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Automatic Vector Seeded 
Region Growing for Parenchyma 

Classification in Brain MRI 
Chuin-Mu Wang and Ruey-Maw Chen  

National Chin-Yi University of Technology,  
Taiwan, R.O.C.  

1. Introduction 
Nuclear magnetic resonance (NMR) can be used to measure the nuclear spin density, the 
interactions of the nuclei with their surrounding molecular environment and those 
between close nuclei, respectively. It produces a sequence of multiple spectral images of 
tissues with a variety of contrasts using several magnetic resonance parameters. When 
tissues are classified by means of MRI, the images are multi-spectral. Therefore, if only a 
single image with a certain spectrum is processed, the goal of tissue classification will not 
be achieved because the single image can’t provide adequate information. Consequently, 
it is necessary to integrate the information of all the spectral images to classify tissues. 
Multi-spectral image processing techniques [1-3] are hence employed to collect spectral 
information for classification and of clinically critical values.  In this paper, a new 
classification approach was proposed, it is called unsupervised Vector Seeded Region 
Growing (UVSRG). The UVSRG mainly select seed pixel vectors by means of standard 
deviation and relative Euclidean distance. Through the UVSRG processing, the data 
dimensionality of MRI can be decreased and the desired target of interest can be classified 
which the brain tissue and brain tumor segmentation.  A series of experiments are 
conducted and compared to the commonly used c-means method for performance 
evaluation. The results show that the proposed approach is a promising and effective 
technique for MR image classification. 

Nuclear magnetic resonance (NMR) has recently developed as a versatile technique in many 
fields such as chemistry, physics, engineering because its signals provide rich information 
about material structures that involve the nature of a population of atoms, the structure of 
their environment, and the way in which the atoms interact with environment1. When NMR 
is applied to human anatomy, NMR signals can be used to measure the nuclear spin density, 
the interactions of the nuclei with their surrounding molecular environment and those 
between close nuclei, respectively. It produces a sequence of multiple spectral images of 
tissues with a variety of contrasts using three magnetic resonance parameters, spin-lattice 
(T1), spin-spin (T2) and dual echo-echo proton density (PD). By appropriately choosing 
pulse sequence parameters, echo time (TE) and repetition time (TR) a sequence of images of 
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specific anatomic area can be generated by pixel intensities that represent characteristics of 
different types of tissues throughout the sequence. As a result, magnetic resonance imaging 
(MRI) becomes a more useful image modality than X-ray computerized tomography (X-CT) 
when it comes to analysis of soft tissues and organs since the information about T1 and T2 
offers a more precise picture of tissue functionality than that produced by X-CT2. 

MRI shares many image structures and characteristics with remotely sensed imagery. They 
are acquired as image sequences by spectral channels at different specific wavelengths 
remotely. Most importantly, they produce a sequence of images which explore the spectral 
properties and correlation within the sequence so as to improve image analysis. One unique 
feature for which both multispectral MR images and remote sensing images are in common 
is spectral properties contained in an image pixel that are generally not explored in classical 
image processing. Since various material substances can be uncovered by different 
wavelengths, an MR or remote sensing image pixel is actually a pixel vector, of which each 
component represents an image pixel acquired by a specific spectral band. There are mainly 
four types of segmentation techniques, namely global thresholding, boundary-based 
segmentation, region-based segmentation, and mixed segmentation. Seeded Region 
Growing is an integrated method brought up by Adams and Bischof [4-13], in which few 
initial seeds are generated, and more similar neighboring regions are then combined to 
achieve region growing [14-21]. In addition, the method of unsupervised vector seeded 
region growing suitable for medical multi-spectral images was established. Vector seed 
selection mainly selects seed pixel vectors by means of standard deviation and relative 
Euclidean distance. Seeds emerge from even and smooth regions, so the smaller the 
standard deviation is, the more concentrated the data distribution is. In terms of image, it 
indicates that the difference between a pixel vector and the eight neighbors is smaller, and 
the pixel vector is suitable for the seed pixel vector. Furthermore, relative Euclidean distance 
is employed to more carefully select the seed pixel vector to accomplish unsupervised 
classification.  

2. Vector seeded region growing 
First of all, the multi-spectral images of a brain section were obtained. There wee five images 
belonging to the same section but different spectrums, respectively Band1, Band2, and 
Band3. When tissue classification is conducted, the characteristic information of a single 
image is too insufficient to achieve effects upon tissue classification if only a single image of 
a particular spectrum is processed. Thus, the images from Band1 to Band3 in order were 
combined into 3D eigenspace to acquire the 3D eigenvector of every pixel.  

Vector seed selection was applied to the aforementioned eigenspace images, or multi-
spectral images, to obtain initial seeds. The algorithm of seeded region growing was further 
adopted to divide the multi-spectral images into many small regions. The algorithm of 
region merging was employed to merge similar regions as well as to combine smaller 
regions with the nearest neighboring regions. Finally, all the regions eventually segmented 
by means of region growing were classified, and the algorithm of K-means clustering was 
used, in which it was assumed that K=3, to divide the regions into three categories. After the 
classification was accomplished, the regions in the same category were namely the same 
type of brain tissues. Figure 1 indicates the algorithmic procedures. 
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Fig. 1. Algorithmic procedures 

2.1 Vector seed selection  

Seeded region growing starts from seeds, and each time, it expands around at the speed of 
one pixel. Hence, a seed point has to be selected in the beginning. In vector seed selection, 
the pixel vectors which can become seeds have to possess the following characteristics: 

a. There should be high similarity between a seed pixel and the neighbors.  
b. There should be at least one seed in the expected region.  
c. A seed should be unconnected to different regions.  

The seed points can be either a single pixel vector or a group of connected pixel vectors, 
which will be regarded as the same region in region growing. According to the aforesaid 
characteristics, there are two conditions for each pixel vector in the multi-spectral images to 
be selected to be a seed point. One is that the similarity between one pixel vector and the 
eight neighbors should be higher than one threshold. The other one is that the maximum 
relative Euclidean distance between a seed pixel vector and its eight neighbors should be 
smaller than a threshold. When the above two conditions are satisfied, a pixel vector 
becomes a seed point.  

Similarity H, the first condition mentioned above, calculated the similarity between each 
pixel vector, composed of B1~B3, and its eight neighboring points. The standard deviation 
of pixel vector was calculated by the following equation:  
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In the equation, 1 , 2 and 3B B B  indicates the mean of the selected 3×3 range, calculated as 
follows: 
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The overall standard deviation is calculated as follows:  

 1 2 3B B B       (3) 

The standard deviation was further normalized by [0, 1] as follows:  

 max/N     (4) 

max  indicated the maximum standard deviation in the image. The similarity between a 
pixel vector and its eight neighbors was calculated as follows: 

 1 NH     (5) 

Furthermore, according to the second condition, the relative Euclidean distance between 
each pixel vector and its eight neighboring points was calculated as follows:  
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According to the experiment by Shih & Cheng [11], the efficacy of employing relative 
Euclidean distance is better than that of using normal Euclidean distance. Therefore, the 
maximum distance between each pixel and its eight neighboring points was calculated by 
the following equation:  
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The two aforementioned conditions have to be satisfied in order for a pixel vector to be 
selected as a seed point. The first condition aims at examining whether or not there is 
considerably high similarity between a seed pixel vector and its neighbors whereas the 
second condition focuses on ensuring that a seed pixel vector is not in the boundary 
between two regions. 

2.2 Region growing 

The traditional method of region growing can not successfully classify brain tissues. 
Consequently, this paper modified the principle of region growing and recorded all the 
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pixel vectors connecting with but uncovered by regions. Because the pixel vectors 
connecting with each other are the priority, these uncovered pixel vectors usually have the 
judgment upon the distance difference with the connected regions conducted to carry out 
region growing. It is the major reason why CSF is covered by GM and eroded. Therefore, it 
is necessary to modify the pixel vector, simultaneously calculate the distance difference with 
all the regions, and grow it into one of the regions with the minimum difference. The 
minimum distances were found out from the distances between the pixel vectors and all the 
regions, each corresponding region with the minimum distance was recorded, and the 
minimum distances were arranged in the order from small to large in Table T. Due to the 
order from small to large, the first point ‘p’ in Table T possessed the minimum difference 
and the highest similarity with the regions it connected among the pixel vectors in the rims 
of all the regions. Hence, p is more qualified than all the other uncovered pixel vectors to 
become a region.  

2.3 Applying K-means to region classification 

The algorithm of K-means clustering was employed to mainly classify the results of region 
segmentation in the previous stage. The brain MR images were classified into three 
categories, respectively GM, WM, and CSF. Because there were many fragmentary regions, 
it was necessary to classify all the regions, in which all the regions were divided into three 
categories, it was assumed that K=3, and the region was regarded as a unit to conduct the 
algorithm of K-means clustering. After the algorithm was accomplished, the regions in the 
same category belonged to namely the same sort of brain tissue.  

3. Experimental results 
The real MR images were used for performance evaluation. They were acquired from ten 
patients with normal physiology. One example is shown in Fig. 2(a)-(e) with the same 
parameter values in Table 1. Band 1 is the PD-weighted spectral image acquired by the 
pulse sequence TR/TE = 2500ms/25ms. Bands 2, 3 and 4 are T2-weighted spectral images 
were acquired by the pulse sequences TR/TE = 2500ms/50ms, TR/TE = 2500ms/75ms and 
TR/TE =2500ms/100ms respectively. Band 5 is the T1-weighted spectral image acquired by 
the pulse sequence TR/TE = 500ms/11.9ms. The tissues surrounding the brain such as bone, 
fat and skin, were semiautomatically extracted using interactive thresholding and masking. 
The slice thickness of all the MR images are 6mm and axial section were taken from GE MR 
1.5T Scanner. 

In this experiment, there was one type of real brain MR images. In order to evaluate the 
performance of the UVSRG, the widely used c-means method (also known as k-means) is 
used for comparative analysis. The reason to select the c-means method is because it is a 
spatial-based pattern classification technique. In order to make a fair comparison, the 
implemented c-means method always designates the desired target signature d as one of its 
class means with d fixed during iterations. 

In order to enhance classification of these MR images, the interfering effects resulting from 
tissue variability and characterization must be eliminated. However, to identify the sources 
that cause such interference is nearly impossible unless prior information is provided. On the 
other hand, in many MRI applications, the three cerebral tissues, GM, WM and CSF are of 
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pixel vectors connecting with but uncovered by regions. Because the pixel vectors 
connecting with each other are the priority, these uncovered pixel vectors usually have the 
judgment upon the distance difference with the connected regions conducted to carry out 
region growing. It is the major reason why CSF is covered by GM and eroded. Therefore, it 
is necessary to modify the pixel vector, simultaneously calculate the distance difference with 
all the regions, and grow it into one of the regions with the minimum difference. The 
minimum distances were found out from the distances between the pixel vectors and all the 
regions, each corresponding region with the minimum distance was recorded, and the 
minimum distances were arranged in the order from small to large in Table T. Due to the 
order from small to large, the first point ‘p’ in Table T possessed the minimum difference 
and the highest similarity with the regions it connected among the pixel vectors in the rims 
of all the regions. Hence, p is more qualified than all the other uncovered pixel vectors to 
become a region.  

2.3 Applying K-means to region classification 

The algorithm of K-means clustering was employed to mainly classify the results of region 
segmentation in the previous stage. The brain MR images were classified into three 
categories, respectively GM, WM, and CSF. Because there were many fragmentary regions, 
it was necessary to classify all the regions, in which all the regions were divided into three 
categories, it was assumed that K=3, and the region was regarded as a unit to conduct the 
algorithm of K-means clustering. After the algorithm was accomplished, the regions in the 
same category belonged to namely the same sort of brain tissue.  

3. Experimental results 
The real MR images were used for performance evaluation. They were acquired from ten 
patients with normal physiology. One example is shown in Fig. 2(a)-(e) with the same 
parameter values in Table 1. Band 1 is the PD-weighted spectral image acquired by the 
pulse sequence TR/TE = 2500ms/25ms. Bands 2, 3 and 4 are T2-weighted spectral images 
were acquired by the pulse sequences TR/TE = 2500ms/50ms, TR/TE = 2500ms/75ms and 
TR/TE =2500ms/100ms respectively. Band 5 is the T1-weighted spectral image acquired by 
the pulse sequence TR/TE = 500ms/11.9ms. The tissues surrounding the brain such as bone, 
fat and skin, were semiautomatically extracted using interactive thresholding and masking. 
The slice thickness of all the MR images are 6mm and axial section were taken from GE MR 
1.5T Scanner. 

In this experiment, there was one type of real brain MR images. In order to evaluate the 
performance of the UVSRG, the widely used c-means method (also known as k-means) is 
used for comparative analysis. The reason to select the c-means method is because it is a 
spatial-based pattern classification technique. In order to make a fair comparison, the 
implemented c-means method always designates the desired target signature d as one of its 
class means with d fixed during iterations. 

In order to enhance classification of these MR images, the interfering effects resulting from 
tissue variability and characterization must be eliminated. However, to identify the sources 
that cause such interference is nearly impossible unless prior information is provided. On the 
other hand, in many MRI applications, the three cerebral tissues, GM, WM and CSF are of 
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major interest where their knowledge can be generally obtained directly from the images. A 
zero-mean Gaussian noise was added to the phantom images so as to achieve various signal-
to-noise ratios (SNR) ranging from 5db to 20db. Table 1 tabulates the values of the parameters 
used by the MRI pulse sequence and the gray level values of the tissues of each band used as 
phantom in the experiments and Tables 2-5 tabulate the results for SNR = 20db, 15db, 10  and 
5db respectively. In our experiments, the spectral signatures of GM, WM and CSF used for the 
UVSRG were extracted directly from the MR images. Fig. 3(a)-(c) show the classification 
results of the UVSRG using five images in Fig. 1(a)-(e). For comparison, we also applied the c-
means method to Fig. 2(a)-(e) to produce Fig. 4(a)-(c) where the classification maps of GM, 
WM and CSF are labeled by (a), (b) and (c) respectively. Compared to Fig. 3(a)-(c), the UVSRG 
performed significantly better than did the c-means method. All the experimental results 
presented here were verified by experienced radiologists. 

 

Band # MRI Parameter BKG GM WM CSF 

Band 1 TR/TE=2500ms/25ms 3 207 188 182 

Band 2 TR/TE=2500ms/50ms 3 219 180 253 

Band 3 TR/TE=2500ms/75ms 3 150 124 232 

Band 4 TR/TE=2500ms/100ms 3 105 94 220 

Band 5 TR/TE=500ms/11.9ms 3 95 103 42 

Table 1. Gray level values used for the five bands of the test phantom 

 

 N ND(d) NF(d) RD(d) RF(d) RD RF 

GM 9040 9040 0 1 0 

1 0 WM 8745 8745 0 1 0 

CSF 3282 3282 0 1 0 

Table 2. Detection results with SNR = 20 db 

 

 N ND(d) NF(d) RD(d) RF(d) RD RF 

GM 9040 9040 0 1 0 

1 0 WM 8745 8745 0 1 0 

CSF 3282 3282 0 1 0 

Table 3. Detection results with SNR = 15 db 
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 N ND(d) NF(d) RD(d) RF(d) RD RF 

GM 9040 9036 8 0.9995 0.0006 

0.9994 0.0004 WM 8745 8737 4 0.9990 0.0003 

CSF 3282 3282 0 1 0 

Table 4. Detection results with SNR =10 db 
 

 N ND(d) NF(d) RD(d) RF(d) RD RF 

GM 9040 8688 455 0.9610 0.0378 

0.9616 0.0280 WM 8745 8290 352 0.9479 0.0285 

CSF 3282 3282 0 1 0 

Table 5. Detection results with SNR = 5 db 

 

       
(a)             (b)      (c) 

       
(d)   (e) 

Fig. 2. Real brain MR images. (a) TR1/TE1=2500ms/25ms (b) TR2/TE2=2500ms/50ms (c) 
TR3/TE3=2500ms/75ms (d) TR4/TE4=2500ms/100ms (e) TR5/TE5=500ms/11.9ms 
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(a)    (b)    (c) 

Fig. 3. Real Classification result of  brain MR images by UVSRG. (a)GM (b)WM (c)CSF 

      
(a)    (b)      (c) 

Fig. 4. Real Classification result of  brain MR images by C-means. (a)GM (b)WM (c)CSF 

4. Conclusion 
Generally, real brain MR images result from the CSF near the skull, which tends to be close 
to the boundary in the image. In vector seed selection, seeds tend to appear in more smooth 
regions. Hence, seeds will not be generated from the pixel vectors in the CSF close to the 
boundary, which further results in that these tissues are covered by the neighboring gray-
scaled tissues in the stage of region growing, and the classification is thus failed. 
Consequently, this paper improved the method of region growing and successfully applied 
vector seeded region growing to the classification of brain MR images. 
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Fig. 3. Real Classification result of  brain MR images by UVSRG. (a)GM (b)WM (c)CSF 
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Fig. 4. Real Classification result of  brain MR images by C-means. (a)GM (b)WM (c)CSF 
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1. Introduction 
Although they were for a while “dissociated” (Spiegel, 2006) from the clinical and scientific 
arena, dissociative disorders have in the last several years received a renewed interest 
among several groups of researchers, who embarked on the work of identifying and 
describing their underlying neural correlates. Dissociative disorders are characterized by 
transient or chronic failures or disruptions of integration of otherwise integrated functions 
of consciousness, memory, perception, identity or emotion. The DSM-IV-TR (2000) includes 
nowadays under the heading of dissociative disorders several diagnostic entities, such as 
dissociative amnesia and fugue, depersonalization disorder, dissociative identity disorder 
and dissociative disorder not otherwise specified (such as Ganser syndrome). In contrast to 
DSM-IV-TR, ICD-10 (1992) also comprises under the category of dissociative (conversion) 
disorder the entity of conversion disorder (with its various forms), which is in DSM-IV-TR 
(2000) captured under the heading of somatoform disorders (and probably will remain 
under the same heading in the upcoming DSM-V).  

Dissociative disorders had been previously subsumed under the diagnostic construct of 
hysteria, which had described the occurrence of various constellations of unexplained 
medical symptoms, without evidence of tissue pathology that can adequately or solely 
account for the symptom(s). Although not the first one who used the term dissociation or 
who suggested a connection between (early) traumatic experiences and psychiatric 
symptomatology (van der Kolk & van der Hart, 1989; Breuer & Freud, 1895), it is Janet (1898, 
1907) who claimed dissociation as a mechanism related to traumatic experiences that 
accounted for the various manifestations of hysteria.  

By definition, dissociative disorders are viewed in international nosological classifications as 
underlain by the mechanism of dissociation; there is still debate if the mechanism of 
dissociation that is involved in dissociative disorders is distinct from the so-called non-
pathological or normative dissociation (that includes absorption or reverie) or a continuum 
exists between the two (Seligman & Kirmayer, 2008). Janet had reportedly viewed on one 
hand, dissociation as being intrinsically pathological and causally bound to unresolved 
traumatic memories (Bell, Oakley, Halligan, & Deeley, 2011). On the other hand, Janet had 
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suggested that the impact of trauma on a particular individual may depend on a variety of 
factors (such as the person’s characteristics, prior experiences and the severity, duration and 
recurrence of the trauma) and might not become evident immediately, but after a certain 
latency period (van der Kolk & van der Hart, 1989). Janet is credited by several authors 
(Maldonado & Spiegel, 2008) with a superior view of dissociation that anticipated 
contemporaneous theories. Freud, a pupil of Charcot, proposed in collaboration with Breuer 
(Breuer & Freud, 1895) that the dissociative process was the result of the repression of 
traumatic material into unconscious (Bell et al., 2011). This process of repression was 
intimately connected to the one of conversion, during which the affective discomfort 
accompanying the repressed memories of trauma led to a conversion of the psychological 
emotional distress into physical symptoms (conversion hysteria). Repression, conversion 
and dissociation occurred without awareness or intentionality (Markowitsch, 2002), which 
distinguishes them from memory suppression or motivated forgetting (Anderson & Green, 
2001). Later elaborations on the mechanisms of repression versus dissociation posited that 
they corresponded to various views of the self-one that is vertically organized (such as in the 
case of repression) versus one that is horizontally aligned, with areas of incompatibility 
separated by dissociation (Mitchell & Black, 1995). Many of Janet’s ideas presented above 
received corroboration later from both clinical observations and neurobiological 
investigations and have subsequently been incorporated in contemporaneous pathogenetic 
models of dissociative disorders. Though some authors still dispute their legitimacy (Pope, 
Poliakof, Parker, Boynes, & Hudson, 2007), dissociative disorders have indeed been linked 
to psychological trauma or stress in a variety of cultures (Maldonado & Spiegel, 2008). 

In the present chapter, after a brief description of the dissociative (conversion) disorders, we 
review neuroimaging data pertaining to dissociative (conversion) disorders, which were 
obtained with functional imaging methods performed during rest or various tasks, such as 
single-photon emission computed tomography (SPECT), positron emission tomography 
(PET), functional magnetic resonance imaging (fMRI), as well as structural imaging 
techniques, including newer structural imaging methods such as diffusion tensor imaging 
(DTI) or magnetization transfer ratio measurements. In particular, we focus on reviewing 
neuroimaging data from studies of patients with dissociative amnesia and fugue, 
dissociative identity disorder (multiple personality disorder) and Ganser syndrome 
(Dissociative Disorders Not Otherwise Specified [NOS]). We also review functional brain 
imaging studies of patients with various forms of conversion disorder (e.g. psychogenic 
motor or sensory changes, psychogenic blindness, pseudoseizures) as well as 
depersonalization disorder. As hypnotizability traits have been postulated to be associated 
with a higher tendency for developing dissociative symptoms, we briefly refer to functional 
imaging studies of hypnosis. In addition we make reference to neuroimaging investigations 
pertaining to dissociative symptoms of psychiatric conditions that are not categorized under 
the heading of dissociative (conversion) disorders, but may have dissociative symptoms as 
part of their clinical presentations (such as post-traumatic stress disorder or borderline 
personality disorder). Given that the concept of mindfulness is often viewed as being 
situated at the opposite pole of that of dissociation, we discuss the neuro-imaging findings 
of the so-called dispositional mindfulness as well as of the mindfulness-based cognitive 
therapy in patients with conditions that may be associated with dissociative symptoms 
(such as borderline personality disorder). 
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2. Dissociative amnesic disorders 
Several dissociative disorders have as hallmark amnesia for autobiographical events. 
Among them, the most frequently mentioned are dissociative amnesia and its variant 
dissociative fugue. The inability to recall personal events is however also a common 
occurrence in other dissociative disorders, such as dissociative identity disorder or multiple 
personality disorder, a characteristic that is going to be underlined in the upcoming edition 
of the DSM–V. Also Ganser syndrome (see below) was initially described to feature amnesia 
as part of its constellation of symptoms. Dissociative amnesia has as its central symptom the 
inability to recall important personal information, usually from an epoch encompassing 
events of stressful or traumatic nature. The symptoms are not better explained by normative 
forgetfulness or other psychiatric or medical conditions (such as traumatic brain injury). 
Deliberate feigning that is consciously motivated by external incentives (such as 
malingering) or is prompted by psychological motivations in the absence of identifiable 
potential external gains (such as in Factitious Disorder) has to be ruled out. This is not 
always an easy task. Especially the psychologically motivated exacerbation of symptoms has 
been found to accompany a variety of disorders, including dissociative disorders, major 
depressive disorder, traumatic brain injury. The symptoms of dissociative amnesia are 
assumed to cause significant impairment of functioning or distress. The degree of 
experienced distress may, however, depend on many variables, including the cultural views 
of dissociative experiences, selfhood and past (Seligman & Kirmayer, 2008). While in DSM-
IV-TR the preponderant contribution of psychological mechanisms to the emergence of 
dissociative amnesia is conveyed in a more implicit way, the ICD-10 explicitly spells out as a 
criterion for the diagnosis of dissociative amnesia (as well as for the other dissociative 
disorders) the existence of “convincing associations in time between the symptoms of the 
disorder and stressful events, problems or needs”. The presence of amnesia (which in 
psychoanalytic theories is posited to have the role of covering the unfortunate past) might, 
however, pose a significant challenge to clinicians trying to identify the precipitating 
stressful events. Furthermore some cases of dissociative (psychogenic) amnesia did not 
occur as a result of an objective major psychological stressor, but were recorded after a 
seemingly objective minor stress (Staniloiu et al., 2009). In most of the latter cases, a careful 
history taking and collateral information gathering provided evidence for a series of 
stressful events often occurring since childhood or early adulthood. These observations are 
consistent with pathogenetic models of kindling sensitization (Post, Weiss, Smith, Rosen, & 
Frye, 1995), or protracted effects of early life stressful events, due to an incubation 
phenomenon (Lupien, McEwen, Gunnar, & Heim, 2009). Another factor that may prevent 
the identification of convincing associations between stressful events and onset of 
dissociative amnesia is the presence in some patients with dissociative amnesia of an 
impaired capacity for emotional processing in the face of ongoing stress (Staniloiu et al., 
2009). 

According to most studies dissociative amnesia affects both genders roughly equally. 
Dissociative amnesia is most frequently diagnosed in the third and fourth decade of life. 
Dissociative amnesia typically occurs as a single episode, not uncommonly after a mild 
traumatic brain injury, although – similarly to dissociative fugue – recurrent episodes have 
been reported (Coons & Milstein, 1992). Some cases of dissociative amnesia follow a chronic 
course, despite treatment. Comorbidities of dissociative amnesia with major depressive 
disorder, personality disorders, bulimia nervosa, conversion disorder and somatisation 
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suggested that the impact of trauma on a particular individual may depend on a variety of 
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the heading of dissociative (conversion) disorders, but may have dissociative symptoms as 
part of their clinical presentations (such as post-traumatic stress disorder or borderline 
personality disorder). Given that the concept of mindfulness is often viewed as being 
situated at the opposite pole of that of dissociation, we discuss the neuro-imaging findings 
of the so-called dispositional mindfulness as well as of the mindfulness-based cognitive 
therapy in patients with conditions that may be associated with dissociative symptoms 
(such as borderline personality disorder). 
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disorder have been reported (Maldonado & Spiegel, 2008). Changes in personality after the 
onset of dissociative amnesia in the form of changes in eating preferences, smoking or 
drinking habits or other engagement in various activities have also been reported (Fujiwara et 
al., 2008; Tramoni et al., 2009; Thomas Antérion, Mazzola, Foyatier-Michel, & Laurent, 2008). 

Dissociative amnesia could be differentiated according to the degree and timeframe of 
impairment (global versus selective, anterograde versus retrograde) of autobiographical-
episodic memory and the co-existence of deficits in autobiographical-semantic memory and 
general semantic knowledge. The most frequent types of dissociative amnesias are 
retrograde, a fact that is in fact captured by the diagnostic criteria of DSM-IV-TR (2000). The 
latter distinguishes between localized amnesia, selective amnesia, generalized amnesia, 
continuous amnesia and systematized amnesia.  

Retrograde dissociative amnesia may sometimes present as an episodic-autobiographical 
block, which may encompass the whole past life. Affected patients otherwise have largely 
preserved semantic memories; they can read, write, calculate and know how to behave in 
social situations. Additionally, they can encode new autobiographic-episodic memories long 
term, though the acquisition of these new events may be less emotionally-tagged in 
comparison to normal probands, often lacking that feeling of warmth and first person 
autonoetic connection (Reinhold & Markowitsch, 2009 ; Levine, Svoboda, Turner, Mandic, & 
Mackey, 2009). Although anterograde memory deficits could occasionally accompany 
retrograde dissociative (psychogenic) amnesia, cases of dissociative (psychogenic) 
anterograde amnesia with preserved retrograde memory are a much rarer occurrence (for a 
review see Staniloiu & Markowitsch, 2010). 

When retrograde dissociative amnesia is accompanied by suddenly leaving the customary 
environment and compromised knowledge about personal identity – the condition is named 
dissociative fugue. Fugues have been reported for over a century, though they were 
frequently erroneously associated with epilepsy (e.g., Burgl, 1900; Donath, 1899). A century 
ago, these conditions were named Wanderlust in Germany (cf e.g. Burgl, 1900). Fugue states 
were described to be preponderant in children and young adults (Dana, 1894; Donath, 1908). 
Identified precipitants included sexual assault, combat, marital and financial problems. 
Presentations similar to fugues have also been described in certain cultures, where they 
might represent idioms of distress (Maldonado & Spiegel, 2008). Most fugues were usually 
reported to be brief, but some prolonged courses were also described (Hennig-Fast et al., 
2008). Associations between fugues and Ganser syndrome (see below) were also found.  

Dissociative Identity Disorder (DID) or multiple personality disorder is assumed to have its 
onset in childhood, but it is usually diagnosed in the fourth decade. It affects 
preponderantly women and typically runs a chronic, waxing and waning course. 
Comorbidities with other conditions (such as mood disorders and substance abuse) and its 
plethora of clinical manifestations may hinder timely diagnosing. Apart from marked 
impairments in the sense of identity and self (in the form of the existence of two or more 
distinct identities or personality states), inability to recall personal information (amnesia) is 
a common occurrence in DID. Currently included under the separate entity of dissociative 
trance disorder, possession trance seems to be an equivalent of dissociative identity 
disorder. It involves episodes of consciousness alteration and perceived replacement of the 
usual identity by a new identity, which is attributed to the influence of a supernatural entity 
(deity, spirit, power) (DSM –IV-TR, 2000).  
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3. The “dissociation“of memory systems 
In order to better understand the clinical manifestations and neuroimaging data of those 
dissociative disorders, which have as hallmark inability to recall personal past events, we 
will briefly review the current classifications of the long-term memory systems. Two 
overlapping classifications currently dominate the memory research literature – the one that 
was initiated by Larry Squire and the one that was advanced by Endel Tulving. In Squire’s 
classification, a main distinction is made between declarative and non-declarative memory. 
Under declarative memory, episodic and semantic memories – that is (biographical) events 
and general facts – are listed. Non-declarative memory contains several other forms of 
memory, which are considered to be automatically processed.  

Tulving’s classification is depicted in Figure 1 and, in our opinion, offers clinicians the best 
framework for describing the pattern of memory impairment in amnesic conditions. Aside 
from short-term memory (not illustrated in Fig. 1), it contains five long-term memory 
systems. These memory systems are considered to build up on each other phylo- and 
ontogenetically. Procedural memory and priming constitute the first developing memory 
systems, being still devoid of the need for conscious reflection upon the environment 
(“anoetic”). Procedural memory is largely motor-based, but includes also sensory and 
cognitive skills (“routines”). Examples are biking, skiing, playing piano, or reading words 
presented in a mirror-image. Priming refers to a higher likelihood of re-identifying 
previously perceived stimuli, either identical or similar ones. An example is the repetition of 
an advertisement which initially may not be in the focus of attention, but may leave a prime 
in the brain so that its repetition will make it likely to become effective. Perceptual memory 
enables distinguishing an object or person on the basis of distinct features; it works on a pre-
semantic, but conscious (“noetic”) level. It is effective for identifying, for example, an apple 
as an apple, no matter what color it is or if it is half eaten or intact. It also allows 
distinguishing an apple from a pear or peach. Semantic memory that was also termed 
‘knowledge system’ is context-free and refers to general facts. It is considered to be noetic as 
well. The episodic-autobiographical memory system is context-specific with respect to time 
and place. It allows subjective mental time travel and re-experiencing of the event by 
attaching an emotional flavor to it. Examples are events such as the last vacation or the 
dinner of the previous night. Tulving (2005) defined episodic –autobiographical memory as 
being the conjunction of autonoetic consciousness, subjective time, and the experiencing self 
where autonoetic consciousness represents the capacity “that allows adult humans to 
mentally represent and to become aware of their protracted existence across subjective time” 
(Wheeler, Stuss, & Tulving, 1997, p.335). 

Each memory system is embedded in specific brain networks. In a simplified way, there 
are primarily subcortical and cortical motor-related structures for the procedural memory 
system, neocortical, modality-specific regions for the priming system, the neocortical 
association cortex for perceptual memory, and cortical and limbic regions for semantic 
memory. In the case of episodic-autobiographical memory system, several widespread 
limbic and cortical (including prefrontal) regions are of importance, rendering this 
memory system more susceptible to environmental insults in comparison to the other 
systems. 
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Fig. 1. The five long-term memory systems. Procedural memory is largely motor-based, but 
includes also sensory and cognitive skills (“routines”). Priming refers to a higher likeliness 
of re-identifying previously perceived stimuli. Perceptual memory allows distinguishing an 
object, item, or person on the basis of distinct features. Semantic memory is context-free and 
refers to general facts. It is termed the knowledge systems as well. The episodic-
autobiographical memory system is context-specific with respect to time and place. It allows 
mental time travel. Examples are events such as the last vacation or the dinner of the 
previous night. Tulving (2005) defined it as the conjunction of autonoetic consciousness, 
subjective time, and the experiencing self. 

A main feature of episodic-autobiographical memory is its state-dependency. This implies 
that episodic-autobiographical memories are best retrieved when the conditions during 
encoding (mood and environment) match those during retrieval. A mismatch between 
encoding and retrieval conditions may result in a gamut of memory retrieval disturbances, 
ranging from the tip-of-the-tongue phenomena to complete blockades, such as in 
dissociative amnesic disorders. The blockade in dissociative amnesia is posited to 
preponderantly reflect a desynchronization during retrieval between emotional and fact-
based information processing (Markowitsch, 2002). This blockade is opined to be caused by 
adverse life conditions in the form of massive acute stress or chronic stress, which elicits the 
release of several stress hormones (O`Brien, 1997; Joels & Baram, 2009), which then bind to 
the amygdala and the hippocampus – areas with a high density of glucocorticod receptors 
(Rodriguez, LeDoux, et al., 2009). This process then may initiate changes of the morphology 
or functional connectivity of the above mentioned structures, which in turn may lead to 
severe and persisting impairments of recollecting the episodic-autobiographical material.  

4. The neuroimaging of dissociative amnesia and fugue 
Dissociative amnesia and fugue conditions typically occur in the absence of significant brain 
damage as detected by conventional structural brain imaging techniques. When some brain 
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damage exists, the extent of amnesia cannot be accounted for by the locus and degree of 
brain damage and amnesia is often labeled as “disproportionate amnesia” (Piolino et al., 
2005). In the last years, functional brain imaging was used with increasing frequency in 
patients with various forms of dissociative amnesic disorders (Figure 2). Most frequently, 
and particularly in the first publications, positron-emission-tomography (PET) was applied 
(Markowitsch, 1999; Markowitsch, Calabrese et al., 1997a; Markowitsch, Fink, Thöne, 
Kessler, & Heiss, 1997b; Markowitsch, Thiel, Kessler, von Stockhausen, & Heiss, 1997c; 
Markowitsch, Kessler, Van der Ven, Weber-Luxenburger, & Heiss, 1998; Markowitsch, 
Kessler et al., 2000). The studies using glucose PET attempted to find changes in cerebral 
metabolism associated with dissociative memory impairments, in particular persistent 
retrograde dissociative amnesia affecting episodic-autobiographical domain in single cases 
with dissociative amnesia. Markowitsch, Kessler et al. (1998, 2000), for example, found 
significant reductions in glucose metabolism in the brain of a patient (case A.M.N.) with 
dissociative (psychogenic) amnesia; these reductions were observed all over the cerebrum, 
but in particular in memory-processing regions of the medial temporal lobe and the 
diencephalon. In these regions the reductions amounted to 2/3 of the normal level in both 
hemispheres. A.M.N. was a 23 year- old employee of an insurance company with 11 years of 
education. After discovering one evening the outbreak of a fire in the cellar of his house, he 
immediately left the house shouting “Fire, fire” while his friend – who was in the house at 
the time as well – called the fire workers who immediately extinguished the fire. In the night 
of the event A.M.N. and his friend retired to bed as usually, but the next morning, upon 
waking up, A.M.N. thought that he was 17 years old only, did not remember any personal 
events beyond this age and also became unable to acquire new events long-term. Three 
weeks later he was admitted to an university clinic, where he underwent medical and 
laboratory work up (that included structural brain MRI, EEG, carotid arteries ultrasound, 
chest X-ray and ECG), which was unremarkable. After three weeks of psychotherapeutic 
interventions in the hospital the patient recollected one of his childhood memories. He 
remembered that at age 4 years he saw a car crash with another car in flames. He was then 
witness to the driver’s death in flames. This memory was confirmed by the patient’s mother, 
who witnessed that event as well. Since then the open fire was reportedly perceived as life 
threatening by him. The authors hypothesized that the witnessing of the traumatic incident 
at age 4 already initiated subtle biological changes and that the latter witnessing of the fire 
outbreak in the house triggered a magnified biological response in the form of a neurotoxic 
cascade-like release of stress hormones, such as glucocorticoids (O’Brien, 1997), which led to 
the mnestic blockade that covered his last 6 years of life. The fact that the blockade of his 
conscious memories for personal events spanned the last 6 years of his life may have been 
accounted for by several experiences he had during that time, which had an intense and 
negative emotional connotation: he disclosed to his parents and his entourage his sexual 
preferences, he experienced conflicts with parents and ended up leaving both school and his 
parents’ house. In a subsequent paper from 2000 the authors could demonstrate that, after 
combined psycho-pharmaceutical (antidepressant medication treatment) and 
psychotherapeutic interventions, memory recovered and the brain’s glucose level returned 
to normal values in all areas. Probably this was the first paper that provided objective 
evidence via brain imaging for functional brain changes paralleling successful combined 
psychiatric treatment.  
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damage exists, the extent of amnesia cannot be accounted for by the locus and degree of 
brain damage and amnesia is often labeled as “disproportionate amnesia” (Piolino et al., 
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weeks later he was admitted to an university clinic, where he underwent medical and 
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interventions in the hospital the patient recollected one of his childhood memories. He 
remembered that at age 4 years he saw a car crash with another car in flames. He was then 
witness to the driver’s death in flames. This memory was confirmed by the patient’s mother, 
who witnessed that event as well. Since then the open fire was reportedly perceived as life 
threatening by him. The authors hypothesized that the witnessing of the traumatic incident 
at age 4 already initiated subtle biological changes and that the latter witnessing of the fire 
outbreak in the house triggered a magnified biological response in the form of a neurotoxic 
cascade-like release of stress hormones, such as glucocorticoids (O’Brien, 1997), which led to 
the mnestic blockade that covered his last 6 years of life. The fact that the blockade of his 
conscious memories for personal events spanned the last 6 years of his life may have been 
accounted for by several experiences he had during that time, which had an intense and 
negative emotional connotation: he disclosed to his parents and his entourage his sexual 
preferences, he experienced conflicts with parents and ended up leaving both school and his 
parents’ house. In a subsequent paper from 2000 the authors could demonstrate that, after 
combined psycho-pharmaceutical (antidepressant medication treatment) and 
psychotherapeutic interventions, memory recovered and the brain’s glucose level returned 
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Fig. 2. Example of reduced regional cerebral glucose metabolism in the anterior temporo-
frontal cortices in a patient with dissociative amnesia. 

In likely the first paper on functional brain imaging in a variant of dissociative amnesia 
(dissociative fugue condition), Markowitsch, Fink et al. (1997b) used water-PET in order to 
find out whether the retrogradely amnesic patient showed any differences in functional 
activations in comparison to controls (Fink et al., 1996) when confronted with episodes from 
his personal past. Indeed, the patient’s brain showed markedly different activations in 
comparison to that of the normals: While the normal probands had predominantly right 
temporo-frontal activation (Fink et al., 1996), the patient had a left-hemispheric activation of 
these regions. In light of other data on brain activations during memory retrieval (e.g., 
Reinhold, Kühnel, Brand, & Markowitsch, 2006; LaBar & Cabeza, 2006), this finding was 
interpreted as suggesting that the patient perceived his own episodic-autobiographical 
episodes as if they were belonging to a third, neutral person. 
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In a paper in which glucose-PET data from 14 patients with dissociative amnesia and severe 
episodic-autobiographical memory deficits were analyzed in combination, it was found that 
again the right temporo-frontal region was hypometabolic in a significant number of 
patients, with a significant reduction in the right inferolateral prefrontal cortex (Brand et al., 
2009). This finding has possible therapeutic implications. It suggests that if the brain regions 
of the right temporofrontal cortex, which are interconnected by the uncinate fascicle, were 
brought to normal metabolic activity via environmental manipulations, the patients’ ability 
to recollect personal events from the past might be reinstated. A kind of confirmation and 
extension of these results came in same year from the work of Tramoni et al. (2009), who in a 
patient with dissociative (“functional”) amnesia performed magnetization transfer ratio 
measurement and MR spectroscopic imaging - methods sensitive to microstructural and 
metabolic brain changes. They found evidence of significant metabolic changes and subtle 
structural alterations of the white matter in the right prefrontal region. 

In other reports on patients with dissociative amnesia glucose-PET, single photon emission 
computed tomography (SPECT) or fMRI, or combinations of several of these methods were 
used (Sellal, Manning, Seegmuller, Scheiber, & Schoenfelder, 2002, Glisky et al., 2004; Botzung, 
Denkova, & Manning, 2007; Hennig-Fast et al., 2008; Serra, Fadda, Buccione, Caltagirone, & 
Carlesimo, 2007; Stracciari, Fonti, & Guarino, 2008; Yang et al., 2005; Piolino et al., 2005; 
Yasuno et al., 2000; Thomas- Antérion, Guedj, Decousous, & Laurent, 2010 ; Arzy, Collette, 
Wissmeyer, Lazeyras, Kaplan, & Blanke, in press; Kikuchi et al., 2010). In most cases brain 
metabolic and functional changes were found, which involved areas that are agreed upon to 
play crucial roles in mnemonic processing. The differences in the localization and nature of the 
changes, which were at times reported, might be accounted for by several factors, such as the 
individual characteristics of the patients, the lack of control for variables, such as sex, 
differences in methodology (types of imaging methods used, the performance of functional 
imaging during rest versus administration of various tasks, differences in the task paradigms 
employed etc). In the case report of Thomas- Antérion , Guedj, Decousous and Laurent (2010), 
FDG-PET in resting state was performed in a right handed 30-40 year old male of probably 
Chinese origin who spoke French and had retrograde dissociative amnesia with personal 
identity loss approximately 15 months after he had been found in a French city. The PET scan 
demonstrated major hypometabolism, especially in left medial temporal lobe and 
insular/opercular area. The hypometabolism affected areas in termporal polar cortex, the 
amygdala, the hippocampus, the parahippocampus and the fusiform gyrus. The structural 
MRI was found to be within normal limits. Three years later, the patient still showed 
retrograde amnesia and loss of personal identity. In the paper of Glisky, Ryan, Reminger, 
Hardt, Hayes, and Hupbach (2004) a patient with a psychogenic fugue condition is presented, 
who lost conscious access to his autobiography together with native German language, while 
his implicit memory and knowledge of German grammar structure remained intact. 
Neuroimaging data revealed a reduced prefrontal metabolism, which was in conformity with 
his poor performance on tests of executive functions. 

5. The neuroimaging of dissociative identity disorder 
Research on structural brain changes in patients with dissociative identity disorder 
produced non-uniform results. One study reported volumetric decreases in amygdala and 
hippocampus in patients with dissociative identity disorder (Vermetten et al., 2006), while 
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another yielded negative results (Weniger, Lange, Sachsse, & Irle, 2008). The non-
homogeneity of these results may partly be understood in the light of new research data, 
which suggest that the impact of stress on structures involved in mnemonic processing 
(such as hippocampus and amygdala) has a differentiated response, which is modulated by 
the existence of certain developmental windows of vulnerability (Lupien et al., 2009). 
Several researchers investigated patients with dissociative identity disorder via functional 
imaging. Saxe, Vasile, Hill, Bloomingdale and van der Kolk (1992) found in a study using 
single emission computerized tomography (SPECT) that changes in personality state in a 
patient with DID were associated with significant fluctuations in the right temporal lobe 
blood flow. Sar, Unal, Kiziltan, Kundakci, and Ozturk (2001) and Sar, Unal, and Ozturk 
(2007) studied brain perfusion in a considerable number of patients (15 in one study, 21 in 
the other) with DID. Regional cerebral blood flow was found to be decreased in the left and 
right orbitofrontal cortex of the DID patients and increased in their left (dominant) lateral 
temporal (Sar et al., 2001) or bilaterally in the occipital cortex (Sar et al., 2007).  

Two interesting studies were performed by Simone Reinders from the Netherlands 
(Reinders et al., 2003, 2006). Together with her colleagues she studied patients with DID. 
Using fMRI she found different brain activations when the patients where in distinct mental 
states of self-awareness, each with its own access to autobiographical trauma-related 
memory. As in many other studies, the medial prefrontal cortex was related to these self-
states and the ability of conscious reflection. Verbal working memory was investigated in 16 
patients with the diagnoses DID or Dissociative Disorder – not otherwise specified (DD-
NOS) (Elzinga et al., 2007). They found that the patients and 16 matched normal subjects 
activated similar brain regions , which are typically involved in working memory (especially 
dorsolateral prefrontal and parietal cortex); however, the patients showed a higher 
activation in these areas and made fewer errors with increasing task load compared to the 
healthy individuals (though they felt more anxious and less able to concentrate).  

6. Ganser syndrome and neuroimaging 
A particular form of dissociative disorder is the Ganser syndrome. The syndrome has been 
submitted to several diagnostic revisions and debates over the years (Cocores, Santa, & 
Patel, 1984). In comparison to previous DSM editions, where Ganser syndrome was 
presented as a Factitious Disorder, Ganser syndrome is currently included under the 
category of Dissociative Disorders NOS (Not Otherwise Specified) in DSM-IV-TR (2000) and 
it is simply defined by giving approximate answers to questions (vorbeireden). Ganser’s 

(1898, 1904) original description of the syndrome was, however, much broader than the 
current DSM-IV-TR one. It featured a hysterical semitrance characterized by a tendency to 
give approximate answers, amnesia and hallucinations. Though initially linked to forensic 
background, Ganser syndrome was also reported in non-forensic contexts. The syndrome 
was found to affect preponderantly young men with a mean age of 35 years, although there 
were case-reports in women and children as well (Nardi & Di Scipio, 1977). The onset of 
Ganser syndrome is usually acute in nature, often with a picture suggestive of a hysterical 
pseudo-dementia. Its course can be transient or chronic. A higher incidence of Ganser 
syndrome in patients with immigrant background or ethnic minorities has also been 
suggested (Staniloiu et al., 2009). 
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Comorbidity with other psychiatric (such as major depressive disorder, conversion 
disorder) or neurological conditions (e.g. mild traumatic brain injury) are very common, 
which may make imaging data more difficult to interpret. Functional imaging data in 
patients with Ganser syndrome is however very scant. So far, we have been aware of only 
two studies: one performed by Markowitsch and co-workers (described in Staniloiu & 
Markowitsch, 2010) and an older report by Snyder and co-workers (1998). Snyder, Monte, 
Buchsbaum and Krishnab (1998) described the case of a 32 year old man of Spanish origin 
who since age 9 had been raised bilingually in both Spanish and English and while 
recovering from an asthma attack presented with conversion symptoms (psychogenic 
blindness), Ganser-like presentation (approximate answers ), memory difficulties, naming 
and calculation difficulties and a lack of concern about his symptoms - “la belle 
indifference” (Janet, 1907). Head CT scan without contrast was within normal limits. MRI 
without contrast revealed a signal abnormality in the right parietal cortex. Cerebral 
angiogram was within normal limits. Glucose PET revealed severe bilateral hypometabolic 
regions in the posterior cortex. His visual symptoms disappeared 37 days after the asthma 
attack, but 83 days after the attack he continued to have naming difficulties. 

Markowitsch and co-workers described two male patients in their 30’s with this syndrome, 
one with a clear forensic background (Staniloiu and Markowitsch, 2010) and one without 
(Staniloiu et al., 2009). In the patient without forensic background, the condition emerged 
after a mild traumatic brain injury and was accompanied by symptoms of major depressive 
disorder. Both patients showed in addition to symptoms of vorbeireden (giving approximate 
answers) a global deterioration of their intellectual capacities suggestive of a pseudo- 
dementic picture as well as conversion symptoms. One for example exhibited psychogenic 
urinary retention. Their clinical presentation followed a chronic course that extended 
beyond two years, despite treatment. 

Although in both cases of Ganser syndrome the structural brain imaging investigations 
were not indicative of organic impairment, in the patient where additional functional 
imaging (glucose PET) was performed, a global significant reduction in the brain 
metabolism was visualized. The mentioned functional imaging result and the chronic course 
of the above mentioned two patients are relevant, in the light of findings from previous 
studies. Some of those studies pointed to a possible organic basis to the psychiatric 
presentation of the Ganser syndrome that can especially become apparent over time. For 
example, Ladowsky-Brooks and Fischer (2003) described a patient, who presented with 
features of Ganser syndrome and severe cognitive deficits in other domains. However, the 
individual’s cognitive decline over a period of a year, in combination with findings from 
functional imaging, led to a diagnosis of fronto-temporal dementia.  

7. Depersonalization disorder and neuroimaging 
The manifestations and courses of dissociative disorders vary widely (Priebe & Schmahl, 
2009). Depersonalization disorder involves a dissociation of perceptions (e.g. feeling 
detached from own body or mental activity, like in a dreaming state or like an outsider 
observer), in the absence of significant impairment of reality testing. It is characterized by an 
alteration of the subjective experience of self. Its onset dates back to adolescence or adult 
life. Comorbidity with other mood or anxiety disorders is common and may hinder its 
timely diagnosis, promoting therefore a chronic course of the illness. While several imaging 
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studies of depersonalization focused on targeting the neural correlates of depersonalization 
as a symptom of other disorder (Lanius et al., 2005) or a symptom that was induced via 
various environmental manipulations ( Blanke & Metzinger, 2009; Mathew et al., 1999) only 
a few studies looked at the neural correlates of depersonalization disorders. Simeon et al. 
(2000) investigated 8 subjects with depersonalization disorder and 24 healthy matched- 
controls with both structural (MRI) and functional imaging (FDG-PET). During the PET 
scanning the subjects were given a variant of California Verbal Learning Test modified for 
use in imaging study. The depersonalization disorder group showed significantly lower 
metabolic rates in areas belonging to the right superior temporal gyrus and middle temporal 
gyrus. In addition, they showed higher metabolic rates in parietal lobe in comparison to 
normal probands. In occipital lobes, left Brodmann area 19 was significantly more active in 
the depersonalization group. The authors concluded that depersonalization disorder is 
associated with functional abnormalities in sensory cortex (visual, auditory and somato-
sensory) as well as areas that are important for body schema (such as parietal cortex).  

8. Conversion disorder and neuroimaging 
Other dissociative disorders are those which present with impairments of perceptual or 
motor functions that cannot be explained by medical or neurological conditions (Stone, 
Vuilleumier, & Friedman, 2010).They are subsumed under dissociative (conversion) 
disorders in ICD-10, but belong to the category of somatoform disorders in DSM-IV-TR. 
Although Sigmund Freud described “Die psychogene Sehstörung in psychoanalytischer 
Auffassung“ [Psychogenic visual disturbance in psychoanalytic view] already in 1910, data 
on functional imaging in this condition is scant. Apart from the glucose PET study of the 
Ganser-like presentation with accompanying psychogenic blindness presented above 
(Snyder et al., 1998) we found one functional magnetic resonance imaging study on visual 
symptomatologies in dissociative patients. Werring, Weston, Bullmore, Plant, and Ron 
(2004) observed reduced activation in visual cortical areas during flicker-light stimulation 
and decreased anterior cingulate activation. The posterior cingulate cortex on the other hand 
showed increased activity, as did the insula, the temporopolar areas, striatum, and 
thalamus. The data were interpreted as demonstrating visual blocking via limbic activation. 

For somatosensory and motor disturbances, on the other hand, first studies using SPECT 
started in 1995 in a patient with hemisensory disturbances and revealed some qualitative 
changes in fronto-parietal regions (Tiihonen, Kuikka, Viinamäki, Lehtonen, & Partanen, 
1995). Three years later, another study (Yazici & Kostakoglu, 1998) investigated five patients 
with more heterogeneous symptomatologies and more heterogeneous reductions in brain 
perfusion, in particular in left temporo-parietal regions. In 2006, Ghaffar and his co-workers 
(Ghaffar, Staines, & Feinstein, 2006) assessed three individuals with unexplained sensory 
loss using fMRI during unilateral and bilateral vibrotactile stimulation. They found that 
stimulation of the affected limb did not produce activation of the contralateral primary 
sensory cortex, while this was elicited with bilateral stimulation. The authors emphasized 
the role of attention mechanisms in the conversion disorder (Bell et al., 2011). 

Movement-related conversion disorders (unilateral limb weaknesses) were studied with 
functional brain imaging in more detail (Cojan, Waber, Carruzzo, & Vuilleumier, 2009; Stone 
et al., 2007; Vuilleumier et al., 2001; Spence, Crimlisk, Cope, Ron, & Grasby, 2000) . In the 
SPECT study published in 2001 by Vuilleumier and co-workers (Vuilleumier et al., 2001), the 
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authors used three different conditions: a baseline resting condition, a passive activation 
condition, and vibrotactile stimulation of the affected and unaffected limbs (for some 
patients after the motor symptoms had recovered). Vibrotactile compared to baseline 
condition activated frontal and parietal regions related to somatosensory and motor 
functions. A further comparison in the recovered patients revealed in the hemisphere 
contralateral to the motor deficits basal ganglia and thalamus decreases when the deficit 
was present. 

Burgmer et al. published in 2006 a report on patients who due to psychic changes were unable 
to lift their hands. The authors used fMRI to study their brain activations, when the patients 
either tried to lift their hands or observed other persons lifting their hands. Main results were 
that when normal subjects lifted hands or observed others lifting theirs, the hand region of 
their motor cortex was activated; in the case of the patients this activation failed to occur. The 
authors interpreted their findings as suggesting that in normal individuals mirror neurons (or 
the so-called mirror system) “mimic” the action of the other, while in the brains of patients 
with movement-related dissociative disorders, no such activity occurs. 

An unusual case of conversion disorder is that of a woman with spatial neglect due to 
conversion disorder (Saj et al., 2009), who presented with left spatial neglect as assessed by 
line- bisection and bell-cancellation tests. Findings from fMRI pointed to selective activation 
of the posterior or parietal cortex, primarily in the right side when comparing lines with 
deviated bisection relative to centered bisection (which was similar to those from normal 
probands performing comparable tests), together with increased activity in the anterior 
cingulate cortex. The results were interpreted as supporting the impaired access to 
conscious control in patients with conversion disorder and extending the findings about the 
role of anterior cingulate cortex in conversion disorder, which may relate to the anterior 
cingulate’s functions in attention and inhibitory processes. 

Psychogenic non-epileptic seizures are also possible manifestations of conversion disorder. 
The differential diagnosis of these conditions might pose a variety of challenges , given that 
psychogenic non-epileptic seizures might at times occur after traumatic brain injury, 
neurosurgery or in patients with an already diagnosed epileptic condition. Several methods 
have been used to distinguish psychogenic non-epileptic seizures from true epileptic 
seizures. Among them, the performance of interictal SPECT might be a useful tool (Scevola 
et al., 2009). 

9. Imaging the symptom of dissociation 
Various dissociative symptoms can accompany a number of psychiatric diagnostic entities 
(other than dissociative or conversion disorders) and have been targeted by several 
functional imaging studies (Kraus et al., 2009; Ludaescher et al., 2010). For example 
dissociative amnesia can occur as a symptom in certain anxiety disorders, such as acute 
stress disorder and post-traumatic stress disorder (PTSD) or in the DSM-IV-TR described 
somatization disorder or in borderline personality disorder (Zanarini, Frankenburg, Jager-
Hyman, Reich, & Fitzmaurice, 2008). 

PTSD conditions which are accompanied by “positive” dissociative symptoms such as 
flashbacks and intrusions seem to engage different neural networks than PTSD conditions 
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studies of depersonalization focused on targeting the neural correlates of depersonalization 
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that are accompanied by “negative” dissociative symptoms such as amnesia (Oakley, 1999). 
Lanius, Williamson et al. (2005) found that in general a network of prefronto-temporo-
parietal areas was engaged in all patients, but that the group with “positive” symptoms had 
– compared to normal subjects – in addition a greater covariation with the right insula and 
right visual association cortex (compared to the reference in the left ventrolateral thalamus). 
Between the two groups, that with “negative” symptoms of dissociation showed – 
compared to the “positive” (flashbacks) group – a more significant covariation in the left 
inferior frontal gyrus, while vice versa the “positive” symptoms group had more significant 
covariations with posterior cingulate/precuneus regions, the right middle temporal and the 
left inferior frontal gyri. In a recent review arguments were made for a mechanism of 
undermodulation of emotion via failure of prefrontal inhibition of limbic regions (such as 
amygdala) underlying the re-experiencing/hyperarousal PTSD subtype and one of 
overmodulation of the emotional limbic reactions in the (“negative”) dissociative PTSD 
subtype (Lanius et al., 2010). 

10. Imaging and hypnosis 
Hypnotizability traits have been postulated to be associated with a higher tendency for 
developing dissociative symptoms (Maldonado & Spiegel, 2008). Recently, we have 
witnessed an increase in studies investigating the relationship between trait hypnotizability 
and risk for developing various dissociative (conversion) disorders. As Bell et al. (2011) 
pointed to in a recent comprehensive review article, the results are mixed. Despite this, 
several studies tried to model various dissociative (conversion) symptoms via hypnotic 
suggestions. One functional MRI study employed hypnosis to affect memories for scenes of 
a movie when a posthypnotic cue was given (Mendelsohn, Chalamish, Solomonovich, & 
Dudai, 2008). The study compared three groups: one group that scored high on 
hypnotizability, another group that was characterized by low hypnotizability traits and a 
group that was asked to simulate high hypnotizability. According to the findings of the 
study, only the group with high hypnotizability traits manifested impaired recall. The latter 
was associated with diminished functional brain activity particularly in the left extrastriate 
occipital lobe and left temporal pole and heightened activity in the left rostro-lateral 
prefrontal cortex. Following the reversal of ‘forget´ suggestion and normalization of 
memory performance, an increase in brain activity was observed in several regions, 
including areas in the occipital, parietal and dorso-lateral frontal regions. This result was 
interpreted (Bell et al., 2011) as being in the line with the advanced model of exaggerated 
inhibition in psychogenic (dissociative) amnesia (Kopelman, 2000; Anderson & Green, 2001). 
This model proposes that the inability to retrieve personal events in psychogenic 
(dissociative) amnesia reflects an increase in the activity of inhibitory regions of the 
prefrontal cortex coupled with a subsequent decrease in the activity of hippocampus, similar 
to the one that occurs in suppression or motivated forgetting. The other main model of 
dissociative amnesia (which we already described above ) posits that the recollection deficit 
in dissociative amnesia reflects a stress hormone-triggered and -mediated memory 
blockade, underpinned by a desynchronization during retrieval between a frontal lobe 
system, important for autonoetic consciousness, and a temporo-amygdalar system, 
important for emotional processing and colorization (Markowitsch, 2002). 
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11. Mindfulness versus dissociation 
The concept of mindfulness is often viewed as being situated at the opposite pole of that of 
dissociation. In a simplified way, Kabat-Zinn refers to mindfulness as moment-to-moment 
awareness (Kabat-Zinn, 2005). This awareness arises through intentionally attending to 
one’s moment to moment experience in a non-judgmental and accepting way (Shapiro, 
Oman, Thoresen, Plante, & Flinders, 2008). Mindfulness is considered an inherent human 
capacity that can however be enhanced through training and practice through meditation 
techniques. In the recent past, there has been an increased interest in integrating the ancient 
Buddhist practice of mindfulness meditation (MM) with current psychological and medical 
practice as means to treat a variety of psychological and physical disorders (Baer, 2003; 
Grossman et al., 2004 ), to reduce stress in healthy individuals and to enhance the well being 
and overall health. Mindfulness based interventions (MBI), which include, but are not 
limited to mindfulness-based stress reduction (MBSR) and mindfulness-based cognitive 
therapy (MBCT) have flourished from the fertile ground of mindfulness meditation 
(Grossman, Niemann, Schmidt, & Walach, 2004). Both MM and MBIs aim to reduce the 
onset and maintenance of negative emotions such as anger while enhancing happiness and 
compassion (Chiesa & Malinowski, 2011; Sharot, Riccardi, Raio, & Phelps, 2007). 

Numerous studies evaluated mindfulness’ effects on well-being. Imaging techniques were 
employed to unveil the neuronal circuitry underlying the neurobiological mechanism, as 
well as the structural changes occurring in the brain during mindfulness meditation or any 
derivates of this technique, however, their review is beyond our scope. We will instead 
focus on available evidence from neuroimaging on identifying the neural correlates of 
dispositional mindfulness and the clinical application of MBCT to conditions that might be 
accompanied by dissociative symptoms such as BPD (borderline personality disorder) and 
PTSD (post traumatic stress disorder).  

MBCT is a 8-week training program rooting from MM and CBT with direct application as 
additive therapy to prevent relapses in major depression, anxiety disorders and bipolar 
disorder. Attempts have been made to use this technique in BPD (Sachse, Keville, & 
Feigenbaum, in press) with the conclusion that further exploring may be worthwhile due to 
the observed effects of MBCT on mindfulness, experiential avoidance, state anxiety, and 
somatoform dissociation. However, to our knowledge there are no functional imaging data 
available to further support these findings. 

With respect to the potential impact of MBCT on mechanisms that might 
perpetuate/exacerbate recollection impairment in dissociative amnesia, such as cognitive 
avoidance (Fujiwara et al., 2008), one study is worthwhile to be mentioned (Williams, 
Teasdale, Segal, & Soulsby, 2000). The authors of this study used MBCT in patients who 
recovered from major depressive disorder - a condition characterized by episodic-
autobiographical memory impairments in the form of overgeneralized memory that may 
persist beyond the recovery of classical depressive symptoms (Williams & Scott, 1988). They 
showed that in comparison to controls (recovered depressed patients who received no 
MBCT), patients with recovered major depression who received MBCT experienced a 
reduction in their overgeneralized autobiographical memories. (People are considered to 
have overgeneralized autobiographical memories when in response to a verbal cue they 
retrieve generic summaries of their personal past rather than specific events.) Again no 
functional imaging paradigm was employed in this study.  
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Dudai, 2008). The study compared three groups: one group that scored high on 
hypnotizability, another group that was characterized by low hypnotizability traits and a 
group that was asked to simulate high hypnotizability. According to the findings of the 
study, only the group with high hypnotizability traits manifested impaired recall. The latter 
was associated with diminished functional brain activity particularly in the left extrastriate 
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prefrontal cortex. Following the reversal of ‘forget´ suggestion and normalization of 
memory performance, an increase in brain activity was observed in several regions, 
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interpreted (Bell et al., 2011) as being in the line with the advanced model of exaggerated 
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This model proposes that the inability to retrieve personal events in psychogenic 
(dissociative) amnesia reflects an increase in the activity of inhibitory regions of the 
prefrontal cortex coupled with a subsequent decrease in the activity of hippocampus, similar 
to the one that occurs in suppression or motivated forgetting. The other main model of 
dissociative amnesia (which we already described above ) posits that the recollection deficit 
in dissociative amnesia reflects a stress hormone-triggered and -mediated memory 
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Five main meditation practices are identified (Ospina et al., 2007).  

- Mantra meditation (Transcendental meditation, relaxation response, clinically 
standardized meditation);  

- Mindfulness meditation (Vipassana, Zen, MBSR);  
- Yoga;  
- Tai-chi and  
- Qi Gong.  

In order to attain the “meditative” state two main approaches are employed: focused 
attention FA (direct and sustained attention on a selected object, detecting distractions and 
disengagement of attention from distractions with cognitive reappraisal of the distracter) 
and objective monitoring OM (non reactive cognitive monitoring and awareness of sensory, 
perceptual and endogenous (Lutz, Slagter, Dunne, & Davidson, 2008).  

Evidence on the EEG profile supports differences in the frequency bands between the two 
approaches as follows: FA is associated with beta 1 and gamma frequency bands while OM 
(Vipassana, Zen), with theta frequency bands. There is also evidence for a third type of 
frequency band, alpha1, associated with an automatic self-transcending encountered during 
Transcendental Meditation (Travis & Shear, 2010). 

