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In the twenty-first century, bearings are expected to perform better in the form 
of various operating conditions, that is from low speed to extremely high speed 
and from low load to huge load applications. The expectations from the field of 

bearing technology are great. During the recent years, we have been witnessing the 
development of a new generation of mechanical systems that are highly miniaturized 
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ISBN 978-953-51-3183-0

Bearing Technology





BEARING TECHNOLOGY

Edited by Pranav H. Darji



Bearing Technology
http://dx.doi.org/10.5772/63262
Edited by Pranav H. Darji

Contributors

Viacheslav Vavilov, Flur Ismagilov, Denis Gusakov, Valéria Cristina Maria Nasscimento Leite, Jonas Guedes Borges 
Da Silva, Germano Lambert-Torres, Luiz Eduardo Borges Da Silva, Giscard Giscard Francimeire Cintra Veloso, Levy Ely 
Oliveira, Erik Leandro Bonaldi, Fabrizio Stefani, Andrea Perrone, Luca Ratto, Ramon Francesconi, Yonmook Park, Tian 
Ran Lin, Yu Kun, Jiwen Tan

© The Editor(s) and the Author(s) 2017
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced, 
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.  
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department 
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0 
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided 
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not 
be included under the Creative Commons license. In such cases users will need to obtain permission from the license 
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be 
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those 
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published 
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the 
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2017 by INTECH d.o.o.
eBook (PDF) Published by  IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Bearing Technology
Edited by Pranav H. Darji

p. cm.

Print ISBN 978-953-51-3183-0

Online ISBN 978-953-51-3184-7

eBook (PDF) ISBN 978-953-51-4821-0



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

3,350+ 
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

108,000+
International  authors and editors

115M+ 
Downloads

We are IntechOpen,  
the first native scientific 

publisher of Open Access books

 





Meet the editor

Prof. (Dr.) Pranav H. Darji graduated in Mechanical En-
gineering from North Gujarat University, Gujarat (India), 
in 1998. He received his postgraduate degree from Gujarat 
University, Gujarat (India), in Mechanical Engineering 
specialization with CAD/CAM in 2001. He received his 
PhD degree from S. V. National Institute of Technology, 
Gujarat (India), in Mechanical Engineering in the specific 

field of Rolling-Element Bearing in 2015.  He is working as a professor and 
head in the Department of Mechanical Engineering at C. U. Shah College of 
Engineering and Technology, C. U. Shah University, Wadhwan City, Gujarat 
(India), since 2010. He has worked as an assistant professor from 2004 to 
2010 in the same organization. He has previously worked as a lecturer at N. 
M. Gopani Polytechnic Institute, Gujarat (India), from 1998 to 2002 and 
the head of the Department of Mechanical Engineering from 2002 to 2004. 
Since 2015, he is also working as a director of P. G. Studies and Research at 
Research, Development and Innovation Centre of C. U. Shah University as 
an additional responsibility and associated with various research activities. 
His research interest focuses on areas of bearing technology, tribology, CAD, 
FEA and advanced machine design. On the same area, he has published more 
than 57 research papers in various reputed national and international jour-
nals and conferences. He has edited an international book Advances in Tribo-
logy in the year 2016. He has organized many conferences and workshops for 
the benefit of the researchers, academicians and industrialists. He has guided 
more than 22 dissertations of postgraduate students. He has given more than 
12 invited presentations. 
He serves as an editorial board member of reputed international journals. He 
is a life member of professional bodies like Institution of Engineers (India), 
Tribology Society of India and Indian Society for Technical Education. He is a 
registered chartered engineer (Mechanical Engineering). 





Contents

Preface XI

Chapter 1 Comparative Analysis of Bearings for Micro-GT: An Innovative
Arrangement   1
Fabrizio Stefani, Andrea Perrone, Luca Ratto and Ramon
Francesconi

Chapter 2 Electromagnetic Levitation System for Active Magnetic
Bearing Wheels   27
Yonmook Park

Chapter 3 Condition Monitoring and Fault Diagnosis of Roller
Element Bearing   39
Tian Ran Lin, Kun Yu and Jiwen Tan

Chapter 4 Design Aspects of the Bearing Supports   77
Ismagilov Flur Rashitovich, Vavilov Vyacheslav Evgenievich and D.V.
Gusakov

Chapter 5 Bearing Fault Detection in Induction Machine Using Squared
Envelope Analysis of Stator Current   93
Valeria Cristina Maria Nascimento Leite, Jonas Guedes Borges da
Silva, Germano Lambert Torres, Giscard Francimeire Cintra Veloso,
Luiz Eduardo Borges da Silva, Erik Leandro Bonaldi and Levy Ely de
Lacerda de Oliveira





Preface

In the twenty-first century, bearings are expected to perform better in the form of various
operating conditions, that is from low speed to extremely high speed and from low load to
huge load applications. The expectations from the field of bearing technology are great. Dur‐
ing the recent years, we have been witnessing the development of a new generation of me‐
chanical systems that are highly miniaturized and very sophisticated, yet extremely robust.
Technological progress creates increasingly arduous conditions for rolling mechanisms. Ad‐
vances in many fields including aeronautics, space and atomic power involve extreme operat‐
ing speeds, temperatures and environments. Moreover, rolling bearings are used in diverse
precision machinery operations, for example, the high-load, high-temperature, dusty envi‐
ronment of steel making; the dirty environments of earthmoving and farming; the life-critical
applications in aircraft power transmissions and the extreme low to high temperature and
vacuum environments of deep space. They perform well in all of these applications.

Most information and data pertaining to the performance of rolling bearings are presented
in manufacturer’s catalogues. These data are almost entirely empirical in nature or informa‐
tion contained in International Organization for Standards (ISO) or similar publications.
These data pertain only to applications involving slow speed, simple loading and nominal
operating temperatures. If an engineer wishes to evaluate the performance of bearing appli‐
cations operating beyond these bounds, it is necessary to return to the basics of rolling and
sliding motions. Particularly since 1960, much research has been conducted for rolling bear‐
ings and rolling contact phenomena. In this modern age of deep-space exploration and cy‐
berspace, many different kinds of bearings have come into use. Each of these bearing types
excels in some specialized field of application.

Chapter 1 deals with the new concept for the design of a micro-GT support system. Instead
of using a single type of bearing as usual, the new system includes different types, in order
to take advantage of the best characteristics of each one and, simultaneously, to minimize
the effects of the relevant flaws. The second chapter presents an electromagnetic levitation
system for active magnetic bearing wheels. A meaningful electromagnetic force by using the
singular value decomposition is also derived, and numerical simulation and experimental
results on the control of the electromagnetic levitation system are discussed. Chapter 3
presents a general overview of various condition monitoring and fault diagnosis techniques
for rolling-element bearings in the current practice and shows the pros and cons of each
technique. The techniques introduced in this chapter include data acquisition techniques,
major parameters used for bearing condition monitoring, signal analysis techniques and
bearing fault diagnosis techniques using either statistical features or artificial intelligent
tools. Chapter 4 examines different types of bearing supports. Technical parameters of dif‐
ferent types of bearing supports are presented. The effectiveness of some types of bearings is



determined. General approach for the calculation of bearing overall dimensions is consid‐
ered. In Chapter 5, motor current signature analysis based on squared envelope spectrum is
applied in order to identify and to estimate the severity of outer race bearing faults in induc‐
tion machine. Bearing fault characteristic components are extracted combining summation
of phase currents, pre-whitening, spectral kurtosis and squared envelope spectrum analysis.

I have endeavoured to maintain the material presented in an up-to-date and useful format. I
hope that the readers especially young researchers and engineers in this field will find this
book as useful and informative. I feel amazing pleasure to edit this book. I would like to
express my sincere gratitude to all authors for their outstanding chapters. I also wish to ac‐
knowledge the InTech editorial staff, in particular, Mr. Edi Lipovic, Publishing Process Man‐
ager, for indispensable technical assistance in book preparation and publishing. And of
course, I would like to thank my parents, wife Veera and loving son Fagun for the support
they always gave to me—thanks for being close to me during all my life.

Prof. (Dr.) Pranav H. Darji
Professor and Head, Department of Mechanical Engineering
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Research, Development and Innovation Centre

C. U. Shah University
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Chapter 1

Comparative Analysis of Bearings for Micro-GT:
An Innovative Arrangement

Fabrizio Stefani, Andrea Perrone, Luca Ratto and
Ramon Francesconi

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67147

Abstract

Microgas turbines are a widespread technology in cogenerative and propulsion applica-
tions. Bearings are a key factor in their design and development. The aim of the pres-
ent research work is the development of the support system for a typical microturbine 
intended for power generation. To this goal, the present chapter defines the typical 
requirements of the machine and, afterward, describes the different technologies avail-
able to develop the support system of a reliable microturbine. Conventional (rolling ele-
ment and oil-film) supports and cutting-edge (magnetic, aerodynamic, and aerostatic) 
bearings are reviewed. Particularly, their suitability to the operating conditions is com-
pared by means of a literature review and elaboration of the relevant data. By analyz-
ing all this information, a new concept for the design of a micro-GT support system is 
devised. Instead of using a single type of bearing as usual, the new system includes dif-
ferent types in order to take advantage of the best characteristics of each one and, simul-
taneously, to minimize the effects of the relevant flaws. The innovative support system 
requires a suitable bearing arrangement, which is compared with the conventional ones. 
The conceptual design of the innovation is completed by a discussion of its advantages, 
drawbacks, and prospective improvements.

Keywords: microturbine, gas-turbine, bearing arrangement, bearing performance, 
foil bearings

1. Introduction

Microturbine technology owes its origins to the military and aerospace industry, where the 
need of compact and high power density engines justifies significant production and devel-
opment costs. Later, micro-gas turbine (micro-GT) units have been used in small-scale power 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



generation as well as cogeneration, and they are involved in the air compression as well as 
conditioning market. Recently, manufacturers are addressing their efforts to new market 
areas, for example, in powering hybrid electric vehicles as well as autonomous robots in the 
case of small-size machines.

In the following, such microturbines are intended as autonomous power generators. Despite 
their name, excluding portable devices and MEMS, typical shaft diameters of commercial 
microturbines are roughly 10 mm, and their electric power is in the order of 100 kW.

In the design of a microturbine, the bearing choice is not a trivial issue due to the high rotation 
speed and working temperature. In these operating conditions, the “classical” engine design 
criteria for choosing the most adequate bearing type (rolling or sliding bearings), which are 
based on dimensions and/or nominal power rate, cannot be adopted. According to such tra-
ditional design criteria, the choice for machines of small and large dimensions is unavoid-
able, i.e., rolling and sliding bearings are employed, respectively. For intermediate power 
machines, on the contrary, specific choices have to be carried out: on the one hand, rolling 
bearings have smaller overall dimensions and purchasing costs, and on the other hand, slid-
ing bearings are more reliable.

Therefore, for microturbines, a comparative analysis of the available support systems, par-
ticularly focused on studying the influence of operating conditions (speed, temperature, and 
loads), is required. Accordingly, the present chapter provides a detailed comparison of bearing 
technologies by means of literature review and analysis of published data. Cutting-edge (e.g., 
magnetic, air, and ceramic bearings) and well-established solutions (e.g., steel rolling element 
and oil-lubricated slide bearings) are both considered in order to provide a large perspective.

On the basis of such a comparative study, an innovative design of a support system for micro-
GTs capable of overcoming the limits of modern units is proposed. It employs different types 
of bearings and requires a proper design of their arrangement and coupling in order to take 
the maximum advantage of the peculiarity of each bearing. After a brief description of the 
existing bearing arrangements, the present chapter deals with the conceptual design of the 
new support system.

In synthesis, the present chapter defines the bearing requirements on the basis of design spec-
ifications of a typical micro-GT unit. Afterward, it studies the suitability of different bearing 
types for the operating condition requirements by means of a literature review. Finally, the 
innovative support system is proposed and compared with the current technical solutions.

2. Micro-GT design specifications

In a nutshell, the microturbines currently on the market have the design features described in 
the following references [1, 2]. They work according to a Brayton open cycle, which very often 
takes advantage of exhaust gases heat recuperation for air compressor discharge. The struc-
ture of these single-shaft microturbines includes an annular, or silo combustor, single-stage 
radial flow compressor as well as expander, and an optional recuperator. The electric power 
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ranges between 30 and 330 kW. They work with low pressure ratios (typically in the range 
3–5), high nominal rotation speeds (ranging between 43,000 and 116,000 rpm), and relatively 
low efficiency (17–20% for simple cycle machines and around 30% for recuperated machines). 
The design life is usually between 60,000 and 80,000 hours with overhaul [3]. Turbine entry 
temperatures range between 700 and 1000°C, while exhaust temperatures are in the range of 
260–310°C (for recuperated machines).

Accordingly, Table 1 reports the main data of a micro-GT unit designed in a previous work 
[4], which can be assumed as the typical machine and reference for subsequent calculations.

2.1. Bearing external loads

Table 2 gathers the bearing loads computed for the reference unit. The total radial load is due 
to the shaft weight, and it is directed downward. The positive direction of the axial forces 
listed in Table 2 is from compressor to turbine, as also shown by the direction of z-axis in 
Figure 1.

The total thrust load is computed as the algebraic sum of compressor and turbine axial forces. 
Both of the forces are the resultant of the axial thrusts exerted on the blades and on the back-
side of the impellers by the working fluid.

Consequently, together with the area of the impeller backside, the pressure on the clearances 
between casing cover and impeller back shroud (backside pressure) plays an important role in 
determining the nominal axial thrusts, which are plotted in Figure 1 as a function of the back-
side pressure. By means of CFD simulations, a backside pressure equal to 0.25 MPa (Case A) 
has been calculated so that both the impeller thrusts are directed toward the external side of the 
unit. Nevertheless, for different impeller geometries, which may yield different  pressure drops 
between compressor delivery and clearances, compressor, turbine, and total thrust directions 
can reverse, as shown by Figure 1, for backside pressures lower than 0.15 MPa, and as a conse-

Design variable (unit) Value

Rotational speed N (rpm) 70,000

Shaft diameter D (mm) 15

Electric power P (kW) 110

Pressure ratio 4

Inner radius of compressor blades (mm) 7.5

Outer radius of compressor blades (mm) 59

Inner radius of turbine blades (mm) 7.5

Outer radius of turbine blades (mm) 72.5

Turbine torque Mt (N m) 30

Compressor torque Mc (N m) −15

Table 1. Main data for the design of the reference micro-GT unit.

Comparative Analysis of Bearings for Micro-GT: An Innovative Arrangement
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quence, such cases (both thrusts directed toward the inner side of the machine) must be taken 
into account. To this purpose, for the same reference value of the total axial load (500 N) Case B is 
identified in Figure 1. The axial loads in both Case A and B are summarized in Table 2. An axial 
force reversal can also occur during transient operation, e.g., the start/stop phase of the unit.

Figure 1. Compressor, turbine, and total thrust acting on the shaft in nominal conditions for the reference micro-GT as 
a function of the backside pressure.

Design variable (unit) Value

Radial load (rotor weight) W (N) 40

Total thrust load (absolute value) Tref (N) 500

Axial thrust on compressor blades (N) 2100

Axial thrust on turbine blades (N) −3010

Case A Pressure on the back side of the impellers (gauge) (Pa) 250,000

Compressor thrust Tc (N) −600

Turbine thrust Tt (N) 1100

Case B Pressure on the back side of the impellers (gauge) (Pa) 80,000

Compressor thrust Tc (N) 1200

Turbine thrust Tt (N) −1700

Table 2. Loads acting on the bearings of the reference micro-GT unit.
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2.2. Bearing requirements

Requirements are related to the operating conditions of the units (operative speeds and tem-
peratures) and bearing performance (duration, load-carrying capacity, and power loss).

The high rotation speeds of micro-GT shafts yield different problems (e.g., ball spinning, cen-
trifugal loading, and skidding), which have greater effect on larger bearings. Therefore, an 
important requirement is that bearings have a high peripheral speed limit.

In the following, the effect of peripheral velocity is quantified in terms of the DN speed factor 
(where D is the diameter of the shaft housing expressed in mm, and N is the rotation speed 
expressed in rpm).

Micro-GT units must usually operate in high-speed conditions, which for rotors are usually 
characterized by speed factors ranging between 1 × 106 and 2 × 106 mm rpm. In ultra-high-
speed rotor applications DN overcomes 2 × 106 mm rpm, as in the case of mobile power sys-
tems [5], which are beyond the scope of the present paper.

Indeed, in the case of the reference microturbine, the operative speed factor is roughly 
1 × 106 mm rpm (see Table 1) so that bearings with DN limit lower than such operative value 
must be discarded.

In addition, the bearings must operate throughout the domain of possible temperature con-
ditions of the microturbine. Such temperatures range between 100 and 1000°C in nominal 
operation, while during start-up, they extend down to room temperature. Expected working 
temperature of the bearings depends on their location and relevant thermal management, 
e.g., type of cooling or vent.

Bearing duration should preferably overcome 70,000 hours (the average duration of the units) 
and should not be limited by the number of start/stop cycles so that maintenance and bearing 
replacements could be minimized.

Reasonably, predicted axial load is a magnitude order higher than radial load (Table 1). The 
former load is significant as far as metal fatigue and wear are concerned, while the latter is so 
light that it may cause stability problem at high speed in self-acting radial bearings.

Since the state-of-the-art efficiency of microturbines is quite low, bearings must not reduce 
further this value. To this goal, they should be designed for the minimum power loss (e.g., 
friction) and their possible power input should not be significant.

Finally, depending on the shaft layout, resonance eigenfrequencies usually occur at a speed 
lower than the operating one; therefore, the vibration amplitude should be limited by the 
bearing damping.

3. Bearing comparison

The adequacy of the most reliable types of bearings is studied. To this purpose, the behavior 
of the following types of bearings is analyzed:

Comparative Analysis of Bearings for Micro-GT: An Innovative Arrangement
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(1) steel rolling element bearings, lubricated by grease or oil;

(2) sliding bearings, lubricated by oil;

(3) air (film) bearings;

(4) magnetic bearings;

(5) ceramic bearings.

The first two categories include conventional bearings, taken as a reference for performance 
comparison. The last item includes rolling element bearings entirely manufactured in ceramic 
material and hybrid bearings, made up of steel rings and ceramic balls, with or without film 
coatings on the races.

Only supports based on well-established technology are analyzed, while research solutions 
(still in development), such as squeeze film bearings, hydroinertia gas bearings, ferrofluid 
bearings, and metal mesh foil bearings, are not considered.

The assessment of compliance of the different bearing types with micro-GT operating condi-
tions, including speed (DN factor), temperature, and loads, requires a proper comparison of 
literature and technical data.

3.1. Operating speed

Operative and absolute speed limits of the different bearing solutions are compared in Figure 2.

Figure 2. Maximum speed factors for different bearings.
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The speed limit of rolling element bearings is mainly due to the skidding of the elements on 
the rings [5]. Among such bearings, high-precision angular contact ball bearings by means 
of suitable tolerances, osculation, rolling element size, and number can reach the high speed 
required by micro-GT (DN > 1 × 106 mm rpm). The maximum DN reached by high-precision 
ball bearings is about 3 million mm rpm [6, 7]. Higher DN values can be reached by angular 
contact bearings by means of specific lubrication systems [8].

Manufacturer’s catalogs (SKF, Schaeffler) show that the use of ceramic balls in place of steel 
ones can yield an operating speed increase of roughly 20–30%. Such a result is confirmed by 
the data reported in reference [9], i.e., speed of hybrid bearings can be increased by 20–30% 
compared with conventional ones. Accordingly, in comparison with steel bearings, a 60% 
decrease of centrifugal load matched with the 30% load capacity reduction predicted by 
Hertz theory finally provides a maximum allowable increase in rotation speed of just 32%. It 
decreases to 10% for all ceramic bearings.

The DN operative limit reported for oil-lubricated slide bearings regards bearings of turbines 
for power generation plants [10] and for induction motors [11]. In such cases, operative speed 
is only restricted by strength limits and by the allowable temperature. In microturbine appli-
cations, the operative speed of slide bearings is also limited by their stability and suitable 
bearing geometries are required, e.g., elliptical and pocket bearings, multilobe bearings, tilt-
ing pad bearings (listed from least to most stable).

Waumans et al. [12, 13] report that the highest achieved DN-number for a self-acting bearing 
operated in air is 7.2 × 106 mm rpm. It is reached by an aerodynamic journal bearing stabilized 
by means of a grooved bush with a wave-shaped geometry as well as a flexible and damped 
support structure.

As far as foil bearings are concerned, maximum speed is relevant to a Ø8 mm bearing for 
microturbines operating up to 642,000 rpm (DN = 5,136,000 mm rpm) from results in  reference 
[14].

Among the grooved bearings, the maximum operative DN of a Herringbone grooved journal 
bearing (HGJB) with enhanced grooved geometry [15] is 2.7 × 106 mm rpm, and it is lower 
than foil bearing one. In addition, experimental results confirm that grooved hybrid bearings 
(GHBs) can run satisfactory at speeds in excess of 3.0 × 106 rpm mm. Nevertheless, such DN 
is assumed as upper speed limit for grooved bearings, as they are prone to destructive whirl 
instability at ultrahigh speed [16].

Hybrid aerostatic bearings are suitable due to both the aerostatic stabilizing effect at high 
speeds and the low air consumption, which has extremely small effect on the global efficiency 
[17]. For a proper operation, they require air supply at high speed, when it is actually avail-
able in micro-GT systems. Data relevant to the maximum speed reached by aerostatic bear-
ings refer to reference [18]. The relevant maximum operative speed is also documented in 
reference [19].

In today’s industrial applications, active magnetic bearing (AMB) rotational speeds are 
in the range of about 180,000 rpm for a grinding spindle, or about 300,000 rpm for small 
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 turbo-machinery [20]. The latter value, by assuming D = 15 mm as suggested by Table 1, 
corresponds to DN = 4.5 × 106 mm rpm, which is confirmed by the data suggested by SKF. 
Anyway, by means of carbon fiber bandages in the rotor, 6.8 × 106 mm rpm can be reached 
[19]. Such a value is a documented maximum speed for actual applications rather than a maxi-
mum theoretical limit, which is unknown as in the case of air foil bearings [21].

3.2. Operating temperature

Table 3 lists the maximum operational temperatures of the bearings.

As far as steel rolling bearings are concerned, in addition to the lubrication system and 
the lubricant characteristic, steel reaction to heat and dimensional stability influences their 
 endurance at high temperature. Generally, hardness of steel starts to decrease as temperature 
rises over 200°C. In addition, as steel heats up, phase transformation occurs and the bear-
ing parts expand. The maximum dimensionally stable temperature ranges between 120 and 
250°C, depending on steel type (source: NSK). Accordingly, a limit temperature of 180–260°C 
for rolling element bearings is indicated in reference [21]. Similarly, a 125–150°C operative 
limit for AISI 52100 bearings that can be specially stabilized up to 200°C and up to 315°C by 
using tool steel bearing materials is reported in reference [10]. The authors of reference [11] 
confirm that operative temperature is usually kept below 150°C except for heat-stabilized 
bearings.

Ceramic bearings behave better than steel rolling bearings at high temperature. Indeed, hard-
ness and strength of silicon nitride do not deteriorate at high temperatures when compared 
with those of bearing steel. Particularly, the advantage of all ceramic bearings over hybrid 

Bearing type Max operating temperature (°C)

Rolling element 125–315

Ceramic hybrid 350

Ceramic integral 800

Oil sleeve (journal) 125–150

Oil tilting pad 125–150

Hydrostatic 125–150

Magnetic (AMB) 500–600

Magnetic (PMB) 150–300

Aerodynamic, air foil 650

Aerodynamic, rigid/grooved 500

Aerostatic 900

Table 3. Maximum operating temperatures for different bearing types.
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bearings consists especially on the major capability of working in dry or underlubricated 
conditions, at high temperature (<800°C) and corrosive environment [9]. Such a suitability to 
high temperatures is confirmed in reference [10], which indicates a limit of 650°C for ceramic 
bearings with vapor phase lubrication or solid lubricants.

Hydrodynamic bearings are the most limited in operating temperature. Indeed, such a limit 
comes from bearing surface and oil endurance. Soft metal and Babbitt limit upper tempera-
tures are usually in the 125–150°C range [10]. Limit operating temperature of hydrocarbon 
oils is 93°C [22], while high temperature oils can also reach 150–200°C, e.g., silicon oils. 
Therefore, oil lubricated slide bearings are ultimately limited in temperature by bearing sur-
face resistance.

Gases can be employed as lubricants over an extremely wide range of temperatures. For gas 
bearings, operating temperature limits come from shortcomings of solid components (journal 
and bearing material), not of the lubricant. Electric motors with ceramic windings supported 
by gas bearings can work for long periods at temperature up to 500°C [23], which is assumed 
as the limit temperature for aerodynamic bearings.

Foil bearings require the use of a solid lubrication to prevent wear and reduce friction 
during instances of contact, i.e., at low-speed conditions at start-up and shutdown. Since 
common lubricants, e.g., graphite and moly-disulfide (MoS2), are limited to 150°C, solid 
lubrication is often obtained on the shaft and top foil layer by means of thin, soft polymeric 
film and sacrificial coatings. Innovative coatings, e.g., nanocomposite for journals and CuAl 
alloy for top foils, can reach temperatures as high as 650°C, which not by chance is also 
the limit operating temperature indicated for foil bearings in reference [21]. By using well-
established tribo-solutions like polymer coatings, air bearing operation is roughly limited 
below 300°C [24].

