
Field
Programmable Gate Array

Edited by George Dekoulis

Edited by George Dekoulis

Photo by antos777 / iStock

This edited volume “Field-Programmable Gate Array” is a collection of reviewed and
relevant research chapters, offering a comprehensive overview of recent developments
in the field of semiconductors. The book comprises single chapters authored by various

researchers and edited by an expert active in the aerospace engineering systems
research area. All chapters are complete within themselves but united under a common

research study topic. This publication aims at providing a thorough overview of the
latest research efforts by international authors and open new possible research paths

for further novel developments.

ISBN 978-953-51-3207-3

Field - Program
m

able G
ate A

rray

FIELD - PROGRAMMABLE
GATE ARRAY

Edited by George Dekoulis

Field - Programmable Gate Array
http://dx.doi.org/10.5772/63664
Edited by George Dekoulis

Contributors

Ajay Singh, Miguel Angel Martínez Prado, Juvenal Rodríguez, Carlos Miguel Torres Hernández, Gilberto Herrera, Diana
Carolina Toledo Pérez, Cristian Anghel, Cristian Stanciu, Constantin Paleologu, Alexandru Amaricai, Oana Boncalo,
Nikhil Marriwala, O.P Sahu, Anil Vohra, Francesco Grancagnolo, Gianluigi CHIARELLO, Claudio CHIRI, Giuseppe
COCCIOLO, Alessandro CORVAGLIA, Marco PANAREO, Aurora PEPINO, Giovanni TASSIELLI, Raffaele Giordano, Wen-Jyi
Hwang, Chien-Min Ou, Steffen Mauch, Johann Reger, Jose Torres, Raimundo Garcia, Jesus Soret, Julio Martos, Nordin
Aranzabal, Abraham Menendez, Pedro A. Martinez, Adrian Suarez, Gabriel Torrens

© The Editor(s) and the Author(s) 2017
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced,
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2017 by INTECH d.o.o.
eBook (PDF) Published by IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019. IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Field - Programmable Gate Array
Edited by George Dekoulis

p. cm.

Print ISBN 978-953-51-3207-3

Online ISBN 978-953-51-3208-0

eBook (PDF) ISBN 978-953-51-4819-7

http://www.iceni.com/unlock-pro.htm

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

3,350+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

108,000+
International authors and editors

115M+
Downloads

We are IntechOpen,
the first native scientific

publisher of Open Access books

Meet the editor

Professor George Dekoulis received a first class BEng (Hons) in Communi-
cations Engineering from De Montfort University in Leicester, UK, in 2001.
He joined the Space and Planetary Physics Group at Lancaster Universi-
ty in 2001. He has received several research awards from STFC, UK and
EPSRC, UK and the “IET Hudswell International Research Scholarship”.
He was awarded a Ph.D in 2007 in Space Engineering and Communica-
tions. He is currently a professor in Aeronautical and Space Engineering at
Aerospace Engineering Institute, Cyprus. He was a professor in Electrical
and Electronics Engineering at Middle East Technical University, Turkey.
He has worked as Research Associate in Space Engineering and Technical
Support Engineer on Space Systems at Lancaster University, and as R & D
Aerospace Systems Design Engineer for Electromech, UK. He is research-
ing and developing Aerospace Engineering Systems using state-of-the-art
all-digital technologies.

Contents

Preface XI

Chapter 1 Efficient Hardware Architecture for Correlation-Based Spike
Detection and Unsupervised Clustering 1
Chien-Min Ou and Wen-Jyi Hwang

Chapter 2 Efficient FPGA Implementation of a CTC Turbo Decoder for
WiMAX/LTE Mobile Systems 25
Cristian Anghel, Cristian Stanciu and Constantin Paleologu

Chapter 3 Motion Control with FPGA 57
Miguel Angel Martínez Prado, Juvenal Rodríguez Reséndiz, Diana
Carolina Toledo Pérez, Carlos Miguel Torres Hernández and
Gilberto Herrera Ruiz

Chapter 4 FPGA-Based Software-Defined Radio and Its Real-Time
Implementation Using NI-USRP 83
Nikhil Marriwala, Om. Prakash. Sahu and Anil Vohra

Chapter 5 Design Trade‐Offs for FPGA Implementation of LDPC
Decoders 105
Alexandru Amaricai and Oana Boncalo

Chapter 6 Design of Digital Advanced Systems Based on Programmable
System on Chip 123
Nordin Aranzabal, Adrián Suárez, José Torres, Raimundo García‐
Olcina, Julio Martos, Jesús Soret, Abraham Menéndez and Pedro A.
Martínez

Chapter 7 The Use of FPGA in Drift Chambers for High Energy Physics
Experiments 159
Gianluigi Chiarello, Claudio Chiri, Giuseppe Cocciolo, Alessandro
Corvaglia, Francesco Grancagnolo, Marco Panareo, Aurora Pepino
and Giovanni Francesco Tassielli

Chapter 8 Real‐Time Adaptive Optic System Using FPGAs 177
Steffen Mauch and Johann Reger

Chapter 9 FPGA‐SRAM Soft Error Radiation Hardening 197
Gabriel Torrens

Chapter 10 Power Efficient Data-Aware SRAM Cell for SRAM-Based FPGA
Architecture 221
Ajay Kumar Singh

Chapter 11 High‐Speed Deterministic‐Latency Serial IO 249
Raffaele Giordano, Vincenzo Izzo and Alberto Aloisio

X Contents

Chapter 7 The Use of FPGA in Drift Chambers for High Energy Physics
Experiments 159
Gianluigi Chiarello, Claudio Chiri, Giuseppe Cocciolo, Alessandro
Corvaglia, Francesco Grancagnolo, Marco Panareo, Aurora Pepino
and Giovanni Francesco Tassielli

Chapter 8 Real‐Time Adaptive Optic System Using FPGAs 177
Steffen Mauch and Johann Reger

Chapter 9 FPGA‐SRAM Soft Error Radiation Hardening 197
Gabriel Torrens

Chapter 10 Power Efficient Data-Aware SRAM Cell for SRAM-Based FPGA
Architecture 221
Ajay Kumar Singh

Chapter 11 High‐Speed Deterministic‐Latency Serial IO 249
Raffaele Giordano, Vincenzo Izzo and Alberto Aloisio

ContentsVI

Preface

This edited volume is a collection of reviewed and relevant research chapters, concerning
the developments within the “Field-Programmable Gate Array" field of study. The book in‐
cludes scholarly contributions by various authors and edited by a group of experts pertinent
to semiconductors. Each contribution comes as a separate chapter completed within itself
but directly related to the book’s topics and objectives.

The book has 11 chapters.

The target audience comprises scholars and specialists in the field.

InTechOpen

Chapter 1

Efficient Hardware Architecture for Correlation-Based

Spike Detection and Unsupervised Clustering

Chien-Min Ou and Wen-Jyi Hwang

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66105

Provisional chapter

Efficient Hardware Architecture for Correlation-Based
Spike Detection and Unsupervised Clustering

Chien-Min Ou and Wen-Jyi Hwang

Additional information is available at the end of the chapter

Abstract

This chapter presents a novel hardware architecture for correlation-based spike
detection and unsupervised clustering. The architecture is able to utilize the information
extracted from the results of spike clustering for efficient spike detection. The architec-
ture supports the fast computation for the normalized correlation and OSORT
operations. The normalized correlation is used for template matching for accurate spike
detection. The OSORT algorithm is adopted for unsupervised classification of the
detected spikes. The mean of spikes of each cluster produced by the OSORT algorithm
is used as the templates for subsequent detection. The architecture adopts postnormal-
ization technique for reducing the area costs. Modified OSORT operations are also
proposed for facilitating unsupervised clustering by hardware. The proposed architec-
ture is implemented by field programmable gate array (FPGA) for performance
evaluation. In addition to attaining high detection and classification accuracy for spike
sorting, experimental results reveal that the proposed architecture is an efficient design
providing low area cost and high throughput for real-time offline spike sorting
applications.

Keywords: spike sorting, spike detection, spike clustering, field programmable gate
array, brain machine interface

1. Introduction

There is an increasing demand in data-acquisition systems for neurophysiology to record
simultaneously from many channels over long time periods [1]. These experiments accumulate
large amounts of data, which would be processed by spike sorting systems [2] for analyzing the
activities of neurons. Atypical spike sorting system usually involves complicated spike detection

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

and classification operations for separating spikes from background noise and clustering the
detected spikes. Large amount of spike-trains would impose heavy computation load for a
software spike sorting system, resulting in long processing time.

One approach to reduce the computation time is to implement a spike sorting system by
hardware. A number of spike sorting systems based on field programmable gate array (FPGA)
[3] have been proposed. In [4], a spike classification architecture using probabilistic neural
networks [5] is proposed. Although high speed-up over its software counterpart is observed,
the system does not provide spike detection. In addition, the architecture requires the user to
input the number of clusters. Therefore, it does not support a fully unsupervised hardware
classification. Similarly, the architecture proposed in [6] also focuses on the classification. The
generalized Hebbian algorithm (GHA) [7] is implemented by FPGA in this work for feature
extraction. The features produced by the architecture are then clustered by the k-means
algorithm. The architecture does not include the hardware implementation of the k-means
algorithm. In addition, the number of clusters still needs to be prespecified in the k-means
algorithm. The architecture in [8] is able to carry out the feature extraction and clustering in
hardware. In the architecture, the feature extraction and clustering are based on GHA and
fuzzy c-means [9] algorithm, respectively. Therefore, similar to the architecture in [6], fully
unsupervised classification is difficult for the architecture in [8] because the number of clusters
still needs to be known beforehand.

An alternative FPGA-based hardware architecture [10] is to adopt OSORT algorithm [11] for
spike-sorting. The OSORT algorithm is able to perform clustering without the prior knowledge
of the number of clusters. Unsupervised classification therefore can be carried out. The
architecture also includes a spike detection circuit based on the nonlinear energy operators
(NEOs) [12], which is an energy-based detection algorithm. Similar to other energy-based
algorithms [13, 14], the NEO algorithm is simple and effective. However, although the energy-
based algorithms can operate in conjunction with a number of automatic threshold algorithms
[12–14], proper selection of threshold values for these algorithms may still be difficult when
noise becomes large. Therefore, their performance may deteriorate rapidly as noise energy
increases.

The template-based spike detection algorithm may be suited for the detection of spikes from
the source sequences with high noise level. A matched filter [15, 16] is a typical technique
based on templates. To detect the presence of the templates, the filter correlates known
templates with the input spike trains. This operation can also be viewed as a likelihood ratio
detection (LRT) [17]. A drawback of the matched filter is that the templates are required.
Although the adaptive generation of templates is possible [18], only a single template is
produced for spike trains. However, because spike trains in general are formed from two or
more neurons, a single template may not be sufficient for the detection of all the spikes
generated by the neurons. The template-based algorithm presented by [19] has been found to
be effective for the detection of noisy spikes. It adopts the OSORT algorithm for automatic
template generation. Normalized correlation operations then carry out the spike detection
using the templates produced by the OSORT algorithm. Nevertheless, in the algorithm, both
the template generation and correlation computation have high computational complexities.

Field - Programmable Gate Array2

and classification operations for separating spikes from background noise and clustering the
detected spikes. Large amount of spike-trains would impose heavy computation load for a
software spike sorting system, resulting in long processing time.

One approach to reduce the computation time is to implement a spike sorting system by
hardware. A number of spike sorting systems based on field programmable gate array (FPGA)
[3] have been proposed. In [4], a spike classification architecture using probabilistic neural
networks [5] is proposed. Although high speed-up over its software counterpart is observed,
the system does not provide spike detection. In addition, the architecture requires the user to
input the number of clusters. Therefore, it does not support a fully unsupervised hardware
classification. Similarly, the architecture proposed in [6] also focuses on the classification. The
generalized Hebbian algorithm (GHA) [7] is implemented by FPGA in this work for feature
extraction. The features produced by the architecture are then clustered by the k-means
algorithm. The architecture does not include the hardware implementation of the k-means
algorithm. In addition, the number of clusters still needs to be prespecified in the k-means
algorithm. The architecture in [8] is able to carry out the feature extraction and clustering in
hardware. In the architecture, the feature extraction and clustering are based on GHA and
fuzzy c-means [9] algorithm, respectively. Therefore, similar to the architecture in [6], fully
unsupervised classification is difficult for the architecture in [8] because the number of clusters
still needs to be known beforehand.

An alternative FPGA-based hardware architecture [10] is to adopt OSORT algorithm [11] for
spike-sorting. The OSORT algorithm is able to perform clustering without the prior knowledge
of the number of clusters. Unsupervised classification therefore can be carried out. The
architecture also includes a spike detection circuit based on the nonlinear energy operators
(NEOs) [12], which is an energy-based detection algorithm. Similar to other energy-based
algorithms [13, 14], the NEO algorithm is simple and effective. However, although the energy-
based algorithms can operate in conjunction with a number of automatic threshold algorithms
[12–14], proper selection of threshold values for these algorithms may still be difficult when
noise becomes large. Therefore, their performance may deteriorate rapidly as noise energy
increases.

The template-based spike detection algorithm may be suited for the detection of spikes from
the source sequences with high noise level. A matched filter [15, 16] is a typical technique
based on templates. To detect the presence of the templates, the filter correlates known
templates with the input spike trains. This operation can also be viewed as a likelihood ratio
detection (LRT) [17]. A drawback of the matched filter is that the templates are required.
Although the adaptive generation of templates is possible [18], only a single template is
produced for spike trains. However, because spike trains in general are formed from two or
more neurons, a single template may not be sufficient for the detection of all the spikes
generated by the neurons. The template-based algorithm presented by [19] has been found to
be effective for the detection of noisy spikes. It adopts the OSORT algorithm for automatic
template generation. Normalized correlation operations then carry out the spike detection
using the templates produced by the OSORT algorithm. Nevertheless, in the algorithm, both
the template generation and correlation computation have high computational complexities.

Field - Programmable Gate Array2

The software implementation of the algorithm may not be suitable for fast analysis of spike
trains.

The objective of this chapter is to present a novel FPGA-based hardware architecture for
efficient spike detection and clustering. The architecture supports both the normalized
correlation operations for spike detection and the OSORT operations for spike clustering.
Moreover, the clustering results produced by the OSORT algorithm are used as the templates
for spike detection. The architecture is the hardware implementation of the algorithm in [19].
It then has the advantages of accurate spike detection, fully unsupervised spike clustering, and
fast computation.

We have implemented a spike sorting system on a network-on-chip (NOC) platform for the
evaluation of the proposed architecture. The platform is based on FPGA. It consists of a soft-
core processor [20] and the proposed architecture. The proposed spike sorting architecture is
used as a hardware accelerator of the soft-core processor for spike sorting. The simulator
developed in [21] is adopted to generate extracellular recordings. In this paper, comparisons
with the existing software and hardware implementations are made. Experimental results
show that the proposed architecture attains a high speed-up over its software counterpart for
spike sorting. It also has a lower area cost over existing hardware architectures. Experimental
results reveal that the proposed architecture is an effective alternative for real-time spike
sorting with accurate detection and clustering.

2. The algorithm

Before presenting the hardware architectures for spike sorting, we first review the spike
detection and clustering algorithms adopted by this work. Detailed discussions of these
algorithms can be found in [19].

2.1. Normalized correlation

Consider a spike train X, where the mth sample of X is denoted by x[m]. Moreover, the mth
segment of the spike train X is denoted by xm = [x[m], x[m − 1], …, x[m − N + 1]]T, where N is
the length of the segment. Suppose the spike train is processed by a matched filter with
template t = [t[0], …, t[N − 1]]T. Let  and  be the normalized version of xm and t, respectively.

That is,

 , .= =
x tx t
x t
m

m
m

(1)

The normalized output at m, denoted by,   , is computed from

Efficient Hardware Architecture for Correlation-Based Spike Detection and Unsupervised Clustering
http://dx.doi.org/10.5772/66105

3

1

0

-

=

é ù é ù é ù= - =ë û ë û ë ûå x t
N

T
m

k

y m x m k t k (2)

This is the inner product of segment  and template , which indicates the normalized

correlation between these two vectors. The segment xm is detected as a spike when   is larger
than a prespecified threshold η. Let  ,  be the squared distance between and . It can be
shown that

(,) 2 2 .= -x t x tTm md (3)

Because  ,  ≥ 0,

1.£x tTm (4)

Our normalized correlation operations are based on  and . When   ≥ , then xmis detected
as a spike. From Eq. (4), it follows that

1£η (5)

The normalized correlation operations shown in Eq. (2) may have high computational
complexities. Although the template  can be computed beforehand, the computation of 
still needs to be carried out online, involving the calculation of||xm||and  =  . Note

that N multiplications, N−1 additions, and one squared root operation are required for the
computation of ||xm||. Moreover, N divisions are needed for . Finally, the inner product of  requires N multiplications and N−1 additions. In total, the basic implementation of the
normalized correlation operations requires 2N multiplications, (2N−2) additions, N divisions,
and 1 squared root operation. When the fast computation is an important concern, the
hardware implementation may then be desirable.

2.2. OSORT algorithm

The OSORT algorithm is an unsupervised template-based clustering algorithm for spike
sorting. It does not require feature extraction, and the number of clusters c is automatically

Field - Programmable Gate Array4

1

0

-

=

é ù é ù é ù= - =ë û ë û ë ûå x t
N

T
m

k

y m x m k t k (2)

This is the inner product of segment  and template , which indicates the normalized

correlation between these two vectors. The segment xm is detected as a spike when   is larger
than a prespecified threshold η. Let  ,  be the squared distance between and . It can be
shown that

(,) 2 2 .= -x t x tTm md (3)

Because  ,  ≥ 0,

1.£x tTm (4)

Our normalized correlation operations are based on  and . When   ≥ , then xmis detected
as a spike. From Eq. (4), it follows that

1£η (5)

The normalized correlation operations shown in Eq. (2) may have high computational
complexities. Although the template  can be computed beforehand, the computation of 
still needs to be carried out online, involving the calculation of||xm||and  =  . Note

that N multiplications, N−1 additions, and one squared root operation are required for the
computation of ||xm||. Moreover, N divisions are needed for . Finally, the inner product of  requires N multiplications and N−1 additions. In total, the basic implementation of the
normalized correlation operations requires 2N multiplications, (2N−2) additions, N divisions,
and 1 squared root operation. When the fast computation is an important concern, the
hardware implementation may then be desirable.

2.2. OSORT algorithm

The OSORT algorithm is an unsupervised template-based clustering algorithm for spike
sorting. It does not require feature extraction, and the number of clusters c is automatically

Field - Programmable Gate Array4

determined by the algorithm. Define ,  = 1,…, , as the clusters of spikes generated by the

OSORT algorithm, where ti, i = 1, …, c, is the average value of the spikes belonging to .
Given a current detected spike s for clustering, in the OSORT algorithm, the squared dis-
tances di = d(s, ti) for i = 1, …, c are first computed. The minimum distance * is then iden-

tified, where * = arg min . We will assign s to * when * is less than a prespecified

threshold τ1. In this case, because * has a new member, its mean value * will also be
updated. Otherwise, a new cluster is created, where s is its only member. After the updat-
ing of *, the cluster merging process will be activated. The process involves the computa-

tion of the distance between * and tj, i* ≠ j. Two clusters *and *will be merged when *, * < 2, where* = arg min,  𑩠𑩠 *  *,  . Figure 1 summarizes the operations of the

OSORT algorithm.

Figure 1. The flowchart of OSORT operations.

Efficient Hardware Architecture for Correlation-Based Spike Detection and Unsupervised Clustering
http://dx.doi.org/10.5772/66105

5

2.3. Normalized correlation and OSORT algorithm for spike sorting

By combining the normalized correlation with the OSORT algorithm, an effective spike sorting
system for both spike detection and classification can be realized. The system is a feedback
system capable of automatic template generation for spike detection and unsupervised
clustering for the classification. The block diagram of the system is revealed in Figure 2.

Figure 2. The block diagram of the spike detection/sorting system based on GLRT test, normalized correlator, and
OSORT algorithms.

Initially, the clusters and templates produced by the OSORT are not available. As a result, it
may be difficult to carry out the normalized correlation for spike detection. One way to solve
this problem is to use only the block energy for the detection of spikes. The detected spikes are
then clustered by the OSORT algorithm for the generation of initial templates.

After the templates become available, the spike detection is then based on the normalized

correlation  . The input block is detected as a spike when any of the c normalized correlation

exceeds the threshold η. Because of the normalized correlation operations, the threshold value
is bounded as shown in Eq. (5). Note that the templates for spike detection will be updated
regularly so that the variations of input signals can be tracked to improve the spike detection
performance.

Field - Programmable Gate Array6

2.3. Normalized correlation and OSORT algorithm for spike sorting

By combining the normalized correlation with the OSORT algorithm, an effective spike sorting
system for both spike detection and classification can be realized. The system is a feedback
system capable of automatic template generation for spike detection and unsupervised
clustering for the classification. The block diagram of the system is revealed in Figure 2.

Figure 2. The block diagram of the spike detection/sorting system based on GLRT test, normalized correlator, and
OSORT algorithms.

Initially, the clusters and templates produced by the OSORT are not available. As a result, it
may be difficult to carry out the normalized correlation for spike detection. One way to solve
this problem is to use only the block energy for the detection of spikes. The detected spikes are
then clustered by the OSORT algorithm for the generation of initial templates.

After the templates become available, the spike detection is then based on the normalized

correlation  . The input block is detected as a spike when any of the c normalized correlation

exceeds the threshold η. Because of the normalized correlation operations, the threshold value
is bounded as shown in Eq. (5). Note that the templates for spike detection will be updated
regularly so that the variations of input signals can be tracked to improve the spike detection
performance.

Field - Programmable Gate Array6

The hardware architecture for implementing the spike sorting system is depicted in Figure 3.
The architecture contains two modules and one controller. The first module of the architecture,
termed normalized correlator module, is responsible for the spike detection. It is capable of
performing both the GLRT and normalized correlation operations. The second module, termed
OSORT module, carries out the unsupervised OSORT spike sorting. The global controller
coordinates the operations of these two modules. The architecture and detailed operations of
the normalized correlator module and OSORT module are presented in the following two
sections.

Figure 3. The hardware architecture of the proposed spike sorting system.

3. Architecture of the normalized correlator module

The block diagram of the normalized correlator module is revealed in Figure 4. The module
supports the filtering, block energy computation, correlation computation, detection, and
buffering. The filtering operation is the preprocessing step for the spike detection. It reduces
the DC offset and noises. The objective of the block energy computation is to find ||xm||2,

which is then followed by correlation computation for calculating  . The detection results

are then produced by the comparison operations. The detected spikes are stored in the switch
buffer, which can be accessed by the OSORT module for subsequent clustering operations.
Without loss of generality, the length of spike is set to be N = 64 for our discussion.

Efficient Hardware Architecture for Correlation-Based Spike Detection and Unsupervised Clustering
http://dx.doi.org/10.5772/66105

7

Figure 4. The block diagram of the normalized correlator module.

3.1. Filter unit and block energy computation unit

The filter unit is a hardware implementation of a band-pass Butterworth filter. The filter unit
contains multipliers, shift registers, and adders. The architecture is a simple realization of the
direct form I of IIR filters. To implement the block energy computation unit, we first note that
a basic approach may involve N multiplications for the energy computation, resulting in high-
area costs. The proposed approach is based on the fact that

2 2 2 2
1 .- é ù é ù= + - -ë û ë ûx xm m x m x m N (6)

Consequently, the calculation of ||xm||2 needs only two multiplications. This is because ||
xm − 1||2 (i.e., the block energy of the previous block) is already available. Figure 5 shows the
resulting design, which contains two multiplier, a single N-stage shift register, and two adders.
The goal of the shift register is to store the previous samples (i.e., x[k], k = m − 1,…, m − N) of

Field - Programmable Gate Array8

Figure 4. The block diagram of the normalized correlator module.

3.1. Filter unit and block energy computation unit

The filter unit is a hardware implementation of a band-pass Butterworth filter. The filter unit
contains multipliers, shift registers, and adders. The architecture is a simple realization of the
direct form I of IIR filters. To implement the block energy computation unit, we first note that
a basic approach may involve N multiplications for the energy computation, resulting in high-
area costs. The proposed approach is based on the fact that

2 2 2 2
1 .- é ù é ù= + - -ë û ë ûx xm m x m x m N (6)

Consequently, the calculation of ||xm||2 needs only two multiplications. This is because ||
xm − 1||2 (i.e., the block energy of the previous block) is already available. Figure 5 shows the
resulting design, which contains two multiplier, a single N-stage shift register, and two adders.
The goal of the shift register is to store the previous samples (i.e., x[k], k = m − 1,…, m − N) of

Field - Programmable Gate Array8

x[m]. The shift register therefore is able to offer the sample x[m − N] for the calculation of
x2[m − N]. In addition, the shift register can be employed for the correlation computation.

Figure 5. Architecture of block energy computation unit.

3.2. Correlator unit

The goal of the unit is to carry out the normalized correlation  . Note that the normalized

template  can be obtained offline from the OSORT circuit. Therefore, it is only necessary to
find  online. One simple approach to compute  is to divide each sample of xm by ||xm||.

Because the block xm contains N samples, N dividers are required. In the proposed architecture,

a novel postnormalization approach is employed, where the inner product   is computed

first. Because   is a scalar, we can then use only one divider to compute   by dividing  
by ||xm||.

Figure 6 shows the architecture of the correlator unit for the case of two templates. The cir-
cuit consists of 2N multipliers, one squared root circuit, two accumulators, and one divider.
Moreover, there are two registers for storing the normalized templates 1 and 2. Recall that

the shift register in the block energy computation unit contains the samples of xm. Based on

xm and ,  = 1, 2,the computation of each  ,  = 1, 2, is carried out in parallel. Moreover,

the multiplication results are accumulated in a pipelined fashion. The accumulation results
are then scaled by a factor of 1/||xm||. Because the block energy computation unit provides

Efficient Hardware Architecture for Correlation-Based Spike Detection and Unsupervised Clustering
http://dx.doi.org/10.5772/66105

9

||xm||2, only a squared root circuit and an inverse circuit are needed for the calculation of
1/||xm||, as shown in Figure 6.

Figure 6. Architecture of correlator unit.

3.3. Threshold unit

Although the operations of the unit can be easily accomplished by a simple comparison circuit,
the detection accuracy may be further improved by taking the detection results of the neigh-
boring blocks into consideration. Because the neighboring blocks are overlapping, they may
be similar. As a result, the normalized correlation values of the neighboring blocks may also
be similar. Therefore, it is likely that an occurrence of a single spike may result in the issues of
multiple hits.

To solve this problem, when the normalized correlation value of a block is above the threshold,
a hit is not immediately declared. The architecture will then examine the normalized

Field - Programmable Gate Array10

||xm||2, only a squared root circuit and an inverse circuit are needed for the calculation of
1/||xm||, as shown in Figure 6.

Figure 6. Architecture of correlator unit.

3.3. Threshold unit

Although the operations of the unit can be easily accomplished by a simple comparison circuit,
the detection accuracy may be further improved by taking the detection results of the neigh-
boring blocks into consideration. Because the neighboring blocks are overlapping, they may
be similar. As a result, the normalized correlation values of the neighboring blocks may also
be similar. Therefore, it is likely that an occurrence of a single spike may result in the issues of
multiple hits.

To solve this problem, when the normalized correlation value of a block is above the threshold,
a hit is not immediately declared. The architecture will then examine the normalized

Field - Programmable Gate Array10

correlation values of the previous blocks. A hit would actually be issued only if k out of K
preceding blocks have normalized correlation values above a threshold. In this way, the false
alarm rate (FAR) can be effectively lowered. Figure 7 shows the corresponding architecture,
which contains a K-stage shift register storing the comparison results of the K previous blocks.
Each stage of the shift register contains only a single-bit information, where 1 indicates that
the corresponding block has normalized correlation value above the threshold η, and 0
otherwise. Therefore, if the sum of all the K stages is larger or equal to k, then at least k
preceding blocks have normalized correlation value above the threshold. In this case, the
architecture issues a hit.

Figure 7. Architecture of threshold unit.

3.4. Switch buffer

The goal of switch buffer is to store the detected spikes for subsequent clustering operations.
As shown in Figure 8, there are two buffers (denoted as Buffer x and Buffer y) in the circuit.
When one of the buffers stores the detected spikes, the other provides the detected spikes to
the OSORT module for clustering operations. The switch controller in the circuit is responsible
for the determination of the buffer to store the detected spikes. The flowchart of the operations
of the switch controller is shown in Figure 9. From the flowchart, it can be observed that the
controller assigns the detected spikes to a buffer in accordance with the availability of that
buffer. A buffer is available when it has empty cells for storing new detected spikes, and is not
currently providing spikes to the OSORT module.

Efficient Hardware Architecture for Correlation-Based Spike Detection and Unsupervised Clustering
http://dx.doi.org/10.5772/66105

11

Figure 8. Architecture of switch buffer.

Figure 9. Flowchart of switch controller.

Field - Programmable Gate Array12

Figure 8. Architecture of switch buffer.

Figure 9. Flowchart of switch controller.

Field - Programmable Gate Array12

4. The architecture of OSORT module

The OSORT module contains buffers, distance computation unit, mean updating unit,
comparator, and controller, as shown in Figure 10. The centroid and the size of each cluster
are stored in the buffers. The distance computation unit and mean updating unit are respon-
sible for squared distance computation and the updating of centroid of the clusters, respec-
tively. The control unit coordinates different components of the OSORT module for carrying
out the unsupervised clustering operations.

Figure 10. Architecture of OSORT module.

4.1. Buffers

There are three buffers in the OSORT module, which are denoted by Buffer 1, Buffer 2, and
Buffer 3, respectively. Buffer 1 holds an input spike detected by the correlators. Buffers 2 and
3 contain the mean value and size of each cluster, respectively. Buffer 1 is a simple N-stage shift
register, fetching or delivering one sample of the input spike at a time. As shown in Fig‐
ure 11, Buffer 2 contains QN-stage shift registers. Each shift register holds the mean value of
a cluster. Therefore, Q is the upper-bound of the number of clusters. Buffer 2 updates or
provides mean values of clusters one at a time. Because the mean value ti of a cluster  is the

average value of the spikes mapping to that cluster, the mean value also contains N samples.
Accessing the mean value of the cluster is also carried out one sample at a time. Buffer 3 records
the size of each cluster. There are Q entries in the buffer. The ith entry contains the number of
spikes in the cluster .

Efficient Hardware Architecture for Correlation-Based Spike Detection and Unsupervised Clustering
http://dx.doi.org/10.5772/66105

13

Figure 11. Architecture of Buffer 2.

4.2. Distance computation unit and mean updating unit

Because buffers in the memory unit can be accessed one sample at a time, the circuits in the
distance computation unit and mean updating unit provide only sample-wise computations.
This is beneficial for reducing the area costs. There are two cases when the distance computa-
tion unit needs to be activated. In the first case, a new spike is arrived. To find the cluster for
the new spike, the squared distance computation is required. In the second case, it is desired
to merge two clusters. The squared distance calculation is needed for finding the closest
clusters. The distance computation unit takes the samples fetched from Buffer 1 and Buffer 2
as inputs. The unit finds the squared distance between the spikes stored in Buffer 1 and the
mean value of a cluster selected in Buffer 2. Upon the completion of the squared distance
computation, the comparison of the new squared distance with the current minimum distance
stored in a register of the unit is carried out. If the new squared distance is smaller than the
current minimum distance, then it becomes the new current minimum distance. The same
squared distance computation and comparison operations will be repeated for until all the
mean values in Buffer 2 are searched. This scheme is useful for finding the best matching mean
value stored in Buffer 2 to the spike stored in Buffer 1.

The mean updating unit is activated after a new spike is assigned to a cluster, or after two
clusters are merged. In these cases, the mean of the updated cluster needs to be computed.
Note that the clusters to be updated are determined by the distance computation unit. The
mean updating unit is only responsible for the computation of the new mean of the updated
clusters. The circuit takes waveforms stored in Buffer 1 and Buffer 2, and the cluster size stored

Field - Programmable Gate Array14

Figure 11. Architecture of Buffer 2.

4.2. Distance computation unit and mean updating unit

Because buffers in the memory unit can be accessed one sample at a time, the circuits in the
distance computation unit and mean updating unit provide only sample-wise computations.
This is beneficial for reducing the area costs. There are two cases when the distance computa-
tion unit needs to be activated. In the first case, a new spike is arrived. To find the cluster for
the new spike, the squared distance computation is required. In the second case, it is desired
to merge two clusters. The squared distance calculation is needed for finding the closest
clusters. The distance computation unit takes the samples fetched from Buffer 1 and Buffer 2
as inputs. The unit finds the squared distance between the spikes stored in Buffer 1 and the
mean value of a cluster selected in Buffer 2. Upon the completion of the squared distance
computation, the comparison of the new squared distance with the current minimum distance
stored in a register of the unit is carried out. If the new squared distance is smaller than the
current minimum distance, then it becomes the new current minimum distance. The same
squared distance computation and comparison operations will be repeated for until all the
mean values in Buffer 2 are searched. This scheme is useful for finding the best matching mean
value stored in Buffer 2 to the spike stored in Buffer 1.

The mean updating unit is activated after a new spike is assigned to a cluster, or after two
clusters are merged. In these cases, the mean of the updated cluster needs to be computed.
Note that the clusters to be updated are determined by the distance computation unit. The
mean updating unit is only responsible for the computation of the new mean of the updated
clusters. The circuit takes waveforms stored in Buffer 1 and Buffer 2, and the cluster size stored

Field - Programmable Gate Array14

in Buffer 3 as inputs. The updated mean is the weighted sum of the waveforms obtained from
Buffer 1 and Buffer 2, as shown in Figure 12. The weights are determined from the cluster sizes
from Buffer 3. The updated results are then stored back to Buffer 2 and Buffer 3.

Figure 12. Architecture of mean updating unit.

4.3. Control unit

The control unit activates components of the memory unit and cluster computation unit for
the unsupervised clustering. The states of the control unit are summarized in Table 1. In
addition to the tasks carried out by each state, the activated circuit components associated with
each state are also included in the table. Figure 13 shows the flowchart of the OSORT algorithm
in terms of the states defined in Table 1.

States Activated components Operations

State 1 Buffer 1

Distance computation unit

Fetch a new spike to Buffer 1

State 2 Buffers 1, 2 Find the best matching cluster to the spike in Buffer 1

State 3 Buffers 1, 2, 3 Creating a new cluster

State 4 Buffers 1, 2, 3

Mean updating unit

Update the mean and size of a cluster

State 5 Buffers 2, 3 Remove a cluster

Table 1. States of the control unit in OSORT module.

Efficient Hardware Architecture for Correlation-Based Spike Detection and Unsupervised Clustering
http://dx.doi.org/10.5772/66105

15

Figure 13. The flowchart of the controller in the OSORT module.

The flowchart in Figure 13 is consistent with that shown in Figure 1. Although the combina-
tions of the states shown in Table 1 are able to implement the OSORT algorithm, additional
modifications may still be desirable to facilitate the hardware implementation. One modifica-
tion implemented in the controller is to handle the cases when the current number of clusters
reaches the upper limit Q, and the creation of new cluster is still desired. In this case, the least
recently updated cluster will be replaced by the new cluster. To carry out this modification, an
additional field is added to each entry of Buffer 3. The entry indicates the number of updates
in the past for the corresponding cluster. This modification can be viewed as an additional
function supported in State 3 in Table 1 for the creation of a new cluster.

5. Global controller and NOC

As depicted in Figure 3, the global controller in the proposed spike sorting system coordinates
the operations of the normalized correlator module and OSORT module. The major goal of
the global controller is to fetch detected spikes from the normalized correlator module and

Field - Programmable Gate Array16

Figure 13. The flowchart of the controller in the OSORT module.

The flowchart in Figure 13 is consistent with that shown in Figure 1. Although the combina-
tions of the states shown in Table 1 are able to implement the OSORT algorithm, additional
modifications may still be desirable to facilitate the hardware implementation. One modifica-
tion implemented in the controller is to handle the cases when the current number of clusters
reaches the upper limit Q, and the creation of new cluster is still desired. In this case, the least
recently updated cluster will be replaced by the new cluster. To carry out this modification, an
additional field is added to each entry of Buffer 3. The entry indicates the number of updates
in the past for the corresponding cluster. This modification can be viewed as an additional
function supported in State 3 in Table 1 for the creation of a new cluster.

5. Global controller and NOC

As depicted in Figure 3, the global controller in the proposed spike sorting system coordinates
the operations of the normalized correlator module and OSORT module. The major goal of
the global controller is to fetch detected spikes from the normalized correlator module and

Field - Programmable Gate Array16

deliver them to the OSORT module. When a buffer in the switch buffer of the normalized
correlator module becomes full, the global controller starts to fetch the detected spikes one at
a time from the buffer to the OSORT module.

The fetching operations are repeated until all the spikes stored in the buffer are fetched. At this
time, the buffer becomes available again for storing the new detected spikes, as shown in
Figure 14. The proposed hardware spike sorting system is configured as a user component in
a NOC system, which is designed by the QSYS platform. In addition to the proposed system,
we see from Figure 15 that the NOC contains the NIOS II processor, a DMA controller, an on-
chip RAM, and a hardware timer.

Figure 14. The flowchart of the global controller.

The raw spike trains are stored in the on-chip RAM. The DMA controller is responsible for
delivering the spike trains to the proposed hardware system without the intervention of the
NIOS II processor. The DMA controller is able to halt the delivery of spike trains automatically
when both buffers in the switch buffer of the normalized correlator module are unavailable
and/or full. The hardware timer is used to measure the computation speed of the proposed
system. The NIOS II processor integrates different components in the NOC. It activates the
DMA controllers for the delivery of spike trains. After that, the processor collects the spike
sorting results from the OSORT modules of the proposed spike sorting system. The processor
is also able to read the information provided by the hardware timer for the measurement of
the computation speed of the proposed circuit.

Efficient Hardware Architecture for Correlation-Based Spike Detection and Unsupervised Clustering
http://dx.doi.org/10.5772/66105

17

Figure 15. The proposed NOC system for spike sorting.

6. Experimental results

This section presents some experimental results of the proposed architecture. The extracellular
recordings for the experiments are based on the simulator developed in [21], where the ground
truth about spiking activity can be accessed. Each spike has length 2.67 ms. The sampling rate
for the spike recording is 24,000 samples/s. Therefore, there are 64 samples (i.e., N = 64) in each
spike.

The performance of the proposed architecture for spike detection is first evaluated. The
performance evaluation is based on the true positive rate (TPR) and false alarm rate (FAR).
The TPR of a detection algorithm is defined as the number of true spikes detected by the
algorithm divided by the total number of true spikes. The FAR of a detection algorithm is the
number of silent segments, which are falsely detected as spikes by the algorithm, divided by
the total number of the segments detected by the algorithm. The TPR and FAR of various
detection algorithms are included in Table 2. In the experiments, the spike trains are from two
neurons. Therefore, there are two templates (i.e., c = 2) for the proposed normalized correlator.

Because the normalized correlation is effective for detecting real spikes and ignoring silent
segments, we can observe from Table 2 that the proposed architecture has superior perform-
ance over the other algorithms. We use the example shown in Figure 16 to further demonstrate
this fact. In the example, a noisy spike train with SNR = −3 dB is used for the spike detection.
Figure 16 reveals the normalized correlation values   , i = 1, 2, for the spike train. From

Field - Programmable Gate Array18

Figure 15. The proposed NOC system for spike sorting.

6. Experimental results

This section presents some experimental results of the proposed architecture. The extracellular
recordings for the experiments are based on the simulator developed in [21], where the ground
truth about spiking activity can be accessed. Each spike has length 2.67 ms. The sampling rate
for the spike recording is 24,000 samples/s. Therefore, there are 64 samples (i.e., N = 64) in each
spike.

The performance of the proposed architecture for spike detection is first evaluated. The
performance evaluation is based on the true positive rate (TPR) and false alarm rate (FAR).
The TPR of a detection algorithm is defined as the number of true spikes detected by the
algorithm divided by the total number of true spikes. The FAR of a detection algorithm is the
number of silent segments, which are falsely detected as spikes by the algorithm, divided by
the total number of the segments detected by the algorithm. The TPR and FAR of various
detection algorithms are included in Table 2. In the experiments, the spike trains are from two
neurons. Therefore, there are two templates (i.e., c = 2) for the proposed normalized correlator.

Because the normalized correlation is effective for detecting real spikes and ignoring silent
segments, we can observe from Table 2 that the proposed architecture has superior perform-
ance over the other algorithms. We use the example shown in Figure 16 to further demonstrate
this fact. In the example, a noisy spike train with SNR = −3 dB is used for the spike detection.
Figure 16 reveals the normalized correlation values   , i = 1, 2, for the spike train. From

Field - Programmable Gate Array18

Figure 16, we see that, because of large noise corruption, it is difficult to locate spikes even by
direct eye inspection. However, based on the normalized correlation values provided by the
proposed architecture, the location of true spikes can still be effectively identified.

SNR (dB) Normalized

correlator

Noncoherent energy

detector [17]

NEO

[12]

SWT

[22]

Matched

filter [16]

10 TPR   93.64% 91.37% 93.10% 94.82% 89.65%

FAR   0.40% 5.35% 3.57% 6.77% 2.80%

1 TPR   90.04% 88.03% 87.21% 92.43% 82.90%

FAR   0.92% 6.36% 22.49% 79.36% 3.02%

−3 TPR   82.71% 82.60% 80.53% 86.66% 80.31%

FAR   1.06% 9.52% 57.87% 82.43% 8.92%

Table 2. TPR and FAR values of various spike detection algorithms.

Figure 16. An example of the proposed normalized correlator for noisy spike detection with SNR = −3 dB for c = 2 tem-
plates.

Next we evaluate the area complexities. Because adders, multipliers, dividers, comparators,
and registers are the basic building blocks of the proposed architecture, the area complexities

Efficient Hardware Architecture for Correlation-Based Spike Detection and Unsupervised Clustering
http://dx.doi.org/10.5772/66105

19

are separated into five types: the number of adders, multipliers, dividers, comparators, and
registers. Tables 3 and 4 show the area complexities of the normalized correlator and OSORT
modules, respectively. It can be observed from Table 3 that, in the normalized correlator
module, the correlator unit and switch buffer have larger area complexities. The number of
adders, multipliers, and registers grows with the block dimension N and the number of
templates c in the correlator unit. Let L be the capacity (i.e., the maximum number of spikes)
of each buffer in the switch buffer. The number of registers in the switch buffer therefore is
dependent on L and N, as shown in Table 3. The area complexities of the other types are of
O(1). Therefore, the proposed circuit has low consumption of dividers and comparators. From
Table 4, we observe that only the area complexities of the buffers in the OSORT module grow
with N. The other parts of the OSORT module have fixed area complexities.

Filter unit Block energy
computation

Correlator Thresholding unit Switch buffer Subtotal

Adders O(1) O(1) O(cN) O(1) 0 O(cN)

Multipliers O(1) O(1) O(cN) O(1) 0 O(cN)

Dividers 0 0 1 0 0 1

Comparators 0 0 0 O(1) 0 O(1)

Registers O(1) O(N) O(cN) O(1) O(LN) O(cN + LN)

Table 3. Area complexities of the normalized correlator module.

Buffer Distance computation
unit

Mean
updating unit

Subtotal

Adders 0 O(1) O(1) O(1)

Multipliers 0 O(1) O(1) O(1)

Dividers 0 0 O(1) O(1)

Comparators 0 O(1) 0 O(1)

Registers O(cN) O(1) O(1) O(cN)

Table 4. Area complexities of the OSORT module.

The proposed architecture has been implemented by FPGA for performance measurement.
The target FPGA device for the hardware implementation is Altera STRATIX IV EP4SGX230.
The design platform for the experiments is the Altera QUARTUS II with QSYS. Table 5 shows
the hardware utilization of the proposed architecture. There are four different FPGA hardware
resources considered: adaptive look-up tables (ALUTs), dedicated logic registers, block
memory bits, and DSP blocks. The DSP blocks are dedicated to the implementations of adders,
multipliers, dividers, and comparators. The ALUTs, dedicated logic registers, and block
memory bits can be used for the implementation of registers, as well as adders, multipliers,
dividers, and comparators. It can be observed from Table 5 that the consumption of DSP blocks
of normalized correlator is higher than that of the OSORT module. This is because the

Field - Programmable Gate Array20

are separated into five types: the number of adders, multipliers, dividers, comparators, and
registers. Tables 3 and 4 show the area complexities of the normalized correlator and OSORT
modules, respectively. It can be observed from Table 3 that, in the normalized correlator
module, the correlator unit and switch buffer have larger area complexities. The number of
adders, multipliers, and registers grows with the block dimension N and the number of
templates c in the correlator unit. Let L be the capacity (i.e., the maximum number of spikes)
of each buffer in the switch buffer. The number of registers in the switch buffer therefore is
dependent on L and N, as shown in Table 3. The area complexities of the other types are of
O(1). Therefore, the proposed circuit has low consumption of dividers and comparators. From
Table 4, we observe that only the area complexities of the buffers in the OSORT module grow
with N. The other parts of the OSORT module have fixed area complexities.

Filter unit Block energy
computation

Correlator Thresholding unit Switch buffer Subtotal

Adders O(1) O(1) O(cN) O(1) 0 O(cN)

Multipliers O(1) O(1) O(cN) O(1) 0 O(cN)

Dividers 0 0 1 0 0 1

Comparators 0 0 0 O(1) 0 O(1)

Registers O(1) O(N) O(cN) O(1) O(LN) O(cN + LN)

Table 3. Area complexities of the normalized correlator module.

Buffer Distance computation
unit

Mean
updating unit

Subtotal

Adders 0 O(1) O(1) O(1)

Multipliers 0 O(1) O(1) O(1)

Dividers 0 0 O(1) O(1)

Comparators 0 O(1) 0 O(1)

Registers O(cN) O(1) O(1) O(cN)

Table 4. Area complexities of the OSORT module.

The proposed architecture has been implemented by FPGA for performance measurement.
The target FPGA device for the hardware implementation is Altera STRATIX IV EP4SGX230.
The design platform for the experiments is the Altera QUARTUS II with QSYS. Table 5 shows
the hardware utilization of the proposed architecture. There are four different FPGA hardware
resources considered: adaptive look-up tables (ALUTs), dedicated logic registers, block
memory bits, and DSP blocks. The DSP blocks are dedicated to the implementations of adders,
multipliers, dividers, and comparators. The ALUTs, dedicated logic registers, and block
memory bits can be used for the implementation of registers, as well as adders, multipliers,
dividers, and comparators. It can be observed from Table 5 that the consumption of DSP blocks
of normalized correlator is higher than that of the OSORT module. This is because the

Field - Programmable Gate Array20

normalized correlator requires more number of arithmetic operators. There are 182,400 ALUTs,
182,400 dedicated logic registers, 1288 DSP blocks, and 14,625,792 block memory bits in the
target FPGA device. It can be observed from Table 5 that only limited hardware resources are
consumed by the proposed circuit.

ALUTs Dedicated
logic registers

Block
memory bits

DSP blocks

Normalized correlator module 13,966 29,733 0 532

OSORT module 22,604 22,562 320 88

Total 39,355/182,400
(21.57%)

52,517/182,400
(28.79%)

320/14,625,792
(<0.1%)

642/1288
(49.84%)

Table 5. The utilization of FPGA resources of the proposed circuit. The switch buffer capacity for the measurement is
L = 40.

In addition to consuming low hardware resources, the proposed architecture is able to provide
high throughput. Table 6 reveals the throughput of the proposed architecture for various clock
rates and switch buffer size L. The throughput is defined as the number of spike samples which
can be processed by the proposed architecture per second. The unit of the throughput in the
table therefore is mega samples per second (Msamples/sec). It can be observed from Table 6
that the throughput grows with L and/or clock rate. In particular, when L = 32 and clock rate
is 100 MHz, the throughput is 25.04 Msamples/sec. The throughput of its software counterpart
running on Intel I7-930 processor at clock rate 2.8 GHz and 16 GB RAM is only 0.69 Msamples/
sec. The throughput of the proposed architecture therefore is 36 times higher than that of its
software counterpart.

Clock rate L = 20 L = 40 L = 80

50 MHz 9.22
Msamples/sec

10.25
Msamples/sec

13.31
Msamples/sec

75 MHz 13.00
Msamples/sec

15.34
Msamples/sec

20.00
Msamples/sec

100 MHz 17.80
Msamples/sec

20.25
Msamples/sec

25.04
Msamples/sec

Table 6. The throughput of the proposed circuit for various clock rates and switch buffer capacities L.

7. Concluding remarks

The proposed architecture has been found to be effective for real-time spike sorting. It features
high accuracy, low hardware resource consumption, and high throughput. The combination
of the normalized correlation and OSORT algorithm is beneficial for accurate spike detection
with high TPR and low FAR even for low SNR values. The postnormalization approach

Efficient Hardware Architecture for Correlation-Based Spike Detection and Unsupervised Clustering
http://dx.doi.org/10.5772/66105

21

adopted by the normalized correlator circuit is also able to reduce the area costs for the
normalization operations. In addition, the switch buffer in the correlation circuit can effectively
coordinate the operations of spike detection and classification for achieving high throughput.
Experimental results reveal that the proposed architecture achieves TPR = 82.71% and FAR =
1.06% for SNR = −3 dB. The ALUT consumption is only 21.57% for the FPGA device STRUTIX
IV EP4SGX230. The throughput is 25.04 Msamples/sec for the clock rate 100 MHz. All these
facts demonstrate the effectiveness of the proposed architecture.

Acknowledgements

The authors would like to acknowledge the financial support of the Ministry of Science and
Technology, Taiwan, under grant MOST 105-2221-E-003-011-MY2.

Author details

Chien-Min Ou1 and Wen-Jyi Hwang2*

*Address all correspondence to: whwang@csie.ntnu.edu.tw

1 Department of Electronics Engineering, Chien-Hsin University of Science and Technology,
Taoyuan, Taiwan

2 Department of Computer Science and Information Engineering, National Taiwan Normal
University, Taipei, Taiwan

References

[1] Einevoll, G. T.; Franke, F.; Hagen, E.; Pouzat, C.; Harris, K. D. Towards reliable spike-
train recordings from thousands of neurons with multielectrodes, Current Opinion in
Neurobiology 2012, 22, 11–17.

[2] Gibson, S.; Judy, J. W.; Markovic, D. Spike sorting: the first step in decoding the brain,
IEEE Signal Processing Magazine 2012, 29, 124–143.

[3] Hauck, S.; Dehon, A. Reconfigurable Computing: The Theory and Practice of FPGA-
Based Computing, Morgan Kaufmann: San Francisco, CA, USA, 2008.

[4] Zhu, X.; Yuan, L.; Wang, D.; Chen, Y. FPGA implementation of a probabilistic neural
network for spike sorting. In Proceeding of the IEEE International Conference on
Information Engineering and Computer Science, Piscataway, New Jersey, USA. 2010;
pp. 26–29.

Field - Programmable Gate Array22

adopted by the normalized correlator circuit is also able to reduce the area costs for the
normalization operations. In addition, the switch buffer in the correlation circuit can effectively
coordinate the operations of spike detection and classification for achieving high throughput.
Experimental results reveal that the proposed architecture achieves TPR = 82.71% and FAR =
1.06% for SNR = −3 dB. The ALUT consumption is only 21.57% for the FPGA device STRUTIX
IV EP4SGX230. The throughput is 25.04 Msamples/sec for the clock rate 100 MHz. All these
facts demonstrate the effectiveness of the proposed architecture.

Acknowledgements

The authors would like to acknowledge the financial support of the Ministry of Science and
Technology, Taiwan, under grant MOST 105-2221-E-003-011-MY2.

Author details

Chien-Min Ou1 and Wen-Jyi Hwang2*

*Address all correspondence to: whwang@csie.ntnu.edu.tw

1 Department of Electronics Engineering, Chien-Hsin University of Science and Technology,
Taoyuan, Taiwan

2 Department of Computer Science and Information Engineering, National Taiwan Normal
University, Taipei, Taiwan

References

[1] Einevoll, G. T.; Franke, F.; Hagen, E.; Pouzat, C.; Harris, K. D. Towards reliable spike-
train recordings from thousands of neurons with multielectrodes, Current Opinion in
Neurobiology 2012, 22, 11–17.

[2] Gibson, S.; Judy, J. W.; Markovic, D. Spike sorting: the first step in decoding the brain,
IEEE Signal Processing Magazine 2012, 29, 124–143.

[3] Hauck, S.; Dehon, A. Reconfigurable Computing: The Theory and Practice of FPGA-
Based Computing, Morgan Kaufmann: San Francisco, CA, USA, 2008.

[4] Zhu, X.; Yuan, L.; Wang, D.; Chen, Y. FPGA implementation of a probabilistic neural
network for spike sorting. In Proceeding of the IEEE International Conference on
Information Engineering and Computer Science, Piscataway, New Jersey, USA. 2010;
pp. 26–29.

Field - Programmable Gate Array22

[5] Dutta, K.; Prakash, N.; Kaushik, S. Probabilistic neural network approach to the
classification of demonstrative pronouns for indirect anaphora in Hindi. Expert
Systems with Applications 2010, 37, 5607–5613.

[6] Yu, B.; Mak, T.; Li, X.; Xia, F.; Yakovlev, A.; Sun, Y.; Poon, C.S. A reconfigurable Hebbian
eigenfilter for neurophysiological spike train analysis. In Proceedings of the IEEE
International Conference on Field Programmable Logic and Applications, Piscataway,
New Jersey, USA. 2010; pp. 556–561.

[7] Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Pearson: Upper Saddle
River, NJ, USA, 2009.

[8] Hwang, W. J.; Lee, W. H.; Lin, S. J.; Lai, S. Y. Efficient architecture for spike sorting in
reconfigurable hardware, Sensors 2013, 13, 14860–14887.

[9] Miyamoto, S.; Ichihashi, H.; Honda, K. Algorithms for Fuzzy Clustering, Springer:
Berlin/Heidelberg, Germany, 2010.

[10] Gibson, S.; Judy, J. W.;Markovic, D. An FPGA-based platform for accelerated offline
spike sorting, Journal of Neuroscience Methods 2013, 215, 1–11.

[11] Rutishauser, U. Online detection and sorting of extracellularly recorded action poten-
tials in human medial temporal lobe recordings, in vivo, Journal of Neuroscience
Methods 2006, 154, 204–224.

[12] Mukhopadhyay, S.; Ray, G. C. A new interpretation of nonlinear energy operator and
its efficacy in spike detection, IEEE Transactions on Biomedical Engineering 1998, 45,
180–187.

[13] Quiroga, R. Q.; Nadasdy, Z.; Ben-Shaul, Y. Unsupervised spike detection and sorting
with wavelets and superparamagnetic clustering, Neural Computation 2004, 16, 1661–
1687.

[14] Gibson, S.; Judy, J. W.; Markovic, D. Technology-aware algorithm design for neural
spike detection, feature extraction, and dimensionality reduction, IEEE Transactions on
Neural Systems and Rehabilitation Engineering 2010, 18, 469–478.

[15] Mtetwa, N.; Smith, L. S. Smoothing and thresholding in neuronal spike detection,
Neurocomputing 2006, 69, 1366–1370.

[16] Sato, T.; Suzuki, T.; Mabuchi, K. Fast template matching for spike sorting, Electronics
and Communications in Japan 2009, 92, 57–63.

[17] Oweiss, K.; Aghagolzadeh, M. Detection and classification of extracellular ***action
potential recordings, Chapter 2 of Statistical Signal Processing for Neuroscience,
Academic Press, Tokyo., pp.15–74, 2010.

[18] Kim, S.; McNames, J. Automatic spike detection based on adaptive template matching
for extracellular neural recordings, Journal of Neuroscience Methods 2007, 165, 165–
174.

Efficient Hardware Architecture for Correlation-Based Spike Detection and Unsupervised Clustering
http://dx.doi.org/10.5772/66105

23

[19] Hwang, W. J.; Wang, S. H.; Hsu, Y. T. Spike detection based on normalized correlation
with automatic template generation, Sensors 2014, 14, 11049–11069.

[20] NIOS II Processor Reference Handbook; Altera Corporation: San Jose, CA, USA, 2015.
Available online: http://www.altera.com/literature/lit‐nio2.jsp (accessed on 8 April
2015).

[21] Smith, L. S.; Mtetwa, N. A tool for synthesizing spike trains with realistic interference.
Journal of Neuroscience Methods 2007, 159, 170–180.

[22] Kim K.; Kim, S. A wavelet‐based method for action potential detection from extracel‐
lular neural signal recording with low signal‐to‐noise ratio, IEEE Transactions on
Biomedical Engineering 2003, 50, 999–1011.

Field - Programmable Gate Array24

[19] Hwang, W. J.; Wang, S. H.; Hsu, Y. T. Spike detection based on normalized correlation
with automatic template generation, Sensors 2014, 14, 11049–11069.

[20] NIOS II Processor Reference Handbook; Altera Corporation: San Jose, CA, USA, 2015.
Available online: http://www.altera.com/literature/lit‐nio2.jsp (accessed on 8 April
2015).

[21] Smith, L. S.; Mtetwa, N. A tool for synthesizing spike trains with realistic interference.
Journal of Neuroscience Methods 2007, 159, 170–180.

[22] Kim K.; Kim, S. A wavelet‐based method for action potential detection from extracel‐
lular neural signal recording with low signal‐to‐noise ratio, IEEE Transactions on
Biomedical Engineering 2003, 50, 999–1011.

Field - Programmable Gate Array24

Chapter 2

Efficient FPGA Implementation of a CTC Turbo Decoder

for WiMAX/LTE Mobile Systems

Cristian Anghel, Cristian Stanciu and

Constantin Paleologu

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67017

Abstract

This chapter describes the implementation on field programmable gate array (FPGA) of
a turbo decoder for 3GPP long-term evolution (LTE) standard, respectively, for IEEE
802.16-based WiMAX systems. We initially present the serial decoding architectures for
the two systems. The same approach is used; although for WiMAX the scheme imple-
ments a duo-binary code, while for LTE a binary code is included. The proposed LTE
serial decoding scheme is adapted for parallel transformation. Then, considering the
LTE high throughput requirements, a parallel decoding solution is proposed. Consider-
ing a parallelization with N = 2p levels, the parallel approach reduces the decoding
latency N times versus the serial decoding one. For parallel approach the decoding
performance suffers a small degradation, but we propose a solution that almost elimi-
nates this degradation, by performing an overlapped data block split. Moreover, consid-
ering the native properties of the LTE quadratic permutation polynomial (QPP)
interleaver, we propose a simplified parallel decoder architecture. The novelty of this
scheme is that only one interleaver module is used, no matter the value of N, by
introducing an even-odd merge sorting network. We propose for it a recursive approach
that uses only comparators and subtractors.

Keywords: LTE, WiMAX, turbo decoder, single interleaver, Max LOG MAP, parallel
architecture, FPGA

1. Introduction

The channel coding theory was intensively studied during the last decades, but the interest on this
topic increased even more following the pioneering work of Berrou et al. on turbo codes [1–3].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

In their early existence, the turbo codes proved to obtain great decoding performances, so that
they were used in many standards as recommendations. They transformed into a more
appealing solution once the processing capacity increased for the field programmable gate
array (FPGA) and digital signal processor (DSP). Their implementation complexity was not
prohibitive anymore, this allowing them to become mandatory.

In this context, the Third-Generation Partnership Project (3GPP) organization early proposed
these novel coding techniques. It should be mentioned that turbo codes were introduced in
standard by the first version of Universal Mobile Telecommunications System (UMTS) tech-
nology (in 1999). Moreover, the next UMTS releases (the following high-speed packet access)
contributed with new and interesting features, while turbo coding remained still unchanged.
Furthermore, several modifications were introduced by the long-term evolution (LTE) stan-
dard. Even if they were not significant as volume, their importance arose in terms of concept.
In this framework, the 3GPP proposed for LTE a new interleaver scheme, while maintaining
exactly the same coding structure as in UMTS. Also, the turbo codes were introduced by the
Institute of Electrical and Electronics Engineers (IEEE) in 802.16 standards, known as the base
for WiMAX systems.

In Ref. [4], an UMTS dedicated turbo decoding binary scheme is developed, whereas for
WiMAX systems a similar duo-binary architecture is presented in Refs. [5] and [6]. Thanks to
the new LTE/LTE-advanced (LTE-A) interleaver, the decoding performances are improved, as
compared to the ones corresponding to the UMTS standard. In addition, the new LTE
interleaver comes with native properties suited for a parallel decoding approach inside the
algorithm, thus taking advantage on the main idea brought by turbo decoders (i.e., exchanging
the extrinsic values between the two decoding units). In Ref. [7], a serial decoding scheme
implemented on FPGA is presented. However, parallelization is still required when high
throughput is required, as in the particular case of LTE systems using diversity techniques.

In the past years, many interesting parallel decoder schemes were studied by the researchers. In
this context, the obtained results are measured on two directions. The direction number 1 is
represented by the decoding performance degradation between the parallel and the serial solu-
tions. The direction number 2 is the hardware resources occupied for such parallel decoder
implementation. In Ref. [8], a first group of parallel decoding solutions is presented. It is based
on the classical maximum a posteriori (MAP) algorithm. This method passes through the trellis
twice, first time to compute the forward state metrics (FSM) and the second time to obtain the
backward state metrics (BSM) and simultaneously the log likelihood ratios (LLR). Following this
approach, several approaches were developed in order to reduce the theoretical latency of the
decoding process of 2K clock periods for each semi-iteration (where K is the data block length).

In Refs. [9] and [10], a second set of parallel architectures that take advantage of the quadratic
permutation polynomial (QPP) interleaver algebraic-geometric properties is described. In
these works, efficient hardware implementations of the QPP interleaver are proposed. How-
ever, the parallelization factor N still represents the number of used interleavers in the devel-
oped architectures.

In Ref. [11], a third approach was reported, which consists in using a folded memory. All the
data needed for parallel processing are stored on the same time. On the other hand, the main

Field - Programmable Gate Array26

In their early existence, the turbo codes proved to obtain great decoding performances, so that
they were used in many standards as recommendations. They transformed into a more
appealing solution once the processing capacity increased for the field programmable gate
array (FPGA) and digital signal processor (DSP). Their implementation complexity was not
prohibitive anymore, this allowing them to become mandatory.

In this context, the Third-Generation Partnership Project (3GPP) organization early proposed
these novel coding techniques. It should be mentioned that turbo codes were introduced in
standard by the first version of Universal Mobile Telecommunications System (UMTS) tech-
nology (in 1999). Moreover, the next UMTS releases (the following high-speed packet access)
contributed with new and interesting features, while turbo coding remained still unchanged.
Furthermore, several modifications were introduced by the long-term evolution (LTE) stan-
dard. Even if they were not significant as volume, their importance arose in terms of concept.
In this framework, the 3GPP proposed for LTE a new interleaver scheme, while maintaining
exactly the same coding structure as in UMTS. Also, the turbo codes were introduced by the
Institute of Electrical and Electronics Engineers (IEEE) in 802.16 standards, known as the base
for WiMAX systems.

In Ref. [4], an UMTS dedicated turbo decoding binary scheme is developed, whereas for
WiMAX systems a similar duo-binary architecture is presented in Refs. [5] and [6]. Thanks to
the new LTE/LTE-advanced (LTE-A) interleaver, the decoding performances are improved, as
compared to the ones corresponding to the UMTS standard. In addition, the new LTE
interleaver comes with native properties suited for a parallel decoding approach inside the
algorithm, thus taking advantage on the main idea brought by turbo decoders (i.e., exchanging
the extrinsic values between the two decoding units). In Ref. [7], a serial decoding scheme
implemented on FPGA is presented. However, parallelization is still required when high
throughput is required, as in the particular case of LTE systems using diversity techniques.

In the past years, many interesting parallel decoder schemes were studied by the researchers. In
this context, the obtained results are measured on two directions. The direction number 1 is
represented by the decoding performance degradation between the parallel and the serial solu-
tions. The direction number 2 is the hardware resources occupied for such parallel decoder
implementation. In Ref. [8], a first group of parallel decoding solutions is presented. It is based
on the classical maximum a posteriori (MAP) algorithm. This method passes through the trellis
twice, first time to compute the forward state metrics (FSM) and the second time to obtain the
backward state metrics (BSM) and simultaneously the log likelihood ratios (LLR). Following this
approach, several approaches were developed in order to reduce the theoretical latency of the
decoding process of 2K clock periods for each semi-iteration (where K is the data block length).

In Refs. [9] and [10], a second set of parallel architectures that take advantage of the quadratic
permutation polynomial (QPP) interleaver algebraic-geometric properties is described. In
these works, efficient hardware implementations of the QPP interleaver are proposed. How-
ever, the parallelization factor N still represents the number of used interleavers in the devel-
oped architectures.

In Ref. [11], a third approach was reported, which consists in using a folded memory. All the
data needed for parallel processing are stored on the same time. On the other hand, the main

Field - Programmable Gate Array26

challenge of this kind of implementation is to correctly distribute the data to each decoding
unit, once a memory location containing all N values is read. In order to solve this issue, an
architecture based on two Batcher sorting networks was proposed. However, even in this
approach, N interleavers are still needed to generate all the interleaved addresses that input
the master network.

In this chapter, we present the optimized implementations for serial architectures for WiMAX
and LTE turbo decoding schemes. Then, for LTE systems, we describe a parallel decoding
architecture introduced in Refs. [12] and [13], which also relies on a folded memory-based
approach. Nevertheless, the main difference as compared to the already existing solutions
presented above is that our proposed approach includes only one interleaver. Additionally,
with an even-odd merge sorting unit [14, 15], the parallel architecture maintains the same
structure as the serial one, the only difference being given by the fact that the soft-input soft-
output (SISO) decoding unit is included N times in the scheme. The block memory number
and dimensions remain unchanged between the two proposed decoding structures. In terms of
decoding performance, the obtained results for the serial and parallel approaches are almost
similar. We propose an overlapped data block split that reduces the small degradation intro-
duced by the parallel architecture.

Finally, we present throughput and speed results obtained when targeting a XC5VFX70T
[16] chip on Xilinx ML507 [17] board. Moreover, we provide simulation curves for the three
considered cases, i.e., serial decoding, parallel decoding and parallel decoding with overlap.

2. The coding scheme

2.1. WiMAX systems

Section 8.4 from 802.16 standard [18] presents the coding scheme on the basis of which the
proposed decoder is implemented. Figure 1 shows the duo-binary encoder. The native coding
rate is 1/3. In order to obtain other coding rates, a puncturing block must be used. Accordingly,
a depuncturing block must be added to the receiver architecture.

Figure 1. (a) 802-16e turbo coding scheme; (b) constituent encoder.

Efficient FPGA Implementation of a CTC Turbo Decoder for WiMAX/LTE Mobile Systems
http://dx.doi.org/10.5772/67017

27

Let us define the following parameters: coding rate R; block dimension (in pairs of bits, i.e., di-
bits) K, which is computed independent of a coding rate, as a function of the uncoded block
size; the number of iterations L, i.e., the latency Latency (in clock periods); information bits rate
Rb [Mbps]; and system clock frequency Fclk [MHz].

As mentioned in Ref. [6], the main problem of a convolutional turbo code (CTC) decoder
implementation is represented by the amount of required hardware resources. Moreover, in
order to reach the targeted high data rate, the system clock has to be fast. Equation (1) presents
the decoding throughput.

Rb ¼ 2K
Latency Tclk

(1)

For a fixed latency algorithm, according to Eq. (1), the output throughput is improved when
achieving a higher clock frequency. Another way is to reduce latency using a parallel architec-
ture; however, this increases the occupied area and may lead to a smaller clock frequency due
to longer routes. Moreover, another direct constraint is the significant memory needed for
storing data. This issue also affects the frequency, since a large number of used memory blocks
leads to a large resource spread on chip and, obviously, longer routes.

Taking into account the previously mentioned aspects, we can conclude that all the
parameters presented above are related, so that a global optimization is not possible.
Consequently, we have chosen to balance each direction in order to meet throughput
requirements.

2.2. LTE systems

A classic turbo coding scheme is presented in the 3GPP LTE specification, including two
constituent encoders and one interleaver module (Figure 2). The data block Ck can be observed
at the input of the LTE turbo encoder. The K bits from this input data block are transferred at
the output, as systematic bits, in the steam Xk. At the same time, the first constituent encoder
processes the input data block, resulting the parity bits Zk, whereas the second constituent

encoder processes the interleaved data block C
0
k, resulting the parity bits Z

0
k. Combining the

systematic bits and the two streams of parity bits, we obtain the following sequence (at the
output of the encoder): X1, Z1, Z’1, X2, Z2, Z’2, …, XK, ZK, Z’K.

In order to drive back the constituent encoders to the initial state (at the end of the coding
process), the switches from Figure 2 are moved from position A to position B. Since the final
states of the two constituent encoders are not the same (different input data blocks produce
different final state), this switching procedure generates tail bits for each encoder. These tail
bits are sent together with the systematic and parity bits, thus resulting the following final
sequence: XK+1, ZK+1, XK+2, ZK+2, XK+3, ZK+3, X’K+1, Z’K+1, X’K+2, Z’K+2, X’K+3, Z’K+3.

As it was previously mentioned and discussed in Ref. [7], the LTE turbo coding scheme
introduces a new interleaving structure. Thus, the input sequence is rearranged at the
output using:

Field - Programmable Gate Array28

Let us define the following parameters: coding rate R; block dimension (in pairs of bits, i.e., di-
bits) K, which is computed independent of a coding rate, as a function of the uncoded block
size; the number of iterations L, i.e., the latency Latency (in clock periods); information bits rate
Rb [Mbps]; and system clock frequency Fclk [MHz].

As mentioned in Ref. [6], the main problem of a convolutional turbo code (CTC) decoder
implementation is represented by the amount of required hardware resources. Moreover, in
order to reach the targeted high data rate, the system clock has to be fast. Equation (1) presents
the decoding throughput.

Rb ¼ 2K
Latency Tclk

(1)

For a fixed latency algorithm, according to Eq. (1), the output throughput is improved when
achieving a higher clock frequency. Another way is to reduce latency using a parallel architec-
ture; however, this increases the occupied area and may lead to a smaller clock frequency due
to longer routes. Moreover, another direct constraint is the significant memory needed for
storing data. This issue also affects the frequency, since a large number of used memory blocks
leads to a large resource spread on chip and, obviously, longer routes.

Taking into account the previously mentioned aspects, we can conclude that all the
parameters presented above are related, so that a global optimization is not possible.
Consequently, we have chosen to balance each direction in order to meet throughput
requirements.

2.2. LTE systems

A classic turbo coding scheme is presented in the 3GPP LTE specification, including two
constituent encoders and one interleaver module (Figure 2). The data block Ck can be observed
at the input of the LTE turbo encoder. The K bits from this input data block are transferred at
the output, as systematic bits, in the steam Xk. At the same time, the first constituent encoder
processes the input data block, resulting the parity bits Zk, whereas the second constituent

encoder processes the interleaved data block C
0
k, resulting the parity bits Z

0
k. Combining the

systematic bits and the two streams of parity bits, we obtain the following sequence (at the
output of the encoder): X1, Z1, Z’1, X2, Z2, Z’2, …, XK, ZK, Z’K.

In order to drive back the constituent encoders to the initial state (at the end of the coding
process), the switches from Figure 2 are moved from position A to position B. Since the final
states of the two constituent encoders are not the same (different input data blocks produce
different final state), this switching procedure generates tail bits for each encoder. These tail
bits are sent together with the systematic and parity bits, thus resulting the following final
sequence: XK+1, ZK+1, XK+2, ZK+2, XK+3, ZK+3, X’K+1, Z’K+1, X’K+2, Z’K+2, X’K+3, Z’K+3.

As it was previously mentioned and discussed in Ref. [7], the LTE turbo coding scheme
introduces a new interleaving structure. Thus, the input sequence is rearranged at the
output using:

Field - Programmable Gate Array28

C′
i ¼ CπðiÞ, i ¼ 1, 2,…,K , (2)

where the interliving function π applied over the output index i is defined as

πðiÞ ¼ ðf 1 � iþ f 2 � i2ÞmodK (3)

The input block length K and the parameters f1 and f2 are provided in Table 5.1.3-3 in Ref. [19].

3. The decoding algorithm

3.1. WiMAX systems

The decoding architecture consists of two decoding units called constituent decoders. Each
such unit receives systematic bits (in natural order or interleaved) and parity bits, as shown in
Figure 1.

The block diagram implements a maximum-logarithmic-maximum A posteriori (Max-Log-
MAP) algorithm. For the case of turbo binary codes, the decoder scheme will represent, in
the log likelihood ratio (LLR) space, each binary symbol as a single likelihood ratio. But in
the situation of turbo duo-binary codes, the decoding unit requires three likelihood ratios
in the same space. If we consider the duo-binary pair Ak and Bk, the LLRs may be
computed as:

Figure 2. LTE turbo coding scheme.

Efficient FPGA Implementation of a CTC Turbo Decoder for WiMAX/LTE Mobile Systems
http://dx.doi.org/10.5772/67017

29

Λa,b ¼ ðAk,BkÞ ¼ log
PðAk ¼ a,Bk ¼ bÞ
PðAk ¼ 0,Bk ¼ 0Þ (4)

where (a,b) are (0,1), (1,0), or (1,1). The ratio set is updated by each decoding unit (constituent
decoder) for each input pair, using the corresponding LLRs and parity bits, also seen as LLRs.
Then, the output LLRs minus the input LLRs provides the extrinsic values. The trellis for a
duo-binary code contains eight states, each such state with four inputs and four outputs, as
presented in Figure 3. Using the systematic and parity pairs LLRs, for each branch, the metric
γkðSi ! SjÞ is computed, i.e.,

γkðSi ! SjÞ ¼ Λi
a,bðAk,BkÞ þ wΛðWkÞ þ yΛðYkÞ (5)

The constituent decoder (Figure 4) performs the corresponding processing forward and back-
ward over the trellis. When moving forward, the decoder computes the unnormalized metric
α

0
kþ1ðSjÞ corresponding to each computed normalized metric αkðSiÞ associated with state Si,

using (Figure 4)

α′
kþ1ðSjÞ ¼ max

Si!Sj
fαkðSiÞ þ γkðSi ! SjÞg (6)

Figure 3. WiMAX decoder trellis.

Field - Programmable Gate Array30

Λa,b ¼ ðAk,BkÞ ¼ log
PðAk ¼ a,Bk ¼ bÞ
PðAk ¼ 0,Bk ¼ 0Þ (4)

where (a,b) are (0,1), (1,0), or (1,1). The ratio set is updated by each decoding unit (constituent
decoder) for each input pair, using the corresponding LLRs and parity bits, also seen as LLRs.
Then, the output LLRs minus the input LLRs provides the extrinsic values. The trellis for a
duo-binary code contains eight states, each such state with four inputs and four outputs, as
presented in Figure 3. Using the systematic and parity pairs LLRs, for each branch, the metric
γkðSi ! SjÞ is computed, i.e.,

γkðSi ! SjÞ ¼ Λi
a,bðAk,BkÞ þ wΛðWkÞ þ yΛðYkÞ (5)

The constituent decoder (Figure 4) performs the corresponding processing forward and back-
ward over the trellis. When moving forward, the decoder computes the unnormalized metric
α

0
kþ1ðSjÞ corresponding to each computed normalized metric αkðSiÞ associated with state Si,

using (Figure 4)

α′
kþ1ðSjÞ ¼ max

Si!Sj
fαkðSiÞ þ γkðSi ! SjÞg (6)

Figure 3. WiMAX decoder trellis.

Field - Programmable Gate Array30

where the operator “maximum” is executed over all four branches entering the state Sj at the
time stamp k + 1. Once the metrics for all states are updated at time stamp k + 1, the normali-
zation versus the state S0 value is made by the decoder. Analogously to forward processing, for
backward moving, the decoder computes:

β
0
kðSiÞ ¼ max

Si!Sj
fβkþ1ðSjÞ þ γkðSi ! SjÞg (7)

where the operator “maximum” and the normalization method are similar to Eq. (6).

The initialization with null values is carried out for all the forward and backward metrics at all
states. Once the new values are computing and stored, the decoding unit executes the second
step in the decoding procedure, i.e., the LLRs computing as in Eq. (4). The decoding unit starts
by computing the likelihood ratio for each branch

ZkðSi ! SjÞ ¼ αkðSiÞ þ γkðSi ! SjÞ þ βkþ1ðSjÞ (8)

and continues with the value

tkða, bÞ ¼ max
Si!Sj:ða, bÞ

fZkg (9)

where the operator “maximum” is computed over all eight branches generated by the pair
(a, b). At the end, the output LLR is computed as

Λo
a,bðAk,BkÞ ¼ tkða, bÞ−tkð0, 0Þ (10)

The decoding procedure is executed for a decided number of iterations or until a convergence
criterion is reached. Then, a final decision is taken over the bits. This is achieved by computing
for each bit from the pair (Ak, Bk) the corresponding LLR:

ΛðAkÞ ¼ maxfΛo
1,0ðAk,BkÞ,Λo

1,1ðAk,BkÞg−maxfΛo
0,0ðAk,BkÞ,Λo

0,1ðAk,BkÞg (11)

ΛðBkÞ ¼ maxfΛo
0,1ðAk,BkÞ,Λo

1,1ðAk,BkÞg−maxfΛo
0,0ðAk,BkÞ,Λo

1,0ðAk,BkÞg, (12)

Figure 4. Decoder block scheme.

Efficient FPGA Implementation of a CTC Turbo Decoder for WiMAX/LTE Mobile Systems
http://dx.doi.org/10.5772/67017

31

where Λo
0,0ðAk,BkÞ ¼ 0. Finally, by comparing each LLR with a null threshold, i.e., looking at

the sign, the hard decision is made.

3.2. LTE systems

The decoding architecture for the LTE systems is presented in Figure 5. The two decoding
units called recursive systematic convolutional (RSC) use theoretically the MAP algorithm. The
MAP solution, a classical one, ensures the best decoding performances. Unfortunately, at the
same time, it is characterized by an increased implementation complexity and also it may
include variables with a large dynamic range. These are the reasons why the classical solution
with the MAP algorithm is used only as a reference for the expected decoding performance.
When it comes to real implementation, new suboptimal algorithms have been studied: Loga-
rithmic MAP (Log MAP) [20], Max Log MAP, Constant Log MAP (Const Log MAP) [21] and
Linear Log MAP (Lin Log MAP) [22].

For the LTE systems, we consider a decoding architecture based on the Max Log MAP algo-
rithm. This suboptimal algorithm overcomes the problems of implementation complexity and
dynamic range by paying the price of lower decoding performance when compared with the
MAP algorithm. However, this degradation can be maintained inside some accepted limits.
Starting from the Jacobi logarithm, only the first term is used by the Max Log MAP algorithm,
i.e.,

max�ðx, yÞ ¼ lnðex þ eyÞ ¼ maxðx, yÞ þ lnð1þ e−jy−xjÞ ≈maxðx, yÞ : (13)

The trellis diagram for the turbo decoding architecture of the LTE systems contains eight
states, as presented in Figure 6. Each state of the diagram has two inputs and two outputs.
The branch metric between the states Si and Sj is

Figure 5. LTE turbo decoder.

Field - Programmable Gate Array32

where Λo
0,0ðAk,BkÞ ¼ 0. Finally, by comparing each LLR with a null threshold, i.e., looking at

the sign, the hard decision is made.

3.2. LTE systems

The decoding architecture for the LTE systems is presented in Figure 5. The two decoding
units called recursive systematic convolutional (RSC) use theoretically the MAP algorithm. The
MAP solution, a classical one, ensures the best decoding performances. Unfortunately, at the
same time, it is characterized by an increased implementation complexity and also it may
include variables with a large dynamic range. These are the reasons why the classical solution
with the MAP algorithm is used only as a reference for the expected decoding performance.
When it comes to real implementation, new suboptimal algorithms have been studied: Loga-
rithmic MAP (Log MAP) [20], Max Log MAP, Constant Log MAP (Const Log MAP) [21] and
Linear Log MAP (Lin Log MAP) [22].

For the LTE systems, we consider a decoding architecture based on the Max Log MAP algo-
rithm. This suboptimal algorithm overcomes the problems of implementation complexity and
dynamic range by paying the price of lower decoding performance when compared with the
MAP algorithm. However, this degradation can be maintained inside some accepted limits.
Starting from the Jacobi logarithm, only the first term is used by the Max Log MAP algorithm,
i.e.,

max�ðx, yÞ ¼ lnðex þ eyÞ ¼ maxðx, yÞ þ lnð1þ e−jy−xjÞ ≈maxðx, yÞ : (13)

The trellis diagram for the turbo decoding architecture of the LTE systems contains eight
states, as presented in Figure 6. Each state of the diagram has two inputs and two outputs.
The branch metric between the states Si and Sj is

Figure 5. LTE turbo decoder.

Field - Programmable Gate Array32

Figure 6. LTE turbo coder trellis.

Efficient FPGA Implementation of a CTC Turbo Decoder for WiMAX/LTE Mobile Systems
http://dx.doi.org/10.5772/67017

33

γij ¼ VðXkÞXði, jÞ þ ΛiðZkÞZði, jÞ , (14)

where X(i,j) and Z(i,j) are the data, respectively, the parity bits, both associated with one
branch and ΛiðZkÞ is the LLR for the input parity bit. For SISO 1 decoding unit, this input

LLR is ΛiðZkÞ, whereas for SISO 2 it becomes ΛiðZ0
kÞ. For SISO 1, VðXkÞ ¼ V1ðXkÞ

¼ ΛiðXkÞ þWðXkÞ, whereas for SISO 2, VðXkÞ ¼ V2ðX0
kÞ ¼ ILfΛo

1ðXkÞ þWðXkÞg, where “IL”
operator denotes the interleaving procedure. In Figure 5, W(Xk) is the extrinsic information,

whereas Λo
1ðXkÞ and Λo

2ðX
0
kÞ are the output LLRs generated by the two SISOs.

Looking at the LTE turbo encoder trellis, one can notice that between two states, there are four
possible values for the branch metrics:

γ0 ¼ 0
γ1 ¼ VðXkÞ
γ2 ¼ ΛiðZkÞ
γ2 ¼ VðXkÞ þ ΛiðZkÞ :

(15)

The LTE decoding process follows a similar approach as for WiMAX systems, i.e., it moves
forward and backward through the trellis.

3.2.1. Backward recursion

The algorithm moves backward over the trellis computing the metrics. The obtained values for
each node are stored in a normalized manner. They will be used for the LLR computation once
the algorithm will start moving forward through the trellis. We name βkðSiÞ the backward
metric computed at the kth stage, for the state Si, where 2 ≤ k ≤ K þ 3 and 0 ≤ i ≤ 7. For the
backward recursion, the initialization βKþ3ðSiÞ ¼ 0, 0 ≤ i ≤ 7 is used at the stage k = K + 3. For
the rest of the stages 2 ≤ k ≤ K + 2, the computed backward metrics are

β̂kðSiÞ ¼ maxf
�
βkþ1ðSj1Þ þ γij1

�
,
�
βkþ1ðSj2Þ þ γij2

�
g , (16)

where Sj1 and Sj2 are the two states from stage k + 1 connected to the state Si from stage k and

β̂kðSiÞ represents the unnormalized metric. Once the unnormalized metric β̂kðS0Þ is computed
for state S0, all the backward metrics for states S1…S7 are normalized as

βkðSiÞ ¼ β̂kðSiÞ−β̂kðS0Þ (17)

and then stored in the dedicated memory.

3.2.2. Forward recursion

When the backward recursion is finished, the algorithm moves forward through the trellis in
the normal direction. This specific phase of the decoding is similar to the one for Viterbi
algorithm. In this case, the storing procedure is needed only for the previous stage metrics,

Field - Programmable Gate Array34

γij ¼ VðXkÞXði, jÞ þ ΛiðZkÞZði, jÞ , (14)

where X(i,j) and Z(i,j) are the data, respectively, the parity bits, both associated with one
branch and ΛiðZkÞ is the LLR for the input parity bit. For SISO 1 decoding unit, this input

LLR is ΛiðZkÞ, whereas for SISO 2 it becomes ΛiðZ0
kÞ. For SISO 1, VðXkÞ ¼ V1ðXkÞ

¼ ΛiðXkÞ þWðXkÞ, whereas for SISO 2, VðXkÞ ¼ V2ðX0
kÞ ¼ ILfΛo

1ðXkÞ þWðXkÞg, where “IL”
operator denotes the interleaving procedure. In Figure 5, W(Xk) is the extrinsic information,

whereas Λo
1ðXkÞ and Λo

2ðX
0
kÞ are the output LLRs generated by the two SISOs.

Looking at the LTE turbo encoder trellis, one can notice that between two states, there are four
possible values for the branch metrics:

γ0 ¼ 0
γ1 ¼ VðXkÞ
γ2 ¼ ΛiðZkÞ
γ2 ¼ VðXkÞ þ ΛiðZkÞ :

(15)

The LTE decoding process follows a similar approach as for WiMAX systems, i.e., it moves
forward and backward through the trellis.

3.2.1. Backward recursion

The algorithm moves backward over the trellis computing the metrics. The obtained values for
each node are stored in a normalized manner. They will be used for the LLR computation once
the algorithm will start moving forward through the trellis. We name βkðSiÞ the backward
metric computed at the kth stage, for the state Si, where 2 ≤ k ≤ K þ 3 and 0 ≤ i ≤ 7. For the
backward recursion, the initialization βKþ3ðSiÞ ¼ 0, 0 ≤ i ≤ 7 is used at the stage k = K + 3. For
the rest of the stages 2 ≤ k ≤ K + 2, the computed backward metrics are

β̂kðSiÞ ¼ maxf
�
βkþ1ðSj1Þ þ γij1

�
,
�
βkþ1ðSj2Þ þ γij2

�
g , (16)

where Sj1 and Sj2 are the two states from stage k + 1 connected to the state Si from stage k and

β̂kðSiÞ represents the unnormalized metric. Once the unnormalized metric β̂kðS0Þ is computed
for state S0, all the backward metrics for states S1…S7 are normalized as

βkðSiÞ ¼ β̂kðSiÞ−β̂kðS0Þ (17)

and then stored in the dedicated memory.

