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Congenital defects in humans are of greater concern, and in that line, cystic fibrosis
(CF) has been one of the most complex diseases posing treatment challenge till date.
Though it is a chronic condition, CF is closely associated with dysfunction of various
organ systems of the human body, which in turn results in secondary infections by

microbes. Decades of research by scientists worldwide has narrowed down the cause
of CF to a single target gene. But the complexity of the disease is the prime impediment

to finding a single-shot cure. Fortunately, the multidisciplinary approach toward
understanding and management of the CF condition has certainly increased the level of
life expectancy among CF patients. In particular, the “omics” and the “systems biology”

approach have greatly widened the focal area for better understanding of the disease.
This book includes a collection of interesting chapters contributed by eminent scientists

around the world who have been striving to improve the life of those affected by CF.
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Preface

The Open Access Initiative has been making its stride toward liberal dissemination of scien‐
tific knowledge to the world community through unrestricted access to full-text articles,
chapters, and other contents. Since the inception of virtual media science publishing has
been adopting a constant fast-track update of information as and when it occurs. In this line,
InTech has been making its footprint all along by identifying and openly involving eminent
scientists worldwide. The book, Progress in Understanding Cystic Fibrosis, is the successor of
Cystic Fibrosis – Renewed Hopes Through Research.

Cystic fibrosis (CF), also known as mucoviscidosis, is an autosomal recessive multisystem
genetic disorder that occurs predominantly among Caucasians. Though found highest
among Irish population, the incidence of CF is on the rise among other populations includ‐
ing the least-affected ones. The interdisciplinary approach toward better understanding the
CF condition and the development of sensitive early diagnostic methods have contributed
toward efficient diagnosis, treatment, and management of the disease. The CF condition is
characterized by abnormal transport of chloride and sodium across the epithelium that
leads to thickening of secretions especially in the lungs, pancreas, liver, and intestine. The
complex nature of this disease involving multiple organs and subsequent secondary infec‐
tions by microbes is the basis for mortality in CF population. Decades of research by scien‐
tists worldwide has narrowed down the cause of CF to a single target gene. But the
complexity of the disease is the most challenging impediment to finding a single-shot cure.
This book is a simple collection of chapters on CF-related cellular biochemistry, diabetes,
microbiome, and immunotherapy that highlight the progress in CF research. From the infor‐
mation contained in the chapters of this book, it is obvious that only with the help of inter‐
disciplinary research, better understanding and management of the CF disease condition
would be possible and this approach has certainly increased the level of life expectancy
among CF patients. In addition, a cohort- or patient-specific treatment strategy supported
by intense bench-to-bedside research flow seems to be a feasible option to reduce morbidity
and mortality in CF population.

I thank InTech for appointing me as the editor of this book and for providing me the oppor‐
tunity to contribute to the scientific community. I thank the authors of the chapters for their
valuable contributions. I thank Helmholtz Centre for Infection Research, Braunschweig,
Germany, which served as the knowledge center for me to gain expertise in this field.

Dinesh Sriramulu
Division of Cell and Immune Biology 

Helmholtz Centre for Infection Research 
Braunschweig, Germany
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Provisional chapter

CFTR Involvement in Cell Migration and Epithelial
Restitution

Scott M. O'Grady

Additional information is available at the end of the chapter

Abstract

Over  the  past  decade,  research  has  shown  that  cystic  fibrosis  transmembrane
conductance regulator (CFTR) plays an important role in epithelial cell migration and
wound healing. Experiments with airway epithelium, ovarian epithelial cells, placental
epithelium and epidermal keratinocytes demonstrated that CFTR function is necessary
to achieve maximum migration rates during restitution and in certain cancer cells,
CFTR activity  contributes  to  tumor  cell  invasion.  Multiple  mechanisms  appear  to
underlie the motility‐promoting actions of CFTR, and although many details remain
to  be  established,  our  present  understanding  indicates  that  processes  such  as
electrotaxis (galvanotaxis), integrin‐mediated cell adhesion and lamellipodia protru‐
sion are dependent on normal CFTR function. In this chapter, the role of CFTR in
epithelial cell migration and its implications in cystic fibrosis (CF) will be reviewed
with emphasis on the underlying mechanisms that may explain observations made in
various epithelial tissues, particularly in airways. Ultimately, a better understanding
of CFTR involvement in epithelial repair may lead to new therapeutic approaches to
improve barrier function and reduce airway infection and inflammation associated
with CF.

Keywords: cystic fibrosis, CFTR, wound healing, collective migration, barrier func‐
tion, inflammation

1. Introduction

1.1. Ion channels and cell motility

The role of ion channels and membrane transporters in cell migration has been the subject of
several recent reviews [1–4], so only a few examples will be highlighted in this section to provide

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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the reader with an appreciation of their importance in cell motility. Ion channels and other
membrane transport pathways participate in multiple housekeeping functions within cells that
include regulation of membrane potential, intracellular [Ca2+], cytoskeletal assembly, integrin‐
mediated signaling, cell volume regulation, as well as the maintenance of intracellular and
extracellular pH. Each of these housekeeping functions can influence cell migration. For instance,
changes in ion channel activity produces changes in membrane potential that can facilitate
uptake of Ca2+ from the extracellular media. A recent example involves the slow calcium wave
that develops approximately 1 h after wounding of corneal endothelial cells [5]. The rise in
intracellular [Ca2+] is associated with plasma membrane depolarization of cells along the margin
of the wound and serves to increase the rate of cell migration. This depolarization has been
attributed to increased expression and activity of epithelial Na+ channels (ENaC) within cells
that boarder the wound, resulting in elevated intracellular [Na+].  The combined effect of
depolarization and increased Na+ load drives Na+/Ca2+ exchange (NCX) activity in reverse mode
to produce Ca2+ uptake, which propagates from the border of the wound into the epithelium.
There may also be an additional role for transient receptor potential (TRP) channels in this
process since inhibition of NCX activity does not completely block Ca2+ uptake, whereas
inhibition of both NCX and TRP activity abolishes the increase in intracellular [Ca2+].

Membrane hyperpolarization can also stimulate Ca2+ uptake and enhance the rate of cell
migration. Differentiated intestinal epithelial cells with increased expression of voltage‐gated
K+ channels (Kv1.1/Kv1.5) exhibit membrane hyperpolarization and increased intracellular
[Ca2+] as a result of a greater driving force for electrogenic Ca2+ uptake across the plasma
membrane [6]. The elevation in intracellular [Ca2+] was shown to augment formation of myosin
II containing stress fibers necessary for efficient cell migration. Similarly, ionotropic P2X7

receptors have also been shown to contribute to changes in intracellular [Ca2+] and cell
migration. During injury of corneal epithelial cells, P2X7 receptors redistribute to the leading
edge of cells that border the wound [7]. Adenosine triphosphate (ATP) is released from the
damaged cells leading to activation of these receptors and subsequent uptake of Ca2+ from the
extracellular solution. The increase in intracellular [Ca2+] induces actin cytoskeletal rearrange‐
ments that facilitate the formation of branched dendritic networks of actin within lamellipodia,
promoting the dynamic regulation of focal adhesions within cells at the wound margin.

ATP release and P2X7 receptor activation have also been shown to be initiated in response to
ligand‐activated αVβ3 integrin and syndecan‐4 engagement leading to increased formation of
focal adhesions and an enhanced rate of migration in astrocytes [8]. The mechanism of ATP
release involved activation of PI3K, PLCγ and IP3 receptors following integrin activation. This
resulted in opening of Cx43/Panx‐1 hemichannels in the plasma membrane, facilitating ATP
release, transactivation of P2X7 receptors and ultimately, an increase in intracellular [Ca2+].
Furthermore, enhanced expression of both α6β4 integrin and TRPV1 receptors at the leading
edge of keratinocytes after wounding has also been linked to increases in intracellular [Ca2+].
Evidence appears to support a model where TRPV1‐mediated increases in intracellular [Ca2+]
trigger the activation of transcription factors such as nuclear factor of activated T cells (NFAT)
and cAMP response element binding protein (CREB) to stimulate expression of β4 integrins in
cells at the margin of the wound leading to an increase in directional migration [9]. Direct
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coupling between the β1 integrin and KCa3.1 channel expression has been demonstrated in
alveolar type II cells grown on a fibronectin matrix and inhibition of channel activity was
shown to decrease the rate of migration [10]. This inhibitory effect may be due in part to
reducing Ca2+ uptake through TRPC4 channels which were also shown to participate in
migration during wound repair. TRP channel‐associated Ca2+ uptake has also been shown to
be stimulated by mechanical stretch of the plasma membrane associated with tension and cell
shape changes occurring during migration. A specific example involves activation of TRPM7
which mediates transient and highly localized increases in intracellular [Ca2+] known as Ca2+

flickers that take place within lamellipodia in response to mechanical forces linked to contrac‐
tion [11]. This initial Ca2+ response is amplified by localized Ca2+‐induced Ca2+ release from
internal stores leading to transactivation of protein kinase A (PKA) through stimulation of
Ca2+‐sensitive adenylyl cyclases. PKA is known to have multiple cell migration‐associated
targets including components of the cytoskeleton and the focal adhesion proteome that can
have both positive and negative effects on migration depending on intracellular localization.

An interesting example of enhanced cell migration linked to K+ channel regulation has been
reported in glioblastoma cells [12]. In astrocytes and oligodendrocytes from normal brain
tissue, the α9β1 integrin is not expressed; however, expression has been shown to increase with
glioma grade and appears to be critical for sustaining increased migration rates following
exposure to urokinase receptor (uPAR), agonists. A unique feature of the α9 subunit is that its
cytoplasmic domain specifically interacts with spermidine/spermine‐N‐acetyl transferase
(SSAT), which catalyzes the breakdown of higher‐order polyamines (spermidine and sper‐
mine) to putrescine. Spermidine and spermine are known to regulate the rectification prop‐
erties of Kir channels by binding to negatively charged residues within the channel pore,
significantly reducing K+ efflux from the cell. In contrast, putrescine is a much less effective
blocker of outward K+ current in Kir channels. In glioma cells, the α9 subunit colocalizes with
Kir4.2 and silencing of the channel inhibits uPAR‐enhanced cell migration. A proposed
mechanism to explain the increase in migration rate involves activation of SSAT in response
to uPAR‐dependent α9β1 integrin activation, which produces a localized decrease in the
[spermidine/spermine] ratio ultimately leading to reduced rectification, increased K+ efflux
and membrane hyperpolarization.

1.2. Airway inflammation and epithelial damage

Loss of CFTR function in the airways of CF patients leads to reduced anion secretion, en‐
hanced Na+ absorption and a decrease in the depth of airway surface liquid that ultimately
impairs mucociliary clearance and the removal of pathogens from the lungs [13–15]. Reduced
pathogen clearance facilitates infection that induces neutrophilic inflammation, leading to
progressive epithelial damage within the conducting airways [16–19]. Over time, a recurrent
cycle of intense inflammation, epithelial injury and airway remodeling produce irrevocable
damage that dramatically compromises lung function [20–22]. Mounting evidence from in
vitro studies and animal models of CF indicate that CFTR malfunction appears to alter the
innate immune response of the airways leading to increased release of proinflammatory
mediators evoking an amplified, yet less effective inflammatory reaction that is unable to
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eliminate airway pathogens [17, 18]. In some cases, elevated cytokine levels, neutrophil
infiltration and neutrophil elastase (NE) concentrations within the bronchial alveolar lavage
(BAL) fluid have been reported in infants without signs of infection, although other studies
support the concept that infection is necessary to initiate inflammation [17, 23–25]. Neutrophils
represent the major inflammatory leukocyte recruited into CF airways where they release a
variety of mediators including oxidants and proteases such as neutrophil elastase (NE), which
possess bacteriocidal properties [26, 27]. Moreover, NE catalytic activity is also known to
damage the epithelium and reduce structural integrity of the airways leading to bronchiectasis
and deteriorating lung function [28–31]. Furthermore, the airways of CF patients encounter
various reactive oxygen species (ROS) derived from bacterial pathogens or from the environ‐
ment [32]. ROS production can exceed the endogenous oxidative defense capacity of the
airways leading to oxidative stress and additional injury. In adults, the concentration of
reduced glutathione (GSH), a major ROS scavenger present in the airway surface liquid, is
significantly reduced in CF patients [33, 34]. This condition may be directly related to the loss
of CFTR function since the channel is known to transport GSH in addition to anions in normal
airways [35].

Decreases in CFTR channel activity also result in acidification of airway surface liquid
coupled to an increase in intracellular pH, which reduces antimicrobial function of the
airway surface liquid, promoting bacterial infection [36–41]. Intracellular alkalinization also
appears to enhance the accumulation of ceramide, a metabolite of sphingomyelin, within
lysosomes [42–44]. Ceramide is thought to amplify the inflammatory response by triggering
tumor necrosis factor (TNF)α signaling pathways involving mitogen‐activated protein
kinases (MAPK), IκB‐kinase degradation [an inhibitory regulator of necrosis factor (NF)‐κB]
and NF‐kB nuclear localization [45–47]. Additionally, for class II CFTR mutations, the
accumulation of misfolded CFTR protein within the endoplasmic reticulum (ER) induces
stress and stimulates what is known as an unfolded protein response, which involves
activation of signaling pathways that mitigate ER stress [48–51]. For the most common class
II mutation, retention of misfolded ΔF508 CFTR within the ER causes an unfolded protein
response that stimulates inflammation by activating NF‐κB and inducing cytokine secretion
that can result in apoptosis.

1.3. Evidence for defective epithelial regeneration in CF

In an earlier investigation, a humanized airway xenograph model was created by inoculation
of CF and non‐CF airway epithelial cells onto epithelium‐deleted rat trachea that was then
subcutaneously implanted into nude mice over a period from 4 to 35 days [52]. This model
was then used to investigate the process of reepithelialization following injury and to deter‐
mine if remodeling of CF epithelium is a consequence of defective epithelial regeneration
independent of infection. The results showed that CF epithelial cells exhibited enhanced
proliferation along with continuous expression of IL‐8, matrix metalloproteinases (MMP7,
MMP9) and tissue inhibitor of metalloproteinase (TIMP)‐1. Moreover, regeneration was
delayed and final restitution resulted in a remodeled epithelium that appeared to be a product
of aberrant regeneration unrelated to bacterial contamination. A relationship between
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abnormal regeneration and loss of CFTR function was not identified in this study, although it
was concluded that it might be a consequence of altered MMP/TIMP/IL‐8 expression observed
in CF epithelium. In a subsequent study, wound healing experiments using immortalized
normal (NuLi‐1 cells) and CF (CuFi‐1 cells) human airway epithelial cells revealed that CuFi‐
1 cell migration was significantly delayed relative to NuLi‐1 cells [53, 54]. This difference in
migration activity was attributed to defective epidermal growth factor (EGF)/epidermal
growth factor receptors (EGFR) signaling and reduced K+ channel expression. Interestingly,
no significant effect on migration was reported in the presence of the CFTR inhibitor, CFTRinh‐
172 [53]. In subsequent investigations described below, loss of CFTR function was shown to
directly contribute to delayed epithelial repair in CF airways and that expression of normal
CFTR augments epithelial restitution.

2. Anion channels, cell migration and epithelial restitution

2.1. Volume‐sensitive anion channels in cell migration and invasion

Earlier electrophysiological studies of human glioma cells showed that they express voltage‐
sensitive Cl‐ channels that were blocked by chlorotoxin (Ctx), a peptide isolated from scorpion
venom as well as tamoxifen, an estrogen receptor modulator [55–57]. Furthermore, hypotonic
solutions were also shown to activate tamoxifen and 5‐nitro‐2‐(3‐phenylpropylamino)‐
benzoate (NPPB)‐sensitive, outwardly rectifying Cl‐ currents carried by channels that were
shown to contribute to the resting Cl‐ conductance under isotonic conditions [55]. Treatment
with either Ctx or NPPB inhibited glioma cell migration and invasiveness in transwell
migration assays. Similarly, osmotically activated cell swelling and regulatory volume
decrease (RVD) were also blocked by Ctx and tamoxifin indicating a role in the regulation of
cell volume that contributes to migration and tumor cell invasion [56]. Simultaneous time lapse
imaging and patch clamp recording of glioma cells demonstrated detectable changes in cell
shape and movement that was associated with activation of volume‐sensitive Cl‐ currents.
Changes in cell shape and motility were attributed to Cl‐ efflux coupled to K+ and water
movement across the plasma membrane resulting in cell shrinkage, which appeared to be
localized at the leading edge of the cell. Consequently, cell flattening at the leading edge was
proposed to facilitate protrusion through restricted extracellular spaces required for tumor cell
invasion [58].

Experiments with murine primary microglial cells or a microglial (BV‐2) cell line demonstrated
that exposure to hypotonic saline or an elevated extracellular [K+] produced localized swelling
and protrusion of lamellipodia at the leading edge of these cells [59]. Blockade of volume‐
activated Cl‐ channels or inhibition of K‐Cl co‐transporters (KCC) effectively inhibited
lamellipodia formation. The migratory response induced by localized increases in extracellular
[K+] may likely result from cell death caused by injury. Ischemia for example, has been shown
to increase extracellular [K+] by more than 20 fold [60]. Such increases in [K+] would provide
a favorable driving force for KCl uptake by KCC leading to cell swelling and produce mem‐
brane depolarization. This would establish conditions for electrogenic Cl‐ influx through
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volume‐activated anion channels which also contributes to localized swelling. Furthermore,
signaling proteins such as the chemokine ligand CCL21 is released by damaged neurons and
is known to induce a chemotaxis response in microglia which is inhibited by Cl‐ channel
blockers [61]. This response was not dependent on activation of the canonical CCL21 receptor
CCR7, but instead was shown to stimulate CXCR3 receptors. Short‐duration exposure (30 s)
to CCL21 or the selective CXCR3 ligand CXCL10 in either brain slice preparations or microglial
cells in culture produced a sustained increase in Cl‐ channel activation that appears to represent
an initial trigger for stimulating directed cell migration in response to neuronal injury.

2.2. CFTR and epithelial wound repair

The first direct evidence of a role for CFTR in cell migration was obtained from studies of
airway epithelial cells [62]. Experiments using Calu‐3 cells, a human airway adenocarcinoma
cell line and normal human bronchial epithelial cells revealed that inhibition of CFTR channel
activity with the selective CFTR blocker, CFTRinh‐172 or silencing CFTR expression by RNAi
significantly slowed cell migration and epithelial restitution (see Figure 1). Moreover, CFTR
channel inhibition or silencing also reduced the extent of lamellipodia protrusion during
migration. These results demonstrated that the ion transport activity of CFTR was necessary
for airway epithelial cells to achieve a maximum rate of migration during wound closure and
that lamellipodia protrusion was at least one aspect of the migration process that was affected
by the loss of CFTR function. Following publication of this initial investigation, Sun et al. (2011)
showed that epithelial wound repair in a tracheal preparation from rhesus monkeys was
delayed following treatment with CFTRinh‐172 [63]. Experiments employing the use of a
noninvasive vibrating probe demonstrated that inhibition of CFTR activity inhibited the
spontaneous outward current induced by wounding and that treatment with aminophylline,
a phosphodiesterase inhibitor and CFTR activator, stimulated this outward current. These
results suggested that CFTR activity contributes to the wound current that serves as a guidance
cue for directed migration and that inhibition of CFTR activity disrupts the process of
electrotaxis, thus delaying wound closure. Further support for the importance of CFTR in
airway cell migration and epithelial restitution was provided by a set of rescue experiments
involving (i) expression of wild‐type CFTR into CF airway epithelial cell lines to restore the
normal rate of wound closure and (ii) treatment with VRT‐325, a CFTR corrector molecule that
facilitates apical membrane localization of CFTR with the ΔF508 mutation in CFBE‐ΔF508 cells
and in primary bronchial epithelial cells obtained from CF patients [64].

Involvement of CFTR in cell migration has also been observed in other epithelial cell types
besides airways. For example, in human trophoblast (BeWo) cells, CFTR activation with
forskolin increased cell migration into the wound and subsequent addition of CFTRinh‐172
significantly inhibited the response to forskolin [65]. Poor trophoblast migration/invasiveness
and associated spiral artery remodeling represent early recognizable pathologies that underlie
preeclampsia and previous studies demonstrated that CFTR expression is reduced in pree‐
clamptic placentas [66]. Thus, changes in CFTR function not only appear to have consequences
on placental ion and fluid transport but may also contribute to altered trophoblast invasion in
preeclampsia. Another example based on experiments with human ovarian carcinoma cells
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showed that CFTR silencing by RNAi significantly reduced cell migration and invasion under
in vitro conditions and that the tumorigenic potential of these cells in vivo was suppressed
compared to controls [67]. This result was consistent with the observation that CFTR expres‐
sion in ovarian cancer was higher relative to normal ovarian epithelial cells or benign ovarian
tumors and that enhanced CFTR expression was associated with advanced International
Federation of Gynecology and Obstetrics (FIGO) staging and poor histopathology grade.
Lastly, CFTR was also shown to play a role in cutaneous wound healing, where ΔF508cftr‐/‐

mice that lack plasma membrane localization and normal CFTR channel function exhibited
delayed wound closure compared to wild‐type mice [68].

Figure 1. Inhibition of CFTR channel activity or silencing expression by RNAi delay airway epithelial restitution. (A)–
(C) Impedance‐sensing arrays were used to track the process of Calu‐3 cell migration over the surface of a 250 μm di‐
ameter electrode following wounding by electroporation. Images show the extent of Calu‐3 cell confluence at three
time points (0, 120 and 300 min). (D) Normalized impedance (Z/Zmax) measurements as a function of time for Calu‐3
cells expressing shRNAs designed to selectively target CFTR (shCFTR cells) or have an altered sequence that no longer
recognizes CFTR mRNA (shALTR cells). Note that as cells reach confluence on the electrode surface, the normalized
impedance value approaches 1, which indicates complete epithelial restitution. For these experiments, shALTR cells
were used as controls where the black line represents the mean Z/Zmax values and the shaded grey area corresponds to
the SEM (n = 8). The blue line (mean) and light‐blue‐shaded area (SEM) shows the effects of silencing CFTR on wound
closure, where the slope provides a measure of the average rate of cell migration into the wound (n = 8). Finally, the red
line (mean) and pink‐shaded area (SEM) are the results from shALTR cells treated with 20 μM CFTRinh‐172, a selective
inhibitor of CFTR channel activity, throughout the process of restitution (n = 8). Images were adapted from Ref. [114].
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Exceptions to the migration‐promoting actions of CFTR can be found in studies of non‐small
cell lung cancer (NSCLC) cells and human keratinocytes [69]. Experiments with NSCLC cells
showed reduced CFTR expression which correlated with an advanced stage of the cancer,
lymph node metastasis and enhanced malignant behavior which manifested as an increase in
epithelial‐mesenchymal transition, invasion and migration. In contrast, overexpression of
CFTR reduced cancer progression and metastasis, supporting the observation that in some
types of cancer, CFTR appears to function as a tumor suppressor. Similarly, CFTR silencing by
RNAi in human keratinocytes was shown to promote cell migration and inhibit differentiation,
whereas overexpression inhibited migration and stimulated differentiation [68]. The effects of
manipulating CFTR expression on migration appeared to be related to its role in the formation
of epithelial junctions since silencing the channel downregulated adhesion molecule (E‐
cadherin, ZO‐1 and β‐catenin) expression and intercellular junction formation while overex‐
pression promoted junction formation.

2.3. ANO1, cell migration and cystic fibrosis

TMEM16A/ANO1 is one of the 10 known members of the anoctamin family (TMEM16A‐K) of
proteins, some of which function as anion channels. Certain members of this family, such as
ANO1, ANO2 and ANO6, can be activated by increases in intracellular [Ca2+] and are classified
as Ca2+‐activated chloride channels (CaCCs) [70–72]. CaCCs exhibit voltage dependence,
outward rectification and are perhaps best known for their role in Ca2+‐dependent Cl‐ secretion
in various epithelial tissues. Compounds including T16Ainh‐A01, CaCCinh‐A01 and NS3728
block channel activity to varying degrees depending on cell type [73]. Prior to the discovery
of its anion channel activity, ANO1 was regarded as either a tumor cell marker or as an
oncogene in human cancers with poor prognosis [74, 75].

In prostate cancer (LNCaP and PC‐3) cells, ANO1 is highly expressed and these cells exhibit
large CaCC currents in response to increases in cytosolic [Ca+] [76]. Silencing ANO1 by RNAi
in PC‐3 cells significantly inhibited cell proliferation and migration/invasion. Studies using
Ehrlich Lettre ascites (ELA) cells revealed that they express both ANO1 and ANO6 [71].
Interestingly, silencing ANO1 expression was shown to alter directionality of ELA migration
while knockdown of ANO6 was shown to cause a ∼40% decrease in the overall rate of
migration. Although the mechanism responsible for ANO1‐dependent control of directionality
is not understood, it is likely that some contribution to outward current associated with
wounding may be important in electrotaxis. Various pancreatic ductal adenocarcinoma cells
have also been shown to have increased expression of ANO1 and enhanced CaCC activity.
Knockdown of ANO1 or inhibition by CaCC blockers including CaCCinh‐A01, and NS3728
delay migration in BxPC‐2 cells, however, T16Ainh‐A01 exhibited no effect [77]. The authors
speculated that activation of ANO1 was important for cell volume changes necessary to control
cell shape and that the channel may serve as a potential target for reducing the metastatic
potential of pancreatic tumor cells.

Investigations of bronchial epithelial cell repair in cystic fibrosis (CF) demonstrated that the
expression of ANO1 and CaCC channel activity were significantly reduced in CF cells
compared to bronchial epithelial cells from normal subjects [78]. Consequently, epithelial
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restitution in wound healing assays was delayed in CF cells relative to non‐CF cells. Moreover
silencing ANO1 expression in non‐CF cells reduced the rate of migration, whereas overex‐
pression of ANO1 in CF cells partially restored cell motility, although complete recovery was
not achieved. To establish whether ANO1 channel function was necessary for supporting cell
migration, primary non‐CF cells were treated with T16Ainh‐A01 which produced a significant
delay in wound closure. These findings indicate that reduced rates of cell migration in
bronchial epithelial cells from CF patients may be attributed to an overall decrease in apical
membrane Cl‐ conductance resulting from loss of both CFTR and ANO1 anion channel activity.

3. Mechanisms of CFTR‐dependent cell migration and epithelial repair

Although the molecular mechanisms underlying the contribution of CFTR to the processes of
cell migration and epithelial restitution remain to be fully characterized, the data collected so
far have identified three important aspects of migration that merit further investigation. These
include the process of lamelliopdia protrusion, electrotaxis and the dynamics of integrin‐
mediated adhesion, each of which are discussed in more detail below.

3.1. Lamellipodia protrusion

Lamellipodia are actin‐containing, sheet‐like structures that protrude from the leading edge
of migrating cells [79]. They are capable of sensing environmental cues and are necessary for
sustained directional migration. A key force contributing to the protrusion of lamellipodia is
provided by the extension of actin filaments at the leading edge of the cell. Within lamellipodia,
actin forms networks of branched filaments with highest density near the membrane at the
leading edge, where the barbed (positive) ends of the filaments are directed toward the plasma
membrane to form brush‐like assemblies [80, 81]. Elongation occurs primarily at junctions
formed by a multiprotein structure known as the Arp2/3 complex, which functions as a
nucleation site for new actin monomers to attach to the sides of existing actin polymers to create
a branched arrangement of fibers [82]. As these monomers add to the growing meshwork at
the barbed end, cleavage and dissociation of monomers takes place at the pointed (minus) end
of filaments located in the more proximal regions of the lamellipodium. ATPase activity
associated with actin filaments facilitates accumulation of ADP‐actin at the pointed ends as
filament disassembly takes place. This dynamic process of simultaneous actin monomer
addition to the barbed end and dissociation at the pointed end of the filament is known as
treadmilling and is controlled by several actin‐regulatory proteins [82, 83] as well as intracel‐
lular pH [84, 85]. Previous studies have shown that during polarization along the axis of
movement, a redistribution of the Na+‐H+ exchanger (NHE1) occurs, which localizes toward
the leading edge of the cell. Redistribution of NHE1 results in the development of a steady‐
state pH gradient extending from the front of the cell, which becomes more alkaline, to the
rear, developing a more acidic pH relative to the leading edge [86–88]. A key regulator of
polarization is Cdc42, a small guanosine‐5'‐triphosphatase (GTP)ase that accumulates at the
leading edge where it stimulates actin polymerization. Cdc42 activation is pH sensitive,
requiring NHE1 activation and proton efflux to produce localized alkalinization of the
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cytoplasm to enhance its activity [86]. Moreover, alkalinization also promotes F‐actin cleavage
by cofilin, an actin binding protein that facilitates treadmilling by causing depolymerization
at the pointed ends of actin filaments [87]. Other acid extruding or base loading transport
mechanisms could potentially contribute to this alkalinization process, including CFTR and
its ability to conduct bicarbonate ions, provided that a favorable electrochemical driving force
exists.

As previously mentioned localized osmotic swelling can also contribute to the force that
powers lamellipodia protrusion [59]. Solute uptake serves as a driving force for fluid uptake
into the cell, often involving electroneutral transporters that couple cation uptake with Cl‐

transport (e.g. KCC or NKCC cotransporters). It is also possible that if the plasma membrane
is depolarized to a voltage that is more positive than the reversal potential of anion channels
such as CFTR or ANO1, then the inwardly directed Cl‐ concentration gradient would facilitate
influx, setting up a favorable osmotic gradient for fluid uptake and lamellipodia protrusion.
Whether Cl‐ influx or efflux is occurring at the leading edge may not be predicable, since this
would depend on the activity of multiple electrogenic transport pathways or conditions
associated with injury. It is worth emphasizing that depending on the electrochemical gradient
for Cl‐

, CFTR could contribute instead to retraction taking place at the rear of the cell. In this
case, efflux of Cl‐, perhaps coordinated with K+ channel activity, would enable localized solute
and fluid exit at the trailing edge of the cell, promoting forward movement [3].

3.2. Electrotaxis

Epithelia engaged in active electrolyte transport typically generate spontaneous transepithelial
potentials (TEP) that provide an electrical driving force for paracellular ion movement across
the epithelium [89]. Following wounding, the TEP at the site of the wound collapses as laterally
oriented electric fields develop with the cathode (negative pole) located at the center of the
wound. In dermal, corneal and airway epithelia, for example, outward current can be detected
using a noninvasive technique that employs a self‐referencing vibrating probe [90]. Many
epithelial cell types respond to wound‐induced electric fields by migrating toward the cathode
although some cell types exhibit anodal migration in response to electric field stimulation [91,
92]. In fact, changing the polarity of the field will reverse the direction of migration. In
experiments with primate tracheobronchial epithelial cells, an applied electric field with a
threshold intensity of 23 mV/mm was effective at stimulating migration with a displacement
speed that increased with field strength [63]. The displacement speed reflected greater
migration efficiency and in the case of tracheobronchial epithelial cells, the increase in speed
primarily resulted from improved directionality, which was quantitatively expressed using a
directedness parameter for the migrating cells. Directedness was expressed as the angle (θ)
that individual cells moved relative to the electric field vector, where cosine θ was defined as
the directedness value. Cells moving randomly in the absence of an electric field have an
average directedness value near zero, whereas those that move entirely along the electric field
lines toward the cathode have a value approaching 1. Experiments with tracheobronchial
epithelial cells showed that directedness increased with increasing field strength such that
when the voltage achieved 90 mV/mm, a number of the cells migrated directly toward the
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cathode. The finding that inhibition of CFTR reduces the electric field evoked by wounding
and that CFTR inhibition or silencing decreases lamellipodia protrusion [62], strongly suggests
that CFTR activity plays an important role in sustaining directed migration in airway epithelial
cells.

The cellular mechanisms underlying the increase in directed migration induced by wound‐
evoked electric fields are complex and cell type dependent. Studies of corneal epithelial cells
and keratinocytes, for instance, revealed changes in the localization of epidermal growth factor
receptors (EGFR) toward the cathode‐facing borders of migrating cells, and in at least one
study, EGFRs appeared to be activated by the electric field independently of ligand binding to
the receptor [93–97]. Moreover, inhibition of EGFR‐MAPK signaling was shown to alter the
actin cytoskeleton at the leading edge and diminish directed migration of epithelial cells,
demonstrating an important role for EGFR in detecting and initiating the epithelial response
to electric field stimulation [96]. Additionally, electric fields can redistribute and activate PI3K/
Akt signaling in a polarized manner at the cathode‐oriented leading edge of the cell [98]. When
PI3K is activated, membrane protrusion and lamellipodia formation is initiated at that site,
facilitating directed migration toward the cathode. Pharmacological inhibition of PI3K activity
or selective disruption of the PI3K‐γ isoform has been shown to block electrotaxis in wound
healing assays and organ cultures [98, 99]. Furthermore, in keratinocytes, deletion of
phosphatase and tensin homolog (PTEN), a phosphatase that functions as a negative regulator
of PI3K, resulted in increased Akt phosphorylation and enhanced electrotaxis. Other kinases
linked to the control of cell motility such as extracellular signal‐regulated kinase (ERK) have
also been shown to be involved in electric field‐evoked migration [97, 100, 101]. In experiments
with glioma and fibrosarcoma cells, electric field stimulation induced NADPH oxidase
activation, resulting in the production of reactive oxygen species (ROS) [100]. Intracellular
accumulation of ROS stimulates ERK phosphorylation/activation which leads to
reorganization of the cytoskeleton and an increase in directed migration [101]. Based on these
observations, it appears likely that further studies will uncover additional molecular targets
and signaling pathways involved in the detection and regulation of directionality by injury‐
induced electric fields.

3.3. Dynamics of integrin‐mediated adhesion

A recent study examining the consequences of CFTR silencing on cell migration and epithelial
repair in human airway (Calu‐3) epithelial cells demonstrated a ∼60% reduction in GM1
ganglioside content within the plasma membrane of CFTR deficient cells compared to
controls [102, 103], which was restored following expression of wild‐type CFTR. Similarly,
treatment of cells with the selective CFTR blocker, CFTRinh‐172, also produced comparable
reductions in GM1 content in cells expressing wild‐type CFTR. These observations were
consistent with earlier studies showing reduced levels of sialylated gangliosides in cells
expressing CFTR with the ΔF508 mutation [104, 105]. Furthermore, previous investigations
have also shown that gangliosides are capable of regulating integrin signaling and cell
migration [106, 107]. Experiments with Calu‐3 cells revealed that CFTR knockdown did not
directly affect β1 integrin surface expression; however, the level of activated β1 integrin was
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significantly lower than observed in CFTR expressing control cells [102]. β1‐integrin activation
could be completely recovered by incubating CFTR deficient cells with exogenous GM1, but
not with GM3 gangliosides, confirming that integrin activation was dependent on GM1 and
CFTR expression. Reduced β1 integrin phosphorylation was associated with lower levels of
focal adhesion kinase (FAK) and Crk‐associated substrate (CAS) phosphorylation which was

Figure 2. Colocalization of CFTR and the β2‐adrenergic receptor (β2‐AR) in the apical membrane of Calu‐3 cells and in
cilia of differentiated primary normal human bronchial epithelial (NHBE) cells grown under air‐liquid interface condi‐
tions. (A) Antibody labeling of the β2‐AR, CFTR and merged images (where yellow represents colocalization) collected
from wild‐type Calu‐3 cells (wt Calu‐3), Calu‐3 cells expressing shRNA that does not recognize CFTR (shALTR) and
CFTR‐deficient cells were CFTR expression was silenced by RNAi (shCFTR). (B) Labeling of the β2‐AR and CFTR with‐
in the cilia of differentiated primary NHBE cells. Yellow‐orange represents colocalization of the receptor and channel.
(C) Cross section of differentiated, pseudostratified primary NHBE cells showing colocalization of the β2‐AR and CFTR
within the cilia. Note the layering of nuclei reflecting pseudostratification. Images were adapted from Refs. [114] and
[115].
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also restored by incubation with exogenous GM1 ganglioside. A possible explanation for the
reduction in β1 activation may be related to loss of localization to specific membrane micro‐
domains that function as integrin signaling platforms. This would be consistent with GM1
localization within lipid raft domains where it is known to associate with CFTR [108, 109].
Moreover, recovery of FAK and CAS phosphorylation along with β1 integrin activation with
GM1 repletion also produced partial restoration of cell migration, suggesting that reduced
integrin engagement with the extracellular matrix, presumably at the leading edge of the cell,
accounts for at least part of the effect that loss of CFTR expression or inhibition of channel
activity has on epithelial restitution.

More recently, stimulation of β2‐adrenergic receptors (β2‐AR) expressed on the apical mem‐
brane of normal human bronchial epithelial cells and Calu‐3 cells caused a significant delay
in cell migration and wound closure. This effect could be reproduced using carvedilol, a β2‐
AR agonist that functions as a bias ligand to activate cAMP‐independent, β‐arrestin‐dependent
signaling cascades [110]. The inhibitory effects of β2‐AR agonists could be blocked if cells were
pretreated with an inhibitor of PP2A phosphatase, indicating that PP2A activation was a critical
step in regulating cell migration [111, 112]. Interestingly, in airway epithelial cells, β2‐ARs form
a tightly coupled signaling complex with CFTR in the apical membrane (see Figure 2) such
that receptor activation by endogenous ligands, such as epinephrine, or by selective β2‐AR
agonists, like salbutamol, stimulate CFTR channel activity [113]. The reduced rate of migration
following β2‐AR activation was associated with a reduction in lamellipodia protrusion, similar
in magnitude to the effect produced by CFTR channel inhibition with CFTRinh‐172 or silencing
by RNAi. Furthermore, β2‐AR agonists, including carvedilol, decreased β1‐integrin activation,
and in CFTR‐deficient Calu‐3 cells, β2‐AR activation had no effect on cell migration [114]. These
findings suggested a model where exposure to β2‐AR agonists stimulates PP2A phosphatase

Figure 3. Summary of proposed interactions and pathways accounting for the decrease in cell migration and epithelial
repair associated with loss of CFTR function and β2‐AR activation in airway epithelial cells. This model was adapted
from Ref. [114].
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activity to produce dephosphorylation of multiple proteins involved in the control of cell
motility (see Figure 3). Moreover, CFTR inhibition or silencing and β2‐AR stimulation appear
to converge on a common control point involving the activation of β1 integrin, which is thought
to be the reason why CFTR silencing and β2‐AR activation do not produce additive effects on
cell migration.

4. Conclusions

This chapter has focused on the impact of CFTR dysfunction on cell migration and epithelial
repair that has direct relevance to airway barrier function. This role for CFTR constitutes an
important intrinsic deficit of the CF epithelium that contributes to disease progression. Other
intrinsic deficits such as those linked to altered innate immune function appear to underlie
abnormal regeneration and remodeling of the CF epithelium that occurs in the absence of
infection. Delayed wound repair exacerbates intrinsic inflammation by providing opportuni‐
ties for pathogen access to the airway submucosa, augmenting inflammation and tissue
damage. Furthermore, dysregulation of the repair process establishes a chronic cycle of injury
and inadequate restitution that intensifies remodeling, ultimately leading to deterioration of
lung function. Further investigation is required to more clearly understand the molecular and
cellular mechanisms by which CFTR expression and function affect cell motility. Results from
these studies should aid in identifying pathways that could be targeted for development of
novel pharmacotherapies to reduce airway infection and inflammation in CF.
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Abstract

Cystic fibrosis–related diabetes (CFRD) results in significant morbidity and mortal-
ity for patients with cystic fibrosis (CF). It is the endpoint of a spectrum of progressive 
insulin deficiency with resulting abnormalities of glucose tolerance. The consequence 
of glycaemic abnormalities in CF is poorer nutritional status, an increase in respiratory 
exacerbations with decline in lung function and ultimately greater morbidity and mortal-
ity. CFRD can be diagnosed by the standard oral glucose tolerance test (OGTT) usually 
performed from 10 years of age. However, this may miss early glycaemic abnormali-
ties which appear to be clinically important. Early recognition of CFRD and treatment 
have been shown to improve outcomes in CF. Novel diagnostic methods such as 30-min 
sampled OGTT and continuous glucose monitoring (CGM) may prove to be useful in 
screening for this disorder and in the early identification of glycaemic abnormalities.