Ceramic aerostatic bearings can reach a temperature as high as 800°C [23] and, in general, 
temperatures up to 900°C and speeds up to 65,000 rpm are feasible for externally pressur-
ized gas bearings [25]. Indeed, aerostatic bearings have the highest temperature limit among 
the bearing analyzed. It is higher than temperature limit of aerodynamic bearings due to the 
external air supply, since air cools as it expands. In addition, the very low friction losses avoid 
thermal expansion due to viscous heating.

Among magnetic bearings, a great drawback of passive magnetic bearings (PMBs) comes 
from high temperature operation requirements of micro-GT systems, as permanent magnet 
stability is affected by temperature. Maximum practical operating and Curie (demagnetiza-
tion) temperatures for the major classes of permanent magnet materials are in the ranges of 
150–540 and 310–860°C, respectively. On the contrary, AMBs can work in extreme tempera-
ture environments (500–600°C) [21].

3.3. Load-carrying capacity and life

The maximum specific loads for the bearing types in analysis are summarized in Table 4.
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For rolling element bearings, the “carrying capacity” is the ability of the bearing to carry a 
given load for a predetermined number of cycles or revolutions [26].

The maximum documented specific load for rolling element bearings operating in gas tur-
bines is reported in reference [21]. Table 5 reports the durations of bearings in a shaft sup-
port system designed by means of catalog high-precision rolling bearings solely. They are 
computed according to the adjusted basic rating life [27] by using data in Table 1 and radial 
as well as thrust loads in Table 2. It is assumed that radial load is equally distributed between 
two sets of high-precision angular contact bearings and only one (locating) set carries the 
axial load in order to allow the thermal dilatation of the shaft. The solutions with both 2 and 
5 matched bearings in the sets (in tandem arrangement) that carry the axial load are not satis-
factory compared with the machine life (about 70,000 hours).

Dynamic load ratings of steel bearings can also be used for ceramic bearings of the same 
dimensions [28], since from test results and predicted values service life of ceramic bearings 
is longer than that of steel bearings, except for heavy loads.

For the remaining bearings, fatigue is not the main concern, and the external load can be 
treated as static.

Set L1 (h) L10 (h) L50 (h)

One bearing, radial load W 267,960 1,276,000 6,380,200

Two bearings, radial load W and axial load Tref 65 310 1549

Five bearings, radial load W and axial load Tref 451 2150 10,747

Table 5. Expected life for sets of angular contact high-precision bearings, carrying half of the rotor weight and, if specified, 
the axial load.

Bearing type Max service-specific load (MPa)

Rolling element 2

Ceramic hybrid 2

Ceramic integral 2

Oil sleeve 2.1

Oil tilting pad 4.4

Hydrostatic 6

Magnetic (AMB) 0.8

Magnetic (PMB) 0.4

Aerodynamic, air foil 0.7

Aerodynamic, rigid/grooved 0.1–0.2

Aerostatic 0.2

Table 4. Maximum service-specific loads for different bearing types.
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Sleeve bearings life is theoretically infinite and extremely long when they are properly main-
tained. Significant wear may occur only during extended start-up or coast-down periods, as 
mixed lubrication occurs at low speed. If the frequency of such events is high, hydrostatic 
jacking is recommended to minimize bearing wear [11].

Load capacity of oil-film bearings is basically a function of speed and oil viscosity so that 
high temperature plays a role by reducing viscosity. Many specifications limit motor bearing 
specific pressures to 1.4 MPa, which is often compliant with structural strength. Nevertheless, 
most journal bearings safely tolerate pressures beyond 2 MPa, as reported in reference [10]. 
Tilting pad thrust bearings for turbines carry further increase of specific load, and pads are 
subject to elastic deformation.

Generally, as hydrodynamic and hydrostatic bearings distribute the load over a larger area 
than rolling element bearings, their load capacity can be higher. Particularly, hydrostatic bear-
ings can support huge loads, higher than hydrodynamic supports, as their pressure distribu-
tion is more uniform.

Air (aerostatic and foil) bearings, because of the different film layer, approximately support 
only a fraction of the load carried by hydraulic bearings with the same dimension. Indeed, 
specific load capacity of air foil bearings is 0.7 MPa [21], which is roughly one-fifth of the spe-
cific load for hydrodynamic bearings (3.5 MPa, on average). Differently, specific load for aero-
static bearings is lower due to a further constraint. Indeed, aerostatic bearings are typically 
limited to operate at less than 10 atm of pressure (usually 0.69 MPa) for safety reasons and due 
to the lubricant compressibility, which yields much higher flow rates and pumping power 
demand for the same pressure in comparison with liquid lubricants [29]. Such value is much 
lower than supply pressure of hydrostatic bearings, which typically operate at 20–40 atm but 
can reach 200 atm, when space is not limited and large loads must be supported. Specific load 
capacity (load per pad area) for aerostatic and hydrostatic bearings is the efficiency multiplied 
by supply pressure, where the efficiency is typically 25–40%.

According to the basic rating life formula [27], for constant duration load-carrying capacity 
of rolling element bearings drops as speed rises. On the contrary, load capacity of foil bear-
ings is proportional to rotational speed. Hence, foil bearings outperform rolling element bear-
ings at high speeds [30] but require solid lubrication at low speed in order to reduce friction 
and wear. Particularly, conventional solid lubrication systems, i.e, thin polymer films, enable 
over 100,000 h of operation before requiring a major overhaul. Beyond the temperature limits 
of polymer coatings (300°C), innovative coatings (PS304, Korolon) have demonstrated lives 
in excess of 100,000 h start-stop cycles under moderate loads (0.34 MPa) and high tempera-
tures (ranging between 178 and 650°C) where such solid lubricants become active. However, 
bearing operating life is cut by over half (roughly 33,000 cycles) at room temperature (25°C), 
where the coating does not perform as well [24]. For low temperature start-ups, usually under 
higher loads, life may further decrease [31].

In order to characterize the behavior of foil bearings by means of a suitable map, in reference 
[32], a modified Sommerfeld number S′ is correlated with the specific power loss. Foil journal 
bearings must be designed so that they operate in the high speed (or lightly loaded) regime 
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(S′ > 6) of the operating map plotted in Figure 3 in agreement with the suitable regression 
proposed by the reference authors. Particularly, the nominal working point should be located 
in the high-speed (lightly loaded) regime, but significantly far from the shaft strength and 
thermal limits (specific power loss lower than 155,000 W/m2).

In order to locate in the operating map the nominal working point of a single radial foil 
 bearing supporting the reference microturbine shaft, the data reported in Table 1 are 
used together with unit (axial) length to diameter ratio (L/D = 1), load coefficient equal to 
2.7 × 10−4 N/(mm3 krpm) (third-generation bearings) and isoviscous behavior assumption. 
In addition, the total load is approximated by the external one (40 N) as first estimate. By 
means of such assumptions, the assessment of S′ according to reference [32] suggests that 
the working conditions are not suitable (S′ = 1.6 < 6). Therefore, the journal diameter must be 
increased (optimal values range between 25 and 40 mm, as suggested in Figure 3). Indeed, 
transitioning over to oil-free lubrication requires suitable design solutions in that thin shafts 
are not required anymore to avoid rolling element bearings from operating above their DN 
threshold. On the contrary, large diameter hollow shafts must be used in order to increase the 
peripheral speed and, as a consequence, the load capacity of air bearings [31].

As far as the remaining air film bearings are concerned, the different fluid film bearing 
designs (multilobe and tilting-pad geometries) achieve better stability than plain bearings 
at the expense of load-carrying capacity. On the contrary, gas-lubricated grooved bearings 
promise stability with minor reduction of lift [33].

Figure 3. Performance map of foil bearings and operating points of the reference micro-GT for different journal diameters.
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Magnetic bearings have advantageous load-carrying characteristics, whereas load does 
not drop as speed decreases. Nevertheless, if the electromagnets are unable to support the 
applied load because they are undersized or malfunctioning, the shaft cannot be levitated 
and the machine shuts down [34]; therefore, backup bearings are required to protect the rotor 
against overloads and power loss.

Reasonable specific loads for AMBs range between 0.3 and 1 MPa. Particularly, the maximum 
specific load value reported in Table 4 is suggested for AMBs in reference [21] on the basis of 
the data published in references [35, 36].

For a stacked structure of PMB fabricated using neodymium-iron-boron magnets with a 
remanence of 1.3 Tesla (42 MGOe magnetic field), the maximum specific load, referred to 
the axial cross section (LD), is roughly 0.4 MPa and the corresponding axial specific load is 
0.6 MPa [37].

Life expectancy of passive bearings is very high, i.e., in excess of 20 years. As AMBs include 
more components (controllers, coils, and sensors) and a laminated rotor, their life is expected 
to be shorter but, anyway, AMBs can still last 20–30 years with proper substitutions of failed 
components.

4. Innovative support system

The conclusion of the review study is that each bearing type has different strengths and weak-
nesses. Therefore, by using different types of bearings in the same support system, a proper 
design of their arrangement should be capable of taking the maximum advantage of the pecu-
liarity of each bearing.

To this end, the conceptual design of an innovative support system, which takes advantage of 
both foil and rolling element bearings, is presented.

4.1. Layout and components

A simplified scheme of the assembly of the cutting-edge support system is depicted in 
Figure 4. In the simplified scheme of the invention used, hereafter load direction is assumed 
as in the Case B of Table 2.

The angular contact ball bearing (3), at the compressor side (Figure 4), is capable of carry-
ing both radial and axial loads. As axial load may reverse during start-up of the unit, the 
 bearing must have double effect, i.e., it is made up of two (or more) matched single-row bear-
ings in back-to-back arrangement. Although four-point contact ball bearings are normally 
not available for precision (high speed) applications, a single bearing is depicted in Figure 4 
for the sake of conciseness of the scheme and clarity. As shown in Figure 5, such a bearing is 
mounted by inserting the external ring inside a suitable bore on the machine frame (9) and by 
placing the inner ring onto the relevant seat on the shaft with proper tolerances. Particularly, 
the outer ring must be axially constrained in order to carry thrust loads (locating bearing).
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Figure 5. Ball bearing seat and spline coupling at compressor side.

Figure 4. Simplified assembly of the innovative support system.
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Figure 4. Simplified assembly of the innovative support system.
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A possible second radial support (always of rolling element type, e.g., a set of angular contact 
ball bearings in back-to-back arrangement) has not been included in Figure 4 for simplicity. 
Nevertheless, it would be useful to avoid that the shaft is in a cantilever configuration, and 
it should be able to carry radial load solely. Therefore, such additional radial bearing should 
not be constrained axially to the housing on the frame (nonlocating bearing) so that the axial 
thermal expansion of the shaft would be allowed.

The plate of the foil bearing, i.e., component (4) listed in Figure 4, is fixed to the frame as 
shown in Figure 6, where the runner surface is located on the back of the turbine rotor (1) 
and the opposite sliding pairs, runner (11) and pads (12), are separated by the clearance cz. 
A suitable spacer (10) must allow a proper adjustment of the clearance (or preload in static 
conditions) to ensure optimal operation of the foil bearing.

When the foil bearing has no aerodynamic load-carrying capacity, the turbine thrust acts on 
the shaft shoulder (8). Differently, after an air film is formed and the relevant aerodynamic 
pressure is generated, its micrometric thickness causes the runner/impeller assembly (1) to 
move accordingly in the axial direction so that the contact between the turbine impeller hub 
and the shaft shoulder does not occur anymore. Consequently, in nominal conditions and 

Figure 6. Foil air bearing installation and adjustment.
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starting from the rotation speed at which the runner is airborne, the only axial load transfer 
from the turbine to the shaft may occur through the helical spline coupling, as a function of 
the design helical angle.

Figure 4 also illustrates the coupling between the impeller hubs and the shaft (5). The com-
pressor impeller (2) is fixed by means of a conventional spline pair (7) (made up by equally 
spaced straight grooves), the profile of which is depicted with parallel sides (or straight teeth). 
Differently, on the turbine side, a helical spline pair (6) (in which each groove forms a helix 
around the shaft) is machined. Such particular spline fit provides the additional function of 
axial load distributor. Of course, involute instead of parallel-side profiles may be chosen for 
both compressor and turbine wheel spline pairs. The purpose of the helical spline pair is to 
distribute the axial load between main (4) and auxiliary (3) thrust bearings, as explained in 
the following paragraphs.

4.2. Main thrust bearing relief

The innovative layout and, particularly, the direct matching of turbine impeller and main 
thrust bearing (4) allow for its relief during start/stop of the unit.

With reference to thrust loads and symbols given in Table 2 (Case B), let Ft = −Tt and Fc = Tc be 
the turbine and compressor thrusts, respectively (Figure 7). They are caused by the pressure 
of the evolving fluid on the relevant impellers.

At start-up and until the onset of the aerodynamic lift, the auxiliary bearing (3) carries the 
whole thrust so that the main thrust bearing (4) is unloaded, and therefore, it works with 
minimal or no wear. Indeed, in such a condition, the turbine impeller (1) exerts the thrust Ft on 
the shaft shoulder (8) (visible in Figures 4 and 6) instead of on the foil bearing (4). Through the 
shoulder and the shaft, the thrust Ft is then transferred to the shaft support, i.e., the auxiliary 
bearing (3), like in a conventional bearing layout. Once the runner of the main bearing becomes 

Figure 7. Static scheme (axial forces) of the innovative rotor operating in nominal conditions.
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airborne at sufficient speed and a consequent translation of the turbine impeller occurs, auto-
matically it relieves the auxiliary one, as the shaft shoulder (8) does not receive thrust anymore.

4.3. Load partition

According to the explanation of the previous paragraph, in nominal working conditions with 
no helical spline fit (e.g., by adopting a straight grooved spline on turbine-side too), the whole 
thrust of the turbine Ft would be carried by the main thrust bearing and the compressor thrust 
Fc would be supported by the auxiliary bearing. In a conventional shaft-bearing assembly, the 
reference thrust Tref that loads the single axial bearing comes from the opposite thrusts exerted 
by turbine and compressor, i.e., Tref = Ft−Fc. Therefore, during nominal operation in compari-
son with a conventional support system, the new assembly design would disadvantage the 
main thrust bearings, whereas Ft > Tref. Differently, by taking advantage of the (turbine-side) 
helical spline pair as an actuator, a part of the turbine thrust can be transferred from the hub 
to the shaft. In such a way, any wanted division of the thrust load between the two (main (4) 
and auxiliary (3)) bearings can be obtained as a function of a single design parameter, i.e., the 
spline helix angle β shown in Figure 8.

Particularly, by means of a suitable choice of the helix angle in the design phase, in nominal 
conditions, it is also possible to subject the main axial bearing to a thrust Tref as in a conven-
tional support system, while the auxiliary bearing remains axially unloaded. In such a case, 
as this support is an angular contact ball bearing, it carries solely the radial load, the intensity 
of which is much lower than the axial loads. Obviously, this is only an example of load divi-
sion. The new layout allows us the setting of the optimal load division in the design phase as a 
function of the load-carrying characteristics of the bearings, as well as expected duration and 
reliability of rolling element supports.

Figure 8. Helix angle and reference system of spline coupling.
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4.4. Law of load distribution

First, the law of load distribution followed during nominal operation by the helical spline 
pair, employed as a mechanical actuator besides a simple coupling system, is determined.

Figure 7 depicts the forces acting in nominal conditions on the rotor components according to 
the modifications resulting from the innovation. The constraint simulates the main axial bear-
ing (4), which carries the load Ft−R. The axial forces R are the (equal) action and reaction that 
the turbine impeller exerts on the shaft through the helical spline. The total thrust that acts on 
the shaft is Fc−R and is carried by the auxiliary axial bearing (3). The torque Mt is the resisting 
torque of the turbine due to the pressure exerted on the relevant blades.

A campaign of FEM structural analyses has been carried out on a model of helical spline 
coupling (Figure 9) with parallel-side profiles by varying the design helix angle β from 45 to 
135°. Reference system and helix angle β of the spline coupling model are shown in Figure 8. 
In agreement with the helix angle definition, the middle of the range (β = 90°) corresponds to 
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means of contact elements. Two load cases are analyzed, where the hub section of one model 
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of the kinematic pair. In other words, if the hub and the shaft were perfectly stiff, the turbine 
thrust would not be transmitted at all to the shaft through the spline surfaces, but it would 
be carried by the constraint (4), i.e., the main axial bearing. Second, the load transfer R from 
the hub to the shaft through the spline due to the torque Mt is actually ruled by the following 
relationship, valid for a spline pair with perfectly stiff members

  R =   
 M  t   ______  r  p   tan β    (1)

where rp is either the pitch radius in case of involute splines or the inner radius for parallel 
key splines.

Figure 10 compares the shaft and hub reactions computed by means of Eq. (1) and the FEM 
model with frictionless contact elements (torque load case). The shaft thrust is the reaction that 
the constraints exert on the grooved part of the shaft, and it represents the load transfer R from 
the hub to the remaining part of the shaft through the spline surfaces. The hub thrust is equal 
and opposite according to Newton’s third law. Therefore, in case of compliant members, the rule 
defined by Eq. (1) is still valid with negligible error (0.6% of the transmitted load for β = 135°). 
Equivalently, the compliance of the kinematic pair members does not yield perceivable effects 
for the nominal value of torque Mt. Details of the FEM analyses will be published in the near 
future.

4.5. Design of the support system

In the following, the above-explained laws of load distribution are used to choose the design 
parameters in the assumption, adopted for the sake of simplicity, that the members of the 
spline pair are stiff. Such an assumption does not lead to significant errors, as proved above. 

Figure 10. Reactions of shaft and hub constraints for different helix angles under torque load.
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By means of the resulting design procedure, the load distribution in nominal operating 
 conditions between the two axial bearings can be set by means of a proper choice of the  helical 
angle. To this purpose, Figure 11 shows for the data reported in Tables 1 and 2 (Case B) the 
load transfer through the coupling together with the corresponding axial loads of the bear-
ings as a function of the helix angle β in nominal working conditions.

By assuming that positive torque acts on a turbine impeller (M = Mt > 0), handedness of the 
helix must be chosen so that the load transfer R is directed as in Figure 7. In other words, the 
spline coupling must exert (equal) axial forces R opposite to Ft and Fc on the hub and the shaft, 
respectively. According to Eq. (1), such a condition yields that the range of helix angle in the 
abscissa of the plot in Figure 11 cannot exceed 90°.

The load transfer R (thick solid curve) is plotted in Figure 11 according to Eq. (1). On the basis 
of its trend, the axial thrusts Fa and Fs that turbine and shaft, respectively, exert on the main 
bearing (4) and on the auxiliary bearing (3) are plotted as dashed and dash-dotted curves. 
They are evaluated by means of the relations Fa = Ft−R and Fs = Fc−R, which can be deduced 
by the analysis of Figure 7, where turbine and compressor thrusts Ft and Fc are obviously 
constant in nominal operating conditions. The gray solid horizontal line represents the value 
of the reference load Tref = Ft−Fc, which has to be carried by the single thrust bearing of a 
conventional machine. As reported in the paragraph dealing with layout and clearly visible 
in Figure 11, when a straight grooved spline (β = 90°) is picked, the load acting on the main 
axial bearing (4) is greater than in a conventional plant. Indeed, it is equal to the total turbine 
thrust Ft, while the auxiliary axial bearing (3) supports the compressor thrust Fc. By reducing 
the helix angle, the loads acting on both bearings begin to decrease, since the helix is oriented 
in such a way as to exert on the shaft and the turbine impeller a thrust R opposite to Fc and 
Ft, respectively (Figure 7). Particularly, by choosing β roughly equal to 74°, the main axial 
bearing (4) must carry the reference load (Fa = Tref), while the auxiliary one is axially unloaded 
and, therefore, since it is only subjected to the (light) radial load, it will have an average life 
exceeding 6 million hours, as specified in the first row of Table 5. Differently, for design val-
ues of β ranging between 68 and 74°, the load of the main bearing (4) becomes lower than the 

Figure 11. Trends of axial bearing thrusts and load transfer as a function of helix angle in nominal operating conditions.
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reference one, at the expense of the duration of the auxiliary bearing (3), on which the shaft 
exerts a negative thrust Fs (directed from the turbine to the compressor). For β = 68° the load 
on the main axial bearing (4) is null and, consequently, the thrust exerted by the shaft on the 
auxiliary bearing (3) assumes its maximum value, i.e., Fs = −Tref. In such a condition, the rolling 
element bearing (3) exhibits the same duration as in a conventional layout (e.g., see the basic 
rating life reported in the last two rows of Table 5). Obviously, since in the simplified layout 
of Figure 4, the main foil bearing is not of double effect, helix angles lower than 68°, which 
moreover would lead to an even more unsuitable life of the auxiliary bearing, are forbidden. 
A good design may require a helix angle slightly reduced in comparison with a value of 74°, 
where the amount of such reduction can be evaluated by taking into account the life and the 
reliability required for the bearing (3). In the design range, the highest life/reliability of auxil-
iary bearing (3) is obtained for β = 74°, while the lowest one, typical of a conventional layout, 
for β = 68°; the most severe loading case for the main axial bearing (4), equivalent to that of a 
conventional layout, occurs at β = 74°, the most favorable one (zero thrust) at β = 68°.

Finally, the actual assembly drawing of the invention, suited to both Cases A and B of Table 2 
as well as transient loading conditions, is reported in Figure 12. In this case, the total hot 
clearance between runner (11) and pads (12) of the double-effect air bearing must be higher 
than that between turbine impeller (1) and the spacer (13) used to adjust the impeller axial 
clearance. The second set of (nonlocating) angular contact bearings (14) cited in paragraph 
4.1 is added.

Figure 12. Section of the micro-GT support system assembly designed according to the invention.
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5. Conclusions

For adoption in microturbines, the only conventional rolling element supports selected from 
manufacturers’ catalogs (without including ad hoc solutions) compatible with the speeds 
at the hand are high-precision angular contact ball bearings, preferably with ceramic parts. 
Particularly, hybrid bearings allow for a perceivable increase in maximum speed, while all 
ceramic bearings can reach the high operative temperatures suitable for micro-GT units.

Air supports (hybrid aerostatic as well as aerodynamic) are the most suited oil-free solution for 
this application. They offer the best compromise between installation costs and performance 
for micro-GT systems. Aerodynamic bearings are preferred since they need no external sup-
ply of pressurized gas (e.g., tapped from the compressor) as they are self-acting. Particularly, 
foil bearings have good stability and compensate for shaft thermal expansion. Their main 
drawback is the short phase of dry friction during start up and stop, which limits their life.

Magnetic bearings are another promising oil-free solution. PMBs are suitable for speed and 
ease of miniaturization as well as independence from external energy input, but the high 
temperature limits the use of permanent magnets in microturbines since these could demag-
netize. Consequently, electromagnets must be employed, although they consume a consider-
able amount of electrical energy. AMB remains the most suitable magnetic-driven solution 
because of high speed, temperature, and the control of machine dynamics.

The comprehensive comparison among the different reliable technologies carried out in the 
first part of this chapter proves that the design of an optimal support system might employ 
different type of bearings. Indeed, each of them have peculiar capabilities and limits, which 
make them suitable for particular tasks, e.g., carrying high load continuously or low load dur-
ing frequent start/stops, working at high or low temperature, etc.

An innovative support system that relies on air as well as rolling element bearings and 
employs spline couplings has been proposed. The particular bearing arrangement devised for 
the new system is capable of taking advantage of the best characteristics of both bearing types 
and, simultaneously, of minimizing the effects of their flaws. Particularly, rolling element 
bearings behave much better than air bearings during start-stops but ensure limited duration 
under nominal load and speed of the most efficient micro-GT units. On the contrary, (air) foil 
bearings provide suitable life and load-carrying capabilities in nominal working conditions 
but cannot withstand a large number of start-stop cycles of the units. Therefore, the proposed 
system is designed to switch between the two types of bearings automatically when the unit 
ends the transient operation. In addition, it employs helical splines as both convenient cou-
pling systems and actuators for the load partition between the two bearing types. Indeed, 
partitioning the turbine thrust is required in order to optimize the behavior of the support 
system.

The invention performs better than conventional support systems based on rolling element 
bearings, since it radically increases bearing life or load-carrying capacity as well as work-
ing temperature. In comparison with modern systems based on foil bearings, the invention 
is advantageous in that the number of start-stop cycles of the machine is not limited, solid 
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 lubrication is not required, the power of the starter can be reduced and retrofitting conventional 
machines based on rolling element bearings is possible. In any case, replacing shrink fittings 
with spline couplings can simplify maintenance and inspection of the impellers. Although 
the proposed support system is not oil-free, the concepts used in its development might be 
adopted in order to match other type of bearings. For instance, combining thrust foil bearings 
and radial magnetic bearings may yield an oil-free design with still higher performance.
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Abstract

In this chapter, the author presents an electromagnetic levitation system for active 
 magnetic bearing wheels. This system consists of a rotor, a shaft, a cover, and a base. The 
author derives a meaningful electromagnetic force by using the singular value decompo‐
sition. The author develops a control system using the proportional‐integral‐derivative 
controller to control the position of the rotor and regulate the two gimbal angles of the 
rotor. The author gives the numerical simulation and experimental results on the control 
of the electromagnetic levitation system.