3.2.2. Forward recursion

When the backward recursion is finished, the algorithm moves forward through the trellis in
the normal direction. This specific phase of the decoding is similar to the one for Viterbi
algorithm. In this case, the storing procedure is needed only for the previous stage metrics,

Field - Programmable Gate Array34

i.e., for computing the current stage kmetrics, only the forward metrics from the last stage k − 1
are needed. We will name αkðSiÞ the forward metric corresponding to state at the stage k, where
0 ≤ k ≤K − 1 and 0 ≤ i ≤ 7. For the forward recursion, the initialization α0ðSiÞ ¼ 0, 0 ≤ i ≤ 7 is used
at the stage k = 0. For the rest of the stages 1 ≤ k ≤ K, the unnormalized forward metrics are
computed as

α̂kðSjÞ ¼ max
�
αk−1ðSi1Þ þ γi1j

�
,
�
αk−1ðSi2Þ þ γi2j

�n o
, (18)

where Si1 and Si2 are the two states from stage k − 1 connected to the state Sj from stage k. Once
the unnormalized metric α̂kðS0Þ is computed for state S0, all the forward metrics for states
S1…S7 are normalized as

αkðSiÞ ¼ α̂kðSiÞ−α̂kðS0Þ : (19)

The decoding algorithm can obtain now an LLR estimated for the data bits Xk since it has for
each stage k the forward metrics just computed and also the backward metrics stored in the
memory. For the first time, this LLR is obtained by computing the likelihood of the connection
between the state Si at stage k − 1 and the state Sj at stage k as

ZkðSi ! SjÞ ¼ αk−1ðSiÞ þ γij þ βkðSjÞ : (20)

The likelihood of having a bit equal to 0 (or 1) is when the Jacobi logarithm of all the branch
likelihood corresponds to 0 (or 1) and thus:

ΛoðXkÞ ¼ max
ðSi!SjÞ:Xi¼1

{ZkðSi ! SjÞ}− max
ðSi!SjÞ:Xi¼0

{ZkðSi ! SjÞ} , (21)

where “max” operator is recursively computed over the branches, which have at the input a bit
of 1 fðSi ! SjÞ : Xi ¼ 1g or a bit 0 fðSi ! SjÞ : Xi ¼ 0g.

4. Proposed serial decoding scheme

4.1. WiMAX systems

One important remark about the decoding algorithm is that the outputs of one constituent
decoder represent the inputs for the other constituent decoder. At the same time, knowing that
the interleaver and deinterleaver procedures apply over the data blocks (so the complete block
is needed) in a nonoverlapping manner will allow the usage of a single constituent decoder.
This decoding unit operates time multiplexed and the corresponding proposed scheme is
presented in Figure 7.

In Figure 7, we can identify storing requirements: the memory blocks that store data from
one semi-iteration to another and the memory blocks used from one iteration to another.
IL stands for the interleaver/deinterleaver procedure, while CONTROL is the management
unit, controlling the decoder functionalities. This module provides the addresses used for

Efficient FPGA Implementation of a CTC Turbo Decoder for WiMAX/LTE Mobile Systems
http://dx.doi.org/10.5772/67017

35

read and write, the signals used to trigger the forward and backward movements through
the trellis, the selection for one of the two SISO units and also the control of MUX and
DEMUX blocks. The input buffer is also selected since the decoding architecture can
accept a new-encoded data block while still processing the previous one. The most impor-
tant module shown in Figure 7 is the SISO unit, which is the decoding structure. Figure 8
depicts the block scheme of this decoding unit. One can observe the unnormalized metric
computing modules BETA (backward) and ALPHA (forward) and the module GAMMA
that computes the transition metric. This last one ensures also the normalization: the
metrics values obtained for state S0 are subtracted from the metrics values obtained for
the states S1…S7. The output LLRs are computed inside the L module and normalized
inside the NORM module. The MUX-MAX module provides the correct inputs when
moving forward or backward through the trellis. It also computes the maximum function.
The backward metrics are stored in MEM BETA memory during backwards recursion,
their values being read when executing the forward recursion, in order to compute the
estimated LLRs.

It is important to mention that some studies have been conducted regarding the normalization
function. Trying to increase the system frequency (in order to reduce the decoding latency and

Figure 7. Proposed decoder scheme.

Field - Programmable Gate Array36

read and write, the signals used to trigger the forward and backward movements through
the trellis, the selection for one of the two SISO units and also the control of MUX and
DEMUX blocks. The input buffer is also selected since the decoding architecture can
accept a new-encoded data block while still processing the previous one. The most impor-
tant module shown in Figure 7 is the SISO unit, which is the decoding structure. Figure 8
depicts the block scheme of this decoding unit. One can observe the unnormalized metric
computing modules BETA (backward) and ALPHA (forward) and the module GAMMA
that computes the transition metric. This last one ensures also the normalization: the
metrics values obtained for state S0 are subtracted from the metrics values obtained for
the states S1…S7. The output LLRs are computed inside the L module and normalized
inside the NORM module. The MUX-MAX module provides the correct inputs when
moving forward or backward through the trellis. It also computes the maximum function.
The backward metrics are stored in MEM BETA memory during backwards recursion,
their values being read when executing the forward recursion, in order to compute the
estimated LLRs.

It is important to mention that some studies have been conducted regarding the normalization
function. Trying to increase the system frequency (in order to reduce the decoding latency and

Figure 7. Proposed decoder scheme.

Field - Programmable Gate Array36

so, to increase the decoded data throughput), one may think of removing the normalization
and so to reduce the amount of logic on the critical path. This solution is not applicable because
five extra bits would be needed for metrics values. From here more the memory blocks and
more the complex arithmetic. Finally, all these will lead to a lower system frequency, so no
benefit on this approach. On the other hand, we propose a dedicated approach to implement
the metric computation blocks (ALPHA, BETA and GAMMA). Based on the trellis state, we
identified the relations for each metric, 32 equations being used for transition metric computa-
tion (we remind that for each of the eight trellis states we have four possible transitions).
Moreover, only 16 are distinct (the other 16 are the same) and from these 16, some are null.
Using this approach, a complexity decrease is obtained.

Figure 9 depicts the timing diagram for the proposed SISO. This corresponds to the scenario
with one SISO unit and some MUX and DEMUX blocks replacing the two SISO units from the
theoretical decoding architecture (see Figure 7).

In Figure 9, R/W (K − 1:0) means reading/writing memory from addresses K − 1 to 0, R/W {IL
(K − 1:0)} means reading/writing memory from interleaved addresses K − 1 to 0 and COM-
PUTE means that the block is processing the input data.

4.2. LTE systems

The same remark about the two SISO units from Figure 5 working in a nonoverlapping
manner applies for LTE systems as for WiMAX ones. The same approach is used, i.e., the
proposed decoding architecture includes only one SISO unit and some MUX and DEMUX
blocks. Figure 10 depicts the block scheme of the proposed decoding architecture.

Figure 8. SISO block scheme.

Efficient FPGA Implementation of a CTC Turbo Decoder for WiMAX/LTE Mobile Systems
http://dx.doi.org/10.5772/67017

37

One can observe the memory blocks in Figure 10. Some are used to store data between two
successive semi-iterations, respectively, between two successive iterations. Others, in dotted-line,
are virtual memories used just to clarify the introduced notations. Moreover, the interleaver and
deinterleaver modules are distinctively introduced in the scheme, but in fact they are the same.
Both include a block memory called ILM (interleaver memory) and an interleaver. The novelty of
this approach compared to the previous serial implementationproposed inRef. [7] is the ILM.This
memory will allow a fast transition to a parallel decoding architecture. The input data memories

Figure 9. Time utilization for one turbo iteration.

Figure 10. Proposed serial turbo decoder block scheme.

Field - Programmable Gate Array38

One can observe the memory blocks in Figure 10. Some are used to store data between two
successive semi-iterations, respectively, between two successive iterations. Others, in dotted-line,
are virtual memories used just to clarify the introduced notations. Moreover, the interleaver and
deinterleaver modules are distinctively introduced in the scheme, but in fact they are the same.
Both include a block memory called ILM (interleaver memory) and an interleaver. The novelty of
this approach compared to the previous serial implementationproposed inRef. [7] is the ILM.This
memory will allow a fast transition to a parallel decoding architecture. The input data memories

Figure 9. Time utilization for one turbo iteration.

Figure 10. Proposed serial turbo decoder block scheme.

Field - Programmable Gate Array38

(on the left side in Figure 10) and the ILM are switched buffers, allowing new data to be written
while the previous block is still decoded. The ILM is filled with the interleaved addresses; at the
same time, the new data are stored in the input memories. The saved addresses are then used as
read addresses for the interleaver unit and as write addresses for the deinterleaver unit. Here, we
detail the way the architecture from Figure 10works. The vectors V1ðXkÞ ¼ ΛiðXkÞ þWðXkÞ and
ΛiðZkÞ are read from the corresponding memories by SISO 1. For the first semi-iteration, the
memories are read in both directions, in order to ensure the forward and backward movements
on the trellis.When thisdecodingphase is completed, the second semi-iteration starts, SISO2 reads

in both directions the memories storing the vectors V2ðX0
kÞ ¼ ILfV2ðXkÞg ¼ ILfΛo

1ðXkÞ�WðXkÞg
andΛiðZ0

kÞ. IL stands again for the interleaver process.

In detail, SISO 1 reads the input memories and starts the decoding process, outputting the
computed LLRs. Having the LLRs available and the extrinsic values, the vector V2(Xk) is
computed and then stored in a normal order in the memory. The ILM content read in the
normal order provides the reading addresses for V2(Xk) memory, emulating the interleaver
process. The reordered LLRs V2(X’k) are available, the corresponding values for the three tail
bits X’K+1, X’K+2 and X’K+3 being added at the end of this sequence. The same SISO unit acts
now as SISO 2, this time reading data inputs from the other memory blocks. The two switching
mechanisms from Figure 10 change the position between these two semi-iterations (when in

position 1, V1(Xk) and ΛiðZkÞ memories are active, while in position 2, V2(X’k) and ΛiðZ0
kÞ

memories are used).

The SISO unit provides at the end of each semi-iteration K values for the LLRs. The LLRs

obtained after the second semi-iteration are stored in the Λo
2ðX

0
kÞ memory (the content of ILM,

already available for the V2(Xk) interleaver process, is used also as writing address for Λo
2ðX

0
kÞ

memory, after a delay is added).

The memories Λo
2ðX

0
kÞ and V2(Xk) are read in the normal order to allow W(Xk) computation;

W(Xk) is written in the corresponding memory and at the same time it is used for a new semi-
iterations. In other words, the memory for W(Xk) is updated during a semi-iteration. The
time diagram for the proposed serial decoding architecture is presented in Figure 11, the
intervals colored with gray indicating the writing periods for W(Xk) memory. As mentioned
in this chapter, the input memories and the ILM (the upper four memory blocks in the
image) are switched buffers and they are filled with new data while the previous-coded
block passes the last phase of its decoding process. The same notations as shown in Figure 9
are used.

All the memory blocks in Figure 10 have 6144 locations, this being the maximum coded data
block length defined by the standard. Only the memory blocks with the input data for SISO
units have 6144 + 3 locations because they store also the tail bits. All locations contain 10 bits.
Using a Matlab simulator in finite precision, it has been observed that six bits are needed for
the integer part, in order to cover the dynamic range of the variables and three bits are needed
for the fractional part to maintain the decoding performance close to the theoretical one, with a
certain accepted level of degradation. The 10th bit is for sign.

Efficient FPGA Implementation of a CTC Turbo Decoder for WiMAX/LTE Mobile Systems
http://dx.doi.org/10.5772/67017

39

The SISO decoding unit is similar to the one depicted in Figure 8. ALPHA and BETA modules
compute the unnormalized forward metrics and the unnormalized backward metrics, respec-
tively. The GAMMA module computes the transition metrics and executes also the normaliza-
tion (the metrics for state S0 are subtracted from the metrics corresponding to states S1, …, S7).
The output LLRs are computed inside the L module and normalized by the NORM module.
The selection of the inputs for forward and backward moving on the trellis and also the
maximum function are executed by the MUX-MAX module. Finally, the MEM BETA module
stores the backward metrics.

The L module produces the output log likelihood ratios. These are then normalized inside the
NORM module. The MUX-MAX makes the inputs selection (for forward or backward trellis
runs) and implements also the maximum operator. The MEM BETA module keeps the back-
ward metrics corresponding values into the memory.

Using the same approach for both WiMAX and LTE proposed serial decoding architectures,
the same remarks apply. So, for the LTE turbo decoder also, the normalization function allows

Figure 11. Time diagram for a serial turbo decoder.

Field - Programmable Gate Array40

The SISO decoding unit is similar to the one depicted in Figure 8. ALPHA and BETA modules
compute the unnormalized forward metrics and the unnormalized backward metrics, respec-
tively. The GAMMA module computes the transition metrics and executes also the normaliza-
tion (the metrics for state S0 are subtracted from the metrics corresponding to states S1, …, S7).
The output LLRs are computed inside the L module and normalized by the NORM module.
The selection of the inputs for forward and backward moving on the trellis and also the
maximum function are executed by the MUX-MAX module. Finally, the MEM BETA module
stores the backward metrics.

The L module produces the output log likelihood ratios. These are then normalized inside the
NORM module. The MUX-MAX makes the inputs selection (for forward or backward trellis
runs) and implements also the maximum operator. The MEM BETA module keeps the back-
ward metrics corresponding values into the memory.

Using the same approach for both WiMAX and LTE proposed serial decoding architectures,
the same remarks apply. So, for the LTE turbo decoder also, the normalization function allows

Figure 11. Time diagram for a serial turbo decoder.

Field - Programmable Gate Array40

a reduced dynamic range for the variables. Trying to eliminate it, in order to reduce the
number of logic levels on the critical path, will not lead to a higher system frequency because
again, more memory blocks are required, more complex arithmetic (since variables are
expressed on more bits) is used and finally, as an overall consequence, lower clock frequency
is reported for the design.

And for ALPHA, BETA and GAMMA modules inside the SISO decoding unit, again the
dedicated equations are used to compute the metrics. Sixteen such relations are implemented
for transition metric computation (eight states in trellis with two possible transitions each). In
fact, only four equations are distinct (as indicated in Eq. (15)]. And from these four equations,
one of them is null. This way the computational effort is minimized for this proposed architec-
ture.

The interleaving and deinterleaving procedures implement the same equation. The interleaved
index is computed using a modified form of Eq. (3), i.e.,

πðiÞ ¼ {½ðf 1 þ f 2 � iÞmod K� � i}mod K (22)

For the interleaving process, the data are written in the memory block in the natural order and
then it is read in the interleaved order, while for the deinterleaver process the data are written
in the interleaved order and then it is read in the natural order.

The computation in Eq. (22) is executed in three phases. First, the value for ðf 1 þ f 2 � iÞmodK is
obtained. The index i (describing the natural order) multiplies this partial result and the
obtained value is passed once again through modulo K block. And as a remark for this
computation: the formula is increased with f2 for consecutive values of index i. So a register
adds f2 for each new index. If the register current value is higher than K, K is subtracted and the
result is placed back in the register. This processing requires one system clock period, the
results being generated in a continuous manner.

5. Proposed parallel decoding scheme

The serial architecture described in Figure 10 for LTE systems can be reorganized in a parallel
setup, by instantiating the RSC SISO module N times in the structure. We propose a configu-
ration that concatenates the N values associated with the N RSCs and employs a single
memory location for all the memories in the scheme. The K locations with 10 bits per location
(corresponding to the serial architecture) are replaced by K/N positions with 10N bits per
position (working for the parallel format).

The most important benefit brought by the proposed serial decoding scheme is the single
usage of the interleaver module before the decoding stage. The ILM is updated, each time a
new data block enters the decoder, while the previous block is still being decoded. This
approach prepares a fast and simple transition to the parallel scheme. Considering that the
factor N is known, the ILM will have K/N locations, with N values being written at each
location (i.e., the ILM can be prepared for the parallel processing that follows). As

Efficient FPGA Implementation of a CTC Turbo Decoder for WiMAX/LTE Mobile Systems
http://dx.doi.org/10.5772/67017

41

mentioned in Ref. [16], a Virtex 5 block memory can be organized from a configuration of
32k locations · 1 bit to a setup of 512 locations · 72 bits. In the costliest scenario (i.e., K =
6144), based on the N values and representing the stored values on 10 bits, the parallel ILM
can be employed as:

• 768 locations · 80 bits

• 1536 locations · 40 bits

• 3072 locations · 20 bits

• 6144 locations · 10 bits

Only two BRAMs are used, the same as in the case of serial ILM.

Figure 12 shows the ILM working principle. As one can observe, during the writing proce-
dure, each index i from 0 to K – 1 generates a corresponding interleaved value. All the
computed values are stored in the ILM, in the same order. We will consider the ILM as a
matrix, the rows being the memory locations and the columns being the positions on each
location. The first K/N interleaved values are placed on the first column. The second set of K/N
values is stored on the second column and the procedure continues. In order to perform the
described method, a true dual port BRAM is selected. In Figure 12, each time a new value is
added on row WA at column WP (near the already existing content at columns till WP-1), the
content of row WA + 1 is also read from the memory. In the next clock period, a new value is
added at row WA + 1 at column WP (near the already existing content at columns till WP − 1),
while reading also the content of row WA + 2. And so on. When the interleaver function is
used, the ILM is read in a normal way and the N interleaved values from a row are employed
as reading addresses for the V2(Xk) memory. Furthermore, the new LTE interleaver module
(with the QPP algebraic properties) will always place at the same row the N values that should
be read in the interleaved order from ILM. The only additional task is a reordering process
needed to match the corresponding RSCs. An example is presented in Figure 13 for the values
K = 40 and N = 8. On the left side, the content of the V2(Xk) memory is shown. Each column is
composed of the outputs generated by one of the N RSC SISOs. On the right side, the content
of ILM memory is described. Each minimum value from a line of the ILM represents the line
address for the V2(Xk) memory (see the gray color circle in the illustration). By using a
reordering module, each position from the outputted line is directed to its corresponding SISO.
For example, position c from the first read line (index 10) is sent to SISO g, whereas position c
from the second read line (index 13) is sent to SISO a. The same procedure applies also for the
deinterleaving process, only that the write addresses are extracted from ILM, while the reading
ones are used in the natural order.

For the reordering module, an even-odd merge sorting network is applied. The corresponding
method was introduced by Batcher in Ref. [14] and is part of the sorting network group that
includes several sorting approaches. One such example is the bubble sorting, which sorts in a
repeated manner the adjacent pairs of elements. Another example is the shell sorting, which
groups the input data into an array and then performs the array’s column sorting (also in a
repeating manner). After each associated iteration, the array becomes one column smaller. A
third example is the even-odd transposition sorting, which sorts alternatively the odd-indexed

Field - Programmable Gate Array42

mentioned in Ref. [16], a Virtex 5 block memory can be organized from a configuration of
32k locations · 1 bit to a setup of 512 locations · 72 bits. In the costliest scenario (i.e., K =
6144), based on the N values and representing the stored values on 10 bits, the parallel ILM
can be employed as:

• 768 locations · 80 bits

• 1536 locations · 40 bits

• 3072 locations · 20 bits

• 6144 locations · 10 bits

Only two BRAMs are used, the same as in the case of serial ILM.

Figure 12 shows the ILM working principle. As one can observe, during the writing proce-
dure, each index i from 0 to K – 1 generates a corresponding interleaved value. All the
computed values are stored in the ILM, in the same order. We will consider the ILM as a
matrix, the rows being the memory locations and the columns being the positions on each
location. The first K/N interleaved values are placed on the first column. The second set of K/N
values is stored on the second column and the procedure continues. In order to perform the
described method, a true dual port BRAM is selected. In Figure 12, each time a new value is
added on row WA at column WP (near the already existing content at columns till WP-1), the
content of row WA + 1 is also read from the memory. In the next clock period, a new value is
added at row WA + 1 at column WP (near the already existing content at columns till WP − 1),
while reading also the content of row WA + 2. And so on. When the interleaver function is
used, the ILM is read in a normal way and the N interleaved values from a row are employed
as reading addresses for the V2(Xk) memory. Furthermore, the new LTE interleaver module
(with the QPP algebraic properties) will always place at the same row the N values that should
be read in the interleaved order from ILM. The only additional task is a reordering process
needed to match the corresponding RSCs. An example is presented in Figure 13 for the values
K = 40 and N = 8. On the left side, the content of the V2(Xk) memory is shown. Each column is
composed of the outputs generated by one of the N RSC SISOs. On the right side, the content
of ILM memory is described. Each minimum value from a line of the ILM represents the line
address for the V2(Xk) memory (see the gray color circle in the illustration). By using a
reordering module, each position from the outputted line is directed to its corresponding SISO.
For example, position c from the first read line (index 10) is sent to SISO g, whereas position c
from the second read line (index 13) is sent to SISO a. The same procedure applies also for the
deinterleaving process, only that the write addresses are extracted from ILM, while the reading
ones are used in the natural order.

For the reordering module, an even-odd merge sorting network is applied. The corresponding
method was introduced by Batcher in Ref. [14] and is part of the sorting network group that
includes several sorting approaches. One such example is the bubble sorting, which sorts in a
repeated manner the adjacent pairs of elements. Another example is the shell sorting, which
groups the input data into an array and then performs the array’s column sorting (also in a
repeating manner). After each associated iteration, the array becomes one column smaller. A
third example is the even-odd transposition sorting, which sorts alternatively the odd-indexed

Field - Programmable Gate Array42

Figure 12. ILM memory writing procedure.

Figure 13. Virtual parallel interleaver.

Efficient FPGA Implementation of a CTC Turbo Decoder for WiMAX/LTE Mobile Systems
http://dx.doi.org/10.5772/67017

43

and the adjacent even-indexed elements, respectively, the even-indexed elements and the
adjacent odd-indexed values. The fourth example is the bitonic sorting. The two halves of the
input data are sorted in opposite directions and then jointly processed to produce one com-
plete sorted sequence.

The even-odd merge sorting method is based on a theorem saying that any list of a = 4b (b
natural) elements can be sorted if the following steps are applied: first, separate sorting is
executed over the two halves of the list. After this step, the elements with odd index and
the ones with even index are sorted separately. The last step consists in a comparing and
switching procedure executed over all the elements 2n and 2n + 1 (n = 1,…, a/2 − 1). The
demonstration of this theorem is available in Ref. [23]. An example for N = 8 is depicted in a
graphical format shown in Figure 14. From a timing point of view, Figure 15 depicts the
case when N = 2 is used. Same comments as the ones for Figure 11 apply.

In combination with the presented parallel decoding architecture, we also propose a simplified
implementation for the interleaver block. As seen from Eq. (3), the arithmetic requirements for
the computation of the memory addresses πðiÞ consist of three multipliers, one adder and one
divider (used for the extraction of the remainder associated with the modulo operation). For all
possible K values associated with the division, the quotients range is very large, since the
numerator and the denominator can have very big values (and often situated in different
numerical ranges—up to billions). We propose an efficient method to reduce the arithmetic
complexity associated with Eq. (3).

By introducing the notation

Figure 14. Even-odd merge sorting for N = 8.

Field - Programmable Gate Array44

and the adjacent even-indexed elements, respectively, the even-indexed elements and the
adjacent odd-indexed values. The fourth example is the bitonic sorting. The two halves of the
input data are sorted in opposite directions and then jointly processed to produce one com-
plete sorted sequence.

The even-odd merge sorting method is based on a theorem saying that any list of a = 4b (b
natural) elements can be sorted if the following steps are applied: first, separate sorting is
executed over the two halves of the list. After this step, the elements with odd index and
the ones with even index are sorted separately. The last step consists in a comparing and
switching procedure executed over all the elements 2n and 2n + 1 (n = 1,…, a/2 − 1). The
demonstration of this theorem is available in Ref. [23]. An example for N = 8 is depicted in a
graphical format shown in Figure 14. From a timing point of view, Figure 15 depicts the
case when N = 2 is used. Same comments as the ones for Figure 11 apply.

In combination with the presented parallel decoding architecture, we also propose a simplified
implementation for the interleaver block. As seen from Eq. (3), the arithmetic requirements for
the computation of the memory addresses πðiÞ consist of three multipliers, one adder and one
divider (used for the extraction of the remainder associated with the modulo operation). For all
possible K values associated with the division, the quotients range is very large, since the
numerator and the denominator can have very big values (and often situated in different
numerical ranges—up to billions). We propose an efficient method to reduce the arithmetic
complexity associated with Eq. (3).

By introducing the notation

Figure 14. Even-odd merge sorting for N = 8.

Field - Programmable Gate Array44

pðiÞ ¼ f 1iþ f 2i
2 (23)

it can be observed that

Figure 15. Time diagram for parallel turbo decoder (N = 2).

Efficient FPGA Implementation of a CTC Turbo Decoder for WiMAX/LTE Mobile Systems
http://dx.doi.org/10.5772/67017

45

pð0Þ ¼ 0,
pðiÞ ¼ pði−1Þ þ s1 þ s2ðiÞ, i > 0, (24)

where

s1 ¼ f 1 and

s2ðiÞ ¼
(0, i ¼ 0,
f 2, i ¼ 1,
s2ði−1Þ þ 2f 2, i > 1

(25)

We can rewrite Eq. (3) using Eqs. (23) and (24)

πðiÞ ¼ pðiÞ mod K ¼ ½pði−1Þ þ s1 þ s2ðiÞ� mod K (26)

The multiplications are replaced by additions, which require less hardware resources. Never-
theless, the division is still necessary for the modulo operation. If we consider the modulo
operator applied to a sum of elements expressed as

∑
k
ck

� �
mod K ¼ ∑

k
ck mod K

� �
mod K (27)

we can decrease the arithmetic effort needed to obtain πðiÞ in Eq. (26). The number of
modulo operations becomes bigger, but the overall complexity of the corresponding divisions
is reduced since smaller quotients are used. Consequently, using Eqs. (25)–(27), one can
write:

s3ðiÞ ¼ s1 þ s2ðiÞ ¼
0, i ¼ 0,
f 1 þ f 2, i ¼ 1,
s3ði−1Þ þ 2f 2, i > 1

8><
>:

(28)

Using Eq. (29) in Eq. (26), the result is

πðiÞ ¼ pðiÞ mod K ¼ ½pði−1Þ þ s3ðiÞ� mod K

¼ ½pði−1Þ þ s3ði−1Þ þ 2f 2Þ� mod K

¼ ½πði−1Þ þ s3ði−1Þ mod K þ 2f 2 mod K� mod K
(29)

All of the numerical values added in the last stage of Eq. (29) are lower than K and available
recursively (during the processing of a distinct frame), such as πði−1Þ and s3ði−1Þmod K or
they can be predetermined and stored, like the case of 2f 2 mod K:. The overall arithmetic
complexity is reduced to 2K additions and 2K simplified modulo operations (i.e., each is
resolvable using a comparison and a subtraction) for the address generation module. The
method improves the solutions presented in [24, 25], by eliminating any multiplications or
divisions. Additionally, the lower numerical range of the operators (with values lower than 2K;
i.e., values in the range of thousands) allows the usage of minimal resources for the represen-
tation of binary values.

Field - Programmable Gate Array46

pð0Þ ¼ 0,
pðiÞ ¼ pði−1Þ þ s1 þ s2ðiÞ, i > 0, (24)

where

s1 ¼ f 1 and

s2ðiÞ ¼
(0, i ¼ 0,
f 2, i ¼ 1,
s2ði−1Þ þ 2f 2, i > 1

(25)

We can rewrite Eq. (3) using Eqs. (23) and (24)

πðiÞ ¼ pðiÞ mod K ¼ ½pði−1Þ þ s1 þ s2ðiÞ� mod K (26)

The multiplications are replaced by additions, which require less hardware resources. Never-
theless, the division is still necessary for the modulo operation. If we consider the modulo
operator applied to a sum of elements expressed as

∑
k
ck

� �
mod K ¼ ∑

k
ck mod K

� �
mod K (27)

we can decrease the arithmetic effort needed to obtain πðiÞ in Eq. (26). The number of
modulo operations becomes bigger, but the overall complexity of the corresponding divisions
is reduced since smaller quotients are used. Consequently, using Eqs. (25)–(27), one can
write:

s3ðiÞ ¼ s1 þ s2ðiÞ ¼
0, i ¼ 0,
f 1 þ f 2, i ¼ 1,
s3ði−1Þ þ 2f 2, i > 1

8><
>:

(28)

Using Eq. (29) in Eq. (26), the result is

πðiÞ ¼ pðiÞ mod K ¼ ½pði−1Þ þ s3ðiÞ� mod K

¼ ½pði−1Þ þ s3ði−1Þ þ 2f 2Þ� mod K

¼ ½πði−1Þ þ s3ði−1Þ mod K þ 2f 2 mod K� mod K
(29)

All of the numerical values added in the last stage of Eq. (29) are lower than K and available
recursively (during the processing of a distinct frame), such as πði−1Þ and s3ði−1Þmod K or
they can be predetermined and stored, like the case of 2f 2 mod K:. The overall arithmetic
complexity is reduced to 2K additions and 2K simplified modulo operations (i.e., each is
resolvable using a comparison and a subtraction) for the address generation module. The
method improves the solutions presented in [24, 25], by eliminating any multiplications or
divisions. Additionally, the lower numerical range of the operators (with values lower than 2K;
i.e., values in the range of thousands) allows the usage of minimal resources for the represen-
tation of binary values.

Field - Programmable Gate Array46

6. Implementation results

6.1. WiMAX systems

The estimated system frequency when implementing the decoding structure on a Xilinx
XC4VLX80-11FF1148 chip using the Xilinx ISE 11.1 tool is 125 MHz. The reserved chip area is
around 3000 (8.37%) slices from a total of 35,840. The results are comparable with the assess-
ments presented in [26].

The decoding latency and decoding rate corresponding to the above-mentioned clock fre-
quency (see Table 1) are

Latency ¼ 2Lð2K þ 10Þ (30)

Rb ¼ 2K
2Lð2K þ 10ÞTclk

(31)

The implementation delay is represented by 10 clock periods per iteration and is added to the
theoretical latency of the MAP algorithm (which is 4KN clock periods).

In Figure 16, the decoding performances are presented for a quadrature phase shift keying
(QPSK) modulation, ½ rate, 1–4 iterations, a block size of 6 bytes (the smallest possible) and a
transmission simulated through an additive white Gaussian noise (AWGN) channel. The
results are depicted for the worst case scenarios, considering that the test was performed for
the smallest block size.

6.2. LTE systems

Figures 11 and 15 show that the decoding latency is reduced in the case of parallel decoding
with a factor almost equal to N. The presented implementation has an 11 clock period Delay,
which is added for each forward trellis run (when the LLRs are computed). As a consequence,
two such values must be considered during each iteration.

For serial decoding, the native latency is computed as follows: at the first semi-iterations, K
clock periods required for the backward trellis run and another (K + Delay) clock periods for
the forward trellis run and LLR computation. The value is then considered twice in order to
take into account the second semi-iteration. By denoting L the number of executed iterations,

Fclk [MHz] K [di-bits]

Latency [μs] Rb [Mbps]

L = 3 L = 4 L = 5 L = 3 L = 4 L = 5

125 24 2.78 3.71 4.64 17.24 12.93 10.34

125 240 23.52 31.36 39.2 20.41 15.31 12.24

125 2400 230.9 307.8 384.8 20.79 15.59 12.47

Table 1. Latency and throughput.

Efficient FPGA Implementation of a CTC Turbo Decoder for WiMAX/LTE Mobile Systems
http://dx.doi.org/10.5772/67017

47

the numbers of clock periods required for a serial, respectively, a parallel block decoding
operation result as:

Latency_s ¼ ð4K þ 2DelayÞL (32)

Latency_p ¼ ð4K=N þ 2DelayÞL (33)

When performing tests for the parallel decoding performances, a certain level of degradation
was observed, since the forward and backward metrics are altered at the data block bound-
aries. In order to have similar performance as in the serial decoding case, a small overhead is
accepted. By introducing an overlap at each parallel block boarder, the metrics computation
gains a training phase. The minimum overlap window length is selected to cover the minimum
standard defined data block (in this case Kmin = 40 bits).

Figure 17 shows this situation, for the N = 2 setup. If we consider N > 2, which leads to
blocks with Kmin at both the left and right sides, the corresponding latency can be expressed
as:

Latency_po ¼
�
4ðK=N þ 2KminÞ þ 2Delay

�
L (34)

For even-odd merge sorting network implementation, we can study the configuration K = 40
bits and N = 8. The input of the ILM content is represented by the 40 interleaved addresses
organized in five memory locations and eight addresses for each location. The minimum-
detected value for each ILM location (i.e., the natural-order memory location that will be

Figure 16. The impact of the number of iterations on decoding performances.

Field - Programmable Gate Array48

the numbers of clock periods required for a serial, respectively, a parallel block decoding
operation result as:

Latency_s ¼ ð4K þ 2DelayÞL (32)

Latency_p ¼ ð4K=N þ 2DelayÞL (33)

When performing tests for the parallel decoding performances, a certain level of degradation
was observed, since the forward and backward metrics are altered at the data block bound-
aries. In order to have similar performance as in the serial decoding case, a small overhead is
accepted. By introducing an overlap at each parallel block boarder, the metrics computation
gains a training phase. The minimum overlap window length is selected to cover the minimum
standard defined data block (in this case Kmin = 40 bits).

Figure 17 shows this situation, for the N = 2 setup. If we consider N > 2, which leads to
blocks with Kmin at both the left and right sides, the corresponding latency can be expressed
as:

Latency_po ¼
�
4ðK=N þ 2KminÞ þ 2Delay

�
L (34)

For even-odd merge sorting network implementation, we can study the configuration K = 40
bits and N = 8. The input of the ILM content is represented by the 40 interleaved addresses
organized in five memory locations and eight addresses for each location. The minimum-
detected value for each ILM location (i.e., the natural-order memory location that will be

Figure 16. The impact of the number of iterations on decoding performances.

Field - Programmable Gate Array48

accessed) is contained in the output of the sorting unit. Also, the module provides the order
which will be used to send data read from natural-order memory location to the N decoding
units. In this example, at the third clock period, the second ILM location is read, i.e., the
addresses 6, 31, 36, 21, 26, 11, 16 and 1. The sorting module labels these addresses with an
index, obtaining the pairs: (6, 0), (31, 1), (36, 2), (21, 3), (26, 4), (11, 5), (16, 6) and (1, 7). Then the
addresses are arranges in an increasing order: (1, 7), (6, 0), (11, 5), (16, 6), (21, 3), (26, 4), (31, 1)
and (36, 2). At the same time, the minimum address found at this location is sent at the output,
1 in this example. In conclusion, location number 1 is read from the natural-order data
memory. The eight samples from the location 1 are distributed to the eight decoding units as
indicated by the output index. The first sample from this location is sent to decoder unit 7, the
second sample to decoder unit 0, the third one to decoder unit 5 and so on. As Figure 18 shows
that at the register transfer level (RTL), besides flip flops, the sorting unit includes only basic
selection elements.

It can be seen in Figure 19 that the sorting unit allows a pipeline data processing.
Consequently, with a certain implementation delay (7 clock periods in the proposed
scheme), the module provides a value belonging to the set of sorted indexes at each
clock cycle.

Figure 17. (a) Non overlapping split; (b) overlapping split.

Figure 18. Basic selection element for binary inputs.

Efficient FPGA Implementation of a CTC Turbo Decoder for WiMAX/LTE Mobile Systems
http://dx.doi.org/10.5772/67017

49

It is important to mention that the even-odd merge sorting was selected because it allows a
pipeline functioning, consuming also lower resources than the other listed methods. Some
comparative results were provided in [11, 27] in terms of used resources for the application-
specific integrated circuit (ASIC).

In order to evaluate the performances, we used the very high speed hardware description
language (VHDL), programming language. The code was tested using ModelSIM 6.5. For the
generation of RAM/ROM memory blocks, Xilinx Core Generator 14.7 was employed and the
synthesis process was accomplished using Xilinx XST from Xilinx ISE 14.7. Using the above-
mentioned tools, the resulted values for the decoding structure when implemented on a Xilinx
XC5VFX70T-FFG1136 are the following [28]: frequency of 310 MHz and 664 flip flops and 568
LUTs for the sorting unit, respectively, a frequency of 300 MHz, 1578 flip flop registers and
1708 LUTs for the interleaver.

The values listed in Table 2 are obtained using Eqs. (32)–(34), when N = 8 is considered. One
can observe that the overhead introduced by the overlapping split method is less important for
bigger values of K, this being the scenario when a parallel approach is usually applied. The
achieved overall system frequency is 210 MHz, with the longest signal propagation time
required for the SISO unit.

Table 3 provides the corresponding throughput rate when the values from Table 2 are used.

Figure 19. Even-odd merge sort – ModelSim simulation.

Latency_s [μs] Latency_p [μs] Latency_po [μs]

K L

3 4 3 4 3 4

1536 88.08 117.4 11.28 15.04 15.85 21.14

4096 234.3 312.5 29.57 39.42 34.14 45.52

6144 351.4 468.5 44.2 58.9 48.7 56.02

Table 2. Latency values for N = 8, L = 3 or 4 and K = 1536, 4096 or 6144.

Field - Programmable Gate Array50

It is important to mention that the even-odd merge sorting was selected because it allows a
pipeline functioning, consuming also lower resources than the other listed methods. Some
comparative results were provided in [11, 27] in terms of used resources for the application-
specific integrated circuit (ASIC).

In order to evaluate the performances, we used the very high speed hardware description
language (VHDL), programming language. The code was tested using ModelSIM 6.5. For the
generation of RAM/ROM memory blocks, Xilinx Core Generator 14.7 was employed and the
synthesis process was accomplished using Xilinx XST from Xilinx ISE 14.7. Using the above-
mentioned tools, the resulted values for the decoding structure when implemented on a Xilinx
XC5VFX70T-FFG1136 are the following [28]: frequency of 310 MHz and 664 flip flops and 568
LUTs for the sorting unit, respectively, a frequency of 300 MHz, 1578 flip flop registers and
1708 LUTs for the interleaver.

The values listed in Table 2 are obtained using Eqs. (32)–(34), when N = 8 is considered. One
can observe that the overhead introduced by the overlapping split method is less important for
bigger values of K, this being the scenario when a parallel approach is usually applied. The
achieved overall system frequency is 210 MHz, with the longest signal propagation time
required for the SISO unit.

Table 3 provides the corresponding throughput rate when the values from Table 2 are used.

Figure 19. Even-odd merge sort – ModelSim simulation.

Latency_s [μs] Latency_p [μs] Latency_po [μs]

K L

3 4 3 4 3 4

1536 88.08 117.4 11.28 15.04 15.85 21.14

4096 234.3 312.5 29.57 39.42 34.14 45.52

6144 351.4 468.5 44.2 58.9 48.7 56.02

Table 2. Latency values for N = 8, L = 3 or 4 and K = 1536, 4096 or 6144.

Field - Programmable Gate Array50

As one can observe from Table 3, the serial decoding performance is similar to the theoretical
one. Let us consider, for example, the case L = 3 and K = 6144. Considering the theoretical
latency of 4KL clock periods, the theoretical throughput is 17.5 Mbps. After implementation,
the obtained result for the proposed serial architecture is 17.48 Mbps.

The following performance graphs were obtained using a finite precision Matlab simulator.
This approach was selected because the same outputs as the ModelSIM simulator are obtained
in Matlab, while the testing time is considerably smaller.

All the simulation results were generated for the Max Log MAP algorithm. The illustrations
present the bit error rate (BER) versus signal-to-noise ratio (SNR) expressed as the ratio
between the energy per bit and the noise power spectral density.

Figure 20 presents the attained performances for the case of K = 512, N = 2, L = 3 and QPSK
modulation, using the three discussed decoding methods, i.e., the serial one, the parallel
without overlapped split one and the parallel with overlapped split one. Figure 21 depicts the
same performance comparison, this time for K = 1024 and N = 4.

Tput_s [Mbps] Tput_p [Mbps] Tput_po [Mbps]

K L

3 4 3 4 3 4

1536 17.43 13.07 136.1 102.0 96.86 72.64

4096 17.47 13.10 138.5 103.8 119.9 89.9

6144 17.48 13.11 139 104.2 125.9 94.4

Table 3. Throughput values for N = 8, L = 3 or 4 and K = 1536, 4096 or 6144.

Figure 20. Comparative decoding results for QPSK, L = 3, K = 512, N = 2.

Efficient FPGA Implementation of a CTC Turbo Decoder for WiMAX/LTE Mobile Systems
http://dx.doi.org/10.5772/67017

51

Analyzing the results presented in Figures 20 and 21, one can conclude that the decoding
performance obtained, when parallel decoding with the overlapped split method is used, is
almost similar to the one for serial decoding. In contrast, the parallel decoding without the
overlapped split method generates some loss in performance when compared to the serial
decoding. This degradation is dependent on the parallelization factor N.

7. Conclusions

This chapter presented the most important aspects related to the FPGA implementation of a
turbo decoder for WiMAX and LTE systems. The serial turbo decoder architectures for the two
systems have been developed and efficiently implemented, important results being obtained
especially for the proposed architectures of the interleaver/deinterleaver. For LTE systems, the
interleaver memory ILM has been introduced. In this manner, the interleaver process effec-
tively works only outside the decoding process itself.

The ILM has been written together with the input data, while the previous block was still
under decoding. It should be outlined that this solution allows the transition from the serial to
the parallel decoder in an efficient manner, involving only values that are concatenated at
same memory locations. The parallel approach requires the same storing capacity (the number
of BRAMs) and a single interleaver, thus adding only an even-odd merge sorting network. This
unique interleaver has been implemented in an efficient configuration that uses only compar-
ators and subtractors and no multipliers and dividers

Figure 21. Comparative decoding results for QPSK, L = 3, K = 1024, N = 4.

Field - Programmable Gate Array52

Analyzing the results presented in Figures 20 and 21, one can conclude that the decoding
performance obtained, when parallel decoding with the overlapped split method is used, is
almost similar to the one for serial decoding. In contrast, the parallel decoding without the
overlapped split method generates some loss in performance when compared to the serial
decoding. This degradation is dependent on the parallelization factor N.

7. Conclusions

This chapter presented the most important aspects related to the FPGA implementation of a
turbo decoder for WiMAX and LTE systems. The serial turbo decoder architectures for the two
systems have been developed and efficiently implemented, important results being obtained
especially for the proposed architectures of the interleaver/deinterleaver. For LTE systems, the
interleaver memory ILM has been introduced. In this manner, the interleaver process effec-
tively works only outside the decoding process itself.

The ILM has been written together with the input data, while the previous block was still
under decoding. It should be outlined that this solution allows the transition from the serial to
the parallel decoder in an efficient manner, involving only values that are concatenated at
same memory locations. The parallel approach requires the same storing capacity (the number
of BRAMs) and a single interleaver, thus adding only an even-odd merge sorting network. This
unique interleaver has been implemented in an efficient configuration that uses only compar-
ators and subtractors and no multipliers and dividers

Figure 21. Comparative decoding results for QPSK, L = 3, K = 1024, N = 4.

Field - Programmable Gate Array52

The parallel decoding performances have been compared with the serial ones. In this
context, certain degradation has been observed. In order to eliminate this degradation, a
small overhead is accepted by the overlapping split that is applied to the parallel data
blocks.

Acknowledgements

This work was supported by the UEFISCDI under Grant PN-II-RU-TE-2014-4-1880.

Author details

Cristian Anghel*, Cristian Stanciu and Constantin Paleologu

*Address all correspondence to: canghel@comm.pub.ro

Politehnica University of Bucharest, Romania

References

[1] C. Berrou, A. Glavieux and P. Thitimajshima, Near Shannon limit error-correcting coding
and decoding: Turbo codes, IEEE Proceedings of the International Conference on Communica-
tions, Geneva, Switzerland, May 1993, pp. 1064–1070.

[2] C. Berrou and A. Glavieux, Near optimum error correcting coding and decoding:
Turbo-Codes, IEEE Transactions on Communications, vol. 44, no. 10, pp. 1261–1271, Oct.
1996.

[3] C. Berrou and M. Jézéquel, Non binary convolutional codes for turbo coding, Electronics
Letters, vol. 35, no. 1, pp. 9–40, Jan. 1999.

[4] M. C. Valenti and J. Sun, The UMTS turbo code and an efficient decoder implementation
suitable for software-defined radios, International Journal of Wireless Information Networks,
vol. 8, no. 4, pp. 203–215, Oct. 2001.

[5] C. Anghel, A. A. Enescu, C. Paleologu and S. Ciochina, CTC Turbo decoding architecture
for H-ARQ capable WiMAX systems implemented on FPGA, Ninth International Confer-
ence on Networks ICN 2010, Menuires, France, April 2010.

[6] C. Anghel, A. A. Enescu, et al., FPGA implementation of a CTC Decoder for H-ARQ
compliant WiMAX systems, Proceedings of International Conference on Design & Technology
of Integrated Systems, DTIS 2007, Morocco, pp. 82–86.

[7] C. Anghel, V. Stanciu, C. Stanciu and C. Paleologu, CTC Turbo decoding architecture for
LTE systems implemented on FPGA, IARIA ICN 2012, Reunion, France, 2012.

Efficient FPGA Implementation of a CTC Turbo Decoder for WiMAX/LTE Mobile Systems
http://dx.doi.org/10.5772/67017

53

[8] S. Chae, A low complexity parallel architecture of turbo decoder based on QPP
interleaver for 3GPP-LTE/LTE-A, http://www.design-reuse.com /articles/31907/turbo-
decoder-architecture-qpp-interleaver-3gpp-lte-lte-a.html

[9] Y. Sun and J. R. Cavallaro, Efficient hardware implementation of a highly-parallel 3GPP
LTE/ LTE-advance turbo decoder, Integration, the VLSI Journal, vol. 44, no. 4, pp. 305–315,
Sept. 2011.

[10] D. Wu, R. Asghar, Y. Huang and D. Liu, Implementation of a high-speed parallel turbo
decoder for 3GPP LTE terminals, ASICON ’09, IEEE 8th International Conference on ASIC,
pp. 481–484, 2009.

[11] C. Studer, C. Benkeser, S. Belfanti and Q. Huang, Design and implementation of a parallel
turbo-decoder ASIC for 3GPP-LTE, IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp.
8–17, Jan. 2011.

[12] C. Anghel and C. Paleologu, Simplified parallel architecture for LTE-A turbo decoder
implemented on FPGA, Proceedings of the 9th International conference on Circuit, Systems,
Signal and Telecommunications CCST 2015, Dubai, pp. 102–111.

[13] C. Stanciu, C. Anghel and C. Paleologu, Efficient recursive implementation of a quadratic
permutation polynomial interleaver for LTE systems, Revue Roumaine, des Sciences Tech-
niques - Serie Électrotechnique et Énergétique, ISSN: 0035-4066, vol. 61, pp. 53–57.

[14] K. E. Batcher, Sorting networks and their applications,” in Proceeding of AFIPS Spring Joint
Computer Conference, vol. 32, 1968.

[15] C. Anghel, C. Stanciu and C. Paleologu, Sorting methods used in parallel turbo decoding
for LTE systems, 2015 International Symposium on Signals, Circuits and Systems (ISSCS), 9–
10 July, 4 p.

[16] Xilinx Virtex 5 family user guide, https://www.xilinx.com/support/documentation/user_guides/
ug190.pdf

[17] Xilinx ML507 evaluation platform user guide, https://www.xilinx.com/products/boards/
ml507/docs.htm

[18] https://standards.ieee.org/about/get/802/802.16.html

[19] 3GPP TS 36.212 V8.7.0 (2009-05) Technical Specification, “3rd Generation Partnership
Project; Technical Specification Group Radio Access Network; Evolved Universal Terres-
trial Radio Access (E-UTRA); Multiplexing and channel coding (Release 8).”

[20] P. Robertson, E. Villebrun and P. Hoeher, A comparison of optimal and sub-optimal MAP
decoding algorithms operating in the log domain, Proceeding of IEEE International Confer-
ence on Communications (ICC’95), Seattle, pp. 1009–1013, June 1995.

[21] S. Papaharalabos, P. Sweeney and B. G. Evans, Constant log-MAP decoding algorithm for
duo-binary turbo codes, Electronics Letters, vol. 42, no. 12, pp. 709–710, June 2006.

Field - Programmable Gate Array54

[8] S. Chae, A low complexity parallel architecture of turbo decoder based on QPP
interleaver for 3GPP-LTE/LTE-A, http://www.design-reuse.com /articles/31907/turbo-
decoder-architecture-qpp-interleaver-3gpp-lte-lte-a.html

[9] Y. Sun and J. R. Cavallaro, Efficient hardware implementation of a highly-parallel 3GPP
LTE/ LTE-advance turbo decoder, Integration, the VLSI Journal, vol. 44, no. 4, pp. 305–315,
Sept. 2011.

[10] D. Wu, R. Asghar, Y. Huang and D. Liu, Implementation of a high-speed parallel turbo
decoder for 3GPP LTE terminals, ASICON ’09, IEEE 8th International Conference on ASIC,
pp. 481–484, 2009.

[11] C. Studer, C. Benkeser, S. Belfanti and Q. Huang, Design and implementation of a parallel
turbo-decoder ASIC for 3GPP-LTE, IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp.
8–17, Jan. 2011.

[12] C. Anghel and C. Paleologu, Simplified parallel architecture for LTE-A turbo decoder
implemented on FPGA, Proceedings of the 9th International conference on Circuit, Systems,
Signal and Telecommunications CCST 2015, Dubai, pp. 102–111.

[13] C. Stanciu, C. Anghel and C. Paleologu, Efficient recursive implementation of a quadratic
permutation polynomial interleaver for LTE systems, Revue Roumaine, des Sciences Tech-
niques - Serie Électrotechnique et Énergétique, ISSN: 0035-4066, vol. 61, pp. 53–57.

[14] K. E. Batcher, Sorting networks and their applications,” in Proceeding of AFIPS Spring Joint
Computer Conference, vol. 32, 1968.

[15] C. Anghel, C. Stanciu and C. Paleologu, Sorting methods used in parallel turbo decoding
for LTE systems, 2015 International Symposium on Signals, Circuits and Systems (ISSCS), 9–
10 July, 4 p.

[16] Xilinx Virtex 5 family user guide, https://www.xilinx.com/support/documentation/user_guides/
ug190.pdf

[17] Xilinx ML507 evaluation platform user guide, https://www.xilinx.com/products/boards/
ml507/docs.htm

[18] https://standards.ieee.org/about/get/802/802.16.html

[19] 3GPP TS 36.212 V8.7.0 (2009-05) Technical Specification, “3rd Generation Partnership
Project; Technical Specification Group Radio Access Network; Evolved Universal Terres-
trial Radio Access (E-UTRA); Multiplexing and channel coding (Release 8).”

[20] P. Robertson, E. Villebrun and P. Hoeher, A comparison of optimal and sub-optimal MAP
decoding algorithms operating in the log domain, Proceeding of IEEE International Confer-
ence on Communications (ICC’95), Seattle, pp. 1009–1013, June 1995.

[21] S. Papaharalabos, P. Sweeney and B. G. Evans, Constant log-MAP decoding algorithm for
duo-binary turbo codes, Electronics Letters, vol. 42, no. 12, pp. 709–710, June 2006.

Field - Programmable Gate Array54

[22] J.-F. Cheng and T. Ottosson, Linearly approximated log-MAP algorithms for turbo
decoding, Vehicular Technology Conference Proceedings, 2000. VTC 2000-Spring Tokyo.
2000 IEEE 51st vol. 3, pp. 2252–2256, 2000.

[23] Massachusetts Institute of Technology, Mathematics, last access date: November 2014,
math.mit.edu/~shor/18.310/batcher.pdf

[24] R. Asghar, D. Wu, J. Eilert and D. Liu, Memory conflict analysis and a re-configurable
interleaver architecture supporting unified parallel turbo decoding, Journal of Signal
Processing Systems, vol. 60, no. 1, pp. 15–19, July 2010.

[25] S. Wang, L. Liu and Z. Wen, High speed QPP generator with optimized parallel architec-
ture for 4G LTE-A system, International Journal of Advancements in Computing Technology,
vol. 4, no. 23, pp. 355–364, July 2010.

[26] Xilinx, IEEE 802.16e CTC decoder core, DS137 (v2.3), July 11, 2006.

[27] E. Mumolo, G. Capello and M. Nolich, VHDL design of a scalable VLSI sorting device
based on pipelined computation,” Journal of Computing and Information Technology - CIT
12, vol. 12, no. 1, pp. 1–14, 2004.

[28] C. Anghel, C. Stanciu and C. Paleologu, LTE turbo decoding parallel architecture with
single interleaver implemented on FPGA, Springer Verlag Circuits, Systems and Signal
Processing, ISSN: 0278-081X, DOI 10.1007/s00034-016-0362-z, 2016.

Efficient FPGA Implementation of a CTC Turbo Decoder for WiMAX/LTE Mobile Systems
http://dx.doi.org/10.5772/67017

55

Chapter 3

Motion Control with FPGA

Miguel Angel Martínez Prado,
Juvenal Rodríguez Reséndiz,
Diana Carolina Toledo Pérez,
Carlos Miguel Torres Hernández and
Gilberto Herrera Ruiz

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67200

Abstract

The aim of this chapter is to provide an introduction to the field programmable gate
array (FPGA)-based digital control system design for motion control. It is intended as a
reference for the undergraduate students in science and engineering, professionals, and
enthusiastic people who have a basic knowledge in discrete control theory and digital
systems using reconfigurable logic. The scope of this chapter includes the analysis,
simulation, and implementation of classic control algorithms. The presented topics serve
as a foundation for the implementation of more complex systems. An experimental
section is provided, which validates the proposed digital design.

Keywords: FPGA, motion-control, PID-control, VHDL, robotics

1. Introduction

The reconfigurable logic in industries opened countless opportunities especially in the field of
control and automation. This technology facilitates the implementation of complex control
algorithms with fast response.

Nowadays, the control system engineers require new tools for creating better electronic design for
automation systems. Some modern tools that are available on the market allow the designer to
create, simulate, and verify the desired hardware design. This can help in the evaluation of the
complex system designs with fewer resources.

Among modern tools used by the controllers, the field programmable gate array (FPGA)
provides a shorter processing time than the conventional methods like microprocessor- or

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

microcontroller-based designs. Furthermore, it has benefits such as improved accuracy and
efficiency of the algorithms.

In the industry, the FPGA technology began to be used by the designers in areas like telecom-
munications, signal processing, image processing, and control systems such as robotic arms
and assembly lines. Later, this technology began to be utilized in applications where the fast
processing of information is desired, such as medical equipment, robotics, aeronautics, etc. [1].

Proportional integral derivative (PID) controller is one of the most commonly used design, due
to its simple design and its robustness with respect to the parameter uncertainty [2–4]. They
are usually used in the speed controlling applications of direct current or permanent magnet
motors, through pulse-width modulation (PWM) pulses [5], output current, voltage, or fre-
quency. It is possible to find out in the scientific literature PID implementations on hardware
[6–8] whose authors have demonstrate the effectiveness of their designs; however, most of
these implementations are not easy to develop and for some cases they are destined to be
implemented only in some FPGA families.

In order to enhance the designer experience, the FPGA card manufacturers incorporate
multicore processors equipped with flash memory into their designs for enhancing the com-
puting capacity and data parallel processing. In this way, the controllers can implement
functions that require fast processing in hardware and computationally intensive algorithms
into the processor.

Implementing functions into the FPGA chip, the platforms that are available on the market
works with HDL codes, which decreases hardware resource use and therefore, at the same
time, reduces the cost and energy consumption of the system. Moreover, these platforms
manage simulators for assessment of the design before its implementation.

Section 2 of this chapter is related to the digital controllers, which describes the PID and
other controllers in discrete form. Section 3 provides the hardware description of the PID
controller in VHDL language, and finally, the fourth section provides the simulation and
experimental validation, which demonstrates how to perform numerical simulations using
Simulink and Modelsim. Furthermore, an experimental validation on a DC motor system is
also provided.

2. Discretization of classical controllers

The proportional-integral derivative (PID) controller is widely used in industry due to its high
performance with most of the plants even if they are nonlinear [2]. Besides, its parameters can
be tuned empirically and still achieve a good performance. Due to the complexity of the
algorithm, its implementation has been limited to microcontrollers or digital signal processors
[3], and furthermore, most of the researchers who are experts in control theory do not have a
deep knowledge on reconfigurable logic [4, 5].

PID controller has the following form:

Field - Programmable Gate Array58

microcontroller-based designs. Furthermore, it has benefits such as improved accuracy and
efficiency of the algorithms.

In the industry, the FPGA technology began to be used by the designers in areas like telecom-
munications, signal processing, image processing, and control systems such as robotic arms
and assembly lines. Later, this technology began to be utilized in applications where the fast
processing of information is desired, such as medical equipment, robotics, aeronautics, etc. [1].

Proportional integral derivative (PID) controller is one of the most commonly used design, due
to its simple design and its robustness with respect to the parameter uncertainty [2–4]. They
are usually used in the speed controlling applications of direct current or permanent magnet
motors, through pulse-width modulation (PWM) pulses [5], output current, voltage, or fre-
quency. It is possible to find out in the scientific literature PID implementations on hardware
[6–8] whose authors have demonstrate the effectiveness of their designs; however, most of
these implementations are not easy to develop and for some cases they are destined to be
implemented only in some FPGA families.

In order to enhance the designer experience, the FPGA card manufacturers incorporate
multicore processors equipped with flash memory into their designs for enhancing the com-
puting capacity and data parallel processing. In this way, the controllers can implement
functions that require fast processing in hardware and computationally intensive algorithms
into the processor.

Implementing functions into the FPGA chip, the platforms that are available on the market
works with HDL codes, which decreases hardware resource use and therefore, at the same
time, reduces the cost and energy consumption of the system. Moreover, these platforms
manage simulators for assessment of the design before its implementation.

Section 2 of this chapter is related to the digital controllers, which describes the PID and
other controllers in discrete form. Section 3 provides the hardware description of the PID
controller in VHDL language, and finally, the fourth section provides the simulation and
experimental validation, which demonstrates how to perform numerical simulations using
Simulink and Modelsim. Furthermore, an experimental validation on a DC motor system is
also provided.

2. Discretization of classical controllers

The proportional-integral derivative (PID) controller is widely used in industry due to its high
performance with most of the plants even if they are nonlinear [2]. Besides, its parameters can
be tuned empirically and still achieve a good performance. Due to the complexity of the
algorithm, its implementation has been limited to microcontrollers or digital signal processors
[3], and furthermore, most of the researchers who are experts in control theory do not have a
deep knowledge on reconfigurable logic [4, 5].

PID controller has the following form:

Field - Programmable Gate Array58

uðtÞ ¼ Kp eðtÞ þ 1
Ti
∫
t

0
eðτÞdτþ Td

deðtÞ
dt

" #
(1)

where eðtÞ is the difference between the desired (wðtÞ) and measured (yðtÞÞ response of the
system, i.e.:

eðtÞ ¼ wðtÞ � yðtÞ (2)

and uðtÞ is the control signal, used to control the actuator's operation to obtain a desired
closed-loop performance. Finally, the parameters Kp, Ti, and Td are the proportional gain,
integral, and derivative time constants, respectively. A more popular form of Eq. (1) can be
obtained by using the Laplace transform as follows:

UðsÞ ¼ Kp þ Ki

s
þ Kds

� �
EðsÞ, (3)

where Ki ¼ Kp

Ti
and Kd ¼ KpTd.

Eqs. (2) and (3) are time-dependent functions; therefore, they cannot be implemented directly
into a digital system. In that case, it is necessary to find out the discrete form of Eq. (1) by
applying numerical methods.

The proportional part of the equation does not require any additional transformation because
it involves a simple multiplication, but the integral and derivative require a numerical approx-
imation. First, the integral of the error function can be considered as the sum of the area of
small rectangles of base longitude of Ts (which is commonly termed as the sampling period),
and height eðkÞ at a given time instant, t ¼ kTs, i.e.:

∫
t

0
eðτÞdτ ≈Ts

Xk

i¼1

eðiÞ: (4)

Similarly, the derivative term can be approximated as:

deðtÞ
dt

≈
eðkÞ � eðk� 1Þ

Ts
(5)

for a given time t ¼ kTs. Now substituting Eqs. (4) and (5) into Eq. (1), it is possible to rewrite
the PID controller in its discrete form as:

uðkÞ ¼ Kp eðkÞ þ Ts

Ti

Xk

i¼1

eðiÞ þ Td

Ts
½eðkÞ � eðk� 1Þ�

8<
:

9=
; (6)

Eq. (6) provides the storage of error samples from t ¼ 0 until t ¼ kTs, which can be easily
implemented by software on a microprocessor or DSP target. It is common to have kilobytes of
memory in microprocessor platforms and such storage does not carry any problem; however,

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

59

when we deal with reconfigurable logic, it is of vital importance to save logic resources; there-
fore, a more suitable form of Eq. (6) is needed. Above is achieved by computing the differential
term ΔuðkÞ instead of computing directly uðkÞ. Let us define the differential term ΔuðkÞ as:

ΔuðkÞ ¼ uðkÞ � uðk� 1Þ, (7)

and

uðk� 1Þ ¼ Kp eðk� 1Þ þ Ts

Ti

Xk�1

i¼1

eðiÞ þ Td

Ts
½eðk� 1Þ � eðk� 2Þ�

8<
:

9=
; (8)

Subtracting Eq. (8) from Eq. (6) yields:

ΔuðkÞ ¼ Kp eðkÞ � eðk� 1Þ þ Ts

Ti
eðkÞ þ Td

Ts
½eðkÞ � 2eðk� 1Þ þ eðk� 2Þ�

� �
(9)

From Eq. (7), it is possible to rewrite the control output uðkÞ in terms of uðk� 1Þ and ΔuðkÞ as:
uðkÞ ¼ ΔuðkÞ þ uðk� 1Þ: (10)

It is worth to note that during the first iteration, i.e., for t ¼ kTs ¼ 0, the term uðk� 1Þ becomes
zero, while for subsequent iterations, this term holds the previously computed value of uðkÞ.
Finally, substituting Eq. (9) in Eq. (10), the PID control law becomes

uðkÞ ¼ Kp eðkÞ � eðk� 1Þ þ Ts

Ti
eðkÞ þ Td

Ts
½eðkÞ � 2eðk� 1Þ þ eðk� 2Þ�

� �
þ uðk� 1Þ (11)

The common terms in Eq. (11) can be grouped so that the control law takes the form of a digital
filter, i.e.:

uðkÞ ¼ q0eðkÞ þ q1eðk� 1Þ þ q2eðk� 2Þ þ uðk� 1Þ (12)

where

q0 ¼ Kp 1þ Ts

Ti
þ Td

Ts

� �

q1 ¼ �Kp 1þ 2
Td

Ts

� �

q2 ¼ Kp
Td

Ts

Proceeding with the same analysis, the reader could easily derive the formulas for a propor-
tional-integral (PI) digital controller, which has the form:

uðtÞ ¼ q0eðkÞ þ q1eðk� 1Þ þ uðk� 1Þ (13)

where q0 ¼ Kp 1þ Ts=Ti

� Þ and q1 ¼ �Kp. Similarly, the proportional-derivative (PD) controller
may be written as:

Field - Programmable Gate Array60

when we deal with reconfigurable logic, it is of vital importance to save logic resources; there-
fore, a more suitable form of Eq. (6) is needed. Above is achieved by computing the differential
term ΔuðkÞ instead of computing directly uðkÞ. Let us define the differential term ΔuðkÞ as:

ΔuðkÞ ¼ uðkÞ � uðk� 1Þ, (7)

and

uðk� 1Þ ¼ Kp eðk� 1Þ þ Ts

Ti

Xk�1

i¼1

eðiÞ þ Td

Ts
½eðk� 1Þ � eðk� 2Þ�

8<
:

9=
; (8)

Subtracting Eq. (8) from Eq. (6) yields:

ΔuðkÞ ¼ Kp eðkÞ � eðk� 1Þ þ Ts

Ti
eðkÞ þ Td

Ts
½eðkÞ � 2eðk� 1Þ þ eðk� 2Þ�

� �
(9)

From Eq. (7), it is possible to rewrite the control output uðkÞ in terms of uðk� 1Þ and ΔuðkÞ as:
uðkÞ ¼ ΔuðkÞ þ uðk� 1Þ: (10)

It is worth to note that during the first iteration, i.e., for t ¼ kTs ¼ 0, the term uðk� 1Þ becomes
zero, while for subsequent iterations, this term holds the previously computed value of uðkÞ.
Finally, substituting Eq. (9) in Eq. (10), the PID control law becomes

uðkÞ ¼ Kp eðkÞ � eðk� 1Þ þ Ts

Ti
eðkÞ þ Td

Ts
½eðkÞ � 2eðk� 1Þ þ eðk� 2Þ�

� �
þ uðk� 1Þ (11)

The common terms in Eq. (11) can be grouped so that the control law takes the form of a digital
filter, i.e.:

uðkÞ ¼ q0eðkÞ þ q1eðk� 1Þ þ q2eðk� 2Þ þ uðk� 1Þ (12)

where

q0 ¼ Kp 1þ Ts

Ti
þ Td

Ts

� �

q1 ¼ �Kp 1þ 2
Td

Ts

� �

q2 ¼ Kp
Td

Ts

Proceeding with the same analysis, the reader could easily derive the formulas for a propor-
tional-integral (PI) digital controller, which has the form:

uðtÞ ¼ q0eðkÞ þ q1eðk� 1Þ þ uðk� 1Þ (13)

where q0 ¼ Kp 1þ Ts=Ti

� Þ and q1 ¼ �Kp. Similarly, the proportional-derivative (PD) controller
may be written as:

Field - Programmable Gate Array60

uðtÞ ¼ q0eðkÞ þ q1eðk� 1Þ þ q2eðk� 2Þ þ uðk� 1Þ (14)

where

q0 ¼ Kp 1þ Td

Ts

� �

q1 ¼ �Kp 1þ 2
Td

Ts

� �

q2 ¼ Kp
Td

Ts

Other controllers represented in the Laplace domain can be discretized by using approxima-
tions, e.g., the Tustin formulae:

s ¼ 2ðz� 1Þ
Tsðzþ 1Þ (15)

For example, let us consider the following lead compensator:

UðsÞ
EðsÞ ¼ k

sþ ω1

sþ ω2
(16)

Substituting Eq. (15) in Eq. (16), we obtain:

UðzÞ
EðzÞ ¼ k

2ðz� 1Þ
Tsðzþ 1Þ þ ω1

2ðz� 1Þ
Tsðzþ 1Þ þ ω2

¼ k
2ðz� 1Þ þ ω1Tsðzþ 1Þ
2ðz� 1Þ þ ω2Tsðzþ 1Þ

¼ k
ðω1Ts þ 2Þzþ ω1Ts � 2
ðω2Ts þ 2Þzþ ω2Ts � 2

¼ k
ðω1Ts þ 2Þzþ ω1Ts � 2

zþ ω2Ts � 2
ω2Ts þ 2

¼ k
ω1Ts þ 2
ω2Ts þ 2

� � zþ ω1Ts � 2
ω1Ts þ 2

zþ ω2Ts � 2
ω2Ts þ 2

The above equation can be rewritten as:

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

61

UðzÞ
EðzÞ ¼ K

zþ A
zþ B

(17)

where

K ¼ k
ω1Ts þ 2
ω2Ts þ 2

A ¼ ω1Ts � 2
ω1Ts þ 2

B ¼ ω2Ts � 2
ω2Ts þ 2

From a digital point of view, Eq. (17) is still inconvenient. In order to obtain a suitable digital
representation, it is necessary to represent this equation as a difference equation. This can be
performed by multiplying the numerator and the denominator of the right-hand side of
Eq. (17) by z�1. This is equivalent to the shifting operation in the time domain, where the signal
is delayed by one sample. Thus, the lead compensator takes the following form:

UðzÞ
EðzÞ ¼ K

1þ Az�1

1þ Bz�1

Further simplification yields

UðzÞð1þ Bz�1Þ ¼ KEðzÞð1þ Az�1Þ

Expanding terms:

UðzÞ þ BUðzÞz�1 ¼ KEðzÞ þ KAEðzÞz�1

Solving the above equation for UðzÞ we have:

UðzÞ ¼ KEðzÞ þ KAEðzÞz�1 � BUðzÞz�1

It is well known that:

EðzÞ ¼ eðkÞ (18)

and

EðzÞz�1 ¼ eðk� 1Þ (19)

therefore, the discrete lead compensator filter can be expressed as:

uðkÞ ¼ KeðkÞ þ KAeðk� 1Þ � Buðk� 1Þ (20)

which is quite similar to Eq. (14).

Field - Programmable Gate Array62

UðzÞ
EðzÞ ¼ K

zþ A
zþ B

(17)

where

K ¼ k
ω1Ts þ 2
ω2Ts þ 2

A ¼ ω1Ts � 2
ω1Ts þ 2

B ¼ ω2Ts � 2
ω2Ts þ 2

From a digital point of view, Eq. (17) is still inconvenient. In order to obtain a suitable digital
representation, it is necessary to represent this equation as a difference equation. This can be
performed by multiplying the numerator and the denominator of the right-hand side of
Eq. (17) by z�1. This is equivalent to the shifting operation in the time domain, where the signal
is delayed by one sample. Thus, the lead compensator takes the following form:

UðzÞ
EðzÞ ¼ K

1þ Az�1

1þ Bz�1

Further simplification yields

UðzÞð1þ Bz�1Þ ¼ KEðzÞð1þ Az�1Þ

Expanding terms:

UðzÞ þ BUðzÞz�1 ¼ KEðzÞ þ KAEðzÞz�1

Solving the above equation for UðzÞ we have:

UðzÞ ¼ KEðzÞ þ KAEðzÞz�1 � BUðzÞz�1

It is well known that:

EðzÞ ¼ eðkÞ (18)

and

EðzÞz�1 ¼ eðk� 1Þ (19)

therefore, the discrete lead compensator filter can be expressed as:

uðkÞ ¼ KeðkÞ þ KAeðk� 1Þ � Buðk� 1Þ (20)

which is quite similar to Eq. (14).

Field - Programmable Gate Array62

3. Hardware description

There are important features that the reader must consider before starting the description
process. First, the nature of the feedback signal should be considered. If the sensor which
measures the variable to be controlled has an analogue nature, it is necessary to use an
analogue to digital converter (ADC) which has an output with a fixed bit width. In order to
avoid performing arithmetic operations between signals of different bit width, it is strongly
suggested that the setpoint or reference has the same bit width as the measured variable.
Additionally, if the error signal has a wide bus width, let us say wider than 16 bits, this signal
can be saturated in order to avoid wider bus widths in preceding computations.

The second aspect to consider is the number and characteristics of the embedded multipliers or
DSP slices that the target device possesses. Most of the FPGAs available in the market have
multipliers with a fixed bus width, 18 · 18 bits for instance. For any other bus-width, the
synthesis tool shall use logic resources to build a customized multiplier instead of using those
available in the hardware. This bad practice leads to major resource utilization.

In summary, the error signal and the controller gains shall have a bus width, which matches
the bus width of the available embedded multipliers. For example, the available multipliers
have an 18 · 18 bus width, the error signal has 16 bits width, and the controller gains are
required to have a fixed point format 16.16. Then a possible solution that does not imply the
usage of a customized multiplier is to expand the bus width of error and gains to 18 and 36
bits, respectively, being in the latter signal, 18 bits for the integer part and the remaining 18 bits
for the fractional part. Thus, the synthesis tool would use two 18 · 18 embedded multipliers.
Above is possible whenever the bus width of error signal and gains be the multiple of the bus
width of the embedded multipliers and while the extension of the signals preserves their signs.

Finally, the controller output must be congruent with the nature of the actuators. If we deal with
an analogue actuator, it is necessary to include a digital to analogue converter (DAC) which, as
the case of the ADC, has a fixed bus width; therefore, the controller output must agree such
width. However, depending on the polynomial degree of the filter and the bus width of the used
multipliers, the controller output eventually could have a wider bus width; so, it would be
necessary to saturate and truncate decimal data from the controller output signal.

In this section, we shall describe the design of a PID digital controller; however, the reader
could easily modify the proposed design for most of the control above laws. The resultant
design is implemented in VHDL; it is validated in a cosimulation environment, and finally, it is
tested in a real-life application to control the position of a brushed DC servo motor.

The PID digital filter seen as a black-box module is depicted in Figure 1. The ERR signal
represents the error signal, which is the difference between the setpoint and the feedback data.
Similarly, the signals Q0, Q1, and Q2 are the controller gains, and their value depends on Kp,
Ti, Td, and Ts as it is explained in previous sections. On the other side, the UOUT signal is the
filter output, which is feed forwardly to the actuator. CLK and RST are the master clock and
master reset signals, respectively.

Table 1 summarizes the signals properties of the PID_Digital_Controller module. It is impor-
tant to clear that the error signal and the controller gains have 16 and 32 bits of width,

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

63

respectively; above to match the standard data size of most of the common programming
languages; however, these signals are internally expanded to 18 and 36 bits in order to use
two 18 · 18 embedded multipliers as previously mentioned. Additionally, the controller gains
are given in a fixed point format 16.16, i.e., the 16 most significant bits represent the integer
part while the 16 less significant represent the fractional part.

Figure 2 illustrates a block diagram of the digital PID controller. This module comprises five
standard load registers, two multiplexors, a multiplier, an adder, a saturator, and a finite state
machine (FSM). White blocks represent pure combinational processes, whereas gray ones
represent sequential and synchronous processes.

The data path starts at the input registers. At this point, the multiplexors bypass the
corresponding signal error and controller gains selected by the SEL signal, which is driven by
the FSM, the multiplier and adder accumulate this product with the previous result and so on

Figure 1. Black-box module of PID digital filter.

Signal name Direction Bus width Description

RST Input 1 Active low master reset

CLK Input 1 Master clock

TS Input 1 Sampling signal

ERR Input 16 Two's complement error signal

Q0 Input 32 Filter coefficient q0

Q1 Input 32 Filter coefficient q1

Q2 Input 32 Filter coefficient q2

UOUT Output 16 Controller output

Table 1. List of signals properties of PID digital controller.

Field - Programmable Gate Array64

respectively; above to match the standard data size of most of the common programming
languages; however, these signals are internally expanded to 18 and 36 bits in order to use
two 18 · 18 embedded multipliers as previously mentioned. Additionally, the controller gains
are given in a fixed point format 16.16, i.e., the 16 most significant bits represent the integer
part while the 16 less significant represent the fractional part.

Figure 2 illustrates a block diagram of the digital PID controller. This module comprises five
standard load registers, two multiplexors, a multiplier, an adder, a saturator, and a finite state
machine (FSM). White blocks represent pure combinational processes, whereas gray ones
represent sequential and synchronous processes.

The data path starts at the input registers. At this point, the multiplexors bypass the
corresponding signal error and controller gains selected by the SEL signal, which is driven by
the FSM, the multiplier and adder accumulate this product with the previous result and so on

Figure 1. Black-box module of PID digital filter.

Signal name Direction Bus width Description

RST Input 1 Active low master reset

CLK Input 1 Master clock

TS Input 1 Sampling signal

ERR Input 16 Two's complement error signal

Q0 Input 32 Filter coefficient q0

Q1 Input 32 Filter coefficient q1

Q2 Input 32 Filter coefficient q2

UOUT Output 16 Controller output

Table 1. List of signals properties of PID digital controller.

Field - Programmable Gate Array64

the next terms. At the final stage, a saturator trims the bus width of the controller output and
saturates its value to 16 bits.

Signals EK0, EK1, and EK2 have 16 bits of width; however, at the multiplexor output, their
sign is extended two bits, i.e., the EMUX signal has 18 bits of width. Similarly, the signals Q0,
Q1, and Q2 have 32 bits, and at the multiplexor output, QMUX, these signals are extended to
36 bits. The product of error signal as per its corresponding coefficient has 54 bits; nevertheless,
this signal is extended again in order to avoid a possible overflow because of the recurrent
addition with previous results. Thus, given that there are three sums involved in the solution
of the control algorithm, the signal MULT is extended three bits more to obtain a bus width of
57 bits finally. Signals ACCUM and URES also have a 57 bits bus width.

The pipelined structure of registers at the top-left corner, depicted in Figure 2, is planned to
latch the error signals eðkÞ, eðk� 1Þ, and eðk� 2Þwhen signal TS is asserted. On the other hand,
the register located at the top-right corner together with the adder perform the accumulation
process through the assertion of signal LDS. And finally, the last register in the data path
serves only as a holder for the final result of the algorithm. This latter register loads data when
LDR is asserted.

Figure 3 illustrates the operation of the Digital_PID_Controller_FSM; it includes five states. The
first state is an idle state, which waits for the assertion of the sampling signal TS. Second, third,
and fourth states perform the multiplication and accumulation of the filter terms, and such
partial results are added to the previous final result. The fifth state only asserts the signal LDR
to latch the final result and jumps directly to the first state in order to repeat the whole process.

The following source code corresponds to the top-level entity of the design. Its architecture is
structural since it is composed of many other components as mentioned above, in total there
are 12 instances and 3 concurrent assignations.

Code 1. Digital_PID_Controller.vhd.
Library IEEE;

use IEEE.std_logic_1164.all;

Figure 2. Block diagram of digital PID controller.

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

65

Entity Digital_PID_Filter is

port(

RST : in std_logic;

CLK : in std_logic;

TS : in std_logic;

ERR: in std_logic_vector(15 downto 0);

Q0 : in std_logic_vector(31 downto 0);

Q1 : in std_logic_vector(31 downto 0);

Q2 : in std_logic_vector(31 downto 0);

UOUT : out std_logic_vector(15 downto 0)

);

end Digital_PID_Controller;

Architecture Structural of Digital_PID_Controller is

--Components declaration---

Component Digital_PID_Controller_FSM is port(

RST : in std_logic;

CLK : in std_logic;

TS : in std_logic;

LDS : out std_logic;

LDR : out std_logic;

SEL : out std_logic_vector(1 downto 0));

end Component;

Component LoadRegister is generic(n : integer := 8);

port(

RST : in std_logic;

CLK : in std_logic;

LDR : in std_logic;

DIN : in std_logic_vector(n � 1 downto 0);

DOUT : out std_logic_vector(n � 1 downto 0));

end Component;

Field - Programmable Gate Array66

Entity Digital_PID_Filter is

port(

RST : in std_logic;

CLK : in std_logic;

TS : in std_logic;

ERR: in std_logic_vector(15 downto 0);

Q0 : in std_logic_vector(31 downto 0);

Q1 : in std_logic_vector(31 downto 0);

Q2 : in std_logic_vector(31 downto 0);

UOUT : out std_logic_vector(15 downto 0)

);

end Digital_PID_Controller;

Architecture Structural of Digital_PID_Controller is

--Components declaration---

Component Digital_PID_Controller_FSM is port(

RST : in std_logic;

CLK : in std_logic;

TS : in std_logic;

LDS : out std_logic;

LDR : out std_logic;

SEL : out std_logic_vector(1 downto 0));

end Component;

Component LoadRegister is generic(n : integer := 8);

port(

RST : in std_logic;

CLK : in std_logic;

LDR : in std_logic;

DIN : in std_logic_vector(n � 1 downto 0);

DOUT : out std_logic_vector(n � 1 downto 0));

end Component;

Field - Programmable Gate Array66

Component Multiplexor3To1 is generic(n : integer := 8);

port(

DIN0 : in std_logic_vector(n - 1 downto 0);

DIN1 : in std_logic_vector(n - 1 downto 0);

DIN2 : in std_logic_vector(n - 1 downto 0);

SEL : in std_logic_vector(1 downto 0);

DOUT : out std_logic_vector(n - 1 downto 0));

end Component;

Component Multiplier is generic(m, n : integer := 9);

port(

OPA : in std_logic_vector(m - 1 downto 0);

OPB : in std_logic_vector(n - 1 downto 0);

RES : out std_logic_vector((m + n - 1) downto 0));

end Component;

Component Adder is generic(n : integer := 8);

port(

OPA : in std_logic_vector(n - 1 downto 0);

OPB : in std_logic_vector(n - 1 downto 0);

RES : out std_logic_vector(n - 1 downto 0));

end Component;

Component Saturator57To16 is port(

DIN : in std_logic_vector(56 downto 0);

DOUT : out std_logic_vector(15 downto 0));

end Component;

--Signals declaration--

signal LDS : std_logic;

signal LDR : std_logic;

signal SEL : std_logic_vector(1 downto 0);

signal EK0 : std_logic_vector(15 downto 0);

signal EK1 : std_logic_vector(15 downto 0);

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

67

signal EK2 : std_logic_vector(15 downto 0);

signal EAUX : std_logic_vector(15 downto 0);

signal EMUX : std_logic_vector(17 downto 0);

signal QAUX : std_logic_vector(31 downto 0);

signal QMUX : std_logic_vector(35 downto 0);

signal MULT : std_logic_vector(53 downto 0);

signal MULE : std_logic_vector(56 downto 0);

signal USUM : std_logic_vector(56 downto 0);

signal ACCU : std_logic_vector(56 downto 0);

signal URES : std_logic_vector(56 downto 0);

begin

--Concurrent assignations--

EMUX <= EAUX(15) & EAUX(15) & EAUX;

QMUX <= QAUX(31) & QAUX(31) & QAUX(31) & QAUX(31) & QAUX;

MULE <= MULT(53) & MULT(53) & MULT(53) & MULT;

--Component instances--

U01 : Digital_PID_Controller_FSM port map(RST, CLK, TS, LDS, LDR, SEL);

U02 : LoadRegister generic map(16) port map(RST, CLK, TS, ERR, EK0);

U03 : LoadRegister generic map(16) port map(RST, CLK, TS, EK0, EK1);

U04 : LoadRegister generic map(16) port map(RST, CLK, TS, EK1, EK2);

U05 : Multiplexor3To1 generic map(16) port map(EK0, EK1, EK2, SEL, EAUX);

U06 : Multiplexor3To1 generic map(32) port map(Q0, Q1, Q2, SEL, QAUX);

U07 : Multiplier generic map(18, 36) port map(EMUX, QMUX, MULT);

U08 : Adder generic map(57) port map(MULE, ACCU, USUM);

U09 : LoadRegister generic map(57) port map(RST, CLK, LDS, USUM, ACCU);

U10 : LoadRegister generic map(57) port map(RST, CLK, LDR, ACCU, URES);

U11 : Saturator57To16 port map(URES, UOUT);

end Structural;

Field - Programmable Gate Array68

signal EK2 : std_logic_vector(15 downto 0);

signal EAUX : std_logic_vector(15 downto 0);

signal EMUX : std_logic_vector(17 downto 0);

signal QAUX : std_logic_vector(31 downto 0);

signal QMUX : std_logic_vector(35 downto 0);

signal MULT : std_logic_vector(53 downto 0);

signal MULE : std_logic_vector(56 downto 0);

signal USUM : std_logic_vector(56 downto 0);

signal ACCU : std_logic_vector(56 downto 0);

signal URES : std_logic_vector(56 downto 0);

begin

--Concurrent assignations--

EMUX <= EAUX(15) & EAUX(15) & EAUX;

QMUX <= QAUX(31) & QAUX(31) & QAUX(31) & QAUX(31) & QAUX;

MULE <= MULT(53) & MULT(53) & MULT(53) & MULT;

--Component instances--

U01 : Digital_PID_Controller_FSM port map(RST, CLK, TS, LDS, LDR, SEL);

U02 : LoadRegister generic map(16) port map(RST, CLK, TS, ERR, EK0);

U03 : LoadRegister generic map(16) port map(RST, CLK, TS, EK0, EK1);

U04 : LoadRegister generic map(16) port map(RST, CLK, TS, EK1, EK2);

U05 : Multiplexor3To1 generic map(16) port map(EK0, EK1, EK2, SEL, EAUX);

U06 : Multiplexor3To1 generic map(32) port map(Q0, Q1, Q2, SEL, QAUX);

U07 : Multiplier generic map(18, 36) port map(EMUX, QMUX, MULT);

U08 : Adder generic map(57) port map(MULE, ACCU, USUM);

U09 : LoadRegister generic map(57) port map(RST, CLK, LDS, USUM, ACCU);

U10 : LoadRegister generic map(57) port map(RST, CLK, LDR, ACCU, URES);

U11 : Saturator57To16 port map(URES, UOUT);

end Structural;

Field - Programmable Gate Array68

The following code corresponds to the implementation of the FSM depicted in Figure 3. It has
a behavioral architecture since it is composed by a couple of processes; the first one includes
the combinational logic, which performs the state transitions and sets the output logic. The
second process emulates the behavior of a D-type flip-flop, which updates the data with each
rising-edge of the master clock signal.

Code 2. Digital_PID_Controller_FSM.vhd.
Library IEEE;

use IEEE.std_logic_1164.all;

Entity Digital_PID_Controller_FSM is

port(

RST : in std_logic;

CLK : in std_logic;

Figure 3. Finite state machine of the digital PID filter.