Keywords: cystic fibrosis–related diabetes, glucose, insulin, abnormal glucose tolerance, 
indeterminate glycaemia, impaired glucose tolerance, oral glucose tolerance test, 
continuous glucose monitoring

1. Introduction

Cystic fibrosis (CF) is the most common life-limiting autosomal recessive genetic condition 
seen in the Caucasian population, affecting approximately 1/2500 live births in Australia [1]. 
It is caused by mutations in the cystic fibrosis transmembrane regulator (CFTR) gene, located 
on the long arm of chromosome 7 [1] and expressed in the epithelial cells of lungs, pancreas 
and sweat glands and other organs. Cystic fibrosis–related diabetes (CFRD) is one of the most 
important complications of the disease as it is known to have a significant impact on morbidity 
and mortality [2]. Patients with CF ultimately die from recurrent respiratory tract infections 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



and respiratory failure which may be hastened by abnormalities of glucose tolerance affecting 
respiratory function and nutrition.

2. Pathophysiology

The pathophysiology of CFRD is likely multifactorial and complex. Historically CFRD was 
thought to be the result of progressive pancreatic destruction by secretions of the exocrine 
pancreas, pancreatic autodigestion and replacement with nonfunctioning fatty tissue, amy-
loid deposits or fibrotic tissue [3, 4]. This theory was supported by ultrasound findings in 
patients with CF of an “echogenic” and atrophied pancreas which progresses with age. MRI 
has also been used to study the pancreas of patients with CF. Sequeiros et al. attempted to 
determine the pancreatic volume of patients with CF using MRI and compare with Type 1 
diabetic patients and controls. In over 70% of patients with CF, the pancreas could not be 
visualised and this was irrespective of glycaemic status [5]. Pancreatic tissue on autopsies of 
patients with CF has also noted to have fewer islet cells and replacement with fibrotic tissue. 
Histologically, patients with CFRD have a relative decrease in the number of islet cells and 
insulin-containing cells within the islets, relative to the non-CFRD cohort [4, 6].

However, recent information supports the theory that destruction of the physical pancreas 
does not entirely explain the glycaemic abnormalities in patients with CF. Insulin deficiency 
has been shown to occur in young children and infants with CF [7], and even infants have 
been reported to have CFRD [8]. This has also been demonstrated in animal models of CF. In 
both the pig and ferret CF models, the animals demonstrate abnormal insulin secretion from 
birth, suggesting that CFTR may play a more direct role in insulin secretion [9, 10]. In the pig 
model, newborn pigs were noted to develop hyperglycaemia even when there was no signifi-
cant islet cell destruction [10]. Recent studies of the CFTR potentiator ivacaftor (Kalydeco™), 
which improves gating defects and thus should not have any impact on fatty or fibrotic tissue, 
have demonstrated an improvement in glucose abnormalities [11, 12]. This suggests that the 
intrinsic abnormality in the CFTR protein may play a role in glycaemic control in CF.

The timeframe during which patients with CF develop glycaemic abnormalities and CFRD 
has significant variability, and the specific CFTR class abnormality does not entirely account 
for this unpredictability. Non-CFTR genetic modifiers may play a key role in determining 
this risk. Patients with CF who have a family history of Type 2 diabetes are known to have an 
increased risk of CFRD [13, 14]. Polymorphisms in TCF7L2, a “susceptibility gene” for Type 2 
diabetes, are more common in patients with CFRD. The pathophysiology also appears to have 
similarities. Couce et al. noted that islet cell amyloidosis, which is characteristic of pancreatic 
histology of patients with Type 2 Diabetes mellitus, is also present in CF patients with CFRD 
and “borderline diabetes” but not in nondiabetic CF patients or controls [3]. Other genetic 
modifiers have been shown to modify CF phenotypes, including SLC26A9 which has been 
demonstrated to be more common in patients who develop CFRD [15].

In normal insulin physiology, insulin secretion occurs in two phases—the first phase results 
from exocytosis of preformed insulin granules which is the result of a voltage-dependent 
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calcium channel being triggered by blood glucose elevations [16–18]. The second phase 
requires maturation of insulin granules and lasts minutes to hours [19, 20]. Oral glucose 
ingestion results in a limited and delayed first-phase insulin peak when compared with 
intravenous administration [21, 22]. Overall, the amount of insulin secreted appears to be 
amplified when glucose is given orally, rather than intravenously. Incretins (glucagon-like 
peptide and gastric inhibitory peptide) are secreted from neuroendocrine cells of the gas-
trointestinal system and increase insulin secretion and decrease glucagon secretion. The 
secretion of incretins is hypothesised to be the result of the action of oral glucose within the 
gastrointestinal tract [21]. The role of incretins in CFRD has not yet been fully elucidated, 
and it is unclear whether or not patients with CFRD have abnormal levels of incretins. 
However, the diet of CF patients may play a role in the development of CFRD. In patients 
with Type 2 diabetes mellitus (DM), those prescribed orlistat, a lipase inhibitor, had dimin-
ished fat digestion which resulted in greater postprandial hyperglycaemia [23]. In a ran-
domised crossover trial, Perano et al. demonstrated that adolescent patients with CF, who 
did not take appropriate pancreatic enzyme supplementation, experienced amplified post-
prandial hyperglycaemia [24]. Barrio postulates in her review that inadequate enzyme sup-
plementation in patients with CF results in fat malabsorption, which may hasten gastric 
emptying, thereby inhibiting the normal augmentation of insulin response by the neuroen-
docrine cells [25]. Exogenous incretin therapy has proven beneficial in patients with Type 2 
DM, but it has also been associated with weight loss in this cohort, an undesirable outcome 
for patients with CF [26]. Hyperglycaemia is known to promote beta-cell apoptosis, and as 
such, postprandial hyperglycaemia from dysfunctional incretin secretion in CF may poten-
tiate the glycaemic abnormalities demonstrated and hasten the progression to CFRD.

CFRD is distinct from both Type 1 and Type 2 diabetes. CFRD is not an autoimmune condition 
like Type 1 DM and is not associated with autoantibodies found in Type 1 DM. Moreover, Type 
2 DM is primarily a disorder of insulin resistance, whereas glucose abnormalities in CF are pri-
marily the result of insulin deficiency, which is present even in CF patients with normal glucose 
tolerance on oral glucose tolerance test (OGTT) [7]. One of the features of CFRD that differenti-
ates it from other forms of diabetes is the variation in glucose tolerance demonstrated over time 
[27]. Although abnormalities of glucose tolerance are known to progress and the complications 
of diabetes increase in the degree of abnormal glycaemia, some patients with the diagnosis of 
CFRD will have OGTT results that normalise [27]. The role of insulin resistance has been less 
well defined although there is emerging evidence of its importance. Ahmad et al. illustrated that 
patients with CF actually had an increase in peripheral insulin sensitivity compared to healthy 
controls matched for age and body mass index. They concluded that this increase in peripheral 
sensitivity in CF patients was a metabolic compensation for insulin deficiency [28]. Moran et al. 
replicated these findings in exocrine-insufficient CF patients without diabetes. However, once 
CFRD had developed, there was an increase in peripheral insulin resistance [29]. The mecha-
nism by which this may occur could be the result of a downregulation of GLUT-4 insulin-sensi-
tive channels secondary to chronic hyperglycaemia [30] (“glucose toxicity”). Insulin resistance 
is also thought to vary over time which could explain the variability of glucose tolerance seen 
in patients with CF, including a normalisation of previously abnormal glucose tolerance on 
OGTT. It is often cited that glucose abnormalities worsen during pulmonary exacerbations (due 
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to cytokine and stress hormone release), but the data to support this suggestion is limited and 
was not found in the study by Widger et al. [31]. This group performed OGTT in patients with 
a pulmonary exacerbation and then repeated the OGTT when well. Although the sample size 
was small, 8/9 patients remained within their glycaemic category even when recovered from 
their pulmonary exacerbation. However insulin resistance is known to increase during periods 
of corticosteroid usage, overnight feeds [32, 33], pregnancy and during puberty [34–36]. In the 
latter case, insulin resistance is thought to increase as a result of a physiological elevation in 
growth hormone [34], and this may account for the increased detection of CFRD in this age 
group.

Chronic inflammation may play a key role in the development of glucose abnormalities in CF. 
Bismuth et al. demonstrated in their cohort of patients with CF that the erythrocyte sedimenta-
tion rate (ESR), a marker of inflammation, positively correlated with HbA1c and the area under 
the curve (AUC) for glucose in patients undergoing OGTT [37]. Significant and ongoing oxidative 
stress is one mechanism hypothesised to result in an inflammatory state and beta-cell apoptosis 
[38, 39]. One review postulated that the imbalance in inflammatory T-cell lymphocytes known 
to play a role in the development of other forms of diabetes may contribute to lung inflamma-
tion and thereby a chronic inflammatory states resulting in glucose abnormalities [40]. T-helper 
17 (Th-17) lymphocyte cells secrete a pro-inflammatory cytokine-IL-17 known to be involve in 
pulmonary inflammation in CF and is known to be present in higher levels compared to controls 
in patients with Type 2 diabetes. Furthermore, studies also suggest that IL-17 may play an impor-
tant role in the development of Type 1 diabetes [41] and may contribute to β-cell destruction. It 
has also been postulated that cytokines such as TNF-α may act directly on the insulin receptor by 
inducing insulin resistance, thereby inhibiting the potential action of insulin [42].

The pathophysiology of CFRD is likely to be multifactorial but ultimately resulting from pro-
gressive insulin deficiency secondary to islet cell destruction and defective beta-cell secretion, 
combined with stressors that intermittently increase insulin resistance resulting in a further 
deterioration of glycaemic status. Certain patients may be more at risk if non-CFTR genetic 
modifiers are present [13, 14], and perhaps these patients are unable to compensate for the 
degree of histological pancreatic destruction and defective beta-cell functioning.

3. Epidemiology

3.1. Prevalence of glycaemic abnormalities in CF

CFRD is known to occur in up to 50% of patients with CF by the age of 30 years [43] and the 
prevalence increases with age. CFRD can occur in young children with CF but is rare [8]. 
Recent studies suggest that CFRD affects approximately 9% in the 5–9 year age group [44] 
and a smaller proportion of children under 5 may also meet the CFRD diagnostic criteria. Yi et 
al. recently reported a series that suggested 5% of their cohort between 6 months and 5 years 
had CFRD [45]. Although a small proportion of young children have CFRD, the average age 
of onset is 20 years [46]. CFRD occurs more commonly in females with a prevalence of 17% in 
young female adults compared with 12% in males previously described [47].
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degree of histological pancreatic destruction and defective beta-cell functioning.

3. Epidemiology

3.1. Prevalence of glycaemic abnormalities in CF

CFRD is known to occur in up to 50% of patients with CF by the age of 30 years [43] and the 
prevalence increases with age. CFRD can occur in young children with CF but is rare [8]. 
Recent studies suggest that CFRD affects approximately 9% in the 5–9 year age group [44] 
and a smaller proportion of children under 5 may also meet the CFRD diagnostic criteria. Yi et 
al. recently reported a series that suggested 5% of their cohort between 6 months and 5 years 
had CFRD [45]. Although a small proportion of young children have CFRD, the average age 
of onset is 20 years [46]. CFRD occurs more commonly in females with a prevalence of 17% in 
young female adults compared with 12% in males previously described [47].
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Children with CF are known to be insulin deficient from birth. Milner et al. demonstrated 
that children with CF in the first year of life had lower insulin levels than controls [7]. Insulin 
deficiency will progress over time and results in a gradual deterioration of glucose tolerance. 
As such, impaired glucose tolerance is much more common than CFRD and can affect up to 
41% of children in the 6–9 year age group [48], compared with only 10% of this group being 
classified as CFRD. The risk of early CFRD is much higher in children with abnormal glucose 
tolerance on OGTT [48].

3.2. Screening

The prevalence of identified CFRD has been shown to increase after the introduction of screen-
ing [49]. Unlike Type 1 or Type 2 diabetes which are often symptomatic, CFRD does not often 
present with symptoms of hyperglycaemia although this can occur in approximately one 
third of patients. Symptoms can include polyuria and polydipsia, but CFRD is more likely to 
present insidiously with the catabolic complications of insulin deficiency such as nutritional 
deterioration or decline in pulmonary function. When routine screening was introduced in 
Australia, the incidence of CFRD increased from 2.0 to 22.1 per 1000 person years between 
2000 and 2008, which represents a tenfold increase [50]. A decline in the age of diagnosis has 
also been demonstrated after the introduction of routine screening; Noronha et al. reported 
a reduction in the mean age of diagnosis from 22.3 years to 13.5 years [49]. Routine screening 
from at least 10 years of age with an OGTT is recommended by most guidelines [51, 52].

3.3. Risk factors for CFRD

The risk factors for the development of CFRD are closely linked to the specific CFTR genotype 
and the severity of the CFTR protein dysfunction [53]. CFTR mutations are classified accord-
ing to the resulting functional deficit [54]. Class 1 and class 2 mutations result in the total or 
partial absence of CFTR protein at the surface membrane due to defective/non-functional 
protein (Class 1, e.g. stop codon mutations) or due to defective transfer of the protein to the 
cell membrane, i.e. defective “trafficking” (Class 2, e.g. F508) [25]. Classes 3, 4, 5 and 6 have 
irregularities in regulation, conductance, prevalence and stability of CFTR at the membrane 
[55]. Of the latter, 4 classes, all except class 3, which is known as a gating mutation, have par-
tial function. Those classes with no action have a more severe phenotype and are associated 
with a greater risk of CFRD, such as homozygous F508 patients [46].

CFRD generally occurs in patients with pancreatic insufficiency. There have been reports of 
CFRD in patients who are pancreatic sufficient, but the diagnostic criteria for exocrine pan-
creatic function do not appear to be robust [47]. Some of these patients were classified as pan-
creatic sufficient because they were not taking replacement enzymes, but had not undergone 
any formal diagnostic testing such as faecal elastase or 3-day fat stool sampling. More recent 
studies have demonstrated that the degree of pancreatic exocrine function appears to corre-
late with the development of CFRD. Soave et al. demonstrated a causal relationship between 
the level of serum trypsinogen on the newborn screen (a marker of exocrine pancreatic func-
tion used to diagnose CF) and the development of CFRD over time [15]. Trypsinogen is an 
inactive pancreatic enzyme precursor required for protein digestion and absorption. It is 
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converted to trypsin when secreted into the small intestine, but this process is inhibited in CF 
and results in an elevated serum trypsinogen. A significant elevation in the blood levels of 
immunoreactive trypsinogen (IRT) on newborn screening is used to identify neonates with 
CF. The IRT level is known to decline rapidly over Time with ongoing pancreatic destruction. 
Soave et al. postulated that patients with CF who had more significant pancreatic disease at 
birth would have IRT levels that had already started to decline and would be relatively lower 
than the rest of the CF cohort [15]. They also demonstrated that those children with relatively 
low IRT amongst the CF cohort had an increased risk of CFRD, thus confirming the relation-
ship between exocrine pancreatic function and endocrine disease.

The presence of CF liver disease appears to be a significant risk factor in the development of 
CFRD. Leung et al. examined over 700 liver ultrasounds of patients with CF and found that 
patients with the features of heterogenous or cirrhotic liver disease on ultrasound were more 
likely to have abnormalities of glucose tolerance, including CFRD, than those with normal 
liver ultrasounds [56]. The relationship between liver disease and CFRD remains unclear. It 
could be a result of the more severe genotypes causing CFRD also increasing the risk of liver 
disease, or it could be the result of a non-CFTR genetic modifier.

Abnormal glucose tolerance is a known risk factor for progression to CFRD. CF patients 
with glucose abnormalities are up to 11 times more likely to develop early CFRD than other 
6–9-year-old patients [48].

4. The clinical impact of glucose abnormalities in CF

Glucose abnormalities in CF are associated with significantly increased morbidity and mortal-
ity [2]. Prior to the introduction of routine screening for CFRD, less than 25% of CFRD patients 
survived to age 30, compared with 60% of patients without diabetes [57]. When Moran et al. 
examined female CF cohorts with and without CFRD in the 1990s and compared them with 
cohorts after the introduction of routine CFRD screening, mortality rates had halved: 6.9 per 
100 patients years in patients with CFRD versus 3.2 per 100 patient years in CF without diabe-
tes, with similar results seen in men were reported [58]. Although mortality rates for patients 
with CFRD have seen a marked improvement, a significant difference between CF patients 
with and without diabetes persists [59].

CFRD leads to a significant increase in respiratory exacerbations, increased infection with 
CF pathogens [60] (including Pseudomonas aeruginosa) and poorer lung function [57, 61]. 
The mechanism by which insulin deficiency resulting in CFRD has such a negative impact 
on lung function in CF is probably multifactorial. The hyperglycaemic environment is said 
to create a “pro-inflammatory” environment, optimal for bacterial growth and colonisation 
that allows CF pathogens to thrive [52]. In vitro studies have demonstrated an amplifica-
tion of bacterial growth, in particular Staphylococcus aureus and P. aeruginosa with increasing 
glucose concentrations [62], and this evidence supports the hypothesis of glycaemic abnor-
malities playing a significant and direct role in the infection and colonisation of patients 
with CF.
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Blood glucose levels >8 mmol/L correlate with increased airway glucose levels in patients with 
CF [62]. In non-CF patients, elevated airway glucose has been demonstrated to be a risk factor 
for respiratory infections, including MRSA (based on studies in patients intubated due to criti-
cal illness in the intensive care unit [63]). When Brennan et al. examined the airway glucose of 
patients with CF, they demonstrated that even patients with normal glucose tolerance on OGTT 
had glucose in their airway for longer periods of time than the control population. The duration 
of time spent with airway glucose levels >8 mmol/L correlated with the degree of glucose abnor-
mality [62]. The level at which glucose appears in the airway is much lower than the 2-h OGTT 
glycaemic threshold for CFRD and also appears to be very close to the level of blood glucose 
level (BGL) which correlates with significant nutritional and respiratory decline [64].

Respiratory tract infections may not entirely account for the deterioration in lung function 
seen in patients with CF. Patients with diabetes mellitus from other causes have also been 
demonstrated to have poorer lung function than matched controls, even in the absence of 
respiratory disease [65, 66]. It is unclear whether this is a direct result of glucose in the airways 
or an indirect result of inflammation from relative insulin deficiency.

Nutrition in CF has a direct correlation with survival [67], and insulin, an anabolic hormone, 
plays an integral role in maintaining weight and building muscle [18]. When CF patients are 
insulin deficient, this manifests as poorer nutritional status. Multiple studies have demonstrated 
the impact of CFRD and insulin deficiency on nutrition and growth [37]. The data of over 8000 
CF patients on the epidemiologic study of cystic fibrosis (ESCF) was analysed in 2005 and con-
firmed a greater impairment in nutrition in the CFRD group when compared with the nondia-
betic group [47]. The CFRD cohort had statistically lower height for age percentiles, weight for 
age percentiles and BMI (p < 0.001 for all three parameters). A statistically significant difference 
in body weight and BMI has also been demonstrated in the “prediabetic” CF patients when 
compared with CF patients with normal glucose tolerance [61]. This decline was detected by 
Lanng et al. in some patients 4 years prior to the diagnosis of CFRD being. Given the insidious 
nature of glycaemic abnormalities and the inherent difficulties with nutrition in patients with 
CF, particularly those with exocrine pancreatic insufficiency, the impact of insulin deficiency is 
often not recognised until CFRD is diagnosed on routine screening.

5. The spectrum of glucose abnormalities in CF

Insulin deficiency is progressive and results in a deterioration of glucose tolerance over time. 
CFRD lies at the end of a spectrum of glucose abnormalities. Glycaemic categories in CF are 
determined based on the results of the oral glucose tolerance test (OGTT) [51]. To perform an 
OGTT, a glucose load of 1.75 g/kg (maximum 75 g) is consumed after fasting. Classically the 
blood glucose level (BGL) is measured at 0 and 120 min [68]. Additional information about 
glucose tolerance is gained by also checking the BGL at 30 min, 60 min and 90 min, i.e. a 
30-min sampled OGTT [64].

The diagnosis of CFRD is made based on the American Diabetic Association (ADA) criteria 
[51] (see Table 1). CFRD is diagnosed when the 2-h OGTT level is ≥ 11.1 mmol/L and can 
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occur with or without fasting hyperglycaemia (fasting BGL ≥ 7.0 mmol/L is defined as fast-
ing hyperglycaemia). Fasting hyperglycaemia can also be considered diagnostic of CFRD, 
if still abnormal when repeated. One fasting BGL ≥ 7.0 mmol/L and another non-fasting 
level ≥ 11.1 mmol/L can also make a diagnosis of CFRD. If a patient is sick and glycaemic 
abnormalities persist for two days, then the diagnosis can also be made. Most guidelines 
recommend the OGTT/BGL is repeated before the diagnosis is confirmed. Some guidelines 
subclassify CFRD based on the fasting BGL, but this distinction does not alter management, 
as insulin treatment is recommended for those with and without fasting hyperglycaemia.

Additional criteria have been published to subclassify the patients into glycaemic categories 
based on 30-min samples (see Table 1) [1]. Patients with normal glucose tolerance have fasting 
BGL <7.0 mmol/L and 2-h level <7.8 mmol/L. Indeterminate glycaemia (INDET) is defined as 
normal fasting and 2-h levels with a midpoint level ≥ 11.1 mmol/L. Impaired glucose tolerance 
(IGT) is defined by a 2-h level <11.1 mmol/L but ≥7.8 mmol/L.

Children with abnormal glucose tolerance and CF may fluctuate between glycaemic catego-
ries because of increasing insulin requirements at times of illness or because of variable levels 
of resistance. In one study 18% of CF patients with abnormal glucose tolerance had glycaemic 
abnormalities that improved over time. Twenty-two percent of patients had a deterioration 
in their glucose tolerance [27]. This variability was replicated by Lanng et al. who saw a nor-
malisation of the patient OGTT in 58% of adult patients with CF when followed up after 
5 years [69]. Yi et al. examined glucose tolerance in young children (<6 years) and found that 
some of these children with abnormal glucose tolerance that normalised, including those that 
met CFRD criteria [45]. This variability adds to the difficulty seen in managing patients with 
CFRD, particularly younger children.

6. Issues with the OGTT in CFRD

The OGTT was not designed to diagnose diabetes in the CF population. The test was 
designed to determine the treatment threshold for Pima Native American population 
with Type 2 diabetes based on their risk of developing microvascular complications [70]. 

Category Fasting level Midpoint peak (1 h) 2-h plasma level

Normal glucose tolerance <7 mmol/L <11.1 mmol/L <7.8 mmol/L

Indeterminate glycaemia 
(INDET)

<7 mmol/L ≥11.1 mmol/L <7.8 mmol/L

Impaired glucose tolerance 
(IGT)

<7 mmol/L ≥7.8 and < 11.1 mmol/L

CFRD without fasting 
hyperglycaemia

<7 mmol/L ≥11.1 mmol/L

CFRD with fasting 
hyperglycaemia

≥7 mmol/L ≥11.1 mmol/L

Table 1. Classification of abnormalities of glucose tolerance in cystic fibrosis on OGTT.
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Although microvascular diabetes complications can occur in CF, the major concern for 
CFRD is its impact on nutrition and lung function. Complications from chronic intermedi-
ate hyperglycaemia may also result in microvascular disease prior to the patient meeting 
the criteria for CFRD [71]. More practical goals would include an initiation of treatment at 
a time that would alleviate significant respiratory morbidity such as recurrent infections 
and respiratory function decline. The drop in nutritional status and weight, or poor growth 
in younger children because of insulin deficiency catabolism, would be a more relevant 
CF-specific outcome to guide diagnostic targets.

The decrease in lung function and nutrition seen in CFRD actually precedes the diagnosis by 
several years and is often insidious. Lanng et al. noted that a decline was present up to four 
years prior to the OGTT 2-h criteria being met [61]. Furthermore, insulin therapy has been dem-
onstrated to reverse some of the nutritional decline seen in patients with abnormal glycaemia 
[72, 73]. However, once patients meet the criteria for CFRD, recovery of lung function is not 
always possible. Widger et al. postulate that by waiting until the patient meets the CFRD criteria 
to start insulin, the conceded progression from abnormal glucose tolerance to CFRD allows irre-
versible structural remodelling of the lungs that cannot be corrected with insulin therapy [74].

Further evidence for insulin therapy at an earlier stage of the glycaemic spectrum is warranted, 
and initial data has highlighted which patients may benefit most. Schmid et al. demonstrated 
that in 1000 patients with CF, patients with midpoint level ≥11.1 mmol/L (INDET) were predic-
tive for later development of CFRD [75]. Brodsky et al. were able to establish that the 1-h level on 
the OGTT correlated with poorer lung function [76]. They examined 101 patients with CF and 
these patients with higher 1-h levels had poorer respiratory status even when corrected for nutri-
tional status. The 2-h “diagnostic” level in this group did not correlate with BMI or lung function. 
The findings of Coriati et al. [77] confirm that waiting for the 2-h BGL to be diagnostic of CFRD 
may be too late. Their cohort of patients with indeterminate glycaemia already had significant 
loss of lung function, equivalent to the lung function of patients with newly diagnosed CFRD. 
The criteria to start insulin in the future may be determined by the patient’s own risk of develop-
ing CFRD or by early clinical signals in lung function and intermediate glucose abnormalities.

Hameed et al. used a 30-min sampled OGTT and found that a peak BGL ≥ 8.2 mmol/L was 
reliably predictive of a decline in lung function and nutrition in the preceding year [64]. Based 

Proposed new criteria Peak blood glucose (BGmax) mmol/L Blood glucose at 120 min mmol/L

CFID1 ≥8.2 <11.1

CFID2 ≥11.1 <11.1

CFID3 ≥11.1
Without fasting hyperglycaemia

CFID4 ≥11.1
With fasting hyperglycaemia

CFID = cystic fibrosis insulin deficiency.

Table 2. Proposed new staging criteria for insulin deficiency and early glucose abnormalities in CF, based on the OGTT 
with samples every 30 min.
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on these results, this group proposed a new staging criteria to identify insulin deficiency 
and early glucose abnormalities in patients with CF (see Table 2) [78]. Cystic fibrosis insulin 
deficiencies (CFID) 4 and 3 correspond to existing CFRD categories with and without fasting 
hyperglycaemia, respectively. CFID 1 and 2 are earlier stages of insulin deficiency that are dis-
tinct from impaired glucose tolerance (IGT) because they are based on the peak glucose level 
and have 2-h levels < 11.1. CFID 1 is defined by a midpoint peak glucose level ≥8.2 mmol/L, 
and CFID2 has a midpoint glucose peak ≥11.1 mmol/L.

7. Continuous glucose monitoring in CF

Continuous glucose monitoring (CGM) has been used for several years in the management of 
Type 1 diabetes although it is not licenced for use as a diagnostic device. CGM uses a small 
probe inserted into the subcutaneous space where it measures interstitial glucose levels. 
Inserting the device is a relatively simple procedure that can be done within a few minutes in 
a clinic environment. It is easy to remove at home by the patient or carer, without any specific 
medical training. The device averages the glucose readings every five minutes and can be worn 
for several days whilst the patient continues to participate in normal activities and consumes 
their normal diet. The CGM device has been validated in CF and non-CF populations and 
shown to correlate with plasma glucose measurements [79, 80]. When compared with OGTT, 
CGM appears to be reproducible and a reliable assessment of glycaemic abnormalities. When 
used in Type 1 diabetes, Bergenstal was able to demonstrate that children and adults on insulin 
pumps had improved glycaemic control, as measured by HbA1c than those who did not use 
CGM [81].

CGM may be particularly useful in managing cystic fibrosis. CF patients frequently demon-
strate early postprandial hyperglycaemia [79, 82, 83], reflected by elevations in readings on 
a 30-min sampled OGTT in the setting of a normal 2-h level. This intermittent postprandial 
hyperglycaemia may be reflected in the poor correlation of HbA1c (glycated haemoglobin) 
with early glycaemic abnormalities in CF. HbA1c represents an index of the average of blood 
glucose concentrations in the preceding 2–3-month period, and the result is influenced by the 
half-life of the red cells [84]. When measured in CF, it is a poor indicator of glycaemic abnor-
malities as it is often still normal by the time a diagnosis of CFRD has been made. The poor 
sensitivity of the test may result from the intermittent nature of hyperglycaemia in patients 
with CF, which is not revealed in the HbA1c level when the glucose levels are “averaged”, as 
well as increased red cell turnover in CF.

CGM provides a useful tool to guide insulin treatment once the diagnosis of CFRD has been 
made [79], but it may also offer a potential opportunity to capture the moments of postpran-
dial hyperglycaemia in CF in the screening and diagnostic phase. In CF patients with normal 
glucose tolerance on OGTT, abnormalities on CGM have been detected [79, 82, 83]. This could 
reflect the fact that patients with CF undergo a period of fasting prior to their glucose load in 
the OGTT which will only measure two values. When a CGM is worn, patients can be at home 
and may consume their normal CF diet including a carbohydrate load that may exceed the 
glucose level consumed during an OGTT. In the same way that HbA1c may not reflect a true 
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picture of glycaemic abnormalities in CF, so too may the OGTT underestimate the hypergly-
caemia in these patients, particularly in the early phase of glucose abnormalities.

CGM may be a useful device in predicting which children with CF will develop glycaemic 
abnormalities. Schiaffini et al. performed OGTT and CGM on children with CF and then 
repeated the OGTT after 2 years. Children who had diabetic excursions on CGM at baseline, 
even those with normal glucose tolerance on OGTT, developed impaired glucose tolerance 
or CFRD when the OGTT was repeated 2 years later [83]. Initial data on CGM does appear to 
suggest that this tool may be useful in identifying clinically significant glucose abnormalities 
in CF. Leclercq et al. demonstrated, in a CF population with normal OGTT, that patients who 
recorded glucose levels in the diabetic range (≥11.1 mmol/L) on CGM had poorer lung func-
tion and greater colonisation with CF respiratory pathogens such as P. aeruginosa [85].

Glycaemic abnormalities are known to have a significant impact on nutrition in patients with 
CF. CGM may provide an opportunity to highlight which children are at risk of nutritional 
decline secondary to abnormities of glucose tolerance as described in the study by Hameed et 
al. [64]. In this study of 25 children with CF undergoing CGM, if ≥ 4.5% of the study duration 
was spent with an interstitial glucose reading >7.8 mmol/L, this was predictive of a decline in 
weight standard deviation score. This CGM criterion had a sensitivity of 89% and a specific-
ity of 86% in detecting this nutritional decline. CGM abnormalities do appear to be clinically 
significant, but there are not studies as yet demonstrating a benefit from treatment based on 
CGM recordings in CF, and the device is not yet licenced to make a diagnosis of diabetes.

8. Management of CFRD

The main aim of CFRD treatment is to correct the hyperglycaemia and its downstream effects 
on respiratory function and infections, in addition to reversing significant protein catabolism 
secondary to insulin deficiency. Optimal management has been shown to improve lung func-
tion and morbidity [72]. Although a drop in mortality from late CFRD diagnosis has been 
seen, the risk of early mortality is still higher in this population. The mainstay of treatment 
is exogenous insulin therapy, but studies are underway examining the benefits of dietary 
changes and the use of oral hypoglycaemic agents in CF.

8.1. Insulin

Insulin plays a major role in the management of CFRD. Insulin replacement by subcutaneous 
injection in CFRD has been shown to improve lung function and reduce pulmonary exacer-
bation frequency [86]. It has also been shown to benefit the nutritional status of the patient, 
with an improvement in growth seen in children with CF [73]. Recent studies have also dem-
onstrated that insulin therapy in the prediabetic phase may also play a valuable role in the 
management of patients with CF. Hameed et al. were able to replicate previous studies dem-
onstrating a benefit of insulin therapy on lung function and nutrition in patients with CF and 
revealed an improvement in weight standard deviation score (p = 0.003) and lung function 
(FEV1 improvement p = 0.004) with once daily insulin injections (detemir, Levemir™) [73].

Cystic Fibrosis–Related Diabetes
http://dx.doi.org/10.5772/66452

35



Insulin is given via subcutaneous injection. Unlike Type 1 diabetes, a once daily dose of 
long-acting insulin may be all that is required to demonstrate a benefit for this population 
[73]. Insulin doses vary with each patient, but because of the important anabolic role insulin 
plays in growth and nutrition, the highest tolerated dose without hypoglycaemia or other 
side effects is generally recommended [52] (taking into account patient-specific factors such 
as ability to recognise hypoglycaemic symptoms). The dose prescribed may vary over time 
with increasing requirements during times of relative increase in insulin resistance such as 
with glucocorticoid use or during periods of growth and pregnancy. Given the progressive 
nature of insulin deficiency in CF, increasing requirements may be seen over time, particu-
larly in the paediatric population with CF that have age- and weight-based doses.

Insulin pumps that continuously deliver a small amount of insulin into the subcutaneous 
space have been used in patients with CFRD [87] although the uptake in CF has been poor 
when compared with other forms of diabetes. When wearing a pump, patients are currently 
required to undertake much more intensive finger-prick blood glucose testing than that 
required with a once daily insulin injection. This may prove to be too onerous for patients 
with CFRD who already have a significant treatment burden with multiple oral and neb-
ulised medications and physiotherapy. Future insulin pump devices may include closed 
loop systems, in which interstitial glucose levels measured by CGM calibrate the rate and 
amount of insulin secreted by the pump [88]. These devices are currently under investiga-
tion for Type 1 DM, but there are no data published about their use in CFRD to date.

8.2. Nutrition

Nutritional education and support are of utmost importance for patients with a diagnosis of 
CFRD. Children with CF require a higher caloric intake (may need up to 200% of usual recom-
mendations [89]) to achieve optimal nutritional and growth targets. If nutritional targets are not 
met, there may be significant consequences as a lower BMI has been associated with increased 
mortality in CF [67]. These additional calories are best taken from fat and protein-based meals, 
but a significant proportion is taken from carbohydrates [90]. Patients with abnormalities of 
glucose tolerance and CFRD will be required to recognise carbohydrates in their diet, as the 
carbohydrate load will affect the glucose level and the resulting insulin requirements. This is 
usually done by educating the family and patient about carbohydrate-insulin ratios.

There are very limited data regarding the dietary management of CFRD. This is of particular sig-
nificance given that hyperglycaemia has been demonstrated to worsen glycaemic abnormalities 
in CF, possibly by potentiating beta-cell apoptosis. As such, glycaemic control in CFRD needs to 
be tight, and diets that perpetuate postprandial hyperglycaemia may have a negative impact on 
glycaemic abnormalities in CF and increase insulin requirements. A low glycaemic diet is often 
recommended in Type 1 and Type 2 diabetes to optimise control of hyperglycaemia and has 
been shown to decrease insulin requirements and improve glucose homeostasis, without having 
a significant impact on quality of life for these patients. Whereas weight loss due to change in 
diet may be beneficial in Type 2 DM, this may have serious negative consequence in CF. There is 
not enough information in the literature to recommend any dietary changes that might improve 
glycaemic control or prevent or delay progression to CFRD if instituted at an earlier stage.
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8.3. Oral hypoglycaemic agents

Oral agents do not play a role in the management of patients with CFRD. Many agents tar-
get insulin resistance (e.g. metformin), which is not a major feature in the early glycaemic 
abnormalities of CF where insulin deficiency plays the key role and as such will not be of 
significant benefit to CF patients. Significant side effects from oral hypoglycaemic agents such 
as hepatotoxicity are a serious complication for the CF population where a significant propor-
tion may develop CF liver disease [91]. Insulin therapy in states of insulin deficiency such 
as Type 1 diabetes has been shown to preserve insulin secretion and “rest” the residual beta 
cells. Conversely, agents that stimulate insulin secretion may potentially hasten beta-cell loss. 
For example, agents such as repaglinide may be useful in the short term but ultimately have 
a negative long-term impact.

8.4. The role of potentiators in CFRD

Evidence for the use of potentiators in CFRD is limited, but a few pilot studies have been 
published that suggest a benefit on glucose homeostasis in CF. In a single pair of CF sib-
lings with abnormal glucose tolerance (one with CFRD) and gating mutations, a reduction 
in the glucose AUC and an improvement in the insulin secretion profile was demonstrated 
after the introduction of ivacaftor (Kalydeco™). Bellin et al. also demonstrated improve-
ments in glucose homeostasis after the introduction of ivacaftor. In this group of five CF 
patients with glucose abnormalities, four of five demonstrated improvements in insulin 
secretion. The patient whose insulin secretion did not improve had long-standing CFRD, 
whereas the others had earlier glycaemic abnormalities. Theoretically, the patient with 
long-standing CFRD could already have undergone such significant pancreatic destruc-
tion that the abnormalities of glucose tolerance could not be corrected at the level of the 
CFTR.

9. Complications of CFRD

Long-standing hyperglycaemia and insulin deficiency will result in an increase in respira-
tory exacerbations and morbidity and poorer nutrition. It will also result in complications 
from chronic hyperglycaemia seen in other forms of diabetes. Historically the life-limiting 
nature of CF and in particularly those with CFRD meant that CF patients were unlikely to live 
long enough to develop end-organ dysfunction from the macrovascular and microvascular 
complications seen in other forms of diabetes. With an improvement in life expectancy, these 
long-term issues need to be addressed, and routine screening needs to be a part of CF clinical 
care. This will include examination for neuropathy and retinopathy and urine screening for 
microalbuminuria. In one study, 10 years after the diagnosis of CFRD has been made, subjects 
with fasting glycaemia demonstrated rates of microalbuminuria of approximately 14%, reti-
nopathy 16%, neuropathy 55% and autonomic gastropathy 50% [51]. Gilchrist et al. reported 
retinopathy in three patients with abnormal glucose tolerance but not meeting criteria for 
CFRD [71] which further supports the proposition that the OGTT may not be the ideal test for 
significant glycaemic abnormalities in patients with CF.
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10. Conclusion

Cystic fibrosis–related diabetes continues to pose a significant risk of increased morbidity 
and mortality to the CF population. However, CFRD lies at the endpoint of spectrum of 
glucose abnormalities, and increasing evidence implies that earlier glycaemic abnormali-
ties may also be clinically significant. The standard OGTT does not appear to be sensitive 
enough to pick up early, clinically significant abnormalities of glucose tolerance secondary 
to insulin deficiency and the dysregulation of insulin secretion detected in CF patients. 
Hyperglycaemia in CF affects lung function, risk of respiratory pathogens, nutrition and 
growth in young children, and treating teams need to be proactive in the screening and 
diagnosis of glycaemic abnormalities that may be insidious and potentially irreversible 
if recognised late. Early recognition of hyperglycaemia in CF is required to prevent sig-
nificant morbidity. Novel techniques such as continuous glucose monitoring may play a 
role in screening and early identification of at risk patients, as they have been shown to 
be predictive of significant glucose abnormalities in the future such as CFRD, but there is 
not enough evidence as yet to recommend their routine use in diagnosis. Future directions 
may include the use of potentiators and correctors in CF which appear to have potential 
to correct abnormalities of glucose tolerance but may be limited if instituted late and once 
significant pancreatic destruction has occurred.

Acknowledgements

SH and CFV are grateful for funding assistance from the National Health and Medical Research 
Council of Australia, Australasian Cystic Fibrosis Research Trust, Regional Diabetes Support 
Scheme, Sydney Children’s Hospital Foundation and Australasian Paediatric Endocrine 
Care Grant from Pfizer and for industry support from Novo Nordisk, Medtronic and Abbott 
Diagnostics. BP has been awarded a scholarship from the Thoracic Society of Australia and 
New Zealand and Vertex.