Keywords: active magnetic bearing, electromagnetic levitation system, motion control

1. Introduction

As a reaction wheel in spacecraft, a ball bearing wheel, a magnetic bearing wheel, and an active 
magnetic bearing wheel have mainly been used. First, a ball bearing wheel uses a ball bearing 
to maintain the separation between the bearing races. Ball bearings reduce rotational friction 
and support radial and axial loads by using at least two races to contain balls and transmit 
the loads through balls. Ball bearings tend to have a lower load capacity than other kinds of 
rolling element bearings mainly due to the small contact area between balls and races. Also, 
ball bearings should be lubricated periodically with a lubricant such as oil and grease for ball 
bearings to operate properly [1]. Next, a magnetic bearing is used in a magnetic bearing wheel. 
A magnetic bearing supports a load by the magnetic levitation principle. In magnetic bearing 
wheels, permanent magnets are used to carry a wheel, a control system is used to hold a wheel 
stable, and power is used when a levitated wheel deviates from its target position. A magnetic 
bearing wheel also requires a back‐up bearing in case of control system or power failure and 
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during initial start‐up conditions. A magnetic bearing has two kinds of instabilities. One is 
that attractive magnets provide an unstable static force that decreases at distant distances and 
increases at close distances. The other is that magnetism gives rise to oscillations that may 
cause loss of suspension if driving forces are present [1]. Finally, in an active magnetic bearing 
wheel, a rotating shaft is levitated by the principle of electromagnetic suspension. A wheel 
is supported in an active magnetic bearing wheel without physical contact. The contactless 
operation of the active magnetic bearing wheels eliminates the need of lubrication of the bear‐
ing components, which allows them to operate cleanly. Moreover, it can accommodate irregu‐
larities in the mass distribution automatically, which allows it to spin around its center of mass 
with very low vibration, and can suppress the nutation and precession of the rotor effectively. 
The components of an active magnetic bearing wheel are an active magnetic bearing, a wheel, 
a control system, an electromagnet assembly, power amplifiers, and gap sensors. This bias 
current is mediated by a control system that offsets the bias current by equal but opposite 
perturbations of current as the rotor deviates by a small amount from its center position [1].

The active magnetic bearing wheel exhibits very lower vibration than ball bearing wheels 
and magnetic bearing wheels. Thus, it is a desirable reaction wheel for the spacecraft attitude 
control since vibration is the critical factor for the high precision spacecraft attitude control. 
The active magnetic bearing is the very important component among components of active 
magnetic bearing wheels. Due to this importance, various kinds of active magnetic bearings 
have been developed and their control methods have been studied (e.g., [2–10]).

In this chapter, the author presents an electromagnetic levitation system for active mag‐
netic bearing wheels. This system consists of a rotor, a shaft, a cover, and a base. Also, 
this system does not include a mechanism for spinning the rotor around its rotating axis. 
The author derives a meaningful electromagnetic force by using the singular value decom‐
position [11]. The proportional‐integral‐derivative (PID) controller is used to control the 
position of the rotor and regulate the two gimbal angles of the rotor. The author gives the 
numerical simulation and experimental results on the control of the electromagnetic levita‐
tion system.

2. Electromagnetic levitation system

In Figure 1, the schematic of the electromagnetic levitation system developed in this chapter 
is given. The cover protects the rotor, and the base supports the rotor, shaft, and cover. This 
system can levitate the rotor up to 0.8 mm from the ground in the z‐axis, rotate the rotor, and 
gimbal the rotor within a small angle of ±0.2°.

The dynamic equations of motion of the electromagnetic levitation system are given as follows:

  m z  ¨   =    F  z    (1)

  I ɸ ¨    =    T  x    (2)

  I   θ  ̈  =    T  y    (3)
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In Eqs. (1)–(3), φ and θ are the gimbal angles of the rotor in the x‐ and y‐axes, respectively, z 
is the displacement of the rotor in the z‐axis, Fz is the control force in the z‐axis, Tx and Ty are 
the control torques applied to the rotor in the x‐ and y‐axes, respectively, m = 0.72 kg is the 
mass of the rotor, and I = 877.367 × 10‐6 kg m2 is the inertia of the rotor for the x‐ and y‐axes.

Let us consider the four pairs of electromagnets shown in Figure 1. Then, the control inputs 
Fz in Eq. (1), Tx in Eq. (2), and Ty in Eq. (3) can be represented as follows:

    ∑  
i=1

  
4
    F  ei     =    F  z     +  mg  (4)

   D  e    (   F  e2     −    F  e4   )     =    T  x    (5)

   D  e    (   F  e3     −    F  e1   )     =    T  y    (6)

In Eqs. (4)–(6), Fei is the electromagnetic force generated by the ith pair of electromagnets, and 
g = 9.8 m/s2 is the acceleration of gravity. Then, Eqs. (4)–(6) can be written as follows:

  A  F  e     =  u  +    u  g    (7)

where

  A  ≜    
[

    
1

  0  
−  D  e  

    
1

   D  e    
0

     
1

  0  
 D  e  

    
1

  −  D  e    
0

    
]

     (8)

Fe  ≜ [ Fe1 Fe2 Fe3 Fe4]T, u  ≜    [Fz Tx Ty]T, and ug  ≜    [mg 0 0]T. After designing the control inputs 
Fz, Tx, and Ty, the four electromagnetic forces Fei, i = 1,…,4 have to be determined by Eq. (7). 
Among solutions for Eq. (7), the minimal norm solution is derived by using the singular value 
decomposition [11]. Let the singular value decomposition of the matrix A ∈ R3×4 in Eq. (8) be 
UΣVT and define

   A   +    ≜   VΣ   +   U   T   (9)

Figure 1. Schematic representation of the electromagnetic levitation system.
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where U∈ R3×3 and V ∈ R4×4 are orthogonal matrices, Σ ∈ R3×4, and A+ ∈ R4×3 and Σ+ ∈ R4×3 denote 
the pseudoinverse matrices of the matrices A and Σ, respectively. With some calculations, we 
obtain the following by the singular value decomposition of the matrix A in Eq. (8)

  V  =     1 __ 2      
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⎣
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     (10)
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[
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In Eq. (11), 01×3 implies the 1 × 3 zero matrix. Then, with A+ of Eq. (9), we obtain

   F  e     =    A   +   (  u  +    u  g   )     =    

⎡

 ⎢ 

⎣

   
 

  1 _ 4    (   F  z     +  mg )     −     1 _ 2     
 T  y   _  D  e  

    

     1 _ 4    (   F  z     +  mg )     +     1 _ 2     
 T  x   _  D  e  

     

  1 _ 4    (   F  z     +  mg )     +     1 _ 2     
 T  y   _  D  e  

  

  
   

  1 _ 4    (   F  z     +  mg )     −     1 _ 2     
 T  x   _  D  e  

  

   

⎤

 ⎥ 

⎦

     (13)

The following condition holds for any other solution    F 
^
    
e
      to Eq. (7) [12]

   ‖F  e    ‖  2     <  ‖   F 
^
    e   ‖    2    (14)

where ‘   ‖   ⋅  ‖    
2
   ’ denotes the Euclidean norm of a vector (i.e., for a vector x ∈ Rn,   ‖x‖  

2
     ≜    √ 

_____
   ∑  

i=1
  

n
    x  

i
  2    ).

Since the two gimbal angles, φ and θ, are very small, we can approximate sin(φ)  ≅  φ and sin(θ)  ≅  θ 
by the small‐angle approximation. Thus, the displacement from the bottom surface of the ith gap 
sensor to the top surface of the rotor in the z‐axis can be calculated as follows:

   l  g1     =    L  g1     +  δ  L  g1     =    L  g1     −  z  +    D  g   sin   (  θ )    −  D  g   sin   (  φ )    ≅    L  g1     −  z  +    D  g   θ  −    D  g   φ  (15)

   l  g2     =    L  g2     +  δ  L  g2     =    L  g2     −  z  −    D  g   sin   (  θ )    −  D  g   sin   (  φ )    ≅    L  g2     −  z  −    D  g   θ  −    D  g   φ  (16)

   l  g3     =    L  g3     +  δ  L  g3     =    L  g3     −  z  −    D  g   sin   (  θ )    +    D  g   sin   (  φ )    ≅    L  g2     −  z  −    D  g   θ  +    D  g   φ  (17)

   l  g4     =    L  g4     +  δ  L  g4     =    L  g4     −  z  +    D  g   sin   (  θ )    +    D  g   sin   (  φ )    ≅    L  g4     −  z  +    D  g   θ  +    D  g   φ  (18)

Then, from Eqs. (15) to (18), the system state z, φ, and θ can be calculated as follows:

  z =     1 __ 4    (    ∑  
i=1

  
4
    L  gi     −     ∑  

i=1
  

4
    l  gi   )      (19)

  φ  =     1 ___ 4  D  g  
    [    (   l  g3     +    l  g4     −    l  g1     −    l  g2   )     −    (   L  g3     +    L  g4     −    L  g1     −    L  g2   )    ]     (20)
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  θ =     1 ___ 4  D  g  
    [    (   l  g1     +    l  g4     −    l  g2     −    l  g3   )     −    (   L  g1     +    L  g4     −    L  g2     −    L  g3   )    ]     (21)

Similarly, the displacement from the bottom surface of the ith pair of electromagnets to the 
top surface of the rotor in the z‐axis can be calculated as follows:

   l  e1     =    L  e1     +  δ  L  e1     =    L  e1     −  z  +    D  e   sin   (  θ )     ≅    L  e1     −  z  +    D  e   θ  (22)

   l  e2     =    L  e2     +  δ  L  e2     =    L  e2     −  z  −    D  e   sin   (  φ )     ≅    L  e2     −  z  −    D  e   φ  (23)

   l  e3     =    L  e3     +  δ  L  e3     =    L  e3     −  z  −    D  e   sin   (  θ )     ≅    L  e3     −  z  −    D  e   θ  (24)

   l  e4     =    L  e4     +  δ  L  e4     =    L  e4     −  z  +    D  e   sin   (  φ )     ≅    L  e4     −  z  +    D  e   φ  (25)

By the Maxwell's equation [13], the following equation is obtained for the control currents 
supplied to the coils of the four pairs of electromagnets

   i  i     =     
2  l  ei   ___ n    √ 

____

   
 F  ei   ____  μ  0   G     ,  i  =  1, … , 4  (26)

where μ0 = 4π × 10‐7 N/A2 is the permeability constant of free space, n = 240 is the number of 
coil turn, ii is the control current of the ith pair of electromagnets, and G = 50.265 × 10‐6 m2 is 
the cross‐sectional area of a pair of electromagnets. The author limits each control current in 
Eq. (26) by 1 A.

3. Numerical simulation and experimental results

The author gives the numerical simulation and experimental results on the control of the 
electromagnetic levitation system in this section.

The author uses the following discretized PID controller to control the displacement of the 
rotor in Eq. (19) and the two gimbal angles of the rotor in Eqs. (20) and (21).

  u  (  t )     =    K  p    x  e    (  t )     +    K  i    T  s    ∑  
i=o

  
t
    x  e  (i )   +    K  d     

 (   x  e    (  t )     −    x  e  (t − 1 ) )  
  ____________  T  s  

    (27)

where Ts is the sampling time and given by Ts = 1 ms, xe ≜ xt − x is the error between the sys‐
tem state x ≜ [z φ θ]T and the target system state xt ≜ [zt φt θt]T and Kp ≜ diag[Kpz, Kpφ, Kpθ], 
Ki ≜ diag[Kiz, Kiφ, Kiθ], and Kd ≜ diag[Kdz, Kdφ, Kdθ] denote the 3 × 3 diagonal positive definite 
matrices.

The target position and target gimbal angles of the rotor are set to be zt = 0.3 mm and φt = 0° 
and θt = 0°, respectively. The author initially decides the feedback gains of the PID controller 
in Eq. (27) that can achieve the control objective by adopting the well‐known Ziegler‐Nichols 
method [14] and then finely tunes the feedback gains of the PID controller in Eq. (27) by an 
experiment. Also, the antiwindup compensator is used to make the overshot as small as pos‐
sible. According to the Ziegler‐Nichols method [14], first, Ki = Kd = diag[0, 0, 0] are set, and the 
proportional gain Kp is then increased until the system just oscillates. The proportional gain 
is then multiplied by 0.6, and the integral and derivative gains are calculated as Kp = 0.6 Km,  
Ki = Kp(ωm/π), and Kd = Kp(0.25 π/ωm) where Km ≜ diag[Kmz, Kmφ, Kmθ] denotes the 3 × 3 diagonal 
positive definite matrix with the gain elements at which the proportional system oscillates, 
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and ωm  ≜  diag[ωmz, ωmφ, ωmθ] denotes the 3 × 3 diagonal positive definite matrix with the oscil‐
lation frequency elements. As a result, the feedback gains of the PID controller in Eq. (27) are 
chosen as follows: Kpz = 1000, Kpφ = Kpθ = 20, Kiz = 5000, Kiφ = Kiθ = 8.33, Kdz = 100, and Kdφ = Kdθ 
= 0.013. Consequently, we see that the dominant feedback gains in this PID controller are Kp 
and Ki, and thus, one can obtain Kmz ≅ 1666.67, Kmφ = Kmθ  ≅  33.33, ωm ≅ 15.71 rad/s and ωmφ = 
ωmθ ≅ 1.31 rad/s.

The control flow diagram of the system is shown in Figure 2. After we measure the displace‐
ments from the bottom surfaces of the four gap sensors to the top surface of the rotor, we cal‐
culate the displacement of the rotor and the two gimbal angles of the rotor by Eqs. (19)–(21), 
respectively. The control input u ≜ [Fz Tx Ty]T is made by the PID controller in Eq. (27). Then, 
we calculate the four electromagnetic forces and the displacements from the bottom surfaces of 
the four pairs of electromagnets to the top surface of the rotor by Eq. (13) and the Eq. (22)–(25), 
respectively. After we calculate the control currents by Eq. (26), they pass through the current 
limiters and are supplied to the coils of the four pairs of electromagnets by the power electronics.

In the numerical simulation, it will be demonstrated that the electromagnetic force Fe of 
Eq. (13) satisfies the condition of Eq. (14) with respect to the following electromagnetic force 
   F 
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   , which is another solution to Eq. (7)
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Figure 2. Control flow diagram of the electromagnetic levitation system.
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With the initial system state given by zini = 0 mm,    z ̇    
ini

     = 0 mm/s, the values are φini = θini = 0° 
and    φ ˙    

ini
     =    θ ˙    

ini
     = 0°/s. In Figures 3–5, the numerical simulation results on the control of the 

electromagnetic levitation system using Fe of Eq. (13) and    F 
^
    
e
    of Eq. (28) are shown. As shown 

in Figure 3, the rotor reaches the target position zt = 0.3 mm, and the control forces using Fe 
of Eq. (13) and    F 

^
    
e
    of Eq. (28) show the same behaviors, respectively. In Figure 4, we see that 

each control current using Fe of Eq. (13) reaches the same value, the control currents of i1 and 
i3 using    F 

^
    
e1

    and    F 
^
    
e3

    of Eq. (28), respectively, reach the same value, and the control currents of i2 
and i4 using    F 

^
    
e2

      and    F 
^
    
e4

      of Eq. (28), respectively, reach the same value. In Figure 5, we see that 
the Euclidean norm of Fe of Eq. (13) is about 3.162 times smaller than that of    F 

^
    
e
    of Eq. (28) in the 

steady‐state region. Therefore, the numerical simulation results shown in Figure 5 illustrate 
that Fe of Eq. (13) satisfies the condition of Eq. (14) with respect to    F 

^
    
e
    of Eq. (28).

The experimental results on the control of the system using Fei, i = 1,…,4 of Eq. (13) are shown 
in Figures 6–9. As shown in Figures 6 and 7, the PID controller successfully levitates the rotor 
at the target position zt = 0.3 mm with well regulating the two gimbal angles. The trajectories 
of control currents are shown in Figure 8. And the Euclidean norm of Fe of Eq. (13) is shown in 
Figure 9. As shown in Figures 4, 5, 8, and 9, the trajectories of control currents and Euclidean 
norm of Fe of Eq. (13) obtained by the experiment move around the values obtained by the 
numerical simulation.

Figure 3. Time histories of the position of the rotor and the control force, which are obtained by the numerical simulation.
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Figure 5. Time histories of the Euclidean norm of the electromagnetic force, which are obtained by the numerical 
simulation.

Figure 4. Time histories of the control currents, which are obtained by the numerical simulation.
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Figure 4. Time histories of the control currents, which are obtained by the numerical simulation.
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Figure 6. Time histories of the system state of the electromagnetic levitation system using Fe of Eq. (13), which are 
obtained by the experiment.

Figure 7. Time histories of the control inputs of the electromagnetic levitation system using Fe of Eq. (13), which are 
obtained by the experiment.
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Figure 8. Time histories of the control currents of the electromagnetic levitation system using Fe of Eq. (13), which are 
obtained by the experiment.

Figure 9. Time histories of the Euclidean norm of Fe of Eq. (13), which are obtained by the experiment.
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Figure 8. Time histories of the control currents of the electromagnetic levitation system using Fe of Eq. (13), which are 
obtained by the experiment.

Figure 9. Time histories of the Euclidean norm of Fe of Eq. (13), which are obtained by the experiment.
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In order to simulate an external disturbance, a human hand presses down hard on the rotor 
to the ground at about 20 s, and it is removed from the rotor momentarily. In Figure 6, we 
see that, after we remove the external disturbance from the rotor, the system state becomes a 
steady state within 2 s. Also, in Figure 8, we see that, as the external disturbance applied to 
the rotor increases, each control current increases to resist the external disturbance. It should 
be remarked that the operating parameters like an applied load and a speed of the rotor may 
influence on the design of electromagnetic levitation system because these parameters make 
an impact on the system dynamics.

4. Conclusion

In this chapter, the electromagnetic levitation system was developed as a prototype for devel‐
oping active magnetic bearing wheels. A control system was developed to control the position 
and two gimbal angles of the rotor. The experimental results demonstrated that the control 
system can control the position of the rotor and regulate the two gimbal angles. The refine‐
ment of the electromagnetic levitation system for the development of active magnetic bearing 
wheels is the further research topic.
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Condition Monitoring and Fault Diagnosis of Roller
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Abstract

Rolling element bearings play a crucial role in determining the overall health condition of a
rotating machine. An effective condition-monitoring program on bearing operation can
improve a machine’s operation efficiency, reduce the maintenance/replacement cost, and
prolong the useful lifespan of a machine. This chapter presents a general overview of
various condition-monitoring and fault diagnosis techniques for rolling element bearings
in the current practice and discusses the pros and cons of each technique. The techniques
introduced in the chapter include data acquisition techniques, major parameters used for
bearing condition monitoring, signal analysis techniques, and bearing fault diagnosis
techniques using either statistical features or artificial intelligent tools. Several case studies
are also presented in the chapter to exemplify the application of these techniques in the
data analysis as well as bearing fault diagnosis and pattern recognition.

Keywords: rolling element bearings, condition monitoring, fault diagnosis

1. Introduction

Rolling element bearings are the most critical but vulnerable mechanical components in a
rotating machine. A bearing failure can lead to a complete machine breakdown causing
unintended interruption to a production process and financial losses. It is important to have
an effective bearing condition monitoring (CM) and fault diagnosis system in place so that
incipient bearing faults can be detected and correctly diagnosed on time to prevent them from
deteriorating further to cause damage to a machine. For instance, an early detection of incipi-
ent defect of a rolling element bearing in a high speed train or a wind turbine can lead to a
timely maintenance/replacement to prevent potential disastrous consequence and human loss
caused by unexpected failure of critical mechanical components.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Many condition-monitoring and fault diagnosis techniques have been developed in the last
few decades to improve the reliability of rolling element bearings. This chapter provides an
overview on the most commonly employed condition-monitoring, signal analysis, and fault
diagnosis techniques for rolling element bearings and discusses some of the pros and cons of
these techniques.

A starting but most fundamental information in bearing condition monitoring is the character-
istic bearing defect frequencies. The characteristic defect frequency components in a signal are
generated by flaws or faults presented in a bearing when the bearing is operated at a specific
machine rotating speed under certain loading conditions. Alternatively, defect signals can also
be produced accompanying the normal wear process during a bearing’s operational life.

Figure 1 shows the graphical and the cross-sectional representations of a rolling element
bearing. The bearing comprises four mechanical components: an outer race, an inner race,
rollers (balls), and a cage that hold the rollers (balls) in place. Correspondingly, there are four
possible characteristic defect frequencies for a rolling element bearing: ball (roller) pass fre-
quency at the outer race (BPFO), ball (roller) pass frequency at the inner race (BPFI), ball
(roller) spin frequency (BSF), and fundamental train frequency (cage frequency) (FTF). The
formulae for these four characteristic bearing defect frequencies are listed in Table 1.

Figure 1. (a) A graphical illustration of a roller element bearing and (b) a cross-sectional view of the roller element
bearing.

Ball-pass frequency at outer race (BPFO) BPFO ¼ n
2
N
60 1− d

D cosα
� �

Ball-pass frequency at inner race (BPFI) BPFI ¼ n
2
N
60 1þ d

D cosα
� �

Ball-spin frequency (BSF) BSF ¼ D
2d 1− d

D cosα
� �2h i

Fundamental train frequency (FTF) FTF ¼ 1
2
N
60 1− d

D cosα
� �

Note: N is the shaft speed in revolutions per minute (RPM), n is the number of roller elements in a bearing, α is the contact
angle of the bearing due to the load from the radial plane, d is the diameter of the roller, and D is the mean diameter of the
bearing as shown in Figure 1.

Table 1. Formulae of the bearing defect frequencies.
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A bearing defect signal can be simulated using the following equations [1]:

sðt, nÞ ¼ Qe−γðt−
n

BDFÞ sin 2πf r

�
t−

n
BDF

�� �
þOðtÞ

rsn
, t <

nþ 1
BDF

, n ¼ 0, 1, 2,…: (1a)

and

sðt, nÞ ¼ Qe−γðt−
nþ1
BDFÞ sin 2πf r

�
t−
nþ 1
BDF

�� �
þOðtÞ

rsn
, t ≥

nþ 1
BDF

, n ¼ 0, 1, 2,…: (1b)

where Q is the assumed maximum loading intensity for a bearing defect and t is the time
variable, BDF represents a bearing defect frequency, fr is the assumed bearing resonance
frequency and α is the energy decay constant of the bearing race. The first part in Eqs. (1a)
and (1b) is the signal produced by a bearing defect, and the second part of the equations is the
superimposed white Gaussian noise representing the machine background noise. n is the pulse
index of the bearing defect frequency, O(t) is the white Gaussian noise and rsn is the assumed
signal-to-noise ratio (SNR). A typical bearing defect signal is shown in Figure 2. The parame-
ters used in the simulation of the signal are listed in Table 2.

Figure 2. A simulated defect signal of a roller element bearing due to a fault at the outer race: (a) pure defect signal; (b)
noise-added signal.

Fault type Defect frequency (Hz) Resonance frequency, fr (Hz) Decay constant, α Loading intensity, Q SNR, rsn

BPFO 78.18 4000 200 1 −20 dB

Table 2. Parameters used in the simulation.
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2. Condition-monitoring techniques

Condition-monitoring (CM) techniques are required to acquire the operation condition data of
a rotating machine. The CM data can then be processed and analyzed using appropriate signal
analysis techniques to obtain the most relevant characteristic parameters before being used in a
diagnosis or prognosis algorithm to evaluate/predict the health state of the machine. The data
employed in a condition-monitoring program can be vibration, noise, electric current, oil
and grease, temperature or a combination of these data. The CM data can be analyzed using
either time-domain techniques, frequency-domain techniques, or time-frequency techniques
according to the data properties such as linearity or nonlinearity, stationary or nonstationary,
to extract the most useful and effective features for bearing fault diagnosis. This section
summarizes some of the most commonly employed techniques in condition-monitoring appli-
cations of rolling element bearings.

2.1. Vibration technique

Vibration technique is the most frequently employed technique for machine condition monitoring. A
change of the vibration signal in a machine without changing the operation condition can imply a
change of health state of the machine. Vibration signals are typically generated by defects in the
moving components of the machine such as defects in a bearing, gearboxes, reciprocating compo-
nents, and so on. For example, when a rolling element bearing operates under a faulty condition, an
impulse signal will be generated as other bearing components passing through the faulty position.
This will lead to an increase in overall vibration amplitude of the machine. The defect component of
the bearing and its severity can be determined by the characteristic defect frequency component
contained in the condition monitoring signal (see Figure 2). The frequency range of vibration
measurement can be as low as in the infrasonic region (below 20 Hz) and span across to the upper
limit of the audible frequency (20 kHz). Though the vibration technique can be problematic in
acquiring useful signals when it is deployed for condition monitoring of large low-speed rotating
machine where the energy of an incipient defective signal is usually weak and often submerges
under the background noise. High-frequency techniques such as acoustic emission (AE) technique
can be employed to overcome this limitation.

2.2. Acoustic emission technique

Acoustic emission is a transient elastic wave generated by the sudden release or redistribution
of stress in a material. For example, in bearing condition-monitoring applications, AE is
generated by the sudden release of energy caused by the material deformation as other bearing
components passing through a defect part. The signal then propagates to the bearing house to
be detected by a monitoring AE sensor. Compared to vibration signals, the AE signal is less
likely to be affected by the dominating noise and vibration generated by the moving mechan-
ical components of the monitored system due to the high-frequency nature of the signal
(typically above 100 kHz). Care should be taken in choosing the mounting locations of AE
sensors to minimize the energy loss along the AE propagation path for better signal clarity.
Furthermore, AE also comes with inherited problems such as calibration, nonlinearity, data
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storage and transfer, data processing and interpretation. Recently, Lin et al. [1–3] developed a
number of signal-processing algorithms to overcome the problems of nonlinearity and large
AE data. Nowadays, a large industry deployment of AE technique in bearing condition
monitoring is still restricted by the expensive highly specialized AE data acquisition devices.

