by discuss-
ing recent experimental data in the context of previous reports. Recent studies show that 
apoE4 enhances neuronal adhesion and axonal outgrowth in vitro when it acts alone without 
lipids. New studies also demonstrate the possibility that ospA can induce synaptic dysfunc-
tion by damaging exclusively presynaptic sites. These results contribute to a new under-
standing of how lipoproteins are involved in developing neuropathology by interacting 
with neurons. Future studies should focus on the specific mechanism of interaction between 
apoE4 and neurons and the effect of ospA on synaptic function using in vivo models. Along 
with many pathogenic pathways governed by various cell types in the brain (e.g., microg-
lia, astrocytes, and oligodendrocytes), the effect of pathogenic factors on neuronal activity 
provides a deeper understanding of structural and functional abnormality in neurodegen-
eration and neuroinflammation [63]. Understanding the interaction between lipoproteins 
and neurons in the brain should yield new approaches to the treatment of brain injuries and 
brain disorders.
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