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Preface

There has been a considerable progress made during the recent past on mathematical techni-
ques for studying dynamical systems that arise in science and engineering. This progress
has been, to a large extent, due to our increasing ability to mathematically model physical
processes and to analyze and solve them, both analytically and numerically. The book at-
tempts to approach the subject from a fairly general viewpoint, which reflects the modern
trend in dynamical systems analysis as we try to understand certain common features exhib-
ited by different dynamical systems arising from a variety of physical phenomena. With its
eleven chapters comprising two sections, this book brings together important contributions
from renowned international researchers to provide an excellent survey of recent advances
in dynamical systems theory and applications.

This book is divided into two sections that are focused on the key aspects of dynamical sys-
tems. The first section consists of seven chapters that focus on analytical techniques. Chapter
1 develops a number of important results on the existence and classification of nonoscillato-
ry solutions of two-dimensional (2D) nonlinear time-scale systems based on the sign of com-
ponents of nonoscillatory solutions and the most well-known fixed point theorems. The
results are applied to Emden-Fowler type 2D dynamical systems that appear in astrophy-
sics, gas dynamics and fluid mechanics, relativistic mechanics, nuclear physics, and chemi-
cally reacting systems. Chapter 2 is devoted to the study of the oscillation of all solutions to
second-order nonlinear neutral damped differential equations with a delay argument. New
oscillation criteria are obtained by employing a refinement of the generalized Riccati trans-
formations and integral averaging techniques. The study of qualitative properties of solu-
tions of neutral delay differential equations is motivated by the fact that such equations arise
in various physical problems including electric networks containing lossless transmission
lines (as in high-speed computers where such lines are used to interconnect switching cir-
cuits) and vibrating masses attached to an elastic bar or in variational problems with time
delays. Chapter 3 presents a novel approach to studying the problem of preservation of syn-
chronization in autonomous nonlinear dynamical systems. The chapter extends the funda-
mental theorems (the local stable-unstable manifold, the center manifold, and the Hartman-
Grobman theorems) on dynamical system analysis using the Tracy-Singh product and the
usual matrix product, which allows synchronization of chaotic dynamical systems. Chapter
4 exposes the important connection between ratio control and the state control under equali-
ty constraints for linear discrete-time systems, which allows significant reduction in compu-
tational complexity and efforts. The generalized ratio control principle is reformulated as the
full state feedback control problem with equality constraints, and a control design method is
proposed based on the application of an enhanced “Bounded Real Lemma" to decouple the
Lyapunov matrix and system matrices. Chapter 5 studies the predictability of deterministic
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dynamical systems. The chapter considers both the predictability of atmospheric and cli-
mate processes with respect to the initial data errors (predictability of the first kind) and the
predictability with respect to external perturbations (predictability of the second kind).
Chapter 6 extends the dynamical systems theory to quantum systems. Time-like operators
are derived by exploiting the properties of operators and quantum states that are conjugated
to the Hamiltonian operator and eigenstates when the Hamiltonian spectrum is continuous.
Chapter 7 introduces some recent fixed-point techniques for the study of fractional set-val-
ued dynamical systems. A general class of cyclic operators that satisfy the implicit contrac-
tivity condition is considered. A number of fixed-point-inclusion results for fractional set-
valued systems in modular metric spaces are presented.