Author details

Bernadette Prentice1,2*, Shihab Hameed2,3, Chee Y. Ooi2,4, Charles F. Verge2,3 and John Widger1,2

*Address all correspondence to: bernadette.prentice@health.nsw.gov.au

1 Department of Respiratory Medicine, Sydney Children's Hospital, Randwick, NSW, Australia

2 Discipline of Paediatrics, School of Women's and Children's Health, The University of New 
South Wales, Sydney, NSW, Australia

3 Department of Endocrinology, Sydney Children's Hospital, Randwick, NSW, Australia

4 Department of Gastroenterology, Sydney Children's Hospital, Randwick, NSW, Australia

Progress in Understanding Cystic Fibrosis38



10. Conclusion

Cystic fibrosis–related diabetes continues to pose a significant risk of increased morbidity 
and mortality to the CF population. However, CFRD lies at the endpoint of spectrum of 
glucose abnormalities, and increasing evidence implies that earlier glycaemic abnormali-
ties may also be clinically significant. The standard OGTT does not appear to be sensitive 
enough to pick up early, clinically significant abnormalities of glucose tolerance secondary 
to insulin deficiency and the dysregulation of insulin secretion detected in CF patients. 
Hyperglycaemia in CF affects lung function, risk of respiratory pathogens, nutrition and 
growth in young children, and treating teams need to be proactive in the screening and 
diagnosis of glycaemic abnormalities that may be insidious and potentially irreversible 
if recognised late. Early recognition of hyperglycaemia in CF is required to prevent sig-
nificant morbidity. Novel techniques such as continuous glucose monitoring may play a 
role in screening and early identification of at risk patients, as they have been shown to 
be predictive of significant glucose abnormalities in the future such as CFRD, but there is 
not enough evidence as yet to recommend their routine use in diagnosis. Future directions 
may include the use of potentiators and correctors in CF which appear to have potential 
to correct abnormalities of glucose tolerance but may be limited if instituted late and once 
significant pancreatic destruction has occurred.

Acknowledgements

SH and CFV are grateful for funding assistance from the National Health and Medical Research 
Council of Australia, Australasian Cystic Fibrosis Research Trust, Regional Diabetes Support 
Scheme, Sydney Children’s Hospital Foundation and Australasian Paediatric Endocrine 
Care Grant from Pfizer and for industry support from Novo Nordisk, Medtronic and Abbott 
Diagnostics. BP has been awarded a scholarship from the Thoracic Society of Australia and 
New Zealand and Vertex.

Author details

Bernadette Prentice1,2*, Shihab Hameed2,3, Chee Y. Ooi2,4, Charles F. Verge2,3 and John Widger1,2

*Address all correspondence to: bernadette.prentice@health.nsw.gov.au

1 Department of Respiratory Medicine, Sydney Children's Hospital, Randwick, NSW, Australia

2 Discipline of Paediatrics, School of Women's and Children's Health, The University of New 
South Wales, Sydney, NSW, Australia

3 Department of Endocrinology, Sydney Children's Hospital, Randwick, NSW, Australia

4 Department of Gastroenterology, Sydney Children's Hospital, Randwick, NSW, Australia

Progress in Understanding Cystic Fibrosis38

References

[1] Hameed, S., Jaffe, A., and Verge, C.F., Advances in the detection and management of cystic 
fibrosis related diabetes. Curr Opin Pediatr, 2015. 27(4): pp. 525-33.

[2] Chamnan, P., et al., Diabetes as a determinant of mortality in cystic fibrosis. Diabetes Care, 
2010. 33(2): pp. 311-6.

[3] Couce, M., et al., Diabetes mellitus in cystic fibrosis is characterized by islet amyloidosis. J Clin 
Endocrinol Metab, 1996. 81(3): pp. 1267-72.

[4] Iannucci, A., et al., Endocrine pancreas in cystic fibrosis: an immunohistochemical study. Hum 
Pathol, 1984. 15(3): pp. 278-84.

[5] Sequeiros, I., et al., MRI appearance of the pancreas in patients with cystic fibrosis: a compari-
son of pancreas volume in diabetic and non-diabetic patients. British J Radiol, 2014.

[6] Abdul-Karim, F.W., et al., Islets of Langerhans in adolescents and adults with cystic fibrosis. A 
quantitative study. Arch Pathol Lab Med, 1986. 110(7): pp. 602-6.

[7] Milner, A.D., Blood glucose and serum insulin levels in children with cystic fibrosis. Arch Dis 
Child, 1969. 44(235): pp. 351-5.

[8] Gelfand, I.M., Eugster, E.A., and Haddad, N.G., Infancy-onset cystic fibrosis-related diabe-
tes. Diabetes Care, 2005. 28(10): pp. 2593-4.

[9] Olivier, A.K., et al., Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets. J 
Clin Invest, 2012. 122(10): pp. 3755-68.

[10] Uc, A., et al., Glycaemic regulation and insulin secretion are abnormal in cystic fibrosis pigs 
despite sparing of islet cell mass. Clin Sci (Lond), 2015. 128(2): pp. 131-42.

[11] Bellin, M.D., et al., Insulin secretion improves in cystic fibrosis following ivacaftor correction of 
CFTR: a small pilot study. Pediatr Diabetes, 2013. 14(6): pp. 417-21.

[12] Tsabari, R., et al., CFTR potentiator therapy ameliorates impaired insulin secretion in CF 
patients with a gating mutation. J Cyst Fibros, 2015.

[13] Blackman, S.M., et al., A susceptibility gene for type 2 diabetes confers substantial risk for dia-
betes complicating cystic fibrosis. Diabetologia, 2009. 52(9): pp. 1858-65.

[14] Blackman, S.M., et al., Genetic modifiers play a substantial role in diabetes complicating cystic 
fibrosis. J Clin Endocrinol Metab, 2009. 94(4): pp. 1302-9.

[15] Soave, D., et al., Evidence for a causal relationship between early exocrine pancreatic disease 
and cystic fibrosis-related diabetes: a Mendelian randomization study. Diabetes, 2014. 63(6): 
pp. 2114-9.

[16] Gold, G., Gishizky, M.L., and Grodsky, G.M., Evidence that glucose "marks" beta cells result-
ing in preferential release of newly synthesized insulin. Science, 1982. 218(4567): pp. 56-8.

Cystic Fibrosis–Related Diabetes
http://dx.doi.org/10.5772/66452

39



[17] Daniel, S., et al., Identification of the docked granule pool responsible for the first phase of glu-
cose-stimulated insulin secretion. Diabetes, 1999. 48(9): pp. 1686-90.

[18] Newsholme, P., et al., Nutrient regulation of insulin secretion and action. J Endocrinol, 2014. 
221(3): pp. R105-20.

[19] Del Prato, S., Marchetti, P., and Bonadonna, R.C., Phasic insulin release and metabolic regu-
lation in type 2 diabetes. Diabetes, 2002. 51(1): pp. S109-16.

[20] Jing, X., et al., Ca V 2.3 calcium channels control second-phase insulin release. J Clin Invest, 
2005. 115(1): pp. 146-54.

[21] Kelly, A., and Moran, A., Update on cystic fibrosis-related diabetes. J Cyst Fibros, 2013. 12(4): 
pp. 318-31.

[22] Caumo, A., and Luzi, L., First-phase insulin secretion: does it exist in real life? Considerations 
on shape and function. Am J Physiol Endocrinol Metab, 2004. 287(3): pp. E371-85.

[23] O'Donovan, D., et al., Effects of lipase inhibition on gastric emptying of, and on the glycae-
mic, insulin and cardiovascular responses to, a high-fat/carbohydrate meal in type 2 diabetes. 
Diabetologia, 2004. 47(12): pp. 2208-14.

[24] Perano, S., et al., Cystic fibrosis related diabetes--a new perspective on the optimal management 
of postprandial glycemia. J Diabetes Complications, 2014. 28(6): pp. 904-11.

[25] Barrio, R., Management of endocrine disease: cystic fibrosis-related diabetes: novel pathogenic 
insights opening new therapeutic avenues. Eur J Endocrinol, 2015. 172(4): pp. R131-41.

[26] Amori, R.E., Lau, J., and Pittas, A.G., Efficacy and safety of incretin therapy in type 2 diabetes: 
systematic review and meta-analysis. JAMA, 2007. 298(2): pp. 194-206.

[27] Milla, C.E., Warwick, W.J., and Moran, A., Trends in pulmonary function in patients with 
cystic fibrosis correlate with the degree of glucose intolerance at baseline. Am J Respir Crit Care 
Med, 2000. 162(3 Pt 1): pp. 891-5.

[28] Ahmad, T., Nelson, R., and Taylor, R., Insulin sensitivity and metabolic clearance rate of 
insulin in cystic fibrosis. Metabolism, 1994. 43(2): pp. 163-7.

[29] Moran, A., et al., Insulin sensitivity in cystic fibrosis. Diabetes, 1994. 43(8): pp. 1020-6.

[30] Hardin, D.S., et al., Mechanisms of insulin resistance in cystic fibrosis. Am J Physiol 
Endocrinol Metab, 2001. 281(5): pp. E1022-8.

[31] Widger, J., et al., Glucose tolerance during pulmonary exacerbations in children with cystic 
fibrosis. PLoS One, 2012. 7(9): pp. e44844.

[32] MacDonald, A., Nutritional management of cystic fibrosis. Arch Dis Child, 1996. 74(1): pp. 
81-7.

[33] Smith, D., Clarke, J., and Stableforth, D., A nocturnal nasogastric feeding programme in cys-
tic fibrosis adults. J Hum Nutr Diet, 1994. 7(4): pp. 257-62.

Progress in Understanding Cystic Fibrosis40



[17] Daniel, S., et al., Identification of the docked granule pool responsible for the first phase of glu-
cose-stimulated insulin secretion. Diabetes, 1999. 48(9): pp. 1686-90.

[18] Newsholme, P., et al., Nutrient regulation of insulin secretion and action. J Endocrinol, 2014. 
221(3): pp. R105-20.

[19] Del Prato, S., Marchetti, P., and Bonadonna, R.C., Phasic insulin release and metabolic regu-
lation in type 2 diabetes. Diabetes, 2002. 51(1): pp. S109-16.

[20] Jing, X., et al., Ca V 2.3 calcium channels control second-phase insulin release. J Clin Invest, 
2005. 115(1): pp. 146-54.

[21] Kelly, A., and Moran, A., Update on cystic fibrosis-related diabetes. J Cyst Fibros, 2013. 12(4): 
pp. 318-31.

[22] Caumo, A., and Luzi, L., First-phase insulin secretion: does it exist in real life? Considerations 
on shape and function. Am J Physiol Endocrinol Metab, 2004. 287(3): pp. E371-85.

[23] O'Donovan, D., et al., Effects of lipase inhibition on gastric emptying of, and on the glycae-
mic, insulin and cardiovascular responses to, a high-fat/carbohydrate meal in type 2 diabetes. 
Diabetologia, 2004. 47(12): pp. 2208-14.

[24] Perano, S., et al., Cystic fibrosis related diabetes--a new perspective on the optimal management 
of postprandial glycemia. J Diabetes Complications, 2014. 28(6): pp. 904-11.

[25] Barrio, R., Management of endocrine disease: cystic fibrosis-related diabetes: novel pathogenic 
insights opening new therapeutic avenues. Eur J Endocrinol, 2015. 172(4): pp. R131-41.

[26] Amori, R.E., Lau, J., and Pittas, A.G., Efficacy and safety of incretin therapy in type 2 diabetes: 
systematic review and meta-analysis. JAMA, 2007. 298(2): pp. 194-206.

[27] Milla, C.E., Warwick, W.J., and Moran, A., Trends in pulmonary function in patients with 
cystic fibrosis correlate with the degree of glucose intolerance at baseline. Am J Respir Crit Care 
Med, 2000. 162(3 Pt 1): pp. 891-5.

[28] Ahmad, T., Nelson, R., and Taylor, R., Insulin sensitivity and metabolic clearance rate of 
insulin in cystic fibrosis. Metabolism, 1994. 43(2): pp. 163-7.

[29] Moran, A., et al., Insulin sensitivity in cystic fibrosis. Diabetes, 1994. 43(8): pp. 1020-6.

[30] Hardin, D.S., et al., Mechanisms of insulin resistance in cystic fibrosis. Am J Physiol 
Endocrinol Metab, 2001. 281(5): pp. E1022-8.

[31] Widger, J., et al., Glucose tolerance during pulmonary exacerbations in children with cystic 
fibrosis. PLoS One, 2012. 7(9): pp. e44844.

[32] MacDonald, A., Nutritional management of cystic fibrosis. Arch Dis Child, 1996. 74(1): pp. 
81-7.

[33] Smith, D., Clarke, J., and Stableforth, D., A nocturnal nasogastric feeding programme in cys-
tic fibrosis adults. J Hum Nutr Diet, 1994. 7(4): pp. 257-62.

Progress in Understanding Cystic Fibrosis40

[34] Amiel, S.A., et al., Impaired insulin action in puberty. A contributing factor to poor glycemic 
control in adolescents with diabetes. N Engl J Med, 1986. 315(4): pp. 215-9.

[35] Hardin, D.S., et al., The metabolic effects of pregnancy in cystic fibrosis. Obstet Gynecol, 2005. 
106(2): pp. 367-75.

[36] Moran, A., Endocrine complications of cystic fibrosis. Adolesc Med Clin, 2002. 13(1): p. 145.

[37] Bismuth, E., et al., Glucose tolerance and insulin secretion, morbidity, and death in patients 
with cystic fibrosis. The Journal of Pediatrics, 2008. 152(4): pp. 540-5.e1.

[38] Ntimbane, T., et al., Cystic fibrosis-related diabetes: from CFTR dysfunction to oxidative stress. 
Clin Biochem Rev, 2009. 30(4): pp. 153-77.

[39] Galli, F., et al., Oxidative stress and antioxidant therapy in cystic fibrosis. Biochim Biophys 
Acta, 2012. 1822(5): pp. 690-713.

[40] Ziai, S., et al., Could T cells be involved in lung deterioration and hyperglycemia in cystic fibro-
sis? Diabetes Res Clin Pract, 2014. 105(1): pp. 22-9.

[41] Roep, B.O., and Peakman, M., Diabetogenic T lymphocytes in human type 1 diabetes. Curr 
Opin Immunol, 2011. 23(6): pp. 746-53.

[42] Hotamisligil, G.S., et al., IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity 
in TNF-alpha- and obesity-induced insulin resistance. Science, 1996. 271(5249): pp. 665-8.

[43] Lanng, S., et al., Diabetes mellitus in Danish cystic fibrosis patients: prevalence and late diabetic 
complications. Acta Paediatr, 1994. 83(1): pp. 72-7.

[44] Moran, A., et al., Abnormal glucose metabolism in cystic fibrosis. J Pediatr, 1998. 133(1): pp. 10-7.

[45] Yi, Y., et al., Abnormal glucose tolerance in infants and young children with cystic fibrosis. 
American Journal of Respiratory and Critical Care Medicine, 2016.

[46] Rosenecker, J., et al., Genetic determination of diabetes mellitus in patients with cystic fibrosis. 
Multicenter Cystic Fibrosis Study Group. J Pediatr, 1995. 127(3): pp. 441-3.

[47] Marshall, B.C., et al., Epidemiology of cystic fibrosis-related diabetes. J Pediatr, 2005. 146(5): 
pp. 681-7.

[48] Ode, K.L., et al., Oral glucose tolerance testing in children with cystic fibrosis. Pediatr 
Diabetes, 2010. 11(7): pp. 487-92.

[49] Noronha, R.M., et al., Importance of screening with oral glucose tolerance test for early diagno-
sis of cystic fibrosis-related diabetes mellitus. Pediatr Diabetes, 2014. 15(4): pp. 309-12.

[50] Rana, M., et al., Increased detection of cystic-fibrosis-related diabetes in Australia. Arch Dis 
Child, 2011. 96(9): pp. 823-6.

[51] Moran, A., et al., Clinical care guidelines for cystic fibrosis-related diabetes: a position state-
ment of the American Diabetes Association and a clinical practice guideline of the Cystic Fibrosis 

Cystic Fibrosis–Related Diabetes
http://dx.doi.org/10.5772/66452

41



Foundation, endorsed by the Pediatric Endocrine Society. Diabetes Care, 2010. 33(12): pp. 
2697-708.

[52] Moran, A., et al., ISPAD Clinical Practice Consensus Guidelines 2014. Management of cys-
tic fibrosis-related diabetes in children and adolescents. Pediatric Diabetes, 2014. 15 (20): pp. 
65-76.

[53] Adler, A.I., et al., Genetic determinants and epidemiology of cystic fibrosis-related diabetes: 
results from a British cohort of children and adults. Diabetes Care, 2008. 31(9): pp. 1789-94.

[54] Boyle, M.P., and De Boeck, K., A new era in the treatment of cystic fibrosis: correction of the 
underlying CFTR defect. Lancet Respir Med, 2013. 1(2): pp. 158-63.

[55] De Boeck, K., et al., The relative frequency of CFTR mutation classes in European patients with 
cystic fibrosis. J Cyst Fibros, 2014. 13(4): pp. 403-9.

[56] Leung, D.H., et al., Baseline ultrasound and clinical correlates in children with cystic fibrosis. J 
Pediatr, 2015. 167(4): pp. 862-8 e2.

[57] Finkelstein, S.M., et al., Diabetes mellitus associated with cystic fibrosis. J Pediatr, 1988. 
112(3): pp. 373-7.

[58] Moran, A., et al., Cystic fibrosis-related diabetes: current trends in prevalence, incidence, and 
mortality. Diabetes Care, 2009. 32(9): pp. 1626-31.

[59] Lewis, C., et al., Diabetes-related mortality in adults with cystic fibrosis. Role of genotype and 
sex. Am J Respir Crit Care Med, 2015. 191(2): pp. 194-200.

[60] Campbell, J., et al., 328 Use of an insulin pump combined with the FreeStyle Libre interstitial 
glucose monitor in a needle-phobic adolescent with cystic fibrosis-related diabetes. J Cyst Fibros, 
2015. 14: p. S142.

[61] Lanng, S., et al., Influence of the development of diabetes mellitus on clinical status in patients 
with cystic fibrosis. Eur J Pediatr, 1992. 151(9): pp. 684-7.

[62] Brennan, A.L., et al., Airway glucose concentrations and effect on growth of respiratory patho-
gens in cystic fibrosis. J Cyst Fibros, 2007. 6(2): pp. 101-9.

[63] Philips, B.J., et al., Glucose in bronchial aspirates increases the risk of respiratory MRSA in 
intubated patients. Thorax, 2005. 60(9): pp. 761-4.

[64] Hameed, S., et al., Early glucose abnormalities in cystic fibrosis are preceded by poor weight 
gain. Diabetes Care, 2010. 33(2): pp. 221-6.

[65] van den Borst, B., et al., Pulmonary function in diabetes: a metaanalysis. Chest, 2010. 138(2): 
pp. 393-406.

[66] Mohamad, I.L., et al., Evaluation of pulmonary function changes in children with type 1 diabetes 
mellitus in Upper Egypt. Therapeutic Adv Endocrinol Metab, 2015: p. 2042018815580514.

[67] Kraemer, R., et al., Relative underweight in cystic fibrosis and its prognostic value. Acta 
Paediatr Scand, 1978. 67(1): pp. 33-7.

Progress in Understanding Cystic Fibrosis42



Foundation, endorsed by the Pediatric Endocrine Society. Diabetes Care, 2010. 33(12): pp. 
2697-708.

[52] Moran, A., et al., ISPAD Clinical Practice Consensus Guidelines 2014. Management of cys-
tic fibrosis-related diabetes in children and adolescents. Pediatric Diabetes, 2014. 15 (20): pp. 
65-76.

[53] Adler, A.I., et al., Genetic determinants and epidemiology of cystic fibrosis-related diabetes: 
results from a British cohort of children and adults. Diabetes Care, 2008. 31(9): pp. 1789-94.

[54] Boyle, M.P., and De Boeck, K., A new era in the treatment of cystic fibrosis: correction of the 
underlying CFTR defect. Lancet Respir Med, 2013. 1(2): pp. 158-63.

[55] De Boeck, K., et al., The relative frequency of CFTR mutation classes in European patients with 
cystic fibrosis. J Cyst Fibros, 2014. 13(4): pp. 403-9.

[56] Leung, D.H., et al., Baseline ultrasound and clinical correlates in children with cystic fibrosis. J 
Pediatr, 2015. 167(4): pp. 862-8 e2.

[57] Finkelstein, S.M., et al., Diabetes mellitus associated with cystic fibrosis. J Pediatr, 1988. 
112(3): pp. 373-7.

[58] Moran, A., et al., Cystic fibrosis-related diabetes: current trends in prevalence, incidence, and 
mortality. Diabetes Care, 2009. 32(9): pp. 1626-31.

[59] Lewis, C., et al., Diabetes-related mortality in adults with cystic fibrosis. Role of genotype and 
sex. Am J Respir Crit Care Med, 2015. 191(2): pp. 194-200.

[60] Campbell, J., et al., 328 Use of an insulin pump combined with the FreeStyle Libre interstitial 
glucose monitor in a needle-phobic adolescent with cystic fibrosis-related diabetes. J Cyst Fibros, 
2015. 14: p. S142.

[61] Lanng, S., et al., Influence of the development of diabetes mellitus on clinical status in patients 
with cystic fibrosis. Eur J Pediatr, 1992. 151(9): pp. 684-7.

[62] Brennan, A.L., et al., Airway glucose concentrations and effect on growth of respiratory patho-
gens in cystic fibrosis. J Cyst Fibros, 2007. 6(2): pp. 101-9.

[63] Philips, B.J., et al., Glucose in bronchial aspirates increases the risk of respiratory MRSA in 
intubated patients. Thorax, 2005. 60(9): pp. 761-4.

[64] Hameed, S., et al., Early glucose abnormalities in cystic fibrosis are preceded by poor weight 
gain. Diabetes Care, 2010. 33(2): pp. 221-6.

[65] van den Borst, B., et al., Pulmonary function in diabetes: a metaanalysis. Chest, 2010. 138(2): 
pp. 393-406.

[66] Mohamad, I.L., et al., Evaluation of pulmonary function changes in children with type 1 diabetes 
mellitus in Upper Egypt. Therapeutic Adv Endocrinol Metab, 2015: p. 2042018815580514.

[67] Kraemer, R., et al., Relative underweight in cystic fibrosis and its prognostic value. Acta 
Paediatr Scand, 1978. 67(1): pp. 33-7.

Progress in Understanding Cystic Fibrosis42

[68] Moran, A., et al., Diagnosis, screening and management of cystic fibrosis related diabetes mel-
litus: a consensus conference report. Diabetes Res Clin Pract, 1999. 45(1): pp. 61-73.

[69] Lanng, S., et al., Glucose tolerance in patients with cystic fibrosis: five year prospective study. 
BMJ, 1995. 311(7006): pp. 655-9.

[70] Bennett, P.H., Burch, T.A., and Miller, M., Diabetes mellitus in American (Pima) Indians. 
Lancet, 1971. 2(7716): pp. 125-8.

[71] Gilchrist, F.J., et al., Diabetic retinopathy in patients who do not meet the diagnostic criteria for 
cystic fibrosis related diabetes. Practical Diabetes, 2015. 32(9): pp. 333-335a.

[72] Lanng, S., et al., Diabetes mellitus in cystic fibrosis: effect of insulin therapy on lung function 
and infections. Acta Paediatr, 1994. 83(8): pp. 849-53.

[73] Hameed, S., et al., Once daily insulin detemir in cystic fibrosis with insulin deficiency. Arch 
Dis Child, 2012. 97(5): pp. 464-7.

[74] Widger, J., Ranganathan, S., and Robinson, P.J., Progression of structural lung disease on 
CT scans in children with cystic fibrosis related diabetes. J Cyst Fibros, 2013. 12(3): pp. 216-21.

[75] Schmid, K., et al., Predictors for future cystic fibrosis-related diabetes by oral glucose tolerance 
test. J Cyst Fibros, 2014. 13(1): pp. 80-5.

[76] Brodsky, J., et al., Elevation of 1-hour plasma glucose during oral glucose tolerance testing is 
associated with worse pulmonary function in cystic fibrosis. Diabetes Care, 2011. 34(2): pp. 
292-5.

[77] Coriati, A., et al., Characterization of patients with cystic fibrosis presenting an indeterminate 
glucose tolerance (INDET). J Cyst Fibros, 2016. 15(1): pp. 127-32.

[78] Hameed, S., Jaffe, A., and Verge, C.F., Cystic fibrosis related diabetes (CFRD)--the end stage 
of progressive insulin deficiency. Pediatr Pulmonol, 2011. 46(8): pp. 747-60.

[79] O'Riordan, S.M., et al., Validation of continuous glucose monitoring in children and adolescents 
with cystic fibrosis: a prospective cohort study. Diabetes Care, 2009. 32(6): pp. 1020-2.

[80] Dobson, L., Sheldon, C.D., and Hattersley, A.T., Validation of interstitial fluid continuous 
glucose monitoring in cystic fibrosis. Diabetes Care, 2003. 26(6): pp. 1940-1.

[81] Bergenstal, R.M., et al., Effectiveness of sensor-augmented insulin-pump therapy in type 1 
diabetes. N Engl J Med, 2010. 363(4): pp. 311-20.

[82] Moreau, F., et al., Continuous glucose monitoring in cystic fibrosis patients according to the 
glucose tolerance. Horm Metab Res, 2008. 40(7): pp. 502-6.

[83] Schiaffini, R., et al., Abnormal glucose tolerance in children with cystic fibrosis: the predic-
tive role of continuous glucose monitoring system. Eur J Endocrinol, 2010. 162(4): pp. 
705-10.

[84] Bennett, C., Guo, M., and Dharmage, S., HbA1c as a screening tool for detection of type 2 
diabetes: a systematic review. Diabet Med, 2007. 24(4): pp. 333-43.

Cystic Fibrosis–Related Diabetes
http://dx.doi.org/10.5772/66452

43



[85] Leclercq, A., et al., Early assessment of glucose abnormalities during continuous glucose moni-
toring associated with lung function impairment in cystic fibrosis patients. J Cyst Fibros, 2014. 
13(4): pp. 478-84.

[86] Moran, A., et al., Epidemiology, pathophysiology, and prognostic implications of cystic fibrosis-
related diabetes: a technical review. Diabetes Care, 2010. 33(12): pp. 2677-83.

[87] Hardin, D.S., et al., Use of the insulin pump in treat cystic fibrosis related diabetes. J Cyst 
Fibros, 2009. 8(3): pp. 174-8.

[88] Thabit, H., et al., Home use of an artificial beta cell in type 1 Diabetes. N Engl J Med, 2015. 
373(22): pp. 2129-40.

[89] Stallings, V.A., et al., Evidence-based practice recommendations for nutrition-related manage-
ment of children and adults with cystic fibrosis and pancreatic insufficiency: results of a system-
atic review. J Am Diet Assoc, 2008. 108(5): pp. 832-9.

[90] Wilson, D., et al., Challenges in the dietary treatment of cystic fibrosis related diabetes mellitus. 
Clin Nutr, 2000. 19(2): pp. 87-93.

[91] Colombo, C., et al., Liver disease in cystic fibrosis: a prospective study on incidence, risk factors, 
and outcome. Hepatology, 2002. 36(6): pp. 1374-82.

Progress in Understanding Cystic Fibrosis44



[85] Leclercq, A., et al., Early assessment of glucose abnormalities during continuous glucose moni-
toring associated with lung function impairment in cystic fibrosis patients. J Cyst Fibros, 2014. 
13(4): pp. 478-84.

[86] Moran, A., et al., Epidemiology, pathophysiology, and prognostic implications of cystic fibrosis-
related diabetes: a technical review. Diabetes Care, 2010. 33(12): pp. 2677-83.

[87] Hardin, D.S., et al., Use of the insulin pump in treat cystic fibrosis related diabetes. J Cyst 
Fibros, 2009. 8(3): pp. 174-8.

[88] Thabit, H., et al., Home use of an artificial beta cell in type 1 Diabetes. N Engl J Med, 2015. 
373(22): pp. 2129-40.

[89] Stallings, V.A., et al., Evidence-based practice recommendations for nutrition-related manage-
ment of children and adults with cystic fibrosis and pancreatic insufficiency: results of a system-
atic review. J Am Diet Assoc, 2008. 108(5): pp. 832-9.

[90] Wilson, D., et al., Challenges in the dietary treatment of cystic fibrosis related diabetes mellitus. 
Clin Nutr, 2000. 19(2): pp. 87-93.

[91] Colombo, C., et al., Liver disease in cystic fibrosis: a prospective study on incidence, risk factors, 
and outcome. Hepatology, 2002. 36(6): pp. 1374-82.

Progress in Understanding Cystic Fibrosis44

Chapter 3

The Cystic Fibrosis Airway Microbiome and Pathogens

Ibrahim A. Janahi and Abdul Rehman

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67846

Abstract

Cystic fibrosis (CF) is an autosomal recessive genetic disorder resulting from genetic defects 
in the gene coding for the cystic fibrosis transmembrane conductance  regulator (CFTR) 
protein. CFTR dysfunction in patients with CF leads to a number of  pleiotropic manifes-
tations with the prime pathology being mucus plugging in the airways and  paranasal 
sinuses. Patients with CF are prone to polymicrobial infections and the  airway micro-
biome in such patients changes continuously and evolves over time. The  composition 
of the airway microbiome in CF patients is dependent on a number of  factors includ-
ing geographic variation, type of genetic mutation (e.g., ΔF508),  antibiotic exposures, 
and chronic infection with certain pathogenic bacteria (e.g., Pseudomonas  aeruginosa). 
Proteomic and genomic approaches to understanding the microbiome of patients with 
CF have provided new insights into the pathogenesis of this disease.  High‐throughput 
pyrosequencing, Sanger sequencing, and phylogenetic microarray analysis have enabled 
the recognition of multiple lineages and clonal populations of a single bacterial species 
within the same patient. This provides a unique opportunity to explore novel therapeutic 
approaches to this disease (for instance, use of probiotics and environmental manipula-
tion) and potentially translate them into bedside clinical interventions.

Keywords: cystic fibrosis, microbiome, dysbiosis, Pseudomonas aeruginosa, burkholderia 
cenocepacia

1. Introduction

Cystic fibrosis (CF) is an autosomal recessive genetic disease caused by mutations in the CFTR 
(cystic fibrosis transmembrane conductance regulator) gene [1]. CF is most prevalent in the 
Caucasian population and is a common life‐limiting disease [2]. CFTR is expressed on the  apical 
surface of epithelial cells of the respiratory, gastrointestinal, pancreatic and  reproductive tracts, 
and sweat glands [3]. The prime function of CFTR ion channel is to transport chloride ions 
across epithelial surfaces in order to maintain the osmotic gradient. Chloride ions are actively 
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pumped out into the luminal side of the gastrointestinal and  respiratory tracts, which decrease 
water potential on the luminal side. Subsequently, water molecules move from a higher 
osmotic potential to a lower osmotic potential (down the osmotic gradient) and  combine with 
mucin glycoproteins to keep them adequately hydrated. This in turn helps to maintain the thin 
consistency of the mucus layer, which is essential for optimal  mucociliary function [4]. Thick 
and viscid mucus caused by a defect in  chloride‐conducting transmembrane channel results 
in stagnation of mucus. Moreover, CFTR  channel also plays an important role in regulating 
the transepithelial transport of sodium and  bicarbonate ions [5]. Defective CFTR functioning 
leads to an increase in pH of the mucus layer, which compromises the innate immune system 
and promotes inflammation. Defects in innate immunity and chronic inflammation predis-
pose patients to recurrent pulmonary infections, which result in permanent lung damage—the 
prime cause of morbidity and mortality [6]. Pulmonary system is not the only organ‐system 
affected in CF; endocrine, gastrointestinal, and reproductive systems are also involved in this 
multisystem disorder [3].

The human microbiome project aims to identify and characterize microbial flora of healthy and 
diseased individuals [7]. Understanding the role of infectious pathogens in the  pathogenesis 
of CF in general and pulmonary exacerbations and lung damage in particular has enabled the 
scientific community to devise new treatment modalities for CF patients, which can poten-
tially improve outcomes and survival in such patients. In patients with CF,  different bacteria 
inhabit different parts of the lung at various stages of the disease and persistent inflamma-
tion in the lungs can change and modify the composition of the microbiome [8]. For instance, 
methicillin‐sensitive Staphylococcus aureus (MSSA) and Hemophilus influenzae are common 
pathogens early in life of such patients [9]. As the disease progresses, more  virulent patho-
gens—such as Pseudomonas aeruginosa and methicillin‐resistant S. aureus (MRSA)—invade  
the lung and cause pulmonary damage [10]. By understanding the evolution of the CF 
microbiome, we can gain further insights into the natural course of CF. This in turn can have 
important implications for developing interventions that can halt or reverse the course of 
progressive pulmonary damage and prolong survival and quality of life in CF patients [11]. 
In the following pages, we discuss the CF microbiome, its evolution and heterogeneity in CF 
patients, interaction between different bacteria within the CF lung and the factors that poten-
tially affect the CF microbiome.

2. The microbiome

As mentioned previously, the human microbiome project aims to identify and  characterize 
microbial flora of healthy and diseased individuals [7]. There is a diversity of microbes in 
every single human being i.e., diversity being defined as the number and distribution of 
a  particular type of organism in a body habitat. Every human has particular and distinct 
microbes;  dysbiosis (alteration in composition and balance) of these microbes is now thought 
to  underlie the pathogenesis of many diseases, such as inflammatory bowel disease, Clostridium 
difficile (CD) colitis, bacterial vaginosis, obesity, and CF [12]. The human  microbiome plays a 
very important role in human biology, defense mechanisms, metabolic processes (such as 
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 digestion, absorption, and assimilation) and even pathogenesis of acute and chronic dis-
eases [13]. For instance, CD colitis is a disease that arises as a consequence of interaction 
of  bacterial virulence factors, host immune mechanism and the intestinal  microbiome [14]. 
Research  studies have shown that variability in the innate host response may also impact 
upon the severity of CD colitis, and this variation may be accounted for by alterations in 
the gut  microbiota [15]. Based on improved understanding of the pathogenesis of CD colitis, 
fecal microbiota transplantation (FMT) and other novel types of bacteriotherapy have become 
potentially effective treatment options for this deadly disease [16].

Another example of a disease where microbiota plays a major role in pathogenesis is Crohn's 
disease. The exact cause of Crohn's disease is unknown; however, evidence suggests that 
microbiota contribute to the underlying pathology and disease development [17]. No  single 
bacterium has been convincingly shown to contribute to the overall pathogenesis of Crohn's 
disease. Instead, dysbiosis (bacterial imbalance) is more widely accepted as a  leading 
 factor in the disrupted host immune system cross‐talk that results in subsequent  intestinal 
inflammation [18]. Depletion of symbiont (beneficial) microbes (including Firmicutes, 
Bifidobacteriaceae, and Clostridia) in conjunction with an increase in pathobiont ( harmful) 
microbes (such as Bacteroidetes and Enterobacteriaceae) is a striking feature observed in 
Crohn's disease. No single factor has been definitely identified as driving this dysbiosis; 
instead, a host of  environmental factors—such as the diet, antibiotic exposures and possible 
early life  infections—in the presence of underlying genetic susceptibilities may contribute to 
the overall pathogenesis of Crohn's disease [17].

In CF patients, composition of the microbiome of pulmonary and gastrointestinal tracts changes 
over time, presumably as a consequence of inflammation [19]. Most research studies have dem-
onstrated the influence of inflammation in negatively selecting against potential pathogens. 
Moreover, some bacterial species may also have the ability to exploit  inflammatory byproducts 
for their benefit, which may promote their natural selection in inflamed habitats [20]. Reactive 
nitrogen species produced during inflammatory responses can be exploited by pathogens for 
their growth. Moreover, inflammatory mediators can provide an  environment for some bac-
teria to grow and use these inflammatory mediators for their survival [21]. Examples of such 
bacteria include Escherichia coli and P. aeruginosa in the gastrointestinal and respiratory tracts 
of CF patients, respectively. P. aeruginosa uses nitric oxide produced in the process of inflam-
mation for its anaerobic respiration and promotes its growth in  inflammatory environments. 
Likewise, E. coli uses increased nitrate in the environment for its anaerobic  respiration and 
enhances its growth in the inflamed gut of CF patients [19].

3. Heterogeneity of the CF airway microbiome

Due to defects in innate immunity, CF patients are prone to polymicrobial infections and their 
airway microbiome changes continuously and evolves over time. The primary cause of death 
in CF patients is respiratory failure due to persistent and recurrent pulmonary infections 
with different pathogenic organisms [22]. Over the past decade, the median survival for such 
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patients stands at 37 years despite increases in life expectancy [23]. MSSA and H. influenzae 
are one of the most common pathogens cultured from sputum samples of affected children. 
P. aeruginosa has been associated with increased morbidity as most strains of this organism 
are multidrug resistant. Infections with bacteria of the Bukholderia cepacia complex (BCC) are 
associated with a worse prognosis [24]. Likewise, other multidrug resistant organisms, such 
as Achromobacter xylosoxidans and Stenotrophomonas maltophilia, can also be isolated from CF 
patients with end‐stage pulmonary disease [25]. Nontuberculous mycobacterium (NTM) has 
also been identified as emerging causes of infections in patients with CF and their incidence 
may have been underestimated in the past [26]. More recently, research studies have shown 
that when sputum samples obtained from adults with CF are cultured, a significantly high 
density of anaerobic bacteria can be isolated—the most common of which are Streptococcus 
milleri, Prevotella spp., Actinomyces, and Veillonella [27].

Microbes of the lower airways in all humans exist in a dynamic state. Literature published 
on microbiome of CF patients has shown a complex and dynamic interaction between 
 different organisms in the airways of such patients [28]. Organisms within a single patient 
are  genetically and phenotypically diverse and heterogeneity is detectable even in different 
parts of the same lung. Over a period of time, community diversity of bacteria declines in CF 
patients as pulmonary function declines and lung disease progressively worsens. Studies have 
shown that diversity of microbial communities correlates positively with pulmonary function 
and outcome [29]. Such diversity was previously unrecognized as most studies relied solely 
on culture‐based methods of culturing bacteria. However, novel state‐of‐the‐art molecular 
techniques (such as Sanger sequencing of clone libraries, terminal restriction fragment length 
polymorphism [RFLP] analysis and microarray hybridization) have enabled the detection of 
subtle molecular diversity among seemingly similar bacterial species [30]. This diversity may 
be influenced by a number of factors including the patient's age, sex, type of CFTR mutation, 
antibiotic exposures, environmental factors, and extent and severity of lung disease. In a study 
by Zhao et al., sputum samples were collected from six CF patients over a period of 10 years. 
Of a total of 126 sputum samples, 662 operational taxonomic units (OTU) were identified and 
each patient had 5–114 different OTUs [29]. Similarly, in another  observational study, sputum 
samples of patients with acute infective exacerbation of non‐CF related bronchiectasis were 
collected. Sputum cultures from each patient contained large quantities of multiple bacterial 
species with a single predominant pathogenic species [31]. In one study, polymerase chain 
reaction (PCR)‐temporal temperature gel electrophoresis (PCR‐TTGE) was used to evaluate 
intraspecific and intragenomic 16S rDNA variability among commonly isolated respiratory 
pathogens from CF patients [32]. Significant discordance in intraspecific and intragenomic 
variability was noted among different bacterial species with H. influenzae displaying the high-
est level of intraspecific variability.

4. Composition of the CF microbiome and its determinants

The composition of the airway microbiome in CF patients is dependent on a number of 
 factors including geographic variation (more common in white population), type of genetic 
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 mutation (e.g., ΔF508), antibiotic exposures, and chronic infection with certain pathogenic 
bacteria (e.g., P. aeruginosa) [8]. Fetal lungs are sterile, just like fetal gastrointestinal tract, but 
they soon become colonized after birth. Fetal skin becomes colonized with microbes  present 
in maternal reproductive and gastrointestinal tracts and lungs become colonized from 
gut flora of the child [33]. The common phyla found in healthy lungs include Bacteroides, 
Firmicutes, and Proteobacterium. Other genera include Prevotella, Veillonella, Streptococcus 
and Pseudomonas [34]. Many techniques have been used for the detection of microbes in 
CF patients. Some of these techniques include terminal RFLP profiling, microarray analysis, 
clone library sequencing, and pyrosequencing. The most frequently used samples from CF 
patients for analysis are expectorated sputum, tracheal aspirates, bronchial washings, and 
bronchoalveolar lavage (BAL).