2.3. Current signal technique

Current signal technique is mainly used to monitor the bearing condition of electric motors.
The technique is based on the principle that the vibration signal generated in a motor is closely
related to the change of magnetic flux density in the motor. Stator current technique is the
frequently employed current signal technique. When a motor bearing operates on a faulty
condition, the radial motion of the motor axis would lead to a small shift of the rotor causing
a change in the magnetic flux density between the stator and the rotor. The induced voltage
will then cause the variation of the stator current. The stator current technique employs
noninvasive sensors to monitor the variation of the stator current; therefore, it is easy to
implement and simple to operate.
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The application of oil and debris-monitoring technique is a frequently employed tribology
approach for machine condition monitoring. The health condition of a roller element bearing
can be monitored by analysis of the properties and particle contents of the lubrication oil. The
application of oil and debris-monitoring technique is rather straightforward. Though such
tribology analysis is normally undertaken at laboratories using spectrometers and scanning
electron microscopes rather than in situ. The technique is also limited to condition-monitoring
applications of lubrication-related or wear-related problems.

2.5. Thermography technique

Thermography technique detects faults in a bearing by measuring the emission of infrared
energy using thermo-infrared devices during bearing operation process. Laser thermography
devices or thermo-infrared cameras are the most common instruments used for such measure-
ment. This technique can be applied to monitor the heat variation caused by the change of
bearing lubrication, load, and operation speed. It is particularly sensitive in monitoring the
overheating phenomenon caused by improper lubrication but less sensitive in detecting incip-
ient fault developed in a bearing such as early pitting, slight wear, or peeling.

3. Data analysis and fault diagnosis techniques

Many signal analysis and machine fault diagnosis techniques have been developed in the last
few decades in order to improve the reliability, efficiency, and lifespan of machines, as well as
to reduce the maintenance and operation cost. In this section, the most frequently employed
signal-processing and fault diagnosis techniques for rolling element bearings are briefly
discussed and summarized.
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3.1. Time-domain data analysis techniques

3.1.1. Time series analysis

Time series analysis is a mathematical method, which handles an observed data series in a
statistic manner. Time series analysis is based on the assumption that the variation trend of a
historical observed data can be extended to provide an indication/prediction of future data
variation of a same monitored system. A typical time series analysis approach is to establish a
predictive model based on the observed data series. The three widely adopted univariate time
series models in machine fault diagnosis are autoregressive (AR) model, moving average (MA)
model, and autoregressive moving average (ARMA) model [4].

A general linear ARMA (p, q) model can be expressed as

yt ¼ cþ
Xp

i¼1

φiyt−i þ
Xq

j¼1

θjεt−j þ εt (2)

where yt is the time series needed to be modeled, c is a constant, p is the number of
autoregressive orders, q is the number of moving average orders, φi is the autogressive
coefficients, θj is the moving average coefficients, and εt is the independent and identically
distributed terms, which are commonly assumed to have zero mean and a constant variance,
or (i) EðεtÞ ¼ 0; (ii) EðεtεTÞ ¼ 0 for t ≠ T ; and (iii) Eðε2t Þ ¼ σ2.

An AR model and an MA model can be viewed as the special case of an ARMA model. For
instance, when all autoregressive coefficients φi equal to 0 ðφi ¼ 0, 1 ≤ i ≤ pÞ, an ARMA model
degrades to an MAmodel. On the other hand, when all moving average coefficients θj equal to
0 ðθj ¼ 0, 1 ≤ j ≤ qÞ, an ARMA model degrades to an AR model.

After selecting the most suitable time series model for the data analysis, the next step is to
determine the orders of AR or MA models. The commonly adopted order parameter determi-
nation criteria for these time series models are the final prediction error (FPE) criterion, Akaike
information criterion (AIC), and Bayesian information criterion (BIC).

On the other hand, the common methods used to determine the autoregressive coefficients and
moving average coefficients are least squares estimation, maximum likelihood estimation,
Yuler-Walker estimation, and so on.

It is worth mentioning that ARMA models are developed based on the assumption that the
signal is stationary. If the signal is not stationary, some data preprocessing steps need to be
adopted. For example, (1) performing a differential operation of the data term by term until the
signal satisfies the stationary criterion and (2) decomposing a nonstationary signal by empiri-
cal mode decomposition (EMD) to obtain the stationary intrinsic mode functions (IMFs).

3.1.2. Minimum entropy deconvolution

Minimum entropy deconvolution (MED) technique is proposed originally by Wiggins, which
has been successfully employed in dealing with the seismic response signal [5]. The basic idea
of MED is to find an inverse filter that counteracts the effect of the transmission path [6]. It is
designed to reduce the spread of impulse response functions (IRFs) and then obtain signals,
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which are close to the original impulses giving rise to them. The MED technique has been
successfully employed in bearing fault diagnosis such as in [6].

Figure 3 illustrates the basic idea of the MED technique. In this process, an unknown impact
signal x(n), which can be as highly impulsive as possible, passes through a structural filter h
and then mixes with a noise e(n) to produce an intermediate output o(n). The signal o(n) then
passes through an inverse (MED) filter f to produce a final output y(n). The process eliminates
the structure resonance and the final output y(n) after the inverse filter needs to be as close as
possible to the original input x(n).

The inverse filter f(l) can be modeled as a finite impulse response (FIR) filter with L coefficients:

yðnÞ ¼
XL

l¼1

f ðlÞxðn − lÞ, (3)

and

f ðlÞ � hðlÞ ¼ δðn − lmÞ: (4)

where δ is a Dirac delta function and lm is the time delay after the MED process, which
displaces the entire signal by lm but keeps the impulse spacing of the signal.

The inverse filter f(l) is implemented for the MED technique by the objective function method
(OFM). The OFM is an optimization process designed to maximize the kurtosis of the output
signal, y(t). OFM achieves this by changing the coefficients of the filter f(l). The kurtosis is taken
as the normalized fourth-order moment given by

K
�
f ðlÞ
�
¼
XN
n¼1

y4ðnÞ=
�XN

n¼1
y2ðnÞ

�2
, (5)

and the maximum kurtosis of y(t) can be obtained according to f(l) for which the derivative of
the objective function is zero:

Figure 3. Inverse filtering (deconvolution) process for MED.
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∂Kð f ðlÞÞ=∂f ðlÞ ¼ 0 (6)

where the filter coefficients of f(l) can converge to a given tolerance by the iterative process [7].

3.1.3. Spectral kurtosis

Spectral kurtosis (SK) was first proposed in the 1980s for detecting impulsive events in sonar
signals. SK was first applied in bearing fault diagnosis by Antoni [8]. The method basically
computes a kurtosis at “each frequency line” in order to discover the presence of hidden
nonstationarities and to indicate in which frequency band it takes place. The method has been
proved to be relatively robust against strong additive noise. An SK of nonstationary signals is
defined based on the Wold-Cramer decomposition, which describes any stochastic random
process x(t) as the output of a causal, linear, and time-varying system [9]:

xðtÞ ¼ ∫þ1=2
−1=2 Hðt, f Þej2πf ndZxð f Þ, (7)

where dZxð f Þ is an orthonormal spectral process of unit variance andH(t, f) is the time-varying
transfer function interpreted as the complex envelope of x(t) at frequency f. The SK of a signal x
(t) is defined as a normalized fourth-order spectral accumulation given by [8, 9]:

Kxðf Þ ¼ 〈jHðt, f Þj4〉
〈jHðt, f Þj2〉2 − 2, (8)

in which Kx( f) is the spectral kurtosis of signal x(t) around frequency f and 〈∙〉 denotes the
averaging over time.

Antoni and Randall [9] proposed two techniques to calculate the spectral kurtosis, one is based
on short-time Fourier transform (STFT) (the so-called kurtogram for finding the optimal filter)
and the other is based on one-third binary filter banks (fast kurtogram for on-line condition
monitoring and fault diagnosis). Kurtogram is a powerful tool for the analysis of nonstationary
signals in bearing fault diagnosis, though it has been reported that the technique fails to detect
a bearing fault when the defect signal has low signal-to-noise ratio and contains non-Gaussian
noise with high peaks [10, 11].

3.1.4. Singular-value decomposition

Singular-value decomposition (SVD) is a numerical method which states that a matrix A of
rank L can be decomposed into the product of three matrices: U (an orthogonal matrix), Λ (a
diagonal matrix) and VT (the transpose of an orthogonal matrix V) [12]. This method is usually
presented as

Am · n ¼ Um ·m∙Λm ·n∙VT
n· n, (9)

where UTU ¼ 1 and VTV ¼ 1; Λm ·n is a diagonal matrix containing the square roots of
eigenvalues of ATA which can be expressed as Λ ¼ diagðσ1, σ2, …, σLÞ, where L ¼ minðm, nÞ.
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The non-zero diagonal terms σiði ¼ 1, 2,⋯, lÞ together with the zero terms σlþ1 ¼ … ¼ σL ¼ 0
form the singular values of the matrix A.

SVD can be an effective tool for data reduction, for example, a reduction of the fault feature
dimensions. It is also a useful tool for signal de-noising. The application of SVD in signal
de-noising is mainly operated as follows:

Suppose a bearing CM signal x(k) can be modeled as

xðkÞ ¼ yðkÞ þ nðkÞ, (10)

where y(k) and n(k) are respectively, the uncontaminated signal and noise. A conversion
method such as phase space reconstruction can be used to transform the signal from a one-
dimensional vector into a two-dimensional matrix as follows:

A ¼ A þN, (11)

where the matrix A represents the uncontaminated data y(k), which contains characteristic
fault information and the matrix N signifies the unwanted noise part n(k). From Eqs. (9) and
(11), we have

A ¼ A þN ¼ ½Ul U0 � Λl 0
0 Λ0

� �
VT

l
VT

0

� �
: (12)

Λ1 in Eq. (12) contains the significant singular values σiði ¼ 1, 2,⋯, lÞ which are used to
construct the uncontaminated data and Λ0 contains small singular values σi ði ¼ lþ 1,…, LÞ,
which can be viewed as noise.

From Eq. (12), the de-noising signal matrix can be written as

A ¼ U1Λ1VT
1 (13)

A is a reconstructed matrix using only the largest l number of singular values whose values are
greater than a pre-set threshold value ε. The rest of the singular values are replaced by zero
such that

σi ¼ 0 when σi ≤ ε, t ¼ lþ 1,…, L: (14)

3.2. Frequency-domain data analysis techniques

3.2.1. Power spectrum

Spectrum analysis is the most popular frequency-domain analysis techniques, which trans-
forms a time-domain data into discrete frequency components by Fourier transform. The
power spectrum of a time-domain signal is defined as the square of the magnitude of the
Fourier transform of a signal. It can be written as
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PðωÞ ¼ j∫þ∞
−∞ xðtÞe−jωtdtj2 ¼ XðωÞX�ðωÞ, (15)

where XðωÞ ¼ ∫þ∞
−∞ xðtÞe−jωtdt is the Fourier transform of a signal, X�ðωÞ is its complex conjugate

and ω is the angular frequency in radian/s. The power spectrum is frequently employed to
extract useful characteristic defect frequency components of a stationary CM signal.

3.2.2. Cepstrum

A cepstrum is defined as the power spectrum of the logarithm of the power spectrum of a
signal [13]. The name of cepstrum was derived by reversing the first four letters of spectrum.
There are four types of cepstra: a real cepstrum, a complex cepstrum, a power cepstrum and a
phase cepstrum.

The real cepstrum of a signal x(t) is given by

cðtÞ ¼ 1
2π

∫π−πlogjXðωÞjejωtdω: (16)

The complex cepstrum of a signal x(t) is given by

c!ðtÞ ¼ 1
2π

∫π−πlog
�
XðωÞ

�
ejωtdω: (17)

The power cepstrum of a signal x(t) is given by

cðtÞ2 ¼ 1
2π

j∫π−πlogjXðωÞjejωtdωj2: (18)

The most commonly used cepstrum in machine condition monitoring is power cepstrum. The
following steps can be taken to calculate the power cepstrum of a signal: A signal ! power
spectrum of the signal ! logarithm of the power spectrum ! power spectrum of the data from
the previous step ! inverse Fourier transform of the log power spectrum from the previous step
(power cepstrum). The main application of cepstrum analysis in machine condition monitoring is
for signals containing families of harmonics and sidebands where it is the whole family rather
than individual frequency component characterizing the fault [13] (typical for bearing CM sig-
nals). The technical terms used in a cepstrum are quefrency, gamnitude and rahmonics
corresponding to frequency, amplitude and harmonics in a spectrum analysis. The cepstrum can
be used for the harmonics generated by bearing faults, but only if they are well separated. In
contrast, envelope analysis to be introduced in the next section is not limited by such restriction.

3.2.3. Envelope spectrum

It has been pointed out by Randall [13] that the benchmark method for rolling element bearing
diagnosis is envelope analysis as the spectrum of raw bearing CM signals often contains little
information about bearing faults. In envelope analysis, a time waveform is bandpass filtered in
a high-frequency band and the fault signal is amplified by the structural resonances and
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amplitude modulated to form the envelope signal for bearing diagnosis [13]. The procedures
for envelope analysis are briefly described below:

Given a real signal xðtÞ, its Hilbert transform, hðtÞ ¼ HfxðtÞg is defined as

hðtÞ ¼ HfxðtÞg ¼ 1
π
∫∞−∞

xðτÞ
t−τ

dτ ¼ 1
πτ

xðtÞ, (19)

The real signal xðtÞ and its Hilbert transform hðtÞ together form a new complex analytic signal
zðtÞ,

zðtÞ ¼ xðtÞ þ jhðtÞ: (20)

The envelope signal EðtÞ is simply the absolute value of the analytic signal zðtÞ,

EðtÞ ¼ jzðtÞj ¼ jxðtÞ þ jhðtÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ h2ðtÞ

q
: (21)

After taking a fast Fourier transform on the envelope signal EðtÞ, an envelope spectrum can be
obtained. An envelope spectrum can reveal the repetition characteristic defect frequencies
caused by bearing faults even in the presence of a small random fluctuation. The envelope
spectrum of the noise-added bearing defect signal shown in Figure 2(b) is given in Figure 4. It
is noted that due to a high noise level in the signal (SNR = 0.05, representing an initial bearing
defect), the envelope spectrum is compromised by many artificial frequency components and
produces a subtle bearing defect information. Also due to such interference, the calculated
defect frequency (the modulated frequency) of the outer race fault and its higher harmonics
(1 +BPFO, 2 +BPFO and so on) shown in the envelope spectrum are also slightly lower than
that of the simulated defect frequency (1 +BPFO = 78.18 Hz).

Figure 4. Envelope spectrum of the noise-added bearing defect signal shown in Figure 2(b).
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3.2.4. Higher-order spectra

Higher-order spectra (HOS) (also known as polyspectra) consist of higher-order moment of spec-
tra, which are able to detect nonlinear interactions between frequency components [14]. Higher-
order spectra are defined as the Fourier transform of the corresponding cumulant sequences of a
signal. For instance, the first-order cumulant of a stationary process is themean of the signal:

C1x ¼ EfxðnÞg: (22)

The second- and third-order cumulants of a stationary process are defined as

C2xðkÞ ¼ Efx�ðnÞxðnþ kÞg, (23)

and
C3xðk, lÞ ¼ Efx�ðnÞxðnþ kÞxðnþ lÞg−C2xðkÞC2xðl − mÞ−C2xðlÞC2xðk − mÞ (24)

From Eqs. (23) and (24), it is clear that the power spectrum is, in fact, the FTof the second-order
cumulant of a signal and the third-order spectrum also termed as bispectrum is the FT of the
third-order cumulant. Note that the bispectrum S3xðω1,ω2Þ is a function of two frequencies.
Therefore, it can detect phase coupling between two frequency components which appears as
a third frequency component at the sum or difference of the first two (frequencies) with a
phase that is also the sum or difference of the first two.

Traditionally, power spectrum is used to break down a time waveform signal into a series of
frequency components. However, power spectrum cannot determine whether peaks at har-
monically related positions are phase coupling since power spectrum uses only the magnitude
of Fourier components and the phase information is neglected. Higher-order spectra such as
bispectrum use the phase information of the signal and are capable to detect phase coupling of
frequency components in the spectra. Therefore, a bispectrum can provide additional phase
information than a power spectrum analysis.

The motivation behind the use of higher-order spectrum analysis is summarized as follows.
Firstly, the technique can suppress Gaussian noise in the data processing of unknown spectral
characteristics for fault detection, parameter estimation and classification problems. If Gaussian
noise is embedded in a non-Gaussian signal, a HOS transform can eliminate the noise. On the
other hand, periodic, quasi-periodic signals and self-emitting signals from complex machinery in
practical applications are typical non-Gaussian signals which will be preserved in the transform.
Secondly, a HOS analysis can preserve the phase information. For example, there are situations
in practice in which the interaction between two harmonic components creates a third compo-
nent at their sum and/or difference frequencies. Thirdly, HOS can play a key role in detecting and
characterizing the type of nonlinearity in a system from its output data.

For a better illustration of the signal-processing techniques discussed above in data analysis, a
number of case studies are given in the following section to exemplify the usage of the above
algorithms in bearing fault detection.

3.2.5. Case studies

Case 1: (AR & MED de-noising): In this case study, the AR model described in Section 3.1.1 and
the MEDmethod described in Section 3.1.2 are employed in the analysis to filter the noise-added
bearing defect signal shown in Figure 2(b) prior to an envelope analysis to enhance the bearing
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Secondly, a HOS analysis can preserve the phase information. For example, there are situations
in practice in which the interaction between two harmonic components creates a third compo-
nent at their sum and/or difference frequencies. Thirdly, HOS can play a key role in detecting and
characterizing the type of nonlinearity in a system from its output data.

For a better illustration of the signal-processing techniques discussed above in data analysis, a
number of case studies are given in the following section to exemplify the usage of the above
algorithms in bearing fault detection.

3.2.5. Case studies

Case 1: (AR & MED de-noising): In this case study, the AR model described in Section 3.1.1 and
the MEDmethod described in Section 3.1.2 are employed in the analysis to filter the noise-added
bearing defect signal shown in Figure 2(b) prior to an envelope analysis to enhance the bearing
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defect frequency components in the envelope spectrum for a more reliable bearing fault diagno-
sis. The results are presented in Figures 5 and 6. Compared to the result in Figure 4, it is shown
that the two-step de-noising by the AR and MED models has successfully suppressed the
artificial components and enhanced the defect signal representation in the spectrum.

Case 2 (spectrum kurtogram): The signal used in this case study is shown in Figure 7. The signal
is generated by adding 0-dB white noise to the simulated bearing defect signal presented in
Figure 2(a). In the analysis of the signal, the fast kurtogram algorithm [9] described in Sec-
tion 3.1.3 is first employed to determine the bearing resonance band (to obtain the center

Figure 5. The time waveform and the envelope spectrum of the simulated bearing defect signal after preprocessed by an
AR model: (a) the time waveform after filtered by an AR model; (b) envelope spectrum of the signal shown in Figure 5(a).

Figure 6. The time waveform and the envelope spectrum of the simulated bearing defect signal after preprocessed by an
AR model and filtered further by an MED model: (a) the time waveform after de-noising; (b) envelope spectrum of the
signal shown in Figure 6(a).
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frequency and the bandwidth) having the highest band energy (corresponding to the highest
kurtosis value) in the signal. A five-level fast kurtogram based on a filter band and fast Fourier
transform is shown in Figure 8 and the highest band energy is found to occur in the band
encircled by the white ellipse in the figure. The band is found to be centered at 3958.33 Hz (close
to the simulated bearing resonance frequency of 4000 Hz as listed in Table 2) and has the
bandwidth of 416.67 Hz. The band has the highest kurtosis value of 0.1 which occurs at level
4.5 in the decomposition. The next step after the decomposition is to take an envelope analysis
based on the band-filtered optimum frequency band signal obtained from the fast kurtogram
and the result is shown in Figure 9(a) and (b). It is shown that the spectrum kurtosis technique
can detect the characteristic defect frequency from weak-bearing defect signals.

Figure 7. Simulated bearing defect signal with 0-dB white noise added.

Figure 8. Fast kurtogram calculated based on the defect signal shown in Figure 7.
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3.3. Time-frequency analysis

A major limitation of frequency-domain analysis is that it is only useful in dealing with
stationary signals. The presence of transient or nonstationary signals in the data would not be
captured in a traditional frequency-domain analysis. To overcome this limitation, time-fre-
quency analysis techniques are then developed for a better understanding of how spectrum
properties change with time. In time-frequency analysis, waveform signals are analyzed in
both time and frequency domains to capture the progressive change of spectrum components.
The most commonly employed time-frequency analysis techniques are short-time Fourier
transform (STFT), wavelet transform (WT), Wigner-Ville distribution (WVD) and adaptive
signal analysis techniques such as empirical mode decomposition (EMD) technique.

3.3.1. Short-time Fourier transform

Short-time Fourier transform adds a time variable to the traditional Fourier spectrum, thus
allowing it to investigate the time-varying nature of a signal. In a SFFT analysis, a continue
time-domain waveform is multiplied by a sliding narrow time window and a Fourier trans-
form is computed on the windowed signal at each time step of the sliding time window. The
STFT analysis is based on the consideration that if a signal can be considered stationary over
the length of the chosen sliding time window, a Fourier transform can be performed on the
windowed signal segment for each new position of the sliding time window to obtain a
satisfactory time-frequency analysis of a nonstationary signal.

A short-time Fourier transform of a continuous signal xðtÞ can be computed by

STFTxðτ,ωÞ ¼ ∫þ∞
−∞ xðτÞw�ðτ−tÞe−jωτdτ, (25)

where wðτ−tÞ is a finite time window function centered at time t. The asterisk sign (*) in the
time window indicates a complex conjugate and the analysis window can be regarded as the
impulse response of a low-pass filter. A spectrogram, which is the squared amplitude of an

Figure 9. Spectrum kurtosis analysis of the bearing defect signal: (a) envelope of the band-filtered signal; (b) Fourier
transform of the envelope signal.
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STFT transform, is often used in the display of the transformation result for signal analysis and
interpretation. A major limitation of STFT is that the analysis has a uniform resolution in both
time and frequency planes implying that a small time window will have a good time resolu-
tion but poor frequency resolution and vice versa. This drawback limits the technique for the
analysis of signals with slow-changing dynamic only. Another time-frequency analysis tech-
nique, wavelet transform, has then been developed to overcome this limitation.

3.3.2. Wavelet transform

Wavelet transform (WT) is a time scale representation of a signal. It is the inner product of a
signal with the translated and scaled family of a mother wavelet function ψ(t). In general, WT
analysis can be categorized into three forms: a continuous wavelet transform (CWT), a discrete
wavelet transform (DWT), and a more general wavelet packet decomposition (WPD).

In CWT, the wavelet transform of a continuous signal xðtÞ is calculated using

Wf ðu, sÞ ¼ 1ffiffi
s

p ∫ xðtÞψ� t − u
s

� �
dt: (26)

where s is the scale parameter and u is the time translation. If one considers the wavelet
function ψ(t) as a bandpass impulse response, then the wavelet transform is simply a bandpass
analysis. Care should be taken to ensure that the decomposed signal can be perfectly
reconstructed from its wavelet representation when using a wavelet transform. Thus, a WT
has to meet the criterion which is also known as the admissibility condition.

A CWT is mainly used in data analysis of scientific research. In practical applications, the
discrete version, a discrete wavelet transform (DWT), is more popular due to the small com-
putation cost and excellent signal compaction properties. A DWT decomposes a signal into
different frequency bands by passing it through a series of filters. In each step of decomposi-
tion, a signal is passed through a pair of low- and high-pass filters simultaneously accompa-
nying by down sampling. A more general form of wavelet analysis is the so-called wavelet
packet decomposition (WPD). In WPD, a signal is split into two parts, one contains a vector of
approximation coefficients and the other contains a vector of detail coefficients in each stage of
decomposition. Both the details and the approximations can be split further in the next level of
decomposition which offer a great range of possibilities to decode a signal than ordinary
wavelet analysis. Wavelet transform has been widely employed in signal processing for condi-
tion monitoring and fault diagnosis of rotating machine [15].

3.3.3. Wigner-Ville distribution

Another popular time-frequency analysis technique is Wigner-Ville distribution (WVD). WVD
is the core distribution for the quadratic class of quadratic time-frequency distributions. It
yields an ideal resolution for mono-component, linearly frequency-modulated signals, but
produces undesired cross-terms for multicomponent and nonlinearly frequency-modulated
signals. Wigner-Ville distribution can be viewed as a particular case of the Cohen class
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distributions which yields a time-frequency energy density computed by correlating the signal
with a time and frequency translation of itself.

The WVD of a signal xðtÞ is defined by

Wxðt,ωÞ ¼ 1
2π

∫
þ∞

−∞
x tþ τ

2

� �
∙x� t−

τ
2

� �
∙e−jωτdτ, (27)

where x* denotes the conjugate of x. Thus, the Wigner-Ville integral is in fact a Fourier
transform of the inner product of a signal and its conjugate with a time delay variable τ. The
bilinear nature of this procedure therefore avoids the loss of time-frequency resolution in the
transform such as the resolution problem encountered when performing the finite sliding time
windowing in STFT.

Compared with other distributions, the WVD has the desirable property of fulfilling the
marginal condition, thus the total signal energy can be calculated in time or in frequency using
the Plancherel formula:

jjx2jj ¼ ∫þ∞
−∞ jxðtÞj2dt ¼ 1

2π
∫þ∞
−∞ jXðωÞj2dω (28)

The values jjxðtÞjj2 and jjXðωÞjj2 can be interpreted as the energy densities in time and
frequency domain, respectively. This enables a direct computation of the energy present at a
given time-frequency box from the WVD output.

Another important feature of WVD is that its first conditional moment for a given time tc
equals the instantaneous frequency:

dϕ
dt

¼ 〈ω〉tc ¼
1

jsðtcÞj2
∫

þ∞

−∞
ωWðtc,ωÞdω: (29)

Therefore, it can be computed as the average of all frequencies ω present in the time-frequency
plane at a time tc.