The second section of the book is composed of four chapters that center on computational
techniques. Chapter 8 explores the relationships between linear interpolation and differential
equations. A class of spectral collocation (pseudospectral) methods, which are derived by a
linear interpolation process, is constructed by exploiting the close relationship between the
Green’s function and Peano’s kernel. These methods are illustrated through numerical solu-
tions of several initial value and boundary value problem examples. Chapter 9 presents a
computational technique that employs accurate, efficient, and reliable solvers based on ap-
propriate combinations of surface integral equations, discretizations, numerical integrations,
fast algorithms, and iterative techniques. As a case study, nanowire transmission lines are
investigated in wide frequency ranges, demonstrating the capabilities of the computational
technique. Chapter 10 is devoted to the existence of a true solution near a numerical approxi-
mate random periodic solution of stochastic differential equations. A general finite-time ran-
dom periodic shadowing theorem is proved under some suitable conditions, and an estimate
of shadowing distance via computable quantities is provided. The applicability of this theo-
rem is demonstrated through numerical simulations of random periodic orbits of the stochas-
tic Lorenz system for certain parameter values. Finally, Chapter 11 covers some aspects of the
analytical and numerical analysis procedures in the study of dynamical systems. It provides a
brief summary to basic solution techniques and classification of ordinary and partial differen-
tial equations. The chapter focuses on the two classes of most commonly used numerical
methods, namely finite difference methods and finite element methods. Only a very limited
number of techniques for solving ordinary differential and partial differential equations are
discussed, as it is impossible to cover all the available techniques in a single chapter. The ap-
plication of these methods is illustrated through a number of physical examples.

Mahmut Reyhanoglu

Embry-Riddle Aeronautical University
Dynamical Systems and Control Laboratory
Daytona Beach, Florida

USA
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Chapter 1

On Nonoscillatory Solutions of Two-Dimensional

Nonlinear Dynamical Systems

Elvan Akin and Ozkan Oztirk
Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67118

Abstract

During the past years, there has been an increasing interest in studying oscillation and
nonoscillation criteria for dynamical systems on time scales that harmonize the oscilla-
tion and nonoscillation theory for the continuous and discrete cases in order to combine
them in one comprehensive theory and eliminate obscurity from both. We not only
classify nonoscillatory solutions of two-dimensional systems of first-order dynamic
equations on time scales but also guarantee the existence of such solutions using the
Knaster, Schauder-Tychonoff and Schauder’s fixed point theorems. The approach is
based on the sign of components of nonoscillatory solutions. A short introduction to
the time scale calculus is given as well. Examples are significant in order to see if
nonoscillatory solutions exist or not. Therefore, we give several examples in order
to highlight our main results for the set of real numbers R, the set of integers Z and
qN“ ={1, 4, qz, q3, ...}, >1, which are the most well-known time scales.

Keywords: dynamical systems, dynamic equations, differential equations, difference
equations, time scales, oscillation

1. Introduction

In this chapter, we investigate the existence and classification of nonoscillatory solutions of
two-dimensional (2D) nonlinear time-scale systems of first-order dynamic equations. The
method we follow is based on the sign of components of nonoscillatory solutions and the most
well-known fixed point theorems. The motivation of studying dynamic equations on time
scales is to unify continuous and discrete analysis and harmonize them in one comprehensive
theory and eliminate obscurity from both. A time scale T is an arbitrary nonempty closed subset
of the real numbers R. The most well-known examples for time scales are R (which leads to

I m EC H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [(cc) g
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differential equations, see [1]), Z (which leads to difference equations, see Refs. [2, 3]) and
g% :={1,9,4% -}, g >1 (which leads to g-difference equations, see Ref. [4]). In 1988, the
theory of time scales was initiated by Stefan Hilger in his Ph.D. thesis [5]. We assume that most
readers are not familiar with the calculus of time scales and therefore we give a brief introduc-
tion to time scales calculus in Section 2. In fact, we refer readers books [6, 7] by Bohner and

Peterson for more details.

The study of 2D dynamic systems in nature and society has been motivated by their applica-
tions. Especially, a system of delay dynamic equations, considered in Section 4, take a lot of
attention in all areas such as population dynamics, predator-prey epidemics, genomic and
neuron dynamics and epidemiology in biological sciences, see [8, 9]. For instance, when the
birth rate of preys is affected by the previous values rather than current values, a system of
delay dynamic equations is utilized, because the rate of change at any time depends on
solutions at prior times. Another novel application of delay dynamical systems is time delays
that often arise in feedback loops involving actuators. A major issue faced in engineering is an
unavoidable time delay between measurement and the signal received by the controller. In
fact, the delay should be taken into consideration at the design stage to avoid the risk of
instability, see Refs. [10, 11].