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

69

TS : in std_logic;

LDS : out std_logic;

LDR : out std_logic;

SEL : out std_logic_vector(1 downto 0)

);

end Digital_PID_Controller_FSM;

Architecture Behavioral of Digital_PID_Controller_FSM is

signal Sp, Sn : std_logic_vector(2 downto 0);

begin

combinational : process(Sp, TS)

begin

case Sp is

when “000” =>

LDS <= '0';

LDR <= '0';

SEL <= “XX”;

if TS = '1' then

Sn <= “001”;

else

Sn <= Sp;

end if;

when “001” =>

LDS <= '1';

LDR <= '0';

SEL <= “00”;

Sn <= “010”;

when “010” =>

LDS <= '1';

LDR <= '0';

Field - Programmable Gate Array70

TS : in std_logic;

LDS : out std_logic;

LDR : out std_logic;

SEL : out std_logic_vector(1 downto 0)

);

end Digital_PID_Controller_FSM;

Architecture Behavioral of Digital_PID_Controller_FSM is

signal Sp, Sn : std_logic_vector(2 downto 0);

begin

combinational : process(Sp, TS)

begin

case Sp is

when “000” =>

LDS <= '0';

LDR <= '0';

SEL <= “XX”;

if TS = '1' then

Sn <= “001”;

else

Sn <= Sp;

end if;

when “001” =>

LDS <= '1';

LDR <= '0';

SEL <= “00”;

Sn <= “010”;

when “010” =>

LDS <= '1';

LDR <= '0';

Field - Programmable Gate Array70

SEL <= “01”;

Sn <= “011”;

when “011” =>

LDS <= '1';

LDR <= '0';

SEL <= “10”;

Sn <= “100”;

when others =>

LDS <= '0';

LDR <= '1';

SEL <= “XX”;

Sn <= “000”;

end case;

end process Combinational;

Sequential : process(RST, CLK)

begin

if RST = ‘0’ then

Sp <= “000”;

elsif CLK'event and CLK = '1' then

Sp <= Sn;

end if;

end process Sequential;

end Behavioral;

The LoadRegister module is labeled as Register in Figure 2. The objective of this module is to
store some particular value. While LDR is asserted, this module stores the value present at the
input DIN, and the result is reflected in the output until the next clock event. When LDR is low,
the register preserves the last latched value.

Code 3. LoadRegister.vhd.

Library IEEE;

use IEEE.std_logic_1164.all;

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

71

Entity LoadRegister is

generic(n : integer := 8);

port(

RST : in std_logic;

CLK : in std_logic;

LDR : in std_logic;

DIN : in std_logic_vector(n � 1 downto 0);

DOUT : out std_logic_vector(n � 1 downto 0)

);

end LoadRegister;

Architecture Behavioral of LoadRegister is

signal Qp, Qn : std_logic_vector(n � 1 downto 0);

begin

Combinational : process(Qp, LDR, DIN)

begin

if LDR = ‘1’ then

Qn <= DIN;

else

Qn <= Qp;

end if;

DOUT <= Qp;

end process Combinational;

Sequential : process(RST, CLK)

begin

if RST = ‘0’ then

Qp <= (others => '0');

elsif CLK'event and CLK = '1' then

Qp <= Qn;

end if;

Field - Programmable Gate Array72

Entity LoadRegister is

generic(n : integer := 8);

port(

RST : in std_logic;

CLK : in std_logic;

LDR : in std_logic;

DIN : in std_logic_vector(n � 1 downto 0);

DOUT : out std_logic_vector(n � 1 downto 0)

);

end LoadRegister;

Architecture Behavioral of LoadRegister is

signal Qp, Qn : std_logic_vector(n � 1 downto 0);

begin

Combinational : process(Qp, LDR, DIN)

begin

if LDR = ‘1’ then

Qn <= DIN;

else

Qn <= Qp;

end if;

DOUT <= Qp;

end process Combinational;

Sequential : process(RST, CLK)

begin

if RST = ‘0’ then

Qp <= (others => '0');

elsif CLK'event and CLK = '1' then

Qp <= Qn;

end if;

Field - Programmable Gate Array72

end process Sequential;

end Behavioral;

The multiplexor in the following code allows directing each sample of the error signal with
their corresponding coefficient.

Code 4. Multiplexor3To1.vhd.
Library IEEE;

use IEEE.std_logic_1164.all;

Entity Multiplexor3To1 is

generic(n : integer := 8);

port(

DIN0 : in std_logic_vector(n - 1 downto 0);

DIN1 : in std_logic_vector(n - 1 downto 0);

DIN2 : in std_logic_vector(n - 1 downto 0);

SEL : in std_logic_vector(1 downto 0);

DOUT : out std_logic_vector(n - 1 downto 0)

);

end Multiplexor3To1;

Architecture DataFlow of Multiplexor3To1 is

begin

With SEL Select DOUT <=

DIN0 when “00”, DIN1 when “01”, DIN2 when “10”, (others =>'0') when others;

end DataFlow;

The following module performs an arithmetic sum between two vectors. It is worth to note
that this module does not depend on the clock.

Code 5. Adder.vhd.

Library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

Entity Adder is

generic(n : integer := 8);

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

73

port(

OPA : in std_logic_vector(n � 1 downto 0);

OPB : in std_logic_vector(n � 1 downto 0);

RES : out std_logic_vector(n � 1 downto 0)

);

end Adder;

Architecture DataFlow of Adder is

begin

RES <= OPA + OPB;

end DataFlow;

Similarly, the multiplier performs an arithmetic product between two vectors; however, it is
important to preserve the sign of the result; therefore, it is included in the IEEE.std_logic_arith
library.

Code 6. Multiplier.vhd.
Library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

Entity Multiplier is

generic(m, n : integer := 9);

port(

OPA : in std_logic_vector(m � 1 downto 0);

OPB : in std_logic_vector(n � 1 downto 0);

RES : out std_logic_vector((m + n � 1) downto 0)

);

end Multiplier;

Architecture DataFlow of Multiplier is

begin

RES <= signed(OPA) * signed(OPB);

end DataFlow;

Field - Programmable Gate Array74

port(

OPA : in std_logic_vector(n � 1 downto 0);

OPB : in std_logic_vector(n � 1 downto 0);

RES : out std_logic_vector(n � 1 downto 0)

);

end Adder;

Architecture DataFlow of Adder is

begin

RES <= OPA + OPB;

end DataFlow;

Similarly, the multiplier performs an arithmetic product between two vectors; however, it is
important to preserve the sign of the result; therefore, it is included in the IEEE.std_logic_arith
library.

Code 6. Multiplier.vhd.
Library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

Entity Multiplier is

generic(m, n : integer := 9);

port(

OPA : in std_logic_vector(m � 1 downto 0);

OPB : in std_logic_vector(n � 1 downto 0);

RES : out std_logic_vector((m + n � 1) downto 0)

);

end Multiplier;

Architecture DataFlow of Multiplier is

begin

RES <= signed(OPA) * signed(OPB);

end DataFlow;

Field - Programmable Gate Array74

The last module is provided in the Code 7, which is used to limit the output. For this particular
case, the controller output has been adjusted to 16 bits in order to convert this value to an
analogue signal using a DAC. Since the controller gains are given in a fixed point format 16.16,
the less significant bits of the controller output are trimmed, i.e., only the integer part of the
control output is considered during the digital to analogue conversion.

Code 7. Saturator57To16.vhd.
Library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

Entity Saturator57To16 is

port(

DIN : in std_logic_vector(56 downto 0);

DOUT : out std_logic_vector(15 downto 0)

);

end Saturator57To16;

Architecture Behavioral of Saturator57To16 is

constant UMAX : std_logic_vector(56 downto 0) := ‘0’ & X”0000007FFF0000”;

constant UMIN : std_logic_vector(56 downto 0) := ‘1’ & X”FFFFFF80010000”;

begin

process(DIN)

begin

if signed(DIN) > signed(UMAX) then

DOUT <= UMAX(31 downto 16);

elsif signed(DIN) < signed(UMIN) then

DOUT <= UMIN(31 downto 16);

else

DOUT <= DIN(31 downto 16);

end if;

end process;

end Behavioral;

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

75

4. Simulation and experimental results

In this section, the designed PID controller is tested using the software and then experimental
studies are carried out for a motion control application of a DC brushed servo motor. The
software simulation was performed using Matlab Simulink and ModelSim. Both software
applications can run with shared memory in order to perform the cosimulation process.

The first study consists of two control loops as illustrated in Figure 4. Both control loops have the
same input and plant to be controlled, but the first one is implemented using a Simulink PID
block (software implementation), whereas the second one is obtained using the VHDL imple-
mentation as described in the previous section (hardware implementation). The aim of this study
is to compare the performance between the software- and hardware-based implementations.

Before proceeding with the cosimulation, it is important to remark some differences between
both PID implementations. The software implementation utilizes a floating point data type with
double precision; also, it includes filtering algorithms to compute the derivative and integral
term. On the other hand, the hardware implementation described above utilizes the backward
rectangular method (BRM) to compute the integral and a simple two-point differentiation for the
derivative term; furthermore, the data type utilized has a fixed point format.

The response of the tested control loops is depicted in Figure 5. There are three aspects to be
considered from the output response. The first one is that the starting angle of the response for
the case of the software implementation is higher than the hardware implementation, that is,
the response of the software implementation control loop is faster. Second, the first plant
reaches the setpoint, relatively faster than the second one, which proves the first assumption.

Figure 4. Simulink model for the test of the PID controller.

Field - Programmable Gate Array76

4. Simulation and experimental results

In this section, the designed PID controller is tested using the software and then experimental
studies are carried out for a motion control application of a DC brushed servo motor. The
software simulation was performed using Matlab Simulink and ModelSim. Both software
applications can run with shared memory in order to perform the cosimulation process.

The first study consists of two control loops as illustrated in Figure 4. Both control loops have the
same input and plant to be controlled, but the first one is implemented using a Simulink PID
block (software implementation), whereas the second one is obtained using the VHDL imple-
mentation as described in the previous section (hardware implementation). The aim of this study
is to compare the performance between the software- and hardware-based implementations.

Before proceeding with the cosimulation, it is important to remark some differences between
both PID implementations. The software implementation utilizes a floating point data type with
double precision; also, it includes filtering algorithms to compute the derivative and integral
term. On the other hand, the hardware implementation described above utilizes the backward
rectangular method (BRM) to compute the integral and a simple two-point differentiation for the
derivative term; furthermore, the data type utilized has a fixed point format.

The response of the tested control loops is depicted in Figure 5. There are three aspects to be
considered from the output response. The first one is that the starting angle of the response for
the case of the software implementation is higher than the hardware implementation, that is,
the response of the software implementation control loop is faster. Second, the first plant
reaches the setpoint, relatively faster than the second one, which proves the first assumption.

Figure 4. Simulink model for the test of the PID controller.

Field - Programmable Gate Array76

Finally, the control output of the second loop (hardware implementation) is noisy when
compared with the software implementation.

Despite of the aforementioned difference, the performance of the hardware implementation
could be acceptable for the control applications in industrial environments. Such kind of an
application is described below.

Figure 5. Simulation result of both PID implementations: Simulink (top) and VHDL (bottom).

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

77

The application was designed to perform the motion control of a three-degree of freedom
robotic arm as illustrated in Figure 6. This robot is actuated by 12 V brushed DC motors
combined with a 171.79:1 metal spur-gearbox and it has an integrated 48 counts per revolution
(CPR) quadrature encoder on the motor shaft, which provides 8245.92 counts per revolution.

A power amplifier stage has been included, which consists of three Texas Instruments
LMD18245 power amplifiers required to drive and control the current for the servo motors.
These amplifiers can operate with an analogue current reference. For this reason, a digital to
analogue converter (DAC) is required. For this application, the Analog Devices AD5668 is
utilized, which has eight analogue outputs with a resolution of 16 bits.

The Servo_Controller module is mainly composed of a point of sum, a Digital_PID_Controller,
a DAC-Driver, and an Encoder_Quadrature_Interface as shown in Figure 7. The reference
position (REF) signal is treated as a 32-bit register whose value can be written directly from
the PS. On the other hand, the motor position is measured using the Encoder_Quadrature_
Interface module. This module uses the signals CHA and CHB from the encoder as the input,
and it generates an output signal POS which has a width of 32 bits. Both signals REF and POS

Figure 6. Experimental setup.

Figure 7. Servo controller block diagram.

Field - Programmable Gate Array78

The application was designed to perform the motion control of a three-degree of freedom
robotic arm as illustrated in Figure 6. This robot is actuated by 12 V brushed DC motors
combined with a 171.79:1 metal spur-gearbox and it has an integrated 48 counts per revolution
(CPR) quadrature encoder on the motor shaft, which provides 8245.92 counts per revolution.

A power amplifier stage has been included, which consists of three Texas Instruments
LMD18245 power amplifiers required to drive and control the current for the servo motors.
These amplifiers can operate with an analogue current reference. For this reason, a digital to
analogue converter (DAC) is required. For this application, the Analog Devices AD5668 is
utilized, which has eight analogue outputs with a resolution of 16 bits.

The Servo_Controller module is mainly composed of a point of sum, a Digital_PID_Controller,
a DAC-Driver, and an Encoder_Quadrature_Interface as shown in Figure 7. The reference
position (REF) signal is treated as a 32-bit register whose value can be written directly from
the PS. On the other hand, the motor position is measured using the Encoder_Quadrature_
Interface module. This module uses the signals CHA and CHB from the encoder as the input,
and it generates an output signal POS which has a width of 32 bits. Both signals REF and POS

Figure 6. Experimental setup.

Figure 7. Servo controller block diagram.

Field - Programmable Gate Array78

Figure 8. Response of the system to the trajectory commanded: (a) joint 1, (b) joint 2, and (c) joint 3.

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

79

are subtracted and trimmed to 16 bits to avoid any saturation in further computations. In
Figure 7, this signal is labeled as ERR, which serves as the input to the Digital_PID_Controller.

A circular trajectory is consideredin order to evaluate the controller performance. The center of
the circumference with a radius of 50 mm is located at (110.0, 0.0, 70.0) being the Z-coordinate
constant through the whole movement, i.e., the entire movement is carried out only in the X-Y
plane. First, the interpolation process generates each point along the circumference. This point is
used to solve the inverse kinematics. Thus, the resulting angle set is converted to encoder counts
and written to the setpoint registers of each servo controller. The sampling time for the genera-
tion of each point is chosen as Ts ¼ 0:001 s.

Figure 8 shows the response of each servo controller to the generated path. It can be clearly
seen that the first and the third joints closely follow the reference trajectory, whereas the second
joint shows a larger variation from the commanded trajectory. This could be due to the
influence of nonlinear dynamics of the servo motor or due to the gravity force. However, the
Cartesian position of the robot remains very close to the commanded trajectory as can be seen
in Figure 9.

5. Conclusions

The endeavor of this chapter is how to deal with theoretical and practical issues regarding the
control systems. The readers who are not familiar with motion control systems can get a basic
knowledge into reconfigurable logic circuit-based digital design. Generally, it is necessary to
combine classroom and practical concepts; for that reasons, these sections are not only aimed
for the students or professors but also for professionals who want to obtain a basic under-
standing about the closed-loop control design.

Figure 9. Cartesian response of the system.

Field - Programmable Gate Array80

are subtracted and trimmed to 16 bits to avoid any saturation in further computations. In
Figure 7, this signal is labeled as ERR, which serves as the input to the Digital_PID_Controller.

A circular trajectory is consideredin order to evaluate the controller performance. The center of
the circumference with a radius of 50 mm is located at (110.0, 0.0, 70.0) being the Z-coordinate
constant through the whole movement, i.e., the entire movement is carried out only in the X-Y
plane. First, the interpolation process generates each point along the circumference. This point is
used to solve the inverse kinematics. Thus, the resulting angle set is converted to encoder counts
and written to the setpoint registers of each servo controller. The sampling time for the genera-
tion of each point is chosen as Ts ¼ 0:001 s.

Figure 8 shows the response of each servo controller to the generated path. It can be clearly
seen that the first and the third joints closely follow the reference trajectory, whereas the second
joint shows a larger variation from the commanded trajectory. This could be due to the
influence of nonlinear dynamics of the servo motor or due to the gravity force. However, the
Cartesian position of the robot remains very close to the commanded trajectory as can be seen
in Figure 9.

5. Conclusions

The endeavor of this chapter is how to deal with theoretical and practical issues regarding the
control systems. The readers who are not familiar with motion control systems can get a basic
knowledge into reconfigurable logic circuit-based digital design. Generally, it is necessary to
combine classroom and practical concepts; for that reasons, these sections are not only aimed
for the students or professors but also for professionals who want to obtain a basic under-
standing about the closed-loop control design.

Figure 9. Cartesian response of the system.

Field - Programmable Gate Array80

For educators, many concepts can be applied in courses as servo systems, programming,
classical control, and digital control, to mention a few. Since FPGA technology is almost
available in all engineering schools, there is no restriction to apply the code shown in this
manuscript. In addition, sequential devices might be used too. It is due to the facility to
translate HDL code to C code. In this sense, microcontrollers, digital signal processors, and
digital signal controllers get a good approach to make a motion control task.

It is recommended to use standard compilers and hardware tools that do not demand high
computational resources. It is because of the synthesis stage, which is often the hard part of the
developing work.

Author details

Miguel Angel Martínez Prado, Juvenal Rodríguez Reséndiz*, Diana Carolina Toledo Pérez,
Carlos Miguel Torres Hernández and Gilberto Herrera Ruiz

*Address all correspondence to: juvenal@uaq.edu.mx

Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas SN, Col.
Las Campanas, Querétaro, Qro, México

References

[1] Monmasson E, Cirstea M N. FPGA design methodology for industrial control systems - A
review. IEEE Transactions on Industrial Electronics. 2007;54:1824–1842. DOI: 10.1109/
TIE.2007.898281

[2] Zhao W, Kim B H, Larson A C, Voyles R M. FPGA implementation of closed-loop control
system for small-scale robot. In: ICAR ‘05. Proceedings, 12th International Conference on
Advanced Robotics, 2005; IEEE Xplore; July 2005;. pp. 70–77. DOI: 10.1109/ICAR.2005.
1507393

[3] Ghosh S, Barai R K, Bhattarcharya S, Bhattarcharya P, Rudra S, Dutta A, Pyne R. An FPGA
based implementation of a flexible digital PID controller for a motion control system. In:
2013 International Conference on Computer Communication and Informatics (ICCCI); 04
Jan–06 Jan 2013; Coimbatore, Tamil Nadu, India. IEEE Xplore; 2013; pp. 1–6. DOI: 10.1109/
ICCCI.2013.6466277

[4] Xu Y, Zhao J, Huang J. Multiple linear motor control system based on FPGA. In: 2014 17th
International Conference on Electrical Machines and Systems (ICEMS); 22 Oct–25 Oct
2014; Hangzhou, China. IEEE Xplore; 2014. pp. 2327–2331. DOI: 10.1109/ICEMS.2014.
7013875

[5] Nandayapa M, Mitsantisuk C, Ohishi K. Improving bilateral control feedback by using
novel velocity and acceleration estimation methods in FPGA. In: 2012 12th IEEE

Motion Control with FPGA
http://dx.doi.org/10.5772/67200

81

International Workshop on Advanced Motion Control (AMC); 25 Mar–27 Mar 2012; Sara-
jevo, Bosnia and Herzegovina: IEEE Xplore; 2012. pp. 1–6. DOI: 10.1109/AMC.2012.
6197024

[6] Bagni D, Mackay D. Floating-point PID controller design with Vivado HLS and system
generator for DSP [Internet]. 2013. Available from: http://www.xilinx.com/support/docu-
mentation/application_notes/xapp1163.pdf [Accessed: 2016-02-25]

[7] Aboelaze M, Shehata MG. Implementation of multiple PID controllers on FPGA. In: 2015
IEEE International Conference on Electronics, Circuits, and Systems (ICECS); 7–9 Dec
2015; Egypt. IEEE Xplore; 2015. pp. 446–449. DOI: 10.1109/ICECS.2015.7440344

[8] Uzunović T, Žunić E, Badnjević A, Mioković I, Konjicija S. Implementation of digital PID
controller. In: 2010 Proceedings of the 33rd International Convention MIPRO; 24–28 May
2010; Opatija, Croatia. IEEE Xplore; 2010. pp. 1357–1361.

Field - Programmable Gate Array82

International Workshop on Advanced Motion Control (AMC); 25 Mar–27 Mar 2012; Sara-
jevo, Bosnia and Herzegovina: IEEE Xplore; 2012. pp. 1–6. DOI: 10.1109/AMC.2012.
6197024

[6] Bagni D, Mackay D. Floating-point PID controller design with Vivado HLS and system
generator for DSP [Internet]. 2013. Available from: http://www.xilinx.com/support/docu-
mentation/application_notes/xapp1163.pdf [Accessed: 2016-02-25]

[7] Aboelaze M, Shehata MG. Implementation of multiple PID controllers on FPGA. In: 2015
IEEE International Conference on Electronics, Circuits, and Systems (ICECS); 7–9 Dec
2015; Egypt. IEEE Xplore; 2015. pp. 446–449. DOI: 10.1109/ICECS.2015.7440344

[8] Uzunović T, Žunić E, Badnjević A, Mioković I, Konjicija S. Implementation of digital PID
controller. In: 2010 Proceedings of the 33rd International Convention MIPRO; 24–28 May
2010; Opatija, Croatia. IEEE Xplore; 2010. pp. 1357–1361.

Field - Programmable Gate Array82

Chapter 4

FPGA-Based Software-Defined Radio and Its Real-Time
Implementation Using NI-USRP

Nikhil Marriwala , Om. Prakash. Sahu and
Anil Vohra

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66272

Provisional chapter

FPGA-Based Software-Defined Radio and Its Real-Time
Implementation Using NI-USRP

Nikhil Marriwala, Om. Prakash. Sahu and Anil Vohra

Additional information is available at the end of the chapter

Abstract

In this chapter, we propose a novel design of scalable and real-time data acquisition
software architecture for software-defined radio (SDR) using universal software radio
peripheral (USRP). The software has been designed and tested in multi-thread model,
using LabVIEW, which guarantees real-time performance and efficiency. With the help
of this design, we have been able to improve the stability of the system besides providing
a reconfigurable and flexible architecture. Wireless transfer of sensitive data using
communication is not a very safe option. In this chapter, we aim to provide a safe and
private wireless transmission between two terminals using the SDR approach and
verifying the results in real-world environment with the use of USRP. The novel design
being presented here can be used to transfer (random data, text or an image) encoded
with different forward error correction (FEC) codes, which is then verified at the
receiving terminal and then decoded accordingly to produce the desired result.

Keywords: software-defined radio, universal software radio peripheral, forward error
correction codes, biterrorrate (BER), signal-to-noise ratio (SNR), LabVIEW

1. Introduction to SDR

Software-defined radio (SDR) systems are those which can adapt to the future-proof solution
and they cover both existing and emerging standards. An SDR has to possess elements of
reconfigurability, intelligence and software programmable hardware [1]. As the functionality
is defined in software, a new technology can be easily implemented in a software radio by means
of a software upgrade. Channel equalization is an important subsystem in the software defined
radio’s receiver. For many years, modulation techniques have been extensively used for various

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

wireless applications, but the modern communication system requires data transmitted at a
higher rate and larger bandwidth [2].

This chapter discusses an SDR system built using LabVIEW for a generic transceiver. SDR
provides an alternative to systems such as the third-generation (3G) and the fourth-generation
(4G) systems. There are two frequency bands where the software-defined radio might operate
in the near future, that is, 54–862 MHz [very high-frequency (VHF) and ultra-high frequency
(UHF) TV bands] and 3–10 GHz [ultra-wideband (UWB) radios]. A software-defined radio
comprises a programmable communication system where functional changes can be made by
merely updating the software. SDRs can be reconfigured and can talk and listen to multiple
channels at the same time. Normally, high-performance digital signal processors (DSPs) are
used to serve as the baseband processor. SDR systems can be used in ubiquitous network
environments because of its flexibility and programmability [3]. The use of digital signals
reduces hardware, noise and interference problems as compared to the analogue signal in
transmission, which is one of the main advantages of digital transmission.

In this chapter, the software simulator of the SDR transceiver has been designed using
LabVIEW and has been tested in real time using the universal software radio peripheral
(USRP). Digital modulation schemes namely the frequency shift keying (FSK), phase shift
keying (PSK) and quadrature amplitude modulation (QAM) are chosen to be the modulation
schemes of the designed software-defined radio system due to its easy implementation and
widespread usage in wireless communication equipment. Digital modulation techniques are
considered to be very common technology for transmission and reception in current and future
wireless communications, especially in the VHF and UHF frequency bands giving excellent
bit error rate (BER) versus signal-to-noise ratio (SNR) ratio with high data rates. The role of
modulation techniques in an SDR is very vital given that the modulation techniques describe
the central part of any wireless technology. They can be reconfigured and can talk and listen
to multiple channels at the same time. The role of modulation techniques in an SDR is very
crucial since modulation techniques define the core part of any wireless technology. SDR’s
inherent flexibility must, however, be planned for in advance via hardware and software
considerations, ultimately resulting in increased code portability, improved communications
system life cycles and reduced costs. The main interest in any communication group is the sure
sending of signals of info from a transmitter to a receiver [4]. The signals are transmitted via a
guide who corrupts the signal. It is needful that the distorting effects of the channel and noise
are minimized and that the information transmitted through the channel at any given time is
maximized [5]. The channel is subject to various types of dissonance, twisting and interference.
Also, some communication systems have limitations on transmitter power. All of this may lead
to various types of errors. Consequently, we may need some form of error control encoding in
order to recover the information reliably.

1.1. Related technologies of SDR

In view of the fact that the field-programmable gate array (FPGA)’s prime function is to offer
signal filtering and rate conversion from the analogue-to-digital converter (ADC) and to the
system’s digital-to analogue converter (DAC), its firmware can be customized to meet the

Field - Programmable Gate Array84

wireless applications, but the modern communication system requires data transmitted at a
higher rate and larger bandwidth [2].

This chapter discusses an SDR system built using LabVIEW for a generic transceiver. SDR
provides an alternative to systems such as the third-generation (3G) and the fourth-generation
(4G) systems. There are two frequency bands where the software-defined radio might operate
in the near future, that is, 54–862 MHz [very high-frequency (VHF) and ultra-high frequency
(UHF) TV bands] and 3–10 GHz [ultra-wideband (UWB) radios]. A software-defined radio
comprises a programmable communication system where functional changes can be made by
merely updating the software. SDRs can be reconfigured and can talk and listen to multiple
channels at the same time. Normally, high-performance digital signal processors (DSPs) are
used to serve as the baseband processor. SDR systems can be used in ubiquitous network
environments because of its flexibility and programmability [3]. The use of digital signals
reduces hardware, noise and interference problems as compared to the analogue signal in
transmission, which is one of the main advantages of digital transmission.

In this chapter, the software simulator of the SDR transceiver has been designed using
LabVIEW and has been tested in real time using the universal software radio peripheral
(USRP). Digital modulation schemes namely the frequency shift keying (FSK), phase shift
keying (PSK) and quadrature amplitude modulation (QAM) are chosen to be the modulation
schemes of the designed software-defined radio system due to its easy implementation and
widespread usage in wireless communication equipment. Digital modulation techniques are
considered to be very common technology for transmission and reception in current and future
wireless communications, especially in the VHF and UHF frequency bands giving excellent
bit error rate (BER) versus signal-to-noise ratio (SNR) ratio with high data rates. The role of
modulation techniques in an SDR is very vital given that the modulation techniques describe
the central part of any wireless technology. They can be reconfigured and can talk and listen
to multiple channels at the same time. The role of modulation techniques in an SDR is very
crucial since modulation techniques define the core part of any wireless technology. SDR’s
inherent flexibility must, however, be planned for in advance via hardware and software
considerations, ultimately resulting in increased code portability, improved communications
system life cycles and reduced costs. The main interest in any communication group is the sure
sending of signals of info from a transmitter to a receiver [4]. The signals are transmitted via a
guide who corrupts the signal. It is needful that the distorting effects of the channel and noise
are minimized and that the information transmitted through the channel at any given time is
maximized [5]. The channel is subject to various types of dissonance, twisting and interference.
Also, some communication systems have limitations on transmitter power. All of this may lead
to various types of errors. Consequently, we may need some form of error control encoding in
order to recover the information reliably.

1.1. Related technologies of SDR

In view of the fact that the field-programmable gate array (FPGA)’s prime function is to offer
signal filtering and rate conversion from the analogue-to-digital converter (ADC) and to the
system’s digital-to analogue converter (DAC), its firmware can be customized to meet the

Field - Programmable Gate Array84

particular needs of the user or just downloaded without modification, as a preconfigured file.
Some of the USRP family support multi-radio cooperation using multiple-input, multiple
output (MIMO) techniques. This is enabled by installing a MIMO interconnecting cable
between two USRP devices [6].

To ensure reliable communication, forward error-correcting (FEC) codes are the main part of
a communication system. FEC is a technique in which we add redundant bits to the transmitted
data to help the receiver correct errors. There are two types of FEC codes: the convolutional
codes and block codes. When we use block codes, they are defined by n and k, where n describes
the total number of coded bits and k gives the number of input bits. In convolutional codes,
the coding is applied to the entire data stream as one code word. In the year 1948, Shannon
showed that arbitrarily reliable communication is only possible till the signal transmission rate
does not exceed a certain limit which was termed as channel capacity [7]. After this different
algebraic codes such as Golay codes, Bose-Chaud huri-Hocquenghem (BCH) codes and Reed-
Solomon (RS) codes were created and used for error correction. The next series of codes
originally referred as recurrent codes or convolutional codes were given which helped further
to improve the error control coding [8]. The convolutional codes have efficient encoding and
decoding algorithms and high performance over additive white Gaussian noise (AWGN)
channels. Later on, concatenated-coding schemes were also given. Also, some weak points
were there of convolutional codes during bursty transmissions which were later on reduced
using Reed-Solomon codes by serially concatenating a convolutional code with an RS code.
Development of turbo codes is the most recent discovery in the coding theory. Turbo codes
show performance of near to Shannon limit with iterative decoding algorithms. Many iterative
decoding algorithms came into existence such as Gallagher’s low-parity density check (LDPC)
codes [9]. Though these turbo codes exhibit excellent bit error performance but there are some
problems associated with them such as these codes generate a certain number of low-weight
code words which results in exhibition of an error ‘floor’ in the BER curve at high SNR. Also,
the complexity of the soft-input, soft-output (SISO) decoder is such that low-cost decoders are
unavailable for many commercial applications [10]. For these reasons, many applications still
deploy RS codes because of its efficient decoder implementation and excellent error correction
capabilities.

1.2. The benefits of multi-standard terminals

A multi-standard terminal (MST) is a subscriber unit that is capable of operation with a variety
of different mobile radio standards. Although it is not strictly necessary for such a terminal to
be implemented using software-defined radio techniques, it is likely that this approach is the
most economic in many cases [11].

1.2.1. Economies of scale

Even if terminal adaption over the air or via third-party software was not possible or was not
permitted by, for example, regulatory bodies, the production benefits of a software-defined
radio approach could well justify its existence. The wide range of new and existing standards
in the cellular and mobile marketplace has resulted in the adoption of a diverse range of

FPGA-Based Software-Defined Radio and Its Real-Time Implementation Using NI-USRP
http://dx.doi.org/10.5772/66272

85

subscriber terminal (and base-station) architectures for the different systems deployed around
the globe [12].

1.2.2. Global roaming

The present proliferation of mobile standards and the gradual migration to third-generation
systems means that a large number of different network technologies will exist globally for
some time to come. Indeed, even in the case of 3G systems, where a concerted effort was made
by international standards bodies to ensure that a single global standard was produced, there
are still significant regional differences, in particular between the US and European offerings
(and also, potentially, China). With this background, it is clearly desirable to produce a terminal
which is capable of operation on both legacy systems and the various competing 3G standards.
Indeed, it could be argued that this is the only way in which 3G systems will be accepted by
users, since the huge cost of a full-coverage network roll-out will discourage many operators
from providing the same levels of coverage (at least initially) as their existing 2G systems enjoy.
A user is unlikely to trade in his or her 2G terminal for one with perhaps better services, but
significantly poorer basic voice coverage [13]. This is indeed what is happening in virtually all
current 3G deployments. Software-defined radio architecture represents a very attractive
solution to this problem.

1.2.3. Upgrading the service

A powerful benefit of a software-defined radio terminal, from the perspective of the network
operator, is the ability to download new services to the terminal after it has been purchased
and is operational on the network. At present, significant service upgrades require the
purchase of a new terminal, with the required software built-in and this clearly discourages
the adoption of these new services for a period. The launch of general packet radio service
(GPRS) data services on the GSM network is a good example of this. With SDR handset
architecture, services could be downloaded overnight, when the network is quiet, or from a
website in the same manner as personal computer (PC) software upgrades are distributed [12].
There are clearly a number of logistical issues with this benefit (e.g., what to do about phones
which are turned off at the time of the upgrade or what happens if a particular phone crashes
with the new software, perhaps just prior to requiring the phone for an emergency call—
software which the phone user may not have wanted and so forth). Many of these problems
have been solved by the PC industry and hence it is likely that this benefit will be realized in
some manner with software-defined radios.

1.2.4. Adaptive modulation and coding

The ability to adapt key transmission parameters to the prevailing channel or traffic conditions
is a further key benefit of a software-defined radio. It is possible, for example, to reduce the
complexity of the modulation format, such as from 16-QAM (quadrature amplitude modula-
tion) to quadrature phase-shift keying (QPSK) when channel conditions become poor, thereby
improving noise immunity and decoding margin. It is also possible to adapt the channel-
coding scheme to better cope with particular types of interference, rather than Gaussian noise,

Field - Programmable Gate Array86

subscriber terminal (and base-station) architectures for the different systems deployed around
the globe [12].

1.2.2. Global roaming

The present proliferation of mobile standards and the gradual migration to third-generation
systems means that a large number of different network technologies will exist globally for
some time to come. Indeed, even in the case of 3G systems, where a concerted effort was made
by international standards bodies to ensure that a single global standard was produced, there
are still significant regional differences, in particular between the US and European offerings
(and also, potentially, China). With this background, it is clearly desirable to produce a terminal
which is capable of operation on both legacy systems and the various competing 3G standards.
Indeed, it could be argued that this is the only way in which 3G systems will be accepted by
users, since the huge cost of a full-coverage network roll-out will discourage many operators
from providing the same levels of coverage (at least initially) as their existing 2G systems enjoy.
A user is unlikely to trade in his or her 2G terminal for one with perhaps better services, but
significantly poorer basic voice coverage [13]. This is indeed what is happening in virtually all
current 3G deployments. Software-defined radio architecture represents a very attractive
solution to this problem.

1.2.3. Upgrading the service

A powerful benefit of a software-defined radio terminal, from the perspective of the network
operator, is the ability to download new services to the terminal after it has been purchased
and is operational on the network. At present, significant service upgrades require the
purchase of a new terminal, with the required software built-in and this clearly discourages
the adoption of these new services for a period. The launch of general packet radio service
(GPRS) data services on the GSM network is a good example of this. With SDR handset
architecture, services could be downloaded overnight, when the network is quiet, or from a
website in the same manner as personal computer (PC) software upgrades are distributed [12].
There are clearly a number of logistical issues with this benefit (e.g., what to do about phones
which are turned off at the time of the upgrade or what happens if a particular phone crashes
with the new software, perhaps just prior to requiring the phone for an emergency call—
software which the phone user may not have wanted and so forth). Many of these problems
have been solved by the PC industry and hence it is likely that this benefit will be realized in
some manner with software-defined radios.

1.2.4. Adaptive modulation and coding

The ability to adapt key transmission parameters to the prevailing channel or traffic conditions
is a further key benefit of a software-defined radio. It is possible, for example, to reduce the
complexity of the modulation format, such as from 16-QAM (quadrature amplitude modula-
tion) to quadrature phase-shift keying (QPSK) when channel conditions become poor, thereby
improving noise immunity and decoding margin. It is also possible to adapt the channel-
coding scheme to better cope with particular types of interference, rather than Gaussian noise,

Field - Programmable Gate Array86

when moving from, say, a rural cell to an urban one [14]. Many parameters may be adapted
dynamically, for example, burst structure, modulation type, data rate, channel and source
coding, multiple-access schemes and so forth.

1.3. Operational requirements: various operational requirements for SDR are as stated
below:

1.3.1. Key requirements

The operational characteristics of an ideal multi-standard terminal include the following
operations.

1.3.1.1. Software-definable operation

As outlined earlier, the key to many of the advantages of a multi-standard terminal lies in its
ability to be reconfigured either during manufacture, prior to purchase, following purchase
(e.g., after-market software), in operation (e.g., adaptation of coding or modulation), or
preferably all four. This impacts primarily upon the digital and baseband sections of the
terminal and will require the use of reprogrammable hardware as well as programmable
digital signal processors in a power and cost-effective implementation.

1.3.1.2. Multi-band operation

The ability to process signals corresponding to a wide range of frequency bands and channel
bandwidths is a critical feature of an MST. This will impact heavily on the radio frequency (RF)
segments of the terminal and it is this area which is arguably the main technology limitation
on software-defined radio implementation at present [15] (although processor power con-
sumption and cost are still both major issues for SDR).

1.3.1.3. Multi-mode operation

Many multi-mode software-defined radios already exist, although they are often not promoted
as such (since the other features/benefits of software-defined radio techniques are not exploit-
ed). The ability to change mode and, consequently, modulation, coding, burst structure,
compression algorithms and signalling protocols is clearly an essential feature of an MST.

1.4. Digital aspects of a software-defined radio

1.4.1. Digital hardware

There exists a range of solutions to the digital-processing problem for a software-defined radio,
each with its own characteristics and application areas. The digital-processing area is, in many
respects, as challenging as the analogue processing described in detail in this book and the
intention of this section is merely to highlight the options and their main characteristics. The
two biggest issues at present are the power consumption and cost of the various options. In a
base-station application, these are less of an issue (but are still a significant challenge); however,

FPGA-Based Software-Defined Radio and Its Real-Time Implementation Using NI-USRP
http://dx.doi.org/10.5772/66272

87

they are perhaps the main inhibitor to the widespread use of software-defined radio in
handsets and other portable devices:

1. The use of reconfigurability as a method of providing upgrading, improvement or
backwards compatibility (i.e., a smooth transition from a legacy system) is, however, a
strong argument for flexible processing and SDR concepts. It is in this context that the
processing options outlined in the following will be discussed.

Cost is also a multi-faceted issue. Most designs judge cost based almost exclusively on the cost
of the target device used for the code (be it a processor or an FPGA). In the case of a very high-
volume application (e.g., a handset), this might be a reasonable approach, although even here
it could be somewhat short-sighted. In the case of a base-station design, however, there are
many other considerations that will determine the overall cost of a design (particularly if
lifetime cost is considered and not just purchase cost). As a summary, the factors that influence
the cost of the digital elements of an SDR BTS include

a. Direct cost of the processing device itself.

b. Costs involved in the associated ancillary and interfacing devices (e.g., memory, clock
circuitry and so forth).

c. Non-recurring expense (NRE). This is most obviously associated with application-specific
integrated circuit (ASIC) or application-specific signal processor (ASSP) designs and
includes mask-set costs, fabrication and so forth. These costs are rising dramatically as
feature sizes reduce and are therefore making the break-even volume (compared to, say,
FPGAs) much higher as time progresses.

d. Tools/training investment. Changing from one digital technology to another (e.g., from
DSPs to FPGAs) may well involve a significant change of design personnel, or at the very
least a degree of retraining. This will have an associated cost and also an opportunity cost
as the time to market will be increased (see the following). Even changing from one
manufacturer’s processors to another may involve a loss of productivity while the
development team familiarizes itself with a new feature set and the new tricks required
to get the best out of a particular device.

e. Cooling. The cost of cooling can undergo step changes as the form of cooling required
changes. The most obvious example is in going from convection cooling to forced-air
cooling, with the cost of the fans now needing to be added to the bill of materials.
Additional power consumption will also add to the cost of the power supply, although
with modern switched-mode designs, this is usually small. It is, however, a much bigger
issue in handset designs due to the increased requirements it places upon the battery and
the user-acceptance issues of large batteries or reduced talk times.

f. Development time/resource. This is becoming an increasingly important aspect of cost, as
product life cycles, even of base-station designs, reduce as each new design appears. The
volume of units sold of a particular design is then lower and the cost of producing that
design becomes an ever-larger proportion of its selling price. Techniques or architectures,
which allow these designs to be generated quickly, or significant portions of designs to be

Field - Programmable Gate Array88

they are perhaps the main inhibitor to the widespread use of software-defined radio in
handsets and other portable devices:

1. The use of reconfigurability as a method of providing upgrading, improvement or
backwards compatibility (i.e., a smooth transition from a legacy system) is, however, a
strong argument for flexible processing and SDR concepts. It is in this context that the
processing options outlined in the following will be discussed.

Cost is also a multi-faceted issue. Most designs judge cost based almost exclusively on the cost
of the target device used for the code (be it a processor or an FPGA). In the case of a very high-
volume application (e.g., a handset), this might be a reasonable approach, although even here
it could be somewhat short-sighted. In the case of a base-station design, however, there are
many other considerations that will determine the overall cost of a design (particularly if
lifetime cost is considered and not just purchase cost). As a summary, the factors that influence
the cost of the digital elements of an SDR BTS include

a. Direct cost of the processing device itself.

b. Costs involved in the associated ancillary and interfacing devices (e.g., memory, clock
circuitry and so forth).

c. Non-recurring expense (NRE). This is most obviously associated with application-specific
integrated circuit (ASIC) or application-specific signal processor (ASSP) designs and
includes mask-set costs, fabrication and so forth. These costs are rising dramatically as
feature sizes reduce and are therefore making the break-even volume (compared to, say,
FPGAs) much higher as time progresses.

d. Tools/training investment. Changing from one digital technology to another (e.g., from
DSPs to FPGAs) may well involve a significant change of design personnel, or at the very
least a degree of retraining. This will have an associated cost and also an opportunity cost
as the time to market will be increased (see the following). Even changing from one
manufacturer’s processors to another may involve a loss of productivity while the
development team familiarizes itself with a new feature set and the new tricks required
to get the best out of a particular device.

e. Cooling. The cost of cooling can undergo step changes as the form of cooling required
changes. The most obvious example is in going from convection cooling to forced-air
cooling, with the cost of the fans now needing to be added to the bill of materials.
Additional power consumption will also add to the cost of the power supply, although
with modern switched-mode designs, this is usually small. It is, however, a much bigger
issue in handset designs due to the increased requirements it places upon the battery and
the user-acceptance issues of large batteries or reduced talk times.

f. Development time/resource. This is becoming an increasingly important aspect of cost, as
product life cycles, even of base-station designs, reduce as each new design appears. The
volume of units sold of a particular design is then lower and the cost of producing that
design becomes an ever-larger proportion of its selling price. Techniques or architectures,
which allow these designs to be generated quickly, or significant portions of designs to be

Field - Programmable Gate Array88

reused between evolutionary models in a range (as well as across models in a given range),
are clearly attractive, even if the devices upon which they are based are not the lowest-
cost components available.

g. Flexibility. This is a benefit in terms of time to market for new products and hence a benefit
in terms of opportunity cost. If full flexibility could be provided for the same cost as a
fixed solution (e.g., a single-application ASIC), then it would be a simple decision to adopt
a flexible approach. This is almost never true and hence a full business case must be
developed for flexibility, in a given marketplace and each opportunity judged on its merits.

1.4.1.1. Digital signal processors

DSPs were arguably the original enabling technology for software-defined radio (other than
perhaps in military circles where cost is less important). They have the advantage of complete
flexibility, wide applicability and a wide availability of skilled practitioners in their software.
They are also high-volume devices and hence the benefits of economies of scale may be realized
across a large number of applications in a wide range of industries (not just wireless commu-
nications). This, in general, makes up for their lack of optimization for a given specific project
or niche application area and allows them to be a realistic option for early prototyping and
initial production volumes of a new design, as well as for the final volume product, in some
cases.

They are best suited to the less computationally intensive forms of signal processing, rather
than very high-speed front-end applications. They are often utilized for involved, off-line
processing of data which has been acquired and undergone initial processing/storage by a
different type of device (e.g., an FPGA or an ASIC) [16]. They are, however, well supported
and also tend to come in backwards-compatible families, which allow development to take
place on a state-of-the-art (SOTA) device, with the final application device being lower cost.
This generally occurs for two reasons:

1. The SOTA device being used in development will not be SOTA by the end of the devel-
opment cycle and hence will generally have reduced in cost. The volume of usage of the
device will also have increased, which will also help to reduce its cost.

2. Developers tend to pick a device for their development systems which is definitely large
enough to meet the requirement in question. It is often the case that once development is
nearing completion, the design will have been optimized such that it may be executed in
a lesser member of the same device family. This will have an associated cost benefit. In
larger systems, it may be the number of devices that can be reduced; however, this will
still result in a lower overall cost.

1.4.1.2. Field-programmable gate arrays

FPGAs have undergone a revolution in recent years, both in performance and in cost. From
humble beginnings as simple, flexible glue logic in complex digital designs, they are now a
credible processing platform in their own right and able to rival ASIC solutions in many areas

FPGA-Based Software-Defined Radio and Its Real-Time Implementation Using NI-USRP
http://dx.doi.org/10.5772/66272

89

(and act as a low-cost prototyping mechanism for ASIC designs). They have also undergone
a revolution in volume pricing, which means that they are no longer consigned to the
prototype and initial volume parts of the product life cycle, but can now be used throughout
volume production, in some applications [17]. It is also possible to convert from an FPGA to
a quasi-ASIC, with a highdegree of confidence of success and a relatively low NRE (and hence
break-even volume). FPGAs are therefore challenging and displacing ASICs in traditional
ASIC application areas.

Furthermore, they provide much more flexibility than can be cost-effectively built into an ASIC,
thereby fitting with the requirements of SDR very well. In common with DSPs, they also tend
to come in families, thereby, again, allowing an initial design to take place on a large (potentially
over specified) device with the final device being chosen to just fit the processing requirement.
It is also possible (but not necessarily economic) to add IP processor cores into an FPGA (or
an FPGA-derived ASIC). This makes possible a single-chip solution in some applications and
this may be important for size or reliability reasons (with the improved reliability coming from
the reduction in devices and soldered joints).

1.4.1.3. ASICs

The main issue with utilizing ASICs (or, more correctly, application-specific signal processors)
within an SDR system lies in their lack of flexibility (or conversely the cost of adding flexibility).
There are many methods by which flexibility may be introduced within an ASSP and these
include the following:

a. Provision of multiple toolbox functions with flexible input parameters. An example would
be a QAM modulator that had an input variable to configure it from 16 to 256 QAM, for
example [18].

b. Provision of hardware for all current modulation formats, coding schemes and so forth
in a single (large!) ASSP, with the ability to select between the different paths. This is not
strictly flexible in the generic sense; however, it is flexible in its range of functionality—
the user will not care how he is provided with service over a range of standards, just that
he obtains service at a low cost. The major disadvantage with this option is that it is not
really future-proof, unless the system designer has an extraordinary insight into the future
trend in mobile communications (and can convince his or her management that he or she
is right).

c. A combination of one or both of the above with some programmable DSP functionality
(e.g., using an embedded DSP core). The key here is in providing enough DSP power to
be useful and provide a degree of future-proofing, without designing essentially a DSP
device—it would almost certainly be lower cost to buy an off-the-shelf DSP device from
a volume vendor.

1.5. About NI-USRP

The NI USRP-2922 can be used for various communication applications, including

Field - Programmable Gate Array90

(and act as a low-cost prototyping mechanism for ASIC designs). They have also undergone
a revolution in volume pricing, which means that they are no longer consigned to the
prototype and initial volume parts of the product life cycle, but can now be used throughout
volume production, in some applications [17]. It is also possible to convert from an FPGA to
a quasi-ASIC, with a highdegree of confidence of success and a relatively low NRE (and hence
break-even volume). FPGAs are therefore challenging and displacing ASICs in traditional
ASIC application areas.

Furthermore, they provide much more flexibility than can be cost-effectively built into an ASIC,
thereby fitting with the requirements of SDR very well. In common with DSPs, they also tend
to come in families, thereby, again, allowing an initial design to take place on a large (potentially
over specified) device with the final device being chosen to just fit the processing requirement.
It is also possible (but not necessarily economic) to add IP processor cores into an FPGA (or
an FPGA-derived ASIC). This makes possible a single-chip solution in some applications and
this may be important for size or reliability reasons (with the improved reliability coming from
the reduction in devices and soldered joints).

1.4.1.3. ASICs

The main issue with utilizing ASICs (or, more correctly, application-specific signal processors)
within an SDR system lies in their lack of flexibility (or conversely the cost of adding flexibility).
There are many methods by which flexibility may be introduced within an ASSP and these
include the following:

a. Provision of multiple toolbox functions with flexible input parameters. An example would
be a QAM modulator that had an input variable to configure it from 16 to 256 QAM, for
example [18].

b. Provision of hardware for all current modulation formats, coding schemes and so forth
in a single (large!) ASSP, with the ability to select between the different paths. This is not
strictly flexible in the generic sense; however, it is flexible in its range of functionality—
the user will not care how he is provided with service over a range of standards, just that
he obtains service at a low cost. The major disadvantage with this option is that it is not
really future-proof, unless the system designer has an extraordinary insight into the future
trend in mobile communications (and can convince his or her management that he or she
is right).

c. A combination of one or both of the above with some programmable DSP functionality
(e.g., using an embedded DSP core). The key here is in providing enough DSP power to
be useful and provide a degree of future-proofing, without designing essentially a DSP
device—it would almost certainly be lower cost to buy an off-the-shelf DSP device from
a volume vendor.

1.5. About NI-USRP

The NI USRP-2922 can be used for various communication applications, including

Field - Programmable Gate Array90

a. WiFi

b. WiMax

c. S-band transceivers

d. 2.4-GHz ISM band transceivers.

The NI USRP-2922 as shown in Figure 1 has the following basic characteristics:

i. Frequency range of 400 MHz to 4.4 GHz

ii. Tunable RF transceiver

iii. Transmits and receives bandwidth up to 40 MHz

iv. High-speed ADC and DAC for streaming baseband I and Q signals to a host PC over
gigabit Ethernet.

Figure 1. Block diagram of NI USRP-2922.

The RF switch allows transmit and receive operations to occur on the same shared antenna.
On the NI USRP-2922, one antenna is designated receive-only.The NI USRP is also capable of
receiving the signal, where the received signal is mixed down from RF using a direct-
conversion receiver to baseband I/Q components. The digitized I/Q data follows parallel paths
through a digital down-conversion (DDC) method that mixes, filters and decimates the input
signal to a user-specified rate. Gigabit Ethernet connection is used to pass the down-converted
samples to the host computer.

FPGA-Based Software-Defined Radio and Its Real-Time Implementation Using NI-USRP
http://dx.doi.org/10.5772/66272

91

1.5.1. Receive trail

i. The received signal is amplified using the low-noise amplifier and drive amplifier
amplify.

ii. The voltage-controlled oscillator (VCO) is controlled by the phase-locked loop (PLL)
so that the device clocks and local oscillator (LO) can be frequency-locked to a
reference signal.

iii. The mixer down-converts the signals to the baseband in-phase (I) and quadrature-
phase (Q) components.

iv. To reduce the noise and high-frequency components in the signal, low-pass filter is
used.

v. The analogue-to-digital converter digitizes the I and Q data.

vi. The digital down-converter (DDC) mixes, filters and decimates the signal to a user-
specified rate.

vii. A standard gigabit Ethernet connection is used to pass the down-converted samples.

1.5.2. Transmit trail

i. The host computer synthesizes baseband I/Q signals and transmits the signals to the
device over a standard gigabit Ethernet connection.

ii. The digital up converter (DUC) mixes, filters and interpolates the signal to 400 MS/s.

iii. The digital-to-analogue converter converts the signal to analogue.

iv. The low-pass filter reduces noise and high-frequency components in the signal.

v. The mixer is used to up-convert the received signals to a user-specified RF frequency.

vi. The PLL controls the VCO so that the device clocks and LO can be frequency-locked
to a reference signal.

vii. The transmit amplifier amplifies the signal, which is then transmitted through the
antenna.

1.6. Design of a generic transceiver for FPGA-based SDR

In this section, the building blocks of a generic transceiver for FPGA-based SDR modem system
built in LabVIEW have been explained. The designed system consists of two parts: the
transmitter section and the receiver section. The transmitter section consists of four modules
which are a message source module, pulse-shaped filter module, QAM modulator module and
Gaussian noise module. The receiver has been designed using an adaptive filter module, QAM
demodulator module, sync and tracking module. A brief description of each block follows.
The front panel of generic transceiver for SDR modem system is shown in Figure 2.

Field - Programmable Gate Array92

1.5.1. Receive trail

i. The received signal is amplified using the low-noise amplifier and drive amplifier
amplify.

ii. The voltage-controlled oscillator (VCO) is controlled by the phase-locked loop (PLL)
so that the device clocks and local oscillator (LO) can be frequency-locked to a
reference signal.

iii. The mixer down-converts the signals to the baseband in-phase (I) and quadrature-
phase (Q) components.

iv. To reduce the noise and high-frequency components in the signal, low-pass filter is
used.

v. The analogue-to-digital converter digitizes the I and Q data.

vi. The digital down-converter (DDC) mixes, filters and decimates the signal to a user-
specified rate.

vii. A standard gigabit Ethernet connection is used to pass the down-converted samples.

1.5.2. Transmit trail

i. The host computer synthesizes baseband I/Q signals and transmits the signals to the
device over a standard gigabit Ethernet connection.

ii. The digital up converter (DUC) mixes, filters and interpolates the signal to 400 MS/s.

iii. The digital-to-analogue converter converts the signal to analogue.

iv. The low-pass filter reduces noise and high-frequency components in the signal.

v. The mixer is used to up-convert the received signals to a user-specified RF frequency.

vi. The PLL controls the VCO so that the device clocks and LO can be frequency-locked
to a reference signal.

vii. The transmit amplifier amplifies the signal, which is then transmitted through the
antenna.

1.6. Design of a generic transceiver for FPGA-based SDR

In this section, the building blocks of a generic transceiver for FPGA-based SDR modem system
built in LabVIEW have been explained. The designed system consists of two parts: the
transmitter section and the receiver section. The transmitter section consists of four modules
which are a message source module, pulse-shaped filter module, QAM modulator module and
Gaussian noise module. The receiver has been designed using an adaptive filter module, QAM
demodulator module, sync and tracking module. A brief description of each block follows.
The front panel of generic transceiver for SDR modem system is shown in Figure 2.

Field - Programmable Gate Array92

Figure 2. Front panel of transmitter, Tx parameter.

In Figure 2, under Tx parameter is used to select the parameters such as IQ sampling rate, Tx
frequency, Tx gain and so on of the transmitter. In the USRP, IP address one selects the IP
address of the transmitter device such as 192.168.10.2. In the Tx IQ sampling rate [s/s] field,
we must set the sampling rate to 500 k for text, random data and 2M for image transmission.
Tx frequency [Hz] is used to set the frequency to 2.5 G (the user can use any frequency from
400 MHz to 4.4 GHz for USRP2922). In the Tx gain [dB] field, we enter Tx gain 12 and we can
take upto 31. Now, one need to select the Tx antenna as Tx1. In the specify message window
in the transmitter front panel, we can select the type of the file to be transmitted;it consists of
three files: random data, text and image as shown in Figure 3.

Figure 3. Specify message/random data window.

FPGA-Based Software-Defined Radio and Its Real-Time Implementation Using NI-USRP
http://dx.doi.org/10.5772/66272

93

Random data can be transmitted by selecting the random data field. The message field is set
to set the data to be transmitted. Transmitted bits indicate the bits which have to be transmitted.
Encode button is meant to encode the transmitted data. Type of encoding is used to select the
type of encoding required either convolution viterbi or turbo coding. Similar to the random
data, one can select text or image window in order to transmit text or image, respectively.
Figures 3 and 4 show text and image window, respectively.

Figure 4. Specify message/text window.

Figure 5. Specify message/image window.

Field - Programmable Gate Array94

Random data can be transmitted by selecting the random data field. The message field is set
to set the data to be transmitted. Transmitted bits indicate the bits which have to be transmitted.
Encode button is meant to encode the transmitted data. Type of encoding is used to select the
type of encoding required either convolution viterbi or turbo coding. Similar to the random
data, one can select text or image window in order to transmit text or image, respectively.
Figures 3 and 4 show text and image window, respectively.

Figure 4. Specify message/text window.

Figure 5. Specify message/image window.

Field - Programmable Gate Array94

We can write the text to be transmitted in the input window as shown in Figure 4. Encode
button is used to provide encoding scheme. One needs to press the encode button to encode
the transmitted data. The type of encoding field is used to select the type of encoding required
either convolution viterbi or turbo coding as shown in Figure 4. Similarly, one can transmit
the image as shown in Figure 5. We need to select the path or browse the path of the image
and the selected picture is indicated in the front panel.

Pulse-shaping filter parameters field is used to set the system filter parameters as shown in
Figure 5:

a. Tx filter: Used to select the type of filter required raised cosine filter or root raised cosine or
none.

b. Alpha: Set the alpha to 0.50.

c. Filter length: Set filter length to 6.

Samples per symbol: Set samples per symbol to 8.

Symbol rate [symbols/s]: It indicates the symbol rate M-FSK: Set the FSK parameters as shown
in Figure 5.

a. M-FSK: Set M-FSK to 4 (can be changed).

b. FSK deviation [Hz]: Set FSK deviation to 25.00 k.

c. Symbol phase continuity: Select symbol phase continuity to continuous.

M-PSK: Set M-PSK to 4. M-QAM: Set M-QAM to 8. Now, select the specific packets window
from the transmitter front panel to set the message bits as shown in Figure 6.

Figure 6. Specify modulation window.

FPGA-Based Software-Defined Radio and Its Real-Time Implementation Using NI-USRP
http://dx.doi.org/10.5772/66272

95

Specify packet window is used to set the packet parameters such as guard bits, sync bits,
message bits and packed pad (samples). Message bits need to be set 128 bits for random data,
text and 4096 bits for image. The PN sequence order for sync bits is also to be specified in the
window as shown in Figure 7.

Figure 7. Specify packet window.

Now at the receiver end we need to receive the sent message for that the receiver must be set
to certain parameters as shown in Figure 8. The front panel of the receiver looks as shown in
Figure 8; select Rx parameter window, specify the IP address, Rx parameter sand acquisition
duration [s].

Figure 8. Front panel of USRP receiver/Rx parameter.

Field - Programmable Gate Array96

Specify packet window is used to set the packet parameters such as guard bits, sync bits,
message bits and packed pad (samples). Message bits need to be set 128 bits for random data,
text and 4096 bits for image. The PN sequence order for sync bits is also to be specified in the
window as shown in Figure 7.

Figure 7. Specify packet window.

Now at the receiver end we need to receive the sent message for that the receiver must be set
to certain parameters as shown in Figure 8. The front panel of the receiver looks as shown in
Figure 8; select Rx parameter window, specify the IP address, Rx parameter sand acquisition
duration [s].

Figure 8. Front panel of USRP receiver/Rx parameter.

Field - Programmable Gate Array96

Rx parameter is used to select receiver Rx parameter. USRPIP address for the receiver is
specified in the IP address of the receiver device. Rx IQ sampling rate [s/s] is set to 500k to
provide the required sampling rate. Rx frequency [Hz] is used to set the frequency to2.5G. Rx
gain [dB] is set to12, same as gain for the Tx. Rx antenna field is used to select the Rx antenna
as Rx1. In the field acquisition duration [s], set duration 40 m for random data and text, 56 m
for image. Now one must select Rx display as per selected specify message in the transmitter.
If text is selected at transmitter, then text should be selected at receiver similar to random data
and image as shown in Figures 9–11.

Figure 9. Rx display/random data Rx.

Figure 10. Rx display/text Rx.

FPGA-Based Software-Defined Radio and Its Real-Time Implementation Using NI-USRP
http://dx.doi.org/10.5772/66272

97

Figure 11. Rx display/image.

Random data: Click on random data in order to receive random data. Encoded bits in this
window indicate the bits which are encoded. Decoded bits indicate the bits that are decoded
from the transmitted data. Decode button is used to decode the received data. Type of decoding
field is used to select the type of decoding required either convolution viterbi or turbo coding
which is selected at the transmitter.

For receiving the text, we need to select the text field. Encoded text field indicates the encoded
text. Decoded text field indicates the decoded text.

Figure 12. Specify demodulation window.

Field - Programmable Gate Array98

Figure 11. Rx display/image.

Random data: Click on random data in order to receive random data. Encoded bits in this
window indicate the bits which are encoded. Decoded bits indicate the bits that are decoded
from the transmitted data. Decode button is used to decode the received data. Type of decoding
field is used to select the type of decoding required either convolution viterbi or turbo coding
which is selected at the transmitter.

For receiving the text, we need to select the text field. Encoded text field indicates the encoded
text. Decoded text field indicates the decoded text.

Figure 12. Specify demodulation window.

Field - Programmable Gate Array98

For receiving the image, we need to select the image field. Encoded image field indicates the
encoded image. Decoded image field indicates the decoded image. Decode button is used to
decode the received data. Type of decoding needs to be set to either convolution viterbi or
turbo coding which is selected at the transmitter. Now, select the specify demodulation
window, as shown in Figure 12, all the parameters to be set exactly the same as transmitter
modulation.

Matching filter parameters: Set the matching filter parameters as shown in Figure 12:

a. Tx filter: Select the type of filter required raised cosine filter or root raised cosine or none.

b. Alpha: Set the alpha to 0.50.

c. Filter length: Set filter length to 6.

Samples per symbol: Set samples per symbol to 8. Symbol rate [symbols/s]. M-FSK: Set the
FSK parameters as shown in Figure 13:

Figure 13. Receiver/specify packet window.

a. M-FSK: Set M-FSK to (any M-ary value)

b. M-PSK: Set M-PSK to (any M-ary value)

c. M-QAM: Set M-QAM to (any M-ary value)

d. FSK deviation [Hz]: Set FSK deviation to 25.00 k

e. Symbol phase continuity: Select symbol phase continuity to continuous.

Now, select the specify packet window from the receiver front panel, as shown in Figure 13.

Specify packet specifies the packet same as transmitter, that is, 128 for random data and text,
for image 4096. Message bits field holds the number of bits, same as in the transmitter. Number

FPGA-Based Software-Defined Radio and Its Real-Time Implementation Using NI-USRP
http://dx.doi.org/10.5772/66272

99

of packets to be expected must be entered in this window which is the same as in the trans-
mitter. Now, select output parameters window, which shows the constellation diagram, eye
diagram and BER Vs Eb/No with respective received data as shown in Figure 14.

Figure 14. Output parameters.

Constellation graph is used to indicate the constellation of the received bits with respect to
data. Eye diagram indicates the eye diagram of the received bits with respect to data. BER Vs
Eb/No indicates the BER Vs Eb/No of the received bits with respect to data. BER Data Export to
Excel: Click on BER Data Export to Excel Button it will export BER Vs Eb/No data to Excel sheet.
Decode: Press the decode button to decode the received data. Type of decoding: Select the type
of decoding required either convolution viterbi or turbo coding which is selected at the
transmitter.

2. Conclusion

USRP can be effectively combined to create an SDR transceiver. The LabVIEW/USRP combi-
nation presents an opportunity to enhance communications education by enabling a low-cost,
hands-on approach with live signals for realistic, real-world demonstrations, laboratory
exercises, capstone design projects and cutting-edge research.

The universal software radio peripheral family of products is a popular platform for hardware-
based research and test bed validations conducted by universities in the software-defined radio
and cognitive radio (CR) fields. The USRP offers a simpler, scalable and easier to use combined

Field - Programmable Gate Array100

of packets to be expected must be entered in this window which is the same as in the trans-
mitter. Now, select output parameters window, which shows the constellation diagram, eye
diagram and BER Vs Eb/No with respective received data as shown in Figure 14.

Figure 14. Output parameters.

Constellation graph is used to indicate the constellation of the received bits with respect to
data. Eye diagram indicates the eye diagram of the received bits with respect to data. BER Vs
Eb/No indicates the BER Vs Eb/No of the received bits with respect to data. BER Data Export to
Excel: Click on BER Data Export to Excel Button it will export BER Vs Eb/No data to Excel sheet.
Decode: Press the decode button to decode the received data. Type of decoding: Select the type
of decoding required either convolution viterbi or turbo coding which is selected at the
transmitter.

2. Conclusion

USRP can be effectively combined to create an SDR transceiver. The LabVIEW/USRP combi-
nation presents an opportunity to enhance communications education by enabling a low-cost,
hands-on approach with live signals for realistic, real-world demonstrations, laboratory
exercises, capstone design projects and cutting-edge research.

The universal software radio peripheral family of products is a popular platform for hardware-
based research and test bed validations conducted by universities in the software-defined radio
and cognitive radio (CR) fields. The USRP offers a simpler, scalable and easier to use combined

Field - Programmable Gate Array100

platform that will both broaden the accessibility of the technology and platform for hands-on
applications and spur further adoption and use within university communication systems
classrooms, teaching laboratories and their natural follow-on coursework (e.g., SDR, CR,
digital communications, wireless communications and satellite communications).This chapter
describes SDR system built using LabVIEW and testing the output using real-time data.
Through this chapter, we have tried to cover emerging SDR standards and the technologies
being used to specify and support them. We have proposed expanding the SDR definition and
discussed the issues pertaining to the design of a multi-band flexible receiver and a linearized
transmitter using broadband quadrature techniques. Here, we have described the case study
of the SDR by designing an SDR generic transceiver in LabVIEW highlighting the multi-
modulation approach for the SDR. The design uses forward error correction codes namely
convolution codes and turbo codes for enhanced security for the data being transmitted. The
proposed design is entirely reconfigurable in nature and supports multiple M-ary modulation
schemes which can be changed accordingly by the user any time during the runtime. The
biggest advantage of this design is that we have used phase tracking for identification of the
constellation points. The analysis of the case study proves that turbo coding gives a much
improved and better minimization of the data errors than the convolution coding.

Author details

Nikhil Marriwala1*, Om. Prakash. Sahu2 and Anil Vohra3

*Address all correspondence to: nikhilmarriwala@gmail.com

1 Electronics and Communication Engineering Department, University Institute of
Engineering and Technology, Kurukshetra University, Kurukshetra, Haryana, India

2 Electronics and Communication Engineering Department, NIT, Kurukshetra, Haryana,
India

3 Electronics Science Department, Kurukshetra University, Kurukshetra, Haryana, India

References

[1] J. Mitola, “Software and DSP in Radio,” IEEE Communications Magazine, Volume: 38,
Issue: 2, Feb 2000, ISSN 0163-6804.

[2] M. N. O. Sadiku and C. M. Akujuobi, “Software-defined radio: a brief overview,” IEEE
Potentials, vol. 23 no. 4, pp. 14–15, 2004.

[3] J. C. Lyke, C. G. Christodoulou, G. A. Vera and A. H. Edwards, “An introduction to
reconfigurable systems,” Proc. IEEE, vol. 103, no. 3, pp. 291–317, 2015.

FPGA-Based Software-Defined Radio and Its Real-Time Implementation Using NI-USRP
http://dx.doi.org/10.5772/66272

101

[4] N. Marriwala, O. P. Sahu and A. Vohra, “Novel design of a low cost flexible transceiver
based on multistate digitally modulated signals using Wi-Fi protocol for software
defined radio,” Wirel. Pers. Commun., 2016, 87: 1265. doi:10.1007/s11277-015-3052-4

[5] N. Marriwala, O. P. Sahu and A. Vohra, “Design of a hybrid reconfigurable Software
Defined Radio transceiver based on frequency shift keying using multiple encoding
schemes,” Egypt. Informatics J., vol. 17, no. 1, pp. 89–98, 2015.

[6] N. Shahin, N. J. Lasorte, S. A. Rajab and H. H. Refai, “802.11g channel characterization
utilizing labview and NI-USRP,” Conf. Rec. – IEEE Instrum. Meas. Technol. Conf., The
Depot Minneapolis, MN, USA, pp. 753–756, 2013.

[7] “A mathematical theory of communication,” C. E. Shannon, System, vol. 27, no. July,
1928, pp. 379–423, 1948.

[8] N. Marriwala, “LabVIEW based design implementation of M-PSK transceiver using
multiple forward error correction coding technique for software defined radio appli-
cations,” J. Electr. Electron. Eng., vol. 2, no. 4, p. 55, 2014.

[9] Y. Z. Y. Zhu and C. Chakrabarti, “Architecture-Aware LDPC code design for multi-
processor software defined radio systems,” IEEE Trans. Signal Process., vol. 57, no. 9, pp.
3679–3692, 2009.

[10] H. Shehab and W. Ismail, “The development & implementation of Reed Solomon codes
for OFDM using software-defined radio platform,” Int. J. Comput. Sci. Commun., vol. 1,
no. 1, pp. 129–136, 2010.

[11] P. F. Morlat, A. Luna, X. Gallon, G. Villemaud, J. M. Gorce and C. Insa-lyon, “Structure
and implementation of a SIMO multi-standard multi-channel SDR receiver,” HAL
archives open, inria-00412054, version 1, pp. 283–286, 2008.

[12] P. B. Kenington, TEAM LinG. Boston, London: Artech House, 2005.

[13] M. Imran Anwar, S. Virtanen and J. Isoaho, “A software defined approach for common
baseband processing,” J. Syst. Archit., vol. 54, no. 8, pp. 769–786, 2008.

[14] T. Javornik, M. Mohorčič, A. Švigelj, I. Ozimek and G. Kandus, “Adaptive coding and
modulation for mobile wireless access via high altitude platforms,” Wirel. Pers.
Commun., vol. 32, no. 3–4, pp. 301–317, 2005.

[15] C. B. Haskins and W. P. Millard, “Multi-band software defined radio for spaceborne
communications, navigation, radio science and sensors,” IEEEAC Conf. IEEE, vol. 5, pp.
1–9, 2010.

[16] D. Wu, J. Eilert and D. Liu, “Implementation of a high-speed MIMO soft-output symbol
detector for software defined radio,” J. Signal Process. Syst., vol. 63, no. 1, pp. 27–37,
2009.

Field - Programmable Gate Array102

[4] N. Marriwala, O. P. Sahu and A. Vohra, “Novel design of a low cost flexible transceiver
based on multistate digitally modulated signals using Wi-Fi protocol for software
defined radio,” Wirel. Pers. Commun., 2016, 87: 1265. doi:10.1007/s11277-015-3052-4

[5] N. Marriwala, O. P. Sahu and A. Vohra, “Design of a hybrid reconfigurable Software
Defined Radio transceiver based on frequency shift keying using multiple encoding
schemes,” Egypt. Informatics J., vol. 17, no. 1, pp. 89–98, 2015.

[6] N. Shahin, N. J. Lasorte, S. A. Rajab and H. H. Refai, “802.11g channel characterization
utilizing labview and NI-USRP,” Conf. Rec. – IEEE Instrum. Meas. Technol. Conf., The
Depot Minneapolis, MN, USA, pp. 753–756, 2013.

[7] “A mathematical theory of communication,” C. E. Shannon, System, vol. 27, no. July,
1928, pp. 379–423, 1948.

[8] N. Marriwala, “LabVIEW based design implementation of M-PSK transceiver using
multiple forward error correction coding technique for software defined radio appli-
cations,” J. Electr. Electron. Eng., vol. 2, no. 4, p. 55, 2014.

[9] Y. Z. Y. Zhu and C. Chakrabarti, “Architecture-Aware LDPC code design for multi-
processor software defined radio systems,” IEEE Trans. Signal Process., vol. 57, no. 9, pp.
3679–3692, 2009.

[10] H. Shehab and W. Ismail, “The development & implementation of Reed Solomon codes
for OFDM using software-defined radio platform,” Int. J. Comput. Sci. Commun., vol. 1,
no. 1, pp. 129–136, 2010.

[11] P. F. Morlat, A. Luna, X. Gallon, G. Villemaud, J. M. Gorce and C. Insa-lyon, “Structure
and implementation of a SIMO multi-standard multi-channel SDR receiver,” HAL
archives open, inria-00412054, version 1, pp. 283–286, 2008.

[12] P. B. Kenington, TEAM LinG. Boston, London: Artech House, 2005.

[13] M. Imran Anwar, S. Virtanen and J. Isoaho, “A software defined approach for common
baseband processing,” J. Syst. Archit., vol. 54, no. 8, pp. 769–786, 2008.

[14] T. Javornik, M. Mohorčič, A. Švigelj, I. Ozimek and G. Kandus, “Adaptive coding and
modulation for mobile wireless access via high altitude platforms,” Wirel. Pers.
Commun., vol. 32, no. 3–4, pp. 301–317, 2005.

[15] C. B. Haskins and W. P. Millard, “Multi-band software defined radio for spaceborne
communications, navigation, radio science and sensors,” IEEEAC Conf. IEEE, vol. 5, pp.
1–9, 2010.

[16] D. Wu, J. Eilert and D. Liu, “Implementation of a high-speed MIMO soft-output symbol
detector for software defined radio,” J. Signal Process. Syst., vol. 63, no. 1, pp. 27–37,
2009.

Field - Programmable Gate Array102

[17] I. Hatai and I. Chakrabarti, “FPGA implementation of a digital FM modem for SDR
architecture,” Comput. Devices Commun. 2009. CODEC 2009. 4th Int. Conf., Kolkata,
India, no. August, 2009.

[18] G. Baldini, T. Sturman, A. R. Biswas and M. Street, “Security aspects in software defined
radio and cognitive radio networks: a survey and a way ahead,” IEEE Commun. Surv.
TUTORIALS, vol. 14, no. 2, pp. 355–379, 2012.

FPGA-Based Software-Defined Radio and Its Real-Time Implementation Using NI-USRP
http://dx.doi.org/10.5772/66272

103

Chapter 5

Design Trade‐Offs for FPGA Implementation of LDPC
Decoders

Alexandru Amaricai and Oana Boncalo

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66085

Provisional chapter

Design Trade-Offs for FPGA Implementation
of LDPC Decoders

Alexandru Amaricai and Oana Boncalo

Additional information is available at the end of the chapter

Abstract

Low density parity check (LDPC) decoders represent important throughput bottlenecks,
as well as major cost and power-consuming components in today's digital circuits for
wireless communication and storage. They present a wide range of architectural choices,
with different throughput, cost, and error correction capability trade-offs. In this book
chapter, we will present an overview of the main design options in the architecture and
implementation of these circuits on field programmable gate array (FPGA) devices. We
will present the mapping of the main units within the LDPC decoders on the specific
embedded components of FPGA device. We will review architectural trade-offs for both
flooded and layered scheduling strategies in their FPGA implementation.

Keywords: forward error correctionLDPC decoder, FPGA, digital circuits

1. Introduction

Low density parity check (LDPC) codes are a class of capacity approaching codes which
provide increased error correction capability for both binary symmetric channel (BSC) and
binary-input additive white Gaussian noise (BIAWGN) channel models [1]. Therefore, LDPC
codes are used in a wide range of standards for both wireless communication [2]—WiFi,
WIMAX, DVB-S2, etc—as well as for FLASH-based storage systems [3].

Decoding of LDPC codes is performed in an iterative manner, using message passing algo-
rithms [4, 5]. These algorithms rely on simple computations—additions and comparisons on a
small number of bits—which are performed on dedicated computational nodes. Although the
node level computational complexity is low, LDPC codes implemented in communication and
storage standards employ thousands or tens of thousands of such computational nodes, which
leave a wide range of design options and trade-offs for the implementation of decoding

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

architectures [2]. These trade-offs take into account the throughput, error correction capability,
cost of the hardware implementation, and power consumption.

In this chapter, we will present the most important architectural options for both flooded and
layered LDPC decoders implemented on field programmable gate array (FPGA) devices. The
implementation of LDPC decoders on such devices is motivated by the increased flexibility of
FPGAs, which make them suitable to implement highly versatile solutions in both wireless
communications—such as software defined radios—and storage systems—such as software
defined storage—as well high level of parallelism degree for fixed-point computations, which
ensure the possibility of obtaining high throughputs for the decoders.

This book chapter is organized as follows: Section2 presents the algorithms for the LDPC
decoding, as well as the strategies for it; Section3 summarizes the main features and building
blocks of modern FPGA devices; Section4 presents the implementation and design trade-offs
for FPGA-based flooded LDPC decoding architectures; layered architectures are detailed in
Section5; last section is dedicated to the concluding remarks.

2. Theoretical background of LDPC decoding

LDPC codes are a class of linear algebraic codes, defined by a sparse parity check matrix H [1].
The LDPC code can also be represented by a bipartite graph, called the Tanner graph [6]. This
graph contains two types of nodes: variable or bit nodes—corresponding to the columns in the
H matrix and the codeword bits—and check nodes—corresponding to the rows in the H
matrix and the parity check equations. A check node is connected to a variable node if the
corresponding value in the parity check matrix is nonzero. Figure 1 depicts a simple parity
check matrix and its associated Tanner graph. LDPC decoding is performed in an iterative
manner, consisting of the message exchange between the check and variable nodes along the
edges of the Tanner graphs in several rounds or iterations. This type of decoding is called
message passing (MP) decoding [4]. LDPC codes defined in communication or storage stan-
dards use parity check matrices consisting of thousands of columns, such as the 2304 columns
for WiMAX, 64800 columns for DVB-S2, or 1944 columns for WiFi. The number of nonzero
entries on each column represents the variable node degree—dv —, while the number of the
nonzero elements on each row in theHmatrix represents the check node degree—dc. An LDPC
code is said to be regular if all the rows/columns in the parity check matrix contain an equal
number of nonzero entries; otherwise, the LDPC code is irregular.

In order to enable efficient hardware implementations, quasi-cyclic LDPC (QC-LDPC) codes
are used in most of the standards [7]. These subclasses of LDPC codes present highly struc-
tured parity check matrices, defined by blocks of circulant matrices. A QC-LDPC code is
defined by a base matrix B, consisting of -1 elements and nonnegative elements. The parity
check matrix H is obtained from the matrix B in the following way: -1 elements are expanded
by z � z all 0 matrix, while nonnegative elements within the matrix B are expanded by the z � z
identity matrix permutated with the nonnegative element value. The coefficient z is known as
the expansion factor for the QC-LDPC code. Figure 2 depicts the B matrix for the WiMAX

Field - Programmable Gate Array106

architectures [2]. These trade-offs take into account the throughput, error correction capability,
cost of the hardware implementation, and power consumption.

In this chapter, we will present the most important architectural options for both flooded and
layered LDPC decoders implemented on field programmable gate array (FPGA) devices. The
implementation of LDPC decoders on such devices is motivated by the increased flexibility of
FPGAs, which make them suitable to implement highly versatile solutions in both wireless
communications—such as software defined radios—and storage systems—such as software
defined storage—as well high level of parallelism degree for fixed-point computations, which
ensure the possibility of obtaining high throughputs for the decoders.

This book chapter is organized as follows: Section2 presents the algorithms for the LDPC
decoding, as well as the strategies for it; Section3 summarizes the main features and building
blocks of modern FPGA devices; Section4 presents the implementation and design trade-offs
for FPGA-based flooded LDPC decoding architectures; layered architectures are detailed in
Section5; last section is dedicated to the concluding remarks.

2. Theoretical background of LDPC decoding

LDPC codes are a class of linear algebraic codes, defined by a sparse parity check matrix H [1].
The LDPC code can also be represented by a bipartite graph, called the Tanner graph [6]. This
graph contains two types of nodes: variable or bit nodes—corresponding to the columns in the
H matrix and the codeword bits—and check nodes—corresponding to the rows in the H
matrix and the parity check equations. A check node is connected to a variable node if the
corresponding value in the parity check matrix is nonzero. Figure 1 depicts a simple parity
check matrix and its associated Tanner graph. LDPC decoding is performed in an iterative
manner, consisting of the message exchange between the check and variable nodes along the
edges of the Tanner graphs in several rounds or iterations. This type of decoding is called
message passing (MP) decoding [4]. LDPC codes defined in communication or storage stan-
dards use parity check matrices consisting of thousands of columns, such as the 2304 columns
for WiMAX, 64800 columns for DVB-S2, or 1944 columns for WiFi. The number of nonzero
entries on each column represents the variable node degree—dv —, while the number of the
nonzero elements on each row in theHmatrix represents the check node degree—dc. An LDPC
code is said to be regular if all the rows/columns in the parity check matrix contain an equal
number of nonzero entries; otherwise, the LDPC code is irregular.

In order to enable efficient hardware implementations, quasi-cyclic LDPC (QC-LDPC) codes
are used in most of the standards [7]. These subclasses of LDPC codes present highly struc-
tured parity check matrices, defined by blocks of circulant matrices. A QC-LDPC code is
defined by a base matrix B, consisting of -1 elements and nonnegative elements. The parity
check matrix H is obtained from the matrix B in the following way: -1 elements are expanded
by z � z all 0 matrix, while nonnegative elements within the matrix B are expanded by the z � z
identity matrix permutated with the nonnegative element value. The coefficient z is known as
the expansion factor for the QC-LDPC code. Figure 2 depicts the B matrix for the WiMAX

Field - Programmable Gate Array106

LDPC code, rate ½, with 2304 columns and 1152 rows, and an expansion factor of 96. A
horizontal layer of H matrix is defined as the set of z consecutive rows which correspond to
one row within the base matrix. Composite layers, consisting of integer multiples of z rows
within the parity check matrix, may be also used.

MP LDPC decoding may be performed using different scheduling strategies. These strategies
indicate the order in which the check node and variable node computations are performed
during the decoding iterations [13]. Two types of strategies may be employed: flooded and
layered. Flooded decoding represents the conventional approach for decoding: each iteration
consists of the update of messages at the check nodes, which subsequently pass their output
messages to the variable nodes, which, in turn, update their corresponding messages [5]. Using
this strategy, both the variable nodes and the check nodes are updated once per iteration. The

Figure 1. Parity check matrix and its associated Tanner graph.

Figure 2. Base matrix for WiMAX rate ½ LDPC code [2].

Design Trade‐Offs for FPGA Implementation of LDPC Decoders
http://dx.doi.org/10.5772/66085

107

layered scheduling consists of splitting the parity check matrix in horizontal layers; these
layers are processed in a serial manner, while the check node updates within the same layer
are processed in a similar manner with the flooded scheduling [8]. The variable node updates
are performed after each layer processing. Therefore, in layered scheduling, the updates per
iteration at variable node level are equal to the number of layers. Layered scheduling has two
major advantages with respect to flooded: (i) faster convergence and (ii) reduced memory
requirement [8]. The flooded approach has the advantage of increase resilience to faults in the
hardware architectures [9], as well as the possibility for very high throughputs due to the high
level of parallelism at the decoder level.

LDPC decoding can be performed by different types of algorithms, with different error correc-
tion capabilities. These can be split into two major classes [13]:

1. Hard-decision algorithms: These algorithms rely on 1-bit messages exchanged between the
processing units. Such algorithms include bit-flipping, gradient descent and probabilistic
gradient descent bit-flipping, Gallagher-A and Gallagher-B. The advantage of these algo-
rithms is represented by the low requirements in terms of resource usage and power
consumption. Their main drawback is represented by their low error correction capability
with respect to soft-decision algorithms, for both BSC and BIAWGN channel models.

2. Soft-decision algorithms: These algorithms use messages quantized on several bits (usually
between 3 and 7), which are exchanged between the variable nodes and check nodes. The
hardware implementations for soft-decision algorithms are significantly more costly with
respect to the hard-decision versions. However, using soft decoding, LDPC codes are able
to have the capacity approaching error correction capabilities which make them suitable
candidates for a wide range of communication standards.

In this chapter, we will discuss the implementation aspects related to the soft-decision-based
LDPC decoders. The most important class of soft-decision LDPC decoding is represented by
the min-sum (MS) algorithm [13] and its variants: offset MS (OMS) [10], normalized MS (NMS)
[10], self-correcting MS (SCMS) [11], and finite alphabet iterative decoding (FAID) [12]. In these
algorithms, the following messages are used [13]:

1. Input log-likelihood-ratio (LLR): These messages represent the input from the communica-
tion channel. For BSC channel model—used in storage systems—the input LLR is on 1 bit,
while for BIAWGN channel model—used in wireless communication—the input LLR is
quantized on several bits. The input LLR is denoted as γ and is quantized on quantðγÞ bits.

2. Variable node messages: These messages are the outputs of the check node units and serve
as inputs for the variable node units. These messages are denoted as α and are quantized
on quantðαÞ bits.

3. Check node messages: These messages represent the output of the variable nodes and are
the inputs for the check nodes. These messages are denoted as β and are quantized on
quantðβÞ bits.

4. A posteriori LLR (AP-LLR): These messages represent the output of each decoding itera-
tion/layer. The output of the decoder is given by the sign of the AP-LLR. It is denoted as ~γ.

Field - Programmable Gate Array108

layered scheduling consists of splitting the parity check matrix in horizontal layers; these
layers are processed in a serial manner, while the check node updates within the same layer
are processed in a similar manner with the flooded scheduling [8]. The variable node updates
are performed after each layer processing. Therefore, in layered scheduling, the updates per
iteration at variable node level are equal to the number of layers. Layered scheduling has two
major advantages with respect to flooded: (i) faster convergence and (ii) reduced memory
requirement [8]. The flooded approach has the advantage of increase resilience to faults in the
hardware architectures [9], as well as the possibility for very high throughputs due to the high
level of parallelism at the decoder level.

LDPC decoding can be performed by different types of algorithms, with different error correc-
tion capabilities. These can be split into two major classes [13]:

1. Hard-decision algorithms: These algorithms rely on 1-bit messages exchanged between the
processing units. Such algorithms include bit-flipping, gradient descent and probabilistic
gradient descent bit-flipping, Gallagher-A and Gallagher-B. The advantage of these algo-
rithms is represented by the low requirements in terms of resource usage and power
consumption. Their main drawback is represented by their low error correction capability
with respect to soft-decision algorithms, for both BSC and BIAWGN channel models.