In discrete form, the WVD is defined as

WVDðn, kÞ ¼
XN−1

p¼−N

R½n, q�∙e−j2πkq=N , (30)

where R[n, q] is the instantaneous correlation given by

R½n, q� ¼ x nþ q
2

h i
∙x� n−

q
2

h i
, (31)

in which n is the number of samples of the analytical or interpolated form of the discrete signal
x[n] and q is an odd integer.
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Since the instantaneous correlation is centered on a value, the delay q is distributed between
the delayed sample x½n − q=2� and the corresponding advanced sample, ½nþ q=2� . It is thus
necessary to calculate the value of x½n� at the two half integer positions using an interpolation.
In addition, positions at the extremes of x½n� are padded with zeros in order to compute the
Fourier transform. A major drawback of WVD analysis is that it can induce artifacts and
negative values which need to be properly compensated in the signal analysis [16].

3.3.4. Adaptive signal decomposition

Empirical mode decomposition (EMD) is an adaptive time-frequency analysis technique orig-
inally proposed by Huang [17] in 1998. It is based on the local characteristic time scales of a
signal and can decompose the signal into a set of complete and almost orthogonal components
termed as intrinsic mode functions (IMF). Lei et al. [18] provided a review on the successful
application examples of EMD technique in fault diagnosis of rotating machines.

In EMD analysis, the decomposed signal can be represented by

xðtÞ ¼
XN

i¼1

CiðtÞ þ rNðtÞ, (32)

where CiðtÞ represents the ith IMF component and rNðtÞ is the residual after the EMD decom-
position.

The IMFs represent the natural oscillatory modes imbedded in the signal and can serve as the
basis functions, which are determined by the signal itself, rather than predetermined kernels.
Thus, the decomposition is a self-adaptive signal process suitable for nonlinear and nonstationary
data analysis.

Although the EMD technique has been successfully employed in the analysis of nonlinear and
nonstationary signals in various applications, the algorithm itself also has a number of weak-
nesses, for instance, a lack of a solid theoretical foundation, end effects, a sifting stop criterion
and extremum interpolation. To overcome some of these deficiencies, an improved EMD
algorithm or a so-called ensemble empirical mode decomposition (EEMD) technique has been
developed [19]. EEMD is a noise-assisted data analysis technique which imposes a white
Gaussian noise into a signal and then decomposes the mixed signal by using the EMD algo-
rithm. A major advantage of the EEMD technique is that no missing scales will be presented in
the decomposition and the IMF components in different scales of the signal are automatically
projected into proper reference scales established by the white noise in the background [20].

3.3.5. Case studies

Case 3 (EMD de-noising): In this analysis, the noise-added signal shown in Figure 7 is adap-
tively decomposed into 14 IMF components and a residual component using the EMD tech-
nique described in the previous section. The decomposition result is shown in Figure 10. The
correlation coefficient of each IMF component with the original signal can be calculated using
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ρxy ¼
n
X

xiyj, i−
X

xi
X

yj, iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
X

x2i −
�X

xi
�2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
X

y2j, i−
�X

yj, i
�2r , (33)

where xi ði ¼ 1, 2,…, nÞ is the original data, yj, i ði ¼ 1, 2,…, nÞ is the data of one of the jth IMF

components and n is the data record length. The calculated correlation coefficients for the 14
IMF components and the residual are listed in Table 3.

It is shown in the figure that the first IMF component (IMF1) has the highest correlation
coefficient with the original signal implying that it is most closely related to the defect signal.
Therefore, an envelope analysis is undertaken on the IMF1 component in the next step of
analysis. The result is shown in Figure 11 where the bearing defect frequency and its second-
order harmonic can be clearly discriminated from the envelope spectrum.

Figure 10. The IMF components and residual of the bearing defect signal from the EMD decomposition.

Component Correlation coefficient Component Correlation coefficient Component Correlation coefficient

IMF1 0.7084 IMF6 0.1348 IMF11 0.0152

IMF2 0.4767 IMF7 0.0913 IMF12 0.0152

IMF3 0.3220 IMF8 0.0535 IMF13 0.0169

IMF4 0.2353 IMF9 0.0485 IMF14 0.0087

IMF5 0.1747 IMF10 0.0340 RES −0.0048

Table 3. The correlation coefficients of the IMF components and the residual.
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Case 4 (Signal de-noising using SVD decomposition): The singular-value decomposition
described in Section 3.1.4 can be employed to filter out the noise from bearing condition-
monitoring signals to enhance the impulses produced by a bearing defect. In this approach,
the one-dimension time waveform of the bearing condition-monitoring signal x ¼ ðx1, x2,
…, xnÞ (as shown in Figure 12(a)) is rearranged by an incrementing process to form a Hankel
matrix Aðp, gÞ which is then decomposed into three matrices using Eq. (9) in Section 3.1.4 to
obtain the singular values σi, i ¼ 1, 2,…L, whose values are shown in Figure 13(a).

Figure 11. The envelope spectrum of the first IMF component of the bearing defect signal.

Figure 12. Noise-added bearing defect signal and its envelope spectrum: (a) time waveform (note: the sampling fre-
quency in this simulation is reduced to 5 kHz to avoid the requirement of large computer memory in SVD decomposition;
(b) envelope spectrum.
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The next step is to calculate the difference between the subsequent singular values
bi ¼ σi−σiþ1, ði ¼ 1, 2,⋯, L−1Þ to form a series vector B ¼ ðb1, b2,…, bL−1Þ which reflects the
variation of the two neighboring singular values. Vector B is plotted in Figure 13(b) for
illustration. When the difference between two neighboring singular values is large, they will
form a larger peak in the difference vector B (see Figure 13(b)) indicating that there is a
small correlation between the defect and noise signals at the corresponding singular values.
Keeping the singular values prior to as well as the largest difference peak and letting the
singular values after this peak to zero and then substituting the modified singular-value
vector to Eq. (9) to obtain a new Hankel matrix (note, as the first difference peak happens to
be the largest peak in our case, the singular values associated with the sequential three
peaks are also used in the modified singular value vector). We can then reverse the process
of the first step to obtain the de-noised bearing defect signal as shown in Figure 14(a). The
envelope spectrum of the de-noised signal (Figure 14(a)) is shown in Figure 14(b). It is
shown that the SVD de-noise can yield a much clean spectrum mainly containing the
bearing defect frequency component and its higher harmonics.

3.4. Statistical-based bearing fault diagnosis

3.4.1. Statistical features in the time domain

Some useful statistical features obtained directly from a time waveform signal can be used
to evaluate the health condition of a rolling element bearing. Such features can be grouped
into two categories: (a) dimensional features and (b) nondimensional features. The group of
dimensional statistical features includes peak value, root-mean-square (RMS) value, abso-
lute mean value and variance. This feature group is closely related to bearing fault severity,
for instance, their values increase as the bearing fault severity increases. Though, care needs
to be taken as their values are also influenced by the working conditions such as load or
rotate speed of a machine.

Figure 13. (a) Singular values and (b) the series of the difference between two sequential singular values.
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For a smooth and ergodic continuous time-domain signal xðtÞ, its peak value can be calculated as

xp ¼ Max½jxðtÞj�: (34)

Its RMS value which reflects the power level of the signal is calculated by

xrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫þ∞
−∞ xðtÞ2pðxÞdx

q
, (35)

where pðxÞ is the probability density function of the signal xðtÞ, which represents the probabil-
ity level that the signal xðtÞ fall into a certain interval.

Alternatively, an approximate formula can be used to calculate the RMS value as

xrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T
∫T0 x2ðtÞdt

r
: (36)

The absolute mean value is defined as

xav ¼ ∫þ∞
−∞ jxjpðxÞdx: (37)

Or it can be calculated using the approximate formula:

xav ¼ 1
T
∫þ∞
−∞ jxðtÞjdt: (38)

Variance is used to depict the fluctuation of a signal that deviated from the center, which can
be viewed as the dynamic feature of a signal. The variance of a signal xðtÞ is

Figure 14. (a) The de-noised bearing defect signal after SVD decomposition; (b) the envelope spectrum.
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Dx ¼ σ2x ¼ ∫þ∞
−∞ ðx−μxÞ2pðxÞdx, (39)

where μx is the mean value and σx is the standard deviation of the signal.

Variance can also be calculated approximately using the following formula:

Dx ¼ σ2x ¼
1
T
∫T0
�
xðtÞ−μx

�2
dt: (40)

Table 4 lists the mathematical formula for calculating the same features for a corresponding
discrete time waveform, fxðnÞjn ¼ 1, 2,⋯,Ng.

The group of nondimensional statistical features includes crest factor, shape factor, impulsion
factor, clearance factor, skewness, and kurtosis factors which are the ratio of two-dimensional
statistical features. This type of features is insensitive to the change amplitude or frequency in a
signal and thus is not influenced by the working condition of a machine and can accurately
reflect a fault condition of a bearing. The formulas for these features are listed in Table 5:

Statistical features Formula

RMS
μx ¼ 1

N

XN

i¼1

xi

Mean

xrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

x2i

vuuut

Absolute mean
xav ¼ 1

N

XN

i¼1

jxij

Variance
Dx ¼ σ2x ¼ 1

N−1

XN

i¼1

ðxi−xavÞ2

Table 4. The dimensional statistical features of a discrete time series.

Statistical features Formula

Crest factor C ¼ xp
xrms

Shape factor S ¼ xrms
xav

Impulsion factor I ¼ xp
xav

Clearance factor Cl ¼ xp
xr

Skewness

Sk ¼
∫
þ∞

−∞

�
xðtÞ−μx

�3

pðxÞdx
σ3x

ðcontinuousÞ Sk ¼

XN

i¼1
ðxi−xÞ3

ðN−1ÞS3 ðdiscreteÞ

Kurtosis

K ¼
∫
þ∞

−∞

�
xðtÞ−μx

�4

pðxÞdx
σ4x

ðcontinuousÞ K ¼

XN

i¼1
ðxi−xÞ4

ðN−1ÞS4 ðdiscreteÞ

Table 5. The nondimensional features of a time waveform.
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In Table 5, xr is the root amplitude of a continuous time waveform, which is given by

xr ¼
�
∫þ∞
−∞ jxðtÞj1=2pðxÞdx

�2
: (41)

Its discrete form is given by

xr ¼ 1
N

XN

i¼1

ffiffiffiffiffiffiffi
jxij

p !2

: (42)

Shape factor and impulsion factor are often used to examine whether there exists pulse shocks
in a signal. Clearance factor is sometimes used to examine the wear condition of a machine.
Yet, the most frequently employed nondimensional features in data analysis are the skewness
and kurtosis factors. The skewness is the third statistic moment that measures the degree of
asymmetric distribution of a time waveform. The kurtosis is the fourth statistic moment that
measures the “Peakness” of the data distribution.

3.4.2. Statistical features in the frequency domain

The power spectrum depicts the power amplitude level of the frequency components in a
signal. If the power amplitude levels for some of the frequency components change, the
weight-averaged center frequency of a power spectrum will also change. For example, if
the number of frequency components with dominant amplitude in a spectrum increases, the
energy distribution will be more dispersed. On the contrary, the energy distribution will be
concentrated more around the dominant frequency components if there are only a few of such
components in the spectrum. Hence, the fluctuation of a signal in the frequency domain can
reflect the change of machine condition by observing the change in the weight-averaged center
frequency of power spectrum or the disperse degree of power amplitude level distribution.

The typical statistical featured used to depict the weight-averaged center of a power spectrum
are “Frequency center” and “Mean-square frequency,” which are defined as follows:

Frequency center : FC ¼ ∫þ∞
−∞ f Sð f Þdf
∫þ∞
0 Sð f Þdf , (43)

and

Mean‐square frequency : MSF ¼ ∫þ∞
0 f 2Sð f Þdf
∫þ∞
0 Sð f Þdf , (44)

where Sð f Þ represents the power spectrum of a continuous waveform xðtÞ.

The statistical feature used to depict the disperse degree of energy distribution in the frequency
domain is the “Variance of frequency,” which is defined as
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Variance of frequency : VF ¼ ∫þ∞
0 ð f −FCÞ2Sðf Þdf

∫þ∞
0 Sðf Þdf ¼ MSF−FC2: (45)

Accordingly, for a discrete time series fxðnÞjn ¼ 1, 2,⋯,Ng, the three frequency-domain statis-
tical features are given by

FC ¼ 1
2πΔ

∫π0ωSðωÞdω
∫π0SðωÞdω

, (46)

MSF ¼ 1
4π2Δ2

∫π0ω
2SðωÞdω

∫π0SðωÞdω
, (47)

and

VF ¼ 1
4π2Δ2

∫π0 ðω−2πΔFCÞ2SðωÞdω
∫π0SðωÞdω

¼ MSF−FC2, (48)

where Δ is the sampling frequency, SðωÞ is the power spectrum of a discrete time series xðnÞ,
which can be obtained using the following formula:

SðωÞ ¼ XðωÞXðωÞ, (49)

and

XðωÞ ¼
XN−1

n¼1

xðnÞe−jπω, (50)

where ω is the angular frequency.

3.4.3. Data complexity index

The complexity of a signal can be described by two measures: entropy and Lempel-Ziv
complexity.

Entropy is a measure of randomness, suggested by Shannon in 1948 [21]. Entropy is used to
depict the randomness (or “uncertainty”) existed in a signal or the amount of information
carried by the signal.

For a discrete random variable x with probability density function fxiji ¼ 1, 2,⋯,Ng, the
Shannon entropy is given by

HðxiÞ ¼ −
Xn

i¼1

pðiÞlogbpðiÞ, (51)

where pðiÞ is the probability of the ith event of the random variable x, b is the base of the
logarithm which takes the common logarithm base values of either 2, e, or 10 depending on the
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application. For events with a probability around 0 or 1, the term pðiÞlogbpðiÞ converges to zero
and the entropy is zero. For random signals with uniform probability density function such as
pure noise, the entropy is maximum.

The entropy-based techniques have been widely used in bearing fault diagnosis in the last
decade. It has been shown that the entropy value is closely related to the working condition
of a machine and its value decreases monotonously with aggravation of faults or conditions
[22]. Entropy is often combined with other techniques to capture the detail changes of the
nonlinearity and nonstationary properties of a signal in machine fault diagnosis [23, 24].
Typical entropies used in machine fault diagnosis are approximate entropy, sample entropy,
fuzzy entropy and permutation entropy. Yet, some of these features are still not ideal and
problematic in CM applications. For example, approximate entropy is heavily dependent on
the data record length which could yield lower estimation value. Sample entropy uses
Heaviside step function which is mutational and discontinue at the boundary. Fuzzy entropy
is calculated based on the membership function which is difficult to determine accurately.
Permutation entropy requires the reconstruction of phase space though the embedding
dimension and time lag of the reconstructed matrix need to be selected manually which has
so far limits its application.

Ziv and Lempel [25] presented a specific complexity algorithm termed as Lempel-Ziv com-
plexity (LZC) to calculate the complexity of a finite length time series. LZC can reflect the rate
for generating the new condition pattern feature as the nonlinearity of a time series grows [26].
Its value represents the degree of random variation of a time series. In their algorithm, the
complexity values of a time series is evaluated based on a ‘‘coarse-graining’’ operation by
which the data sequence is transformed into a pattern of only a few symbols, for example,
0 and 1 and involves data sequence comparison and number counting in one dimension only.
A flow chart of the LZC algorithm is shown in Figure 15 and the process is described below:

1. Coarse-grain process to a finite binary sequence. A discrete time series A ¼ fa1, a2,⋯, ang
is converted into a binary sequence SN ¼ {s1, s2,⋯, sn} in the initiation and preprocessing
phase.

2. Copy and Insert. A binary sequence up to srð1 < r < NÞ of complexity cN can be
reconstructed by simply copying and inserting some of the existing vocabulary of
SQvr ¼ {s1, s2,⋯, sv} ðv < rÞ. To check the rest string SN−r ¼ {srþ1,⋯, sN} can be
reproduced by the same approach, the process is executed by the following steps:

Step 1: Take Qr ¼ {sr} and check whether this string belongs to the vocabulary of SQvr. If
so, string Qr ¼ {sr} is a simple repetition of an existing substring of SQvr (i.e., a
simple “copy” of the existing vocabulary can restore it) and the complexity
remains unchanged or cNðrÞ ¼ cNðr−1Þ.

Step2: Read the next string and take Qrþ1 ¼ {sr, srþ1}. Check if Qrþ1 ¼ {sr, srþ1} belongs to
SQvrþ1.

Step 3: If string Qrþ1 does not belongs to SQvrþ1, increase the complexity by one, i.e.,
cNðrþ 1Þ ¼ cNðrÞ þ 1, nullify Qrþ1 ¼ {}, read the next string and take Qrþ3 ¼ {srþ3}.
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Step 4: Repeat the above process until SN ¼ {s1, s2,⋯, sn} is covered. The resulting cNðnÞ is
the complexity of a given string.

3. Normalization of the complexity value. The complexity obtained above equals the num-
ber of nullification of Q. It indicates that the complexity is affected by the length of the
string, or the number of data sample N. To find a robust complexity measure, Lempel and
Ziv [27] suggested a normalized measure cLZ ¼ cNðnÞ

bNðnÞ, which is termed as LZC after their
names and defined by

0 ≤ cLZ ¼ cNðnÞ
bNðnÞ ≤ 1 (52)

where bNðnÞ ¼ lim
n!∞

cNðnÞ≈ n
logkn

.

It is shown in Figure 15 that the coarse-grained process of a finite time sequence serves as the
basis for the LZC algorithm. Commonly employed technique in coarse-grained process is a
single-scale process which converts a discrete time series A ¼ fa1, a2,⋯, ang into a symbolic
binary sequence SN ¼ {s1, s2,⋯, sn} using the following formula:

si ¼
1, a i ≥ a

0, a i < a

�
(53)

where a ¼ ða1 þ a2 þ⋯þ anÞ=n is the mean value of the discrete time series which is used as a
threshold in the coarse-graining preprocess.

In the single-scale coarse-grain process, all segments of a discrete time series larger than or
equal to the mean value are set to 1 while all segments smaller than the mean value are set
to 0. The process neglects the fluctuation between the data intervals and loses many
detailed information of the data series during the process. In order to capture the details
contained in a discrete time series, the division interval should be reduced and a
multidivision scale should be adopted so that the variation in the data can be reflected in
the binary sequence at a multiscale process. The preprocess of a revised multiscale coarse
grain is outlined below:

1. Divide the discrete time series into various scales. A two-scale division process is used
here as an example. In this process, a discrete time series is divided into two regions, with
the mean value of each region as the boundary. The same approach can be applied to a
multiscale division where a discrete time series can be divided into several regions.

2. When the first number in the discrete time series is larger than the mean value of the entire
discrete time series, this point is set to 1 or 0 vice versa. Starting from the second data
point of the discrete time series, the binary value is determined by comparing its value
with the value of the previous point in the discrete time series. If the two points are in the
same division interval, the binary value of the latter point will be the same as the previous
one. When the value of the latter point increases to another division interval, the point will
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be assigned to the binary value of 1. When the value of the latter point decreases into
another division interval, the point will be assigned to the binary value of 0.

A data sample given by Figure 16 is used here as an example to illustrate the difference between
the single-scale and multiscale coarse-grain process. For single-scale coarse-grain process, the
binary sequence of the data sample is SN ¼ ð1;1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0Þwhich does not reflect the
fluctuation between the data interval of the time series. When a two-scale coarse-grain process is
employed to process the same data, the binary sequence becomes SN=(1,1,0,1,0,1,0,1,0,1,0,1).
Therefore, a multiscale coarse-grain process can better capture the detailed fluctuation in a
discrete time series.

Figure 15. Flow chart of the LZC algorithm.
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3.4.4. Manifold learning

Classical dimensionality reduction techniques, such as multidimensional scaling (MDS)
and independent component analysis (ICA), are only applicable to linearly structured data
sets but not suitable for high-dimensional, nonlinear data sets such as bearing CM data. To
overcome this problem, a nonlinear dimensionality reduction technique, manifold learn-
ing, has recently developed for machine fault diagnosis [28]. Manifold learning technique
projects the original high-dimensional data onto a lower-dimension feature space while
preserving the local neighborhood structure to detect the intrinsic structure of nonlinear
high-dimensional data. Manifold learning can be realized through several algorithms
including locally linear embedding (LLE), isometric feature mapping (IsoMap), local tan-
gent space alignment (LTSA) and local preserving projection (LPP).

The application of manifold learning in mechanical fault diagnosis can be in twofolds. Firstly,
fault features with a large dimension can have many redundant components, which can
increase the complexity and operation time of a fault diagnosis process. Manifold learning
can be used to eliminate the redundant components and extract the nonlinear features for fault
classification in this case. Secondly, manifold learning can discard the noise components and
extract the intrinsic manifold features related to nonlinear dynamic of a CM signal; therefore, it
can also be used as a de-noise technique. It should be noted that manifold learning only
operates on a matrix, so a preprocessing such as a reconstruction of phase space converting
an original one-dimensional signal into a two-dimensional data is required. For a detailed
information of the manifold learning algorithm and its application in fault diagnosis, inter-
ested readers are referred to [28, 29].

Figure 16. An example of a discrete time series.
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3.5. Bearing fault diagnosis based on artificial intelligent

3.5.1. Shallow architecture machine learning

The most commonly employed machine-learning techniques in fault diagnosis of rotating
machines are hidden Markov models (HMMs), support vector machines (SVMs) and artificial
neural networks (ANNs), which exploit shallow architectures either contain a single hidden
layer or without a hidden layer. Such shallow architecture-based models have achieved great
success both in theory and in practical applications. Though, shortcomings of these algorithms
such as poor universality, lacking of theory basis in parameter selection, easier to fall into a
local optimum value have limited the application of the algorithms in machine fault diagnosis.

3.5.2. Deep neural network

A consensus criterion for an effective bearing fault diagnosis technique is that it should not only
be able to identify various bearing fault conditions but also be able to discriminate different fault
severities in each fault condition [30]. This leads to a stricter requirement on identification pro-
cedures where a classifier must have a greater capability in discriminating different fault classes.
When fault data contain more than one level of fault severities in each fault condition, the
accuracy of fault diagnostic result using shallow architecture classifiers described in the previous
section will reduce dramatically. Hinton and Salakhutdinov [31] proposed a deep learning
technique to overcome the deficiencies of single-layer architecture classifiers for a better pattern
recognition capability. The concept is further extended to become a so-called deep belief net-
works (DBNs) [32] which relieves the training difficulties of deep network structures by adopting
a layer-by-layer unsupervised forward pretraining learning and then back fine-tuning mecha-
nism. A description of the training process of a DBN is given in Figure 17.

Bengio et al. [33] proposed a deep stack auto-encoder (SAE) network by using a network
structure similar to DBNs which is stacked with a number of auto-encoder networks. Further-
more, Le Cun et al. [34] proposed a convolutional neural network (CNN), a multilayer network
where each layer is composed of several two-dimensional planes, to reduce the number of
parameters in the learning process using a unique weight-sharing mechanism. The above cited
deep-learning-based neural network algorithms have been widely employed in machine fault
diagnosis nowadays [35, 36].

Figure 17. A description of the training process of a DBN.

Bearing Technology68



3.5. Bearing fault diagnosis based on artificial intelligent

3.5.1. Shallow architecture machine learning

The most commonly employed machine-learning techniques in fault diagnosis of rotating
machines are hidden Markov models (HMMs), support vector machines (SVMs) and artificial
neural networks (ANNs), which exploit shallow architectures either contain a single hidden
layer or without a hidden layer. Such shallow architecture-based models have achieved great
success both in theory and in practical applications. Though, shortcomings of these algorithms
such as poor universality, lacking of theory basis in parameter selection, easier to fall into a
local optimum value have limited the application of the algorithms in machine fault diagnosis.

3.5.2. Deep neural network

A consensus criterion for an effective bearing fault diagnosis technique is that it should not only
be able to identify various bearing fault conditions but also be able to discriminate different fault
severities in each fault condition [30]. This leads to a stricter requirement on identification pro-
cedures where a classifier must have a greater capability in discriminating different fault classes.
When fault data contain more than one level of fault severities in each fault condition, the
accuracy of fault diagnostic result using shallow architecture classifiers described in the previous
section will reduce dramatically. Hinton and Salakhutdinov [31] proposed a deep learning
technique to overcome the deficiencies of single-layer architecture classifiers for a better pattern
recognition capability. The concept is further extended to become a so-called deep belief net-
works (DBNs) [32] which relieves the training difficulties of deep network structures by adopting
a layer-by-layer unsupervised forward pretraining learning and then back fine-tuning mecha-
nism. A description of the training process of a DBN is given in Figure 17.

Bengio et al. [33] proposed a deep stack auto-encoder (SAE) network by using a network
structure similar to DBNs which is stacked with a number of auto-encoder networks. Further-
more, Le Cun et al. [34] proposed a convolutional neural network (CNN), a multilayer network
where each layer is composed of several two-dimensional planes, to reduce the number of
parameters in the learning process using a unique weight-sharing mechanism. The above cited
deep-learning-based neural network algorithms have been widely employed in machine fault
diagnosis nowadays [35, 36].

Figure 17. A description of the training process of a DBN.

Bearing Technology68

3.5.3. A case study on bearing fault diagnosis

Case 5: In this case study, a combination of a four-level wavelet packet decomposition
(WVD), a locality preserving projection (LPP), a particle swarm optimization (PSO) and
support vector machine (SVM) algorithms are employed for an intelligent bearing fault
diagnosis and recognition. Bearing condition-monitoring data on various operation condi-
tions such as healthy bearing, outer race fault, inner race fault and ball fault acquired from a
bearing fault simulation test-rig as shown in Figure 18 are used in this analysis.