Another special case of 2D systems of dynamic equations is the Emden-Fowler type, which is
covered in Section 5 of this chapter. The equation has several interesting applications, such as
in astrophysics, gas dynamics and fluid mechanics, relativistic mechanics, nuclear physics and
chemically reacting systems, see Refs. [12-15]. For example, the fundamental problem in
studying the stellar structure for gaseous dynamics in astrophysics was to look into the
equilibrium formation of the mass of spherical clouds of gas for the continuous case, proposed
by Kelvin and Lane, see Refs. [16, 17]. Such an equation is called Lane-Emden equation in
literature. Much information about the solutions of Lane-Emden equation was provided by
Ritter, see Ref. [18], in a series of 18 papers, published during 1878-1889. The mathematical
foundation for the study of such an equation was made by Fowler in a series of four papers
during 1914-1931, see Refs. [19-22].

2. Preliminaries

The set of real numbers R, the set of integers Z, the natural numbers N, the nonnegative
integers Ny and the Cantor set, ¢, g > 1 and [0,1]U[2,3] are some examples of time scales.
However, the set of rational numbers Q, the set of irrational numbers R\Q, the complex
numbers C, and the open interval (0, 1) are not considered as time scales.

Definition 2.1. [6, Definition 1.1] Let T be a time scale. For t€T, the forward jump operator
0:T — Tis given by

o(t):=inflseT: s>t} forall teT

whereas the backward jump operator p : T — T is defined by
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p(t) :=sup{seT: s<t} forall teT.

Finally, the graininess function y : T — [0,) is given by u(t) := o(t)-t forall teT.

We define inf@ = supT. If o(t) > ¢, then t is called right-scattered, whereas if p(t) < t, t is called
left-scattered. If t is right- and left-scattered at the same time, then we say that ¢ is isolated. If
t < supT and o(t) = ¢, then t is called right-dense, while if t > inf T and p(t) = , we say that  is
left-dense. Also, if t is right- and left-dense at the same time, then we say that ¢ is dense.

Table 1 shows some examples of the forward and backward jump operators and the graininess
function for most known time scales.

a(t) p(b) u(t)

t t 0
t+1 t-1 1
qNu tq E (q_l)t
q

Table 1. Examples of most known time scales.

If supT < oo, then T* = T\(p(supT), supT] and T* = T if supT = . Suppose thatf : T — Risa
function. Then /7 : T — R is defined by f°(t) = f(o(t)) forall +eT.

Definition 2.2. [6, Definition 1.10] For any ¢, if there exists a 0 > 0 such that

[F(a(8)f (s)-F*(£)(a(t)-s)| <elo(t)-s| forall se& (t-5,t+ O)NT,

then f is called delta (or Hilger) differentiable on T* and f* is called delta derivative of f.
Theorem 2.3 [6, Theorem 1.16] Let f : T — R be a function with t € T*. Then
a. Iffis differentiable at t, f is continuous at t.

b. Iff is continuous at t and t is right-scattered, then f is differentiable at t and
A fla®)~(®)
) =L T
o) u(t)

c. Iftisright dense, then f is differentiable at t if and only if

s—t =S

exists as a finite number.

d. Iff is differentiable at t, then f(o(t)) = f(t) + u(t)f* (t).

If T=R, then f* turns out to be the usual derivative f while f* is reduced to forward
difference operator Af if T = Z. Finally, if T = ', then the delta derivative turns out to be
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g-difference operator A,. The following theorem presents the sum, product and quotient rules
on time scales.