2. Soft-decision algorithms: These algorithms use messages quantized on several bits (usually
between 3 and 7), which are exchanged between the variable nodes and check nodes. The
hardware implementations for soft-decision algorithms are significantly more costly with
respect to the hard-decision versions. However, using soft decoding, LDPC codes are able
to have the capacity approaching error correction capabilities which make them suitable
candidates for a wide range of communication standards.

In this chapter, we will discuss the implementation aspects related to the soft-decision-based
LDPC decoders. The most important class of soft-decision LDPC decoding is represented by
the min-sum (MS) algorithm [13] and its variants: offset MS (OMS) [10], normalized MS (NMS)
[10], self-correcting MS (SCMS) [11], and finite alphabet iterative decoding (FAID) [12]. In these
algorithms, the following messages are used [13]:

1. Input log-likelihood-ratio (LLR): These messages represent the input from the communica-
tion channel. For BSC channel model—used in storage systems—the input LLR is on 1 bit,
while for BIAWGN channel model—used in wireless communication—the input LLR is
quantized on several bits. The input LLR is denoted as γ and is quantized on quantðγÞ bits.

2. Variable node messages: These messages are the outputs of the check node units and serve
as inputs for the variable node units. These messages are denoted as α and are quantized
on quantðαÞ bits.

3. Check node messages: These messages represent the output of the variable nodes and are
the inputs for the check nodes. These messages are denoted as β and are quantized on
quantðβÞ bits.

4. A posteriori LLR (AP-LLR): These messages represent the output of each decoding itera-
tion/layer. The output of the decoder is given by the sign of the AP-LLR. It is denoted as ~γ.

Field - Programmable Gate Array108

Flooded MS decoding of LDPC codes consists of several iterations, where each variable node
message—and check node message—is updated once. Each iteration consists of the following
steps [5, 13]:

1. Variable node update

αi, j ¼ γi þ ∑
kϵfCðiÞ\jg

βi,k, ∀j∈CðiÞ (1)

~γi ¼ γi þ ∑
kϵCðjÞ

βi,k, ∀j∈CðiÞ (2)

2. Check node update

signðβl, jÞ ¼ ∏
kϵfVðlÞ\jg

signðαl,kÞ, ∀j∈VðlÞ (3)

jβl, jj ¼ minðαl,kÞ, ∀j∈VðlÞ, kϵfVðlÞ\jg (4)

CðiÞ denotes all the check node messages connected to the variable node i, while VðlÞ denotes
all the variable node messages connected to the check node l. The number of variable nodes is
equal to number of columns in the parity check matrix, while the number of check nodes is
equal to the number of rows in the H matrix.

Layered decoding is performed layer by layer, each layer consisting of the following steps [8,
13]:

1. Variable node update

αi, j ¼ ~γ i−βi, j,∀j∈VðiÞ (5)

2. Check node update

signðβi, jÞ ¼ ∏
kϵfVðiÞ\jg

signðαi,kÞ, ∀j∈VðiÞ (6)

jβi, jj ¼ minðαi,kÞ, ∀j∈VðiÞ, kϵfVðiÞ\jg (7)

3. AP-LLR update

~γ i ¼ αi, j−βi, j,∀j∈VðiÞ (8)

Both for flooded and layered scheduling, decoding is stopped either when a codeword is
found—all the parity check equations are satisfied—or when the maximum number of itera-
tions is reached.

Design Trade‐Offs for FPGA Implementation of LDPC Decoders
http://dx.doi.org/10.5772/66085

109

The MS decoding, in both layered and flooded strategies, comprises of simple arithmetic
operations, performed on small operands (3–8 bits). The variations of the MS algorithms target
decoding performance improvement. OMS and NMS are based on the fact that the minimum
computation at the check node level represents an overestimation of the check node message
[10]. Therefore, both approaches try to reduce the value of the check node message computed
by the check node unit.

The OMS approach uses a -1 addition from the absolute value of the βi, j in order to reduce its

value. The check node computation in the OMS algorithm becomes:

signðβi, jÞ ¼ ∏
kϵfVðiÞ\jg

signðαi,kÞ, ∀j∈VðiÞ (9)

j β�i, jj ¼ minðαi,kÞ, ∀j∈VðiÞ, kϵfVðiÞ\jg (10)

jβi, jj ¼ j β�i, jj−1 (11)

The NMS approach uses scaling of the absolute value of the βi, j in order to reduce its value, by

a normalization factor λ (usually with the values of 0.75 or 0.875) multiplication. The check
node computation in the NMS algorithm becomes:

signðβi, jÞ ¼ ∏
kϵfVðiÞ\jg

signðαi,kÞ, ∀j∈VðiÞ (12)

j β�i, jj ¼ minðαi,kÞ, ∀j∈VðiÞ, kϵfVðiÞ\jg (13)

jβi, jj ¼ λ � j β�i, jj (14)

SCMS represents an approach which aims at improving the error correction capability by
erasing the variable node messages which change their sign after an iteration [11]. The erasure
process cannot be performed in two consecutive iterations. The modification of the variable
node update for a layered scheduling for the SCMS algorithm is:

αnew
i, j ¼ ~γ i−βi, j, ∀j∈VðiÞ (15)

enewi, j ¼ ð!eoldi, j Þ&ðsignðαnew
i, j Þ⊕signðαold

i, j ÞÞ (16)

αi, j ¼
αnew
i, j , enewi, j ¼ 0
0, enewi, j ¼ 1

�
(17)

FAID decoding aims at improving the error floor region of the LDPC decoding. It changes the
variable node operations, by implementing nonlinear dedicated function for the variable node
message update, based on the channel information and the check node messages [12]. For a
flooded scheduling, the variable node processing becomes:

Field - Programmable Gate Array110

The MS decoding, in both layered and flooded strategies, comprises of simple arithmetic
operations, performed on small operands (3–8 bits). The variations of the MS algorithms target
decoding performance improvement. OMS and NMS are based on the fact that the minimum
computation at the check node level represents an overestimation of the check node message
[10]. Therefore, both approaches try to reduce the value of the check node message computed
by the check node unit.

The OMS approach uses a -1 addition from the absolute value of the βi, j in order to reduce its

value. The check node computation in the OMS algorithm becomes:

signðβi, jÞ ¼ ∏
kϵfVðiÞ\jg

signðαi,kÞ, ∀j∈VðiÞ (9)

j β�i, jj ¼ minðαi,kÞ, ∀j∈VðiÞ, kϵfVðiÞ\jg (10)

jβi, jj ¼ j β�i, jj−1 (11)

The NMS approach uses scaling of the absolute value of the βi, j in order to reduce its value, by

a normalization factor λ (usually with the values of 0.75 or 0.875) multiplication. The check
node computation in the NMS algorithm becomes:

signðβi, jÞ ¼ ∏
kϵfVðiÞ\jg

signðαi,kÞ, ∀j∈VðiÞ (12)

j β�i, jj ¼ minðαi,kÞ, ∀j∈VðiÞ, kϵfVðiÞ\jg (13)

jβi, jj ¼ λ � j β�i, jj (14)

SCMS represents an approach which aims at improving the error correction capability by
erasing the variable node messages which change their sign after an iteration [11]. The erasure
process cannot be performed in two consecutive iterations. The modification of the variable
node update for a layered scheduling for the SCMS algorithm is:

αnew
i, j ¼ ~γ i−βi, j, ∀j∈VðiÞ (15)

enewi, j ¼ ð!eoldi, j Þ&ðsignðαnew
i, j Þ⊕signðαold

i, j ÞÞ (16)

αi, j ¼
αnew
i, j , enewi, j ¼ 0
0, enewi, j ¼ 1

�
(17)

FAID decoding aims at improving the error floor region of the LDPC decoding. It changes the
variable node operations, by implementing nonlinear dedicated function for the variable node
message update, based on the channel information and the check node messages [12]. For a
flooded scheduling, the variable node processing becomes:

Field - Programmable Gate Array110

αi, j ¼ FAIDðγi, βi,kÞ, ∀j∈CðiÞ,∀kϵfCðiÞ\jg (18)

~γi ¼ γi þ ∑
kϵCðjÞ

βi,k, ∀j∈CðiÞ (19)

The implementation of the FAID function is done using dedicated look-up tables (LUT). The
complexity of these tables is dependent on the check node message quantization and the
variable node degree dv.

3. Architectural components of FPGA devices

FPGAs are digital devices with a programmable structure. This programmable structure pro-
vides FPGAs with very high flexibility, which makes them the ideal candidates for
prototyping, as well as products with very low time-to-market constraints or applications
which require high degree of flexibility. Furthermore, FPGAs have a built-in structure which
allows a high degree of parallelization for applications that rely on fixed-point computations.

The main digital building blocks of modern FPGA devices are the configurable logic block
(CLB), the embedded memory block RAM (BRAM), and the DSP block. DSP blocks implement
18 bit or wider multiplication, multiply-accumulate or multiply-add fused, and addition oper-
ations [14]. Because they are optimized for operand sized of 18 bit or more, and mainly for
multiplication-based operations, they are of little use for the implementation of LDPC
decoders.

CLBs are the main logic resource, which implement both sequential and combinational logic
elements [15]. Usually, CLBs are composed of several slices, each of the slice being composed
of a look-up table (LUT) and a D flip-flop, plus additional dedicated logic, such as logic and
dedicated wire for ripple carry addition. The combinational logic is implemented using LUT,
with modern FPGAs having six-input LUTs. Therefore, in a LUT and flip-flop pair, six-input
combinational functions have the same cost as one or two input combinational functions. For
specific families, the LUT can also be used as a memory circuit such as the distributed RAM in
Xilinx FPGAs. The D flip-flop is used as the basic sequential logic. Because the combinational
logic is paired with the D flip-flop in the same structural unit, pipelining can be easily and
without significant resource consumption implemented in modern FPGA devices.

Another important feature of modern FPGAs is represented by the built-in memory blocks
[16]. For large memories, FPGAs include the block RAM, which is block of 9 or 18 kbits. They
have configurable width (9, 18, 36, or 72 bit), with the depth of the BRAM being determined by
the width (for an 18 kbit BRAM and 72 bit word, the depth is 512 words). The number of
BRAMs for a design is highly dependent on the width and the depth of required memory. For
example, a memory which requires 96 bit words, and only 64 words, will consume 2 BRAM
blocks, although the number of memory bits is significantly less with respect to the number of
memory bits in a BRAM. Another important issue of the BRAM block is the number of read/

Design Trade‐Offs for FPGA Implementation of LDPC Decoders
http://dx.doi.org/10.5772/66085

111

write ports: it is optimized for 1 read and 1 write port. The maximum number of memory ports
for a BRAM is 2 read and 2 writes, but with limitations in the size of the word. For memories
with few bits, and/or memories with a high number of ports, the distributed RAM
implemented in CLBs is used.

From an LDPC decoder perspective, the FPGA implementation will make use of the CLBs for
the implementation of the processing nodes and the routing network, and memories, either
BRAM or distributed RAM.

4. Flooded LDPC decoders

The straightforward LDPC decoder architecture is represented by the hardware implementa-
tion of the corresponding Tanner graph. This type of architecture is known as the fully parallel
decoder [17]. It consists of:

1. Processing nodes: A fully parallel decoder contains a number of variable node units equal
to the number of columns in the parity check matrix and a number of check node units
equal to the number of rows in the H matrix.

2. Routing network: The routing network is represented by wires which connect the variable
node units with the check node units, according to the parity check matrix.

Although this kind of architecture is straightforward, the main problem arises due to the
routing network. For LDPC codes that have thousands of rows and columns in the parity
check matrix, the routing network involves tens of thousands of connections between the
variable node units and check node units. Furthermore, the H matrix presents an irregular
structure, which makes the interconnections component highly irregular. This will further
contribute to the increase in cost, as well as reduction in the maximum operating frequency—
due to the routing delay across the routing components of the FPGA. Another disadvantage of
fully parallel LDPC decoder is the low flexibility: the decoder is specific to a LDPC code, and a
slight modification in the code leads to the entire decoder redesign. Furthermore, these types
of architecture cannot easily accommodate features such as multi-rate decoder, which is
desired due to the fact that each communication and storage standard uses multiple LDPC
codes with different rates. The main advantage of this architecture is represented by its high
throughput, due to low number of clock cycles required for an iteration [17].

In order to reduce the complexity of these decoders, one approach relies on the reduction of the
wires between the check node unit and variable node units. One such solution relies on the bit-
serial decoder: the check node messages and the variable node messages are sent bit by bit to
their corresponding processing unit [18]. Thus, the connection between a variable node unit
and a check node unit consists of only two wires, instead of a quantðαÞ bit and aquantðβÞ bit
wires. This decoder trades throughput for reduced cost. Other solution relies on reduced
quantization for the messages [19, 20]. The reduced quantization leads to a reduced number
of wires between the processing units and thus to a reduction in the interconnection network.
These solutions trade the error correction capability for reduced cost.

Field - Programmable Gate Array112

write ports: it is optimized for 1 read and 1 write port. The maximum number of memory ports
for a BRAM is 2 read and 2 writes, but with limitations in the size of the word. For memories
with few bits, and/or memories with a high number of ports, the distributed RAM
implemented in CLBs is used.

From an LDPC decoder perspective, the FPGA implementation will make use of the CLBs for
the implementation of the processing nodes and the routing network, and memories, either
BRAM or distributed RAM.

4. Flooded LDPC decoders

The straightforward LDPC decoder architecture is represented by the hardware implementa-
tion of the corresponding Tanner graph. This type of architecture is known as the fully parallel
decoder [17]. It consists of:

1. Processing nodes: A fully parallel decoder contains a number of variable node units equal
to the number of columns in the parity check matrix and a number of check node units
equal to the number of rows in the H matrix.

2. Routing network: The routing network is represented by wires which connect the variable
node units with the check node units, according to the parity check matrix.

Although this kind of architecture is straightforward, the main problem arises due to the
routing network. For LDPC codes that have thousands of rows and columns in the parity
check matrix, the routing network involves tens of thousands of connections between the
variable node units and check node units. Furthermore, the H matrix presents an irregular
structure, which makes the interconnections component highly irregular. This will further
contribute to the increase in cost, as well as reduction in the maximum operating frequency—
due to the routing delay across the routing components of the FPGA. Another disadvantage of
fully parallel LDPC decoder is the low flexibility: the decoder is specific to a LDPC code, and a
slight modification in the code leads to the entire decoder redesign. Furthermore, these types
of architecture cannot easily accommodate features such as multi-rate decoder, which is
desired due to the fact that each communication and storage standard uses multiple LDPC
codes with different rates. The main advantage of this architecture is represented by its high
throughput, due to low number of clock cycles required for an iteration [17].

In order to reduce the complexity of these decoders, one approach relies on the reduction of the
wires between the check node unit and variable node units. One such solution relies on the bit-
serial decoder: the check node messages and the variable node messages are sent bit by bit to
their corresponding processing unit [18]. Thus, the connection between a variable node unit
and a check node unit consists of only two wires, instead of a quantðαÞ bit and aquantðβÞ bit
wires. This decoder trades throughput for reduced cost. Other solution relies on reduced
quantization for the messages [19, 20]. The reduced quantization leads to a reduced number
of wires between the processing units and thus to a reduction in the interconnection network.
These solutions trade the error correction capability for reduced cost.

Field - Programmable Gate Array112

The other approach to reduce the complexity and the cost of the flooded LDPC decoder relies
on the serialization of the check node and variable node operations at different levels. Thus,
partially parallel flooded architectures are employed [21–28]. These partially parallel decoders
exploit the regular structure of the QC-LDPC codes in order to obtain regular, low complexity
architectures. Because serialization is employed at different levels, messages have to be stored
in dedicated memory units. Stored messages have to be routed from the memory blocks to the
processing units according to the LDPC matrix. In order to provide a flexible way for message
routing, barrel shifters are employed. The read/write addresses for the memories, as well as the
shift amounts employed in routing, are generated from a dedicated control unit. The main
components for a partial parallel flooded decoder are as follows:

1. Processing nodes: The number of variable node units and check node units is dependent
on the different parallelism degrees at different level. Furthermore, the number of inputs
and outputs for such units can also vary, depending on how many messages can be
processed each clock cycle.

2. Routing network: The routing is implemented using barrel shifters. The number and size
of the barrel shifters may vary with message quantization, circulant size of the base matrix,
different level parallelization degrees, etc. High-frequency pipelined barrel shifters may be
implemented without additional cost in modern FPGA devices due to the LUT and D flip-
flop pair which compose the basic component of the CLB.

3. Memory blocks: Memory blocks are used to store both the input LLRs and the check node
and variable node messages. Usually, high degrees of parallelism—increased throughput
—require wide memory words and multi-port memories. In many implementations, the
multi-port memories are replaced by independent memory banks, which can be easily
mapped on the FPGA BRAM blocks.

4. Control unit: The control unit is used to generate the shift amounts, the read/write memory
addresses, as well as the control signals for the processing units. The shift amounts and the
memory addresses are code dependent; this kind of information is usually stored in
dedicated ROM memories.

For a quasi-cyclic LDPC decoder, two types of partial parallel flooded architectures have been
proposed:

1. Parallel circulant, serial row/column processing: In this type of architecture, a number of z
rows/columns are processed in parallel, while the rows and columns of the base matrix are
processed sequentially [21–24]. This decoder is depicted in Figure 3. This kind of architec-
ture requires z variable node units and z check node units. The memory words will consist
of z messages. An important design parameter is represented by the parallelism degree at
the processing node level—the number of processed messages per clock cycle. For the
variable node unit, the maximum parallelism degree is dv, while for the check node unit is
dc. Increasing parallelism at the processing node level will greatly influence the FPGA
resource consumption of the decoder. This is due to the increased number of barrel shifters,
which will lead to an increase in the conventional slice-based resource consumption, as
well as for the increase in the number of memory ports, or the number of memory banks.

Design Trade‐Offs for FPGA Implementation of LDPC Decoders
http://dx.doi.org/10.5772/66085

113

Increasing the number of memory ports will lead to the implementation of the message
memories with distributed RAM, while the increase in the memory banks will lead to an
increase in the number of BRAM blocks.

2. Serial circulant, parallel row/column processing: In this kind of architecture, the rows/
columns of the base matrix are processed in parallel, while the elements corresponding to
a vertical/horizontal layer are processed sequentially [24–28]. This type of architecture is
depicted in Figure 4. The number of check node units is equal to the number of rows in the
Bmatrix, while the number of variable node units is equal to the number of columns in the
base matrix. The number of columns in the base matrix gives also the number of input LLR
message memories, while the variable and check node messages are stored in a dvnr_colðBÞ
memory blocks. Each memory has a depth equal to the circulant size and a width equal to
the message quantization. This type of memory organization is suitable for FPGA devices,
as each memory block maps to a BRAM block. This kind of decoder does not use dedicated
routing circuits, as the routing of the messages between the memory blocks and the
processing units is done via the offset address within each memory block. The processing
units are fully parallel, as the read/write operations are done from dv or dc memory blocks.
In order to increase the throughput, vectorization technique is proposed [25, 26]. This
technique relies on packing multiple messages within a single memory word, which to be
processed in parallel. Increasing the vectorization degree will lead to alignment problems,

Figure 3. Parallel circulant, serial row/column processing flooded architecture.

Field - Programmable Gate Array114

Increasing the number of memory ports will lead to the implementation of the message
memories with distributed RAM, while the increase in the memory banks will lead to an
increase in the number of BRAM blocks.

2. Serial circulant, parallel row/column processing: In this kind of architecture, the rows/
columns of the base matrix are processed in parallel, while the elements corresponding to
a vertical/horizontal layer are processed sequentially [24–28]. This type of architecture is
depicted in Figure 4. The number of check node units is equal to the number of rows in the
Bmatrix, while the number of variable node units is equal to the number of columns in the
base matrix. The number of columns in the base matrix gives also the number of input LLR
message memories, while the variable and check node messages are stored in a dvnr_colðBÞ
memory blocks. Each memory has a depth equal to the circulant size and a width equal to
the message quantization. This type of memory organization is suitable for FPGA devices,
as each memory block maps to a BRAM block. This kind of decoder does not use dedicated
routing circuits, as the routing of the messages between the memory blocks and the
processing units is done via the offset address within each memory block. The processing
units are fully parallel, as the read/write operations are done from dv or dc memory blocks.
In order to increase the throughput, vectorization technique is proposed [25, 26]. This
technique relies on packing multiple messages within a single memory word, which to be
processed in parallel. Increasing the vectorization degree will lead to alignment problems,

Figure 3. Parallel circulant, serial row/column processing flooded architecture.

Field - Programmable Gate Array114

which lead to increased additional logic, as well as the number of stall clock cycles.
Therefore, the maximum number of packed messages used with vectorization has been
limited to four.

Partial parallel flooded FPGA architectures have two drawbacks:

1. Idle times for processing units: A major disadvantage of flooded decoder is represented by
significant idle times for both variable node and check node units, during the variable node
processing, the check node units, and vice-versa. Therefore, during one decoding iteration,
only half of the decoder is utilized. Two strategies are employed:

a. Processing two different codewords in parallel [22, 23]—while variable nodes compute
the variable node messages for one codeword, the check nodes compute the check node
messages for a second codeword; this solution implies small changes in the control unit,
a double memory for the input LLR messages, and the hard-decision bits, with the
advantage of a double throughput.

b. Using waiting time minimization algorithms [25, 26]—using these algorithms, the order
in which the rows/columns within the base matrix or within the parity check matrix are
processed can be determined, without having data hazards and memory conflicts when
performing the variable node and check node updates; therefore, almost simultaneous
variable node and check node processing can be achieved; a second optimization
obtained by employing these types of algorithms is represented by reduced memory
usage; because data hazards and memory conflicts are avoided, the check node mes-
sages and variable node messages can be stored in the same memory locations.

2. Low usage of BRAM memories: In parallel circulant, serial row/column processing archi-
tectures, the memory word for the variable node messages is zquantðαÞ, while the number
of memory words is dvnr_colðBÞ. For LDPC code with circulant size of 96, 24 columns in the
base matrix, dv ¼ 3, and message quantization of 4 bits, the word size is 384 bits, while the
number of words in the memory is 72. For BRAM blocks consisting of 72 bits memory

Figure 4. Serial circulant, parallel row/columns processing flooded architecture.

Design Trade‐Offs for FPGA Implementation of LDPC Decoders
http://dx.doi.org/10.5772/66085

115

words and 512 words, this kind of configuration results in the usage of 6 BRAM block,
with only 72/512 utilization for each BRAM. For the second type of flooded architectures,
for the same LDPC code, for each memory block required to store the variable node
messages, the memory word is of 4 bits, while the number of words is 96. Also, in this
case, it can be observed that the BRAM has poor usage. Several approaches have been
proposed to address this issue. One is to use multiple codewords. The solution in [23]
targets the increase in the memory words within the BRAM. The codewords are processed
in serial. This solution achieves increase in the BRAM utilization for the same logic usage
and throughput. The solution in [28] targets increase in the memory word size stored in the
BRAM and addresses serial circulant, parallel row/column processing architectures. In the
same memory word are stored messages from multiple codewords. The number of
processing units is increased in order to process in parallel the codewords. This solution
results in an increase of CLB logic usage, as well as throughput increase. Also for the serial
circulant, parallel row/column processing architectures in [26] are presented folding,
which aims at storing in the same BRAMmessages associated with different columns/rows
within the base matrix.

It can be observed that FPGA implementations of flooded architectures present a wide range
of architectural variations, with different parallelism degrees at different levels, which aim at
different throughput/cost/error correction capability trade-offs. The fully parallel solution pre-
sents increased throughput, but high cost due to routing, as well as low flexibility. Partial
parallel solutions use memories for message storage. For these architectures, BRAM-based
memory units are targeted in the FPGA implementation. However, employing BRAM blocks
leads to several challenges related especially to the low usage of these.

5. Layered LDPC decoders

Layered architectures have been proposed first in [8], with the main goal of reducing the
required memory bits. In the case of a layered decoder, two types of messages require memory
storage: the AP-LLR messages and the check node messages. A typical layered LDPC decoder
[29–33], depicted in Figure 5, contains the following components:

1. Processing units: The processing in the layered scheduling consists of the computation of
the variable node messages, computation of the check node messages, and the AP-LLR
update. The variable node message is computed from the AP-LLR and the check node
message. The check node message is computed in the same way as in flooded scheduling,
while the AP-LLR is updated from the new values of the variable node and check node
messages. Because messages do not require routing between processing nodes—as in
flooded—and just routing between memories and processing units, a combined unit—
variable-check unit—is employed for processing. The number of processing units in the
typical layered decoder is equal to the number of rows which constitute one layer, which is
usually given by the circulant size. A combined unit contains an adder to perform the
variable message computation, a FIFO buffer, used for routing the updated variable node

Field - Programmable Gate Array116

words and 512 words, this kind of configuration results in the usage of 6 BRAM block,
with only 72/512 utilization for each BRAM. For the second type of flooded architectures,
for the same LDPC code, for each memory block required to store the variable node
messages, the memory word is of 4 bits, while the number of words is 96. Also, in this
case, it can be observed that the BRAM has poor usage. Several approaches have been
proposed to address this issue. One is to use multiple codewords. The solution in [23]
targets the increase in the memory words within the BRAM. The codewords are processed
in serial. This solution achieves increase in the BRAM utilization for the same logic usage
and throughput. The solution in [28] targets increase in the memory word size stored in the
BRAM and addresses serial circulant, parallel row/column processing architectures. In the
same memory word are stored messages from multiple codewords. The number of
processing units is increased in order to process in parallel the codewords. This solution
results in an increase of CLB logic usage, as well as throughput increase. Also for the serial
circulant, parallel row/column processing architectures in [26] are presented folding,
which aims at storing in the same BRAMmessages associated with different columns/rows
within the base matrix.

It can be observed that FPGA implementations of flooded architectures present a wide range
of architectural variations, with different parallelism degrees at different levels, which aim at
different throughput/cost/error correction capability trade-offs. The fully parallel solution pre-
sents increased throughput, but high cost due to routing, as well as low flexibility. Partial
parallel solutions use memories for message storage. For these architectures, BRAM-based
memory units are targeted in the FPGA implementation. However, employing BRAM blocks
leads to several challenges related especially to the low usage of these.

5. Layered LDPC decoders

Layered architectures have been proposed first in [8], with the main goal of reducing the
required memory bits. In the case of a layered decoder, two types of messages require memory
storage: the AP-LLR messages and the check node messages. A typical layered LDPC decoder
[29–33], depicted in Figure 5, contains the following components:

1. Processing units: The processing in the layered scheduling consists of the computation of
the variable node messages, computation of the check node messages, and the AP-LLR
update. The variable node message is computed from the AP-LLR and the check node
message. The check node message is computed in the same way as in flooded scheduling,
while the AP-LLR is updated from the new values of the variable node and check node
messages. Because messages do not require routing between processing nodes—as in
flooded—and just routing between memories and processing units, a combined unit—
variable-check unit—is employed for processing. The number of processing units in the
typical layered decoder is equal to the number of rows which constitute one layer, which is
usually given by the circulant size. A combined unit contains an adder to perform the
variable message computation, a FIFO buffer, used for routing the updated variable node

Field - Programmable Gate Array116

message to the AP-LLR update, a comparator for updating the check node message, and
the addition unit for the AP-LLR update [29–32]. Specific FPGA optimization can be
implemented within the combined processing unit, which includes the use of the 6-input
LUT within the CLB for comparator implementation—the comparator is implemented as
ROM memories [30]—as well as the usage of the dedicated shift register chains for the
implementation of the FIFOs. The processing unit has as inputs dc AP-LLR messages and
dc check node messages, and outputs dc updated AP-LLR messages and dc updated check
node messages. An important parameter for the entire decoding architecture is represented
by the parallelism degree at the variable-check unit level, which represents the number of
AP-LLR messages processed each clock cycle (maximum parallelism degree is equal to dc).
A higher degree of parallelism requires more simultaneous AP-LLRs read/write, as well as
routing, which leads to increased number of memory ports or memory banks, and barrel
shifters for routing [33].

2. Memory blocks: Layered decoders require the storage of two types of messages: AP-LLRs
and check node messages. The AP-LLRs are messages which are routed between different
processing units between layer processing. The check node messages are specific to each
processing unit: these do not require routing from a processing unit to another between
different layers. Therefore, the AP-LLR memory is a shared, global memory, while the
check node message memories are local to each processing unit. Regarding the AP-LLR
memory, the memory word for each bank is of quantð~γÞ, while the maximum depth of this
memory is equal to the number of columns in the base matrix. Regarding BRAM imple-
mentation of the AP-LLR memory, a drawback is represented by the low usage of the
embedded block memory. Regarding the check node messages, two variants for their
storage are used: (i) uncompressed form, when the β messages in their conventional two's
complement format, and (ii) compressed form [34]. The compressed check node message is
based on the fact that dc−1β messages within a row corresponding to a row in the parity

Figure 5. Layered decoding architecture.

Design Trade‐Offs for FPGA Implementation of LDPC Decoders
http://dx.doi.org/10.5772/66085

117

check matrix have the same absolute value, equal to the minimum of the α messages
connected to the corresponding check node unit, while the dc-th check node message
absolute value is equal to the second minimum. Therefore, a compressed check node
message can be used, consisting of the signs, first minimum, second minimum, and the
index of the first minimum. Regarding the FPGA implementation, the compressed form is
suitable for shift register-based implementation in conventional CLB logic, while the
uncompressed form is suitable for BRAM implementation. However, in BRAM-based
implementation of the check node message, memory in compressed form is proposed for
layered decoder with serial processing at processing node level. Routing from the BRAM
blocks containing the check node messages to the processing units is achieved using large
shift registers.

3. Routing network: Routing network is implemented using barrel shifters. The number of
barrel shifters is dependent on the degree of parallelism in the processing unit. For each
AP-LLR input of the processing unit, a pair of barrel shifters—one for routing read mes-
sages and one for routing the update message required for write—is required.

4. Control unit: The control unit is responsible for the generation of read/write addresses for
the two memories, the shift amounts for the barrel shifter, as well as the control signals
corresponding to the processing units. As in the case of the flooded decoders, ROM type of
memories is used to embed the LDPC code information, from which are computed the
memory addresses, as well as the shift amounts.

A major issue in the layer architecture is represented by the data hazards. Depending on the
LDPC code, read-after-write (RAW) data hazards may affect the AP-LLR update: the updated
value of the AP-LLR has not been written into the memory, before it is read for a new layer
processing [35]. The problem of data hazards is aggravated by the usage of pipeline stages,
both in the barrel shifters and in the processing units.

6. Conclusions

This book chapter presents an overview of the main design trade-offs in the implementation of
LDPC decoders on FPGA devices. We detail how the main architectural choices for both
flooded and layered scheduling strategies map on the built-in resources of modern FPGA
devices. The main conclusions which can be drawn from this survey are as follows:

1. The degree of parallelism at processing node level has a major influence in the resource
consumption of the LDPC decoder: it gives the number of barrel shifters used for routing,
as well as the number of memory ports or memory banks used for message storage.

2. Routing represents an important factor in the cost/performance of the LDPC decoder; high-
performance pipelined barrel shifter-based routing can be advantageously implemented in
modern FPGA devices using conventional CLB resources.

3. Memories for message storage in partial parallel flooded LDPC decoder or layered
decoders can be implemented using embedded BRAM blocks; the main problem is
represented by the low usage of the memory bits within the BRAM.

Field - Programmable Gate Array118

check matrix have the same absolute value, equal to the minimum of the α messages
connected to the corresponding check node unit, while the dc-th check node message
absolute value is equal to the second minimum. Therefore, a compressed check node
message can be used, consisting of the signs, first minimum, second minimum, and the
index of the first minimum. Regarding the FPGA implementation, the compressed form is
suitable for shift register-based implementation in conventional CLB logic, while the
uncompressed form is suitable for BRAM implementation. However, in BRAM-based
implementation of the check node message, memory in compressed form is proposed for
layered decoder with serial processing at processing node level. Routing from the BRAM
blocks containing the check node messages to the processing units is achieved using large
shift registers.

3. Routing network: Routing network is implemented using barrel shifters. The number of
barrel shifters is dependent on the degree of parallelism in the processing unit. For each
AP-LLR input of the processing unit, a pair of barrel shifters—one for routing read mes-
sages and one for routing the update message required for write—is required.

4. Control unit: The control unit is responsible for the generation of read/write addresses for
the two memories, the shift amounts for the barrel shifter, as well as the control signals
corresponding to the processing units. As in the case of the flooded decoders, ROM type of
memories is used to embed the LDPC code information, from which are computed the
memory addresses, as well as the shift amounts.

A major issue in the layer architecture is represented by the data hazards. Depending on the
LDPC code, read-after-write (RAW) data hazards may affect the AP-LLR update: the updated
value of the AP-LLR has not been written into the memory, before it is read for a new layer
processing [35]. The problem of data hazards is aggravated by the usage of pipeline stages,
both in the barrel shifters and in the processing units.

6. Conclusions

This book chapter presents an overview of the main design trade-offs in the implementation of
LDPC decoders on FPGA devices. We detail how the main architectural choices for both
flooded and layered scheduling strategies map on the built-in resources of modern FPGA
devices. The main conclusions which can be drawn from this survey are as follows:

1. The degree of parallelism at processing node level has a major influence in the resource
consumption of the LDPC decoder: it gives the number of barrel shifters used for routing,
as well as the number of memory ports or memory banks used for message storage.

2. Routing represents an important factor in the cost/performance of the LDPC decoder; high-
performance pipelined barrel shifter-based routing can be advantageously implemented in
modern FPGA devices using conventional CLB resources.

3. Memories for message storage in partial parallel flooded LDPC decoder or layered
decoders can be implemented using embedded BRAM blocks; the main problem is
represented by the low usage of the memory bits within the BRAM.

Field - Programmable Gate Array118

The implementation of LDPC decoders on FPGA devices has a wide range of architectural and
design parameters, which present different throughput/cost/error correction capability trade-
offs. Furthermore, many FPGA-specific optimizations may be applied in the LDPC decoder
design, such as the message memory mapping or optimization in the processing units.

Regarding the future use of the LDPC codes and decoder architectures, throughput and
flexibility will represent highly important features. Regarding throughput, future wireless
communication will require tens or hundreds of Gbps, which will impose new architectural
challenges. Furthermore, the use of software-defined radios and software-defined flash will
require highly flexible architectures, which can adapt code rate, quantization, as well as other
features.

Acknowledgements

This work has been supported by bilateral UEFISCDI-ANR project DIAMOND.

Author details

Alexandru Amaricai* and Oana Boncalo

*Address all correspondence to: alexandru.amaricai@cs.upt.ro

Computer and Information Technology Department, University Politehnica Timisoara,
Timisoara, Romania

References

[1] R. G. Gallagher. Low Density Parity Check Codes. MIT Press; 1963

[2] P. Hailes, L. Xu, R. Maunder, B. M. al-Hashimi, L. Hanzo. A survey of FPGA-based LDPC
decoders. IEEE Communications Surveys and Tutorials. 2016;18(2):1098–1125. doi:10.
1109/COMST.2015.2510381

[3] K. Zhao, W. Zhao, H. Sun, T. Zhang, X. Zhang, N. Zheng. LDPC-in-SSD: making
advanced error correction codes work effectively in solid state drives. In: Proceedings of
the 11th USENIX conference on File and Storage Technologies FAST'13; USENIX Associ-
ation, Berkeley; 2013. pp. 243–256.

[4] T. J. Richardson, R. L. Urbanke. The capacity of low-density parity. IEEE Transactions on
Information Theory. 2001;47(2):599–618. doi:10.1109/18.910577

[5] F. R. Kschischang, B. J. Frey. Iterative decoding of compound codes by probability prop-
agation in graphical models. IEEE Journal on Selected Areas in Communications. 1998;16
(2):219–230. doi:10.1109/49.661110

Design Trade‐Offs for FPGA Implementation of LDPC Decoders
http://dx.doi.org/10.5772/66085

119

[6] R. Tanner. A recursive approach to low complexity codes. IEEE Transactions on Informa-
tion Theory. 1981;27(5):533–547. doi:10.1109/TIT.1981.1056404

[7] M. P. C. Fossorier. Quasicyclic low-density parity-check codes from circulant permutation
matrices. IEEE Transaction on Information Theory. 2004;50(4):1788–1793. doi:10.1109/
TIT.2004.831841

[8] D. E. Hocevar. A reduced complexity decoder architecture via layered decoding of LDPC
codes. In: IEEE Workshop on Signal Processing Systems; 13–15 October; IEEE; Austin,
Texas, USA, 2004. pp. 107–112. doi:10.1109/SIPS.2004.1363033

[9] C. L. KameniNgassa, V. Savin, D. Declercq. Analysis of min-sum based decoders
implemented on noisy hardware. In: Asilomar Conference on Signals, Systems and Com-
puters; Pacific Groove, California, USA, 2013. pp. 866–870. doi:10.1109/ACSSC.2013.
6810411

[10] J. Chen, M. P. C. Fossorier. Near optimum universal belief propagation based decoding of
low-density parity check codes. IEEE Transaction on Communication. 2002;50(3):406–
414. doi:10.1109/26.990903

[11] V. Savin. Self-corrected min-sum decoding of LDPC codes. In: IEEE International Sympo-
sium on Information Theory; IEEE; Toronto, Canada, 2008. pp. 146–150. doi:10.1109/ISIT.
2008.4594965

[12] S. K. Planjery, D. Declercq, L. Danjean, B. Vasic. Finite alphabet iterative decoders—Part I:
decoding beyond belief propagation on the binary symmetric channel. IEEE Transactions
on Communications. 2013;61(10):4033–4045. doi:10.1109/TCOMM.2013.090513.120443

[13] V. Savin. LDPC decoders. In: D. Declerq, M.P.C. Fossorier, E. Biglie, editors. Channel
Coding: Theory, Algorithms, and Applications; Elsevier; 2015. doi:10.1016/B978-0-12-
396499-1.00004-2

[14] Xilinx. 7 Series DSP48E1 Slice User Guide—UG479. 2014.

[15] Xilinx. 7 Series FPGA Configurable Logic Block User Guide—UG474. 2014.

[16] Xilinx. 7 Series Memory Resources User Guide—UG473. 2014.

[17] V.Torres, A. Perez-Pascual, T. Sansaloni, J. Valls. Fully-parallel LUT-based (2048,
1723) LDPC code decoder for FPGA. In: 19th IEEE International Conference on Electron-
ics, Circuits and Systems (ICECS); IEEE; 2012. p. 408–411. doi:10.1109/ICECS.2012.
6463663

[18] A. Darabiha, A. C. Carusone, F. R. Kschischang. A bit-serial approximate min-sum LDPC
decoder and FPGA implementation. In: 2006 IEEE International Symposium on Circuits
and Systems; 21–24 May; IEEE; Island of Kos, Greece, 2006. doi:10.1109/ISCAS.2006.
1692544

[19] V. A. Chandrasetty, S. M. Aziz. An area efficient LDPC decoder using a reduced com-
plexity min-sum algorithm. Integration, The VLSI Journal. 2012;45(2):141–148. doi:10.
1016/j.vlsi.2011.08.002

Field - Programmable Gate Array120

[6] R. Tanner. A recursive approach to low complexity codes. IEEE Transactions on Informa-
tion Theory. 1981;27(5):533–547. doi:10.1109/TIT.1981.1056404

[7] M. P. C. Fossorier. Quasicyclic low-density parity-check codes from circulant permutation
matrices. IEEE Transaction on Information Theory. 2004;50(4):1788–1793. doi:10.1109/
TIT.2004.831841

[8] D. E. Hocevar. A reduced complexity decoder architecture via layered decoding of LDPC
codes. In: IEEE Workshop on Signal Processing Systems; 13–15 October; IEEE; Austin,
Texas, USA, 2004. pp. 107–112. doi:10.1109/SIPS.2004.1363033

[9] C. L. KameniNgassa, V. Savin, D. Declercq. Analysis of min-sum based decoders
implemented on noisy hardware. In: Asilomar Conference on Signals, Systems and Com-
puters; Pacific Groove, California, USA, 2013. pp. 866–870. doi:10.1109/ACSSC.2013.
6810411

[10] J. Chen, M. P. C. Fossorier. Near optimum universal belief propagation based decoding of
low-density parity check codes. IEEE Transaction on Communication. 2002;50(3):406–
414. doi:10.1109/26.990903

[11] V. Savin. Self-corrected min-sum decoding of LDPC codes. In: IEEE International Sympo-
sium on Information Theory; IEEE; Toronto, Canada, 2008. pp. 146–150. doi:10.1109/ISIT.
2008.4594965

[12] S. K. Planjery, D. Declercq, L. Danjean, B. Vasic. Finite alphabet iterative decoders—Part I:
decoding beyond belief propagation on the binary symmetric channel. IEEE Transactions
on Communications. 2013;61(10):4033–4045. doi:10.1109/TCOMM.2013.090513.120443

[13] V. Savin. LDPC decoders. In: D. Declerq, M.P.C. Fossorier, E. Biglie, editors. Channel
Coding: Theory, Algorithms, and Applications; Elsevier; 2015. doi:10.1016/B978-0-12-
396499-1.00004-2

[14] Xilinx. 7 Series DSP48E1 Slice User Guide—UG479. 2014.

[15] Xilinx. 7 Series FPGA Configurable Logic Block User Guide—UG474. 2014.

[16] Xilinx. 7 Series Memory Resources User Guide—UG473. 2014.

[17] V.Torres, A. Perez-Pascual, T. Sansaloni, J. Valls. Fully-parallel LUT-based (2048,
1723) LDPC code decoder for FPGA. In: 19th IEEE International Conference on Electron-
ics, Circuits and Systems (ICECS); IEEE; 2012. p. 408–411. doi:10.1109/ICECS.2012.
6463663

[18] A. Darabiha, A. C. Carusone, F. R. Kschischang. A bit-serial approximate min-sum LDPC
decoder and FPGA implementation. In: 2006 IEEE International Symposium on Circuits
and Systems; 21–24 May; IEEE; Island of Kos, Greece, 2006. doi:10.1109/ISCAS.2006.
1692544

[19] V. A. Chandrasetty, S. M. Aziz. An area efficient LDPC decoder using a reduced com-
plexity min-sum algorithm. Integration, The VLSI Journal. 2012;45(2):141–148. doi:10.
1016/j.vlsi.2011.08.002

Field - Programmable Gate Array120

[20] A. Balatsoukas-Stimming, A. Dollas. FPGA-based design and implementation of a multi-
GBPS LDPC decoder. In: 22nd International Conference on Field Programmable Logic
and Applications (FPL); IEEE; Oslo, Norway, 2012. doi:10.1109/FPL.2012.6339191

[21] C. Beuschel, H.-J.Pfleiderer. FPGA implementation of a flexible decoder for long LDPC
codes. In: 2008 International Conference on Field Programmable Logic and Applications;
IEEE; Heidelberg, Germany, 2008. pp. 185–190. doi:10.1109/FPL.2008.4629929

[22] A. Blad, O. Gustafsson. FPGA implementation of rate-compatible QC-LDPC code
decoder. In: 20th European Conference on Circuit Theory and Design (ECCTD); IEEE;
Linkoping, Sweden, 2011. p. 777–780. doi:10.1109/ECCTD.2011.6043844

[23] A. Amaricai, O. Boncalo, I. Mot. Memory efficient FPGA implementation for flooded
LDPC decoder. In: 23rd Telecommunications Forum Telfor (TELFOR); Belgrade, Serbia,
2015. pp. 500–503. doi:10.1109/TELFOR.2015.7377516

[24] Z. Wang, Z. Cui. A memory efficient partially parallel decoder architecture for quasi-
cyclic LDPC codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems.
2007;15(4):483–488. doi:10.1109/TED.2007.895247

[25] Y. Chen, K. Parhi. Overlapped message passing for quasi-cyclic low-density parity check
codes. IEEE Transactions on Circuits and systems—I: Regular Papers. 2004;51(6):1106–
1113. doi:10.1109/TCSI.2004.826194

[26] X. Chen, J. Kang, S. Lin, V. Akella. Memory system optimization for FPGAbased imple-
mentation of quasi-cyclic LDPC codes decoders. IEEE Transactions on Circuits and Sys-
tems I: Regular Papers. 2011;58(1):98–111. doi:10.1109/TCSI.2010.2055250

[27] X. Chen, Q. Huang, S. Lin, V. Akella. FPGA-based low-complexity high-throughput tri-
mode decoder for quasi-cyclic LDPC codes. In: 47th Annual Allerton Conference on Com-
munication, Control, and Computing; IEEE; Monticello, Illinois, USA, 2009. pp. 600–606.
doi:10.1109/ALLERTON.2009.5394917

[28] S. Nimara, O. Boncalo, A. Amaricai, M. Popa. FPGA architecture of multi-codeword
LDPC decoder with efficient BRAM utilization. In: IEEE 19th International Symposium
on Design and Diagnostics of Electronic Circuits and Systems (DDECS); IEEE; Kosice,
Slovakia, 2016. doi:10.1109/DDECS.2016.7482452

[29] S. Mhaske, H. Kee, T. Ly, A. Aziz, P. Spasojevic. High-Throughput FPGA-based QC-
LDPC Decoder Architecture. In: IEEE 82nd Vehicular Technology Conference (VTC Fall);
IEEE; Boston, Massachusetts, USA, 2015. doi:10.1109/VTCFall.2015.7390967

[30] O. Boncalo, A. Amaricai, A. Hera, V. Savin. Cost-efficient FPGA layered LDPC
decoder with serial AP-LLR processing. In: 24th International Conference on Field
Programmable Logic and Applications (FPL); IEEE; Munich, Germany, 2014.
doi:10.1109/FPL.2014.6927474

[31] S. Kim, G. E. Sobelman, H. Lee. A reduced-complexity architecture for LDPC layered
decoding schemes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems.
2011;19(6):1099–1103. doi:10.1109/TVLSI.2010.2043965

Design Trade‐Offs for FPGA Implementation of LDPC Decoders
http://dx.doi.org/10.5772/66085

121

[32] K. Zhang, X. Huang, Z. Wang. High-throughput layered decoder implementation for
quasi-cyclic LDPC codes. IEEE Journal on Selected Areas in Communications. 2009;27
(6):985–994. doi:10.1109/JSAC.2009.090816

[33] O. Boncalo, P. Mihancea, A. Amaricai. Template-based QC-LDPC decoder architecture
generation. In: 10th International Conference on Information, Communications and Sig-
nal Processing (ICICS); Singapore, 2015. doi:10.1109/ICICS.2015.7459838

[34] O. Boncalo, A. Amaricai, P. Mihancea, V. Savin. Memory trade-offs in layered self-
corrected min-sum LDPC decoders. Analog Integrated Circuits and Signal Processing.
2016;87(2):169–180. doi:10.1007/s10470-015-0639-3

[35] Z. Wu, K. Su. Updating conflict solution for pipelined layered LDPC decoder. In: IEEE
International Conference on Signal Processing, Communications and Computing
(ICSPCC); IEEE; Xi’an, China, 2016. doi:10.1109/ICSPCC.2015.7338879

Field - Programmable Gate Array122

[32] K. Zhang, X. Huang, Z. Wang. High-throughput layered decoder implementation for
quasi-cyclic LDPC codes. IEEE Journal on Selected Areas in Communications. 2009;27
(6):985–994. doi:10.1109/JSAC.2009.090816

[33] O. Boncalo, P. Mihancea, A. Amaricai. Template-based QC-LDPC decoder architecture
generation. In: 10th International Conference on Information, Communications and Sig-
nal Processing (ICICS); Singapore, 2015. doi:10.1109/ICICS.2015.7459838

[34] O. Boncalo, A. Amaricai, P. Mihancea, V. Savin. Memory trade-offs in layered self-
corrected min-sum LDPC decoders. Analog Integrated Circuits and Signal Processing.
2016;87(2):169–180. doi:10.1007/s10470-015-0639-3

[35] Z. Wu, K. Su. Updating conflict solution for pipelined layered LDPC decoder. In: IEEE
International Conference on Signal Processing, Communications and Computing
(ICSPCC); IEEE; Xi’an, China, 2016. doi:10.1109/ICSPCC.2015.7338879

Field - Programmable Gate Array122

Chapter 6

Design of Digital Advanced Systems Based on

Programmable System on Chip

Nordin Aranzabal, Adrián Suárez, José Torres,

Raimundo García‐Olcina, Julio Martos, Jesús Soret,

Abraham Menéndez and Pedro A. Martínez

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66579

Abstract

This chapter fills up an advanced analysis of the state-of-the-art design in programmable
SoC systems, giving a critical overall vision for every designer to implement real time
operating systems and concurrent processing. The content of the chapter is divided in
the next four main sections.

• First the evolution timeline of FPGA based systems is covered from its beginning until
the last AP SoC chips. They are complex devices and it is necessary to have a well-
known understanding to utilise them in the more efficient form possible.

• The more important advance digital systems structures and architectures are
described. The embedded AP SoCs are analysed and main design methodologies are
covered, focusing in hardware and co-design strategies.

• In this section is described the development of a real open source application that cov-
ers the fundamental parts in the design of a SoC system, ranging from the hardware
development until the software design involving the embedded operating system and
the user interface application.

• Finally, the system described in the last section is tested in a real scientific experiment
and the results are evaluated.

As conclusions the advantages of SoC systems when running an embedded Linux for
interfacing FPGA based designs are highlighted.

Keywords: embedded systems, field programmable gate array (FPGA), system on chip
(SoC), codesign hardware/software, embedded Linux, real-time instrument

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

FPGAs are devices involved in a continuous evolution in order to offer more features and a
better performance. The main characteristics of the FPGAs include the following:
High integration capacity that allows to implement complex digital systems in a single circuit.

• Flexible architecture that is easily adapted to each application.

• Have specific resources for performing arithmetic circuits, by reducing delays and making
them more efficient.

• Include specific logical resources to generate internal memory units.

• Reconfigurability, it is possible to change the block function almost in real time.

• Generate adaptive circuits.

• Hardware description programming, ability to run multiple applications in parallel.

FPGAs have stopped being a simple architecture because they now represent powerful inte-
grated systems with a lot of possibilities and different families to choose. In recent years,
FPGAs have experimented a great evolution since the first important change that carried out
when appeared Virtex II Family in 2001 based on look up tables (LUT) until today’s new
technologies [1].

It is necessary to know FPGA internal logic architecture in order to make the most of their
advantages:

• Performance

• Time to market

• Prize

• Reliability

• Maintenance

Thereby, a review of block diagram and internal functionality will be presented in the next
sections, beginning by reviewing the timeline since Virtex II family until new SoCs such as
Zynq. Figure 1 shows the more important Virtex II blocks and components.

One of the most important characteristics of Virtex-II device is that it featured a large num-
ber of 18 Kb block RAM memories. The block RAM memory is a true dual-port RAM,
offering fast, discrete, and large blocks of memory in the device. The memory was orga-
nized in columns, and the total amount of block RAM memory depended on the size of the
Virtex-II device. As shown in Figure 2, it was also formed by distributed RAM block and
high- performance interfaces with external memories such as DDR SDRAM, ZBT SRAM,
and QDR SRAM.

Field - Programmable Gate Array124

1. Introduction

FPGAs are devices involved in a continuous evolution in order to offer more features and a
better performance. The main characteristics of the FPGAs include the following:
High integration capacity that allows to implement complex digital systems in a single circuit.

• Flexible architecture that is easily adapted to each application.

• Have specific resources for performing arithmetic circuits, by reducing delays and making
them more efficient.

• Include specific logical resources to generate internal memory units.

• Reconfigurability, it is possible to change the block function almost in real time.

• Generate adaptive circuits.

• Hardware description programming, ability to run multiple applications in parallel.

FPGAs have stopped being a simple architecture because they now represent powerful inte-
grated systems with a lot of possibilities and different families to choose. In recent years,
FPGAs have experimented a great evolution since the first important change that carried out
when appeared Virtex II Family in 2001 based on look up tables (LUT) until today’s new
technologies [1].

It is necessary to know FPGA internal logic architecture in order to make the most of their
advantages:

• Performance

• Time to market

• Prize

• Reliability

• Maintenance

Thereby, a review of block diagram and internal functionality will be presented in the next
sections, beginning by reviewing the timeline since Virtex II family until new SoCs such as
Zynq. Figure 1 shows the more important Virtex II blocks and components.

One of the most important characteristics of Virtex-II device is that it featured a large num-
ber of 18 Kb block RAM memories. The block RAM memory is a true dual-port RAM,
offering fast, discrete, and large blocks of memory in the device. The memory was orga-
nized in columns, and the total amount of block RAM memory depended on the size of the
Virtex-II device. As shown in Figure 2, it was also formed by distributed RAM block and
high- performance interfaces with external memories such as DDR SDRAM, ZBT SRAM,
and QDR SRAM.

Field - Programmable Gate Array124

Another interesting feature included in Virtex II FPGAs was the dedicated 18 × 18 bits hard-
ware multipliers that allow us to implement MAC functions. These modules make possible to
carry out two's complement signed operations.

Figure 1. Virtex II internal block diagram.

Figure 2. Virtex II memory block distribution and interface.

Design of Digital Advanced Systems Based on Programmable System on Chip
http://dx.doi.org/10.5772/66579

125

Regarding to Virtual II clock circuits, each FPGA has 16 clock global multiplexors, which man-
age the clock signal provided from an input port, digital clock manager (DCM), or intercon-
nection local line. The DCMs are provided by external input terminals and allow the FPGA to
delay and amplify the clock signal.

Those FPGA models communicate with other systems through input/output blocks (IOB)
which are based on two input flip-flops and four output flip-flops, as shown in Figure 3. The
IOBs include a digital control impedance (DCI) that allows FPGA to set a configurable output
impedance in order to adapt the impedance to the PCB track that will be connected. Moreover,
it is possible to configure the termination to be compatible with receivers and transmitters in
own FPGA, so that, the signal integrity is improved and the reflections are suppressed.

Once described the more important features of the Virtex II, one of the high-end FPGAs
that supposed a great evolution in the integrated systems market, next FPGA evolutions
will be explained.

Figure 3. Input/output blocks architecture.

Field - Programmable Gate Array126

Regarding to Virtual II clock circuits, each FPGA has 16 clock global multiplexors, which man-
age the clock signal provided from an input port, digital clock manager (DCM), or intercon-
nection local line. The DCMs are provided by external input terminals and allow the FPGA to
delay and amplify the clock signal.

Those FPGA models communicate with other systems through input/output blocks (IOB)
which are based on two input flip-flops and four output flip-flops, as shown in Figure 3. The
IOBs include a digital control impedance (DCI) that allows FPGA to set a configurable output
impedance in order to adapt the impedance to the PCB track that will be connected. Moreover,
it is possible to configure the termination to be compatible with receivers and transmitters in
own FPGA, so that, the signal integrity is improved and the reflections are suppressed.

Once described the more important features of the Virtex II, one of the high-end FPGAs
that supposed a great evolution in the integrated systems market, next FPGA evolutions
will be explained.

Figure 3. Input/output blocks architecture.

Field - Programmable Gate Array126

The next model was the Virtex II Pro which added to its predecessor the RocketIO multi-giga-
bit transceiver (MGT) blocks able to manage very-high data rate (2488–10,312 Gbps) through
optical fiber or Gigabit Ethernet. Furthermore, this model could work with selectable 8, 16,
and 32 bit buses, included up to 24 transceivers, integrated up to four PowerPC hardware
processors that worked at 300 MHz and added more hardware multipliers, I/O terminals, and
internal memory. These features are shown in Figure 4.

Next evolution came with the Virtex 4 and 5 models being that they added dedicated digital
signal processors (DSPs) which made possible to carry out more complex computation with
a better performance, as shown in Figure 5. Moreover, they included other improvements
such as:

• Phase-matched clock dividers (PMCD), serial-to-parallel and parallel-to-serial interfaces
integrated in the I/O terminals.

• Ethernet media access controller (TEMAC).

• BRAM memories set as FIFOs.

• Regional clock buffers, an advanced clock distribution network.

• Multi-gigabit transceivers up to 11.1 Gbps.

• Voltage and temperature monitoring (Virtex 5).

• Less power consumption.

Figure 4. Improvements included in Virtex-II Pro model.

Design of Digital Advanced Systems Based on Programmable System on Chip
http://dx.doi.org/10.5772/66579

127

Nevertheless, the change that stirred up the Xilinx FPGAs took place with the new families
focused on low power consumption and high performance. Thereby, it disappears the con-
cept high cost family (Virtex) and low cost family (Spartan), and Xilinx FPGA series are clas-
sified as shown in Figure 6.

This change was further started immediately after Xilinx promoted to combine a FPGA with
external microprocessors by combining various components in a single chip. The new pro-
posed technology was the Zynq-7000 line of 28 nm SoC devices that combine an ARM core
with a FPGA [2], as shown in Figure 7. This was also joined by a change in the software

Figure 6. New Xilinx FPGA series range (picture courtesy of Xilinx).

Figure 5. Performance comparison between programmable DSP and new-dedicated DSP.

Field - Programmable Gate Array128

Nevertheless, the change that stirred up the Xilinx FPGAs took place with the new families
focused on low power consumption and high performance. Thereby, it disappears the con-
cept high cost family (Virtex) and low cost family (Spartan), and Xilinx FPGA series are clas-
sified as shown in Figure 6.

This change was further started immediately after Xilinx promoted to combine a FPGA with
external microprocessors by combining various components in a single chip. The new pro-
posed technology was the Zynq-7000 line of 28 nm SoC devices that combine an ARM core
with a FPGA [2], as shown in Figure 7. This was also joined by a change in the software

Figure 6. New Xilinx FPGA series range (picture courtesy of Xilinx).

Figure 5. Performance comparison between programmable DSP and new-dedicated DSP.

Field - Programmable Gate Array128

tool because new models had to be programmed with Vivado Design Suite instead of the
 traditional ISE design platform given that it had not been developed to handle the capacity
and complexity of designing with a FPGA with a hardware microprocessor core. The new
software tool includes high-level synthesis functionality that allows engineers to compile the
co-processors from a C-based description.

The Zynq-7000 family of system-on-chip (SoCs) represents a new concept because it inte-
grates a complete Cortex-A9-processor-based 28 nm system. The Zynq architecture is dif-
ferent from other devices that combine both programmable logic and embedded processors
because this kind of systems are focused on the processor instead of FPGA platform, as
shown in Figure 8. For software developers, Zynq-7000 appears the same as a standard, fully
featured ARM processor-based system-on-chip (SOC), booting immediately at power-up
and capable of running a variety of operating systems independently of the programmable
logic. Next generation of Xilinx SoCs was introduced by the Zynq-7100 model because it
integrates digital signal processing (DSP) to meet emerging programmable systems integra-
tion requirements.

Therefore, the apparition of a large amount of specific new components, a lot of param-
eters such as input/output technology, clock signals, DSP blocks, flexibility, scalability,
performance, integration, software or hardware processor, consumption or cost have to
be taken into account to choose which is the better solution for each case as shown in
Figure 9.

Figure 7. Processors evolution of Xilinx FPGAs (picture courtesy of Xilinx).

Design of Digital Advanced Systems Based on Programmable System on Chip
http://dx.doi.org/10.5772/66579

129

Figure 9. SoCs features.

Figure 8. Architecture of SoCs based on programmable logic part (orange) and processing system such as ARM (blue)
(picture courtesy of Xilinx).

Field - Programmable Gate Array130

Figure 9. SoCs features.

Figure 8. Architecture of SoCs based on programmable logic part (orange) and processing system such as ARM (blue)
(picture courtesy of Xilinx).

Field - Programmable Gate Array130

2. Programmable SoC structures and architectures: hardware and software
codesign methodology

2.1. Structures and architectures

Advance digital systems are those in which the core is a standard computational device or a
combination of them. Figure 10 shows two examples of this kind of devices integrated into an
electronic design. Nowadays, the more important computational devices that take part in the
front line of the embedded design market are the following:

• Field programmable gate array (FPGA): A digital integrated circuit with programmable
logic to be configured by the designer.

• Application-specific integrated circuit (ASIC): A customized embedded circuit designed
for a specific application, rather than a general-purpose.

• Microprocessor: An embedded circuit that incorporates a central processing unit (CPU)
functions and operates on numbers and symbols represented in the binary numeral
system. It is a clock driven, multipurpose, register-based, programmable electronic
device that accepts binary data as input, processes it according to instructions stored
in its memory, and gives results as output. The logic can be either combinational or
sequential.

• Microcontroller: An integrated circuit embedding a processor core, programmable input/
output peripherals and memory.

• Digital signal processor (DSP): A microprocessor with an optimized architecture in order
to perform the computational operations in digital signal processing.

• Complex programmable logic device (CPLD): An integrated device with programmable
logic that derives between programmable array logics (PALs) and FPGAs and the architec-
tural characteristics of both.

Figure 10. Examples of advance digital systems.

Design of Digital Advanced Systems Based on Programmable System on Chip
http://dx.doi.org/10.5772/66579

131

To confront the development of those advance digital systems, two methods can be differ-
entiated. The functionality of the desired application can be reached either by a software or
hardware method. However, it is fundamental to have a remarkable understanding of both
methodologies in order to obtain the best performance and effectiveness in the designs.

Software method:

• Driven by standard circuit processors (microprocessor, microcontrollers or DSPs).

• Involves programming languages associated with a fixed set of instructions.

• System flow runs sequentially.

Hardware method:

• Based on hardware circuits customizable by the user (CPLDs, FPGAs, and ASICs).

• Involves hardware description languages.

• Implements concurrent processing.

The software method is limited by the sequential flow of the instructions and the particular
architecture. While the hardware method is limited by the difficulty that implies the design
using the hardware programming languages, the time required for develop specific hardware
systems and the high cost of those designs. Currently, in order to overcome the drawbacks of
both methods, alternative methods must be determined.

This intermediate option is the most utilized nowadays and is known as integrated system,
embedded system, or system on a chip (SoC). A SoC is an integrated circuit that includes a
combination of the elements below in one single chip:

• One or several operating units (microprocessors/DSPs/FPAs…).

• Different standard interface circuits (UART, SPI, I2C, Ethernet…).

• One of the several memory units (RAM/FLASH…).

• An analog-to-digital converter (ADC).

• Different specific circuits for the application (audio/graphics/automotive…).

Currently, the options that enable to develop an application based on a programmable system
on a chip such as the devices shown in Figure 11:

• Those who are already in the market and integrate a microcontroller, a programmable
digital and analogic parts and communication ports: FIPSOC (Sidsa), Fusion (Actel), FPSC
(Lattice), and PSoC (Cypress).

• Those that through a FPGA of high logic capacity permit to integrate a microcontroller and
customizable communication ports: Xilinx and Altera.

The increase in the capacity of integration in the manufacturing of the chips has allowed the
development and evolution of the embedded systems. Figure 12 depicts an example of how
the integration capacity has been increased over the time.

Field - Programmable Gate Array132

To confront the development of those advance digital systems, two methods can be differ-
entiated. The functionality of the desired application can be reached either by a software or
hardware method. However, it is fundamental to have a remarkable understanding of both
methodologies in order to obtain the best performance and effectiveness in the designs.

Software method:

• Driven by standard circuit processors (microprocessor, microcontrollers or DSPs).

• Involves programming languages associated with a fixed set of instructions.

• System flow runs sequentially.

Hardware method:

• Based on hardware circuits customizable by the user (CPLDs, FPGAs, and ASICs).

• Involves hardware description languages.

• Implements concurrent processing.

The software method is limited by the sequential flow of the instructions and the particular
architecture. While the hardware method is limited by the difficulty that implies the design
using the hardware programming languages, the time required for develop specific hardware
systems and the high cost of those designs. Currently, in order to overcome the drawbacks of
both methods, alternative methods must be determined.

This intermediate option is the most utilized nowadays and is known as integrated system,
embedded system, or system on a chip (SoC). A SoC is an integrated circuit that includes a
combination of the elements below in one single chip:

• One or several operating units (microprocessors/DSPs/FPAs…).

• Different standard interface circuits (UART, SPI, I2C, Ethernet…).

• One of the several memory units (RAM/FLASH…).

• An analog-to-digital converter (ADC).

• Different specific circuits for the application (audio/graphics/automotive…).

Currently, the options that enable to develop an application based on a programmable system
on a chip such as the devices shown in Figure 11:

• Those who are already in the market and integrate a microcontroller, a programmable
digital and analogic parts and communication ports: FIPSOC (Sidsa), Fusion (Actel), FPSC
(Lattice), and PSoC (Cypress).

• Those that through a FPGA of high logic capacity permit to integrate a microcontroller and
customizable communication ports: Xilinx and Altera.

The increase in the capacity of integration in the manufacturing of the chips has allowed the
development and evolution of the embedded systems. Figure 12 depicts an example of how
the integration capacity has been increased over the time.

Field - Programmable Gate Array132

In a design of an application using an embedded system, the following factors need to be
taken into consideration:

• The “hardware” is different for each application.

• Some applications may require an operating system (RTOS).

• A compact code implementation is desirable to reduce the size of the program memory.

• A combination between high-level (C) languages and low-level languages (VHDL) is
required in order to optimize the processing speed.

In this section, among the presented embedded systems, we will be addressed in more detail
the ones based on FPGAs of Xilinx, also known as systems on a programmable chip (SoPCs).

Figure 12. Embedded systems evolution in terms of components integration.

Figure 11. Examples of SoCs (picture courtesy of Cypress and Xilinx).

Design of Digital Advanced Systems Based on Programmable System on Chip
http://dx.doi.org/10.5772/66579

133

Xilinx, one of the main manufacturers of FPGAs, provides two alternatives to carry out a
SoPC-based design:

• Hardware microprocessor block. PowerPC of 32 bits in FPGAs Virtex 2 pro, Virtex 4 FX,
and Virtex 5 FXT ARM Dual-Core Cortex-A9 of 32 bits in Zynq.

• Software microprocessor block. Picoblaze of 8 bits in any FPGA. Microblaze of 32 bits in the
families Spartan, Virtex, and the new Artix and Kintex.

For a better understanding of the different architectures of the hardware or software micro-
processors involved in SoPC designs, various diagrams are presented in Figures 13–16. It is
always important to take time studying and comprehending the architecture of each micro-
processor for being able to choose the most effective solution for the desired application.

Concretely, from the previous architecture diagrams, it is relevant to recognize the possibili-
ties, advantages, and disadvantages that offer hardware and software microprocessors.

There is only one possible option when choosing a given hardware microprocessor block:

• Commercial microprocessor core designed to be implemented in FPGAs. Advantages: the
alternative of having a commercial microprocessor widely used before in the market (8051,
PIC, …). Lower development time.

Disadvantages: higher cost and a fixed architecture of the microprocessor.

Figure 13. Architecture of an embedded system “hardware” based on PowerPC.

Field - Programmable Gate Array134

Xilinx, one of the main manufacturers of FPGAs, provides two alternatives to carry out a
SoPC-based design:

• Hardware microprocessor block. PowerPC of 32 bits in FPGAs Virtex 2 pro, Virtex 4 FX,
and Virtex 5 FXT ARM Dual-Core Cortex-A9 of 32 bits in Zynq.

• Software microprocessor block. Picoblaze of 8 bits in any FPGA. Microblaze of 32 bits in the
families Spartan, Virtex, and the new Artix and Kintex.

For a better understanding of the different architectures of the hardware or software micro-
processors involved in SoPC designs, various diagrams are presented in Figures 13–16. It is
always important to take time studying and comprehending the architecture of each micro-
processor for being able to choose the most effective solution for the desired application.

Concretely, from the previous architecture diagrams, it is relevant to recognize the possibili-
ties, advantages, and disadvantages that offer hardware and software microprocessors.

There is only one possible option when choosing a given hardware microprocessor block:

• Commercial microprocessor core designed to be implemented in FPGAs. Advantages: the
alternative of having a commercial microprocessor widely used before in the market (8051,
PIC, …). Lower development time.

Disadvantages: higher cost and a fixed architecture of the microprocessor.

Figure 13. Architecture of an embedded system “hardware” based on PowerPC.

Field - Programmable Gate Array134

The possible options when choosing a software microprocessor block are:

• Microprocessor core designed and customized by the user.

Advantages: totally customizable architecture depending on the application. The source
code of the microprocessor is available to perform modifications. Lower cost and commer-
cialization possibilities.

Disadvantages: limitations in the architecture.

• Microprocessor core designed by the manufacturer of the FPGAs.

Advantages: the possibility of having a microprocessor utilized by a high number of users.
Exchange of free-distribution programs and peripherals. Lower cost and development
time.

Disadvantages: limitations in the architecture.

Figure 14. Architecture of an embedded system “hardware” based on ARM (picture courtesy of Xilinx).

Design of Digital Advanced Systems Based on Programmable System on Chip
http://dx.doi.org/10.5772/66579

135

2.2. Codesign hardware/software

After understanding the embedded system, it is important how to stop and comprehend
the design. For those designs that involve a high complexity, it is required to work on the

Figure 15. Architecture of an embedded system “software” based on PicoBlaze (picture courtesy of Xilinx).

Figure 16. Architecture of an embedded system “software” based on MircoBlaze.

Field - Programmable Gate Array136

2.2. Codesign hardware/software

After understanding the embedded system, it is important how to stop and comprehend
the design. For those designs that involve a high complexity, it is required to work on the

Figure 15. Architecture of an embedded system “software” based on PicoBlaze (picture courtesy of Xilinx).

Figure 16. Architecture of an embedded system “software” based on MircoBlaze.

Field - Programmable Gate Array136

 necessary hardware, both for the microprocessor and its peripherals. Accordingly, it is neces-
sary to know what program is going to be executed by the microprocessor and which addi-
tional components are involved in the application.

This process is usually known as codesign hardware/software [3] and basically can be defined
as: the concurrent design of developers, part of the same team, to complete hardware and
software tasks that are involved in an embedded system. Methodologies and tools are utilized
which consider hardware/software iteration.

Figure 17 shows a basic codesign flow diagram in which the next stages are involved.

Specifications:

Define the features of the system that is going to be developed. Hardware/software partition-
ing determines which functions are implemented through software routines in the embedded
microprocessor and which through specific hardware circuits. In the market, certain commer-
cial tools are available for high cost designed specifically to conduct this function.

Hardware description:

• Chose the suitable microprocessor and FPGA for the application.

• Design of the peripherals using HDL languages.

Software description:

• Development of the application in Assembler/C language. Compilation.

Figure 17. Processors evolution of Xilinx FPGAs (picture courtesy of AVNET).

Design of Digital Advanced Systems Based on Programmable System on Chip
http://dx.doi.org/10.5772/66579

137

Hardware simulation:

• Through simulation programs that normally are part of the selected development tool.

Software simulation:

• Through simulation programs of the implemented programming language.

Co-simulation hardware/software:

• Tools such as EDK, ChipScope, synthesis, and implementation. The specific tool provided
by the FPGA manufactured is employed (ISE).

A basic codesign, for example, the control of a text liquid crystal display (LCD), with two
rows and 16 characters is presented in Figure 18 which show the different options that could
be implemented.

Hardware/software partitioning:

The operation slowness of the LCD and the complexity of the required control configura-
tion sequences make the application very appropriate to be managed by a microprocessor.
Nevertheless, slow operation time forces the microprocessor to attend and control the display
for long periods of time, so it would be suitable release the microprocessor from that task.

First option (software):

Implement the control of the display totally by software, adding the minimum hardware.
The software of the microcontroller will be in charge of sending and receiving instructions
and data to the LCD (low-level routine) and of sending messages (high-level routine).

Second option (hardware):

Implement the control of the display totally using specific hardware, adding the minimum
required software for the LCD. In this scenario, the device is totally managed by the hard-
ware. In this option, a FPGA is needed to control the display, which implies higher costs and
a great logic area.

Third option (codesign):

The most critical tasks, above all in time, will be implemented in specific hardware while the
rest will be programmed through C in order to be executed by the microprocessor. The hard-

Figure 18. A basic example of codesign.

Field - Programmable Gate Array138

Hardware simulation:

• Through simulation programs that normally are part of the selected development tool.

Software simulation:

• Through simulation programs of the implemented programming language.

Co-simulation hardware/software:

• Tools such as EDK, ChipScope, synthesis, and implementation. The specific tool provided
by the FPGA manufactured is employed (ISE).

A basic codesign, for example, the control of a text liquid crystal display (LCD), with two
rows and 16 characters is presented in Figure 18 which show the different options that could
be implemented.

Hardware/software partitioning:

The operation slowness of the LCD and the complexity of the required control configura-
tion sequences make the application very appropriate to be managed by a microprocessor.
Nevertheless, slow operation time forces the microprocessor to attend and control the display
for long periods of time, so it would be suitable release the microprocessor from that task.

First option (software):

Implement the control of the display totally by software, adding the minimum hardware.
The software of the microcontroller will be in charge of sending and receiving instructions
and data to the LCD (low-level routine) and of sending messages (high-level routine).

Second option (hardware):

Implement the control of the display totally using specific hardware, adding the minimum
required software for the LCD. In this scenario, the device is totally managed by the hard-
ware. In this option, a FPGA is needed to control the display, which implies higher costs and
a great logic area.

Third option (codesign):

The most critical tasks, above all in time, will be implemented in specific hardware while the
rest will be programmed through C in order to be executed by the microprocessor. The hard-

Figure 18. A basic example of codesign.

Field - Programmable Gate Array138

ware acts as a microprocessor. In general, working with advance digital systems is the best
strategy. An example of codesign is shown in Figure 19.

3. Implementation of a real SoC application: description of a programmable
SoC real application based on Linux with web server, database, and
concurrent processing

This section is presented a real application based on a Zynq®-7000 All Programmable SoC
(AP SoC) which has dual-core central processing units (CPUs) and a field programma-
ble gate array (FPGA) in one chip, a versatile architecture that enables to lower costs and
enhances the efficiency in regard to another system of analogue characteristics. The whole

Figure 19. Example of codesign: LCD interface application.

Design of Digital Advanced Systems Based on Programmable System on Chip
http://dx.doi.org/10.5772/66579

139

implemented software and hardware development that is described in this section covers
from the user interface application to the free distribution operating system based on an
embedded Linux [4] [5], which avoids closed source software and license costs. Additionally,
extra open software is compiled to run in the specific system in order to produce a more
efficient and reliable application. A web server based on Apache 2 provides the remote con-
trol and monitoring functionality, and the data storage and management is performed by a
database application based on MySQL engine. Moreover, for a dynamic iteration between
the web user interface and the database, a PHP server scripting language is compiled to run
on the operating system.

The embedded system is designed to manage the Geowire, a novel electromechanical
device that measures the temperature inside the pipes of vertical borehole heat exchang-
ers (BHEs) throughout the thermal response test (TRT). The TRT is the standard method
to quantify the thermal characteristics of borehole surrounding subsoil by measuring the
temperature evolution at inlet and outlet. However, it assumes that the homogeneous iso-
tropic subsoil calculates an average conductivity value for the overall geological domain.
The Geowire provides additional information during the TRT by recording a series of
depth-dependent temperature profiles during the TRT, which allow the system to identify
the heterogeneity of ground stratigraphy. Thus, the minimum depth of the drilling for
the maximum heat transfer can be calculated to save installation costs and build more
optimized BHE.

3.1. Description of the device involved in the application

The Geowire measures the temperature inside the geothermal pipes by controlling the verti-
cal displacement of a wired digital sensor. The sensor is connected to a cable furling inside
a watertight case while a slip ring allows the transmission of the signal from the rotating
structure to the Zynq board. The temperature probe goes out from the fluid output pipe con-
nection and a servomotor rotates the furling to release or collect cable while a weight main-
tains it tightly by the effect of gravity. Before the cable goes outside of the case, it is guided
between a roll with a magnetic encoder that transmits the signal outside the case to measure
the displacement of the wire. Then, the software application is designed to control the servo-
motor and calculate the exact position of the sensor. In this way, a user interface makes pos-
sible to define customizable acquisition sequences by indicating the depth-dependent points
of interest, the sampling time and the number of temperature samples per each point. Once
the data for the acquisition process is defined, the device will begin to automatically sample
and storage the data while the progress can be followed remotely in real time through the
user interface.

The device was developed in such a way that it can be easily incorporated in geothermal pipes
utilized during the TRT with or without water flow. The temperature inside the pipes can be
measured with a maximum spatial resolution of 1 cm, a maximum temperature resolution of
0.0625°C, and an acquisition time smaller than 1 second. An electromechanical limit switch
is employed to determine the starting point of the measurement path. This is activated when
the weight used to sink the sensor pushes it. The provided signal from this switch is used to
calibrate the measurement point every time when the sensor goes down and up. Also, it is

Field - Programmable Gate Array140

implemented software and hardware development that is described in this section covers
from the user interface application to the free distribution operating system based on an
embedded Linux [4] [5], which avoids closed source software and license costs. Additionally,
extra open software is compiled to run in the specific system in order to produce a more
efficient and reliable application. A web server based on Apache 2 provides the remote con-
trol and monitoring functionality, and the data storage and management is performed by a
database application based on MySQL engine. Moreover, for a dynamic iteration between
the web user interface and the database, a PHP server scripting language is compiled to run
on the operating system.

The embedded system is designed to manage the Geowire, a novel electromechanical
device that measures the temperature inside the pipes of vertical borehole heat exchang-
ers (BHEs) throughout the thermal response test (TRT). The TRT is the standard method
to quantify the thermal characteristics of borehole surrounding subsoil by measuring the
temperature evolution at inlet and outlet. However, it assumes that the homogeneous iso-
tropic subsoil calculates an average conductivity value for the overall geological domain.
The Geowire provides additional information during the TRT by recording a series of
depth-dependent temperature profiles during the TRT, which allow the system to identify
the heterogeneity of ground stratigraphy. Thus, the minimum depth of the drilling for
the maximum heat transfer can be calculated to save installation costs and build more
optimized BHE.

3.1. Description of the device involved in the application

The Geowire measures the temperature inside the geothermal pipes by controlling the verti-
cal displacement of a wired digital sensor. The sensor is connected to a cable furling inside
a watertight case while a slip ring allows the transmission of the signal from the rotating
structure to the Zynq board. The temperature probe goes out from the fluid output pipe con-
nection and a servomotor rotates the furling to release or collect cable while a weight main-
tains it tightly by the effect of gravity. Before the cable goes outside of the case, it is guided
between a roll with a magnetic encoder that transmits the signal outside the case to measure
the displacement of the wire. Then, the software application is designed to control the servo-
motor and calculate the exact position of the sensor. In this way, a user interface makes pos-
sible to define customizable acquisition sequences by indicating the depth-dependent points
of interest, the sampling time and the number of temperature samples per each point. Once
the data for the acquisition process is defined, the device will begin to automatically sample
and storage the data while the progress can be followed remotely in real time through the
user interface.

The device was developed in such a way that it can be easily incorporated in geothermal pipes
utilized during the TRT with or without water flow. The temperature inside the pipes can be
measured with a maximum spatial resolution of 1 cm, a maximum temperature resolution of
0.0625°C, and an acquisition time smaller than 1 second. An electromechanical limit switch
is employed to determine the starting point of the measurement path. This is activated when
the weight used to sink the sensor pushes it. The provided signal from this switch is used to
calibrate the measurement point every time when the sensor goes down and up. Also, it is

Field - Programmable Gate Array140

connected with the driver of the servomotor as an additional security measure to stop the
motor and avoid the weight and the probe to roll inside the device enclosure. Figure 20 shows
a representation of Geowire enclosure parts.

3.2. Application system architecture

The temperature measurement instrument described in the previous section is controlled
by a μClinux OS that has been embedded in the dual-core ARM processor of the develop-
ment board Digilent Zybo Zynq-7000. The board has been implemented as the CPU of the
system that manages the performance of the secondary elements that compose the device
through a user interface application. One of the most interesting characteristics of this kind
of platforms is the possibility of using PMODs (peripheral module) through connectors
with some fixed pins from the ARM and ADCs and reconfigurable pins from the program-
mable logic. So, eases the redesign tasks where any upgrade or modification is required. In

Figure 20. A representation of the different parts that comprehend the Geowire enclosure.

Design of Digital Advanced Systems Based on Programmable System on Chip
http://dx.doi.org/10.5772/66579

141

this application, these connectors are utilized to communicate with the motor driver, read
an encoder, manage a real-time clock (RTC), and control a driver to read a digital tempera-
ture sensor. Concretely, these peripherals are connected with the SoC in order to carry out
the next tasks:

a. Motor driver: It is based on a one-quadrant digital servo amplifier driver and its main
task is to provide protection against possible current overloads, power surge or brown-
out, polarity inversions and shortcuts in the motor. This driver integrates a microcon-
troller which follows the parameters sent by Zybo board processors. Thereby, by using
an RS232, communication protocol is possible to manage the motor control settings.
Thus, the CPU of the system regulates the speed either in clock wise (CW) or coun-
ter clock wise (CCW) directions and reads configuration, information or alarm registers
from the driver.

b. Encoder: A magnetic encoder measures the angular movement of a roller that is rotated
when the wire of the temperature sensor comes out from the Geowire to be inserted in
the geothermal pipes. The wire is guided through two rollers inside the enclosure of the
device to ensure the rotation by friction. When the roller rotates, the encoder generates
several digital pulses that are sent to a core implemented in VHDL that measures the
distance traveled by the sensor. An important advantage of this encoder is the suppres-
sion of mechanical contacts that may originate tear and wear problems. Furthermore,
this technology holds the encoder electric connections shielded against water or humid-
ity so that the water can flow inside the device enclosure without damaging the electric
connections.

c. RTC: The PMOD connected to the port of the Zybo board is based on a real-time clock
which contains a battery to maintain the operating system time upgraded when the sys-
tem wakes up after a shut down. In this way, the RTC provides the time and date to the
systems, every time it sends a request via an I2C (inter-integrated circuit) communication
protocol.

d. Temperature sensor: This application is very important to know the exact temperature
inside geothermal pipes and does not lose information during the long communications
between the sensor and the CPU. Thereby, a digital temperature sensor with a resolu-
tion of 0.0625°C and an acquisition time smaller than 1 second was used. The sensor
implements a 1-wire communication protocol with a parasite power that derives from
data line, hence only two wires are need to operate. A typical and complicated problem
that may appear in this kind of communications where the cable length is quite large is
related to electromagnetic interference (EMI). For that, the design of a PMOD module
board to host an I2C to 1-wire bridge device was carried on, a chip that comes with
a built-in electronic configuration in order to reduce noise and perform more reliable
communications.

e. Temperature probe limit switch: An electromechanical limit switch inside the pipe of the
Geowire is activated when the weight used to descend the probe pushes it. Concretely, the
produced signal from the limit switch is read through one of the GPIO ports of the ARM

Field - Programmable Gate Array142

this application, these connectors are utilized to communicate with the motor driver, read
an encoder, manage a real-time clock (RTC), and control a driver to read a digital tempera-
ture sensor. Concretely, these peripherals are connected with the SoC in order to carry out
the next tasks:

a. Motor driver: It is based on a one-quadrant digital servo amplifier driver and its main
task is to provide protection against possible current overloads, power surge or brown-
out, polarity inversions and shortcuts in the motor. This driver integrates a microcon-
troller which follows the parameters sent by Zybo board processors. Thereby, by using
an RS232, communication protocol is possible to manage the motor control settings.
Thus, the CPU of the system regulates the speed either in clock wise (CW) or coun-
ter clock wise (CCW) directions and reads configuration, information or alarm registers
from the driver.

b. Encoder: A magnetic encoder measures the angular movement of a roller that is rotated
when the wire of the temperature sensor comes out from the Geowire to be inserted in
the geothermal pipes. The wire is guided through two rollers inside the enclosure of the
device to ensure the rotation by friction. When the roller rotates, the encoder generates
several digital pulses that are sent to a core implemented in VHDL that measures the
distance traveled by the sensor. An important advantage of this encoder is the suppres-
sion of mechanical contacts that may originate tear and wear problems. Furthermore,
this technology holds the encoder electric connections shielded against water or humid-
ity so that the water can flow inside the device enclosure without damaging the electric
connections.

c. RTC: The PMOD connected to the port of the Zybo board is based on a real-time clock
which contains a battery to maintain the operating system time upgraded when the sys-
tem wakes up after a shut down. In this way, the RTC provides the time and date to the
systems, every time it sends a request via an I2C (inter-integrated circuit) communication
protocol.

d. Temperature sensor: This application is very important to know the exact temperature
inside geothermal pipes and does not lose information during the long communications
between the sensor and the CPU. Thereby, a digital temperature sensor with a resolu-
tion of 0.0625°C and an acquisition time smaller than 1 second was used. The sensor
implements a 1-wire communication protocol with a parasite power that derives from
data line, hence only two wires are need to operate. A typical and complicated problem
that may appear in this kind of communications where the cable length is quite large is
related to electromagnetic interference (EMI). For that, the design of a PMOD module
board to host an I2C to 1-wire bridge device was carried on, a chip that comes with
a built-in electronic configuration in order to reduce noise and perform more reliable
communications.

e. Temperature probe limit switch: An electromechanical limit switch inside the pipe of the
Geowire is activated when the weight used to descend the probe pushes it. Concretely, the
produced signal from the limit switch is read through one of the GPIO ports of the ARM

Field - Programmable Gate Array142

in the Zybo in order to calibrate the initial position of every measuring down-up path of
the sensor. The motor driver also detects this signal as a security measure that does not
allow the motor to continue rolling up, avoiding the weight and the sensor to get inside
the device enclosure.

Figure 21 shows the architecture application diagram and Figure 22 shows the SoC device
with peripherals connected.

3.3. Hardware implementation

In order to implement the described application, the Zybo development board based on the
Xilinx Zynq-7000 AP SoC architecture was employed. It integrates both a dual-core ARM Cortex
A9 processor and Xilinx 7 series FPGA. SoCs provide a very interesting solution due to the com-
bination of both FPGA reprogram ability and flexibility, and powerful ARM processors. Thus,
the processor can run operating systems and manage parallel FPGA hardware processing.