The microbiome in patients with CF evolves as patients grow older, and this is a  consequence 
of the wide adaptability of pathogenic bacteria. Clustering of phylogenetically similar 
 bacterial communities and loss of the architectural diversity of the airway microbiome is a key 
feature of late‐stage CF airway disease. Moreover, the type of bacterial species  predominating 
at a particular age group is also of immense importance. In one study, phylogenetic  diversity 
of CF airway microbiota in patients of different age groups was studied using microarray 
 analysis [35]. S. aureus was detected in 65% of sputum samples and was more common in 
the pediatric population (72% of the pediatric sample). Pseudomonas spp. was found in 73% 
of samples and were most common in adults (91% of the adult sample). In the same study, 
older CF patients had reduced airway bacterial diversity and aggregation of relatively  similar 
 organisms; this process occurred in conjunction with a progressive decline in pulmonary 
 function. H. influenzae was most prevalent in the pediatric population when the bacterial 
diversity was highest. Conversely, P. aeruginosa was most common in older individuals with 
a lower level of bacterial diversity. Likewise, members of the Mycobacteriaceae family and 
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lent in younger CF patients. Certain known or potential pathogens of CF patients, such as 
members of the Burkholderiaceae and Thermoactinomycetaceae families, were almost exclu-
sively observed among adult patients.
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Tunney et al., several anaerobic species (including a number of Veillonella and Prevotella 
species) constituted a significant portion of the CF airway microbiota [36]. In a unique study, 
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of Pseudomonas spp. and a relative paucity of normal gut bacteria (such as Bacteroides and 
Faecalibacterium), which was in contrast with normal gastric juice samples. These results 
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In patients with CF, different bacterial colony morphotypes can be isolated from a single 
 sputum sample. There is some evidence to suggest that these different morphotypes arise 
from a single bacterial strain [39]. Microbes in the lungs of CF patients are capable of 
 constantly adapting to selection pressures. Some of the mechanisms that enable the  evolution 
of microbes include motility, type III secretion systems, lipopolysaccharide, plasmids 
( encoding for  antibiotic resistance), biofilm formation, small colony variants, quorum  sensing, 
and  hypermutability. As a consequence of these mechanisms, different phenotypes arise from 
a single bacterial species and, over time, a single bacterial strain with dominating features 
may evolve [40]. Given that different bacterial strains have differing capacities to evolve, 
 multiple lineages of bacterial colonies evolve and coexist [41]. Some studies have shown that 
 complexity of bacterial communities inversely correlates with patient age, antibiotic expo-
sures, and  presence of P. aeruginosa [42]. In one study, heterozygosity for the ΔF508 mutation 
and presence of mutations other than the ΔF508 was associated with relative preservation of 
airway bacterial diversity over time [35]. This shows that apart from environmental exposures 
(such as antibiotic pressures), patients’ genotype (type of mutation) also plays an important 
role in determining the composition of the CF airway microbiome. In terms of  environmental 
exposures, antibiotic use has been shown to be the prime factor that adversely affects  microbial 
diversity among CF patients [29]. Loss of bacterial diversity (under the selection pressure of 
antibiotics) has been associated with an increased risk of pneumonia in mechanically venti-
lated patients colonized with P. aeruginosa [43]. Smith et al. studied this further by performing 
whole genomic analysis of a single species of P. aeruginosa isolated from a patient with CF. 
Whole genomic sequencing was repeated multiple times during the course of the patient's 
 illness, which enabled the detection of an overwhelming number of mutations. Based on these 
analyses, it was found that the strain of P. aeruginosa that inhabits patients with advanced CF 
differs significantly from wild‐type P. aeruginosa [40].

The interaction among different bacterial colonies has also become a subject of intense research 
and genomic and proteomic approaches are currently being used to understand their inter-
relationships. In an experimental study, production of 4‐hydroxy‐2‐heptylquinoline‐N‐oxide 
(HQNO) by a strain of P. aeruginosa enhanced the aminoglycoside resistance of S. aureus [44]. 
This study provided some evidence of how bacterial interspecies interaction can alter the 
airway microbiome by selecting for resistant strains of a bacterial species. Previous studies 
have shown that HQNO is detectable in the sputum of infected CF patients. Therefore, an 
interaction between P. aeruginosa and S. aureus may account for the increased incidence of 
small colony variant (SCV) of S. aureus species in CF patients with advanced lung disease.

In the recent literature, an increasing number of unusual microbes have been reported as the 
cause of infective exacerbations of CF. Such bacteria include multidrug resistant pathogens 
like S. maltophilia, multidrug resistant P. aeruginosa, MRSA, Burkholderia cenocepacia and even 
NTM [45]. The emergence of such bacteria as members of the CF airway microbiome can have 
important implications for management and prognosis for patients. For instance, studies have 
shown that in CF patients with an acute exacerbation, there is discordance between the results 
of microbial sensitivity testing and response to antibacterial therapy [46]. Polymicrobial 
 infections and presence of fastidious organisms may account for this  observation. Moreover, 
such pathogenic bacteria can interact with other less virulent bacterial species and lead to 
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architectural distortion of the entire CF microbiome. In the following lines, we discuss 
 common members of the CF airway microbiome, some of which are commonly implicated in 
infective exacerbations.

4.1. Methicillin‐sensitive Staphylococcus aureus

S. aureus is a common colonizer of the anterior nares of adolescent and adult patients [47]. 
Among patients with CF, MSSA is one of the most common pathogens isolated from  sputum 
samples obtained for culture and sensitivity testing. In the CF Foundation (CFF) patient 
 registry (Bethesda, Maryland, USA), S. aureus was most commonly isolated from children and 
adolescents accounting for approximately 51% of the total samples. Moreover, the overall 
prevalence of S. aureus has been increasing over the past few decades. Infection with S. aureus 
has been associated with increased bronchial inflammation and decreasing pulmonary 
 function [48]. Moreover, when coinfection with P. aeruginosa and MSSA occurs, mortality is 
increased manifold. Interestingly, studies have shown that MSSA is associated with more 
severe disease in children as compared to adults.

With the widespread use of antistaphylococcal antibiotics, incidence of Gram‐negative 
 infections among CF patients has increased and MSSA has become less common among 
adult patients. Overall, the most common cause of chronic lung infections in CF patients is 
P.  aeruginosa, an oxidase‐positive Gram‐negative bacillus. Moreover, as CF patients grow 
older, MRSA becomes a more frequent cause of infective exacerbation than MSSA. Over 
the past few years, the incidence of MRSA infections has been steadily increasing, owing to 
increasing use of antistaphylococcal penicillins (such as oxacillin and nafcillin) [49]. More 
recently, a subtype of S. aureus species (viz. small colony variant) has been isolated more 
frequently from CF patients. The small colony variant of S. aureus species is fastidious and 
slow‐growing, and it has also been associated with rapid decline in pulmonary function. As 
mentioned previously, selection of small colony variant species is promoted by HQNO—a 
product synthesized and secreted by P. aeruginosa species [44]. Increasing use of broad‐spec-
trum antibiotics that select for multidrug resistant pathogens can explain this distortion in the 
composition of the airway microbiome in patients with CF.

4.2. Methicillin‐resistant Staphylococcus aureus

S. aureus is typically the first bacterial pathogen to invade the pulmonary parenchyma in 
patients with CF. Chronic infection with this organism can persist in the airways of CF patients 
for several years. Acquisition of mecA gene mediates methicillin resistance in   community‐
acquired MRSA by encoding for a mutated penicillin binding protein‐2A (PBP‐2A) [50]. The 
prevalence of MRSA has increased substantially over the past several years from an esti-
mated 7.3% in 2001 to 22.6% in the year 2008 and 25.7% in 2012 [10]. This increase in preva-
lence of MRSA was noticed across CF patients of all age groups with the highest increase 
being in the adolescent age bracket. This increase in the prevalence of MRSA in CF patients 
has been directly linked to the increase in overall incidence of community‐acquired MRSA in 
the  general population [51]. In a study by Glikman et al., 22 of 34 (64.7%) MRSA isolates from 
patients with CF contained the gene SCCmec II—a typical feature of health‐care associated 
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MRSA strains. On the other hand, 9 of 34 (26.5%) MRSA strains harbored the SCCmec IV 
gene, which characterizes them as community‐acquired MRSA strains. Most patients with 
 community‐acquired MRSA were newly colonized with the strain. Additionally, children 
with CF were more likely to harbor MRSA isolates that were resistant to clindamycin and 
ciprofloxacin compared with strains from non‐CF patients [52]. Other studies have reported 
persistent infections in CF patients with both hospital‐acquired and community‐acquired 
MRSA strains (including Panton‐Valentine leukocidin‐positive strains) with an overall prev-
alence of 7.8% [53]. In these studies, persistence was due to presence of different clones 
over time or identical clones that underwent minor modifications in their toxin content. 
Moreover, isolation of MRSA from CF patients aged 7–24 years has been associated with 
an increased severity of the disease. Alarmingly, some of these strains may be vancomy-
cin‐intermediate S. aureus (VISA), which implies that treatment with glycopeptides (such as 
vancomycin) may also be ineffective. Highly virulent strains, such as vancomycin‐resistant 
S. aureus (VRSA), have also been reported to cause necrotizing pneumonia in a small number 
of CF patients [54]. Persistent infection with virulent strains of S. aureus has been associated 
with a rapid decline in pulmonary function [55]. In a case‐control study, CF patients who 
were colonized with MRSA had a significantly higher rate of decline in FEV1 (forced expira-
tory volume in first second) as compared to those who were not colonized with MRSA [56]. 
Moreover, MRSA‐infected CF patients have been shown to have longer hospital stays than 
age‐ and sex‐matched controls [57]. Serious manifestations of MRSA infections have also 
been described in various reports. Cavitary lesions have been described in two CF patients 
infected with Panton‐Valentine  leukocidin‐positive MRSA strains [54]. This observation was 
consistent with other reports of serious pulmonary manifestations of community acquired 
MRSA  infection [54, 58]. In a cohort study of longitudinal data, risk of death among CF 
patients who had at least one culture positive for MRSA was 1.27 times greater than for CF 
patients in whom MRSA was never detected [55]. In a meta‐analysis of 76 studies, a clear and 
strong association was noted between exposure to antibiotics and isolation of MRSA [59]. 
The risk of acquiring MRSA was increased by 1.8‐fold in patients who had taken antibiotics 
as compared to others. The risk ratios for quinolones, glycopeptides, cephalosporins, and 
other beta‐lactam antibiotics were 3, 2.9, 2.2, and 1.9, respectively.

4.3. Hemophilus influenzae

H. influenzae is a facultative, anaerobic, Gram‐negative bacillus. In many patients, this  organism 
begins to colonize the upper respiratory tract since infancy. Approximately 20% of infants 
with CF are colonized by the end of first year of life and the rate is even higher for patients 
of older ages [60]. By the age of 5–6 years, more than 50% of children are colonized with this 
bacterium [61]. H. influenzae is a common pathogen of chronic lung infections and is frequently 
implicated in infective exacerbations of CF [62]. In children with CF, about 32% are colonized 
with this microorganism. However, as these patients grow older and are exposed to a wide 
range of broad‐spectrum antibiotics, more virulent bacteria inhabit their respiratory tracts. 
Consequently, in adults with CF, the rate of colonization with H. influenzae is reported to be 
only 10–15%. Having said this, the prevalence of H. influenzae has increased from 10.3% in the 
year 1995 to 16.3% in the year 2008.
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Similar to the general population, colonization of the upper respiratory tract of CF patients 
with H. influenzae is quite a dynamic process. Children will typically carry multiple strains of 
this bacterium simultaneously, whilst adults will be colonized with only one strain [63]; again, 
this is a natural consequence of the loss of microbial diversity induced by antibiotic  selection 
pressures. Even in most healthy adults, the upper airway is colonized with H. influenzae; 
most strains in such healthy subjects are nontypeable. In particular, the nasopharynx is an 
area of the respiratory tract that serves as a potential reservoir of this bacterium. Eventually, 
the organism may spread from the nasopharynx to the lower respiratory tract and cause an 
 infection of the pulmonary parenchyma [64]. Studies have shown that most CF patients are 
cocolonized with two or more distinct strains of H. influenzae [65].

H. influenzae is not considered a virulent pathogen in patients with CF. Interestingly, some 
studies have shown that colonization with H. influenzae is associated with a relatively pre-
served lung function. This is in sharp contrast to other microorganisms like P. aeruginosa and 
MRSA, whose colonization of the pulmonary parenchyma is strongly associated with a rapid 
decline in lung function [66]. In a prospective study, 27 patients with CF (under the age of 
12 years) and 27 matched patients with asthma were followed up for 1 year [67]. The isolation 
rate of noncapsulated (nontypeable) strains of H. influenzae was significantly higher in the 
CF group as compared to that of the asthma group. During exacerbations, the isolation rate 
of H. influenzae in the CF group was significantly greater than at other times, whereas there 
was no significant difference in the control group. The distribution of biotypes of H.  influenzae 
and Hemophilus parainfluenzae was similar in the two groups. In the CF group,  biotype I was 
 commonly detected and was associated with infective exacerbations of CF. In contrast, 
 biotype V was more common in the asthma group, although it had no association with the 
 development of infective exacerbations [67].

4.4. Pseudomonas aeruginosa

P. aeruginosa is an obligate aerobic, oxidase‐positive, nonlactose fermenting  Gram‐nega-
tive rod. P. aeruginosa is the most common organism implicated in infective exacerbations 
in patients with CF. In the CFF patient registry (Bethesda, Maryland, USA), more than half 
of the patients (52.5%) were reported to be infected with P. aeruginosa in 1995. The risk of 
chronic infection with P. aeruginosa increased proportionately with increasing age. Moreover, 
the  incidence of P. aeruginosa has been reported to be increasing in infants. Despite changes in 
the management of patients with CF, the frequency of persistent infection with P.  aeruginosa 
has remained relatively stable over time [68]. In a study based on the CFF patient  registry, 
 prevalence of colonization with P. aeruginosa was 60% in 1995 and 56.1% in 2005 [69]. However, 
recent data suggest that the prevalence of P. aeruginosa is slowly decreasing over time and 
has been estimated to be 30.4% in the year 2015 [70].

The main reservoir of P. aeruginosa is the environment surrounding CF patients. It has been 
thought that among siblings with CF, prolonged exposure of young children to their older 
siblings with CF is a potential risk factor for acquisition of P. aeruginosa. A study published in 
1991 reported that P. aeruginosa may be acquired by patients at CF recreation camps,  clinics, 
and/or rehabilitation centers [71]. Studies on genotypes of P. aeruginosa performed using 
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conventional pyocin typing and DNA probe analysis reported that most CF patients har-
bored a persistent strain of P. aeruginosa in their lungs [72]. These studies suggested that 
cross‐colonization possibly could occur among patients. Another study showed that 59% of 
CF patients harbored a clonal strain of P. aeruginosa and the dominant pulsotype was indis-
tinguishable from nonclonal strains with respect to both colony morphology and resistance 
patterns [73]. Wolz et al. used DNA probe amplification assays and demonstrated that 46% 
of CF patients (who were initially uninfected) acquired P. aeruginosa infection at the end of 
a CF  recreation camp [74]. Clear evidence of a cross‐infection among patients attending a 
CF clinic was  published in 2001 [75]. In this study, 22 of 154 patients attending an adult CF 
clinic were chronically infected with similar isolates (based on pyocin typing and pulsed‐
field gel electrophoresis [PFGE] analysis) of P. aeruginosa that shared unusual phenotypic 
features: lack of motility and pigmentation along with a remarkable resistance to many anti-
biotics. In another study from a large pediatric CF clinic from Australia, 65 patients (55%) 
were found to be infected with a similar strain of P. aeruginosa. These patients were more 
likely to have been hospitalized in the preceding 1 year for respiratory exacerbations [76]. 
On the other hand, a study conducted by Speert et al. in Vancouver (Canada) reported a low 
rate of transmission of P. aeruginosa from one CF patient to the other [77]. In this study, a 
total of 157 genetic types of P. aeruginosa were identified, of which 123 were unique to indi-
vidual patients. These apparently  conflicting findings may be accounted for by the highly 
adaptable nature of P. aeruginosa and its ability to evolve. In a study by Mahenthiralingam et 
al., different strains of P. aeruginosa were studied using genomic fingerprinting and random 
DNA amplification assays [78]. A total of 385 isolates from 20 patients were grouped into 35 
random amplified polymorphic DNA (RAPD) strain types. Secretion of mucoid exopolysac-
charide, loss of expression of  RpoN‐dependent surface factors and acquisition of serum‐sus-
ceptible phenotypes in Pseudomonas were shown to be a specific adaptation to infection, 
rather than being acquired from a new bacterial strain. This explanation is also in congruence 
with observations from other studies that found  different strains of P. aeruginosa in unrelated 
CF patients and identical or closely related strains among siblings [79]. The presence of dis-
tinct strains of P.  aeruginosa in these studies reflects an absence of nosocomial transmission 
of organisms at respective CF centers [80]. This may be a consequence of strict hygiene mea-
sures and microbiologic surveillance instituted at most CF centers across the world following 
reports of nosocomial spread [75, 76].

The effects of P. aeruginosa infection on the CF lung are deleterious. In one observational 
study, outcomes of CF children colonized with P. aeruginosa were compared with those 
of noncolonized patients. Children colonized with P. aeruginosa had a worse outcome and 
 experienced rapid decline in pulmonary function as measured by FEV1 and FEF25 (forced 
expiratory flow at 25% of vital capacity) [81]. In another longitudinal observational study, the 
temporal relationship between P. aeruginosa infection and pulmonary damage (as  measured 
by FEV1 and Wisconsin additive chest radiograph score) was explored. Acquisition of 
P.  aeruginosa was independently associated with a worsening pulmonary status in children 
with CF [82]. Moreover, in these studies, decline in pulmonary function after colonization with 
P.  aeruginosa was observed to be gradual. This decline in pulmonary function associated with 
P. aeruginosa infection is noted across all age groups. In another study, acquisition of mucoid 
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strains of P. aeruginosa was associated with an unfavorable prognosis [83]. From a patho-
logic perspective, P. aeruginosa causes repeated airway infections with  eventual  progression 
to chronic airway infection. This organism can also lead to necrotizing  pneumonia, chronic 
 bronchopneumonia, and chronic parenchymal lung disease. While the aggressive use of 
antipseudomonal  antibiotics has been shown to delay the onset of chronic infection, preva-
lence rates of P. aeruginosa colonization have remained relatively stable over the past two 
decades [84, 85].

The CF airway provides a pathological milieu and a scaffold for chronic infection with 
resistant organisms, the most notable of them being P. aeruginosa. A number of virulent 
factors enable this resilient organism to establish it within the CF airways. One such viru-
lence factor—overproduction of alginate slime capsule—characterizes the mucoid type of 
P. aeruginosa, which allows it to adhere firmly to the airway epithelium. Being encoded 
by the AlgT gene, alginate negatively regulates flagella, fimbriae, and quorum sensing. 
TTSS (injectosome) positively regulates alginate production indirectly through heat shock, 
osmotic, and oxidative stress responses [86]. In the inflamed CF airway,  polymorphonuclear 
leukocytes (PMN) lead to the production of reactive oxygen species (ROS) and reactive 
 nitrogen  intermediates (RNI) [87]. Moreover, mutated CF epithelial cells are unable to 
efflux glutathione (a potent free radical scavenger) and unable to absorb other dietary 
 antioxidants. Production of ROS and RNI by PMN leads to DNA damage, lipid peroxida-
tion and  denaturation of proteins. At the same time, RNI and ROS lead to upregulation 
of alginate production by P. aeruginosa. The alginate slime capsule enables the bacterium 
to adhere firmly to the airway epithelial cells and results in persistence of this organism 
within the airways. At the same time, other virulence factors produced by P. aeruginosa 
(such as exotoxins) incur progressive pulmonary damage and help it to evade the (already 
impaired) host immune response. Over time, ROI and RNI lead to loss of microbial diver-
sity and disruption of the airway microbiota. Simultaneously, such an environment favors 
the survival and selection of P. aeruginosa within the CF airway and leads to persistent 
infection with this organism [88, 89]. Moreover, antibiotic exposures select for multidrug 
resistant variants of the organism and allow them to predominate and colonize the airways 
[24, 90]. Alarmingly, recent reports from CF centers across the world have described certain 
strains of P.  aeruginosa that exhibit resistance to all clinically relevant classes of antimicrobi-
als (“pan‐resistant” P. aeruginosa) [91]. This can explain the worse prognosis associated with 
this organism in most studies of CF patients.

4.5. Burkholderia cepacia complex

More than 60 species belonging to the genus Burkholderia are not pathogenic to humans, but 
some of the remaining species are implicated in serious infections in CF patients. Using 16S rDNA 
and recA gene analysis, 17 species of this genus have been grouped together as the Burkholderia 
cepacia complex (BCC). BCC is a group of virulent pathogens that are frequently implicated 
in infective exacerbations in CF patients with end‐stage lung disease. Colonization with BCC 
in CF patients indicates a poor prognosis and has been shown to be associated with a require-
ment for lung transplantation. This worse prognosis is due to the inherent antibiotic resistance 
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 possessed by these organisms and their ability to rapidly spread from patient to patient. In some 
cases, infection with BCC can lead to the development of cepacia syndrome—a rapid fulminat-
ing pneumonia that often leads to bacteremia and sepsis. Given their virulent nature, strict infec-
tion control measures are essential to prevent outbreaks of BCC in CF clinics and centers [92]. 
A report of rapid spread and outbreak of BCC infection was reported in a CF center in Toronto 
[93]. This center reported the development of cepacia syndrome in many patients, being char-
acterized by rapidly deteriorating pulmonary function, fever, leukocytosis, elevated markers of 
inflammation, and BCC bacteremia. Furthermore, in another report, cepacia syndrome occurred 
in approximately 20% of infected patients and had a case fatality rate of 62% [93].

Outside of the BCC group, a few other species of the Burkholderia genus are also implicated 
in infective exacerbations. These species include Burkholderia gladioli, Burkholderia fungorum, 
Burkholderia multivorans and Burkholderia pseudomallei [94]. Of these, B. gladioli now accounts for a 
significant proportion of Burkholderia infections in CF patients [95]. In the United States, B. multi-
vorans and B. gladioli together account for more than 50% of Burkholderia infections in CF patients.

Most infected CF patients harbor genotypically distinct strains of the BCC. Strains of Burkholderia 
spp. that are shared by multiple CF patients are very uncommon. This  suggests that most 
Burkholderia infections in CF patients result from acquisition of strains from the natural envi-
ronment [92, 96]. In this regard, B. gladioli and B. cepacia have been described as recognized 
plant pathogens. In one study, multilocus sequence typing of Burkholderia spp. revealed that 
more than 20% of CF isolates were identical to strains recovered from the  environment [97].

In the CFF patient registry, prevalence of BCC was reported to have declined from 9% in 1985 
to 4% in 2005. Incidence of BCC was also found to be reduced from 1.3% in 1995 to 0.8% in 
2005 [69]. This has not changed significantly over the past decade as shown by data published 
in 2016 [70]. Ramette et al. analyzed 285 confirmed isolates of BCC using restriction analysis of 
recA and identified seven different BCC species in the environment [98]. Healthcare‐associated 
outbreaks of BCC infections as a consequence of contaminated medical devices and products 
(such as mouthwashes, ultrasound gels, skin antiseptics, and medications) have been reported 
previously. While most of these outbreaks have generally involved non‐CF patients, the poten-
tial for developing such outbreaks among CF patients remains a hazard [99]. Infection of the 
respiratory tract with BCC species in CF patients often results in a chronic persistent infection 
[100]. In most such cases, a single strain of Burkholderia spp. colonizes the respiratory tract.

Infection with BCC species has been associated with a worse prognosis. In one study, CF patients 
who were infected with Burkholderia dolosa had a rapid decline in FEV1 over time [101]. In another 
study, patients colonized with B. cenocepacia had a worse outcome in terms of body mass index 
(BMI) and FEV1 as compared to those colonized with P. aeruginosa or B. multivorans [102].

4.6. Anaerobic bacteria

Anaerobic bacteria have been described in the airways of people with healthy lungs and are 
generally not considered to be pathogenic. In patients with CF, anaerobic bacteria are per-
sistent members of the lower airway community as the anaerobic conditions (and steep oxy-
gen gradients) in the lower airways provide an ideal environment for their growth [88, 103]. 
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However, in the CF lung, anaerobic bacteria can produce virulence factors and  damage the 
lung parenchyma (perhaps as a consequence of impaired innate immunity), which may worsen 
pulmonary function and exacerbate the inflammatory response. Short‐chain fatty acids pro-
duced by anaerobic bacteria can increase production of interleukin‐8 (IL‐8) by upregulating 
expression of the short‐chain fatty acid receptor GPR41 [104]. Moreover, in the CF microbi-
ome, anaerobic bacteria can interact with other established pathogens and lead to progressive 
pulmonary damage [105]. Previously, anaerobic bacteria were thought to be an infrequent 
cause of CF exacerbation; however, with the advent of novel (culture‐independent) micro-
bial detection methods [106–109], anaerobes have been isolated from more frequently. In one 
study, 23.8% of sputum specimens from CF patients grew more than 105 colony  forming units 
(CFU) per milliliter of anaerobic bacteria [110]. In another study, 15 genera of obligate anaer-
obes were identified in 91% of CF patients with counts (CFU/ml) being comparable to that of 
P. aeruginosa and S. aureus [111]. The most common anaerobes were Staphylococcus saccharo-
lyticus and Peptostreptococcus prevotii. Some studies suggest that patients with lower aerobic 
and anaerobic bacterial load have worse pulmonary function and higher levels of inflam-
matory markers [112]. From a biological standpoint, lower quantity of aerobes and anaer-
obes may reflect disruption of the CF microbiota. Studies have shown that antibiotic therapy 
directed against P. aeruginosa during acute exacerbations does not affect anaerobes [111]. This 
observation could be explained by considering the resistance patterns of anaerobes. In 58% of 
patients, obligate anaerobes detected during acute infective exacerbations were resistant to 
antibiotics used for treatment. The chief obligate anaerobes in such cases were Bacteroides spp., 
Porphyromonas spp., Prevotella sp., Veillonella, anaerobic Streptococcus spp., Proprionibacterium, 
Actinomyces, S. saccharolyticus and P. prevotii [36, 111, 113]. Interestingly, infection with P. aeru-
ginosa significantly increases the likelihood of isolating anaerobic bacteria from CF patients 
[36]. Some of these anaerobic bacteria (such as S. milleri) are now known to be associated 
with worse clinical outcomes. Furthermore, new anaerobic organisms have been detected for 
the first time from samples of CF patients. Such bacteria, for instance Gemella and Rothia 
mucilaginosa, have been found to be associated with dismal pulmonary outcomes. Most such 
patients are often coinfected with P. aeruginosa as well [114, 115].

4.7. Nontuberculous mycobacteria

Traditionally, the frequency of CF patients infected with NTM has been reportedly low. In the 
CFF patient registry, the prevalence of NTM infections among CF patients has been  estimated 
to be 2.2%. Nevertheless, the prevalence of NTM has been increasing slowly over the past 
few decades. The prevalence of NTM infection in 1999 among CF patients was 0.85%, which 
increased to 2.18% in 2008 [116]. More recent data published in 2016 shows that the prevalence 
of NTM may be as high as 11.9% [70]. The most common NTM species have been reported to 
be Mycobacterium avium‐intracellulare (MAI) complex and Mycobacterium  abscessus. Factors 
associated with a culture positive for NTM are older age, greater FEV1, higher frequency of 
MSSA colonization and lower frequency of P. aeruginosa infection [117]. In most patients, 
unique strains of NTM are detected by molecular typing, which suggests that neither per-
son‐to‐ person transmission nor nosocomial acquisition is implicated. In one study, the preva-
lence of NTM infection among 385 patients in three Parisian centers was 8.1%. M. abscessus 
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was  isolated in all age groups. About 4.1% (16/385) of the study cohort met the American 
Thoracic Society (ATS) criteria for NTM‐related lung disease [118]. In another  multicenter 
study done in Israel [119], prevalence of NTM‐related lung disease (as defined by the 2007 
ATS criteria) was 10.8%. This study further suggested that the incidence of NTM infections 
is increasing over time. Other studies have demonstrated that the incidence of MAI com-
plex infections in CF patients is decreasing with time, while that of M. abscessus complex is 
increasing [120]. Alarmingly, infection with M. abscessus complex has been associated with a 
worse impact on pulmonary function. Some researchers have proposed that eradication of M. 
abscessus  complex may  provide a significant improvement in terms of pulmonary outcome 
[121]. However, M. abscessus is difficult to manage, commonly affects younger children, and 
requires prolonged courses of intravenous antibiotics [122].

4.8. Stenotrophomonas maltophilia

S. maltophilia is a Gram‐negative bacillus that is commonly implicated in nosocomial  infections 
in non‐CF patients. However, in patients with CF, S. maltophilia has been  recognized as a cause 
of acute infective exacerbation. The medical importance of this pathogen is that it is inher-
ently resistant to a wide range of broad‐spectrum antibiotics (most notably carbapenems). 
The prevalence of infection with this organism has increased from 1 to 4% over a period of 
20 years (1985–2005) [68]. In the CFF patient registry, the prevalence of S.  maltophilia increased 
from 4.0% in 1996 to 12.4% in 2005 [69]. From 2005 till 2015, the prevalence of S. maltophilia 
seems to have plateaued [70]. S. maltophilia infections of the respiratory tract in CF patients 
tend to be acute and, in most cases, the organism does not persist in the lower airways 
(although recurrent infections can occur). Most isolates of this organism have been shown to 
be transmitted from patient‐to‐patient, especially among siblings, or those who are otherwise 
epidemiologically linked [123]. One‐third of CF patients who experience recurrent infections 
with S.  maltophilia harbor more than one strain of the organism [124]. The most important 
risk factors for acquiring S. maltophilia infections are therapy with carbapenems and cen-
tral venous catheterization [125]. In one study, history of treatment with imipenem was 10 
times more frequent among cases (who contracted S. maltophilia) than among controls [125]. 
Furthermore, all fatal infections with S. maltophilia occurred in patients who had received imi-
penem. Based on these results, it is advisable to cover S. maltophilia empirically in CF patients 
who develop super‐infection while receiving imipenem therapy. In a report by Sanyal and 
Mokaddas [126], most strains of S. maltophilia were susceptible to ciprofloxacin and trime-
thoprim‐sulfamethoxazole. Moreover, some evidence shows that CF patients infected with 
S. maltophilia were more likely to have been hospitalized for many days in the past one year 
[127]. Other factors associated with S. maltophilia acquisition were more than two courses of 
intravenous antibiotics, isolation of Aspergillus fumigatus or P. aeruginosa in sputum and oral 
steroid use [128]. S. maltophilia is also more common among CF patients who develop allergic 
bronchopulmonary aspergillosis (ABPA) [129]. While chronic infection with S. maltophilia is 
infrequent, it can occur in certain patients and requires repeated courses of antibiotics [130]. 
Chronic infection with S.  maltophilia confers a threefold higher risk of mortality or the need 
for lung transplantation [131].
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4.9. Achromobacter xylosoxidans

A. xylosoxidans has been recognized as a pathogen and cause of infective exacerbation in 
patients with CF [132]. In the CFF patient registry, the prevalence of A. xylosoxidans infec-
tion was 1.9% in 1995 [69]. In 2015, the prevalence had increased almost three‐folds to 6.1% 
[70]. A. xylosoxidans is a ubiquitous organism that occurs widely in natural habitats. This 
organism is an opportunistic pathogen that affects only immunocompromised patients and 
those with CF. A. xylosoxidans is mostly implicated in nosocomial infections, such as hospital 
acquired pneumonia, catheter‐associated urinary tract infection, and wound infections. Lung 
infections with this fastidious organism are difficult to eradicate. Most patients respond to 
antipseudomonal penicillins (such as piperacillin–tazobactam) and third‐ or fourth‐genera-
tion cephalosporins [133]. In one report, two cases of Achromobacter ruhlandii developed after 
indirect contact between CF patients [134]. Another study from a French CF center reported 
that most isolates of Achromobacter spp. were resistant to fluoroquinolones and carbapenems 
[135]. In a retrospective study, CF patients who were chronically infected with A. xylosoxidans 
were more likely to have impaired pulmonary function. Additionally, the frequency of hospi-
talization was higher among such patients than others [136].

5. Implications for further research

Cystic fibrosis is a monogenetic multisystem disorder, but, pulmonary disease is the lead-
ing cause of morbidity and mortality. Recurrent pulmonary infections with pathogenic bac-
teria can lead to progressive pulmonary damage and eventually lead to death. Therefore, 
understanding the CF airway microbiome has immense importance for understanding the 
overall pathology of the disease. Disruption of the CF airway microbiome under the influ-
ence of environmental factors and antibiotic exposures is a crucial step in the development 
of end‐stage pulmonary disease in such patients [40]. Colonization of the lower airways with 
pathogenic bacteria, such as P. aeruginosa [82] and B. cenocepacia [101], has been associated 
with end‐stage pulmonary disease.

As the CF airway microbiome evolves under the influence of antibiotic exposures, microbes 
undergo a number of mutations and changes in their genome [137]. While these genetic 
mutations are an evolutionary mechanism for microorganisms (for instance, to acquire resis-
tance to antibiotics), they create potential vulnerabilities that may be exploited in unique 
therapeutic approaches. Traditionally, the approach to management of CF pulmonary exac-
erbations has been through employment of antibiotics. While antibiotics are useful in the 
short run, multidrug resistant microbes eventually evolve and become a challenge to tackle. 
In view of this, novel approaches to the management of CF pulmonary disease have been 
proposed, which involve manipulating patients’ microbial consortia [8]. From a theoretical 
perspective, such an approach aims to maintain the architecture of the CF airway microbiome 
and avoids the use of antimicrobials, thereby circumventing the problem of destroying the 
community structure of a patient's microbiome. Such a novel treatment approach is based on 
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the principles of personalized medicine and aims to tailor treatment according to each patient's 
individual microbiome [138]. By manipulating and restoring the structure of a patient's airway 
microbiome, the complex metabolomic profile of the patient's sputum (and other body fluids) 
can be altered, which may have long‐lasting and pleiotropic consequences [139].

Novel treatment approaches for the treatment of CF patients hold theoretical  promise, but 
their practical applicability and clinical efficacy remains to be established [140]. A recent 
pilot study compared the use of a probiotic (Lactobacillus spp.) versus placebo in  pediatric 
CF patients. Patients receiving the probiotic demonstrated a significant reduction in 
 hospitalization for pulmonary exacerbation and a beneficial effect on the gut in terms of 
reducing  gastrointestinal inflammation [141]. Another clinical trial examined the efficacy 
of enteric probiotics in reducing the frequency and severity of pulmonary exacerbations in 
CF patients. Both studies reported that the use of enteric probiotics provided a significant 
 reduction in the frequency of pulmonary exacerbations when compared to the placebo group 
[142]. Larger randomized controlled studies are needed to more fully evaluate the effect of 
probiotics on hard clinical endpoints [143]. Other treatment options based on these novel 
concepts need to be developed further, and they may help to improve the overall outcomes 
of patients with CF [144].
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Abstract

The Burkholderia cepacia complex (Bcc) is a group of closely related bacterial species that 
emerged in the 1980s as the etiological agents of severe and often lethal  respiratory 
infectionsamongcysticfibrosis (CF)patients.Afterseveraloutbreaks inCFcenters in
Europe andNorthAmerica, segregationmeasureswere introduced to avoid patient-
to-patient transmission.Presently, theprevalenceofBcc infectionsamongCFpatients
worldwideisbelow5%inthemajorityofCFcenters,althoughexceptionsareregistered
in some European countries. Infections by these pathogens remain problematic due
to the high resistance to antimicrobials, the easy patient-to-patient transmission, and
the unpredictable outcome of infections that range from asymptomatic carriage to the 
cepaciasyndrome,afulminatingpneumoniaoftenassociatedwithsepticemiathatcan
leadtothedeceaseofpatientswithinaperiodoftimeasshortas1week.Inthischapter,
wereviewtheevolvingepidemiologyofBccinfectionsinCFpatients,thevirulencetraits
andmechanismsusedby these bacteria, and the recentdevelopments in vaccine and
vaccinecomponentsresearchtopreventBccinfections.

Keywords: Burkholderia cepaciacomplex,emergingspecies,evolvingepidemiology,
virulencedeterminants,immunoreactiveproteins,vaccinedevelopment

1. Introduction

The Burkholderia cepacia complex (hereafter referred to as Bcc) is a group of closely related 
bacteriathatemergedinthe1980sasproblematicpathogenstocysticfibrosis(CF)patients[1].
InfectionsbyBccareparticularlyfeareddueto(1)theeasypatient-to-patienttransmissionof
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specificstrains;(2)theabilitytoresisttomultipleantibiotics;and(3)theunpredictableoutcome
ofinfections,whichrangesfromasymptomaticcarriagetotheso-calledcepaciasyndrome,an
oftenlethalnecrotizingpneumoniaaccompaniedwithsepticemia[1,2].Initiallydescribedinthe
1950sbyBurkholder[3]asthecauseofsoftrotinonions,thespeciesthennamedPseudomonas 
cepaciawasmovedintothenewgenusBurkholderiaaftertheworkofYabuuchiandcolleagues
in1992[4].However,themostimpressivedevelopmentsonthetaxonomyofthisgroupofbac-
teriahavebeenachievedaftertheseminalworkofVandammeandcolleagueswhoproposed
thedivisionofthespeciesintodistinctgenomovars[5].Presently,theBcccomprises20species
(Table 1),andthegenomesequenceofseveralstrainsispubliclyavailableindatabasessuch
astheBurkholderiaGenomeDBandtheIntegratedMicrobialGenomes&Microbiomes[6,7].

Bcc species Genome sequence availability Reference

B. ambifaria 4completegenomes(strainsAMMD,MC40-6,MEX-5,IOP-120) [8]

B. anthina Inprogress [9]

B. arboris Inprogress [10]

B. cenocepacia 18completegenomes(strainsJ2315,H111,AU1054,B1,MCO-3,
PC184,HI2424,DDS22E-1,DWS37E-2,ST32,842,895,MSMB384
WGS,6,7,CEIB,869T2,TAtl-371)

[11]

B. cepacia 8completegenomes(strains383,AMMD,ATCC25416;Bu72,DDS
7H-2,GG4,JBK9,LO6)

[4]

B. contaminans 1completegenome(strainMS14) [12]

B. diffusa Inprogress [10]

B. dolosa 1completegenome(strainAU0158) [13]

B. lata 1completegenome(strain383) [12]

B. latens Inprogress [10]

B. metallica No information [10]

B. multivorans 3completegenomes(ATCC17616,ATCCBAA-247,DDS15A-1) [5]

B. pseudomultivorans Inprogress [14]

B. pyrrocinia 1completegenome(strainDSM10685) [9]

B. seminalis Inprogress [10]

B. stabilis No information [15]

B. stagnalis Inprogress [16]

B. territorii Inprogress [16]

B. ubonensis 1completegenome(strainMSMB22) [17]

B. vietnamiensis 3completegenomes(strainsG4,LMG10929,WPB) [18]

DatabaseswereassessedbytheendofJuly2016.

Table 1. Burkholderia cepaciacomplexspeciesnamesandgenomesequenceavailability inthedatabasesBurkholderia
GenomeDBandIntegratedMicrobialGenomes&Microbiomes[6,7].
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2. Evolving epidemiology of Bcc infections

All Bcc species are virtually potential pathogens to CF patients. However, epidemiology
studies have shown an uneven geographical and regional distribution of clinical isolates
among the Bcc species, with the predominance of Burkholderia cenocepacia, followed by
Burkholderia multivorans. Early studiesperformedduring the 1980s and 1990shave shown
thatinadditiontocasesofchronicinfectionduetospecificstrains,manyoutbreaksreported
inEuropeandNorthAmericaweredue to the spreadofparticularlyvirulent strains that
easilydisseminatedwithinagivenCFcenter[1].Althoughtheenvironmentisthoughttobe
thenaturalreservoirofthesestrains,adefinitiveproofisstilllacking.