Theorem 2.4 [6, Theorem 1.20] Let f,g : T — R be differentiable at t € T*. Then

a. Thesumf + g : T — Ris differentiable at t with
(F +8)" (1) = () +8°(1).

b. Iffg: T — Ris differentiable at t, then
(F9)" (1) = £ (Dg(H) + f(a(1)g* (1) = f()g” (1) + F* (g (0 ())-

c. Ifg(t)g(o(t))#0, then ¢ s differentiable at t with

N P05
(g) O =gty

The following concepts must be introduced in order to define delta-integrable functions.

Definition 2.5. [6, Definition 1.58] f : T — R is called right dense continuous (rd-continuous),
denoted by C,4,Cq(T), or Cu(T,R) if it is continuous at right dense points in T and its left-
sided limits exist as a finite number at left dense points in T. We denote continuous functions
by C throughout this chapter.

Theorem 2.6 [6, Theorem 1.60] Let f : T — R.
a. Iff is continuous, then f is rd-continuous.
b. The jump operator ¢ is rd-continuous.
Also, the Cauchy integral is defined by
rf(t)At =F(b)-F(a) forall abeT.

a

The following theorem presents the existence of antiderivatives.

Theorem 2.7 [6, Theorem 1.74] Every rd-continuous function has an antiderivative. Moreover, F
given by

F(t):Jf(s)As for teT

is an antiderivative of f.

Theorem 2.8 [6, Theorems 1.76-1.77] Let a,b,c € T,a €R, and f, g € Cy. Then we have:

1. Iff*>0, then f is nondecreasing.

2. Iff(t)20 for all a<t<b, then rf(t)AtZO.

a
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b b b
[(@f (1) + (ag(t)]At = aj f(hat+ aj g(At.

b

4 | frae= —Ef(t)At.

Ja

b c b
5. [fat= J FB)AL+ J FB)A.

Ja a

b b
6. | f(Dg”(HAt= (fg)(b)-(fg)(ﬂ)-J fA(Bgla(t)At

a a

b b
7. | flo())g* (HAt = (fg)(b)-(fg)(a)-J FA(Bgh)AL

a a

8. af(t)At =0.

Table 2 shows the derivative and integral definitions for the most known time scales for
a,beT.

£ [ rar
R £ rf“’ it
z Af (1) b1
>t
v Agf(1) DIOI0)

Table 2. Derivatives and integrals for most common time scales.

Finally, we finish the section by the following fixed point theorems.

Theorem 2.9 (Schauder’s Fixed Point Theorem) [23, Theorem 2.A] Let S be a nonempty, closed,
bounded, convex subset of a Banach space X and suppose that T : S — S is a compact operator. Then, T
has a fixed point.

The Schauder fixed point theorem was proved by Juliusz Schauder in 1930. In 1934, Tychonoff
proved the same theorem for the case when S is a compact convex subset of a locally convex
space X. In the literature, this version is known as the Schauder-Tychonoff fixed point theorem,
see Ref. [24].

Theorem 2.10 (Schauder-Tychonoff Fixed Point Theorem). Let S be a compact convex subset of a locally
convex (linear topological) space X and T a continuous map of S into itself. Then, T has a fixed point.

Finally, we provide the Knaster fixed point theorem, see Ref. [25].

Theorem 2.11 (Knaster Fixed Point Theorem) If (S, <) is a complete lattice and T : S — S is order-
preserving (also called monotone or isotone), then T has a fixed point. In fact, the set of fixed points of T
is a complete lattice.
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3. Dynamical Systems on Time Scales

In this section, we consider the following system

{xﬂ(t) = a(t)f (y(t)) (1)

where f,¢€C(R,R) are nondecreasing such that uf(u) >0, ug(u)>0 for u#0 and
a,beCrd([tO,w)T,R+). The main results in this section come from Ref. [26]. If T=R and

T =7Z, Eq. (1) turns out to be a system of first-order differential equations and difference
equations, see Refs. [27] and [28], respectively. Recent advances in oscillation and nonoscillation
criteria for two-dimensional time scale systems have been studied in Refs. [29-31].