An fMRI study contrasted FA and OM meditation forms in expert meditators versus novices 
(Manna et al., 2010) and concluded that experienced meditators control cognitive 
engagement in conscious processing of sensory-related, thought and emotion contents by 
massive self regulation in fronto-parietal and insular areas in the left hemisphere in a 
meditative state when compared with rest. They also concluded based on their findings that 
the anterior cingulate and dorso-lateral prefrontal cortex seem to play antagonist roles in the 
executive control of the attention setting during meditation task. This in their opinion 
reconciled findings of transient hypofrontality in meditation with evidence of activation of 
executive brain areas during meditation. They proposed that the practice of mediation leads 
to a functional reorganization of activity of prefrontal cortex and insula. Insula is a structure 
that has been hypothesized to sustain the so-called “sentient” (feeling) self (Craig, 2009). It 
has recently received an increased interest in stress related disturbances of self and 
consciousness (Lanius et al., 2005, 2010), including the ones accompanying the dissociative 
memory “loss” (Thomas-Anterion et al., 2010; Brand et al., 2009). Hidden in the Sylvian 
sulcus in the triangle of frontal, parietal, and temporal cortex, the insula is connected to 
numerous brain regions, including inferior frontal gyrus, septum and amygdala 
(Markowitsch, Emmans, Irle, Streicher, & Preilowski, 1985, Augustine. 1996). It sends 
projections to hippocampus and receives efferents from the entorhinal cortex. The most 
anterior and ventral portion of the insula that is close to the frontal operculum contains the 
so-called Von Economo neurons (VEN) (Allman, Watson, Tetreault, & Hakeem, 2005). The 
VEN neurons, which are also present in the anterior cingular cortex (ACC), might play 
functions in consciousness and emotional awareness (Allman et al., 2005). Insula has also 
been assigned functions in verbal memory tasks, inner speech, time perception , self 
projection (Arzy et al., 2009) , drug smoking cravings , eating regulation, taste, pain and 
temperature perception. In normal subjects increased activations of the insula have been 
evidenced in tasks involving self versus other conditions (Schilbach et al., 2006) and the 
right insula was found to be activated during self face recognition (Devue et al., 2007). 
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As mentioned above the insula has bilateral connections with the amygdala. The amygdala is a 
structure involved in integrating emotions with cognition and is connected with the prefrontal 
cortex via uncinate fascicle and other fiber bundles. Interestingly, the uncinate fascicle has a 
temporal, frontal and insular part and was ascribed functions in memory and emotional 
processing (Markowitsch, 1995). The ventromedial portion of uncinate fascicle primarily 
connects the amygdala and uncus with the gyrus rectus and the subcallosal area (Ebeling & 
von Cramon, 1992). Associating events mindfully to oneself appears to be one of the major 
functions of amygdaloid neurons in the human brain (Stein, Ives-Deliperi, & Thomas, 2008). 
Furthermore, traits like the optimism bias were suggested to be underpinned by the strength 
of the connectivity between the rostral anterior cingulate cortex and amygdala (Sharot, 
Riccardi, Raio & Phelps, 2007). An fMRI study that investigated the neural correlates of 
dispositional mindfulness during affect labelling found strong negative associations between 
areas of prefrontal cortex and right amygdala in subjects with high mindfulness, but not in 
participants low in mindfulness (Creswell, Way, Eisenberger & Lieberman, 2007).  

The pathophysiological changes associated with different mindfulness-based practices and 
various meditation practices and the biological mechanisms through which mindfulness –
based practices may prevent, alleviate or undo various dissociative symptoms remain a 
topic for future research. There is however preliminary evidence from various sources that 
these mechanisms might involve biological changes related to modulation of hormonal 
stresses responses such via alterations of the function of hypothalamic-pituitary-adrenal 
(HPA) axis (Vera et al., 2009; Infante et al., 1998).  

12. Conclusions 
Dissociative disorders have been linked to psychological trauma and stress in a variety of 
cultures. The advent of functional brain imaging techniques and newer sophisticated 
structural brain imaging methods has considerably improved and will continue to further 
our understanding of the neurobiological underpinnings of these conditions. The use of 
these techniques has shown that environmentally-driven alterations of cognition, 
perception, behavior and self-related processing are accompanied by metabolic and 
probably even structural brain changes. These findings have called into questioning the 
strict traditional dichotomy between neurological-organic and psychiatric-mind based 
illnesses and prompted several researchers and clinicians from both psychiatry and 
neurology fields to advocate for moving beyond this dichotomy, by abandoning the 
organic-functional distinction from formal classification systems or everyday medical 
jargon. As Pietro Pietrini stated in 2003 in the American Journal of Psychiatry (p. 1908): “It was 
not long ago that psychiatric disorders were grossly classified as ‘organic’ and ‘functional’ 
according to whether there was a known brain structural alteration (e.g., dementia) or not 
(e.g., depression or schizophrenia). This merely reflected our inability to go beyond what 
could be visible to the naked eye in the brain. Functional brain studies … have given us a 
powerful microscope to dissect the intimate molecular aspects of brain function.” 
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meditative state when compared with rest. They also concluded based on their findings that 
the anterior cingulate and dorso-lateral prefrontal cortex seem to play antagonist roles in the 
executive control of the attention setting during meditation task. This in their opinion 
reconciled findings of transient hypofrontality in meditation with evidence of activation of 
executive brain areas during meditation. They proposed that the practice of mediation leads 
to a functional reorganization of activity of prefrontal cortex and insula. Insula is a structure 
that has been hypothesized to sustain the so-called “sentient” (feeling) self (Craig, 2009). It 
has recently received an increased interest in stress related disturbances of self and 
consciousness (Lanius et al., 2005, 2010), including the ones accompanying the dissociative 
memory “loss” (Thomas-Anterion et al., 2010; Brand et al., 2009). Hidden in the Sylvian 
sulcus in the triangle of frontal, parietal, and temporal cortex, the insula is connected to 
numerous brain regions, including inferior frontal gyrus, septum and amygdala 
(Markowitsch, Emmans, Irle, Streicher, & Preilowski, 1985, Augustine. 1996). It sends 
projections to hippocampus and receives efferents from the entorhinal cortex. The most 
anterior and ventral portion of the insula that is close to the frontal operculum contains the 
so-called Von Economo neurons (VEN) (Allman, Watson, Tetreault, & Hakeem, 2005). The 
VEN neurons, which are also present in the anterior cingular cortex (ACC), might play 
functions in consciousness and emotional awareness (Allman et al., 2005). Insula has also 
been assigned functions in verbal memory tasks, inner speech, time perception , self 
projection (Arzy et al., 2009) , drug smoking cravings , eating regulation, taste, pain and 
temperature perception. In normal subjects increased activations of the insula have been 
evidenced in tasks involving self versus other conditions (Schilbach et al., 2006) and the 
right insula was found to be activated during self face recognition (Devue et al., 2007). 
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As mentioned above the insula has bilateral connections with the amygdala. The amygdala is a 
structure involved in integrating emotions with cognition and is connected with the prefrontal 
cortex via uncinate fascicle and other fiber bundles. Interestingly, the uncinate fascicle has a 
temporal, frontal and insular part and was ascribed functions in memory and emotional 
processing (Markowitsch, 1995). The ventromedial portion of uncinate fascicle primarily 
connects the amygdala and uncus with the gyrus rectus and the subcallosal area (Ebeling & 
von Cramon, 1992). Associating events mindfully to oneself appears to be one of the major 
functions of amygdaloid neurons in the human brain (Stein, Ives-Deliperi, & Thomas, 2008). 
Furthermore, traits like the optimism bias were suggested to be underpinned by the strength 
of the connectivity between the rostral anterior cingulate cortex and amygdala (Sharot, 
Riccardi, Raio & Phelps, 2007). An fMRI study that investigated the neural correlates of 
dispositional mindfulness during affect labelling found strong negative associations between 
areas of prefrontal cortex and right amygdala in subjects with high mindfulness, but not in 
participants low in mindfulness (Creswell, Way, Eisenberger & Lieberman, 2007).  

The pathophysiological changes associated with different mindfulness-based practices and 
various meditation practices and the biological mechanisms through which mindfulness –
based practices may prevent, alleviate or undo various dissociative symptoms remain a 
topic for future research. There is however preliminary evidence from various sources that 
these mechanisms might involve biological changes related to modulation of hormonal 
stresses responses such via alterations of the function of hypothalamic-pituitary-adrenal 
(HPA) axis (Vera et al., 2009; Infante et al., 1998).  

12. Conclusions 
Dissociative disorders have been linked to psychological trauma and stress in a variety of 
cultures. The advent of functional brain imaging techniques and newer sophisticated 
structural brain imaging methods has considerably improved and will continue to further 
our understanding of the neurobiological underpinnings of these conditions. The use of 
these techniques has shown that environmentally-driven alterations of cognition, 
perception, behavior and self-related processing are accompanied by metabolic and 
probably even structural brain changes. These findings have called into questioning the 
strict traditional dichotomy between neurological-organic and psychiatric-mind based 
illnesses and prompted several researchers and clinicians from both psychiatry and 
neurology fields to advocate for moving beyond this dichotomy, by abandoning the 
organic-functional distinction from formal classification systems or everyday medical 
jargon. As Pietro Pietrini stated in 2003 in the American Journal of Psychiatry (p. 1908): “It was 
not long ago that psychiatric disorders were grossly classified as ‘organic’ and ‘functional’ 
according to whether there was a known brain structural alteration (e.g., dementia) or not 
(e.g., depression or schizophrenia). This merely reflected our inability to go beyond what 
could be visible to the naked eye in the brain. Functional brain studies … have given us a 
powerful microscope to dissect the intimate molecular aspects of brain function.” 
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1. Introduction  
Recent neuroimaging studies have increasingly focused on the neural mechanisms of 
human deductive reasoning (see Goel, 2006 for recent review). Deductive reasoning is the 
cognitive process of drawing valid conclusions from a given set of premises. Although it 
should be performed independently of prior knowledge and intuitive beliefs, actual human 
reasoning often relies on them. Sometimes such beliefs provide valid solutions to problems, 
though they can also bias our judgment. This tendency toward bias in human reasoning has 
been experimentally studied through the demonstration of belief-bias effect in syllogistic 
reasoning (De Neys, 2006a, 2006b; Tsujii et al., 2006). 

Belief-bias effect refers to the tendency of subjects to be more likely to accept the conclusion 
to a syllogism if they find it believable than if they disbelieve it, irrespective of its actual 
logical validity (De Neys, 2006a, 2006b; Tsujii et al., 2006). The experiment of belief-bias 
effect includes two types of syllogisms: one in congruent trials, in which the logical 
conclusion is consistent with beliefs about the world (valid-believable and invalid-
unbelievable), the other in incongruent trials, in which the logical conclusion is inconsistent 
with beliefs (valid-unbelievable and invalid-believable). A typical material design was 
presented in Fig.1. Belief-bias thus facilitates logical responses in congruent trials, while it 
opposes logically correct responses in incongruent trials (De Neys et al., 2008; De Neys & 
van Gelder, 2009b; Goel & Dolan, 2003; Tsujii & Watanabe, 2009, 2010; Tsujii et al., 2010a, 
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One explanation for the belief-bias effect is offered by the dual-process theory of reasoning, 
which proposes the existence of two different human reasoning systems (Evans, 2003, 2008; 
De Neys, 2006a, 2006b). The first system, often called the heuristic system, tends to solve 
problems by relying on prior knowledge and belief. The second system, often called the 
analytic system, engages in reasoning according to logical standards. The schematic 
representation of the dual-process theory was presented in Fig. 2. The heuristic default 
system is assumed to operate rapidly and automatically, whereas operations of the analytic 
system are believed to be slow and heavily demanding of computational resources (De 
Neys, 2006a, 2006b; Tsujii & Watanabe, 2009, 2010). The aim of this chapter was to 
summarize the recent neuroimaging findings which supported the dual-process account of 
deductive reasoning, focusing on studies of the belief-bias effect. 
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representation of the dual-process theory was presented in Fig. 2. The heuristic default 
system is assumed to operate rapidly and automatically, whereas operations of the analytic 
system are believed to be slow and heavily demanding of computational resources (De 
Neys, 2006a, 2006b; Tsujii & Watanabe, 2009, 2010). The aim of this chapter was to 
summarize the recent neuroimaging findings which supported the dual-process account of 
deductive reasoning, focusing on studies of the belief-bias effect. 
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Fig. 1. Material design of the belief-bias effect 

Several neuroimaging studies using functional magnetic resonance imaging (fMRI) have 
examined the neural mechanisms of belief-bias reasoning (Goel, 2007). These studies 
reported that the belief-bias effect was associated with right inferior frontal cortex (IFC) 
activity (De Neys et al., 2008; Goel & Dolan, 2003). Right IFC activity was enhanced when 
subjects could respond correctly to incongruent reasoning trials. The authors of these 
studies claimed that the right IFC plays a role in inhibiting the default heuristic system for 
successful logical reasoning (De Neys et al., 2008; Goel & Dolan, 2003). 

In general, the right IFC activity is known to play a central role in inhibitory function (Aron 
et al., 2004, 2007). For example, response inhibition has been found to be associated with the 
right IFC activity in several tasks, including the go/no-go task (Chikazoe et al., 2007, 2009; 
Chiu et al., 2008; Rubia et al., 2001; Tsujii et al., 2011b) and the stop-signal task (Aron and 
Poldrack, 2006; Hampshire et al., 2010; Rubia et al., 2001, 2003). Furthermore, when subjects 
changed from one task to another (task-set switching), the right IFC activity was also 
enhanced (Cools et al., 2002; Smith et al., 2004, 2006; Xue et al., 2008). In addition, other 
studies have suggested that the right IFC deficit may underlie the impaired response 
inhibition in patients with attention-deficit hyperactivity disorder (Durston et al., 2006, 2011; 
Rubia et al., 2005, 2010). These observations are consistent with the claims of dual-process 
theory that the right IFC plays a functional role in inhibiting the default heuristic system to 
enable analytic logical reasoning system activity (De Neys et al., 2008; Goel, 2007; Goel & 
Dolan, 2003). In the present paper, we further presented recent studies in our laboratory 
which examined the attention-demanding and time-consuming properties of the right IFC 
activity in belief-bias reasoning (Tsujii & Watanabe, 2009, 2010). 

While most of the neuroimaging studies of deductive reasoning have used fMRI (Goel et al., 
2000; Goel and Dolan, 2001, 2003; Knauff et al., 2002, 2003; Monti et al., 2007, 2009; Reverbeli 
et al., 2007, 2009, 2010), our laboratory utilized two relatively new imaging technique: one is 
functional near-infrared spectroscopy (fNIRS) and the other is repetitive transcranial 
magnetic stimulation (rTMS). fNIRS is the imaging technique for investigating cortical 
hemodynamic responses by measuring changes in the attenuation of near-infrared light 
passing through tissue. Since oxygenated hemoglobin (oxy-Hb) and deoxygenated 
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hemoglobin (deoxy-Hb) have different absorption spectra in the infrared range, changes in 
concentrations of oxy- and deoxy-Hb can be calculated by detecting infrared light at two 
different wavelengths on the skull (approximately 787 and 827 nm). In general, enhanced 
oxy-Hb and reduced deoxy-Hb are associated with regional cortical activation. NIRS is non-
invasive, robust against body movement and has been validated as a suitable technique for 
investigating neural mechanisms in psychological experiments (Tsujii et al., 2007, 2009a, 
2009b, 2010b, 2010c, 2011b). 

Although fMRI and fNIRS studies have provided interesting findings of the neural 
mechanisms of deductive reasoning, they can only examine correlations between cortical 
areas and a type of behaviour. The second aim of the present study was to demonstrate 
recent findings of rTMS studies in our laboratory which elucidated the roles of the inferior 
frontal cortex (IFC) and the superior parietal lobule (SPL) in human deductive reasoning 
(Tsujii et al., 2010a, 2011a). Especially, we adopted an off-line rTMS method in which low-
frequency rTMS is delivered to a specific brain area over several minutes to disrupt normal 
functioning of this area transiently after stimulation (Devlin et al., 2003; Hamidi et al., 2008, 
2009; Hilgetag et al., 2001; Miller et al., 2008; Robertson et al., 2003). We investigated the 
effect of off-line rTMS of IFC and SPL on subsequent reasoning performance of congruent 
and incongruent trials. The rTMS approach can establish the causal relationships between 
brain and behaviour more directly compared with fMRI and fNIRS. 

 
Fig. 2. Schematic illustration of the dual-process theory 

2. fNIRS studies: Dual-task and time-pressure effects on reasoning 
The dual-process theory claimed that the heuristic default system is assumed to operate 
rapidly and automatically, whereas operations of the analytic system are believed to be slow 
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and heavily demanding of computational resources. Although these claims were supported 
by behavioural findings (De Neys, 2006a, 2006b), the neural correlates of dual-task and time-
pressure effect on belief-bias reasoning was unknown. Thus, a series of fNIRS studies in our 
laboratory examined the attention-demanding and time-consuming properties of the 
analytic reasoning system and IFC activity using fNIRS (Tsujii & Watanabe, 2009, 2010). In 
addition, we examined the aging effect on hemispheric asymmetry in IFC activity using 
fNIRS (Tsujii et al., 2010b). 

2.1 Dual-task effect on belief-bias reasoning 

Tsujii & Watanabe (2009) examined the relationship between dual-task effect and IFC 
activity during belief-bias reasoning by fNIRS. Previous behavioural studies demonstrated 
that subjects with poor working memory capacity exhibited larger belief-bias effect than 
those with rich working memory capacity (De Neys, 2006a, 2006b; Stanovich & West, 2000). 
More directly, De Neys (2006a) found that attention-demanding concurrent tasks impaired 
incongruent but not congruent reasoning trials. These findings suggest that the analytic 
system is attention-demanding, and that when attention is divided by a concurrent task, 
individuals tend to rely on the automatic heuristic system, resulting in belief-bias responses. 
Although these behavioural findings are important, the neural correlates of dual-task 
reasoning are still unclear. 

Tsujii & Watanabe (2009) therefore examined the neural correlates of the dual-task effect on 
IFC activity in belief-bias reasoning using fNIRS approach. Subjects were asked to perform a 
syllogistic reasoning task, involving congruent and incongruent trials, while responding to 
attention-demanding secondary tasks, in which a white square stimulus appeared at one of the 
four corners of a black screen throughout the experiment (Fig. 3). In the low-load condition, 
subjects were required to respond whenever the stimulus was in a predetermined location 
(e.g. upper-left position). In the high-load condition, subjects were asked to respond when the 
current stimulus was in the same location as the stimulus two trials previously (2-back). 

 
Fig. 3. Time schedule and schematic drawings of the secondary task.  
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Behavioural analysis showed that the high-load secondary task impaired only incongruent 
reasoning performance. NIRS analysis found that the high-load secondary task decreased 
right IFC activity during incongruent trials. Correlation analysis showed that subjects with 
enhanced right IFC activity could perform better in the incongruent reasoning trials, though 
subjects for whom right IFC activity was impaired by the secondary task could not maintain 
better reasoning performance. These findings suggest that the right IFC may be responsible 
for the dual-task effect in conflicting reasoning processes. When secondary tasks impair 
right IFC activity, subjects may rely on the automatic heuristic system, which results in 
belief-bias responses. Tsujii & Watanabe (2009) therefore offer the first demonstration of 
neural correlates of dual-task effect on IFC activity in belief-bias reasoning. 

2.2 Belief-bias reasoning under time-pressure 

Tsujii & Watanabe (2010) addressed the difference in speed between the heuristic and 
analytic reasoning systems. The dual-process theory of reasoning explained the belief-bias 
effect by proposing a belief-based fast heuristic system and a logic-based slow analytic 
system. Although the claims were supported by behavioural findings that the belief-bias 
effect was enhanced when subjects were not given sufficient time for reasoning (De Neys, 
2006b; Evans & Curtis-Holmes, 2005), the neural correlates were still unknown. Tsujii & 
Watanabe (2010), thus, examined the neural correlates of the time-pressure effect on the IFC 
activity in belief-bias reasoning using fNIRS. Subjects were asked to perform a syllogistic 
reasoning task, involving congruent and incongruent trials, both in long-span (20 s) and 
short-span conditions (10 s). 

Behavioural analysis found that only incongruent reasoning performance was impaired by 
the time-pressure of short-span trials. NIRS analysis found that the time-pressure decreased 
right IFC activity during incongruent trials. Correlation analysis showed that subjects with 
enhanced right IFC activity could perform better in incongruent trials, while subjects for 
whom the right IFC activity was impaired by the time-pressure could not maintain better 
reasoning performance. These findings suggest that the right IFC may be responsible for the 
time-pressure effect in conflicting reasoning processes. When the right IFC activity was 
impaired in the short-span trials in which subjects were not given sufficient time for 
reasoning, the subjects may rely on the fast heuristic system, which result in belief-bias 
responses. Tsujii & Watanabe (2010) therefore offer the first demonstration of neural 
correlates of time-pressure effect on the IFC activity in belief-bias reasoning. 

2.3 Aging and belief-bias reasoning 

Behavioural Tsujii et al. (2010b) examined the difference in neural activity associated with 
deductive reasoning processes between young and older adults. Some behavioural studies 
reported that older adults exhibited a larger belief-bias effect than young adults (De Neys & 
Van Gelder, 2009), though the neural correlates of the aging effect on belief-bias reasoning 
remained unknown. Therefore, Tsujii et al. (2010b) examined IFC activity differences in 
belief-bias reasoning between young (mean age, 21.50 years) and older subjects (mean age, 
68.53 years) using fNIRS. 

Behavioural analysis found that older adults exhibited a larger belief-bias than young 
adults. Although the belief-bias effect was significant in both age groups, the size of the 
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Behavioural analysis showed that the high-load secondary task impaired only incongruent 
reasoning performance. NIRS analysis found that the high-load secondary task decreased 
right IFC activity during incongruent trials. Correlation analysis showed that subjects with 
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subjects for whom right IFC activity was impaired by the secondary task could not maintain 
better reasoning performance. These findings suggest that the right IFC may be responsible 
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right IFC activity, subjects may rely on the automatic heuristic system, which results in 
belief-bias responses. Tsujii & Watanabe (2009) therefore offer the first demonstration of 
neural correlates of dual-task effect on IFC activity in belief-bias reasoning. 
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the time-pressure of short-span trials. NIRS analysis found that the time-pressure decreased 
right IFC activity during incongruent trials. Correlation analysis showed that subjects with 
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Behavioural analysis found that older adults exhibited a larger belief-bias than young 
adults. Although the belief-bias effect was significant in both age groups, the size of the 
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effect was significantly larger for older than young adults. In the belief-bias reasoning 
paradigm, automatic semantic processing interferes with reasoning performance in 
incongruent trials. Subjects were thus required to inhibit irrelevant semantic processing to 
resolve the conflicting reasoning. However, it is generally known that older adults are less 
able to inhibit task-irrelevant information processing than young adults. This may be one of 
the reasons that older adults exhibited a larger belief-bias effect in deductive reasoning. 

NIRS analysis showed that the right IFC was more activated than the left IFC in young 
adults, while there was no significant difference between the right and left IFCs in older 
adults. That is, hemispheric asymmetry of IFC activation (right-lateralization) was only 
observed in young subjects. In addition, the reduced lateralization of older adults was not 
due to reduction of right IFC activity, but due to enhancement of left IFC activity. These 
results are in line with numerous fMRI findings that showed age-related reduction of 
hemispheric asymmetry and over-recruitment in prefrontal activity in several tasks (Cabeza 
et al., 1997, 2002, 2004; Langenecker et al., 2004, 2007; Nielson et al., 2002, 2004; Rajah & 
McIntosh, 2008; Rympa & D'Esposito, 2000). For example, older adults often show bilateral 
activation in tasks associated with left-lateralized activity in young adults, such as verbal 
working memory and semantic processing tasks (Bergerbest et al., 2009; Rajah & McIntosh, 
2008; Rympa & D'Esposito, 2000). Likewise, older adults often show bilateral activation in 
tasks associated with right-lateralized activity in young adults such as episodic retrieval and 
response inhibition tasks (Langenecker & Nielson, 2003; Nielson et al., 2002, 2004). 

With regard to the function of age-related lateralization reduction, two main interpretations 
have been proposed: the compensatory and dedifferentiation hypotheses. The compensation 
hypothesis considers that older adults recruit more areas of the contralateral hemisphere 
than younger adults in order to achieve or attempt to achieve the same levels of 
performance (Reuter-Lorenz et al., 2000). In contrast, the dedifferentiation hypothesis 
considers that the additional recruitment reflects a generalized spreading of activity due to 
reduced specialization of function, regardless of whether it has a compensatory effect 
(Logan et al., 2002). Tsujii et al. (2010b) conducted the correlation analysis which revealed 
that the positive correlation between reasoning accuracy and IFC activation was significant 
in both hemispheres for older subjects, while a significant correlation was only found in the 
right hemisphere for young subjects. These findings are consistent with the compensatory 
hypothesis that older adults may recruit the left IFC to compensate for the age-related 
decline of inhibitory control functions.  

2.4 Utility of fNIRS in reasoning studies 

In the present chapter, we introduced fNIRS approach to elucidate the neural mechanisms 
of deductive reasoning processes, although most of the previous studies used fMRI 
technique (Goel et al., 2000; Goel and Dolan, 2001, 2003; Knauff et al., 2002, 2003; Monti et 
al., 2007, 2009; Stavy et al., 2006). Certain shortcomings of the NIRS technique thus need to 
be mentioned. First, NIRS can detect hemodynamic changes only at the surface of the brain 
(about 2 cm beneath the skull). Subcortical responses thus cannot be examined using NIRS. 
In particular, activity in the anterior cingulate cortex, which is known to be associated with 
conflict detection and is probably an important neural locus of belief-bias reasoning (Goel, 
2007; De Neys et al., 2008), cannot be examined by NIRS. Second, NIRS features relatively 
low spatial resolution compared with fMRI, making precise analysis with it difficult. 
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Despite these shortcomings, use of NIRS is becoming increasingly common in recent 
neuroimaging studies, because of its advantages, such as exceptional safety, low cost and 
robustness against body movement. Indeed, recent NIRS studies have established the utility 
of NIRS in various cognitive tasks involving working memory (Ehlis et al., 2008; Tsujii et al. 
2007, 2009b, 2010c), response inhibition (Boecker et al., 2007; Tsujii et al., 2011b), and 
semantic memory retrieval (Herrmann et al., 2003, 2004; Tsujii et al., 2009a). We believe that 
NIRS will improve understanding of the neural substrates of reasoning processes. 

fNIRS is also expected to facilitate the investigation of wide subject populations, including 
young children (Minagawa-Kawai et al., 2008; Tsujii et al., 2009b) and the elderly (Herrmann 
et al., 2006; Kameyama et al., 2004). Children and elderly subjects have been found to exhibit 
a larger belief-bias effect than young adults (De Neys and Van Gelder, 2009). It is thus 
important to examine the neural mechanisms in these subject populations in reasoning 
research. In deed, we successfully demonstrated the hemispheric difference of IFC activity 
between young and older adults in the belief-bias reasoning task (Tsujii et al. 2010b). We 
believe that fNIRS will improve understanding of the neural substrates of reasoning 
processes. 

3. TMS study in deductive reasoning 
Although neuroimaging studies, such as fMRI and fNIRS, have provided useful insights of the 
neural mechanisms of deductive reasoning, they can only examine correlations between 
cortical areas and a type of behaviour. In contrast, the rTMS approach can establish the causal 
relationships between brain and behaviour more directly compared with fMRI and fNIRS. In 
our laboratory, an off-line method of rTMS was adopted to examine the neural correlates of 
deductive reasoning. In the off-line method, low-frequency rTMS is delivered to a specific 
brain area over several minutes to disrupt normal functioning of this area transiently after 
stimulation (see Robertson et al., 2003 for detailed review). For example, Devlin et al. (2003) 
delivered low-frequency (1Hz) magnetic stimulation at IFC region for 10 min and found that 
the semantic processing was disrupted in a semantic decision task. In the first experiment, we 
examine the effect of low-frequency magnetic stimulation at IFC region on performance of 
congruent and incongruent reasoning performance (Tsujii et al., 2010a). In the second 
experiment (Tsujii et al., 2011a), we investigated the effect of rTMS at SPL (superior parietal 
lobule) on the performance of abstract reasoning in which semantic content was lacking (e.g., 
“All P is B”). The stimulation sites of IFC and SPL were presented in Fig. 4. 

3.1 The role of IFC in belief-bias reasoning 

Tsujii et al. (2010a) examined the role of IFC in belief-bias reasoning using rTMS approach. 
Subjects participated in a belief-bias reasoning task for 10 min (pre-test), then received low-
frequency (1 Hz) rTMS in the left or right IFC for 10 min, and finally performed a reasoning 
task again for 10 min (post-test). The reasoning task included congruent and incongruent 
trials. For control conditions, we used a specially designed sham coil with the same visual 
appearance and same audible clicking sound as the TMS coil but without production of any 
magnetic field. There was no significant difference between TMS and sham condition in the 
pre-test. Our interest was the TMS effect on performance of congruent and incongruent 
reasoning trials in the post-test. 
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effect was significantly larger for older than young adults. In the belief-bias reasoning 
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Subjects participated in a belief-bias reasoning task for 10 min (pre-test), then received low-
frequency (1 Hz) rTMS in the left or right IFC for 10 min, and finally performed a reasoning 
task again for 10 min (post-test). The reasoning task included congruent and incongruent 
trials. For control conditions, we used a specially designed sham coil with the same visual 
appearance and same audible clicking sound as the TMS coil but without production of any 
magnetic field. There was no significant difference between TMS and sham condition in the 
pre-test. Our interest was the TMS effect on performance of congruent and incongruent 
reasoning trials in the post-test. 



 
Advances in Brain Imaging 

 

42

We found that right IFC stimulation significantly impaired reasoning performance in 
incongruent but not congruent trials, enhancing the belief-bias effect. This is consistent with 
the findings of previous neuroimaging studies using fMRI and fNIRS. In the belief-bias 
reasoning paradigm, semantic information processing should interfere with reasoning 
performance in incongruent trial, while facilitating it in congruent trials. Subjects were 
therefore required to inhibit semantic processing to resolve the conflicts in reasoning. When 
rTMS inhibited the inhibitory function of the right IFC, subjects could not respond correctly 
in incongruent trials, enhancing belief-bias responses. 

De Neys & Franssens (2009) recently investigated the detailed nature of the inhibition 
process in belief-bias reasoning. In their experiments, subjects performed a lexical decision 
task after solving the deductive reasoning task which involved congruent and incongruent 
trials. They found that incongruent reasoning delayed lexical decisions regarding the target 
word that were relevant to the cued heuristic beliefs. Interestingly, no significant difference 
was apparent between congruent and incongruent reasoning trials for unrelated words. 
That is, the accessibility of unrelated words was unaffected. This suggests that the inhibition 
process is focused in nature and is specifically targeted at cued beliefs, not at semantic 
processing in general. 

 
Fig. 4. Stimulation sites in rTMS experiments (IFG: inferior frontal gyrus, SPL: superior 
parietal lobule, BA: Broadman area). 

In contrast, left IFC stimulation impaired congruent reasoning performance, while 
paradoxically facilitating incongruent reasoning performance. As a result, the belief-bias 
effect was eliminated. The left IFC is generally known to be associated with verbal or 
semantic processing in a wide variety of tasks, including the semantic decision task (Devlin 
et al., 2003), verbal fluency task (Costafreda et al., 2006), and sentence comprehension task 
(Zhu et al., 2009). Subjects whose left IFC was impaired by rTMS did not suffer from 
interference by irrelevant semantic processing, resulting in elimination of belief-bias effect. 
This study thus demonstrated for the first time the roles of the left and right IFC in belief-
bias reasoning using an rTMS approach. 
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3.2 The role of SPL in abstract reasoning 

Tsujii et al. (2011a) examined the effect of IFC stimulation on abstract reasoning trials in 
which semantic content was lacking (e.g. "All P are B"), as well as content reasoning trials 
which involved the congruent and incongruent trials. In contrast of the incongruent 
reasoning performance, we did not find the significant IFC stimulation effect on abstract 
reasoning performance. Right IFC stimulation impaired only incongruent trials. These 
findings suggest that the right IFC may not the neural locus of the analytic reasoning 
system. Rather, the right IFC may play a role in blocking the belief-based heuristic system 
(left IFC) in solving incongruent reasoning trials. On the other hand, individuals need not 
actively inhibit the heuristic processing on abstract trials, so right IFC stimulation did not 
significantly affect abstract reasoning trials. 

   So, where is the neural locus responsible for abstract reasoning performance? Tsujii et al 
(2011a) magnetically stimulated SPL (superior parietal lobule: BA = 7). In contrast to the IFC 
stimulation, bilateral SPL stimulation significantly impaired abstract reasoning 
performance. This is consistent with previous fMRI studies which showed that the abstract 
reasoning performance significantly activated the SPL region (Goel et al., 2000; Goel & 
Dolan, 2001; Knauff et al., 2002, 2003). In general, SPL is associated with spatial processing 
based on evidence from fMRI (Takahama et al., 2010; Thakral & Slotnick, 2009), neurological 
patients (Ferber & Danckert, 2006; Shinoura et al., 2009) and TMS studies (Hamidi et al., 
2008, 2009). Some authors have claimed that cognitive processes of constructing and 
manipulating spatially organized mental models are essential for deductive reasoning 
(Johnson-Laird, 1999, 2001). The mental models are a form of representation that can be 
spatial but more abstract. Phenomenological reports in the reasoning literature often have 
suggested that subjects may solve abstract syllogisms through the use of mental images of 
Venn diagrams and Euler circles (Goel et al., 2000; Goel & Dolan). Stimulation of SPL may 
thus have impaired abstract and incongruent reasoning by disrupting spatial processing. In 
contrast, congruent reasoning performance where semantic-based heuristics are sufficient to 
solve the problem was unimpaired. 

The findings are largely consistent with the dual-process theory of reasoning, which 
proposes the existence of two different reasoning systems in humans: a belief-based 
heuristic system; and a logic-based analytic system. In our study, the left IFG appears to 
correspond to the heuristic system, while bilateral SPLs are part of the analytic system. The 
right IFG may play a role in blocking the belief-based heuristic system (left IFG) in solving 
incongruent reasoning trials. So, our rTMS study could offer an insight about functional 
roles of distributed brain systems in human deductive reasoning by utilizing the rTMS 
approach. 

4. Conclusion 
In the present chapter, we briefly reviewed recent neuroimaging studies of human 
deductive reasoning, especially focusing on relatively new imaging technique: functional 
near-infrared spectroscopy (fNIRS) and repetitive transcranial magnetic stimulation (rTMS). 
A series of studies in our laboratory successfully provided evidence which is consistent with 
recent dual-process theory of reasoning. The dual-process theory proposed belief-based 
heuristic system and a logic-based analytic system. The heuristic system is assumed to 
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solve the problem was unimpaired. 
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recent dual-process theory of reasoning. The dual-process theory proposed belief-based 
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operate rapidly and automatically, whereas operations of the analytic system are believed to 
be slow and demanding of computational resources. Our fNIRS findings could demonstrate 
the attention-demanding and time-consuming properties of the right IFC activities. In 
addition, our rTMS studies showed that the left IFG appears to correspond to the heuristic 
system, while bilateral SPLs are part of the analytic system. The right IFG may play a role in 
blocking the belief-based heuristic system (left IFG) in solving incongruent reasoning trials. 
Although there are several limitations of fNIRS and rTMS, we believe they are useful to 
examine the neural substrates of logical reasoning process.  
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operate rapidly and automatically, whereas operations of the analytic system are believed to 
be slow and demanding of computational resources. Our fNIRS findings could demonstrate 
the attention-demanding and time-consuming properties of the right IFC activities. In 
addition, our rTMS studies showed that the left IFG appears to correspond to the heuristic 
system, while bilateral SPLs are part of the analytic system. The right IFG may play a role in 
blocking the belief-based heuristic system (left IFG) in solving incongruent reasoning trials. 
Although there are several limitations of fNIRS and rTMS, we believe they are useful to 
examine the neural substrates of logical reasoning process.  
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1. Introduction

Neuroimaging is the branch of medicine whose purpose is to provide visual information
about the structure and the anatomy of the brain. The main techniques in clinics are: Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), Diffuse Optical Tomography (DOT), Positron
Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT).

CT scanning uses X-rays crossing the sample to image sections of the specimen in study.
Specimen can be a living being, a part of if (e.g. the abdomen, a knee, the head, ...) or whatever
non-living object. X-rays travel ballistically inside most of the materials (living tissue
included), so measuring absorption of X-rays we can guess the composition of the sample
we are measuring. Changing the direction of injection of the X-rays and merging absorption
data coming from multiple directions makes a planar reconstruction of the examined section
of the sample possible. CT is invasive in the sense that irradiates the patient with ionizing
radiation. A little dose is given to the patient during a single CT session, anyway. CT scanning
of the head is typically used to detect skull fractures, brain injuries, aneurysms, strokes, brain
tumors and arteriovenous malformations in the brain.

MRI is based on nuclear magnetic resonance principles. It uses a strong static magnetic field
to align the nuclear magnetization of hydrogen atoms of water in the body and then radio
frequency fields are generated to alter this magnetization alignment. Several coils mounted
on the scanner are then able to detect the magnetic field produced by the altered hydrogen
atom magnetization and to relate the recovery time of these short-lasting magnetic fields to
the environment in which resonant hydrogen atoms lie. MRI, using non-ionizing radiation,
is generally considered non-invasive for the patient and provides greater contrast between
different soft tissues than CT does. Magnetic resonance images of the head are mostly used to
detect brain tumors.
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2 Will-be-set-by-IN-TECH

PET and SPECT are nuclear medicine techniques and they are used in cancer localization. A
radionuclide is injected in the body via blood flow and then tracked with detectors placed
around the patient.

Functional neuroimaging is a particular way to perform medical neuroimaging focused
more on functionality rather than just resolve anatomical features. The goal of
functional neuroimaging is to detect spatial and temporal changes of activated areas of
the brain, by measuring related physiological or physical features. The most common
techniques are functional Magnetic Resonance Imaging (fMRI), Electroencephalography (EEG),
Magnetoencephalography (MEG) and, recently, functional Near InfraRed Spectroscopy (fNIRS) and
Diffuse Optical Tomography (DOT). PET and SPECT can be considered functional images as they
use a radionuclide concentration to distinguish between healthy tissue and tumoral tissue.

Usually functional neuroimaging techniques are divided into two main classes: those with
high spatial resolution (∼ 1 cm or less) and those with high time resolution (∼ 1 s or less).

• High spatial resolution and poor time resolution techniques (fMRI, PET and SPECT).

• High time resolution and poor spatial resolution techniques (EEG and MEG).

Having good time resolution and sufficient spatial resolution, DOT lays between the two
classes and it is often considered the optimal compromise for functional neuroimaging
studies. Spatial resolution in DOT is not an intrinsic feature, being the technique
diffusion-limited. Nevertheless, in brain activation studies, integrating optical data and a
priori anatomic data from MRI scans, brings to huge enhancements in spatial localization.

2. Functional near infraRed spectroscopy (fNIRS)

The simplest way to perform tissue oximetry using harmless electromagnetic radiation is to
shine the tissue by means of a continuous beam of infrared light and to collect the re-emitted
or transmitted light.

Hemoglobin is the key: oxygenated and deoxygenated states have considerably different
absorption spectra and it turns out that, in first approximation, oxyhemoglobin and
deoxyhemoglobin also are the two main chromophores in tissues into the InfraRed window.
Because the underlining hypothesis states the presence of two chromophores, we need to
inject radiation at two different wavelengths, possibly chosen where the spectra have the
greatest differences (see Fig. 1). This spectroscopic technique uses constant light intensity
and is known in literature as Continuous Wave Near InfraRed Spectroscopy (CW-NIRS) The most
diffused wavelengths for CW-NIRS are 690 nm and 820 nm.

2.1 Absorption spectroscopy

Spectroscopy is the study of the interaction between radiation and matter, in particular
absorption spectroscopy measures the absorption of radiation, in a selected range of
frequency, in radiation-matter interaction. It is largely employed in analytical chemistry to
check for the presence of elements or substances, being the absorption spectrum a sort of
fingerprint and so characteristic of the substances. The simplest application is the detection of
the amount of the substance present.
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Fig. 1. The absorption spectrum, that is the molar extinction coefficient vs. the wavelength, of
the oxygenated (red) and deoxygenated (blue) states of the hemoglobin. I1 and I2 are the
chosen wavelengths for Near InfraRed Spectroscopy measurements.

When a radiation beam of known intensity I0 crosses a layer of known width L of a certain
medium (chromophore), part of the radiation is absorbed by the medium and the rest is
transmitted on the other side of the layer (Fig. 2). Modeling this phenomenon supposing
that each infinitesimal layer absorbs an amount of radiation dI and that this absorption is
proportional to radiation intensity, brings to the following mathematical model. Calling μa the
absorption coefficient and z the radiation beam direction, the radiation intensity I measured
is modeled by the Lambert-Beer law:

dI = −μa Idz (1)
∫ I

I0

dI
I

=
∫ L

0
(−μa)dz (2)

I = I0e−μa L (3)

The absorption coefficient is measured in m−1 and has a straightforward interpretation:
la = 1

μa
is the mean free path a photon travels prior to being absorbed. Moreover, it can

be decomposed into two distinct factors: the absorbent medium concentration and its molar
extinction coefficient �:

μa = [c] � (4)
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is the mean free path a photon travels prior to being absorbed. Moreover, it can

be decomposed into two distinct factors: the absorbent medium concentration and its molar
extinction coefficient �:

μa = [c] � (4)
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Clear Medium 

(CW Light) 

Fig. 2. Absorption Spectroscopy in the most simple geometry. Radiation is injected in the
sample from one side and radiation intensity is measure on the other side. The Lambert-Beer
law then allows to compute the chromophore concentration.

The extinction coefficient depends on the radiation wavelength: � = � (λ) and so the
absorption coefficient μa = μa (λ). Such a functional dependence constitutes the absorption
spectrum of the substance considered1. When more than a chromophore is present, each
contribute is summed:

μa = [c1] �1 + [c2] �2 + [c3] �3 + · · · = ∑
i
[ci] �i (5)

Media for which this model holds are non-diffusing media, often called clear media and
concentration measurements are easily conducted knowing the extinction coefficient of the
chromophore and the length of the path traveled by the radiation. In the many chromophore
experiment, performing multiple sessions, changing the radiation wavelength, allows to write
a linear system and to obtain the unknown concentration of each chromophore.

Performing the same experiment described before using different media, it is found that
for a vast class of substances this model is not accurate, as it doesn’t take into account
for the diffusion of radiation within the medium (Fig. 3(a)). Scattering events are due
to discontinuities in dielectric properties of the medium and can be modeled as collisions
between the photons of the radiation and particles in the medium. Many scattering models
have been developed in physics: in classical electromagnetism by Rutherford, Thomson and
Mie and in quantum physics by Compton and Raman [Feynman et al. (1964); Mie (1908);
Rutherford (1911)]. A second important class of media then have to be described, media often
called turbid media. Living tissues belong to this second class.

The Lambert-Beer model is still valid for this media, but the absorption coefficient alone is no
more enough to describe the intensity drop found. A second coefficient μs, called scattering

1 In many cases the absorption spectrum is given with respect to the frequency ν = c
nλ , being c the speed

of light and n the refraction index of the medium.
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coefficient, is then introduced. The Lambert-Beer law it is written as follows:

I = I0e−(μa+μs)L (6)

The scattering coefficient here defined has a similar interpretation as the absorption coefficient:
ls = 1

μs
is the mean free path between two scattering events. Within this class of substances,

absolute concentration measurements are possible only for thin samples (for thicker samples
more complicated approaches are necessary, see section 2.3.1). Incidentally it can be noticed
that this disturbing factor provides a helpful effect. Radiation scatters statistically in every
direction, even backwards. It is then possible to collect radiation from the same side of the
sample used for the radiation injection and to design experiments in reflectance geometry
(Fig. 3(b)).

Turbid Medium 

(CW Light) 

(a) Absorption Spectroscopy using a
turbid medium does not allow to compute
the chromophore concentration within the
sample because of scattering contributes
to intensity attenuation.

Turbid Medium 

(CW Light) 

(b) When using turbid media experiments
in reflection geometry are possible.
Scattering provides a positive probability
to have radiation traveling backwards
after encountering scattering centers in
the medium.

Fig. 3. Absorption spectrocopy in turbid medium in trasmission geometry (Fig. 3(a)) and
reflection geometry (Fig. 3(b)).

A different approach is to irradiate the sample with a non-constant light intensity, but it
becomes necessary to develop a more general model for light traveling inside turbid media.
This will be done in section 2.3. First a simpler way to separate scattering contributes is
explained.

In eq. 6 it has been seen that both absorption and scattering take part in the same way
to radiation attenuation and that is not trivial to discriminate between the two distinct
contributions. There’s at least a case in which a simple way the separation is easily done.
Suppose to have a medium in which the chromophore concentration [c (t)] slightly varies
in time and suppose to sample spectroscopic data in reflection geometry for a certain time
interval. This case is not that far from reality as it may seem at first sight, for example in
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A different approach is to irradiate the sample with a non-constant light intensity, but it
becomes necessary to develop a more general model for light traveling inside turbid media.
This will be done in section 2.3. First a simpler way to separate scattering contributes is
explained.

In eq. 6 it has been seen that both absorption and scattering take part in the same way
to radiation attenuation and that is not trivial to discriminate between the two distinct
contributions. There’s at least a case in which a simple way the separation is easily done.
Suppose to have a medium in which the chromophore concentration [c (t)] slightly varies
in time and suppose to sample spectroscopic data in reflection geometry for a certain time
interval. This case is not that far from reality as it may seem at first sight, for example in
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biological tissues chromophores concentrations change in time because of blood flow. Then
for each instant tn a Lambert-Beer equation can be written as follow:

I (tn) = I0e−([c(tn)]�DL+G) (7)

where scattering contribution μsL has been grouped into the term G and the differential
pathlength factor D has been introduced to take into account that photon travel paths longer
than the source-detector separation because they penetrate inside the medium, scatters
multiple times and then a little part reaches the detector traveling backwards. The differential
pathlength factor depends only on the mean refractive index of the crossed medium.
Hypothesizing that G doesn’t vary in time and is constant for small variations of chromophore
concentrations and introducing the physical quantity absorbance A = ln I

I0
= −([c] �DL + G),

we can compute the variation in chromophore concentration between measurement collected
at time tn and time tm in the following way:

ΔAmn = Am − An (8)

= −cm�DL − G + cn�DL + G (9)

= −(cm − cn)�DL (10)

= −Δcmn�DL (11)

The scattering contributes vanishes and the variation in chromophore concentration depends
only on the two intensity measurements collected:

Δcmn = −ΔAmn

�DL
(12)

=
1

�DL
(An − Am) (13)

=
1

�DL

(
ln

In

I0
− ln

Im

I0

)
(14)

=
1

�DL
ln

(
In

Im

)
(15)

Most of times a reference measurement is conducted and all the concentration values are then
computed as variation from the reference value.

2.2 Continuous wave NIRS (CW-NIRS)

Hemodynamic activity of the brain is related through metabolic processes to the electrical
activity of the neurons, then, performing hemoglobin concentration measurements on the
cortical tissues, it is possible to obtain information about spatial localization and temporal
behavior of neuronal activity. The spectroscopic tools described in section 2.1 provide a
straightforward way to do this. It is possible to inject radiation into the tissues and collect
the photons coming out, for example using a reflectance geometry. The usefulness of
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this technique would be to measure what happens within the blood flow, neglecting the
contributes from the surrounding environment.

Collecting data at different times and then computing the absorbance variation values ΔAλ1

and ΔAλ2 , it is possible to write the following system of equations:
�

ΔAλ1 =
�
�Hb,λ1

Δ [Hb] + �HbO2,λ1 Δ [HbO2]
�

Dλ1 L

ΔAλ2 =
�
�Hb,λ2 Δ [Hb] + �HbO2,λ2 Δ [HbO2]

�
Dλ2 L

(16)

In matrix form it becomes:
⎡
⎢⎣

ΔAλ1
Dλ1 L
ΔAλ2
Dλ2 L

⎤
⎥⎦ =

�
�Hb,λ1

�HbO2,λ1

�Hb,λ2 �HbO2,λ1

� �
Δ [Hb]

Δ [HbO2]

�
(17)

and finally:
�

Δ [Hb]
Δ [HbO2]

�
=

�
�Hb,λ1

�HbO2,λ1

�Hb,λ2 �HbO2,λ1

�−1
⎡
⎢⎣

ΔAλ1
Dλ1 L
ΔAλ2
Dλ2 L

⎤
⎥⎦ (18)

Being this a two equations systems with the two unknowns Δ [Hb] and Δ [HbO2], a solution
to the linear system is possible and the oxyhemoglobin and deoxyhemoglobin concentration
variations with respect to a reference value can be computed (Eq. 18). If data are sampled
for an interval of time, solving the linear system for each time sample, the time course of the
concentrations is given.

Derived quantities such as total hemoglobin [tHb] are often plotted vs. time in order to
improve the data visualization.

Δ [tHb] = Δ [Hb] + Δ [HbO2] (19)

An important limitation of CW-NIRS is the possibility to obtain just concentration variations.
Having absolute concentration values, hemoglobin saturation sO2 could be calculated:

sO2 =
[HbO2]

[tHb]
(20)

In principle there is no depth sensitivity with a single source-detector pair in CW-NIRS.
Information on the composition of the media crossed by the CW light can be measured as
an average. To increase light penetration large source-detector separation have been used (4-5
cm) with the obvious consequence of increasing the sampling volume and thus worsening
the spatial resolution. Increasing the complexity of the system, the use of multi-source and
multi-detector tomographic or topographic arrangements could overcome this limitation and
better depth sensitivity [Boas et al. (2004); Strangman et al. (2002)].

Laboratory prototypes and commercial instrumentations have been developed through the
years to measure oxygenation of the muscles and of the cortical regions of the brain. A
comprehensive list can be found in Wolf et al. (2007).
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2.3 Photon migration approach

A different way to deal with diffusion and discriminate between scattering and absorption
contributes is to use non-constant light intensities in the injected radiation. A possible
way to describe the physics of the problem is to start from the electric and magnetic fields
associated with the radiation and to develop a rigorous mathematical theory, taking into
account scattering, diffraction and interference. This is quite complicated, especially because
of multiple scattering.

A more practical physical model of photon propagation into diffuse media based on energy
flow is the Radiative Transfer Equation (RTE). This model was first developed to describe
the non-interacting neutrons diffusion in nuclear reactors [Sanchez & McCormick (1982)].
The hypothesis of non-interacting particles reasonably applies to photons in multiple elastic
scattering regime. The RTE model neglects polarization effects. This is not a problem though,
because even if light coherence exists, this is going to be completely lost after a few scattering
events.

2.3.1 The radiative transfer equation

The average power that at position r and time t flows through the unit area oriented in the
direction of the unit vector ŝ, due to photons within a unit frequency band centered at ν, that
are moving within the unit solid angle around ŝ is the spectral radiance Is (r, ŝ, t, ν). Thus at
time t through the unit area dΣ lying in r, oriented as ŝ, within the unit solid angle dΩ and in
the frequency interval [ν, ν + dν] flows a power dP given by:

dP = Is (r, ŝ, t, ν) |n̂ · ŝ|dΣdΩdν (21)

Energy density dE
dV is simply related to spectral radiance. The energy dE per unit frequency

and per unit solid angle that crossed the area dΣ oriented as ŝ, in the time interval dt is:

dE
dV

=
IsdΣdt
dΣvdt

=
Is

v
(22)

Where v is the speed of radiation in the medium, v = c
n . Energy density is the number of

photons and so Is is proportional to the number of photons in the unit volume, with frequency
ν, that at time t are moving in the direction ŝ. As we deal with media in which the radiation
frequency doesn’t change during propagation (elastic scattering), we can integrate Is over the
frequency ν and obtain the radiance I (r, ŝ, t).
Integrating also over the solid angle and dividing by v gives the quantity u (r, t) =∫

4π
I(r,ŝ,t)dΩ

v , measured in
[
Jm−3

]
, that represents the energy density at position r and time

t. Finally the photon density can be obtained dividing the energy density by the energy of a
single photon:

n (r, t) =
u (r, t)

hν
(23)

The RTE is an integro-differential equation stating the balance of the incoming and outgoing
radiation along the direction ŝ, at the time t, inside the volume element dV at the position r
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[Ishimaru (1978); Martelli et al. (2010)]:

1
v

∂I
∂t

= −ŝ · ∇I − (μa + μs) I + μs

�

4π
p
�
ŝ, ŝ�

�
I
�
r, ŝ�, t

�
dΩ� + q (24)

Each term appearing has a precise significance:

• 1
v

∂I
∂t ⇒ temporal change of energy.

• −ŝ · ∇I ⇒ change due to energy flow.

• − (μa + μs) I ⇒ energy drop due to absorption and scattering.

• +μs
�

4π p (ŝ, ŝ�) I (r, ŝ�, t)dΩ� ⇒ energy gain from radiation coming from every direction,
but scattered into the direction ŝ, being p (ŝ, ŝ�) the phase function, that is the probability
that a photon flowing in the direction ŝ is scattered into the direction ŝ�.

• q = q (r, ŝ, t) ⇒ Radiation source inside dV
�
Wm−3sr−1

�
.

The RTE has two immediate properties:

1. If I0 is a solution for a non-absorbing medium with time impulsive source term q (r, ŝ, t) =
q0 (r, ŝ) δ (t), then if the absorption coefficient is μa the solution is:

I = I0e−μavt (25)

This property is a generalization of the Lambert-Beer law [Sassaroli & Fantini (2004);
Tsuchiya (2001)].

2. If I is the Green function for a medium having extinction coefficient μt = μa + μs and
albedo a =

μs
μt

, then for a medium having extinction coefficient μ∗
t and the same albedo,

the solution is scaled in this way:

I (r∗, ŝ, t∗) =
�

μ∗
t

μt

�3
I (r, ŝ, t)

⎧⎨
⎩

r∗ =
�

μt
μ∗

t

�
r

t∗ =
�

μt
μ∗

t

�
t

(26)

This scaling property is known as the similarity principle [Zege et al. (1991)].

Because of the high complexity of the RTE, no analytical solutions are available and
approximation methods are then applied. Numerical methods like the Finite Difference Method
or the Finite Elements Method (FEM) require a large amount of computational power, but are
often applied [Arridge (1995); Arridge et al. (2000); Arridge & Hebden (1997); Arridge &
Schweiger (1995); Arridge et al. (1993)]. Stochastic methods like the Monte Carlo are widely
used in many biological applications [Boas et al. (2002); Fang & Boas (2009)].

2.3.2 The PN approximation

Many ways to simplify the RTE have been developed through the years, but most methods
are based on the PN approximation. Two derived quantities of interest are the photon fluence Φ
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or the Finite Elements Method (FEM) require a large amount of computational power, but are
often applied [Arridge (1995); Arridge et al. (2000); Arridge & Hebden (1997); Arridge &
Schweiger (1995); Arridge et al. (1993)]. Stochastic methods like the Monte Carlo are widely
used in many biological applications [Boas et al. (2002); Fang & Boas (2009)].

2.3.2 The PN approximation

Many ways to simplify the RTE have been developed through the years, but most methods
are based on the PN approximation. Two derived quantities of interest are the photon fluence Φ
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and the photon flux J :

Φ (r, t) =
�

4π
I (r, ŝ, t)dΩ (27)

J (r, t) =
�

4π
I (r, ŝ, t) ŝdΩ (28)

Radiance and source term are expanded in spherical harmonics [Boas (1996); Jackson (1999)]:

I (r, ŝ, t) =
+∞

∑
l=0

l

∑
m=−l

�
2l + 1

4π
φl,m (r, t)Yl,m (ŝ) (29)

q (r, ŝ, t) =
+∞
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l

∑
m=−l

�
2l + 1

4π
ql,m (r, t)Yl,m (ŝ) (30)

Phase function is expanded in spherical harmonics too, but first the reasonable hypothesis
that the scattering amplitude is only dependent on the change in direction of the photon is
made. With this assumption the probability of scattering from a direction ŝ into a direction ŝ�
depends only on the angle between ŝ and ŝ�:

p
�
ŝ · ŝ�� =

+∞

∑
l=0

2l + 1
4π

gl Pl
�
ŝ · ŝ�� (31)

=
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∑
l=0

l
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glY
∗
l,m

�
ŝ�
�

Yl,m (ŝ) (32)

Where Pl is the Legendre polynomial of order l and the angular addition rule has been used

[Jackson (1999)]. The normalization factors
�

2l+1
4π and 2l+1

4π are introduced for convenience.

Truncating the series at the l = N term brings to the PN approximation of the RTE [Arridge
(1999)]. In the P1 approximation the radiance2, source and phase function reduce to:

I (r, ŝ, t) =
1

4π
Φ (r, t) +

3
4π

J (r, t) · ŝ (33)

q (r, ŝ, t) =
1

4π
q0 (r, t) +

3
4π

q1 (r, t) · ŝ (34)

p
�
ŝ · ŝ�� =

1
4π

g0 +
3

4π
g1ŝ · ŝ� (35)

Where we used the definition of fluence 27 and flux 28, obtaining:

Φ (r, t) = φ0,0 (r, t) (36)

J (r, t) =

⎛
⎜⎝

1√
2
(φ1,−1 (r, t)− φ1,1 (r, t))

1
i
√

2
(φ1,−1 (r, t) + φ1,1 (r, t))

φ1,0 (r, t)

⎞
⎟⎠ (37)

2 As will be realized soon, this brings to assume the radiance to be nearly isotropic. This is a
good approximation for biological tissues and in general for high-albedo media, because of the few
absorption events relative to the scattering events.
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For the source term approximation the quantities monopole moment q0 and dipole moment
q1 have been introduced:

q0 (r, t) = q0,0 (r, t) (38)

q1 (r, t) =

⎛
⎜⎝

1√
2
(q1,−1 (r, t)− q1,1 (r, t))

1
i
√

2
(q1,−1 (r, t) + q1,1 (r, t))

q1,0 (r, t)

⎞
⎟⎠ (39)

Normalizing g0 to unity, g1 is the average cosine of the scattering angle:

g0 = 1 (40)

g1 = < ŝ · ŝ� > (41)

Finally, substituting these approximated expressions into 24, we obtain:

1
v

∂Φ (r, t)
∂t

= −μaΦ (r, t)−∇ · J (r, t) + q0 (r, t) (42)

1
v

∂J (r, t)
∂t

= − �
μa + μ�

s
�
J (r, t)− 1

3
∇Φ (r, t) + q1 (r, t) (43)

Where we made use of the definition of reduced scattering coefficient μ�
s:

μ�
s = (1 − g1) μs (44)

2.3.3 The diffusion approximation

In a high-albedo (predominantly scattering) medium, the time for a substantial change in flux
J is much longer than the time to traverse one transport mean free path. Thus, over one
transport mean free path itself, the fractional change in flux is much less than unity. The
diffusion approximation results from making the following assumptions:

∂J (r, t)
∂t

= 0 (45)

q1 (r, t) = 0 (46)

Dropping the dipole moment of the source is reasonable assuming an isotropic source. Eq. 43
then becomes Fick’s law:

J (r, t) = − 1
3 (μa + μ�

s)
∇Φ (r, t) (47)

Usually the factor multiplying the gradient is called diffusion coefficient, D = 1
3(μa+μ�

s)
. We

notice that in high-albedo medium (μ�
s � μa) it doesn’t depend on absorption and can be

calculated as D ≈ 1
3μ�

s

3.

3 This is consistent with the similarity principle previously introduced [Martelli et al. (2010)].
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Radiance and source term are expanded in spherical harmonics [Boas (1996); Jackson (1999)]:

I (r, ŝ, t) =
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Substituting into Eq. 42 we finally have the diffusion equation (DE):

1
v

∂Φ (r, t)
∂t

= −μaΦ (r, t) +∇ · D∇Φ (r, t) + q0 (r, t) (48)

The diffusion equation models many problems in Physics and Chemistry, such as heat
propagation, ion diffusion and semiconductor doping. Analytical solution to the DE in photon
migration have been carried out in symmetrical geometries such as the infinite medium, the
semi-infinite medium or the semi-infinite medium with a high-absorbent inclusion.

In order to solve the DE, appropriate boundary conditions have to be declared. The most
general boundary condition is the Partial Current Boundary Condition (PCBC):

Φ (r, t) + 2AD∇Φ (r, t) · n̂ = 0 r ∈ ∂V (49)

Where A is a coefficient depending on the refractive index and is due to Fresnel reflection
[Contini et al. (1997); Martelli et al. (2010)]. In practical applications, though, the most
commonly applied boundary conditions are the Extrapolated Boundary Condition (EBC) and
the Zero Boundary Condition (ZBC):

Φ (r, t) = 0 r ∈ ∂Vext (50)

Φ (r, t) = 0 r ∈ ∂V (51)

Where ∂Vext is a surface distant 2AD from the boundary (extrapolated surface).

CW, TR and FD solutions for simple geometries have been calculated [Martelli et al. (2010)].

2.3.4 FD-NIRS

Frequency Domain Near InfraRed Spectroscopy (FD-NIRS) makes use of intensity modulated
laser light (typically at radio frequencies), injecting it into the sample. The remitted wave
is demodulated to obtain amplitude and phase as a function of the modulation frequency.
The tissue acts like a low-pass filter: the amplitude is a decreasing function of the frequency
and the phase typically increases. The analytical expressions for amplitude and phase can
be obtained by a Fourier transform of the TR theoretical expression. Estimation of optical
properties can thus be performed using the photon migration theory (see Fig. 4).

Some commercial device using frequency domain techniques is available and measurements
and basic research often used this approach to study biological tissues oxygenation [D’Arceuil
et al. (2005); Fantini et al. (1995)].

2.3.5 TR-NIRS

In section 2.2 a way to measure oxygenated and deoxygenated hemoglobin concentrations
has been described. Using absorption spectroscopy techniques it is possible to investigate in
vivo the oxygenation status of the superficial tissues and in particular of the cortical areas of
the brain. Thus, CW-NIRS is a useful non-invasive technique for functional neuroimaging.
As previously seen, the issue underlying Near InfraRed Spectroscopy is scattering. The
way CW-NIRS deals with scattering is to perform a basal measurement and then to refer all
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Fig. 4. Scheme of reflection geometry FD-NIRS measurement. Intensity modulated light
I (ω) travels in the medium and part of it can be collected by a detector at a source-detector
distance ρ. Amplitude and phase of the collected light R (ρ, ω) depend on μa and μ′

s.

ρ

z

O

R (ρ, t)

μa, μ
′
s

I (t)

Fig. 5. Scheme of reflection geometry TD-NIRS measurement. Injected light travels in the
medium and part of it can be collected by a detector at a source-detector distance ρ. Knowing
the temporal shape of the injected light I (t), the temporal shape of the collected light R (ρ, t)
depends on μa and μ′

s.

successive data to the baseline values, making the assumption that scattering is constant in
time. This makes concentration variations the only possible obtainable data.

In section 2.3.1 the physical model for radiation propagation inside tissues has been
introduced. It will be now shown how RTE gives a practically useful tool to perform a kind of
measurement in which absolute hemoglobin concentrations values can be sampled.

In many biological applications the semi-infinite geometry is assumed and light intensity
measurement are conducted in reflectance geometry (see Fig. 5). In this case the Green
function of the Diffusion Equation with the Extrapolated Boundary Condition, expressed as
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successive data to the baseline values, making the assumption that scattering is constant in
time. This makes concentration variations the only possible obtainable data.
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the detected power per unit area (usually known as reflectance R), takes the form:

R (ρ, t) =
1

2 (4πDv)3/2 t5/2
e−

ρ2

4Dvt e−μavt
[

z0e−
z2
0

4Dvt − zpe−
z2

p
4Dvt

]
(52)

Where ρ is the source-detector distance, z0 = 1
μ�

s
, zp = z0 + 2ze and ze = 2AD.

Looking at the the Green function of the diffusion equation it is possible to notice that
absorption and scattering contributes are naturally separated in the model. Plotting these
solutions for different values of the absorption coefficient and of the scattering coefficient
evidence this property (see Fig. 6). This technique based on the injection of light with a known
temporal shape (typical a pulse-like shape) and the estimation of the optical properties from
the emitted light temporal shape is called Time-Resolved Near InfraRed Spectroscopy (TR-NIRS).

The light is collected by means of photomultipliers tubes (PMT) or avalanche photodiodes
(APD) usually in Time Correlated Single Photon Counting (TCSPC) regime. Detailed
descriptions of the way light is collected by light detectors is given in [Donati (1998)] and
of TCSPC is given in [O’Connor & Phillips (1984)] and [Becker (2005)].

Estimation of the optical properties can be performed from all the analytical expressions
for the TR response of a diffusive medium. Absorption and scattering coefficients can
be computed by means of an inversion algorithm [Press et al. (1992)]. The instrumental
response function (IRF) due to temporal dispersion in fiber, temporal jitter of detectors and
finite pulse width of light sources has to be taken into account. Due to the linearity and
time-invariance of the transport problem, the detected response is the convolution between
the IRF and the theoretical response of the medium. Thus, a Levenberg-Marquardt non-linear
minimization between experimental data and theoretical curve convoluted with the IRF is
generally performed.

An estimation of the optical properties of a diffusive medium can be also performed by means
of Monte Carlo simulations. A certain number of simulations are needed, then by using the
scaling properties of the RTE it is possible to implement a fast search of the correct simulation
[Pifferi et al. (1998)]. These two method enable an absolute estimation of optical properties.

A simple estimation of the variation of the absorption coefficient can be easily performed if
only absorption changes are assumed (and usually are). If we collect at different times two
reflectance curves R0 (ρ, t) and R1 (ρ, t), it is straightforward that:

Δμa = − 1
vt

ln
(

R1 (ρ, t)
R0 (ρ, t)

)
(53)

In principle TR techniques provides a richer insight than CW to the problem of non-invasively
probing of a diffusive medium. These approaches can discriminate between absorption
and scattering contributions and derive absolute values for the hemodynamic parameters
[Patterson et al. (1989)]. This however can be obtained only in simple geometries like the
infinite or the semi-infinite homogeneous models. In a real heterogeneous medium like the
human tissues and in particular the human head it is easier to derive changes with respect to a
baseline or effective average parameters rather than absolute values. Advanced time-resolved
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perturbation models for more complicated geometries, like multi-layered media, have been
derived in the last years, but they would require the use of a priori information (e.g., the

(a) Dependance from scattering (μa = 0.09 cm−1, μ�
s =4, 8, 16, 32 cm−1).