A few particularly epidemic strains became notorious for the worst reasons. Perhaps,
thebest-known strain is theEdinburgh-Toronto lineagealsoknownas theET12 clone, an
intercontinental clone responsible for several infections and fatalities in CF centers in the
UK and Canada [19]. The best-known representative strain of this highly transmissible
clone is the B. cenocepaciaJ2315strain,thefirstBccstrainwithitsgenomesequencepublicly
 available (Table 1)andoneofthebeststudiedBccstrains[20].Anotherexampleofastrain
that disseminatedwithin centers and even among centers is the PHDC strain. The strain,
responsibleforalmost20%prevalenceinoneCFcenterintheUSA,waslaterfoundinanother
CFcenter,wherean increase inBccprevalencewasexperienced.Thedisseminationof the
strainwas associatedwith the transfer of an infectedpatient from the initial center to the
secondone[21].AlaterstudybyCoenyeetal.[22]showedthatthePHDCstrainwasalso
presentinEuropeanpatients(namelyinFrance,Italy,andtheUK),concludingthatthePHDC
strainwas thesecond-identifiedBcc transatlantic clone. Interestingly,both intercontinental
clones belong to the B. cenocepaciaspecies,althoughtheET12belongstosubgroupIIIAandthe
PHDCbelongstosubgroupIIIB.TheB. cenocepacia species includes other clones that spread 
amongCFcenters,namelytheMidwestAmericancloneandtheCZICzechepidemicclone
[23,24].EvidenceoftransmissionofparticularlyepidemicstrainsofB. cenocepacia led to the 
introductionofsegregationmeasuresinCFcentersinEuropeandAmerica,withasignificant
reductionofprevalenceofinfections[1,25–27].However,thesesegregationpolicieshadadev-
astatingimpactonpatientsinfectedwithBccduetosocialisolationandstigmaandnegative
psychologicalimpacts[28].Althougheffectiveininterruptingstraintransmission,segregation
measuresdonotpreventnewacquisitions.Nevertheless,thesemeasuresledtoareduction
ofprevalenceofBccinfectionsfrommorethan20%inseveralcenterstolessthan5%bothin
theUSAandthemajorityofEuropeancountries[29,30].However,prevalenceofchronicBcc
infectionsisstillranging5–10%inDenmark,Portugal,SlovakRepublic,RussianFederation,
andLatvia,reachingvaluesof15and23%inSerbiaandLithuania,respectively[30].

AlthoughtheBccstrainsresponsibleforthevastmajorityofinfectionsbothinEuropeand
NorthAmericabelongtotheB. cenocepaciaspecies,recentevidenceindicatesachangingepi-
demiology.B. multivorans emerged as thedominant species in France by 2004 and as the
secondmostimportantspeciesintheUSA[31,32].RecentreportsalsoindicateBurkholderia 
contaminans as an emerging Bcc species associatedwith CF infections. Early reports of a
highincidenceofthespeciesamongCFpatientscamefromPortugalandArgentina[33–35].
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Interestingly,inthecaseofthePortugueseCFpopulation,twoB. contaminans clones infecting 
CFpatientswerefoundas indistinguishable fromtwoB. contaminans strains isolated from 
nonsterile nasal saline solutions of commercial origin during routine surveillance by the 
PortugueseMedicinesandHealthProductsAuthority[36].ArecentworkbyMedina-Pascual
andcolleaguesonthesurveillanceofBccinfectionsinSpanishCFpatientsalsoreporteda
B. contaminansoverallincidenceof36.5%intheperiod2008–2012,surpassingthepreviously
dominant species B. cenocepacia and B. multivorans [37]. The emergence ofB. contaminans 
amongSpanishCFpatientswashypothesizedtobeduetounspecifiedecologicaladvantages
that enable the species to increase its presence inhospitals or in the environment [37]. In
thecaseofSwissCF-patients,B. cenocepaciawasthemostfrequentlyisolatedspeciesinthe
period1998–2013,butB. multivorans and B. contaminans emerged during the last years of the 
studyperiod[38].A30-yearstudyofBccinfectionsamongCFpatientsfromBritishColumbia
(Canada)evidencedamajorimpactofsegregationmeasuresinBccepidemiology;whileB. 
cenocepaciawasdominantbefore the introductionof thesemeasures,B. multivorans strains 
becamedominantafterimplementationofnovelinfectioncontrolmeasuresin1995[39].This
study and others highlight the impact of infection control measures on Bcc species recovered 
fromCFpatients.ItisnowapparentthatwhileepidemicB. cenocepacia strains dominated in 
earlyyears,nonclonalB. multivorans and B. contaminansstrainsareemerging.

3. Bcc virulence factors and traits

Over the last 20 years, substantial progress has been achieved on the knowledge of Bcc
virulencefactorsanddeterminants,althoughtheexactcontributionofsomeofthemtothe
successofinfectionremainstobefullyunderstood.ItiscurrentlyacceptedthatBccvirulence
doesnotrelyonasinglevirulencefactor,beingmultifactorial.Bacterialstructuressuchas
flagella,thecablepili,andthe22-kDaadhesinareconsideredvirulencefactorssincetheyplay
importantrolesintheinitialstepsofinteractionwiththehostcell,promotingtheadherence
tothelungsurfaceandtheinvasionoflungepithelialcells[39–41].Inaddition,themajority
of B. cenocepaciastrainsareabletosurviveandreplicateintracellularlyinairwayepithelial
cellsandmacrophages, evading theprimarycellulardefensemechanismsof the lungand
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Progress in Understanding Cystic Fibrosis76



Interestingly,inthecaseofthePortugueseCFpopulation,twoB. contaminans clones infecting 
CFpatientswerefoundas indistinguishable fromtwoB. contaminans strains isolated from 
nonsterile nasal saline solutions of commercial origin during routine surveillance by the 
PortugueseMedicinesandHealthProductsAuthority[36].ArecentworkbyMedina-Pascual
andcolleaguesonthesurveillanceofBccinfectionsinSpanishCFpatientsalsoreporteda
B. contaminansoverallincidenceof36.5%intheperiod2008–2012,surpassingthepreviously
dominant species B. cenocepacia and B. multivorans [37]. The emergence ofB. contaminans 
amongSpanishCFpatientswashypothesizedtobeduetounspecifiedecologicaladvantages
that enable the species to increase its presence inhospitals or in the environment [37]. In
thecaseofSwissCF-patients,B. cenocepaciawasthemostfrequentlyisolatedspeciesinthe
period1998–2013,butB. multivorans and B. contaminans emerged during the last years of the 
studyperiod[38].A30-yearstudyofBccinfectionsamongCFpatientsfromBritishColumbia
(Canada)evidencedamajorimpactofsegregationmeasuresinBccepidemiology;whileB. 
cenocepaciawasdominantbefore the introductionof thesemeasures,B. multivorans strains 
becamedominantafterimplementationofnovelinfectioncontrolmeasuresin1995[39].This
study and others highlight the impact of infection control measures on Bcc species recovered 
fromCFpatients.ItisnowapparentthatwhileepidemicB. cenocepacia strains dominated in 
earlyyears,nonclonalB. multivorans and B. contaminansstrainsareemerging.

3. Bcc virulence factors and traits

Over the last 20 years, substantial progress has been achieved on the knowledge of Bcc
virulencefactorsanddeterminants,althoughtheexactcontributionofsomeofthemtothe
successofinfectionremainstobefullyunderstood.ItiscurrentlyacceptedthatBccvirulence
doesnotrelyonasinglevirulencefactor,beingmultifactorial.Bacterialstructuressuchas
flagella,thecablepili,andthe22-kDaadhesinareconsideredvirulencefactorssincetheyplay
importantrolesintheinitialstepsofinteractionwiththehostcell,promotingtheadherence
tothelungsurfaceandtheinvasionoflungepithelialcells[39–41].Inaddition,themajority
of B. cenocepaciastrainsareabletosurviveandreplicateintracellularlyinairwayepithelial
cellsandmacrophages, evading theprimarycellulardefensemechanismsof the lungand
avoidingclearance.Thefactorsinvolvedinthisability,exopolysaccharide(EPS)biosynthesis,
biofilmformation,resistancetoantibiotics,andoxidativestressresistance,aswellastheiron
acquisitionabilityarealsoamongvirulencedeterminantsdescribedforBcc[20,42,43].Some
ofthesevirulencefactorsarefurtherdetailedbelow.

3.1. Alternative sigma factors

RpoEandRpoNaretwoalternativesigmafactorsinvolvedintheregulationoftheabilityof
intracellular B. cenocepacia todelayphagolysosomal fusion inmurinemacrophages [44, 45].
RpoEistheextra-cytoplasmicstressresponseregulatorrequiredbyB. cenocepaciatogrowunder
conditionsofhighosmolarityandhigh temperature [44].RpoN,or sigma factorσ54, isbest
knownforitsinvolvementinnitrogen-relatedgeneregulation.InB. cenocepacia,σ54 is involved 

Progress in Understanding Cystic Fibrosis76

inmotilityandbiofilmformation[45].Resultsfromthemappingofσ54 regulon and the charac-
terization of a B. cenocepaciaH111-derivedσ54 mutant suggest that this alternative sigma factor 
playsanimportantroleinthecontrolofnitrogenmetabolism,inthemetabolicadaptationof
B. cenocepaciaH111tostressfulandnutrient-limitedenvironmentsandinvirulencetowardthe
nematode Caenorhabditis elegans[46].Inaddition,itwasalsoreportedthatRpoNregulatesgenes
involvedinexopolysaccharideproduction,biofilmformation,motility,andvirulence[46].AB. 
cenocepaciamutantdefectiveinageneencodingaputativeσ54-relatedtranscriptionregulator
(BCAL1536)wasfoundasattenuatedintheratagarbeadinfectionmodel[47].

3.2. Lipopolysaccharides and extracellular polysaccharides

OneofthecentralcomponentsoftheoutermembraneinGram-negativebacteriaisthelipop-
olysaccharide(LPS),acomplexmoleculecomposedbythelipidA,thecoreoligosaccharide,
and theO-antigenmoieties (reviewed inRef. [48]).Thegenes involved inLPSproduction
by B. cenocepaciaarelocatedinchromosomeI,organizedinthreemainclusters,oneforeach
LPS component (lipidA: BCAL1929 to BCAL1935; core: BCAL2402 to BCAL2408; O anti-
gen:BCAL3110 to BCAL3125) togetherwithadditionalgenes encoding sugar modification
enzymes[49,50].BccbacteriaLPSdiffersfromotherGram-negativebacteriaLPSduetothe
complete lackofnegativelychargedresiduesandthepresenceof theheterodimericdisac-
charide D-glycero-D-talo-oct-2-ulosonic acid-(2–4)-3-deoxy-D-manno-oct-2-ulosonic acid
(Ko-(2–4)-Kdo)inthecoreregion;thepresenceofa4-amino-4-deoxyarabinose(Ara4N)resi-
due,eitherinthecoreorinlipidA;andthestructureofO-antigen[50,51].Thisparticular
compositionchangesthebacterialsurfacecharge,inhibitingthebindingandsuccessfulaction
ofantibiotics,contributingtothepersistenceofbacterialinfection[51].Recently,itwasdem-
onstratedthatalthoughL-Ara4Nmodificationsdonotaffectrecognition,theyarecriticalfor
theestablishmentofinfection[52].Severalstudieshavedemonstratedthatwhenneutrophils
interactwithBccLPS,theexpressionofCD11bontheirsurfaceincreases,stimulatingneu-
trophilrespiratoryburstresponse[53].Inaddition,macrophagesandhumanbloodcellsare
alsostimulatedbyBccLPS,producingpro-inflammatorycytokinessuchasTNF-α,IL-6,and
IL-8[54,55].

B. cenocepaciaJ2315isunabletoproducetheO-antigen.Inthisparticularstrain,thisisdueto
an interruption in the wbcEgene-encodingBCAL3125[56].TheexpressionofO-antigenby
Bcc strainswasdemonstrated to reducephagocytosisbymacrophageswithout interfering
withtheintracellularsurvivalofbacteria[56].

Theproductionofexopolysaccharides(EPSs)wasdescribedforseveralBurkholderiaspecies.EPS
production by Bcc is regarded as playing an important role in the chronicity of Bcc infections 
[57–62].CepacianisthemostcommonEPSproducedbyBccandnon-Bccspecies,bothfrom
clinicalandenvironmentalsources[59,63].Cepacian interfereswithphagocytosisbyhuman
neutrophils,facilitatingthebacterialpersistenceinamousemodelofinfection[64,65].TheEPS
wasshowntoinhibittheproductionofROSbyneutrophilsandtoscavengereactive oxygen spe-
cies(ROS),playingaroleinthesurvivalofcepacian-producingstrainsindifferentenvironments
[64–67].AsaresultofaframeshiftmutationinthebceB gene (BCAM0856) encoding a putative 
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glycosyltransferase,CepacianisnotproducedbytheB. cenocepaciaET12representativestrain
J2315[49,62].

3.3. Biofilms

Bcc bacteria were found to persist in biofilms in vitro. Biofilm formation andmaturation
dependonmanyfactors,includingEPSproduction,motility,ironavailability,andmultiple
gene regulatory systems, such as quorum sensing, alternative sigma factors, or global
regulatorssuchastheShvRandAtsR[45,58,68–73].Inaddition,Bcccanformsmallcolony
variants in vitro,acolonymorphologythat isassociatedwithenhancedbiofilmformation,
antibioticresistance,andpersistence[74].

Severalstudieshavebeenperformedtounderstandtheimportanceandrelevanceofbiofilm
formationinBccbiology.Bccbacteriagrowinginbiofilmsareusuallymoretoleranttomultiple
antibiotics,althoughsimilarsusceptibilitieswerereportedforplancktonicandbiofilmcellsto
theantibioticskanamycin,amikacin,andciprofloxacin[75,76].Recently,Bccbiofilmswere
showntocontainpersistercellsthatareabletosurviveinthepresenceofhighconcentrations
ofantibioticsbyavoidingproductionofreactiveoxygenspecies[77].Inaddition,usingneutro-
phil-likedHL60cells,itwasshownthatthepresenceoftheseimmunesystemcellsenhanced
biofilmformationthatprotectedBccbacteriaagainstneutrophilsbyinducingtheirnecrosis,
actingasabarriertothemigrationofneutrophils,andmaskingthebacteriafrombeingrec-
ognizedbyneutrophils[78].Althoughsomeevidencesuggeststhatbiofilmformationplaysa
roleinbacterialpersistenceintheCFairways,thistopicneedstobefurtherstudied.

3.4. Quorum sensing

Quorum sensing is a mode of regulation of gene expression that is dependent on the  density 
of the bacterial population. Bcc bacteria have at least four quorum sensing systems. The
CepIRquorumsensingsystemishomologoustotheLuxIRsystemofVibrio fischeri(reviewed
inRef. [79]). TheCepIR systempositively regulates thevirulenceofB. cenocepacia toward
model organisms likeC. elegans,Galleria mellonella, rodents, zebrafish, alfalfa, and onions
[80–83].InadditiontotheCepIR,B. cenocepaciaencodestheCciIR,theCepR2,andtheBDSF
quorumsensingsystems[84,85].WhiletheCepIRandCciRquorumsensingsystemsrely
onacylhomoserinelactonesassignalingmolecules,theBDSFsystemusescis-2-dodecenoic
acidasthesignalingmolecule,andtheCepR2isanorphanquorumsensingsystem[85].An
arsenalofgenesregulatedbyquorumsensinginBccbacteriawasdescribed,includingthe
negatively regulated siderophore synthesis and the positively regulated expression of the 
genesencodingzincmetalloproteases(Zmps),swarmingmotilityandbiofilmformation,all
thoughttohaveanimpactwhenthebacteriumisinfectingtheCFpatient[71,80,86,87].

3.5. Protein secretion systems

Both Gram-negative and positive bacteria use protein secretion systems to secrete toxins
orotherproteins,eitherdirectlyintotheenvironmentorintohostcells.Thesesystemsare
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particularlywellstudiedintheCFpathogensBccandPseudomonas aeruginosa.Forinstance,
BccstrainsoftheET12lineageandBurkholderia vietnamiensisharbortypeIandIIsecretion
systems(T1SS,T2SS)implicated,forinstance,inthesecretionofhemolyticproteins[88,89].
TheT2SSisalsoinvolvedinB. cenocepaciasecretionoftwozincmetalloproteases,ZmpAand
ZmpB,whichplayaroleinvirulence[80,90].TwoT4SSsareencodedbyB. cenocepacia;the
T4SS-1encodedinaplasmid,andtheT4SS-2encodedinchromosome2[91].Untilnow,only
theT4SS-1was identified inB. cenocepacia strains as necessary for virulence in onions and 
intracellularsurvivalinphagocytes[92].

Inamouseagarbeadinfectionmodel,theT3SShasbeenshowntobeimportantforbacterial
pathogenesis[93].Althoughtheprecisemechanismisstillnotclear,T3SSseemstoplayno
role in intracellular survival of B. cenocepacia[94].

Four typeVsecretionsystemsareencodedwithin thegenomeofB. cenocepacia J2315 [49].
Proteins transported by this type of transporters contain pertactin and hemagglutinin
domainsandarethoughttoplayaroleinbacterialadhesion[49].

B. cenocepacia also encodes a T6SS, which was shown to affect the actin cytoskeleton of
 macrophages and the assembly of the reduced nicotinamide adenine dinucelotide phosphate 
(NADPH) oxidase complex in B. cepacia-containingvacuoles(BcCV's)byinactivationofRac1
andCdc42[73,95,96].B. cenocepaciawasfoundtoefficientlyactivatetheinflammasomeby
ayetuncharacterizedT6SSeffector[97].Consequently, monocytesandTHP-1cellsrelease
IL-1βinapyrin-,Asc-,andT6SS-dependentmanner[97].TheT6SSalsoenhancescaspase-1
activation,negativelyregulatedbythesensorkinase-responseregulatorAtsR[73].Inaddition,
arecentpapersuggeststhattheT6SSmightbeimportantforthesecretionofT2SSeffectors
intothehostcytoplasm,suchasZmpAandZmpB,revealinganunanticipatedrolefortype
IIsecretionsystemsinintracellularsurvivalandreplicationofB. cenocepacia[96].Although
membranevesiclescannotbeconsideredacanonicalsecretionsystem, theycaneffectively
allowthesecretionofseveralhydrolyticenzymesandtoxins[98].Table 2 summarizes and 
compares the most relevant information available about secretion systems of Bcc bacteria and 
theircounterpartsinthemajorCFpathogenP. aeruginosa.

3.6. Iron uptake

Inordertocarryoutironchelationanduptake,membersoftheBcccanproduceuptofour
distinctsiderophores:ornibactin,pyochelin,cepabactin,andcepaciachelin[122].Ornibactin
appears to be the most important and abundant siderophore produced by B. cenocepacia 
strains [123, 124]. The pathways and regulatory mechanisms of ornibactin synthesis and
uptake are relatively well known [87, 125–127]. The requirement of this siderophore for
B.  cenocepaciavirulencewasdemonstratedindifferentinfectionmodels,includingtheratagar
bead,G.  mellonella, and C. elegans[82,125,127].

ThecompetitionforavailableironbyBccbacteriaandotherCFlungcolonizingorganisms
such as P. aeruginosawasreportedtooccurintheCFlung,althoughitisnotcompletelyclear
howBccorganismsacquireironfromhostproteins[128,129].
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3.7. Resistance to antimicrobials

DifficultiesineradicatingBccinfectionsmainlyresultfromtheirintrinsicresistancetomultiple
antibiotics,includingpolymyxins,aminoglycosides,andmostβ-lactams.Inaddition,thesebac-
teria have the ability to develop in vivoresistancetovirtuallyallclassesofantibiotics[20,130,131].
AntibioticsadministrationtoCFpatientswasalsoreportedtoaffectresistanceprofilesofBcc
bacteria[132].VariousmechanismsinvolvedintheresistanceofBcctomultipleantibioticshave
beendescribedandincludeenzymaticinactivation(β-lactamases,aminoglycoside-inactivating
enzymes,dihydrofolate reductase),alterationofdrug targets, integrons, cellwall imperme-
ability,andactiveeffluxpumps[88,133–140].However,majorcontributionstointrinsicand
acquiredmultidrugresistancebyBccseemtobeduetoeffluxpumpsoftheresistancenod-
ulationcelldivision (RND) family. In fact, theB. cenocepacia J2315genomeencodesat least
16effluxsystemsoftheRNDfamily[141].AtleastsixoftheseRNDeffluxpumpswereimpli-
catedindrugresistance—RND-1,RND-3,RND-4,RND-8,RND-9,andRND-10[138–140,142,

Secretion system Burkholderia cepacia complex P. aeruginosa

T1SS Hemolyticproteins[88,89] HasAp(heme-binding)[99];AprAand
AprX(alkalineproteases)[100,101]

T2SS ZmpAandZmpB[80,90] LasB(Majorextracellularprotease)[102],
StaphylolysinLasA[102],Aminopeptidase
PaAP[103],ProteaseIV[104],Lipases
LipA,LipC,phospholipaseC,PlcH,and
PlcN[105,106],CbpDChitin-binding
proteinCbpD[107];ExotoxinA[108]

T3SS Noeffectordescribedyet,playsarole
in evasion of the host immune system 
[93,94]

GTPase-activatorExoSandADP-
ribosyltransferaseExoT[109],adenylate
cyclaseExoY[110],phospholipaseA2
ExoUandExoS[111]

T4SS T4SS-1:Plantcytotoxicproteins,T4SS-2:
Plasmidmobilization[91]

Integrativeandconjugativeelements
(ICEs):ICEclc[112],Pathogenicityislands:
pKLC102(includesthetypeIVsexpili-
encoding pil cluster and the chvB gene 
encodingavirulencefactor)[113],and
PAP-I(includesseveralvirulencefactors,
suchasCupDtypefimbriae,andthe
PvrSR/RcsCBregulatorysystem)[114]

T5SS FourT5SS:twocontainingpertactin
domainsinvolvedinadhesion,othertwo
containhaemagglutininrepeats[49]

Autotransporter:EstA(esteraseactivity)
[115];Two-partnersecretionsystems
LepA/LepB[116]andCupB[117],andthe
PdtA/PdtBsystem[118]

T6SS HcpandVgrGs[73,95,96] HcpandVgrGs[119,120]

Membranevesicles(MV) MV-associated(metallo)proteases,
(phospho)lipases,peptidoglycan-
degradingenzymes[98]

Multiplevirulencefactors:Alkaline
phosphatase,hemolyticphospholipaseC;
theCiftoxinthatinhibitsCFTR-mediated
chloridesecretionintheairways[121]

Table 2. SummaryofsecretionsystemsfromBccandtherespectivecounterpartsfromtheCFmajorpathogenP. aeruginosa.
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143].RND-3andRND-4effluxpumpsweredescribedasbeinginvolvedintheresistanceto
variousantimicrobialdrugsincludingtobramycinandciprofloxacin;theRND-3,RND-8,and
RND-9effluxsystemsprotectbiofilm-growncellsagainsttobramycin;theRND-8andRND-9
effluxpumpsarenotinvolvedinciprofloxacinresistance;andRND-10effluxpumpseemsto
confer resistance tochloramphenicol,fluoroquinolones,and trimethoprim[140,143]. Itwas
suggestedthatmutationsintheRND-3regulator-encodinggenemayberesponsibleforthe
prevalentoverexpressionofthiseffluxpumpinclinicalBccisolates,contributingtotheirhigh
levelsofantibioticsresistance[144].

3.8. Motility

GenesinvolvedinthesynthesisandassemblyofB. cenocepaciaflagellaarelocatedinchromo-
someI,distributedwithinfiveclusters,withtwoadditionalgenesfoundonchromosomes
2and3[49].Thesegeneswerefoundasbeingupregulatedwhentheorganismwasincubated
inCFsputum,contributingtoitsvirulenceinamurineagarbeadinfectionmodel[145,146].
More recently, flagellin expression and flagellarmorphology ofB. cenocepacia grown in a
mediummimickingtheCFsputumwasanalyzed[147].Thosenutritionalconditionsledto
increasedmotilityandflagellinexpression,byinducingthesynthesisofmultipleflagellaon
the cell surface of B. cenocepaciaK56-2[147].Alinkbetweenthelossofbacterialmotilityand
thedevelopmentofthecepaciasyndromewasrecentlyestablishedbasedonatranscriptomics
analysis comparing the B. cenocepaciaST32CFisolatesrecoveredfrombloodstream,atthetime
ofcepaciasyndrome,withtheirsputumcounterparts,recoveredpriortothedevelopmentof
thissyndrome,revealingthatflagellargenesweredownregulatedinisolatesrecoveredfrom
thebloodstream[148].

3.9. Intracellular survival

Infectionassaysusingfree-livingamoebademonstratedthatB. cenocepacia can survive in an 
acidifiedintracellularcompartment[94,149].Thesebacteriawerealsodemonstratedtohave
theabilitytodelaythematurationofphagolysosomesinmurinemacrophages[94–96,150].
AlthoughtheB. cenocepaciacontainingvacuoles(BcCVs)progressnormallytotheearlyphago-
somalstage,thefusionoftheBcCV'swithlateendosomesandsubsequentmaturationissig-
nificantlydelayedcomparingwithvacuolescontainingheat-killedbacteria[94].Incontrast
toheat-killedbacteria that endedup inphagolysosomeswith apHof 4.5,BcCVsdidnot
acidifynormallymaintainingaluminalpHaround6.4[94].ThisabilityofB. cenocepacia to 
altertheacidificationofthevacuoleseemstobecorrelatedwiththedelayinrecruitmentor
assemblyon theBcCVmembraneofboth the16-kDasubunitof thephagosomalvacuolar
ATPase(vATPase)andtheNADPHphagocyteoxidase[96,151].Incontrast,Al-Khodorand
colleagues demonstrated that B. cenocepaciaJ2315onlytransientlyinteractswiththeendocytic
pathway,eventafterwhichthebacteriumisabletorapidlyescapetothecytosol[152].Escaped
bacteriaareafterwardtargetedbythehostautophagypathway,throughtherecruitmentto
thebacterialvicinityof theubiquitinconjugationsystem,theautophagyadaptorsp62and
NDP52,andtheautophagosomemembrane-associatedproteinLC3B.However,apparently,
thishostcellcontrolthroughautophagyultimatelyfailsinahighproportionofinfectedcells,
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being B. cenocepaciaabletoblocktheautophagosomecompletionandreplicateinthecytosol
ofthehostcell[152].

TobetterunderstandtheintracellularbehaviorofB. cenocepaciainCFinfectedpatients,studies
have also been performed in Cysticfibrosistransmembrane conductanceregulator(CFTR)-
defectivemacrophages. Remarkably, the delayedmaturation arresting of BcCV's ismore
exaggeratedinCFTR-defectivemacrophagesthaninnormalmacrophagesandisspecificto
live B. cenocepacia[153].AlthoughitisnotclearhowtheCFTRdefectenhancestheB. ceno-
cepacia intracellular survival, there is evidenceofa linkbetween thedefectiveCFTRwith
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immunized intraperitoneallywith the proteins Linocin andOmpW showed a significant
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90,72,66,and60kDaproteins.ElicitationofspecificIgAantibodiesbymucosalimmunization
wasalsoreportedtobeimportanttopreventthecolonizationoftherespiratorytractbyBcc
bacteria.Inanotherstudy,theintranasalimmunizationofCD-1micewithoutermembrane
proteins (OMP) fromB. cenocepaciawasdescribed tooriginateaTh2-biasedresponsewith
themaintenanceofthebacterialburden,whilemiceimmunizedwithOMPandthenonin-
flammatorymucosaladjuvantnanoemulsion(NE)elicitedaTh1/Th2-balancedresponsethat
ledtoasignificantreductionoftheB. cenocepaciacellburden[163].Theserumderivedfrom
micevaccinatedwithOMP-NEcouldalsoinhibitB. multivoransgrowthby80.1%,showing
thatinductionofcross-reactiveantibodiesoccurredaftermiceimmunization.Additionally,
a highly conserved 17-kDaOmpA-like proteinwas recently identified as a new immune-
dominantepitopeinmucosalimmunization[163].

Metalloproteasesarealsoconsideredaspotentialeffectivecandidatesforvaccinedevelopment
[90].Itwasdemonstratedthatimmunizationsofratsusingaconservedzincmetalloprotease
peptide15(PSCP)decreasedtheseverityofB. cenocepaciainfectionandthelungdamagewas
reducedby50%uponchallengewithaB. cenocepaciastrainafterimmunization[90].

In2012,itwasshownthatthebacterialsurfacepolysaccharidepoly-β-(1-6)-N-acetyl-glucos-
amine(PNAG)confersprotectiveimmunityagainstBccinfectioninalethalperitonitismice
model [164]. In this studybySkurnikandcolleaguesusingopsophagocytic assays, itwas
observedthatgoat-raisedantibodiesagainstPNAGcouldkillBccstrains(>80%)oftheB. ceno-

Antigen Immune response Bcc animal model In vitro models References

OmpW MixedTh1/Th2 BALB/cmice
immunosuppressed 
withcyclophosphamide

Spleencellsfrom
mice

[161]

Linocin Th1 BALB/cmice
immunosuppressed 
withcyclophosphamide

Spleencellsfrom
mice

[162]

OMPplusNE MixedTh1/Th2 CD-1mice Murinesplenocytes [163]

OMPplusAdDP HigherIgGandIgA
titers

BALB/cmice
immunosuppressed 
withcyclophosphamide

ND [162]

PNAG ND FVB/Nmice Opsonophagocytic
assay

[164]

Zincmetalloprotease
peptide15(PSCP)

HigherIgGandIgA
titers

Sprague-Dawleyrat
agar bead model

ND [90]

FliC ND ND T cell hybridoma 
assays

[165]

BCAL2958 HighIgGtitersin
humanCFserum
samples

ND Humanneutrophils [166]

ND—Notdetermined.

Table 3. SummaryofvaccinedevelopmentagainstBccinfections.
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cepacia,Burkholderia dolosa and B. multivoransspecies.Furthermore,bacterialkillingwasfound
todependofthepresenceofthecomplement[164].

Other proteins of putative immunogenic activity have been reported as potential vaccine
candidates.However,studiesinaBccinfectionanimalmodelarestilllacking(Table 3).One
ofthesepromisingantigensistheOmpA-likeBCAL2958proteinthatwasshowntobehighly
conserved inBcc, toelicit IgGantibodies inCFpatientsand toelicitan increaseofTNFα,
elastase,NO,andMPOinneutrophils[166].

MussonandcolleagueshaveshownthatT-cellhybridomasagainsttheBurkholderia  pseudomallei 
flagellarproteinFliCepitopecross-reactedwithorthologousFliCsequencesfromB.  multivorans 
and B. cenocepacia[165].FliCepitopeswereaccessibleforprocessingandpresentationfrom
liveorheat-killedB. cenocepaciabacteria,demonstratingthatflagellinenterstheHLAclassII
AgpresentationpathwayduringinfectionofmacrophageswithB. cenocepacia.

Studiesreferredaboverevealedthatsubunitvaccinesthatonlyproduceanantibodyresponse
cannotfullypreventaninfectioncausedbyBccbacteria[157,161,164].Therefore,Bccvaccines
containingmultipleantigensthatelicitabalancedTh1andTh2responseareexpectedtobe
effective inpreventingBcc infections.With this aim, immunoproteomics approacheshave
been performed. For instance,Mariappan and colleagues identified 18 immunogenic pro-
teins from culture supernatants of B. cepaciathatreactedwithmiceantibodiesraisedagainst
inactivated B. cepaciawhole cells [167].More recently, the analysis of the imunoproteome
of two clinical relevant strains of B. cenocepacia and B. multivorans revealed 15 common
immunoreactiveproteinsthatreactedwithCFhumanserumsamples[168].

5. Concluding remarks

AnoverviewofBccinfectionsinCFfromearly1980suntilthemorerecentavailabledatawas
presented.TheprevalenceofBccspeciesinCFpatientsworldwideisstillevolving,mostprob-
ablyasaresultofinfectioncontrolmeasuresandsegregationpolicies.Manyvirulencefactors
havebeenidentified,andtheresultingwealthofinformationpromptedtheestablishmentof
newresearchlinesenvisagingthedevelopmentofnovelprotectivestrategiesandproducts,
namelyvaccinesandvaccinecomponents.
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Abstract

Cystic  fibrosis  (CF)  is  a  genetic  disorder  that  predominantly  affects  Caucasian
populations. Pseudomonas aeruginosa is the most important Gram‐negative pathogen
that persists in CF patients’ lungs. By evading host defence mechanisms and persisting,
it is ultimately responsible for the morbidity and mortality of about 80% of CF patients
worldwide.  P.  aeruginosa  is  also  responsible  for  infections in  burns,  wounds,  eyes,
nosocomial patients and HIV patients. Prevalence and progression of infection by P.
aeruginosa in the host is dependent on secretion of numerous extracellular molecules
such as polysaccharides, proteases, eDNA, pyocyanin and pyoverdine. These molecules
have multiple roles in facilitating P. aeruginosa colonisation and virulence. Pyocyanin is
one  of  the  major  factors  dictating  progression  of  infection  and biofilm formation.
Pyocyanin is a potent virulence factor causing host cell death in CF patients. In this
chapter, we have outlined the roles of various extracellular molecules secreted by P.
aeruginosa  and  specifically  focused  on  the  role  of  pyocyanin  in  inducing  eDNA
production,  binding  to  eDNA  via  intercalation  and  facilitating  biofilm  promoting
factors, whilst inducing oxidative stress to host cells via production of reactive oxygen
species. In line with this, we have described the current challenges in treatment of CF
infections and the development of new strategies to control P. aeruginosa infections.

Keywords: Pseudomonas aeruginosa, polysaccharides, protease, pyoverdine, pyocyanin,
eDNA, glutathione, biofilm
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1. Introduction

Cystic fibrosis (CF) is a genetic disorder whose effects are felt from birth. It predominantly
affects Caucasian populations; however, it is also present in non‐Caucasians [1]. The preva‐
lence of CF varies around the globe; however, extensive evidence suggests that in the USA,
Canada, Australia, New Zealand and European countries the ratio of newborns with CF is
1:2000–3000 [2]. CF is induced by mutations (amino acid deletions/substitutions) in the cystic
fibrosis transmembrane conductance regulator (CFTR), with a loss of the phenylalanine at
position 508 (∆F508) leading to the most severe outcome. The dysfunctional CFTR leads to
greatly reduced transport of ions across epithelial cells and membranes, resulting in dehy‐
dration of the mucus in the host respiratory tract/lungs and the digestive pathway, reduced
mucus clearance and severe breathing problems [1, 2]. The slow‐moving mucous facilitates
the growth of microbes, including potentially life‐threatening bacteria such as Pseudomonas
aeruginosa, Staphylococcus aureus, Haemophilus influenzae and Burkholderia cenocepacia, as well as
fungal  species  such  as  Candida,  Aspergillus  and Malassezia  spp.  and viruses  [3].  Chronic
microbial  infections  and  concomitant  airway  inflammation  induced  by  the  bacterial  are
primarily responsible for  respiratory failure in about 95% of  CF patients  [1].  In spite  of
intensive antibiotic therapy and other associated therapy (chest physical therapy, pure oxygen
therapy) and finally lung transplantation to combat the effects of CF, the mean life expectancy
of CF sufferers is still shorter than that of non‐CF people, ranging between 35 and 50 years [2].

P. aeruginosa is the most important Gram‐negative pathogen that persists in CF patients’ lungs,
and this persistence is achieved primarily by evading host defence mechanisms through a
shutdown of potential trigger genes. P. aeruginosa is ultimately responsible for the morbidity
and mortality of about 80% of CF patients worldwide [2]. Clinical research has shown that
during a CF patient's infancy and childhood more infections are caused by S. aureus and H.
influenzae, whereas in adulthood, the severity of infection is accelerated by P. aeruginosa
colonisation [4]. P. aeruginosa is the most prevalent Gram‐negative pathogen in CF patients’
lungs by adolescence, by which time the strains isolated from patients are usually multidrug
resistant. Evidence suggests that P. aeruginosa and its associated infections are more persistent
and dominant in CF patients aged over 18 years (91%) than in patients less than 18 years (39%)
[5]. In addition to CF‐related infections, P. aeruginosa is also primarily responsible for airway
infections in bronchiectasis, infection of burns and wounds, surgery‐associated infections, eye
infections due to contact lens contamination and nosocomial infections such as pneumonia
and urinary tract infections in the immunocompromised [6]. In CF and bronchiectasis patients,
P. aeruginosa infection results in chronic airway inflammation, lung tissue damage, declining
lung function, respiratory failure and premature death [1, 6].

Persistence of bacterial infections in the host is due to the bacterium's ability to form biofilms
via secretion of numerous extracellular biopolymers, collectively known as extracellular
polymeric substances (EPS) and small molecules [7, 8]. Different extracellular biopolymers and
small molecules conjugate with each other through physico‐chemical interactions to form a
highly complexed and structurally integrated matrix [7]. This matrix represents a critical
interface between bacterial cells and the host or its environment. Extracellular biopolymers
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(EPSs) play a primary role in immobilising planktonic cells (cell adhesion) and cell‐cell
communication (aggregation), leading to colonisation and biofilm formation on both biotic
and abiotic surfaces. It also provides bacterial cells/biofilms with inherent protection against
physical stress, traditional antibiotic therapy and host immune defences, thus making
eradication extremely difficult [7, 9]. Potentially all biopolymers (e.g. proteins, polysacchar‐
ides, eDNA) in EPS serve as an excellent source of nutrients and specifically eDNA promotes
horizontal gene transfer between cells within the biofilm [7].

P. aeruginosa EPS plays multiple roles in bacterial adhesion, colonisation, biofilm formation
and pathogenesis of P. aeruginosa infections [7]. EPS primarily consists of bio‐polymers such
as polysaccharides (alginate, lipopolysaccharides), proteins (protease, elastase), nucleic acids
such as extracellular DNA (eDNA) and RNA, and small molecules such as siderophores and
metabolites (phenazines/pyocyanin) [8, 9]. Secretion of EPS and metabolites (phenazines) by
P. aeruginosa is regulated by the quorum sensing (QS) system. With QS, bacterial cells com‐
municate with each other via small molecules comprising N‐acyl homoserine lactones (AHL)
and the Pseudomonas quinolone signal (PQS). These AHL and PQS promote P. aeruginosa
biofilm formation through activation of numerous genes expressing extracellular molecules at
different stages of the bacterial growth phase [7, 8], with roles in virulence and biofilm
development (Figure 1).

Figure 1. Schematic diagram showing quorum‐sensing‐mediated production of various extracellular molecules (poly‐
saccharides, protease, pyoverdine, eDNA, pyocyanin) by P. aeruginosa and their potential roles in biofilm development
and virulence.

Of the many extracellular molecules secreted by P. aeruginosa, phenazine‐pyocyanin stands out
as a molecule that has numerous functions including assistance in growth and multiplication
of the cell population, biofilm promotion and virulence. Pyocyanin is a small metabolite with
oxidant properties that act as a virulence factor by producing reactive oxygen species (ROS)
and generating oxidative stress in the host [10]. Pyocyanin is also a key metabolite in strength‐
ening the e‐DNA backbone of the P. aeruginosa biofilm [10]. The major focus of this chapter will
be on pyocyanin in its role as a P. aeruginosa virulence factor. This will involve a review of the
literature in the field as well as our work in understanding pyocyanin's role in strengthening
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the P. aeruginosa biofilm and inducing virulence in the host. In addition, we will briefly review
the role of other essential molecules such as polysaccharides, protease, e‐DNA and pyoverdine,
secreted by P. aeruginosa in establishment of the biofilm and progression of infection. This
chapter will also address various developments in therapeutic treatment that involves these
extracellular metabolites and biopolymers, and our development of new approach disrupts P.
aeruginosa biofilms in vivo using a combined antioxidant/DNase‐I/antibiotic approach.

2. Role of P. aeruginosa secreted extracellular molecules in development of
biofilm and pathogenesis

2.1. Polysaccharides

Alginate (capsular polysaccharide) is acknowledged as a virulence factor responsible for
mucoidal P. aeruginosa infection in CF lung [11]. Transformation from initial non‐mucoid P.
aeruginosa colonies occurs after a mutation in the negative regulator of mucoidy, mucA, leads
to expression of the alginate biosynthesis operon [12] and extracellular secretion of alginate,
the basis of the robust mucoid phenotype. Alginate is also partly responsible for the pathoge‐
nicity of P. aeruginosa infection and has been shown to enhance the resistance of biofilms against
antibiotics and the host immune response, by scavenging reactive oxygen species (ROS)
released by host immune cells [13, 14]. In line with this, studies have shown that mucoid P.
aeruginosa biofilms treated with alginate lyase demonstrated enhanced efficacy to antibiotic
treatment [15]. However, evidence suggests that alginate is not essential for P. aeruginosa
biofilm development since P. aeruginosa wild‐type alginate‐producing and alginate deficient
strains form morphologically and structurally similar biofilms [16].