Throughout this chapter, we assume that T is unbounded above. Whenever we write f>t;, we
mean t€ [ty,)p = [t1,)NT. We call (x,y) a proper solution if it is defined on [ty,e); and
sup{|x(s)], [y(s)| : s €[t )y} > 0 for £2ty. A solution (x,y) of Eq. (1) is said to be nonoscillatory if
the component functions x and y are both nonoscillatory, i.e., either eventually positive or
eventually negative. Otherwise, it is said to be oscillatory. The definitions above are also valid
for systems considered in the next sections.

Assume that (x,y) is a nonoscillatory solution of system (1) such that x oscillates but y is
eventually positive. Then the first equation of system (1) yields x“ (t) = a(t)f (y(t)) > 0 eventu-
ally one sign for all large t2t;, a contradiction. The case where y is eventually negative is
similar. Therefore, we have that the component functions x and y are themselves
nonoscillatory. In other words, any nonoscillatory solution (x,y) of system (1) belongs to one
of the following classes:

M":={(x,y)eM: xy >0 eventually}

M ={(x,y)eM: xy <0 eventually },

where M is the set of all nonoscillatory solutions of system (1).

In this section, we only focus on the existence of nonoscillatory solutions of system (1) in M,
whereas M is considered together with delay system (12) in the following section.

For convenience, let us set
Y(t) = J a(s)As and Z(t) = J b(s)As. @)
t t

We begin with the following results playing an important role in this chapter.

Lemma 3.1 Let (x,y) be a nonoscillatory solution of system (1) and ty€T. Then we have the
followings:

a. [29, Lemma 2.3] If Y(ty) < oo and Z(ty) < oo, then system (1) is nonoscillatory.
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b. [29, Lemma 2.2] If Y(ty) = oo and Z(ty) = o, then system (1) is oscillatory.
c. IfY(ty) < oo and Z(ty) = oo, then M+ = @.
d. IfY(ty) = e and Z(ty) < oo, then M" = @.
e. Let Y(ty) < oo. Then x has a finite limit.
f. IfY(ty) = oo or Z(ty) < oo, then y has a finite limit.

Proof. Here, we only prove (a), (c) and (e) and the reader is asked to finish the proof in Exercise
3.2. To prove (a), choose t; € [tg, ) such that

oo

fa(t)f(l + g(Z)J b(s)As)At < 1.

t

Let X be the space of all continuous functions on T with the norm lxll = sup |x(¢)| and with
te [h 700)’1'

the usual point-wise ordering <. Define a subset ( of X as

Q:={xeX: 1=x(h)<2, 24}

For any subset S of (2, we have infS € Q and supS € Q. Define an operator F : 2 — X such that

t

=

(Fx)(t) =1+ J a(s)f(1 + J

S

b(u)g(x(u))Au)As, £2h.

5]

By using the monotonicity and the fact that x € (2, we have

1<(Fx)(H) <1 + Jt a(s)f(l + g(Z)rb(u)Au)AsSZ, 4.

51

It is also easy to show that F is an increasing mapping. So by Theorem 2.11, there exists x € (2
such that Fx = x. Then we have

b(u)g(%(u))Au).

Setting
yt) =1+ Jwb(u)g(f(u))Au >0, 2
gives us
7 (1) =-b()g(x(t)) and F(t) = a(t)f (1)),

that is, (x,¥) is a nonoscillatory solution of Eq. (1). In order to prove part (c), assume that there
exists a nonoscillatory solution (x,y) of system (1) in M™ such that x(t) > 0 for £2t;. Then by
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monotonicity of x and g, there exists a number k > 0 such that g(x())2k for £2t;. Integrating the
second equation of system from f; to f gives us
t

y(t) Sy(tl)_kj b(s)As.