(b) Dependance from absorption (μa = 0.04, 0.08, 0.16, 0.32 cm−1, μ�
s = 20

cm−1).

Fig. 6. Normalized reflectance from the semi-infinite model, with source-detector distance
ρ=2 cm. Reflectance vs. time is plotted in semi-logarithmic scale.
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anatomy of the head as provided by a MRI scan) for their practical and effective use [Martelli
et al. (2005)].

The actual potentiality of time-resolved techniques relies on an easier approach to the problem
of depth sensitivity. As mentioned before, to enhance depth sensitivity, CW systems use
large source-detector distance and multi-distance approaches. Conversely, depth sensitivity
in TR-NIRS can be intrinsic in the measured reflectance curve having information on the time
of flight of the photons in tissues.

Near InfraRed Spectroscopy applications to the brain spread from rehabilitation monitoring
to neural plasticity studies, from localization of cortical activation in motor or cognitive tasks
to stroke diagnosis, and more. Motor tasks such as finger tapping or hand grasping are easy
to perform and hundreds of studies have been published [Torricelli et al. (2007)]. Cognitive
tasks present more difficulties in activation interpretation, nevertheless a number of study is
available in literature [Bandettini et al. (1997); Butti et al. (2009); Heekeren et al. (1997)]. Fig. 7
and Fig. 8 show two examples of TR-NIRS data.

Fig. 7. Δ [Hb] (blue) and Δ [HbO2] (red) concentrations (in arbitrary units) vs. time (in
minutes) collected from the frontal area of the brain during a cognitive task of sustained
attention. Vertical lines indicated the beginning and the end of the task. The average
concentration value for the first two minutes block was used as baseline and then subtracted
to all data.

3. Diffuse Optical Tomography (DOT)

Since the very beginning of the history of NIRS, many efforts have been made to improve
space resolution and data accuracy. Near InfraRed Spectroscopy provides functional
information about the oxygenation status of the explored tissues, but a single source-detector
pair is only able to probe a small underlying area. In this section a way to perform functional
neuroimaging starting form NIRS data will be introduced. Production of two dimensional
maps, often called topography, by linear interpolation of NIRS data was the first application to
be investigated. This imaging technique is usually called Diffuse Optical Imaging (DOI) and,
adding depth sensitivity, is known as Diffuse Optical Tomography (DOT).
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Fig. 8. Oxyhemoglobin (in red) and deoxyhemoglobin (in blue) concentrations for a hand
grasping task. Single-subject, right hand movement, average of 10 repetitions, TR-NIRS
device, contrast enhanced for the deep layers (see section 3.1).

To properly investigate a large area (larger than the common source-detector distance, that
is 1-4 cm) a multi-channel approach is needed. The starting point is the arrangement of a
number of sources and detectors to cover the area of interest and the management of the
source-detector pairs. Depending on the physical dimensions of the area even a huge number
could be arranged. No theoretical limitations on the number of optodes exists, however,
actual technology features instrumentations with up to 32 sources and 32 detectors (CW)
and 16 sources and 16 detection channels (TR). Shining NIR light on the skin and collecting
the back-scattered light in a reflectance geometry from multiple points easily allows to draw
a map of the hemoglobin concentrations around the area of interest. Spatial resolution is
poor (depending on source-detector distances) and a little depth sensitivity (associated to the
overlapping measurements in CW or intrinsic in TR) is obtained.

Concentrations time series can be plotted vs time or a spatial map can be built (see Fig. 9).
A movie-like map can be obtained if each frame corresponds to a time sample. More often,
especially in books and publications, averaged concentrations data over time intervals are
used to obtain maps relative to a time block of seconds or minutes, just as the example in Fig
9.
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Fig. 9. The concentration time series can be visualized as spatial map. Each time sample
belongs to an average position between the associated source-detector pair. The map is built
by linear interpolation with the neighboring points concentration values.

More complicated ways to image optical data have been developed. Using MRI anatomical
information and using suitable values for the average optical properties of the tissues a inverse
problem can be established. Localized alterations of the optical properties, corresponding to a
increased absorption and related to the hemodynamic responses of neural activations, can be
put in correspondence with cortical features and a better localization of brain activations can
be performed.

DOT systems can consist of little more than a probe with fiber-optic sources and detectors,
a piece of dedicated hardware about the size of a small suitcase and a laptop computer.
Systems can be much larger, depending primarily on the type of laser source and detectors
employed, but the approach generally offers a degree of portability unobtainable with many
other modalities. For this reason, looking into the future, DOT may be ideally suited for
clinical applications such as bedside monitoring of cerebral oxygenation.

3.1 Time resolved DOT

A fundamental point in NIRS measurements, whatever technique we are using, is the ability to
separate systemic hemodynamic changes occurring in the superficial tissues, such as the skin,
from functional hemodynamic changes related to brain activations. In order to reach this goal
is fundamental to discuss NIRS depth sensitivity. Depth sensitivity is not intrinsic in CW- and
TR-NIRS measurements, but can be achieved using proper optodes configurations or using
time of flight information. Multi-distance source-detector approaches, both with CW [Saager
& Berger (2005)] and with TR [Liebert et al. (2004)] techniques, have been proposed to improve
depth selectivity and sensitivity. Single-distance approaches have also been discussed [Selb
et al. (2005); Steinbrink et al. (2001)]. Contini et al. (2007) proposed a different approach to add
depth information to the tissue probing problem, based on time-domain contrast functions.
Wabnitz et al. (2008) discussed a method for depth selectivity based on time windows and
moments of time-of-flight distributions for TD-NIRS.
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Time-resolved curves statistically contain information about tissues which light photons pass
through. Photons reaching the detector at early times surely have been back-scattered from the
superficial tissues and thus can bring information about the superficial layers only. Photons
reaching the detector at late times have travelled inside the tissues for a longer time and
statistically could have probed deeper layers and carry information about them. We usually
refer to them as early photons and late photons.

A simple approach to the depth probing problem could be to develop a contrast function,
considering just two domains: superficial layers and deep layers.

In order to develop models to discriminate between the variations of the absorption coefficient
in the superficial layers (ΔμUP

a ) and of the variation of the absorption coefficient in deep
layers (ΔμDOWN

a ), the quantity time-dependent photon path length, usually called Mean
time-dependent Path Length (MPL) is introduced [Steinbrink et al. (2001)]. As its own name
suggests, MPL is the average length of the path travelled by photons in a specific layer and
can be calculated from the mean time of flight of the photons.

The reflectance curve is divided into time intervals τ, called time gates (TG), and the total
counts (usually referred as intensity) are calculated for each time gate4.

Being I0 (t) the intensity for the non-absorbent medium, LUP (t) and LDOWN (t) the mean
time-dependent path lengths in the superficial layers and in the deep layers, respectively, the
expression for the intensity I (t) in a general absorbent medium can be expressed as:

I (t) = I0 (t) e−(ΔμUP
a LUP(t)+ΔμDOWN

a LDOWN(t)) (54)

In the simplest case, it is possible to think that early photons carry information only about the
superficial layers and that late photons are not affected by a superficial inhomogeneity, and
carry information only about the deep layers. Thus, we can write for the absorption coefficient
changes:

ΔμUP
a = − 1

LUP (τe)
ln

(
I (τe)

I0 (τe)

)
(55)

ΔμDOWN
a = − 1

LDOWN (τl)
ln

(
I (τl)

I0 (τl)

)
(56)

where τe is the mean time of flight of photons in a early time gate and τl is the mean time
of flight for photons in a late time gate. Despite giving a general idea about how to obtain
information about contributes of different layers, this model is pretty rough, indeed. The
hypothesis of late photons not affected by superficial layers has to be rejected and more
complicated expressions are often necessary to perform depth selection [Contini (2007)]. It
can be proved that late photons carry both information about superficial and deep layers and
that superficial layer absorption variations affect the deep layers absorption estimation. The
subtraction of the superficial contribute is thus necessary in the estimation of ΔμDOWN

a . Such

4 The total counts are the time integral of the reflectance curve: Igate (t) =
∫ t f in

tin
R (t)dt
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a subtraction can be performed as follow:

ΔμUP
a = − 1

LUP (τe)
ln

(
I (τe)

I0 (τe)

)
(57)

ΔμDOWN
a = − 1

LDOWN (τl)
ln

(
1 +

I (τl)

I0 (τl)
− I (τe)

I0 (τe)

)
(58)

Oxy- and deoxy-hemoglobin concentrations for the upper layer and the lower layer can be
easily obtained via Lambert-Beer law, from the estimated Δμa. An example of application of
this stratigraphic model is shown in Fig. 10, where data where collected during a Valsalva
maneuver, that forces an increase of the systemic blood volume, resulting in an increase of
both oxyhemoglobin and deoxyhemoglobin concentrations in the superficial layers of the
skin.

Fig. 10. Estimated ΔHbO2 and ΔHb in the superficial layer (UP, continuous line) and in the
brain (DOWN, dotted line) during the Valsalva maneuver without normalization. The two
vertical dashed lines indicate the beginning and the end of the task period, respectively.
During the Valsalva maneuver the sistemic blood volume dramatically increases, while the
local blood volume in the brain is less affected by the maneuver effects. A proper depth
selectivity remarks this differences.

3.2 Multimodality approach

Recently a great interest in multimodality approaches has grown. Merging the advantages of
different imaging and functional techniques, such as co-registration of NIRS with MRI [Merritt
et al. (2002)], blood flow monitors, fMRI [Torricelli et al. (2007)] and PET, gives the possibility
to build anatomo-functional images and movies to largely improve information visualization.
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Moreover, the comparison with standard clinical techniques such EEG or MEG can lead to a
clinical standardization of the NIRS signal and push Near InfraRed Spectroscopy towards a
regular clinical use [nEUROPt Project (2008-2012)].

Using anatomical magnetic resonance priors to perform MRI-guided optical reconstruction
dramatically improves the spatial resolution of the diffuse optical tomography techniques
[Boas & Dale (2005)]. Simulations of light propagation are run into the MRI head volume,
using Monte Carlo statistical methods such as Fang & Boas (2009), and then the cortical
activation profile is obtained solving an inverse problem. For a more detailed description
of it see Caffini et al. (2011).

In the event of an unavailability of the subject-specific anatomy the efficient use of an
MRI anatomical atlas has been demonstrated [Caffini et al. (2010)]. Fig. 11 reports an
atlas reconstruction of a cortical activation during a visual protocol of pattern reversal
checkerboard.

Fig. 11. Atlas map visualization of an MRI-guided optical reconstruction of the brain
activation in the visual cortex (the brain is seen from the back), during a pattern reversal
checkerboard protocol.

4. Conclusions

Near InfraRed Spectroscopy applied in vivo to cortical tissues has been widely investigated
through the last two decades and big steps have been done.

From the technical point of view, the laser technology, and in particular the introduction of
semiconductor laser diodes, has helped to fabricate compact and clinical instrumentations.
Moreover, the improvements in light detectors has permitted to develop accurate devices, for
example, in the time-resolved technology, the red-extended photocathodes well increased the
quantum efficiency in the near red region.

Nevertheless, a lot more has to be done. Pulsed lasers sources are getting better and better,
especially concerning time stability and output power. Photomultiplier tubes is an efficient
and well established technology, but, in NIRS application, suffers the need of high voltage
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supplies and the necessity to work in a dark environment, to avoid background light. Single
Photon Avalanche Diodes (SPAD) are the available technology that best fits the needs of Near
InfraRed Spectroscopy. Actual work is to integrate SPADs into NIRS setups by means of
increased light sensitive area and better quantum efficiency in the near red spectrum. For
more information about SPAD detectors see [Cova et al. (2010)].

An interesting future perspective, is the so-called null-distance measurement setup, that is the
possibility to collect light from the very same point of injection. Only time resolved techniques
allow this possibility and a few successful efforts have been made in this direction [Pifferi et al.
(2008)].

From the medical point of view, hundreds of physiological studies and psychological tasks
have been carried out and a massive literature is available on the subject. For these reason, a
larger clinical use of non-invasive optical imaging in the next years is expected. In particular,
we expect time resolved NIRS to be the best candidate for this purpose. The four-year
nEUROPt Project [nEUROPt Project (2008-2012)], financed by the European Union under The
Seventh Framework Programme for research and technological development (FP7) for the
period 2008-2011, and coordinated by the Authors, aims at the development and clinical
validation of advanced non-invasive optical methodologies for in-vivo diagnosis, monitoring,
and prognosis of major neurological diseases (stroke, epilepsy, ischemia), based on diffuse
optical imaging by pulsed near infrared light. The consortium plans major developments in
technology and data analysis that will enhance TD-NIRS with respect to spatial resolution,
sensitivity, robustness of quantification as well as performance of related instruments in
clinical diagnosis and monitoring. A strong clinical basis is being produced and the diagnostic
value of TD-NIRS applications to brain study will be assessed, by putting using standard
methodologies (such EEG) and new optical methods side by side, in a co-registration setup.
The potential commercialization of TD-NIRS systems will be then evaluated by European
system manufacturers.
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increased light sensitive area and better quantum efficiency in the near red spectrum. For
more information about SPAD detectors see [Cova et al. (2010)].

An interesting future perspective, is the so-called null-distance measurement setup, that is the
possibility to collect light from the very same point of injection. Only time resolved techniques
allow this possibility and a few successful efforts have been made in this direction [Pifferi et al.
(2008)].

From the medical point of view, hundreds of physiological studies and psychological tasks
have been carried out and a massive literature is available on the subject. For these reason, a
larger clinical use of non-invasive optical imaging in the next years is expected. In particular,
we expect time resolved NIRS to be the best candidate for this purpose. The four-year
nEUROPt Project [nEUROPt Project (2008-2012)], financed by the European Union under The
Seventh Framework Programme for research and technological development (FP7) for the
period 2008-2011, and coordinated by the Authors, aims at the development and clinical
validation of advanced non-invasive optical methodologies for in-vivo diagnosis, monitoring,
and prognosis of major neurological diseases (stroke, epilepsy, ischemia), based on diffuse
optical imaging by pulsed near infrared light. The consortium plans major developments in
technology and data analysis that will enhance TD-NIRS with respect to spatial resolution,
sensitivity, robustness of quantification as well as performance of related instruments in
clinical diagnosis and monitoring. A strong clinical basis is being produced and the diagnostic
value of TD-NIRS applications to brain study will be assessed, by putting using standard
methodologies (such EEG) and new optical methods side by side, in a co-registration setup.
The potential commercialization of TD-NIRS systems will be then evaluated by European
system manufacturers.
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1. Introduction 
Functional brain mapping strives to describe the brain’s organization as a mosaic of distinct 
regions, each of which subserves a particular function. Advances in our understanding of 
functional brain organization over the past decades have been propelled by the availability 
of increasingly sophisticated methods for assessing various aspects of neuronal activity in 
vivo. These methods can be broadly categorized as “direct” or “indirect” measures of 
neuronal activity (Figure 1). Direct techniques measure changes in electromagnetic fields 
resulting from neuronal action potentials and synaptic activity. Indirect techniques measure 
changes in other tissue properties that are related to neural activity. This distinction does 
not imply the superiority of direct over indirect techniques. Certain disadvantages of direct 
measures were the very motivation for the development of indirect measures. Indeed, the 
most widely used functional brain imaging modality currently is functional magnetic 
resonance imaging (fMRI), an indirect technique. A subset of indirect techniques are based 
on changes in blood flow subsequent to and produced by neural activity. These perfusion-
dependent functional brain imaging techniques include fMRI, positron emission 
tomography (PET), and others. Although they are among the most commonly used methods 
for investigating brain function, they rely on vascular responses that are not completely 
understood. In this chapter, we will focus on indirect measures of brain activity, 
emphasizing the technique of optical intrinsic signal imaging (OISI). We discuss the physical 
basis of perfusion imaging and OISI, animal and human studies of OISI to date, and its 
potential as a powerful intraoperative functional brain mapping tool. 

2. Perfusion-based functional brain imaging 
In framing OISI, we first discuss the broad category of perfusion-based imaging techniques 
to which it belongs. Perfusion-based brain imaging techniques measure physiological events 
linked to neuronal activity, such as changes in metabolism or blood flow, and include 
positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and 
OISI. These techniques do not measure neuronal activity per se; rather, they measure 
surrogate metabolic and vascular markers of activity. In essence, hemodynamic responses 
provide a map of neuronal activity spatially and temporally broadened by passage through 
a vascular filter. Despite their indirect nature, however, perfusion-based brain imaging 
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techniques are among the most commonly used, and have provided numerous important 
clinical and basic research insights. 

 
Fig. 1. Categorical division of in vivo functional brain mapping techniques. Direct methods 
measure electrical and magnetic field changes produced by neuronal action potentials and 
synaptic potentials. Electrical measures include both non-invasive techniques such as 
electroencephalography (EEG) and invasive techniques such as single unit activity (SUA) 
and field potential (FP) recording. The most common magnetic measure is 
magnetoencephalography (MEG). Indirect methods, on the other hand, are sensitive to other 
tissue changes that accompany neural activation. Structural changes produce variations in 
optical properties that follow the millisecond timecourse of neural events. Techniques 
taking advantage of these processes include voltage sensitive dye (VSD) imaging, which 
measures transmembrane voltage changes, and event-related optical signal (EROS) imaging, 
which measures optical scattering changes putatively produced by ionic movement. Indirect 
assessment is also possible using changes in blood flow elicited by neural activity. 
Hemodynamic events follow a much slower time course (several seconds), but are the most 
commonly used signals for functional imaging. A full appreciation of their importance for 
basic neurophysiology and functional imaging requires a detailed understanding of 
neurovascular coupling, or the relationship between neuronal activity and perfusion. PET, 
positron emission tomography; fMRI, functional magnetic resonance imaging; OISI, optical 
intrinsic signal imaging; NIRS, near-infrared spectroscopy. 

3. Neurovascular coupling 
Understanding the capacities and limitations of perfusion-based techniques requires an 
appreciation of the relationship between changes in neuronal activity and blood flow. In 
brief, the concept of “neurovascular coupling” describes the observation that increases in 
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neuronal activity trigger local increases in blood flow. Whether the perfusion response is 
necessary to supply an increased metabolic demand is under debate. This physiological 
blood flow response has several measurable properties that form the basis for the techniques 
described below. 

The idea of neurovascular coupling dates to the late 19th century. In his tome Principles of 
Psychology, William James states, 

The fluctuations of the blood-supply to the brain … followed the quickening of mental activity almost 
immediately. We must suppose a very delicate adjustment whereby the circulation follows the needs 
of the cerebral activity. Blood very likely may rush to each region of the cortex according as it is most 
active, but of this we know nothing. I need hardly say that the activity of the nervous matter is the 
primary phenomenon, and the afflux of blood its secondary consequence. 

William James (1890) 

James draws these conclusions from the observations of the Italian scientist Mosso, who 
found that cerebral blood flow was redistributed based on emotional or intellectual activity. 
In the same year, Roy and Sherrington published their landmark study, “On the regulation 
of the blood supply of the brain”, in which they hypothesized a connection between 
neuronal activity and blood flow. Decades later in 1928, Fulton (then a neurosurgical 
resident under Harvey Cushing, the “father” of neurosurgery) described a clinical case 
involving a patient with an occipital arteriovenous malformation that produced an audible 
bruit when the patient engaged in visual activity [1]. This finding further strengthened the 
case for a causal connection between brain activity and vascular responses. Important 
developments occurred in the 1950s, when Kety and Sokoloff pioneered methods for 
measuring metabolism and blood flow changes in the whole brain using radioactive tracers 
[2]. Ingvar and Lassen furthered these techniques by demonstrating regional blood flow 
changes in response to neuronal activity in humans [3]. These methods were combined with 
reconstruction algorithms developed for X-ray computed tomography to give rise to PET, 
the first of the modern perfusion-based brain imaging techniques. 

4. The hemodynamic response 
Although it took over half a century to appreciate the significance of the coupling between 
brain activity and cerebral blood flow, the last few decades have seen a considerable 
advancement in our understanding of its spatiotemporal dynamics. The “hemodynamic 
response” refers to changes in blood flow, volume, and oxygenation generated by neuronal 
activation. Because perfusion-based imaging modalities are based on various aspects of the 
hemodynamic response, their proper interpretation requires an understanding of the 
characteristics of the response and its relationship to neuronal activity. 

Because neurons are thought to rely on oxidative metabolism for energy production, an 
increase in neuronal activity leads to increased oxygen consumption, which results in 
extraction of oxygen from the surrounding tissue and capillaries. These events take place 
within the first 100-300 milliseconds following activation onset. Local oxygen extraction 
produces a transient increase in the relative concentration of deoxyhemoglobin (Hbr) that 
peaks at 0.75 – 2 seconds, depending on cortex, species, and physiological condition. 
Neuronal activity also triggers an increase in local cerebral blood flow (CBF), via a host of 
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possible mediators and incompletely understood mechanisms. The CBF response begins 
near the site of neural activity in small arterioles, the primary resistance vessels, and 
propagates retrograde to larger vessels, peaking at 2-4 seconds. The influx of oxygenated 
arterial blood rapidly reverses local tissue oxygenation, decreasing Hbr and increasing 
oxyhemoglobin (HbO2). This oxygenation change greatly overshoots baseline, resulting in 
relative hyperoxygenation, peaking at 3-6 seconds. As the inflowing blood drains into the 
venous system, these later oxygenation changes occur in medium to large veins. If neuronal 
activation lasts fewer than ~4 seconds, the oxygenation changes gradually return to baseline 
over 10-20 seconds. If activation lasts longer, blood volume and oxygenation remain 
elevated for the duration of stimulation at a lower “plateau” level, and then return to 
baseline over several seconds after stimulus offset. 

The reliance of neurons on oxidative metabolism mentioned above is a recently developed 
hypothesis. In the late 1980s Fox and Raichle found that relative increases in CBF were six 
times greater than increases in oxygen utilization [5-6]. The authors suggested that this 
mismatch represented uncoupling between CBF and oxygen metabolism, which they 
interpreted as suggesting neurons use means other than oxygen metabolism to support their 
energy demand. For several years, a glycoltyic mechanism for ATP production was thought 
to support neuronal activity. In the late 1990s, however, Buxton and Frank proposed a 
biophysical model of the hemodynamic response that accounted for these measurements [7-
9]. They suggested that the capacity for oxygen diffusion from capillary red blood cells to 
neurons was reduced during the CBF response due to a decrease in capillary transit time. 
Blood flowing more quickly had less time to exchange oxygen with the tissue. According to 
this “oxygen limitation” model, a relatively larger increase in CBF was necessary to 
compensate for the reduced oxygen extraction, and that Fox and Raichle’s data actually 
supported tight coupling between CBF and oxygen metabolism. This model supported the 
notion that oxidative metabolism accounted for the bulk of neuronal energy production. 
Studies using MR spectroscopy [10] and fMRI [11] provided experimental validation of this 
theory. In the last few years, a number of additional studies have demonstrated focal 
decreases in tissue oxygenation and increases in oxygen metabolism rate [12-15]. 

The debate over the physiology of energy metabolism has occurred almost in parallel with 
the debate over its implication for perfusion-based functional imaging. Some have 
suggested that a local increase in Hbr due to decreased tissue oxygenation would generate a 
transient drop in blood oxygen-level dependent (BOLD) signal (“initial dip” in fMRI 
parlance) [16-17]. Its close relationship to neuronal metabolism would putatively allow the 
initial dip to serve as a spatially accurate mapping signal for functional imaging. Although 
several studies have observed the dip with BOLD fMRI [18-27] and OIS spectroscopy [13, 
28-31], others have not [32-36], and its existence remains somewhat controversial. Some 
have suggested that slightly different spatiotemporal dynamics between cerebral blood flow 
(CBF) and volume (CBV) could create an initial dip in BOLD signal without an increase in 
oxygen metabolism [9, 37]. The observation that CBV increases at least 0.5 seconds after 
tissue pO2 begins to drop [15], however, makes that possibility unlikely. There now seems to 
be general agreement that the dip exists and is related to increased oxygen consumption. Its 
small size [38] and susceptibility to baseline physiological conditions [7, 32] however, 
jeopardize its usefulness as a mapping signal. 
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Although general aspects of the hemodynamic response have been fairly well characterized, 
relatively little is known about the mediators of the response [39]. Hypotheses explaining 
the molecular communication between neural activity and blood flow fall roughly into four 
groups [40]. According to one, byproducts of neuronal activity such as adenosine and K+ 
released extracellularly cause vasodilatation in nearby blood vessels [41]. A second 
hypothesis promotes the role of nitric oxide (NO). In this scenario, glutamate, the 
predominant excitatory neurotransmitter, also acts as a mediator of neurovascular coupling. 
Glutamate released into the synapse binds to postsynaptic NMDA receptors and activates 
guanylyl cyclase to produce NO, which diffuses to neighboring blood vessels and causes 
vasodilatation [42]. According to a third line of thought, neuronal processes directly 
innervate local blood vessels and transmit vasodilatory signals through acetylcholine [43], 
dopamine [44], or serotonin [45]. The final and most recent argument also implicates 
glutamate, but highlights the role of astrocytes. Astrocytic processes ensheathing the 
synapse sense glutamate levels through metabotropic receptors that produce graded 
intracellular Ca2+ increases. The Ca2+ wave propagates to the astrocyte endfeet, which are in 
intimate contact with blood vessels, and triggers vasodilatation through release of various 
molecules including prostanoids [46]. 

Historically, the most commonly used perfusion-based functional brain mapping techniques 
have been positron emission tomography (PET) and functional magnetic resonance imaging 
(fMRI). The latter has experienced tremendous growth over the last ten years, eclipsing all 
other brain imaging techniques [47]. The demand for high-resolution imaging has also 
brought OISI to the forefront, along with its lower resolution but noninvasive cousin, near-
infrared spectroscopy (NIRS). 

Each of these imaging modalities is based on one or more aspects of the hemodynamic 
response. The following discussion introduces the development, basic methodology, and 
relative advantages and disadvantages of these techniques, with particular emphasis given 
to OISI and related optical techniques. 

4.1 Positron emission tomography (PET) 

Throughout the 1950s and 1960s, radionuclide scans were a popular tool for 
neurodiagnostics. The application of tomographic reconstruction techniques developed for 
X-ray computerized tomography (CT) to nuclear medicine heralded the rise of positron 
emission tomography (PET) and single photon emission computed tomography (SPECT). 
Introduced in 1975 by Michael Phelps [48], PET imaging was the first non-invasive (or at 
least minimally invasive) perfusion-based functional brain imaging modality. This 
technological breakthrough allowed autoradiographic measurement of metabolism [49] and 
blood flow [2], previously restricted to animals, to be performed in humans in the form of in 
vivo autoradiograms. The development of several biologically useful positron-emitting 
molecules rapidly increased the utility of PET through the late 1970s and 1980s. 

PET imaging relies on the use of radioactive atoms decaying by emitting positrons, which 
have the same mass as electrons but a positive charge. These positron-emitting atoms are 
generated either through the decay of another generating element (e.g., 68Ga through the 
decay of 68Ge), or by direct production in a cyclotron (e.g., 15O). Molecules containing these 
radioactive elements are chemically synthesized, and trace amounts injected into the subject. 
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The labeled molecules circulate according to their biological properties, all the while 
emitting positrons. The emitted positrons travel a short distance (on the order of a few mm), 
until they encounter their anti-particles, electrons, with which they annihilate. The 
annihilation produces a characteristic release of so-called synchrotron energy in the form of 
two 511 keV gamma rays, which travel in opposite directions, close to 180º apart. 

Because of the gamma rays’ high energy, PET system detectors employ elements with high 
atomic number and therefore high stopping power. The original detectors used thallium-
doped sodium iodide (NaI[Tl]) crystals, but modern scanners use either bismuth germinate 
(BGO; Bi4Ge3O12) or lutetium oxyorthosilicate (LSO). The detector electronics use a 
coincidence detection system that reduces background radiation and scatter by rejecting 
events that are not recorded almost simultaneously (within the preset coincidence time 
window) on both sides of the head. The source is assumed to exist on a line connecting the 
two detectors that recorded the events, and its position is determined based on the 
coincidence time difference. Events are recorded in this manner, and the source distribution 
within the brain is then calculated by solving the inverse problem using filtered back-
projection or iterative approaches. 

One of the advantages of PET imaging is the diversity of metabolic, hemodynamic, and 
biochemical processes that can be assessed using different tracers. Those that are most 
relevant for hemodynamic functional brain mapping are 15O-labelled water (H215O) and 18F-
labelled 2-fluoro-2-deoxy-D-glucose (18FDG). H215O distributes within the circulation and 
collects proportionally to the regional blood flow. H215O PET is therefore the most common 
method for non-invasive cerebral blood flow (CBF) measurement. 18FDG is actively 
transported into cells via glucose transporters, where it is phosphorylated in the cytoplasm 
and thereby sequestered intracellularly. Its 2-fluoro group prevents it from undergoing 
further glycolysis, so the amount accumulated within the cell indicates the rate of glucose 
metabolism. 

More than 25 years since its introduction, PET imaging is still an important and widely used 
technique for clinical diagnosis and basic science research. PET offers versatility for 
measuring a range of physiological processes and the ability to quantify them in absolute 
terms. Its reliance on radiopharmaceuticals, however, limits the potential subject population 
and number of studies that can be performed in the same subject. In addition, PET affords 
rather poor spatial (several millimeters) and temporal (10s of seconds to minutes) resolution. 

SPECT imaging is similar to PET in its reliance on exogenous radioisotope contrast agents. 
SPECT radioisotopes undergo gamma decay by emitting a single high-energy photon, as its 
name implies, as opposed to the two gamma rays produced by positron-electron 
annihilation in PET. As in PET, the contrast agents can be chosen to measure physiological 
responses such as CBF (e.g., 99mTc-hexamethylpropyleneamineoxime [HMPAO]). Many of 
the radiopharmaceuticals are commonly used in nuclear medicine and therefore do not 
require a cyclotron for their production. Factors such as these make SPECT imaging 
significantly cheaper than PET, although it suffers from even lower spatial resolution. 

4.2 Functional magnetic resonance imaging (fMRI) 

In 2001, fMRI surpassed EEG as the most widely used brain imaging technique, in terms of 
the number of published papers. Whereas EEG required 72 years to reach this level, fMRI 
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required only 11. This surge in popularity is a consequence of the technique’s 
noninvasiveness and balance between sensitivity and resolution. In addition, many types of 
studies can be performed in clinical MRI magnets, which are increasingly available in 
modern health care facilities. Over the past decade, great progress has been made in 
improving the versatility, spatial and temporal resolution, and clinical utility of fMRI. 

The phenomenon of nuclear magnetic resonance (NMR) was observed independently by 
Bloch and Purcell in 1945, a finding for which they were jointly awarded the Nobel Prize in 
Physics in 1952. NMR describes the behavior of atomic nuclei in magnetic fields. Because 
nuclei possess both charge and spin, they also possess an intrinsic magnetic moment. When 
placed in an external magnetic field ( B


), nuclei align their magnetic moments parallel or 

anti-parallel to the field and precess about the field like a gyroscope precessing in the 
Earth’s gravitational field. If molar quantities of spinning atoms are considered, a small 
fraction more tend to align parallel to B


, resulting in a net magnetization vector M


 parallel 

to B


. 

Precession occurs at a characteristic frequency (the Larmor frequency,  ), which is a 
function of B


 and the atom’s inherent properties (called its gryomagnetic constant, ): 

B   
 . The resonance phenomenon dictates that externally applied energy at this 

frequency will be transferred to the spinning atoms. Because the Larmor frequency is in the 
radio wave spectrum, the applied energy is called the radiofrequency (RF) pulse. The RF 
energy exerts a torque on M


, rotating it towards the transverse plane. Because the spins are 

still precessing, the time varying magnetic field they produce in the transverse plane 
induces current in a coil of wire oriented perpendicular to it. Thus transverse magnetization 
produces a detectable signal. 

This signal decays by two processes: longitudinal (spin-lattice) and transverse (spin-spin) 
relaxation. The first describes the relaxation of M


 back to its equilibrium position, parallel 

to B


, and occurs with a characteristic time constant T1. The second describes dephasing of 
spins due to precession at different rates, and occurs with a time constant T2. This difference 
arises from spins experiencing slightly different magnetic field strengths, caused either by 
interactions with other spins (pure T2 effects) or by small field inhomogeneities (T2* effects). 
Variations in the latter provide contrast for the most commonly used form of fMRI. 

Imaging based on NMR involves spatially encoding the position of different spins using 
magnetic field gradients. Whereas NMR can be performed with any atom possessing non 
zero spin, imaging applications prefer spin ½ nuclei because they have only two possible 
energy levels. Several spin ½ atoms have been used for imaging and spectroscopy 
applications, including 3He [50], 13C [51], 31P [52], and 129Xe [53], but by far the most 
common is 1H because of its abundance in the form of H2O in biological material. 

Biological imaging using NMR was developed in the late 1970s, with the first human images 
appearing in 1977 [54]. The word “nuclear” was dropped in the mid 1980s to avoid the 
associated negative connotation, in favor of the term magnetic resonance imaging (MRI). In 
the early 1990s, Belliveau, Rosen, and colleagues performed the first functional studies using 
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and thereby sequestered intracellularly. Its 2-fluoro group prevents it from undergoing 
further glycolysis, so the amount accumulated within the cell indicates the rate of glucose 
metabolism. 

More than 25 years since its introduction, PET imaging is still an important and widely used 
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measuring a range of physiological processes and the ability to quantify them in absolute 
terms. Its reliance on radiopharmaceuticals, however, limits the potential subject population 
and number of studies that can be performed in the same subject. In addition, PET affords 
rather poor spatial (several millimeters) and temporal (10s of seconds to minutes) resolution. 

SPECT imaging is similar to PET in its reliance on exogenous radioisotope contrast agents. 
SPECT radioisotopes undergo gamma decay by emitting a single high-energy photon, as its 
name implies, as opposed to the two gamma rays produced by positron-electron 
annihilation in PET. As in PET, the contrast agents can be chosen to measure physiological 
responses such as CBF (e.g., 99mTc-hexamethylpropyleneamineoxime [HMPAO]). Many of 
the radiopharmaceuticals are commonly used in nuclear medicine and therefore do not 
require a cyclotron for their production. Factors such as these make SPECT imaging 
significantly cheaper than PET, although it suffers from even lower spatial resolution. 

4.2 Functional magnetic resonance imaging (fMRI) 

In 2001, fMRI surpassed EEG as the most widely used brain imaging technique, in terms of 
the number of published papers. Whereas EEG required 72 years to reach this level, fMRI 

 
Intraoperative Human Functional Brain Mapping Using Optical Intrinsic Signal Imaging 

 

83 

required only 11. This surge in popularity is a consequence of the technique’s 
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modern health care facilities. Over the past decade, great progress has been made in 
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an injected paramagnetic contrast agent [55-57]. Contrast agents with high magnetic 
susceptibility produce large magnetic field gradients in the local environment, decreasing 
T2* in proportion to the amount present. Using tracer kinetic models, they compared the 
decrease in T2* weighted signal during visual activity and rest and generated a CBV 
weighted functional image of visual cortex [55]. 

At the same time, Ogawa and colleagues showed in animals that functional images could be 
generated without an exogenous contrast agent [58]. They took advantage of the natural 
difference in magnetic properties between oxy- (HbO2) and deoxyhemoglobin (Hbr). 
Whereas the former is weakly diamagnetic and has little effect on magnetic fields, the latter 
is paramagnetic and causes local field disturbances. Hbr therefore acts as an endogenous 
contrast agent. The CBF response produced by functional activity reduces local Hbr content 
and therefore increases signal strength. 

These lines of research converged in 1992, when these two groups and a third almost 
simultaneously demonstrated that this intrinsic oxygenation-based contrast could be used to 
map brain activity [59-61]. This so-called blood oxygenation level dependent (BOLD) 
contrast is by far the most common in fMRI studies. BOLD fMRI has spearheaded the surge 
in functional brain imaging over the last decade, surpassing PET due to its superior spatial 
and temporal resolution and avoidance of exogenous radioactive tracers. 

Because it is based on blood Hbr content, BOLD fMRI temporal characteristics closely follow 
those of oxygenation changes, starting within 1-2 seconds of stimulation onset and peaking 
at 4-6 seconds. Spatially, it emphasizes venous structures because oxygenation changes are 
most prominent in medium to large veins. This bias tends to decrease the spatial specificity 
of conventional T2* BOLD fMRI somewhat, as veins are often millimeters away from the 
neuronal areas they drain. Spatial precision of a few millimeters may be sufficient for many 
types of cognitive studies investigating the entire brain with moderate resolution (and is 
certainly superior to that of PET, EEG, or MEG), but it is not sufficient for high resolution 
studies of columnar functional architecture.  

In 1996, Malonek and Grinvald observed a small increase in Hbr before the CBF-induced 
hyperoxygenation [17]. They attributed this transient deoxygenation to an increase in 
oxidative metabolism that decreased local tissue oxygen tension before the onset of the CBF 
response. They suggested that imaging based on the dip could improve spatial specificity, 
since it was restricted to metabolically active areas. 

A transient increase in Hbr would appear as a brief decrease in BOLD signal prior to the 
conventional positive BOLD response. Over the next several years, many investigators looked 
for this “initial dip” in a variety of cortices and species. It has been successfully identified in 
the visual cortex of cat [22-23], monkey [21], and human [18-20, 24-27], and human motor 
cortex [25, 27]. Although these studies identified the dip in the BOLD signal timecourse, only 
one study has been able to generate a map using this signal [23]. Other groups have tried, but 
found that the maps were not reproducible [62]. Indeed, several fMRI studies in rat 
somatosensory cortex have been unable to detect the dip altogether [34-36]. These 
discrepancies may be due to anesthesia, differences in cortical architecture, or other effects.  

Alternatives to BOLD fMRI include CBF- (or perfusion-) weighted fMRI and CBV-weighted 
fMRI. In CBF fMRI, 1H spins in arterial blood water are used as endogenous flow tracers [63-

 
Intraoperative Human Functional Brain Mapping Using Optical Intrinsic Signal Imaging 

 

85 

64]. Spins outside the region of interest are labeled with an RF pulse. Labeled spins are 
allowed to enter the imaging region after a suitable time delay (0.5 – 2 s), where they 
exchange with tissue water. The amount of signal detected in the imaging slice is 
proportional to the flow rate into the slice. Advantages of CBF fMRI include better spatial 
specificity than BOLD, with less emphasis on large draining veins. In addition, whereas 
BOLD signals include a complex mixture of CBV, CBF, and oxygenation contributions, CBF 
fMRI can isolate and quantify the CBF component. This technique suffers, however, from 
relatively poor temporal resolution (several seconds) and lower sensitivity than BOLD [65]. 

The original reports of functional imaging using MRI used CBV contrast [55-57]. Current 
CBV fMRI studies use exogenous paramagnetic contrast agents with a long blood half-life, 
avoiding the need for kinetic tracer models and allowing repeated imaging. The large 
magnetic field disruptions introduced by the contrast agents lead to decreased T2*-weighted 
signals in proportion to CBV. The temporal resolution of CBV fMRI is similar to that of 
BOLD fMRI, and its contrast-to-noise ratio (CNR) is much higher. The major drawback is 
the requirement for contrast injection, which also precludes human studies, although clinical 
trials are underway [66]. 

5. Optical intrinsic signal imaging (OISI) 
Intraoperative OISI maps the brain by measuring activity-related changes in cortical light 
reflectance. Activity related reflectance changes were first demonstrated in nervous tissue in 
vitro more than 50 years ago [67] and have since been observed in vivo in rodents, cats, 
nonhuman primates, and humans. It is a particularly attractive brain-mapping modality 
because it can rapidly assess the functional activity of large cortical areas with very high 
spatial resolution (50–100 µm). Because of its versatility, OISI has been used to characterize 
numerous physiological phenomena, including neurovascular coupling [67-69], 
hemodynamic refractory periods [70], vasomotion [71], the organization of the visual cortex 
[71-73], cortical plasticity [71-76], cortical spreading depression [77], seizure [78-79], and 
language organization in the human brain [80]. Haglund and colleagues [81] were the first 
to observe optical signals in humans during seizure and cognitive tasks. Since then, the 
authors of studies on intraoperative OISI have described optical signal evolution in human 
cortex [82], the mapping of primary sensory and motor cortices [70], and the delineation of 
language cortices within [83] and across languages [80]. 

5.1 Intrinsic optical signals 

OISI detects perfusion-related and metabolic signals that are coupled to neuronal activity, 
including hemoglobin concentration and oxygenation changes, cytochrome oxidation 
changes, and light scattering caused by altered blood volume, blood flow, and cell swelling 
[15, 17, 30, 84-86], which in turn create a functional map of the brain. Each of these different 
phenomena is observed and best quantified at different imaging wavelengths [30, 87]. For 
example, imaging at 610 nm best detects deoxyhemoglobin concentration changes because 
the absorbance of oxyhemoglobin is much less than that of deoxyhemoglobin at 610 nm [30]. 
Thus, OISI at 610 nm is analagous to BOLD fMRI [20], which capitalizes on local magnetic 
susceptibility changes due to differences between deoxyhemoglobin and oxyhemoglobin 
concentration. 
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reflectance. Activity related reflectance changes were first demonstrated in nervous tissue in 
vitro more than 50 years ago [67] and have since been observed in vivo in rodents, cats, 
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[71-73], cortical plasticity [71-76], cortical spreading depression [77], seizure [78-79], and 
language organization in the human brain [80]. Haglund and colleagues [81] were the first 
to observe optical signals in humans during seizure and cognitive tasks. Since then, the 
authors of studies on intraoperative OISI have described optical signal evolution in human 
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Fig. 2. Hemoglobin absorption spectrum. Optical intrinsic signal imaging (OISI) relies on 
changes in cortical light reflectance produced by the hemodynamic response. The most 
important absorber in the visible spectrum is hemoglobin (Hb). Because oxy- (HbO2) and 
deoxyhemoglobin (Hbr) absorb light differentially, OISI is wavelength dependent. By 
selecting different imaging wavelengths, different aspects of the hemodynamic response can 
be assessed. Both Hb species absorb equally at isosbestic points (549, 569 nm; green light), so 
reflectance changes at these wavelengths emphasize changes in total Hb, a measure of blood 
volume. The increased absorbance of Hbr in the 605-630 nm range (red light) permits 
estimation of oxygenation changes by imaging in this range. 

5.2 OISI mapping 

Optical maps are integrated comparisons between the cortex at rest and during prescribed 
activity. OISI can only be performed intraoperatively in humans because it must be 
performed following craniotomy and dural reflection. A CCD camera is used to detect small 
optical changes (0.5–5%) and is mounted onto an operating microscope (Figure 3) or other 
support structure for imaging. The cortex is then epi-illuminated with white light, and the 
CCD camera captures the reflected light after it passes through a band-pass filter. Maps of 
functional change are calculated by comparing images during activation to images at rest 
[70, 80, 82-83, 89-91]. Multiple trials are averaged to increase the SNR.  

Respirophasic and cardiophasic movements of the brain are significant sources of noise 
during imaging. Using a glass plate to immobilize the cortex [81], synchronizing image 
acquisition with respiration and heart rate [82] and using image registration [80-81, 83] 
allow for a reduction in this noise. Vascular artifacts from blood vessels are another major 
source of noise. Focusing 1-2 mm below the cortical surface [87] and imaging only 
immediately after stimulus onset [92] can minimize this artifact when the area being imaged 
is close to large vessels [13, 71, 93]. 
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Commercial systems for clinical intraoperative OISI imaging are not yet available. 
Investigational systems can be developed from an existing operating microscope with the 
addition of a camera, camera controller, personal computer, and software to control image 
acquisition and analysis. 

 
Fig. 3. Intraoperative photograph showing CCD camera mounted on operating microscope. 
The cortex is illuminated with white light, and the reflected light is filtered at a particular 
wavelength of interest. Images are captured by a very sensitive CCD camera (shown with 
green arrow), and reflectance changes between rest and stimulation are measured. These 
changes correspond to evolving aspects of the hemodynamic response generated as a 
consequence of underlying cortical activity. 

5.3 OISI in animal models 

OISI has been extensively used in animals to date and has paved the way for major 
breakthroughs in our understanding of the functional organization, physiology and 
pathophysiology of the brain [30, 68-69, 72, 74-78, 84-85, 92, 94-97]. OISI studies in animals 
have defined the functional topography of visual [72] and other cortices, helped elucidate 
the coupling between electrophysiology and perfusion-related signals, characterized the 
robustness of neurovascular response capacities, and described perfusion-related changes 
induced by pathophysiological processes such as cortical spreading depression and seizure. 
These studies have repeatedly demonstrated the versatility of this modality and its 
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numerous potential applications. The specificity of optical maps generated through OISI has 
been consistently confirmed in these various studies when compared to other established 
invasive methodologies, including single unit activity measurement [87, 95], maximum field 
potential measurement [96-97], and cytochrome oxidase-staining [68, 95]. OISI has also been 
used for mapping seizure propagation in the cortex [78] and for identifying epileptogenic 
foci [79]. 

5.4 OISI in humans 

The first OISI maps of human function were created by asking the patient to engage in simple 
motor tasks such as tongue movement and simple language task such as visual object-naming 
exercises. Motor tasks demonstrated clear optical signals in the motor cortex, and language 
tasks demonstrated activity in both Broca and Wernicke areas [81]. Optical responses in 
humans typically appear within 1 second, peak between 3 and 4 seconds, and disappear by 9 
seconds, similar to those observed in animal models [82, 89]. Indeed, this similar timing of 
optical signals across species suggests that we are indeed imaging similar phenomena, and 
because we have clearer physiological correlates in animals obtained through invasive 
methodologies, we can extrapolate that we are imaging the same neural activity. In line with 
this assertion, hemodynamic refractory periods originally observed in rodents were also 
observable in humans during OISI mapping [70]. In further corroboration, all human OISI 
studies to date indicate that the observed reflectance changes are spatially correlated with 
somatosensory evoked potential (SSEP) data. Median and ulnar nerve stimulation leads to a 
decrease in optical signal obtained at 610 nm in an area that colocalizes with the largest SSEPs 
in both somatosensory and motor cortices [82]. More importantly, OISI maps similarly 
colocalize with intraoperative electrocortical stimulation mapping (ESM), the current gold 
standard of cortical mapping [80-81, 83]. Areas that are identified by ESM as essential for a 
specific task consistently demonstrate optical activity [80-81, 83].  

A notable phenomenon with optical signals is “vascular spread.” OISI maps demonstrate 
signal in some surrounding areas (approximately 25%) that are not identified as essential on 
ESM. This has been demonstrated in both rodent models [98-100] and human intraoperative 
imaging. Spread may occur in part because intraoperative OISI is detecting both essential 
and secondary cortices whereas ESM is only detecting essential areas. Spread may also be 
related to imprecise physiological coupling of neuronal activity, metabolism, and perfusion. 
The sensitivity, specificity, positive predictive value, and negative predictive value of 
intraoperative OISI relative to ESM as a gold standard have not been fully quantified [101-
102], and such quantification will be essential to the broadening of intraoperative OISI as a 
fundamental clinical tool.  

OISI has also begun to provide a finer resolution of cortical mapping with regards to task 
specific activity. For example, OISI demonstrates differentially activated gyri during tongue 
movement and naming tasks, activities which require similar movements but which are 
otherwise distinct [81]. Median and ulnar nerve stimulation produces distinct maps within 
the same gyrus, possibly providing a fine resolution of somatosensory and motor activity in 
the cortex [82]. Distinct maps of face, thumb, and index and middle fingers have also been 
obtained within the same gyrus [70], and although there is some overlap between these 
areas, the areas of maximum optical signal are distinct for each task. Such specificity has 
also been observed in language areas (Broca and Wernicke areas) [83]. 
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5.5 Advantages of intraoperative OISI mapping 

The ultimate goal of intraoperative mapping is to predict when resection of a cortical area 
will cause functional deficits. As such, ESM is the current gold standard for intraoperative 
mapping because it produces reversible lesions such as would occur permanently with 
resection. However, ESM interpretation is complicated by the fact that cortical stimulation 
may disrupt remote areas via stimulation of neuronal projections [103-104], and this may 
lead to imprecise maps [105]. Thus, direct activation-based techniques such as OISI that rely 
on the detection of local neuronal activity may create a clearer picture when used in 
conjunction with established methods like ESM. 

The spatial resolution of ESM is also one of its important drawbacks. Resection within 1 cm of 
essential areas identified by ESM increases the likelihood of postoperative neurological deficits 
[106-107]. Because of this local current spread, the resolution of this techique is relatively 
coarse. On the other hand, OISI offers a resolution as high as 50 to 100 µm as demonstrated by 
numerous studies, potentially allowing for a much finer delineation of eloquence. 

Rapidity of assessment is another consideration. ESM requires the testing of several sites, at 
different current levels, during numerous tasks. The process requires several repetitions and 
is relatively quite time-consuming. Intraoperative OISI provides a faster assessment of the 
cortical surface, as the entire field of view can be imaged at once. This advantage is 
particularly important when mapping multiple tasks in an area that covers several possible 
functional representations. 

Another advantage of OISI is its non-tactile nature, as it relies solely on light reflection. ESM 
requires direct contact with the brain, and the application of current to its surface. This 
process can precipitate abnormal electrical propagation known as after-discharge activity, 
which can escalate into a clinical seizure. Intraoperative seizures are not only dangerous, but 
also often preclude further mapping, as the brain is relatively depressed afterwards. 

Furthermore, essential areas identified by ESM are consistently demonstrated by 
intraoperative OISI maps, suggesting that they do indeed offer a relatively high sensitivity. 
Thus, cortical regions not demonstrating task-related OISI activity can probably be resected 
without functional consequence. However, vascular spread, as previously described, may 
produce false-positive results in OISI maps by highlighting secondary and/or non-essential 
cortical areas, thus hindering our ability to produce a maximal resection. Thus, OISI may not 
completely replace ESM but may be used in conjunction as a complementary modality to 
improve the accuracy of cortical maps.  

OISI can also be used in conjunction with fluorescent dyes that allow for more precise 
physical localization of pathological tissues such as tumors. Dyes were first used in animal 
studies [15, 96, 107-108] for this purpose. For example, optical imaging of an intravenously 
injected dye in rodents demonstrates intracranial tumors with high accuracy [107], and this 
has correlated well with human studies as well. Preoperative injection of 5-aminolevulinic 
acid, a precursor of fluorescent porphyrin, could be used to identify malignant gliomas with 
85% sensitivity and 100% specificity [108]. The 5-aminolevulinic acid accumulates within the 
malignant tissue, where it is converted to its fluorescent derivative, which is then imaged 
intraoperatively using optical imaging with special optics. This is a powerful adjunctive 
application to optical imaging that can provide spatial information of the relationship 
between pathological tissue and essential cortical areas. 
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5.5 Advantages of intraoperative OISI mapping 

The ultimate goal of intraoperative mapping is to predict when resection of a cortical area 
will cause functional deficits. As such, ESM is the current gold standard for intraoperative 
mapping because it produces reversible lesions such as would occur permanently with 
resection. However, ESM interpretation is complicated by the fact that cortical stimulation 
may disrupt remote areas via stimulation of neuronal projections [103-104], and this may 
lead to imprecise maps [105]. Thus, direct activation-based techniques such as OISI that rely 
on the detection of local neuronal activity may create a clearer picture when used in 
conjunction with established methods like ESM. 

The spatial resolution of ESM is also one of its important drawbacks. Resection within 1 cm of 
essential areas identified by ESM increases the likelihood of postoperative neurological deficits 
[106-107]. Because of this local current spread, the resolution of this techique is relatively 
coarse. On the other hand, OISI offers a resolution as high as 50 to 100 µm as demonstrated by 
numerous studies, potentially allowing for a much finer delineation of eloquence. 

Rapidity of assessment is another consideration. ESM requires the testing of several sites, at 
different current levels, during numerous tasks. The process requires several repetitions and 
is relatively quite time-consuming. Intraoperative OISI provides a faster assessment of the 
cortical surface, as the entire field of view can be imaged at once. This advantage is 
particularly important when mapping multiple tasks in an area that covers several possible 
functional representations. 

Another advantage of OISI is its non-tactile nature, as it relies solely on light reflection. ESM 
requires direct contact with the brain, and the application of current to its surface. This 
process can precipitate abnormal electrical propagation known as after-discharge activity, 
which can escalate into a clinical seizure. Intraoperative seizures are not only dangerous, but 
also often preclude further mapping, as the brain is relatively depressed afterwards. 

Furthermore, essential areas identified by ESM are consistently demonstrated by 
intraoperative OISI maps, suggesting that they do indeed offer a relatively high sensitivity. 
Thus, cortical regions not demonstrating task-related OISI activity can probably be resected 
without functional consequence. However, vascular spread, as previously described, may 
produce false-positive results in OISI maps by highlighting secondary and/or non-essential 
cortical areas, thus hindering our ability to produce a maximal resection. Thus, OISI may not 
completely replace ESM but may be used in conjunction as a complementary modality to 
improve the accuracy of cortical maps.  

OISI can also be used in conjunction with fluorescent dyes that allow for more precise 
physical localization of pathological tissues such as tumors. Dyes were first used in animal 
studies [15, 96, 107-108] for this purpose. For example, optical imaging of an intravenously 
injected dye in rodents demonstrates intracranial tumors with high accuracy [107], and this 
has correlated well with human studies as well. Preoperative injection of 5-aminolevulinic 
acid, a precursor of fluorescent porphyrin, could be used to identify malignant gliomas with 
85% sensitivity and 100% specificity [108]. The 5-aminolevulinic acid accumulates within the 
malignant tissue, where it is converted to its fluorescent derivative, which is then imaged 
intraoperatively using optical imaging with special optics. This is a powerful adjunctive 
application to optical imaging that can provide spatial information of the relationship 
between pathological tissue and essential cortical areas. 
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Importantly, like all intraoperative imaging modalities, OISI presents a distinct advantage 
over preoperative functional mapping (as provided by fMRI or PET) because it can correct 
for “brain shift” following craniotomy and dural reflection [109]. This is a non-trivial 
problem that confounds our ability to rely on preoperative functional mapping alone. 
Intraoperative OISI requires only minimal modification of the neurosurgical equipment 
already found in the operating room and does not impact the surgery or affect normal brain 
tissue as it relies solely on measuring reflected light from the brain. 

5.6 Limitations of intraoperative OISI mapping 

While neurovascular and neurometabolic coupling to neuronal activity appear to be 
consistent in numerous studies to date [15, 80, 82-83, 86-87, 95-97], the major limitation of 
intraoperative OISI continues to be the fact that the signal does not directly arise from 
neuronal activity. This becomes particularly relevant when dealing with pathological cortex, 
as is frequently the case during neurosurgical interventions, where the coupling may not be 
as tight as in normal cortex. This is a major question that remains to be elucidated and 
arguably can only be investigated with high-resolution intraoperative measures such as 
OISI. 

Vascular lesions such as arteriovenous malformations (AVMs) present perhaps the most 
important challenge. Abnormal vascular networks may provide altered and unreliable 
signal in cortical areas adjacent to AVMs. While several studies have found that perfusion-
related mapping signals can be detected directly adjacent to AVMs and can therefore be 
used reliably to predict essential language sites identified by ESM [110-112], the 
interpretation of results in these patients should still be approached cautiously. 

Vascular spread in OISI maps is another confounder in the use of intraoperative OISI as a 
single modality. Indeed, using it as a lone modality may produce significant false-positive 
results that would prevent maximum resection of pathological and non-eloquent tissue. 
Until we understand this spread phenomenon better and are able to control for it, 
intraoperative OISI cannot replace ESM. However, it may provide an important 
complementary modality – for example, intraoperative OISI can be used to rapidly map 
cortical areas of interest with high spatial resolution, and those areas found to demonstrate 
optical activity can then be verified by ESM. 

Another potential drawback of OISI is its limited signal-to-noise ratio (SNR). In language 
mapping trials, SNR values range from 5:1 to 9:1 when averaging four trials. This limited 
SNR can be attributed to patient head motion as well as respirophasic and cardiophasic 
cortical movements. While SNR can be improved by increasing the number trials that are 
averaged, reducing cortical movements by using a glass plate [81], or synchronizing image 
acquisition with respiration and pulse [82], this is still a challenge that remains to be 
addressed. Furthermore, increasing the number of trials elongates the time required for the 
procedure, a distinct disadvantage. Furthermore, unlike fMRI and PET, which afford three-
dimensional maps, intraoperative OISI produces surface maps, usually to a maximum depth 
of 1 mm. This represents a further limitation. 

As the utilization of OISI increases, we will begin to understand its strengths and 
weaknesses to a greater extent, potentially enabling the development of auxiliary 
technologies that augment these strengths or overcome these weaknesses. On the whole, 
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however, OISI presents important new advances that can potentially improve clinical 
outcomes when used in conjunction with other established modalities. 

6. OIS spectroscopy 
One potential shortcoming of OISI, alluded to above, is its ambiguous etiology. Studies 
using OISI usually report “activity” as a certain fractional change in reflectance from 
baseline. These reflectance changes incorporate changes in absorbance and scattering related 
to a number of physiological processes. Specific hemodynamic processes can be isolated to 
some degree by choosing appropriate wavelengths, but other contributions certainly exist. 

This drawback was addressed in the late 1990s by Malonek and Grinvald [16-17]. They 
disambiguated the various contributions of absorbance and scattering by developing a 
variant of OISI known as OIS spectroscopy. In its most common form, broadband light 
reflected from the cortex is focused on a primary image plane containing a spectrographic 
slit instead of a detector. The one-dimensional column of light is then incident upon a 
diffraction grating that disperses the light into its constituent wavelengths along a second 
orthogonal axis. This two-dimensional “spatio-spectral” image is then refocused on a second 
image plane and captured by a camera. The x-dimension of the image represents the 
wavelength of light at a particular point along the slit, and the y-dimension represents 
vertical position. Spatio-spectral images are taken over time to capture the hemodynamic 
response, as in other techniques. 

This approach essentially sacrifices one dimension of spatial information for an extra 
dimension of spectral information. The advantage gained is the ability to fit the spectra 
acquired over time to a model containing physiological parameters that are known to 
change during the hemodynamic response and affect light reflectance. Models are usually 
based on the Beer-Lambert law, which describes light attenuation in the presence of 
absorbers: i i

i
Abs c l  , where εi is the extinction coefficient of the ith absorber, c is the 

absorber concentration, and l is the pathlength through the tissue. In living tissue under 
normal physiological circumstances, Hbr and HbO2 are the most important absorbers in 
visible wavelengths. Cytochrome oxidase also absorbs in the visible range, but its oxidation 
state only changes in cases of extremely low oxygen saturation. Because its absorbance is 
also an order of magnitude smaller than hemoglobin, it is generally not considered an 
important model component [71]. Early models incorporated scattering as an additive linear 
term: ( )i i

i
Abs c l S  , which would also capture residual errors. 

Spectral data are fit to the model to extract the timecourses of the model parameters, i.e., 
Hbr and HbO2. OIS spectroscopy therefore provides changes in physiological variables 
rather than (somewhat arbitrary) reflectance changes. This advantage allows for more direct 
comparison between OIS data and other modalities such as fMRI. 

The results derived from OIS spectroscopy are only as valid as the model. The most 
important model refinements have been better consideration of wavelength dependency. 
The fact that different wavelengths of light penetrate biological tissue to different depths has 
been recognized for several years [113]. Longer wavelengths penetrate deeper into tissue 
and therefore travel through a longer pathlength (l in the above equations), another way of 
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to a number of physiological processes. Specific hemodynamic processes can be isolated to 
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disambiguated the various contributions of absorbance and scattering by developing a 
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reflected from the cortex is focused on a primary image plane containing a spectrographic 
slit instead of a detector. The one-dimensional column of light is then incident upon a 
diffraction grating that disperses the light into its constituent wavelengths along a second 
orthogonal axis. This two-dimensional “spatio-spectral” image is then refocused on a second 
image plane and captured by a camera. The x-dimension of the image represents the 
wavelength of light at a particular point along the slit, and the y-dimension represents 
vertical position. Spatio-spectral images are taken over time to capture the hemodynamic 
response, as in other techniques. 

This approach essentially sacrifices one dimension of spatial information for an extra 
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visible wavelengths. Cytochrome oxidase also absorbs in the visible range, but its oxidation 
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Spectral data are fit to the model to extract the timecourses of the model parameters, i.e., 
Hbr and HbO2. OIS spectroscopy therefore provides changes in physiological variables 
rather than (somewhat arbitrary) reflectance changes. This advantage allows for more direct 
comparison between OIS data and other modalities such as fMRI. 

The results derived from OIS spectroscopy are only as valid as the model. The most 
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The fact that different wavelengths of light penetrate biological tissue to different depths has 
been recognized for several years [113]. Longer wavelengths penetrate deeper into tissue 
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saying that they experience more scattering. To properly account for the optical pathlength 
and scattering, therefore, this dependency must be taken into account. 

Mayhew and colleagues performed Monte Carlo simulations to calculate the distribution of 
differential pathlength factors in the visible spectrum [71]. Since then, several studies have 
incorporated wavelength dependency into the Beer-Lambert model to more accurately 
simulate the behavior of light transport through highly scattering biological tissue [28, 33, 
114-115]. Their results have shown that accounting for wavelength dependency is critical, 
especially when assessing small transients in the response such as the initial dip. 

6.1 Near-infrared spectroscopy (NIRS) 

In 1977 Jobsis showed that the intact human skull was not necessarily a barrier for light 
[116]. He found that wavelengths of light beyond the visible spectrum in the near-infrared 
range (~670-900 nm) can penetrate through several centimeters of skin and skull. This range 
is ideally situated between the strong absorption spectra of hemoglobin (<~630 nm) and 
water (>~950 nm), and has therefore been dubbed the “biological window” for noninvasive 
optical imaging [117-118]. 

NIRS is based on the same principles as visible range spectroscopy described above. Changes 
in light attenuation are fit to a modified Beer-Lambert law incorporating scattering and 
absorption by hemoglobin. The wavelength dependency of the pathlength must be taken into 
account. Differential pathlength factors can also be calculated using a Monte Carlo simulation, 
but another method exists in the case of NIRS. Pathlengths can be directly measured using 
time-resolved spectroscopy systems [113, 119]. These instruments have very fast (picosecond) 
detectors that are capable of measuring the time of flight of photons traveling through the 
head, which is directly related to the distance traveled. Alternatively, frequency domain 
systems can measure the phase difference between incident and remitted light [120-121]. 

The main difference between NIRS and visible spectroscopy is the way in which light is 
emitted and collected. Because the cortex is not exposed, light cannot illuminate the entire 
area. Instead, light is directed into the head through fiber optic guides and diffuses through 
the skin, skull, and cortex. A detector fiber guide is positioned a few centimeters from the 
emitter, and captures photons that have scattered through the head in an arc-shaped path 
from emitter to detector. The greater the distance between emitter and detector, the more 
likely it is that photons will travel through a deeper arc. On the other hand, a greater 
separation reduces the number of photons detected. Studies have theoretically and 
experimentally determined the optimal spacing (2.5-4 cm) to allow the photons to “sample” 
the top layers of cortex [122-123]. Because functional activation is not expected to produce 
changes in the skull or scalp, any differences in measured light intensity are attributed to 
cortical hemodynamic processes, i.e., changes in oxygenation or volume. 

NIRS can be performed using broadband or laser illumination. The former situation is 
directly analogous to visible spectroscopy: remitted light is spectrally decomposed and 
captured by a camera. This approach affords excellent spectral resolution, but the emitted 
power per wavelength band is low. In contrast, laser diodes produce more power in a 
narrow wavelength band, but the number of wavelengths is limited to a few (2-4 in 
conventional systems), decreasing spectral resolution. Detectors for laser illumination are 
usually photodiodes, which are much more sensitive than CCDs. 
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The principle advantage of NIRS over other optical techniques is its noninvasive nature. 
NIRS provides information about functional oxygenation and volume changes that are 
directly comparable to fMRI, but the apparatus is much less costly and confining. NIRS can 
be performed in pediatric populations much more easily than fMRI [124], and it can be 
transported to the bedside for clinical evaluations [125-128]. Because NIRS signals are 
detected several centimeters from the cortex, however, the spatial resolution of the 
technique is low (~1-2 cm). Spatial coverage can be increased by using arrays of emitters and 
detectors, but the emitter-detector spacing must be at least 2-3 cm to allow the light to 
sample cortex. 

Modifications to the acquisition and analysis methods allow images to be created from NIRS 
data [129]. In this variant, a grid of emitters and detectors is placed on the head, providing 
several emitter-detectors pairs. NIRS imaging, or diffuse optical tomography (DOT), is the 
optical analog of PET, EEG, or MEG, in that it requires measurement of surface signals and 
calculation of the source distribution that could have produced them. It therefore also 
involves solving an inverse problem, which is again poorly constrained. Recent work has 
shown, however, that analyzing multi-channel NIRS data with this imaging approach 
provides better estimates of functional changes than single-channel NIRS [129]. 