Three types of bearing defects are simulated in this experiment: an outer race fault, an inner
race fault and a ball fault as shown in Figure 19. The measured vibration signals from an
accelerometer mounted on the test bearing house for the four bearing operation conditions (the
three simulated faults and a healthy bearing) are shown in Figure 20. Hundred data sets are
acquired in the experiment which are divided into two groups: one contains 70 sets of data and
is used as the training data set and the other contains 30 sets of data which is used as the test
data set.

Figure 18. A graphical illustration of the bearing fault simulation test rig.

Figure 19. Simulated bearing faults: (a) outer race fault; (b) inner race fault; and (c) ball fault.
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Five major steps are taken in the analysis of the bearing condition-monitoring data:

1. Each data is decomposed by a four-level wavelet packet decomposition leading to 16
components of different frequency contents (mutual orthogonal subspaces). The wave-
let components of the condition-monitoring data for the outer race fault are shown in
Figure 21 for illustration.

2. The energy value for each wavelet component is calculated and is used as the fault feature
since the energy of the component can discriminate different classes and contains the fault
information and its fluctuation in the particular component corresponding to the occur-
rence of the fault. A fault feature vector containing 16 energy features can be obtained for

Figure 20. The measured vibration signals for the four bearing operation conditions. Note, sampling frequency, 8192,
data length, 8192.

Figure 21. The wavelet components of the outer race bearing defect signal.
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each data. The energy distribution of the 16 wavelet components for the four bearing
operation conditions is shown in Figure 22.

3. For the 100 data sets (of four bearing operation conditions), the process in Step (2) will
generate a 400· 16 feature set. The dimension of the large feature set can cause a problem
for the following algorithm leading to misclassification of the bearing fault classes in the
diagnosis step using SVM algorithm. The locality preserving projection (LPP) [37], a linear
dimensionality reduction algorithm, which can effectively reduce the dimension while
preserving the neighborhood structure of a data set, is utilized to reduce the feature set
dimension to 400 · 3. The three-dimensional feature distribution for the four bearing
operation conditions after the dimensional reduction by LPP is shown in Figure 23.

Figure 22. The energy values of the 16 wavelet components for the four bearing operation conditions.

Figure 23. The optimization result of the PSO algorithm.
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4. Particle swarm optimization (PSO) is adopted in this step to find the optimal kernel
parameters and penalty factor used in SVM algorithm from the training data set to
enhance the performance of the SVM algorithm. The optimization result of the PSO is
shown in Figure 23 where the fitness function of the optimization is above 99% (close
to zero misclassification rate) throughout the time evolution progress.

5. Training and prediction (recognition) of the bearing experimental data using the SVM
algorithm. The prediction result by the SVM is shown in Figure 24.

4. Conclusion

This chapter presented a comprehensive, step-by-step approach on conditionmonitoring of roller
element bearings aiming to provide an introductory and referencing material for engineers and
researchers new to the field. It summarized themost frequently employed data acquisition, signal
analysis, feature and parameter extraction and fault diagnosis techniques in the current practice.
Pros and cons of each technique are briefly discussed in the text. The formulation and discussion
are also supported by ample tables, graphs and figures throughout the text for a better illustration
and understanding of how to utilize the techniques presented in the chapter for real-life problems.
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Figure 24. Prediction result of the SVM algorithm. Note, Levels 1–4 correspond to healthy bearing, inner race fault, ball
fault and outer race fault, respectively.
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Abstract

This chapter examines different types of bearing supports. Technical parameters of dif-
ferent types of bearing supports are presented. The effectiveness of some types of bear-
ings is determined. General approach for the calculation of bearing overall dimensions 
is considered.

Keywords: bearing supports, high-speed electrical machines, electromagnetic processes

1. Introduction

One of the main problems in the design of high-speed electrical machines (HS EM) is the task 
of selecting the bearing assemblies that forms design and determines its application area, 
allowable load, and efficiency.

The complexity of this task lies in the fact that the high-speed electromagnetic bearing assem-
blies must meet various criteria, which often contradict each other. So, bearing supports of 
HS EM should ensure minimum friction losses and maximum resource, wide operating tem-
perature range (which is typical for non-contact bearings, and almost impossible to achieve 
on the mechanical bearings), but they must have a minimum ductility (maximum stiffness) 
for sub-critical rotor speeds and rotor dynamics requirements, providing significant mechani-
cal stress and have a minimum weight and overall dimensions (it is ensured well enough 
mechanical bearing assemblies and is difficult to achieve on a contactless bearing supports).

Therefore, mechanical (ball and roller), hydrostatic and gas bearings, as well as various types 
of magnetic bearings applied in modern HS EM. The choice of bearings depends on the spe-
cific tasks and function of HS EM.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



It is advisable to consider the selection criteria in more detail before analyzing the advantages 
and disadvantages of various types of bearings.

Bearing stiffness is a value that is characterized by an elastic deformation of the bearing under 
load. It is expressed as the ratio of the load to the elastic deformation, depending on the type, 
design and size of the bearing. In simplified form, the bearing stiffness can be defined as follows:

   k  x   = −   F __ δ  ,  (1)

where F—load acting on the bearing; δ—change in the bearing gap under the load; kx—bear-
ing stiffness.

Typically, the stiffness is defined in the technical catalogs for the bearing supports.

The so-called stiffness background is used more often rather than bearing stiffness when cal-
culating bearing supports in EM:

   k  x1   =   
 k  x   ___ LD  ,  (2)

where L—bearing length; D—bearing diameter.

Also used the damping coefficient attributable to the area of the bearing support:

   с  x1   =   
 с  x   ___ LD  .  (3)

The static load is load acting on the bearing when the rotor is stationary and dynamic load is 
the load exerted on the bearing with a rotating rotor.

Bearing speed is a technical parameter that determines the maximum speed of the bearing. 
Bearing speed is measured in mm × rpm/min and defined as follows:

  DN = D ⋅ n,  (4)

where n—rotor rotational speed; D—bearing diameter.

The main producers of high-speed mechanical bearings are FAG, SKF, GMN and NTR 
companies.

High-speed bearings of SKF are made in accordance with ISO 683 〈〈Heat-treated steels, alloy 
steel sand-free-cutting steels—Part 17: Ball and roller bearing steels〉〉 and presented in the 
N10 series. Under the conditions of the liquid lubrication of the bearings, rotation speed can 
be achieved 40,000 rpm and can be used at temperatures from −40 to + 150°C.

Rotor rotational speed of HS EM on the FAG bearings with oil lubrication can reach 170,000 
rpm. In this mode, the bearings temperature is within the range from −40 to +150°C [1].

GMN Company produces mechanical bearings with speed limit of 75,000 rpm and its tem-
perature limit corresponds to the analogues presented above [2].

Undoubtedly, mechanical bearings have reached significant technical heights. However, they 
have inherent weaknesses such as limited speed, considerable noise emission and low operat-
ing temperature.
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HS EM on the mechanical rolling bearings is characterized by thermal deformation; trajectory 
instability is caused by a change in the rotation angle of the separator with a set of rolling ele-
ments and a manufacturing error of the mechanical support rings, as well as limited service 
life determined by mechanical friction between the dynamic rotating parts. Therefore, for a 
more promising use in high-speed and high-temperature, EM have a contactless bearing sup-
ports: magnetic [active magnetic bearings (AMB), hybrid magnetic bearings (HMB)] or gas 
[aerodynamic bearings (ADB) or air bearings].

2. Bearings supports types

2.1. Air bearings (AB)

AB is a slide bearings (according to Standard ISO 4378-1-2001) in which the lubricating membrane 
pressure is created by the gas supply system. AB operating principle is based on the injection of 
air through a system of holes under pressure into the gap between the pin and the bearing. At the 
same time, the pin is separated by a layer of pressurized air from bearing. They are not used in 
HS EM due to the fact that the air bearings require additional pressurization system compressor.

2.2. Aerodynamic bearings (ADB)

Aerodynamic bearings (ADB) is the sliding bearings (according to ISO 4378-1-2001), in which 
the lubricant membrane pressure, and hence load bearing capacity is created by the surface 
movement. The operating principle of the ADB is that in the absence of rotation of the pin 
rests on the inner surface of the bearing, while rotating air or other gas is sucked from the 
environment, creating an air cushion with increased pressure, thus, lifting the pin and sepa-
rating it from the bearing (Figure 1).

Figure 1. Aerodynamic bearing: 1—trunnion; 2—foil.
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Table 1 shows the characteristics of radial ADP made by Russian production (produced by 
National Research University “Moscow Power Engineering Institute”). Table 2 shows the 
axial ADB made by Russian production.

The advantages of ADB is the absence of necessity for a control system (as compared with 
the electromagnetic bearings), as well as their noncontact (compared to mechanical). The 

Type The diameter of 
the heel (mm)

The outer 
diameter of the 
bearing (mm)

The inner 
diameter of the 
bearing (mm)

Rated speed (rpm) Bearing capacity at 
rated speed (N)

TFGB37 37 43 19 207,000 95

TFGB44 44 49 22 174,000 137

TFGB64 64 74 34 119,000 277

TFGB72 72 82 42 106,000 322

TFGB85 85 95 52 90,000 426

TFGB105 95 116 93 75,000 702

TFGB120 120 132 70 64,000 895

Table 2. Axial ADB made by Russian production.

Bearing type The nominal 
diameter of the 
pin (mm)

The axial 
length (mm)

The 
recommended 
maximum speed 
(rpm)

The static load-bearing capacity 
(N)

The frequency 
of surfacing 
(rpm)

Usual scheme Enhanced 
scheme

FGB11 10.5 13 364,000 2 – 19,000

FGB14 13.5 16 283,000 3 – 14,800

FGB16 15.5 18 247,000 4 – 13,000

FGB20 19.5 24 196,000 7 – 10,000

FGB30 30 34 127,000 15 – 6700

FGB35 35 31 109,000 16 27 5700

FGB40 39 44 98,000 25 42 5100

FGB61 61 70 63,000 63 105 3300

FGB67 67 70 57,000 69 115 3000

FGB74 74 70 52,000 76 127 2700

FGB80 80 70 48,000 82 137 2500

FGB84 84 85 46,000 105 175 2400

FGB103 103 70 37,000 – 177 1900

FGB103l 103 120 37,000 – 303 1900

Table 1. Radial ADB made by Russian production.
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disadvantage is that ADB provides noncontact rotation of the rotor only with a certain speed 
(rate surfacing), and up to this frequency ADB acts as a mechanical bearing of a high friction 
(for example, from Table 1 it is seen that the bearing frequency surfacing is 2400 rpm with a 
load capacity of 105 N). Furthermore, using ADB is an increased requirement for the surface 
treatment of the shaft. Also ADB cannot be operated in the absence of a gas environment, 
such as a vacuum, which limits their use in cosmic space.

2.3. Active magnetic bearings (AMB)

AMB (according to ISO 14839-1-2011) is a rotor maintenance device without mechanical 
contact by the magnetic attraction forces and uses feedback servo, in which the circuit 
typically contains sensors, solenoids, power amplifiers, power supplies and the controller 
(Figure 2).

AMBs are widely used in Russian and foreign industry [in Russia are engaged in the develop-
ment of the 〈〈VNIIEM Corporation〉〉 JSC and 〈〈Pskov engineering company〉〉, among for-
eign manufacturers can mark SKF, CalnetixTechnologies (USA), the Synchrony (USA) and 
others.].

The advantages of the AMB are their features such as controllability, contactless operation, 
providing rotor levitation when power is supplied to the control electromagnets (unlike ADB), 
the ability to work at high temperatures and in corrosive environments, bearing stiffness con-
trol possibility (due to pulse changes the electromagnetic force) and the bearing damping 
ability and the ability to work in vacuum.

The AMB disadvantages include the complexity of their design, the complexity of their con-
trol systems, significant product price and their high weight and overall dimensions. The 
stiffness of the AMB under normal operating conditions is comparable or slightly higher than 
the stiffness of the ADB.

Figure 2. AMB: 1—rotor position sensor; 2—AMB magnetic core; 3—shaft; 4—ferromagnetic sleeve; 5—AMB winding.
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Despite these disadvantages, the AMB are widely used in HS EM. Moreover, the use of AMB 
in the Russian Federation is rationed by the technical documentation (ISO 14839-1-2011, ISO 
14839-2-2011, ISO 14839-3-2013, ISO 14839-4-2014).

Importantly, the AMB are not only electromagnets, in which the shaft is concentrically located 
but an intellectual complex system consisting of microscopic sensors, signal amplifiers, etc. A 
more complete design of AMB control systems, as well as their control algorithms is described 
in Refs. [3, 4].

Table 3 shows the geometric dimensions of the AMB, produced by 〈〈Pskov Engineering 
Company〉〉.

To evaluate the effectiveness of the AMB and ADB energy characteristics, it is advisable to 
make a comparison on the specific speed and static load, which is accepted in the form:

   F  sp   =   F ___ DL    (5)

ADB and AMB of Russian production are considered when comparing.

From Table 3, it is seen that when the static load-bearing capacity is 180 N, the specific 
speed of AMB is 3,750,000 rpm and the specific static load is 100,000 N/m2. At the same 
time at the static load of 175 N, specific speed is 3,864,400 rpm and the specific static load 
is 24,509 N/m2. That is, the AMB of Russian production exceeds ADB by the specific static 
load, and the specific speed of both variants is about the same (AMB’s specific speed at 
2.4% less than ADB).

d (mm) D (mm) L (mm) n (103 rpm) F (N) m (kg)

15 44 14 252 20 0.07

20 52 16 190 30 0.12

25 58 20 150 50 0.18

30 66 24 125 70 0.3

35 72 27 110 90 0.4

40 80 30 95 120 0.52

50 94 36 75 180 0.84

60 110 42 63 250 1.32

70 130 46 54 360 2

80 148 50 47 450 2.7

Notes: d—diameter of the shaft; D—external diameter; m—mass of the AMB; L—active length; F—static load-bearing 
capacity; n—permissible speed.

Table 3. Standards of 〈〈Pskov engineering company〉〉 for radial AMB.
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To eliminate the AMB and ADB disadvantages, hybrid magnetic bearings (HMB) are applied 
in HS EM. HMB is the bearing that combines AMB design and magnetic bearing at permanent 
magnets (MB PM) in accordance with ISO 14839-1-2011.

At the same time, as shown in Ref. [5], the concept of the HMB goes far beyond the definition 
of an ISO and represents a combination of different bearing types in a single product that 
allows them to combine their design merits and ADB, and AMB, reaching thus the minimum 
weight and overall dimensions, controllability and stability of the entire HS EM.

There are three main types of structural HMB: gas-magnetic bearing, magnetomechanical and 
various combinations of MB PM with AMB.

2.4. HMB, as a combination of MB PM and AMB

This type of HMB is the most common and used in practice. Moreover, it is considered the 
most promising design of HMB. This area has two main ways of development: the perma-
nent magnets are installed in the magnetic AMB (Figure 3) to increase the magnetic flux. 
Separation of the AMB and MB PM, for example, two radial MB PM placed on one shaft, and 
the rotor axial fixation is provided by axial AMB (Figure 4).

A significant pulling force of the electromagnet is required when using the second option, so 
the first design most widely used in industry. At the same time some technical branches of 
second design has broad application prospects.

Figure 3. Radial-axial HMB, in which PM are used to amplify the magnetic flux.
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2.5. Magnetomechanical HMB

This HMB class is a combination of mechanical bearings, which serve as the main shaft 
support and MB PM, which are intended for unloading mechanical bearings. The advan-
tages of this HMB type is the lack of a control system and simplicity of design and the 
disadvantages is the presence of mechanical bearings friction, and consequently also their 
low reliability.

For example, it is known that magnetomechanical bearing (MMB) design [6] for the electro-
mechanical battery consists of flywheel and a high-speed electric generator with a vertical 
shaft. A feature of this design is the use of a ball in HMB made of sapphire, which provides 
the axial support system. Table 4 shows the effectiveness of different ball materials and plate 
in the MMB.

To improve the efficiency of MMB in rotary system of the HS EM the passive vibration damper 
also entered besides mechanical bearings and MB PM, which is needed for damping vibration 
energy. A passive vibration damper is an electrically conductive plate installed with a gap 
relative to the PM. Eddy currents are induced in the copper sleeve with displacements of the 
PM, which provide damping of vibration energy.

MMB are actively developing due to their simple application design. The major trends in the 
development of this type of HMB are reduction of friction in the mechanical bearings by the 
use of coatings and materials, as well as by the maximum discharge of mechanical bearings 

Figure 4. HMB where AMB and MB PM used separately.

Ball material Material plate Friction coefficient Friction losses at 50,000 rpm 
(MW)

Sapphire Sapphire 0.1 152

Steel Steel 0.42 628

Cast iron Cast iron 0.15 230

Teflon Steel 0.04 63

Table 4. The effectiveness of different ball materials and plate in the MMB.
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and levitating shaft vibration reduction. It is obvious that in a number of industries, especially 
in high-speed systems with short life cycles, the HMB type have broad prospects.

2.6. Gas-magnetic HMB

This HMB is a combination of ADB and AMB. Figure 5 shows a design of this HMB type [7].

The advantages of this type of HMB include high stiffness and handling, but they have con-
siderable design complexity of execution, so they are not widely used in the industry. Gas-
magnetic HMB are considered in Refs. [8–10] in more detail.

2.7. Electrostatic bearings

At low mass of the rotor, as well as to the possibility of providing vacuum in the cavity of 
the EM, it seems appropriate to use electrostatic poles. Electrostatic support is a noncontact 
bearing assembly, in which efforts are created by attractive forces between two surfaces hav-
ing different potentials (Figure 6). The created ascensional power in electrostatic supports is 
insignificant and is accepted in the form:

  f =   ε  E   2  ___ 2    (6)

where ε—the dielectric constant of the suspended body; E—the electric field strength.

The advantage of the electrostatic poles relates primarily to no energy losses due to eddy cur-
rents. The electrostatic bearings application allows creating ultra-high-speed, contactless, vacu-
umed, miniature EM with low noise and heat generation. Electrostatic supports are controlled.

In the Russian Federation industry, the electrostatic support is most widely used as gyro bear-
ings. Basic electrostatic bearing theory is presented in Refs. [11–16].

Additionally, certain industrial application perspectives have bearings, which are based on 
the Lorentz force, which are defined as follows:

Figure 5. Hybrid gas-magnetic shaft suspension of high-speed spindle: 1—front gas-magnetic bearing; 2—rear gas-static 
bearing; 3—electromagnet.
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  f = q  (  E + [ v × B ] )   .  (7)

This type of bearings has broad prospects for use in HS EM. For example, the Swiss company 
Seleroton has developed ultra-high-speed vacuumed motor CM-AMB-400 using this type of 
bearings (power of 250 W, the rotor speed of 400 000 rpm).

Using the suspension based on the Lorentz forces in the electric motor in conjunction with 
vacuum allowed to almost completely solve the problems of the rotor friction of the air and 
the friction in the bearing supports. Overall efficiency of the EM reaches 91–92%.

3. A generalized approach to the calculation of the basic AMB and HMB 
overall dimensions

In view of prospects for using of AMB and HMB, it is useful to consider the approach for the 
calculation of their overall dimensions in more detail.

In view of the design similarity of AMB and HMB (HMB, in which PM are used to create an 
additional magnetic flux), the development of a generalized approach for the AMB and HMB 
calculation is proposed.

To solve this problem, consider HMB design with radial or axial magnetic inserts. The funda-
mental difference of these designs is the arrangement of the PM for reinforcing the magnetic 
flux in the way of the magnetic field line. Thus, these design differences have no significant 
influence on the mathematical description of the HMB. Moreover, one can get AMB, equating 
the energy characteristics of a PM to zero that allow making a conclusion about the general-
ization of considered designs for AMB and HMB.

The following assumptions are used in solving the problems:

Figure 6. The electrostatic support.
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1. Permeability of air is equal to the magnetic permeability of vacuum;

2. Temperature and HMB electromagnetic mode are established;

3. AMB active materials are isotropic.

Based on the terms of the problem, the developed generalized approach should take into 
account both the thermal and electromagnetic processes in HMB. Therefore, the equivalent 
circuit method (equivalent circuits) has been selected for HMB research that is widely used in 
the electromagnetic and thermal processes calculations. Figure 5 shows the equivalent circuit 
of the magnetic (a) and thermal circuit (b) of HMB.

The strength of the HMB determined as:

  F =   
plτ  B  δ  2  _____ 8  μ  0  

  ,  (8)

where p—number of poles; l—active length of HMB;  τ =   πD ___ 2p   —pole pitch; Bδ—flux density in 
the HMB air gap.

According to the equivalent circuit from the total current law, it should be:

   F  m   + 2Iw = 2 F  δ   + 2 F  z   +  F  j   + 2  F  zr   +  F  jr  ,  (9)

where Fm—m.m.f of the PM; Fδ—m.m.f of the air gap; Fz—m.m.f. of the stator magnetic core 
teeth; Fj—m.m.f. of the stator magnetic core back; Fzr—m.m.f. in the radial length of the rotor; 
Fjr—m.m.f. in the axial length of the rotor.

Taking into account that   F  
δ
   =   1 __  μ  

0
      B  

δ
   δ , then:

    1 __  μ  0      B  δ  δ =   
 F  m   + 2Iw − 2 F  z   −  F  j   − 2  F  zr   −  F  jr    __________________  2  ,  (10)

M.m.f. of the PM is defined as follows:

   F  m   =  H  cB    l  m    (11)

Taking into account the temperature dependence of the energy characteristics of PM:

   F  m   =  H  cB            l  m    (  1 −   
 k  Hc  ( Θ  PM   − 20 )

 _ 100   )   ,  (12)

where   H  
cB

  (Θ ) —RMS values of the coercive force of the PM; ΘPM—the temperature of the PM; 
kHc—tension temperature coefficient.

It should be noted that the tension temperature coefficient can be assumed to be constant only 
when the temperature of the PM is 60–80°C (for intermetallic alloys NdFeB and SmCo). At 
temperatures outside this range, this ratio has a nonlinear dependence.
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The PM temperature in the steady state operation of the HMB is determined on the basis of 
the thermal equivalent circuit, Figure 7b.

Functions approximating the actual magnetization curve of soft magnetic material from 
which the HMB magnetic core and shaft are made is used when taking into account the HMB 
magnetic core saturation:

   H  z   =  α  1  sh  β  1    B  z    (13)

   H  j   =  α  1  sh  β  1    B  j    (14)

   H  zr   =  α  2  sh  β  2    B  zr    (15)

   H  jr   =  α  2  sh  β  2    B  jr    (16)

where α1, β1—approximation coefficients for the soft magnetic material of the HMB magnetic 
core; α2, β2—approximation coefficients for the soft magnetic material of the shaft; Bz—flux 
density in the magnetic core teeth; Bj—flux density in the magnetic core back; Bzr—flux den-
sity on the shaft in the radial direction and Bjr—flux density on the shaft in the axial direction.

Then, using the obtained expression and real magnetization curve of the HMB magnetic core 
material, it is possible to create HMB characteristic taking into account the saturation (the 
dependence of the force of gravity from the current).

In Figure 8, as an example, dependence of the force from a current is made based on 
the saturation and for various ambient temperatures. All dependencies are built in static 
mode, transient thermal and electromagnetic processes when making the dependencies 
were not considered.

Figure 7. Equivalent circuit of the magnetic circuit HMB: (a) equivalent circuit of the magnetic circuit; (b) equivalent 
circuit of the thermal circuit. Here, Fm—m.m.f. of the PM; I—current in the AMB winding; w—AMB winding number 
turns; Rm—the magnetic resistance of the PM; Rj—the magnetic resistance of the AMB magnetic core back; Rz—the 
magnetic resistance of the AMB magnetic core teeth; Rδ—the magnetic resistance of the HMB air gap; Rzr—the magnetic 
resistance of the rotor radial length; Rjr—the magnetic resistance of the rotor axial length; Rδs—the magnetic resistance 
of the air gap scattering; Rms—the magnetic resistance of the PM scattering; Ri—thermal resistance of the winding 
insulation; Rst—thermal resistance of the stator; RPM—thermal resistance of the PM insertion.
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From these curves, it is seen that the HMB is losing its control in the magnetic core saturation 
area and at high temperatures. This is due to a significant nonlinearity dependence of HMB 
forces from the current and the magnetic flux of the PM. AMB and HMB control system is 
usually built on the linearization of these dependencies. Loss controllability area occurs at 0.8 
A. In this area, HMB tractive force remains practically unchanged as current increases, since 
the magnetic core reaches saturation. At a significant saturation, HMB tractive force is slightly 
reduced, which causes a significant increase in stator back and teeth m.m.f. Steel 2421 was 
used for making dependence.

4. Computer modeling of dynamic electromagnetic processes in HMB

The developed mathematical apparatus can be used to study the general physical processes in 
HMB, as well as for engineering calculation of basic geometric dimensions of HMB and AMB 
considering nonlinear electromagnetic and thermal processes. At the same time, developed 
mathematical apparatus does not allow making selection of the most rational radial HMB 
design with magnetic inserts. To solve these problems, the computer simulation methods of 
the magnetic field of various HMB and AMB designs are more appropriate to use.

Software complex Ansoft Maxwell was used to solve this problem, where two main radial HMB 
designs with magnetic inserts considered, Figure 1, and AMB design present for comparing.

Overall dimensions and constructive parameters of the researched designs are presented in 
Table 5.