51

As t — oo, it follows y(t) — —co. But this contradicts that y is eventually positive. Finally for
part (e), without loss of generality, we assume that there exists #;2t, such that x(t) > 0 for £2t;.
If (x,y) € M, then by the first equation of system (1), x4 (t) < 0 for t>t;. Hence, the limit of x
exists. So let us show that the assertion follows if (x,y) € M". Suppose (x,y) € M". Then from
the first equation of system (1), we have x*(t) > 0 for >t;. Now let us show that lim;_.x(f) =
cannot happen. Integrating the first equation of system (1) from #; to ¢ and using the monoto-
nicity of y and f yield

x(t) <x(t) +f(y(t1))L a(s)As.

Taking the limit as t — o, it follows that x has a finite limit. This completes the proof.
Exercise 3.2. Prove the remainder of Lemma 3.1.

Throughout this section, we assume Y(ty) < e and Z(ty) = . Note that Lemma 3.1 (c) indi-
cates M" = @. Therefore, every nonoscillatory solution of system (1) belongs to M". Let (x,y)
be a nonoscillatory solution of system (1) such that the component function x of solution (x,y)
is eventually positive. Then, the second equation of system (1) yields y < 0 and eventually
decreasing. Then for k < 0, we have that y approaches k or —. In view of Lemma 3.1 (e), x has
a finite limit. So in light of this information, any nonoscillatory solution of system (1) in M~
belongs to one of the following subclasses for 0 < ¢ < e~ and 0 < d < o:

Mgy = {(x,y) €M : limlx()| =0, limly(5)] = d}.
My 5 = {(xy) €M limfx(t)] =, Timly(t)| =},

My = {(v.y) €M s lim|x(t)] = 0, Lim[y(t)] = e},

o0

My = {(x.y) €M :limlx(t)| =, limly(5)] = =}.
Nonoscillatory solutions in M, is called slowly decaying solutions in literature, see [32]. The

following theorems show the existence of nonoscillatory solutions in subclasses of M~ given
above. Our approach for the next two theorems is based on the Schauder fixed point theorem,
see Theorem 2.9.

Theorem 3.3 M, ;#@ if and only if

=3

rb(t)g(clj a(s)As)At< oo, 1#0. 3)

Proof. Suppose that there exists a solution (x,y) € M, 5 such that x(t) > 0 for t2to, x(f) — 0 and
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y(t) — —d ast — o, where d > 0. Integrating the first equation of system (1) from f to > and the
monotonicity of f yield that there exists ¢ > 0 such that

=

x(t)ZcJ a(s)ds, k. “4)

t

By integrating the second equation from fy to f, using inequality (4) with ¢ =¢; and the
monotonicity of g, we have
t t

o0

b(s)g <C1J a(u)Au)As.

S

y(t) = y(to)—J b(s)g(x(s))Ass—J

fo fo
So as t — oo, the assertion follows since y has a finite limit. (For the case x < 0 eventually, the
proof can be shown similarly with ¢; < 0.)

Conversely, suppose that Eq. (3) holds for some ¢; > 0. (For the case ¢; < 0 can be shown
similarly.) Then there exist t;2¢y and d > 0 such that

rb(t)g(qra(s)AS)At <d, £h, (5)

where ¢; = —f(=3d). Let X be the space of all continuous and bounded functions on [t;,%0) with
the norm lyll = sup |y(t)|- Then X is a Banach space, see Ref. [33]. Let Q be the subset of X

tE[tr, )y
such that
Q:={yeX: -Bd<sy(t)<-2d, t2t)}

and define an operator T : Q — X such that

00

(1)) = -3+ | be)g(-| atwrw)an)as

S

00

It is easy to see that T maps into itself. Indeed, we have

00

-3d<(Ty) () <-3d + J b(s)g (—ra(u)f(—sd)Au)As <24

t

by Eq. (5). Let us show that T is continuous on Q. To accomplish this, let y, be a sequence in (2
such thaty, — y€Q = Q. Then

|(Ty,)(O)~(Ty)(D)]

< wls (-] atw)t, )au) s (-] atwrty(e)au))as.