7. Multi-modality approaches 
The brain mapping techniques described above, both direct and indirect, can be combined, 
such that the information gained by their combination surpasses their advantages 
individually. The most beneficial combinations usually involve compensating for limitations 
of one technique with another, or concurrently measuring different aspects of the same 
response to better understand its physiological basis. For example, combined OISI-fMRI 
studies have also contributed to our knowledge of the etiology of these signals [101, 130-
131]. The recent development of a system that allows simultaneous fMRI and OIS 
spectroscopy [132] promises to further this endeavor. This combination has also been used 
to test the clinical utility of intraoperative human OISI for neurosurgical guidance by 
comparing intraoperative OISI maps with pre-surgical fMRI maps [101, 130-131]. 

8. Conclusions 
A central tenet in neurosurgery is avoidance of new postoperative neurological deficit. This 
goal is especially challenging when operating in or near “eloquent cortex”, or regions 
subserving known specific functions, such as sensation, motor control, or language. Given 
individual neuroanatomical variations, eloquent regions must be delineated at the time of 
surgery, within the individual patient. The conventional method for identifying eloquent 
cortex intraoperatively is electrical stimulation mapping (ESM), during which regions of 
cortex are directly stimulated with a small electrical current using a hand-held probe. 
However, ESM has several limitations including limited spatial resolution, lengthy protocol 
time which places the patient at increased anesthesia and infection risk and increases costs, 
and a higher risk of seizure due to direct electrical stimulation of the cortex. Intraoperative 
OISI can provide maps of cortical function rapidly and without contacting the brain, 
therefore reducing operative time and seizure likelihood. These maps will be 
complementary to ESM for the localization of eloquent cortex. Furthermore, these maps can 
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also be used for basic research, including the fine-scale determination of the functional 
organization of the brain. Optical imaging thus presents a powerful new avenue for the 
advancement of clinical neurosurgery and neuroscience research. 

Although intraoperative OISI has only been used for research purposes, it has significant 
potential as a clinical mapping tool as well. Although it is unlikely to replace ESM, it may, if 
used in conjunction with conventional intraoperative mapping techniques, decrease 
mapping time, provide high spatial resolution cortical maps, and allow mapping of multiple 
tasks. 
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also be used for basic research, including the fine-scale determination of the functional 
organization of the brain. Optical imaging thus presents a powerful new avenue for the 
advancement of clinical neurosurgery and neuroscience research. 

Although intraoperative OISI has only been used for research purposes, it has significant 
potential as a clinical mapping tool as well. Although it is unlikely to replace ESM, it may, if 
used in conjunction with conventional intraoperative mapping techniques, decrease 
mapping time, provide high spatial resolution cortical maps, and allow mapping of multiple 
tasks. 
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1. Introduction 
The brain is a complex spatially extended biological system, where a great number of 
neurons (~1011) interact to carry out extremely sophisticated tasks. Alongside a well-
established tradition of studies of single neuron activity, a wealth of neuroimaging 
techniques has been developed where brain activity at various spatial scales is observed in 
terms of multichannel recordings of the dynamics of its components. 

Early neuroimaging studies of brain activity mainly focused on the functional specialization 
of segregated brain modules. The main concern of these studies was that of finding which 
brain areas change their activity as subjects carry out well-controlled tasks. A robust 
statistical underpinning for the quantitative analysis of results was offered by the general 
linear model and Gaussian field theory (Worsley & Friston, 1995), which allowed 
delineating a collection of significant cortical activations and deactivations associated with the 
execution of these tasks. From a computational point of view, this general univariate 
framework treated the brain as a collection of independent brain regions.  

While the brain developed largely segregated modules, communication between and within 
these modules is essential to the transfer and processing of information. Accordingly, 
neuroimaging studies started incorporating the idea that the neural activity associated with 
the execution of given cognitive tasks is indeed diffuse, and that the influence that one brain 
region exerts over the others cannot be neglected. As a consequence, over the past few years, 
the neuroimaging literature has seen a shift towards a focus on measures of functional 
integration of brain activity. Many methods were developed to estimate functional and 
effective connectivity (Friston, 1994). These methods were designed to investigate how a 
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While the brain developed largely segregated modules, communication between and within 
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neuroimaging studies started incorporating the idea that the neural activity associated with 
the execution of given cognitive tasks is indeed diffuse, and that the influence that one brain 
region exerts over the others cannot be neglected. As a consequence, over the past few years, 
the neuroimaging literature has seen a shift towards a focus on measures of functional 
integration of brain activity. Many methods were developed to estimate functional and 
effective connectivity (Friston, 1994). These methods were designed to investigate how a 
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generally rather small set of brain areas interact, and how different experimental 
manipulations may affect their mutual relationships (Friston et al., 1997). More or less 
coarse-grained brain regions are identified with the nodes of a network, while some metric 
of brain coupling between these regions is identified with an edge between these nodes. 
Prominent among these methods are data-driven methods such as Independent component 
analysis (ICA) (McKeown et al., 1998), Fuzzy Clustering Analysis (FCA) (Windischberger et 
al., 2003), Temporal Clustering Analysis (TCA) (Zhao et al., 2007), and autoregressive 
models such as the Granger Causal Mapping (GCM) (Goebel et al., 2003) and model-driven 
dynamical models expressed in dynamic causal modeling (DCM) (Friston et al., 2003). The 
former set of methods started exploiting the inherent multivariate and stochastic nature of 
fMRI data. Model-driven approaches, on the other hand, used causal influences among 
neural sources to produce an explicit computational model generating the observed signal. 
This method improved on early methods by incorporating an explicit temporal component 
into effective connectivity estimation (Penny et al., 2004). The main merits of these methods 
were that of making explicit the spatially non-local nature of task-related brain activity, and 
of adding to it a (rather coarse) temporal dimension. However, these methods are typically 
limited in the number of regions they can incorporate. Furthermore, while these methods 
incorporate the idea that correlations among neuronal assemblies play an important role in 
brain activity (Segev et al., 2004), no clear distinction between information processing and 
information transfer is made, and the output is essentially a flow-chart of communication 
between nodes. As a consequence, the meaningfulness of the networks that are delineated 
boils down to the combined functional properties attributed to the segregated brain regions 
that are identified with the network nodes, but it is unrelated to some general property of 
the network per se. This in turn implies, among other things, that no clear relationship exists 
between brain anatomy, the structure of functional networks of brain activity and the 
dynamics taking place on them. 

While single region activity can be characterized in a straightforward way through time-
varying profiles of amplitudes of some aspect of brain activity, network activity needs 
appropriate non-trivial observables to be defined. Graph theory (Boccaletti et al., 2006) offers 
a convenient and flexible way to analyze topological properties of systems with a network 
organization (Bullmore et al., 2009). Most importantly for neuroscientists, graph theory can 
be used to understand the complex relationship between structure, dynamics and function 
in the brain. Graph theory shows that the topology of structural networks influences the 
dynamical processes (namely synchronization) taking place on them (Boccaletti et al., 2006). 
For instance, small-world properties of dense or clustered local connectivity with relatively 
few long-range connections confer distinctive dynamical and functional properties: in 
addition to optimizing information processing (Strogatz, 2001), facilitating synchronization 
(Bucolo et al., 2003), ensuring rapid response and emergence of coherent oscillations (Lago-
Fernández et al., 2000), and conferring resilience against pathological attack, small-world 
architecture has been shown to provide an optimum trade-off between efficiency and wiring 
costs, conferring high local and global efficiencies for relatively low connection costs (Latora 
& Marchiori, 2001). 

Recently, an increasing number of neuroimaging studies using graph theoretical tools have 
started showing that the brain developed in such a way that a clear correspondence exists 
between anatomical network topology and dynamical processes taking place on it. It has 
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been convincingly shown that brain anatomical networks have characteristically small-
world properties of dense or clustered local connectivity with relatively few long-range 
connections (Sporns et al., 2004). Similarly, human brain functional networks associated 
with the execution of cognitive tasks have also been associated with fractal small-world 
architecture (Achard et al., 2006; Bassett et al., 2006; Eguíluz et al., 2005; Salvador et al., 
2005), which support efficient parallel information transfer at relatively low costs and is 
differently impaired by normal aging and pharmacological manipulations (Achard & 
Bullmore, 2007; Bassett et al., 2009). Furthermore, specific neuroanatomical connectivity 
patterns are univocally associated with given functional complexity levels, and networks 
capable of producing highly complex functional dynamics share common structural motifs 
(see e.g. (Sporns et al., 2000, 2002)). Finally, simulations showed that brain dynamics exhibits 
a modular hierarchical organization, where clusters coincide with the topological 
community structure of anatomical networks (Zhou et al., 2006).  

Arguably graph theory’s greatest strengths is that it has made possible to address a whole 
range of new research questions, far exceeding the original main one addressed by 
neuroimaging, of localizing brain activity, particularly issues related to how the brain 
organizes its activity as it carries out tasks of arbitrary complexity. A relative limitation of 
graph theoretical applications, in their current form, to neuroimaging is that both 
computations and visualization of functional brain networks are performed based on the 
Euclidean coordinates of observed activity. However, it has long been known that there is 
no straightforward correspondence between spatial and functional proximity between brain 
regions, so that regions that are contiguous to each other can in fact be involved in the 
execution of completely different tasks. It is then of great interest to be able to represent the 
topology of the functional space, and ultimately to delineate the correspondence between 
anatomical and functional spaces. 

Here we propose a new method, Functional Holography (FH), designed to describe the 
information content of a network as it functions as a whole unit. The term used for the 
familiar holograms indicates that the photographic plates can capture the whole information 
about the 3D image. The FH method can overcome the main limitations of previous 
methods by visualizing networks of correlated activity in an auxiliary space of correlations 
and linking the components according to similarities between them.  

The main objectives of the FH method are:  

1. To overcome the limitations of existing methods taking into account only a fraction of 
the network components.  

2. To identify underlying functional motives embedded in complex spatio-temporal 
behavior.  

3. To identify functional subgroups functional clusters and to reveal the causal relations 
between them.  

4. To relate the observed temporal ordering activity propagation to underlying causal 
motives propagation of information and causal connectivity.  

5. To be able to compare the activity of two different networks or different modes of 
behavior of the same network. 

In the remainder of this chapter, we will first illustrate the mathematical procedure of the 
method; we will then show some applications of the method to various neurophysiological 
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generally rather small set of brain areas interact, and how different experimental 
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signals, and will finally conclude by discussing the scope of the FH method in the context of 
brain imaging data analysis. 

2. Methods and applications 
2.1 FH analysis  

The FH method was developed from the perspective of cultured networks (Segev et al., 
2004). Yet it can be applied to essentially any type of neural signal from the analysis of slices, 
to cortex-recorded activities, ranging from electro- or magneto-encephalographic (EEG and 
MEG respectively) to functional magnetic resonance imaging (fMRI) signals. Moreover, it 
makes it possible to place the recordings from all of these levels within the same 
presentation schema for comparative studies. 

The FH approach allows identifying additional motifs embedded in the inter-neuron 
correlation matrices— analogous to the inter-location coherence matrices evaluated for 
ECoG recordings of brain activity (Milton & Jung, 2002; Towle et al., 1999) that are not 
transparent in the real space connectivity networks. The correlation matrix is represented in 
a higher dimensional space of functional correlations, or correlation affinities. 

The FH method involves the following steps:  

1. Evaluation of the similarity matrix between components.  
2. Clustering by sorting or reordering of the similarity matrix.  
3. Construction of a matrix of functional correlations.  
4. Dimension reduction.  
5. Retrieval from the correlation matrix of the information lost in the dimension reduction.  
6. Inclusion of temporal causal information describing the activity propagation in the 

network.  
7. Holographic zooming and comparison. 

2.1.1 Correlation matrices 

The first stage in the FH analysis is computation of the signals correlation matrices – the 
matrices of correlations between the dynamical responses of all pairs of signals.  We used 
the Pearson formula (Pearson, 1901) to calculate the correlation  ,C i j  between signals (i) 
and (j): 
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where  X i  and  X j  are the recorded time signals (i) and (j), with corresponding means 
   ,i j   and standard deviations    ,i j  . 

For N signals, the pair–wise correlations define a symmetric NxN correlation matrix. In 
order to reveal subgroups in the correlation matrix, we make use of the commonly used 
dendrogram clustering algorithm (Dubes & Jain, 1980).  This algorithm reorders the 
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correlation matrix such that highly correlated signals are closely located.  This is performed 
using the correlation distance D(i,j) between signals (i) and (j), which is the Euclidean 
distance between the rows i and j in the correlation matrix (the vectors of correlations of 
each one of the signals with all other ones) 
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where  is the correlation vector between signal (i) and all other signals.  Next, the 
algorithm reorders the correlation matrix by sorting it according to the hierarchical tree of 
correlation distances.  In such a way we produce a real metric that satisfies the triangle 
inequality. In Fig. 1 we illustrate the analysis with a simple example. We generate 25 signals 
to imitate a multichannel recording of the activity of a network of 25 components. The 
signals (Fig. 1a) include two subgroups of periodic signals with higher correlations and a 
group of random signals. In Fig. 1b we show the corresponding correlation matrix 
computed using the Pearson correlations. Applying the dendrogram clustering algorithm 
(Fig. 1c) on the correlation matrix, the subgroups are delineated in the resulting sorted 
(reordered) matrix (Fig. 1d).  The correlation matrix can be associated with the correlation 
space, i.e. the N-1 dimensional space of correlations (Baruchi et al., 2006; Baruchi  et al., 2004). 
We note that the correlation space does not represent a real space in the sense that the 
eigenvectors do not create an orthogonal mathematical space. 

2.1.2 Collective normalization 

The next step of the analysis is designed to capture mutual or relative effects between 
several signals. A collective normalization of the correlations (cross-correlation) is 
performed and an affinity matrix is computed.  The affinity transformation represents a 
collective property of all channels, and can help capturing hidden collective motifs related to 
functional connectivity in the network behaviors (Baruchi et al., 2006; Baruchi  et al., 2004). 
The affinity matrix is calculated using the meta-correlation matrix MC(i,j), which is the 
Pearson's correlation between the rows of the reordered correlation matrix of any two 
components (i) and (j) as described in Eq.3.  The affinity collective normalized matrix is the 
product of the correlation matrix and the meta-correlation matrix as defined in Eq. 4.   
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This MC matrix is calculated on the reshuffled rows of the matrix in such a way that all the 
elements between the signals (i) and (j) themselves are not included in the calculation. We 
note that the affinity transformation is performed after rescaling the range of the 
correlations to [0,1]. 
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Fig. 1. Correlation matrix of synthetically produced signals. (a) Synthetic signals that include 
three groups—the first subgroup of nine signals (color coded in magenta) was generated by 
harmonic signals with the same periodicity, a phase shift of about 2π/10 and added noise. 
The second subgroup signals (color coded in green), is another set of harmonic signals, with 
a different frequency. The other signals just have pure noise with no correlations. (b) The 
corresponding correlation matrix that was computed using the Pearson's correlations. (c) 
The dendrogram tree. The vertical axis is the correlation distance between the signals (the 
Euclidian distance between the vectors of correlations of each signal with all the others, or 
the row in the correlation matrix that corresponds to the signal). Longer/shorter distances 
correspond to lower/higher correlations. (d) The sorted correlation matrix using the 
dendrogramed clustering algorithm. In this matrix the two subgroups form distinct clusters. 

2.1.3 Dimension reduction and construction of the holographic networks 

To search for hidden functional motifs of brain activity induced by the execution of a given 
task, dimension reduction of the correlation matrices is performed. Principal component 
analysis (PCA) a standard dimension reduction algorithm can be used to extract the 
maximal relevant information embedded in the signal correlation matrices. The relevant 
information can then be presented in a 3-dimensional principal component space (Baruchi et 
al., 2006; Baruchi  et al., 2004) the axes of which are the three leading PCA principal vectors.  
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Each node is placed in this space according to its three eigenvalues for the three leading 
principal vectors. Reduction to three dimensions (projection on the three leading principal 
components) typically extracts most of the relevant information (above 85%), (Baruchi et al., 
2006; Madi et al., 2008). To retrieve the information lost as a result of dimension reduction, 
we link each pair of nodes by lines color coded according to the correlations between them 
(Baruchi et al., 2006; Baruchi  et al., 2004; Madi et al., 2008). The result is a holographic 
representation (Fig. 2) of a network (or manifold) of linked nodes in the PCA space.  

 
Fig. 2. Holographic representation of the synthetically produced signals from Fig.1 in the 3D 
space. The axes are the three leading principal PCA vectors of the correlation matrix.  Each 
node is located in this space according to its eigenvalues corresponding to the leading 
principal vectors. All the nodes with correlations above 0.8 are linked by lines color coded 
according to the correlations (represented in the colorbar), creating the holographic 
manifold. 

2.1.4 Holographic zooming 

Often, one is interested in more details about a part of the manifold. Details cannot be 
extracted simply by rescaling of the axes as done, for example, when a part of a picture is 
magnified. The idea of the holographic zooming is to take advantage of the collective 
normalization in the following way: 1) Identifying the part of the manifold to be magnified; 
2) isolating the subsimilarity matrix for the cluster; 3) performing a second iteration on this 
matrix, i.e., the affinity transformation, dimension reduction and construction of a manifold 
(see Fig. 3).  

2.1.5 Inclusion of temporal information 

An essential, though often neglected aspect of brain activity is represented by its temporal 
dimension. The similarity matrices, the cornerstone of the FH method exposed so far, do not 
include essential information about the temporal propagation of activity across the 
components. When available, this information can be presented in temporal ordering 
matrices the generic Ti,j element of which describes the relative timing or phase difference 
between the activity of components i and j. Various methods can be used to evaluate the 
temporal ordering matrices. Recently, a new notion—the temporal center of mass, or temporal 
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location was introduced in the context of cultured networks (Segev et al., 2004), but works 
equally well for other fast continuous neurophysiological signals, ECoG and EEG, and 
though with minor modifications even for relatively slow signals, viz. fMRI.  
 

 
 

Fig. 3. Holographic zooming. The FH algorithm conducted for each cluster separately;  
(a) cluster 1 (b) cluster 2 (c) noise signals nodes. All the nodes are linked by lines color coded 
according to the correlations (represented in the colorbar), creating the holographic 
manifold. Note that the two clusters are highly correlated whereas the noise group has no 
high or low correlations between them. The FH diagrams in (d,e and f) represent the same 
diagrams as in (a,b and c) from a different point of view while all nodes with correlations 
above 0.8 are linked. 

The idea is to regard the activity density of each node i as a temporal weight function so that 
it's temporal center of mass, Tin, during a synchronized bursting event (SBEs), i.e. a time 
segment in which most of the recorded neurons exhibit rapid firing is given by Ti 

 T�� � ������������������
�����������  (5) 

where the integral is over the time window of the SBE, and Tn marks the temporal location 
of the nth SBE, which is the combined “center of mass” of all the neurons. The temporal 
center of mass of each neuron can vary between the different SBEs. Therefore we define the 
relative timing of a neuron i to be  �� � 〈���〉� the average of the sequence of SBEs. Similarly, 
we define the temporal ordering matrix as follows: 

 ���� � 〈��� � ���〉										 (6) 

Interestingly, when the temporal information is superimposed on the 3-D space of leading 
PCA eigenvectors, the activity propagates along the manifold in an orderly fashion from one 
end to the other (Fig. 4). For this reason, it is proposed to view the resulted manifold, which 
includes the temporal information as a causal manifold. 
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Fig. 4. Inclusion of temporal information. (a) and (b) show the inclusion of the causal 
information for the holographic network shown in Fig. 3a,b respectively. The activity 
propagation is added by coloring the nodes location according to the relative phases or time 
lag between them. Blue is for early time (negative phases) and red for late times (positive 
phases). Note that adding this information helps to reveal the phase shifts imposed in the 
generation of the signals. 

2.1.6 Holographic comparison and superposition of networks activity 

A versatile method of data analysis should also come with the ability to quantitatively 
assess difference between experimental conditions. Clustering algorithms are often used for 
comparison between the activities of different networks, e.g., gene expression in different 
groups of patients, or between two modes of behavior of the same network, e.g., during and 
between epileptic seizures of the same patient. We propose the following holographic 
comparison between networks: 1) Compute the PCA leading eigenvectors of the affinity 
matrix for each network. 2) Project the affinity matrix of each network on the leading 
eigenvectors of the other one. Clearly, this approach can also be used for comparison 
between different modes of activity of the same networks, like the above-mentioned case of 
brain activity in between and during seizure, or different clusters identified in a given 
matrix. Once the clusters are identified, the similarity matrix for each is isolated from the 
combined matrix and the above two stages are applied. The holographic superposition is 
designed as additional method for comparison between different modes of activity of the 
same network. The idea is similar to the holographic comparison; however, the projection is 
on the mutual PCA leading eigenvectors, i.e. the leading eigenvectors of a combined matrix 
that includes the different modes. 

2.1.7 Quantifying cluster information: Cluster entropy 

Once clusters of functional brain activity are singled out, it is often useful to describe them 
in a quantitative fashion. This in particular enables to compare different clusters within and 
across subjects. 

Entropy has been used in statistics and information theory to develop measures of the 
information content of signals (Shannon, 1948). However, entropy can also be used to 
measure the amount of information or variance embedded in a cluster, and to quantify the 
deviation of the cluster's eigenvalue distribution from a uniform one (Alter et al., 2000). This 
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location was introduced in the context of cultured networks (Segev et al., 2004), but works 
equally well for other fast continuous neurophysiological signals, ECoG and EEG, and 
though with minor modifications even for relatively slow signals, viz. fMRI.  
 

 
 

Fig. 3. Holographic zooming. The FH algorithm conducted for each cluster separately;  
(a) cluster 1 (b) cluster 2 (c) noise signals nodes. All the nodes are linked by lines color coded 
according to the correlations (represented in the colorbar), creating the holographic 
manifold. Note that the two clusters are highly correlated whereas the noise group has no 
high or low correlations between them. The FH diagrams in (d,e and f) represent the same 
diagrams as in (a,b and c) from a different point of view while all nodes with correlations 
above 0.8 are linked. 
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idea has been used in the context of biological systems (Varshavsky et al., 2007; Varshavsky 
et al., 2006) and economic systems (Shapira et al., 2009).  The eigenvalue entropy is defined 
as  
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N the number of signals, and  denotes the matrix eigenvalues. S ranges from 0 to 1. 
Note that  is a normalization factor ensuring that S reaches its maximum (S=1) 
for a uniform eigenvalue distribution (i.e. random correlations matrix). 

2.1.8 Extracting topological information: MST analysis  

The correlation matrix of the system creates a topological network structure, where the links 
between nodes are the pair-wise correlations, and the correlation coefficients as the weights 
of these links. Valuable information can be extracted from the topological properties of the 
network, over and above the mere localization in the brain volume. To extract this 
information, graph theoretical techniques can be applied to the data.  

The graph induced by the correlation matrix is complete and therefore difficult to interpret 
per se. Extracting meaningful information from this complete graph involves providing a 
more compact description of the graph and analyzing its topological properties (e.g. 
(Newman, 2003; Tumminello et al., 2007). A graph and its connectivity can be synthetically 
described by its minimum spanning tree (MST) (West, 2001), i.e. a connected, undirected 
graph composed of subgroups of edges with the following two properties: I) The tree spans 
the graph, i.e. connects all the nodes of the graph. The number of links retained is (n − 1) for 
a network of (n) nodes. II) The sum of the edges' weights is minimal out of all possible 
spanning trees. The MST creates a subgraph without loops, maintains the connection of all 
nodes, using only the links with minimal weight.  

The topological structure of the constructed tree creates a new visualization of the complex 
system, which allows visually tracking clusters of nodes, as well as structural similarities 
and differences of the system under different conditions. Other graph properties, such as 
node degree, node centrality and betweenness can be used to extract information from the 
tree (Newman, 2003; Tumminello et al., 2007; West, 2001).  

The MST can be constructed based of the correlation matrix (i.e. the correlation based 
system) obtained by the FH algorithm.  Plotting the MST upon the PCA affinity space and 
on the anatomical slice image enables us to monitor the dynamical changes of the selected 
voxels and the tree they create (their connections) over the entire time course of the 
experiment. 
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The MST method requires assigning weights to the links between the nodes. The weights 
are assigned according to the affinity matrix. A commonly used distance transformation is 
the ultrametric distance, suggested by Rammal et al. (1986) (Rammal et al., 1986) and 
Mantegna et al. (2000) (Mantegna & Stanley, 2000). Using this distance, the pairwise 
correlation coefficient for each pair of nodes is translated into the distance between those 
two nodes. The ultrametric distance is UD(i,j) given by 

      (9) 

where C(i,j) is the correlation coefficient between nodes i and j.  This distance metric satisfies 
the ultrametric inequality, (I) UD(i,j) = 0 if and only if i = j, (II) UD(i,j) = UD(j,i), (III) UD(i,j) 
≤ Max{UD(i,k),UD(k,j)}. 

The result of the ultrametric transformation is that strong positive correlations are translated 
into short distances, and strong negative correlations are translated into long distances. For 
the case of perfect positive correlation, i.e. C(i,j) = 1, the distance is 0; for the case of no 
correlation, i.e. C(i,j) = 0.5, the distance is 1; and for the case of perfect negative correlation, 
i.e. C(i,j) = 0, the distance is √2. The ultrametric distance matrix describes the complete 
network´s topological structure that yields no significant information (West, 2001). To 
construct the MST, the Kruskal algorithm (Kruskal, 1956) can be applied. This algorithm is 
considered greedy, as it runs in polynomial time (this problem however is not particularly 
severe if the networks have about 300 nodes, which renders the problem computable), and 
in each phase some local optimum is chosen. Fig. 5 demonstrates the use of the Kruskal 
algorithm to find the MST for a complete graph.  

 
Fig. 5. An example of how the Kruskal algorithm can be used in order to find the minimal 
spanning tree from the complete graph. (a) Original graph. The numbers near the links 
indicate their weight. AD and CE are the shortest links, with length 5, and AD highlighted 
to indicate that it has been arbitrarily chosen. (b) CE is now the shortest link with length 5, 
which does not form a cycle, so it is highlighted as the second link. (c) The next 
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link, DF with length 6, is highlighted using the same method. (d) The next-shortest links 
are AB and BE, both with length 7. AB is chosen arbitrarily, and is highlighted. The link BD 
cannot be chosen as it would form a cycle (ABD) and has therefore been marked in red. (e) 
The process continues to highlight the next-smallest link, BE with length 7. Many more links 
are highlighted in red at this stage: BC because it would form the loop BCE, DE because it 
would form the loop DEBA, and FE because it would form FEBAD. (f) Finally, the process 
finishes with the link EG, of length 9, and the minimum spanning tree is found. 

The MST analysis can be used in combination with FH analysis. The FH analysis performs the 
aforementioned PCA dimension reduction algorithm creating a visualization of this complex 
network. The nodes in the reduced 3D space are then linked according to the MST connections, 
with lines color coded according to their original correlations. These lines create a topological 
MST manifold upon the 3D correlations space (see figs. 11 and 14 in section 2.2.2). This MST 
manifold is displayed on the brain slice image in the same way as that of the FH, thus providing 
information about connectivity on the real space (see figs. 12 and 15 in section 2.2.2). 

 
Fig. 6. The MST representation of the synthetically produced signals from Fig.1. The 
magenta and green colors represent clusters 1 and 2 respectively, and the cyan color 
represents the noise signals. 

2.1.9 Dissimilarity measure for MSTs 

The MST can conveniently be used to quantify similarities between different networks of 
brain activity. This can be done by resorting to the divergence rate measure developed by 
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Lee et al. (Lee et al., 2006). This measure is based on the information metric d(X,Y), which 
quantifies the conditional entropies (or the difference) between two information sources, 

      , | |d X Y H X Y H Y X   ,  (10) 

where H(X|Y) and H(Y|X) are the conditional entropies between sources X and Y. This 
metric satisfies the triangle inequality. The conditional entropy H(X|Y) denotes the amount 
of information that is obtained by measuring an information source Y with the knowledge 
of a different source X. The information gain can be approximated by the information 
change between two different sources. The source X is transformed into the Y source space 
by the transformation Y=f(X).  The average information change by the transformation is 
defined as  
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where N is the number of elements of an information source. 

The divergence rate can be defined as an approximation of the average information change 
in order to apply it between two MSTs, 
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Where D(X)(i) is the sum of all distances taken from a reference node i to the neighboring 
nodes in the XMST, and D(X|Y)(i) is the sum of all distances taken from the node i to the 
nodes in the YMST. Given the distances between node i to its neighbors in the XMST, 
D(Y|X)(i) evaluates how much the distance changed in the YMST. Note that the number of 
neighboring nodes for every reference node is different. This measure evaluates how much 
information is needed on average to explain YMST, given XMST. Then, to quantify the 
dissimilarity between two MSTs the metric distance is given by, 

      , | |D X Y D Y X D X Y    (13) 

If the MSTs are identical, D(X,Y) = 0, otherwise D(X,Y) > 0. Subgroups in the metric distance 
can then be delineated using the dendrogram clustering algorithm. 

2.2 Applications 

2.2.1 Analyzing ECoG recorded human brain activity 

The occurrence of epilepsy is rising and is estimated to affect, at some level, 1%–2% of the 
world population (Towle et al., 2002). Due to availability of many antiepileptic drugs, 
approximately 80% of all epileptic patients can be kept seizure free. But for the remaining 
20%, the only cure is surgical resection of the seizure focus (Chkhenkeli et al., 1998; Doyle & 
Spencer, 1998). One of the most challenging tasks facing epileptologists is precise 
identification of brain areas to be removed so that the problem can be cured with minimal 
damage and side effects. Often, the precise location of the epileptogenic region remains 
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uncertain after obtaining conventional, noninvasive measurements such as 
electroencephalogram (EEG) and magnetoencephalogram (MEG) cannot provide sufficient 
information because of the relatively low spatial resolution of these methods. In these cases, 
the activity is directly recorded by the electrocorticography (ECoG) procedure in which the 
recording electrodes are placed directly on the brain surface.  

Here we illustrate how the FH method can be applied to reveal the existence of hidden 
causal manifolds in the electrical brain activity of epileptic patients with implanted 
electrodes. We note that the method can also be applied to experimental seizure studies that 
have gained much attention (Ben-Jacob et al., 2007 ). Typical results are presented in Fig. 7. 

 
Fig. 7. Holographic networks of recorded brain activity. The holographic networks are for 
the ECoG recorded human brain activity for the inter-Ictal and Ictal activities. (a) and (b) 
show the connectivity diagram for the inter-Ictal and Ictal respectively, constructed upon 
the set of electrodes placed on the surface of the brain (the frontal lobe in this case). (c) and 

 
Functional Holography and Cliques in Brain Activation Patterns 

 

115 

(d) show the corresponding dendrogram correlation matrices. (e) and (f) show the 
corresponding FH manifolds in the PCA affinity space. In the analysis we included only 
electrodes whose correlations with the other electrodes are above noise level. Note, that the 
locations change their functional role during seizure (Ictal) relative to those during the inter-
Ictal durations. 

Notably, the manifold of the inter-ictal activity has a very simple topology of almost circular 
horseshoe like part and another subgroup perpendicular to its plane and position at the 
center of the horseshoe. Although the new manifold has as expected a more complex 
topology, it retains some of the features of the one associated with inter-Ictal activity, when 
viewed from specific angle. Preliminary analyses also indicate that causal features are 
captured when the temporal (i.e., phase coherences) information is imposed on the 
manifolds. These results bear the promise that functional holography might become a 
valuable diagnostic procedure in the treatment of intractable epilepsy. 

2.2.2 Analyzing fMRI recorded human brain activity 

When applied to fMRI data, FH is an effective clustering method, capable of capturing 
system level networks using voxel-voxel correlation matrices (Jacob et al., 2010). Here we 
show how the algorithm using a dendrogram clustering method combined with a standard 
deviation (STD) filter can effectively be used to identify and extract voxel clusters. Subjects 
were instructed to clench and open either their left or right hand, according to an auditory 
cue. The paradigm consisted of 11 blocks of 114 volumes. Each consisted of a resting period 
with cross xation (6–15 s), an auditory instruction period regarding hand movement (right 
or left; 3 s), and a period of hand movement execution (15 s). The blocks were presented in a 
constant order across subjects with regard to which hand to move. Two types of sequences 
were examined: repetitive (two consecutive movements of the same hand) and alternating 
hand movements.  

Even for this simple hand clenching motor task, the FH analysis conducted for a single block 
revealed interesting motifs. For example, unilateral hand movement yielded two clusters, one 
located in the contralateral primary motor cortex showing increased signal (i.e. activation), and 
the other one in the ipsilateral homologue region, showing reduced signal (i.e. deactivation) 
(Fig. 8). Inspection of repetitive vs. alternating hand movements suggested that this pattern 
could be indicative of an inhibition mechanism of the ipsilateral hemisphere. In addition, a 
single-block level analysis, using only 12 time points corresponding to a 36 second recording 
session, was enough to determine which hand was moved by the subject, while other methods 
required the entire experiment time course. Moreover, cluster quantification based on 
eigenvalue entropy showed lower entropy for the motor-dominant hemisphere clusters. This 
lower entropy demonstrates less variability in the cluster's correlations, suggesting a higher 
modular organization in specific motor dominant hemisphere. 

The MST was extracted for each subject and each block. The divergence rate measure was used 
for quantification of the structural similarities and differences of the system under the two 
different conditions of right or left hand movement. Fig. 9 displays examples of the 
dendrograms constructed from the divergence rate measure. Each dendrogram represents the 
distance, i.e. the divergence rate measure or similarity between all pairwise MSTs of the 
experiment's different blocks. Half of the subjects exhibited good separation between right and 
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(d) show the corresponding dendrogram correlation matrices. (e) and (f) show the 
corresponding FH manifolds in the PCA affinity space. In the analysis we included only 
electrodes whose correlations with the other electrodes are above noise level. Note, that the 
locations change their functional role during seizure (Ictal) relative to those during the inter-
Ictal durations. 
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hand movements.  

Even for this simple hand clenching motor task, the FH analysis conducted for a single block 
revealed interesting motifs. For example, unilateral hand movement yielded two clusters, one 
located in the contralateral primary motor cortex showing increased signal (i.e. activation), and 
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lower entropy demonstrates less variability in the cluster's correlations, suggesting a higher 
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The MST was extracted for each subject and each block. The divergence rate measure was used 
for quantification of the structural similarities and differences of the system under the two 
different conditions of right or left hand movement. Fig. 9 displays examples of the 
dendrograms constructed from the divergence rate measure. Each dendrogram represents the 
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left hand movement MSTs (e.g. Fig. 9a), displaying clusters of 3-4 same hand movement trees. 
The other half of the subjects did not yield such good separation (e.g. Fig. 9b). Fig. 10 depicts 
the MSTs for a single subject that showed good separation. To elucidate the functional and 
structural meaning of the MST, the tree's nodes were colored according to their location in the 
brain; the red and blue colors represent voxels in the right and left hemisphere respectively, 
while yellow represents the midline SMA region. All the resulting MSTs showed two distinct 
clusters, one dominated by the right (red) and one by the left hemisphere (blue). The 
interesting result is that this representation highlights for all blocks a few red voxels in the blue 
cluster and blue ones in the red cluster, these voxels are the same in every block.  

 
Fig. 8. FH applied on fMRI data. Presented here is an example of the results of a right-
handed single subject, for a right hand movement block (12 TRs). (a) The correlation matrix 
shows a pattern of two dominant distinguished clusters. (b) The magenta cluster averaged 
BOLD signal demonstrated clear activation, whereas the green cluster showed deactivation. 
(c) The magenta activation cluster was located at the left hemisphere in the M1 region and, 
as expected. The second green cluster was located in the M1 region of the ipsihemisphere. 
(d) and (e) show the holographic presentations of the voxels or the holographic networks 
while the voxels with correlations above 0.8 are linked in (d) and voxels with correlations 
below -0.4 are linked in (e). (f) Displays the corresponding holographic networks on the 
brain slice image for correlations with a specific range of 0.98-0.99 and (-0.9)–(-1.0). 

To further investigate whether the two groups of subjects as obtained by the divergence rate 
measure, differed in terms of topological structure of their functional networks of correlated 
activity, the MST was used in combination with the FH visualization. The MST constructed 
for every single block shows a good separation between the hemispheres. For half of the 
subjects, the divergence rate measure allowed to partition the MSTs into two clusters of 
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right and left hand movements. Figs.11-15 depicts the MSTs on the FH correlation PCA 
space, and on the anatomical brain slice image of a single subject that showed a good 
separation between right and left hand movements (Figs.11-12). A single subject who did 
not yield a good separation is also shown (Figs.13-15). Looking at the dynamic changes of 
the MSTs along the experiment time course in the anatomical slice image it becomes visible 
that blocks of sequences of repetitive hand movements resulted in numerous connections 
between the clusters as opposed to the alternating hand movements' blocks. The graph in 
Fig. 16 displays the average Z score of the number of connections between the clusters for 
each block across subjects (N=15). This demonstrates that these two kinds of sequences can 
also be differentiated by the MST visualization. 

 
Fig. 9. Dendrograms constructed from the divergence rate measure for two different 
subjects. Each dendrogram represents the distances i.e. the divergence rate measure 
between all pair wise MSTs. The dendrogram clusters all the MSTs that show similar 
structure. The subjects were divided into two groups; (a) An example of a subject who's 
MSTs had much similarity showing clusters separating between right and left hand 
movement MSTs. (b) An example of a subject that showed no distinct clusters for MSTs 
associated with right and left hand movements. 

 
Fig. 10. Example of the MSTs constructed for a single left-handed male subject that shows a 
good separation in the divergence rate dendrogram. Displaying the MSTs for all the 
experiment's ten blocks i.e. right hand (RH) and left hand (LH) movements. The MST color 
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coded according to the brain anatomic structure. The red and blue colors represent the right 
and left hemisphere voxels respectively, and the yellow color represents the SMA area. The 
MSTs give a good separation between the right and left hemisphere. Note that in every MST 
there are few red voxles in the blue cluster and one blue voxle in the red cluster, since all the 
voxles are labeled  a closer inspection shows that these outlier voxels are the exact same 
voxles in every MST.  

 
Fig. 11. The MSTs from fig. 10 constructed on the FH affinity PCA space. Displaying the 
MSTs of a subject that resulted in a good separation between right and left hand MSTs, 
showing high similarity between right hand block MSTs, and between left hand block MSTs. 
Each 3D graph represent the same voxels (color coded according to their original cluster 
with magenta and green), for each experiment block. These voxels are presented in their 
new location in the correlation space and connected according to the block's MST with lines 
color coded according to their correlation coefficient.  In this visualization it is hard to detect 
the similarities and dissimilarities between the tree's structures. However it becomes visible 
in this case, that right hand movement's MSTs yielded a better separation of the clusters as 
opposed to left hand movements. 
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Fig. 12. The same MSTs from figs. 10 and 11 constructed upon the brain slice EPI image. This 
presentation shows that according to the MSTs the two hemispheres are highly coupled 
(with positive correlation and with negative correlation) in the motor task. 

 
Fig. 13. Example of the MSTs constructed for a single left-handed subject that does not show 
a good separation in the divergence rate dendrogram. Displaying the MSTs for all ten blocks 
i.e. right hand (RH) and left hand (LH) movements. The red and blue colors represent the 
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right and left hemisphere voxels respectively, and the yellow color represents the SMA area. 
Although this subject does not yield a good separation between the right and left hand 
MSTs his MSTs do show a good separation between the right and left hemispheres.  

 
Fig. 14. The MSTs from fig. 13 constructed on the FH affinity PCA space. Demonstrating the 
MSTs of a subject who displayed no similarities or dissimilarities between right and left 
hand block MSTs in the divergence rate dendrogram tree. 
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Fig. 15. The same MSTs from figs. 13 and 14 constructed upon the brain slice image. In this 
presentation, the two hemispheres seem to be highly negatively connected within the motor 
task blocks. 

The topological structure of the constructed tree allows visual tracking clusters of nodes, 
and the variations undergone by the system as it faces different experimental conditions. 
This visualization is of paramount importance when dealing with highly complex systems, 
and is particularly helpful in the identification of clusters and their hierarchies. Thus two 
different clusters, each dominated by one hemisphere (figs. 10 and 13) or "outlier" voxels, 
which may have an important part in inter-hemispheric communication, could be 
highlighted.  

Finally we point out one drawback of the MST method. When applied on a correlation-
based system the MST uses the shortest distances. This induces a bias to positive 
correlations, while anti-correlations are overlooked. Further analysis of the data treating 
positive and the negative correlations on a par level (e.g. using the absolute values of the 
correlation matrix) may be recommended. 

Overall, with this extremely simple example, we have illustrated how analyzing a very basic 
topological network property of networks of correlated activity associated with different 
cognitive conditions can reveal, in a rather parsimonious way, it's most important 
connections, suggesting the potential of this type of analysis in dealing with more 
challenging and rich data. 
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Fig. 16. The averaged Z score of number of links in the MST connecting the two clusters 
across subjects (N=15) for each experiment block. The two repetitive hand movements (i.e. 
blocks 2 and 8) resulted in higher average than the rest of the blocks. A statistical Z-test was 
calculated for each block with the null hypothesis that the scores in each block are a random 
sample from a normal distribution with mean zero. According to this test the two repetitive 
hand movements were found significant (p=2x10-4 and p=6.9x10-10 for blocks 2 and 8 
respectively).  

3. Conclusion 
Over the past two decades, the development of new neuroimaging techniques has produced 
spectacular improvements in the amount of detail with which brain activity can be 
monitored. As precision has rapidly been gained, though, so has the typical data set size 
grown steadily. The range of questions that researchers and clinicians alike have started 
finding an answer for with neuroimaging techniques has also dramatically expanded.  All 
this, in turn, has created a demand for new methods of data analysis, These new methods 
were developed on the one hand to provide new ways to represent brain activity, and on the 
other hand, to make quantitative sense of the rich information embedded in very high 
dimensional data and to visualize them in a way that can be read and understood in a 
sufficiently straightforward way by researchers first and, ultimately, by clinicians. 

In this chapter, we presented FH a method which effectively tackles these issues. The FH 
algorithm deals with the multivariate and multiscale nature of brain imaging data sets and 
simplifies their complexity by representing patterns in a low-dimensional space which 
preserves the higher dimensional information of the original pattern of connectivity. In this 
sense, the FH analysis may be regarded as a system-level analysis that produces a complete, 
holographic, representation of brain activation.  
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The method also provides an effective visualization of the system, of critical importance 
when dealing with highly complex systems, and is particularly helpful in the identification 
of clusters and their hierarchies. Even more important though is the ability of the FH 
analysis to reveal subtle, system-level dynamical features that are hard to detect through 
other methods, even at the single subject level. And that might be overlooked due to prior 
assumptions by hypothesis-driven methods. In fact, the FH method can capture sensitive 
hemodynamic variations at the single block level, without further need for averaging or for 
contrasts between experimental conditions. In addition the method requires far less time 
point to localize activations than other clustering methods, viz. ICA (Bell & Sejnowski, 1995), 
FCA (Windischberger et al., 2003) or TCA (Zhao et al., 2007), suggesting that the FH method 
may play a prominent role in the development of classification algorithms for blind 
identification of different conditions in extremely short time series.  

It is important to portray the FH method not only as an alternative but also as a valuable 
complement to existing methods. For instance, its dimension reduction step could be carried 
out using a variety of clustering techniques. Perhaps even more cogently, there is a clear 
complementarily between network theory and the FH method. The application of the 
former that we presented, i.e. the MST, clearly represents but one out of the many possible 
applications. To the extremely vast field of issues that network theory allows to address in a 
versatile but quantitatively rigorous and qualitatively explicit way, the FH method adds a 
compact representation in an auxiliary field that makes functional networks more explicit, 
as it divorces them from the anatomical space in which they live. 

A distinctive quality of the FH method is represented by its versatility. While originally 
developed for cultured neural networks, the method can be applied to the analysis of 
essentially any type of signal, including the main tools for system-level neuroimaging, viz. 
EEG/MEG and fMRI.  Although fewer examples of application to the latter are and further 
investigation of the method on different (viz. event-related) designs is needed, the proposed 
method shows great potential even for fMRI data in differentiating experimental conditions 
particularly when the corresponding signals are separated (Jacob et al., 2010). Since the 
outcome of the analysis is a holographic presentation in an abstract reduced space, it 
represents an ideal tool for multi-modal analysis of data from experiments combining EEG´s 
temporal precision with fMRI´s spatial one. Finally, the principles and implementation of 
the FH analysis are relatively simple and straightforward; taken together with the methods 
efficiency in delineating and tracking the time-varying unfolding of fine details of clustered 
activity at different spatial scales, it may represent a tool of election for brain scientists and 
for clinical neurologists alike.   
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1. Introduction 
Since hyperpolarized 129Xe MRI was first demonstrated in the lung, air space imaging using 
hyperpolarized noble gases (129Xe and 3He) has progressed at a rapid rate (Goodson, 2002; 
Zhou, 2011c). Owing to high lipid solubility, absence of background signal in biological tissue, 
non-invasiveness, lack of radioactivity, different relaxation to oxygenated and deoxygenated 
blood, and larger chemical shift to the neighbor environment, hyperpolarized 129Xe magnetic 
resonance imaging (MRI) has a great potential as a tool for studying the brain, especially for 
the assessment of cerebral blood flow (CBF) related to the brain function and activities.  

In this chapter, we will review the progress of recent research on hyperpolarized xenon 
brain MRI, and compare this novel technique with the conventional proton MRI in order to 
comment the possible innovation and development in the future. This chapter contains six 
main parts as follows: 

2. Properties of xenon 
Xenon, with the chemical element symbol Xe and atomic number 54, is a member of the 
zero-valence elements that are called noble gases or inert gases. Xenon was discovered in 
the residue left over from evaporating components of liquid air by William Ramsay and 
Morris Travers in England in 1898, then was named by Ramsay from Greek word ξένον, 
with the meaning ‘foreign’ and ’strange’. Natural abundant xenon is made of nine stable 
isotopes, and more than 35 unstable isotopes have been characterized. Nuclei of two 
isotopes, 129Xe and 131Xe, have non-zero spin quantum number: 26.4% of 129Xe with a nuclear 
spin I=1/2 ; and 21.2% of 131Xe with a nuclear spin I=3/2 (133Xe is used as a radioisotope in 
nuclear medicine). These two isotopes are both detectable by NMR with sensitivities of 0.021 
(129Xe, per nucleus relative to proton assuming thermal polarization) and 2.710-3 ( 131Xe). 
The highly enhanced signal of hyperpolarized xenon and extremely long relaxation time 
greatly simplified and enhanced NMR experiments, and it is the fundamental for possible 
biological application in MRI. 

Xenon, chemically inert with the external electronic orbits fully occupied, is well known as a 
noble gas at room temperature and an atmospheric pressure. However, the liquid and solid 
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phases of Xenon can be easily obtained within an experimentally accessible range of 
temperatures and pressures (Cook, 1961) (Fig. 1). 

 
Fig. 1. Phase diagram of xenon.  
(Figure from: http://science.nasa.gov/science-news/science-at-nasa/2008/25apr_cvx2/) 

Furthermore, the large and highly polarizable electron cloud makes xenon highly lipid 
soluble in solution, without chemically or structurally damage during interactions with 
other molecules. Ostwald solubility is defined as the ratio of the volume of the gas absorbed 
to the volume of the absorbing liquid, measured at same temperature and a pressure of 1 
atm (101,325 Pa) (Cherubini, 2003; Oros, 2004) (Table 1). 
 

Compound Ostwald solubility 
T=25 oC 

Water 0.11 
Hexane 4.8 
Benzene 3.1 
Fluorobenzene 3.3 
Carbon disulphide 4.2 

T=37 oC 
Water 0.08 
Saline 0.09 
Plasma 0.10 
Erythrocytes (98%) 0.20 
Human albumin (100%,extrapolated) 0.15 
Blood 0.14 
Oil 1.9 
Fat tissue 1.3 
DMSO (dimethyl sulfoxide) 0.66 
Intralipid (20%) 0.4 
PFOB (perflubron) 1.2 
PFOB (90% w/v, estimated) 0.62 

Table 1. Solubilities of xenon gas in various compounds. (Data taken from Cherubini, 2003) 
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Owing to the inter-atomic collisions distortion of xenon electron cloud during the 
interactions with different chemical environment, the chemical shift of 129Xe is extremely 
sensitive. Total solvent effect on the Xe resonance frequency is over 7500 ppm, very large 
compared with most other NMR sensitive nuclei ( 1H : 20 ppm、13C : 300 ppm). A few 
examples are shown in Figure 2, the natural reference point for xenon chemical shift in the 
gas phase; with respect to the gas resonance (0 ppm), peaks at 70 ppm corresponding to 
cryptophane-bound xenon; around 197 ppm, five dissolved peaks can be observed, a 
dominant peak at 194.7 ppm and another discriminable peak at 189 ppm are identified as 
dissolved hyperpolarized 129Xe in the brain tissue and non-brain tissue, respectively, two 
small peaks at 191.6 ppm and 197.8 ppm are still unknown, and a smaller broad peak at 
209.5 ppm comes from the dissolved hyperpolarized 129Xe in the blood (Zhou et al., 2008). 

 
Fig. 2. Chemical shift of 129Xe in biosensor and biological system (Data taken from Zhou et 
al., 2011c) 

As a closed shelled noble gas, xenon has a peculiar large polarizable electron cloud, it can be 
easily interacted with biological materials, including water ‘lipids’ and proteins and so on; 
meanwhile, 129Xe NMR parameters like relaxation time and chemical shift are very sensitive 
to local chemical environment, these biochemical physiological characters make xenon a 
very interesting NMR probe for biological applications. Arising from large increase in 
sensitivity associated with hyperpolarized 129Xe, the biological NMR applications have been 
dramatically extended. Being Chemically Inert, xenon can be safely delivered into living 
organisms, associated with another advantage of no background signal, thus in vivo MR 
imaging and spectroscopy is possible using hyperpolarized 129Xe technique.  

3. Signal enhanced MRI with hyperpolarized 129Xe 
Nuclear magnetic resonance (NMR) has been widely used in most fields of natural sciences, 
such as physics, chemistry, biology, and medicine. Because of the intrinsic low nuclear spin 
polarization at the thermal equilibrium, NMR is relatively insensitive. The normal 129Xe 
MRI, i.e., at the thermal equilibrium, is not able to get enough signal to visualize tissues or 
organs. The polarization can be moderately increased by using lower temperature or higher 
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meanwhile, 129Xe NMR parameters like relaxation time and chemical shift are very sensitive 
to local chemical environment, these biochemical physiological characters make xenon a 
very interesting NMR probe for biological applications. Arising from large increase in 
sensitivity associated with hyperpolarized 129Xe, the biological NMR applications have been 
dramatically extended. Being Chemically Inert, xenon can be safely delivered into living 
organisms, associated with another advantage of no background signal, thus in vivo MR 
imaging and spectroscopy is possible using hyperpolarized 129Xe technique.  

3. Signal enhanced MRI with hyperpolarized 129Xe 
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MRI, i.e., at the thermal equilibrium, is not able to get enough signal to visualize tissues or 
organs. The polarization can be moderately increased by using lower temperature or higher 
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magnetic fields (Navon et al., 1996), whereas the nuclear spin polarizations of noble gases 
can be increased by four or five orders of magnitude via the spin-exchange optical pumping 
(SEOP) techniques (Walker, 1997). Therefore, it enables a very high sensitive detection of 
hyperpolarized 129Xe MRI. This subsection will describe how to produce hyperpolarized 
129Xe, which is the basis for the brain imaging. 

3He and 129Xe are generally selected for hyperpolarized lung gas imaging, because 3He and 
129Xe are the only noble gas nuclei with nuclear spin 1/2, which results in the longitudinal 
relaxation time of many hours or even days at the standard temperature and pressure. 
However, hyperpolarized 3He could not be used for the brain study due to the extremely 
low solubility in blood and tissue, while hyperpolarized 129Xe is a novel contrast agent for 
the cerebral research. Hyperpolarized 129Xe is generally generated by employing the 
technique of SEOP.  

For SEOP, the first step is to transfer the anglar momentum of the cicularly polarized laser 
light to the electronic spin, i.e., optical pumping. In principal, any alkali metal vapor can be 
optically pumped. Rb is normally used as the corresponding pumping laser diode arrays 
(LDA), which are routinely manufactured in high power configurations. When the Rb vapor 
experiences an external magnetic field of 20-30 Gauss, the ground state 52S1/2 is split into 
two Zeeman sublevels, MJ=-1/2 and MJ=1/2, i.e., electronic spin “down” or “up”. These two 
Zeeman states have a nearly equal population at room temperature.  After the Rb vapor 
absorbs the circularly polarized laser light (σ+) centered at 795nm, the Rb D1 transition 
occurs, i.e., 52S1/2 52P1/2. Accordingly, the ground state with a sublevel MJ=-1/2 is pumped 
into the excited state, MJ=1/2. The nitrogen gas quenches the excited state back to the 
ground state. Because the MJ=-1/2 sublevel continues to absorb the circularly polarized light 
(σ+) an excess of Rb atoms are optically pumped into the Zeeman sublevel MJ=1/2 while the 
other sublevel MJ=-1/2 is depleted.  Therefore, an Rb electronic spin polarization of roughly 
100% is able to be achieved.  

The second step of SEOP is spin exchange, which occurs between the polarized electronic 
spins of Rb and the xenon nucleus. The collision between polarized Rb atoms and xenon 
atoms induces the transfer of angular momentum from the electronic spin to the nuclear 
spin. During this collision, the electron wave function of the Rb overlaps the nuclear wave 
function of xenon, which results in the spin exchange between the electronic spin and 
nuclear spin. Binary collisions dominate the spin exchange at high pressure, while three-
body collision (by forming a Rb/Xe van der Waals molecule) dominate at low pressure (a 
few tens of torr). 

Generally, Rb atoms and nitrogen gas are employed for optical pumping, however, Cs may 
be proposed as a better candidate for spin exchange with 129Xe due to several advantages: 
the natural abundance of 133Cs is 100% while Rb has two isotopes (85Rb and 87Rb), so that Cs 
is more convenient than Rb for wide applications of hyperpolarized 129Xe, particularly in the 
clinic application; optical pumping cells for Cs are operated at lower temperatures with 
correspondingly fewer chemical corrosion problems; according to the previous experimental 
results, the spin-exchange rate of Cs-Xe is about 10% higher than the Rb-Xe rate (Zhou et al., 
2004a). When the polarization of hyperpolarized 129Xe is high enough, the observed 
radiation damping has been reported (Zhou, 2004b). The xenon polarizer with a flow feature 
can be readily extended to produce larger quantities of hyperpolarized 129Xe for not only 
medical imaging but also materials science and biology (Zhou, 2004c; Zhou, 2009a). 
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4. Longitudinal relaxation time (T1) of hyperpolarized 129Xe in the brain 
Hyperpolarized 129Xe magnetization enhanced by SEOP is non-recoverable, and the T1 of an 
hyperpolarized gas is the time elapsed for the signal to decay, because its thermal 
equilibrium polarization is almost zero relative to the hyperpolarized polarization. Usually, 
small flip angles has to be used to ration the hyperpolarized magnetization, and it is very 
important to have a T1 as long as possible to ensure that the signal lasts long enough for the 
acquisition. Therefore, the T1 of hyperpolarized 129Xe in the brain is a critical parameter. This 
subsection will discuss the aspects that affect T1 of hyperpolarized xenon, and describe the 
methods to accurately measure the T1 in the brain (Zhou et. al, 2008).  

4.1 T1 of hyperpolarized 129Xe 

For conventional MRI, the magnetization at thermal equilibrium is induced by the magnetic 
field, and the longitudinal relaxation time (T1) is the time for the magnetization, i.e. the 
magnetic resonance signal, to recover back to the thermal equilibrium. However, 
hyperpolarized noble gas magnetization produced by SEOP is unable to recover back to the 
hyperpolarized magnetization by itself, and the T1 of an hyperpolarized noble gas is the 
decay time of magnetization, because the thermal polarized magnetization is almost zero 
related to the hyperpolarized magnetization. The longitudinal relaxation time of 
hyperpolarized 129Xe in the brain is a critical parameter for developing hyperpolarized 129Xe 
brain imaging and spectroscopy and optimizing the pulse sequences, especially in the case 
of cerebral blood flow measurements. Various studies have produced widely varying 
estimates of hyperpolarized 129Xe T1 in the rat brain (Choquet, 2003; Wakai, 2005). 

The hyperpolarized magnetization is generally tipped by a pulse with a small flip angle, and 
it is very challenging to make the T1 as long as possible in order to ensure the signal lasts 
long enough for the acquisition. Therefore, when considering hyperpolarized 129Xe as a 
marker for brain perfusion by MRI, evaluation of tissue characterization and pulse sequence 
optimization, the T1 of hyperpolarized 129Xe in the brain is a critical parameter. Previous 
attempts to measure T1 in the rat brain have yielded strikingly disparate results. Wilson et 
al. found that T1 measured in rat brain homogenates in vitro ranged from 18±1 to 22±2 s 
(mean ± SD) (Wilson et. al，2009) depending on the oxygenation level of the tissue, and T1 
values from measurements in rat brain in vivo have ranged from 3.6±2.1 (Choquet et al, 
2003) to 26±4 s (Wakai et. al, 2005). Part of the discrepancy is believed to be due to the 
protocols used in T1 determination. The attempt of Choquet et al. used a multi-pulse 
protocol during the uptake and washout process by injecting hyperpolarized 129Xe in a lipid 
emulsion, whereas the estimation of Wakai et al. used a two-pulse protocol during the 
washout process after the rat had breathed hyperpolarized 129Xe gas. Under the condition of 
typically achieved polarizations (5–21%) (Zook et. al, 2001), low signal-to-noise ratio (SNR) 
due to the low concentration of the dissolved hyperpolarized 129Xe in tissue is an important 
factor in making T1 measurements in the rat brain (Cherubinia et. al, 2003; Ruppert et. al, 
2000). The maximum SNR in the above two measurements in vivo was only 30 (Choquet et. 
al, 2003) and 46 (Wakai et. al, 2005), and the noise effect was not considered in these studies. 
When the SNR is low, noise will dominate the measured signal and result in large 
differences between the true T1 and the measured T1. Thus, low SNR might be a large 
contributor of error in the published T1 values. 
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4.2 Multi-pulse and two-pulse washout protocols for measurements of T1 

Hyperpolarized 129Xe transport in the brain has been modeled using appropriate 
adaptations of the Kety–Schmidt theory (Martin et al., 1997; Peled et al., 1996). Martin and 
co-workers derived the equation of the cerebral xenon concentration during hyperpolarized 
129Xe delivery to the lungs as follow: 
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where Ccereb is the xenon concentration in the cerebral artery, Cbrain is the xenon 
concentration in brain parenchyma, F is the tissue perfusion in units of (volume 
blood)/(volume tissue)/time, p is the brain/blood partition coefficient for xenon, and 
T1brain is the longitudinal relaxation time of xenon in the brain. In this equation, the first 
term on the right describes xenon transport to the brain, and the second term describes 
the loss of xenon signal due to both perfusion and T1 decay. Xenon signal observed from 
the brain is proportional to Cbrain. During the washout phase of the xenon signal, there is 
no transport of hyperpolarized 129Xe by the cerebral artery, and hence Ccereb is zero. 
Accordingly, the xenon concentration in the brain during washout (Cbrainwashout) is given 
by the following equation: 
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This equation can be solved to yield an analytical solution for the concentration of xenon in 
the brain during the washout of signal. The decay time constant (τ) of hyperpolarized 129Xe 
during the washout from the rat brain is given by: 
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Thus, τ can be calculated from a series of pulse excitations (multi-pulse protocol) after 
compensating for the hyperpolarized xenon signal losses resulted from radio frequency (RF) 
excitation, as described below. To compare the results obtained using the multi-pulse 
protocol, a two-pulse protocol has also been adopted to measure τ (Wakai et al., 2005). Both 
protocols were performed on each rat during the washout phase of the 129Xe signal. 

Table 2 shows individual T1 values of hyperpolarized 129Xe and their mean from the six rat 
brains using the two protocols, with and without the SNR threshold.  The mean T1 value 
calculated using the improved two-pulse method is larger than that using its conventional 
counterpart, whereas the mean T1 value calculated using the improved multi-pulse method 
is less than that using its conventional counterpart. These T1 values were named ‘group 1’ to 
‘group 4’ for easy reference during discussion. 

In this subsection, we investigated the error in T1 measurement as a result of low SNR of the 
129Xe signal in vivo. Correcting for these errors allowed us to more accurately measure the T1 
of hyperpolarized 129Xe in the rat brain in vivo. Our calculations produced highly consistent 
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T1 results independent of the measurement protocol and offer a resolution to the 
discrepancy between previously reported values. 
 

 
Rat 

Multi-pulse protocol 2-pulse protocol 
Conventional Improved Conventional Improved 

T1( s) 
(group 1) 

T1( s) 
(group 2) 

T1( s) 
(group 3) 

T1( s) 
(group 4) 

1 14.2 12.9 19.5 17.6 

2 12.2 15.1 18.2 16.4 

3 11.5 16.1 16.3 14.9 

4 11.7 15.5 18.0 16.5 

5 12.7 16.4 18.8 16.6 

6 12.1 15.7 17.2 15.4 

Mean 12.4 15.3 18.0 16.2 

Std. Deviation 1.0 1.2 1.1 0.9 

Table 2. T1 values of hyperpolarized 129Xe from six rat brains. The mean T1 value and 
standard deviation obtained from the multi-pulse and two-pulse protocols before 
(conventional method) and after (improved method) setting a threshold of SNR=5.5 are also 
given. (Zhou et al., 2008) 

5. Stroke MRI with hyperpolarized 129Xe 
Because there is no background signal from xenon in biological tissue, and because the 
inhaled xenon is delivered to the brain by the blood flow, we would expect a perfusion 
deficit, such as could be seen in stroke, to reduce xenon concentration in the region of the 
deficit. Thermal polarization yields negligible xenon signal relative to hyperpolarized 
xenon; therefore, hyperpolarized xenon can be used as a tracer of cerebral blood flow (CBF). 
This subsection will describe that hyperpolarized 129Xe MRI is able to detect, in vivo  
hypoperfused area of focal cerebral ischemia—i.e., the ischemic core area of stroke, by using 
a rat permanent right middle cerebral artery occlusion (MCAO) model (Zhou et al., 2011a).  

Stroke is the single most common reason for permanent disability and is the third leading 
cause of death in developed countries. During acute ischemic stroke, a core of brain cells at 
the center of the affected region dies quickly, and the damage subsequently spreads to 
surrounding tissue over the next few hours. Because they allow for the delineation of areas 
of ischemic neuronal injury and hypoperfusion within minutes after the induction of 
cerebral ischemia, conventional proton MRI, especially diffusion-weighted imaging (DWI) 
and perfusion weighted imaging (PWI), have been particularly useful in the diagnosis of 
acute ischemic stroke. The target of acute stroke therapy is the portion of the ischemic region 
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which is still potentially salvageable, that is the ischemic penumbra. MRI operationally 
defines the ischemic penumbra by the mismatch area of PWI–DWI. DWI detects changes in 
the apparent diffusion coefficient (ADC) of water molecules associated with early cytotoxic 
edema in ischemic stroke. Arterial spin labeling (ASL)-based PWI methods provide excellent 
anatomical information for the measurement of tissue perfusion. The ASL technique shows 
numerous advantages, such as noninvasive measurements of cerebral blood flow (CBF) 
quantifiable in standard units of mL/g/min, and is able to image multi-slices and multi-
regions of the brain. However, in some situations, PWI methods require the injection of 
gadolinium containing contrast agents to map relative CBF in order to identify the 
hypoperfused tissue. In addition to the conventional DWI and PWI techniques, van Zijl and 
coworkers have developed pH-weighted MRI to study stroke and ischemic penumbra. 
However, proton imaging has a large background signal in biological tissue, and contrast 
injection is an invasive approach. Moreover, contrast-associated nephrogenic systemic 
fibrosis has been reported after the use of gadolinium-based agents, and many patients with 
impaired renal function are not eligible to receive contrast media. In contrast, 
hyperpolarized 129Xe MRI shows great potential and advantages for the identification of 
hypoperfused brain tissue. Xenon is highly lipid soluble and lacks an intrinsic background 
signal in biological tissue (Albert et al., 1994). Duhamel and co-workers have studied CBF 
using intra-arterial injection of hyperpolarized 129Xe dissolved in a lipid emulsion (Duhamel 
et al., 2000). Alternatively, hyperpolarized 129Xe can be administered noninvasively by 
inhalation; following inhalation, 129Xe is absorbed into the bloodstream and delivered to the 
brain through the circulation. Because the spin-exchange optical pumping technique can 
enhance the 129Xe MR signal 10,000–100,000 times over thermal polarization, the dissolved-
phase hyperpolarized 129Xe signal in the brain can be detected even at low concentrations. 
Because the xenon signal is proportional to CBF (Zhou et al., 2008), a decrease in the signal is 
expected to occur in areas of decreased CBF after the inhalation of hyperpolarized xenon 
gas. Hyperpolarized xenon imaging currently can not achieve a slice as thin as that obtained 
by ASL. In addition, ASL can be performed with substantially higher spatial resolution than 
hyperpolarized xenon imaging in brain tissue. However, the ASL technique requires two 
experiments (arterial spin labeled and controlled) to obtain CBF information. In this 
subsection, we report, for the first time, that hyperpolarized 129Xe MRI is able to detect areas 
of decreased CBF following middle cerebral artery occlusion (MCAO) in a single scan. These 
findings show the great potential and utility of hyperpolarized 129Xe MRI for stroke 
imaging, and further demonstrate that hyperpolarized 129Xe is a safe and noninvasive signal 
source for imaging diseases and function of the brain. 