Other polysaccharides that are essential and partly associated with biofilm formation include
Psl and Pel (coded by the psl and pel gene clusters, respectively) [16]. Interestingly, studies
show that P. aeruginosa laboratory strains that do not produce detectable amounts of alginate
(UCBPP‐PA14 (PA14) and PAO1), still form robust biofilms through expression of Psl, indicat‐
ing that biofilm formation is independent of alginate production [16]. Psl and Pel polysacchar‐
ides are distinct biochemically and play different roles in the establishment of P. aeruginosa
biofilms. Psl is a mannose and galactose‐rich polysaccharide and is essential for initiation of P.
aeruginosa cell surface adhesion and aggregation (cell‐cell interactions) and maintenance of
the structural integrity of established biofilms [17]. In respect to the host, Psl plays a significant
role in initiating P. aeruginosa adhesion to mucin‐coated surfaces, airway epithelial cells and
biotic surfaces, thus triggering colonisation of CF lung [18]. Pel is a glucose‐rich matrix poly‐
saccharide that is essential for pellicle formation and biofilm structure in P. aeruginosa [11].
Studies with Pel‐deficient mutants concluded that Pel only influences morphological changes
in P. aeruginosa colonies and does not influence biofilm initiation [19].

2.2. Proteases

P. aeruginosa secretes several protease enzymes identified as important virulence factors, such
as alkaline protease (AP), elastase (Ela) B, elastase A (LasA protease), toxin A, phospholipase
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P. aeruginosa secretes several protease enzymes identified as important virulence factors, such
as alkaline protease (AP), elastase (Ela) B, elastase A (LasA protease), toxin A, phospholipase
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C and protease IV [20, 21]. Through their activity, these proteases contribute to the pulmonary
damage seen in CF patients [21]. Interestingly, studies have shown that both environmental
(soil and water) and clinical P. aeruginosa isolates produce similar concentrations of toxin A,
phospholipase C, AP and Ela and have similar levels of elastolytic activity [22]. Protease
production in P. aeruginosa is triggered through the QS system and numerous genes including
lasA (elastase A/LasA protease), lasB (elastase B), piv (protease IV) and the apr (alkaline
protease) operon are involved [23]. A significant amount of AP, Ela and protease IV has been
detected in bronchial secretions from the lungs of CF patients [23]. These bacterial proteases
can significantly influence a broad range of biological functions including the infection process,
by hydrolysing peptide bonds and degrading proteins essential for basic biological functions
in the host. They are also active against the host's humoral immunity system [23]. For example,
AP and Ela cleave the major human immunoglobulins IgA and IgG in the respiratory tract [24].
In infected CF lung, protease has been shown to induce a severe inflammatory response, with
increased interleukin‐8 (IL‐8) and interleukin‐6 (IL‐6) cytokine levels in the airways [25]. P.
aeruginosa protease secretions in infected burn and wounds patients have been shown to induce
sepsis, leading to an increased mortality rate [26]. However, the effectiveness of proteases is
limited, as studies have shown that chronically infected CF patients produce specific antibodies
against proteases and that these antibodies provide a defensive mechanism for the host by
inhibiting protease‐mediated cleavage of secretory immunoglobulins [27].

P. aeruginosa‐secreted elastase B degrades human elastin, and over time, the decreased levels
of elastin and increased levels of collagen in lung tissue result in lung fibrosis [25]. Elastase A
cleaves glycine‐containing proteins and interestingly influences the activity of several other
host elastolytic proteases, including human leukocyte elastase, human neutrophil elastase [28].
P. aeruginosa protease IV potentially cleaves IgG and fibrinogen (required for blood clotting).
Low levels of fibrinogen lead to haemorrhaging, which is a characteristic of P. aeruginosa CF
infection [29, 30]. In vitro studies demonstrated that secretion of P. aeruginosa proteases is
significantly affected by antibiotic (ciprofloxacin) treatment [31]. Biofilms of P. aeruginosa
PA1159 and PA1230 when treated with 64 μg/ml ciprofloxacin(twice the minimum inhibitory
concentration (MIC)) showed up to a 65% decrease in total proteolytic activity [31]. However,
the remaining P. aeruginosa population displayed increased resistance to ciprofloxacin com‐
pared to their planktonic counterparts when grown in fresh medium [31].

2.3. Pyoverdine

Iron is an important cofactor required for bacterial metabolism, growth and survival and also
essential for induction of infection in host by various pathogenic bacteria including P. aerugi‐
nosa [32]. Various iron‐binding proteins (a class of ferritin) secreted by mammalian systems
reduce the bioavailability of free iron essential for progress of infection and growth by
pathogens, thus ferritin acts as an innate immunity molecule against bacterial infection [32].
Under iron limitation conditions, bacteria secrete siderophores (iron‐chelating molecules) to
acquire iron from the host [32]. P. aeruginosa secretes two types of siderophores: pyoverdine
(the predominant siderophore) and pyochelin, with high and low affinity for Fe3+ ions,
respectively [33, 34]. Pyoverdine production is encoded mainly bythe pvc gene cluster and
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pyochelin production by the pch gene cluster [35]. Pyoverdine is more efficient in releasing iron
from human ferritin and also has high affinity for Fe2+ ions [33, 34]. Studies have demonstrated
that pyoverdine is more important than its counterpart pyochelin for the development of P.
aeruginosa biofilm and infection, whereas mutants that produce pyochelin but are deficient in
pyoverdine production are significantly hampered in their biofilm‐forming ability [34]. In line
with this, a study using an animal model (immunosuppressed mice) showed that pyoverdine
predominantly contributes to P. aeruginosa virulence and infection [36].

Various factors influence the bioavailability of iron for P. aeruginosa and other pathogens in
the host; in vitro studies show mutations in the CFTR gene trigger increased release of ex‐
tracellular iron from lung epithelial cells in comparison to healthy epithelial cells, while ele‐
vated iron levels in CF patients directly correlated with an increase in the P. aeruginosa
population [34]. The proteolytic activity of P. aeruginosa protease degrades human ferritin so
that it cannot bind iron, thus allowing pyoverdine to scavenge iron and triggering P. aerugi‐
nosa pathogenicity [34]. Tate et al. showed that iron acquisition by P. aeruginosa in CF also
occurs through the heme uptake (FeoABC and EfeU) pathways, which are independent of
regular siderophore uptake pathways [37]. The presence of an elevated concentration of
haem in CF sputum due to haemolysis resulting from pulmonary exacerbations provides
bacteria in general with an excellent source of iron. Studies have also demonstrated that un‐
der oxygen‐deficient conditions in P. aeruginosa biofilms or in CF airways,iron exists as Fe2+

ions and P. aeruginosa takes up Fe2+ via the FeoABC and EfeU pathways [37].

Interestingly, mammalian biological systems have an innate defence strategy against sidero‐
phores, a neutrophil‐gelatinase‐associated lipocalin (NGAL). NGAL functions as a scavenger
by directly binding with siderophores, blocking P. aeruginosa's ability to sequester iron and
thereby inhibiting bacterial growth and infection [32]. However, studies have reported that
pyoverdine does not bind to NGAL and consequently is able to assist P. aeruginosa growth, as
demonstrated by biofilm formation and chronic infection in CF lung in spite of elevated
amounts of NGAL in lung secretions and bronchoalveolar lavage fluid [32].

2.4. Role of eDNA

eDNA is currently recognised as an essential constituent of EPS and plays a pivotal role in the
various processes of biofilm formation in numerous medicallyrelevant Gram‐negative and
Gram‐positive bacteria [8, 9]. In P. aeruginosa, eDNA is recognised as an essential molecule in
facilitating biofilm formation, including assisting initial bacterial adhesion to surfaces, cell‐to‐
cell interaction (aggregation), microcolony formation and enhancement of biofilm strength
and stability [38–41]. eDNA, which is similar to chromosomal DNA in its primary structure
[42], is not only released by many bacterial species, predominantly through cell‐lytic, but also
partly through non‐lytic mechanisms [9, 43, 44]. In cell‐lytic release, various cell lysing agents
such as prophages, autolysin proteins, enzymes and phenazines lyse bacterial cells and trigger
eDNA release [8, 38]. Non‐lytic eDNA release occurs through the lysis of bacterial outer
membrane blebs/vesicles that contain large amounts of DNA [44, 45]. In P. aeruginosa, both lytic
and non‐lytic eDNA releases have been recorded [38, 43, 44]. Studies show that mutants
deficient in eDNA production are significantly hampered in biofilm formation. In the same
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vein, biofilm treatment with DNase I, an enzyme that non‐specifically cleaves DNA via
hydrolysis of phosphodiester bonds in DNA, significantly inhibits biofilm formation and
dispersal of mature biofilms [39, 40, 43].

eDNA also serves as a nutrient source (an excellent source of carbon,phosphate and nitrogen),
facilitates horizontal gene transfer through Type IV pili and competence stimulating peptides
and helps maintain the structural integrity of the biofilm by binding to various extracellular
molecules (proteins, polysaccharides, metabolites) in the biofilm matrix [7, 8]. Recent investi‐
gations have revealed that eDNA protects bacterial cells in biofilm from physical challenges
such as shear stress by increasing biofilm viscosity, and from chemical challenges by antibiotics
and detergents. For example, eDNA binds to various positively charged antibiotics (amino‐
glycosides) thus shielding P. aeruginosa in biofilms against their action [46]. eDNA at sub‐MIC
concentrations creates a cation‐limited atmosphere by chelating divalent cations such as Ca2+.
This results in the induction of genes involved in resistance to cationic antimicrobial peptides
[47]. Swartjeset al. demonstrated that continuous exposure of bacterial cells (P. aeruginosa and
S. aureus) to a DNase I‐coated surface inhibits biofilm formation [40]. Treating biofilms with
DNase I alters the biofilm architecture leading to penetration by antibiotics, thus promoting
the efficacy of antibiotics in killing mature biofilms [48]. It is important to note that P. aeruginosa‐
infected CF lung secretions and bronchitis sputum contain a significant amount of eDNA (3–
14 mg/ml), compared to none in non‐CF patients [49]. eDNA aids bacterial viability by
inducing antibiotic resistance [48] and it also contributes tothe high viscosity of CF sputum [49].

While eDNA is well‐recognised as one of the prime factors in the establishment of P. aeruginosa
biofilms [39, 43], it has also been demonstrated to have such a role in other biofilm‐forming
bacteria [50, 51]. eDNA initiates biofilm formation by binding with bacterial extracellular bio‐
molecules such as polysaccharides, peptides/enzymes/proteins and other bacterial cell surface
structures. In Listeria monocytogenes (a food‐borne pathogen), Harmsen et al. demonstrated that
eDNA binds with peptidoglycan (N‐acetyl glucosamine), and this molecular interaction
initiates adhesion by L. monocytogenes to surfaces [50]. In Caulobacter crescentus (environmental
freshwater bacterium) biofilms, eDNA binds to polar adhesive structure called ‘hold‐fast’ that
is present on the tip of the stalk cell (a part of the cell wall that is essential for C. crescentus
adherence to surfaces), while eDNA from lysed cells masking the adhesive properties of hold‐
fast, inhibit swarmer cell adherence to the same surface [52]. Rather than acting as an essential
structural element of the biofilm, this unusual role for eDNA means that it functions as a
regulatory component assisting in the escape of cells from the biofilm and thus promoting
development of new, independent colonies [52]. Peptide‐eDNA interactions have also been
found to be an essential factor promoting biofilm growth of Streptococcus mutans (an oral
pathogen responsible for dental plaque). In S. mutans, uptake of eDNA is triggered through a
competence‐stimulating peptide, whereas bacterial cell‐to‐cell interaction and biofilm forma‐
tion are initiated through the DNA‐binding protein ComGB [51]. In P. aeruginosa, Das et al.
were the first to discover that the phenazine metabolite (pyocyanin) binds with DNA to
facilitate P. aeruginosa biofilm formation [53].
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2.5. Role of pyocyanin

2.5.1. Pyocyanin production in P. aeruginosa

Pyocyanin, a member of the phenazine class, is a molecule only known to be expressed by P.
aeruginosa, and thus distinguishes it from other pathogens. Up to 95% of P. aeruginosa isolates
synthesise pyocyanin [54]. It is a bluish‐green‐coloured extracellular metabolite that is secreted
in copious quantities both in vitro and in vivo. In P. aeruginosa, phenazine production is regulated
through the bacterium's complex QS mechanism. The primary QS molecules, AHL and PQS,
trigger the induction of the phenazine operon (phz A‐G) to produce phenazine‐1‐carboxylic acid
(PCA). Seven genes have been identified as having a role in pyocyanin synthesis, namely
phzCDEFGMS. Amongst these, phzM and phzS are central to the conversion of PCA to pyocyanin
in a two‐step reaction. First, PCA is converted to 5‐methylphenazine‐1‐carboxylic acid betaine
(encoded by phzM) and then to pyocyanin (encoded by phzS) [54, 55]. PCA is also converted in
much lower ratios to other types of phenazines, including phenazine‐1‐carboxamide (PCN,
encoded by phzH) and 1‐hydroxyphenazine (1‐OHPHZ, encoded by phzS) [54].

In chronic CF lung infection, up to 85 μM of pyocyanin has been recorded in P. aeruginosa‐
infected CF lung secretions and up to 130 μM in bronchitis sputum [56]. In vitro measurement
of pyocyanin production by P. aeruginosa in both clinical CF and laboratory reference strains
showed, in most cases, the expression of large amounts of pyocyanin within 24 h of growth in
Luria‐Bertani (LB) medium. Amongst CF isolates, the Liverpool Epidemic Strain LESB58 and
the Australian Epidemic Strain‐2 (AES‐2) produced close to 100 μM pyocyanin, as did the
laboratory reference strain DKN‐370 (a pyocyanin overproducing strain), while the laboratory
reference strain PA14 and the Australian epidemic strain‐1 isolate AES‐1R produced 70–80 μM
pyocyanin. Conversely, the chronic infection isogen of AES‐1R (AES‐1M) produced less than
5 μM pyocyanin indicating expression is reduced as the strain adapts to the CF lung [11].
Evidence suggests that many factors activate pyocyanin production, including low iron [57]
and phosphate depletion [58].

2.5.2. Pyocyanin facilitates eDNA release

Pyocyanin is a redox molecule and electrochemically active (has potential to accept and donate
electrons as a shuttle) with a multitude of biological activities [59]. Recent investigations have
demonstrated that pyocyanin facilitates eDNA release in P. aeruginosa. Comparison of eDNA
release by P. aeruginosa PA14 wild‐type and a phenazine/pyocyanin‐deficient PA14 mutant
(ΔphzA‐G) showed up to 50% increase in eDNA release by the wild‐type under laboratory
growth conditions in LB. In line with this, the ΔphzA‐G mutant showed a significant increase
in eDNA release when grown in the presence of exogenous pyocyanin, with the rate of eDNA
release directly correlated to the concentration of pyocyanin [38]. Pyocyanin‐mediated eDNA
release is induced through cell lysis due to hydrogen peroxide (H2O2) expression. In PAO1 and
PA14 planktonic growth cultures, pyocyanin has been shown to donate electrons to molecular
oxygen to form H2O2 and initiate an increase of up to 14% in cell lysis under laboratory growth
conditions [38]. Interestingly, the surviving P. aeruginosa population is protected from H2O2 by
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catalase, whose expression is upregulated by P. aeruginosa as a self‐defence mechanism against
its own and host‐released H2O2 molecules [60]. H2O2‐mediated eDNA release has also been
documented in other bacterial species including Streptococccus sanguinis, an oral bacterium
responsible for dental disease. In this species, pyruvate oxidase activity by S. sanguinis induces
a ca. 10% increase in cell death in its own population and consequently facilitates eDNA
release [61].

2.5.3. Pyocyanin and eDNA intercalate in biofilms

Pyocyanin's intercalation with DNA has been demonstrated using various bio‐physical
techniques (circular dichroism, Fourier transform infrared spectroscopy, fluorescence and UV‐
Vis spectroscopy) [53]. In a preliminary study using fluorescence emission spectroscopy, it was
shown that pyocyanin displaces ethidium bromide bound to dsDNA, indicating pyocyanin is
an intercalating agent. Fluorescence emission spectroscopy data were further complemented
using the UV‐Vis spectra of the DNA‐pyocyanin complex. Results indicated a significant shift
(from 259 to 253 nm) and increase in absorbance intensity in the DNA peak. This marked
change in the DNA peak from 259 nm indicates effective intercalation of pyocyanin molecules
between the nitrogenous base‐pairs of DNA [53]. Meanwhile, the circular dichroism spectra
of the DNA‐pyocyanin mixtures confirmed that pyocyanin binds to the sugar‐phosphate
backbone of DNA and strongly intercalates with the nitrogenous bases of DNA, consequently
creating local perturbations in the DNA double helix structure [53]. This type of interaction is
a typical characteristic feature of all intercalating molecules. In the same study, Das et al. also
discovered that pyocyanin significantly increased the viscosity of DNA solutions, and that by
intercalating with DNA pyocyanin‐facilitated electron transfer [53]. These results are in line
with previous studies concluding that in order to remain viable in biofilms, P. aeruginosa
exploits redox‐active metabolites such as pyocyanin, where direct access to electron acceptors
such as oxygen or nitrate is diffusion‐limited [59].

2.5.4. Pyocyanin‐eDNA binding influences biofilm formation via physico‐chemical interactions

Molecules that bind to both biological and non‐biological surfaces are known to influence
hydrophobicity, charge and the physico‐chemical properties that assist or resist interactions.
Previous studies have demonstrated that in both bacteria and fungi, the presence of such bio‐
molecules (eDNA or proteins) plays a significant role in dictating cell surface hydrophobicity
and physico‐chemical interactions [41]. In P. aeruginosa, the presence of eDNA has been shown
to increase cell surface hydrophobicity. Water contact angle measurements on DNase I‐treated
P. aeruginosa PA14 and PAO1 reduced the angle from 50 to 34° and 46 to 31°, respectively.
Interestingly, the PA14 phenazine deficient mutant (∆phzA‐G) had a water contact angle similar
to DNase I‐treated PA14, and DNase I treatment of ΔphnzA‐G did not show any further
reduction in cell surface hydrophobicity [41], indicating that pyocyanin‐DNA binding is an
essential factor influencing P. aeruginosa cell surface hydrophobicity. eDNA‐mediated modu‐
lation in cell surface hydrophobicity has also been reported in other pathogenic strains,
including Staphylococcus epidermidis and S. aureus [62].
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Analysis of bacteria‐to‐bacteria and bacteria‐to‐substratum physico‐chemical interactions
(Lifshitz‐Van der Waals interactions forces, acid‐base interactions forces) has revealed that the
presence of pyocyanin and eDNA facilitates attractive physico‐chemical interactions [41].
Removal of eDNA from the P. aeruginosa wild‐type cell surface or absence of pyocyanin in the
∆phzA‐G strain showed significant impact, that is, resulted in non‐attractive interaction,
especially on the short‐range acid‐base interactions, which include electron donating and
electron accepting parameters. However, the long‐range Lifshitz‐Van der Waals interactions
remained unaffected between wild‐type and ∆phzA‐G regardless of DNase I treatment [42].
Similarly, the effect of eDNA on physico‐chemical forces between S. epidermidis cells has been
reported, and results suggest that eDNA triggers S. epidermidis cell‐to‐cell interactions [62].
Similarly, adhesion force analysis in S. mutans using atomic force microscopy and phase‐
contrast microscopy imaging and quantification indicates that in the presence of eDNA, S.
mutans has a stronger adhesion force and adheres to surfaces in significantly higher cell
numbers [63].

It should be noted, however, that physico‐chemical interactions do not explain bacterial
interaction in all cases, since bacterial cell structures (pili, fimbriae) and bio‐polymers (poly‐
saccharides, proteins, eDNA) extend up to hundreds of nanometres from the bacterial cell
surface and can affect other interaction types [64]. These cell structures and bio‐polymers
initiate hydrogen bonding and ionic interactions by colliding with bio‐molecules anchored on
the bacterial cell surface to stabilise the biofilm matrix and also to its adjacent cells and thereby
help bacterial cells to overcome the physico‐chemical energy barrier and promote bacterial
cell‐to‐cell interactions and biofilm formation [7, 64]. Confocal laser scanning microscopy
(CLSM) analysis revealed that the intercalation of pyocyanin with eDNA facilitates P. aerugi‐
nosa PA14 wild‐type biofilm formation while the absence of pyocyanin significantly inhibits
biofilm formation [65]. To investigate this further, Klare et al. grew the CF P. aeruginosaAES‐1
isolate R (isolated at the acute stage of infection)in an artificial sputum media (ASMDM+) that
mimics CF sputum, and found it formed robust biofilms in comparison to its isogenic coun‐
terpart AES‐1M (isolated at chronic infection). AES‐1M which produces about 15 times less
pyocyanin than AES‐1R, and the exogenous addition of pyocyanin to AES‐1M cultures
facilitated enhanced biofilm formation [65] (Figure 2).

Figure 2. Biofilm formation by P. aeruginosa CF isogens in ASMDM+ medium (a) AES‐1R, (b) AES‐1M and (c) AES‐1M
grown in the presence of exogenous pyocyanin. The biofilm architecture of (c) indicates pyocyanin facilitates/enhances
biofilm formation. Images taken with permission from Ref. [65].

Progress in Understanding Cystic Fibrosis110



Analysis of bacteria‐to‐bacteria and bacteria‐to‐substratum physico‐chemical interactions
(Lifshitz‐Van der Waals interactions forces, acid‐base interactions forces) has revealed that the
presence of pyocyanin and eDNA facilitates attractive physico‐chemical interactions [41].
Removal of eDNA from the P. aeruginosa wild‐type cell surface or absence of pyocyanin in the
∆phzA‐G strain showed significant impact, that is, resulted in non‐attractive interaction,
especially on the short‐range acid‐base interactions, which include electron donating and
electron accepting parameters. However, the long‐range Lifshitz‐Van der Waals interactions
remained unaffected between wild‐type and ∆phzA‐G regardless of DNase I treatment [42].
Similarly, the effect of eDNA on physico‐chemical forces between S. epidermidis cells has been
reported, and results suggest that eDNA triggers S. epidermidis cell‐to‐cell interactions [62].
Similarly, adhesion force analysis in S. mutans using atomic force microscopy and phase‐
contrast microscopy imaging and quantification indicates that in the presence of eDNA, S.
mutans has a stronger adhesion force and adheres to surfaces in significantly higher cell
numbers [63].

It should be noted, however, that physico‐chemical interactions do not explain bacterial
interaction in all cases, since bacterial cell structures (pili, fimbriae) and bio‐polymers (poly‐
saccharides, proteins, eDNA) extend up to hundreds of nanometres from the bacterial cell
surface and can affect other interaction types [64]. These cell structures and bio‐polymers
initiate hydrogen bonding and ionic interactions by colliding with bio‐molecules anchored on
the bacterial cell surface to stabilise the biofilm matrix and also to its adjacent cells and thereby
help bacterial cells to overcome the physico‐chemical energy barrier and promote bacterial
cell‐to‐cell interactions and biofilm formation [7, 64]. Confocal laser scanning microscopy
(CLSM) analysis revealed that the intercalation of pyocyanin with eDNA facilitates P. aerugi‐
nosa PA14 wild‐type biofilm formation while the absence of pyocyanin significantly inhibits
biofilm formation [65]. To investigate this further, Klare et al. grew the CF P. aeruginosaAES‐1
isolate R (isolated at the acute stage of infection)in an artificial sputum media (ASMDM+) that
mimics CF sputum, and found it formed robust biofilms in comparison to its isogenic coun‐
terpart AES‐1M (isolated at chronic infection). AES‐1M which produces about 15 times less
pyocyanin than AES‐1R, and the exogenous addition of pyocyanin to AES‐1M cultures
facilitated enhanced biofilm formation [65] (Figure 2).

Figure 2. Biofilm formation by P. aeruginosa CF isogens in ASMDM+ medium (a) AES‐1R, (b) AES‐1M and (c) AES‐1M
grown in the presence of exogenous pyocyanin. The biofilm architecture of (c) indicates pyocyanin facilitates/enhances
biofilm formation. Images taken with permission from Ref. [65].

Progress in Understanding Cystic Fibrosis110

2.5.5. Pyocyanin as a virulence factor

Pyocyanin was formerly recognised only as a bacterial secondary metabolite, but has recently
gained significant attention for its involvement in a variety of crucial roles in microbial ecology,
specifically correlated with the severity of P. aeruginosa pathogenicity in plants and humans
[66]. Figure 3 is a schematic representation of pyocyanin‐induced H2O2 production and toxicity
on bacterial, fungal and human cells. Pyocyanin also has antibacterial and antifungal activity
that is toxic to other pathogenic bacteria and fungi. Pyocyanin‐mediated bactericidal activity
occurs through production of H2O2, which consequently depletes oxygen supply to cells and
disables electron flow and metabolic transport processes [67]. Studies suggest that pyocyanin
potentially kills Staphylococcus sp. and other species in the CF lung environment; and that it
also has anti‐Escherichia coli activity [67, 68] (Figure 3). The inhibitory effect of pyocyanin on
the growth of fungi such as Aspergillus fumigatus and Candida albicans isolated from the sputum
of CF patients has also been reported earlier [69] (Figure 3). These results could be interpreted
as a pyocyanin‐mediated modulation of the microbial community in the CF lung by P.
aeruginosa, resulting in its predominance [70].

Figure 3. Schematic diagram of pyocyanin induced H2O2 production and toxicity on bacterial, fungal and human cells.

In the host, pyocyanin appears to participate in a reduction mechanism, which is capable of
reducing and releasing the iron from transferrin in host cells to stimulate the growth of P.
aeruginosa [71]. Previous research concluded that a direct correlation exists between pyocyanin
concentration in CF sputum and severity of infection [71]. Studies using P. aeruginosa‐infected
bronchiectasis airways in a mouse model of lung infection demonstrated that pyocyanin
rapidly inhibited lung function and caused cell hyperplasia and metaplasia (abnormal changes
in cell or tissue morphology), airway fibrosis and alveolar airspace destruction [71]. Harmer
et al. analysed the difference between P. aeruginosa epidemic and non‐epidemic isogenic strains
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that were collected 5–8 years apart from five chronically infected adult CF patients, this study
suggested that epidemic (FCC) strains are more virulent and more efficient in killing Caeno‐
rhabditis elegans than their non‐epidemic counterparts [72]. The isogens collected early in the
infection produced more virulence factors including elastase, pyoverdine and pyocyanin. Over
the course of chronic infection, the isogens undergo a significant downregulation in virulence
factors lasB, rsaL, lecB and oprG, with a significant decrease in elastase and pyoverdine
production, however, pyocyanin production increased in three out of five strains and so did
biofilm production [72]. Fluctuations in pyocyanin concentration observed among different
CF strains are probably due to adaptation of a particular strain to the host and time of
acquisition of sample, for example, at exacerbation (when the patient is seriously ill and
hospitalised). At exacerbation, the pyocyanin levels may be switched on by the P. aeruginosa
strain as a protective mechanism against host defences, and this leads to the increased lung
damage seen at that time [72]. If the sample was taken when the patient was not in exacerbation,
the pyocyanin expression may be very low or negligible [72]. Other phenazine‐like PCA
molecules secreted by P. aeruginosa were also shown to be highly toxic, killed C. elegans and
caused serious cell damage in a mouse model of lung infection [73].

Pyocyanin has also been extensively studied due to its electrochemical and redox activity. The
diffusible nature and small size of pyocyanin means it can easily pass through the host cell
membrane and undergo redox reactions with other molecules [74]. For example, it accepts
electrons from NADH and subsequently donates electrons to molecular oxygen to form reactive
oxygen species (ROS) such as H2O2 [74] (Figure 3). Pyocyanin‐mediated ROS cause oxidative
stress and affect calcium homeostasis while also obstructing cellular respiration and depleting
intracellular cAMP and ATP levels [75]. Pyocyanin significantly alters human protease activity,
inhibits nitric oxide production and consequently influences blood flow, blood pressure and
immune functions. It also modulates the host immune response to support evasion of the host
immune system and establish chronic infection [75]. In CF, pyocyanin‐mediated ROS oxidise
host intracellular and extracellular reduced glutathione (GSH) to form glutathione disulphide
or oxidised glutathione (GSSG) [76]. Depleted GSH levels during the chronic stage of CF
infection lead to widespread epithelial cell death and consequent lung damage and leading to
respiratory failure and death [75, 76]. Pyocyanin also inhibits catalase activity in airway
epithelial cells, thus increasing oxidative stress in these cells and initiating pulmonary tissue
damage [77]. In a recent study, Rada et al. showed that pyocyanin promotes neutrophil
extracellular trap (NET) formation [78]. NET formation is an important innate immune
mechanism initiated by neutrophils to trap and kill pathogens, however, the aberrant NET
release triggered by pyocyanin‐mediated intracellular ROS production directly damages host
tissues and has been linked to the severity of many diseases including CF [78].

3. Treating P. aeruginosa infections

Substantial research over many decades has led to a good degree of understanding of the
mechanisms P. aeruginosa utilises to cause infection and colonisation. In brief, P. aeruginosa
has been shown to evade the host's innate defence system through production of various
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extracellular molecules and render antibiotics ineffective through several efflux pump
mechanisms [6, 8, 79]. This research has particular implications for CF, burns and wounds
patients, particularly as P. aeruginosa antibiotic resistance is a serious concern. This in turn
has given impetus to the development of new therapeutic methods. Prominent amongst the
extracellular molecules available to P. aeruginosa are the previously discussed eDNA, pro‐
tease, pyocyanin and pyoverdine.

3.1. Current antibiotic treatment and challenges against P. aeruginosa infections in CF
patients

Many antibiotics developed in recent decades such as aminoglycosides, ticarcillin, ureidope‐
nicillins, ceftazidime, cefepime, aztreonam, the carbapenems, ciprofloxacin and levofloxacin
display anti‐pseudomonal activity. However, the choice of best antibiotic to use in a particular
case remains a major challenge as P. aeruginosa can readily adapt by mutation or horizontal
gene transfer to acquire resistance in a portion of remaining cells, leading to consequent
treatment failure.

Antibiotics commonly used to treat P. aeruginosa infection in CF patients include tobramycin,
colistin, aztreonam, ciprofloxacin and azithromycin. Administration methods include nebul‐
ised, dry powder inhalation, oral or intravenous, or a combination of different strategies [2,
80]. Studies have shown the size of inhaled antibiotic particles is very important in determining
whether they will reach deep infection sites. Particles of 1–5 µm diameters are more effective
in reaching deep lung tissue efficiently [81]. However, one of the major concerns in inhalation
therapy is that most antibiotics are trapped in the thick viscous mucus that covers both the
large respiratory zone (respiratory bronchioles, alveolar ducts and alveolar sacs) and the
conductive zone (trachea, bronchi and terminal bronchioles) [81, 82]. With intravenous or oral
therapy, antibiotics are readily transported through the bloodstream mainly reaching the
respiratory zone but not effectively reaching the conductive zone. A combination of both
strategies has been shown to enhance the access of antibiotics to infection sites at both the
conductive zone and respiratory zones [82].

Other serious challenges with nebuliser treatment (in comparison to dry powder inhalation)
strategies are that the antibiotic particles do not reach infection sites at a faster rate, but even
with dry powder inhalation does not provide immediate relief to CF patients [83]. For example,
studies with CF patients demonstrated that inhaled tobramycin is effective in reducing P.
aeruginosa density from the lower airways but has no effect in reducing lung inflammation,
and consequently certain infection loci and disease symptoms remain [84]. Azithromycin has
been shown to improve lung function (lung inflammation, exacerbations and cough) in CF
patients compared to other antibiotics and lead to a reduction in P. aeruginosa colonisation [85].
However, azithromycin or the macrolide class of antibiotics has significant side effects,
including a significant increase in macrolide resistant S. aureus and H. influenzae strains in CF
sputum [85]. In general, many antibiotics are known to cause adverse side‐effects in patients,
targeting the central nervous system, gastrointestinal tract and urinary tract leading to kidney
failure [86, 87]. With the increase in antibiotic resistance, there is an urgent need to develop
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novel therapeutic approaches to disrupt bacterial biofilms and eradicate the causative bacteria
in the host.

3.2. Current non‐antibiotic strategies against CF lung infection

Non‐antibiotic treatment strategies that have shown potential to reduce the severity of
respiratory symptoms in CF patients and bacterial associated infections have largely centred
on the use of aerosolised recombinant human DNase I (rhDNase I (Pulmozyme)) in a nebu‐
liser [88]. Earlier studies showed DNase I reduced the viscosity of CF sputum by cleaving DNA
present in sputum and thus leading to increased pulmonary function [49]. As noted above,
eDNA is an essential biofilm promoting factor in many pathogenic bacterial species, is the
backbone of the P. aeruginosa biofilm matrix, which by its impenetrable structure constitutes a
defence strategy against antibiotics [46–48]. In line with this studies have shown that DNase I
inhalation reduces the prevalence of bacterial strains in CF patients [88].

3.3. New non‐antibiotic treatments

A new potential treatment strategy involves the use of reduced GSH to bind to pyocyanin and
prevent its intercalation with eDNA. Intracellular GSH levels in mammalian cells are in the
millimolar (mM) range, and lower concentrations are found in some bacterial cells. However,
in CF patients, GSH levels in whole blood, blood neutrophils lymphocytes and epithelial lung
fluid are markedly decreased [89]. Replenishment of GSH levels in CF has thus been investi‐
gated in a number of human studies using either inhaled GSH [90, 91] or oral N‐acetylcysteine,
a GSH precursor [92]. These studies demonstrated the feasibility of successfully delivering
GSH to human lung, with a significant improvement in lung function (FEV1), especially in
patients with moderate lung disease. The GSH therapy was well tolerated by CF patients with
no noticeable side effects [91].

GSH, being a thiol antioxidant, will donate electrons/protons to pyocyanin directly through
the –SH group from cysteine [53, 76], thereby interfering in the pyocyanin oxidation process
by inhibiting H2O2 generation [76]. The antioxidant properties of GSH make it a potential
inhibitor of pyocyanin toxicity. GSH binding to pyocyanin tends to modulate pyocyanin's
structure, and this has been confirmed using nuclear magnetic resonance (NMR) spectrosco‐
pyand mass spectrometry [53, 93]. This structural change consequently inhibits the intercala‐
tion of pyocyanin with DNA, confirmed using circular dichroism [53]. In line with this, Muller
and Merrett concluded that GSH forms a cell‐impermanent conjugate with pyocyanin and
consequently inhibits pyocyanin entry into host cells, thus preventing pyocyanin‐mediated
lung epithelial cell lysis [93].

Recent studies in the Manos laboratory by Klare et al. have demonstrated the excellent utility
of GSH in disrupting P. aeruginosa biofilms. It was demonstratedusing CLSM that GSH‐medi‐
ated inhibition of pyocyanin‐DNA binding modulates P. aeruginosa biofilm architecture, sig‐
nificantly decreases biofilm biomass, surface coverage and leads to a significant increase in the
percentage of dead bacterial cells [65]. GSH alone was shown to have a significant effect on
disruption of mature 72‐h‐old biofilms of the epidemic isolate AES‐1R grown in ASMDM+,
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while the combined treatment with GSH and DNase I of biofilms from a range of CF isolates
showed greater disruption and significantly increased susceptibility to ciprofloxacin killing.
GSH‐treated biofilms were also shown by RNA‐sequencing to display a transcriptomic profile
that was distinctly different from those of both mature biofilms and dispersed cells, including
those resulting from dispersal agents such as NO [65]. In contrast to dispersed cells, GSH‐dis‐
rupted biofilm cells significantly upregulated cyclic‐di‐GMP synthesis genes (siaA and siaB),
and there was no concomitant induction of flagellar biosynthesis genes. Cyclic‐di‐GMP gates
the transition from sessile to motile lifestyle, and its expression prevents this transition [94].
GSH‐disrupted cells also significantly upregulated the pyoverdine biosynthesis operon, in
contrast to the downregulation of pyoverdine shown by dispersed cells. The active expression
of pyoverdine is essential for biofilm structure formation [95]. CF sputum and ASMDM+ both
have low levels of iron, and this may have triggered increased pyoverdine expression to se‐
quester iron for processes required to re‐form the disrupted biofilm.

In comparison to other techniques, GSH treatment has a distinct advantage, being an intrinsic
and essential antioxidant for host cells that not only has antibiofilm properties but has also
been proven to enhance lung epithelial growth and increase pulmonary function in CF
patients [91].

3.4. Development of new antibacterial agents

Several new antibacterial agents are being developed and undergoing stringent testing both
in vitro and in vivo (animal models) against P. aeruginosa and other CF pathogens. QS‐
inhibiting molecules against P. aeruginosa biofilms, such as furanone‐based compounds
(naturally secreted by the alga Delisea Pulchra) and synthetic furanone compounds have high
affinity and compete with the cognate AHL signal for the LuxR receptor site in P. aeruginosa
[96]. Thus by binding with and controlling the LuxR mechanism, these furanone molecules
significantly alter biofilm architecture and enhance the efficiency of the antibiotic tobramycin
against planktonic cells and biofilms [96]. Most interestingly, furanones have been shown to
repress numerous QS‐regulated virulence genes and production of concomitant virulence
factors, including LasA protease and elastase B (encoded by lasA and lasB, respectively),
rhamnolipid (encoded by the rhlAB operon) and phenazine biosynthesis (encoded by the phzA‐
G operon) [96].

Other antibiofilm agents under investigation include nitric oxide (NO) which has recently been
discovered to induce dispersal of P. aeruginosa biofilms by mediating an increase in bacterial
phosphodiesterase activity and a decrease in intracellular levels of the secondary messenger
cyclic di‐GMP, thereby inhibiting signal transduction in bacteria [97]. NO was shown to
disperse released cells, and the remaining biofilms displayed enhanced sensitivity towards
antibiotics [97]. A recent study by Kimyon et al. showed that prodigiosin (a heterocyclic
bacterial secondary metabolite secreted by Serratia sp.) induces biofilm disruption and exhibits
bactericidal activity against P. aeruginosa [98]. Prodigiosin‐mediated P. aeruginosa biofilm
disruption occurs by the release of H2O2 and generation of hydroxyl radicals in the presence
of copper ions that consequently cleaves/damages eDNA and alters P. aeruginosa cell surface
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hydrophobicity. Prodigiosin also induces bacterial cell lysis as a consequence of the oxidative
stress generated by H2O2 [98].

4. Conclusions

Extracellular molecules released by bacteria form a scaffold for biofilm formation. In P.
aeruginosa, polysaccharides, eDNA and pyocyanin are major factors that integrate the biofilm
matrix and provide defence against cationic antibiotics by binding to it [8]. On the other hand,
molecules such as pyoverdine help promote bacterial growth and prevalence in the host by
chelating iron [34]. Increased resistance to antibiotic therapies and the persistence of bacterial
colonisation within the CF lung is associated with bacteria‐secreted extracellular molecules.
Novel treatment strategies seek to act on molecules that are essential for bacterial persistence
such as biofilm constituents. Biofilm matrix disruption is associated with increased antibiotic
susceptibility and clearance of bacteria. Current antibiotics strategies target growth inhibition
without cleaving the biofilm matrix, whereas other strategies including DNase I and GSH
cleave or disrupt biofilm matrix constituents, but have no bactericidal activity. In CF patients,
the severity of disease due to P. aeruginosa infection is the leading cause of death, so there is an
urgent need to develop new strategies that could disrupt bacterial biofilm matrix and facilitate
bactericidal activity, ultimately allowing for repair and re‐growth of lung epithelial tissue. The
combination of biofilm‐disrupting agents with traditional antibiotics could serve as a new line
of therapy for CF patients in the near future.
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Abstract

Chronic Pseudomonas aeruginosa lung infection is the cause of much morbidity and most 
of the mortality in cystic fibrosis (CF) patients. The high prevalence of P. aeruginosa infec‐
tions in CF is related to the microbe's large genome and mechanisms of adaptation to 
the CF lung environment, the host immune system and antibiotic resistance. Among a 
wide range of P. aeruginosa metabolites involved in infection development in CF, the 
biosurfactant compounds, rhamnolipids (RLs) and exopolysaccharides (EPSs), have 
important roles in the early stages of P. aeruginosa infection in CF. RLs and EPSs are 
involved in bacterial adhesion, biofilm formation, antibiotic resistance, and impairment 
of host immune system pathways, as well as in processes such as biofilm maintenance 
and the mucoid phenotype of P. aeruginosa, which lead to development of chronic infec‐
tion. Due to the proposed roles of RLs and EPSs and the importance of prevention and 
treatment of P. aeruginosa respiratory infections in CF, these compounds are promising 
targets for patient therapy. In the future, impairment of P. aeruginosa quorum sensing 
(QS) pathways and modification of host respiratory mucus epithelial membranes should 
be considered as potential approaches in preventing respiratory infections caused by this 
microbe in CF patients.