Comparison of the considered HMB designs was made under the same weight and overall 
dimensions, output power and materials properties on the following criteria: the magni-
tude of the force in the air gap of the HMB (main energy characteristic), stiffness when the 
rotor is displaced by 60% of the air gap. The forces in the air gap were also compared in the 
absence of current in the windings. Comparison results are presented in Figure 9.

Comparison of HMB and AMB characteristics produced in relative units, the characteristics 
ascribed to the AMB. The AMB strength and stiffness were taken as 1, and the HMB charac-
teristics are already determined from this base value.

Figure 8. Dependence of the HMB tractive force from a current value (taking into account changes in ambient temperature 
and magnetic core saturability). Here, 1—at a temperature of 20°C; 2—at a temperature of 60°C; 3—at a temperature of 90°C.
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5. Results and conclusions

From the obtained data analysis, it is seen that the maximum stiffness and force value in the air 
gap has HMB with tangentially magnetized inserts (50 and 40%, respectively, more than AMB 
indicators for the same weight and overall dimensions). Achieving these characteristics due 
to the PM inserts will reduce the AMB power consumption at almost two times. The use of a 
radially magnetized inserts gives little effect: increasing the strength of AMB characteristics by 
5–8% and stiffness by 10–12%. In this case, the AMB consumption can be reduced by 8–10%.

Figure 9. Comparison of the AMB parameters and various HMB designs.

Design Parameter

Number of 
poles

Air gap (mm) Active length 
(mm)

Bore diameter The outer 
diameter of the 
stator

Weight (kg)

HMB with 
a radially 
magnetized 
PM inserts

8 0.5 60 30 60 0.7

HMB with a 
tangentially 
magnetized 
PM inserts

8 0.5 60 30 60 0.7

AMB 8 0.5 60 30 60 0.7

Table 5. HMB and AMB researched designs.
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HMB with tangential insert provides strength about 130 N in the absence of current in the 
windings, while the impact strength falls uniformly on the whole rotor. The presence of this 
force value (25% of the AMB power at maximum current) allows more “gently put” rotor on 
the bearing harnesses and minimizes the consequences of super heavy transients at AMB fail-
ure. HMB with radial inserts provides power of 125–130 N in the absence of power supply, 
but this force is applied to a small rotor section, and this may lead to a complication of the 
transition process in case of AMB failure, as it will cause additional “build up” of the rotor.

This chapter also shows that at high temperatures and magnetic core saturation HMB loses 
control. Thus, generalized approach to the design of AMB and HMB considering nonlinear 
electromagnetic and thermal dependencies has been developed in this paper.
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Abstract

In this chapter, motor current signature analysis based on squared envelope spectrum 
is applied in order to identify and to estimate the severity of outer race bearing faults 
in induction machine. This methodology is based on conventional vibration analysis 
techniques, however, it is, non-invasive, low cost, and easier to implement. Bearing fault 
detection and identification in induction machines is of utmost importance in order to 
avoid unexpected breakdowns and even a catastrophic event. Thus, bearing fault char-
acteristic components are extracted combining summation of phase currents, prewhit-
ening, spectral kurtosis and squared envelope spectrum analysis. Experimental results 
with a 0.37 W, 60 Hz, and three-phase induction machine demonstrated the methodology 
effectiveness.

Keywords: bearing fault detection, induction machine, motor current signature 
analysis, squared envelope analysis, spectral kurtosis

1. Introduction

In an industrial scenario, three-phase induction machines have several applications due to 
their reliability, availability, and cost-effectiveness. Unexpected faults in these machines 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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could lead to unexpected breakdowns, losses at industrial production, or have catastrophic 
consequences. In this context, rolling element bearings are responsible for more than 40% 
of induction machine faults [1]. Rolling bearings are critical mechanical components, which 
allow relative movement between systems, supporting radial and thrust load. Bearing faults 
could be associated to contamination, corrosion, inadequate lubrication, installation prob-
lems, and misalignment or overloading [2]. In general, a fault affects only one bearing compo-
nent—inner race, outer race, cage, or ball; as the fault evolves, it spreads to other components; 
moreover, these faults could be described based on fault mechanism, location, or on a combi-
nation of these [3, 4].

Maintenance of electrical machines is an activity of the utmost importance. Moreover, consid-
ering a scenario of cost reduction and production efficiency, the development of an effective 
maintenance program has been gaining more attention and several tools have been imple-
mented to support and encourage best practices. In this sense, advanced methods for data 
acquisition and processing have been developed in order to allow an effective machine condi-
tion monitoring and early fault detection and identification, avoiding unexpected breakdowns 
and even catastrophic failures, especially for critical systems. Whenever possible, condition 
monitoring should be done non-invasively and without interrupting machine operation [5–7].

Over the years, the concept of maintenance became more comprehensive, reducing fault 
occurrence and increasing industrial system availability. Besides, requirements of reliabil-
ity, safety, and criticality were associated with the system or equipment under analysis. 
Maintenance strategies or schemes can be classified as corrective (run-to-break), preventive 
(time-based) and predictive (condition-based maintenance) [8]. Corrective maintenance is 
only performed after an occurrence of a fault and therefore involves unexpected breakdowns, 
high costs, changes in the production chain, and in addition, it could lead to catastrophic 
events. Preventive maintenance and interventions occur based onto a scheduled maintenance 
plan or based on the equipment mean time between failures. Although it is more effective 
than corrective maintenance, by preventing most failures, unexpected failure may still occur. 
Additionally, the process cost is still high, especially, the costs associated with labor, inven-
tory, and even with unnecessary replacement of equipment or components [8, 9].

On the other hand, predictive maintenance analyses the equipment condition so that a pos-
sible fault can still be identified at an early stage. Predictive maintenance aims to identify a 
machine anomaly so that it does not result in a fault. Such maintenance involves advanced 
technique of monitoring, processing, and signal analysis, that are generally performed non-
invasively and, in many cases, in real time. In case of induction machines, these techniques 
can be developed based on vibration, temperature, acoustic emission, or electrical current 
signal monitoring [9]. It should be noted that the monitoring of such signals or parameters, in 
order to verify the operating condition of a machine, is called condition monitoring. In fact, 
condition monitoring aims to not only observe machine current operational condition, but 
also to predict machine future condition, keeping it under a systematic analysis during the 
machine’s remaining life [8]. In this sense, from a systematic machine condition monitoring, a 
fault condition can be detected and identified, such that, a diagnosis procedure can be estab-
lished, whereby properly investigating the fault symptoms and prognosis [10].
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In general, the machine’s monitored signals are the result of a combination of different sources, 
which can vary according to machine environmental and operational conditions, monitoring 
and acquisition systems, among others. Besides, some faults, such as bearing faults, can pro-
duce a signal modulation, which give rise to other signals (sidebands and harmonics) [8]. 
Thus, a great challenge in machine diagnosis consists of separating and identifying these 
sources. In case of bearing fault detection in induction machines, the motor current signature 
analysis (MCSA) has emerged as one of the leading condition monitoring techniques. This 
approach is an advantageous alternative (or complementary) to condition monitoring based 
on vibration analysis. Many machines already have current monitoring for control or protec-
tion purposes, not requiring the installation of other types of sensor, therefore, this approach 
can be considered non-invasive and cost-effective. Over the years, the spectral estimation 
using techniques based on Fourier transform has been widely applied for analysis of the sta-
tor current [11–13]. This analysis methodology considers the use of stationary signals, that 
is, considers that the machine is operating at constant speed and load. On the other hand, 
advanced techniques take into account the nonstationary signals [11].

In this context, this work consists of applying a methodology for analyzing the electrical sig-
nature for the diagnosis of point defects in bearings induction motor, based on spectral kurto-
sis and squared envelope spectrum analysis, in order to increase the fault detection capability 
even in an incipient stage [14].

2. Bearing fault diagnosis in induction machine

Rolling bearings are one of the most important mechanical components in induction machines. 
Therefore, it is necessary to assess the health condition of these components, especially by 
means of signal processing methodologies for bearing fault diagnosis. Bearing fault diagnosis 
comprises a series of processes performed in order to detect, isolate, and identify the bear-
ing condition based on the machine monitoring [10]. Although there are several techniques 
for monitoring of bearing condition in induction machine, i.e., vibration, acoustic emission, 
and ultrasound, this section describes an approach based on electrical stator current analysis 
or current signature analysis. This approach has been gaining attention since bearing failure 
causes a modulation in electrical current signal, which can be identified in a similar way, as it 
is done in vibration analysis [15].

This section aims to describe some of the most used methodologies for induction machine 
fault detection based on electrical current signature analysis. In this context, it is important to 
know the machine to be monitored, and often the system in which it is inserted, since practical 
considerations are essential to allow a proper fault diagnosis. Some of these considerations 
are mainly related to machine technical specifications; load variations; rotor speed variations; 
power supply characteristics; failure mode to be analyzed (electrical or mechanical); sensors 
(physical quantity to be monitored, specification, amount), among others [16, 17].

Bearing fault detection is a technique mainly based on feature extraction from acquired sig-
nal, and condition identification based on the analysis of these features [10]. In the case of a 
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fault localized on the inner or outer race, whenever a rolling element passes through the fault 
surface, a series of impulses are generated. This almost periodic series of impulses present 
characteristics that vary with bearing geometry and fault localization; in addition, they excite 
resonances in the bearing and in the machine structure as a whole [8, 16].

The series of generated impulses are still amplitude modulated as the fault passes by the 
load zone and they are influenced by the transfer function from the fault to the sensor. The 
impulses are generated at a rate which varies according to: the fault position (inner race, outer 
race, and cage), the bearing dimensions, and the machine shaft speed (fr). Thus, it is possible 
to estimate the so called bearing characteristic frequencies, i.e., ball pass frequency of the 
outer race (BPFO), ball pass frequency of the inner race (BPFI), fundamental train frequency 
(FTF), which is related to cage speed rotation, and ball spin frequency (BSF). The following 
equations represent these frequencies [3]:

  BPFO =   
n  f  r   ___ 2   (1 −   d __ D   cos α)   (1)

  BPFI =   
n  f  r   ___ 2   (1 +   d __ D   cos α)   (2)

  FTF =   
 f  r   __ 2   (1 −   d __ D   cos α)   (3)

   BSF =   D ___ 2d   [1 −   (  d __ D   cos α)    
2
 ]   (4)

where n corresponds to the number of rolling elements; α is the angle of the load from the 
radial plane; d is the ball diameter and D is the pitch diameter. When such characteristic 
frequencies appear (or its amplitude increase) in the analyzed signal spectrum, it is possible 
to identify a bearing fault and its location [10]. However, it is very difficult to extract these 
components, since they have low amplitude and are merged with other spectral components 
and background noise.

Therefore, it is possible to affirm that fault detection based on the current analysis is great a 
challenge, especially in industrial environments mainly due to low signal-to-noise ratio of the 
characteristic frequency components associated with these faults, even though several stud-
ies have shown promising results in this area [6, 18]. On the other hand, in many situations, 
motor current signature analysis (MCSA) becomes a useful alternative to traditional fault 
detection methods, e.g., vibration analysis, particularly considering the sensor  installation, 
risks, costs associated with process, and degree of criticality of the system or machine under 
analysis [11].

2.1. Motor current signature analysis—MCSA

MCSA is one of the most commonly used techniques to fault detection in induction motors, 
since it allows identifying electrical and mechanical faults. It performs a spectral analysis of 
stator electrical current, which is usually monitored at one of three power supply phases. 
Studies related to mechanical faults effects on motor stator current mainly consider: load 
torque oscillations, rotating eccentricities, and air gap eccentricity [11, 15, 19].
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In case of bearing faults, it is possible to consider that machines inductances can vary due 
to rotating eccentricities at bearing characteristic frequencies fC, i.e., BPFO, BPFI, etc., which 
produces a stator current modulation, described by [11]:
   f  E   =  f  s   ± k ·  f  C    (5)

where fE is the frequency related to a bearing fault; fs is the power supply frequency; and k = 1, 
2, 3, … is the harmonic number. Thus, fC appears in the current spectrum as sidebands.

In this context, it is import to observe that rotor inertia and winding inductances produce an 
electromechanical filtering effect in stator current, such that, this current is mainly affected by 
low frequency components [20, 21].

Other studies show that load torque oscillations can occur each time the rolling elements reach 
a localized fault on the outer or inner race, or when a fault on a rolling element reaches a race. 
These oscillations cause phase modulations in electrical current as described by Eq. (5) [22].

Finally, another approach considers that the effect of a localized bearing fault in stator current 
can be modeled as air gap eccentricity. In this case, a magnetic flux density variation affects 
stator current as a function of the fault location. Thus, frequencies related to the bearing faults 
are expressed by [19]:

   f  E outer race   =  f  s   ± k · BPFO  (6)

   f  E inner race   =  f  s   ±  f  r   ± k · BPFI  (7)

    f  E ball   =  f  s   ± FTF ± k · BSF  (8)

where fE outer race, fE inner race, and fE ball are the frequencies related to a fault in outer race, inner race, 
and ball respectively, which correspond to an amplitude modulation of the fundamental 
power supply frequency (fs). It is important to observe that this modulation is caused by a 
permeance variation on the rotor fundamental magnetomotive force [11].

2.2. Power spectral density

Generally, the MCSA is carried out using classical or nonparametric spectral estimation meth-
ods. Nonparametric methods require little information regarding the signal to be analyzed 
and its computational complexity is low, especially compared to modern spectral estimation 
methods [16, 23].

Among the most common nonparametric techniques are the periodogram and its refined vari-
ations, i.e., Bartlett, Welch, and Daniell methods [22]. Periodogram can be obtained by [23]:

    Φ   
∧
    P   (ω)  =   1 __ N     | ∑ n=0  N−1    y (t)   e   −jωt |    2   (9)

where y(t) is signal under analysis and its samples could be represented by    [y (t) ]   t=1
  N   .

Mean squared error, represented by the sum of the bias squared and the variance, is a 
parameter commonly used to evaluate the performance of an estimator. In this sense, bias 
reduction is obtained by applying a window. In order to reduce periodogram variance, 
Bartlett method uses an average of several periodograms obtained from different segments of 
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the signal. In this case, the original signal    [y (t) ]   t=1
  N    with N samples is split into K segments, such 

that, an average of L = N/K periodograms is computed. Welch method can be seen as evolution 
of Bartlett method; since the estimation is performed considering that the signal segments are 
overlapped and windowed. Thus, variance is reduced, but also the resolution [23].

3. Envelope analysis

Bearing faults can be classified as localized (single-point) or extended. Incipient localized 
faults produce sharp impulses that cover a large bandwidth. These faults, in general, are 
associated with small pits or spalls. On the other hand, extended faults effect is not so appar-
ent or highlighted in the spectrum and its bandwidth is limited. Brinelling and corrosion are 
examples of extended bearing faults. It is also possible that a small localized fault becomes an 
extended fault as the fault evolves over time. Regardless of the type of fault, in general, bear-
ing failure can be detected using envelope analysis [3].

It is also important to observe that signals produced by bearing faults (localized or extended) 
are typically nonstationary, i.e., signals whose statistical parameters vary in time. More spe-
cifically, localized bearing faults signals can be modelled as cyclostationary or pseudocyclo-
stationary [8, 24].

Over the years, the envelope analysis or high frequency resonance demodulation has been 
widely used for identifying localized faults in rolling bearings. Each time a bearing compo-
nent strikes the fault surface, a mechanical shock occurs. Consequently, an impulse is gener-
ated and structural resonances of the system are excited by it. In addition, these impulses 
are modulated in amplitude. This way, through the envelope analysis, it is possible to obtain 
demodulated signals, which are directly related to the bearing condition [8].

The following steps perform envelope analysis. First, digital bandpass filtering of acquired sig-
nal in a suitable frequency band, in general, around the machine mechanical resonance is per-
formed. Following, the filtered signal is demodulated. Finally, the resulting signal frequency 
spectrum is estimated, resulting in the envelope spectrum, whereby it is possible to identify the 
periodic components associated with a fault in a bearing component [16, 25]. In other words, it 
is possible to identify the repetition frequency of the impulses caused by a fault simply analyz-
ing the envelope signal spectrum, which, in general, it is not possible by using the raw spec-
trum [17]. Fourier transform is applied in order to obtain the envelope spectrum.

One of the most used tool for demodulation or envelope extraction is Hilbert transform 
[26, 27]. First, the acquired signal is bandpass filtered around a machine resonance frequency, 
and then Hilbert transform is applied. This digital technique reduces the data length and 
allows flexibility for bandpass filter specification [28].

However, it is important to observe that a suitable frequency band to filter the signal must 
contain impulses generated by the fault and amplified by machine mechanical or struc-
tural resonances [8]. Therefore, one of the main difficulties in using envelope analysis is 
undoubtedly the choice of an appropriate frequency band for filtering the signal. In order 
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to circumvent this drawback, algorithms based on spectral kurtosis have been successfully 
applied, which is discussed later in the chapter.

3.1. Hilbert transform

As mentioned before, bearing fault signals can be seen as amplitude modulated signal, such 
that, carrier frequency, represented by high frequency resonances are modulated by bear-
ing characteristic frequencies. Hilbert transform can be used for the demodulation process in 
envelope analysis when modulated signal is proved to be analytic [8].

When envelope analysis is performed based on Hilbert transform, the frequency band to be 
demodulated can be properly separated from adjacent components that could interfere with 
the analysis. Impulse response function produced by bearing faults has real and imaginary 
parts of its corresponding frequency function related by Hilbert transform [8].

In general, signal-to-noise ratio is used as an indication of the frequency band where the 
modulated signal should be filtered. After filtering, selected frequency band is shifted at low 
frequencies in the spectrum and padded with zeros to double the length in order to obtain a 
one-side spectrum. When computing the inverse Fourier transform of this one-side spectrum, 
an analytic signal is obtained, such that, its imaginary part is the Hilbert transform of the real 
part. In this way, envelope corresponds to the modulus of real and imaginary parts. However, 
it is more interesting to analyze the squared envelope, since it can improve signal-to-noise 
ratio by removing extraneous components in practical situations [28].

3.2. Kurtogram

A rolling bearing fault excites high frequency resonances in the rotating machine, which can 
produce modulations at bearing characteristic frequencies. Therefore, characteristic frequency 
components should be demodulated using an optimal selection of frequency and bandwidth 
(f, Bw) for bearing fault identification based on envelope analysis. In this sense, spectral kur-
tosis based algorithms, such as kurtogram, aims to find this combination in a computationally 
efficient way [25].

Initially, spectral kurtosis (SK) was defined based on short-time Fourier transform (STFT) for 
impulsivity measurement as a function of frequency, and it was mainly applied to sonar signal 
analysis [17]. Some years ago, SK was also considered and applied for bearing fault analysis [29].

Thus, spectral kurtosis of a signal x(t), i.e., kurtosis value for each frequency (f), can be com-
puted based on the STFT (X(t, f)) of this signal, such that [8, 30]:

   SK (f)  =   
 〈 X   4  (t, f) 〉 

 _______   〈 X   2  (t, f) 〉    2    − 2  (10)

where X(t, f) corresponds to the envelope as a time-frequency function; X2(t, f) represents the 
power spectrum values calculated for each time (t); and the average of all these power spectral 
values (〈X2(t, f )〉) corresponds to the power spectrum of the analyzed signal as a whole. In addi-
tion, the constant factor 2 is subtracted, so that, for Gaussian signal, Eq. (2) turns to zero [8]. In 
this sense, spectral kurtosis can be understood as a filter so that its value is maximum in the 
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frequency bands containing impulsive signals and zero for that frequency bands dominated by 
stationary signals [29].

Since using short-time Fourier transform, parameters, such as window length, can directly 
affect the spectral kurtosis calculation; therefore, considering an impulsive signal, the win-
dow shorter than the spacing between two consecutive pulses and longer than an individual 
pulse shall provide a maximum kurtosis value. A detailed investigation about the relation 
between spectral kurtosis value and window length was conducted in Ref. [28]. Additionally, 
in Ref. [29], it was depicted that the square root of the spectral kurtosis is equivalent to the 
optimum Wiener filter and it demonstrated a close relation between optimum matched filter 
and spectral kurtosis value. For envelope analysis, in order to obtain an optimum result, it 
is of utmost importance to specify properly filter center frequency and bandwidth. For this 
purpose, the concept of kurtogram emerges as a tool to find the optimum filter for enve-
lope analysis based on spectral kurtosis values. Kurtogram displays the spectral kurtosis val-
ues as a function of frequency and windows length, which define the spectral resolution. 
Experiments showed that the filter set from kurtogram was more efficient for outer race fault 
detection, when compared with Wiener and matched filters [28].

Fast kurtogram algorithm was developed as an extension of the kurtogram, especially con-
sidering that it was costly and inefficient to analyze all possible combinations of frequency 
and windows length. Fast kurtogram computes spectral kurtosis using digital filters, instead 
of short-time Fourier transform, following a dyad-decomposition so-called 1/3-binary tree. 
This decomposition is similar to discrete wavelet packet transform, where frequency bands 
are divided into bands with one half of their previous width, but here, divisions by 1/3 are 
also included [30].

As an alternative for fast kurtogram, the wavelet kurtogram algorithm was developed. In this 
case, nonorthogonal complex Morlet wavelets are used for signal decomposition and it is con-
sidered that the optimum combination center frequency and bandwidth for envelope analysis 
could be found based on a 1/nth-octave wavelet analysis. In general, the sequence 1/1, 1/2, 
1/3, 1/4, 1/8, 1/12, …, 1/nth-octave is used, although, any sequence could be applied. Besides, 
before wavelet decomposition, the original signal power spectral density is prewhitened by 
an autoregressive model in order to enhance the fault detection into the envelope spectrum. 
Additionally, applied complex Morlet wavelet was optimized, since several filter banks are 
tested and the selected for envelope analysis is the one that maximizes the SK. The scheme of 
signal decomposition by means of filter bank for SK optimization is similar to that one used 
in kurtogram [17].

Wavelets are used because they present an impulse response with a constant damping ratio, 
which is more suitable for impulsive signals analysis in comparison with STFT. Besides, 
complex Morlet wavelet is analytic; therefore, its Fourier transform presents only positive 
frequencies. Thus, SK for each wavelet filter can be calculated considering that the product 
of the Morlet wavelet coefficients and their complex conjugate corresponds to the squared 
envelope of the filtered signal [17]. Here, it is also important to notice that using the qua-
dratic envelope has been more advantageous for bearing signal analysis [28], which will be 
discussed in the next section.
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could be found based on a 1/nth-octave wavelet analysis. In general, the sequence 1/1, 1/2, 
1/3, 1/4, 1/8, 1/12, …, 1/nth-octave is used, although, any sequence could be applied. Besides, 
before wavelet decomposition, the original signal power spectral density is prewhitened by 
an autoregressive model in order to enhance the fault detection into the envelope spectrum. 
Additionally, applied complex Morlet wavelet was optimized, since several filter banks are 
tested and the selected for envelope analysis is the one that maximizes the SK. The scheme of 
signal decomposition by means of filter bank for SK optimization is similar to that one used 
in kurtogram [17].

Wavelets are used because they present an impulse response with a constant damping ratio, 
which is more suitable for impulsive signals analysis in comparison with STFT. Besides, 
complex Morlet wavelet is analytic; therefore, its Fourier transform presents only positive 
frequencies. Thus, SK for each wavelet filter can be calculated considering that the product 
of the Morlet wavelet coefficients and their complex conjugate corresponds to the squared 
envelope of the filtered signal [17]. Here, it is also important to notice that using the qua-
dratic envelope has been more advantageous for bearing signal analysis [28], which will be 
discussed in the next section.
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The SK calculation could be enhanced by prewhitening the spectrum of the signal to be ana-
lyzed. Through the prewhitening, signal spectrum becomes almost constant, similar to the white 
noise spectrum. This process reduces variations that could occur in transient signals spectrum, 
which can lead to inaccurate SK calculations [17]. An autoregressive model can be used for signal 
spectrum prewhitening. In this case, the model error corresponds to the noise, but especially to 
the nonstationary part of the signal, which contains information related to bearing fault. In other 
words, it is possible to say that a digital filter (linear prediction filter), which is designed based on 
an autoregressive signal model, predicts the deterministic part of the signal; and the prediction 
error, which contains an impulsive signal that will be used for machine condition analysis [31].

An autoregressive model (AR) of order p can be represented by [32]:
   AR (k)  = −  ∑ i=1  p    a (i) x (i + k) + error (k)   (11)

where a(i), i = 1, 2, 3, …, p, corresponds to the linear prediction filter weighting coefficients; 
error (k) is a whitened signal, which is the difference between the original and the predicted 
signals. Minimum least square error is used to find the coefficients of the linear predictor. 
Model order (p) will be one that maximizes the kurtosis of the error(k), such that, this residual 
signal will contain fault related impulse signals. Besides, (p) must be smaller (in number of 
samples) than that the space between two consecutive bearing faults impulses [17].

3.3. Squared envelope analysis

During the envelope analysis, existing random or discrete noise components can make it dif-
ficult to identify components related to bearing failure. That is why a major constraint of 
envelope analysis is related to signal-to-noise ratio. A way to overcome this limitation is by 
using squared envelope. In this case, envelope spectrum presents a higher harmonic reduc-
tion, which cannot be obtained by a common filtering operation [28].

A method for computing squared envelope from an analytic signal was depicted in Ref. [28]. 
There, squaring envelope process is defined as a convolution of an analytic signal and its 
complex conjugate. Thus, squared envelope spectrum can be calculated by the convolution of 
the analytic signal and its complex conjugate corresponding spectra. In this case, spectrum of 
squared envelope does not present a sum of frequency components, since the analytic signals 
have only positive frequency components. Besides, the squared envelope spectrum has the 
same frequency range as if it was calculated using Hilbert transform and zero padding [8].