Specifically, the processor runs with a clock of 650 MHz and the FPGA is connected to a
clock core of 100 MHz. Regarding to communication between the processors, the FPGA cores,
and the memories, the AXI-4 interface (Advanced eXtensible Interface) was selected. This
interface belongs to the fourth generation of the ARM advanced microcontroller bus archi-
tecture (AMBA) interface specification [6]. Furthermore, AXI-4 makes easier the integration
of the FPGA IPs and reduces the design effort due to it is optimized in order to achieve more

Figure 21. Implemented system architecture.

Design of Digital Advanced Systems Based on Programmable System on Chip
http://dx.doi.org/10.5772/66579

143

 flexibility and performance. The processor communicates with the processing system (PS)
and programmable logic (PL) peripherals through AXI-4 bus protocol that also enables the
data exchange between the external modules across the ports of the Zynq architecture. The
other peripherals that compose the hardware are listed as follows:

• DDR3 volatile memory: it loads the operating system and processes.

• SPI-FLASH nonvolatile memory: it is employed to storage the FPGA hardware configuration.

• Ethernet port: it carries out TCP/IP network communications in order to access the services
through the implemented web server.

• MicroSD card: this slot stores the embedded Linux kernel and its filesystem together with
a copy of the hardware configuration and the bootloader.

• UART-USB port: this peripheral makes possible to communicate with the system console
and perform maintenance tasks.

• UART port: this serial communication sends the commands to the servomotor in order to
control it.

Figure 22. ZYBO board with all the peripherals connected.

Field - Programmable Gate Array144

 flexibility and performance. The processor communicates with the processing system (PS)
and programmable logic (PL) peripherals through AXI-4 bus protocol that also enables the
data exchange between the external modules across the ports of the Zynq architecture. The
other peripherals that compose the hardware are listed as follows:

• DDR3 volatile memory: it loads the operating system and processes.

• SPI-FLASH nonvolatile memory: it is employed to storage the FPGA hardware configuration.

• Ethernet port: it carries out TCP/IP network communications in order to access the services
through the implemented web server.

• MicroSD card: this slot stores the embedded Linux kernel and its filesystem together with
a copy of the hardware configuration and the bootloader.

• UART-USB port: this peripheral makes possible to communicate with the system console
and perform maintenance tasks.

• UART port: this serial communication sends the commands to the servomotor in order to
control it.

Figure 22. ZYBO board with all the peripherals connected.

Field - Programmable Gate Array144

• I2C port: with this peripheral is managed both temperature sensor driver and the RTC device.

• GPIO port: it detects the sensor limit and communicates with the temperature sensor.

• A custom core implemented in VHDL: reads the signals from the encoder, identifies the
direction of rotation, and stores the information in a BRAM register. What is more, the core
communicates with the CPU of the system and sends a signal when the distance established
in the main program is reached. The core runs in parallel with the ARM processors in order
to guarantee a continuous detection of the pulses and avoid loss of information in faster
acquisition processes

The software that was employed to carry out the hardware development is the Vivado Design
Suite 4.4 of Xilinx. It is an interesting software suite that enables fast and efficient program-
ming of the SoCs and also can automatically generate configurable cores and several interface
circuits by using the block design tool.

The previous hardware and interconnections description can be checked in the block scheme
which is shown in Figure 23.

Figure 23. Implemented architecture in Zynq-7000 AP SoC chip.

Design of Digital Advanced Systems Based on Programmable System on Chip
http://dx.doi.org/10.5772/66579

145

3.4. Embedded operating system

The source code of an embedded Linux operating system was configured and compiled to run
over the previously described hardware. This operating system is based on a modified ver-
sion of the standard Linux kernel without a memory management unit (MMU), which is opti-
mized for running in embedded systems, but keeping Linux robustness. The main advantage
of this system is its well-known free open-software characteristic. However, it has another
important advantage, such as all the available resources can be managed by the operating
system, while the programmer is abstracted from that layer of hardware. Furthermore, there
are a lot of libraries and utilities that can be integrated in Linux make easier the upgrade or
development of new applications.

The operating system was implemented using the Linux version provided by the tools of
uClinux distribution, which is supported by the ARM processor architecture integrated in the
selected SoCs. Specifically, a stable version, in this case the version 3.14, was configured and
compiled for the hardware platform in order to create the kernel image (uImage). By using
Vivado Suite tool, a first stage bootloader (FSBL) for Zynq was built to set the FPGA with the
previously defined hardware, load the operating system image in the DDR3 memory, and
begin executing it (BOOT.bin). As the root file system, a prebuilt ramdisk image provided by
Xilinx was mounted in a microSD card and wrapped in one part of the FSBL header to boot
with it. Moreover, a device tree blob (DTR) project application was established by using the
announced tools in order to describe the hardware in a data structure file that the kernel can
understand. Thereby, the details do not need to be hard coded in the operating system, mak-
ing it portable. Once the bootloader, the kernel image and the device tree were configured and
generated, they were copied into the microSD card root partition, so the operating system can
boot and access the mounted file system.

At last, the database, webserver, and main application processes are executed over the operating
system. Looking for a powerful-reliable webserver and database, as well to improve the interac-
tion between them, Apache 2 (webserver), MySQL (database), and PHP (server-side scripting
language) were cross compiled for the ARM processor with the toolchain arm-xilinx-linux-
gnueabi provided by Vivado. These processes are an open source but are not available in this
kernel distribution, so a hard work was carried out to compile and run properly. Nevertheless,
the benefits of incorporating them compensate with the later cost-effective development, reli-
ability, features, and performance. In a similar manner, in order to manage the compiled and
installed processes, the software of Vivado Suite was employed to program and cross compiled
the executable applications. The relation between the most important parts and files is shown
in Figure 24.

The executable applications are based on a state machine that manages the system flow that
interacts with the peripherals and the database.

3.5. Webserver and database application

The main application is known as LAMP (Linux-Apache-MySQL-PHP), a combination of Linux
as the operating system, Apache as the webserver, MySQL as the relational database management

Field - Programmable Gate Array146

3.4. Embedded operating system

The source code of an embedded Linux operating system was configured and compiled to run
over the previously described hardware. This operating system is based on a modified ver-
sion of the standard Linux kernel without a memory management unit (MMU), which is opti-
mized for running in embedded systems, but keeping Linux robustness. The main advantage
of this system is its well-known free open-software characteristic. However, it has another
important advantage, such as all the available resources can be managed by the operating
system, while the programmer is abstracted from that layer of hardware. Furthermore, there
are a lot of libraries and utilities that can be integrated in Linux make easier the upgrade or
development of new applications.

The operating system was implemented using the Linux version provided by the tools of
uClinux distribution, which is supported by the ARM processor architecture integrated in the
selected SoCs. Specifically, a stable version, in this case the version 3.14, was configured and
compiled for the hardware platform in order to create the kernel image (uImage). By using
Vivado Suite tool, a first stage bootloader (FSBL) for Zynq was built to set the FPGA with the
previously defined hardware, load the operating system image in the DDR3 memory, and
begin executing it (BOOT.bin). As the root file system, a prebuilt ramdisk image provided by
Xilinx was mounted in a microSD card and wrapped in one part of the FSBL header to boot
with it. Moreover, a device tree blob (DTR) project application was established by using the
announced tools in order to describe the hardware in a data structure file that the kernel can
understand. Thereby, the details do not need to be hard coded in the operating system, mak-
ing it portable. Once the bootloader, the kernel image and the device tree were configured and
generated, they were copied into the microSD card root partition, so the operating system can
boot and access the mounted file system.

At last, the database, webserver, and main application processes are executed over the operating
system. Looking for a powerful-reliable webserver and database, as well to improve the interac-
tion between them, Apache 2 (webserver), MySQL (database), and PHP (server-side scripting
language) were cross compiled for the ARM processor with the toolchain arm-xilinx-linux-
gnueabi provided by Vivado. These processes are an open source but are not available in this
kernel distribution, so a hard work was carried out to compile and run properly. Nevertheless,
the benefits of incorporating them compensate with the later cost-effective development, reli-
ability, features, and performance. In a similar manner, in order to manage the compiled and
installed processes, the software of Vivado Suite was employed to program and cross compiled
the executable applications. The relation between the most important parts and files is shown
in Figure 24.

The executable applications are based on a state machine that manages the system flow that
interacts with the peripherals and the database.

3.5. Webserver and database application

The main application is known as LAMP (Linux-Apache-MySQL-PHP), a combination of Linux
as the operating system, Apache as the webserver, MySQL as the relational database management

Field - Programmable Gate Array146

 system, and PHP as the object-oriented scripting language. The advantages of the LAMP stack tech-
nology compared with other systems over closed system platforms are as follows:

• Open sourced.

• Highly secure.

• Highly flexibility.

• Scalability.

• Interoperability.

These characteristics help the designer to develop new applications because it is relatively
easy and there is plenty of documentation available. Therefore, the LAMP stack combination
makes possible to create truly database-driven and dynamic website that is easy to update
and provides a lot of resources to support users. The embedded operating system layer archi-
tecture used in this application is shown in Figure 25.

Likewise, Apache is the dominant and most important webserver in the word due to its reli-
ability and performance, so that combining it with a powerful database as MySQL and the
possibility of using server-side scripting offer very cost-effective and versatile applications.

Commonly, SQlite [7] is implemented as database management in embedded systems because
its resource optimization. Nevertheless, in this study due to the powerful processor of Zynq
chip, a MySQL database was cross compiled to run in this specific architecture. MySQL offers
the following advantages regarding to SQlite:

Figure 24. Diagram of files to configure and boot the system.

Design of Digital Advanced Systems Based on Programmable System on Chip
http://dx.doi.org/10.5772/66579

147

• Permits multiple queries and modifications at the same time.

• More data types.

• Better compatibility.

• Each table is in a different file (as views and objects).

• Reduces the latency in the queries.

• It is possible manage users with different levels of access.

The higher software layers of the web application are divided into the following categories:
HTML (HyperText Markup Language), JS (JavaScript), CSS (Cascading Style Sheets), and
PHP files. This allows the user to control, configure, and monitor the performance of the

Figure 25. Embedded operating system layer architecture.

Field - Programmable Gate Array148

• Permits multiple queries and modifications at the same time.

• More data types.

• Better compatibility.

• Each table is in a different file (as views and objects).

• Reduces the latency in the queries.

• It is possible manage users with different levels of access.

The higher software layers of the web application are divided into the following categories:
HTML (HyperText Markup Language), JS (JavaScript), CSS (Cascading Style Sheets), and
PHP files. This allows the user to control, configure, and monitor the performance of the

Figure 25. Embedded operating system layer architecture.

Field - Programmable Gate Array148

Geowire device through surfing the pages of the programmed web interface. Hence, the web
interface is structured in three sections:

• Settings: It allows the user to set up motor driver parameters and visualize motor perfor-
mance indicators and alerts.

• Test: It is possible configure database tables in order to begin a temperature acquisition
process at preestablished sets of depth or load previously implemented acquisitions pro-
files. These parameters are storage in the database together with a timestamp during the
acquisition process.

• Graph and charts: In this section, the user can visualize the representation of previously
measured depth-dependent temperature profiles, visualize real-time acquisition pro-
cesses, or download a Microsoft Excel spreadsheet with the recorded temperature profiles.

The design of the web application interface is shown in Figure 26.

Basically, when the client requests the application files to the web server in order to render the
web interface, the PHP files are first processed by the server. Then, the output of those PHP
scripts is transmitted to the client so dynamic content can be added. In this manner, when
the client makes a PHP request that script is processed in the server which can manage the
database or the system applications.

Thereby, it is possible to execute the server side applications that define the system operation
flow from the client interface and manage the device peripherals. The implemented LAMP
stack client-server communication diagram is shown in Figure 27.

Moreover, initially a validation is required in order to protect the web content from no autho-
rized accesses. In this manner, even if the system is connected to Internet, the data content will
not be accessible to the public if they are not accredited.

Figure 26. Web application interface for the acquisition process.

Design of Digital Advanced Systems Based on Programmable System on Chip
http://dx.doi.org/10.5772/66579

149

4. Results

4.1. System implementation and laboratory results

Figure 28 presents the obtained results after the hardware postimplementation using the
Vivado tool. There are no more resources available for the mixed-mode clock manager
(MMCM) and the resources for the input/output are 78%, but still there are plenty of resources
for use more memory and look up table (LUT). One of the advantages of a system based on
the AP SoC architecture is that it permits to implement the operating system in the ARM
processor, instead of using the resources of the FPGA to build a software microcontroller.
Thus, in this design, the free resources available in the programmable logic of Zynq chip
would make possible incorporate more hardware specialized functions or configure peripher-
als with different functionalities.

In comparison with other embedded systems based on ASICs, the AP SoCs give the same
function by porting the uClinux system except the performance of the processors. A design
using an ASIC could incorporate faster clock rates and more powerful core processors that
consume less power than the implemented system. However, the programmable logic in the
AP SoC offers more flexibility. The reconfigurable IP cores make easier to reduce the design
cycle which can be a key factor for the consumer electronic industry. The peripheral can
be easily added or modify to the hardware with less effort according to the necessities of
the customers. Additionally, the designer can implement multiprocessor by using the dual
core ARM and the logic in the FPGA, which will improve the performance of the embedded
system.

Figure 27. Implemented LAMP stack client-server communication diagram.

Field - Programmable Gate Array150

4. Results

4.1. System implementation and laboratory results

Figure 28 presents the obtained results after the hardware postimplementation using the
Vivado tool. There are no more resources available for the mixed-mode clock manager
(MMCM) and the resources for the input/output are 78%, but still there are plenty of resources
for use more memory and look up table (LUT). One of the advantages of a system based on
the AP SoC architecture is that it permits to implement the operating system in the ARM
processor, instead of using the resources of the FPGA to build a software microcontroller.
Thus, in this design, the free resources available in the programmable logic of Zynq chip
would make possible incorporate more hardware specialized functions or configure peripher-
als with different functionalities.

In comparison with other embedded systems based on ASICs, the AP SoCs give the same
function by porting the uClinux system except the performance of the processors. A design
using an ASIC could incorporate faster clock rates and more powerful core processors that
consume less power than the implemented system. However, the programmable logic in the
AP SoC offers more flexibility. The reconfigurable IP cores make easier to reduce the design
cycle which can be a key factor for the consumer electronic industry. The peripheral can
be easily added or modify to the hardware with less effort according to the necessities of
the customers. Additionally, the designer can implement multiprocessor by using the dual
core ARM and the logic in the FPGA, which will improve the performance of the embedded
system.

Figure 27. Implemented LAMP stack client-server communication diagram.

Field - Programmable Gate Array150

The webserver robustness was test by a concurrent access of different users to the web appli-
cation. A number of 20 users from different devices were able to access the different sections
of the interface without affecting the system performance. Neither the speed nor the efficiency
was affected in comparison with the access of a single user.

The digital temperature sensor was calibrated using a thermal bath and accurate thermome-
ter. The calibration was implemented using 5 points, from 0°C and by increasing 5 until 25°C,
normally the temperatures during a TRT are comprehend inside that range. Then, a linear
trend line was calculated to fit the data from the digital sensor with the recorded temperatures
through the accurate sensor. The calibration equation is applied to the obtained data from the
sensor before saving the values in the database.

The wire connected to the sensor passes through three rollers that rotate when the wire is
released to lower the sensor inside the geothermal pipes. In one of these rollers, six mag-
nets were attached along the diameter and separated the same distance between them.
On the external part of the device enclosing a hall effect sensor that detects the polarity
changes of the magnets. This mechanism is the encoder that measures the angular move-
ment of the roller. Because the roller diameter, the separation between the magnets and
the wire diameter is known, the system program is able to calculate the distance traveled
by the sensor. The maximum spatial resolution of 1 cm was achieved after testing and
calibrating the instrument by in situ measurements. In order to ensure the repeatability
of the device for longer distance increments more trials were conducted. For a distance
increment of 0.5 m, a deviation of ±1 cm was observed after 20 trials. Besides, a maxi-
mum deviation of ±5 cm was observed between distance intervals of 50 m after 20 trials
(Table 1).

Figure 28. Resources utilization after the hardware postimplementation.

Design of Digital Advanced Systems Based on Programmable System on Chip
http://dx.doi.org/10.5772/66579

151

4.2. Experimental results throughout a distributed thermal response test in a borehole
heat exchanger

In this section, an experimental test of the implemented system in one of the four BHE installed
on the campus of the University of Liege (Liege, Belgium) is presented, with the aim of testing
its performance and analyzing the obtained results.

The installation is equipped with double-U geothermal pipes of 100 m long, over a sur-
face area of 32 m2. Deposits of sand and gravel characterize the site geology until a depth
of approximately 8 m. Then, the bedrock follows until the end of the borehole, which con-
sists mainly of siltstone and shale inter-bedded with sandstone, while fractured zones are
detected in the rock mass mostly until a depth of 35 m. In this installation, thermal behavior
of fractured bedrock stratigraphy was being investigated throughout TRTs and distribution
temperature sensing (DTS) technique. Hence, during the insertion of the geothermal pipes,
fiber optics thermometers were tapped every 50 cm in direct contact with the outside part of
the pipe wall. Given the relatively small borehole diameter (136 mm), spacers were not used
during the installation and the distance between the U-legs is in the order of 3 cm. Among the
four available boreholes, the test was conducted in B2, which was backfilled with a bentonite-
based commercial material (Füllbinder, λ = 0 .95 W/mK).

Fiber optics makes possible to obtain continuous, high-resolution temperature profiles
along the pipes length by applying the DTS technique [8]. The temperature resolution of
the fiber optic measurements presented in this study (standard deviation) was in the order
of 0.05°C. Temperature was recorded every 20 cm (sampling interval) with a spatial resolu-
tion of 2 m.

On 15 December 2015, an enhanced TRT of a heat injection of 2 kW and a duration of
approximately 7 days was conducted in one of the single U-pipes of B2 which are disposed
in a parallel configuration. The fiber optic cables were installed along the single U-pipe in
which the heat was injected while the Geowire was inserted in the nonheated single U-pipe
(observer pipe), which was filled with water. Figure 29 presents a cross section of the bore-
hole with the U-pipes, the location of the temperature measurement instruments where the
heat was injected.

From the user interface, the Geowire temperature acquisition sequence was settled to lower
the sensor until a depth of 40 m. Then, the sensor was established to stop every 0.5 m for a
period of 5 s in order to achieve a thermal stabilization and avoid the possible convective

Distance interval Deviation

0.5 m ±1 cm

50 m ±5 cm

Table 1. Geowire distance interval measurement deviation.

Field - Programmable Gate Array152

4.2. Experimental results throughout a distributed thermal response test in a borehole
heat exchanger

In this section, an experimental test of the implemented system in one of the four BHE installed
on the campus of the University of Liege (Liege, Belgium) is presented, with the aim of testing
its performance and analyzing the obtained results.

The installation is equipped with double-U geothermal pipes of 100 m long, over a sur-
face area of 32 m2. Deposits of sand and gravel characterize the site geology until a depth
of approximately 8 m. Then, the bedrock follows until the end of the borehole, which con-
sists mainly of siltstone and shale inter-bedded with sandstone, while fractured zones are
detected in the rock mass mostly until a depth of 35 m. In this installation, thermal behavior
of fractured bedrock stratigraphy was being investigated throughout TRTs and distribution
temperature sensing (DTS) technique. Hence, during the insertion of the geothermal pipes,
fiber optics thermometers were tapped every 50 cm in direct contact with the outside part of
the pipe wall. Given the relatively small borehole diameter (136 mm), spacers were not used
during the installation and the distance between the U-legs is in the order of 3 cm. Among the
four available boreholes, the test was conducted in B2, which was backfilled with a bentonite-
based commercial material (Füllbinder, λ = 0 .95 W/mK).

Fiber optics makes possible to obtain continuous, high-resolution temperature profiles
along the pipes length by applying the DTS technique [8]. The temperature resolution of
the fiber optic measurements presented in this study (standard deviation) was in the order
of 0.05°C. Temperature was recorded every 20 cm (sampling interval) with a spatial resolu-
tion of 2 m.

On 15 December 2015, an enhanced TRT of a heat injection of 2 kW and a duration of
approximately 7 days was conducted in one of the single U-pipes of B2 which are disposed
in a parallel configuration. The fiber optic cables were installed along the single U-pipe in
which the heat was injected while the Geowire was inserted in the nonheated single U-pipe
(observer pipe), which was filled with water. Figure 29 presents a cross section of the bore-
hole with the U-pipes, the location of the temperature measurement instruments where the
heat was injected.

From the user interface, the Geowire temperature acquisition sequence was settled to lower
the sensor until a depth of 40 m. Then, the sensor was established to stop every 0.5 m for a
period of 5 s in order to achieve a thermal stabilization and avoid the possible convective

Distance interval Deviation

0.5 m ±1 cm

50 m ±5 cm

Table 1. Geowire distance interval measurement deviation.

Field - Programmable Gate Array152

effects, produced by the moving water when lowering the sensor. After 5 s, the device was
programmed to record three samples of temperature, one every second and storage the aver-
age value in the specified database.

Figure 30 shows the Geowire adapted in a structure and the different components of the
implemented system before the beginning of the test in the field.

The section of Graph & Charts of the web application allows the users to visualize the
recorded data remotely during a real test. Once the device is running it is possible to observe
real-time charts or load previously stored temperature profiles from the database. Figure 31
shows the user interface for a temperature profile obtained during the announced test.

Figure 32 presents the recorded temperature profile with the proposed system inside the
observer pipe, and the registered fiber optic temperature measurements (along pipe inlet and
pipe outlet outer surfaces) during the heating phase of the TRT. The oscillations observed
in the recorded datasets along the observed pipe may be attributed to the varying distance
through depth between the observer pipe and the U-heated pipe, as well as to the ground
heterogeneity. Moreover, in the first ~18 m, temperature is also affected by the air temperature
as previously studied by Radioti et al. [9].

The main advantage of the recorded temperature profiles is that, by applying the proposed
procedure of Aranzabal et al. [10], it can contribute to calculate a detailed depth-dependent
thermal conductivity profile of the BHE subsoil surrounding layers. Basically, it consists in
an iterative simulation process of a numerical model in order to fit simulation results with
experimental data.

Figure 29. Cross-section of the BHE utilized in the experiment.

Design of Digital Advanced Systems Based on Programmable System on Chip
http://dx.doi.org/10.5772/66579

153

Figure 31. Recorded temperature profile along the depth through the user interface.

Figure 30. The implemented system before the beginning of the acquisition process in a BHE.

Field - Programmable Gate Array154

Figure 31. Recorded temperature profile along the depth through the user interface.

Figure 30. The implemented system before the beginning of the acquisition process in a BHE.

Field - Programmable Gate Array154

5. Conclusions

The embedded systems have increase its popularity given the society evolution towards a
more technology-based and automated necessities. There is no doubt about how fast this mar-
ket is progressing, one reason is because more resources are being invested and second due to
the constant increase in the integration capacity of the components inside the chips. For that
reason, many designers need to update continuously their know-how about the methods to
design SoC-based applications, which combine processing systems and programmable logic,
in order to be competitive.

This chapter has been covered the evolution timeline of FPGA-based systems from its begin-
ning until the final AP SoC chips. They are complex devices and it is necessary to have a deep
understanding to utilize them in more efficient way. In this manner from all the advance digi-
tal systems, the SoCs are analyzed in more detail because they provide a solution that com-
bines the different digital and analogic elements embedded only in one chip. That permits to
develop more versatile applications but it is necessary a well-known comprehension of the
analysis and design methodologies.

The introduced codesign hardware/software methodologies are very useful technique to
develop time-effective applications. A good coordination between the developers of the same
team is required, being the tools that can help to simulate software and hardware designs
fundamental to achieve competitive results.

This study we presented the evident improvements in the SoC systems, which can run
an embedded Linux for interfacing FPGA-based designs. Thus, the development of

Figure 32. Recorded vertical temperature profile by the Geowire and the fiber optics for 18 of December.

Design of Digital Advanced Systems Based on Programmable System on Chip
http://dx.doi.org/10.5772/66579

155

a real application has been described and the advantages over other system have been
highlighted.

Author details

Nordin Aranzabal*, Adrián Suárez, José Torres, Raimundo García-Olcina, Julio Martos, Jesús
Soret, Abraham Menéndez and Pedro A. Martínez

*Address all correspondence to: nordin.aranzabal@uv.es

 Department of Electronic Engineering, University of Valencia, Burjassot, Valencia, Spain

References

[1] Stephen M. Three Ages of FPGAs: A Retrospective on the First Thirty Years of
FPGA Technology. Proceedings of the IEEE Vol. 103, No. 3; 2015. DOI: 10.1109/
JPROC.2015.2392104

[2] Sang Don K. and Seung Eun L. An ARM Cortex-M0 Based FPGA Platform in Teaching
Computer Architecture. International Journal of Computer and Information Technology
Vol. 04 – Issue 06; 2015

[3] Schaumont P. A. Practical Introduction to Hardware/Software Codesign. In: Springer;
2013; ISBN: 978-1-4614-3737-6

[4] Tyson S. H, James O. H. Using an FPGA Processor Core and Embedded Linux for Senior
Design Projects. IEEE International Conference on Microelectronic Systems Education;
2007

[5] Szabolcs H and Sándor-Tihamér B. Implementation of Embedded Linux Systems on
FPGA Based Circuits for Real Time Process Control. International Conference on Recent
Achievements in Mechatronics, Automation, Computer Science and Robotics; 2015

[6] Young-Taek K, Taehun K, Youngduk K, Chulho S, Eui-Young C, Kyu-Myung C, Jeong-
Taek K and Soo-Kwan E. Fast and Accurate Transaction Level Modeling of an Extended
AMBA2.0 Bus Architecture. Proceedings of the conference on Design, Automation and
Test in Europe Vol. 3; 2005

[7] Kun Y, Linying J, Liu Y and Heming P. Research of Embedded Database SQLite.
Application in Intelligent Remote. International Forum on Information Technology and
Applications; 2010

[8] Hermans T, Nguyen F, Robert T. and Revil A. Geophysical methods for monitoring tem-
perature changes in shallow low enthalpy geothermal systems. Energies; 2014. DOI: 7
(8): 5083–5118

Field - Programmable Gate Array156

a real application has been described and the advantages over other system have been
highlighted.

Author details

Nordin Aranzabal*, Adrián Suárez, José Torres, Raimundo García-Olcina, Julio Martos, Jesús
Soret, Abraham Menéndez and Pedro A. Martínez

*Address all correspondence to: nordin.aranzabal@uv.es

 Department of Electronic Engineering, University of Valencia, Burjassot, Valencia, Spain

References

[1] Stephen M. Three Ages of FPGAs: A Retrospective on the First Thirty Years of
FPGA Technology. Proceedings of the IEEE Vol. 103, No. 3; 2015. DOI: 10.1109/
JPROC.2015.2392104

[2] Sang Don K. and Seung Eun L. An ARM Cortex-M0 Based FPGA Platform in Teaching
Computer Architecture. International Journal of Computer and Information Technology
Vol. 04 – Issue 06; 2015

[3] Schaumont P. A. Practical Introduction to Hardware/Software Codesign. In: Springer;
2013; ISBN: 978-1-4614-3737-6

[4] Tyson S. H, James O. H. Using an FPGA Processor Core and Embedded Linux for Senior
Design Projects. IEEE International Conference on Microelectronic Systems Education;
2007

[5] Szabolcs H and Sándor-Tihamér B. Implementation of Embedded Linux Systems on
FPGA Based Circuits for Real Time Process Control. International Conference on Recent
Achievements in Mechatronics, Automation, Computer Science and Robotics; 2015

[6] Young-Taek K, Taehun K, Youngduk K, Chulho S, Eui-Young C, Kyu-Myung C, Jeong-
Taek K and Soo-Kwan E. Fast and Accurate Transaction Level Modeling of an Extended
AMBA2.0 Bus Architecture. Proceedings of the conference on Design, Automation and
Test in Europe Vol. 3; 2005

[7] Kun Y, Linying J, Liu Y and Heming P. Research of Embedded Database SQLite.
Application in Intelligent Remote. International Forum on Information Technology and
Applications; 2010

[8] Hermans T, Nguyen F, Robert T. and Revil A. Geophysical methods for monitoring tem-
perature changes in shallow low enthalpy geothermal systems. Energies; 2014. DOI: 7
(8): 5083–5118

Field - Programmable Gate Array156

[9] Radioti G, Delvoie S, Radu J. P, Nguyen F, and Charlier R. Fractured bedrock investiga-
tion by using high-resolution borehole images and the Distributed Temperature Sensing
technique. In: Canada. ISRM Congress 2015 Proceedings - Int’l Symposium on Rock
Mechanics; 2015

[10] Aranzabal N, Martos J, Montero A, Monreal L, Soret J, Torres J, García-Olcina R..
Extraction of thermal characteristics of surrounding geological layers of a geothermal
heat exchanger by 3D numerical simulations. In: Applied Thermal Engineering; 2016.
DOI: 99: 92–102

Design of Digital Advanced Systems Based on Programmable System on Chip
http://dx.doi.org/10.5772/66579

157

Chapter 7

The Use of FPGA in Drift Chambers for High Energy
Physics Experiments

Gianluigi Chiarello, Claudio Chiri,
Giuseppe Cocciolo, Alessandro Corvaglia,
Francesco Grancagnolo, Marco Panareo,
Aurora Pepino and Giovanni Francesco Tassielli

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66853

Abstract

In this chapter, we describe the design of a field programmable gate array (FPGA) board
capable of acquiring the information coming from a fast digitization of the signals gen‐
erated in a drift chambers. The digitized signals are analyzed using an ad hoc real‐time
algorithm implemented in the FPGA in order to reduce the data throughput coming from
the particle detector.

Keywords: drift chamber, FPGA, CluTim, impact parameter

1. Introduction

A drift chamber (DC) is a detector used in high energy physics experiments for determin‐
ing charged particle trajectories. It consists of a gas volume and of an array of thin wires at
high voltages generating high electric fields. Charged particles passing through the gas ion‐
ize it creating electron/ion pairs along their path [1], which, accelerated by the electric fields,
produce signal pulses on the wires. The signal pulses from all the wires are then collected
and the particle trajectory is tracked assuming that the distances of closest approach (the
impact parameter) between the particle trajectory and the wires coincide with the distance
between the closest ion cluster and the corresponding nearest wire [1, 2]. The widespread use
of light, helium‐based gas mixtures, aimed at minimizing the multiple scattering contribution
to the momentum measurement for low momentum particles, produces, as a consequence, a
low ionization clusters density (12 cluster/cm in a 90/10 helium/isobutane mixture) [3], thus

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

introducing a sensible bias in the impact parameter assumption, particularly for short impact
parameters and small drift cell [4]. Recently, it has been proposed an alternative track recon‐
struction (cluster counting/timing) technique, which consists in measuring the arrival times
on the wires of each individual ionization cluster and combining these times to get a bias‐free
estimate of the impact parameter [5, 6]. Typical time separations between consecutive ioniza‐
tion acts, in a helium‐based gas mixture, range from a few ns, at small impact parameters, to a
few tens of ns, at large impact parameters [7, 8]. Therefore, in order to efficiently applying the
cluster timing technique, it is necessary to have readout interfaces [9, 10] capable of processing
high speed signals, in which one can easily isolate pulses due to different ionization cluster.

1.1. Hardware

The wire signals generated by the drift chamber, before being processed, are converted from
analog to digital with the use of an analog‐to‐digital converter (ADC). Requirements on drift
chamber performance impose the conversions at sampling frequencies of at least 1 GS/s with
at least 8‐bit resolution. These constraints, together with the maximum drift times, usually of
the order of 1 microsecond, and with the large number of acquisition channels, typically of
the order of tens of thousands, mandate some sizeable data reduction, which, however, must
preserve all the relevant information. Identifying both the amplitude and the arrival time of
each peak associated with each individual ionization cluster is the minimum requirement on
the data transfer for storage [5, 6].

This chapter deals with the possibility of using FPGAs for the real‐time analysis of the data
generated by a drift chamber [11] and successively converted by an ADC (Figure 1).

More specifically, a fast readout algorithm (CluTim [12]) for identifying, in the digitized drift
chamber signals, the individual ionization pulse peaks and recording their time and ampli‐
tude has been developed as VHDL/Verilog code implemented on a Xilinx ML605 Evaluation
board [13] shown in Figure 2, making use of a Virtex 6 FPGA.

In particular, the used device is a Virtex‐6 XC6VLX240T‐1 FFG1156 [14] that allows for a maxi‐
mum input/output clock switching frequency of 710 MHz. The hardware setup includes also
an evaluation board AD9625‐2.0EBZ [15] shown in Figure 3 with a pipeline ADC.

The analog‐to‐digital converter (ADC) used is an AD9625 [16], a 12‐bit monolithic sampling
ADC that operates at conversion rates of up to 2.0 GSPS, with 3.48 W power dissipation.

Figure 1. Channel setup.

Field - Programmable Gate Array160

introducing a sensible bias in the impact parameter assumption, particularly for short impact
parameters and small drift cell [4]. Recently, it has been proposed an alternative track recon‐
struction (cluster counting/timing) technique, which consists in measuring the arrival times
on the wires of each individual ionization cluster and combining these times to get a bias‐free
estimate of the impact parameter [5, 6]. Typical time separations between consecutive ioniza‐
tion acts, in a helium‐based gas mixture, range from a few ns, at small impact parameters, to a
few tens of ns, at large impact parameters [7, 8]. Therefore, in order to efficiently applying the
cluster timing technique, it is necessary to have readout interfaces [9, 10] capable of processing
high speed signals, in which one can easily isolate pulses due to different ionization cluster.

1.1. Hardware

The wire signals generated by the drift chamber, before being processed, are converted from
analog to digital with the use of an analog‐to‐digital converter (ADC). Requirements on drift
chamber performance impose the conversions at sampling frequencies of at least 1 GS/s with
at least 8‐bit resolution. These constraints, together with the maximum drift times, usually of
the order of 1 microsecond, and with the large number of acquisition channels, typically of
the order of tens of thousands, mandate some sizeable data reduction, which, however, must
preserve all the relevant information. Identifying both the amplitude and the arrival time of
each peak associated with each individual ionization cluster is the minimum requirement on
the data transfer for storage [5, 6].

This chapter deals with the possibility of using FPGAs for the real‐time analysis of the data
generated by a drift chamber [11] and successively converted by an ADC (Figure 1).

More specifically, a fast readout algorithm (CluTim [12]) for identifying, in the digitized drift
chamber signals, the individual ionization pulse peaks and recording their time and ampli‐
tude has been developed as VHDL/Verilog code implemented on a Xilinx ML605 Evaluation
board [13] shown in Figure 2, making use of a Virtex 6 FPGA.

In particular, the used device is a Virtex‐6 XC6VLX240T‐1 FFG1156 [14] that allows for a maxi‐
mum input/output clock switching frequency of 710 MHz. The hardware setup includes also
an evaluation board AD9625‐2.0EBZ [15] shown in Figure 3 with a pipeline ADC.

The analog‐to‐digital converter (ADC) used is an AD9625 [16], a 12‐bit monolithic sampling
ADC that operates at conversion rates of up to 2.0 GSPS, with 3.48 W power dissipation.

Figure 1. Channel setup.

Field - Programmable Gate Array160

This product is designed for sampling wide bandwidth analog signals up to the second
Nyquist zone. The combination of wide input bandwidth, high sampling rate, and excellent
linearity of the AD9625 is ideally suited for data acquisition systems, and for the purpose
of the experiment.

The analog input clock signals are differential. The standard output used is JESD204B‐based
high speed serialized output [17] that is configurable in a variety of one‐, two‐, four‐, six‐, or
eight‐lane configurations.

The ADC configuration (sampling frequency, number output lines, power control, etc.) is set
with three single‐ended lines (clock, date, and enable) that configure the internal register of
an SPI. The signals on these lines are managed from the VIRTEX, where a VHDL script gen‐
erating the bits stream to configure the SPI register, the enable signal and the clock is imple‐
mented, and sent to the ADC.

The AD9625 digital output complies with the JEDEC Standard No. JESD204B, serial interface
for data converters.

JESD204B is a protocol linking the AD9625 to a digital processing device over a serial inter‐
face up to link speeds in excess of 6.5 Gbps. The benefits of the JESD204B interface over LVDS
include a reduction in the required board area for data interface routing and enabling smaller
packages for converters and logic devices.

The JESD204B data transmit block assembles the parallel data from the ADC into frames and
uses 8‐bit/10‐bit encoding as well as optional scrambling to form serial output data. Lane

Figure 2. Xilinx ML605 Evaluation Board.

The Use of FPGA in Drift Chambers for High Energy Physics Experiments
http://dx.doi.org/10.5772/66853

161

Figure 3. AD9625‐2.0EBZ Evaluation Board.

Field - Programmable Gate Array162

Figure 3. AD9625‐2.0EBZ Evaluation Board.

Field - Programmable Gate Array162

 synchronization is supported using special characters during the initial establishment of the
link. Additional data that are used to maintain synchronization are embedded in the data
stream thereafter. A JESD204B receiver (the FPGA) is required to complete the serial link.

The AD9625 JESD204B transmits block maps to two digital down converters for the outputs
of the ADC over a link.

A link can be configured to use up to eight JESD204B lanes. The JESD204B specification refers
to a number of parameters to define the link, and these parameters must match between the
JESD204B transmitter and receiver.

The JESD204B protocol stack consists of seven functional blocks in the transmit path and
seven functional blocks in the receive path, as shown in Figure 4.

Xilinx offers a complete working solution that simplifies the adoption of JESD204B [17], includ‐
ing best‐in‐class serial transceivers, IP, design tools, reference designs, and ecosystem partners.

• GTH transceiver architecture: Reducing the BER in serial transceiver transmissions
directly correlates to the peak bandwidth that can be achieved through the serial link.
Xilinx FPGAs offer industry‐leading jitter performance, achieved through a unique capa‐
bility called adaptive receiver equalization. This improves the performance of the decision
feedback equalizer (DFE) block, significantly reducing BER.

• Xilinx JESD204B IP core: Xilinx offers the industry's first fully JESD204B‐compliant IP core
for programmable logic. This core supports the full JESD204B bandwidth specification of
12.5 Gbps over one to eight lanes. It can be configured as both a transmitter for interfacing
to a DAC and as a receiver for interfacing to an ADC. The core also includes support for
scrambling and initial lane alignment.

• JESD204B reference designs: Complete JESD204B reference designs are provided for Xilinx
development boards by a variety of third‐party analog vendors, such as analog devices.

Figure 4. JESD204B protocol.

The Use of FPGA in Drift Chambers for High Energy Physics Experiments
http://dx.doi.org/10.5772/66853

163

The two evaluation boards are connected by a high‐speed VITA 57 Mezzanine Connector in
order to limit parasitic effects due to pin couplings.

The FPGA Mezzanine Card (FMC) standard has proven to be highly popular with over 100
total FMC cards now available from a variety of partners. Over 30 of these FMCs specifi‐
cally support high‐speed data converters. The FMC provides a way for customers to quickly
configure their standard Xilinx development boards with real‐world analog interfaces.

Xilinx partners have been providing many easy‐to‐use (and to re‐use) reference designs that
save customers weeks or even months of development time. Building on this success are the
first high‐speed analog FMC cards supporting JESD204B from industry‐leading analog pro‐
viders such as analog devices, IDT, 4DSP, NXP, and others.

1.2. Software

The Xilinx ISE 14.5 software has been used to design, develop, and test the CluTim algorithm.
It allows for the analysis and synthesis of source code written in a hardware description lan‐
guage (HDL) such as Verilog and VHDL, provides designs, and is also able:

• To perform timing analysis: To provide a detailed analysis of the FPGA design. This
ensures that the specified timing constraints are properly passed to the implementation
tools.

• To examine RTL diagrams: After the HDL synthesis phase of the synthesis process, it is
possible to show a schematic representation of the synthesized source file. This schematic
shows a representation of the preoptimized design in terms of generic symbols, allowing
for control of design issues early in the design process.

• To simulate a design: ISE simulator (ISim) provides a complete, full‐featured HDL simula‐
tor integrated within ISE, with which is possible to perform waveform tracing, waveform
viewing, and HDL source debugging.

• To configure the target device: It is possible to program the device with a JTAG
programmer.

• To provide IP core: IP (intellectual property) core is a block of logic or data that is used
in an FPGA. It is part of the growing electronic design automation (EDA) industry trend
toward repeated use of previously designed components. Ideally, an IP core should be
entirely portable—that is, must be easy to insert into any vendor technology or design
methodology.

The real data can be stored and visualized using the Chip Scope PRO software. It inserts logic
analyzer, system analyzer, and virtual I/O low‐profile software cores directly into design,
allowing them to view any internal signal or node, including embedded hard or soft proces‐
sors. Signals are captured in the system at the speed of operation and brought out through the
programming interface, freeing up pins for the design. Captured signals are then displayed
and analyzed using the ChipScope Pro analyzer tool. These signals can be also saved to be
processed with other tools, i.e., MATLAB.

Field - Programmable Gate Array164

The two evaluation boards are connected by a high‐speed VITA 57 Mezzanine Connector in
order to limit parasitic effects due to pin couplings.

The FPGA Mezzanine Card (FMC) standard has proven to be highly popular with over 100
total FMC cards now available from a variety of partners. Over 30 of these FMCs specifi‐
cally support high‐speed data converters. The FMC provides a way for customers to quickly
configure their standard Xilinx development boards with real‐world analog interfaces.

Xilinx partners have been providing many easy‐to‐use (and to re‐use) reference designs that
save customers weeks or even months of development time. Building on this success are the
first high‐speed analog FMC cards supporting JESD204B from industry‐leading analog pro‐
viders such as analog devices, IDT, 4DSP, NXP, and others.

1.2. Software

The Xilinx ISE 14.5 software has been used to design, develop, and test the CluTim algorithm.
It allows for the analysis and synthesis of source code written in a hardware description lan‐
guage (HDL) such as Verilog and VHDL, provides designs, and is also able:

• To perform timing analysis: To provide a detailed analysis of the FPGA design. This
ensures that the specified timing constraints are properly passed to the implementation
tools.

• To examine RTL diagrams: After the HDL synthesis phase of the synthesis process, it is
possible to show a schematic representation of the synthesized source file. This schematic
shows a representation of the preoptimized design in terms of generic symbols, allowing
for control of design issues early in the design process.

• To simulate a design: ISE simulator (ISim) provides a complete, full‐featured HDL simula‐
tor integrated within ISE, with which is possible to perform waveform tracing, waveform
viewing, and HDL source debugging.

• To configure the target device: It is possible to program the device with a JTAG
programmer.

• To provide IP core: IP (intellectual property) core is a block of logic or data that is used
in an FPGA. It is part of the growing electronic design automation (EDA) industry trend
toward repeated use of previously designed components. Ideally, an IP core should be
entirely portable—that is, must be easy to insert into any vendor technology or design
methodology.

The real data can be stored and visualized using the Chip Scope PRO software. It inserts logic
analyzer, system analyzer, and virtual I/O low‐profile software cores directly into design,
allowing them to view any internal signal or node, including embedded hard or soft proces‐
sors. Signals are captured in the system at the speed of operation and brought out through the
programming interface, freeing up pins for the design. Captured signals are then displayed
and analyzed using the ChipScope Pro analyzer tool. These signals can be also saved to be
processed with other tools, i.e., MATLAB.

Field - Programmable Gate Array164

2. Algorithm description and FPGA implementation

The chosen hardware involves the use of an FPGA device in which 20 transceiver are imple‐
mented. This means that one can use a single FPGA to connect multiple ADC in parallel, up
to three, if one adopts a configuration which uses six out of the eight lines at high speeds, con‐
figurations with fewer lines at the maximum sampling frequency are also possible, but this
requires a digital‐down‐conversion (DDC) of the signal, implemented internally to the ADC,
which cannot be applied in the described case, since it acts like a filter to the signal which, if
not limited to a narrow band, rather than harnessing the entire band up to 1 GHz (as in the
described case), results in loss of information.

The ability to connect multiple devices in parallel has the effect of having a very large number
of data to store; if the data from the ADC were stored without preprocessing to perform a
reduction and store only those useful for experimental purposes would involve several dis‐
advantages, as follows:

• A time window of observation of the event greatly reduced, because the internal memory
to the FPGA would be filled very quickly.

• A very long data transfer time from FPGA to PC for their postprocessing, due to the very
large amount of data to be transferred.

• A very long time to postprocess data.

All of these issues require a real‐time data preprocessing to store only useful data.

The CluTim algorithm [12], here described, is able to process the data in real time. In particu‐
lar, it

• identifies, in the digitized signal, the peaks corresponding to the different ionization
electrons.

• stores each peak amplitude and timing in an internal memory.

• sends the data stored to an external device when specific trigger signals occur.

The ability of an FPGA to perform multiple operations in parallel turns out to be useful hav‐
ing to manage a large amount of data coming from the ADC at a very high rate.

In fact, in this way, one can execute on different data, at the same time, multiple instructions
performing the same function.

Before the written algorithm starts to work properly, the ADC is configured by loading the
SPI internal registers with appropriate values.

The clock handling the loading of the SPI has a frequency of 12 MHz, supplied by FPGA by
means of the IP core Clocking Wizard 3.6 [18], able to generate a number of clocks shifted in
a phase by predetermined values and with frequencies selected from a specific range, starting
from the same master clock signal frequency.

The Use of FPGA in Drift Chambers for High Energy Physics Experiments
http://dx.doi.org/10.5772/66853

165

In the case of the FPGA used, this range is from a minimum value of 10 MHz to a maximum
of 700 MHz (the maximum frequency value sustainable by the FPGA). The master clock used
has a frequency of 66 MHz and is generated by a MBH2100H—66 MHz oscillator, which is
mounted on the demo board.

After properly configuring the ADC, it begins the first phase of communication between the
JESD204B transmitter implemented on the ADC and the receiver implemented on, called
synchronization group code (CGS).

In this phase, the receiver finds the boundaries between the 10‐bit characters in the data
stream. During the CGS phase, the JESD204B transmit block transmits a known sequence of
characters K. The receiver must locate this K characters in its input data stream using clock
and data recovery (CDR) techniques. The receiver issues a synchronization request by activat‐
ing the SYNCINB± pins of the ADC. The JESD204B Tx begins sending K characters until the
next clock boundary. When the receiver has synchronized, it waits for the correct reception of
at least four consecutive K characters. It then deactivates SYNCINB±. The ADC then transmits
an initial lane alignment sequence (ILAS) on the following clock boundary.

The ILAS phase follows the CGS phase and starts on the next clock boundary. The ILAS
consists of four multiframes, with R known characters marking the beginning and A known
characters marking the end. The ILAS begins by sending R characters followed by 0–255 ramp
data for one multiframe. On the second multiframe, the link configuration data are sent start‐
ing with the third character. The second character is Q known characters to confirm that the
link configuration data follows. All undefined data slots are filled with ramp data. The 3 and
4 multiframe are the same as multiframe 1.

After the initial lane alignment sequence is completed, the user data is sent. In a usual frame,
all characters are user data.

The synchronization clock signal comes from the ADC with a frequency 1\4 of the sampling
frequency, 500 MHz. This external clock is used as a reference clock of the RX PLL imple‐
mented in each transceiver. The transceiver gives in output a clock at a half frequency of
250 MHz.

The schematic representation of the connection is shown in Figure 5.

From such a signal, using a block called advanced mixed‐mode clock manager (MMCM_
ADV) [19] provided by ISE, all the clock signals necessary to the management of the trans‐
ceiver modules and of the module JESD204B provided by XILINX are generated.

The ADC communicates with the FPGA through the transceivers. Each transceiver has a high‐
speed (up to 6.5 Gbps) serial data line as input and a 32‐bit word with a frequency of 125 MHz
as output, all 32‐bit words (which may be from 1 to 8 according to the number of lines used)
are passed simultaneously to the JESD204B block. Here, they are recombined to provide at
its output the correct information consisting of 16 words of 12 bits (the ADC resolution) in
output at a frequency of 125 MHz (sampling frequency = 16 * 125 MHz = 2 GHz).

The algorithm, if it were to carry out its function to each data serially, must have an execution
frequency of 2 GHz in order to be able to process all the information before it is overwritten

Field - Programmable Gate Array166

In the case of the FPGA used, this range is from a minimum value of 10 MHz to a maximum
of 700 MHz (the maximum frequency value sustainable by the FPGA). The master clock used
has a frequency of 66 MHz and is generated by a MBH2100H—66 MHz oscillator, which is
mounted on the demo board.

After properly configuring the ADC, it begins the first phase of communication between the
JESD204B transmitter implemented on the ADC and the receiver implemented on, called
synchronization group code (CGS).

In this phase, the receiver finds the boundaries between the 10‐bit characters in the data
stream. During the CGS phase, the JESD204B transmit block transmits a known sequence of
characters K. The receiver must locate this K characters in its input data stream using clock
and data recovery (CDR) techniques. The receiver issues a synchronization request by activat‐
ing the SYNCINB± pins of the ADC. The JESD204B Tx begins sending K characters until the
next clock boundary. When the receiver has synchronized, it waits for the correct reception of
at least four consecutive K characters. It then deactivates SYNCINB±. The ADC then transmits
an initial lane alignment sequence (ILAS) on the following clock boundary.

The ILAS phase follows the CGS phase and starts on the next clock boundary. The ILAS
consists of four multiframes, with R known characters marking the beginning and A known
characters marking the end. The ILAS begins by sending R characters followed by 0–255 ramp
data for one multiframe. On the second multiframe, the link configuration data are sent start‐
ing with the third character. The second character is Q known characters to confirm that the
link configuration data follows. All undefined data slots are filled with ramp data. The 3 and
4 multiframe are the same as multiframe 1.

After the initial lane alignment sequence is completed, the user data is sent. In a usual frame,
all characters are user data.

The synchronization clock signal comes from the ADC with a frequency 1\4 of the sampling
frequency, 500 MHz. This external clock is used as a reference clock of the RX PLL imple‐
mented in each transceiver. The transceiver gives in output a clock at a half frequency of
250 MHz.

The schematic representation of the connection is shown in Figure 5.

From such a signal, using a block called advanced mixed‐mode clock manager (MMCM_
ADV) [19] provided by ISE, all the clock signals necessary to the management of the trans‐
ceiver modules and of the module JESD204B provided by XILINX are generated.

The ADC communicates with the FPGA through the transceivers. Each transceiver has a high‐
speed (up to 6.5 Gbps) serial data line as input and a 32‐bit word with a frequency of 125 MHz
as output, all 32‐bit words (which may be from 1 to 8 according to the number of lines used)
are passed simultaneously to the JESD204B block. Here, they are recombined to provide at
its output the correct information consisting of 16 words of 12 bits (the ADC resolution) in
output at a frequency of 125 MHz (sampling frequency = 16 * 125 MHz = 2 GHz).

The algorithm, if it were to carry out its function to each data serially, must have an execution
frequency of 2 GHz in order to be able to process all the information before it is overwritten

Field - Programmable Gate Array166

by new data. This is physically impossible because the maximum operating frequency of the
used FPGA is 700 MHz. To overcome this problem, one has to exploit the ability to process
more data in parallel, thus reducing the operating frequency of the FPGA with the advantage
of relaxing the time constraints by avoiding the introduction of time delays inside the device.

At the beginning of the signal processing procedure, a counter starts to count providing the
timing information related to the event under scrutiny. The determination of a peak is done
by relating the ith sampled bin to a number n of preceding bins, where n is directly propor‐
tional to the rise times of the signal peak.

The value of n has been chosen to be 2. Supposing a 1 ns rise time for the signal, which is
sampled at a rate of 2 GS/s, two maxima must be separated by at least three samples to be
associated with two distinct peaks.

The implemented algorithm is shown schematically in Figure 6.

Among the 16 samples SK,X where K is the sample number among those available and X is the
time at which they are present, the functions D1K,X and D2K,X are calculated according to the
relations of Eqs. (1) and (2), respectively (step 1).

 D  1 K,X  =  (
2 *  S K,X − S K−1,X − S K−2,X

 ________________ 16  * 3) (1)

 D  2 K,X  =  (
2 *  S K,X − S K−2,X − S K−3,X

 ________________ 16  * 5) (2)

Figure 5. Schematic representation.

The Use of FPGA in Drift Chambers for High Energy Physics Experiments
http://dx.doi.org/10.5772/66853

167

The value of D1K,X function provides an estimate of the variation of the amplitude of the ith
sample compared to the (i‐1)‐th and (i‐2)‐th samples. Likewise, the D2K,X function as far as the
(i‐2)‐th and (i‐3)‐th samples are concerned.

Figure 7 shows the input signal to the ADC, the peaks found, and the values of the functions
and of their differences. As can be noticed, the functions assume their maximum values in
correspondence with the signal peaks.

The values of the D1K,X and D2K,X functions are stored in a 16‐element vector. For the first three
samples in the series of 16 input words, they make use of the last three corresponding sam‐
ples of the previous 16 input words. A temporary storage is, therefore, used to this purpose.
Likewise, in order to be able to calculate the differences D1K,X and D2K,X in the samples head,
the values of the functions D1K,X‐1 and D2K,X‐1, calculated at the previous time and relating to
the samples tail must be temporarily stored.

Figure 6. Algorithm implemented.

Field - Programmable Gate Array168

The value of D1K,X function provides an estimate of the variation of the amplitude of the ith
sample compared to the (i‐1)‐th and (i‐2)‐th samples. Likewise, the D2K,X function as far as the
(i‐2)‐th and (i‐3)‐th samples are concerned.

Figure 7 shows the input signal to the ADC, the peaks found, and the values of the functions
and of their differences. As can be noticed, the functions assume their maximum values in
correspondence with the signal peaks.

The values of the D1K,X and D2K,X functions are stored in a 16‐element vector. For the first three
samples in the series of 16 input words, they make use of the last three corresponding sam‐
ples of the previous 16 input words. A temporary storage is, therefore, used to this purpose.
Likewise, in order to be able to calculate the differences D1K,X and D2K,X in the samples head,
the values of the functions D1K,X‐1 and D2K,X‐1, calculated at the previous time and relating to
the samples tail must be temporarily stored.

Figure 6. Algorithm implemented.

Field - Programmable Gate Array168

The values of D1K,X and D2K,X and the differences between D1K,X and D1K‐1,X and between D2K,X
and D2K‐1,X are compared with respect to thresholds proportional to the level of noise present
in the input signal (step 2).

If the imposed conditions are met, the test sample is identified as a possible maximum and its
value is temporarily stored in MK,X.

In order to transfer the data to the memory, the last step consists in checking that, according to
the conditions imposed on the signal rise time, there are no adjacent peaks (step 3).

To this purpose, a check is performed on the last maximum. If its corresponding location
contains a nonzero value, this is transferred into the memory and the two preceding locations
are assigned a zero value. The procedure continues by scrolling all locations and sending to
memory all effective maxima. The time information is provided with a counter, the value of
which is stored in an FIFO every time a peak is found. The counter is clocked at 125 MHz
clock frequency and, therefore, when a peak is found, the time to be stored is multiplied by
16 to take into account the correct ADC sampling rate and added to the sample number cor‐
responding to the maximum found, which is illustrated in Figure 8.

The memories are continuously filled as new peaks are found. When a trigger signal occurs
at time t0, indicating with T the observed time window, which coincides with the maximum
drift time, the reading procedure is enabled and only the data related to the found peaks in
the [t0, t0 + T] time interval are transferred to an external device. This results in data reduction
factors of more than one order of magnitude.

For storing data, ISE provides several types of IP cores. The one used is the FIFO generator
9.3 [8]. Within this IP, one can choose between various options, each one supporting different

Figure 7. Input signal, found peaks, and discrimination functions.

The Use of FPGA in Drift Chambers for High Energy Physics Experiments
http://dx.doi.org/10.5772/66853

169

features. For these purposes, an FIFO common clock has been chosen, the depth of which
depends on the observed time window T of the event, while the width has been chosen of
8 bits. This is linked to the way in which the data is sent to the external device.

ISE provides several methods of data exchange, such as communication through UART and
Ethernet.

A UART‐type interface has been used. It requires 1 start bit, 8 data bits, and 1 stop bit to
communicate.

The dates are sent with a baud rate of 115,200 bps. The clock UART (16 times baud rate) is
obtained from a clock of 50 MHz obtained from the Clock wizard IP core.

However, since its transmission speed is very low, the time required to transfer data stored
in the FIFO to the external device is very long. To considerably reduce this time, an Ethernet
module, having significantly faster transfer times, can be implemented.

The implemented algorithm has been executed both in MATLAB and VHDL, using a test
signal with a defined noise of 0.5 mV rms, and a number of peaks. A comparison of the
obtained results can be used to derive an index of the algorithm performance. By comparing
the results obtained from the number of real and fake peaks found, one can assess if any error
is due to the algorithm itself or due to approximations in the VHDL implementation, when
the function D1K,X and D2K,X are rounded to integer.

Figures 9 (MATLAB) and 10 (VHDL) show the algorithm efficiency, calculated using Eq. (3),
and the percentage of fake peaks, calculated using Eq. (4)

 Eff [%]  = 100* 
Pf − Pfake

 ________ Pr (3)

 Pfake [%]  = 100*  Pfake _____ Pf   (4)

Figure 8. Time information algorithm.

Field - Programmable Gate Array170

features. For these purposes, an FIFO common clock has been chosen, the depth of which
depends on the observed time window T of the event, while the width has been chosen of
8 bits. This is linked to the way in which the data is sent to the external device.

ISE provides several methods of data exchange, such as communication through UART and
Ethernet.

A UART‐type interface has been used. It requires 1 start bit, 8 data bits, and 1 stop bit to
communicate.

The dates are sent with a baud rate of 115,200 bps. The clock UART (16 times baud rate) is
obtained from a clock of 50 MHz obtained from the Clock wizard IP core.

However, since its transmission speed is very low, the time required to transfer data stored
in the FIFO to the external device is very long. To considerably reduce this time, an Ethernet
module, having significantly faster transfer times, can be implemented.

The implemented algorithm has been executed both in MATLAB and VHDL, using a test
signal with a defined noise of 0.5 mV rms, and a number of peaks. A comparison of the
obtained results can be used to derive an index of the algorithm performance. By comparing
the results obtained from the number of real and fake peaks found, one can assess if any error
is due to the algorithm itself or due to approximations in the VHDL implementation, when
the function D1K,X and D2K,X are rounded to integer.

Figures 9 (MATLAB) and 10 (VHDL) show the algorithm efficiency, calculated using Eq. (3),
and the percentage of fake peaks, calculated using Eq. (4)

 Eff [%]  = 100* 
Pf − Pfake

 ________ Pr (3)

 Pfake [%]  = 100*  Pfake _____ Pf   (4)

Figure 8. Time information algorithm.

Field - Programmable Gate Array170

where Pf is the number of peaks found in the signal, Pr is the number of real peaks, and Pfake
is the number of fake (equal to Pf – Pr).

The results were obtained by varying the proportionality factors used to calculate the thresh‐
olds to which the D1K,X and D2K,X functions and their differences are compared.

As expected, in both cases, increasing the thresholds not only decreases the efficiency but also
reduces the number of false peaks.

Figure 9. Algorithm results with MATLAB.

Figure 10. Algorithm results with VHDL.

The Use of FPGA in Drift Chambers for High Energy Physics Experiments
http://dx.doi.org/10.5772/66853

171

The algorithm executed with MATLAB performs slightly better than VHDL, for example, for
a rate of fake peaks of 1%, one has an efficiency of 76% in the case of MATLAB and an effi‐
ciency of 69% for VHDL.

A further test was performed by implementing the algorithm in MATLAB on the signals
previously analyzed without the noise contribution. The results obtained are shown in
Figure 11.

By comparing Figures 9 and 11, it can be seen how the presence of noise induces a reduction
in efficiency and an increase of false peaks, indicating that a part of the errors of the algorithm
may actually be due to the characteristics of the signal at input.

This problem can be mitigated somehow by trying to increase the signal‐to noise‐ratio by
filtering the input signal to the ADC.

The use of the algorithm described results in data reduction factors of more than one order of
magnitude. It is executed for each readout channel and, considering the high number of I/O
FPGA pins, it is possible to process multiple channels corresponding to different drift cham‐
ber signals with a single device.

3. Conclusion

A key role in the algorithm is represented by the parallel data processing combined with the
use of a pipeline structure, which allows managing more input data at the same time, thus
relaxing the speed specifications.

Figure 11. Algorithm results with MATLAB without noise.

Field - Programmable Gate Array172

The algorithm executed with MATLAB performs slightly better than VHDL, for example, for
a rate of fake peaks of 1%, one has an efficiency of 76% in the case of MATLAB and an effi‐
ciency of 69% for VHDL.

A further test was performed by implementing the algorithm in MATLAB on the signals
previously analyzed without the noise contribution. The results obtained are shown in
Figure 11.

By comparing Figures 9 and 11, it can be seen how the presence of noise induces a reduction
in efficiency and an increase of false peaks, indicating that a part of the errors of the algorithm
may actually be due to the characteristics of the signal at input.

This problem can be mitigated somehow by trying to increase the signal‐to noise‐ratio by
filtering the input signal to the ADC.

The use of the algorithm described results in data reduction factors of more than one order of
magnitude. It is executed for each readout channel and, considering the high number of I/O
FPGA pins, it is possible to process multiple channels corresponding to different drift cham‐
ber signals with a single device.

3. Conclusion

A key role in the algorithm is represented by the parallel data processing combined with the
use of a pipeline structure, which allows managing more input data at the same time, thus
relaxing the speed specifications.

Figure 11. Algorithm results with MATLAB without noise.

Field - Programmable Gate Array172

The choice of an FPGA device turns out to be the best among those available, since it allows
many advantages as follows:

• Adaptability: The possibility of being programmed to perform “ad hoc” functions, optimiz‐
ing its performance in relation to the task to be performed.

• Parallelization: The possibility of executing the same instructions on multiple data simulta‐
neously. In the written HDL code, one can declare multiple processes, which are executed
in parallel sheets, while the internal instructions are executed serially.

• Diffusion: The FPGA devices are widely used in various application areas, this has led
several manufacturers of electronics to develop scripts in HDL that can be implemented in
FPGA to provide the user devices a starting code to be modified according to the needs to
create a device‐FPGA communication link.

• Management of the links: The user during the programming phase can create appropri‐
ate constraints to manage internal links to the FPGA, thus being able to optimize the time
delays of the lines, the most critical connections, with a rooting favoring closer.

• IP core: The FPGA programming tool (in this case ISE) makes available the intellectual
property, a block of logic data having multiple features, such as the clock management, the
management of interfacing with various external devices in the various possible standards,
the management of the storage of the information with various types of implemented
memories, and many others.

Examining how the performance of FPGA devices has evolved over the years, by taking
into consideration factors such as the data storage capacity and maximum operating fre‐
quency, one can note that these are strongly linked to the progressive miniaturization of the
technology with which they are made.

They follow the technological scaling, which led to the advent of FinFET technology to reduce
the size of the channel length to less than 16 nm. The effect of technological scaling leads to
different types of advantages as follows:

• A reduction of the length of the connections, thus allowing for a lower propagation delay
between the various cells and for a higher operating frequency.

• Being able to integrate, for equal occupied area, more logic cells, thus increasing the com‐
putational capacity and the ability to store data.

• A reduction in size, and hence a greater integration of multiple devices in a smaller area.

• A reduction in the power consumption.

The adoption of an FPGA, as the main block of data management and communication between
various devices, appears to be winning, not only relying on the existing technology and on
the various application tools created by the different manufacturers, but also thinking about
the future, that is, how much they can be improved in terms of performance with improved
technologies and how fast they can be improved.

The Use of FPGA in Drift Chambers for High Energy Physics Experiments
http://dx.doi.org/10.5772/66853

173

Author details

Gianluigi Chiarello1, 2, Claudio Chiri2, Giuseppe Cocciolo1, 2, Alessandro Corvaglia2, Francesco
Grancagnolo2*, Marco Panareo1, 2, Aurora Pepino1, 2 and Giovanni Francesco Tassielli1, 2

*Address all correspondence to: franco.grancagnolo@le.infn.it

1Department of Mathematics and Physics “Ennio De Giorgi” – Salento University, Lecce, Italy

2 INFN (Istituto Nazionale Fisica Nucleare), Lecce, Italy

References

[1] Blum W., Riegler W., Rolandi Li. Particle Detection with Drift Chambers. 2nd ed.
Springer‐Verlag, Berlin, Heidelberg; 2008. pp. 448. DOI: 10.1007/978‐3‐540‐76684‐1

[2] Sauli F., Principles of operation of multiwire proportional and drift chambers. In:
Experimental Techniques in High Energy Physics. 2nd ed. Addison‐Wesley; 1987.
pp. 79–188. DOI: 10.5170/CERN‐1977‐009

[3] Cataldi G., Grancagnolo F., Spagnolo S. Cluster counting in helium based gas mix‐
tures. Nuclear Instruments and Methods in Physics Research Section A: Accelerators
Spectrometers Detectors and Associated Equipment. 1997;386:485–469. DOI: 10.1016/
S0168‐9002(96)01164‐3

[4] Tassielli G.F., Grancagnolo F., Spagnolo S. Improving spatial resolution and par‐
ticle identification. Nuclear Instruments and Methods in Physics Research, Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment. 2007;572(1 SPEC.
ISS.):198–200. DOI: 10.1016/j.nima.2006.10.300

[5] Cascella M., Grancagnolo F., Tassielli G. Cluster Counting/Timing Techniques for Drift
Chambers. In: Francesco Grancagnolo and Marco Panareo, editors. 1st Conference on
Charged Lepton Flavor Violation; May 2013; Lecce (Italy). Elsevier; 2014. pp. 127–130.
DOI: 10.1016/j.nuclphysbps.2014.02.025

[6] Signorelli G., Donofrio A., Venturini M. A novel method to estimate the impact parameter
on a drift cell by using the information of single ionization clusters. Nuclear Instruments
and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment. 2016;824:581–583. DOI: 10.1016/j.nima.2015.11.028

[7] Grancagnolo F. The ultimate resolution drift chamber. Nuclear Physics B—Proceedings
Supplements. 2007;172:25–27. DOI: 10.1016/j.nuclphysbps.2007.07.033

[8] Baldini A.M., Baracchini E., Cavoto G., Cascella M., Cei F., Chiappini M., Chiarello G.,
Chiri C., Dussoni S., Galli L., Grancagnolo F., Grassi M., Martinelli V., Nicol D., Panareo
M., Pepino A., Piredda G., Renga F., Ripiccini E., Signorelli G., Tassielli G.F., Tenchini F.,
Venturinia M., C. Voena. Single‐hit resolution measurement with MEG II drift chamber
prototypes. Journal of Instrumentation. 2016;11:18. DOI: 10.1088/1748‐0221/11/07/P07011

Field - Programmable Gate Array174

Author details

Gianluigi Chiarello1, 2, Claudio Chiri2, Giuseppe Cocciolo1, 2, Alessandro Corvaglia2, Francesco
Grancagnolo2*, Marco Panareo1, 2, Aurora Pepino1, 2 and Giovanni Francesco Tassielli1, 2

*Address all correspondence to: franco.grancagnolo@le.infn.it

1Department of Mathematics and Physics “Ennio De Giorgi” – Salento University, Lecce, Italy

2 INFN (Istituto Nazionale Fisica Nucleare), Lecce, Italy

References

[1] Blum W., Riegler W., Rolandi Li. Particle Detection with Drift Chambers. 2nd ed.
Springer‐Verlag, Berlin, Heidelberg; 2008. pp. 448. DOI: 10.1007/978‐3‐540‐76684‐1

[2] Sauli F., Principles of operation of multiwire proportional and drift chambers. In:
Experimental Techniques in High Energy Physics. 2nd ed. Addison‐Wesley; 1987.
pp. 79–188. DOI: 10.5170/CERN‐1977‐009

[3] Cataldi G., Grancagnolo F., Spagnolo S. Cluster counting in helium based gas mix‐
tures. Nuclear Instruments and Methods in Physics Research Section A: Accelerators
Spectrometers Detectors and Associated Equipment. 1997;386:485–469. DOI: 10.1016/
S0168‐9002(96)01164‐3

[4] Tassielli G.F., Grancagnolo F., Spagnolo S. Improving spatial resolution and par‐
ticle identification. Nuclear Instruments and Methods in Physics Research, Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment. 2007;572(1 SPEC.
ISS.):198–200. DOI: 10.1016/j.nima.2006.10.300

[5] Cascella M., Grancagnolo F., Tassielli G. Cluster Counting/Timing Techniques for Drift
Chambers. In: Francesco Grancagnolo and Marco Panareo, editors. 1st Conference on
Charged Lepton Flavor Violation; May 2013; Lecce (Italy). Elsevier; 2014. pp. 127–130.
DOI: 10.1016/j.nuclphysbps.2014.02.025

[6] Signorelli G., Donofrio A., Venturini M. A novel method to estimate the impact parameter
on a drift cell by using the information of single ionization clusters. Nuclear Instruments
and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment. 2016;824:581–583. DOI: 10.1016/j.nima.2015.11.028

[7] Grancagnolo F. The ultimate resolution drift chamber. Nuclear Physics B—Proceedings
Supplements. 2007;172:25–27. DOI: 10.1016/j.nuclphysbps.2007.07.033

[8] Baldini A.M., Baracchini E., Cavoto G., Cascella M., Cei F., Chiappini M., Chiarello G.,
Chiri C., Dussoni S., Galli L., Grancagnolo F., Grassi M., Martinelli V., Nicol D., Panareo
M., Pepino A., Piredda G., Renga F., Ripiccini E., Signorelli G., Tassielli G.F., Tenchini F.,
Venturinia M., C. Voena. Single‐hit resolution measurement with MEG II drift chamber
prototypes. Journal of Instrumentation. 2016;11:18. DOI: 10.1088/1748‐0221/11/07/P07011

Field - Programmable Gate Array174

[9] Chiarello G., Corvaglia A., Grancagnolo F., Panareo M., Pepino A., Primiceri P.,
Tassielli G. A Full Front End Chain for Drift Chambers. In: 1st Conference on Charged
Lepton Flavor Violation; May 2013; Lecce. Elsevier; 2014. pp. 140–142. DOI: 10.1016/j.
nuclphysbps.2014.02.029

[10] Chiarello G., Corvaglia A., Grancagnolo F., Panareo M., Pepino A., Pinto C., Tassielli G.
A high performance front end for MEG II tracker. In: 6th IEEE International Workshop
on Advances in Sensors and Interfaces (IWASI), 18–19 June 2015; Gallipoli. IEEE; 2015.
DOI: 10.1109/IWASI.2015.7184937

[11] Krzysztof T. P. FPGA‐based, specialized trigger and data acquisition systems for high‐
energy physics experiments. Measurement Science and Technology. 2010;21(6):17. DOI:
10.1088/0957‐0233/21/6/062002

[12] Cappelli L., Creti P., Grancagnolo F., Pepino A., Tassielli G. A fast readout algorithm
for cluster counting/timing drift chambers on a FPGA board. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment. 2013;718:226–228. DOI: http://dx.doi.org/10.1016/j.
nima.2012.10.087

[13] Xilinx. ML605 Hardware User Guide [Internet]. 2012 . Available from: http://www.
xilinx.com/support/documentation/boards_and_kits/ug534.pdf [Accessed: 2016‐08‐10]

[14] Xilinx. Virtex‐6 Family Overview [Internet]. 2015. Available from: http://www.xilinx.
com/support/documentation/data_sheets/ds150.pdf [Accessed: 2016‐08‐10]

[15] Analog‐Devices. Evaluating the AD9625 Analog‐to‐Digital Converter [Internet].
[Updated: 2015]. Available from: https://wiki.analog.com/eval/ad9625 [Accessed:
2016‐08‐11]

[16] Analog‐Devices. 12‐Bit, 2.6 GSPS/2.5 GSPS/2.0 GSPS, 1.3 V/2.5 V Analog‐to‐Digital
Converter [Internet]. 2014. Available from: http://www.analog.com/media/en/technical‐
documentation/data‐sheets/AD9625.pdf [Accessed: 2016‐08‐14]

[17] Anolog‐Device. JESD204B Survival Guide [Internet]. 2014. Available from: http://www.
analog.com/media/en/technical‐documentation/technical‐articles/JESD204B‐Survival‐
Guide.pdf

[18] Xilinx. LogiCORE IP Clocking Wizard 3.6 (ISE) / 4.2 (Vivado) [Internet]. 2012. Available
from: http://www.xilinx.com/support/documentation/ip_documentation/clk_wiz/v4_2/
pg065‐clk‐wiz.pdf [Accessed: 2016‐08‐11]

[19] Xilinx. Mixed‐Mode Clock Manager (MMCM) Module (v1.00a) [Internet]. 2009. Available
from: https://www.xilinx.com/support/documentation/ip_documentation/mmcm_mod‐
ule.pdf [Accessed: 2016‐08‐11]

The Use of FPGA in Drift Chambers for High Energy Physics Experiments
http://dx.doi.org/10.5772/66853

175

Chapter 8

Real‐Time Adaptive Optic System Using FPGAs

Steffen Mauch and Johann Reger

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66184

Provisional chapter

Real‐Time Adaptive Optic System Using FPGAs

Steffen Mauch and Johann Reger

Additional information is available at the end of the chapter

Abstract

For “adaptive optics” (AO) that are used in a control loop, sensing of the wavefront is
essential for achieving a good performance. One facet in this context is the delay
introduced by the wavefront evaluation. This delay should be kept to a minimum. Since
the problem can be split into multiple subproblems, field‐programmable gate arrays
(FPGAs) may beneficially be employed in view of the FPGAs’ power to compute many
tasks in parallel. The evaluation of, e.g., a Shack‐Hartmann wavefront sensor (SHWFS)
may simply be seen as the evaluation of an image. Therefore, in general, image
processing methods may be split into multiple assignments such as connected
component labeling (CCL). In this chapter, a new method for real‐time evaluation of an
SHWFS is introduced. The method is presented in combination with a rapid‐control
prototyping (RCP) system that is based on real‐time Linux operating system.

Keywords: SHWFS, FPGA, real‐time Linux, RTAI, CCL, RCP, PCIe, adaptive optics

1. Introduction

“Adaptive optics” (AO) have been successfully utilized for more than one decade to improve
the image quality of optical imaging systems. One reason for the high popularity originates from
the fact that the image quality may be improved without mechanical adjustment, for example,
the lenses. Additionally, the technological progress with respect to the manufacturing of
deformable mirrors, an increase of computational power, and new approaches for controlling
and sensing the wavefront allows broadening the scope of AO to new application fields, e.g.,
additive laser manufacturing, general beam shaping, and laser link communication [1].

In Figure 1, the general AO principle is illustrated within the context of controlling the
wavefront. It is clear that besides good performance with respect to the stroke and the dynamic

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

response of the deformable mirror, the wavefront needs to be measured accurately. To
compensate for wavefront distortions, e.g., time‐varying disturbances with or without a
stochastical and/or dynamical model, the disturbance has to be measured with adequate
precision. For the quasi‐continuous measurement of the wavefront in AO systems, Shack‐
Hartmann wavefront sensors (SHWFSs) have widely been employed for measuring the
wavefront, thus, the phase of the electromagnetic wave [2–5].

Figure 1. General scheme of adaptive optics, consisting of deformable mirror, wavefront sensor, and control system for
closed‐loop operation [9].

The SHWFS has shown some performance benefits when compared to interferometers as the
SHWFS does not require a reference wave during the measurement process. Furthermore, the
measurement sensitivity of an SHWFS primarily depends on the read‐out noise of the detector,
the luminosity of the wavefront and, hence, the intensity of the spots, and on the algorithm to
find and assign the centroids, respectively [6–8].

The most commonly used wavefront measurement sensors, together with their advantages
and disadvantages are discussed in Ref. [10]. The SHWFS itself relies decisively on the

Field - Programmable Gate Array178

response of the deformable mirror, the wavefront needs to be measured accurately. To
compensate for wavefront distortions, e.g., time‐varying disturbances with or without a
stochastical and/or dynamical model, the disturbance has to be measured with adequate
precision. For the quasi‐continuous measurement of the wavefront in AO systems, Shack‐
Hartmann wavefront sensors (SHWFSs) have widely been employed for measuring the
wavefront, thus, the phase of the electromagnetic wave [2–5].

Figure 1. General scheme of adaptive optics, consisting of deformable mirror, wavefront sensor, and control system for
closed‐loop operation [9].

The SHWFS has shown some performance benefits when compared to interferometers as the
SHWFS does not require a reference wave during the measurement process. Furthermore, the
measurement sensitivity of an SHWFS primarily depends on the read‐out noise of the detector,
the luminosity of the wavefront and, hence, the intensity of the spots, and on the algorithm to
find and assign the centroids, respectively [6–8].

The most commonly used wavefront measurement sensors, together with their advantages
and disadvantages are discussed in Ref. [10]. The SHWFS itself relies decisively on the

Field - Programmable Gate Array178

determination of the centroids, i.e., on the image‐processing techniques being applied. The
different approaches are elaborated in Ref. [11]. As the computational performance and the
dynamic behavior of the deformable mirrors are improving continuously, the sensing of the
wavefront should also be accelerated which results in the demand of a low‐latency and very
large frame‐rate. A straightforward attempt is to accelerate the image processing by utilizing
parallel approaches; e.g., graphics processing units (GPUs) or field‐programmable gate arrays
(FPGAs).

The bandwidth demand of closed‐loop AO systems is continuously increasing, see Ref. [12]
or the report of the European Southern Observatory (ESO) ([13], ch. 7.9), to name but a few. In
this regard, the application of GPUs is not as promising as FPGAs for evaluation of the
wavefront because the GPU requires the use of the central processing unit (CPU) for data
management whereas an FPGA may directly access the image sensor (typically a CMOS or
CCD image sensor), that is, the pixel information. This allows parallelism with a low latency
and thus a low delay. The problem with the delay is that even just a few milliseconds induced
by the wavefront sensor may tend to ruin the overall performance of the closed‐loop system
as long as no adequate disturbance model is known, see e.g., the Xinetics AO system in Ref.
[14]. FPGAs show some flexibility in interfacing to a standard computer, e.g., by using the PCIe
interface or Universal Serial Bus 3.0 (USB3.0). Furthermore, the FPGA may be used to perform
more tasks, for example, performing the computation for closed‐loop operation or interfacing
the digital to analog converter (DAC) for controlling the actuators of a deformable mirror
without additional expensive cards from the hardware manufacturer.

In the last years, FPGAs became more common in academia but also in the industry due to
their enormous capabilities regarding parallelism capability, achievable clocking frequency,
and wide logic resources. In this course, FPGAs have been introduced as means for SHWFS
evaluation. For instance, in Ref. [15], an FPGA solution is implemented under the assumption
that spots cannot leave the associated subapertures.

In this chapter, we present a recently developed rapid‐control prototyping (RCP) system that
is based on an FPGA, mounted on a hard real‐time Linux computer. Using a novel implemen‐
tation, the evaluation of the SHWFS is performed on the FPGA directly. The implementation
guarantees minimum delay during the evaluation of the wavefront and an enhanced dynamic
range. We illustrate the algorithm for the spot detection and their ordering. Furthermore, we
explain the code generation from a MATLAB/Simulink model to the hard real‐time Linux
system and the FPGA implementation of the PCIe interface.

2. FPGA‐based SHWFS evaluation

For controlling the wavefront in an AO system, the wavefront itself has to be measured in an
appropriate way. Several methods have been developed for that purpose, e.g., Pyramid, Shack‐
Hartmann (SHWFS), Curvature, or Holographic wavefront sensors [3, 16, 17]. Until now, an
SHWFS is typically used for this objective as it may offer the best trade‐off between perform‐
ance, flexibility, and price. Since the SHWFS is based on capturing the intensities on an image
plane (in general, a complementary metal‐oxide semiconductor (CMOS) or charge‐coupled

Real‐Time Adaptive Optic System Using FPGAs
http://dx.doi.org/10.5772/66184

179

device (CCD) image sensor), the evaluation of the SHWFS may be seen as some kind of image
processing, calculating image moments. Figure 2 depicts the basic principle of an SHWFS.
Generally, an SHWFS will consist of an array of these lenses, called lenslet array.

Figure 2. Single convex lens; the gray dot marks the incident flat wavefront, the red dot marks the tilted incident wave‐
front.

The lenslet array is positioned in parallel to the image plane with a distance of the focal length
of the lenses such that the focal point is on the image plane. If a flat wavefront is incident on
the lenslet, the spot lies in the projected center of the convex lens in the image plane (marked
with the gray dot in Figure 2). Due to the nature of the convex lens, the partial derivative of
the wavefront with respect to x‐ and y‐direction is averaged over the area of the lens. Thus, the
deviation of the focal spot on the image plane with respect to the projected center of the convex
lens denotes the local derivative of the wavefront. If a lenslet array is used then one would
define a given area on the image plane in which the spot must lie. This may limit, of course,
the possible dynamic range because the steepness of the partially tilted wavefront is limited
by the area of the image plane and the focal length of the lenslet array.

Field - Programmable Gate Array180

device (CCD) image sensor), the evaluation of the SHWFS may be seen as some kind of image
processing, calculating image moments. Figure 2 depicts the basic principle of an SHWFS.
Generally, an SHWFS will consist of an array of these lenses, called lenslet array.

Figure 2. Single convex lens; the gray dot marks the incident flat wavefront, the red dot marks the tilted incident wave‐
front.

The lenslet array is positioned in parallel to the image plane with a distance of the focal length
of the lenses such that the focal point is on the image plane. If a flat wavefront is incident on
the lenslet, the spot lies in the projected center of the convex lens in the image plane (marked
with the gray dot in Figure 2). Due to the nature of the convex lens, the partial derivative of
the wavefront with respect to x‐ and y‐direction is averaged over the area of the lens. Thus, the
deviation of the focal spot on the image plane with respect to the projected center of the convex
lens denotes the local derivative of the wavefront. If a lenslet array is used then one would
define a given area on the image plane in which the spot must lie. This may limit, of course,
the possible dynamic range because the steepness of the partially tilted wavefront is limited
by the area of the image plane and the focal length of the lenslet array.

Field - Programmable Gate Array180

The task is to determine the position or the deviation 𝀵𝀵𝀵𝀵 and 𝀵𝀵𝀵𝀵 of the spots, as shown in
Figure 2. For a given area with a predetermined number of pixels, this can be formulated as

1 1

=0 =0
1 1

=0 =0

(,)

(,)

- -

- -=
å å
å å

M N
i i ji j

c M N
i ji j

x I x y
x

I x y
(1)

1 1

=0 =0
1 1

=0 =0

(,)

(,)

- -

- -=
å å
å å

M N
i i ji j

c M N
i ji j

y I x y
y

I x y
(2)

where  and  denote the number of pixel in x‐ and y‐direction, respectively. (𝀵𝀵,𝀵𝀵) is the

intensity of the pixel at the coordinate (𝀵𝀵,𝀵𝀵).
In the past, several methods have been developed for extending the dynamic range of the
SHWFS, such as hardware modification, tracking, similarity approaches, to name but a few.
We may now calculate 𝀵𝀵𝀵𝀵 = 𝀵𝀵 − 𝀵𝀵, where 𝀵𝀵 is the x‐coordinate of the projected center of

the convex lens. The corresponding calculation can be done for 𝀵𝀵𝀵𝀵 too. For the work presented
here, the SHWFS with its CCD camera is directly connected to an FPGA to the end of lowest
possible latency.

Evaluating the pixel information of the SHWFS for determining the phase of the wavefront
may be divided into two problems: First, determine the individual centroids, i.e., calculate the
centroid of the connected areas and, second, the ordering of the centroids to the lenslet for
calculating the deviation with respect to the default position and, thus, computing the local
derivatives of the wavefront.

As mentioned previously, as long as a predefined area is given in which the spots have to stay,
the dynamic range of the SHWFS is limited. Since the approach of the connected areas does
not use any predefined area, the restriction is no longer prevalent. However, to be fair, the
default algorithm performs the determination and ordering of the centroids in a single step
whereas the ordering is a subsequent step which is discussed in the following.

The determination of the connected areas for calculation of the centroids may be based on
different methods. These methods mainly differ in their ability for online calculation of the
connected areas, meaning that the pixel stream is processed sequentially at the end of it. Such
methods are called single‐pass algorithms, emphasizing that only a single pass is required
without necessarily storing the complete pixel information. The methods have extensively
been studied, e.g., in road sign detection or line tracking systems for lane assistance. The
general name for these algorithms is connected‐component labeling (CCL). CCL—also
denoted by connected‐component analysis, region labeling—is an algorithmic application of
graph theory. The subsets of connected components are often denoted as “blobs.” Blobs are
uniquely labeled, based on a predetermined heuristic, mostly along the neighbor relationship.

Real‐Time Adaptive Optic System Using FPGAs
http://dx.doi.org/10.5772/66184

181

For this approach, the labeling used for the CCL is based on an eight‐point neighborhood
system, see Figure 4. Another popular neighborhood system is the four‐point neighborhood
system which is presented in Figure 3. In Figures 3 and 4, the symbol “s” marks the actual
pixel and the corresponding neighbors of pixel s are marked in gray.

Figure 3. Four‐point neighborhood system.

Figure 4. Eight‐point neighborhood system.

The procedure for CCL is straightforward. The pixels (the intensity information for each pixel)
are streamed sequentially, typically from left to right and top to bottom. If the intensity
information is larger than a threshold value, the pixel is assumed to be “1” else “0.” This step
is called binarization. In Figure 5, the boxes with a gray background have already been
processed and the actual pixel carries the symbol “?.”

Figure 5. Label collision due to nonconvex blob.