Figure 3a shows a representative proton ADC map obtained 90 min following MCAO. There 
is a large ischemic core within the ipsilesional (right) MCA territory, as indicated by ADC 
values below the critical threshold of 5.3 × 10-4 mm2/s for infarction (Meng et al., 2004). [The 
normal ADC value of rat brain tissue in the contralesional (left) hemisphere is (7.5±1.8)×10-4 
mm2/s.] Figure 3b depicts the corresponding hyperpolarized 129Xe CSI, indicating signal 
reduction in large parts of the right hemisphere, consistent with the area typically 
experiencing decreased CBF following right MCAO in the model used (Duhamel et al., 
2002). Figure 3c shows the TTC-stained brain section of the same animal as illustrated in Fig. 
3a, b; the black line in this figure delineates the infracted brain tissue. Xenon CSI, shown in 
Fig. 3b, demonstrates reduced perfusion in brain tissue, ultimately leading to infarction, as 
shown by TTC staining in Fig. 3c. In Fig. 3d, the blue area represents the difference between 
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the ADC lesion and TTC lesion areas, and the green area shows the nonischemic region. ROI 
analyses were performed to further characterize the Xe CSI tissue signals within the 
different observed tissue compartments defined by their respective ADC and TTC 
signatures.  

Xenon signals from each ROI in the contralesional (left) hemisphere were set as a reference 
(100%), and xenon signals from each ROI in the ipsilesional (right) hemisphere were 
normalized to these signals. The xenon signal in the ischemic core (ROI1) dropped to 
8.4±0.4% of the contralesional side signal, and the xenon signal in normal tissue (ROI2) 
remained the same. Moreover, the xenon signal in ROI1 was reduced significantly relative to 
the corresponding con-tralesional ROIs in the MCAO group, as well as the corresponding 
ipsilateral ROIs in control animals. Within the control group, no significant differences in 
the xenon signal were observed between the corresponding ROIs of both hemispheres. 

 
Fig. 3. (a) Representative proton apparent diffusion coefficient (ADC) map image obtained 
90 min after right middle cerebral artery occlusion (MCAO). The ischemic core is indicated 
by ADC values below 5.3 × 10-4 mm2/s (circled by a blue line). (b) Corresponding 
hyperpolarized 129Xe chemical shift image (CSI). There is a large signal void in the 
ipsilesional (right) hemisphere. The defined regions of interest (ROIs) are labeled as follows: 
ROI1, core; ROI2, normal tissue. The xenon signal intensity is given in arbitrary units.  
(c) Corresponding 2,3,5-triphenyltetrazolium chloride (TTC)-stained brain section of the 
same animal as in (a) and (b). (d) Tricolor map based on the ADC and TTC images shown in 
(a) and (c). Green, red and blue represent nonischemic tissue, core and penumbra, 
respectively. 

Using a rat permanent right middle cerebral artery occlusion model, it has demonstrated 
that hyperpolarized 129Xe MRI is able to detect, in vivo, the hypoperfused area of focal 
cerebral ischemia, that is the ischemic core area of stroke. To the best of our knowledge, this 
is the first time that hyperpolarized 129Xe MRI has been used to explore normal and 
abnormal cerebral perfusion. The study shows a novel application of hyperpolarized 129Xe 
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which is still potentially salvageable, that is the ischemic penumbra. MRI operationally 
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anatomical information for the measurement of tissue perfusion. The ASL technique shows 
numerous advantages, such as noninvasive measurements of cerebral blood flow (CBF) 
quantifiable in standard units of mL/g/min, and is able to image multi-slices and multi-
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the ADC lesion and TTC lesion areas, and the green area shows the nonischemic region. ROI 
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different observed tissue compartments defined by their respective ADC and TTC 
signatures.  
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MRI for imaging stroke, and further demonstrates its capacity to serve as a complementary 
tool to proton MRI for the study of the pathophysiology during brain hypoperfusion. More 
importantly, these results indicate the possibility of the use of in vivo MRI to diagnose brain 
disease employing inhaled hyperpolarized gas, eliminating the potential adverse effects to 
the patient resulting from the injection of gadolinium-based contrast agents. 

6. Functional MRI with hyperpolarized 129Xe 
As hyperpolarized xenon is a MRI signal source with properties very different from those 
generated from water-protons, hyperpolarized 129Xe MRI may yield structural and 
functional information not detectable by conventional proton-based MRI methods. This 
subsection shows that the differential distribution of hyperpolarized 129Xe in the cerebral 
cortex of the rat following a pain stimulus evoked in the animal’s forepaw. Areas of higher 
hyperpolarized 129Xe signal corresponded to those areas previously demonstrated by 
conventional functional MRI (fMRI) methods as being activated by a forepaw pain stimulus. 
It demonstrated that the percent increase in hyperpolarized 129Xe signal over baseline was 13 
- 28%, which is more sensitive than the conventional fMRI based on the blood oxygen level 
dependence (BOLD) (2-4%) (Zhou et al., 2011b).  

Ex-vivo hyperpolarization of 129Xe is detectable by magnetic resonance spectroscopy (MRS) 
and MRI in animals and humans, although the resulting in vivo signal to noise ratio (SNR) of 
the hyperpolarized 129Xe signal is not as great as the signal produced by protons in 
conventional MRI, hyperpolarized 129Xe has several unique characteristics which may 
endow it with advantages in some imaging applications, including brain imaging (Zhou 
et.al, 2011a). The nuclear magnetic resonance frequency range (chemical shift) of 
hyperpolarized 129Xe in vivo is large compared to protons (200 ppm vs. 5 ppm respectively) 
and is also substantially affected by the local chemical environment, providing a means to 
detect localized physiological changes and biochemical binding events. In particular, the 
chemical shift experienced by 129Xe in the presence of oxygen (O2) is substantial and may 
offer a means to image changes in tissue O2 concentration that result from changes in 
neuronal activity. Xenon is also an ideal perfusion tracer (Betz, 1972) and inhaled non-
radioactive xenon gas has been used to detect disease induced alterations in cerebral blood 
flow with high anatomical specificity (Gur, 1982). Because xenon is not intrinsic to biological 
tissue, hyperpolarized 129Xe produces virtually no background signal, which, in turn, results 
in high contrast hyperpolarized 129Xe MR images (Swanson, 1997). 

6.1 Rat brain functional hyperpolarized 129Xe imaging experiment  

In the rat brain function study, hyperpolarized 129Xe MRI was performed in rats to 
investigate the distribution of the hyperpolarized 129Xe signal following a well-established 
paradigm for producing anatomically localized neuronal activity. Six rats were intubated 
and connected to a ventilator that controlled the delivery of oxygen and hyperpolarized 
129Xe gas. Male Spragur-Dawley rats weighing between 200-250g were placed on animal 
respirator, with tidal volume of 3ml O2 (3% isoflurane included) supplied for each breath. 
Immediately prior to the acquisition of CSI images, the animal was ventilated with alternate 
breaths of 100% hyperpolarized 129Xe and 98% O2: 2% isoflurane. The breath-hold period 
during the delivery of each hyperpolarized 129Xe breath was 2 seconds.  
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High resolution proton images were taken of the rat head to provide an anatomical 
reference for hyperpolarized 129Xe images. In order to evaluate the distribution of 
hyperpolarized 129Xe in brain following an external sensory stimulus, we acquired MRS 
images before and after a pain producing stimulus that has a well-defined functional 
response that can be measured using traditional fMRI techniques. A baseline 
hyperpolarized 129Xe spectroscopic image was acquired from a coronal slice centered at the 
level of the anatomical reference slice. 

The maximal, steady-state 129Xe brain signal occurred within 15 seconds after starting the 
ventilation with hyperpolarized 129Xe. Once verification of the xenon signal in the brain, a 
baseline 129Xe chemical shift image (CSI) was acquired that was centred in the plane 
corresponding to the proton reference image. Low flip angle used for CSI acquisition 
insured minimal loss of hyperpolarized 129Xe signal due to RF destruction, and the relatively 
long TR allowed continuous delivery of hyperpolarized 129Xe to the tissue, a steady–state 
concentration of hyperpolarized 129Xe was maintained in the brain thereby insuring constant 
signal intensity across the k-space. In a subset of animals (n=3) the animal’s left forepaw was 
injected with a vehicle solution during baseline. Following acquisition of the baseline CSI 
image, the animal was ventilated for 10 minutes with O2 (isoflurane to allow for complete 
clearance of 129Xe magnetization from the brain). After that, the chemical irritant capsaicin 
(20 ul of 3 mg/ml) was injected into the animal’s right forepaw (n= 6), and a second CSI was 
acquired. 

6.2 Experiment results and discussion  

A robust hyperpolarized 129Xe spectroscopic signal with one primary peak at 194.7 ppm 
developed within 15 seconds after starting the ventilation with hyperpolarized 129Xe. In 
order to determine the extent of hyperpolarized 129Xe distribution throughout the rat brain, 
a magnetic resonance spectroscopic image was acquired of the primary peak during the 
administration of hyperpolarized 129Xe (Figure 4). The four smaller resonances did not have 
sufficient SNR to produce spectroscopic images. Figure 4a shows an hyperpolarized 129Xe 
image taken in the axial plane. Addition of a color look-up table (Figure 4b) aided in 
visually delineating areas of low and high SNR. Figure 4c show a 1 mm proton slice in 
which the olfactory bulbs and cerebellum are visible. Overlay of the hyperpolarized 129Xe 
spectroscopic image onto the proton reference image (Figure 4d) revealed that the steady-
state hyperpolarized 129Xe signal originated from within the brain tissue and further 
demonstrated a pattern of hyperpolarized 129Xe distribution throughout the brain with 
varying signal intensity in different brain regions.  

Three of the six animals studied received a vehicle injection (saline) to the left forepaw 
immediately prior to the acquisition of the baseline image. 10 minutes after acquisition of the 
baseline hyperpolarized 129Xe MRS, the animal’s right forepaw was injected with the chemical 
irritant capsaicin (20 ml of 3 mg/ml), and a second hyperpolarized 129Xe spectroscopic image 
was acquired. Responses from three individual animals are shown in Figure 5. Whereas 
baseline images showed some hyperpolarized 129Xe signal intensity in cortical and sub-cortical 
brain regions (Figure 5, left panel), images acquired following administration of capsaicin 
showed both higher hyperpolarized 129Xe signal intensity and an increased area of distribution 
within the brain (Figure 5, right panel). Superimposition of a rat brain atlas (Figure 5a) 
revealed that areas of hyperpolarized 129Xe signal increase occurred both bilaterally and 
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MRI for imaging stroke, and further demonstrates its capacity to serve as a complementary 
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and is also substantially affected by the local chemical environment, providing a means to 
detect localized physiological changes and biochemical binding events. In particular, the 
chemical shift experienced by 129Xe in the presence of oxygen (O2) is substantial and may 
offer a means to image changes in tissue O2 concentration that result from changes in 
neuronal activity. Xenon is also an ideal perfusion tracer (Betz, 1972) and inhaled non-
radioactive xenon gas has been used to detect disease induced alterations in cerebral blood 
flow with high anatomical specificity (Gur, 1982). Because xenon is not intrinsic to biological 
tissue, hyperpolarized 129Xe produces virtually no background signal, which, in turn, results 
in high contrast hyperpolarized 129Xe MR images (Swanson, 1997). 
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investigate the distribution of the hyperpolarized 129Xe signal following a well-established 
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respirator, with tidal volume of 3ml O2 (3% isoflurane included) supplied for each breath. 
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High resolution proton images were taken of the rat head to provide an anatomical 
reference for hyperpolarized 129Xe images. In order to evaluate the distribution of 
hyperpolarized 129Xe in brain following an external sensory stimulus, we acquired MRS 
images before and after a pain producing stimulus that has a well-defined functional 
response that can be measured using traditional fMRI techniques. A baseline 
hyperpolarized 129Xe spectroscopic image was acquired from a coronal slice centered at the 
level of the anatomical reference slice. 

The maximal, steady-state 129Xe brain signal occurred within 15 seconds after starting the 
ventilation with hyperpolarized 129Xe. Once verification of the xenon signal in the brain, a 
baseline 129Xe chemical shift image (CSI) was acquired that was centred in the plane 
corresponding to the proton reference image. Low flip angle used for CSI acquisition 
insured minimal loss of hyperpolarized 129Xe signal due to RF destruction, and the relatively 
long TR allowed continuous delivery of hyperpolarized 129Xe to the tissue, a steady–state 
concentration of hyperpolarized 129Xe was maintained in the brain thereby insuring constant 
signal intensity across the k-space. In a subset of animals (n=3) the animal’s left forepaw was 
injected with a vehicle solution during baseline. Following acquisition of the baseline CSI 
image, the animal was ventilated for 10 minutes with O2 (isoflurane to allow for complete 
clearance of 129Xe magnetization from the brain). After that, the chemical irritant capsaicin 
(20 ul of 3 mg/ml) was injected into the animal’s right forepaw (n= 6), and a second CSI was 
acquired. 
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A robust hyperpolarized 129Xe spectroscopic signal with one primary peak at 194.7 ppm 
developed within 15 seconds after starting the ventilation with hyperpolarized 129Xe. In 
order to determine the extent of hyperpolarized 129Xe distribution throughout the rat brain, 
a magnetic resonance spectroscopic image was acquired of the primary peak during the 
administration of hyperpolarized 129Xe (Figure 4). The four smaller resonances did not have 
sufficient SNR to produce spectroscopic images. Figure 4a shows an hyperpolarized 129Xe 
image taken in the axial plane. Addition of a color look-up table (Figure 4b) aided in 
visually delineating areas of low and high SNR. Figure 4c show a 1 mm proton slice in 
which the olfactory bulbs and cerebellum are visible. Overlay of the hyperpolarized 129Xe 
spectroscopic image onto the proton reference image (Figure 4d) revealed that the steady-
state hyperpolarized 129Xe signal originated from within the brain tissue and further 
demonstrated a pattern of hyperpolarized 129Xe distribution throughout the brain with 
varying signal intensity in different brain regions.  

Three of the six animals studied received a vehicle injection (saline) to the left forepaw 
immediately prior to the acquisition of the baseline image. 10 minutes after acquisition of the 
baseline hyperpolarized 129Xe MRS, the animal’s right forepaw was injected with the chemical 
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was acquired. Responses from three individual animals are shown in Figure 5. Whereas 
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contralaterally in areas of the brain known to be involved in the processing of forepaw pain 
information, including the anterior cingulate and somatosensory cortices.  

 
Fig. 4. Hyperpolarized 129Xe signal distribution in the rat brain. (3a) hyperpolarized 129Xe 
CSI image acquired with a 2D CSI pulse sequence from rat head under normal breathing 
conditions (slice thickness 10 mm). (3b) same image with false color applied. Warmer colors 
indicate increased hyperpolarized 129Xe signal intensity. (3c) Proton MRI of a rat head 
showing a 1 mm coronal slice through the brain acquired with a RARE pulse sequence.  
(3d) Proton image shown with overlay of hyperpolarized 129Xe MRI, in which only 
hyperpolarized 129Xe signal with an SNR above 2 are shown. FOV was 25 mm. 

 
Fig. 5. Hyperpolarized 129Xe fMRI data from three animals. The hyperpolarized 129Xe signal 
is shown as a false color overlay on the corresponding 1 mm thick coronal proton reference 
image taken from the same animal. The left panel shows hyperpolarized 129Xe signal 
intensity during baseline and the right panel shows hyperpolarized 129Xe signal intensity 
after injection of capsaicin 20 ul (3 mg/ml) into the right forepaw. Color scale represents 
SNR and only signal with SNR above 2 are shown.  
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In spite of the as yet unrefined nature of this imaging modality, our results indicate that 
hyperpolarized 129Xe MRI may have use as a probe for brain physiology and function. 
Because xenon is not inherent in the body, the substantial challenges resulting from high 
background signal in 1H fMRI may be somewhat reduced. Extracting meaningful data from 
1H fMRI experiments is labour intensive, and requires a large number of subjects and image 
acquisitions. Extensive image post-processing is required and the influence that different 
post-processing steps play on the final data set achieved is actively debated. Conversely, 
hyperpolarized 129Xe MRI showed patterns of brain activation consistent with those 
obtained using 1H fMRI, using only a single set of images (one baseline and one post 
stimulus image) obtained from six animals. The magnitude of the signal difference between 
baseline and stimulus conditions for hyperpolarized 129Xe (13–28%) was comparable to 
differences typically obtained with conventional BOLD fMRI (2 to 29%) (Bock et al., 1998; 
Silva et al., 1999; Mandeville et al., 1999; Tuor et al., 2000) using a rat forepaw activation 
paradigm.  

7. Outlook of hyperpolarized 129Xe brain MRI 
This subsection will summarize the current progress as previously described, and comment 
the future research directions and applications in the brain imaging. Conventional MRI 
focuses mainly on the nuclear spin of the proton because it is ubiquitous in most parts of the 
human body. However, certain organs have a low proton spin density attributable to the 
large volume of air dispersed throughout the tissue. The low sensitivity of traditional 
magnetic resonance has motivated the development of techniques using hyperpolarized 
noble gases for NMR and MRI. Xenon has the unique characteristic of being soluble in many 
fluids and biological tissues, such as water, blood, lung tissue, and white and gray matter. 
Being a trace element in the atmosphere, xenon has no natural background signal in the 
human body. Therefore, dissolved-phase xenon MRI and molecular imaging could provide 
rich information related to biological and physiological changes beyond void space lung 
imaging. Efforts have demonstrated the value of dissolved xenon MRI in the study of lung 
gas exchange (Swanson et.al, 1999), and brain perfusion (Swanson et al., 1997; Kilian et al., 
2004; Zhou et al., 2008, 2011a, 2011b) and function (Mazzanti et al., 2011). Recently, xenon-
based molecular imaging has been demonstrated by using cryptophane-containing 
biosensors (Hilty et al., 2006). Sensitivity enhancement using a chemical amplification 
technique, hyperpolarized xenon chemical exchange saturation transfer (Hyper-CEST) 
(Schröder et al., 2006), allows imaging at low concentrations; however, for in vivo 
applications the small filling factor of a region of interest in the body relative to the NMR 
coil is a significant factor limiting sensitivity. In such cases remote detection methods (Hilty 
et.al, 2005) can provide dramatic improvements in sensitivity. In remote detection, the 
normal NMR coil that contains the full region of interest is used to encode spectroscopic and 
spatial information, then stores it as longitudinal magnetization. These encoded spins then 
flow into a second coil with an optimized filling factor for detection.  

Remote detection can overcome the filling factor issue of dissolved xenon MRI, although a 
low concentration of xenon in solution can be another significant impediment to highly 
sensitive detection. It has been shown that the solvated xenon signal can be amplified by 
xenon polarization transfer contrast, in which the dissolved-phase xenon from either lungs 
or brains is selectively saturated, and through exchange, the gas-phase signal is attenuated. 
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acquisitions. Extensive image post-processing is required and the influence that different 
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hyperpolarized 129Xe MRI showed patterns of brain activation consistent with those 
obtained using 1H fMRI, using only a single set of images (one baseline and one post 
stimulus image) obtained from six animals. The magnitude of the signal difference between 
baseline and stimulus conditions for hyperpolarized 129Xe (13–28%) was comparable to 
differences typically obtained with conventional BOLD fMRI (2 to 29%) (Bock et al., 1998; 
Silva et al., 1999; Mandeville et al., 1999; Tuor et al., 2000) using a rat forepaw activation 
paradigm.  

7. Outlook of hyperpolarized 129Xe brain MRI 
This subsection will summarize the current progress as previously described, and comment 
the future research directions and applications in the brain imaging. Conventional MRI 
focuses mainly on the nuclear spin of the proton because it is ubiquitous in most parts of the 
human body. However, certain organs have a low proton spin density attributable to the 
large volume of air dispersed throughout the tissue. The low sensitivity of traditional 
magnetic resonance has motivated the development of techniques using hyperpolarized 
noble gases for NMR and MRI. Xenon has the unique characteristic of being soluble in many 
fluids and biological tissues, such as water, blood, lung tissue, and white and gray matter. 
Being a trace element in the atmosphere, xenon has no natural background signal in the 
human body. Therefore, dissolved-phase xenon MRI and molecular imaging could provide 
rich information related to biological and physiological changes beyond void space lung 
imaging. Efforts have demonstrated the value of dissolved xenon MRI in the study of lung 
gas exchange (Swanson et.al, 1999), and brain perfusion (Swanson et al., 1997; Kilian et al., 
2004; Zhou et al., 2008, 2011a, 2011b) and function (Mazzanti et al., 2011). Recently, xenon-
based molecular imaging has been demonstrated by using cryptophane-containing 
biosensors (Hilty et al., 2006). Sensitivity enhancement using a chemical amplification 
technique, hyperpolarized xenon chemical exchange saturation transfer (Hyper-CEST) 
(Schröder et al., 2006), allows imaging at low concentrations; however, for in vivo 
applications the small filling factor of a region of interest in the body relative to the NMR 
coil is a significant factor limiting sensitivity. In such cases remote detection methods (Hilty 
et.al, 2005) can provide dramatic improvements in sensitivity. In remote detection, the 
normal NMR coil that contains the full region of interest is used to encode spectroscopic and 
spatial information, then stores it as longitudinal magnetization. These encoded spins then 
flow into a second coil with an optimized filling factor for detection.  

Remote detection can overcome the filling factor issue of dissolved xenon MRI, although a 
low concentration of xenon in solution can be another significant impediment to highly 
sensitive detection. It has been shown that the solvated xenon signal can be amplified by 
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or brains is selectively saturated, and through exchange, the gas-phase signal is attenuated. 
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This method is able to indirectly image dissolved-phase xenon, but is limited to tissue in 
direct exchange with the air in the lungs. The gas exchange process could be similarly 
exploited for direct signal amplification of dissolved xenon with the remote detection 
technique, which extends the study area from lung to brain. Xenon gas can be extracted 
from the dissolved solutions and concentrated in the gas phase for detection. Furthermore, 
with the long longitudinal relaxation time of gas-phase xenon, extracted xenon gas from 
solution can be compressed or liquefied while preserving the encoded information. The 
xenon density in the liquid state is approximately four orders of magnitude higher than in 
aqueous solutions, which in principle could result in up to 10,000 times enhancement of spin 
density, thus allowing substantial signal amplification  

We have demonstrated the hyperpolarized xenon signal amplification by gas extraction 
(Hyper-SAGE) method (Zhou et al., 2009b) with enhanced NMR spectra and time-of-flight 
(TOF) images by using recently commercialized membrane technology for high-efficiency 
xenon dissolution (Baumer et.al, 2006). The Hyper-SAGE technique relies on physical 
amplification by exploiting a phase change and is completely distinct from chemical 
amplification. In combination with additional amplification techniques such as Hyper-
CEST, this method promises to dramatically decrease the detection threshold of MRI and 
has the potential to benefit molecular imaging applications and brain imaging.  

Recent innovations in the production of highly polarized 129Xe and novel method of signal 
enhancement should make feasible the emergence of hyperpolarized 129Xe MRI as a viable 
adjunct method to conventional MRI for the study of brain function and disease. The high 
sensitivity of hyperpolarized noble gas signal and non-background noise in biological tissue 
offer xenon as an important and promising contrast agent to study the brain. Because the 
polarization of hyperpolarized xenon does not depend on the magnetic field strength, the 
technique for brain imaging could also be applied for use with low field portable MRI 
devices (Appelt, 2007; Blümich, 2008; Paulsen, 2008). 
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1. Introduction 
Effective, precise and consistent brain cortical tissue segmentation from magnetic resonance 
(MR) images is one of the most prominent issues in many applications of medical image 
processing. These applications include surgical planning (Kikinis et al., 1996), surgery 
navigation (Grimson et al., 1997), multimodality image registration (Saeed, 1998), 
abnormality detection (Rusinek et al., 1991), multiple sclerosis lesion quantification (Udupa 
et al., 1997), brain tumour detection (Vaidyanathan et al., 1997), functional mapping (Roland 
et al., 1993), etc. Traditionally, the purpose of segmentation is to partition the image into 
non-overlapping, constituent regions (or called classes, clusters, subsets or sub-regions) that 
are homogeneous with respect to intensity and texture (Gonzalez & Woods, 1992). If the 
domain of the image is given by , then the segmentation problem is to determine the sets 

, whose union is the entire domain . Thus, the sets that make up a segmentation 
must satisfy 
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where  for , and each  is connected. Ideally, a segmentation method is to 
find those sets that correspond to distinct anatomical structures or regions of interest in the 
image (Pham et al., 2000). 

For brain MR image segmentation, some studies aim to identify the entire image into sub-
regions such as white matter (WM), grey matter (GM), and cerebrospinal fluid spaces (CSF) 
of the brain (Lim & Pfefferbaum, 1989), whereas others aim to extract one specific structure, 
for instance, brain tumour (M.C. Clark et al., 1998), multiple sclerosis lesions (Mortazavi et 
al., 2011), or subcortical structures (Babalola et al., 2008). Due to varying complications in 
segmenting human cerebral cortex, the manual methods for brain tissues segmentation 
might easily lead to errors both in accuracy and reproducibility (operator bias), and are 
exceedingly time-consuming, we thus need fast, accurate and robust semi-automatic (i.e., 
supervised classification explicitly needs user interaction) or completely automatic (i.e., non-
supervised classification) techniques (Suri, Singh, et al., 2002b). 
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where  for , and each  is connected. Ideally, a segmentation method is to 
find those sets that correspond to distinct anatomical structures or regions of interest in the 
image (Pham et al., 2000). 

For brain MR image segmentation, some studies aim to identify the entire image into sub-
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al., 2011), or subcortical structures (Babalola et al., 2008). Due to varying complications in 
segmenting human cerebral cortex, the manual methods for brain tissues segmentation 
might easily lead to errors both in accuracy and reproducibility (operator bias), and are 
exceedingly time-consuming, we thus need fast, accurate and robust semi-automatic (i.e., 
supervised classification explicitly needs user interaction) or completely automatic (i.e., non-
supervised classification) techniques (Suri, Singh, et al., 2002b). 
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1.1 MR imaging (MRI) 

MR imaging (MRI), invented by Raymond V. Damadian in 1969, and was firstly done on a 
human body in 1977 (Damadian et al., 1977). MR imaging is a popular medical imaging 
technique used in radiology to visualize detailed internal structures. It provides good 
contrast between different soft tissues of the body, which makes it especially useful in 
imaging the brain, muscles, the heart and cancers when compared with other medical 
imaging techniques, such as computed tomography (CT) or X-rays (Novelline & Squire, 
2004). According to different magnetic signal weighting with particular values of the echo 
time ( ) and the repetition time ( ), three different images can be achieved from the same 
body: -weighted, -weighted, and PD-weighted (proton density).  

In the clinical diagnosis, one patient’s head is examined from 3 planes showed in Fig.1 (a), 
and they are axial plane, sagittal plane and coronal plane. The -weighted brain MR images 
from different planes are respectively showed in Fig.1 (b), (c), and (d). 

 
(a) 

     
(b)   (c)       (d) 

Fig.1. Brain MR images from (b) axial plane, (c) sagittal plane and (d) coronal plane. 

1.2 Difficulties in segmentation of brain MRI 

Even though cortical segmentation has developed for many years in medical research, it is 
not regarded as an automated, reliable, and high speed technique because of magnetic field 
inhomogeneities: 
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1. Noise: random noise associated with the MR imaging system, which is known to have a 
Rician distribution (Prima et al., 2001); 

2. Intensity inhomogeneity (also called bias field, or shading artefact): the non-uniformity 
in the radio frequency (RF) field during data acquisition, resulting in the shading of 
effect (X. Li et al., 2003); 

3. Partial volume effect: more than one type of class or tissue occupies one pixel or voxel 
of an image, which are called partial volume effect. These pixels or voxels are usually 
called mixels (Ruan et al., 2000). 

1.3 Evaluation of segmentation techniques 

The evaluation of brain tissue classification also is a complex issue in medical image 
processing. Visual inspection and comparison with manual segmentation are very strenuous 
and are not reliable since the amount of data to be processed is usually large. Tissue 
classification methods can also be validated by using synthetic data and real brain MR 
images. The simulated brain MR data with different noise levels and different levels of 
intensity inhomogeneity, have been provided by Brainweb simulated brain phantom 
(Collins et al., 1998; Kwan et al., 1999) (http://www.bic.mni.mcgill.ca/brainweb/), and the 
ground truth for both the classification and partial volumes within the images is also 
available to estimate different methods quantitatively. The real brain MRI datasets with 
expert segmentations can be obtained from Internet Brain Segmentation Repository (IBSR) 
(http://www.cma.mgh.harvard.edu/ibsr/). A few surveys on this topic have been 
provided in (H. Zhang et al., 2008; Y.J. Zhang, 1996, 2001). Here, we depict three different 
measures for quantitatively evaluating segmentation results. 

(1) The misclassification rate (MCR) is the percentage of misclassified pixels and is 
computed as (background pixels were ignored in the MCR computation) (Bankman, 2000) 

 ×number of  misclassified pixelsMCR = 100%
total number of  all pixels

 (2) 

(2) The root mean squared error (RMSE) is to quantify the difference between the true 
partial volumes and the algorithm estimations. The RMSE of an estimator  with respect to 
the estimated parameter  is defined as (Bankman, 2000): 

 2ˆ ˆ ˆ( ) ( ) [( ) ]RMSE MSE E       (3) 

(3) Let  be the number of pixels that do not belong to a cluster and are segmented into 
the cluster,  be the number of pixels that belong to a cluster and are not segmented into 
the cluster,  be the number of all pixels that belong to a cluster, and  be the total 
number of pixels that do not belong to a cluster. Three parameters in this evaluation system 
may now be defined as follows (Shen et al., 2005). 

 Under segmentation (UnS): , representing the percentage of negative false 
segmentation; 

 Over segmentation (OvS): , representing the percentage of positive false 
segmentation; 
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Fig.1. Brain MR images from (b) axial plane, (c) sagittal plane and (d) coronal plane. 
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inhomogeneities: 
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1. Noise: random noise associated with the MR imaging system, which is known to have a 
Rician distribution (Prima et al., 2001); 

2. Intensity inhomogeneity (also called bias field, or shading artefact): the non-uniformity 
in the radio frequency (RF) field during data acquisition, resulting in the shading of 
effect (X. Li et al., 2003); 

3. Partial volume effect: more than one type of class or tissue occupies one pixel or voxel 
of an image, which are called partial volume effect. These pixels or voxels are usually 
called mixels (Ruan et al., 2000). 

1.3 Evaluation of segmentation techniques 

The evaluation of brain tissue classification also is a complex issue in medical image 
processing. Visual inspection and comparison with manual segmentation are very strenuous 
and are not reliable since the amount of data to be processed is usually large. Tissue 
classification methods can also be validated by using synthetic data and real brain MR 
images. The simulated brain MR data with different noise levels and different levels of 
intensity inhomogeneity, have been provided by Brainweb simulated brain phantom 
(Collins et al., 1998; Kwan et al., 1999) (http://www.bic.mni.mcgill.ca/brainweb/), and the 
ground truth for both the classification and partial volumes within the images is also 
available to estimate different methods quantitatively. The real brain MRI datasets with 
expert segmentations can be obtained from Internet Brain Segmentation Repository (IBSR) 
(http://www.cma.mgh.harvard.edu/ibsr/). A few surveys on this topic have been 
provided in (H. Zhang et al., 2008; Y.J. Zhang, 1996, 2001). Here, we depict three different 
measures for quantitatively evaluating segmentation results. 

(1) The misclassification rate (MCR) is the percentage of misclassified pixels and is 
computed as (background pixels were ignored in the MCR computation) (Bankman, 2000) 

 ×number of  misclassified pixelsMCR = 100%
total number of  all pixels

 (2) 

(2) The root mean squared error (RMSE) is to quantify the difference between the true 
partial volumes and the algorithm estimations. The RMSE of an estimator  with respect to 
the estimated parameter  is defined as (Bankman, 2000): 

 2ˆ ˆ ˆ( ) ( ) [( ) ]RMSE MSE E       (3) 

(3) Let  be the number of pixels that do not belong to a cluster and are segmented into 
the cluster,  be the number of pixels that belong to a cluster and are not segmented into 
the cluster,  be the number of all pixels that belong to a cluster, and  be the total 
number of pixels that do not belong to a cluster. Three parameters in this evaluation system 
may now be defined as follows (Shen et al., 2005). 

 Under segmentation (UnS): , representing the percentage of negative false 
segmentation; 

 Over segmentation (OvS): , representing the percentage of positive false 
segmentation; 
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 Incorrect segmentation (InC): , representing the total percentage of 
false segmentation. 

The purpose of this chapter is to render a review about existing segmentation techniques 
and the work we have done in the segmentation of brain MR images. The rest of this chapter 
is organized as follows: In Section 2, existing techniques for human cerebral cortical 
segmentation and their applications are reviewed. In Section 3, a new non-homogeneous 
Markov random field model based on fuzzy membership is proposed for brain MR image 
segmentation. In Section 4, image pre-processing, such as de-noising, the correction of 
intensity inhomogeneity and the estimation of partial volume effect are summarized. In 
Section 5, the conclusion of this chapter is given. 

2. Image segmentation methods 
A wide variety of segmentation techniques have been reviewed in (Balafar et al., 2010; 
Bankman, 2000; Bezdek et al., 1993; Clarke et al., 1995; Dubey et al., 2010; Pal & Pal, 1993; 
Pham et al., 2000; Saeed, 1998; Suri, Singh, et al., 2002b, 2002a; Zijdenbos & Dawant, 1994). 
We separate these techniques into 9 categories based on the classification scheme in 
(Pham et al., 2000): (1) thresholding, (2) region growing, (3) edge detection, (4) classifiers, 
(5) clustering, (6) statistical models, (7) artificial neural networks, (8) deformable models, 
and (9) atlas-guided approaches. Other notable methods that do not belong to any of these 
categories are described at the end of this section. Though each technique is presented 
separately, multiple techniques are often used in conjunction to solve various 
applications. 

2.1 Thresholding 

The simplest operation in this category is image thresholding (Pal & Pal, 1993). In this 
technique a threshold is selected, and an image is divided into groups of pixels having value 
less than the threshold and groups of pixels with values greater or equal to the threshold. 
There are several thresholding methods: global thresholding, adaptive thresholding, optimal 
global and adaptive thresholding, local thresholding, and thresholds based on several 
variables (Bankman, 2000). Thresholding is a very simple, fast and easily implemented 
procedure that works reasonably well for images with very good contrast between 
distinctive sub-regions. A typical example is to separate CSF from highly T2-weighted brain 
images (Saeed, 1998). However, the distribution of intensities in brain MR images is usually 
very complex, and determining a threshold is difficult. In most cases, thresholding is 
combined with other methods (Brummer et al., 1993; Suzuki & Toriwaki, 1991). 

2.2 Region growing 

Region growing (or region merging) is a procedure that looks for groups of pixels with 
similar intensities. It starts with a pixel or a group of pixels (called seeds) that belong to the 
structure of interest. Subsequently the neighbouring pixels with the same properties as 
seeds (or based on a homogeneity criteria) are appended gradually to the growing region 
until no more pixels can be added (Dubey et al., 2010). The object is then represented by all 
pixels that have been accepted during the growing procedure. The advantage of region 
growing is that it is capable of correctly segmenting regions that have the same properties 
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and are spatially separated, and also it generates connected regions (Bankman, 2000). 
Instead of region merging, it is possible to start with some initial segmentation and 
subdivide the regions that do not satisfy a given uniformity test. This technique is called 
splitting (Haralick & Shapiro, 1985). A combination of splitting and merging adds together 
the advantages of both approaches (Zucker, 1976). However, the results of region growing 
depend strongly on the selection of homogeneity criterion. Another problem is that different 
starting points may not grow into identical regions (Bankman, 2000). Region growing has 
been exploited in many clinical applications (Cline et al., 1987; Tang et al., 2000). 

2.3 Edge detection techniques 

In edge detection techniques, the resulting segmented image is described in terms of the 
edges (boundaries) between different regions. Edges are formed at intersection of two 
regions where there are abrupt changes in grey level intensity values. Edge detection works 
well on images with good contrast between regions. A large number of different edge 
operators can be used for edge detection. These operations are generally named after their 
inventors. The most popular ones are the Marr-Hildreth or LoG (Laplacian-of-Gaussian), 
Sobel, Roberts, Prewitt, and Canny operators. Binary mathematical morphology and 
Watershed algorithm are often used for edge detection purposed in the segmentation of 
brain MR images (Dogdas et al., 2002; Grau et al., 2004). However, the major drawbacks of 
these methods are over-segmentation, sensitivity to noise, poor detection of significant areas 
with low contrast boundaries, and poor detection of thin structures, etc. (Grau et al., 2004). 

2.4 Classifiers 

Classifier methods are known as supervised methods in pattern recognition, which seek to 
partition the image by using training data with known labels as references. The simplest 
classifier is nearest-neighbour classifier (NNC), in which each pixel is classified in the same 
class as the training datum with closest intensity (Boudraa & Zaidi, 2006). Other examples of 
classifiers are k-nearest neighbour (k-NN) (Duda & Hart, 1973; Fukunaga, 1990), Parzen 
window (Hamamoto et al., 1996), Bayes classifier or maximum likelihood (ML) estimation 
(Duda & Hart, 1973), Fisher’s linear discriminant (FLD) (Fisher, 1936), the nearest mean 
classifier (NMC) (Skurichina & Duin, 1996), support vector machine (SVM) (Vapnik, 1998). 
The weakness of classifiers is that they generally do not perform any spatial modelling. This 
weakness has been addressed in recent work extending classifier methods to segment 
images corrupted by intensity in-homogeneities (Wells III et al., 1996). Neighbourhood and 
geometric information was also incorporated into a classifier approach in (Kapur et al., 
1998). In addition, it requires manual interaction to obtain training data. Training sets for 
each image can be time consuming and laborious (Pham et al., 2000). 

2.5 Clustering 

Clustering is the process of organizing objects into groups whose members are similar in 
certain ways, whose goal is to recognize structures or clusters presented in a collection of 
unlabelled data. It is a method of unsupervised learning, and a common technique for 
statistical data analysis used in many fields. 
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 Incorrect segmentation (InC): , representing the total percentage of 
false segmentation. 

The purpose of this chapter is to render a review about existing segmentation techniques 
and the work we have done in the segmentation of brain MR images. The rest of this chapter 
is organized as follows: In Section 2, existing techniques for human cerebral cortical 
segmentation and their applications are reviewed. In Section 3, a new non-homogeneous 
Markov random field model based on fuzzy membership is proposed for brain MR image 
segmentation. In Section 4, image pre-processing, such as de-noising, the correction of 
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2. Image segmentation methods 
A wide variety of segmentation techniques have been reviewed in (Balafar et al., 2010; 
Bankman, 2000; Bezdek et al., 1993; Clarke et al., 1995; Dubey et al., 2010; Pal & Pal, 1993; 
Pham et al., 2000; Saeed, 1998; Suri, Singh, et al., 2002b, 2002a; Zijdenbos & Dawant, 1994). 
We separate these techniques into 9 categories based on the classification scheme in 
(Pham et al., 2000): (1) thresholding, (2) region growing, (3) edge detection, (4) classifiers, 
(5) clustering, (6) statistical models, (7) artificial neural networks, (8) deformable models, 
and (9) atlas-guided approaches. Other notable methods that do not belong to any of these 
categories are described at the end of this section. Though each technique is presented 
separately, multiple techniques are often used in conjunction to solve various 
applications. 

2.1 Thresholding 

The simplest operation in this category is image thresholding (Pal & Pal, 1993). In this 
technique a threshold is selected, and an image is divided into groups of pixels having value 
less than the threshold and groups of pixels with values greater or equal to the threshold. 
There are several thresholding methods: global thresholding, adaptive thresholding, optimal 
global and adaptive thresholding, local thresholding, and thresholds based on several 
variables (Bankman, 2000). Thresholding is a very simple, fast and easily implemented 
procedure that works reasonably well for images with very good contrast between 
distinctive sub-regions. A typical example is to separate CSF from highly T2-weighted brain 
images (Saeed, 1998). However, the distribution of intensities in brain MR images is usually 
very complex, and determining a threshold is difficult. In most cases, thresholding is 
combined with other methods (Brummer et al., 1993; Suzuki & Toriwaki, 1991). 

2.2 Region growing 

Region growing (or region merging) is a procedure that looks for groups of pixels with 
similar intensities. It starts with a pixel or a group of pixels (called seeds) that belong to the 
structure of interest. Subsequently the neighbouring pixels with the same properties as 
seeds (or based on a homogeneity criteria) are appended gradually to the growing region 
until no more pixels can be added (Dubey et al., 2010). The object is then represented by all 
pixels that have been accepted during the growing procedure. The advantage of region 
growing is that it is capable of correctly segmenting regions that have the same properties 
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and are spatially separated, and also it generates connected regions (Bankman, 2000). 
Instead of region merging, it is possible to start with some initial segmentation and 
subdivide the regions that do not satisfy a given uniformity test. This technique is called 
splitting (Haralick & Shapiro, 1985). A combination of splitting and merging adds together 
the advantages of both approaches (Zucker, 1976). However, the results of region growing 
depend strongly on the selection of homogeneity criterion. Another problem is that different 
starting points may not grow into identical regions (Bankman, 2000). Region growing has 
been exploited in many clinical applications (Cline et al., 1987; Tang et al., 2000). 

2.3 Edge detection techniques 

In edge detection techniques, the resulting segmented image is described in terms of the 
edges (boundaries) between different regions. Edges are formed at intersection of two 
regions where there are abrupt changes in grey level intensity values. Edge detection works 
well on images with good contrast between regions. A large number of different edge 
operators can be used for edge detection. These operations are generally named after their 
inventors. The most popular ones are the Marr-Hildreth or LoG (Laplacian-of-Gaussian), 
Sobel, Roberts, Prewitt, and Canny operators. Binary mathematical morphology and 
Watershed algorithm are often used for edge detection purposed in the segmentation of 
brain MR images (Dogdas et al., 2002; Grau et al., 2004). However, the major drawbacks of 
these methods are over-segmentation, sensitivity to noise, poor detection of significant areas 
with low contrast boundaries, and poor detection of thin structures, etc. (Grau et al., 2004). 

2.4 Classifiers 

Classifier methods are known as supervised methods in pattern recognition, which seek to 
partition the image by using training data with known labels as references. The simplest 
classifier is nearest-neighbour classifier (NNC), in which each pixel is classified in the same 
class as the training datum with closest intensity (Boudraa & Zaidi, 2006). Other examples of 
classifiers are k-nearest neighbour (k-NN) (Duda & Hart, 1973; Fukunaga, 1990), Parzen 
window (Hamamoto et al., 1996), Bayes classifier or maximum likelihood (ML) estimation 
(Duda & Hart, 1973), Fisher’s linear discriminant (FLD) (Fisher, 1936), the nearest mean 
classifier (NMC) (Skurichina & Duin, 1996), support vector machine (SVM) (Vapnik, 1998). 
The weakness of classifiers is that they generally do not perform any spatial modelling. This 
weakness has been addressed in recent work extending classifier methods to segment 
images corrupted by intensity in-homogeneities (Wells III et al., 1996). Neighbourhood and 
geometric information was also incorporated into a classifier approach in (Kapur et al., 
1998). In addition, it requires manual interaction to obtain training data. Training sets for 
each image can be time consuming and laborious (Pham et al., 2000). 

2.5 Clustering 

Clustering is the process of organizing objects into groups whose members are similar in 
certain ways, whose goal is to recognize structures or clusters presented in a collection of 
unlabelled data. It is a method of unsupervised learning, and a common technique for 
statistical data analysis used in many fields. 
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2.5.1 K-means clustering 

K-means clustering (or Hard C-means clustering, HCM) (MacQueen, 1967) is one of the 
simplest unsupervised clustering method, aiming to partition N samples into K clusters by 
minimizing an objective function so that the within-cluster sum of squares is minimized. It 
starts with defined initial K cluster centers and keeps reassigning the samples to clusters 
based on the similarity between the sample and the cluster centers until a convergence 
criterion is met. Given a set of samples ���� ��� � � ���, where each sample is a M-dimensional 
real vector, �� is the num of samples in cluster k denoted by ��, �� is the mean value of these 
samples, and then the objective function is defined as: 
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where ||�� � ��|| is a distance measure between point �� and the cluter center ��. The 
common distance measures are Euclidean distance, chessboard distance, city block distance, 
Mahalanobis distance, or Hamming distance. The K-means algorithm has been used widely 
in brain MR image segmentation (Abras & Ballarin, 2005; Vemuri et al., 1995), because of its 
easy implementation and simple time complexity. A major problem of this algorithm is that 
it is sensitive to the selection of K cluster centers, and may converge to a local minimum of 
the criterion function value (Jain et al., 1999). Dozens of optimal solutions have been 
proposed for selecting better initial K cluster centers to find the global minimum value 
(Bradley & Fayyad, 1998; Khan & Ahmad, 2004). 

2.5.2 Fuzzy c-means clustering (FCM) 

Fuzzy c-means clustering (FCM) (Bezdek, 1981; Dunn, 1973) is based on the same idea of 
finding cluster centers by iteratively adjusting their positions and minimizing an objective 
function as K-means algorithm. Meanwhile it allows more flexibility by introducing 
multiple fuzzy membership grades to multiple clusters. The objective function is defined 
as: 
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where m is constant to control clustering fuzziness, generally m = 2. ��� is the fuzzy 
membership of �� in the cluster k and satisfying ① � � ��� � �, ② ∑ ��� � ����� . �� is the i-th 
sample in measured data. �� is the cluster center, and ∥∗∥ is a distance measure. Fuzzy 
partitioning is carried out through an iterative optimization of the objective function shown 
above, with the update of membership ��� and  cluster centers �� by: 
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This iteration will stop when ��� �������� � ���������� � �, ε is a termination criterion between 0 
and 1, and p is the iteration step (Kannan et al., 2010). Although clustering algorithms do not 
require training data, they do require an initial segmentation (or equivalently, initial 
parameters). Clustering algorithms do not directly incorporate spatial modeling and can 
therefore be sensitive to noise and intensity inhomogeneities. This lack of spatial modeling, 
however, can provide significant advantages for fast computation (Hebert, 1997). Some 
work on improving the robustness of clustering algorithms to intensity inhomogeneities in 
MR images have been carried out (Pham & Prince, 1999). Robustness to noise can be 
incorporated with spatial correlations in an image based on k-nearest neighbor model (R. Xu 
& Ohya, 2010) or Markov random field (MRF) modeling (Liu et al., 2005). 

2.6 Statistical models 

Statistical classification methods usually solve the segmentation problem by either assigning 
a class label to a pixel or by estimating the relative amounts of the various tissue types 
within a pixel (Noe et al., 2001). Statistical inference enables us to make statements about 
which element(s) of this set are likely to be the true ones. 

2.6.1 Expectation maximization (EM) 

Expectation maximization (EM) algorithm (Dempster et al., 1977) is a method for finding the 
maximum likelihood or maximum a posteriori (MAP) estimator of a hidden parameter � 
with a probability distribution. EM is an iterative method which alternates between 
performing an expectation (E) step, in which each pixel is classified into one cluster 
according to the current estimates of the posterior distributions over hidden variables, and a 
maximization (M) step, in which the hidden parameters are re-estimated by maximizing the 
likelihood function, according to the current classification. These parameter-estimates are 
then used to determine the distribution over hidden variables in the next E step. 
Convergence is assured since the increase of likelihood after each iteration (Zaidi et al., 
2006). The underlying model in EM algorithm can be specified according the specific 
requirements of the given task (Wells III et al., 1996; Y. Zhang et al., 2001). In spite of these 
achievements, they have a few deficiencies: a good prior distribution and the known 
number of classes are required, and it has extensive computations. 

2.6.2 Markov random field model (MRF) 

Markov random field (S.Z. Li, 1995) model is a statistical model that can be used within 
segmentation methods. MRFs model spatial interactions among neighboring or nearby 
pixels. In medical imaging, they are typically used because most pixels belong to the same 
class as their neighboring pixels (Pham et al., 2000). Let a finite lattice I as a 2D image, � � � is 
the pixel i in this image, which is denoted by � � ���� � � ��, where �� is the gray value of 
pixel i. For each pixel, the region-type (or pixel class) that the pixel belongs to is specified by 
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K-means clustering (or Hard C-means clustering, HCM) (MacQueen, 1967) is one of the 
simplest unsupervised clustering method, aiming to partition N samples into K clusters by 
minimizing an objective function so that the within-cluster sum of squares is minimized. It 
starts with defined initial K cluster centers and keeps reassigning the samples to clusters 
based on the similarity between the sample and the cluster centers until a convergence 
criterion is met. Given a set of samples ���� ��� � � ���, where each sample is a M-dimensional 
real vector, �� is the num of samples in cluster k denoted by ��, �� is the mean value of these 
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where ||�� � ��|| is a distance measure between point �� and the cluter center ��. The 
common distance measures are Euclidean distance, chessboard distance, city block distance, 
Mahalanobis distance, or Hamming distance. The K-means algorithm has been used widely 
in brain MR image segmentation (Abras & Ballarin, 2005; Vemuri et al., 1995), because of its 
easy implementation and simple time complexity. A major problem of this algorithm is that 
it is sensitive to the selection of K cluster centers, and may converge to a local minimum of 
the criterion function value (Jain et al., 1999). Dozens of optimal solutions have been 
proposed for selecting better initial K cluster centers to find the global minimum value 
(Bradley & Fayyad, 1998; Khan & Ahmad, 2004). 

2.5.2 Fuzzy c-means clustering (FCM) 

Fuzzy c-means clustering (FCM) (Bezdek, 1981; Dunn, 1973) is based on the same idea of 
finding cluster centers by iteratively adjusting their positions and minimizing an objective 
function as K-means algorithm. Meanwhile it allows more flexibility by introducing 
multiple fuzzy membership grades to multiple clusters. The objective function is defined 
as: 
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where m is constant to control clustering fuzziness, generally m = 2. ��� is the fuzzy 
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This iteration will stop when ��� �������� � ���������� � �, ε is a termination criterion between 0 
and 1, and p is the iteration step (Kannan et al., 2010). Although clustering algorithms do not 
require training data, they do require an initial segmentation (or equivalently, initial 
parameters). Clustering algorithms do not directly incorporate spatial modeling and can 
therefore be sensitive to noise and intensity inhomogeneities. This lack of spatial modeling, 
however, can provide significant advantages for fast computation (Hebert, 1997). Some 
work on improving the robustness of clustering algorithms to intensity inhomogeneities in 
MR images have been carried out (Pham & Prince, 1999). Robustness to noise can be 
incorporated with spatial correlations in an image based on k-nearest neighbor model (R. Xu 
& Ohya, 2010) or Markov random field (MRF) modeling (Liu et al., 2005). 

2.6 Statistical models 

Statistical classification methods usually solve the segmentation problem by either assigning 
a class label to a pixel or by estimating the relative amounts of the various tissue types 
within a pixel (Noe et al., 2001). Statistical inference enables us to make statements about 
which element(s) of this set are likely to be the true ones. 

2.6.1 Expectation maximization (EM) 

Expectation maximization (EM) algorithm (Dempster et al., 1977) is a method for finding the 
maximum likelihood or maximum a posteriori (MAP) estimator of a hidden parameter � 
with a probability distribution. EM is an iterative method which alternates between 
performing an expectation (E) step, in which each pixel is classified into one cluster 
according to the current estimates of the posterior distributions over hidden variables, and a 
maximization (M) step, in which the hidden parameters are re-estimated by maximizing the 
likelihood function, according to the current classification. These parameter-estimates are 
then used to determine the distribution over hidden variables in the next E step. 
Convergence is assured since the increase of likelihood after each iteration (Zaidi et al., 
2006). The underlying model in EM algorithm can be specified according the specific 
requirements of the given task (Wells III et al., 1996; Y. Zhang et al., 2001). In spite of these 
achievements, they have a few deficiencies: a good prior distribution and the known 
number of classes are required, and it has extensive computations. 

2.6.2 Markov random field model (MRF) 

Markov random field (S.Z. Li, 1995) model is a statistical model that can be used within 
segmentation methods. MRFs model spatial interactions among neighboring or nearby 
pixels. In medical imaging, they are typically used because most pixels belong to the same 
class as their neighboring pixels (Pham et al., 2000). Let a finite lattice I as a 2D image, � � � is 
the pixel i in this image, which is denoted by � � ���� � � ��, where �� is the gray value of 
pixel i. For each pixel, the region-type (or pixel class) that the pixel belongs to is specified by 
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a class label � � ���� � ∈ �� (i.e., image segmentation results). �� ∈ Λ, Λ � ����� � � �� is a set of 
labels and K is the number of classes. So X (label filed) and Y (gray field) will be random 
fields in lattice I and the purpose of MRF model is to establish the relationship between X 
and Y, then the image model is defined as:  

 ,
ii X iY v e i I    (9) 

where ���  is the gray mean value of class ��, and �� is a random variable meeting Gaussian 
distribution. If �� � �� � ∈ Λ, �� � ���� ����, in which ��� is the variance of �� for k, then the 
conditional probability density is defined as: 
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Subsequently, � � ���� � ∈ ��, the priori model of image segmentation results is a 2D MRF. 
According to Hammersley-Clifford theorem in (Hammersley & Clifford, 1971), the priori 
probability of MRF meets Gibbs distribution, and so the priori model is defined as: 
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where � � ∑ ������∑ ������∈� ��∈�  is a normalizing constant called partition function and 
����� denotes the potential function of clique � ∈ �, which only depends on ����� � ∈ �. C is 
the set of second order cliques (i.e. doubletons), and ���� indicates the neighborhood of 
pixel i. If multi-level logistic (MLL) model is adopted and the second order 
neighborhood system and the dual potential function are only considered, energy 
function is defined as:  

 
( )

( ) ( , )i j
i I j i

U x V x x
 

    (12) 

 
,

( , )
,

i j
i j

i j

if x x
V x x

if x x




   
 (13) 

Note that the energies of singletons (i.e. pixel � ∈ �) directly reflect the probabilistic modeling 
of labels without context, while doubleton clique potentials express relationship between 
neighboring pixel label. On the basis of maximum a posteriori (MAP) estimation (Geman & 
Geman, 1993) and Bayes’ theorem, the optimal solution � � �∗ is defined as: 
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In order to facilitate the solution, the objective function takes natural logarithm to be 

 * arg min { ( | ; ) ( )}xX U y x U x   (15) 
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In this way, the segmentation problem in MRF model is reduced to the minimization of the 
above energy function, which is usually computed by iterated conditional modes (ICM) 
algorithm (Besag, 1986). The ICM method uses the ‘greedy’ strategy in the iterative local 
minimization and convergence is guaranteed after only a few iterations (Boudraa & Zaidi, 
2006). By importing spatial relations among pixels, non-supervised and nonparametric MRF 
model can effectively decrease the influence of image noise, and undertake fine stable and 
satisfied segmentation results for low SNR images. This model has been widely applied in 
human cerebral cortical segmentation (Held et al., 1997; Y. Zhang et al., 2001). Contrarily a 
difficulty associated with MRF models is proper selection of the parameters controlling the 
strength of spatial interaction (S.Z. Li, 1995). A setting that is too high can result in an 
excessively smooth segmentation and a loss of important structural details. Some 
researchers have proposed several schemes for the estimation of MRF parameters 
(Descombes et al., 1999; Salzenstein & Pieczynski, 1997; R. Xu & Luo, 2009). In addition, 
MRF methods usually require computationally intensive algorithms (Pham et al., 2000). 

2.7 Artificial neural networks (ANNs) 

Artificial neural networks (ANNs) are parallel networks of processing elements or nodes to 
simulate biological neural networks. Each node in an ANN is capable of performing 
elementary computations. Learning is achieved through the adaptation of weights assigned 
to the connections between nodes. The massive connectionist architecture usually makes the 
system robust while the parallel processing enables the system to produce output in real 
time. To simulate biological neural network, the neurons and connections in ANNs model 
comprise the following components and variables in Fig. 2 (Kriesel, 2007). A thorough 
treatment of ANNs can be found in (J.W. Clark, 1991). 

 
Fig. 2. Data processing of a neuron (Images provided courtesy of D. Kriesel). 
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Subsequently, � � ���� � ∈ ��, the priori model of image segmentation results is a 2D MRF. 
According to Hammersley-Clifford theorem in (Hammersley & Clifford, 1971), the priori 
probability of MRF meets Gibbs distribution, and so the priori model is defined as: 
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Note that the energies of singletons (i.e. pixel � ∈ �) directly reflect the probabilistic modeling 
of labels without context, while doubleton clique potentials express relationship between 
neighboring pixel label. On the basis of maximum a posteriori (MAP) estimation (Geman & 
Geman, 1993) and Bayes’ theorem, the optimal solution � � �∗ is defined as: 
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In order to facilitate the solution, the objective function takes natural logarithm to be 
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In this way, the segmentation problem in MRF model is reduced to the minimization of the 
above energy function, which is usually computed by iterated conditional modes (ICM) 
algorithm (Besag, 1986). The ICM method uses the ‘greedy’ strategy in the iterative local 
minimization and convergence is guaranteed after only a few iterations (Boudraa & Zaidi, 
2006). By importing spatial relations among pixels, non-supervised and nonparametric MRF 
model can effectively decrease the influence of image noise, and undertake fine stable and 
satisfied segmentation results for low SNR images. This model has been widely applied in 
human cerebral cortical segmentation (Held et al., 1997; Y. Zhang et al., 2001). Contrarily a 
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The most widely application in medical imaging is as a classifier (Gelenbe et al., 1996; Hall 
et al., 1992), in which the weights are determined by training data and the ANN is then used 
to segment new data. ANNs can also be used in an unsupervised fashion as a clustering 
method (Bezdek et al., 1993; Reddick et al., 1997), as well as for deformable models (Vilarino 
et al., 1998). Because of the many interconnections used in a neural network, spatial 
information can be easily incorporated into its classification procedures (Pham et al., 2000). 
However, the major disadvantage of the artificial neural networks (ANNs) is that it requires 
training data. For large neural networks, it also requires high processing time because its 
processing is usually simulated on a standard serial computer. 

2.8 Deformable models 

Deformable models are physically motivated, model-based techniques for detecting region 
boundaries by using closed parametric curves or surfaces that deform under the influence of 
internal and external forces. To delineate an object boundary in an image, a closed curve or 
surface must first be placed near the desired boundary and then be allowed to undergo an 
iterative relaxation process. Internal forces are computed from within the curve or surface to 
keep it smooth throughout the deformation. External forces are usually derived from the 
image to drive the curve or surface toward the desired feature of interest (Pham et al., 2000). 
The original deformable, called snake model, was introduced in (Kass et al., 1988), in which 
the contour deforms to minimize the contour energy that includes the internal energy from 
the contour and the external energy from the image. A number of improvements have also 
been proposed, such as snake variations (Cohen, 1991; McInerney & Terzopoulos, 2000; C. 
Xu & Prince, 1998). Level set is another important deformable contour method and it was 
firstly proposed for image segmentation in (Malladi et al., 1995). Some researchers applied 
level set formulation with a contour energy minimization for obtaining a better convergence 
(Siddiqi et al., 1998; Wang et al., 2004). 

Deformable models are quite helpful for cerebral cortical segmentation in MR images 
(Davatzikos & Bryan, 1996; C. Xu et al., 1998). The advantages are that they are capable of 
generating closed parametric curves or surfaces from images and incorporating a 
smoothness constraint that provides robustness to noise and spurious edges. The 
disadvantage is that they require manual interaction to place an initial model and choose 
appropriate parameters. The successes in reducing sensitivity to initialization have been 
made in (Cohen, 1991; Malladi et al., 1995; C. Xu & Prince, 1998). Standard deformable 
models can also exhibit poor convergence to concave boundaries. This difficulty can be 
alleviated somewhat through the use of pressure forces (Cohen, 1991) and other modified 
external-force models (C. Xu & Prince, 1998). Another important extension of deformable 
models is the adaptivity of model topology by using an implicit representation rather than 
an explicit parameterization (Malladi et al., 1995; McInerney & Terzopoulos, 1995). Several 
general reviews on deformable models in medical image analysis can be found in (He et al., 
2008; Heimann & Meinzer, 2009; McInerney & Terzopoulos, 1996; Suri, Liu, et al., 2002). 

2.9 Atlas-guided approaches 

Atlas-guided approaches are a powerful tool for medical image segmentation when a 
standard atlas or template is available. The whole idea of using the brain atlas was to 
provide a priori knowledge, which can help in grouping the segments into anatomical 
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structures. This helps to obtain fully automatic cortical segmentation procedures. The 
standard atlas-guided approach treats segmentation as a registration problem. It first finds a 
one-to-one transformation that maps a pre-segmented atlas image to the target image. This 
process is often referred to as ‘atlas warping’. The warping can be performed with linear 
transformations (Talairach & Tournoux, 1988), or nonlinear transformations (Collins et al., 
1995; Davatzikos, 1996). Atlas-guided approaches have been applied mainly in brain MRI 
segmentation (Collins et al., 1995), as well as in extracting the brain volume from head scans 
(Aboutanos & Dawant, 1997). One advantage is that labels as well as the segmentation are 
transferred. They also provide a standard system for studying morphometric properties 
(Thompson & Toga, 1997). Atlas-guided approaches are generally better suited for 
segmentation of structures that are stable over the population of study. One method that 
helps model anatomical variability is to use probabilistic atlases (Thompson & Toga, 1997), 
but these require additional time and interaction to accumulate data. Another method is to 
use manually selected landmarks (Davatzikos, 1996) to constrain transformation. 

2.10 Other techniques 

Texture segmentation is to segment an image into regions according to the textures of the 
regions. It was in the late 1970s when Haralick et al (Haralick et al., 1973) published an 
extensive paper on texture. Later, Peleg et al (Peleg et al., 1984) and Cross et al (Cross & 
Jain, 1983) also published work in texture analysis applied to computer vision images. 
Application of texture in brain segmentation started in the early 1990s, when Lachmann et 
al (Lachmann & Barillot, 1992) developed a method for the classification of WM, GM and 
CSF. This method, however, did not discuss the validation schemes, and it was hard to 
judge the performance of such a segmentation algorithm. Besides, it seemed sensitive to 
initial textural properties, and no such discussion was carried out in the paper (Suri, 
Singh, et al., 2002b). 

Self-organizing maps (SOM), introduced by Kohonen in early 1981 (Kohonen, 1990), is a type 
of artificial neural network, whose precursor is learning vector quantization (LVQ) invented 
by T. Kohonen (Kohonen, 1997). It is able to convert complex, nonlinear statistical 
relationships between high-dimensional data items into simple geometric relationships on a 
low-dimensional display via using unsupervised learning. The applications of SOM method 
can be found in (Y. Li & Chi, 2005; Tian & Fan, 2007). However, SOM algorithms are, firstly, 
highly dependent on the training data representatives and the initialization of the 
connection weights. Secondly, they are very computationally expensive if the dimensions of 
the data increases (Y. Li & Chi, 2005). 

Wavelet transform, adventured in medical imaging research in 1991 (Weaver et al., 1991), is a 
tool that cuts up data or functions or operators into different frequency components, and 
then studies each component with a resolution matched to its scale (Daubechies, 2004). 
Modern wavelet analysis was considered to be proposed by Grossmann and Morlet in their 
milestone paper (Morlet & Grossman, 1984). In medical image segmentation, wavelet 
transforms have been employed to combine texture analysis, edge detection, classifiers, 
statistical models, and deformable models, etc. Many works benefit through using image 
features within a spatial-frequency domain after wavelet transform to assist the 
segmentation (Barra & Boire, 2000; Bello, 1994). 
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structures. This helps to obtain fully automatic cortical segmentation procedures. The 
standard atlas-guided approach treats segmentation as a registration problem. It first finds a 
one-to-one transformation that maps a pre-segmented atlas image to the target image. This 
process is often referred to as ‘atlas warping’. The warping can be performed with linear 
transformations (Talairach & Tournoux, 1988), or nonlinear transformations (Collins et al., 
1995; Davatzikos, 1996). Atlas-guided approaches have been applied mainly in brain MRI 
segmentation (Collins et al., 1995), as well as in extracting the brain volume from head scans 
(Aboutanos & Dawant, 1997). One advantage is that labels as well as the segmentation are 
transferred. They also provide a standard system for studying morphometric properties 
(Thompson & Toga, 1997). Atlas-guided approaches are generally better suited for 
segmentation of structures that are stable over the population of study. One method that 
helps model anatomical variability is to use probabilistic atlases (Thompson & Toga, 1997), 
but these require additional time and interaction to accumulate data. Another method is to 
use manually selected landmarks (Davatzikos, 1996) to constrain transformation. 
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Texture segmentation is to segment an image into regions according to the textures of the 
regions. It was in the late 1970s when Haralick et al (Haralick et al., 1973) published an 
extensive paper on texture. Later, Peleg et al (Peleg et al., 1984) and Cross et al (Cross & 
Jain, 1983) also published work in texture analysis applied to computer vision images. 
Application of texture in brain segmentation started in the early 1990s, when Lachmann et 
al (Lachmann & Barillot, 1992) developed a method for the classification of WM, GM and 
CSF. This method, however, did not discuss the validation schemes, and it was hard to 
judge the performance of such a segmentation algorithm. Besides, it seemed sensitive to 
initial textural properties, and no such discussion was carried out in the paper (Suri, 
Singh, et al., 2002b). 