It is also important to highlight that the integral of spectral correlation of all considered frequen-
cies is equivalent to spectrum of the squared envelope, where the spectral correlation is a two-
dimensional Fourier transform calculated on the two-dimensional autocorrelation function [33].

4. Bearing fault detection methodology

Despite major advances in bearing fault detection techniques, such as MCSA, current meth-
odology still has limitations that make it difficult to identify incipient faults, impairing the 
fault prognosis. Depending on the operational environment and machine specifications, there 
may be a reduction in the analysis reliability as a whole.
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A way to mitigate this problem consists in separation of signals coming from different sources. 
In general, the components in the machine vibration or current signals have specific charac-
teristics that allow their separation and identification in order to detect changes in machinery 
health condition. Noise, eccentricity, gear, cavitation, rolling bearing characteristic frequen-
cies, and broken bars are examples of components that may be present in vibration signals or 
electric current signals [8].

In this scenery, several techniques have been proposed to support signal separation and identi-
fication in machine fault detection. Among these techniques, it is possible to mention, for exam-
ple, time synchronous averaging (TSA), which is used to remove signal components that are 
not synchronous with rotor speed. In this situation, a minimal disturbance could occur in the 
resulting signal, but it is necessary an angular sampling for each harmonic family to be sepa-
rated. This technique removes harmonics, but not lateral modulation bands. Techniques related 
to noise cancelling, also could be used in order to mitigate noise contamination. In addition, 
linear prediction filtering could be used to separate the predictable deterministic signal, which 
must be removed from the original signal in order to highlight the signal component related to 
bearing fault [1]. Linear prediction was also considered for electrical signature analysis.

Another technique that was evaluated in Ref. [14] to improve the detection of fault related com-
ponents was the sum of the electric currents. A common operation in three-phase circuit analy-
sis is to obtain the current or voltage phase using information from other phases. In the case of 
a three-phase induction machine connected to a delta system, considering that the sum of all 
currents entering a node is equal to the sum of all the currents out of the node (1st Kirchhoff's 
Law), it is possible to assume that IA + IB + IC = 0, where IA, IB, and IC are the measured currents 
of the phase A, B, and C, respectively. In this sense, the current of any phase (IA, IB, or IC) can 
easily be defined by the other two. For example, IC = − (IA + IB).

This procedure is similar to the synchronous average calculation. Any mechanical effect 
related to the machine condition (nominal or under a fault), including periodic or random 
components, can be observed in any of the three phases’ current, or alternatively, in the 
numerically obtained current, i.e. (IC). On the other hand, any other uncorrelated random 
effect will be attenuated using this procedure [14].

This way, the methodology that guided this work follows five steps:

1. Sum of the electric currents.

2. Prewhitening (linear prediction filtering).

3. Spectral kurtosis based algorithm.

4. Squared envelope spectrum.

5. Bearing fault identification based on bearing characteristic frequency detection.

It is also important to highlight that since faults are identified in the envelope spectrum, its 
amplitude can be used as severity index. Thus, a fault evolution can be analyzed as function 
of increases in the bearing characteristic frequency amplitude [34].
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4.1. Experimental issues

In this section, damaged rolling bearings (model 6203-ZZ) are installed on a three-phase 
induction motor; for each bearing, stator current signals are acquired and squared envelope 
spectrum was analyzed in order to detect outer race faults by means of ball pass frequency 
outer race (BPFO) identification. Rolling bearings were artificially damaged, such that, 
through holes of 1.0 mm, 2.0 mm, and 3.0 mm diameter were drilled on the outer race to 
simulate localized faults with different levels of severity. Experiments were performed using 
6203-ZZ shielded metric radial bearings, also described as deep groove ball bearing, single 
row, double shielded, pressed steel cage, normal clearance, prelubricated with grease, with 
inner (bore) diameter: 17mm; outside diameter: 40mm; and overall width: 12mm.

Experimental test rig (Figure 1) consists of a three-phase squirrel cage induction motor with 
0.37 kW power, four poles, and 60 Hz supply frequency, coupled to an electric machine work-
ing as a power generator (constant mechanical load), without any speed or torque control. A 
24-bit/4-channel data acquisition board (National Instruments NI 9239) and current probes 
were used to acquire electric current signals at 50 kHz sample rate. Prior to any processing, 
data was filtered using a low pass filter of 25 kHz.

Two of the three stator currents (IA and IB) were measured, and the third one (IC) was numeri-
cally obtained, such that IC = − (IA + IB), and used in the fault detection process. Figure 2 shows 
the damaged bearings used in the experiments. Rotational speed was estimated to be 28.80 Hz 
(1728 rpm), and the characteristic frequency for a fault on the bearing outer race was estimated 
in (BPFO = 87.93 Hz ± 2%).

The methodology was applied to calculate electric stator current. Following, prewhitening was 
performed, such that the AR model order was chosen by using the kurtosis maximization criterion 
of the residual signal. In this work, it is proposed as a simplified methodology, where the healthy 

Figure 1. Experimental test rig.
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bearing is initially tested and the resulting AR model order is also used for the faulty bearings 
analysis. Therefore, an AR model order (p = 32) is used for all experiments. Following, fast kur-
togram algorithm was applied at five levels of decomposition. It is important to notice that this 
process, including sampling, signal processing, and feature extraction, lasts about 2 minutes on a 
modern computer. Although the wavelet kurtogram algorithm has been analyzed, only the results 
obtained with the fast kurtogram are presented, mainly due to its performance in this application, 
as explained in Refs. [14, 34]. The signal processing is performed offline using Matlab®.

Thus, the described methodology was applied for all damaged bearing cases. The fast kur-
togram color map was similar to that in Figure 3; then, only the resulting squared envelope 
spectrum was shown for the other experiments. The bandpass filter with center frequency 
fC = 6250 Hz and bandwidth Bw = 4167 Hz, at decomposition level (k = 2.6), indicated by 
black circle in Figure 3, was used in all squared envelope calculations, which was very use-
ful for comparisons. In the Figures, an arrow indicates the amplitude of the bearing outer 
race characteristic frequency (BPFO).

Figure 2. Damaged bearings used in the experimental tests. From left to right holes of 1.0 mm, 2.0 mm, and 3.0 mm.

Figure 3. Fast kurtogram color map.
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Figure 4 shows the squared envelope spectrum of the electric current for the damaged bear-
ing with the 1.0 mm hole. In this case, the envelope spectrum clearly shows the fault signature 
around the estimated BPFO, with amplitude A = 2.9 × 10− 9.

The same procedure was applied to the damaged bearing with 2.0 mm hole, as presented 
in Figure 5. Here, a significant increase in the bearing characteristic fault frequency ampli-
tude (A = 7.9 × 10− 9) was observed, confirming the fault effect in the stator current envelope 
spectrum amplitude.

Figure 4. Squared envelope spectrum of the electric current for the damaged bearing with the 1.0 mm hole.

Figure 5. Squared envelope spectrum of the electric current for the damaged bearing with the 2.0 mm hole.

Bearing Fault Detection in Induction Machine Using Squared Envelope Analysis of Stator Current
http://dx.doi.org/10.5772/67145

105



The last experiment assessed the damaged bearing with 3.0 mm hole. In this case, it is impor-
tant to observe a change in the envelope spectrum graphic scale (Figure 6), due to the increase 
in amplitude (A = 11.3 × 10− 9) in the observed fault frequency.

The obtained results validate the methodology, and therefore, the involved theoretical con-
cepts. A BFPO frequency (at 88.1 Hz) was detected for each damaged bearing experiment, 
strongly indicating a bearing outer race fault. Besides, the characteristic frequency amplitude 
increases with the fault severity, which could be used as a prognosis indication. In the enve-
lope spectra, it was also observed that as the amplitude of BPFO increased, the amplitude 
of another frequency component decreased. Thus, as in Ref. [11], it is possible to conclude 
that, although the stator current analysis is more complex than the vibration analysis, it is an 
important alternative to bearing fault detection in induction motors, mainly due to its advan-
tages related to cost, availability and applications.

5. Conclusions and comments

This work describes a methodology to enhance MCSA for bearing fault detection and identifica-
tion in induction machines by combining electrical currents sum, prewhitening based on linear 

Figure 6. Squared envelope spectrum of the electric current for the damaged bearing with the 3.0 mm hole.
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prediction filtering, spectral kurtosis, and squared envelope analysis. This methodology is based 
on successful methodologies and algorithms, initially proposed to be applied to vibration sig-
nals. An experimental test of such methodology was depicted using a test rig where artificially 
damaged bearings were created in order to simulate faults at different severity levels. Results 
show that the methodology improves MCSA in comparison with traditional spectrum analysis. 
Besides, the methodology provides an indication of fault severity based on bearing characteristic 
frequency (e.g. BPFO) amplitude in squared envelope, which can be used for prognosis purposes. 
For real industrial applications, the authors believe that this methodology could be easily carried 
by a professional predictive maintenance team, given adequate equipment and analysis software.

Acknowledgments

The authors would like to thank the National Council for Scientific and Technological 
Development (CNPq), Coordination for the Improvement of Higher Education Personnel 
(CAPES), Minas Gerais Research Foundation (FAPEMIG), and Brazilian Electricity Regulatory 
Agency Research and Development (ANEEL R&D) for supporting this work.

The authors would like to thank the Professor J. Antoni for providing the Fast Kurtogram 
Matlab® code.

Author details

Valeria Cristina Maria Nascimento Leite1*, Jonas Guedes Borges da Silva2, Germano Lambert 
Torres2, Giscard Francimeire Cintra Veloso3, Luiz Eduardo Borges da Silva3, Erik Leandro 
Bonaldi2 and Levy Ely de Lacerda de Oliveira2

*Address all correspondence to: valeria.nleite@gmail.com

1 Institute of Aeronautics and Space, São José dos Campos, Brazil

2 PS Solutions, Itajubá, Brazil

3 Itajuba Federal University, Itajubá, Brazil

References

[1] IEEE Motor Reliability Working Group. Report on large motor reliability survey of 
industrial and commercial instalations. IEEE Transactions on Industry Applications. 
1985;21(4):853–864. DOI: 10.1109/TIA.1985.349532

[2] Harris T.A., Kotzalas M.N. Advanced Concepts of Bearing Technology. 5th ed. Boca 
Raton: CRC Press; 2006. 368 p.

[3] Randal R.B., Antoni J. Rolling element bearing diagnostics—a tutorial. Mechanical 
Systems and Signal Processing. 2011;25(2):485–520. DOI: 10.1016/j.ymssp.2010.07.017

Bearing Fault Detection in Induction Machine Using Squared Envelope Analysis of Stator Current
http://dx.doi.org/10.5772/67145

107



[4] Moyer C.A., Ai X. Rolling Element Bearings. In: Bhushan B., editor. Modern Tribology 
Handbook. 1st ed. Boca Raton: CRC Press; 2001. p. 28.

[5] Lu B., Durocher D.B., Stemper P. Predictive maintenance techniques. IEEE Industry 
Applications Magazine. 2009;15(6):52–60. DOI: 10.1109/MIAS.2009.934444

[6] Zhou W., Habetler T.G., Harley R.G. Bearing fault detection via stator current noise 
cancellation and statistical control. IEEE Transactions on Industrial Electronics. 
2008;55(12):4260–4269. DOI: 10.1109/TIE.2008.2005018

[7] Jung J.H., Lee J.J., Kwon B.H. Online diagnosis of induction motors using MCSA. 
IEEE Transactions on Industrial Electronics. 2006;53(6):1842–1852. DOI: 10.1109/
TIE.2006.885131

[8] Randall R.B. Vibration-Based Condition Monitoring: Industrial, Aerospace and 
Automotive Applications. 1st ed. Hoboken: Wiley; 2011. 308 p.

[9] Girdhar P., Scheffer C. Practical Machinery Vibration Analysis and Predictive 
Maintenance. 1st ed. Oxford: Elsevier; 2004. 272 p.

[10] Rai A., Upadhyay S. A review on signal processing techniques utilized in the fault diagno-
sis of rolling element bearings. Tribology International. 2016;96:289–306. DOI: 10.1016/j.
triboint.2015.12.037

[11] Blodt M., Grajon P., Raison B., Regnier J. Mechanical Fault Detection in Induction Motor 
Drives through Stator Current Monitoring—Theory and Application Examples. In: 
Zhang W., editor. Fault Detection. 1st ed. Rijeka: InTech; 2010. Ch. 21, pp. 451–488. DOI: 
10.5772/9072.

[12] Bonaldi E.L., de Oliveira L.E.L., Lambert-Torres G., Borges da Silva L.E. Proposing a 
Procedure for the Application of Motor Current Signature Analysis on Predictive 
Maintenance of Induction Motors. In: 20th International Congress & Exhibition on 
Condition Monitoring and Diagnosis Engineering Management; June 13-15, 2007; Faro, 
Portugal. Faro, Portugal: COMADEM Press; 2007. DOI: 10.13140/RG.2.1.2836.7605

[13] Frosini L., Bassi E. Stator current and motor efficiency as indicators for different types 
of bearings faults in induction motors. IEEE Transactions on Industrial Electronics. 
2010;57(1):244–251. DOI: 10.1109/TIE.2009.2026770

[14] Leite V.C.M.N., Borges da Silva J.G., Veloso G.F.C., Borges da Silva L.E., Lambert-Torres 
G., et al. Detection of localized bearing faults in induction machines by spectral kurto-
sis and envelope analysis of stator current. IEEE Transactions on Industrial Electronics. 
2015;62(3):1855–1865. DOI: 10.1109/TIE.2014.2345330

[15] Schoen R.R., Habetler T.G., Kamran F., Bartheld R.G. Motor bearing damage detec-
tion using stator current monitoring. IEEE Transactions on Industry Applications. 
1995;31(6):1274–1279. DOI: 10.1109/28.475697

Bearing Technology108



[4] Moyer C.A., Ai X. Rolling Element Bearings. In: Bhushan B., editor. Modern Tribology 
Handbook. 1st ed. Boca Raton: CRC Press; 2001. p. 28.

[5] Lu B., Durocher D.B., Stemper P. Predictive maintenance techniques. IEEE Industry 
Applications Magazine. 2009;15(6):52–60. DOI: 10.1109/MIAS.2009.934444

[6] Zhou W., Habetler T.G., Harley R.G. Bearing fault detection via stator current noise 
cancellation and statistical control. IEEE Transactions on Industrial Electronics. 
2008;55(12):4260–4269. DOI: 10.1109/TIE.2008.2005018

[7] Jung J.H., Lee J.J., Kwon B.H. Online diagnosis of induction motors using MCSA. 
IEEE Transactions on Industrial Electronics. 2006;53(6):1842–1852. DOI: 10.1109/
TIE.2006.885131

[8] Randall R.B. Vibration-Based Condition Monitoring: Industrial, Aerospace and 
Automotive Applications. 1st ed. Hoboken: Wiley; 2011. 308 p.

[9] Girdhar P., Scheffer C. Practical Machinery Vibration Analysis and Predictive 
Maintenance. 1st ed. Oxford: Elsevier; 2004. 272 p.

[10] Rai A., Upadhyay S. A review on signal processing techniques utilized in the fault diagno-
sis of rolling element bearings. Tribology International. 2016;96:289–306. DOI: 10.1016/j.
triboint.2015.12.037

[11] Blodt M., Grajon P., Raison B., Regnier J. Mechanical Fault Detection in Induction Motor 
Drives through Stator Current Monitoring—Theory and Application Examples. In: 
Zhang W., editor. Fault Detection. 1st ed. Rijeka: InTech; 2010. Ch. 21, pp. 451–488. DOI: 
10.5772/9072.

[12] Bonaldi E.L., de Oliveira L.E.L., Lambert-Torres G., Borges da Silva L.E. Proposing a 
Procedure for the Application of Motor Current Signature Analysis on Predictive 
Maintenance of Induction Motors. In: 20th International Congress & Exhibition on 
Condition Monitoring and Diagnosis Engineering Management; June 13-15, 2007; Faro, 
Portugal. Faro, Portugal: COMADEM Press; 2007. DOI: 10.13140/RG.2.1.2836.7605

[13] Frosini L., Bassi E. Stator current and motor efficiency as indicators for different types 
of bearings faults in induction motors. IEEE Transactions on Industrial Electronics. 
2010;57(1):244–251. DOI: 10.1109/TIE.2009.2026770

[14] Leite V.C.M.N., Borges da Silva J.G., Veloso G.F.C., Borges da Silva L.E., Lambert-Torres 
G., et al. Detection of localized bearing faults in induction machines by spectral kurto-
sis and envelope analysis of stator current. IEEE Transactions on Industrial Electronics. 
2015;62(3):1855–1865. DOI: 10.1109/TIE.2014.2345330

[15] Schoen R.R., Habetler T.G., Kamran F., Bartheld R.G. Motor bearing damage detec-
tion using stator current monitoring. IEEE Transactions on Industry Applications. 
1995;31(6):1274–1279. DOI: 10.1109/28.475697

Bearing Technology108

[16] Borges da Silva J.G. Modeling and Treatment of Motor Electrical Signature Machines 
Signals for Fault Diagnosis Enhancement (in Portuguese) [dissertation]. Itajuba, Brazil: 
Itajuba Federal University; 2014. 170p.

[17] Sawalhi N. Diagnostics, Prognostics and Fault Simulation for Rolling Element Bearings 
[thesis]. New South Wales, Australia: The University of New South Wales; 2007. 354 p. 
Available from: http://handle.unsw.edu.au/1959.4/40544

[18] Bellini A., Filippetti F., Tassoni C., Capolino G.A. Advances in diagnostic techniques for 
induction machines. IEEE Transactions on Industrial Electronics. 2008;55(12):4109–4126. 
DOI: 10.1109/TIE.2008.2007527

[19] Blodt M., Granjon P., Raison B., Rostaing G. Models for bearing damage detection in 
induction motors using stator current monitoring. IEEE Transactions on Industrial 
Electronics. 2008;55(4):1813–1822. DOI: 10.1109/TIE.2008.917108

[20] Bonaldi E.L., Borges da Silva L.E., Lambert-Torres G., de Oliveira L.E.L., Assuncao 
F.O. Using Rough Sets Technique as a Fault Diagnosis Classifier for Induction Motors. 
In: 28th Annual Conference of the Industrial Electronics Society, IECON 2012; November 
5–8, 2002; Sevilla, Spain. New Jersey: IEEE Press; 2002. pp. 3383–3388. DOI: 10.1109/
IECON.2002.1182941

[21] Immovilli F., Bellini A., Rubini R., Tassoni C. Diagnosis of bearing faults in induction 
machines by vibration or current signals: A critical comparison. IEEE Transactions on 
Industry Applications. 2010;46(4):1350–1359. DOI: 10.1109/TIA.2010.2049623

[22] Blodt M., Chabert M., Regnier J., Faucher J. Mechanical load fault detection in induc-
tion motors by stator current time frequency analysis. IEEE Transactions on Industry 
Applications. 2006;42(6):1454–1463. DOI: 10.1109/TIA.2006.882631

[23] Stoica P., Moses R. Spectral Analysis of Signals. 1st ed. Upper Saddle River: Prentice-
Hall; 2005. 452 p.

[24] Antoni J., Randall R.B. Differential diagnosis of gear and bearing faults. Journal of 
Vibration and Acoustics. 2002;124(2):165–171. DOI: 10.1115/1.1456906

[25] Guo Y., Na J., Li B., Fung R.F. Envelope extraction based dimension reduction for inde-
pendent component analysis in fault diagnosis of rolling element bearing. Journal of 
Sound and Vibration. 2014;333(13):2983–2994. DOI: 10.1016/j.jsv.2014.02.038

[26] Randall R.B. Developments in Digital Analysis Techniques for Diagnosis of Bearings and 
Gears. In: Australian Acoustical Society Adelaide, Fifth International Congress on Sound 
and Vibration; December 15–18, 1997. Adelaide, Australia, vol. 1, pp. 133–149.

[27] El Bouchikhi E.H., Choqueuse V., Benbouzid M., Antonino-Daviu J.A. Stator Current 
Demodulation for Induction Machine Rotor Faults Diagnosis. In: 2014 First International 
Conference on Green Energy ICGE 2014; March 25–27, 2014; Sfax, Tunisia. New Jersey: 
IEEE Press; 2014. pp. 176–181. DOI: 10.1109/ICGE.2014.6835418

Bearing Fault Detection in Induction Machine Using Squared Envelope Analysis of Stator Current
http://dx.doi.org/10.5772/67145

109



[28] Ho D., Randall R.B. Optimisation of bearing diagnostic techiniqueusing simulated and 
actual fault signals. Mechanical Systems and Signal Processing. 2000;14(5):763–788. 
DOI: 10.1006/mssp.2000.1304

[29] Antoni J., Randall R.B. The spectral kurtosis: application to vibratory surveillance 
and diagnostics of rotating machines. Mechanical Systems and Signal Processing. 
2006;20(2):308–331. DOI: 10.1016/j.ymssp.2004.09.002

[30] Antoni J. Fast computation of the kurtogram for the detection of transient faults. 
Mechanical Systems and Signal Processing. 2007;21(1):108–124. DOI: 10.1016/j.
ymssp.2005.12.002

[31] Sawalhi N., Randall R.B., Endo H. The enhancement of fault detection and diagnosis in 
rolling element bearings using minimum entropy deconvolution combined with spec-
tral kurtosis. Mechanical Systems and Signal Processing, 2007;21(6):2616–2633. DOI: 
10.1016/j.ymssp.2006.12.002

[32] Sawalhi N., Randall R.B. Spectral Kurtosis Optimization for Rolling Element Bearings. 
In: Eighth International Symposium on Signal Processing and Its Applications; August 
28–31, 2005; Sydney, Australia. New Jersey: IEEE Press; 2005. pp. 839–842. DOI: 10.1109/
ISSPA.2005.1581069

[33] Randall R.B., Antoni J., Chobsaard S. The relationship between spectral correlation and 
envelope analysis in the diagnostic of bearing faults and other cyclostationary machine 
signals. Mechanical Systems and Signal Processing. 2001;15(5):945–962. DOI: 10.1006/
mssp.2001.1415

[34] Leite V.C.M.N., Borges da Silva J.G., Borges da Silva L.E., Veloso G.F.C., Lambert-Torres 
G., et al. Experimental bearing fault detection, identification and prognosis through spec-
tral kurtosis and envelope spectral analysis. Electric Power Components and Systems. 
Taylor & Francis, 2016;44(18):2121–2132. DOI: 10.1080/15325008.2016.1209705.

Bearing Technology110



[28] Ho D., Randall R.B. Optimisation of bearing diagnostic techiniqueusing simulated and 
actual fault signals. Mechanical Systems and Signal Processing. 2000;14(5):763–788. 
DOI: 10.1006/mssp.2000.1304

[29] Antoni J., Randall R.B. The spectral kurtosis: application to vibratory surveillance 
and diagnostics of rotating machines. Mechanical Systems and Signal Processing. 
2006;20(2):308–331. DOI: 10.1016/j.ymssp.2004.09.002

[30] Antoni J. Fast computation of the kurtogram for the detection of transient faults. 
Mechanical Systems and Signal Processing. 2007;21(1):108–124. DOI: 10.1016/j.
ymssp.2005.12.002

[31] Sawalhi N., Randall R.B., Endo H. The enhancement of fault detection and diagnosis in 
rolling element bearings using minimum entropy deconvolution combined with spec-
tral kurtosis. Mechanical Systems and Signal Processing, 2007;21(6):2616–2633. DOI: 
10.1016/j.ymssp.2006.12.002

[32] Sawalhi N., Randall R.B. Spectral Kurtosis Optimization for Rolling Element Bearings. 
In: Eighth International Symposium on Signal Processing and Its Applications; August 
28–31, 2005; Sydney, Australia. New Jersey: IEEE Press; 2005. pp. 839–842. DOI: 10.1109/
ISSPA.2005.1581069

[33] Randall R.B., Antoni J., Chobsaard S. The relationship between spectral correlation and 
envelope analysis in the diagnostic of bearing faults and other cyclostationary machine 
signals. Mechanical Systems and Signal Processing. 2001;15(5):945–962. DOI: 10.1006/
mssp.2001.1415

[34] Leite V.C.M.N., Borges da Silva J.G., Borges da Silva L.E., Veloso G.F.C., Lambert-Torres 
G., et al. Experimental bearing fault detection, identification and prognosis through spec-
tral kurtosis and envelope spectral analysis. Electric Power Components and Systems. 
Taylor & Francis, 2016;44(18):2121–2132. DOI: 10.1080/15325008.2016.1209705.

Bearing Technology110



Bearing Technology
Edited by Pranav H. Darji

Edited by Pranav H. Darji

Photo by SafakOguz / iStock

In the twenty-first century, bearings are expected to perform better in the form 
of various operating conditions, that is from low speed to extremely high speed 
and from low load to huge load applications. The expectations from the field of 

bearing technology are great. During the recent years, we have been witnessing the 
development of a new generation of mechanical systems that are highly miniaturized 

and very sophisticated, yet extremely robust. Technological progress creates 
increasingly arduous conditions for rolling mechanisms.

ISBN 978-953-51-3183-0

Bearing Technology

ISBN 978-953-51-4821-0


	Bearing Technology
	Contents
	Preface
	Chapter 1
Comparative Analysis of Bearings for Micro-GT: An Innovative Arrangement
	Chapter 2
Electromagnetic Levitation System for Active Magnetic Bearing Wheels
	Chapter 3
Condition Monitoring and Fault Diagnosis of Roller Element Bearing
	Chapter 4
Design Aspects of the Bearing Supports
	Chapter 5
Bearing Fault Detection in Induction Machine Using Squared Envelope Analysis of Stator Current