In the case when two sets are connected, but due to the sequential processing receive two
different numbers, a label collision may occur. As long as the blobs are convex sets, a label

Field - Programmable Gate Array182

For this approach, the labeling used for the CCL is based on an eight‐point neighborhood
system, see Figure 4. Another popular neighborhood system is the four‐point neighborhood
system which is presented in Figure 3. In Figures 3 and 4, the symbol “s” marks the actual
pixel and the corresponding neighbors of pixel s are marked in gray.

Figure 3. Four‐point neighborhood system.

Figure 4. Eight‐point neighborhood system.

The procedure for CCL is straightforward. The pixels (the intensity information for each pixel)
are streamed sequentially, typically from left to right and top to bottom. If the intensity
information is larger than a threshold value, the pixel is assumed to be “1” else “0.” This step
is called binarization. In Figure 5, the boxes with a gray background have already been
processed and the actual pixel carries the symbol “?.”

Figure 5. Label collision due to nonconvex blob.

In the case when two sets are connected, but due to the sequential processing receive two
different numbers, a label collision may occur. As long as the blobs are convex sets, a label

Field - Programmable Gate Array182

collision cannot occur when using an eight‐point neighborhood. Experiments have shown that
the assumption of convex blobs is not valid for the typical application scenario of an SHWFS.
This may be caused by a disturbed pixel intensity information, recording the noise of the
camera sensor, the photon noise, nonperfect lenses, and other effects. Due to thresholding with
a fixed value, a single count in terms of the digitalized intensity information can lead to
nonconvex blobs, see e.g., Figure 6.

Figure 6. Resolved label collision due to blob merging.

Application of morphology methods, such as dilation or erosion, is not possible without
storing large parts of the image, thus are not single‐pass compliant. Additionally, morphology
methods significantly increase the delay.

The handling of label collisions can be accomplished by using a label stack which allows label
reusing after a label collision has occurred. By means of label reusing the number of provided
labels can be kept to a minimum; otherwise, under some circumstances, twice the number or
even more labels must be provided. More information is given in Refs. [9, 18, 19].

After having determined the blobs, thus the connected areas, the division of the numerator
and denominator may be performed for each valid blob found. The numerator and denomi‐
nator have to be stored separately as the division step can only be performed when the
connected set is maximum. In the block diagram given in Figure 7, this step is done in the
“centroid calculation/feature extraction” block which also performs the assignment of the
centroids to the lenslets.

Figure 7. Block diagram of the complete CCL FPGA implementation [18].

Real‐Time Adaptive Optic System Using FPGAs
http://dx.doi.org/10.5772/66184

183

One of the key elements of the drafted implementation in Figure 7 is that solely the former
line of the pixel stream has to be stored, not the whole pixel stream. For the applied camera,
this results in storing 224 pixels where each pixel is one bit wide because only the binarized
value has to be stored. Furthermore, only parts of the former line have to be accessed in parallel
such that a small row register is sufficient which is automatically loaded from a Block RAM
(BRAM). Using a BRAM has the advantage that the consumption of logic cells is reduced as
the BRAM is a dedicated peripheral offered by most FPGAs. The overall logic consumption
can be kept at a minimum [18].

Figure 8. Exemplary centroids for a 4 × 4 lenslet array; some spots are missing.

The assignment or segmentation of the centroids is visualized in Figures 8 and 9. This idea has
been presented in Ref. [18] and behaves similar to the standard approach for the regular case,
that is, the wavefront is not strongly disturbed. However, the advantage of this approach
appears whenever a large defocus is present in the wavefront to be measured since shrinking
or increasing the overall distance between two neighbored centroids is not a problem for the
segmentation method.

The fundamental principle is that the centroids are ordered in parallel with respect to their x‐
and y‐value such that two separately ordered lists exist. Then, straight lines are used to segment
the centroids in x‐ and y‐direction by using their distance between each other. As Figure 9
illustrates, this method is working well also for the case when some centroids are missing due
to shadowing or insufficient light intensities. When a very large shearing occurs, however, the
method will not be ideal because straight vertical lines are used. But if this problem appears,
the standard approach is also not applicable anymore. This algorithm is called simple straight
line segmentation.

Field - Programmable Gate Array184

One of the key elements of the drafted implementation in Figure 7 is that solely the former
line of the pixel stream has to be stored, not the whole pixel stream. For the applied camera,
this results in storing 224 pixels where each pixel is one bit wide because only the binarized
value has to be stored. Furthermore, only parts of the former line have to be accessed in parallel
such that a small row register is sufficient which is automatically loaded from a Block RAM
(BRAM). Using a BRAM has the advantage that the consumption of logic cells is reduced as
the BRAM is a dedicated peripheral offered by most FPGAs. The overall logic consumption
can be kept at a minimum [18].

Figure 8. Exemplary centroids for a 4 × 4 lenslet array; some spots are missing.

The assignment or segmentation of the centroids is visualized in Figures 8 and 9. This idea has
been presented in Ref. [18] and behaves similar to the standard approach for the regular case,
that is, the wavefront is not strongly disturbed. However, the advantage of this approach
appears whenever a large defocus is present in the wavefront to be measured since shrinking
or increasing the overall distance between two neighbored centroids is not a problem for the
segmentation method.

The fundamental principle is that the centroids are ordered in parallel with respect to their x‐
and y‐value such that two separately ordered lists exist. Then, straight lines are used to segment
the centroids in x‐ and y‐direction by using their distance between each other. As Figure 9
illustrates, this method is working well also for the case when some centroids are missing due
to shadowing or insufficient light intensities. When a very large shearing occurs, however, the
method will not be ideal because straight vertical lines are used. But if this problem appears,
the standard approach is also not applicable anymore. This algorithm is called simple straight
line segmentation.

Field - Programmable Gate Array184

Figure 9. Segmented centroids applying the method presented in [18].

The described algorithm is very simple and straightforward. In Ref. [19] the so‐called spiral
method has been extended to be deterministic and real‐time capable using the centroids
gathered by employing CCL. It is obvious that depending on the specific application other
methods may be better suited. The CCL may be enhanced by making the thresholding adaptive
to compensate the natural intensity inhomogeneity [9, 20]. Another enhancement is the
adaptive positioning which for most cases may solve the problem when the number of rows
and columns after assignment of the centroids are not the same as with the lenslet array. This
circumstance, in general, will lead to ambiguity of the assignment. The adaptive positioning,
however, uses an approach based on the similarity of the shape of the segmented centroids
and minimizes the shift. Based on this information, the assignment is shifted by one row or
column to reduce the offset.

Figure 10. Evolution of processing time, each step rounded up to 25 µs, during SHWFS evaluation applying the FPGA
approach.

Figure 10 holds the timeline for the whole evaluation of the SHWFS beginning with the
exposure until the assignment of the centroids to the lenslets. The “Imperx ICL‐B0620M”
camera, on which the “Imagine Optics HASO™ 3 Fast” wavefront sensor is based, is used for
this setup. The camera has a maximum frame rate of approximately 900 Hz at 224 × 224 pixel

Real‐Time Adaptive Optic System Using FPGAs
http://dx.doi.org/10.5772/66184

185

which corresponds to 1111 ms. Thus, the proposed method has a delay equal or less than one
single frame.

3. FPGA PCIe integration into the real‐time Linux system

The evaluation of the SHWFS is only one part of the AO system since the partial derivatives
of the wavefront must be either used for reconstruction of the wavefront and/or used for
controlling a deformable mirror (DM) in closed‐loop operation. A simple, basic AO concept is
used for the work presented in this text, see Figure 11. In the experimental setup, the FPGA,
besides the evaluation of the SHWFS, is also used for interfacing the digital‐to‐analog converter
(DAC) card. The benefit is that the FPGA can easily guarantee a true parallel output (same
guaranteed phase) for all analog outputs even if multiple DACs have to be used.

Figure 11. Overview over the basic AO concept; for the detailed concept see [21].

The subsequent processing of the SHWFS data is carried out by a performance computer using
state‐of‐the‐art hardware. On this performance computer, the control algorithm is running on
a hard real‐time Linux operating system (OS). This OS in combination with the performance
computer offers rapid‐control prototyping (RCP) capabilities in view of the direct MATLAB/
Simulink interface. Such an RCP system reduces the implementation effort drastically when
different control schemes and approaches need to be tested or compared with each other.

The PCIe FPGA card, see Figure 12, is a self‐developed card based on the Xilinx Kintex‐7 FPGA
module TE0741 from Trenz Electronics. The PCIe FPGA card offers more connectivity than
only the CameraLink interface. Nevertheless, in this context, only CameraLink, PCIe, and the
Serial Peripheral Interface (SPI) are used. The other interfaces are neglected in this context but
are presented in detail in Refs. [9, 21].

Field - Programmable Gate Array186

which corresponds to 1111 ms. Thus, the proposed method has a delay equal or less than one
single frame.

3. FPGA PCIe integration into the real‐time Linux system

The evaluation of the SHWFS is only one part of the AO system since the partial derivatives
of the wavefront must be either used for reconstruction of the wavefront and/or used for
controlling a deformable mirror (DM) in closed‐loop operation. A simple, basic AO concept is
used for the work presented in this text, see Figure 11. In the experimental setup, the FPGA,
besides the evaluation of the SHWFS, is also used for interfacing the digital‐to‐analog converter
(DAC) card. The benefit is that the FPGA can easily guarantee a true parallel output (same
guaranteed phase) for all analog outputs even if multiple DACs have to be used.

Figure 11. Overview over the basic AO concept; for the detailed concept see [21].

The subsequent processing of the SHWFS data is carried out by a performance computer using
state‐of‐the‐art hardware. On this performance computer, the control algorithm is running on
a hard real‐time Linux operating system (OS). This OS in combination with the performance
computer offers rapid‐control prototyping (RCP) capabilities in view of the direct MATLAB/
Simulink interface. Such an RCP system reduces the implementation effort drastically when
different control schemes and approaches need to be tested or compared with each other.

The PCIe FPGA card, see Figure 12, is a self‐developed card based on the Xilinx Kintex‐7 FPGA
module TE0741 from Trenz Electronics. The PCIe FPGA card offers more connectivity than
only the CameraLink interface. Nevertheless, in this context, only CameraLink, PCIe, and the
Serial Peripheral Interface (SPI) are used. The other interfaces are neglected in this context but
are presented in detail in Refs. [9, 21].

Field - Programmable Gate Array186

Figure 12. Developed PCIe FPGA board based on a TE0741 (Xilinx Kintex‐7) module from Trenz Electronics.

The integration of the FPGA card is realized via the PCIe interface. Thus, almost any modern
computer can be used for interfacing the PCIe FPGA card. The SHWFS, more exactly the CCD
camera, is connected with the CameraLink interface to the card. Additionally, two separate
DAC boards are installed where each DAC board offers 32 analog channels.

The outputs of the DAC cards are fed into an amplifier which amplifies the small signals to
drive, for example, the piezoelectric actuators that are part of the DM. In the setup, two DMs
have been applied. This circumstance allows the feature that one DM may be used for an
artificial, but realistic disturbance generation, whereas the other compensates for such
disturbance. In principle, the disturbance may also be virtually induced by adding some signal
to the output of the SHWFS; however, a meaningful emulation can be rather involved. This
may limit the performance of the system. For this reason, a real disturbance has been incor‐
porated. The amplifier offers the feature to switch between regular and symmetric voltage by
modifying the reference ground. Here, the benefit of the symmetric voltage is that the stroke
is symmetric as well. Due to the creeping behavior of the piezoelectric actuators, simply
applying an offset of [+150] V is not the same as symmetric operation.

For integrating the PCIe FPGA card into the Linux kernel, a kernel driver has to be developed.
So as to integrate data acquisition cards, Linux offers a special interface called comedi (control
and measurement device interface). Using this interface is very comfortable because the core
functionality is already implemented and only low‐level driver modules have to be developed
for supporting a new data acquisition card. In addition, a user‐space library called “comedilib”
is available which allows the utilization of user‐space to access the functionality of the data
acquisition card (Figure 14).

Real‐Time Adaptive Optic System Using FPGAs
http://dx.doi.org/10.5772/66184

187

Figure 13. RTAI principle for RTAI‐core active or inactive [21].

Figure 14. Block diagram of the different abstraction layers used in RTAI/LXRT [9].

The Linux kernel is patched with the RTAI (real‐time application interface) [22] patch which
itself is based on Adeos. The purpose of the Adeos project is to offer an environment so as to
allow sharing of hardware resources among multiple operating systems. RTAI uses that
approach (shown in Figure 13) for scheduling Linux in the hard real‐time support. If RTAI is
loaded then case B is active, otherwise case A.

Furthermore, RTAI supports comedi without disturbing the hard real‐time behavior. RTAI has
the LXRT extension that offers the feature to run real‐time applications as user‐space pro‐
grams, see Figure 14. Additionally, a MATLAB/Simulink target is available which uses the
Simulink Coder for C/C++ code generation [23]. Based on these prerequisites it is easy to extend
the given code generation to support more comedi implemented features such as block
memory reads or trigger commands.

The PCIe implementation is based on the Xilinx 7 Series Gen2 Integrated Block for PCI Express
IP‐core which has been extended to support Direct Memory Access (DMA). This way, the FPGA
may write the assigned centroids into the main memory of the computer without involving
the CPU, see Figure 15. PCIe is based on sending and receiving Transaction Layer Packets

Field - Programmable Gate Array188

Figure 13. RTAI principle for RTAI‐core active or inactive [21].

Figure 14. Block diagram of the different abstraction layers used in RTAI/LXRT [9].

The Linux kernel is patched with the RTAI (real‐time application interface) [22] patch which
itself is based on Adeos. The purpose of the Adeos project is to offer an environment so as to
allow sharing of hardware resources among multiple operating systems. RTAI uses that
approach (shown in Figure 13) for scheduling Linux in the hard real‐time support. If RTAI is
loaded then case B is active, otherwise case A.

Furthermore, RTAI supports comedi without disturbing the hard real‐time behavior. RTAI has
the LXRT extension that offers the feature to run real‐time applications as user‐space pro‐
grams, see Figure 14. Additionally, a MATLAB/Simulink target is available which uses the
Simulink Coder for C/C++ code generation [23]. Based on these prerequisites it is easy to extend
the given code generation to support more comedi implemented features such as block
memory reads or trigger commands.

The PCIe implementation is based on the Xilinx 7 Series Gen2 Integrated Block for PCI Express
IP‐core which has been extended to support Direct Memory Access (DMA). This way, the FPGA
may write the assigned centroids into the main memory of the computer without involving
the CPU, see Figure 15. PCIe is based on sending and receiving Transaction Layer Packets

Field - Programmable Gate Array188

(TLPs). The block “COMEDI_SHWFS_READ,” see Figure 16, performs a blocking read request
on the memory destination also being used for the DMA transfer. Behind these Simulink
blocks, we have predefined s‐functions which are based on the functionality provided by
comedi. The “COMEDI_SHWFS_TRIGGER” triggers the start of the frame capture; thus, the
image acquisition is synchronous to the real‐time application which is essential for guaran‐
teeing a deterministic behavior. As shown in the timeline in Figure 10, after approximately
1050 µs the data is transferred via DMA to the main memory of the computer.

Figure 15. Communication using PCIe interface between FPGA and computer.

Figure 16. Simulink model used for code‐generation and based on Simulink Coder.

The captured data, e.g., from the SHWFS as well as the control output and error values are fed
into the “RTAI_LOG” block. This module creates an interface with which another user‐space
program may record the data and write it either to the main memory or the hard disk.

4. Results from the adaptive optics setup

For closing the loop of the AO setup, a stabilizing controller is required. In Ref. [9], an ℋ∞
controller has been synthesized which robustly stabilizes the AO system. In the past, in general,
PI(D) controllers have been used which often were tuned by hand. It would go too far to present
the method for controller synthesis. So, this is not exposed in this survey. Since the AO setup

Real‐Time Adaptive Optic System Using FPGAs
http://dx.doi.org/10.5772/66184

189

uses an RCP approach, it is not very time consuming to test other control schemes, as only the
Simulink model has to be adjusted accordingly. Of course, the design of a stabilizing controller
which is also robust against a set of uncertainties may be rather complicated and time
consuming.

Figure 17. Application of a 10 Hz step disturbance while controller is switched on at  = 6 s;controller = 1600 Hz and shwfs = 800 Hz [9].

To validate the applicability of the presented approaches, Figure 17 shows some recorded data.
The controller has been switched on at time instance 6000 ms. The disturbance is a 10 Hz
rectangular offset that is applied to one actuator of DM1. As the actuator patterns of the DM2
and DM1 are not the same and, additionally, do not have the same number of actuators, the
result is that multiple actuators are required for compensating the disturbance. A rectangular
disturbance is ideally suited to visualize the power of the controller as the steady‐state error
as well as the time required for compensating the disturbance may be analyzed.

The error value is obtained after the multiplication of the control matrix with the centroids (in
Figure 16 the signal after the “Eigen3‐Matrix‐Mult” block). The control matrix itself is the
pseudo‐inverse of the actuator influence function [8, 9].

The dimension of the error value is the same as the number of actuators. Nevertheless, the
error value itself does not give a direct insight on how the wavefront looks like. Therefore,
Figure 16 visualizes the reconstructed wavefront as a 3D surface. The respective error values
are depicted in Figure 18 separately. To calculate the Strehl values based on the reconstructed
wavefront in Figure 20, the wavefront at time instance 6320.63 ms has been used as reference;

Field - Programmable Gate Array190

uses an RCP approach, it is not very time consuming to test other control schemes, as only the
Simulink model has to be adjusted accordingly. Of course, the design of a stabilizing controller
which is also robust against a set of uncertainties may be rather complicated and time
consuming.

Figure 17. Application of a 10 Hz step disturbance while controller is switched on at  = 6 s;controller = 1600 Hz and shwfs = 800 Hz [9].

To validate the applicability of the presented approaches, Figure 17 shows some recorded data.
The controller has been switched on at time instance 6000 ms. The disturbance is a 10 Hz
rectangular offset that is applied to one actuator of DM1. As the actuator patterns of the DM2
and DM1 are not the same and, additionally, do not have the same number of actuators, the
result is that multiple actuators are required for compensating the disturbance. A rectangular
disturbance is ideally suited to visualize the power of the controller as the steady‐state error
as well as the time required for compensating the disturbance may be analyzed.

The error value is obtained after the multiplication of the control matrix with the centroids (in
Figure 16 the signal after the “Eigen3‐Matrix‐Mult” block). The control matrix itself is the
pseudo‐inverse of the actuator influence function [8, 9].

The dimension of the error value is the same as the number of actuators. Nevertheless, the
error value itself does not give a direct insight on how the wavefront looks like. Therefore,
Figure 16 visualizes the reconstructed wavefront as a 3D surface. The respective error values
are depicted in Figure 18 separately. To calculate the Strehl values based on the reconstructed
wavefront in Figure 20, the wavefront at time instance 6320.63 ms has been used as reference;

Field - Programmable Gate Array190

thus, showing a Strehl value of exactly one. Both the three‐dimensional representation and the
error value visualize that it took 3–4 frames to reject the disturbance.

Figure 18. Experimental data with zoomed x‐axis to highlight the control behavior after a step disturbance,controller = 1600Hz and shwfs = 800Hz [9].

Figure 19. Captured image of the SHWFS, having a lenslet array of 14 × 14, during experiments.

Finally, Figure 19 shows some captured camera image of the SHWFS. The colors have been
adjusted for better visualization. The SHWFS has a lenslet array of 14 × 14 while the pixel area
is 224 × 224 pixels. The standard approach cannot be used here as the spots are leaving the
area on the image sensor. The area on the image sensor for each lens would be 16 × 16 pixels.

Real‐Time Adaptive Optic System Using FPGAs
http://dx.doi.org/10.5772/66184

191

However, the new approach has no problem and correctly assigns the spots to the lenses and
thus correctly measures the wavefront (Figure 20).

Field - Programmable Gate Array192

However, the new approach has no problem and correctly assigns the spots to the lenses and
thus correctly measures the wavefront (Figure 20).

Field - Programmable Gate Array192

Figure 20. Reconstructed wavefront, rejecting a step disturbance; same data as in Figure 18 [9].

5. Conclusion

The use of FPGAs in the context of AO has proven to be very beneficial with respect to the
achievable performance, especially in closed‐loop operation. One positive aspect is the direct
evaluation of the SHWFS on the FPGA which allows to minimize the delay and to increase the
throughput. For the evaluation of the SHWFS, new approaches have been presented which
surpass or considerably extend existing methods. However, they have not reached possible
limits so far, particularly, in terms of the achievable dynamic range of the SHWFS.

The practical applicability of the method has been demonstrated in various experiments paired
with extensions such as the adaptive repositioning and thresholding [9, 18–20].

For designing AO setups and optimizing its performance, interdisciplinary groups are
indispensable. In this context, the control engineers may synthesize their simulation models
directly in code for closed‐loop operation. Such an RCP system may also be a commercial
solution such as dSpace. Yet, the presented RTAI‐based hard real‐time Linux system has the
important benefit to be of far lower initial cost with respect to hardware while granting higher
flexibility and ease of customization.

Real‐Time Adaptive Optic System Using FPGAs
http://dx.doi.org/10.5772/66184

193

Author details

Steffen Mauch1* and Johann Reger2

*Address all correspondence to: steffen.mauch@tu‐ilmenau.de

1 Ingenieurbüro Mauch, Unorthodox Solutions, Germany

2 Technische Universität Ilmenau, Ilmenau, Germany

References

[1] M. Knapek. Adaptive Optics for the Mitigation of Atmospheric Effects in Laser Satellite‐
To‐Ground Communications. Dissertation, Technische Universität Munchen, 2011.

[2] P.L. Wizinowich. Adaptive optics and keck observatory. IEEE Instrumentation Measure‐
ment Magazine, 8(2):12–19, 2005. ISSN 1094‐6969. doi: 10.1109/MIM.2005. 1405918.

[3] R.K. Tyson and B.W. Frazier. Field Guide to Adaptive Optics, 2nd Ed (SPIE Field Guide Vol.
FG24). SPIE Press, 4, 2012. ISBN 9780819490179.

[4] L.C. Andrews. Field Guide to Atmospheric Optics (SPIE Vol. FG02). SPIE Publications, 1,
2004. ISBN 9780819453181.

[5] P. Hickson. Fundamentals of Atmospheric and Adaptive Optics. Homepage University of
British Columbia, 2008.

[6] R. Irwan and R. G. Lane. Analysis of optimal centroid estimation applied to Shack‐
Hartmann sensing. Applied Optics, 38(32):6737–6743, 1999. doi: 10.1364/AO.38.006737.

[7] Z. Jiang, S. Gong, and Y. Dai. Monte‐Carlo analysis of centroid detected accuracy for
wavefront sensor. Optics & Laser Technology, 37(7):541–546, 2005. doi: 10.1016/j.optlastec.
2004.08.009.

[8] R.K. Tyson. Principles of Adaptive Optics, Fourth Edition. CRC Press}, ISBN:
9781482252330, 11, 2015.

[9] S. Mauch. Robust Control of an Adaptive Optics System. Dissertation, Technische Univer‐
sität Ilmenau, 2016.

[10] O. Guyon. Limits of adaptive optics for high‐contrast imaging. The Astrophysical
Journal, 629(1):592, 2005. doi: 10.1117/12.789849.

[11] A.M. Nightingale and S. Gordeyev. Shack‐Hartmann wavefront sensor image analysis:
a comparison of centroiding methods and image‐processing techniques. Optical
Engineering, 52(7):071413–071413, 2013. doi: 10.1117/1.OE.52.7.071413.

Field - Programmable Gate Array194

Author details

Steffen Mauch1* and Johann Reger2

*Address all correspondence to: steffen.mauch@tu‐ilmenau.de

1 Ingenieurbüro Mauch, Unorthodox Solutions, Germany

2 Technische Universität Ilmenau, Ilmenau, Germany

References

[1] M. Knapek. Adaptive Optics for the Mitigation of Atmospheric Effects in Laser Satellite‐
To‐Ground Communications. Dissertation, Technische Universität Munchen, 2011.

[2] P.L. Wizinowich. Adaptive optics and keck observatory. IEEE Instrumentation Measure‐
ment Magazine, 8(2):12–19, 2005. ISSN 1094‐6969. doi: 10.1109/MIM.2005. 1405918.

[3] R.K. Tyson and B.W. Frazier. Field Guide to Adaptive Optics, 2nd Ed (SPIE Field Guide Vol.
FG24). SPIE Press, 4, 2012. ISBN 9780819490179.

[4] L.C. Andrews. Field Guide to Atmospheric Optics (SPIE Vol. FG02). SPIE Publications, 1,
2004. ISBN 9780819453181.

[5] P. Hickson. Fundamentals of Atmospheric and Adaptive Optics. Homepage University of
British Columbia, 2008.

[6] R. Irwan and R. G. Lane. Analysis of optimal centroid estimation applied to Shack‐
Hartmann sensing. Applied Optics, 38(32):6737–6743, 1999. doi: 10.1364/AO.38.006737.

[7] Z. Jiang, S. Gong, and Y. Dai. Monte‐Carlo analysis of centroid detected accuracy for
wavefront sensor. Optics & Laser Technology, 37(7):541–546, 2005. doi: 10.1016/j.optlastec.
2004.08.009.

[8] R.K. Tyson. Principles of Adaptive Optics, Fourth Edition. CRC Press}, ISBN:
9781482252330, 11, 2015.

[9] S. Mauch. Robust Control of an Adaptive Optics System. Dissertation, Technische Univer‐
sität Ilmenau, 2016.

[10] O. Guyon. Limits of adaptive optics for high‐contrast imaging. The Astrophysical
Journal, 629(1):592, 2005. doi: 10.1117/12.789849.

[11] A.M. Nightingale and S. Gordeyev. Shack‐Hartmann wavefront sensor image analysis:
a comparison of centroiding methods and image‐processing techniques. Optical
Engineering, 52(7):071413–071413, 2013. doi: 10.1117/1.OE.52.7.071413.

Field - Programmable Gate Array194

[12] A. Basden, D. Geng, R. Myers, and E. Younger. Durham adaptive optics real‐time
controller. Applied Optics, 49(32):6354–6363, 2010. doi: 10.1364/AO.49.006354.

[13] K. Kepa, D. Coburn, J.C. Dainty, and F. Morgan. Re‐baselining the ESO ELT project.
Analysis and Roadmap from the ELT Adaptive Optics Working Group, 2006.

[14] R.M. Rennie, D.A. Duffin, and E.J. Jumper. Characterization and aero‐optic correction
of a forced two‐dimensional weakly compressible shear layer. AIAA Journal, 46(11):
2787–2795, 2008. doi: 10.2514/1.35290.

[15] K. Kepa, D. Coburn, J.C. Dainty, and F. Morgan. High speed optical wavefront sensing
with low cost FPGAs. Measurement Science Review, 8:87–93, 2008. doi: 10.2478/ v10048‐
008‐0021‐z.

[16] J.M. Geary. Introduction to Wavefront Sensors (Tutorial Texts in Optical Engineering).
Society of Photo Optical, 5, 1995. ISBN 9780819417015.

[17] U. Schnars, C. Falldorf, J. Watson, and W. Jüptner. Digital Holography and Wavefront
Sensing: Principles, Techniques and Applications. Springer, 2nd ed., 2015 edition, 7, 2014.
ISBN 9783662446928.

[18] S. Mauch and J. Reger. Real‐time spot detection and ordering for a Shack‐Hartmann
wavefront sensor with a low‐cost FPGA. IEEE Transactions on Instrumentation and
Measurement, 63(10):2379–2386, 2014. ISSN 0018‐9456. doi: 10.1109/TIM.2014.2310616.

[19] S. Mauch and J. Reger. Real‐time implementation of the spiral algorithm for Shack‐
Hartmann wavefront sensor pattern sorting on an FPGA. Measurement, 92:63–69, 2016.
ISSN 0263‐2241. doi: 10.1016/j.measurement.2016.06.004.

[20] S. Mauch, A. Barth, J. Reger, N. Leonhard, and C. Reinlein. Improved thresholding and
ordering for Shack‐Hartmann wavefront sensors implemented on an FPGA. Interna‐
tional Workshop on Adaptive Optics for Industry and Medicine (AOIM), 2015.

[21] S. Mauch, J. Reger, C. Reinlein, M. Appelfelder, M. Goy, E. Beckert, and T. Tünnermann.
FPGA‐accelerated adaptive optics wavefront control. Proceedings of SPIE, 8978:1–12,
2014. doi: 10.1117/12.2038910.

[22] P. Mantegazza, E. L. Dozio, and S. Papacharalambous. Rtai: Real time application
interface. Linux Journal, 2000(72es), April 2000. ISSN 1075‐3583.

[23] R. Bucher and S. Balemi. Rapid controller prototyping with matlab/simulink and linux.
Control Engineering Practice, 14(2):185–192, 2006. ISSN 0967‐0661. doi: 10.1016/j.coneng‐
prac.2004.09.009. Special Section on Advances in Control Education Symposium.

Real‐Time Adaptive Optic System Using FPGAs
http://dx.doi.org/10.5772/66184

195

Chapter 9

FPGA‐SRAM Soft Error Radiation Hardening

Gabriel Torrens

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66195

Provisional chapter

FPGA‐SRAM Soft Error Radiation Hardening

Gabriel Torrens

Additional information is available at the end of the chapter

Abstract

Due to integrated circuit technology scaling, a type of radiation effects called single
event upsets (SEUs) has become a major concern for static random access memories
(SRAMs) and thus for SRAM‐based field programmable gate arrays (FPGAs). These
radiation effects are characterized by altering data stored in SRAM cells without
permanently damaging them. However, SEUs can lead to unpredictable behavior in
SRAM‐based FPGAs. A new hardening technique compatible with the current FPGA
design workflows is presented. The technique works at the cell design level, and it is
based on the modulation of cell transistor channel width. Experimental results show
that to properly harden an SRAM cell, only some transistors have to be increased in size,
while others need to be minimum sized. So, with this technique, area can be used in the
most efficient way to harden SRAMs against radiation. Experimental results on a 65‐nm
complementary metal‐oxide‐semiconductor (CMOS) SRAM demonstrate that the
number of SEU events can be roughly reduced to 50% with adequate transitory sizing,
while area is kept constant or slightly increased.

Keywords: SRAM, FPGA, Radiation, single event upset, hardening

1. Introduction

The dimensions of integrated circuit devices decreased in each successive technology gener‐
ation. The goal of this scaling is, on the one hand, to improve the performance of integrated
circuits and, on the other hand, to integrate a greater number of devices per unit area. Static
random access memories (SRAMs) are not an exception to this evolution, the dimensions of
the transistors forming memory cells decreased roughly following Moore's Law. Consequently,

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

the area occupied by each cell decreased from generation to generation [1]. Current techno‐
logical processes used to manufacture complementary metal‐oxide‐semiconductor (CMOS)
SRAM memories are in the nanometer region, since the nominal characteristic dimensions of
the transistors forming each cell are of the order of tens of nanometers.

The supply voltage of SRAMs has also been reduced. However, this decrease did not follow
the predictions of the International Technology Roadmap for Semiconductors (ITRS), in fact,
it was more moderate. This is mainly due to the limitation imposed on the transistors threshold
voltage scaling to avoid an excessive increase of leakage current [2]. To meet performance
demands of current electronic systems, large capacity integrated SRAMs are usually needed,
and in fact, FPGA‐SRAMs are not an exception. This requirement results in a large proportion
of area dedicated to SRAM memory. Forecasts indicate that in the coming years this figure may
reach 90% [3]. Of course, integrating large memories has an adverse impact on circuit area,
which in turn results into higher costs. For this reason, designers try to integrate the largest
possible number of SRAM cells per unit area. This leads to cells designs with small sizes to
squeeze the full potential of technology. SRAMs are usually designed with transistors close to
the minimum possible size, and arranged with the highest possible density. In addition, to
reduce power consumption, voltages are kept as low as possible. Although, as mentioned
before, the expected voltage reduction have not been fully implemented in real technology.

As a result of the decrease in device dimensions and of the reduction of supply voltage in
successive technology generation, designing SRAM faces two major challenges: the first one
is related to the stability of the cells and second one has to do with their susceptibility to
radiation‐induced transient events. This chapter focuses on the second challenge, the CMOS
SRAM radiation problem. However, SRAM stability issues are also discussed.

SRAMs are one of the most sensitive to radiation parts of a circuit. They are especially sensitive
to those effects caused by a single energetic particle. These effects are the so‐called single event
upsets (SEUs). They are considered soft errors (SE) because they trigger an error without
permanently damaging the circuit. This chapter focuses on six‐transistor (6T) CMOS SRAM
SEUs and on a technique to mitigate its effects, which is easily implementable in current FPGA
design workflows. The architecture of 6T RAMS cell is described in Section 2.

Regarding the process that generate SEUs, the interaction of an energetic particle creates
electron‐hole pairs, so that part of this deposited electric charge can be collected by a sensitive
node affecting its voltage. If this node is the node of an SRAM and the perturbation is high
enough, it can flip the cell state altering data stored in it, and thus generating an error. These
errors are not necessarily destructive. In particular, in an SRAM, a particle is capable of
modifying data stored in one or more memory cells without damaging them. This means that
cells can be rewritten and operate normally. Nevertheless, cell data has been corrupted, and if
the cell is read before a new write occurs, a read error will be produced.

The problem of radiation effects in integrated circuits is not new. It has been studied and taken
into account for decades by designers in areas such as the aerospace industry and, since the
mid‐1990s, also by the aeronautics manufacturers [4]. This is due to the high flow of energetic
particles that devices operating in these high‐altitude environments are exposed to. The

Field - Programmable Gate Array198

the area occupied by each cell decreased from generation to generation [1]. Current techno‐
logical processes used to manufacture complementary metal‐oxide‐semiconductor (CMOS)
SRAM memories are in the nanometer region, since the nominal characteristic dimensions of
the transistors forming each cell are of the order of tens of nanometers.

The supply voltage of SRAMs has also been reduced. However, this decrease did not follow
the predictions of the International Technology Roadmap for Semiconductors (ITRS), in fact,
it was more moderate. This is mainly due to the limitation imposed on the transistors threshold
voltage scaling to avoid an excessive increase of leakage current [2]. To meet performance
demands of current electronic systems, large capacity integrated SRAMs are usually needed,
and in fact, FPGA‐SRAMs are not an exception. This requirement results in a large proportion
of area dedicated to SRAM memory. Forecasts indicate that in the coming years this figure may
reach 90% [3]. Of course, integrating large memories has an adverse impact on circuit area,
which in turn results into higher costs. For this reason, designers try to integrate the largest
possible number of SRAM cells per unit area. This leads to cells designs with small sizes to
squeeze the full potential of technology. SRAMs are usually designed with transistors close to
the minimum possible size, and arranged with the highest possible density. In addition, to
reduce power consumption, voltages are kept as low as possible. Although, as mentioned
before, the expected voltage reduction have not been fully implemented in real technology.

As a result of the decrease in device dimensions and of the reduction of supply voltage in
successive technology generation, designing SRAM faces two major challenges: the first one
is related to the stability of the cells and second one has to do with their susceptibility to
radiation‐induced transient events. This chapter focuses on the second challenge, the CMOS
SRAM radiation problem. However, SRAM stability issues are also discussed.

SRAMs are one of the most sensitive to radiation parts of a circuit. They are especially sensitive
to those effects caused by a single energetic particle. These effects are the so‐called single event
upsets (SEUs). They are considered soft errors (SE) because they trigger an error without
permanently damaging the circuit. This chapter focuses on six‐transistor (6T) CMOS SRAM
SEUs and on a technique to mitigate its effects, which is easily implementable in current FPGA
design workflows. The architecture of 6T RAMS cell is described in Section 2.

Regarding the process that generate SEUs, the interaction of an energetic particle creates
electron‐hole pairs, so that part of this deposited electric charge can be collected by a sensitive
node affecting its voltage. If this node is the node of an SRAM and the perturbation is high
enough, it can flip the cell state altering data stored in it, and thus generating an error. These
errors are not necessarily destructive. In particular, in an SRAM, a particle is capable of
modifying data stored in one or more memory cells without damaging them. This means that
cells can be rewritten and operate normally. Nevertheless, cell data has been corrupted, and if
the cell is read before a new write occurs, a read error will be produced.

The problem of radiation effects in integrated circuits is not new. It has been studied and taken
into account for decades by designers in areas such as the aerospace industry and, since the
mid‐1990s, also by the aeronautics manufacturers [4]. This is due to the high flow of energetic
particles that devices operating in these high‐altitude environments are exposed to. The

Field - Programmable Gate Array198

atmosphere shields part of the energetic particles that come from outside the Earth, so that,
the higher the altitude, the higher the particle flux. To mitigate these effects, radiation shields,
redundant components, techniques of error detection and correction and radiation tolerant
elements are used. The implementation of these measures ranges from technological aspects
of architecture to system level. Many of these measures increase costs and negatively impact
circuit performance. There exist many well‐known techniques to mitigate SEU effects, such as
triple modular redundancy (TMR), which can be suitable for certain applications. However,
most of them involve high penalties in terms of cost, power, or performance, which can be
affordable for the space industry but could be non‐acceptable for other FPGA fields of
application.

In addition, due to technology scaling, SEUs are becoming a major reliability concern for
electronic devices in general and SRAMs in particular, not only in harsh radiation environ‐
ments but also at ground level, where radiation fluxes are low. In the case of SRAMs, this is
due to the fact that the number of errors per time unit in SRAM memories due to radiation‐
induced transient events has increased with technology scaling [3, 5]. This fact has two main
causes. The first cause has to do with both reducing the dimensions of the transistors forming
the cells and with decreasing the supply voltage. Both factors contribute to reduce the amount
of electrical charge used by a cell to store one bit of information. Thus, it is easier that the charge
induced by the interaction of a particle upsets the cell content. The second cause includes three
related factors: the increase in the number of cells integrating SRAMs, the higher density of
cells, and the amount of chip area occupied by SRAM cells. All of them contribute to increase
the probability that an energetic particle interacts with a sensitive area of a memory causing a
transient event that leads to cell data corruption. In a FPGA, this can be a serious problem,
since SRAM‐based FPGAs rely on SRAMs to store configuration bits. An SEU affecting one of
those bits can produce an unpredictable behavior or even a complete system failure.

To conclude, SEU effects are not a new problem and the space industry has developed
specialized techniques to deal with them for decades. However, FPGAs are used in a broad
range of applications, and in many of them circuits are not subject to high radiation fluxes.
Nevertheless, due to technology scaling, they are becoming sensitive to radiation either from
the environment or from the circuit materials. For this reason, it is necessary to implement
some radiation hardening techniques, especially if the circuit is operated in critical systems.
Traditional aerospace techniques are not suitable for most SRAM‐based FPGA applications,
since they involve high costs or significant performance degradation, which cannot be
assumed. One of the most paradigmatic examples is commercial electronics or any other FPGA
application field where FPGAs are attractive due to its fast time to market, flexibility, and
reprogrammability, which reduce costs while keeping good performance. Thus, the aim of this
chapter is to present a technique that fills this gap and can be used as a suitable technique to
improve radiation reliability in a broad range of FPGA‐SRAMs applications. More specifically,
the technique works at the cell design level, and its goal is to enable the design of intrinsically
more robust cells. In addition, the technique is also attractive because it is compatible with
current memory compilers, since it does not change SRAMs cell architecture.

FPGA‐SRAM Soft Error Radiation Hardening
http://dx.doi.org/10.5772/66195

199

2. Radiation impact on SRAMs

The analysis of radiation impact on integrated circuits is difficult and is typically performed
by experimental tests or using device‐level simulations. However, the critical charge (Qcrit) is
a parameter usually used as a standardized methodology to analyze the circuit‐level impact
of radiation on SRAMs [6, 7]. One of the main advantages of this parameter is that it can be
obtained by electrical simulations, which are cheaper than experimentation and less time
consuming than device‐level simulations. In addition, it helps to understand how SEUs are
produced.

Figure 1. Example of a double exponential current pulse.

When an energetic particle impacts a CMOS circuit substrate, it induces a charge track due to
electron‐hole pair generation. This deposited charge can be collected by a sensitive node—
typically the drain of an off transistor—which is near to the ionization track [4]. This results in
a transient current pulse at the node. A sufficiently strong current pulse will modify data stored
in the cell (cell flip). If this occurs, an SEU is produced. The word “Single” means that the cell
upset is caused by a single energetic particle. The parameter used to quantify the minimum
amount of charge collected by a memory element node that changes its state is the critical
charge. Typically, Qcrit is determined by electrical simulation analyzing how a given memory
cell flips under current pulses having different shapes and intensities. It has been reported that
energetic particle strikes lead to current transients with varying pulse durations (pulse width),
and that the Qcrit value of a node is a function of the waveform shape [8, 9]. For this reason, a
proper choice of current waveforms to estimate the critical charge is important. In this chapter,
we will use the well‐known double‐exponential current source model given by

Field - Programmable Gate Array200

2. Radiation impact on SRAMs

The analysis of radiation impact on integrated circuits is difficult and is typically performed
by experimental tests or using device‐level simulations. However, the critical charge (Qcrit) is
a parameter usually used as a standardized methodology to analyze the circuit‐level impact
of radiation on SRAMs [6, 7]. One of the main advantages of this parameter is that it can be
obtained by electrical simulations, which are cheaper than experimentation and less time
consuming than device‐level simulations. In addition, it helps to understand how SEUs are
produced.

Figure 1. Example of a double exponential current pulse.

When an energetic particle impacts a CMOS circuit substrate, it induces a charge track due to
electron‐hole pair generation. This deposited charge can be collected by a sensitive node—
typically the drain of an off transistor—which is near to the ionization track [4]. This results in
a transient current pulse at the node. A sufficiently strong current pulse will modify data stored
in the cell (cell flip). If this occurs, an SEU is produced. The word “Single” means that the cell
upset is caused by a single energetic particle. The parameter used to quantify the minimum
amount of charge collected by a memory element node that changes its state is the critical
charge. Typically, Qcrit is determined by electrical simulation analyzing how a given memory
cell flips under current pulses having different shapes and intensities. It has been reported that
energetic particle strikes lead to current transients with varying pulse durations (pulse width),
and that the Qcrit value of a node is a function of the waveform shape [8, 9]. For this reason, a
proper choice of current waveforms to estimate the critical charge is important. In this chapter,
we will use the well‐known double‐exponential current source model given by

Field - Programmable Gate Array200

()
0 0

1 2
0

- -
- -æ ö

ç ÷= -
ç ÷
è ø

t t t t
τ τi t i e e (1)

where i(t) is the current intensity at time t, i0 is a parameter that scales the current intensity, τ1

determines the current fall‐time, τ2 its rise time, and t0 is the time at which the current peak is
initiated. The total charge injected in the node is the area under the i(t) curve. The shape of one
of these curves is represented in Figure 1.

Figure 2 depicts a 6‐transistor SRAM (6T‐SRAM) cell configuration. It has two cross‐coupled
inverters which form the two internal cell nodes (LN and RN). In addition, it has two access
transistors, which are used to reach the internal nodes from outside the cell in the read and
write operations.

Figure 2. 6T‐SRAM cell schematic.

Figure 3 shows the current sources scheme used to simulate SEUs. In particular, it is necessary
to investigate two types of SEUs: a 0‐to‐1 SEU, where the impacted node is at 0 level, and a 1‐
to‐0 SEU, where the impacted node is at 1 level. Due to cell symmetry, only two configurations
cover all possibilities of memory cell perturbation. Figure 3 also shows that a charge injection
on a node which is at 0 requires the nMOS transistor to drain the collected charge due to the
particle hit. Conversely, when a particle hits a node which is at 1, the pMOS transistor maintains
the stored value by providing the current needed to hold the node electrical value.

FPGA‐SRAM Soft Error Radiation Hardening
http://dx.doi.org/10.5772/66195

201

Figure 3. 6T‐SRAM cell schematics for simulating a 1 to 0 SEU (left) and a 0 to 1 SEU (right).

This chapter deals only with 6T SRAM cells, although there are other SRAM which are specially
designed to deal with radiation issues. In general, they are hardened SRAM cells that maintain
their stored data even if the electrical state of some of their nodes is flipped by a particle strike,
some of them are described in [10, 11]. The main drawbacks of them are the increase in cell
transistor count with the consequent area increase. In addition, in these cells, it is difficult to
implement regular cell layouts, which, as it will be described in Section 3, is a useful method
for parameter variation minimization. Furthermore, nonstandard cells complicate the possi‐
bility to include them in current SRAM and FPGA design flows. Conversely, the technique that
will be described in Section 3 is fully compatible with SRAM memory compilers and easily
adaptable to current FPGA designs. Other mitigation techniques, such as supply voltage
increase [9], are not suitable to be implemented in many applications due to their impact on
power consumption and long‐term reliability.

3. SRAM cell transistors channel width modulation technique

Memories are usually structures in which the maximum density of integration is requested.
Therefore, the transistors forming memory cells are usually close to the minimum dimensions
enabled by technology. Nevertheless, this section describes how it is possible to achieve more
robust SRAM cells by varying the channel width of some of the cell transistors. This technique
has a clear impact on the area occupied by each cell and, therefore, in the total memory area.
For this reason, we will study how to use the area increase in the most efficient way, that is,
how to get some gain in critical charge with minimum additional area. Moreover, the impact
of this technique in terms of power consumption, stability, and access time is characterized in
Section. 4.4.

Designing SRAMs is a challenge as technology scales down mainly due to parameter varia‐
tions. There are two main causes of mismatch between the cell cross‐coupled inverters:
polysilicon and diffusion critical dimensions, as well as implant variations [12]. The use of
subwavelength lithography and reactive ion etching are two of the main causes that converts
the drawn polygon corners on the layout mask into rounded shapes on the manufactured
circuits. Although proper optical proximity corrections can minimize those distortions, these
techniques alone cannot compensate all the distortions, especially as the lithography gap is

Field - Programmable Gate Array202

Figure 3. 6T‐SRAM cell schematics for simulating a 1 to 0 SEU (left) and a 0 to 1 SEU (right).

This chapter deals only with 6T SRAM cells, although there are other SRAM which are specially
designed to deal with radiation issues. In general, they are hardened SRAM cells that maintain
their stored data even if the electrical state of some of their nodes is flipped by a particle strike,
some of them are described in [10, 11]. The main drawbacks of them are the increase in cell
transistor count with the consequent area increase. In addition, in these cells, it is difficult to
implement regular cell layouts, which, as it will be described in Section 3, is a useful method
for parameter variation minimization. Furthermore, nonstandard cells complicate the possi‐
bility to include them in current SRAM and FPGA design flows. Conversely, the technique that
will be described in Section 3 is fully compatible with SRAM memory compilers and easily
adaptable to current FPGA designs. Other mitigation techniques, such as supply voltage
increase [9], are not suitable to be implemented in many applications due to their impact on
power consumption and long‐term reliability.

3. SRAM cell transistors channel width modulation technique

Memories are usually structures in which the maximum density of integration is requested.
Therefore, the transistors forming memory cells are usually close to the minimum dimensions
enabled by technology. Nevertheless, this section describes how it is possible to achieve more
robust SRAM cells by varying the channel width of some of the cell transistors. This technique
has a clear impact on the area occupied by each cell and, therefore, in the total memory area.
For this reason, we will study how to use the area increase in the most efficient way, that is,
how to get some gain in critical charge with minimum additional area. Moreover, the impact
of this technique in terms of power consumption, stability, and access time is characterized in
Section. 4.4.

Designing SRAMs is a challenge as technology scales down mainly due to parameter varia‐
tions. There are two main causes of mismatch between the cell cross‐coupled inverters:
polysilicon and diffusion critical dimensions, as well as implant variations [12]. The use of
subwavelength lithography and reactive ion etching are two of the main causes that converts
the drawn polygon corners on the layout mask into rounded shapes on the manufactured
circuits. Although proper optical proximity corrections can minimize those distortions, these
techniques alone cannot compensate all the distortions, especially as the lithography gap is

Field - Programmable Gate Array202

increasing with each successive technology node [12]. As a result, traditional cell designs are
very sensitive to misalignment because they include transistor diffusion width changes. These
changes in width produce bends and steps in the diffusion regions, which in turn, cause small
variations of the poly placement that lead to significant poly‐diffusion overlay misalignment.
This variability impacts directly on transistor matching, which can compromise cell stability
and functionality.

The so‐called regular cell layouts (Figure 4) have shown to be more tolerant to parameter
variations due to several factors: all poly lines are drawn in the same direction, poly lines are
aligned facilitating better polysilicon critical dimension control, and helping phase shift
masking techniques [13]. In addition, when a cell is inside the SRAM array, all transistors see
the same polysilicon patterns, thus minimizing poly proximity issues [12]. Finally, regular cells
have straight diffusions and, therefore, are much less sensitive to misalignments [14, 15].

Figure 4. 6‐T SRAM regular layout.

Parameter variation has become a key factor in SRAM memory design. For this reason, the
regular layout is the one that is considered in this chapter. Using regular layouts imposes
geometrical restrictions, for example, as previously mentioned, it is necessary to orientate all
polysilicon lines in the same direction and keep them aligned. However, the determining factor
that mainly affects the transistor channel width modulation technique is the impossibility to
introduce steps and bends in the diffusion areas. This means that the designer will be unable
to freely change SRAM transistors channel widths.

The formation of bends in the diffusion regions of a cell, like the one considered in Figure 4,
can be avoided if all nMOS transistors channel width (Wn) is the same, as well as all pMOS
transistors channel width (Wp) is also the same. In Figure 4, it can be seen that this way the
diffusion areas (colored in green) remain straight. If we consider as a reference a cell where
channel width of all transistors is the minimum (Wmin), the restriction is expressed as

FPGA‐SRAM Soft Error Radiation Hardening
http://dx.doi.org/10.5772/66195

203

n n min

p p min

·
·

=
=

W r W
W r W (2)

With these two restrictions, the nMOS channel width can vary independently from the pMOS
channel width. This implies that the designer has two degrees of freedom.

3.1. Critical charge results

As it was mentioned before, the behavior of the cell undergoing a current injection due to an
energetic particle impact depends on the duration of the pulse (pulse width); for this reason,
it is interesting to use it as a parameter to explore.

Pulse widths of current transients are highly variable and depend on multiple parameters, but
several studies show that they are between a few picoseconds and hundreds of picoseconds
[6]. 3D simulations also show that short pulses correspond to ionization events whose track
crosses the drain of a cut‐off transistor, while long ones are the result of events whose track
does not pass through the drain [9]. It is necessary to consider both cases, since the location of
the trace ionization with respect to drain is a random parameter. For this reason, to characterize
the behavior of the cell, simulations with pulse widths ranging between 20 and 200 ps have
been performed.

In addition, there are two different critical charges depending on which node (the one at 0 or
the one at 1) receives the collected charge modeled by the current injection. The collection of
electrons by the drain junction of an nMOS in OFF state results in a current pulse that upsets
the affected node from 1 to 0, so this critical charge is named Qcrit,e. Similarly, the collection of
holes by a pMOS drain junction upsets the affected node from 0 to 1, so this critical charge is
called Qcrit,h. If both critical charges are represented as a function of pulse width, Figure 5 is
obtained.

Figure 5. Critical charge for electrons and holes of a minimum‐sized 6T‐SRAM (rn = rp = 1) as a function of pulse width.

Field - Programmable Gate Array204

n n min

p p min

·
·

=
=

W r W
W r W (2)

With these two restrictions, the nMOS channel width can vary independently from the pMOS
channel width. This implies that the designer has two degrees of freedom.

3.1. Critical charge results

As it was mentioned before, the behavior of the cell undergoing a current injection due to an
energetic particle impact depends on the duration of the pulse (pulse width); for this reason,
it is interesting to use it as a parameter to explore.

Pulse widths of current transients are highly variable and depend on multiple parameters, but
several studies show that they are between a few picoseconds and hundreds of picoseconds
[6]. 3D simulations also show that short pulses correspond to ionization events whose track
crosses the drain of a cut‐off transistor, while long ones are the result of events whose track
does not pass through the drain [9]. It is necessary to consider both cases, since the location of
the trace ionization with respect to drain is a random parameter. For this reason, to characterize
the behavior of the cell, simulations with pulse widths ranging between 20 and 200 ps have
been performed.

In addition, there are two different critical charges depending on which node (the one at 0 or
the one at 1) receives the collected charge modeled by the current injection. The collection of
electrons by the drain junction of an nMOS in OFF state results in a current pulse that upsets
the affected node from 1 to 0, so this critical charge is named Qcrit,e. Similarly, the collection of
holes by a pMOS drain junction upsets the affected node from 0 to 1, so this critical charge is
called Qcrit,h. If both critical charges are represented as a function of pulse width, Figure 5 is
obtained.

Figure 5. Critical charge for electrons and holes of a minimum‐sized 6T‐SRAM (rn = rp = 1) as a function of pulse width.

Field - Programmable Gate Array204

It can be observed that Qcrit,e is lower than Qcrit,h. Therefore, it is normally considered that the
cell‐flip process is dominated by Qcrit,e, and sometimes Qcrit,h is neglected. However, accurate
models need to include both critical charges, as it will be shown in Section 4.4.

In addition, critical charges for a 6T cell for various combinations of Wp, Wn were calculated.
Figure 6 shows the results in a graph where the independent variables are rp, rn. Results are
shown for two different pulse widths and only for Qcrit,e, since Qcrit,h show similar results.

Figure 6. Critical charge (Qcrit,e) as a function of rn and rp and for two different pulse widths.

Figure 6 shows how the cell is more robust as the transistors channel width is increased.
However, increasing the channel width of transistors produces a clear and undesired impact
on the area of each cell and, therefore, on the total memory area. For this reason, it is necessary
to establish a trade‐off between the increased radiation robustness and the additional area
used. Moreover, it is convenient to use the additional area in the most efficient possible way.
This is discussed in the following subsection.

It has also been studied how the supply voltage affects cell robustness. Figure 7 shows the
results of critical charge for a typical alpha‐particle pulse width of 30 ps [6] as a function of rp,
rn for two different supply voltages.

FPGA‐SRAM Soft Error Radiation Hardening
http://dx.doi.org/10.5772/66195

205

Figure 7. Critical charge (Qcrit,e) as a function of rn and rp and for two different supply voltages and for a 30 ps pulse
width.

As it can be observed, a decrease in the supply voltage causes a reduction in the critical charge
for all combinations of transistors channel widths. This result is in line with the previously
mentioned fact that a cell with reduced voltage supply uses less charge to store data and,
therefore, it is easier to change its stored value.

3.2. Additional area optimization to harden the SRAM cell

Due to the almost linear behavior of the graph in Figure 6, the following coefficients can be
defined and are virtually independent of Wp and Wn:

crit crit
p n

p n

¶ ¶
= =
¶ ¶
Q Qχ χ
W W (3)

These two coefficients represent the efficiency, in terms of critical charge, of a certain increase
in the transistors channel width (pMOS in the case of χp, and nMOS in the case of χn).Geo‐
metrically, these coefficients represent the slopes in the two horizontal directions of the planes
of Figure 6. These slopes vary as a function of the different pulse widths; therefore, coefficients
are a function of the considered pulse width. If this dependence is plotted, Figure 8 is obtained.

Field - Programmable Gate Array206

Figure 7. Critical charge (Qcrit,e) as a function of rn and rp and for two different supply voltages and for a 30 ps pulse
width.

As it can be observed, a decrease in the supply voltage causes a reduction in the critical charge
for all combinations of transistors channel widths. This result is in line with the previously
mentioned fact that a cell with reduced voltage supply uses less charge to store data and,
therefore, it is easier to change its stored value.

3.2. Additional area optimization to harden the SRAM cell

Due to the almost linear behavior of the graph in Figure 6, the following coefficients can be
defined and are virtually independent of Wp and Wn:

crit crit
p n

p n

¶ ¶
= =
¶ ¶
Q Qχ χ
W W (3)

These two coefficients represent the efficiency, in terms of critical charge, of a certain increase
in the transistors channel width (pMOS in the case of χp, and nMOS in the case of χn).Geo‐
metrically, these coefficients represent the slopes in the two horizontal directions of the planes
of Figure 6. These slopes vary as a function of the different pulse widths; therefore, coefficients
are a function of the considered pulse width. If this dependence is plotted, Figure 8 is obtained.

Field - Programmable Gate Array206

Figure 8. Dependence of χp,e and χn,e with pulse width for nominal supply voltage (1.2 V).

Figure 8 shows that, in general, χp is larger than χn, only for very short pulses χn tends to equal
or even exceed the value of χp. This means that for pulses longer than about 10 ps, increasing
only pMOS transistors width (Wp) is more efficient than increasing nMOS transistors (Wn). As
it has been mentioned before, the widths of the current pulses generated by SEU vary. However,
for alpha particles, a typical pulse width is about 30 ps [6]. For this typical pulse width,
increasing Wp is more efficient than increasing Wn.

Same simulations were repeated for 0.8 V supply voltage, the results are shown in Figure 9.

Figure 9. Dependence of χp,e and χn,e with pulse width for 0.8 V supply voltage.

FPGA‐SRAM Soft Error Radiation Hardening
http://dx.doi.org/10.5772/66195

207

The results obtained are analogous to those of Figure 8. However, the values of χp and χn at
0.8 V are lower than at 1.2 V (note that the graphs in Figures 8 and 9 are represented at the
same scale). This means that reducing the supply voltage not only reduces the critical charge
but also reduces the efficiency in terms of critical charge to make wider pMOS transistors.

Finally, Figure 10 plots χp as a function of the pulse width and supply voltage in a surface plot
and as a family of curves generated by the supply voltage parameter.

Figure 10. Dependence of χp,e with pulse width and supply voltage.

The graph in Figure 10 shows that reducing both the supply voltage and the pulse width
decreases the efficiency, in terms of critical charge, of modulating the pMOS transistors channel
width.

From all the results presented in this section, it can be deduced that if the SEU robustness of
an SRAM cell is to be increased in a certain percentage, increasing the widths of only the pMOS
and leaving the nMOS unmodified is more efficient than any other combination of transistor
width modulation. Or, for a given percentage area budget, increasing only pMOS widths
maximizes critical charge.

rp Wp (µm) Qcrit,e (fC) Qcrit,e increment

with respect to

minimum cell (%)

Area increment

with respect to

minimum cell (%)

1.0 0.15 1.72 0 0

1.5 0.23 2.14 24 9

2.0 0.30 2.51 46 17

Table 1. Critical charge and cell area increment for three different values of rp, and rn = 1 (Wmin = 0.15 μm). The supply
voltage is nominal.

Field - Programmable Gate Array208

The results obtained are analogous to those of Figure 8. However, the values of χp and χn at
0.8 V are lower than at 1.2 V (note that the graphs in Figures 8 and 9 are represented at the
same scale). This means that reducing the supply voltage not only reduces the critical charge
but also reduces the efficiency in terms of critical charge to make wider pMOS transistors.

Finally, Figure 10 plots χp as a function of the pulse width and supply voltage in a surface plot
and as a family of curves generated by the supply voltage parameter.

Figure 10. Dependence of χp,e with pulse width and supply voltage.

The graph in Figure 10 shows that reducing both the supply voltage and the pulse width
decreases the efficiency, in terms of critical charge, of modulating the pMOS transistors channel
width.

From all the results presented in this section, it can be deduced that if the SEU robustness of
an SRAM cell is to be increased in a certain percentage, increasing the widths of only the pMOS
and leaving the nMOS unmodified is more efficient than any other combination of transistor
width modulation. Or, for a given percentage area budget, increasing only pMOS widths
maximizes critical charge.

rp Wp (µm) Qcrit,e (fC) Qcrit,e increment

with respect to

minimum cell (%)

Area increment

with respect to

minimum cell (%)

1.0 0.15 1.72 0 0

1.5 0.23 2.14 24 9

2.0 0.30 2.51 46 17

Table 1. Critical charge and cell area increment for three different values of rp, and rn = 1 (Wmin = 0.15 μm). The supply
voltage is nominal.

Field - Programmable Gate Array208

Table 1 shows the critical charges for a pulse of 30 ps for three values rp (and rn = 1) at nominal
voltage. In addition, it shows the increased area with respect to the minimum sized cell (rp = 
1, rn = 1). Areas are obtained by designing cells with the regular layout features and restrictions
described earlier.

Table 1 shows that, for example, for an area increase of 17%, an increment 46% in critical charge
is achieved.

To sum up, the transistors channel width modulation technique has shown by simulation to
be effective in terms of improving critical charge. For this reason, it was decided to implement
and test this technique in a real memory prototype (test chip) described in Section 4.1.

4. Experimental results of the modulation technique

4.1. Test chip description

The transistor width modulation technique was implemented in a custom fabricated SRAM
test chip in a 65‐nm CMOS commercial technology. Memory cells are six‐transistor (6T) cells
and were implemented following regular layout design specifications to minimize parameter
variations. The regular layout characteristics were described in Section 3, and include the use
of straight diffusion regions and regular alignment of word line polysilicon lines.

Figure 11. Schematic representation of the five cell types implemented in the test chip.

From all the previously simulated cells, five of them were implemented in the test chip (five
different combinations of transistors channel widths). All these combinations satisfy the
restrictions imposed for a regular layout. The selected combinations (cell types) of rn and rp are
schematized in Figure 11 and detailed in Table 2. For each one of the five cell types, a total of

FPGA‐SRAM Soft Error Radiation Hardening
http://dx.doi.org/10.5772/66195

209

4096 cells were implemented. Finally, the test chip was irradiated following the procedure
detailed in Section 4.2 to experimentally test the modulation technique.

Cell type  pMOS width, 

Wp (µm)

nMOS width, 

Wn (µm)

Cell height 

(µm)

Cell width 

(µm)

Cell area 

(µm2)

Cell area increment with

respect to A (%)

A 0.15 0.15 0.58 1.75 1.01 0

B 0.23 0.15 0.58 1.91 1.10 9

C 0.30 0.15 0.58 2.05 1.18 17

D 0.23 0.23 0.58 2.07 1.19 18

E 0.15 0.30 0.58 2.05 1.18 17

Table 2. Main geometric features of the five cell types implemented in the test chip.

4.2. Experimental irradiation procedure

The objective of the experiment is to obtain the soft error rate (SER) of each one of the five cell
types, that is, the number of soft errors (SEUs) for time unit.

The 65‐nm CMOS test chip was mounted on a specifically designed PCB and controlled by an
FPGA to drive and capture data.

As a radiation source, it was used an Am‐241 alpha source with a 5 kBq activity providing
alpha particles of 5.5 MeV. The source active area was 7 mm in diameter and was placed atop
the unencapsulated chip, and all five cell types were irradiated at the same time. The control
FPGA was not irradiated because the objective of the experiment was only to study the
behavior of the test chip SRAM cells under radiation conditions.

The test procedure was performed following the subsequent steps:

1. Write all memory cells to a known value.

2. Read all memory cells, and compare to the written values.

3. Initiate the memory radiation.

4. Wait for a sampling time Ts.

5. Read the whole memory and determine the number of cells whose state changed. Go to
Step 4.

Steps 4–5 were cycled until the experiment was finished. The overall number of SEUs, NTOT, is
given by the addition of the number of SEUs recorded at each sampling period (Ni), i.e.

TOT =ån

i=1 i
N N (4)

Field - Programmable Gate Array210

4096 cells were implemented. Finally, the test chip was irradiated following the procedure
detailed in Section 4.2 to experimentally test the modulation technique.

Cell type  pMOS width, 

Wp (µm)

nMOS width, 

Wn (µm)

Cell height 

(µm)

Cell width 

(µm)

Cell area 

(µm2)

Cell area increment with

respect to A (%)

A 0.15 0.15 0.58 1.75 1.01 0

B 0.23 0.15 0.58 1.91 1.10 9

C 0.30 0.15 0.58 2.05 1.18 17

D 0.23 0.23 0.58 2.07 1.19 18

E 0.15 0.30 0.58 2.05 1.18 17

Table 2. Main geometric features of the five cell types implemented in the test chip.

4.2. Experimental irradiation procedure

The objective of the experiment is to obtain the soft error rate (SER) of each one of the five cell
types, that is, the number of soft errors (SEUs) for time unit.

The 65‐nm CMOS test chip was mounted on a specifically designed PCB and controlled by an
FPGA to drive and capture data.

As a radiation source, it was used an Am‐241 alpha source with a 5 kBq activity providing
alpha particles of 5.5 MeV. The source active area was 7 mm in diameter and was placed atop
the unencapsulated chip, and all five cell types were irradiated at the same time. The control
FPGA was not irradiated because the objective of the experiment was only to study the
behavior of the test chip SRAM cells under radiation conditions.

The test procedure was performed following the subsequent steps:

1. Write all memory cells to a known value.

2. Read all memory cells, and compare to the written values.

3. Initiate the memory radiation.

4. Wait for a sampling time Ts.

5. Read the whole memory and determine the number of cells whose state changed. Go to
Step 4.

Steps 4–5 were cycled until the experiment was finished. The overall number of SEUs, NTOT, is
given by the addition of the number of SEUs recorded at each sampling period (Ni), i.e.

TOT =ån

i=1 i
N N (4)

Field - Programmable Gate Array210

with n being the number of times that the memory is read. The overall time experiment (texp)
is given by exp = 𝀵𝀵𝀵𝀵s. The SER at each sampling time period (SERi) is given by SER = /𝀵𝀵s,
while the mean SER of the overall experiment is given by

1 1 TOT

s exp

SER
SER

·
= == = =å ån n

i ii i
N N

n n T t
(5)

The determination of the sampling period Ts is important, since it must guarantee that the
probability of a given cell to experience two or more flips within the same sampling period is
negligible, while keeping the overall read time small with respect to the overall hold time (we
are interested in computing the memory SER when the memory is not being accessed) [16].
We ran an initial experiment using a small one‐minute Ts value and determined an SER order
of magnitude of 1 SEU/minute. Based on this, we set a Ts value of 30 min to not increase the
memory read rate. The mean estimated SEU error using this Ts value is 1‰.

4.3. Experimental results

The experiment was conducted under the conditions and procedure described in Section 4.2
for a total time of 72 h to accumulate enough SEUs as to obtain a reliable SER result.

The SEU count evolution is shown in Figure 12. As expected, results show that the accumulated
SEU count with time is linear. An alternative way to calculate SER is by obtaining the slope of
the plot of accumulated number of SEU as a function of time.

Figure 12. Accumulated SEUs in a 72 h period irradiation for the five cell types.

FPGA‐SRAM Soft Error Radiation Hardening
http://dx.doi.org/10.5772/66195

211

The first important result from Figure 12 is that different memory cell types have different SER
values (i.e., different slopes). If each SER is computed and represented in a bar plot, Figure 13
is obtained.

Figure 13. SER of 4096 cells for each one of the five cell types.

In addition, SER values are tabulated in Table 3 along with critical charge results. Keep in mind
that a more robust cell means more critical charge but less SER.

Cell type SER (s−1 × 10−3) Qcrit,e (fC)

C 3.87 2.51

B 4.60 2.14

D 5.24 2.44

A 5.68 1.72

E 8.30 2.26

Table 3. SER and critical charge values for the five different cell types (sorted by SER value).

From Figure 13 and Table 3, it is observed that the stronger cell—from a SER point of view—
is the C, followed by B, and that the less robust is E. In addition, if critical charge is also taken
into account, the following can be observed:

• The best cell is C; note that this occurs from both critical charge and SER points of view.

• Increasing the pMOS transistors channel widths (cells A, B, and C) causes an increase in
critical charge, which directly results into a decrease in SER. That is, cell C is more robust
than B, and B more robust than A, from both from critical charge and SER point of view.

Field - Programmable Gate Array212

The first important result from Figure 12 is that different memory cell types have different SER
values (i.e., different slopes). If each SER is computed and represented in a bar plot, Figure 13
is obtained.

Figure 13. SER of 4096 cells for each one of the five cell types.

In addition, SER values are tabulated in Table 3 along with critical charge results. Keep in mind
that a more robust cell means more critical charge but less SER.

Cell type SER (s−1 × 10−3) Qcrit,e (fC)

C 3.87 2.51

B 4.60 2.14

D 5.24 2.44

A 5.68 1.72

E 8.30 2.26

Table 3. SER and critical charge values for the five different cell types (sorted by SER value).

From Figure 13 and Table 3, it is observed that the stronger cell—from a SER point of view—
is the C, followed by B, and that the less robust is E. In addition, if critical charge is also taken
into account, the following can be observed:

• The best cell is C; note that this occurs from both critical charge and SER points of view.

• Increasing the pMOS transistors channel widths (cells A, B, and C) causes an increase in
critical charge, which directly results into a decrease in SER. That is, cell C is more robust
than B, and B more robust than A, from both from critical charge and SER point of view.

Field - Programmable Gate Array212

• There is no the same direct correlation when cells in which nMOS transistors have been
modified are involved. Cells D and E are among the most robust ones in terms of critical
charge, and yet are among the ones that show worst SER.

• In Section 3.2, it was justified that increasing pMOS transistor widths was, from a critical
charge point of view, the most efficient way to use the additional area. Cells B and C are the
ones in which only pMOS transistor width is increased. From these results, it can be
concluded that, in terms of SER, increasing only the pMOS transistors width is also the best
way to improve SRAM cells robustness.

In short, increasing the pMOS transistors channel width improves critical charge and SER.
However, increasing the nMOS transistors channel width improves critical charge, but
worsens SER. The reason for this nonsymmetrical behavior must be sought in the fact that
increasing critical charge by widening the channel of the transistors has a dual effect on SER:

• It increments cell robustness, because more charge is needed to flip the cell (higher critical
charge).

• It lowers cell robustness because a wider transistors channel involves a sensitive area
increase, which may also involve an increase in the ability of the cell nodes to collect the
charge that has been deposited by an impacting energetic particle.

The key point is that the relative contribution of these two factors (critical charge and area
increase) is not the same in the case of widening nMOS and pMOS transistors. Increasing the
channel size of pMOS implies an area increase inside the well, while increasing the channel
size of nMOS increases the area directly on the substrate. The different ability to collect charge
of pMOS (in the well) or nMOS (on the substrate) is the qualitative explanation of the observed
relation between SER and critical charge for nMOS and pMOS width modulation. This
behavior is quantitatively explained in the following section.

4.4. Analysis of the results

Experimental data show that maintaining minimum nMOS transistors width (rn = 1) while
increasing pMOS transistor channel widths improves both critical charge and SER for a 6T
memory cell. However, increasing nMOS transistor channel width improves memory cell
critical charge, but worsens SER. As it has been mentioned before, this can be qualitatively
explained as follows: Increasing transistor width has two competing effects on SER. On the
one hand, SEUs are more difficult to occur, because Qcrit is raised due to the increase of both
the drain capacity and the transistor width, which enhances transistor strength. On the other
hand, widening a transistor increases its sensitive area, raising the probability of the cell to
collect charge and thus be flipped by the effect of an energetic particle. The relative contribution
of these two opposite effects on SER depends on the transistor type (nMOS or pMOS),
especially for CMOS bulk technologies with well areas for pMOS transistors [17].

To model these two effects, it is necessary to use an expression that relates SER and critical
charge. The following expression [18] will be used:

FPGA‐SRAM Soft Error Radiation Hardening
http://dx.doi.org/10.5772/66195

213

crit ,e crit ,h

e h
diff , diff ,SER · ·

- -æ ö
ç ÷= +
ç ÷
è ø

Q Q
η η

n pκ A e A e (6)

where Adiff,n and Adiff,p are the nMOS and pMOS sensitive drain area. Qcrit,e and Qcrit,h are
respectively the critical charges due to the collection of electrons and holes, and κ is a parameter
that depends on the radiation flux. Parameters ηe and ηh represent electron and hole charge
collection efficiency. To compute SER, parameters κ, ηe, and ηh need to be experimentally
obtained, as they depend on the environment and on the device precise characteristics. Note
that the model includes both critical charges (Qcrit,e and Qcrit,h) introduced in Section 3.1.

Figure 14. SER (experimental and modeled) of 4096 cells for each one of the five cell types.

In our case, since we obtained SER and critical charge for different cell types, we can fit SER
experimental data to the calculated critical charge values and obtain the unknown parameters
κ, ηe, and ηh. Diffusion areas can be expressed as diff,n =  · n, and diff,p = p · p, being
Hn and Hp the diffusion lengths of the drains of the nMOS and pMOS transistors. The design
rules restrictions for symmetrical and regular cell layout impose Hn to be slightly longer than
Hp (in fact we used the minimum possible diffusion length in the pMOS transistor,p = min, while n = diff · min with Kdiff = 1.1 for the five different cells). Introducing
again rn and rp coefficients defined in Eq. (2) we obtain:

diff ,n n min diff min n diff min,diff

diff ,p p min min p min,diff

· · · · ·
· · ·

= =
= =

A r W K H r K A
A r W H r A (7)

where min, diff = min · min. Therefore, Eq. (7) becomes:

Field - Programmable Gate Array214

crit ,e crit ,h

e h
diff , diff ,SER · ·

- -æ ö
ç ÷= +
ç ÷
è ø

Q Q
η η

n pκ A e A e (6)

where Adiff,n and Adiff,p are the nMOS and pMOS sensitive drain area. Qcrit,e and Qcrit,h are
respectively the critical charges due to the collection of electrons and holes, and κ is a parameter
that depends on the radiation flux. Parameters ηe and ηh represent electron and hole charge
collection efficiency. To compute SER, parameters κ, ηe, and ηh need to be experimentally
obtained, as they depend on the environment and on the device precise characteristics. Note
that the model includes both critical charges (Qcrit,e and Qcrit,h) introduced in Section 3.1.

Figure 14. SER (experimental and modeled) of 4096 cells for each one of the five cell types.

In our case, since we obtained SER and critical charge for different cell types, we can fit SER
experimental data to the calculated critical charge values and obtain the unknown parameters
κ, ηe, and ηh. Diffusion areas can be expressed as diff,n =  · n, and diff,p = p · p, being
Hn and Hp the diffusion lengths of the drains of the nMOS and pMOS transistors. The design
rules restrictions for symmetrical and regular cell layout impose Hn to be slightly longer than
Hp (in fact we used the minimum possible diffusion length in the pMOS transistor,p = min, while n = diff · min with Kdiff = 1.1 for the five different cells). Introducing
again rn and rp coefficients defined in Eq. (2) we obtain:

diff ,n n min diff min n diff min,diff

diff ,p p min min p min,diff

· · · · ·
· · ·

= =
= =

A r W K H r K A
A r W H r A (7)

where min, diff = min · min. Therefore, Eq. (7) becomes:

Field - Programmable Gate Array214

(8)

The values of SER, Qcrit,e, Qcrit,h, rn, rp, and Kdiff in Eq. (8) are known and, therefore, KA, ηe and ηh

remain as fitting parameters, being KA the product of κ and Amin, diff. The obtained values after
the fitting for these parameters are: KA = 3.13 × 10−6 s−1, ηe = 2.02 fC, and ηh = 0.79 fC.

Figure 14 compares the experimental and fitted SER. As it can be seen, Eq. (8) accurately
describes the experimental SER as a function of critical charge and geometrical parameters. In
addition, the model properly describes quantitatively the asymmetrical influence of nMOS
and pMOS transistor width in terms of SER, which was previously interpreted qualitatively.

The experimentally fitted parameters and the resulting critical charge values from Eq. (8) allow
to plot SER as a function of rn and rp. The resulting surface is shown in Figure 15.

Figure 15. SER as a function of rn and rp.

Results of Figure 15 confirm that increasing rp leads to a SER reduction, whereas increasing rn

produces an undesired SER increment. This SER surface can be compared to the critical charge
surface of Figure 6, where critical charge was improved as both rn and rp were increased.

FPGA‐SRAM Soft Error Radiation Hardening
http://dx.doi.org/10.5772/66195

215

If the charge collection efficiency values obtained as fitting parameters are analyzed, it is
confirmed that charge collection efficiency for electrons (ηe) is higher than for holes (ηh) [19].
In addition, critical charge for electrons (Qcrit,e) is smaller than for holes (Qcrit,h). This electron
and hole asymmetry in terms of charge collection efficiency and in terms of critical charge is
the root cause of the observed differences of SER dependency with rn and rp.

Usual 6T‐cells are designed with minimum sized access transistors (acc = min), minimum

sized pMOS (p = min), and non‐minimum‐sized nMOS (n = CR · min). The CR

parameter is called cell ratio and is usually greater than 1, being the most frequent values
between 1.5 and 2.5 as a trade‐off to assure cell stability during write and read operations [3].
Note that this cell with this transistor dimensions does not have straight diffusions. In addition,
also note that this cell has the internal latch (cross coupled inverters) equal to the ones in E cell.

From the irradiation experiments, it has been obtained that the C cell shows an SER that is a
46% of the E cell SER, that is, C cell receives less than half the number of SEUs per time unit
than E cell. Note that this improvement is achieved only by adequate transistor sizing, because
both cells (C and E) have the same area. If instead of considering this two cells, we compare
the C cell with respect to a usual cell with CR = 2, then the SER of the C cell is a 57% the SER
of the CR = 2 cell.

The effects of the transistor width modulation technique on power consumption and access
time are summarized in Table 4. For example, it can be observed that C and E cells show similar
access times and power consumption levels (although there is an increase of the energy needed
to change the logic state of the C cell, it presents lower leakage current than the E cell).

Cell type  Leakage (pW/cell)  Write energy

(fJ/cell) 

Write time (ns)  Read time (ns)  RSNM (mV)  WSNM (mV)

A 125.5 4.65 0.32 0.28 168 468

B 134.2 5.93 0.33 0.28 178 429

C 144.1 7.10 0.35 0.28 184 346

D 163.8 6.45 0.36 0.27 165 468

E 180.6 5.59 0.36 0.26 149 517

Table 4. Summary of different power, speed and stability figures of the fife different cell types.

Finally, it was also analyzed how the modulation technique affects read and write stability, by
computing two well‐known parameters: read static noise margin (RSNM) and write static
noise margin (WSNM). As it can be seen in Table 4, RSNM is not very affected. Despite that,
in [20], a technique to recover the RSNM of a 6T cell is analyzed. In addition, WSNM is
degraded in some cell types (the ones in which pMOS transistors are increased in size). To
overcome that, if needed, there are write assist techniques that could be suitable to improve
WSNM [21, 22]. However, all tested cells types are experimentally writable with no write assist
technique applied.

Field - Programmable Gate Array216

If the charge collection efficiency values obtained as fitting parameters are analyzed, it is
confirmed that charge collection efficiency for electrons (ηe) is higher than for holes (ηh) [19].
In addition, critical charge for electrons (Qcrit,e) is smaller than for holes (Qcrit,h). This electron
and hole asymmetry in terms of charge collection efficiency and in terms of critical charge is
the root cause of the observed differences of SER dependency with rn and rp.

Usual 6T‐cells are designed with minimum sized access transistors (acc = min), minimum

sized pMOS (p = min), and non‐minimum‐sized nMOS (n = CR · min). The CR

parameter is called cell ratio and is usually greater than 1, being the most frequent values
between 1.5 and 2.5 as a trade‐off to assure cell stability during write and read operations [3].
Note that this cell with this transistor dimensions does not have straight diffusions. In addition,
also note that this cell has the internal latch (cross coupled inverters) equal to the ones in E cell.

From the irradiation experiments, it has been obtained that the C cell shows an SER that is a
46% of the E cell SER, that is, C cell receives less than half the number of SEUs per time unit
than E cell. Note that this improvement is achieved only by adequate transistor sizing, because
both cells (C and E) have the same area. If instead of considering this two cells, we compare
the C cell with respect to a usual cell with CR = 2, then the SER of the C cell is a 57% the SER
of the CR = 2 cell.

The effects of the transistor width modulation technique on power consumption and access
time are summarized in Table 4. For example, it can be observed that C and E cells show similar
access times and power consumption levels (although there is an increase of the energy needed
to change the logic state of the C cell, it presents lower leakage current than the E cell).

Cell type  Leakage (pW/cell)  Write energy

(fJ/cell) 

Write time (ns)  Read time (ns)  RSNM (mV)  WSNM (mV)

A 125.5 4.65 0.32 0.28 168 468

B 134.2 5.93 0.33 0.28 178 429

C 144.1 7.10 0.35 0.28 184 346

D 163.8 6.45 0.36 0.27 165 468

E 180.6 5.59 0.36 0.26 149 517

Table 4. Summary of different power, speed and stability figures of the fife different cell types.

Finally, it was also analyzed how the modulation technique affects read and write stability, by
computing two well‐known parameters: read static noise margin (RSNM) and write static
noise margin (WSNM). As it can be seen in Table 4, RSNM is not very affected. Despite that,
in [20], a technique to recover the RSNM of a 6T cell is analyzed. In addition, WSNM is
degraded in some cell types (the ones in which pMOS transistors are increased in size). To
overcome that, if needed, there are write assist techniques that could be suitable to improve
WSNM [21, 22]. However, all tested cells types are experimentally writable with no write assist
technique applied.

Field - Programmable Gate Array216

5. Conclusions

Due to technology scaling, radiation effects have become a major concern for modern inte‐
grated circuits even at ground level. FPGA SRAMS are not an exception, and radiation effects
are even maximized, because these circuits are usually designed with transistors sizes close to
the minimum allowed by technology. The so‐called SEUs are the main radiation issue for
SRAMs. SEUs are capable of altering the memory content of SRAM cells without permanently
damaging the circuit.

A technique based on transistor width modulation was developed and tested. The technique
consists in modifying the cell transistors channel width in a way that is compatible with the
so‐called regular layouts (i.e. avoiding the formation of bends in the diffusion regions). The
main advantage of this layout scheme is that it reduces parameter variation. Nevertheless, it
imposes some geometrical restrictions over transistor sizes, so that the modulation technique
has to be designed to meet those constraints.

The technique was implemented and tested using two approaches: critical charge and
experimental SER. Critical charge is a parameter cheap and easy to obtain, because it can be
calculated using electrical simulations. However, as it was shown, it does not give a directly
accurate measurement of the robustness of an SRAM cell if transistor areas are modified.
Conversely, SER is a better parameter to assess cell robustness. The main drawback of SER is
that it can only be directly obtained with experimental measurements, which are expensive
and time consuming. After a preliminary analysis, the most interesting transistor size combi‐
nations where selected and implemented in a custom‐fabricated test chip. The test chip has
4096 cells of each one of the five selected cells types, and all of them where irradiated with
alpha particles to experimentally obtain SER.

Results show that some of the cell types are much more robust to radiation than others. In
addition, results also reveal that, while a larger critical charge can lead to a better SER, some
memory cells with higher critical charge also exhibit worst SER. This behavior was found when
increasing nMOS channel widths. This suggests that special care must be taken when com‐
paring SRAM cells with different transistor areas using critical charge as a figure of merit.
Despite that, results indicate that SER can be estimated from critical charge with a model if
some cell intrinsic cell parameters are known.

Results also show that SER is improved by increasing the pMOS transistors channel width
(Wp), and worsened when the nMOS transistors channel width is increased (Wn). For this
reason, the best way to design a hardened 6T SRAM cell is by minimizing the nMOS transistors
channel width and dedicating all additional area to increase pMOS transistor channel width.
In addition, for a 65‐nm CMOS commercial technology, SER was reduced to a 57% of the value
that conventional nonstructured layout cells exhibit. Due to careful transistor sizing, this
radiation robustness improvement was achieved with minor area penalty. However, this
hardened cells with wider pMOS transistors, also show a reduction in cell writability. To
overcome this issue, write assist techniques can be implemented. Nevertheless, if a trade‐off
between writability, area, and radiation robustness is achieved by proper transistor sizing,

FPGA‐SRAM Soft Error Radiation Hardening
http://dx.doi.org/10.5772/66195

217

hardened cells remain writable without any further action. Finally, with the modulation
technique presented in this chapter, the achieved cell radiation robustness gain is fundamen‐
tally an area trade‐off, provided that the cell remains writable. For this reason, at design level,
radiation robustness can be set as an adjustable parameter in memory compilers.

Acknowledgements

This work has been supported by the European FEDER fund and the Spanish Ministry of
Science and Innovation under Grant no. AP2006‐03170 and TEC2008‐04501 and TEC2011‐
25017 projects. It has also received funding to support competitive research groups from the
Balearic Government (2011–2013), financed jointly by FEDER fund.

In addition, I want to sincerely thank all the members of the Electronics Systems Group (GSE‐
UIB) of the University of the Balearic Islands who have contributed to this research.

Author details

Gabriel Torrens

Address all correspondence to: gabriel.torrens@uib.edu

University of the Balearic Islands, Palma de Mallorca, Spain

References

[1] Yamauchi, H. Embedded Memories for Nano‐Scale VLSIs. Aurburn: Springer Publish‐
ing Company; 2009.

[2] Yamauchi, H. Embedded SRAM circuit design technologies for a 45nm and beyond. In:
7th International Conference on ASIC; Guilin. IEEE Press; 2007. p. 1028–1033.

[3] Pavlov, A.; Sachdev, M. CMOS SRAM Circuit Design and Parametric Test in Nano‐
Scaled Technologies: Process‐Aware SRAM Design and Test. Auburn: Springer
Publishing Company; 2008.

[4] Normand, E. Single Event Effects in Avionics and on the Ground. International Journal
of High Speed Electronics and Systems. 2004;14(2): 285–298.

[5] Baumann, R. C. Soft errors in advanced semiconductor devices‐part I: the three
radiation sources. IEEE Transactions on Device and Materials Reliability. 2001;1(1):17–
22.

Field - Programmable Gate Array218

hardened cells remain writable without any further action. Finally, with the modulation
technique presented in this chapter, the achieved cell radiation robustness gain is fundamen‐
tally an area trade‐off, provided that the cell remains writable. For this reason, at design level,
radiation robustness can be set as an adjustable parameter in memory compilers.