Keywords: cystic fibrosis, Pseudomonas aeruginosa, biosurfactant, rhamnolipid, 
exopolysaccharide, biofilm
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1. Introduction

Cystic fibrosis is a congenital, recessively inherited disorder. The genetic background of CF 
development is >1500 mutations in the cystic fibrosis transmembrane conductance regula‐
tor gene (CFTR) on chromosome 7, which lead to malfunction of the chloride channel in CF 
patients. CF affects a large number of organs and tissues (airways, pancreas, the small intes‐
tine, liver, the reproductive tract and sweat glands), resulting in numerous clinical symptoms 
(viscid mucus, respiratory infections, intestinal malabsorption of fat, diabetes mellitus, meco‐
nium ileus, impaired liver function, male infertility and salt loss) [1].

The malfunction of the chloride channel in CF patients leads to impairment of the non‐
inflammatory defense mechanism of the lower respiratory tract. Therefore, CF patients, 
from early childhood, suffer recurrent and chronic respiratory tract infections caused 
by P. aeruginosa, Burkholderia cepaci, Achromobacter xylosoxidans, Staphylococcus aureus, 
Haemophilus influenzae, Stenotrophomonas maltophilia, nontuberculous Mycobacteria and 
Aspergillus fumigatus. In spite of the host inflammatory response and intensive antibiotic 
therapy, infections persist and lead to respiratory failure requiring lung transplantation 
or death [1].

Chronic P. aeruginosa lung infection is the cause of much of the morbidity and most of the 
mortality in CF patients. Chronic infection is considered as growth of P. aeruginosa from 
multiple respiratory cultures over a 6‐month period [2]. About 80% of adults with CF have 
chronic P. aeruginosa infection [3]. P. aeruginosa is able to survive and persist for several 
decades in the respiratory tract of CF patients, in spite of the defense mechanisms of the host 
and intensive antibiotic therapy. However, the microbe has adaptive mechanisms, which 
explain why it can survive in the hostile CF lung for so long. These include phenotype split‐
ting due to mutations (into nonmucoid or mucoid), their different distributions in respira‐
tory and conductive zones in the lungs and switching to a biofilm mode of growth—mucoid 
phenotype [4–7].

Recent research indicates that chronic P. aeruginosa infections are caused by the ability of 
bacteria to organize themselves into microcolonies regarding to formation of biofilms. In 
this state, the bacteria are incorporated in a self‐produced protective matrix, often with sur‐
rounding inflammatory cells, which is very well protected against antibiotics and the host 
defense [4]. The biosurfactant compounds (RLs and EPSs), due to their structures and physi‐
cochemical properties, as well as their interactions and correlation with other metabolites, 
significantly contribute to colonization, motility and biofilm formation [8–10]. Additionally, 
the mucoid colony morphology of P. aeruginosa is highly correlated with overproduction of 
alginate (a type of EPS) [8]. Therefore, it is important to consider these biosurfactants and 
their biosynthetic pathways as possible targets and approaches for CF therapy in order to 
impair P. aeruginosa mechanisms of pathogenicity. Furthermore, cell‐to‐cell communication 
and QS signaling pathways together with their genetic aspects, closely related to RL and EPS 
biosynthesis, are the most significant targets for new therapy approaches in CF treatment 
[10–13].
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2. P. aeruginosa infection in CF

2.1. P. aeruginosa

Pseudomonas is ubiquitously present worldwide, being an extremely diverse bacterial genus. 
Pseudomonads are frequently closely associated with animals and plants; they are common 
and numerous in a wide range of environmental habitats. Their ability to adapt genetically, 
producing varying physiological advantages as a response to their pervasiveness, is the sub‐
ject of much scientific speculation and study. P. aeruginosa, as all species that belong to the 
genus Pseudomonas, due to its metabolic diversity, has potential for adaptation, survival and 
growth in a wide range of environmental conditions [14, 15].

P. aeruginosa produces an arsenal of secondary metabolites, including EPSs, RLs, enzymes 
(elastase, alkalne protease, exoenzyme S, phospholipase C and hemolysins), pigments and 
toxins (exotoxin A), using these virulence factors for infecting and colonizing a wide range 
of hosts (animals, plats, insect and nematodes) and surfaces [12–24]. The major biosurfactant 
compounds produced by P. aeruginosa, RLs and EPSs, are involved in bacterial adherence, 
biofilm formation and maintenance, which all are necessary for respiratory infection estab‐
lishment, development and progression in CF patients [4, 8, 12, 13, 16].

2.2. Pathogenesis of P. aeruginosa infection in CF

Despite constant exposure to a wide range of microorganisms, CF patients are predisposed 
to infection by only specific groups of microorganisms [8]. The proximal event in develop‐
ment of CF is mutation of the CFTR gene (see Introduction), but still, it remains unclear how 
this primary step causes particular infections in CF patients. However, numerous proposed 
mechanisms are related to CFTR gene mutation, defective CFTR channels and infection devel‐
opment [8]: (1) reduced ion transport; (2) modified salt content in the airway surface liquid; 
(3) increased levels of acylated glycolipids on the surface of CF airway epithelial cells; (4) 
defective CFTR exposed on airway epithelial cell membranes become receptors; (5) low levels 
of antimicrobial compounds (inducible nitric oxide synthase and nitric oxide); and (6) intrin‐
sic hyperinflammation of airways (Table 1) [25–36].

The first step in infection of CF airways by P. aeruginosa is microbe acquisition [8]. Due to the 
abundance of P. aeruginosa in many natural environments, most individuals acquire P. aeru‐
ginosa through casual contact with natural bacterial sources, while some individuals acquire 
P. aeruginosa directly or indirectly from other CF patients. Transmission data and genotype/
phenotype properties of clinical and environmental P. aeruginosa isolates indicate that char‐
acterizing the ecology of P. aeruginosa originating from natural environments would lead to a 
better understanding CF epidemiology [8].

Initially, infection of P. aeruginosa in CF is usually the result of an alternating series of acquisitions 
of different isolates and in the first stage of infection, most of the isolates are nonmucoid and 
highly antibiotic sensitive [8, 37–39]. Eventually, one or two isolates establish themselves and, 
due to their genetic, phenotypic and physiological changes, develop chronic infection [13, 16, 40].
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2.2.1. P. aeruginosa quorum sensing systems and biofilm

One of the most important factors which facilitate P. aeruginosa to colonize and persist in acute 
and chronic lung infection in CF patients is the ability of this microbe to grow as a biofilm, 
assembly of which is regulated by a QS system [13, 30, 40].

QS is the mechanism by which bacteria engage in cell‐to‐cell communication using dif‐
fusible molecules based on a critical cell density [41]. QS molecules manage and regulate 
diverse physiological processes, some of which are interrelated. In P. aeruginosa, expres‐
sion, production and/or secretion of many virulence factors, such as EPSs, RLs, enzymes, 
pigments production, biofilm formation and antibiotic resistance, are controlled by QS [10, 
13, 42]. P. aeruginosa possesses two interrelated QS systems, the las and rhl systems. The las 
system comprises the transcriptional regulatory protein, LasR and its cognate autoinducer, 
N‐(3‐oxododecanoyl) homoserine lactone (3O‐C12‐HSL). The rhl system comprises the RhlR 
transcription regulator protein (also known as R‐protein) and N‐butyryl homoserine lactone 
(C4‐HSL), its cognate autoinducer [13]. Additionally, these two systems are not indepen‐
dent but are interlinked in a hierarchical manner (the las system directs the rhl system). 
They are linked by a third signal molecule, 2‐heptyl‐3‐hydroxy‐4‐quinolone, known as the 
Pseudomonas quinolone signal (PQS). PQS is produced under the control of the pqs system, 
which is considered as the third distinct QS system [11, 42]. Interestingly, transcriptome 
analyses have revealed that between 6 and 10% of the P. aeruginosa genome is regulated by 
the las and/or rhl systems [13].

Biofilms are matrix‐enclosed microbial accretions that adhere to biological or nonbiological 
surfaces [43]. P. aeruginosa biofilms are related to development of different acute and chronic 
infections, not only in CF patients [16, 44, 45]. Formation of P. aeruginosa biofilm occurs in 
stages: bacterial attachment and irreversible adhesion to surface, microcolony development, 
biofilm maturation and dispersion of bacterial cells from the biofilm [46]. Heterogeneous 
microenvironments due to oxygen and nutrient diffusion limitations occur in biofilms and 

Mechanism Effect

Decreased ion transport, which results from defective CFTR 
channels enhances fluid absorption in the airways

Lowered airways surface liquid and impaired ciliary 
transport of the mucous layer, which results in defects 
in microbial clearance

Altered salt content in the airway surface liquid Inactivation of immune system defenses pathways; 
defected neutrophils activity

Increased levels of acylated glycolipids on the surface of CF 
airway epithelial cells due to defective CFTR molecules

Modified glycolipids are receptors for P. aeruginosa 
adherence

Binding of P. aeruginosa to defective CFTR molecule exposed 
on airway epithelial cells membranes

Internalisation of P. aeruginosa

Lowered level of antimicrobial compounds Propensity of individuals to lung infection

Istrinical hyperinflammation of airways Damage of host cells and disruption of effective microbe 
clearance

Table 1. Proposed mechanisms of P. aeruginosa in development of respiratory infection in CF airways.
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they lead to physiological and phenotype diversity [47, 48]. Suggested mechanisms of P. 
aeruginosa biofilm formation involve QS signaling, which coordinates and protects biofilm 
assembly and maintenance [44, 49–52]. The las I, which encodes the biosynthetic pathway for 
3O‐C12‐HSL, is critical for biofilm maturation [50]. Heterogeneity of the bacterial population 
in biofilm is an important characteristic of P. aeruginosa pathogenicity and contributes to the 
microbe's resistance to antimicrobial therapy. In laboratory conditions, P. aeruginosa can form 
two types of biofilm, “flat” and “structured”, and alginate‐producing isolates (the mucoid 
phenotype) form complex structured type of biofilm which is resistant to tobramycin [53]. 
Additionally, the QS system is involved in regulation of several genes such as rhlA, rpoS, sad 
A and genes in the denitrification pathways. These genes are important for all stages of bio‐
film development, maintenance, or dispersion: (1) biosynthesis of the biofilm matrix (EPSs, 
extracellular DNA); (2) biosynthesis of RLs; and (3) other metabolic pathways (not discussed 
here) [13, 42].

2.2.2. Adaptation mechanisms of P. aeruginosa in CF lungs

The CF lungs are an unfriendly and varied environment for invading bacteria due to the pres‐
ence of stressors such as osmotic stress of viscous mucus, oxidative and nitrosative stresses 
of the host responses, sublethal concentrations of antibiotics and other microbes presence. 
Regarding to the environment of CF lungs, it is a great challenge of P. aeruginosa populations 
to overcome these stressors and persist [54].

It is believed that mechanisms that allow P. aeruginosa to cause persistent chronic infection are 
related to its remarkable potential for adaptation to environmental changes [8, 15]. P. aerugi‐
nosa adaptations in CF patients’ lungs are dynamic and generate subpopulations of bacteria 
with differing phenotypes [8]. It is thought that primary infection is related to the large P. 
aeruginosa genome, while development of persistent infection is dependent on spontaneous 
mutations [55, 56]. Mutations are multiple due to different factors such as the presence of 
hypermutable strains, development of biofilm and downregulation of antioxidant enzymes 
[57–59]. Environmental conditions in CF airways then further favor specific P. aeruginosa phe‐
notypes. This set of adaptations finally leads to development of the subpopulations of bacteria 
(mentioned above) within the same respiratory tract, which are relatively similar, but which 
carry unique groups of genes [56, 60, 61]. Some commonly and intensively studied P. aerugi‐
nosa adaptation mechanisms present during respiratory infections in CF involve: transition to 
mucoid phenotype, antibiotic resistance, alterations in lipopolysacharride (LPS), loss of type 
III secretion and motility, auxotrophy, small‐colony variants, defects in the QS system and 
hypermutability [8, 54].

3. Biosurfactants of P. aeruginosa—rhamnolipids and exopolysaccharides

Biosurfactants are a group of amphiphilic compounds, comprise a hydrophobic and a hydro‐
philic moiety and are produced by a range of microorganisms [9, 62]. Pseudomonas spp. are 
the most common producers of biosurfactants [63], with P. aeruginosa being the preeminent 
RL and EPS biosurfactant‐producing species [9, 63]. Up to date, a variety of biosurfactants 
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have been studied, but RLs (glycolipid biosurfactants) and EPSs (polymeric biosurfactants) 
are currently attracting the most attention, as they are relevant in medicine, environmental 
protection, food and the pharmaceutical industry [15, 24, 64–66].

3.1. P. aeruginosa rhamnolipids

Rhamnolipids comprise one or two L‐rhamnose units and one or two units of 3‐hydroxy fatty 
acid. Variations in lipid components contribute to the biodiversity of RLs [9, 67]. Due to their 
chemical composition, RLs are classified into four homologue groups (Figure 1): RL1—mono‐
rhamno‐di‐lipidic, RL2—mono‐rhamno‐mono‐lipidic, RL3—di‐rhamno‐di‐lipidic and RL4–
di‐rhamno‐mono‐lipidic structures. RL1 and RL3 are usually classified as principal—common 
RLs, while RL2 and RL4 are classed as atypical–uncommon RLs [68]. The development of 
sensitive, high throughput analytical techniques, such as soft ionization mass spectrometry, 
has led to the further discovery of a wide diversity of RL congeners and homologues (about 
60) produced in different concentrations by various Pseudomonas spp. and other bacteria [9].

3.1.1. Diversity of rhamnolipid structures

RL biosurfactants are always produced as mixtures of different RL congeners, as observed 
with various P. aeruginosa isolates [15, 69–74]. The complexity of the RL mixtures produced 
depends on various factors such as bacterial isolate origin, type of carbon substrate, culture 
conditions and isolation procedure and age of the culture and of course, the P. aeruginosa iso‐
late itself [15, 23, 63, 72, 75–80]. Despite the number of such factors reported, some particular 
RL congeners are predominant in all P. aeruginosa producer isolates. These are classified as 
the major RL structures (Rha‐C10‐C8, Rha‐C10‐C10, Rha‐C10‐C12, Rha‐C10‐C12:1, Rha‐Rha‐C10‐C8, 
Rha‐Rha‐C10‐C10, Rha‐Rha‐C10‐C12 and Rha‐C10‐C12:1) [23, 72, 81–84]. Other RLs, produced only 
sometimes or in low abundance, are the minor RL structures [23, 72, 81–84]. Both the major 
and the minor RL congeners contribute to the complete profile of RLs. In all studies of RL 
mixtures produced by various P. aeruginosa isolates, mono‐rhamnolipid Rha–C10–C10 and di‐
rhamnolipid Rha–Rha–C10–C10 were the predominant congeners, in spite of the varying com‐
positions produced [23, 72, 81–84].

The presence of different functional groups in RL molecules (the hydrophobic, lipid part and 
the hydrophilic and carbohydrate part) gives RLs important physicochemical properties. 
Due to their amphipathic structure, RLs behave as wetting agents, surface active compounds, 
emulsifiers and detergents. These RL functional groups are, therefore, utilized in enhancing 
and facilitating bacterial movement, adhesion and contact with surfaces, as well as substrate 
uptake, or solubilization.

3.1.2. Rhamnolipid biosynthesis and quorum sensing

Biosynthesis of RLs requires three rhamnosyltransferases. The fatty acid dimer moiety in 
RLs and free 3‐(3‐hydroxyalkanoyloxy) alkanoic acid (HAA) are both synthesized by the 
rhamnosyltransferase RhlA. Next, dTDP‐L‐rhamnose is transferred to HAA by the rham‐
nosyltransferase RhlB, or to a previously generated mono‐RL by the rhamnosyltransferase 
RhlC [85]. HAA precursors are derived from the FASII cycle (bacterial fatty acid synthesis 
system), while activated L‐rhamnose is derived from the glucose moiety of deoxythymidine 
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nosyltransferase RhlB, or to a previously generated mono‐RL by the rhamnosyltransferase 
RhlC [85]. HAA precursors are derived from the FASII cycle (bacterial fatty acid synthesis 
system), while activated L‐rhamnose is derived from the glucose moiety of deoxythymidine 
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di‐phospho (dTDP)‐L‐rhamnose through several reactions catalyzed by four enzymes that, 
in P. aeruginosa, belong to single operon, rmlBDA [11]. dTDP‐L‐rhamnose has an important 
role in the regulation of RL biosynthesis, as it is an allosteric regulator for RmlA (which 
catalyzes transfer of a thymidylmonophosphate nucleotide to glucose‐1‐phosphate and is 
a sensor enzyme in this metabolic pathway). Also, this molecule is a precursor for other L‐
rhamnose containing molecules (LPSs and EPSs). dTDP‐L‐rhamnose affects the production 
of mono‐RL through coexpression of the operons rmlBDAC and rhlAB, which are responsible 
for expression of rhamnosyltransferases RhaA and RhaB [86, 87]. However, in P. aeruginosa, 
the QS system has an essential role in regulation of the rhlAB operon and, therefore, in RL 
biosynthesis.

In Section 2.2.1, we stated that P. aeruginosa QS has two interrelated systems, las and rhl, 
which are linked by the PQS molecule and that their relationship influences the biosynthesis 

Figure 1. Structure of rhamnolipid congeners: RL1 (mono‐rhamno‐di‐lipidic), RL2 (mono‐rhamno‐mono‐lipidic), RL3 
(di‐rhamno‐di‐lipidic) and RL4 (di‐rhamno‐di‐lipidic).
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of various metabolites. Production of RLs is governed by three QS molecules: Pseudomonas 
autoinducer 1 (PAI‐1, also known as 3O‐C12‐HSL), Pseudomonas autoinducer 2 (PAI‐2, also 
known as C4‐HSL) and PQS. In P. aeruginosa, the las operon consists of two transcriptional 
activator proteins, LasR and LasI, which direct the synthesis of PAI‐1. The production of RLs 
is regulated by the rhl system. The synthesis of RLs takes place under the coordinated guid‐
ance of the rhlAB genes. The rhl system consists of the transcriptional activator proteins, RhlR 
and RhlI, which regulate the synthesis of PAI‐2. The transcriptional activator RhlR activates 
the transcription of rhlAB operon and gene rhlC (encoding RhlC) [10, 11].

The rhlAB operon is clustered on P. aeruginosa DNA together with rhlR and rhlI, which together 
direct the synthesis of all proteins required for RL production (the rhamnosyltransferases and 
the transcriptional activators, RhlR and RhlI) [10]. RL synthesis is upregulated and promoted 
at transcriptional level, related to the QS system, by the Vfr (global virulence regulation) and 
the pqs systems through activation of RhlR expression and rhlRI operon, respectively [11]. 
RasL (repressor of las system) and AlgR (biofilm formation) downregulate RL synthesis by 
repression of LasI and rhlAB/rhlI, respectively [11]. For instance, increasing bacterial cell den‐
sity induces the las system, resulting in an increased concentration of PAI‐1 that binds to 
the transcriptional activator site LasR and forms the LasR–PAI‐1 complex. The LasR–PAI‐1 
complex induces genes controlled by the rhl system, including the regulator gene rasL, rhlR 
and pqsH, required for PQS production. PQS acts as a link between the las and rhl systems. 
The activity of these signals depends on their ability to dissolve in and freely diffuse through 
aqueous solution [10]. PQS induces the rhlI gene, which directs the production of PAI‐2 that 
binds to and activates RhlR (RhlR–PAI‐2 complex). The RhlR–PAI‐2 complex induces genes 
for RL production, which are controlled by the rhl QS system (operons rhlAB, rhlC, rhlI, rhlR 
and rhlG). The RLs produced enhance the solubility of PQS in aqueous solutions and promote 
cell‐to‐cell communication. This is important because of the role PQS plays in the P. aerugi‐
nosa stress response, in conditions related to the CF lung environment (oxidative stress and 
antimicrobial agents) [88].

In conclusion, in the complex QS network, there is a hierarchy between las and rhl systems 
in RLs biosynthesis. Furthermore, RL biosynthesis is regulated at the transcriptional level 
according to nutritional and environmental conditions, as well as at the posttranscriptional 
level [11, 42]. However, most of the regulatory mechanisms are not completely understood 
[11, 42].

3.2. P. aeruginosa exopolysaccharides

Pseudomonads have the potential to produce various types of EPSs such as alginate, levan, 
marginalan and cellulose, as well as different heteropolysaccharides and protein polysaccha‐
rides complexes [89]. Nearly all Pseudomonas isolates, including P. aeruginosa, Pseudomonas 
putida and Pseudomonas fluorescens can produce alginate as the main acidic EPS [90–92]. 
Alginate is composed of β‐1,4‐D‐mannuronic and L‐guluronic acids linked via β‐1,4‐gly‐
cosidic bonds [93]. Alginates are also produced by Azotobacter isolates and some genera of 
brown and red algae. In comparison to algal alginates, bacterial alginates are O‐acetylated 
at some of the C‐2 and C‐3 carbons of the mannuronic acid residues and acetylation occurs 
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 during transport through the periplasm. A high degree of O‐acetylation increases the viscos‐
ity and flexibility of alginate, as well as its ability to bind water [94].

3.2.1. Diversity of exopolysaccharide structures

P. aeruginosa has the genetic ability to produce at least three polysaccharides: alginate, Psl 
(polysaccharide synthesis locus) and Pel (pellicle formation locus). Alginate and Psl have dif‐
ferent chemical structures (Figure 2a) although they have similar biosynthetic mechanisms 
[89]. In comparison to alginate, a highly O‐acetylated linear polymer of 1,4‐linked mannu‐
ronic acid (M) and guluronic acid (G), Psl is a helicoid polysaccharide composed of a repeat‐
ing pentamer containing D‐mannose, L‐rhamnose and D‐glucose (Figure 2b). The structure 
of Pel is not completely characterized and it is supposed that it differs from alginate and Psl 

Figure 2. Structures of extracellular polysaccharides produced by P. aeruginosa: (a) alginate and (b) exopolysaccharide Psl.
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[95]. Pel is proposed to be a glucose‐rich polysaccharide, different to cellulose [96]. Each EPS 
has distinct physiological properties, affecting the cells and the biofilm matrix. While alginate 
is secreted into the surrounding medium without covalently linking to the cell surface, Psl 
has helical distribution around the cell surface with a key role in cell‐to‐cell and cell‐to‐sur‐
face interactions during biofilm formation. Pel forms a connecting matrix allowing it a struc‐
tured assembly at the air‐liquid interface connecting the cells. This matrix could also contain 
O‐antigen‐LPS and cyclic glucans [95]. The diversity of EPSs produced by bacterial biofilm 
subpopulations is one of the proposed P. aeruginosa survival strategies for adaptation to envi‐
ronmental changes, as related to the conditions in CF lungs.

3.2.2. Exopolysaccharide biosynthesis and quorum sensing

EPS biosynthesis requires sugar‐nucleotide precursors and for alginate production, this is 
GDP‐mannuronate. The enzymes required for GDP‐mannuronate production include: (1) the 
bifunctional enzyme, AlgA which exhibits phosphomannose isomerase (PMI) and GDP‐man‐
nose pyrophosphorylase (GMP) activity; (2) AlgC, a phosphomannomutase; and (3) AlgD, 
which is a GDP mannose dehydrogenase [97–99]. AlgD catalyzes the first step in alginate 
biosynthesis, which is responsible for the mucoid phenotype often observed in clinical P. 
aeruginosa from chronically infected CF patients [13].

Alginate is first synthesized as a linear homopolymer of D‐mannuronic acid residues. The 
polymer is then modified in the periplasm through selective O‐acetylation by the concerted 
action of AlgI, AlgJ and AlgF and epimerized by AlgG [100, 101]. Alginate has a reasonably 
random structure (Figure 2a). This differentiates alginate from Psl and numerous E. coli 
capsule polysaccharides, the structures of which are more regular, with repeating subunits 
(Figure 2b). The randomness of alginate's structure occurs because during polymerization, 
AlgG converts D‐mannuronic acid residues to L‐guluronic acid and critically, either the C‐2 
and/or C‐3 carbons can have acetylated hydroxyl functional groups, which become available 
for linking the residues.

AlgC appears to be crucial for general EPS biosynthesis, not just alginate, as it is also required 
for precursor synthesis of Psl, as well as LPSs and RLs [102, 103]. The LasR from the las system 
might, to some extent, regulate expression of algC and algD, confirming the correlation of QS 
systems with EPS production [13].

4. Physiological role of P. aeruginosa biosurfactants in CF infection

4.1. Physiological role of rhamnolipids and exopolysaccharides

Among proposed functions of RL biosurfactants, related to their physicochemical properties 
(surface activity, wetting ability, detergency and other amphipathic‐related properties), are 
promotion of the uptake and biodegradation of poorly soluble substrates, immune modula‐
tors and virulence factors [9, 15]. Additionally, these molecules are involved in the process 
of swarming, as surface wetting agents and chemotaxis stimuli and in P. aeruginosa biofilm 
structuring, maturation (the formation of water channels in mature biofilms) and dispersion 
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[10]. Probably because they do not present the profile of typical or traditional virulence fac‐
tors, RLs are sometimes not considered significant members of the virulence arsenal of P. 
aeruginosa [9]. However, published data strongly demonstrate their importance as virulence 
determinants and their significant role in infection establishment and persistence [8, 9].

Physicochemical properties of EPSs, such as surface activity, viscosity, flexibility of molecule, 
as well as its ability to bind water, protect the microbe from dehydration in the unique CF 
microenvironment following the switch from nonmucoid to mucoid phenotype [94]. In this 
regard, the P. aeruginosa mucoid phenotype is the most studied adaptation in patients with 
CF and it is directly proportional to overproduction of EPSs, which is widely considered 
to be a marker for the transition to chronic infection [8, 54]. Alginates are well studied as 
compounds associated with biofilm formation and invasion of pathogenic microorganisms. 
The alginate‐containing matrix of mucoid P. aeruginosa is thought to allow the formation of 
protected microcolonies and provide increased resistance to opsonization, phagocytosis and 
destruction by antibiotics [104]. Alginates also have a protective role in P. aeruginosa infec‐
tion because they scavenge free radicals released by activated macrophages in vitro, prevent 
phagocytic clearance and protect the microorganism from the host defense system [13].

4.2. Rhamnolipids and exopolysaccharides in P. aeruginosa biofilm formation

Swarming motility is the rapid and coordinated movement of a bacterial population across a 
surface, which often results in characteristic flowery, dendritic colony shapes on agar plates 
[105]. This type of colony movement is related to the production of an extracellular slime 
layer, mainly composed of EPSs and surface active compounds, which is a pivotal feature of 
swarming cells, acting as a wetting agent that reduces the surface tension [106]. Several stud‐
ies suggest that P. aeruginosa expresses swarming motility and that it requires flagella and 
the production of wetting agents (RLs and its lipidic precursors HAAs) [85, 107–109]. Also, 
HAAs and di‐RLs actually modulate the swarming process, as di‐RLs and HAAs behave as 
self‐produced chemotactic attractants with opposite activity, while mono‐RLs seem to be act 
solely as wetting agents [107, 109]. Additionally, swarming motility is clearly related to bio‐
film formation [105].

The importance of swarming motility for biofilm formation indicates that RLs are involved in 
the process of biofilm formation. Indeed, it was shown that RLs enhance adhesion of plank‐
tonic cells in the early stages of biofilm development, when an initial microcolony is formed 
(Figure 3). Proposed mechanisms for RL effects on cell adhesion include regulation of cell‐
surface hydrophobicity and modification of adhesive interactions, especially when nutri‐
tional conditions are changed [85, 110–112]. Also, RLs are involved in later differentiation of 
the biofilm structure, the detachment and dispersion of P. aeruginosa cells, where RLs behave 
as mediators which disturb cell‐to‐cell and cell‐to‐substratum interactions and maintenance 
of open channels inside the biofilm [111, 113]. Furthermore, regulation of RL production by 
P. aeruginosa is regulated not only in temporal terms, but also in quantifiable terms, because 
overproduction of RLs disrupts biofilm structure or impedes biofilm formation [113].

EPSs also play an important role in biofilm formation and invasion of pathogenic micro‐
organisms. During biofilm maturation, P. aeruginosa begin to excrete EPSs, such that the 
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 bacteria in the mature biofilm are encased in a matrix of EPSs that they have produced [114]. 
Overproduction of alginate is the main indicator of P. aeruginosa converting to the mucoid 
phenotype and is responsible for the notable microbial resistance to antibiotics as well as 
defense from the host immune system of CF patients (Figure 3). The mucoid phenotype of   
P. aeruginosa produces a great amount of alginate as a result of several genes, including algD, 
which encodes GDP‐mannose dehydrogenase, responsible for synthesis of alginate precur‐
sor [8, 94]. The alginate‐containing matrix of the mucoid phenotype allows the formation of 
protected microcolonies and provides increased resistance to opsonization, phagocytosis and 
antibiotics, resulting in persistent infection and a worsening prognosis for CF patients [104].

In the context of immune system pathways, polymorphonuclear leukocytes (PMNs) are con‐
sidered as the central line of defense in innate immunity and they are produced as a predomi‐
nant response to infection, especially in CF lungs [115]. When PMNs phagocytose bacteria, 
the host cells produce highly reactive oxygen species, which kill P. aeruginosa or induce muta‐
tions in the microbial mucA gene. However, the alginate produced by mucoid phenotype P. 
aeruginosa is also an oxygen radical scavenger, helping to protect this pathogen against host 
inflammatory defense mechanisms [116]. Airway epithelial cells play a crucial role during 
establishment of respiratory infection because P. aeruginosa attaches to and enters respiratory 
epithelia, producing an immune response in the lung by activating lymphocytes at the site of 
infection [117].

Surfactant protein A (SP‐A) is involved in prevention of alginate‐induced P. aeruginosa inva‐
sion of lung epithelial cells. SP‐A plays a part in the innate immunity in the lung, with a 

Figure 3. Proposed roles, relations and effects of P. aeruginosa biosurfactants RLs and EXPs in development and 
persistence of chronic respiratory infection in CF patients.
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direct role in bacteria opsonization and killing, as well as impairment of bacterial membrane 
permeabilization [117]. Alginate is surface exposed and levels of SP‐A could be crucial in 
modulating the interaction of P. aeruginosa with the epithelial barrier.

4.3. Effect of P. aeruginosa rhamnolipids and exopolysaccharides

Respiratory mucosa protects host airways from microbial infection. P. aeruginosa and other 
microbial species capable of causing lung infections have developed mechanisms to overcome 
this barrier, such as alteration of the apical membrane of epithelial cells or alteration and 
disruption of tight junctions (TJ) [118]. Proposed mechanisms involve alterations of respira‐
tory epithelial ion transport, inhibition of transcellular ion transport and interference with the 
normal tracheal ciliary function. Bacterial adherence to the basolateral domain of epithelial 
cells and internalization are suggested as a potential mechanism of P. aeruginosa pathogenic‐
ity (Figure 3). The physiological pathways of these processes are not still completely clarified, 
but reports indicate involvement of virulence factors, production of which is controlled by the 
type III secretion (cytotoxic proteins) and the las and rhl QS (RLs, elastase) systems [119, 120].

RLs concentration of up to 8 μg/ml was found in the sputum of CF patients infected by P. 
aeruginosa [120], while secretions from a lung removed contained 65 μg/ml RLs [121]. These 
concentrations of RLs are likely adequate for promotion of P. aeruginosa epithelial cell infiltra‐
tion. Furthermore, this indicates link between elevated levels of RLs and worsening of patient 
clinical status.

RLs produce damage to the bronchial epithelium and inhibit ciliary function [122–124]. 
Damage to the bronchial epithelia is related to impairment of the protective layer of lung 
surfactant in CF patients. Phospholipase C and RLs produced by P. aeruginosa can act syner‐
gistically to break down lipids and lecithin from lung surfactant [12]. It is believed that RLs, 
due to their detergency, solubilize the phospholipids in lung surfactant, making them more 
accessible to cleavage by phospholipase C [12].

The effects of P. aeruginosa RLs on the respiratory epithelia function were studied in several 
animal models [122]. RLs caused ciliostasis and cell membrane damage to rabbit tissue were 
a secretagogue in cats and inhibited epithelial ion transport in sheep tissue. Additionally, the 
authors investigated the effect of RLs on mucociliary transport in the anesthetized guinea pig 
and guinea pig and human respiratory epithelia in vitro [122]. Reduction of tracheal mucus 
velocity (TMV) in vivo occurred depending on the applied RL concentration (10 μg of RLs 
caused cessation of TMV without recovery; 5 μg of RLs reduced TMV by 22.6% over a period of 
2 h and 2.5 μg of RLs caused no overall change in TMV). RLs (10 μg) did not disrupt the ultra‐
structure of guinea pig tracheal epithelium. RL (250 μg/ml) stopped ciliary beating of guinea 
pig tracheal. Treatment with RL concentration of 100 μg/ml caused immediate slowing of the 
cilliar beat frequency (CBF) of human nasal brushings, as well as CBF of human nasal turbinate 
organ culture. Mono‐ and di‐RL had equivalent effects [122]. In addition, RLs stimulate the 
release of mucus glycoconjugates from feline trachea or human bronchial mucosa [125, 126].

In vitro reconstructed respiratory epithelium was exposed to several P. aeruginosa isolates with 
alterations in genotype: wild type, CF isolates and strains with altered QS system expression 
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[118]. The authors found that only RL‐producing P. aeruginosa (those that expressed the rhl QS 
system) was able to infiltrate the epithelia by modulating the permeability of the tissue. The 
early stages of infection did not correlate with type III secretion and elastase activity [118], 
in contrast to previous reports [127, 128]. The effect of exogenously applied purified RLs on 
the epithelial barrier was also studied [118]. The authors used JBR 515, which is commercial 
mixture of 50% w/v Rha‐C10‐C10 and 50% w/m Rha‐Rha‐C10‐C10. RLs produced by bacteria in 
situ or purified. The applied RLs caused loss of epithelial cell polarity by: incorporation in 
first, the apical and later, the basolateral epithelial membranes (due to chemical structure); 
cilia loss; ezrin displacement; and alterations of TJ. The final result was a decrease of tran‐
sepithelial resistance and higher permeability of respiratory epithelia, without affecting cell 
viability [118]. After disruption of TJ, paracellular invasion by some P. aeruginosa, involving 
RL deficient strains, was observed, but they were not internalized [118]. This was in contrast 
to previous reports [129, 130], perhaps due to the in vitro conditions used in the studies as 
difference. Altogether, the importance of RL biosurfactant and the QS system in P. aeruginosa 
invasion of respiratory epithelium is acknowledged, but the exact mechanisms of cell polarity 
and structure alterations remain unclear.

The effect of RLs on immune system pathways with direct impairment and modulation of 
immune cell activity is well known [9] (Figure 3). RLs are reported to have hemolytic activity 
on various erythrocyte species; induce direct neutrophil chemotactic activity [130]; enhance 
the oxidative burst response of monocytes; stimulate and release inflammatory mediators 
from mast cells and platelets; induce lysis of PMNs; stimulate both chemotaxis and chemo‐
kinesis of PMNs (depending on concentration); and enhance production of several interleu‐
kins produced by granulocyte‐macrophage and nasal epithelial cells (at noncytoxic levels) 
[131–135]. Furthermore, RLs, especially di‐RLs, are cytolytic for human monocyte‐derived 
macrophages and at lower concentrations, they inhibit the phagocytic response of macro‐
phages [136].

The response of P. aeruginosa mutants (PAO1 and QS, rhlA and pqsA deficient) to the presence 
of PMNs was studied [115]. Previously reported data showed that in vitro, PMNs performed 
their immune function and eliminated QS‐deficient P. aeruginosa biofilms, although they 
were incapable of eliminating QS‐proficient biofilms [51]. Additionally, purified RLs induced 
necrosis in PMNs [134]. In biofilm, P. aeruginosa (PAO1 wild type) produced increased levels 
of various virulence factors in response to PMNs, while P. aeruginosa rhlA mutant was elimi‐
nated by PMNs [115]. Additionally, 2000‐fold higher levels of RLs from P. aeruginosa PAO1 
occurred in biofilm than in surrounding fluid, indicating that RL molecules were grouped 
around biofilm [115]. Similarly, a P. aeruginosa rhlA mutant was cleared more quickly than the 
wild strain from two in vivo mouse models of lung infection [137]. Also, microscopic analysis 
showed that there were no intact PMNs in close contact with outer layers of biofilm. This cor‐
related with microscopic investigations of P. aeruginosa infected ex vivo tissues samples from 
CF lungs, where PMNs were located peripherally [115]. The RLs isolated in this study were a 
mixture of mono‐ and di‐RL congeners (Rha‐C10‐C10, Rha‐C10‐C12, Rha‐C10‐C12Δ and respective 
di‐RL derivates) [137]. Van et al. [137] proposed that RLs have a role as a protective mecha‐
nism in biofilm resistance to phagocytosis and supported a “launch a shield'’ model, where 
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[118]. The authors found that only RL‐producing P. aeruginosa (those that expressed the rhl QS 
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kins produced by granulocyte‐macrophage and nasal epithelial cells (at noncytoxic levels) 
[131–135]. Furthermore, RLs, especially di‐RLs, are cytolytic for human monocyte‐derived 
macrophages and at lower concentrations, they inhibit the phagocytic response of macro‐
phages [136].
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of various virulence factors in response to PMNs, while P. aeruginosa rhlA mutant was elimi‐
nated by PMNs [115]. Additionally, 2000‐fold higher levels of RLs from P. aeruginosa PAO1 
occurred in biofilm than in surrounding fluid, indicating that RL molecules were grouped 
around biofilm [115]. Similarly, a P. aeruginosa rhlA mutant was cleared more quickly than the 
wild strain from two in vivo mouse models of lung infection [137]. Also, microscopic analysis 
showed that there were no intact PMNs in close contact with outer layers of biofilm. This cor‐
related with microscopic investigations of P. aeruginosa infected ex vivo tissues samples from 
CF lungs, where PMNs were located peripherally [115]. The RLs isolated in this study were a 
mixture of mono‐ and di‐RL congeners (Rha‐C10‐C10, Rha‐C10‐C12, Rha‐C10‐C12Δ and respective 
di‐RL derivates) [137]. Van et al. [137] proposed that RLs have a role as a protective mecha‐
nism in biofilm resistance to phagocytosis and supported a “launch a shield'’ model, where 
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RLs surround the biofilm and on contact destroy PMNs. This study [137], in correlation with 
previous reports about QS regulation of bacterial response to PMNs [50, 134] showed that P. 
aeruginosa pqsA mutant was unable to respond to exposure to PMNs by increasing RL produc‐
tion and that there was impairment of the QS hierarchy. These studies show that RLs prob‐
ably contribute to the inflammatory‐related tissue damage observed in lungs of CF patients, 
which involves complex and tight regulation by the QS system. RL production, though, is not 
continued because it affects all host cells, not only immune cells and high levels of RL may 
create conditions (due to inflammation and host tissue damage) which are not favorable for 
P. aeruginosa persistence [137]. This study supports a model by which cross‐kingdom‐based 
communication contributes significantly to immunomodulation and evasion and which is 
one reason studying the infective properties of P. aeruginosa is so fascinating.

Modification of membrane LPSs in P. aeruginosa is also an important mechanism in the devel‐
opment of chronic infection in CF patients [138–140]. Membrane LPSs in P. aeruginosa are 
composed of three parts: highly acylated lipid A; a central core oligosaccharide bound to 
lipid A and O‐antigen; and a variable polysaccharide composed of repeated units located out 
from the core [138, 140]. It is not surprising that the structure of LPSs is modified in P. aerugi‐
nosa isolated from CF patients because of their direct interface position with the pulmonary 
environment [8]. Compared to normal lipid A, that from CF patients contains more hexa‐ 
and hepta‐acylated moieties as well as added aminoarabinose, a cationic amino sugar resi‐
due which is responsible for resistance to antimicrobials [140]. Acylation levels of lipid A are 
responsible for LPS recognition by the host and induction of the proinflammatory response, 
so their modification causes P. aeruginosa to be less visible to the host immune system [141]. 
Also, in CF isolates, O‐antigen is lost, due to mutations in genes responsible for O‐antigen 
production. This loss can facilitate chronic persistence in respiratory tracts of CF patients 
[138–140]. Modification of LPS can directly correlate with overproduction of alginate, which 
is typical for the mucoid phenotype. Alginate might interact via the carboxylic groups in poly‐
guluronic acid units with modified membrane LPSs in P. aeruginosa, across cationic amino 
sugar aminoarabinose residues. This likely enhances polymerization and facilitates release of 
EPSs from the membrane. Thus, study of factors that influence increased production of EPSs 
and RLs, as well as the structure‐function relationships of these compounds would likely be 
of great importance for improved therapy of CF patients [8].