Self-organizing maps (SOM), introduced by Kohonen in early 1981 (Kohonen, 1990), is a type 
of artificial neural network, whose precursor is learning vector quantization (LVQ) invented 
by T. Kohonen (Kohonen, 1997). It is able to convert complex, nonlinear statistical 
relationships between high-dimensional data items into simple geometric relationships on a 
low-dimensional display via using unsupervised learning. The applications of SOM method 
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tool that cuts up data or functions or operators into different frequency components, and 
then studies each component with a resolution matched to its scale (Daubechies, 2004). 
Modern wavelet analysis was considered to be proposed by Grossmann and Morlet in their 
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features within a spatial-frequency domain after wavelet transform to assist the 
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Multispectral segmentation is a method for differentiating tissue classes having similar 
characteristics in a single imaging modality by using several independent images of the 
same anatomical slice in different modalities (e.g., T1, T2, proton density, etc.). As a 
consequence of different responses of the tissues to particular pulse sequences, this increases 
the capability of discrimination between different tissues (Fletcher et al., 1993; Vannier et al., 
1985). The most common approach for multispectral MR image segmentation is pattern 
recognition (Bezdek et al., 1993; Suri, Singh, et al., 2002b). These techniques generally appear 
to be successful particularly for brain MR images (Reddick et al., 1997; Taxt & Lundervold, 
1994), but much work remains in the area of validation. 

3. A new non-homogeneous Markov random field model 
As we introduced in Section 2.6.2, Markov random field (MRF) theory (S.Z. Li, 1995) has 
been widely used in the field of medical image processing with the advantages, including 
non-supervision, fine stability and satisfied segmentation effect for the image with low SNR. 
MRF theory provides a convenient and consistent way for modeling context among image 
pixels. This is achieved through characterizing mutual influences among such entities using 
conditional MRF distributions. The practical use of MRF models is largely ascribed to the 
equivalence between MRF and Gibbs distributions established by Hamersley and Clifford 
(Hammersley & Clifford, 1971) and is further developed by Besag (Besag, 1974) for the joint 
distribution of MRF. This enables us to model vision problems by a mathematically sound 
yet tractable means for image segmentation in Bayesian framework (Geman & Geman, 1993; 
Grenander, 1983). 

In traditional MRF model, Gibbs random field (GRF) uses the parameter  to determine 
spatial correlation among dependent image pixels. The greater the parameter  is, the 
stronger the spatial correlation would be; the smaller the parameter  is, the weaker the 
spatial correlation would be. Generally, MRF model is assumed to be homogeneous, which 
means the parameter  is constant. Plenty of previous researches have offered a series of 
methods to accurately estimate this parameter, which advance the effect of image 
segmentation (Deng & Clausi, 2004; Descombes et al., 1999). Due to its own features of 
medical image, homogeneous MRF model often leads to over-segmentation and induces 
higher misclassification rate. In this section, we propose a new non-homogeneous MRF 
model (called Modified-MRF or M-MRF model) using fuzzy membership to accurately 
estimate the parameter  and the experimental results show our model effectively reduces 
over-segmentation and enhances segmentation precision (R. Xu & Luo, 2009). 

3.1 Fuzzy sets 

Fuzzy sets are sets whose elements have degrees of membership, which firstly were 
proposed by L.A. Zedeh in 1965 (Zadeh, 1965) as an extension of the classical notion of set. 
Classical set theory only describes precise phenomenon, because an element belonging to a 
classic set contains only two cases: yes or no. By contrast, fuzzy set theory permits the 
gradual assessment of the membership of elements in a set; this is described with the aid of 
a membership function valued in the real unit interval [0, 1]. Fuzzy sets generalize classical 
sets, since the indicator functions of classical sets are special cases of the membership 
functions of fuzzy sets, if the latter only take values 0 or 1 (DuBois & Prade, 1980). 
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The fuzzy set is defined as: Given a domain X, x denotes its element, the mapping �� is 
defined as �� � � � �0,1�, � � �����, which means �� confirms a fuzzy set F in domain X, 
�� is called F’s membership function and ����� is x’s membership for F. The greater the 
membership, the greater the degree of one element pertaining to one fuzzy set. As a 
consequence, F is a subset in domain X, which does not have undefined border. 

3.2 Modified non-homogeneous MRF model 

In terms of the features in brain MR images, the spatial correlation of adjacent pixels varies 
with the positions of image space, which indicates the parameter � should be a variable 
changing with space site. Consequently, the corresponding MRF model should be 
considered as non-homogeneous. 

3.2.1 The � Function based on fuzzy membership 

Let y be the gray value of pixels, and x be the classification of pixels in image I. If pixel i is 
marked by class k (�� is the clustering center of class k, � � 1,� , �), the parameter � will be 
a decreasing function of ���, which denotes the membership of pixel i belonging to class k. 
The smaller the ��� is, the less the degree of pixel i in class k would be, which implies the 
attribute of pixel i should be decided by the state of neighborhood. The larger the ��� is, the 
larger the degree of pixel i in class k would be, which implies the attribute of pixel i should 
be decided by the gray value of itself. Thus, the � function is defined as: 

 1 0.8i iku     (18) 

3.2.2 The modified MRF model (M-MRF model) 

In traditional MRF model (see Section 2.6.2), the parameter � is used to calculate the energy 
function ���� and clique potentials ����� over all possible cliques � � �, which only depends 
on the neighborhood of pixel i: ����, � � �. According to the � function, the energy function 
and clique potentials through considering multi-level logistic (MLL) model, second-order 
neighborhood system and dual potential function, can be modified as 
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And the new non-homogeneous MRF (M-MRF) model has been improved into 
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Therefore, the segmentation problem is reduced to minimize the above energy function, 
which is generally solved by iterated conditional modes (ICM) algorithm (Besag, 1986). The 
algorithm of M-MRF model for image segmentation is designed as follows: 
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And the new non-homogeneous MRF (M-MRF) model has been improved into 
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Therefore, the segmentation problem is reduced to minimize the above energy function, 
which is generally solved by iterated conditional modes (ICM) algorithm (Besag, 1986). The 
algorithm of M-MRF model for image segmentation is designed as follows: 
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1. Initialize the number of class K, the clustering center ��, the smallest error �, and � � �; 
2. Get the initial segmentation results via KFCM algorithm (L. Zhang et al., 2002), and 

estimate the parameter � by Eq.(18); 
3. Segment the initial image based on maximum-likelihood criterion and M-MRF model, 

and calculate the global energy E of whole image; 
4. Calculate local conditional energy of every pixel for all possible classification by 

Eq.(19) and Eq.(21), and update the classification of every pixel following the principle 
of minimizing local conditional energy. 

5. Calculate the global energy E of whole image again by the new classification of every 
pixel, � � � � �; 

6. if �ax	������ � �������� � �, then go to (7), else return (4); 
7. Output image segmentation results and stop. 

3.2.3 Smoothing of image 

Owing to complexity of brain MR images and their own reasons of segmentation 
algorithms, segmentation results are often accompanied by burrings, stains, rugged edges, 
etc. By smoothing, isolated burrings and stains of image can be removed, edges of regions 
can be smoothed and holes of areal objects can be filled. Sequentially, the quality of 
segmentation results can be further improved. In the processing of image smoothing, matrix 
template of � � �(n is customarily assigned by 3~5) is currently employed to march image 
via lines and columns. If the image matches successfully, the segmentation result of the pixel 
in the center of matrix template will be replaced by the same segmentation results around 
this pixel. 

3.2.3.1 Deburring 

The 3 � 3 deburring matrix in  (a) is frequently betaken, where a,	b,	x � �, � � �(L is the set of 
labels) and ‘x’ is arbitrary which figures the segmentation results of x’s sites can be left out 
of account. When the image segmentation results in 3 � 3 matrix march the deburring 
matrix in  Fig. 3 (a), ‘b’ in the center of matrix will become ‘a’. 
 

a a a  a a x  x x x  x a a    x a x 

a b a  a b x  a b a  x b a    a b a 

x x x  a a x  a a a  x a a    x a x 

    (a)                  (b) 

Fig. 3. The matrix for deburring and smoothing. (a) the deburring matrices; (b) the matrix of 
smoothing of lines. 

3.2.3.2 Smoothing of lines and filling of holes 

The methods of smoothing of lines and filling of holes are the same as that of deburring, just 
the matrices are different. The 3 � 3 matrix of smoothing of lines in  Fig. 3 (b) is utilized as a 
rule. In the same way, When the image segmentation results in 3 � 3 matrix march the 3 � 3 
matrix in Fig. 3 (b), ‘b’ in the center of matrix will become ‘a’. 
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3.3 Experimental results 

In order to verify the effect of M-MRF model in image segmentation, KFCM algorithm (L. 
Zhang et al., 2002), traditional MRF model (S.Z. Li, 1995) and M-MRF model are applied in 
the segmentation of simulated brain MR images. During the experiments, brain MR images 
are divided into four regions: gray matter (GM), white matter (WM), cerebrospinal fluid 
(CSF) and background (BG). All experiments are operated by VS.Net 2003 in PC of Intel® 
Core™2 CPU 6600 @ 2.40GHZ with 2GB memory. 

The simulated brain MR images from Brainweb (http://www.bic.mni.mcgill.ca/brainweb/) 
are applied in the experiments, and we call them gold standard of image segmentation. Each 
data set is composed of  pixels, thickness of layer is 1mm,  weighted. Herein, the 
lay images used in experiments are the ’s ones of image sequences. Fig. 4 is a 
comparison of the segmentation results of several algorithms for a simulated brain MRI 
superposed 9% noise. The experimental results demonstrate that, even for images of lower 
signal-to-noise ratio (SNR), M-MRF model also achieves more satisfied segmentation results. 

         
(a)     (b) 

         
(c)     (d) 
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Fig. 4. A comparison of the segmentation results for several algorithms. (a) a simulated brain 
MR image; (b) a simulated brain MR image superposed 9% noise; (c) ground truth; (d) the 
results of KFCM method; (e) the results of MRF model; (f) the results of M-MRF model. 

Table 1 presents MCRs of several algorithms for simulated brain MRIs superposed noise of 
distinct intensity in image segmentation (see the definition of MCR in Section 1.3), whose 
data are average segmentation results of 20 images. From table 1, MCRs of M-MRF model 
for all simulated brain MRIs are lower than other algorithms. In addition, segmentation 
effect of M-MRF model for simulated brain MRI superposed 7% and 9% noise is obviously 
better than other algorithms, while segmentation effect of M-MRF model for simulated brain 
MRI superposed 3% and 5% noise only has slight ascendancy compared with other 
algorithms. For this reason, the stronger the intensity of noise in image is, the better the 
segmentation performance of M-MRF model would be. 
 

The intensity of noise(%) 3% 5% 7% 9% 

MCRs of KFCM(%) 4.88 5.65 6.64 8.19 

MCRs of MRF(%) 4.21 5.24 6.30 7.64 

MCRs of M-MRF(%) 4.06 5.00 5.80 6.67 

Table 1. MCRs (%) of images superposed noise of distinct intensity 

In consideration of its own traits of brain MRIs, a new non-homogeneous MRF model (M-
MRF model) is put forward for reducing over-segmentation, where the parameter  is 
estimated to an inch by fuzzy membership, so that the spatial relativities among each 
pixel will be reasonably set up. The experimental results prove our model not only 
inherits the superiorities of traditional MRF model, e.g., non-supervision, fine stability 
and satisfied robustness for image of low signal-to-noise ratio (SNR), but also significantly 
enhance the accuracy of image segmentation. Meanwhile, the algorithm of this new model 
is also simple and feasible and it is easy to be applied into clinical application by fusing 
de-bias field model. 
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4. Image pre-processing 
Due to the inherent technical limitations of the MR image process, uncertainties are inserted 
into MR images, including random noise, intensity inhomogeneity, and partial volume 
effect, etc. A more complete and comprehensive coverage of the contributing sources of 
error inherent in MR images can be found in (Plante & Turkstra, 1991). The image pre-
processing techniques reviewed here mainly focus on reducing the detrimental effects of the 
artifacts mentioned for the purpose of applying segmentation methods. 

It is difficult to remove noise from MR images, which is known to have a Rician distribution 
(Prima et al., 2001), and state-of-art methods in removing noise are substantial. Methods 
vary from standard filters to more advanced filters, from general methods to specific MR 
image de-noising methods, such as linear filtering, nonlinear filtering, adaptive filtering, 
anisotropic diffusion filtering, wavelet analysis, total variation regularization, bilateral filter, 
trilateral filtering, and non-local means models (NL-means), etc. A worthy survey of image 
de-noising algorithms can be seen in (Buades et al., 2006). 

Intensity inhomogeneity (also called bias field, or shading artefact) in MRI, which arises from 
the imperfections of the image acquisition process, manifests itself as a smooth intensity 
variation across the image (Fig. 5). Because of this phenomenon, the intensity of the same 
tissue varies with the location of the tissue within the image. Although intensity 
inhomogeneity is usually hardly noticeable to a human observer, many medical image 
analysis methods, such as segmentation and registration, are highly sensitive to the spurious 
variations of image intensities. This is why a large number of methods for the correction of 
intensity inhomogeneity in MR images have been proposed in the past (Vovk et al., 2007). 
Early publications on MRI intensity inhomogeneity correction date back to 1986 (Haselgrove 
& Prammer, 1986; McVeigh et al., 1986). Since then, sources of intensity inhomogeneity in 
MRI have been studied extensively (Alecci et al., 2001; Keiper et al., 1998; Liang & 
Lauterbur, 2000; Simmons et al., 1994) and can be generally divided into two groups: 
prospective methods and retrospective methods. According to the classification proposed by 
U. Vovk (Vovk et al., 2007), we may further classify the prospective methods into those that 
are based on phantoms, multi-coils, and special sequences. The retrospective methods are 
further classified into filtering, surface fitting, segmentation-based, and histogram-based, 
etc. Additionally, several valuable reviews about this topic can be found in (Arnold et al., 
2001; Belaroussi et al., 2006; Hou, 2006; Sled et al., 1997; Velthuizen et al., 1998; Vovk et al., 
2007). 

 
Fig. 5. Intensity inhomogeneity in MR brain image (Images provided courtesy of U. Vovk). 
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Partial volume effect (PVE) means artefacts that occur where multiple tissue types contribute 
to a single pixel, resulting in a blurring of intensity across boundaries, which is common in 
medical images, particularly for 3D MRI data. Fig. 6 illustrates how the sampling process 
can result in PVE, leading to ambiguities in structural definitions. In Fig. 6 (Right), it is 
difficult to precisely determine the boundaries of the two objects. The most common 
approach to addressing partial volume effect is to produce segmentations that allow regions 
or classes to overlap, called soft segmentations. Standard approaches use ‘hard 
segmentations’ that enforce a binary decision on whether a pixel is inside or outside the 
object. Soft segmentations, on the other hand, retain more information from the original 
image by allowing for uncertainty (such as membership for every pixel) in the location of 
object boundaries. Generally, membership functions can be derived by fuzzy clustering and 
classifier algorithms (Herndon et al., 1996; Pham & Prince, 1999) or statistical algorithms, in 
which case the membership functions are probability functions (Wells III et al., 1996), or can 
be computed as estimates of partial volume fractions (Choi et al., 1991). Soft segmentations 
based on membership functions can be easily converted to hard segmentations by assigning 
a pixel to its class with the highest membership value (Pham et al., 2000). The growing 
attention have been given to estimate partial volume effect in the last decade (Choi et al., 
1991; Gage et al., 1992; Gonzalez Ballester et al., 2002; Roll et al., 1994; Soltanian-Zadeh et al., 
1993; Thacker et al., 1998; Tohka et al., 2004). 

 
Fig. 6. Illustration of partial volume effect. (Left) Ideal image; (Right) Acquired image 
(Images provided courtesy of D.L. Pham). 

5. Conclusion 
A great number of medical image segmentation techniques have been used for analysis of 
MRI data of human brain, whose performance is affected by the characteristics of MRI data, 
which include a number of artifacts, such as random noise, intensity inhomogeneity and 
partial volume effect, etc. On the other hand, the inherent multispectral character of MRI 
gives it a distinct advantage over other imaging techniques. Many of the approaches 
described here explore ways to correct the artifacts in MRI and to fully exploit the multi-
spectral character of this imaging modality. In this chapter, we have given a brief 
introduction to the fundamental concepts of these techniques, and presented our work on 
brain MR image segmentation, as well as a descripted the pre-processings such as de-
noising, the correction of intensity inhomogeneity and the estimation of partial volume 
effect. 
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The future researches in the segmentation of human brain MRI will focus upon improving 
the accuracy, precision, and execution speed of segmentation methods, as well as reducing 
the amount of manual interaction. Accuracy and precision can be improved by 
incorporating prior information from atlases and by the fusion of different methods. For the 
sake of advancing execution efficiency, multi-scale processing, graphic processing unit 
(GPU) technique and parallelizable methods such as neural networks can be used 
promisingly. In order to raise the current acceptance of routine clinical applications for 
segmentation methods, extensive efficient validation is required. Furthermore, one must be 
able to demonstrate some significant performance advantage (e.g. more accurate diagnosis 
or earlier detection of pathology) over traditional methods to guarantee the less cost of 
training and equipment. It is impossible that automated methods will replace the 
physicians, but they are likely to become crucial elements in medical image analysis. 
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1. Introduction

Notation

μ, λ scalars ( i.e. positive numbers)

B structuring element

B̌ transposed of the structuring element B, i.e., B̌= {−x : x ∈ B}
∧ inf operator

∨ sup operator

Z+ integer and positive numbers space

f (x), g(x) numerical function of x

εμ( f )(x) morphological erosion size μ

δμ( f )(x) morphological dilation size μ

γμ( f )(x) morphological opening size μ

ϕμ( f )(x) morphological closing size μ

γ̃μ( f )(x) opening by reconstruction size μ

ϕ̃μ( f )(x) closing by reconstruction size μ
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2 Will-be-set-by-IN-TECH

(ψλ)λ∈Z+ a family of transformations depending on an unique positive parameter λ

χW M normalized volumetric measure of granulometric residues of clear structures
conforming the image

ζGM normalized volumetric measure of granulometric residues of dark structures
conforming the image

CS Control subject

SS subjects with dissociated strabismus

SSAV Strabismus syndrome of angular variability

WM , GM white and grey matter, respectively.

DHD Dissociated horizontal deviation

SSAV1, SSAV2 subject 1 and subject 2 with strabismus syndrome of angular variability

DHD1, DHD2 subject 1 and subject 2 with dissociated horizontal deviation

DBM Digitized brain mapping

CT Computed tomography

Occipital lobe is located in the posterior portion of brain, contiguous to parietal and temporal
lobes. Brain lobes present at their most superficial portions, pyramidal as well as starred
neurons forming nuclei conforming GM. These neurons are ordered in six laminae on the
brain surface to form the brain cortex. The cellular groups in this cortical regions are disposed
in an orderly fashion forming columns; their axons extend deeper into the WM (1).

WM is composed by neuronal axons interconnecting cortical zones with other nuclei, for
example, magnocellular (great size) and parvocellular (small size) cells, whose projections
go to the geniculate lateral bodies toward the cerebral cortex of the occipital lobes (1).

GM, as well as WM, are part of the visual pathway, but only the most superficial layer of the
brain that contains cellular nuclei conforming the GM is known as brain cortex; whereas the
WM is basically constituted by the axons of these cells (2)(3).

The cerebral cortex is traversed by circumvolutions (gyrus and sulcus) of varied aspects,
making it difficult to identify with precision where a brain specific cortical area begins and
ends, when it is first observed by means of conventional neuroimaging studies, as is the case
of MRI or computed tomography (CT) (1)(2)(3). In spite of this difficulty, it has been possible to
obtain important advances in cerebral cortex morphometric studies by means of voxel-based
morphometry (VBM). In (4), the authors find a GM diminution in the calcarine sulcus
containing the primary visual cortex; they also demonstrate reductions in parieto-occipital
areas and in the ventral temporal cortex in children and adult patients with amblyopia. This
condition is characterized by dimness of vision with no-improvement in spite of using the
best optical correction. In the same way, but using a MR-based morphometric technique, a
study on adult patients with exotropia (5), reports a GM increase in motor cortical regions,
in conjunction with a diminution in visual cortex, suggesting morphometric changes related
to cerebral plasticity. In spite of these morphometric advances, no studies are available in
which alterations in the WM and GM in child cerebral cortex with congenital strabismus are
compared with that of healthy children of the same age.
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On the other hand, congenital strabismus affects 3% of the world-wide population.
Nevertheless, it is not known with precision, the anatomical site or microstructural damage
underlying the origin of the disease and the zones or nuclei involved. This situation arises
from the difficulty of applying morphometric studies in vivo, which would provide an
accurate identification of the involved zones and nuclei and would give a better description
of diseases such as dissociated strabismus, which is a form of congenital strabismus
(6)(7)(8). Therefore, evidence related to the etiology of this disease has been collected from
neurofunctional studies (6)(7)(8)(9).

Some forms of dissociated strabismus, besides presenting alterations in the digitized brain
mapping (DBM), show ocular movements with angles of variable presentation. When
movement is directed in ward, the condition is called SSAV, when it is directed outward it
is known as DHD. This last visual alteration is generally symmetrical and concomitant with
posterior electroencephalographic alterations, while SSAV tends to present more anterior and
asymmetric alterations (6)(7)(8)(9).

Cortical areas in dissociated strabismus can be observed and differentiated with high accuracy
by means of techniques of optical dissector as those employed in (10). These authors show,
in rodents, changes in cortical cellular density related to visual activity using optical dissector
techniques or in vitro methods such as cytochrome oxidase (11)(12)(13). As a result of these
studies, the authors demonstrate the presence of structural changes in monkey’s cerebral
cortex with strabismus and amblyopia; however, given the nature of these methods, it is not
possible to apply them to strabismic children.

Up to the present moment, no morphological alterations have been described in any of
the varieties of strabismus. But based on the experience drawn from neurofunctional
studies of patients with dissociated strabismus, using DBM (6)(7)(8), single photon
emission computerized tomography (SPECT) (14)(15) and nuclear proton magnetic resonance
spectroscopy (H-NMRS) (9) it is expected that forthcoming evidence on this subject will soon
allow the identification of microstructural changes.

Moreover, for the first time, by means of DBM (7)(8), the participation of the cerebral cortex in
dissociated strabismus was demostrated. This finding was lately verified by means of SPECT
studies. This technique enabled the localization of cortical areas involved in dissociated
strabismus and in an epilepsy case. SPECT results (14)(15) showed neuroadaptive changes
consistent with the improvement of glucose consumption in the cerebral cortex of patients
with strabismus treated with the botulinic toxin or surgery.

The combined application of DBM and H-NMRS methods has demonstrated that cortical
regions in dissociated strabismus patients present neuroelectric and biochemical alterations
compatible with epileptogenous disease (9). The difficulty lies in identifying, by means of
neuroimage studies applied to live subjects, the microstructural alterations related to the
origin of dissociated strabismus in children; these micro-alterations cannot be determined
with conventional methods of imagenology such as CT or MRI. So far, one alternative for
identifying structural changes in cortical regions would be by means of a granulometric
analysis of the diverse regions under study.

Granulometric analysis is a methodology developed within mathematical morphology.
Mathematical morphology is a technique widely used in image processing. This technique
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was initially used to solve a real problem applied to the study of porous means in materials
science (16). Currently, one of its multiple applications is the processing of medical images.

In this paper we present a methodology to segment brain MRI 1 by using the morphological
opening by reconstruction (17; 18). In particular, the segmentation of regions included in
the occipital lobe and areas nearest to this brain structure is performed. Subsequently, two
granulometric studies are carried out in a similar way to that followed in granulometric
density studies (19). The first study, consists in analyzing clear and dark structures in the
segmented deskulling brain for SS and CS groups. Subsequently, a similar procedure is done
but on the WM and GM for the subject under study. In each of the granulometric studies,
mean patterns are obtained and compared against the granulometric patterns belonging to
the CS group. This comparison enables the establishment of volumetric differences, and the
introduction of an index, which is useful to understand the behavior of the structures detected
in the WM and GM for CS and SS.

It is important to mention not only that the age of the six participants in this study is seven
years old; but also that, the GM and WM are segmented by using the methodology followed
in (20). From the latter procedure, only some output images are presented to illustrate such
segmentations.

This paper is organized as follows. In section 2, a background of the different transformations
and concepts related to mathematical morphology are presented. The morphological opening
and closing are defined in subsection 2.1. While the opening and closing by reconstruction
are presented in subsection 2.2. In subsection 2.3, the granulometry notion, as well as the
equations that work in a way similar to those in granulometric density are given. On the
other hand, a methodology to segment regions of interest from MRI by using morphological
transformations is provided in section 3. In subsection 3.1 several patterns describing the
granulometric density of clear structures, dark regions, WM and GM are introduced. The
intervals considered for the different structure sizes and a volumetric analysis based on a
given index are reported in section 4. Finally, conclusions are presented in section 5.

2. Background on morphological transformations

As follows a background on morphological transformations employed for the treatment of
MRIs is presented.

2.1 Definitions of some morphological transformations

In mathematical morphology increasing and idempotent transformations are frequently used.
Morphological transformations fulfilling these properties are known as morphological filters
(16; 21; 22). The basic morphological filters are the morphological opening γμB( f )(x) and
closing ϕμB( f )(x) using a given structural element. In this paper, a square structuring element
is employed, where B represents the structuring element of size 3 × 3 pixels, which contains
its origin. While B̌ is the transposed set (B̌= {−x : x ∈ B}) and μ is a homothetic parameter.

1 The MRIs used in this paper were obtained from an equipment Philips Intera of 1.5 T (Philips Medical
Systems Best Netherlands), using a sequence fast feel echo (FFE), with echo time TE = 6.9 ms, repetition
time TR = 25 ms, deviation angle FA = 30 degrees, excitation number NSA = 1, vision field FOV = 230
mm and slice number = 120.
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Formally, the morphological opening γμB( f )(x) and closing ϕμB( f )(x) are expressed as
follows:

γμB( f )(x) = δμB̌(εμB( f ))(x) and ϕμB( f )(x) = εμB̌(δμB( f ))(x) (1)

where the morphological erosion εμB( f )(x) and the morphological dilation δμB( f )(x) are
εμB( f )(x) = ∧{ f (y) : y ∈ μB̌x} and δμB( f )(x) = ∨{ f (y) : y ∈ μB̌x}. Here, ∧ is the inf
operator and ∨ is the sup operator.

The morphological opening and closing can be interpreted in the following way, both
morphological transformations allow the elimination of components that can not be contained
by the structuring element. Morphological opening works in the interior of the function, while
the morphological closing in the complement of the function.

On the other hand, throughout the paper, we will use size 1, or size μ of the structuring
element. Size 1 means a square of 3 × 3 pixels, while size μ means a square of (2μ + 1)(2μ + 1)
pixels. For example, if the structuring element is size 3, then the square will be 7 × 7 pixels,
i.e, 49 neighbors are analyzed. In any size of the structuring element the origin is located at its
center.

In Fig.1 the erosion, dilation, opening and closing are illustrated by using a size 5 structuring
element.
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Fig. 1. Images illustrating several morphological operators using a structuring element size 5.
a) Input image, b) erosion, c) dilation, d) opening, and e) closing.
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2.2 Opening and closing by reconstruction

The reconstruction transformation notion is a useful concept introduced by mathematical
morphology. These transformations allow the elimination of undesirable regions without
considerably affecting the remaining structures of the image. This characteristic is due
to the fact that these transformations are built by means of geodesic transformations (19).
The geodesic dilation δ1

f (g)(x) and the geodesic erosion ε1
f (g)(x) of size one are given by

δ1
f (g)(x)= f (x) ∧ δ(g)(x) with g(x) ≤ f (x) and ε1

f (g)(x)= f (x) ∨ ε(g)(x) with g(x) ≥ f (x),
respectively. When the function g(x) is equal to the erosion or the dilation of the original
function, we obtain the opening γ̃μB( f )(x) and the closing ϕ̃μB( f )(x) by reconstruction
(17; 18; 23):

γ̃μB( f )(x) = lim
n→∞

δn
f (εμB( f ))(x) and ϕ̃μB( f )(x) = lim

n→∞
εn

f (δμB( f ))(x) (2)

In Fig. 2 the performance of the opening and closing by reconstruction is illustrated. Note
in Figs. 2(c) and 2(d) that some components have been eliminated, while the remaining are
maintained equal to those in the original image.

2.3 Granulometry

Granulometry is the distribution by sizes of particles that constitute an aggregate; it is
employed in diverse areas to describe the qualities of size and shape of individual grains
within a product. The concept of granulometry was introduced by G. Matheron at the end of
the sixties and is presented as follows (24).

Definition 1 (Granulometry). Let (ψλ≥0)λ∈Z+ be a family of transformations depending on an
unique positive parameter λ. This family constitutes a granulometry if and only if the next three
properties are verified: (i) ∀ positive λ, ψλ is increasing; (ii) ∀ positive λ, ψλ is antiextensive, and
(iii) ∀ positive λ and μ, ψλψμ = ψμψλ = ψmax(λ,μ)

The family of morphological openings and closings for the numerical case {γμB}, {ϕμB} with
μ = {1, .., n} fulfils this last definition.

In this paper, we try to detect some characteristics of the different structures conforming the
image by means of plots; which are obtained in a way similar to a granulometric density (19).
Equations 3 and 4 are used in this article to deduce the granulometric plots. Such equations
enable us to obtain a normalized volumetric measure of the granulometric residues of clear
(χClear) and dark (ζDark) structures conforming the image (25; 26). Note that the structures of
different dimensions are detected from the diverse μ sizes of the structuring element.

χClear =
vol(γ(μ−1)B( f )(x))− vol(γμB( f )(x))

vol( f (x)) + 1
(3)

ζDark =
vol(ϕμB( f )(x))− vol(ϕ(μ−1)B( f )(x))

vol( f (x)) + 1
(4)

Where vol represents the volume; the unit has been added in the denominator of equations 3
and 4 to avoid any indetermination.
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Fig. 2. a) Original image f and the marker g = ε( f ), b) Original image f and the marker
g = δ( f ), c) Opening by reconstruction, which uses erosion as marker, d) Closing by
reconstruction, which uses dilation as marker.

In Fig. 3 the procedure to find χClear on one slice is illustrated; this procedure is the same
in the case of equation 4. On the other hand, in the last image of Fig. 3, the arithmetic
difference is calculated between openings of sizes 5 and 6. This last image illustrates well some
components that are not visible at first sight; however, they are detected by a granulometric
process.

3. MRI processing through morphological transformations

In Fig. 4 we present a set of brain MRI slices belonging to a patient with dissociated strabismus
classified as SSAV (in the following, in order to simplify the notation we will use for example,
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In Fig. 3 the procedure to find χClear on one slice is illustrated; this procedure is the same
in the case of equation 4. On the other hand, in the last image of Fig. 3, the arithmetic
difference is calculated between openings of sizes 5 and 6. This last image illustrates well some
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Fig. 3. Exemplification of the procedure followed to obtain the χClear value of one slice.
Bottom image illustrates the arithmetic difference between openings.

the acronym SSAV1 to denote subject 1 with dissociated strabismus classified as SSAV; and
the same is extended for DHD subjects.)

The interest in analyzing the regions nearest and within the occipital lobe comes from the
finding that in patients with dissociated strabismus, using DBM, an important increment in
the electrical activity in the alpha rhythm has been observed (7; 8; 14; 15). This rhythm has
been associated with an occipital distribution. An example of these maps is provided in Fig. 5,
in which we can note, in black color, an increment in the electrical activity in the alpha rhythm,
in accordance with the scale situated at the right and top of the images. In this way, ten axial
slices are considered for analysis. The slices are parallel and within the visual via.

On the other hand, images in Fig. 4 are useful to present examples of output images, after the
algorithm to carry out the deskulling step is applied.
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As follows, we introduce the algorithm to achieve the deskulling step for the regions under
study. This algorithm was applied to images acquired from the subjects in this study ( CS and
SS).

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 Fig. 4. High resolution axial slices taken from SSAV1
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Fig. 5. DBMs showing the electrical behavior of two strabismic children. Darker regions
indicate greater electrical activity. (a) Subject with DHD, (b) Subject with SSAV.
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i) Given that the interest zones are located around and within the occipital lobe, the original
images located in Fig. 4 are cropped at section 160 to separate the regions of interest. This
is illustrated in Fig. 6(a).

ii) Once the images are cropped, we proceed to the deskulling step. For this, the opening by
reconstruction size 6 is employed (see equation (2)). The opening by reconstruction has the
property of avoiding the generation of new structures. In Fig. 6(b), a set of output images
is presented.

iii) Thresholding of the images in Fig. 6(b) between sections 80-255. Here the skull is
eliminated and several pores appear in the binary image as a result of the thresholding
procedure. The processed images are shown in Fig. 6(c).

iv) Subsequently, a closing by reconstruction size 6 is applied with the purpose of closing the
pores originated by the thresholding. The output images are displayed in Fig. 6(d).

v) A mask is obtained with respect to the original image (see Fig. 4), i.e. every pixel in the
images in Fig. 6(d) takes the corresponding grey level in the original image. This situation
is presented in Fig. 6(e).

vi) A manual segmentation is carried out by a specialist in strabismus. Several undesired
regions in the images of Fig. 6(e) are eliminated. The suppressed regions correspond
mainly to dura mater and cerebellum; this can be appreciated in Fig. 6(f).

With respect to step ii) of the mentioned algorithm, an opening by reconstruction size 6 is
applied. This size was elected from the graphic in Fig. 7(a). The plot was obtained by
computing the volume on the image γ̃μ − γ̃μ+1. Such graphic shows the contained structures
(clear regions) in the image of size μ. Observe that an important structure of white regions is
found between values 1-3, where the skull information is located. To verify this, in Fig. 7(b)
we have the original image, on the right we have the eroded image size 3; and this eroded
image is used as marker to obtain the opening by reconstruction (last image on the right).
However, given that the skull is surrounded by regions with lower intensity levels, a marker
given by the morphological erosion of size μ = 6 does not allow the skull reconstruction with
its original intensity levels. In Fig. 7(c), the erosion size 6 for several input images is presented;
these images are used as markers to obtain the opening by reconstruction. If smaller sizes of
the structuring element are selected, for example μ = 1, then the skull is not completely
attenuated and the proposed algorithm fails in step iii). For this reason it is crucial to have
this situation in mind . In Fig. 8 we illustrate the application of the opening by reconstruction
size μ = 1 to the images located in Fig. 6(a). Note that pixel intensity levels in the skull are
hardly attenuated.

3.1 Granulometric patterns

Once the skull has been separated and the undesirable regions on the images have been
suppressed, a granulometric study is carried out to determine the χClear and ζDark values on
the segmented slices. χClear and ζDark quantities(see equations 3 and 4) provide information
about the distribution density of the clear and dark structures within the image. In Fig. 9 we
present in a general way the procedure to obtain the granulometric patterns for dark regions
for both CS cases, and one SS. A similar method is applied in the case of clear structures. In

 
 Algorithm ( deskulling step ):
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Fig. 6. Images illustrating the procedure followed for skull elimination. (a) Cropped images
taken from SSAV1; (b) Opening by reconstruction; (c) Threshold; (d) Closing by
reconstruction; (e) Mask; (f) Manual elimination.
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Fig. 6. Images illustrating the procedure followed for skull elimination. (a) Cropped images
taken from SSAV1; (b) Opening by reconstruction; (c) Threshold; (d) Closing by
reconstruction; (e) Mask; (f) Manual elimination.
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Fig. 7. Size election of structuring element to attenuate the skull. a) Graph of structures size
vs volume on the image γ̃μ − γ̃μ+1, b) Original image , eroded size 3 and opening by
reconstruction size 3; c) Original images, eroded size 6, and opening by reconstruction size 6 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Fig. 8. Opening by reconstruction size μ = 1 applied to images in Fig. 6(a).
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following the procedure depicted in Fig. 9. Notice that the first two graphs of mean volume
correspond to the DHD subjects and CS group; while the last two to the SSAV subjects and CS
group.

The granulometric curves in Fig. 10 provide general information for the clear and dark regions
detected in the whole deskulling brain. These curves have the disadvantage of being derived
from non-autodual transformations, i.e. clear and dark structures are not treated in individual
form. As a consequence, it is necessary to separate WM and GM to obtain the granulometric
patterns of these regions. In this work, GM and WM were segmented by applying the
methodology used in (20). Some output images illustrating the segmentation of such regions
are presented in Fig. 11, and the granulometric patterns of WM and GM for the SS and SC are
presented in Fig. 12. These graphics were obtained under the procedure depicted in Fig. 9.

4. Results

In particular, we consider three main groups of clear and dark structures. These groups take
into account the size of the structuring element (the structuring element used in this paper is
a square, see subsection 2.1).

Group 1(Small structures).-In this group the structures within the sizes 1 and 2 of the structuring
element are comprised. Group 2(Medium structures).- This group contains the structures
located in the size interval 3 to 6 of the structuring element. Group 3(Large structures).-Finally,
this group comprises structure sizes 7-17 of the structuring element.

i) Clear and dark regions analysis from graphics in Fig. 10 for DHD case.-

In both clear and dark regions, a great variation in the curves of DHD subjects is observed
with respect to the CS, mainly in medium and large sizes. This indicates the lack of smooth
transitions between the analyzed structures.

ii) Clear and dark regions analysis from graphics in Fig. 10 for SSAV case.- Main changes in
clear structures are observed in large size structures; while dark structures vary for all sizes.

Curves in Fig. 10 indicate the existence of important variations in clear and dark structures
in the DHD and SSAV subjects with respect to the CS. However, clear and dark structures
are mixed, and results difficult to infer, since it is not possible to determine whether the
predominance or the absence of some structures sizes is due to clear or dark components.
This situation occurs because WM and GM have different intensities, and the morphological
transformations used to build equations 3 and 4 are not autoduals, i.e, they do not try clear
and dark structures in a separate form; this causes that, some clear and dark components are
mixed during the processing.

Trying to avoid this inconvenience, WM and GM will be analyzed in separate ways with the
purpose of finding some morphometric differences between CS and SS.

iii) WM and GM analysis from graphics in Fig. 12 for DHD case.-

From graphs in Fig. 12, for WM and GM in the SS case, we observe the following: a) a lack
of small components with respect to CS; b) the existent small components are thin; and c)
medium and large structures predominate in WM and GM.

Fig. 10, we present the granulometric patterns for the SS and the mean pattern for the CS
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Fig. 8. Opening by reconstruction size μ = 1 applied to images in Fig. 6(a).
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following the procedure depicted in Fig. 9. Notice that the first two graphs of mean volume
correspond to the DHD subjects and CS group; while the last two to the SSAV subjects and CS
group.

The granulometric curves in Fig. 10 provide general information for the clear and dark regions
detected in the whole deskulling brain. These curves have the disadvantage of being derived
from non-autodual transformations, i.e. clear and dark structures are not treated in individual
form. As a consequence, it is necessary to separate WM and GM to obtain the granulometric
patterns of these regions. In this work, GM and WM were segmented by applying the
methodology used in (20). Some output images illustrating the segmentation of such regions
are presented in Fig. 11, and the granulometric patterns of WM and GM for the SS and SC are
presented in Fig. 12. These graphics were obtained under the procedure depicted in Fig. 9.

4. Results

In particular, we consider three main groups of clear and dark structures. These groups take
into account the size of the structuring element (the structuring element used in this paper is
a square, see subsection 2.1).

Group 1(Small structures).-In this group the structures within the sizes 1 and 2 of the structuring
element are comprised. Group 2(Medium structures).- This group contains the structures
located in the size interval 3 to 6 of the structuring element. Group 3(Large structures).-Finally,
this group comprises structure sizes 7-17 of the structuring element.

i) Clear and dark regions analysis from graphics in Fig. 10 for DHD case.-

In both clear and dark regions, a great variation in the curves of DHD subjects is observed
with respect to the CS, mainly in medium and large sizes. This indicates the lack of smooth
transitions between the analyzed structures.

ii) Clear and dark regions analysis from graphics in Fig. 10 for SSAV case.- Main changes in
clear structures are observed in large size structures; while dark structures vary for all sizes.

Curves in Fig. 10 indicate the existence of important variations in clear and dark structures
in the DHD and SSAV subjects with respect to the CS. However, clear and dark structures
are mixed, and results difficult to infer, since it is not possible to determine whether the
predominance or the absence of some structures sizes is due to clear or dark components.
This situation occurs because WM and GM have different intensities, and the morphological
transformations used to build equations 3 and 4 are not autoduals, i.e, they do not try clear
and dark structures in a separate form; this causes that, some clear and dark components are
mixed during the processing.

Trying to avoid this inconvenience, WM and GM will be analyzed in separate ways with the
purpose of finding some morphometric differences between CS and SS.

iii) WM and GM analysis from graphics in Fig. 12 for DHD case.-

From graphs in Fig. 12, for WM and GM in the SS case, we observe the following: a) a lack
of small components with respect to CS; b) the existent small components are thin; and c)
medium and large structures predominate in WM and GM.

Fig. 10, we present the granulometric patterns for the SS and the mean pattern for the CS
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Fig. 9. Procedure to obtain granulometric patterns. In step A the graphics obtained for one
slice of each of the two CS and for one SS case are illustrated. In step B, a common mean
pattern is obtained for both CS and one SS. Finally, in step C, a mean pattern is obtained for
the two CS.

184 Advances in Brain Imaging Comparison of Granulometric Studies of Brain Slices from Normal and Dissociated Strabismus Subjects Through Morphological Transformations 15

DHD vs CS case: 

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

1 3 5 7 9 11 13 15 17

CS Mean
SSAV1
SSAV2

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

1 3 5 7 9 11 13 15 17

CS MEAN
DHD1
DHD2

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

1 3 5 7 9 11 13 15 17

CS Mean
DHD1
DHD2

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

1 3 5 7 9 11 13 15 17

CS Mean
SSAV1
SSAV2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SSAV vs CS case: 

 

Opening size 

 

Opening size 

 
Closing   size

 
Closing   size

M
ea

n 
vo

lu
m

e 
 

 
M

ea
n 

vo
lu

m
e 

 
 

M
ea

n 
vo

lu
m

e 
 

 
M

ea
n 

vo
lu

m
e 

 
 

 
Clear regions granulometric 

pattern 

 
Clear regions granulometric 

pattern 

 
Dark regions granulometric 

pattern 

 
Dark regions granulometric 

pattern 

Fig. 10. Mean volume of clear and dark structures corresponding to SS and SC.
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Fig. 9. Procedure to obtain granulometric patterns. In step A the graphics obtained for one
slice of each of the two CS and for one SS case are illustrated. In step B, a common mean
pattern is obtained for both CS and one SS. Finally, in step C, a mean pattern is obtained for
the two CS.
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Fig. 10. Mean volume of clear and dark structures corresponding to SS and SC.
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Fig. 11. Images illustrating the segmentation of WM and GM.

In order to explain this situation we divide the analysis of WM and GM as follows :

a) WM analysis.- In Fig. 13, the terms small, medium and large components are exemplified
with some structures. Notice that small components in WM have the appearance of ”fingers”,
and medium components have a characteristic neck that joins them to large structures.

The lack of small components in the SS with respect to CS group, indicates the absence of
such components in the WM. Also, the graphs indicate that the existing small components
are thin; therefore they are eliminated easily by small structuring elements. On the other
hand, the prevalence of medium and large structures is due to absence the circumvolutions,
this originates a non-smooth transition mainly between small and medium components; since
medium and large components are not to much different.

In Fig. 14 small components are eliminated from slices that belong to DHD, SSAV and a CS.
Notice that for DHD cases, WM has thin ”fingers” which almost disappear after applying an
opening of size 1; whereas for the SSAV case, ”fingers” are not so thin and many of them
remain after the same transformation is applied.

Note that, for the CS case, WM shows abundant appendages and coral forms. Also, observe
that transitions between medium and large sizes are smooth; however for the DHD and SSAV
cases, the appendages and coral forms decrease significantly.

b) GM analysis.- In the GM there is a prevalence of medium and large components. This is
confirmed in the graphs of GM for DHD and SSAV cases ( Fig. 12). Small, medium and large
size components in GM are illustrated in Fig. 13.
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Fig. 12. WM and GM granulometric patterns for the CS and SS groups.

In trying to obtain a parameter indicating the absence, thinning, or thickening of WM or GM
structures, an index is proposed. Such index is expressed as follows:

ι =
vol(small structures)

vol(medium structures) + vol(large structures)
(5)
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Fig. 11. Images illustrating the segmentation of WM and GM.

In order to explain this situation we divide the analysis of WM and GM as follows :

a) WM analysis.- In Fig. 13, the terms small, medium and large components are exemplified
with some structures. Notice that small components in WM have the appearance of ”fingers”,
and medium components have a characteristic neck that joins them to large structures.

The lack of small components in the SS with respect to CS group, indicates the absence of
such components in the WM. Also, the graphs indicate that the existing small components
are thin; therefore they are eliminated easily by small structuring elements. On the other
hand, the prevalence of medium and large structures is due to absence the circumvolutions,
this originates a non-smooth transition mainly between small and medium components; since
medium and large components are not to much different.

In Fig. 14 small components are eliminated from slices that belong to DHD, SSAV and a CS.
Notice that for DHD cases, WM has thin ”fingers” which almost disappear after applying an
opening of size 1; whereas for the SSAV case, ”fingers” are not so thin and many of them
remain after the same transformation is applied.

Note that, for the CS case, WM shows abundant appendages and coral forms. Also, observe
that transitions between medium and large sizes are smooth; however for the DHD and SSAV
cases, the appendages and coral forms decrease significantly.

b) GM analysis.- In the GM there is a prevalence of medium and large components. This is
confirmed in the graphs of GM for DHD and SSAV cases ( Fig. 12). Small, medium and large
size components in GM are illustrated in Fig. 13.
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Fig. 12. WM and GM granulometric patterns for the CS and SS groups.

In trying to obtain a parameter indicating the absence, thinning, or thickening of WM or GM
structures, an index is proposed. Such index is expressed as follows:

ι =
vol(small structures)

vol(medium structures) + vol(large structures)
(5)
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Fig. 13. Illustration of small, medium and large structures on WM and GM.

In Fig. 15, index ι was plotted for WM and GM based on the values obtained for graphs in Fig.
12. When index ι for the CS is compared with that for the SS group, significant differences are
obtained, since the latter value is much smaller.

Index ι, indicates that in the WM of CS, the volume of small components is more than double
that of medium and large structures together; while in GM of CS, index ι is almost equal to
the unit, that is, vol(small structures) ≈ vol(medium structures) + vol(large structures).
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Fig. 14. Elimination of thin components.

With respect to SS, index ι presents the following behavior: a large number of medium
components in WM and GM, that yields an inferior value when compared against the index
for CS.

In other words, index ι for WM and GM in SS suggests: a) a lack of small components in
the analyzed WM, and whenever present they are characterized by their thinness. Medium
structures predominate through the analyzed WM. Given the lack of small components, and
the presence of thin small structures in WM, this originates the absence of small structures in
the GM, for which a predominance of medium and large structures is observed.

The absence of small components (´´fingers”) in the WM may causes a lack of electrical
connection among different cortical regions. As a consequence a right electrical
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In Fig. 15, index ι was plotted for WM and GM based on the values obtained for graphs in Fig.
12. When index ι for the CS is compared with that for the SS group, significant differences are
obtained, since the latter value is much smaller.

Index ι, indicates that in the WM of CS, the volume of small components is more than double
that of medium and large structures together; while in GM of CS, index ι is almost equal to
the unit, that is, vol(small structures) ≈ vol(medium structures) + vol(large structures).
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components in WM and GM, that yields an inferior value when compared against the index
for CS.

In other words, index ι for WM and GM in SS suggests: a) a lack of small components in
the analyzed WM, and whenever present they are characterized by their thinness. Medium
structures predominate through the analyzed WM. Given the lack of small components, and
the presence of thin small structures in WM, this originates the absence of small structures in
the GM, for which a predominance of medium and large structures is observed.

The absence of small components (´´fingers”) in the WM may causes a lack of electrical
connection among different cortical regions. As a consequence a right electrical
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Fig. 15. Table to analyze WM and GM in all subjects through the proposed index ι. Volume
values(bottom of x-axis) to evaluate the index were obtained from graphs in Fig. 12.

communication between different cortical areas is hindered. Therefore, although there are
great areas of GM and WM in the SS, the lack of small components identified as fingers or thin
components in the WM and GM, may cause a faulty electrical conduction and communication
between these areas.

On the other side, the presence of a large volume formed of medium components in WM can
be associated with a certain immaturity process, which is identified by some authors with
excessive glial proliferation or abnormalities in myelin maturation or composition (27). This
produces a low quality WM characterized by axons presenting certain degree of damage, with
the subsequent deficiency in impulse conduction. In our case, index ι is also called immaturity
index, by means of which the absence and increment of certain structures in WM or GM are
measured. In this way, morphometric changes in WM and GM seem to be intimately related
to the electrical and neurofunctional behavior of the analyzed SS. The granulometric study
carried out in this work suggests that changes in the nerve conduction, as we have observed by
means of DBM in strabismic patients (7; 8; 14; 15), could be the consequence of changes in the
microstructural organization of the cerebral mass. According to this study, these alterations
may be manifested as presence of immaturity of certain brain regions and lack of electrical
communication between the structures conforming the WM and GM. We consider that as a
result of this immaturity, alternative vias are established affecting the processes of neuronal
interconnections; with the subsequent affectation, in different degrees and ways of the grey
and white substance; hence different clinical expressions of the dissociated strabismus are
originated.

On the other hand, studies of electrical brain function carried out by means of computed
neurometry, have revealed the close correlation between the structure and cerebral function.
This has been determined from the study of electrical coherence, which is a non invasive
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method to determine the functional relations among different brain areas. This coherence is
altered when some association vias (short and large cortico-corticals, cortico-subcorticals, and
short cortico-corticals), are affected structurally; this has been demonstrated in some diseases
like Alzheimer’s and dementia. Some aspects of the electrical behavior as in the coherence
case, depend precisely on the neuro-structural substrate (28; 29). For some authors, a decrease
in coherence represents a diagnostic marker. Therefore, further research is necessary on the
interrelation between structure and neuronal function, to gain a better understanding into
the origin of multiple diseases that have a seat in the cerebral cortex, or at least of those
conditions in which the participation of the brain cortex plays a role in their physiopathology.
This knowledge enable the establishment of better treatments (28).

On the other hand, during the development of the cerebral cortex or corticogenesis, there is
a cellular migration of neurons that travel from periventricular regions and at the same time
start maturing, until they reach more superficial regions of the brain, where their maturation
culminates. During this process, interconnection vias are liable to be damaged giving place
to different neurological schemes, that can affect the neuronal maturity process as well as
the performance of the association routes. In the case of strabismus it is still not known,
which structural alterations are the cause of this condition. (30–32). Finally, the granulometric
study presented in this work, helps us understand the morphology of WM and GM at
macroestructural level; however further studies are necessary to analyze the structure of the
WM and GM at microestructural level.

5. Conclusions

In this work we presented a method for segmenting MRI slices, as well as the computation of
two granulometric studies. The first granulometric study, analyzes clear and dark structures
in the whole deskulling brain; while the second one, consists in the analysis of WM and GM
separately.

Curves obtained for the whole deskulled brains were not appropriated for analyzing clear and
dark regions, since WM and GM are partly composed by pixels of similar intensities.

On the other hand, important differences were found in the granulometric plots of WM and
GM of the SS when compared to the graphs of CS group. Main differences consist in the lack
of small components (”fingers”) and predominance of medium and large structures. From
this analysis, index ι was introduced, which is useful to establish an immaturity degree. In
the SS, index ι results to be much smaller than that of CS; given the presence of numerous
medium and large structures.

The information drawn from these results suggests that there is a faulty electrical
communication among several cortical areas due to the lack of small components, and also
to the thinness of these structures which are present both in WM and GM. Changes in nerve
neuroconduction, similar to those observed by means of the DBM in strabismic patients
(7; 8; 14; 15), could be related to the microstructural organization of the cerebral mass.
Index ι values, obtained in this work from healthy and strabismic children, show significant
differences in the proportion of granulometric elements in the GM and WM when healthy
and SS are compared. Based on the calculated index, strabismic patients with SSAV present a
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Fig. 15. Table to analyze WM and GM in all subjects through the proposed index ι. Volume
values(bottom of x-axis) to evaluate the index were obtained from graphs in Fig. 12.

communication between different cortical areas is hindered. Therefore, although there are
great areas of GM and WM in the SS, the lack of small components identified as fingers or thin
components in the WM and GM, may cause a faulty electrical conduction and communication
between these areas.

On the other side, the presence of a large volume formed of medium components in WM can
be associated with a certain immaturity process, which is identified by some authors with
excessive glial proliferation or abnormalities in myelin maturation or composition (27). This
produces a low quality WM characterized by axons presenting certain degree of damage, with
the subsequent deficiency in impulse conduction. In our case, index ι is also called immaturity
index, by means of which the absence and increment of certain structures in WM or GM are
measured. In this way, morphometric changes in WM and GM seem to be intimately related
to the electrical and neurofunctional behavior of the analyzed SS. The granulometric study
carried out in this work suggests that changes in the nerve conduction, as we have observed by
means of DBM in strabismic patients (7; 8; 14; 15), could be the consequence of changes in the
microstructural organization of the cerebral mass. According to this study, these alterations
may be manifested as presence of immaturity of certain brain regions and lack of electrical
communication between the structures conforming the WM and GM. We consider that as a
result of this immaturity, alternative vias are established affecting the processes of neuronal
interconnections; with the subsequent affectation, in different degrees and ways of the grey
and white substance; hence different clinical expressions of the dissociated strabismus are
originated.

On the other hand, studies of electrical brain function carried out by means of computed
neurometry, have revealed the close correlation between the structure and cerebral function.
This has been determined from the study of electrical coherence, which is a non invasive
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method to determine the functional relations among different brain areas. This coherence is
altered when some association vias (short and large cortico-corticals, cortico-subcorticals, and
short cortico-corticals), are affected structurally; this has been demonstrated in some diseases
like Alzheimer’s and dementia. Some aspects of the electrical behavior as in the coherence
case, depend precisely on the neuro-structural substrate (28; 29). For some authors, a decrease
in coherence represents a diagnostic marker. Therefore, further research is necessary on the
interrelation between structure and neuronal function, to gain a better understanding into
the origin of multiple diseases that have a seat in the cerebral cortex, or at least of those
conditions in which the participation of the brain cortex plays a role in their physiopathology.
This knowledge enable the establishment of better treatments (28).

On the other hand, during the development of the cerebral cortex or corticogenesis, there is
a cellular migration of neurons that travel from periventricular regions and at the same time
start maturing, until they reach more superficial regions of the brain, where their maturation
culminates. During this process, interconnection vias are liable to be damaged giving place
to different neurological schemes, that can affect the neuronal maturity process as well as
the performance of the association routes. In the case of strabismus it is still not known,
which structural alterations are the cause of this condition. (30–32). Finally, the granulometric
study presented in this work, helps us understand the morphology of WM and GM at
macroestructural level; however further studies are necessary to analyze the structure of the
WM and GM at microestructural level.

5. Conclusions

In this work we presented a method for segmenting MRI slices, as well as the computation of
two granulometric studies. The first granulometric study, analyzes clear and dark structures
in the whole deskulling brain; while the second one, consists in the analysis of WM and GM
separately.

Curves obtained for the whole deskulled brains were not appropriated for analyzing clear and
dark regions, since WM and GM are partly composed by pixels of similar intensities.

On the other hand, important differences were found in the granulometric plots of WM and
GM of the SS when compared to the graphs of CS group. Main differences consist in the lack
of small components (”fingers”) and predominance of medium and large structures. From
this analysis, index ι was introduced, which is useful to establish an immaturity degree. In
the SS, index ι results to be much smaller than that of CS; given the presence of numerous
medium and large structures.

The information drawn from these results suggests that there is a faulty electrical
communication among several cortical areas due to the lack of small components, and also
to the thinness of these structures which are present both in WM and GM. Changes in nerve
neuroconduction, similar to those observed by means of the DBM in strabismic patients
(7; 8; 14; 15), could be related to the microstructural organization of the cerebral mass.
Index ι values, obtained in this work from healthy and strabismic children, show significant
differences in the proportion of granulometric elements in the GM and WM when healthy
and SS are compared. Based on the calculated index, strabismic patients with SSAV present a
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greater degree of immaturity than those patients with DHD; since ι index is smaller. This can
be more clearly appreciated from the graphs and derived values in Fig. 15.

On the other hand, it is rather convenient that changes consistent with the alterations in
the relation volume and granulometric density can be determined in alive subjects; besides
this advantage can be complemented with neurofunctional studies such as the DBM. This
technique offers a high temporary resolution, though its space resolution is significantly
slower. Granulometric studies offer a finest structural analysis available in vivo, that allow
the interpretation of neurofunctional studies. On the one hand, granulometry is outlined as
an excellent diagnosis marker for several neurologic diseases. The study carried out in this
work not only suggests the neuronal immaturity associated with strabismus, but also the lack
of small components("fingers") and the predominance of medium size structures mainly in
the SS group. These circumstances propitiate alterations in conduction of the neuroelectrical
impulses, favoring the presence of strabismus, as well as the alterations encountered in the
DBM. Therefore, granulometric studies may help to gain a better insight into the origin,
diagnosis and prognosis of this prevalent disease, for which so little is known. Although the
amount of brains analyzed here is only six, they provide important information to establish
granulometric differences between SC and SS groups. Finally, for our future research, we are
considering the following things: I) Improvement of the morphologic operators involved in
the obtention of granulometric curves; these operators must be autodual with the purpose
of treating clear and dark components of the image separately; and II) Inclusion of a larger
sample of healthy children to obtain mean patterns, as well as a larger number of patients
with strabismus.
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greater degree of immaturity than those patients with DHD; since ι index is smaller. This can
be more clearly appreciated from the graphs and derived values in Fig. 15.

On the other hand, it is rather convenient that changes consistent with the alterations in
the relation volume and granulometric density can be determined in alive subjects; besides
this advantage can be complemented with neurofunctional studies such as the DBM. This
technique offers a high temporary resolution, though its space resolution is significantly
slower. Granulometric studies offer a finest structural analysis available in vivo, that allow
the interpretation of neurofunctional studies. On the one hand, granulometry is outlined as
an excellent diagnosis marker for several neurologic diseases. The study carried out in this
work not only suggests the neuronal immaturity associated with strabismus, but also the lack
of small components("fingers") and the predominance of medium size structures mainly in
the SS group. These circumstances propitiate alterations in conduction of the neuroelectrical
impulses, favoring the presence of strabismus, as well as the alterations encountered in the
DBM. Therefore, granulometric studies may help to gain a better insight into the origin,
diagnosis and prognosis of this prevalent disease, for which so little is known. Although the
amount of brains analyzed here is only six, they provide important information to establish
granulometric differences between SC and SS groups. Finally, for our future research, we are
considering the following things: I) Improvement of the morphologic operators involved in
the obtention of granulometric curves; these operators must be autodual with the purpose
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1. Introduction

Magnetoencephalography (MEG) can monitor the activation of a neuronal population with
millisecond temporal resolution, and offer new noninvasive information about basic activities
of the human brain. MEG is usable for the description of spontaneous brain activity and
the detection of timely events such as stimulus evoked fields. The most recent advances in
the field of MEG concerning cortical responses to stimulation are issued from development
of multichannel recordings. We can study the temporal order of several cortical areas from
averaged waveforms of MEG, e.g., auditory, visual, and somatosensory evoked responses.
For three decades, dynamical information contained in MEG has been analyzed mainly in
terms of averaged waveforms.

However, lots of brain activities are included in original MEG data. For spontaneous fields
there are huge activities in cortical areas. Generally, it is difficult to estimate source locations
of current dipole data from MEG data correctly at the present stage, if the number of current
dipoles becomes large. The estimation of their locations is an underdetermined problem.
In the case of spontaneous fields it is hard to obtain intracerebral communication between
active cortical areas. Hence, we consider an overdetermined problem in the case of evoked
fields, since their locations of active cortical areas are limited. Furthermore, we should find
a possibility to obtain dynamical information by signal processing of fluctuations around
concatenate average waveforms, which have been discarded without signal processing in the
conventional MEG analysis. The fluctuations may be induced magnetic fields to communicate
between cortical areas.

In this chapter, we will show this new direction of MEG analysis by way of example
of somatosensory evoked field (SEF), and intracerebral communication between active
somatosensory cortices can be expressed by system identification of fluctuations. That is,
intracerebral communication between the primary somatosensory cortex in the contralateral
hemisphere (cSI) and the contralateral secondary somatosensory cortex (cSII) in 2Hz median
nerves stimuli will be discussed from correlation functions of SEF fluctuations by the
identification method with feedback model (see Section 3.6). In this chapter, intracerebral
communication between cSI and cSII will be studied not from averaged waveforms but from
fluctuations around concatenate averaged waveforms by following steps:
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1. Introduction

Magnetoencephalography (MEG) can monitor the activation of a neuronal population with
millisecond temporal resolution, and offer new noninvasive information about basic activities
of the human brain. MEG is usable for the description of spontaneous brain activity and
the detection of timely events such as stimulus evoked fields. The most recent advances in
the field of MEG concerning cortical responses to stimulation are issued from development
of multichannel recordings. We can study the temporal order of several cortical areas from
averaged waveforms of MEG, e.g., auditory, visual, and somatosensory evoked responses.
For three decades, dynamical information contained in MEG has been analyzed mainly in
terms of averaged waveforms.

However, lots of brain activities are included in original MEG data. For spontaneous fields
there are huge activities in cortical areas. Generally, it is difficult to estimate source locations
of current dipole data from MEG data correctly at the present stage, if the number of current
dipoles becomes large. The estimation of their locations is an underdetermined problem.
In the case of spontaneous fields it is hard to obtain intracerebral communication between
active cortical areas. Hence, we consider an overdetermined problem in the case of evoked
fields, since their locations of active cortical areas are limited. Furthermore, we should find
a possibility to obtain dynamical information by signal processing of fluctuations around
concatenate average waveforms, which have been discarded without signal processing in the
conventional MEG analysis. The fluctuations may be induced magnetic fields to communicate
between cortical areas.

In this chapter, we will show this new direction of MEG analysis by way of example
of somatosensory evoked field (SEF), and intracerebral communication between active
somatosensory cortices can be expressed by system identification of fluctuations. That is,
intracerebral communication between the primary somatosensory cortex in the contralateral
hemisphere (cSI) and the contralateral secondary somatosensory cortex (cSII) in 2Hz median
nerves stimuli will be discussed from correlation functions of SEF fluctuations by the
identification method with feedback model (see Section 3.6). In this chapter, intracerebral
communication between cSI and cSII will be studied not from averaged waveforms but from
fluctuations around concatenate averaged waveforms by following steps:
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2 Will-be-set-by-IN-TECH

1) Extraction of SEF fluctuations from MEG will be discussed in Section 3.3.

2) Inverse problem will be shown in Section 3.5 or 4.4.

3) Intracerebral communication will be discussed in Section 4.5 by feedback model

identification.

2. Difficulties in system identification of MEG and countermeasures

2.1 Deterministic waveforms

Somatosensory activities are known as cSI, bilateral secondary somatosensory cortices (SIIs)

and posterior parietal cortices in somatosensory stimuli with inter-stimulus intervals of more

than one second (Kakigi et al., 2000; Wikström et al., 1996), and under more than 1 Hz periodic

median nerve stimulus, the somatosensory activity is mainly observed at cSI (Wikström et

al., 1996). In the previous paper (Kishida, 2009a), responses of evoked magnetic fields were

studied for 5Hz periodical median nerve stimuli. In 5Hz periodic median nerve stimulus,

there are the 5Hz repetitive line spectra of the somatosensory evoked field (SEF). This suggests

that averaged waveforms are deterministic. Statistical properties of SEF are summarized in

Kishida (2009a) as SEF includes the deterministic part of concatenate averaged waveforms

and the random part of fluctuations around them.

From the Wold decomposition theorem (Mathematical Society of Japan, 1987), a stationary

process is uniquely decomposed into a non-deterministic part and a deterministic part. We

can define correlation functions in a stationary process, and they are described by time lag.

They can be specified as two types: One type can be obtained from fluctuations and the other

pseudo type is calculated from periodic functions. Under the condition of small averaged

waveforms, dynamical activities of current dipoles of primary somatosensory cortexes were

studied from MEG by the decorrelation method of the BSS method in Kishida (2009b). The

usage of the decorrelation method can make an improvement on the signal-to-noise ratio of

components of interest.

2.2 Nonlinearity

Assuming that the brain dynamics is linear, the brain functional activities can be identified by

using multivariate autoregressive model. To obtain dynamical information from MEG and/or

Electroencephalography data, multivariate autoregressive model has mainly been used for

identification of networks or connections between cortices (Cantero et al., 2009; Florin et al.,

2010; Hui et al., 2010). Furthermore, we can estimate dynamical interaction between active

regions in the brain, providing their pathway is known. It means that dynamical relationship

between active regions can be analyzed approximately by the multivariate autoregressive

model analysis (Akaike & Nakagawa, 1988). However, the autoregressive model is all-pole

type, and has no zeros. As a kind of truncated power series (Kishida, 1997b), autoregressive

models are not suitable to be used for evaluating exact transfer functions between regions of

cortex. To avoid this difficulty, a feedback model which has rational transfer functions with

zeros and poles (Kishida, 1994; 1996) has been used for determination of impulse responses

between regions of cortex.