Acknowledgements

This work has been supported by the European FEDER fund and the Spanish Ministry of
Science and Innovation under Grant no. AP2006‐03170 and TEC2008‐04501 and TEC2011‐
25017 projects. It has also received funding to support competitive research groups from the
Balearic Government (2011–2013), financed jointly by FEDER fund.

In addition, I want to sincerely thank all the members of the Electronics Systems Group (GSE‐
UIB) of the University of the Balearic Islands who have contributed to this research.

Author details

Gabriel Torrens

Address all correspondence to: gabriel.torrens@uib.edu

University of the Balearic Islands, Palma de Mallorca, Spain

References

[1] Yamauchi, H. Embedded Memories for Nano‐Scale VLSIs. Aurburn: Springer Publish‐
ing Company; 2009.

[2] Yamauchi, H. Embedded SRAM circuit design technologies for a 45nm and beyond. In:
7th International Conference on ASIC; Guilin. IEEE Press; 2007. p. 1028–1033.

[3] Pavlov, A.; Sachdev, M. CMOS SRAM Circuit Design and Parametric Test in Nano‐
Scaled Technologies: Process‐Aware SRAM Design and Test. Auburn: Springer
Publishing Company; 2008.

[4] Normand, E. Single Event Effects in Avionics and on the Ground. International Journal
of High Speed Electronics and Systems. 2004;14(2): 285–298.

[5] Baumann, R. C. Soft errors in advanced semiconductor devices‐part I: the three
radiation sources. IEEE Transactions on Device and Materials Reliability. 2001;1(1):17–
22.

Field - Programmable Gate Array218

[6] S. V. Walstra, C. Dai. Circuit‐Level Modeling of Soft Errors in Integrated Circuits. IEEE
Transactions on Device and Materials Reliability. 2005;5(3):358–364.

[7] N. Seifert, P. Slankart, M. Kirsh, B. Narasinham, V. Zia, C. Brookseron, A. Vo, S. Mitra,
B. Gill, J. Maiz. Radiation‐Induced Soft Error Rates of Advanced CMOS Bulk Devices.
In: IEEE Int. Reliability physics symposium; 2006. p. 217–224.

[8] P. Jain, V. Zhu.. Judicious Choice of Waveform Parameters and Accurate Estimation of
Critical Charge for Logic SER. In: International. Conference on Dependable Systems
and Networks.; Edinburgh, UK. IEEE/IFIP; 2007.

[9] T. Heijmen.. Factors that Impact the Critical Charge of Memory Elements. In: IOLTS
2006 Proceedings; Como, Italy. IEEE Computer Society; 2006. p. 6.

[10] M. Nicolaidis. Design for soft error mitigation. IEEE Trans. on Device and Materials
Reliability. 2005;5(3):405–418.

[11] Z. Liu, V. Kursun. Characterization of a Novel Nine‐Transistor SRAM Cell. IEEE Trans.
On VLSI systems. 2008;16(40):488–492.

[12] Ban P. Wong, Anurag Mittal, Yu Cao, and Greg Starr. Nano‐CMOS Circuit and Physical
Design. Hoboken, New Jersey: John Wiley … Sons; 2005.

[13] K. Osada. Universal‐Vdd 0.65‐2.0 V 32 kB cache using voltage‐adapted timing‐
generation scheme and a lithographical‐symmetric cell. In: IEEE International Solid‐
State Circuits Conference; 2001. p. 168–169.

[14] F. Hamzaoglu, K. Zhang, Y. Wang, H.J. Ahn, U. Bhattacharya, Z. Chen, Y.‐G. Ng, A.
Pavlov, K. Smits, M. Bohr. A 3.8 GHz 153 Mb SRAM Design With Dynamic Stability
Enhancement and Leakage Reduction in 45 nm High‐k Metal Gate CMOS Technology.
IEEE Journal of Solid‐State Circuits. 2009;44(1):148 ‐ 154.

[15] M. Yamaoka, K. Osada, K. Ishibashi. 0.4‐V Logic Library Friendly SRAM Array Using
Rectangular Diffusion Cell and Delta‐Boosted‐Array‐Voltage Scheme. IEEE Journal of
Solid‐State Circuits. 2004;39(6):934–940.

[16] N. Seifert ; P. Slankard ; M. Kirsch ; A. Vo ; S. Mitra ; B. Gill ; J. Maiz. Radiation‐Induced
Soft Error Rates of Advanced CMOS Bulk Devices. In: IEEE International Reliability
Physics Symposium Proceedings; San Jose, CA. IEEE Electron Device Society; 2006. p.
217–225.

[17] D. E. Fulkerson. An Engineering Model for Single‐Event Effects and Soft Error Rates in
Bulk CMOS. IEEE Transactions on Nuclear Science. 2011;58(2):506–515.

[18] T. Heijmen, P. Roche, G. Gasiot, K.R. Forbes, and D. Giot. A comprehensive study on
the soft‐error rate of flip‐flops from 90‐nm production libraries. IEEE Transactions on
Device and Materials Reliability. 2007;7(1):84–96.

[19] P. Hazucha, and C. Svensson. Impact of CMOS technology scaling on the atmospheric
neutron soft error rate. IEEE Transaction on Nuclear Science. 2000;47(6):2586–2594.

FPGA‐SRAM Soft Error Radiation Hardening
http://dx.doi.org/10.5772/66195

219

[20] S. Keshavarapu, S. Jain and M. Pattanaik. A New Assist Technique to Enhance the Read
and Write Margins of Low Voltage SRAM Cell. In: International Symposium on
Electronic System Design (ISED); Kolkata. IEEE Computer Society Conference Pub‐
lishing Services (CPS); 2012. p. 97–101.

[21] R. Gupta, V. Gadi, H. A. Upendar. Write Assist Scheme to Enhance SRAM Cell Relia‐
bility Using Voltage Sensing Technique. In: International Conference on Embedded
Systems; 2016. p. 318–322.

[22] S. Keshavarapu, S. Jain and M. Pattanaik. A New Assist Technique to Enhance the Read
and Write Margins of Low Voltage SRAM Cell. In: International Symposium on
Electronic System Design; 2012. p. 97–101.

Field - Programmable Gate Array220

[20] S. Keshavarapu, S. Jain and M. Pattanaik. A New Assist Technique to Enhance the Read
and Write Margins of Low Voltage SRAM Cell. In: International Symposium on
Electronic System Design (ISED); Kolkata. IEEE Computer Society Conference Pub‐
lishing Services (CPS); 2012. p. 97–101.

[21] R. Gupta, V. Gadi, H. A. Upendar. Write Assist Scheme to Enhance SRAM Cell Relia‐
bility Using Voltage Sensing Technique. In: International Conference on Embedded
Systems; 2016. p. 318–322.

[22] S. Keshavarapu, S. Jain and M. Pattanaik. A New Assist Technique to Enhance the Read
and Write Margins of Low Voltage SRAM Cell. In: International Symposium on
Electronic System Design; 2012. p. 97–101.

Field - Programmable Gate Array220

Chapter 10

Power Efficient Data-Aware SRAM Cell for SRAM-Based

FPGA Architecture

Ajay Kumar Singh

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67257

Abstract

The design of low‐power SRAM cell becomes a necessity in today's FPGAs, because
SRAM is a critical component in FPGA design and consumes a large fraction of the total
power. The present chapter provides an overview of various factors responsible for
power consumption in FPGA and discusses the design techniques of low‐power SRAM‐
based FPGA at system level, device level, and architecture levels. Finally, the chapter
proposes a data‐aware dynamic SRAM cell to control the power consumption in the cell.
Stack effect has been adopted in the design to reduce the leakage current. The various
peripheral circuits like address decoder circuit, write/read enable circuits, and sense
amplifier have been modified to implement a power‐efficient SRAM‐based FPGA.

Keywords: FPGA, ASIC, static power, dynamic power, leakage current, SRAM cell,
subthreshold cell, data‐aware SRAM cell

1. Introduction

Field programmable gate array (FPGA) is prefabricated integrated circuit (IC), which contains
programmable gate matrix to implement logic functions and interconnect resources to connect
the logic functions and I/O blocks. These interconnect resources can be electrically programmed
by the user to implement any digital circuits and systems. Due to faster time to market, lower
cost, and flexibility, FPGA prefers over ASIC (application‐specific IC) design although it has
disadvantages like larger size, slower speed, and larger power consumption. Due to the flex‐
ibility of FPGA, it is possible to partially program any portion of the FPGA depending on the
requirement even when the rest of an FPGA is still running. Computer‐aided design (CAD)
tools and architecture are the two important technologies, which differentiate FPGAs. First
memory‐based programming FPGAs were introduced in 1986 by Xilinx Inc., San Jose, CA [1].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

The programmable term in FPGA only reflects that any new function can be implemented on
the chip even after its fabrication. Programmability/reconfigurability of an FPGA is based on
an underlying programming technology, which can cause a change in behavior of a prefab‐
ricated chip. The main programming technologies used in FPGAs are static random memory
(SRAM), flash memory, and antifuse [2–5].

The SRAM‐based FPGAs provide ideal prototyping medium and are widely used to inte‐
grate FPGAs in an embedded system [6–8] due to the use of standard CMOS technologies,
higher performance, and reprogrammability. However, the larger static power consumption
in SRAM cell limits the use of SRAM‐based FPGAs in portable embedded system compared
to flash‐based FPGAs [9, 10]. The other concern related to SRAM‐based FPGA is its volatile
nature. Although the dynamic power management and duty‐cycling techniques [11, 12] have
been used to save static power during idle mode of FPGA, these techniques are not very effec‐
tive due to the energy consumption associated with the resulting reconfiguration process. Due
to large load capacitance and high access rate, SRAM cells are responsible for consuming sig‐
nificant portion of the total power of the design. Thus, SRAM power consumption is an impor‐
tant consideration for designers to find the balance between the performance and the overall
power consumption. The speed of the SRAM cell in FPGA is not a critical factor because it does
not affect the operating speed of the circuit implemented in FPGA as mentioned in ref. [13].

In this chapter, we investigate the various factors responsible for power consumption in
SRAM‐based FPGAs and review the different techniques proposed in the literature to save the
power. We will also consider the static and dynamic power in the conventional 6T SRAM cell
and its architecture. Various design techniques, presented in the literature, to reduce power
consumption in SRAM cell will be reviewed in detail with their merits and demerits. A data‐
aware power‐efficient SRAM cell will be discussed to save power and to optimize the stability.

2. SRAM‐based FPGAs

SRAM cells are the basic cells used for SRAM‐based FPGA. These cells are scattered through‐
out the design in form of an array and mainly used to program: (1) the routing interconnects
of FPGAs and (2) configurable logic blocks (CLBs) that are used to implement logic func‐
tions. SRAM‐based programming technology has become the dominant approach for FPGAs
because of its reprogrammability and the use of standard CMOS process technology, which
results in larger package density and higher speed. Due to the volatile nature of SRAM tech‐
nology, SRAM‐based FPGAs lose their configured data whenever power supply is switched
off and need to be reprogrammed every time when the power supply is turned on. Hence,
almost every system using SRAM‐based FPGAs contains an additional nonvolatile memory
such as flash programmable read only memory (PROM) or EEPROM to store the configura‐
tion data and load it into the SRAM‐based FPGA whenever power is on. In many applications,
a complex programmable logic device (CPLD) is used in addition to the external configuration
memory to perform the vital functions of the system necessary at power‐up. The first static
memory‐based FPGA (commonly called an SRAM‐based FPGA) was proposed by Wahlstrom
in 1967 [14]. This architecture is allowed for both logic and interconnection configuration using

Field - Programmable Gate Array222

The programmable term in FPGA only reflects that any new function can be implemented on
the chip even after its fabrication. Programmability/reconfigurability of an FPGA is based on
an underlying programming technology, which can cause a change in behavior of a prefab‐
ricated chip. The main programming technologies used in FPGAs are static random memory
(SRAM), flash memory, and antifuse [2–5].

The SRAM‐based FPGAs provide ideal prototyping medium and are widely used to inte‐
grate FPGAs in an embedded system [6–8] due to the use of standard CMOS technologies,
higher performance, and reprogrammability. However, the larger static power consumption
in SRAM cell limits the use of SRAM‐based FPGAs in portable embedded system compared
to flash‐based FPGAs [9, 10]. The other concern related to SRAM‐based FPGA is its volatile
nature. Although the dynamic power management and duty‐cycling techniques [11, 12] have
been used to save static power during idle mode of FPGA, these techniques are not very effec‐
tive due to the energy consumption associated with the resulting reconfiguration process. Due
to large load capacitance and high access rate, SRAM cells are responsible for consuming sig‐
nificant portion of the total power of the design. Thus, SRAM power consumption is an impor‐
tant consideration for designers to find the balance between the performance and the overall
power consumption. The speed of the SRAM cell in FPGA is not a critical factor because it does
not affect the operating speed of the circuit implemented in FPGA as mentioned in ref. [13].

In this chapter, we investigate the various factors responsible for power consumption in
SRAM‐based FPGAs and review the different techniques proposed in the literature to save the
power. We will also consider the static and dynamic power in the conventional 6T SRAM cell
and its architecture. Various design techniques, presented in the literature, to reduce power
consumption in SRAM cell will be reviewed in detail with their merits and demerits. A data‐
aware power‐efficient SRAM cell will be discussed to save power and to optimize the stability.

2. SRAM‐based FPGAs

SRAM cells are the basic cells used for SRAM‐based FPGA. These cells are scattered through‐
out the design in form of an array and mainly used to program: (1) the routing interconnects
of FPGAs and (2) configurable logic blocks (CLBs) that are used to implement logic func‐
tions. SRAM‐based programming technology has become the dominant approach for FPGAs
because of its reprogrammability and the use of standard CMOS process technology, which
results in larger package density and higher speed. Due to the volatile nature of SRAM tech‐
nology, SRAM‐based FPGAs lose their configured data whenever power supply is switched
off and need to be reprogrammed every time when the power supply is turned on. Hence,
almost every system using SRAM‐based FPGAs contains an additional nonvolatile memory
such as flash programmable read only memory (PROM) or EEPROM to store the configura‐
tion data and load it into the SRAM‐based FPGA whenever power is on. In many applications,
a complex programmable logic device (CPLD) is used in addition to the external configuration
memory to perform the vital functions of the system necessary at power‐up. The first static
memory‐based FPGA (commonly called an SRAM‐based FPGA) was proposed by Wahlstrom
in 1967 [14]. This architecture is allowed for both logic and interconnection configuration using

Field - Programmable Gate Array222

a stream of configuration bits. From a practical standpoint, an SRAM cell can be programmed
indefinite number of times. Dedicated circuitry on the FPGA initializes all the SRAM bits
on power up and configures the bits with a user‐supplied configuration. No special process‐
ing steps are needed in SRAM cells unlike other programming technologies. Although static
memory offers the most flexible approach for device programmability, it imposes a significant
area penalty per programmable switch compared to ROM implementations.

3. Power consumption in SRAM‐based FPGAs

In the recent years, the traditional FPGA research area has shifted from speed and area over‐
head issues to design of power‐efficient FPGAs due to increased applications of FPGA in por‐
table and nonportable devices. In portable devices power saving is required to enhance the
battery life time, whereas in nonmobile devices power saving decides the cost, performance,
and reliability of the device. The main sources of power consumption in FPGA are static and
dynamic power [10, 12, 15, 16].

Static power is consumed when device/system is idle and leakage current flows in the sys‐
tem. The various leakage currents in OFF transistor are subthreshold leakage current, gate‐
induced drain leakage, junction leakage current, and direct tunneling current [17–19].

Dynamic power consumption is due to the switching activity of the transistors in normal oper‐
ational mode. The dynamic power consumption depends on the parasitic capacitance, power
supply, switching activity, and frequency of operation and mathematically expressed as [20]:

 P dyn  = η  C L   V dd 2  f (1)

where CL is the load capacitance, Vdd is the power supply, f is the frequency of operation, and
η is the switching activity.

FPGA design consumes larger static power than the ASIC design due to excessive leakage
currents [21–23], which is due to more number of transistors per logic. Other components,
which are responsible for larger power consumption, are circuits used to provide flexibility
to FPGA, number of configuration bits, lookup‐tables (LUTs), and presence of large number
of programmable switches.

4. Techniques adopted to reduce power consumption in SRAM‐based
FPGA

4.1. Leakage power reduction

The important method to control the leakage current in the system is to switch off the transis‐
tors, which are not being used at that time. This can be achieved by using the dual threshold
voltage transistor FPGA routing design [24–26]. In this technique, high threshold voltage is
applied to one subset of multiplexer transistors and low threshold voltage to the rest of the

Power Efficient Data-Aware SRAM Cell for SRAM-Based FPGA Architecture
http://dx.doi.org/10.5772/67257

223

transistors. High threshold voltage controls the leakage current effectively on the cost of per‐
formance degradation. This technique increases the complexity at router level. By allowing
body‐bias effect, the threshold voltage of a multiplexer transistor, which is not a part of the
selected path, can be raised [27]. This method increases the fabrication complexity and cost.
The leakage current can also be controlled by applying negative bias voltage on the gate of
the OFF multiplexer transistor, which results in drastic drop in subthreshold current on the
cost of hardware burden [28].

Stack effect is another effective method to reduce the leakage current in any circuit [29–31].
Stack effect means two series connected OFF transistors in the same path. These two OFF
transistors offer a high resistive path to the current flow. To utilize this concept in the FPGA
design, researchers [32, 33] have introduced an extra configuration SRAM cells (redundant
cells) to allow multiple OFF transistors on unselected path. Due to redundant cell approach,
the unselected path contains two OFF transistors, which limits the subthreshold current along
the unselected path.

Calhoun et al. [34] have proposed the creation of fine‐grained “sleep region” to control the
leakage current in the system. With this technique, it becomes possible to put unused LUTs
and flip‐flops to sleep mode independently. Gayasen et al. [35] have proposed coarse‐grained
sleep strategy. In this technique, the entire region of the FPGA is partitioned into logic blocks
so that each region can be put into sleep mode independently whenever it is not used.

Several methods have been proposed by researchers to save the leakage/static power consump‐
tion in FPGA design at the architectural level [36–39]. Tran et al. [40] have proposed low‐power
FPGA architecture based on fine‐grained Vdd control scheme, called micro‐Vdd‐hopping. They
have grouped four CLB into one block to share the Vdd. In the micro‐Vdd‐hopping scheme, Vdd
of each block is varied between high and low Vdd to save power consumption without scarify‐
ing performance. In their design, they have introduced a level shifter and incorporated zigzag
power‐gating scheme to control the sneak leakage path problem. They have experimentally
observed that the dynamic power can be reduced by 86% when the required speed is half of
the highest speed. They have simulated their proposed designed at 90 nm technology and
observed that 95% static power saving on the cost of 2% area overhead. In zigzag power gating
scheme wake up time is smaller than other gating technique because the INVs and 2‐NAND are
always in between Vdd and Vss during standby mode. Since they have off‐off stacking structure,
leakage current is suppressed by an order of magnitude even if the overdrive voltage is zero.

Srinivasan et al. [41] have proposed a technique to reduce the leakage current of intercon‐
nect fabric. They have put every multiplexer in its least‐leakage state by setting its undriven
inputs to desired values with a circuit‐level modification in the routing multiplexer. The main
advantage of this technique is that it has negligible impact on the performance of the design
and has small area penalty.

In their research paper, Hasan et al. [42] have reduced the leakage current in the multiplexer‐
based interconnect matrix by controlling the inputs of unused FPGA routing multiplexers.
The simulation results on different sizes and topologies of routing multiplexers show that the
minimum leakage vector varies significantly at 22 nm compared to the 65 nm nodes because

Field - Programmable Gate Array224

transistors. High threshold voltage controls the leakage current effectively on the cost of per‐
formance degradation. This technique increases the complexity at router level. By allowing
body‐bias effect, the threshold voltage of a multiplexer transistor, which is not a part of the
selected path, can be raised [27]. This method increases the fabrication complexity and cost.
The leakage current can also be controlled by applying negative bias voltage on the gate of
the OFF multiplexer transistor, which results in drastic drop in subthreshold current on the
cost of hardware burden [28].

Stack effect is another effective method to reduce the leakage current in any circuit [29–31].
Stack effect means two series connected OFF transistors in the same path. These two OFF
transistors offer a high resistive path to the current flow. To utilize this concept in the FPGA
design, researchers [32, 33] have introduced an extra configuration SRAM cells (redundant
cells) to allow multiple OFF transistors on unselected path. Due to redundant cell approach,
the unselected path contains two OFF transistors, which limits the subthreshold current along
the unselected path.

Calhoun et al. [34] have proposed the creation of fine‐grained “sleep region” to control the
leakage current in the system. With this technique, it becomes possible to put unused LUTs
and flip‐flops to sleep mode independently. Gayasen et al. [35] have proposed coarse‐grained
sleep strategy. In this technique, the entire region of the FPGA is partitioned into logic blocks
so that each region can be put into sleep mode independently whenever it is not used.

Several methods have been proposed by researchers to save the leakage/static power consump‐
tion in FPGA design at the architectural level [36–39]. Tran et al. [40] have proposed low‐power
FPGA architecture based on fine‐grained Vdd control scheme, called micro‐Vdd‐hopping. They
have grouped four CLB into one block to share the Vdd. In the micro‐Vdd‐hopping scheme, Vdd
of each block is varied between high and low Vdd to save power consumption without scarify‐
ing performance. In their design, they have introduced a level shifter and incorporated zigzag
power‐gating scheme to control the sneak leakage path problem. They have experimentally
observed that the dynamic power can be reduced by 86% when the required speed is half of
the highest speed. They have simulated their proposed designed at 90 nm technology and
observed that 95% static power saving on the cost of 2% area overhead. In zigzag power gating
scheme wake up time is smaller than other gating technique because the INVs and 2‐NAND are
always in between Vdd and Vss during standby mode. Since they have off‐off stacking structure,
leakage current is suppressed by an order of magnitude even if the overdrive voltage is zero.

Srinivasan et al. [41] have proposed a technique to reduce the leakage current of intercon‐
nect fabric. They have put every multiplexer in its least‐leakage state by setting its undriven
inputs to desired values with a circuit‐level modification in the routing multiplexer. The main
advantage of this technique is that it has negligible impact on the performance of the design
and has small area penalty.

In their research paper, Hasan et al. [42] have reduced the leakage current in the multiplexer‐
based interconnect matrix by controlling the inputs of unused FPGA routing multiplexers.
The simulation results on different sizes and topologies of routing multiplexers show that the
minimum leakage vector varies significantly at 22 nm compared to the 65 nm nodes because

Field - Programmable Gate Array224

of higher gate leakage current and output stage loading effects. Their proposed technique
reduces the static power significantly without imposing any area overhead because most of
the routing multiplexers are unused in an FPGA.

A directional coarse‐grained power‐gated FPGA switch box and power gating aware rout‐
ing algorithm was proposed by Hoo et al. [43] to address the leakage current concern in
FPGA. After considering the trade‐offs among different PG designs, authors have considered:
(1) A novel directional coarse‐grained power‐gated FPGA switch box. (2) A power‐aware
routing algorithm to leverage on new PG architecture. In their proposed architecture, mul‐
tiple buffers in each direction of the switch box are power gated independently of the buffers
in the other directions. Due to the homogeneous structure of the switch box, proper sizing of
the sleep transistors is not an issue. To maximize the leakage reduction of the coarse‐grained
PG architecture, they have also adopted the routing algorithm. They have proposed a new
cost function for the VPR routing algorithm to support the new routing architecture.

4.2. Dynamic power reduction

Dynamic power is consumed during normal operation when switch toggles. It depends on the
frequency of the operation, load capacitance, and square of power supply as clear from Eq. (1).
The total dynamic power consumed by a device is given by the sum of the dynamic power
of each resource. Due to the programmability of the FPGA, the dynamic power is design
dependent. The important contributors for dynamic power are effective parasitic capacitance
of the resources, resource utilization, and switching activity of the resources [44]. The effec‐
tive capacitance of the resources come from parasitic capacitance of interconnect wires and
transistors. The dynamic power of the device can be reduced by addressing each of the param‐
eters in Eq. (1) effectively. Various methods have been proposed by researchers to handle
the dynamic power consummation [37, 45–47]. The general adopted methods are using clock
scheme, reducing toggling activity of the logic, reducing RAM and I/O powers.

Since faster switching logic consumes more dynamic power than the slower switching logic,
it is required to partition the clock so that the fast clock should be assigned to those portions
of the logic which require a fast clock and slow clock should be assign to those which can be
run at a slower speed. This way the switching activity of various logics can be controlled to
save the overall dynamic power [9, 10, 15].

Dynamic voltage scaling is another power‐saving design technique because supply voltage
significantly impacts power efficiency. The power supply scaling technique can be utilized
in the design of power‐efficient FPGA by considering devices like tunnel‐FET, FinFET, etc.
[48–51] because these devices can operate at ultra‐low voltage.

The dual or multi‐Vdd techniques [52–54] are other important methods to save the dynamic
power. In dual Vdd scheme, the noncritical delay circuit is connected with low power supply,
whereas delay‐critical circuit is powered by high voltage. This concept is also applied in the
FPGA design [55–57]. In heterogeneous architecture, some logic blocks are fixed to operate at
high power supply and some logic blocks (not limited by speed) are fixed to operate at low
voltage. This heterogeneous scheme helps only in small power saving due to the rigidity of

Power Efficient Data-Aware SRAM Cell for SRAM-Based FPGA Architecture
http://dx.doi.org/10.5772/67257

225

the fixed fabric and loss associated with the mandatory use of low‐Vdd in certain cases. The
dual Vdd technique cannot be applied to the interconnect wires which is the main source of
power consumption. To overcome this problem, Li et al. [58] have proposed Vdd program‐
mability technique to reduce power consumption of interconnect wire. They have selectively
applied low‐Vdd to interconnect circuits such as routing and connection switches. The Vdd
selection for different applications is obtained by programmable dual‐Vdd technique to both
logic blocks and interconnect. On average, they observed a total of 50‐55% power is reduction.

Although voltage scaling is the best way to reduce the power consumption in FPGA array,
one has to scarify the performance of the circuit. To improve the power efficiency of FPGAs with‐
out scarifying performance, Li et al. [59] have explored the different supply voltage (Vdd) levels
option. According to the authors, a predefined dual‐Vdd FPGA fabric, in general, cannot achieve
better power performance trade‐off than the Vdd scaling because the predefined dual‐Vdd fabric is
not flexible enough for a variety of applications. To address this issue they have introduced the
field programmability for the Vdd level by proposing three types of logic blocks: H‐block, L‐block,
and a p‐block as shown in Figure 1. H‐block and L‐block are connected to supply voltages VDDH
and VDDL, respectively. H‐block provides higher speed due to high supply voltage whereas L‐
block has reduced power consumption at the cost of the increased delay. They have implemented
P‐block by inserting PMOS transistors (called power switches) between the power supply rails
and the logic block. The configuration bits were used to control the switching behavior of these
switches so that an appropriate supply voltage can be chosen for the P‐block. To avoid the short
circuit current, they have introduced a level converter in between VDDH and VDDL.

Figure 1. Logic blocks in dual‐Vdd and Vdd‐programmable FPGAs [59].

Field - Programmable Gate Array226

the fixed fabric and loss associated with the mandatory use of low‐Vdd in certain cases. The
dual Vdd technique cannot be applied to the interconnect wires which is the main source of
power consumption. To overcome this problem, Li et al. [58] have proposed Vdd program‐
mability technique to reduce power consumption of interconnect wire. They have selectively
applied low‐Vdd to interconnect circuits such as routing and connection switches. The Vdd
selection for different applications is obtained by programmable dual‐Vdd technique to both
logic blocks and interconnect. On average, they observed a total of 50‐55% power is reduction.

Although voltage scaling is the best way to reduce the power consumption in FPGA array,
one has to scarify the performance of the circuit. To improve the power efficiency of FPGAs with‐
out scarifying performance, Li et al. [59] have explored the different supply voltage (Vdd) levels
option. According to the authors, a predefined dual‐Vdd FPGA fabric, in general, cannot achieve
better power performance trade‐off than the Vdd scaling because the predefined dual‐Vdd fabric is
not flexible enough for a variety of applications. To address this issue they have introduced the
field programmability for the Vdd level by proposing three types of logic blocks: H‐block, L‐block,
and a p‐block as shown in Figure 1. H‐block and L‐block are connected to supply voltages VDDH
and VDDL, respectively. H‐block provides higher speed due to high supply voltage whereas L‐
block has reduced power consumption at the cost of the increased delay. They have implemented
P‐block by inserting PMOS transistors (called power switches) between the power supply rails
and the logic block. The configuration bits were used to control the switching behavior of these
switches so that an appropriate supply voltage can be chosen for the P‐block. To avoid the short
circuit current, they have introduced a level converter in between VDDH and VDDL.

Figure 1. Logic blocks in dual‐Vdd and Vdd‐programmable FPGAs [59].

Field - Programmable Gate Array226

Selective power‐down is another method to save power in FPGA. This technique (known as
power gating) refers to shut down the power supply of certain portions of a chip which are
not performing any task for a long time to save the static power considerably. This can be
achieved by implementing a multisupply strategy in which the power grid of some blocks
is decorrelated from others in order to allow for selective shutdown. Sleep modes within
the FPGA architecture can also be deployed to selectively reduce the power supply of those
blocks, which are not in use [60, 61].

Power consumption in interconnect dominates dynamic power in FPGAs [62–64] due to
the interconnect structure, which consist of prefabricated wire segments. Each segment is
attached with used and unused switches. Wire lengths in FPGAs are generally longer than
in ASICs due to the larger area consumed by SRAM cells and circuitry. The larger power
consumption in interconnect in FPGA makes it high‐level target for power optimization.
Anderson et al. [65] have presented a novel FPGA routing switch design to reduce the leak‐
age and dynamic power consumption. The switch can be programmed to operate in any one
of the mode: high speed, low speed, or sleep mode. In high‐speed mode, power and per‐
formance characteristics are similar to those of current FPGA routing switches. Low‐power
mode offers reduced leakage and dynamic power on the cost of degraded performance. Sleep
mode, which is suitable for unused switches, reduces the static power drastically. Three key
observations (which hold for majority of Xilinx Spartan‐3 commercial FPGA and are specific
to FPGA interconnect) were made, namely (1) routing switch inputs are tolerant to “weak‐1”
signals, (2) there exists sufficient timing slack in typical FPGA designs to allow a consider‐
able fraction of routing switches to be slowed down, without impacting the overall design
performance, and (3) most routing switches simply feed other routing switches, authors have
proposed the design of new switch as shown in Figure 2. The designed switch includes par‐
allel combination of NMOS and PMOS sleep transistors which can operate in three different
modes as follows: In high‐speed mode, the PMOS is turned ON which results in full rail‐to‐
rail swing of output. The gate terminal of NMOS is left at Vdd in high‐speed mode. During
0–1 logic transition the virtual Vdd may temporarily drop below Vdd ‐ VTH, causing the NMOS
to leave cut‐off and assist with charging the switch's output load. In low‐power mode, the
PMOS is turned OFF and NMOS is turned ON. The buffer is powered by the reduced voltage,
VVD ≈ Vdd – VTH.

Clock‐gating is an effective and most widely used method to reduce the dynamic power. This
technique is based on the principle that only active portion of the system should be connected to
the clock tree and others should not be served by the clock tree. A logic circuit must be included
in the design for the selection of which portions are clocked and which portions are blocked.
This reduces switching activity which results in dynamic power saving. The clock gating can be
applied at the chip level as well as at the design level. The gating technique has been success‐
fully used in ASICs, but it is not very effective in SRAM‐based FPGAs because a large compo‐
nent of power consumption in FPGA is due to the switching activities of the clock signals along
the routing switches. For this reason, researchers investigated the possibility of modifying the
way a circuit is mapped on the FPGA array by acting on the synthesis, technology mapping,
or placement and routing algorithms [66, 67]. Since clock is distributed in the chip through the
global FPGA routing network, the placement of clock loads has a considerable impact on clock

Power Efficient Data-Aware SRAM Cell for SRAM-Based FPGA Architecture
http://dx.doi.org/10.5772/67257

227

wire usage. Clock load placement should be done in such a way that one should get lower clock
capacitance, which results in lower dynamic power consumption.

Placement and routing (P&R) on the chip also affects the dynamic power consumption because
it decides the total parasitic capacitance in the design. To minimize the parasitic capacitance,
it is essential to optimize the P&R strategy. It is always advisable to place two connected func‐
tional instances closer because it will reduce the interconnect wire‐length which in turn can
reduce the capacitive loading of the net and lead to dynamic power reduction. The modern
FPGA development software typically supports power‐driven layout to automatically accom‐
plish this task. Power‐driven layout tools examine connection between functional instances
for optimization [68–70]. Power‐analysis tools are used to further optimize the power saving.
Power‐analysis tools examine each subcomponent in a design hierarchy to highlight power
consumption. Careful examination of this information and subsequent manipulation of the
design can result in significant power savings.

Reducing the power supply of I/O can save up to 80% dynamic power. The switching activ‐
ity of I/O can be controlled by using techniques like time multiplexing, minimum I/O count
design portioning [71–73], and reducing I/O drive strength/slew rates. A considerable amount
of dynamic power can be saved by adopting differential I/O standards and resistively termi‐
nated I/O standards for highest toggling frequency and single‐ended I/O standard for low
toggling frequency.

Tsang et al. [74] have studied the effectiveness of employing precomputation in reducing dynamic
power consumption in commercial off‐the‐shelf (COTS) FPGAs. Precomputation is a high‐level
logic optimization technique that lowers power consumption of a design by disabling part of
the circuit based on a few relatively simple precomputation conditions. With careful design con‐
siderations and increased logic utilization, its associated power consumption can be reduced by
disabling much larger part of the design with negligible increase in resource overhead.

Figure 2. Proposed new programmable low‐power FPGA routing switch [65].

Field - Programmable Gate Array228

wire usage. Clock load placement should be done in such a way that one should get lower clock
capacitance, which results in lower dynamic power consumption.

Placement and routing (P&R) on the chip also affects the dynamic power consumption because
it decides the total parasitic capacitance in the design. To minimize the parasitic capacitance,
it is essential to optimize the P&R strategy. It is always advisable to place two connected func‐
tional instances closer because it will reduce the interconnect wire‐length which in turn can
reduce the capacitive loading of the net and lead to dynamic power reduction. The modern
FPGA development software typically supports power‐driven layout to automatically accom‐
plish this task. Power‐driven layout tools examine connection between functional instances
for optimization [68–70]. Power‐analysis tools are used to further optimize the power saving.
Power‐analysis tools examine each subcomponent in a design hierarchy to highlight power
consumption. Careful examination of this information and subsequent manipulation of the
design can result in significant power savings.

Reducing the power supply of I/O can save up to 80% dynamic power. The switching activ‐
ity of I/O can be controlled by using techniques like time multiplexing, minimum I/O count
design portioning [71–73], and reducing I/O drive strength/slew rates. A considerable amount
of dynamic power can be saved by adopting differential I/O standards and resistively termi‐
nated I/O standards for highest toggling frequency and single‐ended I/O standard for low
toggling frequency.

Tsang et al. [74] have studied the effectiveness of employing precomputation in reducing dynamic
power consumption in commercial off‐the‐shelf (COTS) FPGAs. Precomputation is a high‐level
logic optimization technique that lowers power consumption of a design by disabling part of
the circuit based on a few relatively simple precomputation conditions. With careful design con‐
siderations and increased logic utilization, its associated power consumption can be reduced by
disabling much larger part of the design with negligible increase in resource overhead.

Figure 2. Proposed new programmable low‐power FPGA routing switch [65].

Field - Programmable Gate Array228

In the literature, several techniques/methods are presented in detail to address the issue of
dynamic power consumption in FPGA [10, 75–77].

5. SRAM power reduction

The design of low power and high performance SRAM cell becomes a necessity in today's
FPGAs because SRAM is a critical component in FPGA design. Although SRAM‐based FPGA
acquires larger area on the chip but still one of the most useful SRAM‐based structure is the
lookup table (LUT).

SRAM‐based FPGAs such as those manufactured by Xilinx and Altera comprise the largest
fraction of the overall market. These FPGAs utilize SRAM for routing and programmability,
typically through the use of LUTs and multiplexers. Due to the large number of cells within
SRAM FPGA interconnects, a considerable leakage current (of order of milliamps) flows at
standby [78]. However, leakage current increases as process geometry shrinks which further
exacerbates the power problem. The dynamic power consumption in cell is a serious threat
because of large parasitic capacitance (due to longer metallic bitline) which results in larger
charging/discharging activity at the bitline. Study on the leakage current and dynamic power
in Xilinx Spartan‐3 FPGA [79] (Figure 3) and Xilinx Virtex‐4 [80] (Figure 4) show that the
major contributor for power consumption in FPGA is configurable SRAM; hence, the new
design technique becomes essential to increase the lifetime of the battery. Several techniques
have been proposed in the literature [81–85] to address the power consumption problem
in SRAM cell. It is worth to disable the SRAM devices that are temporarily unused. This
technique will avoid the power consumption by unused components. A system control‐
ler can deactivate the device when it is not required in the current operation, or put the
device in its sleep mode when that device will not be accessed for an extended period of
time. Implementing such a system controller in FPGA reduces the overall switching activity
of the system. As discussed by Tuan et al. [86], the data of the configurable SRAM cell alter
only when FPGA is configured. FPGA is configured only when power supply is turned on.
Therefore, it is necessary to control the leakage current in the cell during idle phase to save
the overall power.

Wang et al. [87] have proposed the design of an ultra‐low voltage 9T SRAM cell. Their
designed cell consists of a 6T SRAM part (for write operation) and a dedicated read port.
The read port comprises three NMOS transistors for realizing equalized bitline leakage and
improving bitline sensing margin in a single‐ended read bitline (RBL). The write access
paths and the data storage latch are implemented with HVT devices for leakage reduction
while the read port employs LVT devices for better performance. Their test chip shows an
improvement of 40% in energy efficiency with the minimum energy per operation of 2.07 pJ
at 0.4 V. This design increases the fabrication complexity due to the use of LVT and HVT
transistors.

Although much research has been done in order to design a power‐efficient SRAM circuit,
still interest in power‐efficient cell design at the architecture level continues to increase due

Power Efficient Data-Aware SRAM Cell for SRAM-Based FPGA Architecture
http://dx.doi.org/10.5772/67257

229

to the occupation of considerable fraction of total area on chip by configurable SRAM cells
and circuitry in the FPGA design. Ye et al. [13] have observed that more than 40% of the
total FPGA's logic block area is occupied by SRAM cells. Such huge area overhead results
in larger wire length, which leads in larger parasitic capacitance at load. This increased
capacitance increases the dynamic power consumption. The most widely used and well
accepted SRAM cell is 6T cell [88] (as shown in Figure 5) due to its symmetric structure
and larger data storage capacity. The cell has two cross‐coupled inverters which form
latch to keep the programmed data intact. Two pass transistors are used to transfer the
data from bitline to cell node (write operation) or cell node to bitline (read operation). The
actual control of the FPGA is handled by the Q and Qbar outputs. The main drawbacks
of the conventional 6T cell are: poor stability, large power consumption, and degraded
performance.

Figure 3. Leakage power breakdown in Xilinx Spartan [79].

Figure 4. Dynamic power breakdown in Xilinx Virtex‐4 [80].

Field - Programmable Gate Array230

to the occupation of considerable fraction of total area on chip by configurable SRAM cells
and circuitry in the FPGA design. Ye et al. [13] have observed that more than 40% of the
total FPGA's logic block area is occupied by SRAM cells. Such huge area overhead results
in larger wire length, which leads in larger parasitic capacitance at load. This increased
capacitance increases the dynamic power consumption. The most widely used and well
accepted SRAM cell is 6T cell [88] (as shown in Figure 5) due to its symmetric structure
and larger data storage capacity. The cell has two cross‐coupled inverters which form
latch to keep the programmed data intact. Two pass transistors are used to transfer the
data from bitline to cell node (write operation) or cell node to bitline (read operation). The
actual control of the FPGA is handled by the Q and Qbar outputs. The main drawbacks
of the conventional 6T cell are: poor stability, large power consumption, and degraded
performance.

Figure 3. Leakage power breakdown in Xilinx Spartan [79].

Figure 4. Dynamic power breakdown in Xilinx Virtex‐4 [80].

Field - Programmable Gate Array230

5.1. Subthreshold SRAM cell

Subthreshold operation is achieved when the device is allowed to operate at power supply
(Vdd) lower than its threshold voltage. Using this concept, researchers [89–94] have proposed
the subthreshold SRAM cells to reduce the overall power consumption in the cell. Teman et
al. [95] have designed a robust, low‐voltage SRAM bit cell with reduced 5 transistors com‐
pared to the standard 6T circuit. Their designed cell can operate at voltage as low as 400 mV
in a commercial 40 nm CMOS process. At this supply voltage, the proposed bit cell provides
6σ stability and an average static power reduction of 21× compared to the 6T cell. The main
drawback of the circuit is its extra processing complexity due to HVT and SVT transistors.

Calhoun et al. [90] have proposed 10T subthreshold bit cell (Figure 6). Transistors M1 through
M6 forms conventional 6T cell except that the source of M3 and M6 tie to a virtual supply volt‐
age rail (VVDD). The proposed cell has distinct read and write ports to improve the stability
of the cell. Eliminating the read SNM problem allows this bitcell to operate at half of the Vdd
of a 6T cell while retaining the same 6σ stability. Transistors M7–M10 are used to remove
the read SNM problem by buffering the stored data during read operation. M10 is mainly
included in the cell to control the leakage current. Their experimental results show that the
proposed cell saves 2.5× and 3.8× leakage power at Vdd = 0.6 V and Vdd = 0.4 V at room tem‐
perature. This saving is more aggressive (60×) when power supply is scaled down to 0.3 V.

A design of 10T SRAM is proposed by Jiangzheng et al. [96] by employing voltage lowering
techniques to effectively control the leakage current in the cell after allowing cell to operate
in subthreshold region. The proposed circuit generates a subthreshold read pulse for trans‐
ferring the data out of the SRAM. The floating write bitlines minimizes write bitline leakage
on the cost of degraded stability. Short read bitlines improve read speed and suppress read
power on the cost of area overhead.

Figure 5. Architecture of the conventional 6T SRAM cell [88].

Power Efficient Data-Aware SRAM Cell for SRAM-Based FPGA Architecture
http://dx.doi.org/10.5772/67257

231

Kushwah et al. [97] have proposed a single‐ended dynamic feedback control 8T static RAM
(SRAM) cell to enhance the static noise margin (SNM) for ultralow power supply. It achieves
write SNM of 1.4× and 1.28× as that of isoarea 6T and read‐decoupled 8T (RD‐8T), respectively
at 300 mV. The standard deviation of write SNM for 8T cell is reduced to 0.4× and 0.56× as that
for 6T and RD‐8T, respectively. The proposed 8T consumes about 0.6× less write power and
0.48× less read power than 6T cell.

5.2. Data‐aware power‐efficient SRAM cell

The main drawbacks of subthreshold cells are poor stability and degraded performance. Besides
the cell leakage, the bitline leakage is another dominating factor for power consumption. The
overall bitline power consumption is data dependent. Many data‐aware cells have been reported
in the literature to control the bitline power consumption [98–102]. Chiu et al. [103] have pro‐
posed 8T single‐ended subthreshold SRAM with cross‐point data‐aware write operation. In the
circuit write operation is performed by traditional write circuit as in 6T cell, whereas 2T stacked
read buffer is used for read operation. Due to stack read circuit, leakage current is controlled
and stability is improved. The data‐aware cross‐point write operation improves the writeability.
The main drawback of the circuit is large voltage swing on bitline during write operation.

A 130 mV SRAM with expanded write and read margins for subthreshold applications was pro‐
posed by Chang et al. [104] to reduce the voltage swing on the respective bitlines during write
operation. They have used two separate signals SCR and SCL to perform write operation. The
proper selected value of these two signals controls the write power consumption after reducing
the discharging activity at the bitline. The isolated read circuit improves the stability of the cell
on the cost of large parasitic capacitance and resource burden due to two extra signals.

Singh et al. [105] have designed a data aware dynamic 9T SRAM cell to reduce the bitline
power consumption. The dynamic nature of the cell flips the data faster at the bitline so that
the average discharging activity is reduced. The cell contains nine transistors with isolated
read and writes circuits. The write operation is performed using write signal WS. The value of

Figure 6. Architecture of 10‐T subthreshold bitcell [90].

Field - Programmable Gate Array232

Kushwah et al. [97] have proposed a single‐ended dynamic feedback control 8T static RAM
(SRAM) cell to enhance the static noise margin (SNM) for ultralow power supply. It achieves
write SNM of 1.4× and 1.28× as that of isoarea 6T and read‐decoupled 8T (RD‐8T), respectively
at 300 mV. The standard deviation of write SNM for 8T cell is reduced to 0.4× and 0.56× as that
for 6T and RD‐8T, respectively. The proposed 8T consumes about 0.6× less write power and
0.48× less read power than 6T cell.

5.2. Data‐aware power‐efficient SRAM cell

The main drawbacks of subthreshold cells are poor stability and degraded performance. Besides
the cell leakage, the bitline leakage is another dominating factor for power consumption. The
overall bitline power consumption is data dependent. Many data‐aware cells have been reported
in the literature to control the bitline power consumption [98–102]. Chiu et al. [103] have pro‐
posed 8T single‐ended subthreshold SRAM with cross‐point data‐aware write operation. In the
circuit write operation is performed by traditional write circuit as in 6T cell, whereas 2T stacked
read buffer is used for read operation. Due to stack read circuit, leakage current is controlled
and stability is improved. The data‐aware cross‐point write operation improves the writeability.
The main drawback of the circuit is large voltage swing on bitline during write operation.

A 130 mV SRAM with expanded write and read margins for subthreshold applications was pro‐
posed by Chang et al. [104] to reduce the voltage swing on the respective bitlines during write
operation. They have used two separate signals SCR and SCL to perform write operation. The
proper selected value of these two signals controls the write power consumption after reducing
the discharging activity at the bitline. The isolated read circuit improves the stability of the cell
on the cost of large parasitic capacitance and resource burden due to two extra signals.

Singh et al. [105] have designed a data aware dynamic 9T SRAM cell to reduce the bitline
power consumption. The dynamic nature of the cell flips the data faster at the bitline so that
the average discharging activity is reduced. The cell contains nine transistors with isolated
read and writes circuits. The write operation is performed using write signal WS. The value of

Figure 6. Architecture of 10‐T subthreshold bitcell [90].

Field - Programmable Gate Array232

write signal is chosen based on the write operation. The simulation results predicted the 47%
lower write power consumption compared to the 6T. They also observed that power saving
varies from 42.45 to 61.3% when no peripheral devices are included in the array during hold
mode because of lower leakage current from write bitlines and lower discharging activity at
RBL. The cell imposes hardware and wiring burden due to extra signal.

The bit‐interleaving‐enabled 8T SRAM architecture is proposed by Wen et al. [106]. The pro‐
posed cell features shared data‐aware write structure and utterly eliminates the half‐select
disturbance. In their proposed design, shared write and separated read behaviors are imple‐
mented by activating horizontal cells and vertical bitlines instead of enabling blocks. They also
proposed a reference‐based sense amplifier (SA) to coordinate the column‐selection array to
further optimize the area efficiency. The proposed SRAM operates at a frequency of 125 kHz
and consumes a total power of 5.1 μW.

5.3. Data‐dependent‐write‐assist dynamic (DDWAD) SRAM cell

Recently, we have designed a power‐efficient SRAM cell [107] by utilizing dynamic data aware
concept for write operation and stack effect to control the read leakage current. The architecture
of the cell is shown in Figure 7(a). The designed cell has distinct read and write ports with sin‐
gle bitline to improve the overall stability of the cell. To flip the data at the storage node faster
without waiting bitline BL to charge/discharge completely we have introduced a write signal
WS and broken the latch of the cell (since WL = high). To control the leakage current in read
circuit during write operation and hold mode, stack technique is (three series connected OFF
transistors in read path) used on the cost of increased delay. The write signal (WS) has been
generated according to the data to be stored at Q and Qbar with the help of circuit as shown
in Figure 7(b) [107]. During read and hold mode, WS maintains its previous value and latch
nature of the cell is restored to keep the stored data intact. The proposed cell and other cells
were simulated at layout level using Cadence 6.1 CMOS design rules for 65 nm technology.
The large write power saving (Figure 8) is due to no discharging activity at the bitline BL due
to high resistive path (NM1 Turns OFF because WS = 0 (write 1 operation)). Similarly, for WS
= high, OFF transistor PM1 does not allow any current to flow between Vdd and ground. This
causes low voltage at the storage node Q. In both write operations, a small voltage drops at BL
results in considerable dynamic power saving. Due to OFF transistors NM4 and NM6 (since
RWL = 0 during write operation) in the read path, the leakage current through RBL is restricted.

Due to the forbidden discharging of precharged RBL during read 1 operation and stack effect
in read path, a considerable power saving is achieved compared to the conventional 6T cell
(Figure 9). In hold mode, WS maintains its value due to internal latch. The static power con‐
sumption in the proposed cell is lower than the 6T cell and other proposed cells in the litera‐
ture irrespective of the power supply (Figure 10). The lower static power in the proposed cell
[107] is due to lower leakage current through write bitline BL and stack effect in read circuit.
During simulation, we observed that the proposed cell shows a nominal variation in static
power consumption with temperature, which reflects the robustness of the cell against temper‐
ature. The data at the storage nodes maintained strongly at their respective values for power
supply range of 300 mV ≤ Vddmin ≤ 400 mV. The proposed cell shows larger immunity toward
the statistical variation due to signal WS as discussed in our published paper in detail [107].

Power Efficient Data-Aware SRAM Cell for SRAM-Based FPGA Architecture
http://dx.doi.org/10.5772/67257

233

Figure 7. (a) Architecture of DDWAD SRM cell. (b) Circuit to generate appropriate WS signal depending on write
operation [107].

Field - Programmable Gate Array234

Figure 7. (a) Architecture of DDWAD SRM cell. (b) Circuit to generate appropriate WS signal depending on write
operation [107].

Field - Programmable Gate Array234

Figure 8. Total power consumption in data aware cell [107].

Figure 9. Read power consumption [107].

Figure 10. Hold leakage power at various power supplies [107].

Power Efficient Data-Aware SRAM Cell for SRAM-Based FPGA Architecture
http://dx.doi.org/10.5772/67257

235

Although the proposed cell imposes area overhead compared to the conventional 6T cell, it
is not a serious threat in FPGA implementation because of lower leakage current through
bitline, more number of cells can be connected on a single bitline in the array.

In SRAM‐based FPGA memory accesses are performed with a designed clock and series of inter‐
face circuits like row/column decoder, write/read enabled circuit, etc. These peripheral circuits
consume a considerable power in the chip. To implement an array using the proposed cell, we
have adopted the hierarchical design approach in which instead of giving individual signals (WS,
WL, and RWL) to each cell, global signal circuits are used [108]. The main advantage of using the
hierarchical design is the use of shorter wires within local blocks, which reduces parasitic capaci‐
tances. In this approach, at one time only one block address can be activated which saves consid‐
erable power. Each global signal is connected to corresponding local signal through NMOS pass
transistor to save the area. The column‐based approach is adopted in which signal WS is routed
parallel to write bitline BL. To avoid the column half selected disturbance in the array due to tog‐
gle of the signal WS during write operation, we proposed a circuit as shown in Figure 7(b) [107].

5.4. Proposed decoder circuits and sense amplifier

The most important signals that affect the power dissipation in SRAM memory are the
address lines, read and write enable circuits, block select, and sense amplifier. To address
these concerns, we have designed new architectures for these circuits to reduce the power
consumptions. The detail about these circuits is available in our published work [108, 109].

The proposed column decoder circuit is shown in Figure 11 [108], where CLj represents the address
of the columns to be selected (j is an integer number). The architecture of the other decoder cir‐
cuits is explained in Ref. [108]. Since the proposed decoder is implemented without using NAND
gates as in the conventional decoder, the number of transistors is reduced to 546 compared to
1939 in the conventional decoder [108]. The reduced number of transistor results in lower para‐
sitic capacitance, which leads to approximately 76% power saving [108]. The proposed WL driver
consumes lower power compared to other designs due to the compactness of the circuit.

As we know most of the current will be dissipated in the SRAM cell by sense amplifier. To
address this issue we have also designed a single‐ended sense amplifier [109]. The proposed
SA (sense amplifier) reduces the power consumption by controlling the leakage current dur‐
ing evaluation/precharge mode. The circuit can be used even at higher temperature with
minimum power consumption. The working of the circuit is explained in detail in Ref. [109].

Table 1 gives the comparison of read power consumption in various sense amplifiers. The
main reason for lower power consumption in the proposed circuit is due to lower average
current during evaluation mode, small voltage drops on RBL, and lower leakage current com‐
pared to other circuits [110, 111]. During hold mode, power consumption in the proposed
circuit is lower than the other circuits [110, 111] due to gating effect.

We have implemented 32Kb SRAM array using the proposed cell and proposed decoder cir‐
cuits/sense amplifier. The simulation results were compared with ref. [112] array. The results
were encouraging in terms of power consumption as seen in Figures 12 and 13, respectively.
The lower hold power obtained in the implemented cache is due to write signal WS and stack
effect (read path).

Field - Programmable Gate Array236

Although the proposed cell imposes area overhead compared to the conventional 6T cell, it
is not a serious threat in FPGA implementation because of lower leakage current through
bitline, more number of cells can be connected on a single bitline in the array.

In SRAM‐based FPGA memory accesses are performed with a designed clock and series of inter‐
face circuits like row/column decoder, write/read enabled circuit, etc. These peripheral circuits
consume a considerable power in the chip. To implement an array using the proposed cell, we
have adopted the hierarchical design approach in which instead of giving individual signals (WS,
WL, and RWL) to each cell, global signal circuits are used [108]. The main advantage of using the
hierarchical design is the use of shorter wires within local blocks, which reduces parasitic capaci‐
tances. In this approach, at one time only one block address can be activated which saves consid‐
erable power. Each global signal is connected to corresponding local signal through NMOS pass
transistor to save the area. The column‐based approach is adopted in which signal WS is routed
parallel to write bitline BL. To avoid the column half selected disturbance in the array due to tog‐
gle of the signal WS during write operation, we proposed a circuit as shown in Figure 7(b) [107].

5.4. Proposed decoder circuits and sense amplifier

The most important signals that affect the power dissipation in SRAM memory are the
address lines, read and write enable circuits, block select, and sense amplifier. To address
these concerns, we have designed new architectures for these circuits to reduce the power
consumptions. The detail about these circuits is available in our published work [108, 109].

The proposed column decoder circuit is shown in Figure 11 [108], where CLj represents the address
of the columns to be selected (j is an integer number). The architecture of the other decoder cir‐
cuits is explained in Ref. [108]. Since the proposed decoder is implemented without using NAND
gates as in the conventional decoder, the number of transistors is reduced to 546 compared to
1939 in the conventional decoder [108]. The reduced number of transistor results in lower para‐
sitic capacitance, which leads to approximately 76% power saving [108]. The proposed WL driver
consumes lower power compared to other designs due to the compactness of the circuit.

As we know most of the current will be dissipated in the SRAM cell by sense amplifier. To
address this issue we have also designed a single‐ended sense amplifier [109]. The proposed
SA (sense amplifier) reduces the power consumption by controlling the leakage current dur‐
ing evaluation/precharge mode. The circuit can be used even at higher temperature with
minimum power consumption. The working of the circuit is explained in detail in Ref. [109].

Table 1 gives the comparison of read power consumption in various sense amplifiers. The
main reason for lower power consumption in the proposed circuit is due to lower average
current during evaluation mode, small voltage drops on RBL, and lower leakage current com‐
pared to other circuits [110, 111]. During hold mode, power consumption in the proposed
circuit is lower than the other circuits [110, 111] due to gating effect.

We have implemented 32Kb SRAM array using the proposed cell and proposed decoder cir‐
cuits/sense amplifier. The simulation results were compared with ref. [112] array. The results
were encouraging in terms of power consumption as seen in Figures 12 and 13, respectively.
The lower hold power obtained in the implemented cache is due to write signal WS and stack
effect (read path).

Field - Programmable Gate Array236

The overall reduction in dynamic and static power in the proposed cell, decoder, and sense
amplifier make them an ideal choice for the implementation of power‐efficient and reliable
SRAM‐based FPGA.

Figure 11. Proposed decoder [108].

Type of circuit Read power consumption (µW)

Read 0 Read 1

Proposed 7.768 8.699

Ref. [110] 26.674 59.856

Ref. [111] 77.840 18.795

Table 1. Read power consumption in various SA [109].

Power Efficient Data-Aware SRAM Cell for SRAM-Based FPGA Architecture
http://dx.doi.org/10.5772/67257

237

6. Conclusion

The various issues related with the power consumption in FPGA have been discussed in
detail with solutions/techniques as presented in the literature. Power gating/clock gating,
dual threshold/multithreshold voltage, programmable Vdd, etc. are the important and well‐
accepted methods to control the static and dynamic power consumption in the SRAM‐based
FPGA. SRAM is the basic component used in the implementation of SRAM‐based FPGA and
occupies larger area in the chip and consumes considerable amount of static/dynamic power.
The power consumption in the cell can be reduced by reducing the bitline length, design‐
ing compact peripheral circuits, or improving the cell at the architecture level. Researchers
have proposed subthreshold SRAM cell to reduce the power consumption but it degrades
the reliability of the cell. To address dynamic power and static power consumption in the
cell, a data aware cell is proposed with isolated write and read ports. Both operations are per‐
formed on single bitline. Power‐efficient peripheral circuits like write/read decoder, address
decoder circuit, and sense amplifier were also presented in the chapter to realize the SRAM

Figure 12. Write power consumption in 32 kb SRAM array.

Figure 13. Read power consumption in 32 kb array.

Field - Programmable Gate Array238

6. Conclusion

The various issues related with the power consumption in FPGA have been discussed in
detail with solutions/techniques as presented in the literature. Power gating/clock gating,
dual threshold/multithreshold voltage, programmable Vdd, etc. are the important and well‐
accepted methods to control the static and dynamic power consumption in the SRAM‐based
FPGA. SRAM is the basic component used in the implementation of SRAM‐based FPGA and
occupies larger area in the chip and consumes considerable amount of static/dynamic power.
The power consumption in the cell can be reduced by reducing the bitline length, design‐
ing compact peripheral circuits, or improving the cell at the architecture level. Researchers
have proposed subthreshold SRAM cell to reduce the power consumption but it degrades
the reliability of the cell. To address dynamic power and static power consumption in the
cell, a data aware cell is proposed with isolated write and read ports. Both operations are per‐
formed on single bitline. Power‐efficient peripheral circuits like write/read decoder, address
decoder circuit, and sense amplifier were also presented in the chapter to realize the SRAM

Figure 12. Write power consumption in 32 kb SRAM array.

Figure 13. Read power consumption in 32 kb array.

Field - Programmable Gate Array238

array. The proposed cell and implemented array consume lower overall power due to lower
discharging activity at BL and leakage current control due to stack effect. The area overhead
in the proposed cell is not a serious threat in the implementation of array because of lower
bitline leakage more number of cells can be connected on the same bitline.

Author details

Ajay Kumar Singh

Address all correspondence to: aks_1993@yahoo.co.uk

Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia

References

[1] W.S. Carter, K. Duong, R.H. Freeman, H.C. Hsieh, J.Y. Ja, J.E. Mahoney, L.T. Ngo, and
S.L. Sze, “A user programmable reconfigurable logic array,” in IEEE 1986 Custom
Integrated Circuits Conferences, pp. 233–235, 1986.

[2] A. Gupta, V. Aggarwal, R. Patel, P. Chalasani, D. Chu, P. Seeni, P. Liu, J. Wu, and G.
Kaat, “A user configurable gate array using CMOSEPROM technology,” in Proceedings
of Custom Integrated Circuits Conferences, pp. 31.7.1–31.7.4, 1990.

[3] J. Birkner et al., “A very‐high‐speed field‐programmable gate array using metal‐to‐metal
antifuse programmable elements,” Microelectronics Journal, vol. 23, pp. 561–568, 1992.

[4] D. Tavana, W. Yee, S. Young, and B. Fawcett, “Logic block and routing considerations for
a new SRAM‐based FPGA architecture,” in Proceedings of Custom Integrated Circuits
Conferences, pp. 511–514, 1995.

[5] R. Patel et al., “A 90.7 MHz‐2.5 million transistors CMOS PLD with JTAG boundary
scan and in‐system programmability,” in Proceedings of Custom Integrated Circuits
Conferences, pp. 507–510, 1995.

[6] P. Chow, S.O. Seo, J. Rose, K. Chung, G. P’aez‐Monz’on, and I. Rahardja, “The design of an
SRAM‐based field‐programmable gate array—part I: Architecture,” IEEE Transanctions
on Very Large Scale Integration (VLSI) SYSTEMS, vol. 7, no. 2, pp. 191–197, 1999.

[7] P. Graham, M. Caffrey, J. Zimmerman, D.E. Johnson, P. Sundararajan, and C. Patterson,
“Consequences and categories of SRAM FPGA configuration SEUs,” Proceedings of
the Military and Aerospace Applications of Programmable Logic Devices (MAPLD),
Washington DC, September 2003.

[8] C. Bolchini, A. Miele, and C. Sandionigi, “A novel design methodology for implementing
reliability ‐ aware system on SRAM based FPGAs”, IEEE Transactions on Computers,
vol. 60, no. 12, pp. 1744–1758, 2011.

Power Efficient Data-Aware SRAM Cell for SRAM-Based FPGA Architecture
http://dx.doi.org/10.5772/67257

239

[9] J. Lamoureux and W. Luk, “An overview of low‐power techniques for field‐program‐
mable gate arrays”, Proceedings of IEEE NASA/ESA Conference on Adaptive Hardware
and Systems, pp. 338–345, 2008.

[10] P. Singh and S.K. Vishvakarma, “Device/circuit/architectural techniques for ultra‐low power
FPGA design,” Microelectronics and Solid‐State Electronics, vol. 2, no. 2A, pp. 1–15, 2013.

[11] I. Brynjolfson and Z. Zilic, “Dynamic clock management for low‐power applications in
FPGAs”, Proceedings of IEEE Custom Integrated Circuits Conference, pp. 139–142, 2000.

[12] K. Shahzad and B. Oelmann, “Investigation of energy consumption of an SRAM‐based
FPGA for duty‐cycle applications”, in ParaFPGA2013, Parallel Computing with FPGAs,
Munich, Germany, 10–13 September 2013.

[13] A. Ye, J. Rose, and D. Lewis, “Using multi‐bit logic blocks and automated packing to
improve field‐programmable data path circuits”, in IEEE International Conference on
Field‐Programmable Technology, pp. 129–136, Brisbane, Australia, 2004.

[14] S.E. Wahlstrom, “Programmable Logic arrays — cheaper by the millions,” Electronics,
vol. 40, pp. 90–95, 1967.

[15] N. Grover and M.K. Soni, “Reduction of power consumption in FPGAs – an overview,”
Information Engineering and Electronic Business, vol. 5, pp. 50–69, 2012.

[16] J. Tarrillo and F.L. Kastensmidt, “Estimating power consumption of multiple modular
redundant designs in SRAM‐based FPGAs for high dependable applications,” in 24th
International Workshop on Power and Timing Modeling, Optimization and Simulation
(PATMOS), 2014.

[17] K. Roy, S. Mukhopadhyay, and H. Mahmoodi‐Meimand, “Leakage current mecha‐
nisms and leakage reduction techniques in deep‐submicrometer CMOS circuits,” IEEE
Proceeding, vol. 91, no. 2, pp. 305–327, 2003.

[18] P.F. Butzen and R.P. Ribas, “Leakage current in sub‐micrometer CMOS gates,” University
of Federal do Rio Grande do Sul, 2005.

[19] Y.‐B. Kim, “Challenges for nanoscale MOSFETs and emerging nanoelectronics,”
Transaction on Electrical and Electronic Materials,” vol. 11, no. 3, pp. 93–105, 2010.

[20] N.H.E. Weste, D. Harris, and A. Banerjee, “CMOS VLSI Design a Circuits and
Systems Perspective,” 4th Edition, Addison‐Wesley, ISBN 10: 0‐321‐54774‐8, ISBN 13:
978‐0‐321‐54774‐3, UK, 2005.

[21] D. Rittman, “Structured ASIC design: A new design paradigm beyond ASIC, FPGA and
SoC”, 2004. http://www.tayden.com/publications/Structured %20ASIC%20Design.pdf.

[22] S.M.H. Ho, “Structured ASIC: Methodology and comparison,” Proceedings of 2010
International Conference Field‐Programmable Technology (FPT), pp. 377–380, 2010.

[23] Y. Cai, K. Mai, and O. Mutlu, “Comparative evaluation of FPGA and ASIC imple‐
mentations of buffer less and buffered routing algorithms for on‐chip networks,” in

Field - Programmable Gate Array240

[9] J. Lamoureux and W. Luk, “An overview of low‐power techniques for field‐program‐
mable gate arrays”, Proceedings of IEEE NASA/ESA Conference on Adaptive Hardware
and Systems, pp. 338–345, 2008.

[10] P. Singh and S.K. Vishvakarma, “Device/circuit/architectural techniques for ultra‐low power
FPGA design,” Microelectronics and Solid‐State Electronics, vol. 2, no. 2A, pp. 1–15, 2013.

[11] I. Brynjolfson and Z. Zilic, “Dynamic clock management for low‐power applications in
FPGAs”, Proceedings of IEEE Custom Integrated Circuits Conference, pp. 139–142, 2000.

[12] K. Shahzad and B. Oelmann, “Investigation of energy consumption of an SRAM‐based
FPGA for duty‐cycle applications”, in ParaFPGA2013, Parallel Computing with FPGAs,
Munich, Germany, 10–13 September 2013.

[13] A. Ye, J. Rose, and D. Lewis, “Using multi‐bit logic blocks and automated packing to
improve field‐programmable data path circuits”, in IEEE International Conference on
Field‐Programmable Technology, pp. 129–136, Brisbane, Australia, 2004.

[14] S.E. Wahlstrom, “Programmable Logic arrays — cheaper by the millions,” Electronics,
vol. 40, pp. 90–95, 1967.

[15] N. Grover and M.K. Soni, “Reduction of power consumption in FPGAs – an overview,”
Information Engineering and Electronic Business, vol. 5, pp. 50–69, 2012.

[16] J. Tarrillo and F.L. Kastensmidt, “Estimating power consumption of multiple modular
redundant designs in SRAM‐based FPGAs for high dependable applications,” in 24th
International Workshop on Power and Timing Modeling, Optimization and Simulation
(PATMOS), 2014.

[17] K. Roy, S. Mukhopadhyay, and H. Mahmoodi‐Meimand, “Leakage current mecha‐
nisms and leakage reduction techniques in deep‐submicrometer CMOS circuits,” IEEE
Proceeding, vol. 91, no. 2, pp. 305–327, 2003.

[18] P.F. Butzen and R.P. Ribas, “Leakage current in sub‐micrometer CMOS gates,” University
of Federal do Rio Grande do Sul, 2005.

[19] Y.‐B. Kim, “Challenges for nanoscale MOSFETs and emerging nanoelectronics,”
Transaction on Electrical and Electronic Materials,” vol. 11, no. 3, pp. 93–105, 2010.

[20] N.H.E. Weste, D. Harris, and A. Banerjee, “CMOS VLSI Design a Circuits and
Systems Perspective,” 4th Edition, Addison‐Wesley, ISBN 10: 0‐321‐54774‐8, ISBN 13:
978‐0‐321‐54774‐3, UK, 2005.

[21] D. Rittman, “Structured ASIC design: A new design paradigm beyond ASIC, FPGA and
SoC”, 2004. http://www.tayden.com/publications/Structured %20ASIC%20Design.pdf.

[22] S.M.H. Ho, “Structured ASIC: Methodology and comparison,” Proceedings of 2010
International Conference Field‐Programmable Technology (FPT), pp. 377–380, 2010.

[23] Y. Cai, K. Mai, and O. Mutlu, “Comparative evaluation of FPGA and ASIC imple‐
mentations of buffer less and buffered routing algorithms for on‐chip networks,” in

Field - Programmable Gate Array240

Proceedings of the International Symposium on Quality Electronic Design (ISQED), pp.
475–484, 2015.

[24] F. Li, Y. Lin, L. He, and J. Cong, “Low‐power FPGA using pre‐defined dual‐Vdd/
dual‐Vt fabrics”, in Proceedings of ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pp. 42–50, 2004.

[25] A. Kumar and M. Anis, “Dual‐threshold CAD framework for subthreshold leakage
power aware FPGAs,” in IEEE Transactions of Computer‐Aided Design of Integrated
Circuits and Systems, vol. 26, no. 1, pp. 53–66, 2007.

[26] R. Jaramillo‐Ramirez and M. Anis, “A dual‐threshold FPGA routing design for sub‐
threshold leakage reduction,” in 2007 IEEE International Symposium on Circuits and
Systems, New Orleans USA, pp. 3724–3727, 27–30 May 2007.

[27] S. Bae, R. Krishnan, and N. Vijaykrishnan, “A novel low area overhead body bias FPGA
architecture for low power applications,” IEEE Computer Society Annual Symposium
on VLSI, pp. 193–198, 2009.

[28] J.H. Anderson, and F.N. Najm, “Active leakage power optimization for FPGAs,” IEEE
Transactions on Computer‐Aided Design of Integrated Circuits and Systems, vol. 25, no.
3, pp. 423–437, 2006.

[29] S. Narendra, S. Borkar, V. De, D. Antoniadis, and A. Chandrakasan, “Scaling of stack
effect and its application for leakage reduction”, in Proceedings of International
Symposium on Low Power Electronic Design (ISLPED), pp. 195–200, 2001.

[30] F. Fallah and M. Pedram, “Standby and active leakage current control and minimization
in CMOS VLSI circuits”, IEICE Transactions on Electronics (Special Section on Low‐
Power LSI and Low‐Power IP), vol. E88‐C, no. 4, pp. 509–519, 2005.

[31] P.E. Gaillardon, E. Beigne, S. Lesecq, and G. De Micheli, “A survey on low‐power
techniques with emerging technologies: From devices to systems”, ACM Journal on
Emerging Technologies in Computing Systems, vo. 12, no.2, 2015, pp. 12.1–12.26.

[32] A.A.M. Bsoul and S.J.E. Wilton, “An FPGA architecture supporting dynamically con‐
trolled power gating,” in International Conference on Field‐Programmable Technology,
ser. FPT'10, pp. 1–8, 2010.

[33] M.K.J. Hussein and M. Hart, “Lowering power at 28 nm with Xilinx 7 series devices,”
Xilinx, White Paper, WP389 (v1.2), 2013.

[34] B. Calhoun, F. Honore, and A. Chandrakasan, “Design methodology for fine‐grained
leakage control in MTCMOS,” in Proceedings of IEEE International Symposium on Low
Power Electronics and Design (ISLPED), 2003.

[35] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. Irwin, and T. Tuan, “Reducing
leakage energy in FPGAs using region‐constrained placement”, Proc. ACM/SIGDA Int.
Symp. Field Programmable Gate Arrays, pp. 51–58, 2004.

Power Efficient Data-Aware SRAM Cell for SRAM-Based FPGA Architecture
http://dx.doi.org/10.5772/67257

241

[36] V. George and J. Rabaey, “Low‐Energy FPGAs: Architecture and Design,” Kluwer
Publication, New York, 2001.

[37] K. Poon, A. Yan, and S.J.E. Wilton, “A flexible power model for FPGAs”, in Proceedings
of Int. Conf. Field Programmable Logic and Applications, pp. 312–321, 2002.

[38] J. Lach, J. Brandon, and K. Skadron. “A general post‐processing approach to leakage
current reduction in SRAM‐based FPGAs.” In International Conference on Computer
Design, 2004.

[39] R. Ahmed, “Towards High‐Level Leakage Power Reduction Techniques for FPGAs,”
PhD Thesis, College of Graduate Studies (Electrical Engineering), University of British
Columbia (Okanagan), 2015.

[40] C.Q. Tran, H. Kawaguchi, and T. Sakurai, “The 95% leakage reduced FPGA using zig‐
zag power‐gating, Dual‐VTH/VDD and Micro VDD hopping,” in 2005 Asian Solid‐State
Circuits Conference, Hsinchu, pp. 149–152, 2005.

[41] S. Srinivasan, A. Gayasen, and T. Tuan, “Leakage control in FPGA routing fabric”, in
Proceedings of Asia South Pacific Design Automation Conference, pp. 661–664, 2005.

[42] M. Hasan, A.K. Kureshi, and T. Arslan. “Leakage reduction in FPGA routing multiplex‐
ers,” in 2009 IEEE International Symposium on Circuits and Systems, Taipei, pp. 129–
1132, 24–27 May 2009.

[43] C.H. Hoo, Y. Ha, and A. Kumar, “A directional coarse‐grained power gated FPGA switch
box and power gating aware routing algorithm”, in Proceedings of 23rd International
Conference on Field Programmable Logic and Applications (FPL), pp. 1–4, 2013.

[44] J. Anderson and F. Najm, “Power estimation techniques for fpgas,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 10, 2004.

[45] F. Li, Y. Lin, L. He, D. Chen, and J. Cong, “Power Modeling and Characteristics of Field
Programmable Gate Arrays, “IEEE Transactions on Computer‐Aided Design Integrated
Circuits and Systems, vol. 24, no. 11, pp. 1712–1724, 2005.

[46] J.H. Anderson, “Power optimization and prediction techniques for FPGAs”, Department
of Electrical and Computer Engineering, Univeristy of Toronto, 2005.

[47] J.R. Templin and J.R. Hamle, “A new power‐aware FPGA design metrics,” Journal of
Cryptographic Engineering, vol. 5, no. 1, pp. 1–11, 2015.

[48] R. Mukundrajan, “Tunnel FET based field programmable gate arrays”, PhD Thesis, The
Graduate School, College of Engineering, The Pennsylvania State University, USA, 2011.

[49] M. Abusltan and S.P. Khatri, “A comparison of FinFET based FPGA LUT design,” in
Proceeding GLSVLSI'14, 24th Edition of Great Lakes Symposium on VLSI, pp. 353–358,
2014.

[50] M.M. El‐Din, H. Mostafa, H.A.H. Fahmy, Y. Ismail, and H. Abdelhamid, “Performance
evaluation of FinFET‐based FPGA cluster under threshold voltage variation,” in

Field - Programmable Gate Array242

[36] V. George and J. Rabaey, “Low‐Energy FPGAs: Architecture and Design,” Kluwer
Publication, New York, 2001.

[37] K. Poon, A. Yan, and S.J.E. Wilton, “A flexible power model for FPGAs”, in Proceedings
of Int. Conf. Field Programmable Logic and Applications, pp. 312–321, 2002.

[38] J. Lach, J. Brandon, and K. Skadron. “A general post‐processing approach to leakage
current reduction in SRAM‐based FPGAs.” In International Conference on Computer
Design, 2004.

[39] R. Ahmed, “Towards High‐Level Leakage Power Reduction Techniques for FPGAs,”
PhD Thesis, College of Graduate Studies (Electrical Engineering), University of British
Columbia (Okanagan), 2015.

[40] C.Q. Tran, H. Kawaguchi, and T. Sakurai, “The 95% leakage reduced FPGA using zig‐
zag power‐gating, Dual‐VTH/VDD and Micro VDD hopping,” in 2005 Asian Solid‐State
Circuits Conference, Hsinchu, pp. 149–152, 2005.

[41] S. Srinivasan, A. Gayasen, and T. Tuan, “Leakage control in FPGA routing fabric”, in
Proceedings of Asia South Pacific Design Automation Conference, pp. 661–664, 2005.

[42] M. Hasan, A.K. Kureshi, and T. Arslan. “Leakage reduction in FPGA routing multiplex‐
ers,” in 2009 IEEE International Symposium on Circuits and Systems, Taipei, pp. 129–
1132, 24–27 May 2009.

[43] C.H. Hoo, Y. Ha, and A. Kumar, “A directional coarse‐grained power gated FPGA switch
box and power gating aware routing algorithm”, in Proceedings of 23rd International
Conference on Field Programmable Logic and Applications (FPL), pp. 1–4, 2013.

[44] J. Anderson and F. Najm, “Power estimation techniques for fpgas,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 10, 2004.

[45] F. Li, Y. Lin, L. He, D. Chen, and J. Cong, “Power Modeling and Characteristics of Field
Programmable Gate Arrays, “IEEE Transactions on Computer‐Aided Design Integrated
Circuits and Systems, vol. 24, no. 11, pp. 1712–1724, 2005.

[46] J.H. Anderson, “Power optimization and prediction techniques for FPGAs”, Department
of Electrical and Computer Engineering, Univeristy of Toronto, 2005.

[47] J.R. Templin and J.R. Hamle, “A new power‐aware FPGA design metrics,” Journal of
Cryptographic Engineering, vol. 5, no. 1, pp. 1–11, 2015.

[48] R. Mukundrajan, “Tunnel FET based field programmable gate arrays”, PhD Thesis, The
Graduate School, College of Engineering, The Pennsylvania State University, USA, 2011.

[49] M. Abusltan and S.P. Khatri, “A comparison of FinFET based FPGA LUT design,” in
Proceeding GLSVLSI'14, 24th Edition of Great Lakes Symposium on VLSI, pp. 353–358,
2014.

[50] M.M. El‐Din, H. Mostafa, H.A.H. Fahmy, Y. Ismail, and H. Abdelhamid, “Performance
evaluation of FinFET‐based FPGA cluster under threshold voltage variation,” in

Field - Programmable Gate Array242

13th International Conference on New Circuits and Systems Conference (NEWCAS),
Grenoble, pp. 1–4, 7–10 June 2015.

[51] A. Davidson, “A new FPGA architecture and leading‐edge FinFET process technology
promise to meet next generation system requirements,” High‐End FPGA Products, San
Jose, CA, June 2015.

[52] W. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, M.J. Irwin, and Y. Tsai, “Total power
optimization through simultaneously multiple‐VDD multiple‐VTH assignment and
device sizing with stack forcing,” ISLPED'04, Newport Beach, California, USA, August
9–11, 2004.

[53] H.S. Deogun, R. Senger, D. Sylvester, R. Brown, and K. Nowka, “A dual‐VDD boosted
pulsed bus technique for low power and low leakage operation,” in ISLPED'06
Proceeding of the 2006 International Symposium on Low Power Electronics and Design,
pp. 73–78, 2006.

[54] K. Kim and V.D. Agrawal, “Ultra low energy CMOS logic using below‐threshold dual‐
voltage supply,” Journal of Low Power Electronics, vol. 7, pp. 1–11, 2011.

[55] A. Gayasen, K. Lee, N. Vijaykrishnan, M. Kandemir, M. Irwin, and T. Tuan, “A dual‐Vdd
low power FPGA architecture”, in Proceedings of International Conference on Field
Programmable Logic and Applications, pp. 145–157, 2004.

[56] F. Li, Y. Lin, H. Lei, and J. Cong, “Low‐power FPGA using pre‐defined dual‐Vdd/Dual‐
Vt FABRICS”, in FPGA'04, Monterey, California, USA, 22–24February 2004.

[57] R. Mukherjee and S. Ogrenci, “Mimic evaluation of dual VDD fabrics for low power
FPGAs,” in Proceedings of Asia and South Pacific Design Automation Conference, pp.
1240–1243, 2005.

[58] F. Li, Y. Lin, and L. He, “Vdd programmability to reduce FPGA interconnect power”, in
Proceedings of International Conference on Computer‐Aided Design, pp. 760–765, 2004.

[59] F. Li, Y. Lin, and L. He, “Field programmability of supply voltages for FPGA power
reduction”, IEEE Transactions on Computer‐Aided Design of Integrated Circuits and
Systems, vol. 26, no. 4, pp. 752–764, 2007.

[60] Y. Meng, T. Sherwood, and R. Kastner, “Leakage power reduction of embedded memo‐
ries on FPGAs through location assignment”, in DAC 2006, July 24–28, San Francisco,
California, USA, 2006.

[61] I. Ashraf, F. Boccardi, and L. Ho, “Alcatel‐Lucent, SLEEP mode techniques for small cell
deployments”, in IEEE Communications Magazine, pp. 72–79, August 2011.

[62] M. Lin and A. El Gamal, “A low‐power field‐programmable gate array routing fabric”,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 10, pp.
1481–1494, 2009.

[63] S.D. Pable and M. Hasan, “Performance analysis of FPGA interconnect fabric for ultra‐
low power applications”, in ICCCS'11, Rourkela, Odisha, India, 12–14 February 2011.

Power Efficient Data-Aware SRAM Cell for SRAM-Based FPGA Architecture
http://dx.doi.org/10.5772/67257

243

[64] K. Siozios, F. Pavlidis, and D. Soudris, “A novel framework for exploring 3‐D FPGAs with
heterogeneous interconnect fabric”, ACM Transactions on Reconfigurable Technology
and Systems, vol. 5, no. 1, article 4, pp. 4:1–4:23, 2012.

[65] J. Anderson and F. Najm, “A novel low‐power FPGA routing switch”, in Proceedings of
IEEE Custom Integrated Circuits Conference, pp. 719–722, 2004.

[66] T. Gao, K.C. Chen, J. Cong, Y. Ding, and C.L. Liu, “Placement and placement driven
technology mapping for FPGA synthesis”, in Proceedings of IEEE International ASIC
Conference, pp. 87–91, 1993.

[67] E. Bozorgzadeh, S.O. Memik, X. Yang, and M. Sarrafzadeh, “Routability‐driven pack‐
ing: Metrics and algorithms for cluster‐based FPGAs,” Journal of Circuits, Systems and
Computers, vol. 13, no. 1, pp. 77–100, 2004.

[68] M. Xu and F.J. Kurdahi, “Layout‐driven high level synthesis for FPGA based architec‐
tures”, in Proceeding of the Conference on Design, Automation and Test in Europe,
DATE'98, pp. 446–450, 1998.

[69] D.P. Singh and S.D. Brown, “Incremental placement for layout‐driven optimizations on
FPGAs”, Proc. Int. Conf. Comput.‐Aided Des., pp. 752–759, 2002.

[70] V. Betz and J. Rose, “Circuit design, transistor sizing and wire layout of FPGA intercon‐
nect”, IEEE 1999 Custom Integrated Circuits Conference, pp. 171–174, 1999.

[71] N. Kapre, N. Mehta, M. deLorimier, and R. Rubin, “Packet switched vs. time multi‐
plexed FPGA overlay networks”, in IEEE Symposium on Field‐Programmable Custom
Computing Machines (FCCM 2006), 24–26 April 2006.

[72] I. Kuon, R. Tessier, and J. Rose, “FPGA architecture: Survey and challenges”, Foundations
and Trends in Electronic Design Automation, vol. 2, no. 2, pp. 135–253, 2007.

[73] R. Seelam, “I/O design flexibility with the FPGA mezzanine card (FMC)”, White Paper,
WP315 (v1.0), pp. 1–7, 19 August 2009.

[74] C.C. Tsang and H.K.‐H. So, “Reducing dynamic power consumption in FPGAs using
precomputation”, Proceedings of International Conference on Field Programmable
Technology (FPT 2009), December 2009.

[75] J. Lamoureux, G. Lemieux, and S. Wilton, “GlitchLess: Dynamic power minimization in
FPGAs through edge alignment and glitch filtering”, IEEE Transactions on Very Large
Scale Integrated Systems, vol. 16, no. 11, pp. 1521–1534, 2008.

[76] C. Ravishankar, J.H. Anderson, and A. Kennings,”FPGA power reduction by guarded
evaluation considering logic architecture”, IEEE Transactions on Computer‐Aided
Design of Integrated Circuits and Systems, vol. 31, no. 9, pp. 1305–1318, 2012.

[77] K. Subraniyam, “Proven power reduction with Xilinx ultrascale FPGAs”, White Paper,
WP466, vol. 1.1, pp. 1–13, 15 October 2015.

[78] C.Q. Tran, H. Kawaguchi, and T. Sakurai, “More than two orders of magnitude leak‐
age current reduction in look‐up table for FPGA's”, IEEE International Symposium on
Circuits and Systems, vol. 5, pp. 4701–4704, 23–26 May 2005.

Field - Programmable Gate Array244

[64] K. Siozios, F. Pavlidis, and D. Soudris, “A novel framework for exploring 3‐D FPGAs with
heterogeneous interconnect fabric”, ACM Transactions on Reconfigurable Technology
and Systems, vol. 5, no. 1, article 4, pp. 4:1–4:23, 2012.

[65] J. Anderson and F. Najm, “A novel low‐power FPGA routing switch”, in Proceedings of
IEEE Custom Integrated Circuits Conference, pp. 719–722, 2004.

[66] T. Gao, K.C. Chen, J. Cong, Y. Ding, and C.L. Liu, “Placement and placement driven
technology mapping for FPGA synthesis”, in Proceedings of IEEE International ASIC
Conference, pp. 87–91, 1993.

[67] E. Bozorgzadeh, S.O. Memik, X. Yang, and M. Sarrafzadeh, “Routability‐driven pack‐
ing: Metrics and algorithms for cluster‐based FPGAs,” Journal of Circuits, Systems and
Computers, vol. 13, no. 1, pp. 77–100, 2004.

[68] M. Xu and F.J. Kurdahi, “Layout‐driven high level synthesis for FPGA based architec‐
tures”, in Proceeding of the Conference on Design, Automation and Test in Europe,
DATE'98, pp. 446–450, 1998.

[69] D.P. Singh and S.D. Brown, “Incremental placement for layout‐driven optimizations on
FPGAs”, Proc. Int. Conf. Comput.‐Aided Des., pp. 752–759, 2002.

[70] V. Betz and J. Rose, “Circuit design, transistor sizing and wire layout of FPGA intercon‐
nect”, IEEE 1999 Custom Integrated Circuits Conference, pp. 171–174, 1999.