Figure 3 summarizes the proposed roles, relationships and effects of the biosurfactant RLs 
and EPSs produced by P. aeruginosa in the development of chronic respiratory CF infection.

5. Rhamnolipids and exopolysaccharides as targets—current and future 
perspectives

The importance of biofilm formation and maintenance for the establishment and persistence 
of P. aeruginosa chronic respiratory infection in CF has been discussed in Section 2.2.1. The 
complex regulation of biofilm development includes the QS network, swarming motility 
and production of extracellular metabolites and involves significant roles for RLs and EPSs. 
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Therefore, a logical approach in preventing and treating chronic P. aeruginosa infection in 
CF patients is focused on antibiofilm strategies. Antibiofilm strategies can take two differ‐
ing approaches, one common, related to antibiotic therapy and the other novel, related to 
interruption of QS (Table 2). Furthermore, vaccination is proposed as a modern approach 
to prevent P. aeruginosa infection in CF, where virulence factors, such as alginate, have been 
used as the antigen. However, most vaccines are still in the clinical research phase and have 
not reached the market [142].

Traditional antibiotic therapy is related to the early colonization period, the only possible 
phase when P. aeruginosa can be eradicated from CF airways [143, 144]. The effectiveness of 
antibiotics later is significantly reduced due to microbe adaptation mechanisms (membrane 
changes, efflux system changes, production of various virulence factors and EPS‐containing 
extracellular matrix, mutation and modification of enzymes) [16] (Table 2). Furthermore, 
tobramycin (an aminoglycoside) is the most common antibiotic for P. aeruginosa therapy 

Agents Type Strategy Resistance References

Ticarcillin, 
Piperacillin
Cefrazidime, 
Cefepime
Imipenem, 
Meropenem
Aztreonam

β‐Lactams Impairment of biofilm 
structure and QS  
inhibitors

Antibiotic cleavage by β‐
lactamase enzymes,  
antibiotic expulsion by 
encoded efflux mechanisms 
and reduced drug uptake 
due to loss of outer 
membrane porin proteins

[16, 155 ]

Ciprofloxacin Fluoroquinolones QS inhibitors Mutations by DNA gyrase 
and topoisomerase IV 
enzymes and efflux  
systems

[155, 156] 

Tobramycin, 
Gentamicin,  
Amikacin

Aminoglycosides Impairment of biofilm 
structure

Aminoglycoside‐modifying 
enzymes AMEs and rRNA 
methylases as well as efflux 
mechanisms

[16, 155, 157]

Patulin, penicillin  
acid, cis‐2  
decanoic acid

Bacterial metabolites Impairment of biofilm 
structure and QS inhibitors

No resistance [16, 158]

Solenopisin A Fire ant venom Impairment of biofilm 
structure and QS inhibitors

No resistance [16, 154]

Salicylic acid and  
4‐nitro‐pyridine 
oxide (4‐NPO)

Synthetic compounds Impairment of biofilm 
structure and QS inhibitors

No resistance [16, 152, 154]

Garlic extract Natural mixture Impairment of biofilm 
structure and QS inhibitors

No resistance [16, 152, 159]

Halogenated 
furanones from 
algae D. pulchra, 
Furanone C‐30

Synthetic or modifies 
natural derived 
furanones

QS‐inhibitor and P. 
aeruginosa elimination in 
combination with  
antibiotics

No resistance [16, 160]

Table 2. Antibiofilm approaches in therapy of P. auruginosa infection of CF patients.
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choice in CF lungs [145]. This is in spite of the fact that alginates produced by the microbe 
decrease, the movement of aminoglycosides, cationic antimicrobial peptides and quaternary 
ammonium compounds through P. aeruginosa biofilms [27, 146] (Table 2). To overcome obsta‐
cles related to antibiotic resistance and increase the antimicrobial effects, an inhaled version 
of tobramycin, as well as liposomal‐encased current antibiotics are available. These antibiotic 
formulations have improved delivery times and provide higher drug concentrations at the 
site of infection. Additionally, the importance of biofilm formation as having a crucial role in 
the antibiotic resistance of P. aeruginosa (as well as other CF pathogens) is now being recog‐
nized. Recent research trends include analysis of biofilm formation in terms of P. aeruginosa 
antibiotic resistance/susceptibility and the potential for antibiotics as efficient therapy agents 
for biofilm impairment [147–150].

A more novel antibiofilm strategy, QS interruption, is a promising approach for treating CF 
respiratory infections. In this strategy, the QS system is targeted, due to its regulation of the 
biosynthesis of RLs and EPSs [151–153]. The QS impairment approach involves identifica‐
tion of molecules which can interrupt QS pathways. Generally, these compounds have one 
of following mechanisms of activity: blocking production of QS signal molecules, degrada‐
tion of QS signal molecules or prevention of microbe recognition and response to QS stimuli 
[16]. Various natural compounds inhibited QS or directly impaired biofilm (Table 2) (e.g., 
garlic extract, metabolites from Penicillium spp., salicylic acid, the P. aeruginosa metabolite 
cis‐2‐decanoic acid). Furanones are QS blockers and the furanone produced by Delisea pulchra 
and synthetic furanones, enhanced P. aeruginosa elimination in combination with antibiotic 
therapy [16]. Furanone C‐30 repressed 77% of P. aeruginosa genes induced by exposure to 
PMNs [50]. The great advantage of using QS inhibitors in CF therapy is that they are not 
expected to induce bacterial resistance, because their activity is not closely related to bacterial 
growth [154].

In the context of the physiological roles of RLs and EPSs discussed in Section 4, these com‐
pounds are also promising targets for future strategies in CF therapy related to specific modu‐
lation of respiratory mucus [118].

6. Conclusion

RLs and EPSs, biosurfactant molecules, play significant roles in bacterial acquisition, biofilm 
development and establishment of chronic P. aeruginosa infections in CF patients. Specifically, 
RLs and EPSs are, due to their amphipathic structures and physicochemical properties, 
involved in processes of respiratory mucus alteration, modulation of immune system defense 
pathways, biofilm development and maintenance and the P. aeruginosa mucoid phenotype. 
These compounds are responsible for antibiotic resistance and survival and general persis‐
tence of P. aeruginosa in the specific, dynamic environmental conditions in CF patients’ lungs. 
Consequently, RLs and EPSs are the direct or indirect cause of bad outcomes and high mor‐
tality rates among these patients. Currently, therapy generally based on application of anti‐
biotics fails to prevent and treat chronic P. aeruginosa infection. Therefore, RLs and EPSs are 
interesting novel targets for dealing with respiratory infection in CF patients. In addition, the 
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P. aeruginosa QS system is an important aspect of CF lung infection, as it regulates synthesis 
of the biosurfactants and other virulence factors, as well as biofilm formation. Future perspec‐
tives to prevent and treat P. aeruginosa respiratory infections in CF certainly should involve 
impairment of QS pathways. Finally, further study of potential approaches to modify host 
respiratory mucus epithelial membranes is required.
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Abstract

Propagation of multidrug‐resistant Pseudomonas aeruginosa, which causes endemic noso‐
comial infections, has become a major concern in various parts of the world. In patients 
with cystic fibrosis, a major cause of death is respiratory tract infections with antibiotic‐
resistant P. aeruginosa. This condition has prompted medical research aimed at develop‐
ing effective prophylaxis and treatments that do not rely on conventional antimicrobial 
agents. The pathogenesis that results in cytotoxicity and mortality in immunocompro‐
mised patients infected with P. aeruginosa is associated with the type III secretion sys‐
tem of this bacterium. Clinical isolates that are cytotoxic and drug‐resistant are involved 
in acute exacerbation of chronic infectious diseases. The P. aeruginosa V‐antigen PcrV, 
a Yersinia V‐antigen LcrV homolog, is involved as an indispensable component in the 
translocational process of type III secretory (TTS) toxins. Vaccination against PcrV 
ensures survival of infection‐challenged mice and decreases lung inflammation and 
injury. Furthermore, anti‐PcrV IgG can inhibit translocation of TTS toxins. These observa‐
tions support the hypothesis that anti‐PcrV strategies have the potential as nonantibiotic 
immune strategies for preventing aggravation of P. aeruginosa infections in patients with 
cystic fibrosis.

Keywords: cystic fibrosis, exoenzyme, PcrV, Pseudomonas aeruginosa, type III secretion 
system, V‐antigen

1. Introduction

Propagation of multidrug‐resistant Pseudomonas aeruginosa (MDR‐PA) has become a serious 
concern in various parts of the world [1–4]. Recent outbreaks of extensively drug‐resistant 
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P. aeruginosa (XDR‐PA) are threatening to increase XDR‐PA colonization of immunocompro‐
mised and artificially ventilated patients because efficacious antimicrobial choices against 
XDR‐PA are limited [3–5]. In patients with cystic fibrosis (CF), a major cause of death is respi‐
ratory tract infections with P. aeruginosa. This condition has led to medical research on the 
development of effective prophylaxis and treatments that do not rely on conventional antimi‐
crobial agents [6]. Furthermore, recent reports have suggested that XDR‐PA strains appear to 
have a greater ability to promote bacteremia and sepsis [7]. Therefore, the pathogenic mecha‐
nisms that are responsible for this infection are important for protecting patients from the 
lethal consequences of these infections.

The pathogenesis responsible for mortality in P. aeruginosa pneumonia is associated with the 
development of septic shock and multiple organ failure. This is because certain P. aeruginosa 
strains have the ability to cause necrosis of the lung epithelium and disseminate into the circu‐
lation [8]. Advances in genomic analysis and cellular microbiology have shown that damage 
to the lung epithelium is associated with expression of toxins. These toxins are directly trans‐
located into eukaryotic cells through the type III secretion system (TTSS) of P. aeruginosa [9]. 
Unlike classic type I and type II secretion systems, the newly identified TTSS, through which 
bacteria directly transfer their toxins from the bacterial cytosol to the eukaryotic cell cytosol, 
were discovered in most pathogenic Gram‐negative bacteria (Figure 1) [10]. Four type III secre‐
tory (TTS) toxins, called ExoS, ExoT, ExoU, and ExoY, have been identified in P. aeruginosa [11, 
12]. ExoS is the 49‐kDa form of exoenzyme S, which is a bifunctional toxin that has ADP‐ribo‐
syltransferase and GTPase‐activating protein (GAP) activities [13]. ExoS disrupts endocytosis, 

Figure 1. Toxin secretion systems in Gram‐negative bacteria. In the types I and II secretion systems, bacteria secrete 
toxins into the extracellular space (left side of figure). As one example, secreted toxins are captured by surface receptors 
on the eukaryotic cell membrane and are then transferred to the cytosol. In the types III and IV secretion systems, bacteria 
secrete toxins directly into the cytosol of target eukaryotic cells through their secretion apparatus (right side of the 
figure). The mechanism whereby the secreted toxins are transferred to the eukaryotic cell cytosol is called translocation.
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the actin cytoskeleton, and cellular proliferation. ExoT, which is a 53‐kDa form of exoenzyme 
S with 75% sequence homology to ExoS, also exerts GAP activity and interferes with cell mor‐
phology and motility [13–15]. ExoY is a nucleotidyl cyclase that increases intracellular levels 
of cyclic adenosine and guanosine monophosphates, resulting in the formation of edema [12]. 
ExoU exhibits phospholipase A2 activity activated by host cell ubiquitination after transloca‐
tion. ExoU is a major pathogenic cytotoxin that causes alveolar epithelial injury and necrosis 
of macrophages [16–19].

In this review, we summarize the TTSS of P. aeruginosa and its association with CF. We also 
review the development of immune therapies, including passive and active immunization 
against the TTSS‐associated virulence of P. aeruginosa.

2. Cytotoxic or invasive P. aeruginosa strains

In most acute clinical manifestations of P. aeruginosa infection, severe pneumonia occurs in 
patients under ventilatory management and in immunocompromised patients [2, 3]. Patients 
with severe P. aeruginosa pneumonia frequently develop sepsis and subsequent multiorgan 
failure [7].

In the mid‐1990s, researchers investigating P. aeruginosa reported that the strains expressing 
ExoS (49‐kDa type exoenzyme S) had low cytotoxicity to eukaryotic cells, whereas the strains 
that did not express ExoS had strong cytotoxicity [20, 21]. Therefore, at that time, P. aeruginosa 
strains were classified as either a cytotoxic exoS− type or an invasive exoS+ type, depending 
on the genotypes of the 49‐kDa exoenzyme S [20]. The 53‐kDa exoenzyme S (ExoT) was dis‐
covered as a gene product that was distinct from ExoS [14, 15]. However, because cytotoxic 
exoS− type‐ and invasive exoS+ type‐strains both possessed ExoT, the mechanism for cytotoxic 
virulence could not be explained solely on the basis of possessing the ExoT gene. Therefore, 
the mechanism whereby the cytotoxic characteristics of exoS−exoT+ type‐strains develop is 
unknown. In 1997, a new cytotoxin, ExoU, was identified [16]. P. aeruginosa strains that do not 
have exoU always possess exoS. Therefore, the genotype of cytotoxic strains is exoS−exoT+exoU+ 
and the genotype of invasive strains is exoS+exoT+exoU− [20, 21]. While searching for major 
cytotoxins in P. aeruginosa, P. aeruginosa exoenzymes were found to translocate directly into 
the eukaryotic cytosol through the TTS mechanism [22]. Among the four TTS cytotoxins, 
ExoS, ExoT, ExoU, and ExoY, P. aeruginosa clinical isolates that cause severe sepsis and mor‐
tality express TTS ExoU [16, 23–25]. After discovery of ExoU, studies showed the enzymatic 
action of phospholipase A2, which is activated by a eukaryotic cell factor after translocation 
into the eukaryotic cell cytosol [17–19].

3. Genomic analyses of P. aeruginosa strains

The whole genome sequencing project by the Pseudomonas Genome Project was completed for 
the P. aeruginosa strain PAO1 in 2000 [26]. Since this time, comparative genomics is currently 
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on‐going between the PAO1 reference strain and various clinical isolates of which the char‐
acteristics differ from PAO1 (Figure 2). In this research field, the major question is how much 
do the strains differ from each other at the gene level, especially between strains isolated from 
patients with acute infections and strains isolated from chronically infected patients with CF. 
The genetic mechanisms underlying multidrug resistance are also of major interest in these 
comparative genomic studies.

The clinical isolate UCBPP‐PA14 is cytotoxic and is similar to the laboratory strain PA103 
UCBPP‐PA14 that has the TTS phenotype ExoS−ExoT+ExoU+ExoY−, whereas invasive PAO1 
is ExoS+ExoT+ExoU−ExoY+ [16, 20]. Therefore, genomic analysis of UCBPP‐PA14 was con‐
ducted to identify their phenotypic differences. As a result, two pathogenicity islands 
that do not exist in PAO1 were discovered in the UCBPP‐PA14 genome [27]. Thereafter, 
researchers found that clinical strains containing P. aeruginosa pathogenicity island‐2 
(PAPI‐2) and exoU display the cytotoxic phenotypes that are responsible for acute lung 
injury in animal models [16, 27]. Concurrently, strains harboring PAPI‐2 and exoU were 
found to have deletional mutation of the exoS gene, which creates the exoS− genotype in 
PA103 and UCBPP‐PA14 [27].

Figure 2. The PAO1 reference strain genome and its pathogenic gene configuration. The P. aeruginosa strain PAO1 
possesses 5570 genes in its 6.3‐Mb circular genome. The exoenzyme S regulon is a gene cluster (25.7 kb) for type III 
secretion. Type III secretory toxin genes, such as exoS, exoT, and exoY, are scattered throughout the genome. The P. 
aeruginosa exoU gene, which is located in an insertional pathogenic gene cluster in pathogenicity island‐2 (PAPI‐2), was 
discovered in the UCBPP‐PA14 virulent clinical strain.
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4. The type III secretion system of P. aeruginosa

4.1. Components of the type III secretion system and the exoenzyme S regulon

The TTSS is composed of the following: (1) secretion apparatus (injectisome), (2) translocators, (3) 
a set of secreted toxins, and (4) regulatory components [28]. In the P. aeruginosa genome, a patho‐
genic gene cluster called the exoenzyme S regulon encodes the genes for regulation, secretion, 
and translocation of the TTSS [9, 11] (Figure 3). In the exoenzyme S regulon, the exsCBA operon 
encodes the transcriptional activator protein ExsA, which regulates expression of exoenzyme S 
and its co‐regulated proteins (Figure 4) [11]. Four TTS toxins, ExoS, ExoT, ExoU, and ExoY were 
identified in P. aeruginosa (Table 1) [11, 12, 16]. The genes for these TTS toxins are scattered in the 
genome [26]. In contrast, exoU, which is located in the insertional gene pathogenic cluster PAPI‐2, 
is present with its chaperone protein gene spcU only in the genomes of cytotoxic strains, such as 
PA103 and UCBPP‐PA14 [16, 27, 29].

4.2. The pcrGVHpopBD translocation operon

One operon in the exoenzyme S regulon, called pcrGVHpopBD, encodes five proteins associ‐
ated with translocational processes for TTS toxins [11]. These proteins are PcrV, PopB, and 
PopD, and their chaperones are PcrG and PcrH. PcrV, which is the P. aeruginosa V‐antigen, 
is a cap structure component on the tip of the injection needle formed by PscF in the secre‐
tion apparatus [30] (Figure 5). The genetic organization for the exoenzyme S regulon shares 

Figure 3. Genomic structure of the exoenzyme S regulon. The type III secretion regulatory region (25.5 kb), found as a 
gene cluster, was named the exoenzyme S regulon. The exoenzyme S regulon comprises five operons, including 36 genes 
for transcription (exsA‐exsD), genes encoding the secretion apparatus (pscB‐pscU), and others encoding translocation‐
related proteins (pcrGVHpopBD). The exsCBA operon encodes the transcriptional activator ExsA protein, which regulates 
expression of exoenzyme S and co‐regulated proteins.
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the most homology with the Yersinia Yop virulon [31]. Yersinia LcrV has been reported to 
be a molecular target competing with TTSS virulence. Similarly, P. aeruginosa PcrV also is a 
molecular target that can compete with TTSS virulence in P. aeruginosa [32, 33]. This competi‐
tion with TTSS virulence will be discussed later in this review.

Figure 4. Type III secretion regulation in P. aeruginosa by the ExsA transcriptional activator. The ExsA transcriptional 
activator protein activates five operons in the exoenzyme S regulon via five ExsA binding motifs “TxAAAAxA”. ExoT, 
ExoU, and ExoY were identified in P. aeruginosa. Genes for ExoS, ExoT, and ExoY are scattered in the genome. The orf1 
gene, which encodes a chaperone protein for ExoS, is next to exoS. The exoU gene, which is located in the insertional gene 
pathogenic cluster PAPI‐2, is present with its chaperone protein gene spcU only in the genomes of cytotoxic strains, such 
as PA103 and UCBPP‐PA14.

Toxins Size (kDa) Enzymatic activity Action

ExoS 49 FAS‐dependent 
ADP‐ribosyltransferase

Antiphagocytosis, 
inhibition of endocytosis

ExoT 53 Small GTPase activating 
protein activity

Inhibition of tissue repair

ExoU 74 Phospholipase A2 Cytotoxin, lipid 
degradation

ExoY 42 Adenylate cyclase Edema formation, 
anti‐inflammatory

Table 1. Type III secretory toxins in P. aeruginosa.
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4.3. Yersinia V‐antigen LcrV and P. aeruginosa PcrV

Historically, Yersinia LcrV has been referred to as the Yersinia V‐antigen. Approximately 50 
years ago in the UK, Burrows et al. reported that Yersinia V‐antigen was an antigen substance 
associated with the pathogenic toxicity [34–38] of this bacterium. They found that only Y. pes‐
tis, with the antigenic factor they called the V‐antigen, induced immunity in a mouse model 
of infection [34–38]. In 1986, the gene encoding the LcrV V‐antigen, lcrV, was cloned from the 
Low‐calcium response (LCR) operon of the Y. pestis pCD1 plasmid [39]. A genetic mutation 
experiment then showed that LcrV is essential for translocation of the toxin [32]. Additionally, 
antibodies against LcrV were reported to be capable of blocking transfer of the toxin [32]. As 
well as Yersinia LcrV in the TTSS, P. aeruginosa PcrV is essential for transition of the TTSS toxin, 
and the antibody against PcrV can block transition of the TTS toxin [33]. PcrV might play a role 

Figure 5. The type III secretory apparatus of P. aeruginosa. The P. aeruginosa type III secretory apparatus comprises many 
protein components as follows: a cap component, PcrV; a needle component, PscF; an outer ring component, PscC; and 
basal components, including PscJ, ATPase PscN, and others. Four type III secretory toxins, ExoS, ExoT, ExoU, and ExoY, 
are injected directly into the cytosol of target eukaryotic cells through the type III secretory apparatus. Translocated 
toxins are activated by specific eukaryotic cell cofactors. Following activation, ADP‐ribosyltransferase activity is shown 
by ExoS, whereas ADP‐ribosyltransferase and GTPase‐activating protein activity is shown by ExoT. Activated ExoU has 
phospholipase A2 activity, and ExoY exhibits adenylate cyclase activity.
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in connecting the needle rod (composed of PscF) to the pore (formed with PopB/PopD) on the 
eukaryotic cell membrane. Indeed, electron microscopy has successfully visualized V‐antigens 
as cap structures on the mushroom needle tip portion of the protein [30]. Specific blocking 
antibodies against the V‐antigen also block translocated toxin from binding to the top part of 
the cap structure [32, 40].

5. P. aeruginosa type III secretory toxins

5.1. ExoS and ExoT

In the late 1970s, P. aeruginosa exoenzyme S was discovered as an adenosine diphosphate 
ribosyltransferase that was distinct from exotoxin A [41, 42]. However, in the mid‐1990s, exo‐
enzyme S activity was determined to be the result of two highly homologous toxins, termed 
ExoS (49‐kDa exoenzyme S) and ExoT (53‐kDa exoenzyme S), which are encoded in two 
separate portions of the P. aeruginosa genome [14, 15]. ExoS and ExoT were also found to be 
secreted by the TTS mechanism [15, 22].

5.1.1. ADP‐ribosyltransferase activity

ExoS and ExoT are two immunologically indistinguishable proteins that co‐fractionate with 
exoenzyme S activity [14]. ExoS and ExoT encode proteins of 457 and 453 amino acids, respec‐
tively, and share 75% amino acid identity. ExoT possesses approximately 0.2% of the ADP‐
ribosyltransferase activity of ExoS [14, 15]. ExoT diminishes motility of macrophages and 
phagocytosis, at least in part through disrupting the eukaryotic cellular actin cytoskeleton, 
and also blocks wound healing [43, 44]. The ExoS carboxyl terminal catalyzes transfer of the 
ADP‐ribose moiety of nicotinamide adenine dinucleotide to a number of different proteins, 
including the intermediate filament protein, vimentin [45–47].

5.1.2. GTPase‐activating protein activity

The amino terminal domains of ExoS and ExoT have been characterized as GAPs of Rho 
GTPases [48]. The Rho GAP activity of ExoS stimulates reorganization of the actin cytoskeleton 
by inhibiting Rac and Cdc42, and induces formation of actin stress fibers by inhibiting Rho 
[49]. These domains, which include catalytic arginines, share sequence homology with not only 
Yersinia YopE and Salmonella SptP, but also with mammalian Rho GAP proteins, such as hsp‐
120GAP, hsNF1, dmGAP1, and sclRA1. Biochemical studies have shown that ExoT possesses 
GAP activity for RhoA, Rac1, and Cdc42, and interferes with Rho signal transduction pathways, 
which regulate actin organization, exocytosis, cell cycle progression, and phagocytosis [50, 51].

5.2. ExoU

A specific isogenic mutant of the cytotoxic P. aeruginosa strain PA103, which does not have ExoS 
and is genetically modified to lack ExoT, is still cytotoxic in vitro. This mutant causes epithelial 
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of exoU encodes a small 15‐kDa protein named SpcU, which functions as a chaperone for ExoU 
[29]. ExoU is a TTS protein of P. aeruginosa that is necessary for epithelial cell cytotoxicity in vitro 
and virulence in a mouse model of pneumonia [16].

5.2.1. Patatin‐like phospholipase A2 activity

ExoU contains a potato patatin‐like phospholipase A (PLA) domain [17]. Patatin is a member 
of a multigene family of vacuolar storage glycoproteins with lipid acyl hydrolase and acyl 
transferase activities. Alignment of ExoU, potato patatin, and human PLA2 shows three highly 
conserved regions in the ExoU amino acid sequence as follows [17]: (1) a glycine‐rich nucle‐
otide binding motif, GXGXXG/A (position 111–116 in ExoU); (2) a serine‐hydrolase motif, 
which includes a serine active site for cPLA2, GXSXG/S (position 140–144 in ExoU); and (3) an 
active site motif containing aspartate for cPLA2, DGG/A (position 344–347 in ExoU) (Figure 6).

Figure 6. Enzymatic activity and consensus motifs in ExoU. P. aeruginosa ExoU, a major factor causing cytotoxicity 
and epithelial injury in the lungs, contains a patatin domain that catalyzes membrane phospholipids through its 
phospholipase A2 activity. Homology in the amino acid sequence, with a catalytic dyad in the primary structure, is found 
among patatin, mammalian phospholipase A2 (cPLA2‐α and iPLA2), and ExoU. FFA: free fatty acids.
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5.2.2. Phospholipase A2 activity and acute lung injury

Site‐directional mutations in the predicted catalytic site of ExoU cause a loss of lysophospho‐
lipase A activity [52]. Airspace instillation of virulent P. aeruginosa expressing ExoU causes 
acute lung injury and death in infected mice [53]. However, airspace instillation of isogenic 
mutants secreting catalytically inactive ExoU is non‐cytotoxic and this does not cause acute 
lung injury or death in these mice [53]. Therefore, virulent P. aeruginosa causes acute lung 
injury, with concomitant sepsis and mortality, via cytotoxic activity derived from the patatin‐
like phospholipase domain of ExoU. Cells targeted by ExoU through the TTSS are not only 
epithelial cells, but also macrophages [54]. Through the TTSS, ExoU is activated after its trans‐
location into the cytosol of eukaryotic cells [55–57]. Ubiquitin and ubiquitin‐modified pro‐
teins are associated with the activation of ExoU [18, 19].

5.3. ExoY

ExoY has adenylate cyclase activity and is secreted by the TTS mechanism [12]. The pri‐
mary ExoY sequence shares homology with sequences of the extracellular adenylate 
cyclases of Bordetella pertussis (CyaA), Bacillus anthracis (EF), and Y. pestis insecticidal toxin 
[12]. An unknown eukaryotic cell factor, distinct from calmodulin, enhances recombinant 
ExoY catalysis. Infection of eukaryotic cells with P. aeruginosa that produce catalytically 
active ExoY results in an elevation of intracellular cAMP and morphological changes in 
cells. ExoY increases the permeability of lung endothelial cells and alters Chinese hamster 
ovary cell morphology but does not result in acute cytotoxic responses. Ninety percent of 
clinical isolates that are tested show the presence of the exoY gene in DNA hybridization 
experiments [12]. ExoY production may play a role in protecting the bacterium from local 
phagocytic cells [58].

6. Cystic fibrosis and P. aeruginosa type III secretion

6.1. P. aeruginosa pneumonia and cystic fibrosis

Respiratory infections with P. aeruginosa are the major causes of morbidity and mortality in 
individuals with CF. P. aeruginosa isolates from newly infected patients with CF resemble 
those from acutely infected non‐CF patients, and have a number of virulence factors includ‐
ing flagella, pili, pyocin, pyoverdin, and the TTSS [59, 60]. Expression of these virulence fac‐
tors is considered to be essential for successful development of infection at an early stage of 
infection in patients with CF. However, at the chronic stage of infection, triggered by high 
selective pressure in CF lungs and by antibiotic treatments, P. aeruginosa gradually gener‐
ates genotypes and phenotypes that are specially adapted to the lungs in CF. These include 
overproduction of alginate (mucoid phenotype), loss of lipopolysaccharide O‐antigen compo‐
nents, loss of motility, resistance to antibiotics, virulence factor loss, and adapted metabolism 
[61]. These changes might be essential for P. aeruginosa to facilitate evasion of the host defense 
mechanisms and immune surveillance [62].
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6.2. Epidemiological studies of isolates from patients with cystic fibrosis

In our epidemiological study that analyzed clinical isolates, there was a subset of isolates that 
displayed the TTS phenotype ExoS−ExoU− with extensive drug‐resistant characteristics [63]. 
Most of these isolates were from chronic infections in patients with CF. Therefore, clinical 
isolates of P. aeruginosa are classified into three subgroups depending on their ExoS and ExoU 
phenotypes. ExoS+ExoU− strains are invasive and cause infections in burns tissues, whereas 
ExoS−ExoU+ strains are cytotoxic and cause acute pneumonia and sepsis. Most strains isolated 
from chronic infections in CF patients are ExoS−ExoU− (Figure 7). P. aeruginosa strains that 
are isolated from acutely infected patients show positive phenotypes for TTS proteins (ExoS, 
ExoU, and PcrV) and the positive O‐antigen phenotype. However, strains that are isolated 
from chronic infections of patients with CF are frequently the O‐antigen phenotype (−), TTS 
protein phenotypes (−), and the mucoid phenotype (+) with increased antibiotic resistance 
(Figure 8). Recent studies have shown that TTSS production, as well as other virulence factors, 
such as flagella, pili, pyocin, and pyoverdine, are attenuated in many isolates from chroni‐
cally infected patients with CF [64–66]. The results of several studies that investigated the 
relationship between CF clinical isolates and the TTSS in P. aeruginosa are shown in Table 2 
[61, 67–71]. Two of the six studies were longitudinal and followed the same patients with CF. 
Additionally, four studies performed genotype analysis on strains, and five others performed 
immunoblot analysis of TTS proteins. Findings from these epidemiological studies suggest 
that CF isolates from children are more virulent with a positive TTSS phenotype than isolates 
that are recovered from adults. These studies also suggest that isolates from initial infections 
are more virulent than isolates from subsequent infections. The ratio between ExoS+ExoU− 
and ExoS−ExoU+ differed in each study. However, a more recent report from Hu et al. showed 
that 7 isolates among 40 in total from subsequently occurring infections were ExoU+ [71]. 
These findings suggest the potential pathogenic involvement of ExoU‐associated virulence, 
even in patients with CF.

Figure 7. Type III secretory toxin phenotypes in P. aeruginosa clinical isolates. P. aeruginosa clinical isolates can be 
classified into three subgroups depending on their ExoS and ExoU phenotypes. ExoS(+)ExoU(−) stains are invasive and 
cause infections in burnt tissue, whereas ExoS(−)ExoU(+) strains are cytotoxic and cause acute pneumonia and sepsis. 
Most strains that are isolated from chronic infections in patients with cystic fibrosis are ExoS(−)ExoU(−).
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6.3. Type III secretion and cystic fibrosis isolates

Most studies have reported that the proportion of P. aeruginosa strains secreting TTS proteins 
decreases over the duration of P. aeruginosa infection. Jain et al. showed a significant inverse 
correlation between the percentage of TTS proteins and the duration of P. aeruginosa infection 
[67]. They also reported an association between the proportion of TTS protein‐secreting iso‐
lates and a decline in the rate of forced expiratory volume in 1 s in patients who still harbor at 
least some TTS‐positive isolates. Other reports that investigated the genotype and phenotype 
of the TTSS showed that all P. aeruginosa strains harbor at least some TTSS genes (exoS, exoT, 
exoU, exoY), regardless of the expression of TTS proteins (ExoS, ExoT, ExoU) [66, 69–71]. This 
suggests that the TTSS regulon may remain intact and the expression of TTSS can be revers‐
ible. There are other variants called rough small‐colony variants in P. aeruginosa, and these 
have been isolated from chronically infected patients with CF [72, 73]. These variants are 
hyperpiliated and hyperadherent, and differ from the mucoid phenotype in their secretion 
of TTS proteins. Their remarkably high resistance to several antibiotic classes enables their 
persistence in the lungs in CF.

6.4. Comparative genome studies on recent P. aeruginosa isolates

Comparative genomics on the reference PAO1 strain and isolates from patients with CF are 
on‐going. In 2003, two comparative studies between CF isolates and PAO1 were reported. 
These studies demonstrated that clinical strains do not express TTSS, whereas most of them 
that are isolated from chronic infections possess this gene cluster [74, 75]. Additionally, these 
studies show that 10% of genes in CF isolates do not exist in the PAO1 genome, and half of 
them are newly identified genes.

Figure 8. Phenotypic variation in P. aeruginosa clinical isolates. P. aeruginosa strains that are isolated from acutely infected 
patients are positive for type III secretory proteins, such as ExoS, ExoU, and PcrV, and are O‐antigen positive. In contrast, 
strains that are isolated from chronic infections in patients with cystic fibrosis are frequently O‐antigen‐negative and 
type III secretory protein‐negative, but are mucoid with increased antibiotic resistance.
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Recent reports have indicated that the combination of carbapenem and fluoroquinolone resis‐
tance and the presence of the gene encoding the TTSS ExoU effector in P. aeruginosa are the 
strongest predictors of development of pneumonia [76–78]. Further investigations have sug‐
gested that the fluoroquinolone‐resistant phenotype and the exoU+ genotype of P. aeruginosa 
cause poor clinical outcomes in patients with P. aeruginosa pneumonia [76–79]. Several genome 
sequence analyses of small colony variants of P. aeruginosa have been reported recently [80–85]. 
These studies showed multifactorial antibiotic‐resistance mechanisms, such as overexpression 
of efflux mechanisms, LPS modification, and a drastic downregulation of the Pseudomonas 
quinolone signal quorum‐sensing system. These reports suggest that, over the last 15 years, 
wide‐spread global carbapenem and fluoroquinolone use has rapidly enhanced propagation 
of virulent and drug‐resistant P. aeruginosa strains.

7. Anti‐PcrV strategies in P. aeruginosa infections

Recent outbreaks of XDR‐PA are threatening to increase colonization by MDR‐PA in immu‐
nocompromised patients because efficacious antimicrobial choices are extremely limited. 
Therefore, this situation requires development of new prophylactic or therapeutic strategies 
that do not rely on conventional antimicrobial agents [86, 87].

7.1. Active and passive immunization against P. aeruginosa PcrV

The first experimental trial on immunotherapy against the TTSS of P. aeruginosa was per‐
formed using E. coli‐derived recombinant PcrV protein to actively immunize mice [33]. In 
this experiment, the immunized mice survived lethal challenge infections with P. aeruginosa 
pneumonia. Together with the active immunization trial, passive immunization was carried 
out in mice with a purified protein A binding γ‐globulin fraction, which was separated from 
the sera of rabbits that were actively immunized with recombinant PcrV [30]. In this series, 
the immunized mice survived pulmonary administration of a lethal dose of P. aeruginosa. A 
correlation between the survival rate of the mice and the dose of the polyclonal anti‐PcrV anti‐
body was found. The effects of this polyclonal anti‐PcrV antibody were later tested in various 
animal models of burns and chronic bacterial pneumonia [88, 89].

The mechanism responsible for the positive effect of the polyclonal anti‐PcrV antibodies, in 
terms of whether the effect depends on the Fc‐portion of the antibody, was investigated. The 
anti‐PcrV polyclonal antibody F(ab)′2 was tested in a rabbit model, and the same effect as whole 
IgG was confirmed [90]. This finding strongly suggests that the prophylactic and therapeutic 
effects of anti‐PcrV polyclonal antibodies are derived by blocking the action involved in the 
pathogenicity of the antigen. Monoclonal antibody screening on normal mouse hybridomas 
was then performed and the clone mAb166 was discovered as the strongest TTSS blocker [40]. 
The clone mAb166 displayed equivalent therapeutic and prophylactic effects to those of the 
anti‐PcrV polyclonal antibody [40, 91, 92]. The mAb166 Fab fragment also conferred the same 
therapeutic effect as the original whole IgG in P. aeruginosa pneumonia [85]. In particular, 
mAb166 exerted a strong therapeutic effect following airway administration of P. aeruginosa 
in a pneumonia model in rats [93]. By using this mAb166 antibody as a template with the 
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bacteriophage gene shuffling recombination technology, the US venture company KaloBios 
Inc. started a project to create a humanized anti‐PcrV antibody. Consequently, KB001‐A was 
developed as a humanized monoclonal antibody [94]. This antibody underwent phase I and 
phase II clinical trials in the USA and France [95, 96].

7.2. Immunization against PcrV in immunocompromised models

Active immunization with PcrV was examined in immunocompromised mice that were pre‐
treated with cyclophosphamide [97]. Cyclophosphamide treatment induced immunosup‐
pression in the mice, decreased immunity against P. aeruginosa, and decreased the lethal dose 
of P. aeruginosa. In this study, five truncated PcrV fragments and full‐length‐PcrV were tested 
as vaccine candidates in a mouse model of P. aeruginosa pneumonia. Acute systemic infec‐
tion was introduced by intraperitoneal injection of a lethal dose of P. aeruginosa in this mouse 
model [97]. This study showed that active immunization with either full‐length PcrV1–294 or 
PcrV139–294, both of which contain the PcrV144–257 blocking epitope region of monoclonal anti‐PcrV 
IgG mAb166, successfully protected the immunocompromised mice from lethal P. aeruginosa 
infection. This finding suggested that the anti‐PcrV strategy might be effective in neutropenic 
conditions in which human patients frequently develop P. aeruginosa infections.

The intravenous immunoglobulin (IVIG) was recently shown to confer significant protection 
against lethal infection with virulent P. aeruginosa [98, 99]. The effect of administrating 2.5 mg 
of IVIG was comparable with that of administrating 10 µg of specific anti‐PcrV polyclonal 
IgG. The mechanism of protection is likely to involve the synergic action of anti‐PcrV titers 
and some surface antigen to block the TTSS‐associated virulence of P. aeruginosa [98]. There 
is considerable variation in anti‐PcrV titers in adult subjects without any obvious history of 
infection with P. aeruginosa [100]. IVIG extracted from high anti‐PcrV titer human sera confers 
protective effects in a mouse model of lethal P. aeruginosa pneumonia [101]. These results sug‐
gest that, not only monoclonal strategies against PcrV, but serum‐derived immunoglobulin 
therapy with specific titers against PcrV also has great potential as effective immunotherapeu‐
tic tool against lethal P. aeruginosa infections.

8. Conclusions

In this review, we summarize the current status of research on the pathogenesis and treatment 
of P. aeruginosa infections from the viewpoint of acute and chronic infections. First, there are 
two phenotypes of P. aeruginosa strains: one causes acute types of infection, whereas the other 
causes chronic types of infection. Genomic level differences exist between these two pheno‐
types. In the course of evolution, acquisition of virulence gene cassettes, especially PAPI‐2, 
created subtypes with increasing toxicity. Second, exposure to antibiotics enhances their 
drug resistance together with a loss of cytotoxicity and antigenicity that can be targeted by 
host immunity. Third, some mutant cytotoxic and drug‐resistant P. aeruginosa strains may be 
involved in acute exacerbation of chronic infectious diseases. The lifespan of patients with CF 
has improved via various medical advances. Rather than focusing on eradication of infectious 
pathogens, prophylaxis against lethal pathogenic factors to avoid acute  exacerbation during 
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the chronic infection state should probably be given more priority at present. Currently, the 
monoclonal antibody strategies that are used against bacterial infections have not yet reached 
the level of practical application that is found in cancer therapy. The on‐going challenge for 
anti‐PcrV immunotherapy is realizing its potential to improve the clinical outcome of P. aeru‐
ginosa infections occurring in patients with CF.
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