Indeed the brain system is nonlinear. One way is to extend the identification method for a

nonlinear case, while the other way is to find a linear part separated from MEG. It is difficult
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to extend the first approach for nonlinear cases owing to brain complexity, and by using BSS

method the latter approach will be served to solve the nonlinear difficulty by elimination

of concatenate averaged waveforms. In complex systems the latter approach with BSS is

superior to the former approach, when the total number of data is limited. When a current

dipole is usually generated by thousands of cells, we can observe its magnetic field by a

superconducting quantum interference device (SQUID). Hence, SQUID data are macroscopic

from the viewpoint of neuronal population activity, and the statistical nature of system size

expansion can be taken as macroscopic variables of SQUID data. As pointed out in the system

size expansion method developed in statistical physics (Kishida et al., 1976; Kubo et al., 1973;

Tomita & Tomita, 1974; Van Kampen, 1961), the macroscopic variables have extensive property

and the mean value of them obeys the nonlinear evolution equation, but their fluctuations

follow the linear Gaussian equation in the normal case. This linearity of normal case is suitable

for the latter approach with BSS.

In this chapter we will introduce how to separate fluctuations from evoked magnetic field

data by using the decorrelation method of blind source separation (BSS). Fluctuations of MEG

rather than averaged waveforms should be analyzed for the better understanding of brain

functional activities as in Section 4.

2.3 Difficulties in blind source separation

In the present chapter we will study MEG data for 2Hz periodical median nerve stimuli, since

activities of the secondary somatosensory cortices may be found as the somatosensory evoked

field (Hamada et al., 2002; Wikström et al., 1996). If there is a current dipole in a brain region,

a dipole pattern generated from it can be shown by the Biot-Savart law in SQUID channels

(see Fig. 2 or 5). In the special case where there is the one-to-one correspondence between SEF

current dipoles and BSS components, fluctuations of SEF can be separated easily. In general,

there are no one-to-one correspondences between a current dipole and a component of BSS.

Let the dishonest BSS of Section 3.3 be a BSS processing for original MEG data with

deterministic evoked waveforms. The honest BSS of Section 3.4 is defined as a BSS

processing after elimination of concatenate evoked waveforms from MEG. It is difficult to

select honest BSS components related to SEF from all BSS components with various dipole

patterns in topographic field maps without repeated line spectrum in the power spectral

density (PSD), since there are no line spectrum in PSD in honest BSS components. There

remains an open problem to be solved to locate SEF fluctuations in the cases without the

one-to-one correspondence. However, fluctuations of SEF can be determined from the

honest BSS components, when components with nonzero waveforms of the dishonest BSS

are transformed into the honest BSS components by using a transformation matrix. That is,

the transformation matrix connecting two types of BSS components will be introduced for

selecting the fluctuations of evoked magnetic fields (see Eq. (11)). Hence, SEF fluctuations of

the somatosensory evoked field (see Eq. (13)) will be separated from MEG data by using the

T/k type decorrelation method of honest BSS, after elimination of deterministic concatenate

evoked waveforms. Finally, we can obtain correlation functions of SEF fluctuations from the

honest BSS. Our identification method will work efficiently for SEF fluctuations in Section 4.5

and can show intracerebral communication in terms of impulse responses between cSI and

cSII.
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3. Methods

3.1 Magnetoencephalography (subjects and stimuli)

Five healthy subjects participated in this study. After explaining the nature of the study,
informed consent was obtained. The experimental procedures were in accordance with the
Declaration of Helsinki. Their median nerves were stimulated electrically with a constant
voltage, square-wave pulse of 0.5 ms duration delivered at the right wrist. Stimulus frequency
was periodical 2Hz or the inter-stimulus interval (ISI) was 500 ms. MEG data were recorded
with a 64-channel whole-head MEG system (NeuroSQUID Model 100; CTF Systems Inc.).
SQUID was the axial gradiometer type. Details were reported in Kishida (2009a).

3.2 Data analysis

MEG signals were digitized at 1250 Hz and filtered with a 300 Hz on-line low-pass filter. MEG
data during 175 s per one subject were used as a single sweep for data analysis. The number
of median nerve stimuli was 350. The sampling time (Δt) is 0.8 ms and let magnetic field of
SQUIDs be

x(t) = x(nΔt) =: x(n)

at time t or discrete time n. In periodical stimului MEG data are classified into 3 groups as

x(n) = xs(n) + xe(n) + xa(n), (1)

where xs, xe and xa are spontaneous and evoked magnetic fields and artifact noises. The SEF
evoked magnetic field consists of a deterministic part and fluctuations around it:

xe(n) = LeQe(n) = u(n) + LeQh
e (n), (2)

where Le is the lead field from the evoked current dipoles, Qe(n), u(n) := r350w is defined by
concatenating 350 copies of the average waveforms w, and Qh

e (n) are SEF fluctuations in the
evoked magnetic field (see Eq. (16)).

3.3 Fractional type of BSS

The decorrelation method was developed by Molgedey & Schuster (1994), Ziehe et al.
(2000), Murata et al. (2001) and briefly summarized in Kishida et al. (2003). However, BSS
performance is strongly dependent on the choice of time lag. The temporal decorrelation
method of BSS has an open problem in choice of the time lag (Hironaga & Ioannides,
2007; Kishida, 2008; Tang et al., 2005; Ziehe et al., 2000). Here it should be noted that the
decorrelation method is effective for MEG data in a stationary process.

Since PSD of MEG has a line spectrum of 2Hz and those of higher harmonic modes in 2Hz
periodical median nerve stimuli, improvements with the fractional type time lag τm defined
by

τm =

(
1250

2

)
/m =

625

m
, m = 1, 2, . . . , k (3)

could be made on BSS (Kishida, 2008; 2009a). Hence, we can determine a mixing matrix A(k)
by the blind source separation with the T/k type (fractional) time lag:

x(n) = A(k)s
(k)(n). (4)
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In the T/k type decorrelation method, the absolute sum of off-diagonal elements of
normalized correlation matrices is minimized at times corresponding to 2Hz and its higher
harmonic frequencies. The main processing in the decorrelation method is removing the
off-diagonal elements of the correlation matrices at fractional type time lag τm,

Czz(τm) =
1

N

N−1

∑
n=0

z(n)z(n + τm)
T m = 1, . . . , k, (5)

where the superscript T denotes the transposition of matrix and z(n) with zero mean is

orthonormalized as
√

V−1x(n). Here V is the covariance matrix given by E{x(n)x(n)T}.
The Jacobi-like algorithm has been used to solve the simultaneous diagonalization problem
approximately on k normalized correlation matrices (Cardoso & Souloumiac, 1996). This
process is to determine a square matrix U in the problem of minimization of the cost function
J,

J(U) =
k

∑
m=1

∑
i �=j

|(UCzz(τm)U
T)ij|2, (6)

where (UCzz(τm)UT)ij denotes the ij-element of matrix UCzz(τm)UT . Finally, we have A−1
(k)

:=

U
√

V−1.

For the classification of MEG we have used the T/k type of BSS with e.g. k = 30:

x(n) = A(30)s
(30)(n). (7)

Then, MEG is decomposed by the fractional BSS with k = 30:

x(n) = As
(30)s

(30)
s (n) + Ae

(30)s
(30)
e (n) + Aa

(30)s
(30)
a (n), (8)

where A(30) = (As
(30)

Ae
(30)

Aa
(30)

) and s(30)(n) = (s
(30)
s (n)T s

(30)
e (n)T s

(30)
a (n)T)T

corresponding to Eq. (1).

3.4 Honest BSS and transformation matrix

From the Wold decomposition theorem (Mathematical Society of Japan, 1987), a stationary
process is uniquely decomposed into x(n) = u(n) + δx(n), where δx(n) is non-deterministic
and u(n) is deterministic. We can define correlation functions in a stationary process, and
they are specified into two types. When concatenate averaged waveforms are very small, the
decorrelation method and the identification method used in Kishida (2009b) work efficiently,
since correlation functions can be described by time lag. Inversely the decorrelation method
and the identification method do not work well, when concatenate averaged waveforms are
not small. In the remaining part of this paper we will first eliminate concatenation of averaged
waveforms from MEG data, and then apply the decorrelation method and the identification
method to eliminated MEG data. Such approach was called "honest" in the (9) of discussion
of Kishida (2009b).

Supposing there is a subject who has no or negligible small fluctuations of SEF, and that he has

averaged waveforms of SEF. However, certain fluctuations of SEF happen to be in s
(30)
e (n) of

the subject in BSS calculation of Eq. (7). Therefore BSS of Eq. (7) may be called as "dishonest",
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since these fictitious fluctuations cause errors in identification method. As further mentioned
in Discussion, subject D corresponds to the one who has no or negligible small fluctuations
of SEF. To avoid these fictitious fluctuations, we should use the honest BSS instead of the
dishonest BSS of Eq. (7), since there are no deterministic parts in the honest BSS. On the other
hand, it is difficult to select honest BSS components of evoked field with dipole patterns in
topographic field maps, since there is no line spectrum in PSD in honest BSS components.
To overcome these difficulties, a transformation matrix between components of BSS with line
spectrum and those of honest BSS will be introduced.

First let us eliminate concatenation of averaged waveforms from MEG data: δx(n) := x(n)−
u(n) where u(n) := r350w. After eliminating concatenation of averaged waveforms the honest
BSS and the identification algorithm can be applied. Fluctuations of MEG are decomposed by
the honest BSS with e.g. k = 25 as the same method as in Section 3.3:

δx(n) = Ah
(25)

δs(25)(n)

= x(n)− u(n)

= xs(n) + LeQh
e (n) + xa(n)

= As
(25)

δs
(25)
s (n) + Ae

(25)
δs

(25)
e (n) + Aa

(25)
δs

(25)
a (n).

(9)

In the honest BSS, there are no deterministic parts, and it would be difficult to find SEF BSS
components, since there is no line spectrum of the evoked magnetic field in PSDs of honest
BSS components and there were no one-to-one correspondences between dipoles and BSS
components in four subjects. We must find a way to select SEF components of honest BSS.

From the two relations between Eq. (9) and Eq. (7) we can obtain approximately the next
equation,

A(30)s
(30)(n) = Ah

(25)δs(25)(n), (10)

when the amplitude of u(n) is negligible small in comparison with that of x(n). A
transformation matrix is defined by

T := (Ah
(25))

−1 A(30). (11)

The jth column of T shows a distribution of the jth component of s(30)(n), s
(30)
j (n), on δs(25)(n)

is denoted by T∗,j:

δs(25)(n) = Ts(30)(n). (12)

That is, T∗,j denotes the transformation from one component of s(30)(n) to a distribution on

δs(25)(n). When components of honest BSS satisfy the condition that absolute value of T∗,j is
close to one, the honest BSS components can be found from the dishonest BSS components.
Therefore, fluctuations of SEF are given from the fractional BSS with k = 25 in the honest way
by

xh
e (n) = Ae

(25)δs
(25)
e (n). (13)
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3.5 Estimation of SEF fluctuations of current dipoles

The problem of multi-dipole estimation can be solved efficiently by the conventional least
square method (Hämäläinen et al., 1993) with the combinatory optimization problem for
location of current dipoles. Estimated current dipoles were equivalently evaluated by the
least mean square method with a cost function of distance between signal spaces (Yokota &
Kishida, 2006). That is, the covariance matrix, D = E{xh

e (n)x
h
e (n)

T}, can be decomposed into
eigenvectors:

D =
64

∑
k=1

λkφkφ
T
k , (14)

where λk is an eigenvalue and φk is its eigenvector. Let us divide into two subspaces; one is
the p dimensional signal subspace Vs and the other subspace is noise subspace Vn:

Vs = (φ1, φ2, . . . , φp), Vn = (φp+1, φp+2, . . . , φ64).

For q current dipole estimation the cost function is defined (Yokota & Kishida, 2006) by

J(r̂1, . . . , r̂q̂) = det[(Vs, Lr̂)
T(Vs, Lr̂)], (15)

when lead fields of evoked magnetic field are selected by

Lr̂ := (lr̂1
, lr̂2

, . . . , lr̂q
).

The supporting reason for cost function is that the rank of [(Vs, Lr̂)
T(Vs, Lr̂)] becomes lower,

when estimation of current dipole is true.

Hence, we can determine q current dipoles which represent dipole patterns of SEF. That is, we
have from Eqs. (9) and (13)

LeQh
e (n) = Ae

(25)δs
(25)
e (n),

or,

Qh
e (n) = L†

e Ae
(25)δs

(25)
e (n), (16)

where the symbol † means the Moore Penrose type of generalized inverse matrix and Le is
a lead field evaluated from q current dipoles. Equation (16) will be expressed as Eq. (23) in
Section 4.4 in the case of q = 5, where p=4 from Eq. (22).

3.6 Identification of feedback model

The identification method mentioned in Kishida (1996; 1997a; 2009b) could be applied to
evaluate dynamical properties between current dipoles in cortices. Let current diploes
corresponding to cSII and cSI be y1(n) and y2(n) selected from Qh

e (n). Their activities are
assumed to be expressed by a feedback model defined by

y1(n) = F12(z
−1)y2(n) + F1(z

−1) f1(n)

y2(n) = F21(z
−1)y1(n) + F2(z

−1) f2(n),
(17)
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where z−1 is the time shift operator: z−1yk(n) = yk(n − 1) (k = 1 or 2), f1(n) and f2(n)
are Gaussian white random current dipoles in two regions of thalamus, F12(z

−1) is an
intracerebral transfer function from cSI to cSII, and F21(z

−1) is a reverse intracerebral transfer
function from cSII to cSI. F1(z

−1) is a transfer function from one region of thalamus to cSII and
F2(z

−1) is that from another region of thalamus to cSI.

As mentioned in Eq. (A3) of Kishida (2009b), an innovation model of minimum phase
(Kishida, 1991) can be identified from fluctuations of cSI and cSII:

x(n|n) = AHx(n − 1|n − 1) + Bγ(n)

y(n) = Cx(n|n).
(18)

Three system matrices of Eq. (18) are determined by the identification method from
correlation function matrices, since correlation function matrices of Hankel matrix in Step
3 of Appendix A of Kishida (2009b) are obtained from output data of fluctuations of cSI and
cSII. From Eq. (18) a closed loop transfer function matrix is

G(z−1) = C(I − AHz−1)−1B. (19)

Attention should be paid to the existence of an undetermined matrix U in the representation
of the innovation model: A′ = U−1 AU , B′ = U−1B and C′ = CU , although the closed loop
transfer function matrix is invariant for U , e.g., eigenvalues of A′ is the same as those of A.

As in Eq. (B3) of Kishida (2009b), transfer functions between cSII and cSI are determined from
Eq. (19) as

F̂12(z
−1) = G12(z

−1)/G22(z
−1)

F̂21(z
−1) = G21(z

−1)/G11(z
−1).

(20)

Transfer functions of F12(z
−1) and F21(z

−1) of intracerebral communication between cSI and
cSII can be obtained via Eqs. (19) and (20) from the feedback structure under either one of
the two sufficient conditions of original feedback model (Kishida, 1994). On the other hand,
transfer functions of F1(z

−1) and F2(z
−1) are not identified from output data of fluctuations

of cSI and cSII, since input data about fluctuations of thalamus are not available.

Our algorithm to obtain transfer functions between cSI and cSII is summarized in the
following flowchart:

MEG data in 2Hz
median nerve stimuli

honest BSS, Eq.(9)−−−−−−−−−−→
(dishonest BSS)

Extraction of SEF
fluctuations.

(see Eq. (13) or (22))

SEF fluctuations
(see Eq. (13))

inverse problem, Eq. (16)−−−−−−−−−−−−−−→
Fluctuations of current
dipoles at cSI and cSII.
(see Eqs. (24) and (25))

Correlation functions of SEF
fluctuations at cSI and cSII

identification method based−−−−−−−−−−−−−−−→
on feedback model, Eq. (17)

Transfer functions
between cSI and cSII.
(see Figs. 11 and 12)
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4. Results

4.1 MEG pre-processing and SEF

After zero preset signal processing mentioned in Kishida (2009a), the average of 350 MEG
responses was used. The averaged waveforms w(n) are obtained from SQUID time series
data and shown in Fig. 1 for four subjects, where w(n) were defined by Eq. (1) of Kishida
(2009a). Since the head of the other subject E moved during MEG measurement, the data
were invalid.
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Fig. 1. Averaged waveforms of SEF. (a) subject A, (b) subject B, (c) subject C and (d) subject D.

In Fig. 1(a), electric stimulus time is at time 101.6 ms (n = 127) and the first peak of averaged
waveforms at time 120.8 ms (n = 151) is known as N20 with latency 19.2 ms (Hämäläinen et
al., 1993; Kakigi et al., 2000; Wikström et al., 1996). N20 has a dipole pattern of cSI in the field
map of Fig. 2(a). In 2Hz median nerve stimulus, averaged waveforms usually have a dipole
pattern of cSI, since activities of cSI are found in 2Hz median nerve stimulus (Wikström et al.,
1996). However, a dipole pattern of SIIs was not found in averaged waveforms at a glance,
even if activities of SIIs exist in 2Hz median nerve stimulus (Wikström et al., 1996). This
situation is similar to the case where stars are seen in the nighttime, but not in the daytime.
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4. Results

4.1 MEG pre-processing and SEF

After zero preset signal processing mentioned in Kishida (2009a), the average of 350 MEG
responses was used. The averaged waveforms w(n) are obtained from SQUID time series
data and shown in Fig. 1 for four subjects, where w(n) were defined by Eq. (1) of Kishida
(2009a). Since the head of the other subject E moved during MEG measurement, the data
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In Fig. 1(a), electric stimulus time is at time 101.6 ms (n = 127) and the first peak of averaged
waveforms at time 120.8 ms (n = 151) is known as N20 with latency 19.2 ms (Hämäläinen et
al., 1993; Kakigi et al., 2000; Wikström et al., 1996). N20 has a dipole pattern of cSI in the field
map of Fig. 2(a). In 2Hz median nerve stimulus, averaged waveforms usually have a dipole
pattern of cSI, since activities of cSI are found in 2Hz median nerve stimulus (Wikström et al.,
1996). However, a dipole pattern of SIIs was not found in averaged waveforms at a glance,
even if activities of SIIs exist in 2Hz median nerve stimulus (Wikström et al., 1996). This
situation is similar to the case where stars are seen in the nighttime, but not in the daytime.
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Fig. 2. Dipole pattern in the topographic field map of waveforms of subject A. (a) time
120.8ms (latency 19.2 ms), (b) time 214.4ms (latency 112.8 ms).

SIIs correspond to stars and cSI is the sun. The nighttime is a time when the sign of amplitude
of cSI changes. The time is 214.4 ms corresponding to latency 112.8 ms in Fig. 1(a), and the
dipole pattern of SIIs is found from w(n) at the time as in the field map of Fig. 2(b). From Fig.
2(b) cSII is stronger than the ipsilateral secondary somatosensory cortex (iSII). This result is
consistent to that of Wikström et al. (1996).

The black bold line in Fig. 1(a) is an averaged waveform at the 14th SQUID channel, location
of which will be shown by a black large circle in Fig. 10. PSD of SQUID data at the 14th
channel has a line spectrum of 2Hz and those of higher harmonic modes for 2Hz periodical
median nerve stimuli as in Fig. 3. The line spectrum of PSD is due to periodical structure of
the somatosensory evoked magnetic field. The 2Hz repetitive line spectra of Fig. 3 show an
effect of the deterministic and nonlinear part.
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Fig. 3. PSD of the 14th SQUID channel of subject A.
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We can select BSS components of the evoked magnetic field from their averaged waveforms

of s(30)(n) in Fig. 4. Averaged waveforms of BSS components were defined as ws(n) by Eq.
(15) of Kishida (2009a). Cyan dotted and blue broken bold lines which have N20 peaks in
Fig. 4 were the 4th and the 22nd BSS components of cSI, and yellow, red and black bold lines
at time 214 ms (latency 112.4 ms) were the 13th, 17th and 35th BSS components of SIIs. The
somatosensory evoked field was given by five components of BSS:

s
(30)
e (n)

= (s
(30)
4 (n) s

(30)
13 (n) s

(30)
17 (n) s

(30)
22 (n) s

(30)
35 (n))T .

(21)

Their dipole patterns of BSS components corresponding to the somatosensory evoked field
are shown in the topographic field maps of Fig. 5. Here, the topographic field map of the
jth component of BSS is expressed by Aj as the jth column vector of A(30). In subject A there
were no one-to-one correspondences between two dipoles and five BSS components. There
were also no one-to-one correspondences in the other subjects. It was a rare case to have the
one-to-one correspondences between dipoles and BSS components.
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Fig. 4. BSS waveforms of subject A. Cyan bold broken and blue dotted lines are the 4th and
the 22nd BSS components of cSI, and three bold lines are the 13th, 17th and 35th BSS
components of SIIs.

4.2 Honest BSS

PSD of MEG with elimination of repeated waveforms has no line spectrum of 2Hz and no
higher harmonic modes in Fig. 6. Here the SQUID channel of Fig. 6 is the same as that of Fig.
3. From Fig. 6 electrical power noise is clearly found in line structure at 60Hz and has higher
harmonics.
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We can select BSS components of the evoked magnetic field from their averaged waveforms

of s(30)(n) in Fig. 4. Averaged waveforms of BSS components were defined as ws(n) by Eq.
(15) of Kishida (2009a). Cyan dotted and blue broken bold lines which have N20 peaks in
Fig. 4 were the 4th and the 22nd BSS components of cSI, and yellow, red and black bold lines
at time 214 ms (latency 112.4 ms) were the 13th, 17th and 35th BSS components of SIIs. The
somatosensory evoked field was given by five components of BSS:

s
(30)
e (n)

= (s
(30)
4 (n) s

(30)
13 (n) s

(30)
17 (n) s

(30)
22 (n) s

(30)
35 (n))T .

(21)

Their dipole patterns of BSS components corresponding to the somatosensory evoked field
are shown in the topographic field maps of Fig. 5. Here, the topographic field map of the
jth component of BSS is expressed by Aj as the jth column vector of A(30). In subject A there
were no one-to-one correspondences between two dipoles and five BSS components. There
were also no one-to-one correspondences in the other subjects. It was a rare case to have the
one-to-one correspondences between dipoles and BSS components.

0  100 200 300 400 500

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time(ms)

w
s

Fig. 4. BSS waveforms of subject A. Cyan bold broken and blue dotted lines are the 4th and
the 22nd BSS components of cSI, and three bold lines are the 13th, 17th and 35th BSS
components of SIIs.

4.2 Honest BSS

PSD of MEG with elimination of repeated waveforms has no line spectrum of 2Hz and no
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Fig. 5. Topographic field maps of SEF BSS components in subject A.

When components of honest BSS satisfy the condition that absolute value of T∗,j is close to
one, the dishonest BSS components are transformed into honest BSS components with similar
topographic field maps. In Fig. 7 T∗,4, T∗,13, T∗,17, T∗,22 and T∗,35 of the 4th, 13rd, 17th, 22rd
and 35th components of BSS with k = 30 are denoted by bold solid, bold 1-dot broken, bold
broken, dotted and sold lines respectively. When the components of BSS with k = 30 satisfy
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the condition |T∗,j| > 0.6, the dishonest BSS components are transformed into those of honest
BSS with k = 25: they are transformed into the 4th, 27th, 36th and 43rd components of honest
BSS with k = 25.

Their topographic field maps of honest BSS components are shown in Fig. 8. Here, the
topographic field map of the jth component of honest BSS is also denoted by Ah

j as the jth

column vector of Ah
(25)

in the honest way. Similarities are found in patterns of dipoles between

Figs. 5 and 8. If the condition |T∗,j| > 0.6 is satisfied at the least, the correspondence between
the dishonest and honest BSS components is plausible. However, there was the exceptional
example (see Section 5.1) that the correspondence did not hold even when the condition was
satisfied.

4.3 Fluctuations of somatosensory evoked or induced field

The honest BSS is a blind source separation which relates to the block diagonal of covariance
matrix. The block diagonal property is found in cross-correlation functions among honest
BSS components of the evoked magnetic field. Cross-correlation functions between the 4th
component of honest BSS and the other component of honest BSS are shown in Fig. 9(a), and
especially those between the 4th component and the 27th, 36th and 43rd components of honest
BSS are shown by yellow broken, blue 1-dot broken and blue solid bold lines in Fig. 9(b). In
Fig. 9 large deviations of cross-correlation away from the time origin are found occasionally.
Therefore it is concluded that there remain small correlations among honest BSS components
corresponding to cSI and SIIs.

Hence, fluctuations of SEF are given from the fractional BSS with k = 25 in the honest way by

xh
e (n) = Ae

(25)δs
(25)
e (n), (22)

where
δs

(25)
e (n) = (δs

(25)
4 (n) δs

(25)
27 (n) δs

(25)
36 (n) δs

(25)
43 (n))T .





12 Will-be-set-by-IN-TECH

P

A

RL

P

A

RL

P

A

RL

P

A

RL

B

F

RL

P

A

RL

B

F

RL

P

A

RL

(a) A4.

P

A

RL

P

A

RL

P

A

RL

P

A

RL

B

F

RL

P

A

RL

B

F

RL

P

A

RL

P

A

RL

(b) A13.

P

A

RL

P

A

RL

P

A

RL

P

A

RL

(c) A17.

P

A

RL

P

A

RL

P

A

RL

P

A

RL

P

A

RL

(d) A22.

P

A

RL

(e) A35.

Fig. 5. Topographic field maps of SEF BSS components in subject A.

When components of honest BSS satisfy the condition that absolute value of T∗,j is close to
one, the dishonest BSS components are transformed into honest BSS components with similar
topographic field maps. In Fig. 7 T∗,4, T∗,13, T∗,17, T∗,22 and T∗,35 of the 4th, 13rd, 17th, 22rd
and 35th components of BSS with k = 30 are denoted by bold solid, bold 1-dot broken, bold
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components with k = 25.

Induced fields generated by the current dipoles at the same locations in Fig. 8 may be included
in fluctuations.

4.4 Source analysis

If a brain can be approximated by a spherically symmetric model, and if the primary currents
generated in the brain can be described by an equivalent current dipole, a lead field from a
current dipole in the brain to SQUID channels was given by Sarvas formula (Sarvas, 1987).
Current dipoles in the brain of subject A were uniformly distributed in the sphere with a
radius 0.07 m at a center (0, 0, 0.045) [meter] in the MEG head coordinates. They are expressed
by tiny symbol of square in Fig. 10. The number of them was 9081. Large circles in Fig. 10
are 64 SQUIDs. Here the black large circle in Fig. 10 is the 14th SQUID channel mentioned in
Figs. 3 and 6.

Five current dipoles were estimated by applying the method of dipole current estimation (see
Section 3.5). 66.8 % of the covariance matrix of D = E{xh

e (n)x
h
e (n)

T} could be expressed by
five current dipoles. Five current dipoles at position 7706 with angle 9.06 degrees, position
1835 with angle 100.27 degrees, position 1210 with angle 108.72 degrees, position 363 with
angle 130.26 degrees and position 62 with 36.98 degrees are shown by symbols � with
magenta, yellow, blue, green and red respectively in Fig. 10. That is, we have
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Fig. 8. Topographic field maps of honest SEF BSS components in subject A.

Qh
e (n) = L†

e Ae
(25)δs

(25)
e (n), (23)

where

Qh
e (n) :=




Qh
62(n)

Qh
363(n)

Qh
1210(n)

Qh
1835(n)

Qh
7706(n)




,

Le = (l62, l363, l1210, l1835, l7706),

with l∗ :=




l1(∗, x) cos θ∗ + l1(∗, y) sin θ∗
l2(∗, x) cos θ∗ + l2(∗, y) sin θ∗

...
l64(∗, x) cos θ∗ + l64(∗, y) sin θ∗


.

Here, notations of the above equation were reported in Kishida (2009b).

From location of current dipoles in Fig. 10 cSII corresponds to the current dipole at position
1835: fluctuation y1(n) of cSII with yellow symbol � in Fig.10 is mixed by a matrix L†

e Ae
(25)
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If a brain can be approximated by a spherically symmetric model, and if the primary currents
generated in the brain can be described by an equivalent current dipole, a lead field from a
current dipole in the brain to SQUID channels was given by Sarvas formula (Sarvas, 1987).
Current dipoles in the brain of subject A were uniformly distributed in the sphere with a
radius 0.07 m at a center (0, 0, 0.045) [meter] in the MEG head coordinates. They are expressed
by tiny symbol of square in Fig. 10. The number of them was 9081. Large circles in Fig. 10
are 64 SQUIDs. Here the black large circle in Fig. 10 is the 14th SQUID channel mentioned in
Figs. 3 and 6.

Five current dipoles were estimated by applying the method of dipole current estimation (see
Section 3.5). 66.8 % of the covariance matrix of D = E{xh

e (n)x
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T} could be expressed by
five current dipoles. Five current dipoles at position 7706 with angle 9.06 degrees, position
1835 with angle 100.27 degrees, position 1210 with angle 108.72 degrees, position 363 with
angle 130.26 degrees and position 62 with 36.98 degrees are shown by symbols � with
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e (n), (23)
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l2(∗, x) cos θ∗ + l2(∗, y) sin θ∗

...
l64(∗, x) cos θ∗ + l64(∗, y) sin θ∗


.

Here, notations of the above equation were reported in Kishida (2009b).

From location of current dipoles in Fig. 10 cSII corresponds to the current dipole at position
1835: fluctuation y1(n) of cSII with yellow symbol � in Fig.10 is mixed by a matrix L†

e Ae
(25)





16 Will-be-set-by-IN-TECH

−120 −80 −40 −0 40 80 120

−0.1

−0.05

0

0.05

0.1

n(ms)

(a)

−120 −80 −40 0 40 80 120

−0.1

−0.05

0

0.05

0.1

n(ms)

(b)

Fig. 9. Cross-correlation functions between the 4th honest BSS and the other honest BSS of
subject A in the honest way. (a) All cross-correlation functions. (b) Three cross-correlation
functions.

from δs
(25)
e (n), and is evaluated from Eq. (16) or (23) as

y1(n) = Qh
1835(n). (24)
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Fluctuation y2(n) of cSI with magenta symbol � in Fig.10 corresponds to the current dipole at
position 7706 is also expressed by

y2(n) = Qh
7706(n). (25)
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Finally, fluctuations of cSI and cSII of feedback model were given by

y(n) =

(
y1(n)
y2(n)

)
.

4.5 Intracerebral communication between cSI and cSII

Coefficient matrices of the data-oriented innovation model of Eq. (18) must satisfy the
minimum phase properties which are the pole stability and the zero invertibility (Kishida,
1991; 1996). Otherwise, the data-oriented innovation model cannot produce correct results
theoretically. Pole stability and zero invertibility mean that roots of |I − AHz−1| = 0 and
those of |I − AH(I − BC)z−1| = 0 are outside the unit circle in the complex plane of z−1. Or
Eigenvalues of matrices AH and AH(I − BC) are inside the unit circle in the complex plane.
The feedback model of Eq. (17) has excellent advantages for identification of MEG (Kishida,
2005; 2009b).

The number of singular values of Hankel matrix was 10, when the data-oriented innovation
model was determined under the condition of minimum phase properties. Transfer functions
of F12(z

−1) and F21(z
−1) of intracerebral communication between cSI and cSII could be

obtained via Eqs. (19) and (20) from the feedback structure under the condition that a sufficient
condition was satisfied in original feedback model (Kishida, 1994; 1996). The bode diagrams
of F̂12(z

−1), F̂21(z
−1) and their impulse responses are shown in Figs. 11 and 12. The top

and middle panel of figure is the magnitude and the phase of Bode diagram of each transfer
function, and the bottom panel of figure is the impulse response. There are two modes from
cSI to cSII found in Fig. 11. One is a rapid mode which is within about 5ms and the other is
a slow mode with about 30ms order. On the other hand a rapid mode from cSII to cSI within
about 5 ms is found in Fig. 12.

The reproducibility of the modes in impulse responses of intracerebral communication
between cSI and cSII are now examined. In subject B, cSI and SIIs were represented by the
2nd, 4th, 14th, 19th and 20th components of dishonest BSS from the fractional BSS with k = 30.
They were transformed into the 2nd, 22nd, 40th, 42nd and 57th components of honest BSS
with k = 25. Six current dipoles were estimated from the same method of dipole current
estimation. 76.2 % of the covariance matrix of D of subject B could be expressed by six current
dipoles. The number of singular values of Hankel matrix was 9, when the data-oriented
innovation model was determined. In Fig. 13, obtained impulse responses are shown by
bold dotted lines, while bold solid lines indicate impulse responses of subject A in Fig. 13.

In subject C, cSI and SIIs were represented by the 4th, 12th, 14th, 33rd and 35th components
of dishonest BSS from the fractional BSS with k = 30. They were transformed into the 10th,
13th, 14th, 35th and 36th components of honest BSS with k = 25. Seven current dipoles
were also estimated. 75.7 % of the covariance matrix of D of subject C could be expressed
by seven current dipoles. The number of singular values of Hankel matrix was 10, when the
data-oriented innovation model was determined. The impulse responses are shown by bold
broken lines in Fig. 13.

In Fig. 13, impulse responses of three subjects are summarized for clarifying the intracerebral
communication between cSI and cSII. Two modes from cSI to cSII were found in Fig. 13(a).
One rapid mode from cSII to cSI within 5 ms was mainly found in Fig. 13(b).
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Fig. 11. Bode diagram of F12 from cSI to cSII and its impulse response of subject A.

Since no suitable component of cSI in the honest BSS of subject D could be found, there are no
impulse responses in subject D. This will be explained in Discussion 5.1.

5. Discussion

5.1 Separation of fluctuations of SEF

From averaged waveforms of subject D shown in Fig. 1(d), dipole patterns at time 120 and 180
ms are shown in the field maps of Figs. 14(a) and 14(b). The dipole pattern at time 120 or 180
ms was that of cSI. In 2Hz median nerve stimulus waveforms, it corresponds to what usually
have a dipole pattern of cSI (Wikström et al., 1996). Then the fourth BSS component with the
dipole pattern similar to that of cSI could be produced, as shown in Fig. 15(a). Transformation
matrix from the fourth BSS component to components of honest BSS is given by T∗,4 in Fig.
15(c). T∗,4 denotes the 32nd component of honest BSS with k = 25 corresponding to the
fourth component of BSS with k = 30. However, there is no similarity between dipole pattern
of A4 in the topographic field map in Fig. 15(a) and that of Ah

32 in Fig. 15(b). Separating the
fluctuations of cSI in subject D does not succeed. This means that fluctuations of SEF in subject
D were small and they have not been separated from MEG data by the honest BSS. Hence we
have no impulse responses of subject D.
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by seven current dipoles. The number of singular values of Hankel matrix was 10, when the
data-oriented innovation model was determined. The impulse responses are shown by bold
broken lines in Fig. 13.

In Fig. 13, impulse responses of three subjects are summarized for clarifying the intracerebral
communication between cSI and cSII. Two modes from cSI to cSII were found in Fig. 13(a).
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Since no suitable component of cSI in the honest BSS of subject D could be found, there are no
impulse responses in subject D. This will be explained in Discussion 5.1.

5. Discussion

5.1 Separation of fluctuations of SEF

From averaged waveforms of subject D shown in Fig. 1(d), dipole patterns at time 120 and 180
ms are shown in the field maps of Figs. 14(a) and 14(b). The dipole pattern at time 120 or 180
ms was that of cSI. In 2Hz median nerve stimulus waveforms, it corresponds to what usually
have a dipole pattern of cSI (Wikström et al., 1996). Then the fourth BSS component with the
dipole pattern similar to that of cSI could be produced, as shown in Fig. 15(a). Transformation
matrix from the fourth BSS component to components of honest BSS is given by T∗,4 in Fig.
15(c). T∗,4 denotes the 32nd component of honest BSS with k = 25 corresponding to the
fourth component of BSS with k = 30. However, there is no similarity between dipole pattern
of A4 in the topographic field map in Fig. 15(a) and that of Ah

32 in Fig. 15(b). Separating the
fluctuations of cSI in subject D does not succeed. This means that fluctuations of SEF in subject
D were small and they have not been separated from MEG data by the honest BSS. Hence we
have no impulse responses of subject D.
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Fig. 12. Bode diagram of F21 from cSII to cSI and its impulse response of subject A.

5.2 Comparison between dishonest BSS and honest BSS

In our research, honest BSS was used after elimination of concatenate averaged waveforms,
and impulse responses from fluctuations of SEF were identified.

There is another way to determine impulse responses: If the dishonest BSS is used first, SEF
data can be selected and then it is possible to eliminate concatenate averaged waveforms from
SEF data before identification of impulse responses. Two ways are summarized as

x(n) =⇒ xe(n)
(see Eq.(2))

↓E ↓E

δx(n)
(see Eq. (9))

=⇒ Ae

h
sh

e (n) �= Ae

d
sd

e (n)− u(n).

(26)

Here Ae

d
is defined by Ae

(30)
in Eq. (8) and sh

e corresponds to δs
(25)
e in Eq. (9). In Eq. (26), the

symbol "=⇒" means application of BSS and selection of SEF components, and the symbol "↓E"
is elimination of concatenate averaged waveforms.

In comparison with Fig. 13, Fig. 16 shows impulse responses in the dishonest way. When
calculating SEF fluctuations in the dishonest way, the same positions of dipole currents have
been used. Robustness of impulse responses of Fig. 16 is lower in comparison with Fig. 13.
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Fig. 13. Impulse responses between cSI and cSII by using the honest BSS (Kishida, 2011). (a)
Impulse responses from cSI to cSII (F12). (b) Impulse responses from cSII to cSI (F21).
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Fig. 13. Impulse responses between cSI and cSII by using the honest BSS (Kishida, 2011). (a)
Impulse responses from cSI to cSII (F12). (b) Impulse responses from cSII to cSI (F21).
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Fig. 14. Dipole patterns in the topographic field map of averaged waveforms of subject D in
Fig. 1(d). (a) Time 120ms. (b) Time 180ms.
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Fig. 15. Dipole pattern of BSS component corresponding to cSI and its transformation. (a)
Topographic field map of dishonest BSS, (b) Topographic field map of honest BSS, (c)
Transformation from the fourth BSS to components of honest BSS.
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Fig. 16. Impulse responses between cSI and cSII by using the dishonest BSS. (a) Impulse
responses from cSI to cSII (F12). (b) Impulse responses from cSII to cSI (F21).

5.3 SEF with steady state responses

Although separate fluctuations of SEF in subject D could not be separated, the other three
subjects could be separated, and the intracerebral communication between cSI and cSII was
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Fig. 16. Impulse responses between cSI and cSII by using the dishonest BSS. (a) Impulse
responses from cSI to cSII (F12). (b) Impulse responses from cSII to cSI (F21).

5.3 SEF with steady state responses

Although separate fluctuations of SEF in subject D could not be separated, the other three
subjects could be separated, and the intracerebral communication between cSI and cSII was
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identified. Our method is applicable to the normal case, in which there are line spectrum
of fundamental frequency of SEF and higher harmonic ones. In the case of more than 20Hz
ISI, steady state responses were observed for the somatosensory evoked potentials (Snyder,
1992; Tobimatsu et al., 1999). Their mechanism is different from transient responses of SEF.
Supposing the normal scaling does not hold in the case, a new identification formalism is
needed for nonlinear model, instead of linear feedback model in Eq. (17).

6. Conclusion

Intracerebral communication between cSI and cSII of human brain in 2Hz median nerves
stimuli was studied by MEG. The honest type of blind source separation was used for
identification of feedback model between cSI and cSII, current dipole data of which were in a
stationary process.

In the special case where there was the one-to-one correspondence between current dipoles
and BSS components (Kishida, 2009b), fluctuations of SEF could be separated after selection
of BSS components with nonzero waveforms in the dishonest BSS. In general, there are
no one-to-one correspondences between them. However, fluctuations of SEF could be
determined from the honest BSS components as in Eq. (22), when more than three components
of the dishonest BSS with nonzero waveforms were transformed into the honest BSS
components by using the transformation matrix. That is, the transformation matrix between
components of two types of BSS, Eq. (11), was introduced for selecting the fluctuations of
evoked magnetic fields from MEG.

The identification method based on feedback system theory applied to fluctuations of evoked
magnetic fields demonstrated two transit modes between cSI and cSII in impulse responses
of transfer functions: One was a slow mode of order 30ms and the other was rapid one
within 5 ms. It should be noted that the transfer functions are not necessarily elementary but
overall process between active regions. If fluctuations generated by more than three current
dipoles, we must use a multi-feedback model (Kishida, 1999) to obtain elemental transfer
functions. Furthermore, physiological meanings of two modes in impulse responses will be
future problems.
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1. Introduction 
The human central auditory system has a remarkable ability to establish memory traces 
for invariant features in the acoustic environments in order to correct the interpretation of 
natural acoustic sound heard. Even when no conscious attention is paid to the 
surrounding sounds, changes in their regularity can cause the listener to redirect his or 
her attention toward the sound heard (Tervaniemi et al., 2001). When engaged in a 
conversation, listeners tune in to the relevant stream of speech and filter out irrelevant 
speech input that may be present in the same environment. Nonetheless, attention might 
be involuntarily diverted to meaningful items coming from an ignored stream, like in the 
well-known own-name effect (Moray, 1959). This brings up the question of to what extent 
speech is processed in the ignored streams. In the past decade, there have witnessed a 
resurgence in the electrophysiological literature of attempts to understand how the brain 
processes the speech signal (Kraus et al., 1993, 1996; Molfese, 1985). One of the most used 
and well known paradigms in electrosphysiological research is the so-called oddball 
paradigm, in which typically two stimuli are presented, in random order. One of the 
stimuli occurs less frequently than the other and the subject is required to discriminate the 
infrequent stimulus (deviant, target or oddball) from the frequent one (standard). Two 
main types of ERPs have been described in the literature as a response to the detection of 
the deviant: P300 and the MMN (Aaltonen et al., 1994; Kraus et al., 1993, 1996).  If the 
subject is required to respond overtly --- for example, by pressing a button – each time 
he/she detects the deviant, a positive wave peaking approximately 300 ms after deviant 
onset is elicited. This wave is called P300 and it is largest over electrode sites in normal 
adults. Such positivity is thought to reflect voluntary focused attention (context updating, 
response selection). However, if the subject is not required to respond overtly, and one 
subtracts the event-related potentials (ERPs) obtained in response to the standard, from 
the ERPs obtained for the deviant, so-called mismatch negativity (MMN) may be 
observed, usually peaking between 100 and 300 ms after stimulus onset depending on the 
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1. Introduction 
The human central auditory system has a remarkable ability to establish memory traces 
for invariant features in the acoustic environments in order to correct the interpretation of 
natural acoustic sound heard. Even when no conscious attention is paid to the 
surrounding sounds, changes in their regularity can cause the listener to redirect his or 
her attention toward the sound heard (Tervaniemi et al., 2001). When engaged in a 
conversation, listeners tune in to the relevant stream of speech and filter out irrelevant 
speech input that may be present in the same environment. Nonetheless, attention might 
be involuntarily diverted to meaningful items coming from an ignored stream, like in the 
well-known own-name effect (Moray, 1959). This brings up the question of to what extent 
speech is processed in the ignored streams. In the past decade, there have witnessed a 
resurgence in the electrophysiological literature of attempts to understand how the brain 
processes the speech signal (Kraus et al., 1993, 1996; Molfese, 1985). One of the most used 
and well known paradigms in electrosphysiological research is the so-called oddball 
paradigm, in which typically two stimuli are presented, in random order. One of the 
stimuli occurs less frequently than the other and the subject is required to discriminate the 
infrequent stimulus (deviant, target or oddball) from the frequent one (standard). Two 
main types of ERPs have been described in the literature as a response to the detection of 
the deviant: P300 and the MMN (Aaltonen et al., 1994; Kraus et al., 1993, 1996).  If the 
subject is required to respond overtly --- for example, by pressing a button – each time 
he/she detects the deviant, a positive wave peaking approximately 300 ms after deviant 
onset is elicited. This wave is called P300 and it is largest over electrode sites in normal 
adults. Such positivity is thought to reflect voluntary focused attention (context updating, 
response selection). However, if the subject is not required to respond overtly, and one 
subtracts the event-related potentials (ERPs) obtained in response to the standard, from 
the ERPs obtained for the deviant, so-called mismatch negativity (MMN) may be 
observed, usually peaking between 100 and 300 ms after stimulus onset depending on the 
characteristics of the difference between standard and deviant stimuli. This component is 
thought to reflect a pre-attentional detection of deviation, a mismatch between the deviant 
and the memory trace formed by the standard. 
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Event-related potentials (ERPs) recordings have bought new insight to the neuronal events 
behind auditory change detection in audition. ERPs components reflect the conscious 
detection of a physical, semantic, or syntactic deviation from the expected sounds 
(Tervaniemi et al., 2001). The ERPs recordings thus allow one to probe the neural processes 
preceding the involvement of the attentional mechanisms. For instances, ERPs have been 
recorded that reflect memory traces representing sounds composed of several simultaneous 
or successive tonal elements (Schröger et al., 1996; Alain et al., 1994; Alho et al., 1996). In 
auditory perception, the occurrence of the deviant (infrequent) stimulus after a sequence of 
the standard (Frequent) stimuli tends to elicit MMN in event-related potentials (ERPs) and 
its magnetic equivalent called the magnetic mismatch field (MMF) in 
magnetoencephalography (MEG). The MMN/MMF component may be considered to reflect 
the pre-attentive auditory memory processes and represents neuronal correlates of change 
detection and sound discrimination (Näätänen, 1992). Previous studies showed that for 
sinusoidal tones, the MMF is sensitive to the direction of a change within the stimulus, being 
more robustly activated for duration shortening or pitch falling as opposed to lengthening 
or leveling (Inouchi et al., 2002). These studies also revealed no significant differences 
between subjects who spoke a pitch-accent language (Japanese) and those who did not 
(English). It has been reported that MMN/MMF is indeed sensitive to cross-linguistic 
relevance. Unlike short-to-long vowel duration and falling-to-level pitch changes, long-to-
short duration and level-to-falling pitch changes elicited a prominent MMF bilaterally for 
both groups, peaking at around 100 ms after change onset for duration and 200 ms for pitch. 
The MMF component is sensitive is sensitive to vowel shortening rather than lengthening 
and to pitch falling rather than leveling (Inouchi et al., 2002, 2003). 

2. Neurophysiological features of mismatch negativity 
The search for an objective index of change detection in the human brain can be traced back 
to 1975, with the proposition that stimulus deviation per se (irrespective of, e.g., stimulus 
significance, attentional mechanisms) should produce a measurable brain response 
(Näätänen, 1992). Experimental evidence for this suggestion was obtained in experiments 
conducted by Näätänen, Gaillard, and Mäntysalo in 1975 (subsequently reported in 1978). In 
this dichotic listening study, the subject's task was to detect occasional deviant stimuli in the 
stimulus sequence presented to a designated ear while ignoring the concurrent sequence 
presented to the opposite ear. The irrelevant stimulus sequence included deviant stimuli 
that were physically equivalent to the deviant stimuli (targets) of the attended input 
sequence. The deviant stimuli were either tones of a slightly higher frequency or tones of a 
slightly greater intensity than the standard tones. A neurophysiological paradigm well 
suited to examine pre-attentive and automatic central auditory processing is the mismatch 
negativity (MMN). This is a negative component of the event-related brain potential (ERP), 
elicited when a detectable change occurs in repetitive homogeneous auditory stimuli 
(Näätänen, 1992). The most commonly described MMN occurs at 100-300 ms post-stimulus 
onset although other studies have found later MMNs between 300 and 600 ms (Kraus et al., 
1996). The MMN is elicited by any change in frequency, intensity or duration of tone stimuli, 
as well as by changes in complex stimuli such as phonetic stimuli (Näätänen, 1992). It is 
assumed to arise as a result of a mechanism that compares each current auditory input with 
a trace of recent auditory input stored in the auditory memory. The MMN usually reaches 
its amplitude maximum over the fronto-central scalp (Näätänen, 1992). 
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The deviant stimuli both in the attended and unattended stimulus sequence elicited 
negativity in the 100-200 ms latency range, which could not be seen in response to the 
standard stimuli. This negativity, usually described by the deviant-minus-standard 
difference wave, was very similar for the attended and ignored input sequences, suggesting 
that attention was not required. Näätänen et al. (1978) proposed that  it may well be that a 
physiological  mismatch  process  caused  by  a   sensory  input  deviating  from  the  
memory  trace  formed  by a frequent background stimulus is such an automatic basic 
process that it takes place irrespective of the intentions of the experimenter and the subject, 
perhaps even unmodified by the latter. On the basis of the relatively large MMN amplitudes 
above the temporal areas, the authors further suggested that the mismatch negativity   
reflects specific auditory stimulus discrimination processes taking place in the auditory 
primary and association areas.  The latter processes are suggested to be largely automatic, 
beyond the control of will, instructions, etc. This finding, suggesting the existence of an 
automatic memory mechanism subsequently paved the way for a series of new experiments 
where changes in basic stimulus features (frequency, intensity, and duration) and the 
elicitation of the MMN were addressed in more detail. It was established that the MMN is 
elicited by both increments and decrements in basic stimulus features. The MMN, however, 
is not elicited when a stimulus sequence begins or, similarly, when stimuli are presented 
with very long interstimulus intervals (ISIs). Thus, it was concluded that no stimulus per se 
is an adequate stimulus for the MMN generator mechanism, as the system responds to the 
difference between the consecutive stimuli. This response pattern is clearly separable from 
the behavior of N1 response; the N1 amplitude is largest in response to the first stimulus of 
a series, strongly attenuating thereafter and showing only partial recovery to a subsequent 
different stimulus. 

Mismatch negativity (MMN), an index of preattentive processing of perceived sounds, is an 
Event-related Potential (ERP) component elicited by rare deviant stimuli within a sequence 
of repetitive auditory stimuli. Mismatch negativity component of ERP is theoretically 
elicited in the auditory cortex when incoming sounds are detected as deviating from a 
neural representation of acoustic regularities. The mismatch negativity (Näätänen et al., 
1978) and its magnetic equivalent (MMNm) are elicited by any discriminable change in 
some repetitive aspect of auditory stimulation, irrespective of the direction of the subject’s 
attention. It is mainly generated in the auditory cortex (Scherg et al., 1989) occurring 
between 100 to 250 ms and thus long been regarded as specific to the auditory modality 
(Näätänen, 1992; Nyman et al., 1990). Additionally, this negative component of the auditory 
event-related potential (ERPs), usually peaking 100-300 ms from change onset, is based on, 
and reflects, neural traces by which the auditory cortex models the repetitive aspects of the 
acoustic past (Näätänen and Winkler 1999). These traces might contain sensory information 
on sound frequency, duration and inter-stimulus interval (ISI), but also on more complex 
aspects of auditory stimulation, such as rhythmic patterns or speech sounds (Näätänen and 
Winkler 1999). The properties of these traces (which usually last several seconds, although 
even permanent traces can be reflected (Näätänen and Winkler 1999)) can be probed by 
presenting infrequent deviant events in the sequence of repetitive events (‘standard’) 
(Näätänen and Winkler 1999). MMN is elicited even in the absence of attention, for example, 
in individuals in a coma a few days before the recovery of consciousness (Kane et al., 1993), 
which indicates that MMN indexes pre-attentive (attention-independent) auditory 
processing. The automatic change-detection system in the human brain as reflected by the 
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MMN thus requires the storage of the previous state of the acoustic environment for 
detecting an incoming deviating sound (Näätänen, 1992; Brattico et al., 2002). Furthermore, 
MMN implies the existence of an auditory sensory memory that stores a neural 
representation of a standard against which any incoming auditory input is compared (Ritter 
et al., 1995). In the auditory modality, MMN is an automatic process which occurs even 
when the subject's attention is focused away from the evoking stimuli (Näätänen, 1992). Its 
onset normally begins before the N2b-P3 complex which occurs when attention is directed 
to the stimuli. The duration of MMN varies with the nature of the stimulus deviance but it 
invariably overlaps N2b when the latter is present (Tales et al., 1999) 

The main neural generators of MMN are bilaterally located in the supratemporal plane 
(Alho, 1995), which is indicated by dipole modeling (Scherg et al., 1989) and scalp current 
density map (Giard et al., 1990) of scalp-recorded event-related  potentials, as well as by 
magnetic recordings, intracranial MMN recordings in cats, monkeys and humans, and by 
positron emission tomography, functional magnetic resonance imaging, and optical imaging 
data. Furthermore, the exact locus of MMN in auditory cortex depends on the attribute 
(Giad et al., 1995) (and even on the complexity of stimulus configuration (Alho et al., 1996)) 
in which the change occurred. Therefore, one can conclude that the auditory processes that 
generate MMN originate, in the first place, in the auditory cortex. In addition, MMN also 
receives a contribution from a (mainly right hemispheric) frontal generator that appears to 
be triggered by this auditory-cortex change-detection process and be associated with the 
initiation of attention switch to the change (Escera et al., 2000).  

The present study compared preattentive brain processes during the discrimination of the 
different synthesized sounds duration. A single pair of the synthesized long and short 
sounds selected to represent ideal exemplars. This study chose to record and compared the 
MMN elicited by these synthesized sounds, hoping to find evidence for specific brain 
signatures of both synthesized long and short sounds processing in the human auditory 
cortex. Two questions were examined using this approach: (1) whether the MMN would 
index differences in the brain’s discrimination of this different synthesized sounds duration; 
and (2) whether the MMN amplitude and/or latency would reflect acoustic differences 
between the rare deviant and the frequent standard stimuli. Additionally, the low-resolution 
electromagnetic tomography (LORETA) analysis were used to locate multiple non-dipolar 
sources particularly involved in the discrimination of these different synthesized sounds 
duration within the MMN paradigm. 

3. Participants, handedness and ethical consideration 
EEG recordings were collected from eleven healthy young, Thai-speaking adults (eight 
female) and their age range: 23-29 years. All participants were right-handedness assessed 
according to Oldfield (Oldfield, 1971).  They had normal hearing, corrected to normal vision 
and had no history of neurological or psychiatric history. The mean (±sd) age was 25.73 
(±3.1) years. The Ethics committees of the involved institutions accepted the study. The 
concept was explained to the participants, and written informed consent was obtained. All 
participants gave their written informed consent to participate in the experiments and were 
paid for their participation. The experiments were performed in accordance with the 
Helsinki Declaration. Ethical permission for the experiments was issued by the Committee 
on Human Rights Related to Human experimentation.  
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The handedness of the participants was assessed with the Edinburgh Handedness Inventory 
(Oldfield, 1971). The degree of the right handedness of the subjects was assessed based upon 
ten items; writing; drawing; throwing; scissors; toothbrush; knife (without fork); spoon; 
broom; striking a match; and open box lid. The participant was instructed to make a “+“ on 
which hand he/she would prefer to use for each action. They were instructed to mark a 
“++“ when the preference was so strong that he/she never used the other hand unassisted. 
If, in any case, the participant did not have any preference, he/she was instructed to mark a 
“+“ for both hands. The numbers of “+“ marked for each hand were totaled. Then, a 
handedness index was calculated to be the difference of the numbers of “+“’s between the 
right and left hands divided by the total number of “+“’s for both hands. A handedness 
index of 1.0 indicated completely right handed, -1.0 corresponded to completely left handed, 
and 0 suggested ambidextrous. The participant was also asked which foot was preferred for 
kicking, which eye was preferred when only using one eye, and whether both parents were 
right handed. 

4. General electrophysiological procedures  
Two different sounds duration were synthetically generated with short and long sounds. All 
of the stimuli were digitally edited to have an equal maximum energy level in dB SPL with the 
remaining intensity level within each of the stimuli scaled accordingly. The stimuli were 
digitally edited using the Cool Edit Pro v. 2.0 (Syntrillium Software Cooperation) with 500 ms 
duration (long sound) and 300 ms duration (short sound). All sounds were identical at their 
frequencies, thus eliminating any effect due to differences in frequency of occurrence of sound. 
The sounds were presented binaurally via headphones at a comfortable listening level of ~85 
dB. The sound pressure levels of stimulus pairs were then measured at the output of 
headphones using a Brüel and Kjaer 2230 sound level meter. The standard (S)/deviant (D) 
pairs for each condition were [Condition 1: long-to-short sounds change] Standard/S-(2), 
Deviant/D-(1), [Condition 2: short-tolong sounds change] S-(1), D-(2). Thus, in both conditions 
pairs were designed to contrast short and long sounds. The stimuli were presented in a passive 
oddball paradigm. Deviant stimuli appeared randomly among the standards at 10% 
probability. Each condition included 125 deviants. The stimuli were binaurally delivered using 
SuperLab software (Cedrus Corporation, San Pedro, CA, USA) via headphones (Telephonic 
TDH-39-P). The inter-stimulus interval (ISI) was 1.25 second (offset-onset). EEG signal 
recording was time-locked to the onset of the sound. Participants were instructed not to pay 
attention to the stimuli presented via headphones, but rather to concentrate on a self-selected 
silent movie. Afterwards, they reported the impression of the movie.  

Participants are instructed to sit relaxing in comfortable reclining chair in an electrically and 
acoustically dampened room. They were told that they would participate in the experiment 
and that the experimenter would be recording their brain electrical activity. They were 
given written instructions and provided with a grid for their judgements and a pen. They 
silently read the instructions and at the end the experimenter verifies that everything was 
clear. Their histories were taken, including age, educational level, handedness, occupation, 
current medications, medical history (which included past illness, surgical history, head 
trauma or accident) and history of alcohol consumption or smoking. If there was any 
significant history of neurological problems, psychiatric problems or head trauma, that 
participant was excluded. For the Mismatch Negativity (MMN) study, all participants were 
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participant was excluded. For the Mismatch Negativity (MMN) study, all participants were 



 
Advances in Brain Imaging 

 

226 

instructed to ignore the stimuli by watching a silent, subtitled video of their choice (ignore 
condition). They were asked to avoid body and eye movements and to keep alert. Before the 
recording session, the task was explained and a practice block of 50 tones (50 deviants) was 
presented to the participant to ensure a good level performance. In order to avoid alpha 
rhythm synchronization during the recording session, participants were instructed to 
remain with their eyes open while watching a silent, subtitled video of their choice and were 
instructed to avoid eye movement and blinking. The total experimental session was 1-2 h, 
including approximately 0.20 h. for electrode placement. During the experimental session, 
participants took a rest breaks (one 15-min break occurring halfway through the recording 
session and shorter 5-min breaks as needed). Participants were tested in all experimental 
conditions on the same day. 

5. Electroencephalographic processing  
EEG data were collected with a Quick-Cap equipped with 64 channels according to the 
international 10-20 system using Scan system (Scan 4.3, Neurosoft, Inc. Sterling, USA). 
Reference electrode was at both ear lobes. The signals were bandpass filtered at 0.05-100 Hz 
and digitized at 1000 Hz. The impedance of the electrode was below 5 kΩ. Eye movements 
were monitored with two EOG electrodes. Four electrodes monitored horizontal and 
vertical eye movements for off-line artifact rejection. Vertical and horizontal electro-
oculogram (EOG) was recorded by electrodes situated above and below the left eye, and on 
the outer canthi of both eyes, respectively. Epochs with EEG or EOG with a large (>100 μV) 
amplitude were automatically rejected. The artifact-free epochs were filtered at 0.1-15 Hz, 
baseline corrected and averaged. EEG was segmented into 1000 ms epochs, including the 
100 ms pre-stimulus period. The average waveforms obtained from the standard and 
deviant were digitally filtered by a 0.1 - 15 Hz band-pass filter and finally baseline-
corrected. Grand-averaged difference waveforms were calculated by subtracting the 
standard from the deviant waveforms. For each condition, presence of a prominent MMN 
was identified by measuring the integrated power amplitudes over the 40-ms time window 
centered on the MMN peak in the difference waveform. An MMN component was judged 
prominent if the amplitude difference between standard and deviant within predefined the 
window was statistically significant. For each participant, the averaged MMN responses 
contained 125 accepted deviants. 

6. Intracerebral distribution of differences in brain electrical activity 
In order to visualize and to measure the MMN (deviant-tone ERP-minus-standard-tone ERP 
difference), after the recording, differences were calculated by subtracting the ERP elicited 
by the standard tones from that elicited by the corresponding deviant tones of the same 
stimulus class. The MMN was quantified by first determining the MMN peak latency from 
the frontal (Fz) grand-average difference waves separately for each deviant. The latency 
windows for picking up the MMN peaks were predefined on the basis of the across-
participants peak latency distribution, determined by visual inspection. The MMN 
component was defined as the most prominent negative peak within the time windows 
between 100 and 300 ms. Latency and amplitude figures for waveforms were picked at their 
point of maximal deflection, as seen at their electrode site of maximal voltage distribution of 
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frontal (Fz) electrode site. Peak-picking of the prominent peak (MMN) was accomplished by 
means of moving an ‘enhanced point’ cursor through the waveforms displayed on the 
computer screen, while simultaneously paying attention to the resultant changes in the 
topographic maps. The mean MMN amplitudes at the frontal (Fz) electrode site were 
calculated as a mean voltage of the 40 ms intervals (so the peak plus minus 20 ms), centered 
at the corresponding peak latencies of the left and right frontal electrodes in the grand-
averaged waveforms, separately for each stimulus type. The amplitudes were determined 
by using the 100 ms pre-stimulus baseline. When the participants were watching a silent, 
subtitled video, MMN to spatial acoustic changes was observed as a significant difference 
between ERPs to the deviant tones and those to the standard tones. It was at its maximum at 
the frontal (Fz) electrode site consisting of a negative deflection (note that analyses are based 
on averaged 40-ms blocks of sample points). MMN amplitudes were measured as the mean 
amplitude over the 100-300 ms period after the stimulus-onset from the deviant-tone ERP-
minus-standard-tone ERP differences. 

The average MMN latency was defined as a moment of the global field power with an epoch 
of 40-ms time window related stable scalp-potential topography (Pascual-Marqui, 1994). In 
the next step, low-resolution electromagnetic tomography (LORETA) was applied to 
estimate the current source density distribution in the brain, which contributes to the 
electrical scalp field (Pascual-Marqui et al., 1994). Maps were computed with the Low 
Resolution Electromagnetic Tomography. Two radically oriented point sources (dipoles) in 
the brain were selected and computed the 21 channels forward solution electric potential 
map using a 3-shell unit radius spherical head model. The forward solution maps were then 
used as input for the LORETA computation in order to test the location precision and the 
ability of the method to separate the two known dipole locations. Scalp potentials re-
referenced to the average reference, excluding the EOG electrodes, were interpolated for 
mapping using the surface spline method. The CSD maps were computed with the spherical 
spline interpolated data. The maps were computed at a single time point where the 
component in question was largest in the grand mean waveforms of each stimulus type and 
condition separately. LORETA computed the smoothest of all possible source configurations 
throughout the brain volume by minimizing the total squared Laplacian of source strengths. 

Low-resolution Electromagnetic Tomography (LORETA) is the new implementation of 
LORETA in the Talairach brain. LORETA makes use of the three-shell spherical head model 
registered to the Talairach human brain atlas (Talairach and Tournoux, 1988), available as a 
digitized MRI from the Brain Imaging Center, Montreal Neurologic Institute. Registration 
between spherical and realistic head geometry use EEG electrode coordinates reported by 
Towle et al. (1993). The solution space is restricted to cortical gray matter and hippocampus, 
as determined by the corresponding digitized Probability Atlas also available from Brain 
Imaging Center, Montreal Neurologic Institute. A voxel is labeled as gray matter if it meet 
the following three conditions: its probability of being gray matter is higher than that of 
being white matter, its probability of being gray matter is higher than that of being 
cerebrospinal fluid, and its probability of being gray matter is higher than 33%. Only gray 
matter voxels at 7-mm spatial resolution are produced under these neuroanatomical 
constraints. LORETA computations use the exact head model determined from each 
individual subject’s MRI. The final step in any analysis procedure would be to cross-register 
the individual’s anatomical and functional image to the standard Talairach atlas. 
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participants peak latency distribution, determined by visual inspection. The MMN 
component was defined as the most prominent negative peak within the time windows 
between 100 and 300 ms. Latency and amplitude figures for waveforms were picked at their 
point of maximal deflection, as seen at their electrode site of maximal voltage distribution of 

Pre-Attentive Processing of Sound Duration Changes: 
Low Resolution Brain Electromagnetic Tomography Study 

 

227 

frontal (Fz) electrode site. Peak-picking of the prominent peak (MMN) was accomplished by 
means of moving an ‘enhanced point’ cursor through the waveforms displayed on the 
computer screen, while simultaneously paying attention to the resultant changes in the 
topographic maps. The mean MMN amplitudes at the frontal (Fz) electrode site were 
calculated as a mean voltage of the 40 ms intervals (so the peak plus minus 20 ms), centered 
at the corresponding peak latencies of the left and right frontal electrodes in the grand-
averaged waveforms, separately for each stimulus type. The amplitudes were determined 
by using the 100 ms pre-stimulus baseline. When the participants were watching a silent, 
subtitled video, MMN to spatial acoustic changes was observed as a significant difference 
between ERPs to the deviant tones and those to the standard tones. It was at its maximum at 
the frontal (Fz) electrode site consisting of a negative deflection (note that analyses are based 
on averaged 40-ms blocks of sample points). MMN amplitudes were measured as the mean 
amplitude over the 100-300 ms period after the stimulus-onset from the deviant-tone ERP-
minus-standard-tone ERP differences. 