[71] N. Kapre, N. Mehta, M. deLorimier, and R. Rubin, “Packet switched vs. time multi‐
plexed FPGA overlay networks”, in IEEE Symposium on Field‐Programmable Custom
Computing Machines (FCCM 2006), 24–26 April 2006.

[72] I. Kuon, R. Tessier, and J. Rose, “FPGA architecture: Survey and challenges”, Foundations
and Trends in Electronic Design Automation, vol. 2, no. 2, pp. 135–253, 2007.

[73] R. Seelam, “I/O design flexibility with the FPGA mezzanine card (FMC)”, White Paper,
WP315 (v1.0), pp. 1–7, 19 August 2009.

[74] C.C. Tsang and H.K.‐H. So, “Reducing dynamic power consumption in FPGAs using
precomputation”, Proceedings of International Conference on Field Programmable
Technology (FPT 2009), December 2009.

[75] J. Lamoureux, G. Lemieux, and S. Wilton, “GlitchLess: Dynamic power minimization in
FPGAs through edge alignment and glitch filtering”, IEEE Transactions on Very Large
Scale Integrated Systems, vol. 16, no. 11, pp. 1521–1534, 2008.

[76] C. Ravishankar, J.H. Anderson, and A. Kennings,”FPGA power reduction by guarded
evaluation considering logic architecture”, IEEE Transactions on Computer‐Aided
Design of Integrated Circuits and Systems, vol. 31, no. 9, pp. 1305–1318, 2012.

[77] K. Subraniyam, “Proven power reduction with Xilinx ultrascale FPGAs”, White Paper,
WP466, vol. 1.1, pp. 1–13, 15 October 2015.

[78] C.Q. Tran, H. Kawaguchi, and T. Sakurai, “More than two orders of magnitude leak‐
age current reduction in look‐up table for FPGA's”, IEEE International Symposium on
Circuits and Systems, vol. 5, pp. 4701–4704, 23–26 May 2005.

Field - Programmable Gate Array244

[79] T. Tuan and B. Lai, “Leakage power analysis of a 90 nm FPGA”, in IEEE Custom
Integrated Circuits Conference, pp. 57–60, San Jose, CA, 2003.

[80] D. Curd, “Power consumption in 65nm FPGAs”, White Paper: Virtex‐5 FPGAs, WP 246,
vol. 1.2, pp. 1–12, February 2007.

[81] V. Rozic, W. Dehaene, and I. Verbaushede, “Design solutions for securing SRAM cell
against power analysis”, in Symposium on Hardware‐Oriented Security and Trust
(HOST), pp. 122–127, 3–4 June 2012.

[82] J. Lach, J. Brandon, and K. Skadron, “A general post‐processing approach to leakage
current reduction in SRAM‐based FPGAs”, in Proceedings of the IEEE International
Conference on Computer Design (ICCD'04), pp. 144–150, 11–13 October 2004.

[83] M. Qazi, M.E. Sinangil, and A.P. Chandrakasan, “Challenges and directions for low‐
voltage SRAM”, in IEEE Design & Test of Computers, pp. 32–43, January/February 2011.

[84] Z. Liu and V. Kursun, “Characterization of a novel nine‐transistor SRAM cell”, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 4, pp. 488–492,
2008.

[85] K. Blomster and J.G. Delgado‐Frias, “Reducing power and delay in memory cells using
virtual source transistors,” in 48th IEEE International Midwest Symposium on Circuits
and Systems, pp. 299–302, 2005.

[86] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger, “A 90 nm low‐power FPGA for
battery‐powered applications”, 14th International Conference on Field Programmable
Gate Arrays, FPGA'06 Proceedings, pp. 3–11, 2006.

[87] B. Wang, T.Q. Nguyen, A.T. Do, J. Zhou, M. Je, and T. Tae‐Hyoung Kim, “Design of an
Ultra‐low Voltage 9T SRAM With Equalized Bitline Leakage and CAM‐Assisted Energy
Efficiency Improvement”, IEEE Transactions on Circuits and Systems—I: Regular
Papers, vol. 62, no. 2, pp. 441–448, 2015.

[88] L. Zhang, C.‐H. Chang, Z.H. Kong, and C.Q. Liu, “Statistical analysis and design of
6T SRAM cell for physical unclonable function with dual application modes”, in IEEE
International Symposium on Circuits and Systems (ISCAS), Lisbon, pp. 1410–1413,
24–27 May 2015.

[89] B.H. Calhoun and A.P. Chandrakasan, “Static noise margin variation for sub‐thresh‐
old SRAM in 65‐nm CMOS”, IEEE Journal of Solid‐State Circuits, vol. 41, no. 7, pp.
1673–1679, 2006.

[90] B.H. Calhoun and A.P. Chandrakasan, “A 256‐kb 65‐nm sub‐threshold SRAM DESIGN
for ultra‐low‐voltage operation”, IEEE Journal of Solid‐State Circuits, vol. 42, no. 3, pp.
680–688, 2007.

[91] M.‐T. Chang and W. Hwang, “A fully‐differential subthreshold SRAM cell with auto‐
compensation,” in IEEE Asia Pacific Conference on Circuits and Systems, APCCAS,
Macao, pp. 1771–1774, 30 Nov–3 Dec. 2008.

Power Efficient Data-Aware SRAM Cell for SRAM-Based FPGA Architecture
http://dx.doi.org/10.5772/67257

245

[92] M.‐H. Tu, J.‐Y. Lin, M.‐C. Tsai, S.‐J. Jou, and C.‐T. Chuang, “Single‐ended subthresh‐
old SRAM with asymmetrical write/read‐assist”, IEEE Transactions on Circuits and
Systems‐I: Regular Papers, vol. 57, no. 12, pp. 3039–3047, 2010.

[93] L. Ming, C. Hong, L. Changmeng, and W. Zhihua, “An ultra‐low‐power 1 kb sub‐
threshold SRAM in the 180 nm CMOS process”, Journal of Semiconductors, vol. 31, no.
6, pp. 065013‐1–065013‐4, 2010.

[94] B. Amelifard, F. Fallah, and M. Pedram, “Reducing the sub‐threshold and gate‐tunnel‐
ing leakage of SRAM cells using dual‐Vt and dual‐Tox assignment”, in Proceedings of
DATE, pp. 1–6, 2006.

[95] A. Teman, A. Mordakhay, J. Mezhibovsky, and A. Fish, “A 40 nm sub‐threshold 5T
SRAM bit cell with improved read and write stability”, IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 59, no. 12, pp. 873–877, 2012.

[96] C. Jiangzheng, Z. Sumin, Y. Jia, S. Xinchao, C. Liming, and H. Yong, “A 320 mV, 6
kb subthreshold 10T SRAM employing voltage lowering techniques”, Journal of
Semiconductors, vol. 36, no. 6, pp. 065007‐1–065007‐6, 2015.

[97] C.B. Kushwah and S.K. Vishvakarma, “A single‐ended with dynamic feedback control
8T subthreshold SRAM cell”, IEEE Transactions on Very Large Scal Integration (VLSI)
Systems, vol. 24, no. 1, pp. 373–377, 2016.

[98] M.‐F. Chang, J.‐J. Wu, K.‐T. Chen, and H. Yamauchi, “A differential data aware power‐
supplied (D2AP) 8T SRAM cell with expanded write/read stabilities for lower VDDmin
applications”, Symposium on VLSI Circuits, Kyoto, Japan, pp.156–157, 16–18 June 2009.

[99] N. Gong, S. Jiang, A. Challapalli, S. Fernandes, and R. Sridhar, “Ultra‐low voltage split‐
data‐aware embedded SRAM for mobile video applications”, IEEE Transactions on
Circuits and Systems‐II: Express Briefs, vol. 59, no. 12, pp. 883–887, 2012.

[100] C.M.R. Prabhu and A.K. Singh, “Novel eight transistor SRAM cell for write power con‐
sumption,” IEICE Electronics Express (ELEX), vol. 7, no. 16, pp. 1175–1181, 2010.

[101] C.M.R. Prabhu and A.K. Singh, “Low‐power fast (LPF) SRAM cell for write/read opera‐
tion,” IEICE Electronics Express, vol. 6, no. 18, pp. 1473–1478, 2011.

[102] Y.‐W. Lin, H.‐I. Yang, M.‐C. Hsia, Y.‐W. Lin, C.‐H. Chen, C.‐T. Chuang, W. Hwang, N.‐C.
Lien, K.‐D. Lee, W.‐C. Shih, Y.‐P. Wu, W.‐T. Lee, and C.‐C. Hsu, “A 55nm 0.5V 128Kb
cross‐point 8T SRAM with data‐aware dynamic supply write‐assist”, in Proceedings of
IEEE International SoC Conference (SOCC), pp. 218–223, 12–14 September 2012.

[103] Y.‐W. Chiu, J.‐Y. Lin, M.‐H. Tu, S.‐J. Jou, and C.‐T. Chuang, “8T single‐ended sub‐
threshold SRAM with cross‐point data‐aware write operation,” in Proceedings of IEEE
ISLPED, August 2011.

[104] M.‐F. Chang, S.‐W. Chang, P.‐W. Chou, and W.‐C. Wu, “A 130 mV SRAM with
expanded write and read margins for subthreshold applications”, IEEE Journal of
Solid‐State Circuits, vol. 46, no. 2, pp. 520–529, 2011.

Field - Programmable Gate Array246

[92] M.‐H. Tu, J.‐Y. Lin, M.‐C. Tsai, S.‐J. Jou, and C.‐T. Chuang, “Single‐ended subthresh‐
old SRAM with asymmetrical write/read‐assist”, IEEE Transactions on Circuits and
Systems‐I: Regular Papers, vol. 57, no. 12, pp. 3039–3047, 2010.

[93] L. Ming, C. Hong, L. Changmeng, and W. Zhihua, “An ultra‐low‐power 1 kb sub‐
threshold SRAM in the 180 nm CMOS process”, Journal of Semiconductors, vol. 31, no.
6, pp. 065013‐1–065013‐4, 2010.

[94] B. Amelifard, F. Fallah, and M. Pedram, “Reducing the sub‐threshold and gate‐tunnel‐
ing leakage of SRAM cells using dual‐Vt and dual‐Tox assignment”, in Proceedings of
DATE, pp. 1–6, 2006.

[95] A. Teman, A. Mordakhay, J. Mezhibovsky, and A. Fish, “A 40 nm sub‐threshold 5T
SRAM bit cell with improved read and write stability”, IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 59, no. 12, pp. 873–877, 2012.

[96] C. Jiangzheng, Z. Sumin, Y. Jia, S. Xinchao, C. Liming, and H. Yong, “A 320 mV, 6
kb subthreshold 10T SRAM employing voltage lowering techniques”, Journal of
Semiconductors, vol. 36, no. 6, pp. 065007‐1–065007‐6, 2015.

[97] C.B. Kushwah and S.K. Vishvakarma, “A single‐ended with dynamic feedback control
8T subthreshold SRAM cell”, IEEE Transactions on Very Large Scal Integration (VLSI)
Systems, vol. 24, no. 1, pp. 373–377, 2016.

[98] M.‐F. Chang, J.‐J. Wu, K.‐T. Chen, and H. Yamauchi, “A differential data aware power‐
supplied (D2AP) 8T SRAM cell with expanded write/read stabilities for lower VDDmin
applications”, Symposium on VLSI Circuits, Kyoto, Japan, pp.156–157, 16–18 June 2009.

[99] N. Gong, S. Jiang, A. Challapalli, S. Fernandes, and R. Sridhar, “Ultra‐low voltage split‐
data‐aware embedded SRAM for mobile video applications”, IEEE Transactions on
Circuits and Systems‐II: Express Briefs, vol. 59, no. 12, pp. 883–887, 2012.

[100] C.M.R. Prabhu and A.K. Singh, “Novel eight transistor SRAM cell for write power con‐
sumption,” IEICE Electronics Express (ELEX), vol. 7, no. 16, pp. 1175–1181, 2010.

[101] C.M.R. Prabhu and A.K. Singh, “Low‐power fast (LPF) SRAM cell for write/read opera‐
tion,” IEICE Electronics Express, vol. 6, no. 18, pp. 1473–1478, 2011.

[102] Y.‐W. Lin, H.‐I. Yang, M.‐C. Hsia, Y.‐W. Lin, C.‐H. Chen, C.‐T. Chuang, W. Hwang, N.‐C.
Lien, K.‐D. Lee, W.‐C. Shih, Y.‐P. Wu, W.‐T. Lee, and C.‐C. Hsu, “A 55nm 0.5V 128Kb
cross‐point 8T SRAM with data‐aware dynamic supply write‐assist”, in Proceedings of
IEEE International SoC Conference (SOCC), pp. 218–223, 12–14 September 2012.

[103] Y.‐W. Chiu, J.‐Y. Lin, M.‐H. Tu, S.‐J. Jou, and C.‐T. Chuang, “8T single‐ended sub‐
threshold SRAM with cross‐point data‐aware write operation,” in Proceedings of IEEE
ISLPED, August 2011.

[104] M.‐F. Chang, S.‐W. Chang, P.‐W. Chou, and W.‐C. Wu, “A 130 mV SRAM with
expanded write and read margins for subthreshold applications”, IEEE Journal of
Solid‐State Circuits, vol. 46, no. 2, pp. 520–529, 2011.

Field - Programmable Gate Array246

[105] A.K. Singh, M.M. Seong, and C.M.R. Prabhu, “A data aware (DA) 9T SRAM cell for low
power consumption and improved stability”. International Journal of Circuit Theory
and Applications, vol. 42, no. 9, pp. 956–966, September 2014.

[106] L. Wen, X. Cheng, K. Zhou, S. Tian, and X. Zeng,” Bit‐interleaving‐enabled 8T SRAM
with shared data‐aware write and reference‐based sense amplifier”, IEEE Transactions
on Circuits and Systems—II: Express Briefs, vol. 63, no. 7, pp. 643–647, 2016.

[107] A.K. Singh, M.‐S. Saadatzi, and C. Venkataseshaiah, “Design of a single‐ended energy
efficient data‐dependent‐write‐assist dynamic (DDWAD) SRAM cell for improved sta‐
bility and reliability”, Accepted for the publication in Analog Integrated Circuits and
Signal Processing. C. Analog Integr Circ Sig Process (2016).

[108] A.K. Singh, M.‐S. Saadatzi, and C. Venkataseshaiah, “Design of peripheral circuits
for the implementation of memory array using data‐aware (DA) SRAM cell in 65 nm
CMOS technology for low power consumption”, Journal of Low Power Electronics,
vol. 12, pp. 1–12, 2016.

[109] A.K. Singh, M.M. Seong, and C.M.R. Prabhu, “Low power and high performance sin‐
gle‐ended sense amplifier”, Journal of Circuits, Systems, and Computers (Published by
World Scientific), vol. 22, no. 7, pp. 1350062‐1–1350062‐12, 2013.

[110] L. Jiang, W. Xueqiang, W. Qin, W. Dong, Z. Zhigang, P. Liyang, and L. Ming, “A low
voltage, sense amplifier for high‐performance embedded fash memory”, Journal of
Semiconductor, vol. 31, pp. 1–5, 2010.

[111] H.‐I. Yang, M.‐H. Chang, S.‐Y. Lai, H.S.‐F. Wang, and W. Hwang, “A low‐power low
swing single‐ended multi‐port SRAM”, in International Symposium VLSI Design,
Automation and Testing 2007, VLS‐DAT 2007, Hsinchu, pp. 1–4, May 2007.

[112] A. Teman, L. Pergament, O. Cohen, and A. Fish, “A 250 mV 8 kb 40 nm ultra‐low power
9T supply feedback SRAM (SF‐SRAM)”, IEEE Journal of Solid State of Circuits, vol. 46,
no. 11, pp. 2713–2726, October 2011.

Power Efficient Data-Aware SRAM Cell for SRAM-Based FPGA Architecture
http://dx.doi.org/10.5772/67257

247

Chapter 11

High‐Speed Deterministic‐Latency Serial IO

Raffaele Giordano, Vincenzo Izzo and

Alberto Aloisio

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67012

Abstract

In digital systems, serial IO at speeds in the range from 1 to 20 Gbps is realized by means
of dedicated transceivers, named serializer-deserializers (SerDeses). In general, due to
their internal architecture, the data transfer delay, or the latency, may vary after a reset of
the device. On the other hand, some applications, such as high-speed transfer protocols
for analog-to-digital and digital-to-analog converters, trigger and data acquisition sys-
tems, clock distribution, synchronization and control of radio equipment need this delay
to be constant at each reset. In this chapter, we focus on a serial IO architecture based on
configurable transceivers embedded in field-programmable gate arrays (FPGAs). We
will show how it is possible to achieve deterministic-latency operation in a line-code-
independent way. As a case study, we will consider a synchronous 2.5-Gbps serial link
based on an 8b10b line code.

Keywords: FPGA, serial links, line coding, latency, high-speed data transfers

1. Introduction

Deterministic-latency serial IO is highly desirable in applications such as high-speed transfer
protocols for analog-to-digital and digital-to-analog converters (ADCs and DACs), trigger and
data acquisition systems, clock distribution, synchronization and control of radio equipment.
Unfortunately, deterministic-latency operation of serial transceivers generally requires dedi-
cated circuitry and it is not generally supported by most of the devices on the market. Let us
discuss a few examples.

Since their appearance on the market, the performance of high-speed DACs and ADCs in
terms of sample rate and bit range improved continuously. This in turn generated the need
for faster digital interfaces, evolving from traditional parallel single-ended buses in CMOS

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

technology running at few hundred megabits per second to low voltage differential signal-
ling (LVDS) operating up to 1 Gbps, also leading to higher power consumption. The CMOS
and LVDS interfaces required laying out multiple traces on the printed circuit board (PCB)
from the converter to the data processor and they imposed the usage of several pins on
integrated circuits. In 2006, the Joint Electron Device Engineering Council (JEDEC) proposed
a serial IO protocol designed for interfacing data processors to ADCs and DACs. In the latest
revision of the standard (JESD204B [1]), line rates can reach up to 12.5 Gbps per serial lane
and specific signals are introduced to synchronize the read out of multiple converters in the
same system.

The Precision Time Protocol (PTP) is defined by the IEEE 1588 [2] standard, which defines
specifications for synchronizing clocks in a networked system to a reference, precise clock (the
grandmaster clock). The precision of the synchronization can be better than 1 µs, depending on
the timing determinism of the network and on the asymmetries in up and down link delays.
The synchronization is based on the exchange of messages between the sub-systems pertaining
to the grandmaster clock and the slave clocks for estimating the clock offset and correcting it.
The protocol assumes the up and down link delays to be equal, which is true only down to a
certain resolution. The timing offset between the clocks grows linearly with the delay differ-
ence. Minimizing this difference, also by achieving deterministic-latency transmission at each
system reset, allows the system to improve the accuracy of the synchronization [3].

One of the main goals in radio transmission systems is to keep the technological evolution of
radio equipment (RE) and radio equipment control (REC) independent. Protocols, such as the
Common Public Radio Interface (CPRI) [4], have been designed for this purpose. The protocol
explicitly sets constraints on the latency and on the round trip delay of the data paths between
RE and REC. All the delay requirements may be satisfied by means of deterministic-latency
transmission between RE and REC, even for the multi-hop paths foreseen by the protocol.

Deterministic-latency links [5–8] find also application in data acquisition systems of nuclear
and sub-nuclear physics experiments, specifically in the trigger sub-systems, where it is crucial
to preserve the timing information associated with the transferred signals.

As we have exemplified, several application domains exist, very different from each other,
which need fixed-latency data transmissions. In general, different applications adopt different
protocols; therefore, in this chapter, we discuss the basic requirements for a fixed-latency link
architecture and how to customize it in order to support any line coding or serial protocol. We
highlight dependency of major blocks from the protocol and we discuss the aspects to be taken
care of during the implementation phase. As a case study, we consider the GTP SerDes
embedded in Xilinx Virtex-5 Field Programmable Gate Arrays (FPGAs), but the methodology
can be easily exported to other SerDes devices.

In the following sections, we present concisely the GTP transceiver's architecture and we
briefly outline the possible causes of variable latency in a serial link. We discuss the relation-
ship between the logical alignment and the latency of the link and we present a general
protocol-independent link architecture. Eventually, we show two specific implementations
based on the 8b10b protocol and we highlight which features in a SerDes are keys for achiev-
ing fixed latency.

Field - Programmable Gate Array250

technology running at few hundred megabits per second to low voltage differential signal-
ling (LVDS) operating up to 1 Gbps, also leading to higher power consumption. The CMOS
and LVDS interfaces required laying out multiple traces on the printed circuit board (PCB)
from the converter to the data processor and they imposed the usage of several pins on
integrated circuits. In 2006, the Joint Electron Device Engineering Council (JEDEC) proposed
a serial IO protocol designed for interfacing data processors to ADCs and DACs. In the latest
revision of the standard (JESD204B [1]), line rates can reach up to 12.5 Gbps per serial lane
and specific signals are introduced to synchronize the read out of multiple converters in the
same system.

The Precision Time Protocol (PTP) is defined by the IEEE 1588 [2] standard, which defines
specifications for synchronizing clocks in a networked system to a reference, precise clock (the
grandmaster clock). The precision of the synchronization can be better than 1 µs, depending on
the timing determinism of the network and on the asymmetries in up and down link delays.
The synchronization is based on the exchange of messages between the sub-systems pertaining
to the grandmaster clock and the slave clocks for estimating the clock offset and correcting it.
The protocol assumes the up and down link delays to be equal, which is true only down to a
certain resolution. The timing offset between the clocks grows linearly with the delay differ-
ence. Minimizing this difference, also by achieving deterministic-latency transmission at each
system reset, allows the system to improve the accuracy of the synchronization [3].

One of the main goals in radio transmission systems is to keep the technological evolution of
radio equipment (RE) and radio equipment control (REC) independent. Protocols, such as the
Common Public Radio Interface (CPRI) [4], have been designed for this purpose. The protocol
explicitly sets constraints on the latency and on the round trip delay of the data paths between
RE and REC. All the delay requirements may be satisfied by means of deterministic-latency
transmission between RE and REC, even for the multi-hop paths foreseen by the protocol.

Deterministic-latency links [5–8] find also application in data acquisition systems of nuclear
and sub-nuclear physics experiments, specifically in the trigger sub-systems, where it is crucial
to preserve the timing information associated with the transferred signals.

As we have exemplified, several application domains exist, very different from each other,
which need fixed-latency data transmissions. In general, different applications adopt different
protocols; therefore, in this chapter, we discuss the basic requirements for a fixed-latency link
architecture and how to customize it in order to support any line coding or serial protocol. We
highlight dependency of major blocks from the protocol and we discuss the aspects to be taken
care of during the implementation phase. As a case study, we consider the GTP SerDes
embedded in Xilinx Virtex-5 Field Programmable Gate Arrays (FPGAs), but the methodology
can be easily exported to other SerDes devices.

In the following sections, we present concisely the GTP transceiver's architecture and we
briefly outline the possible causes of variable latency in a serial link. We discuss the relation-
ship between the logical alignment and the latency of the link and we present a general
protocol-independent link architecture. Eventually, we show two specific implementations
based on the 8b10b protocol and we highlight which features in a SerDes are keys for achiev-
ing fixed latency.

Field - Programmable Gate Array250

2. A configurable SerDes: the GTP transceiver

The SerDes used for discussing deterministic-latency concepts in this chapter is the
configurable GTP transceiver [9] of the Xilinx Virtex 5 [10] FPGA family. GTPs are available
as configurable hardware blocks. Each block hosts two transmitter (Tx) and receiver (Rx) pairs.
The architecture of one pair is schematically represented in Figure 1. Some components, such
as a phase locked loop, the dynamic reconfiguration port and the reset logic, are shared by the
Tx and Rx. The GTP does not work with fixed latency in configurations based on its internal
resources. The user has to develop a configuration based on an external logic controlling the
alignment, which forces the SerDes to have a deterministic latency through its data path. We
will now concisely present the features of the GTP essential to fixed-latency operation. The
reader willing to get deeper insight might find more details in the device user's guide.

In order to transfer data to the FPGA fabric, the GTP offers a parallel IO interface which can be
configured to be 8-, 10-, 16- or 20-bit wide. The lower two sizes are referred to as single-width,
the higher ones as the double-width. The so-called physical medium attachment (PMA) sub-
layer performs the actual data serialization and deserialization, whereas the physical coding
sub-layer (PCS) processes parallel data. A reference clock (CLKIN) is routed to the shared PLL,
which generates the high-speed clock for the serializer (TX_HSCLK), the parallel-side clock
(XCLK) for the parallel input to serial out (PISO) block and a seed clock for the clock and data
recovery circuit (CDR).

At the transmitter side, data flow from the fabric clocked by TXUSRCLK2 through the FPGA
interface. When the FPGA interface is configured with a 16- or 20-bit size (double width

Figure 1. Simplified block diagram of the GTP transceiver. Half of the configurable hardware block is shown.

High‐Speed Deterministic‐Latency Serial IO
http://dx.doi.org/10.5772/67012

251

modes), data are multiplexed 2:1 into 8- or 10-bit words and retimed on the TXUSRCLK clock,
which in this case runs at double the rate of TXUSRCLK2. When the FPGA interface is
configured for single-width operation, data are passed through without any processing and
the two TXUSRCLK and TXUSRCLK2 coincide. A dedicated encoder can be activated for
8b10b-based protocols, while an elastic buffer (i.e. a first in first out memory) is included to
cross the clock domain boundary from TXUSRCLK and XCLK reliably. In some applications, it
may happen that XCLK and TXUSRCLK are derived from the same clock, therefore, they
toggle at the same average frequency, with a constant phase difference. In this case, the elastic
buffer can be bypassed and a dedicated circuitry is used to ensure a safe transfer of data from
the TXUSRCLK clock domain to XCLK. The PISO block serializes data and outputs them
synchronously with TX_HSCLK. It is worth mentioning that the PLL produces also another
clock (TXOUTCLK), which can be routed to a clock buffer in the fabric and used as a
TXUSRCLK. Unfortunately, due to architectural constraints of the GTP, this signal cannot be
used when the elastic buffer is not in use.

At the receiver side, the CDR extracts the receiver high-speed clock (RX_HSCLK) from the
stream and recovers the serial data. A dedicated prescaler divides RX_HSCLK down to gener-
ate the RXRECCLK, namely the recovered clock for clocking data out from the parallel output
block and for the PCS operation. Since it is synchronous with the parallel data in the PCS, this
clock can also be forwarded to the fabric and it can be used to synchronize the logic processing
the deserialized data. An interesting and very useful block is the “Comma Detector and
Aligner” which can search for special symbols in the serial stream and align the symbol
boundary to them automatically, saving the designer to perform this operation in the fabric.
The rest of the blocks in the receiver's PCS are symmetrical to the transmitter ones, they
perform elastic buffering toward the RXUSRCLK clock domain and data demultiplexing when
needed (FPGA interface). The RXUSRCLK2 signal synchronizes the data from the FPGA
interface into the fabric. For single-width operation modes, RXUSRCLK and RXUSRCLK2 are
the same signal, while for double-width modes they are edge-aligned but RXUSRCLK2 toggles
at half the frequency with respect to RXUSRCLK.

3. Variation of the latency in a SerDes device

A SerDes may show latency variations related to its serial and/or parallel sub-components. In
the serializer, the transmission clock that strobes the parallel data into the device is multiplied
to provide the high-speed serial clock for the PISO. On the other hand, in the deserializer, the
high-speed serial clock is recovered from the stream and divided back to obtain the clock for
the parallel data. These clocks are used to clock, respectively, the serial and parallel side of the
SIPO. However, the clock division leads to an uncertainty of the phase of the recovered clock.
The phase of the recovered clock may vary in integer multiples of the unit intervals (UIs) and it
causes a consequent variation of the delay of the data strobed by the clock.

Let us imagine to multiply a signal clk in frequency by a factor M and let us call clkM, the result
of this operation (Figure 2). We can label each clkM edge with an integer number from 0 to M -
1. If Tclk is the clock period of clk, the ith edge of clkM will be shifted by a delay i

M Tclk with

Field - Programmable Gate Array252

modes), data are multiplexed 2:1 into 8- or 10-bit words and retimed on the TXUSRCLK clock,
which in this case runs at double the rate of TXUSRCLK2. When the FPGA interface is
configured for single-width operation, data are passed through without any processing and
the two TXUSRCLK and TXUSRCLK2 coincide. A dedicated encoder can be activated for
8b10b-based protocols, while an elastic buffer (i.e. a first in first out memory) is included to
cross the clock domain boundary from TXUSRCLK and XCLK reliably. In some applications, it
may happen that XCLK and TXUSRCLK are derived from the same clock, therefore, they
toggle at the same average frequency, with a constant phase difference. In this case, the elastic
buffer can be bypassed and a dedicated circuitry is used to ensure a safe transfer of data from
the TXUSRCLK clock domain to XCLK. The PISO block serializes data and outputs them
synchronously with TX_HSCLK. It is worth mentioning that the PLL produces also another
clock (TXOUTCLK), which can be routed to a clock buffer in the fabric and used as a
TXUSRCLK. Unfortunately, due to architectural constraints of the GTP, this signal cannot be
used when the elastic buffer is not in use.

At the receiver side, the CDR extracts the receiver high-speed clock (RX_HSCLK) from the
stream and recovers the serial data. A dedicated prescaler divides RX_HSCLK down to gener-
ate the RXRECCLK, namely the recovered clock for clocking data out from the parallel output
block and for the PCS operation. Since it is synchronous with the parallel data in the PCS, this
clock can also be forwarded to the fabric and it can be used to synchronize the logic processing
the deserialized data. An interesting and very useful block is the “Comma Detector and
Aligner” which can search for special symbols in the serial stream and align the symbol
boundary to them automatically, saving the designer to perform this operation in the fabric.
The rest of the blocks in the receiver's PCS are symmetrical to the transmitter ones, they
perform elastic buffering toward the RXUSRCLK clock domain and data demultiplexing when
needed (FPGA interface). The RXUSRCLK2 signal synchronizes the data from the FPGA
interface into the fabric. For single-width operation modes, RXUSRCLK and RXUSRCLK2 are
the same signal, while for double-width modes they are edge-aligned but RXUSRCLK2 toggles
at half the frequency with respect to RXUSRCLK.

3. Variation of the latency in a SerDes device

A SerDes may show latency variations related to its serial and/or parallel sub-components. In
the serializer, the transmission clock that strobes the parallel data into the device is multiplied
to provide the high-speed serial clock for the PISO. On the other hand, in the deserializer, the
high-speed serial clock is recovered from the stream and divided back to obtain the clock for
the parallel data. These clocks are used to clock, respectively, the serial and parallel side of the
SIPO. However, the clock division leads to an uncertainty of the phase of the recovered clock.
The phase of the recovered clock may vary in integer multiples of the unit intervals (UIs) and it
causes a consequent variation of the delay of the data strobed by the clock.

Let us imagine to multiply a signal clk in frequency by a factor M and let us call clkM, the result
of this operation (Figure 2). We can label each clkM edge with an integer number from 0 to M -
1. If Tclk is the clock period of clk, the ith edge of clkM will be shifted by a delay i

M Tclk with

Field - Programmable Gate Array252

respect to the rising edge of clk. Let us now suppose to use a counter to divide clkM in
frequency back by a factor M, there are now M possible phases for the result, which are
represented by the clki signals (with i = 0 to M−1). The obtained signal depends on which edge
of the clkM signal marks the 0 in the counter. Data crossing the clock domain from clk to one of
the clki will do it with a latency related to their relative phase. After a reset or a power cycle of
the system, the resulting clki signal might vary and the data latency with it. The system
designer has to foresee a dedicated logic to remove this variation and to generate always the
same clki signal and consequently the same data delay.

In the parallel sub-components of the SerDes, elastic buffers might induce variations of latency.
Even if a buffer is written to and read from at the same frequency, after each reset or power
cycle its latency depends on the difference between the internal write and read pointers. This
difference in turns depends on the functionality of the logic accessing the buffer and it induces
variations in terms of integer multiples of the clock period used for reading and writing. A
dedicated logic has to be added in order to match the number of written words before they
start being read at each reset or power up.

Therefore, the overall latency variation ΔL between two resets or power cycles of the device is
as follows:

ΔL ¼ nTser þmTpar (1)

where Tser is the high-speed serial clock period, Tpar is the parallel clock period, n and m are
integers and their ranges depend on the SerDes device and how it is configured and operated.

4. Word alignment mechanisms

The recognition of the symbol boundary in the serial stream and the consequent alignment
operation has a direct impact on the latency of a deserializer. The Xilinx GTP transceiver
enables user logic implemented in the fabric to control the alignment. The RXSLIDE signal
can be used to make the device shift the symbol boundary by one bit. Two modes are
supported for performing this operation: a first one realized in the PMA, which shifts the
recovered clock phase and combines it with the logical shifting of the data (“PMA mode”)
and a second one which only shifts the data logically (“PCS mode”) while leaving the phase of
the recovered clock unchanged. As discussed in Section 3, in order to remove latency variation,

Figure 2. Clock multiplication and subsequent division (case M=4).

High‐Speed Deterministic‐Latency Serial IO
http://dx.doi.org/10.5772/67012

253

a dedicated mechanism for selecting always the same recovered clock phase must be added.
Therefore, the PMA with its clock phase shifting capability allows the design to partially
remove the phase variation.

Since there is not an official documentation about the internal architecture of the PMA, after
some experimental tests, we have built a conceptual model of how the GTP performs the phase
shift in PMAmode (Figure 3). The RX_HSCLK is recovered by the CDR running at half the line
rate (i.e. TRX_HSCLK = 2 UIs) and both its edges are used for sampling the serial stream. The
serial input shift register of the SIPO is therefore double data rate (DDR) and synchronous with
RX_HSCLK. A register in the SIPO synchronizes the output from the shift register on the
recovered clock (RXRECCLK). The “Clock Divider and Shifter” divides RX_HSCLK down by
5 and routes it to a 5-bit shift-register, which provides five copies of the input signal, where nth
copy is delayed by n � TRX_HSCLK with n = 0 to 4, therefore, spanning a full RXRECCLK period.
The RXSLIDE signal from the user logic drives a modulo-10 counter, which in turn drives the
selector of a multiplexer. According to the number of RXSLIDE pulses received, a specific
phase for RXRECCLK is chosen. At the interface between the serial and parallel sections of
the SIPO, this phase determines which bit of the parallel register latches the least significant bit
of the shift register. In other words, changing the selection of the multiplexer modifies the
alignment of the parallel data with respect to the serial data. Due to the double data rate
operation, this mechanism shifts the recovered clock phase relatively to the stream in steps of
2 UIs. In order to produce a correct logical shift for any number of required bit slides, the
devices use the least significant bit (lsb) of the counter to drive a barrel shifter. If the number of
required slides is odd, the lsb is set and the barrel shifter shifts the data by one bit, otherwise it
leaves the data unchanged (Figure 4). Data are therefore always correctly shifted, but for each
of the five possible recovered clock phases, there are two possible alignments of the data, one
for odd bit slides and one for even slides. Operation in PMA mode requires external logic to
drive the RXSLIDE signal, while in PCS mode the internal comma detector and aligner can be
used. We remark that, by themselves, none of the native alignment modes (PCS or PMA)
operate with fixed latency. We will see in the coming sections how a smart configuration of
the GTP plus a dedicated logic implemented in the fabric allows the firmware designer to
achieve fixed-latency operation.

Figure 3. Conceptual block diagram of the shift architecture used in PMA mode.

Field - Programmable Gate Array254

a dedicated mechanism for selecting always the same recovered clock phase must be added.
Therefore, the PMA with its clock phase shifting capability allows the design to partially
remove the phase variation.

Since there is not an official documentation about the internal architecture of the PMA, after
some experimental tests, we have built a conceptual model of how the GTP performs the phase
shift in PMAmode (Figure 3). The RX_HSCLK is recovered by the CDR running at half the line
rate (i.e. TRX_HSCLK = 2 UIs) and both its edges are used for sampling the serial stream. The
serial input shift register of the SIPO is therefore double data rate (DDR) and synchronous with
RX_HSCLK. A register in the SIPO synchronizes the output from the shift register on the
recovered clock (RXRECCLK). The “Clock Divider and Shifter” divides RX_HSCLK down by
5 and routes it to a 5-bit shift-register, which provides five copies of the input signal, where nth
copy is delayed by n � TRX_HSCLK with n = 0 to 4, therefore, spanning a full RXRECCLK period.
The RXSLIDE signal from the user logic drives a modulo-10 counter, which in turn drives the
selector of a multiplexer. According to the number of RXSLIDE pulses received, a specific
phase for RXRECCLK is chosen. At the interface between the serial and parallel sections of
the SIPO, this phase determines which bit of the parallel register latches the least significant bit
of the shift register. In other words, changing the selection of the multiplexer modifies the
alignment of the parallel data with respect to the serial data. Due to the double data rate
operation, this mechanism shifts the recovered clock phase relatively to the stream in steps of
2 UIs. In order to produce a correct logical shift for any number of required bit slides, the
devices use the least significant bit (lsb) of the counter to drive a barrel shifter. If the number of
required slides is odd, the lsb is set and the barrel shifter shifts the data by one bit, otherwise it
leaves the data unchanged (Figure 4). Data are therefore always correctly shifted, but for each
of the five possible recovered clock phases, there are two possible alignments of the data, one
for odd bit slides and one for even slides. Operation in PMA mode requires external logic to
drive the RXSLIDE signal, while in PCS mode the internal comma detector and aligner can be
used. We remark that, by themselves, none of the native alignment modes (PCS or PMA)
operate with fixed latency. We will see in the coming sections how a smart configuration of
the GTP plus a dedicated logic implemented in the fabric allows the firmware designer to
achieve fixed-latency operation.

Figure 3. Conceptual block diagram of the shift architecture used in PMA mode.

Field - Programmable Gate Array254

5. Encoding-independent, fixed-latency operation

This section discusses key points that the designer should keep in mind in the implementation
of fixed latency operation, independently of line coding and communication protocol. We are
going to discuss a block diagram of the architecture shown in Figure 5. In order to make the
discussion more practical, let us suppose the GTP runs at 2.5 Gbps with a 10-bit interface to the
fabric.

Since this is single data width configuration, the GTP User's Guide prescribes the transmit
clocks (TXUSRCLK and TXUSRCLK2) must be tied together and as well as the receive clocks
(RXUSRCLK and RXUSRCLK2). We use a delay locked loop (DLL) for deriving the transmit
clocks (toggling at 250 MHz) from the reference clock (toggling at 62.5 MHz).

Let us focus on the transmitter node. The serial coding is provided by the line encoder, which
operates on data words before they enter the GTP. The latency controller adjusts the latency

Figure 4. Recovered clock phase adjustment by means of bit slips.

Figure 5. Customizable link architecture based on the GTP transceiver. Protocol-dependent blocks are outlined with
dashed lines, protocol-independent blocks with solid lines.

High‐Speed Deterministic‐Latency Serial IO
http://dx.doi.org/10.5772/67012

255

through the GTP transmitter to be constant at each power up or reset. The encoder is
implemented by means of fabric resources in order to show how to achieve fixed latency data
transfers with any coding, not only the internally supported 8b10b. A vast majority of com-
mercial protocols allow the user to send data and control symbols. In this example, the IS_K
input of the line encoder determines whether the data word will be encoded as a data or
control symbol. The parallel clock for the PISO in the transmitter (XCLK) is generated by
multiplying of the reference clock and then by dividing it back to obtain the desired frequency.
As we discussed in Section 3, at each power up or reset, its phase can be different with respect
to previous power ups or resets. The latency controller exploits a dedicated phase alignment
circuit internal to the GTP, which trims the phase of XCLK to the one of the reference clock. The
procedure is based on GTP features and it can be implemented by following guidelines
provided in the documentation. The payload generator, not really part of the link, is explicitly
included in the block diagram in order to show that data are synchronous with the transmit
clock, rather than with the reference clock. It is also possible to generalize this architecture in
order to transmit data synchronously with the reference clock, as we will show in Section 7. It
is important to remark that, on the transmitter, there is not dependence between latency
control and data encoding. There is no exchange of information between the line encoder and
the latency controller, which ensures fixed latency operation by itself.

Let us now discuss the receiver node. There is a single block performing line decoding and
logic alignment and it is implemented in the fabric. On the contrary of what happens for the
transmitter, now the decoding and alignment are interdependent. In fact, alignment requires
processing deserialized data, which in general might need decoding. The GTP embeds an
8b10b line decoder and an alignment logic which operate with variable latency. Therefore, we
reimplement in the fabric the decode and alignment logic. A clock source with a frequency
within 100 ppm with respect to the transmitter reference clock is needed as a seed for the
correct lock-up of the CDR. As we discussed in Section 3, at each CDR lock-up, the recovered
clock edge might have 10 possible phases. We configure the GTP in PMA slide mode, there-
fore, the alignment is controlled by asserting the RXSLIDE signal. For each possible recovered
clock phase with respect to the stream, there are two possible logical alignments, one requiring
an odd number of bit slides and one requiring an even number. Since we require a bi-unique
relationship between the number of slides and the recovered clock phase, we reject CDR locks
pertaining to one of the two possibilities, for instance, we reject those requiring odd slides.
Which possibility we decide to reject is immaterial, but the alignment logic has to perform this
rejection. It is important to remark that although the recovered clock shifting feature of the
GTP is useful for achieving fixed-latency operation, it is not necessary. Other strategies can be
implemented for SerDes devices which do not support that, as we will discuss at the end of
Section 6.

Some serial protocols (e.g. SONET [11]) need to decoding for assessing the correctness of the
alignment. The alignment logic checks received data according to protocol-specific criteria and
if the check is failed, it changes the symbol alignment. When the check is passed, the correct
alignment is found. On the other hand, a serial line code might not need data decoding for
finding the correct alignment. For instance, the 8B10B code uses special bit sequences, called

Field - Programmable Gate Array256

through the GTP transmitter to be constant at each power up or reset. The encoder is
implemented by means of fabric resources in order to show how to achieve fixed latency data
transfers with any coding, not only the internally supported 8b10b. A vast majority of com-
mercial protocols allow the user to send data and control symbols. In this example, the IS_K
input of the line encoder determines whether the data word will be encoded as a data or
control symbol. The parallel clock for the PISO in the transmitter (XCLK) is generated by
multiplying of the reference clock and then by dividing it back to obtain the desired frequency.
As we discussed in Section 3, at each power up or reset, its phase can be different with respect
to previous power ups or resets. The latency controller exploits a dedicated phase alignment
circuit internal to the GTP, which trims the phase of XCLK to the one of the reference clock. The
procedure is based on GTP features and it can be implemented by following guidelines
provided in the documentation. The payload generator, not really part of the link, is explicitly
included in the block diagram in order to show that data are synchronous with the transmit
clock, rather than with the reference clock. It is also possible to generalize this architecture in
order to transmit data synchronously with the reference clock, as we will show in Section 7. It
is important to remark that, on the transmitter, there is not dependence between latency
control and data encoding. There is no exchange of information between the line encoder and
the latency controller, which ensures fixed latency operation by itself.

Let us now discuss the receiver node. There is a single block performing line decoding and
logic alignment and it is implemented in the fabric. On the contrary of what happens for the
transmitter, now the decoding and alignment are interdependent. In fact, alignment requires
processing deserialized data, which in general might need decoding. The GTP embeds an
8b10b line decoder and an alignment logic which operate with variable latency. Therefore, we
reimplement in the fabric the decode and alignment logic. A clock source with a frequency
within 100 ppm with respect to the transmitter reference clock is needed as a seed for the
correct lock-up of the CDR. As we discussed in Section 3, at each CDR lock-up, the recovered
clock edge might have 10 possible phases. We configure the GTP in PMA slide mode, there-
fore, the alignment is controlled by asserting the RXSLIDE signal. For each possible recovered
clock phase with respect to the stream, there are two possible logical alignments, one requiring
an odd number of bit slides and one requiring an even number. Since we require a bi-unique
relationship between the number of slides and the recovered clock phase, we reject CDR locks
pertaining to one of the two possibilities, for instance, we reject those requiring odd slides.
Which possibility we decide to reject is immaterial, but the alignment logic has to perform this
rejection. It is important to remark that although the recovered clock shifting feature of the
GTP is useful for achieving fixed-latency operation, it is not necessary. Other strategies can be
implemented for SerDes devices which do not support that, as we will discuss at the end of
Section 6.

Some serial protocols (e.g. SONET [11]) need to decoding for assessing the correctness of the
alignment. The alignment logic checks received data according to protocol-specific criteria and
if the check is failed, it changes the symbol alignment. When the check is passed, the correct
alignment is found. On the other hand, a serial line code might not need data decoding for
finding the correct alignment. For instance, the 8B10B code uses special bit sequences, called

Field - Programmable Gate Array256

commas, which cannot be obtained by concatenating two symbols of the code. Finding a
comma in the encoded stream allows the receiver to determine the word boundaries and
performs the alignment, without the need for data decode.

For a given line code, once the correct number of bit slides needed to achieve the correct logic
alignment is determined, the pertaining logic must check whether the SerDes can implement
that sliding by changing the recovered clock phase.

If that is not possible, the alignment logic can force the CDR to lose the lock (for instance, by
resetting the CDR or by resetting the whole SerDes) and wait for a relock.

If it is possible, the alignment logic can use appropriate features of the SerDes, such as the
RXSLIDE signal for the GTP, to shift the recovered clock phase. When this procedure is
complete, data are correctly aligned to the symbol boundary and the recovered clock edge
has a known phase relationship with respect to the stream. This technique is referred as the
roulette approach and it will be further discussed in the following sections.

6. An 8B10B serial link implementation

This section shows how to include, in our architecture, one of the most used coding schemes
for serial data: the 8B10B encoding. At the transmitter end, the encoder has to be configured
to use the 8B10B coding, according to the architecture described in Ref. [12] or in the original
8b10b patent [13]. At the receiver side, we need to include three different elements for
designing the correct decoder and alignment logic: a 10b to 8b decoder, a comma detector
and an aligner (Figure 6). At the output of the decoder, besides the 8-bit decoded data, also a
flag is provided, that, when active, indicates that the received word is a control character
(IS_K). The Comma Detector module looks at the deserialized data and searches for specific
10-bit symbols. When the Comma Detector finds an expected symbol, its bit offset with
respect to the word boundary is sent out (on the 4-bit bus “Bit-offset”) and a “Found” flag
is activated. The bit shifter of the GTP is driven by the Aligner block. When the “Found” flag
is asserted a number of RXSLIDE pulses corresponding to the bit-offset are generated by the
Aligner block, otherwise a reset to the GTP is produced. It is worth noting that according to
the 8B10B coding, some symbols can be represented with two different 10-bit words, where
one word is the complement of the other. The 8B10B encoder chooses one word or its
complement by minimizing the so-called “running disparity,” i.e. the difference between
the number of 1s and 0s sent on the serial channel. The Comma Detector (Figure 7) can
search in the incoming data for two independent 10-bit symbols. The searched symbols are
described in the hardware description language (HDL) source code as two parameters,
which can be modified before the synthesis and implementation of the design. The two
symbols were programmed in order to be the two different possible versions of the 8B10B
coded word to be found (indicating them as Comma+ and its complement Comma-). In our
design, the serial stream is sliced into 10-bit words, for this reason, part of a comma word can
be in a 10-bit word and the remaining part can be in an adjacent word. Thus, the search

High‐Speed Deterministic‐Latency Serial IO
http://dx.doi.org/10.5772/67012

257

procedure has to look into the stream and to examine each symbol and the first 9 bits from
the next symbol. Following this consideration, we designed a 2-level pipeline in the Comma
Detector that we used to combine each incoming 10-bit word (DATAIN bus) with the 9
adjacent bits from the next 10-bit word, so to build an overall 19-bit word (WORD bus). All
the 10 possible portions of 10 adjacent bits of the 19-bit WORD bus (WORD(9+i:i) with i = 0,
1⋯9) are compared with the Comma- and Comma+ symbols, by means of an array of
comparators. When the comparator finds a match with the WORD(9+i:i) segment, the com-
parator also asserts the corresponding iFound(i) signal. The “Binary Encoder” block collects
all the iFound signals and then produces a 4-bit binary code (Bit-offset), obtained by
encoding the index i for the asserted iFound(i) signal. The “Binary Encoder” block also
asserts the “Found” output, when at least one iFound(i) signal is asserted. A closer look into
the Aligner block reveals that it consists of a finite state machine (FSM) (Figure 8), which
continuously checks the outputs of the Comma Detector; the Aligner logic is also made of a
register and a counter (not shown for simplicity). When the FSM is in the “Idle” state, it is
continuously waiting for a comma: when a comma is found, the FSM captures the data on
the Bit-offset input into a special register, which keeps the data on the internal bus “iBit-
offset.” Then, the FSM performs the “roulette approach” algorithm, in particular,

1. When the data on the iBit-offset bus is zero, the FSM asserts the “Aligned” flag and returns
back into the “Idle” state.

2. When the data on the iBit-offset bus is non-zero and odd, the machine performs a full reset
of the GTP and then waits for the CDR to lock again.

3. When the data on the iBit-offset bus is non-zero and even, the FSM generates a sequence
of pulses on the RXSLIDE output, where each pulse requests a bit slide to the GTP.
According to the GTP specifications, each RXSLIDE pulse must stay active for one clock
cycle and, between two consecutive pulses, a minimum interval of two clock cycles is
required. A specific counter (Pulses bus) is used to store the amount of sent pulses. When
the “Pulses bus” value reaches the same value latched on the iBit-offset bus, the produc-
tion of the RXSLIDE pulses is stopped, the “Aligned” flag is activated and the FSM returns
back to the “Idle” state.

Figure 6. Internals of the line decoder and alignment logic.

Field - Programmable Gate Array258

procedure has to look into the stream and to examine each symbol and the first 9 bits from
the next symbol. Following this consideration, we designed a 2-level pipeline in the Comma
Detector that we used to combine each incoming 10-bit word (DATAIN bus) with the 9
adjacent bits from the next 10-bit word, so to build an overall 19-bit word (WORD bus). All
the 10 possible portions of 10 adjacent bits of the 19-bit WORD bus (WORD(9+i:i) with i = 0,
1⋯9) are compared with the Comma- and Comma+ symbols, by means of an array of
comparators. When the comparator finds a match with the WORD(9+i:i) segment, the com-
parator also asserts the corresponding iFound(i) signal. The “Binary Encoder” block collects
all the iFound signals and then produces a 4-bit binary code (Bit-offset), obtained by
encoding the index i for the asserted iFound(i) signal. The “Binary Encoder” block also
asserts the “Found” output, when at least one iFound(i) signal is asserted. A closer look into
the Aligner block reveals that it consists of a finite state machine (FSM) (Figure 8), which
continuously checks the outputs of the Comma Detector; the Aligner logic is also made of a
register and a counter (not shown for simplicity). When the FSM is in the “Idle” state, it is
continuously waiting for a comma: when a comma is found, the FSM captures the data on
the Bit-offset input into a special register, which keeps the data on the internal bus “iBit-
offset.” Then, the FSM performs the “roulette approach” algorithm, in particular,

1. When the data on the iBit-offset bus is zero, the FSM asserts the “Aligned” flag and returns
back into the “Idle” state.

2. When the data on the iBit-offset bus is non-zero and odd, the machine performs a full reset
of the GTP and then waits for the CDR to lock again.

3. When the data on the iBit-offset bus is non-zero and even, the FSM generates a sequence
of pulses on the RXSLIDE output, where each pulse requests a bit slide to the GTP.
According to the GTP specifications, each RXSLIDE pulse must stay active for one clock
cycle and, between two consecutive pulses, a minimum interval of two clock cycles is
required. A specific counter (Pulses bus) is used to store the amount of sent pulses. When
the “Pulses bus” value reaches the same value latched on the iBit-offset bus, the produc-
tion of the RXSLIDE pulses is stopped, the “Aligned” flag is activated and the FSM returns
back to the “Idle” state.

Figure 6. Internals of the line decoder and alignment logic.

Field - Programmable Gate Array258

Figure 7. Simplified block diagram of the Comma Detector.

Figure 8. Simplified bubble diagram of the Aligner.

High‐Speed Deterministic‐Latency Serial IO
http://dx.doi.org/10.5772/67012

259

By looking at the algorithm, when there is a non-convenient value of the bit offsets (e.g. the
odd ones), the CDR can be just reset, in order to wait for a relock on a most advantageous bit
offset (e.g. an even one); thus, the alignment technique based on the “roulette approach” just
described can be used to bypass the limitation on the GTP, that is capable only to shift by 2-UI
steps. This approach brings to a lock time of the link that doubles, on average, as the lock of the
CDR is rejected the 50% of the times.

When the bit offset is odd, solutions can be adopted, instead of resetting the CDR. For instance,
the recovered clock phase can be shifted by 1 UI using a programmable delay (e.g. by means of
a DLL, a PLL or an open-loop fine-grained programmable delay [14]). Also this method has a
drawback, as it requires a higher complexity in the circuitry surrounding the GTP and it might
introduce a higher clock jitter and a possible phase-skew between the alignment obtained with
odd bit offset and the alignment obtained with even bit offsets, as the different delay elements
are used in the two different cases.

A design based on the roulette approach can be deployed in many applications, where the
deserializer architecture does not offer phase-shifting capabilities of the recovered clock. The
aligner should simply monitor that the received comma has a certain bit offset (e.g. zero) and,
in this case, it should perform a reset of the CDR until the required bit offset is detected. The
roulette approach greatly simplifies the logic of the aligner block (Figure 9) and easily helps to
obtain a recovered clock with a fixed-phase, without the need to perform a phase shift. As
already noted, a disadvantage of the approach is the increase in the average lock time. As an
example, the average lock-time is increased by a factor 10 (as the bit offset of a comma has the
required value 1 time out of 10). When used in bidirectional links, an increase in the number of
commas to be sent before the lock of the link is reached may help to soften this effect. For
instance, the JESD204B protocol foresees an initial transmission of commas to be interrupted
only after the receiver has locked and the increase of lock time would be minimal in this case.
Anyway, using the roulette approach always requires a trade-off between the complexity of the
aligner logic and the average lock time.

6.1. Frequency performance and resource occupancy

Tables 1 and 2 show the resource occupancy for the presented fixed-latency architecture, with
details of resources for both the transmitter and the receiver design. For each block constituting

Figure 9. Simplified bubble diagram of the aligner implementing a pure roulette approach.

Field - Programmable Gate Array260

By looking at the algorithm, when there is a non-convenient value of the bit offsets (e.g. the
odd ones), the CDR can be just reset, in order to wait for a relock on a most advantageous bit
offset (e.g. an even one); thus, the alignment technique based on the “roulette approach” just
described can be used to bypass the limitation on the GTP, that is capable only to shift by 2-UI
steps. This approach brings to a lock time of the link that doubles, on average, as the lock of the
CDR is rejected the 50% of the times.

When the bit offset is odd, solutions can be adopted, instead of resetting the CDR. For instance,
the recovered clock phase can be shifted by 1 UI using a programmable delay (e.g. by means of
a DLL, a PLL or an open-loop fine-grained programmable delay [14]). Also this method has a
drawback, as it requires a higher complexity in the circuitry surrounding the GTP and it might
introduce a higher clock jitter and a possible phase-skew between the alignment obtained with
odd bit offset and the alignment obtained with even bit offsets, as the different delay elements
are used in the two different cases.

A design based on the roulette approach can be deployed in many applications, where the
deserializer architecture does not offer phase-shifting capabilities of the recovered clock. The
aligner should simply monitor that the received comma has a certain bit offset (e.g. zero) and,
in this case, it should perform a reset of the CDR until the required bit offset is detected. The
roulette approach greatly simplifies the logic of the aligner block (Figure 9) and easily helps to
obtain a recovered clock with a fixed-phase, without the need to perform a phase shift. As
already noted, a disadvantage of the approach is the increase in the average lock time. As an
example, the average lock-time is increased by a factor 10 (as the bit offset of a comma has the
required value 1 time out of 10). When used in bidirectional links, an increase in the number of
commas to be sent before the lock of the link is reached may help to soften this effect. For
instance, the JESD204B protocol foresees an initial transmission of commas to be interrupted
only after the receiver has locked and the increase of lock time would be minimal in this case.
Anyway, using the roulette approach always requires a trade-off between the complexity of the
aligner logic and the average lock time.

6.1. Frequency performance and resource occupancy

Tables 1 and 2 show the resource occupancy for the presented fixed-latency architecture, with
details of resources for both the transmitter and the receiver design. For each block constituting

Figure 9. Simplified bubble diagram of the aligner implementing a pure roulette approach.

Field - Programmable Gate Array260

the design, the usage of FPGA primitives is shown, separated by type; moreover, the used
percentage of the design resources is shown, for a medium-size Virtex-5 FPGA.

A small logic foot-print (in terms of slice occupancy) is used for both the transmitter and
receiver, respectively, requiring 23 and 29 slices, which correspond to 0.3% and 0.4% of a
V5LX50T. On the transmitter side, the DLL block requires one digital clock manager primitive
(DCM_ADV) and three clock buffers (BUFGs): one is used for driving the reference clock, one
is used for the transmit clock and one for the DLL input clock. On the receiver side, only two
buffers are needed (one for the reference clock and one for the receive clock) as the clock
requirements are simpler.

Given such a small use of logic in the fabric, in most cases, there is no effort needed to reduce
or optimize it. However, the designer should make an additional effort in order to have the
system working with transmit clock and reference clock having the same frequency, so to
avoid needing a DLL and its additional buffer. Such a simplified architecture lowers the
occupation of fabric resources and also reduces the power consumption.

The transmitter has a maximum clock frequency (for the fabric resources) of about 370 MHz,
which is essentially defined by the encoder logic, as reported by static timing analysis. The
receiver has a maximum frequency of 330 MHz, in this case limited by the comma detector.

Module\primitives Slices Slice Regs LUTs BUFG DCM_ADV GTP_DUAL

Latency controller 15 27 8 0 0 0

8B10B encoder 4 6 2 0 0 0

DLL 1 0 1 2 1 0

GTP 3 9 0 1 0 1

Total 23 42 11 3 1 1

Available in a V5LX50T 7200 28,800 28,800 32 12 6

% Used in a V5LX50T 0.3 0.1 0.04 9 8 17

Table 1. Resource occupation of the fixed-latency transmitter.

Module\primitives Slices Slice Regs LUTs BUFG DCM_ADV GTP_DUAL

Aligner 7 13 14 0 0 0

Comma detector 15 34 39 0 0 0

10B8B decoder 4 2 8 0 0 0

GTP 3 9 0 2 0 1

Total 29 58 61 2 0 1

Available in a V5LX50T 7200 28,800 28,800 32 12 6

% Used in a V5LX50T 0.4 0.2 0.2 6 0 17

Table 2. Resource occupation of the fixed-latency receiver.

High‐Speed Deterministic‐Latency Serial IO
http://dx.doi.org/10.5772/67012

261

Thus, the presented architecture is able to operate up to the maximum transfer rate supported by
the GTP (3.125 Gbps) and there is no need for increasing the frequency performance in the fabric.

7. Fixed-latency, packet-based transmission

In the previously described design, the data clock (which is used to transmit and receive the
data) operates at 250 MHz, which is a frequency that should be easily reached when the clock
is limited on a single board; however, such frequency could be too high for the propagation of
the clock into a larger or more complex system, e.g. a crate or a board network. Moreover, in
some applications (e.g. when using a 64b/66b encoding), an 8-bit parallel word size could be
too short and might require a complex additional circuitry. In order to overcome these limita-
tions, we show how to enlarge our architecture, so to build a packet made of several data
words, but still having a fixed latency on the link. In this case, we need special care in the clock
division and in the word de-multiplexing blocks, in order to obtain our objective. In this
section, we describe a link with the same data-rate of 2.5 Gbps (as the previous one) but
transmitting 32-bit words at 62.5 MHz, i.e. larger transmitted words. We remark that in Section
5, we presented an iso-synchronous architecture, i.e. the clock for the data source is produced
by the link itself. In many applications, the designer could have a system clock which drives a
data source and would prefer to use that system clock to transmit the data over the link. In
these architectures, the reference clock for the PLL of the transmitter and the transmission
clock for the parallel data are the same clock driving the payload. In Figure 10, the “fixed-
latency tx” or FLT block (and the analogous block “fixed- latency rx” or FLR) represent a GTP
transmitter (and the analogous GTP receiver) when opportunely configured and equipped
with the logic need for implementing fixed latency operations.

At the transmitter end, the input data are synchronous with the 62.5 MHz and the reference
clock is latched into an input register synchronous with a 250-MHz data clock (TXUSRCLK)
generated by the “Fixed Latency Tx.” The clock-enable pin of the input register is driven at a
62.5 MHz rate, by the “Word Multiplexer Controller” (WMC) block. The design suggests to
use a multiplexer in order to split the incoming 32-bit words into 8-bit words, which are then

Figure 10. Synchronous implementation of our link architecture.

Field - Programmable Gate Array262

Thus, the presented architecture is able to operate up to the maximum transfer rate supported by
the GTP (3.125 Gbps) and there is no need for increasing the frequency performance in the fabric.

7. Fixed-latency, packet-based transmission

In the previously described design, the data clock (which is used to transmit and receive the
data) operates at 250 MHz, which is a frequency that should be easily reached when the clock
is limited on a single board; however, such frequency could be too high for the propagation of
the clock into a larger or more complex system, e.g. a crate or a board network. Moreover, in
some applications (e.g. when using a 64b/66b encoding), an 8-bit parallel word size could be
too short and might require a complex additional circuitry. In order to overcome these limita-
tions, we show how to enlarge our architecture, so to build a packet made of several data
words, but still having a fixed latency on the link. In this case, we need special care in the clock
division and in the word de-multiplexing blocks, in order to obtain our objective. In this
section, we describe a link with the same data-rate of 2.5 Gbps (as the previous one) but
transmitting 32-bit words at 62.5 MHz, i.e. larger transmitted words. We remark that in Section
5, we presented an iso-synchronous architecture, i.e. the clock for the data source is produced
by the link itself. In many applications, the designer could have a system clock which drives a
data source and would prefer to use that system clock to transmit the data over the link. In
these architectures, the reference clock for the PLL of the transmitter and the transmission
clock for the parallel data are the same clock driving the payload. In Figure 10, the “fixed-
latency tx” or FLT block (and the analogous block “fixed- latency rx” or FLR) represent a GTP
transmitter (and the analogous GTP receiver) when opportunely configured and equipped
with the logic need for implementing fixed latency operations.

At the transmitter end, the input data are synchronous with the 62.5 MHz and the reference
clock is latched into an input register synchronous with a 250-MHz data clock (TXUSRCLK)
generated by the “Fixed Latency Tx.” The clock-enable pin of the input register is driven at a
62.5 MHz rate, by the “Word Multiplexer Controller” (WMC) block. The design suggests to
use a multiplexer in order to split the incoming 32-bit words into 8-bit words, which are then

Figure 10. Synchronous implementation of our link architecture.

Field - Programmable Gate Array262

serialized by the FLT. The “Word Multiplexer Controller” block is also used to drive the select
signals of the multiplexer, so that the same byte of the incoming 32-bit word is serialized first,
whenever, the circuit is powered-on. In order to perform this task, the WMC samples the edge
of the reference clock (REFCLKOUT) with the TXUSRCLK clock and sends the first byte after
the edge is detected. Another circuitry is needed to tag the first byte in the word, in order to
allow the receiver to correctly recognize and align the 8-bit words. In order to do this, at each
every power-up, the “K Controller” module is in charge to assert the IS_K input for the FLT,
which then sends a control character on the first byte of the word. Even if everything seems
coherent from the logic point of view, there are still some timing issues in the transmitter part
of the architecture. Indeed, the two clock signals TXUSRCLK and REFCLKOUT could be edge-
misaligned, due to their different paths in the FPGA's layout, even if they are phase-locked. As
an example, the “Word Multiplexer Controller” samples the REFCLKOUT signal as a data on
the TXUSRCLK edge: thus, the designer needs to carefully verify that the REFCLKOUT signal
meets the timing constraints needed by TXUSRCLK. In order to overcome such an alignment
issue, the designer can adequately program a DLL inside the FLT, thus finding an appropriate
phase of TXUSRCLK with respect to REFCLKOUT. Moreover, the WMC also has to pulse the
clock enable signal of the input register with a specific phase, with respect to REFCLKOUT, in
order to prevent timing violations during the capture of the input payload. It should also be
noted that some of the modules around the FLT (specifically the multiplexer controller, the
multiplexer itself and the input register) could be replaced by a dual-port FIFO, with a 32-bit
input port and a 8-bit output port. In this case, the incoming 32-bit input words could enter the
FIFO synchronously with the edge of the reference clock, while the 8-bit output words could
exit the FIFO synchronously with the TXUSRCLK edge. The reader could easily argue that
such dual-port FIFO could represent the solution by-design for all the described timing issues;
one could also note that Xilinx FPGAs provide embedded dual-port FIFOs as hardware
components, thus making the implementation of a dual-port FIFO very easy. However, the
use of a FIFO has the following two main drawbacks: first, including a FIFO into the design
would also increase the latency, which could not be affordable in some applications, while the
architecture previously described keeps the latency as low as possible; second, the latency
could not be constant at each power-up and this would require to carefully handle the read
operations from the FIFO and the write operations to the FIFO (see the end of Section 3).

At the receiver end, the “Fixed Latency Rx”must be fed with a seed clock for the Clock & Data
Recovery circuit (CDR) with a frequency offset below 100 ppm of the reference clock of the
transmitter. At its output, the FLR drives a fixed phase 250 MHz recovered clock, to be used by
the surrounding logic. The FLR module provides the 8-bit deserialized words to a de-multi-
plexer and drives some control signals to a specific control logic: these control signals indicate
that the received character is a control character (IS_K) and that the link is byte-aligned
(Aligned). The comma character is used by the “Word De-Mux Controller” (WDC) in order to
handle the de-multiplexer 2-bit selection signal and to drive the clock enable for the output
register (driven at a 62.5 MHz rate) with the correct latency. Furthermore, when receiving a
comma, the WDC resets a clock divider (by 4) that is used to produce a 62.5 MHz recovered
reference clock. The 62.5 MHz clock is then used to transfer the 32-bit payload from the de-
multiplexer to the following logic. The WDC has to generate the clock divider reset in such a

High‐Speed Deterministic‐Latency Serial IO
http://dx.doi.org/10.5772/67012

263

way to set the recovered reference clock edge in the centre of the data eye of the 32-bit payload
provided by the output register. The full synchronous Tx+Rx architecture gives, as a side effect,
the possibility to use at the receiver a phase-locked copy of the reference clock of the transmit-
ter, which is a very effective and profitable feature to be used in distributed systems such as
TDAQ systems of high energy physics (HEP) experiments. In TDAQ applications of HEP
experiments, there is very often the need to distribute a common clock signal to all the
elements of the TDAQ system, with a predictable phase and a minimum jitter. These TDAQ
systems often rely on serial links, which are already deployed for data transmission. The same
serial links, therefore, are a very appealing medium also for delivering the clock to every
destination, without the necessity for a separate clock distribution network, thus making the
TDAQ system architecture simpler to be implemented and easier to be maintained. Regarding
TDAQ system, applications of fixed latency serial links, some measurements can be found in
the literature [15], in particular, the measurements performed on 2.5 Gbps links show that it is
possible to distribute a clock signal with a rms jitter of about 20 ps. We would like to stress that
the reference clock recovered at the receiver of the described architecture cannot be easily
handled to achieve a synchronous retransmission with the same GTP, but it requires to pay
attention in order to make it work correctly. In fact, by looking at the hardware resources
inside a GTP, the reader can easily see that the internal PLL is shared between the transmitters
and receivers in the same SerDes; moreover, the PLL is already locked to the seed clock. Thus,
the usage of another GTP is mandatory. Alternatively, the designer might change the phase
and frequency of the reference clock in order to match phase and frequency of the recovered
clock smoothly enough, so that the lock of the link is neither lost at the transmitter nor at the
receiver. Furthermore, it could be necessary to filter the recovered clock in order to satisfy the
jitter specifications for the GTP reference clock. Such disadvantage is not present in the newer
FPGA families, such as the Virtex-6 or the seven series, as these devices are equipped with
transceivers that provide separate PLLs for transmitter and for receiver.

8. Key features for fixed latency

In this section, the key features of the GTP for achieving fixed latency are described, together
with helpful suggestions to be used in the porting of our results to other SerDeses.

At the transmitter end of the link, there must be a predictable phase relationship between the
parallel clock (which drives the PISO) and the external parallel data clock. In many trans-
mitters, the usage of the features for serial channel bonding can be used for satisfying this
condition. In fact, channel bonding is widely employed for multi-lane serial buses, such as PCI
Express [16], RapidIO [17] and Infiniband [18, 19], requiring the same latency over every
bonded data path. For instance, the phase alignment circuit of the GTP, which was described
and exploited to lock the latency of the transmitter, has been designed for applications related
to channel bonding.

At the receiver end, there must be a predictable phase relationship of the recovered clock with
respect to the byte boundary in the incoming serial stream. However, the proposed

Field - Programmable Gate Array264

way to set the recovered reference clock edge in the centre of the data eye of the 32-bit payload
provided by the output register. The full synchronous Tx+Rx architecture gives, as a side effect,
the possibility to use at the receiver a phase-locked copy of the reference clock of the transmit-
ter, which is a very effective and profitable feature to be used in distributed systems such as
TDAQ systems of high energy physics (HEP) experiments. In TDAQ applications of HEP
experiments, there is very often the need to distribute a common clock signal to all the
elements of the TDAQ system, with a predictable phase and a minimum jitter. These TDAQ
systems often rely on serial links, which are already deployed for data transmission. The same
serial links, therefore, are a very appealing medium also for delivering the clock to every
destination, without the necessity for a separate clock distribution network, thus making the
TDAQ system architecture simpler to be implemented and easier to be maintained. Regarding
TDAQ system, applications of fixed latency serial links, some measurements can be found in
the literature [15], in particular, the measurements performed on 2.5 Gbps links show that it is
possible to distribute a clock signal with a rms jitter of about 20 ps. We would like to stress that
the reference clock recovered at the receiver of the described architecture cannot be easily
handled to achieve a synchronous retransmission with the same GTP, but it requires to pay
attention in order to make it work correctly. In fact, by looking at the hardware resources
inside a GTP, the reader can easily see that the internal PLL is shared between the transmitters
and receivers in the same SerDes; moreover, the PLL is already locked to the seed clock. Thus,
the usage of another GTP is mandatory. Alternatively, the designer might change the phase
and frequency of the reference clock in order to match phase and frequency of the recovered
clock smoothly enough, so that the lock of the link is neither lost at the transmitter nor at the
receiver. Furthermore, it could be necessary to filter the recovered clock in order to satisfy the
jitter specifications for the GTP reference clock. Such disadvantage is not present in the newer
FPGA families, such as the Virtex-6 or the seven series, as these devices are equipped with
transceivers that provide separate PLLs for transmitter and for receiver.

8. Key features for fixed latency

In this section, the key features of the GTP for achieving fixed latency are described, together
with helpful suggestions to be used in the porting of our results to other SerDeses.

At the transmitter end of the link, there must be a predictable phase relationship between the
parallel clock (which drives the PISO) and the external parallel data clock. In many trans-
mitters, the usage of the features for serial channel bonding can be used for satisfying this
condition. In fact, channel bonding is widely employed for multi-lane serial buses, such as PCI
Express [16], RapidIO [17] and Infiniband [18, 19], requiring the same latency over every
bonded data path. For instance, the phase alignment circuit of the GTP, which was described
and exploited to lock the latency of the transmitter, has been designed for applications related
to channel bonding.

At the receiver end, there must be a predictable phase relationship of the recovered clock with
respect to the byte boundary in the incoming serial stream. However, the proposed

Field - Programmable Gate Array264

architecture could be implemented only if the receiver provides a direct method to establish
the phase offset or if the receiver offers some other feature to be used to calculate the phase
offset indirectly. As an example, when the receiver device can output encoded and un-aligned
parallel words, the phase offset could be determined outside the receiver. Anyway, as the
phase offset might change (and usually changes) at each power-up of the receiver, the designer
should also add an external logic, which is able to determine the offset (by looking at the data
alignment) and to reset the receiver, if the calculated offset is not the desired one: this is
described as roulette approach. The external logic should not reset the device, in the case that
the desired phase offset is present and thus the link achieves the lock with the same latency it
had (and will have) in the other successful locks. The basic idea of the roulette approach is that
no alignment of the data is explicitly performed. The receiver is forced by-design to accept only
the locks achieved with data already correctly aligned and it simply rejects the locks achieved
with data not correctly aligned. This approach makes the additional receive logic simpler than
other designs, as there is no need for a comma detector or a word aligner. The only required
module is a decoder that verifies that the received data is valid. Having a simple logic has not
only benefits in saving resources, but it is desirable in applications to be used in environments
with radiation [20–23], in order to lower the chance of single event upsets (SEUs) and single
event latch-ups (SELs). Due to the fact that many resets could be performed at the receiver,
before the desired alignment is achieved, the roulette approach has an obvious drawback in
the increase of the average lock time that can be shown to be proportional to the number of bits
in the parallel symbol. For this reason, when planning to use the roulette approach, the
designer should carefully evaluate a trade-off between the average lock time and the simple
receive logic. Another possibility is the use of a device that is not able to output the raw data
but can automatically align and decode the data to the byte boundary and possibly can store
the phase-offset between the recovered clock and the stream into an internal register. This
behaviour has the same effect of externally finding the phase-offset. In the architecture
described in this chapter, based on a GTP, we combined the approaches and the strategies
described above. Indeed, we used an external logic in the FPGA fabric, designed to inspect the
encoded data and to find the phase offset between the recovered clock and the byte boundary.
But we also used the roulette approach, as we can shift the phase of the recovered clock only
by even numbers of UIs. In case an odd bit shift is required, due to a specific unfortunate phase
offset, the logic in the fabric provides a reset of the device and keeps waiting for a phase offset
requiring an even bit shift, after achieving a new lock.

9. Conclusions

Commercially available high-speed SerDes devices are usually designed for data transfers at
variable latency. This is because fixed-latency operations require dedicated circuitry and they
are often not needed in most of datacom and telecom applications. However, fixed-latency
serial IO is useful, or even mandatory, in various application, such as high-speed transfer
protocols for analog-to-digital and digital-to-analog converters, trigger and data acquisition
systems, clock distribution, synchronization and control of radio equipment.

High‐Speed Deterministic‐Latency Serial IO
http://dx.doi.org/10.5772/67012

265

In this chapter, we have shown how to implement fixed-latency serial IO, essentially by
opportunely configuring SerDeses (in particular, the SerDes devices embedded in commer-
cially available Xilinx FPGAs) and by adequately adding a specific control logic to such
devices. The proposed architecture is able to operate with fixed latency and it is capable to
recover the clock from the serial stream with a predictable phase, which does not change after
a power-cycle or a reset of the link. We presented a 2.5-Gbps 8B10B link which is able to
serialize 8-bit words, as a detailed example of implementation. We also described the proce-
dure for extending the example architecture in order to transfer packets made of several data
words and to synchronously transfer data with an external clock. The presented architecture is
also code-independent, i.e. it can be used with any data encoding, provided a special care to
the various issues described.

Acknowledgements

This work is part of the ROAL project (CINECA Grant no. RBSI14JOUV) funded by the
Scientific Independence of Young Researchers (SIR) 2014 program of the Italian Ministry of
Education, University and Research (MIUR).

Author details

Raffaele Giordano1*, Vincenzo Izzo2 and Alberto Aloisio1

*Address all correspondence to: rgiordano@na.infn.it

1 Università Degli Studi Di Napoli “Federico II” and INFN Sezione Di Napoli, Napoli, Italy

2 INFN Sezione di Napoli, Napoli, Italy

References

[1] Jedec Solid State Technology Association, JEDEC Standard, “Serial Interface for Data
Converters,” JESD204B.01

[2] IEEE Standard 1588, IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems, 2008.

[3] M. Lipiński, T. Włostowski, J. Serrano and P. Alvarez, “White rabbit: a PTP application for
robust sub-nanosecond synchronization,” In: 2011 International IEEE Symposium on Preci-
sion Clock Synchronization for Measurement Control and Communication (ISPCS), Munich,
2011, pp. 25–30. doi:10.1109/ISPCS.2011.6070148

Field - Programmable Gate Array266

In this chapter, we have shown how to implement fixed-latency serial IO, essentially by
opportunely configuring SerDeses (in particular, the SerDes devices embedded in commer-
cially available Xilinx FPGAs) and by adequately adding a specific control logic to such
devices. The proposed architecture is able to operate with fixed latency and it is capable to
recover the clock from the serial stream with a predictable phase, which does not change after
a power-cycle or a reset of the link. We presented a 2.5-Gbps 8B10B link which is able to
serialize 8-bit words, as a detailed example of implementation. We also described the proce-
dure for extending the example architecture in order to transfer packets made of several data
words and to synchronously transfer data with an external clock. The presented architecture is
also code-independent, i.e. it can be used with any data encoding, provided a special care to
the various issues described.

Acknowledgements

This work is part of the ROAL project (CINECA Grant no. RBSI14JOUV) funded by the
Scientific Independence of Young Researchers (SIR) 2014 program of the Italian Ministry of
Education, University and Research (MIUR).

Author details

Raffaele Giordano1*, Vincenzo Izzo2 and Alberto Aloisio1

*Address all correspondence to: rgiordano@na.infn.it

1 Università Degli Studi Di Napoli “Federico II” and INFN Sezione Di Napoli, Napoli, Italy

2 INFN Sezione di Napoli, Napoli, Italy

References

[1] Jedec Solid State Technology Association, JEDEC Standard, “Serial Interface for Data
Converters,” JESD204B.01

[2] IEEE Standard 1588, IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems, 2008.

[3] M. Lipiński, T. Włostowski, J. Serrano and P. Alvarez, “White rabbit: a PTP application for
robust sub-nanosecond synchronization,” In: 2011 International IEEE Symposium on Preci-
sion Clock Synchronization for Measurement Control and Communication (ISPCS), Munich,
2011, pp. 25–30. doi:10.1109/ISPCS.2011.6070148

Field - Programmable Gate Array266

[4] CPRI Specification V4.1 (2009-02-18), 2009, pp. 21–22 [On-line]. Available: http://www.
cpri.info/downloads/CPRI_v_4_1_2009-02-18.pdf

[5] R. Giordano and A. Aloisio, “Fixed-latency, multi-gigabit serial links with Xilinx
FPGAs,” IEEE Trans. Nucl. Sci., vol. 58, no. 1, Feb. 2010, pp. 194–201. doi:10.1109/
TNS.2010.2101083

[6] R. Giordano and A. Aloisio, “Protocol-independent, fixed-latency links with FPGA-
embedded SerDeses,” JINST,7,P05004, 2012. doi:10.1088/1748-0221/7/05/P05004

[7] J. Wang et al., “FPGA implementation of a fixed latency scheme in a signal packet router
for the upgrade of ATLAS forward muon trigger electronics,” IEEE Trans. Nucl. Sci., vol.
62, no. 5, Oct. 2015, pp. 2194–2201. doi:10.1109/TNS.2015.2477089

[8] R. Giordano, V. Izzo, S. Perrella and A. Aloisio, “A JESD204B-compliant architecture for
remote and deterministic-latency operation,” In: 2016 IEEE-NPSS Real Time Conference
(RT), Padua, 2016, pp. 1–2. doi:10.1109/RTC.2016.7543080

[9] “Virtex-5 FPGA RocketIO GTP Transceiver User Guide,” Xilinx, UG196, v1.7, 2008
[On-line]. Available: http://www.xilinx.com/support/documentation/user_guides/ug196.
pdf

[10] “Virtex-5 FPGA User Guide,” Xilinx, UG190, v4.3, 2008 [On-line]. Available: http://www.
xilinx.com/support/documentation/user_guides/ug190.pdf

[11] M. Yan, “SONET/SDH Essentials WHITE PAPER,” 2008 Exar Corporation [On-line].
Available: https://www.exar.com/uploadedfiles/home/sonet-sdh-essentials_022508.pdf

[12] A.X. Widmer and P.A. Franaszek, “A DC-balanced, partitioned-block, 8B/10B transmis-
sion code,” IBM J. Res. Dev., vol. 27, no. 5, 1983, p. 440

[13] A.X. Widmer and P.A. Franaszek, “Byte oriented DC balanced (0,4) 8B/10B partitioned
block transmission code,” U.S. Patent 4 486 739, Dec. 4, 1984

[14] R. Giordano, A. Aloisio, V. Izzo et al., “High-resolution synthesizable digitally-controlled
delay lines,” IEEE Trans. Nucl. Sci., vol. 62, no. 6, Dec. 2015, pp. 3163–3171. doi:10.1109/
TNS.2015.2497539

[15] A. Aloisio, F. Cevenini, R. Giordano and V. Izzo, “Characterizing Jitter performance of
multi gigabit FPGA-embedded serial transceivers,” IEEE Trans. Nucl. Sci., vol. 57, no. 2,
Apr. 2010, pp. 451–455

[16] PCI Express, “PCI Express Base Specification Revision,” 3.0 Nov. 10, 2010 [On-line].
Available: http://composter.com.ua/documents/PCI_Express_Base_Specification_Revision_
3.0.pdf

[17] RapidIO, “RapidIO Interconnect Specification,” 9/2014. [On-line]. Available:http://www.
rapidio.org/wp-content/uploads/2014/10/RapidIO-3.1-Specification.pdf

[18] InfiniBand Trade Association, “InfiniBand Architecture Specification Volume 1,” Mar. 3,
2015 [On-line]. Available: https://cw.infinibandta.org/document/dl/7859

High‐Speed Deterministic‐Latency Serial IO
http://dx.doi.org/10.5772/67012

267

[19] InfiniBand Trade Association, “InfiniBand Architecture Specification Volume 2,” Nov. 6,
2012 [On-line]. Available: https://cw.infinibandta.org/document/dl/7141

[20] A. Aloisio and R. Giordano, “Testing radiation tolerance of SerDeses for serial links of the
SuperB experiment,” In: Proceedings of the 2011 IEEE Nuclear Science Symposium, Medical
Imaging Conference, Valencia, Oct. 23–29, 2011

[21] A. Aloisio and R. Giordano, “Testing radiation tolerance of electronics for the SuperB
experiment,” In: Proceedings of the 13th ICATPP Conference on Astroparticle, Particle, Space
Physics and Detectors for Physics Applications, Como, Oct. 3–7, 2011

[22] P. Branchini et al., “Intensive irradiation study on monitored drift tubes chambers,” IEEE
Trans. Nucl. Sci., vol. 54, no 3, Part 2, 2007, pp. 648–653

[23] P. Branchini et al., “ATLAS MDT chamber behaviour after neutron irradiation and in a
high rate background,” Nucl. Instrum. Meth. A, 581, 2007, pp. 171–174

Field - Programmable Gate Array268

[19] InfiniBand Trade Association, “InfiniBand Architecture Specification Volume 2,” Nov. 6,
2012 [On-line]. Available: https://cw.infinibandta.org/document/dl/7141

[20] A. Aloisio and R. Giordano, “Testing radiation tolerance of SerDeses for serial links of the
SuperB experiment,” In: Proceedings of the 2011 IEEE Nuclear Science Symposium, Medical
Imaging Conference, Valencia, Oct. 23–29, 2011

[21] A. Aloisio and R. Giordano, “Testing radiation tolerance of electronics for the SuperB
experiment,” In: Proceedings of the 13th ICATPP Conference on Astroparticle, Particle, Space
Physics and Detectors for Physics Applications, Como, Oct. 3–7, 2011

[22] P. Branchini et al., “Intensive irradiation study on monitored drift tubes chambers,” IEEE
Trans. Nucl. Sci., vol. 54, no 3, Part 2, 2007, pp. 648–653

[23] P. Branchini et al., “ATLAS MDT chamber behaviour after neutron irradiation and in a
high rate background,” Nucl. Instrum. Meth. A, 581, 2007, pp. 171–174

Field - Programmable Gate Array268

Field
Programmable Gate Array

Edited by George Dekoulis

Edited by George Dekoulis

Photo by antos777 / iStock

This edited volume “Field-Programmable Gate Array” is a collection of reviewed and
relevant research chapters, offering a comprehensive overview of recent developments
in the field of semiconductors. The book comprises single chapters authored by various

researchers and edited by an expert active in the aerospace engineering systems
research area. All chapters are complete within themselves but united under a common

research study topic. This publication aims at providing a thorough overview of the
latest research efforts by international authors and open new possible research paths

for further novel developments.

ISBN 978-953-51-3207-3

Field - Program
m

able G
ate A

rray

ISBN 978-953-51-4819-7

	Field - Programmable Gate Array
	Contents
	Preface
	Chapter 1
Efficient Hardware Architecture for Correlation-Based Spike Detection and Unsupervised Clustering
	Chapter 2
Efficient FPGA Implementation of a CTC Turbo Decoder for WiMAX/LTE Mobile Systems
	Chapter 3
Motion Control with FPGA
	Chapter 4
FPGA-Based Software-Defined Radio and Its Real-Time Implementation Using NI-USRP
	Chapter 5
Design Trade‐Offs for FPGA Implementation of LDPC Decoders
	Chapter 6
Design of Digital Advanced Systems Based on Programmable System on Chip
	Chapter 7
The Use of FPGA in Drift Chambers for High Energy Physics Experiments
	Chapter 8
Real‐Time Adaptive Optic System Using FPGAs
	Chapter 9
FPGA‐SRAM Soft Error Radiation Hardening
	Chapter 10
Power Efficient Data-Aware SRAM Cell for SRAM-Based FPGA Architecture
	Chapter 11
High‐Speed Deterministic‐Latency Serial IO