The average MMN latency was defined as a moment of the global field power with an epoch 
of 40-ms time window related stable scalp-potential topography (Pascual-Marqui, 1994). In 
the next step, low-resolution electromagnetic tomography (LORETA) was applied to 
estimate the current source density distribution in the brain, which contributes to the 
electrical scalp field (Pascual-Marqui et al., 1994). Maps were computed with the Low 
Resolution Electromagnetic Tomography. Two radically oriented point sources (dipoles) in 
the brain were selected and computed the 21 channels forward solution electric potential 
map using a 3-shell unit radius spherical head model. The forward solution maps were then 
used as input for the LORETA computation in order to test the location precision and the 
ability of the method to separate the two known dipole locations. Scalp potentials re-
referenced to the average reference, excluding the EOG electrodes, were interpolated for 
mapping using the surface spline method. The CSD maps were computed with the spherical 
spline interpolated data. The maps were computed at a single time point where the 
component in question was largest in the grand mean waveforms of each stimulus type and 
condition separately. LORETA computed the smoothest of all possible source configurations 
throughout the brain volume by minimizing the total squared Laplacian of source strengths. 

Low-resolution Electromagnetic Tomography (LORETA) is the new implementation of 
LORETA in the Talairach brain. LORETA makes use of the three-shell spherical head model 
registered to the Talairach human brain atlas (Talairach and Tournoux, 1988), available as a 
digitized MRI from the Brain Imaging Center, Montreal Neurologic Institute. Registration 
between spherical and realistic head geometry use EEG electrode coordinates reported by 
Towle et al. (1993). The solution space is restricted to cortical gray matter and hippocampus, 
as determined by the corresponding digitized Probability Atlas also available from Brain 
Imaging Center, Montreal Neurologic Institute. A voxel is labeled as gray matter if it meet 
the following three conditions: its probability of being gray matter is higher than that of 
being white matter, its probability of being gray matter is higher than that of being 
cerebrospinal fluid, and its probability of being gray matter is higher than 33%. Only gray 
matter voxels at 7-mm spatial resolution are produced under these neuroanatomical 
constraints. LORETA computations use the exact head model determined from each 
individual subject’s MRI. The final step in any analysis procedure would be to cross-register 
the individual’s anatomical and functional image to the standard Talairach atlas. 
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The individual momentary potential measures from 21 electrodes at the MMN latency were 
analyzed with LORETA to determine the MMN source loci (Pascual-Marqui, 1994). These 
latencies were between 100-140 ms for long- and short-sound duration changes. LORETA 
calculated the current source density distribution in the brain, which contributed to the 
electrical scalp field, at each of 2395 voxels in the gray matter and the hippocampus of a 
reference brain (MNI 305, Brain Imaging Centre, Montreal Neurological Institute) based on 
the linear weighted sum of the scalp electric potentials (Pascual-Marqui, 1994). LORETA 
chooses the smoothest of all possible current density configurations throughout the brain 
volume by minimizing the total squared Laplacian of source strengths. This procedure only 
implicates that neighboring voxels should have a maximally similar electrical activity, no 
other assumptions were made. The applied version of LORETA used a three-shell spherical 
head model registered to the Talairach space and calculated the three-dimensional 
localization of the electrical sources contributing to the electrical scalp filed for all subjects 
and conditions, defining the regions of interest on the basis of local maxima of the LORETA 
distribution. Stereotaxic coordinates of the voxels of the local maxima were determined 
within areas of significant relative change associated with the tasks. The anatomical 
localization of these local maxima was assessed with reference to the standard Stereotaxic 
atlas, and validation of this method of localization was obtained by superimposition of the 
SPM maps on a standard MRI brain provided by the SPM99. Peaks located within superior 
temporal gyrus was also identified by using published probability maps following a 
correction for the differences in the coordinate systems between the Talairach and Tournoux 
atlas and the Stereotaxic space employed by SPM99. 

Regarding to the Brodmann areas(s) and brain regions localization, the Talairach Daemon 
(TD) will be taken into consideration. The Talairach Daemon (TD) is a high-speed database 
server for querying and retrieving data about human brain structure over the Internet 
(http://ric.uthscsa.edu/td_applet/). The TD server data is searched using x-y-z coordinates 
resolved to 1x1x1 mm volume elements within a standardized stereotaxic space. An array, 
indexed by x-y-z coordinates, that spans 170 mm (x), 210 mm (y) and 200 mm (z), provides 
high-speed access to data. Array dimensions are selected to be approximately 25% larger 
than those of the Co-planar Stereotaxic Atlas of the Human Brain (Talairach and Tournoux, 
1988). Coordinates tracked by the TD server are spatially consistent with the Talairach Atlas. 
Each array location stores a pointer to a relation record that holds data describing what is 
present at the corresponding coordinate. Presently, the data in relation records are either 
Structure Probability Maps (SP Maps) or Talairach Atlas Labels, though others can be easily 
added. The relation records are implemented as linked lists to names and values for brain 
structures. The TD server is run on a Sun SPARCstation 20 with 200 Mbytes of memory. 
Intention is to provide 24-hour access to the data using a variety of client applications, as 
well as continue to add more brain structure information to the database. 

7. Statistical evaluation 
The statistical significance of MMN (deviant-minus-standard difference) was tested with 
one-sample t-tests by comparing the mean MMN amplitude at the frontal (Fz) electrode site, 
where the MMN was most prominent. The MMN was measured using the mean frontal (Fz) 
amplitude in the 100 - 300 ms interval of the deviant-minus-standard difference curves. This 
interval included the grand mean MMN peak latencies in those conditions where MMN was 
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elicited. One-sample t- tests were used to verify the presence of the MMN component, by 
comparing the mean amplitude of the 100 - 300 ms interval against a hypothetical zero, 
separately in each condition. The MMN latency values was also compared. Repeated 
measure ANOVA was carried out on the topographic descriptors of the MMN. In order to 
gather information on cortical sources specifically involved in the MMN generation, 
LORETA images for deviant sounds were compared with those for standard sounds using 
paired t-test statistics, after logarithmic transformation of the data. All results were 
expressed as mean ± S.D and all significant 

For the LORETA analyses, the average LORETA images were constructed across 
participants: the brain electric activity during the ERPs amplitude waveforms for each 
condition and the voxel-by-voxel t test differences between conditions. The voxel-by-voxel 
paired t tests were run to assess in which cortical regions the conditions differed. The t maps 
were threshold at p < 0.0001.  As pointed out above, reliable differences in the scalp ERP 
field configuration can unambiguously be interpreted as suggesting that at least partially 
different neuronal populations are active during the conditions. LORETA assesses in which 
brain regions the conditions differed. The Structure-Probability Maps Atlas (Lancaster et al., 
1997a; 1997b) was also used to determine which brain regions were involved in differences 
between conditions. Brodmann area(s) (BA) and brain regions closet to the observed 
locations identified by the Tarairach coordinates were reported. Overall, one sample P-
values were reported. 

8. Pre-attentive processing and lateralization of sound duration changes 
The finding indicated that the prominent response to both sounds elicited MMN peaking at 
128 to 212 ms from stimulus onset. The grand-averaged ERPs showed that the MMN mean 
amplitude of both sounds was statistically significant (t-test). The paired sample t-test 
revealed a significant difference between conditions (t (10) = 73.00; p < 0.0001) showing that 
both sounds equally elicited a MMN. The magnitude of the acoustic difference between the 
stimulus pairs was reflected by the MMN amplitude, showing larger MMN amplitudes in 
long sound compared to the short one. The difference in MMN latencies to both sounds 
might reflect differential processing of the human auditory cortex. The delay in the MMN to 
the long sound might reflect additional time required to process sound perception. This 
processing apparently involves activation of a memory trace, or cell assembly, which 
possibly represents and the processes the sounds. 

Estimated source localization of the average MMN responses evoked by both sounds was 
clearly identified. The current source density values in the time frame 128-212 ms post-
stimulus were calculated with LORETA. Stronger activation for long sound was found at 
212 ms in the left middle temporal gyrus (MTG) (-59, -32, 1; t-value, 1.81), while the short 
sound most strongly activated at 128 ms in the left superior temporal gyrus (STG) (-59, -39, 
8; t-value, 1.03) (see Figure 1). Analysis of the MMN responses indicated left-hemispheric 
laterality in both sound durations (F (3,30) = 47.02; p < 0.0001). The source analysis indicated 
strongest MMN response tentatively originating in the left hemisphere and possibly 
involving the perisylvian area in both sounds, with a more superior distribution for the long 
sound and a more medial distribution for the short one. 
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Fig. 1. Graphical representation of the low-resolution electromagnetic tomography 
(LORETA t-statistic comparing the event-related potentials for mismatch negativity (MMN) 
responses at the time point of the individual peak over Fz for the long sound (A) and short 
sound (B) activated in the left hemisphere. Red color indicates local maxima of increased 
electrical activity for both sounds responses in an axial, a saggital and a coronal slice 
through the reference brain. Blue dots mark the center of significantly increased electric 
activity. 
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As it was well established that the MMN amplitude indexes the change detection accuracy 
(Näätänen, 1999), the MMN to short sound was significantly smaller than those for the long 
one. The source analysis for the long sound revealed that the source for long sound was 
located significantly more superior than for short sound in the left hemisphere. In addition, 
the estimated source strength was not difference between long and short sounds. It is thus 
the source location rather than its signal strength that might be a primary reason for the 
reduced responses for short with long sounds. These results may be comparable to those of 
a previous report by Tiitinen et al. (1993) indicating that the MMN sources as well as N100m 
have a frequency-dependant tonotopy. 

Additionally, source analysis suggested MMN sources to be in the vicinity of the left 
perisylvian area with a more medial distribution for the long deviant and more superior 
distribution for the short one. It may be that these similar topographies of the 
neurophysiological brain response do not reflect differential cortical distributions of the 
underlying neuronal assemblies. The finding of a significantly left-lateralized electric MMN 
in the present study supports to the previous study indicating a particularly strong 
asymmetry between the activated neuronal generators in the two hemispheres. There are 
two possible interpretations for this laterality. First, the functional information tied to the 
sound no matter of the type of the sounds underlies this laterality. As a second possibility, it 
may be that it is the functional information related to the stimulus contrasts that is crucial 
for the strong involvement of left hemispheric processes. Therefore, the MMN response 
topography and latency in the present study may reveal cortical distribution and activity 
dynamics of these memory traces. One possible explanation of this hemispheric discrepancy 
in the MMN effect is that the temporal window of integration (Näätänen and Winkler, 1999; 
Sussman et al., 1999) differs between two hemispheres. The left hemisphere is suggested to 
be more sensitive than the right hemisphere to high-frequency temporal patterns of sounds 
including the stimulus duration. In fact, the perceptual right-ear advantage, regarded as an 
index of the left hemisphere dominance, can be observed for high-frequency sounds and 
this advantage is reversed for low-frequency sounds. This may relate to the lack of 
frequency and duration effect in the right hemisphere, since the long and short distinction 
mainly rests on the difference of the relatively high frequencies for each of the stimuli. 
Additionally, the sources for the short stimuli were located more posterior and superior in 
the left hemisphere than in the right hemisphere. The results replicated previous studies 
(Alho et al., 1998; Rinne et al., 1999; Tervaniemi et al., 1999). For the source strength of the 
long and short stimuli, no hemispheric difference was observed. It should be also noted that 
MMN to short and long sounds showed significant left hemisphere dominance. These 
results might be in accordance with the findings of Mathiak et al. (1999) rather than studies 
reporting the left lateralized MMN for speech sounds (Näätänen et al., 1992; Tervaniemi et 
al., 1999). However, the present study used only one single pair of sounds (i.e., long and 
short) as an exemplar, which imposes certain limitations on generalization of the current 
results to all other long and short sounds. Studying this issue using different long and short 
sounds thus appears to be a fruitful target for further experiments. 

9. Conclusion 
The prominent MMN component was elicited and more sensitive to the long sound than the 
short one. The MMN presumably reflect the early stage of processing of different sound 
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Fig. 1. Graphical representation of the low-resolution electromagnetic tomography 
(LORETA t-statistic comparing the event-related potentials for mismatch negativity (MMN) 
responses at the time point of the individual peak over Fz for the long sound (A) and short 
sound (B) activated in the left hemisphere. Red color indicates local maxima of increased 
electrical activity for both sounds responses in an axial, a saggital and a coronal slice 
through the reference brain. Blue dots mark the center of significantly increased electric 
activity. 
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duration in the human brain. So, from the known early auditory-cortex responses to sounds, 
the MMN reflects an early, pre-attentive, automatic processing of diferent sound duration. 
The MMN is therefore a potential interest as a technique of evaluating duration of different 
sounds lateralization, since its measurement is non-invasive, relatively inexpensive 
(especially in case of the EEG), and applicable to any subjects or patients. The present study 
has added physiological evidence to earlier psychological and clinico-anatomical evidence 
that functional characteristics of auditory stimuli differentially influence the brain circuits 
used at higher cortical stages for processing of different sound duration. Automatic 
detection of long sound may be a useful index of auditory memory traces of sound 
perception in the human auditory perception. 
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1. Introduction 
The term ’leukoaraiosis’, derived from the Greek ‘leuko’ meaning white and ‘araios’ 
meaning rarefied, was introduced in 1987, as a “neutral term, exact enough to define white-
matter changes in the elderly or the demented, general enough that it serves as a description 
and a label, and demanding enough that it calls for a precise clinical and imaging 
description accompanied when possible by pathologic correlations” (Hachinski et al., 1987). 

When the term leukoaraiosis (LA) was introduced, only CT imaging was widely available. 
Similar appearance is conspicuous, and more florid on T2-weighted magnetic resonance 
imaging (MRI), particularly on fluid attenuated inversion recovery (FLAIR) images. 
Leukoaraiosis is currently defined as diffuse, confluent white matter abnormality (low 
density on CT, hyperintensity on T2-weighted or FLAIR MRI), often with irregular margins, 
commonly seen in the normal elderly and in association with vascular risk factors such as 
hypertension, or in context of cognitive impairment. The term was introduced to avoid 
confusing an imaging appearance with a specific pathology (O’Sullivan, 2008). 
Leukoaraiosis can be focal, patchy or diffuse area in the white matter and it is located 
periventricularly or deeper in the white matter. 

Leukoaraiosis severity has traditionally been graded by visual scales. Simples scales like that 
of van Swieten divide the appearances into only two grades of severity; more complex scales 
like the Fazekas scale discriminates “punctate”, “early confluent” and “confluent” white 
matter lesions, while the Sheltens scale adopts a 0-6 scale in multiple anatomical regions 
(including periventricular and nonperiventricular white matter lesions - WML; 
periventricular hyperintensities are further separated into frontal, occipital, and lateral 
aspects) (O’ Sullivan, 2008; Scheltens et al., 1993, as cited by Bohnen et al., 2009). Other 
rating scales of WML are the Brant-Zawadzki Scale and the Cardiovascular Health Study 
Scale both of which place relatively more emphasis on periventricular WML (Bohnen et al., 
2009). However, even fully quantitative volumetric measurements of leukoaraiosis correlate 
weakly with cognitive and physical function, suggesting that T2-weighted MRI provides 
only a rough impression of the severity of the underlying pathology (O’ Sullivan, 2008).  

T2-weighted imaging is sensitive to liquid, gliosis and the effects of demyelination. FLAIR 
images are heavily T2-weigtened with cerebrospinal fluid suppression. This makes it 
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possible to detect also leukoaraiotic lesions situated close to the cerebrospinal fluid and to 
differentiate Virchow-Robin spaces from leukoaraiosis. The decline in cerebral blood flow in 
areas with leukoaraiosis can be detected with imaging techniques such as average apparent 
diffusion coefficient (ADCav) where tissues with faster diffusion appear bright and tissues 
with slower diffusion dark. Normally axons produce significant hindrance to water 
diffusion but leukoaraiosis causes axonal loss and furthermore leads to an increase in water 
content of the tissue which can be detected with these imaging techniques. DWI (diffusion 
weighted MRI) makes it possible to differentiate acute and chronic ischemic stroke lesions 
from leukoaraiosis. In DW images, tissues with faster diffusion appear dark and tissues with 
slower diffusion bright (Helenius et al., 2002, as cited by Kurkinen, 2009). 

   
Fig. 1. Cerebral MRI scan showing leukoaraiosis (arrows); left: axial T2 weighted; right: 
coronal FLAIR sequence. 

  
Fig. 2. MR images from a 76-year old patient; left: T2- weighted sequence showing 
leukoaraiosis (white arrow) and perivascular dilated spaces (black arrow); right: Proton 
density sequence showing leukoaraiosis (white arrow).  
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Newer MRI sequences can provide useful additional information. Diffusion-weighted 
imaging, for example, allows the distinction of new lacunar infarcts from background 
leukoaraiosis. In patients who presents with intracerebral haemorrhage, especially lobar 
haemorrhage, gradient acho (T2*-weighted) images should be performed to look for 
evidence of previous haemorrhages or microbleeds. In terms of quantifying white matter 
damage, several techniques (such as diffusion tensor MRI) are proving superior to T2-
weighting imaging. Diffusion tensor MRI provides a much better index of white matter 
damage, and simple whole-brain measurements, such as diffusion histograms, can help 
track disease progression. Diffusion tensor MRI also demonstrates the variability in the 
extent of white matter disruption both within lesions and in normal-appearing white matter 
(O’ Sullivan, 2008).  

2. Epidemiology of leukoaraiosis 

Several studies have described the prevalence of leukoaraiosis in different population 
groups, but there is considerable variability in the published figures. This variability can be 
attributed to the heterogeneity of age and vascular risk factors of patients with different 
imaging modalities used and differences in the scales used to define the leukoaraiosis. 
Often, when first discovered, white matter hyperintensities occur in the context of relatively 
normal brain function.  But these lesions are not normal as they indicate an increased risk 
for stroke, cognitive decline, dementia, and death, as reported by Debette and Markus (2010) 
at the end of their metanalysis of the existing literature through November 2009. They 
examined 46 prospective longitudinal studies and found that white matter hyperintensities 
predict an increased risk of stroke (hazard ratio 3.3), dementia (hazard ratio 1.9) and death 
2.0 (hazard ratio 2.0). 

Roppele et al. (2010) performed magnetization transfer imaging in 328 neurologically 
asymptomatic Austrian Stroke Prevention Study participants (age range, 52–87 years). 
FLAIR was used to delineate white matter hyperintensities and to define normal-appearing 
brain tissue. The magnetization transfer ratio was measured globally in normal-appearing 
brain tissue by using a histogram analysis technique and focally in white matter 
hyperintensities. Associations of magnetization transfer ratio metrics with sex and a large 
battery of different cerebrovascular risk factors (age, arterial hypertension, diabetes mellitus, 
smoking, body mass index, cholesterol and triglyceride levels, glycated hemoglobin, and the 
presence of cardiac disease) were assessed with univariate and multiple regression analysis.  

Age was seen to affect all magnetization transfer ratio histogram metrics of normal-
appearing brain tissue, and a faster decrease of the magnetization transfer ratio peak height 
occurred in men. Independent associations with magnetization transfer ratio metrics were 
found for arterial hypertension and diabetes mellitus. Besides lesion grade, arterial 
hypertension was also significantly associated with a lower magnetization transfer ratio in 
white matter hyperintensities. 

3. Pathophysiology of leukoaraiosis 
The pathogenesis of leukoaraiosis remains controversial. It is unclear whether the 
mechanisms are the same for large and small punctate foci and for extensive diffuse 
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possible to detect also leukoaraiotic lesions situated close to the cerebrospinal fluid and to 
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with slower diffusion dark. Normally axons produce significant hindrance to water 
diffusion but leukoaraiosis causes axonal loss and furthermore leads to an increase in water 
content of the tissue which can be detected with these imaging techniques. DWI (diffusion 
weighted MRI) makes it possible to differentiate acute and chronic ischemic stroke lesions 
from leukoaraiosis. In DW images, tissues with faster diffusion appear dark and tissues with 
slower diffusion bright (Helenius et al., 2002, as cited by Kurkinen, 2009). 

   
Fig. 1. Cerebral MRI scan showing leukoaraiosis (arrows); left: axial T2 weighted; right: 
coronal FLAIR sequence. 

  
Fig. 2. MR images from a 76-year old patient; left: T2- weighted sequence showing 
leukoaraiosis (white arrow) and perivascular dilated spaces (black arrow); right: Proton 
density sequence showing leukoaraiosis (white arrow).  
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Newer MRI sequences can provide useful additional information. Diffusion-weighted 
imaging, for example, allows the distinction of new lacunar infarcts from background 
leukoaraiosis. In patients who presents with intracerebral haemorrhage, especially lobar 
haemorrhage, gradient acho (T2*-weighted) images should be performed to look for 
evidence of previous haemorrhages or microbleeds. In terms of quantifying white matter 
damage, several techniques (such as diffusion tensor MRI) are proving superior to T2-
weighting imaging. Diffusion tensor MRI provides a much better index of white matter 
damage, and simple whole-brain measurements, such as diffusion histograms, can help 
track disease progression. Diffusion tensor MRI also demonstrates the variability in the 
extent of white matter disruption both within lesions and in normal-appearing white matter 
(O’ Sullivan, 2008).  

2. Epidemiology of leukoaraiosis 

Several studies have described the prevalence of leukoaraiosis in different population 
groups, but there is considerable variability in the published figures. This variability can be 
attributed to the heterogeneity of age and vascular risk factors of patients with different 
imaging modalities used and differences in the scales used to define the leukoaraiosis. 
Often, when first discovered, white matter hyperintensities occur in the context of relatively 
normal brain function.  But these lesions are not normal as they indicate an increased risk 
for stroke, cognitive decline, dementia, and death, as reported by Debette and Markus (2010) 
at the end of their metanalysis of the existing literature through November 2009. They 
examined 46 prospective longitudinal studies and found that white matter hyperintensities 
predict an increased risk of stroke (hazard ratio 3.3), dementia (hazard ratio 1.9) and death 
2.0 (hazard ratio 2.0). 

Roppele et al. (2010) performed magnetization transfer imaging in 328 neurologically 
asymptomatic Austrian Stroke Prevention Study participants (age range, 52–87 years). 
FLAIR was used to delineate white matter hyperintensities and to define normal-appearing 
brain tissue. The magnetization transfer ratio was measured globally in normal-appearing 
brain tissue by using a histogram analysis technique and focally in white matter 
hyperintensities. Associations of magnetization transfer ratio metrics with sex and a large 
battery of different cerebrovascular risk factors (age, arterial hypertension, diabetes mellitus, 
smoking, body mass index, cholesterol and triglyceride levels, glycated hemoglobin, and the 
presence of cardiac disease) were assessed with univariate and multiple regression analysis.  

Age was seen to affect all magnetization transfer ratio histogram metrics of normal-
appearing brain tissue, and a faster decrease of the magnetization transfer ratio peak height 
occurred in men. Independent associations with magnetization transfer ratio metrics were 
found for arterial hypertension and diabetes mellitus. Besides lesion grade, arterial 
hypertension was also significantly associated with a lower magnetization transfer ratio in 
white matter hyperintensities. 

3. Pathophysiology of leukoaraiosis 
The pathogenesis of leukoaraiosis remains controversial. It is unclear whether the 
mechanisms are the same for large and small punctate foci and for extensive diffuse 
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leukoaraiosis. Moreover, pathological changes could be consequences of reaching the white 
matter rather than causes of it.  

It has been assumed that the ischemic insult, responsible for LA, results from the vulnerable 
nature of the long penetrating end-arteries that feed the deep white matter. The deep brain 
structures (white matter and deep gray nuclei) are supplied by perforating arteries that are 
end-arteries with no collateral supply. These penetrating arteries do not arborise but give off 
perpendicularly oriented short branches that irrigate the white matter, each of which 
provides the blood supply to a cylindrically shaped metabolic unit. In the region between 
the cortical and ventricular surfaces, centripetal and centrifugal penetrating arteries from an 
internal watershed area lacking anastomoses is particularly susceptible to being injured as a 
result of systemic or focal decreases in cerebral blood flow (Rowbotham et al., 1965, De 
Reuck, 1971, as cited by Birns & Kalra, 2008). 

At the vascular level, the continuum extends from the findings of hyaline thickening of the 
walls of small arteries to the lipohyalinosis (a major disruption in wall with infiltration of 
macrophages and luminal narrowing). At the level of the parenchyma, there is a loss of 
myelin and axons with a glial reaction and even areas of infarction (Fazekas et al., 1993, Lotz 
et al., 1986).  

The main pathogenic hypotheses involve: 

3.1 Ischemia, cerebral vasoreactivity and autoregulation  

The pathological studies suggest that leukoaraiosis is one manifestation of cerebral small 
vessel disease. This is supported by strong pathological and clinical associations with the 
other major manifestation of small vessel disease—lacunar stroke. The pathogenesis of 
cerebral small vessels disease is still a matter of investigation but both clinical and 
pathological studies support the most popular hypothesis that acute disruption of blood 
supply in one arterial territory results in lacunar infarction while a more chronic and 
widespread reduction in perfusion causes leukoaraiosis. This is consistent with the spatial 
pattern and distribution of leukoaraiosis, which arises first in those areas furthest from the 
origin of the arterioles in the periventricular and deep white matter regions (Hassan et al., 
2003, Pantoni, 2002, as cited by Birns & Kalra, 2008). 

Reductions in white matter perfusion in leukoaraiosis have been demonstrated using xenon-
CT, MRI, PET and SPECT and in some studies, the degree of hypoperfusion has been found 
to correlate with the severity of leukoaraiosis (Oishi et al., 1999, Miyazawa et al., 1997, as 
cited by Birns & Kalra, 2008 ). Furthermore, quantitative perfusion and diffusion tensor MRI 
studies have revealed reduced cerebral blood flow in normal appearing white matter in 
periventricular regions in patients with leukoaraiosis, suggesting that areas are “at risk.” (O’ 
Sullivan, 2001, 2002). Two studies on the relationship between cerebrovascular reactivity 
and cerebral small vessels disease (which excluded patients with carotid artery stenoses or 
those undertoken soon after an acute ischaemic event, knowing the effect of these 
comorbidities on cerebrovascular reactivity) demonstrated impaired reactivity in patients 
with multiple lacunar infarctions but no association between cerebrovascular reactivity and 
the severity of leukoaraiosis on brain MRI (Molina et al., 1999, Cupini et al., 2001 as cited by 
Birns & Kalra, 2008). 
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Supporting the role of ischemia in the pathogenesis of leukoaraiosis, the results of a study 
showed a statistically significant correlation between the presence and severity of 
leukoaraiosis and degree of carotid stenosis. A trend toward increased risk of development 
of leukoaraiosis in carotids with fatty plaques also was observed. The data confirmed that 
the development of leukoaraiosis is strongly correlated with age (Saba et al., 2009). A further 
study showed a statistically significant correlation between increased carotid artery wall 
thickness and LA (and its severity) (Saba et al., 2011).  

3.2 Endothelial dysfunction/blood-brain barrier abnormalities 

Histopathological evidence of endothelial cells activation and retraction with increased 
vascular permeability, increased circulating levels of leukocyte adhesion molecules such as 
ICAM1 (intercellular adhesion molecule-1) and E selectin (shed from the surface of activated 
endothelial cells) and a rise in the markers of coagulation activation (including thrombin-
antithrombin complex and prothrombin fragments 1+2) have been reported in patients with 
small vessels desease compared with controls (Lin et al., 2000, Hassan et al., 2003, Fassbender 
et al., 1999, Tomimoto et al., 1999, as cited by Birns & Kalra, 2008). In addition, serum 
concentration of thrombomodulin and von Willebrand factor, which are both molecular 
markers of endothelial cell damage, have been shown to correlate with MRI evidence of small 
vessels disease (Ishii et al., 1991, Kohriyama et al., 1996 as cited by Birns & Kalra, 2008). 

A number of studies have shown that chronic hypertension predisposed to impaired blood-
brain barrier function, with endothelial cell retraction, increased vascular permeability and 
greater susceptibility to white matter injury for relatively small insults (Tomimoto et al., 
1996, Lin et al., 2000, Pantoni, 2002, Wardlaw et al., 2003, Birns et al., 2005, as cited by Birns 
& Kalra, 2008). 

In patients with subcortical white matter disease, plasma proteins have been found in the 
tissue around perforating arteries and increased concentrations of a number of proteins in 
the cerebro-spinal fluid have been found compared with controls, supporting the idea that 
the proteins reached the cerebro-spinal fluid via leakage from small perforating arteries 
(Akiguchi et al., 1998., Pantoni et al., 1993, as cited by Birns & Kalra, 2008). 

One study has demonstrated intravenously injected contrast agent to leak into the brain, 
particularly in the territory of the perforating arteries, more in those with leukoaraiosis than 
in controls (Starr et al., 2003, as cited by Birns & Kalra, 2008). 

3.3 Disturbances in cerebro-spinal fluid circulation  

Murata et al (1981) hypothesized that disturbances in cerebro-spinal fluid circulation may 
play a role in the pathogenesis of leukoaraiosis. Roman suggested that increased 
accumulation of cerebro-spinal fluid in the ventricules raises the interstitial pressure in the 
periventricular parenchyma, thus causing ischaemia to the white matter (Roman, 1991, 
Kimura et al., 1992, as cited by Birns & Kalra, 2008 ).  

3.4 Plasma viscosity 

Schneider et al (1997) showed plasma viscosity to be elevated in patients with leukoaraiosis 
and lacunar infarction and considered that it may alter cerebro-spinal fluid properties and 
favour chronic ischaemic white matter damage. 
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leukoaraiosis. Moreover, pathological changes could be consequences of reaching the white 
matter rather than causes of it.  

It has been assumed that the ischemic insult, responsible for LA, results from the vulnerable 
nature of the long penetrating end-arteries that feed the deep white matter. The deep brain 
structures (white matter and deep gray nuclei) are supplied by perforating arteries that are 
end-arteries with no collateral supply. These penetrating arteries do not arborise but give off 
perpendicularly oriented short branches that irrigate the white matter, each of which 
provides the blood supply to a cylindrically shaped metabolic unit. In the region between 
the cortical and ventricular surfaces, centripetal and centrifugal penetrating arteries from an 
internal watershed area lacking anastomoses is particularly susceptible to being injured as a 
result of systemic or focal decreases in cerebral blood flow (Rowbotham et al., 1965, De 
Reuck, 1971, as cited by Birns & Kalra, 2008). 

At the vascular level, the continuum extends from the findings of hyaline thickening of the 
walls of small arteries to the lipohyalinosis (a major disruption in wall with infiltration of 
macrophages and luminal narrowing). At the level of the parenchyma, there is a loss of 
myelin and axons with a glial reaction and even areas of infarction (Fazekas et al., 1993, Lotz 
et al., 1986).  

The main pathogenic hypotheses involve: 

3.1 Ischemia, cerebral vasoreactivity and autoregulation  

The pathological studies suggest that leukoaraiosis is one manifestation of cerebral small 
vessel disease. This is supported by strong pathological and clinical associations with the 
other major manifestation of small vessel disease—lacunar stroke. The pathogenesis of 
cerebral small vessels disease is still a matter of investigation but both clinical and 
pathological studies support the most popular hypothesis that acute disruption of blood 
supply in one arterial territory results in lacunar infarction while a more chronic and 
widespread reduction in perfusion causes leukoaraiosis. This is consistent with the spatial 
pattern and distribution of leukoaraiosis, which arises first in those areas furthest from the 
origin of the arterioles in the periventricular and deep white matter regions (Hassan et al., 
2003, Pantoni, 2002, as cited by Birns & Kalra, 2008). 

Reductions in white matter perfusion in leukoaraiosis have been demonstrated using xenon-
CT, MRI, PET and SPECT and in some studies, the degree of hypoperfusion has been found 
to correlate with the severity of leukoaraiosis (Oishi et al., 1999, Miyazawa et al., 1997, as 
cited by Birns & Kalra, 2008 ). Furthermore, quantitative perfusion and diffusion tensor MRI 
studies have revealed reduced cerebral blood flow in normal appearing white matter in 
periventricular regions in patients with leukoaraiosis, suggesting that areas are “at risk.” (O’ 
Sullivan, 2001, 2002). Two studies on the relationship between cerebrovascular reactivity 
and cerebral small vessels disease (which excluded patients with carotid artery stenoses or 
those undertoken soon after an acute ischaemic event, knowing the effect of these 
comorbidities on cerebrovascular reactivity) demonstrated impaired reactivity in patients 
with multiple lacunar infarctions but no association between cerebrovascular reactivity and 
the severity of leukoaraiosis on brain MRI (Molina et al., 1999, Cupini et al., 2001 as cited by 
Birns & Kalra, 2008). 
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Supporting the role of ischemia in the pathogenesis of leukoaraiosis, the results of a study 
showed a statistically significant correlation between the presence and severity of 
leukoaraiosis and degree of carotid stenosis. A trend toward increased risk of development 
of leukoaraiosis in carotids with fatty plaques also was observed. The data confirmed that 
the development of leukoaraiosis is strongly correlated with age (Saba et al., 2009). A further 
study showed a statistically significant correlation between increased carotid artery wall 
thickness and LA (and its severity) (Saba et al., 2011).  

3.2 Endothelial dysfunction/blood-brain barrier abnormalities 

Histopathological evidence of endothelial cells activation and retraction with increased 
vascular permeability, increased circulating levels of leukocyte adhesion molecules such as 
ICAM1 (intercellular adhesion molecule-1) and E selectin (shed from the surface of activated 
endothelial cells) and a rise in the markers of coagulation activation (including thrombin-
antithrombin complex and prothrombin fragments 1+2) have been reported in patients with 
small vessels desease compared with controls (Lin et al., 2000, Hassan et al., 2003, Fassbender 
et al., 1999, Tomimoto et al., 1999, as cited by Birns & Kalra, 2008). In addition, serum 
concentration of thrombomodulin and von Willebrand factor, which are both molecular 
markers of endothelial cell damage, have been shown to correlate with MRI evidence of small 
vessels disease (Ishii et al., 1991, Kohriyama et al., 1996 as cited by Birns & Kalra, 2008). 

A number of studies have shown that chronic hypertension predisposed to impaired blood-
brain barrier function, with endothelial cell retraction, increased vascular permeability and 
greater susceptibility to white matter injury for relatively small insults (Tomimoto et al., 
1996, Lin et al., 2000, Pantoni, 2002, Wardlaw et al., 2003, Birns et al., 2005, as cited by Birns 
& Kalra, 2008). 

In patients with subcortical white matter disease, plasma proteins have been found in the 
tissue around perforating arteries and increased concentrations of a number of proteins in 
the cerebro-spinal fluid have been found compared with controls, supporting the idea that 
the proteins reached the cerebro-spinal fluid via leakage from small perforating arteries 
(Akiguchi et al., 1998., Pantoni et al., 1993, as cited by Birns & Kalra, 2008). 

One study has demonstrated intravenously injected contrast agent to leak into the brain, 
particularly in the territory of the perforating arteries, more in those with leukoaraiosis than 
in controls (Starr et al., 2003, as cited by Birns & Kalra, 2008). 

3.3 Disturbances in cerebro-spinal fluid circulation  

Murata et al (1981) hypothesized that disturbances in cerebro-spinal fluid circulation may 
play a role in the pathogenesis of leukoaraiosis. Roman suggested that increased 
accumulation of cerebro-spinal fluid in the ventricules raises the interstitial pressure in the 
periventricular parenchyma, thus causing ischaemia to the white matter (Roman, 1991, 
Kimura et al., 1992, as cited by Birns & Kalra, 2008 ).  

3.4 Plasma viscosity 

Schneider et al (1997) showed plasma viscosity to be elevated in patients with leukoaraiosis 
and lacunar infarction and considered that it may alter cerebro-spinal fluid properties and 
favour chronic ischaemic white matter damage. 
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3.5 Platelet hyperaggregability and other coagulation abnormalities 

Fujita et al (2011) demonstrated a significantly increased incidence of platelet 
hyperaggregability in 73 patients with leukoaraiosis compared with 102 controls. Twenty-
one patients with leukoaraiosis and uncorrected platelet hyper-aggregability were 
compared with 21 controls matched for age, grade of leukoaraiosis and observation period 
whose platelet hyper-aggregability was corrected. The results of their study showed that the 
progress of leukoaraiosis is significantly  inhibited by long-term correction of platelet hyper-
aggregability, suggesting platelet hyper-aggregability as a risk factor for leukoaraiosis 

Martí-Fàbregas et al. (2002) investigated whether there is a direct correlation between 
plasma fibrinogen levels and the amount of leukoaraiosis in 28 patients with symptomatic 
small-vessel disease. They found a significant correlation between plasma fibrinogen levels 
and the amount of leukoaraiosis in patients with symptomatic cerebral small-vessel disease. 
This result suggests that fibrinogen may be involved in the pathophysiology of 
leukoaraiosis in these patients. 

Hassan et al showed that while tissue factor and the ratio of tissue factor to TFPI (tissue 
factor pathway inhibitor) did not differ significantly between patients with small vessel 
disease and controls, the tissue factor/TFPI ratio was higher in small vessel disease patients 
with leukoaraiosis compared with isolated lacunar infarction (Hassan et al., 2003, as cited by 
Birns & Kalra, 2008). 

3.6 Cerebral venous circulation impairment 

Some authors found an age-related gradual increase in the thickness of the walls of veins 
and venules near the lateral ventricles and a striking degree of vessels wall thickening, 
resulting in narrowed lumina and even occlusion, in patients with leukoaraiosis. The 
thickened vascular walls stained strongly for collagens I and III. In the studied cases, the 
degree of venous collagenosis statistically correlated with the severity of leukoaraiosis. The 
authors questioned whether increased resistance to venous blood flow resulting from the 
venous stenosis, might induce chronic ischaemia and/or oedema in the deep white matter, 
perhaps somehow leading to leukoaraiosis, or indeed whether the collagenosis itself occurs 
as a result of ischaemia (Moody et al., 1995, Brown et al., 2002, as cited by Birns & Kalra, 
2008). 

More recently, Chung & Hu (2010) hypothesed that chronic cerebral hypoperfusion 
associated with vasogenic edema, microbleeding or/and endothelial dysfunction found in 
leukoaraiosis favors venous ischemia, in stead of arterial ischemia, as its pathogenesis. 
Given that the involved regions in leukoaraiosis (periventricular and subcortical regions) are 
the drainage territory of deep cerebral venous system and the watershed region between the 
superficial and deep cerebral venous system respectively, and adding the facts that 
periventricular venule collagenosis, and retinal and intraparenchymal venules dilatation are 
related to the severity of leukoaraiosis, the authors suggested that cerebral venous 
hypertension caused by downstream venous outflow impairment might play a major role in 
the pathogenesis of leukoaraiosis. Jugular venous reflux is therefore suggested to play a key 
role in the pathogenesis of leukoaraiosis through a sustained or long-term repetitive 
retrograde-transmitted cerebral venous pressure and venous outflow insufficiency, which 
might lead to chronic cerebral venous hypertensions, abnormal cerebral venules structural 
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changes, decreased cerebral blood flow, endothelial dysfunction, and vasogenic edema in 
cerebral white matters. 

3.7 Others hypothesis 

It has been also demonstrated homocysteine (which is toxic to the endothelium) to be a 
strong risk factor for small-vessel disease on 90 patients with leukoaraiosis and lacunar 
infarction compared to 52 patients with isolated lacunar infarction after controlling for both 
conventional risk factors and age (Hassan at al., 2004, Khan et al., 2007, as cited by Birns & 
Kalra, 2008). 

Matrix metalloproteinases are neutral proteases that disrupt the blood-brain barrier and 
degrade myelin basic protein under conditions of neuroinflammation. Candelario-Jalil et al., 
studied 60 patients with suspected vascular cognitive impairment due to small vessel 
disease (twenty-five of which were classified as subcortical ischemic vascular disease, 
whereas other groups included mixed Alzheimer disease and vascular cognitive 
impairment, multiple strokes, and leukoaraiosis when white matter lesions were present 
and the diagnosis of vascular cognitive impairment was uncertain) by measuring 
metalloproteinase-2, metalloproteinase-3  and metalloproteinase-9 activity as well as the 
albumin level in the cerebrospinal fluid. They found that increased levels of 
metalloproteinases are associated with increased cerebrospinal fluid albumin and suggest 
that they may contribute to the pathophysiology of subcortical ischemic vascular disease. 

Since necrosis is not obvious in LA lesions, Brown et al. investigated the occurrence of 
apoptosis. They obtained 1.5-cm-thick coronal brain slices at autopsy from two patients with 
LA. MRI was performed on the brain slices. Sections were stained by several methods 
including the terminal deoxynucleotidyl transferase dUTP (uridine 5'-triphosphate) nick 
end labeling (TUNEL) method for DNA fragmentation. The presence of numerous scattered 
cells in the LA lesions showing DNA fragmentation suggests that those cells are damaged 
and dying, at least some by apoptosis. The apoptosis in the white matter adjacent to the LA 
lesions suggests progressive cell loss and expansion of the LA lesions (Brown et al., 2002). 

3.8 Genetic factors 

RNA expression was assessed in the blood of individuals with and without extensive white 
matter hyperintensities (WMH)  to search for evidence of oxidative stress, inflammation, 
and other abnormalities described in WMH lesions in brain. Cluster and principal 
components analyses showed that the expression profiles for almost 300  genes 
distinguished WMH+ from WMH− subjects. Function analyses suggested that WMH-
specific genes were associated with oxidative stress, inflammation, detoxification, and 
hormone signaling, and included genes associated with oligodendrocyte proliferation, axon 
repair, long-term potentiation, and neurotransmission (Xu et al., 2010).  

Fernandez-Cadenas et al. analyzed 212 single nucleotide polymorphisms (SNPs) in 142 
patients with ischaemic stroke, generating a total of 30104 genotypes. Seventy-nine subjects 
(55.6%) presented leukoaraiosis measured by the Fazekas scale and 69 (48.6%) by age-
related white matter changes (ARWMC) scale. This study revealed that the genes associated 
with leukoaraiosis were involved in blood-brain barrier (BBB) homeostasis (Fernandez-
Cadenas et al., 2010).  
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3.5 Platelet hyperaggregability and other coagulation abnormalities 

Fujita et al (2011) demonstrated a significantly increased incidence of platelet 
hyperaggregability in 73 patients with leukoaraiosis compared with 102 controls. Twenty-
one patients with leukoaraiosis and uncorrected platelet hyper-aggregability were 
compared with 21 controls matched for age, grade of leukoaraiosis and observation period 
whose platelet hyper-aggregability was corrected. The results of their study showed that the 
progress of leukoaraiosis is significantly  inhibited by long-term correction of platelet hyper-
aggregability, suggesting platelet hyper-aggregability as a risk factor for leukoaraiosis 

Martí-Fàbregas et al. (2002) investigated whether there is a direct correlation between 
plasma fibrinogen levels and the amount of leukoaraiosis in 28 patients with symptomatic 
small-vessel disease. They found a significant correlation between plasma fibrinogen levels 
and the amount of leukoaraiosis in patients with symptomatic cerebral small-vessel disease. 
This result suggests that fibrinogen may be involved in the pathophysiology of 
leukoaraiosis in these patients. 

Hassan et al showed that while tissue factor and the ratio of tissue factor to TFPI (tissue 
factor pathway inhibitor) did not differ significantly between patients with small vessel 
disease and controls, the tissue factor/TFPI ratio was higher in small vessel disease patients 
with leukoaraiosis compared with isolated lacunar infarction (Hassan et al., 2003, as cited by 
Birns & Kalra, 2008). 

3.6 Cerebral venous circulation impairment 

Some authors found an age-related gradual increase in the thickness of the walls of veins 
and venules near the lateral ventricles and a striking degree of vessels wall thickening, 
resulting in narrowed lumina and even occlusion, in patients with leukoaraiosis. The 
thickened vascular walls stained strongly for collagens I and III. In the studied cases, the 
degree of venous collagenosis statistically correlated with the severity of leukoaraiosis. The 
authors questioned whether increased resistance to venous blood flow resulting from the 
venous stenosis, might induce chronic ischaemia and/or oedema in the deep white matter, 
perhaps somehow leading to leukoaraiosis, or indeed whether the collagenosis itself occurs 
as a result of ischaemia (Moody et al., 1995, Brown et al., 2002, as cited by Birns & Kalra, 
2008). 

More recently, Chung & Hu (2010) hypothesed that chronic cerebral hypoperfusion 
associated with vasogenic edema, microbleeding or/and endothelial dysfunction found in 
leukoaraiosis favors venous ischemia, in stead of arterial ischemia, as its pathogenesis. 
Given that the involved regions in leukoaraiosis (periventricular and subcortical regions) are 
the drainage territory of deep cerebral venous system and the watershed region between the 
superficial and deep cerebral venous system respectively, and adding the facts that 
periventricular venule collagenosis, and retinal and intraparenchymal venules dilatation are 
related to the severity of leukoaraiosis, the authors suggested that cerebral venous 
hypertension caused by downstream venous outflow impairment might play a major role in 
the pathogenesis of leukoaraiosis. Jugular venous reflux is therefore suggested to play a key 
role in the pathogenesis of leukoaraiosis through a sustained or long-term repetitive 
retrograde-transmitted cerebral venous pressure and venous outflow insufficiency, which 
might lead to chronic cerebral venous hypertensions, abnormal cerebral venules structural 
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changes, decreased cerebral blood flow, endothelial dysfunction, and vasogenic edema in 
cerebral white matters. 

3.7 Others hypothesis 

It has been also demonstrated homocysteine (which is toxic to the endothelium) to be a 
strong risk factor for small-vessel disease on 90 patients with leukoaraiosis and lacunar 
infarction compared to 52 patients with isolated lacunar infarction after controlling for both 
conventional risk factors and age (Hassan at al., 2004, Khan et al., 2007, as cited by Birns & 
Kalra, 2008). 

Matrix metalloproteinases are neutral proteases that disrupt the blood-brain barrier and 
degrade myelin basic protein under conditions of neuroinflammation. Candelario-Jalil et al., 
studied 60 patients with suspected vascular cognitive impairment due to small vessel 
disease (twenty-five of which were classified as subcortical ischemic vascular disease, 
whereas other groups included mixed Alzheimer disease and vascular cognitive 
impairment, multiple strokes, and leukoaraiosis when white matter lesions were present 
and the diagnosis of vascular cognitive impairment was uncertain) by measuring 
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components analyses showed that the expression profiles for almost 300  genes 
distinguished WMH+ from WMH− subjects. Function analyses suggested that WMH-
specific genes were associated with oxidative stress, inflammation, detoxification, and 
hormone signaling, and included genes associated with oligodendrocyte proliferation, axon 
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with leukoaraiosis were involved in blood-brain barrier (BBB) homeostasis (Fernandez-
Cadenas et al., 2010).  



 
Advances in Brain Imaging 242 

4. Specific features of LA in the main types of cerebrovascular diseases 
4.1 Stroke 

Although patients with cerebrovascular disease may have white matter abnormalities 
related to large-vessel, embolic or ischemic-hypoxic etiologies, by far small-vessel disease is 
believed to be the most common substrate in case of diffuse, bilateral, preferential white 
matter involvement (Gomes & Caplan, 2008). 

Leukoaraiosis (LA) is a common finding in stroke (particularly ischemic) and shares similar 
risk factors and pathophysiologic mechanisms with both ischemic and hemorrhagic stroke. 
LA may also be an independent predictor of stroke outcomes. 

After an acute ischemic stroke LA is associated with an increased risk of death or 
dependency, recurrent stroke, intracerebral hemorrhage under anticoagulation, myocardial 
infarction, and poststroke dementia. There is increasing evidence from neuroimaging 
studies to support the concept that some cases of LA are caused by white matter infarcts, 
which may be particularly frequent in patients with widespread small vessel disease. Th e 
relatively similar distribution of LA regardless of the distribution of vascular pathology 
suggests a conserved vulnerability to white matter injury across various vascular diseases, 
possibly related to the resting patterns of blood fl ow (Mijajlovic et al., 2011). 

LA is frequently observed in patients with acute stroke, ischemic as well as hemorrhagic. 
Previous studies indicated that LA was strongly associated with lacunar strokes rather than 
non-lacunar, territorial strokes. Stroke and LA are likely two related diseases. In many 
aspects, LA is an ischemic disease, as is ischemic stroke. Also, intracerebral hemorrhage 
(ICH) and LA share a common cause, that of arterial hypertension. If LA shares with stroke 
(ischemic and hemorrhagic) common mechanisms, and the appearance of LA on imaging 
predicts stroke, then, according to the current terminology, LA can be regarded as an 
intermediate surrogate of stroke. (Jimenez-Conde et al., 2010, Pu et al., 2009, Lee et al., 2008, 
Inzitari, 2003, as cited by Mijajlovic et al., 2011)  

Putaala et al. hypothesized that risk factors, neuroimaging characteristics, and associations 
with the overt clinical stroke may be diff erent in young patients with ischemic stroke with 
or without silent brain infarcts (SBIs) and LA. Of the 669 patients included, 86 (13%) had 
SBIs, 50 (7%) had LA, 17 (3%) had both, and 550 served as controls. Most SBIs were located 
in basal ganglia (39%) or subcortical regions (21%), but cerebellar SBIs also were rather 
frequent (15%). LA was mainly mild to moderate. Silent cardioembolism may in part 
explain the frequency of cerebellar SBIs in younger patients. As observed, younger stroke 
patients tend to have more frequently overt posterior territory ischemia and cerebellar 
infarcts. Th is observation, jointly with the frequency of cerebellar SBIs, might reflect the 
same, yet unclear, pathophysiologic mechanisms. Independent risk factors for SBIs in 
younger adults were type 1 diabetes, obesity, smoking, and increasing age. Risk factors for 
LA were type 1 diabetes, obesity, female sex, and increasing age. Small-vessel disease was 
the predominant cause of stroke in both those with SBIs (31%) and LA (44%) (Putaala et al., 
2009, as cited by Mijajlovic et al., 2011). 

Prospective observations further corroborated the relationship between LA and stroke and 
the distinct role of lacunar infarcts. The presence of LA on CT scan predicted subsequent 
stroke in patients with first-ever lacunar stroke, in those with lacunar or cortical infarction, 
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in elderly patients with gait problems and LA on CT scan, and in patients with lacunar 
stroke or trivial neurological symptoms. Recurrent stroke was predominantly of the lacunar 
type. When studies took into account the severity of LA the risk of recurrence proved to be 
proportional to the extent of LA (Miyao et al., 1992, van Zagten et al., 1996, Inzitari et al., 
1995, Yamauchi et al., 2002, as cited by Inzitari, 2003).  

   
Fig. 3. Cerebral MRI (axial T2 weighted sequences) of a 70 years old male, known with 
arterial hypertension, diabetes mellitus, and a left posterior cerebral arterial ischemic stroke 
3 years ago, admitted for right hemiparesis and mixed aphasia; an old stroke in the left 
posterior cerebral artery territory (black arrow) and leukoaraiosis (white arrow) can be seen.  

In 2008 we attempted to assess the correlation between leukoaraiosis and associated 
vascular pathologies in a group of 50 hospitalized patients whose cerebral MRI revealed 
leukoaraiosis. The study revealed that: 

 Stage II leukoaraiosis (Brant-Zawadzki scale) was present frequently in patients with 
acute stroke. 

 Stage III leukoaraiosis (Brant-Zawadzki scale) predominated in patients with chronic 
vascular lesions. 

 Stage IV (Brant-Zawadzki scale) in our studied group was found in those with 
Binswanger disease. 

 Severity of leukoaraiosis increased with age. 
 Severity of neurologic symptoms was in direct proportion with severity of 

leukoaraiosis. 
 Leukoaraiosis associated cognitive decline and brain atrophy in 66% of cases. 
 Presence of leukoaraiosis was associated with increased risk of stroke recurrence 

(almost half of the cases) (Hâncu et al., 2009). 

4.2 Large arteries stroke  

In most of the studies, cortical territorial infarct was largely less probable than lacunar or 
hemorrhagic stroke as recurrent stroke. The main causes of cortical infarcts are large-artery 
disease and cardioembolism.  
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Fig. 4. Cerebral CT scan showing leukoaraiosis (white arrow) in a pacient with an old  
ischemic stroke in the left middle cerebral artery territory (white curved arrow). 

In regard to the first mechanism, while cross-sectional data from the patients randomized in 
the North American Symptomatic Carotid Endarterectomy Trial (NASCET) showed an 
inverse relationship between the degree of carotid stenosis and presence of LA, a few 
population studies have consistently reported an association between intima-media 

thickness or the presence of carotid plaques and white matter hyperintensities on MRI, even 
after adjustment for other vascular risk factors. Atrial fibrillation, a major cause of 
cardioembolic stroke, was found to be negatively associated with LA in 1 study and 
positively associated in 2 other studies. These conflicting results are likely justified by the 
variable impact of age and other age-related vascular risk factors as confounders for these 
associations (Brun & Englund, 1986, Pico et al., 2002, Bots et al., 1993, Manolio et al., 1999, 
Henon et al, 1996, Raiha et al., 1993, as cited by Inzitari 2003).   

In a Korean study, a significant association between leukoaraiosis and the stroke 
subtypeswas found. The large-artery-disease group had a higher prevalence of leukoaraiosis 
than did the other groups (55.4% in the large-artery-disease group, 30.3% in the lacunar 
group and 14.3% in the cardioembolic group, P = 0.016 by chi-square test). On the 
multivariate linear regression analysis, age, the presence of hypertension, previous stroke 
and stroke subtype were independently associated with the presence of leukoaraiosis. In the 
sub analysis of the large-artery-disease group, the leukoaraiosis had a tendency to be more 
prevalent in the mixed and intracranial stenosis group than did the extracranial stenosis 
group (45.5% in the mixed group, 40.3% in the intracranial group and 26.9% in the 
extracranial group, P = 0.08 by chi-square test). The association of leukoaraiosis with large-
artery disease in this study might be due to the relatively high prevalence of intracranial 
occlusive lesions in Korean stroke patients compared to other ethnic groups (Lee et al., 
2008). 
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Fig. 5. Cerebral MRI (above: axial T2 weighted sequences, left-below: coronal FLAIR 
sequence, right-below: diffusion-weighted sequence) showing an old right temporal lobe 
ischemic stroke (black arrow), acute  left temporo-frontal ischemic stroke (white horizontal 
arrow),  leukoaraiosis (white vertical arrow) and diffusion – hypersignal spots in left 
temporal lobe (curved white arrows). 

4.3 Lacunar stroke 

Although leukoaraiosis and lacunar infarcts are often found together, in individual patients 
one type of imaging appearance may predominate, leading to the notion of subtypes of 
diffuse small vessel disease; either what has been labelled as ischaemic leukoaraiosis 
(defined by the combination of leukoaraiosis with a history of a clinical lacunar syndrome), 
or isolated lacunar infarction (in which a similar clinical presentation is accompanied by 
multiple lacunar lesions but no leukoaraiosis on imaging). These two imaging types have 
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recently been shown to differ in their risk factor profile; age and hypertension are most 
strongly associated with ischaemic leukoaraiosis while hypercholesterolaemia, diabetes 
mellitus and myocardial infarction are more associated with isolated lacunar infarction. 
These findings suggest some differences in pathogenesis, with leukoaraiosis, perhaps 
reflecting a non-atheromatous pathology of smaller calibre vessels than those implicated in 
lacunar infarcts. A better appreciation of distinct subtypes may explain conflicting results 
about the association of certain novel risk factors with stroke; for example, although 
homocysteine is a risk factor for both types of manifestation, it has a much stronger 
association with ischaemic leukoaraiosis than with isolated lacunar infarction (Khan et al., 
2007, Hassan at al., 2004, as cited by O’ Sullivan, 2008). 

White matter hyperintensities on magnetic resonance imaging can be used as surrogate 
markers of small vessel disease (Wallin & Fladby, 2010). 

Rost et al. measured WMH volume (WMHV) in cohorts of prospectively ascertained 
patients with acute ischemic stroke (AIS) (n = 891) and ICH (n = 122). Patients with larger 
WMHV were more likely to have lacunar stroke compared with cardioembolic, large artery, 
or other stroke subtypes (p < 0.03). In a separate analysis, greater WMHV was seen in ICH 
compared with lacunar stroke and in ICH compared with all ischemic stroke subtypes 
combined (p < 0.007). These data support the model that increasing WMHV is a marker of 
more severe cerebral small-vessel disease (Rost et al., 2010).  

 
Fig. 6. Cerebral MR scan of a 60 years old female (left: T2 weighted sequence; right: diffusion 
weighted sequence) showing an old microbleeding (horizontal arrow), lacunar ischemic 
strokes (vertical arrow) and leukoaraiosis (curved arrow).  

4.4 Hemorrhagic stroke 

2 cross-sectional studies of hospitalized stroke patients reported in 1989 and 1990, for the 
first time, the association between LA and ICH. The latter of the 2 studies also examined the 
possible confounders for this association. In this study extensive LA was over twice more 
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prevalent among 116 patients with ICH than among 155 control patients without ICH. In an 
analysis with a multivariate adjustment for other vascular risk factors, the association was 
almost fully explained by the higher prevalence of arterial hypertension and lacunar infarcts 
on CT scan (Selekler & Erzen, 1989, Inzitari et al., 1990, as cited by Inzitari, 2002). 

The Stroke Prevention in Reversible Ischemia Trial (SPIRIT), a prospective trial of secondary 
prevention with anticoagulation and target international normalized ratio (INR) values of 
3.0 to 4.5 in patients with cerebral ischemia of presumed arterial origin, revealed the 
independent role of LA as a risk factor for major bleeding during anticoagulation after 
cerebral ischemia (Gorter, 1999). This was confirmed by a recent study which investigated 
radiographic and clinical characteristics of patients with warfarin-related ICH following 
ischemic stroke. The 26 eligible ICH cases and 56 controls were compared for vascular risk 
factors, stroke characteristics, and extent of leukoaraiosis (graded in anterior and posterior 
brain regions on a validated scale of 0 to 4). Leukoaraiosis was found to be an independent 
risk factor for warfarin-related ICH in survivors of ischemic stroke, including those in the 
commonly employed range of anticoagulation (Smith et al., 2010).  

   
Fig. 7. Cerebral MRI scan (left: axial T2 weighted sequence; right: coronal FLAIR image) 
showing right temporo-parietal primary intracerebral hematoma (vertical arrow), mixed 
cerebral atrophy, leukoaraiosis (horizontal arrow), in a 65 years old male, known with 
untreated arterial hypertension, smoker, admitted for left hemiplegia suddenly occurred. 

4.5 CADASIL 

The distribution of white matter lesions in cerebral autosomal dominant arteriopathy with 
subcortical infarcts and leukoaraiosis (CADASIL) has been reported to be distinct from 
those in patients with ischemic leukoaraiosis and Binswanger's disease. In earlier European 
studies, diagnostic significance of white matter lesions in the temporopolar region (Tp), 
medial frontopolar region (Fp) and external capsule (EC) was stressed in diagnosing 
CADASIL (Tomimoto et al., 2005).  
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More recently, however, high sensitivity and specificity of Tp lesions have been 
demonstrated. Tomimoto et al examined the frequencies of CADASIL-associated lesions in 
17 non-demented patients with ischemic leukoaraiosis and 20 patients with Binswanger's 
disease. The results indicated that Tp lesions were useful diagnostic marker in diagnosing 
CADASIL, whereas Fp and EC lesions were non-specifically observed (Tomimoto et al., 
2005).  

 
Fig. 8a. MR images from a 24-year old man with CADASIL; left: FLAIR diffuse hypersignal 
of the periventricular and deep white matter (leukoaraiosis) and small cerebrospinal fluid 
intensity area (lacunar subcortical infarction); right: T1 hyposignal (leukoaraiosis) and fluid 
intensity area (lacunar subcortical infarction) in the corresponding regions. 

An intersting feature of leukoaraiosis, with possible relevance to the pathogenesis of the 
lesions, is the relatively conserved anatomic distribution across individuals and different 
vascular diseases. Exceptions are that in CADASIL, there is relative preferential 
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involvement of the external capsule and anterior temporal white matter; and in cerebral 
amyloid angiopathy, there is relatively more posterior than anterior leukoaraiosis. Even so, 
in CADASIL and cerebral amyloid angiopathy patients, as well as others, the greatest 
burden of lesions is in the periventricular white matter around the frontal and occipital 
horns, with varying amounts of involvement of areas of subcortical white matter. The 
probability of subcortical white matter involvement varies inversely with the distance from 
the ventricular margin (Smith, 2010).  

 
Fig. 8b.  Same case: FLAIR hypersignal in the anterior pole of the temporal lobe, 
characteristic for CADASIL. 

4.6 Amyloid angiopathy 

Cerebral amyloid angiopathy affects the arteries of the leptomeninges and cortex, with little 
involvement of the penetrating arteries in the white matter and essentially no involvement 
of the perforating arteries at the base of the brain and brain stem (Smith 2010).  

In Alzheimer’s disease, and in patients with mild cognitive impairment, some of whom will 
have prodromal Alzheimer’s, white matter changes correlate with serum levels of the Ab 1-40 
peptide, which is the predominant peptide found in vessel deposits in cerebral amyloid 
angiopathy. But intriguingly, plasma Ab also correlates with the severity of white matter 
lesions in the population-based Rotterdam study.  Given that cerebral amyloid angiopathy 
is a rare cause of leukoaraiosis at the population level, this suggests that Ab has an impact 
on white matter damage even in patients with arteriosclerotic small vessel disease and no 
pathological evidence of cerebral amyloid angiopathy. The underlying mechanisms of this 
association are not yet clear. Conversely, pathological studies in Alzheimer’s disease suggest 
that arteriosclerotic small vessel disease can drive more extensive amyloid deposition and 
neurofibrillary tangle formation, which is consistent with epidemiological evidence that 
vascular risk factors are important, and suggests that the interaction may work in both 
directions (Gurol et al., 2006, van Dijk et al., 2004, Thal et al., 2003, as cited by O’ Sullivan, 
2008). 



 
Advances in Brain Imaging 248 

More recently, however, high sensitivity and specificity of Tp lesions have been 
demonstrated. Tomimoto et al examined the frequencies of CADASIL-associated lesions in 
17 non-demented patients with ischemic leukoaraiosis and 20 patients with Binswanger's 
disease. The results indicated that Tp lesions were useful diagnostic marker in diagnosing 
CADASIL, whereas Fp and EC lesions were non-specifically observed (Tomimoto et al., 
2005).  

 
Fig. 8a. MR images from a 24-year old man with CADASIL; left: FLAIR diffuse hypersignal 
of the periventricular and deep white matter (leukoaraiosis) and small cerebrospinal fluid 
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Fig. 8b.  Same case: FLAIR hypersignal in the anterior pole of the temporal lobe, 
characteristic for CADASIL. 
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Leukoaraiosis is also increasingly recognised as a feature of sporadic cerebral amyloid 
angiopathy, without Alzheimer’s disease.Amyloid deposits are found in more proximal 
portions of the small penetrating arteries than  arteriosclerotic changes and it is not known 
whether these deposits alone, without downstream arteriosclerosis, are sufficient to cause 
leukoaraiosis. Notably, leukoaraiosis is found in some of the genetic amyloid angiopathies (for 
example, familial British dementia) suggesting that amyloid angiopathy alone is sufficient to 
cause this imaging appearance (Greenberg et al., 2004, as cited by O’ Sullivan, 2008). 

  
Fig. 9a. MR images from a 71-year-old man with probable cerebral amyloid angiopathy and 
leukoaraiosis; left: T2 hypersignal at the level of periventricular and deep white matter; 
right: FLAIR hypersignal at the level of the periventricular white matter. 

  
Fig. 9b. Same case: MR diffusion weighted image (DWI) and apparent diffusion coefficient 
(ADC) mapping; no apparent diffusion coefficient (ADC) restriction can be observed in the 
affected areas (leukoaraiosis). 
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4.7 Collagen arteritis 

Neurologic manifestations are among the features of many multisystem autoimmune 
connective tissue disorders with various clinical presentations. Areas of patchy cortical or 
subcortical abnormality (hyperdensity on CT scan, T2  hyperintensity on MRI) may 
correspond to small vessel vasculitis or cerebritis (Ramachandran, 2011). 

  
Fig. 10. MR images from a 51-year-old female with rheumathoid arthritis; T2 hypersignal 
(left) and FLAIR hypersignal (right) spots at the level of deep white matter can be seen. 

5. Conclusions 
Leukoaraiosis is a radiological finding whose pathogenesis or clinical significance is not 
completely acknowledged. LA predispose to stroke, independent of other stroke risk factors. 
Typically, leukoaraiosis predict a lacunar ischemic stroke but in patients with LA the risk of 
cortical infarct is also increased, as is that of vascular death. The presence of extensive LA 
predisposes to ICH, especially in patients treated with anticoagulants for secondary 
prevention after an ischemic stroke. Consequently, it is important for practicians to correctly 
assess LA in all patients presenting with cerebro-vascular pathology.  
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