Then the Lebesque dominated convergence theorem and the continuity of g give II(Ty,)
—(Ty)l = 0 asn — oo, i.e., T is continuous. Also, since
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0 < ~(Ty)" () = bitg (-] atry)an) <

it follows that T(Q) is relatively compact. Then by Theorem 2.9, we have that there exists jj € Q
such that y = Ty. So as t — o, we have y(t) — —3d < 0. Setting

x(t) = —fa(u)f(y(u))ﬁ\u >0, 24

gives that X(t) — 0 as t —  and implies ¥ = af(y), i.e.,, (¥,7) is a nonoscillatory solution in
Mo

In the following example, we apply Theorem 3.3 to show the nonemptiness of M .

Example 3.4 Let T = g™, g > 1 and consider the system
1
t3

Agx(t) = Y3 ()
agyt)y = -0 50,

qt

Since

wws

s—l)z:l2

se [1 T)qN()

J(AS—q— >

seLT) (s + 1)(sq +1)(25-1)

W=

where t = q" and s = tq", n,m € Ny, we obtain

qlz()

Also
T s
J1 b(s)As = Z (5;12)3 (q—l)sz% 53 implies Z%Z(qs =co. Now let us
se [1 T)qNO EIS [1, T)qNO

show that Eq. (3) holds. First,

' o 1 g3(g1)
a(s)As<(g-1) —  implies s)As<(g-1) Z == 2 ~
t SG[i,T)qNU S3 =) N S3 §—l)t§
Therefore,
! - (t+1)3
J b(t)g(clj a(s)As)AtSa T
! t tel,T) y, L1
q
where a = TX9 o as T — oo, we have that Eq. (3) holds by the Ratio test. One can also show that

q )
(t+1 , =2+ ) of system (6) such that x(t) — 0 and y(t) — -2 as t — oo, i.e., My p*@.
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The proof of the following theorem is similar to the proof of Theorem 3.3.

Theorem 3.5 M, ;#@ if and only if

o0

rb(t)g<d1—c1j a(s)As)At < oo

for some ¢y < 0anddy >0.(Orcy >0andd; <0.)
Exercise 3.6. Prove Theorem 3.5 by means of Theorem 2.9.
The following theorem follows from the Knaster fixed point theorem, see Theorem 2.11.

Theorem 3.7 My _#@ if and only if
J a(s)f <C1J
to

for some ¢1#0, where f is an odd function.

S b(u)Au)As < oo 7

fo

Proof. Suppose that there exists a nonoscillatory solution (x,y) € Mg .. such that x > 0 eventu-
ally, x(t) — ¢, and y(f) — —ee as t — oo, where 0 < ¢, < o. Because of the monotonicity of x and
the fact that x has a finite limit, there exist t>fy and ¢3 > 0 such that

< x(t) <c3 for ft>t. (8)

Integrating the first equation from #; to ¢ gives us

c<x(t) =x(h) + Jt a(s)f (y(s))As<cs, 4.

51

So by taking the limit as t — o, we have

jja(smy(s»m <o 9

The monotonicity of g, Eq. (8) and integrating the second equation from t; to t yield

t t

b(s)As s—g(cz)J b(s)As.

51

y(t) Sy(tl)_g(CZ)J

51

Since f(-u) = —f (u) for u#0 and by the monotonicity of f, we have

t

PR (sieo) | be)as). . (10)

51
By Egs. (9) and (10), we have
S

[ anrwenias] (e

51 t

b(u)Au)As, where  g(c2) = 1.

As t — oo, the proof is finished. (The case x < 0 eventually can be proved similarly with ¢; < 0.)
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S

Conversely, suppose J a(s)f (clj b(u)Au)As < oo for some c;#0. Without loss of generality,
fo

to
assume c; > 0. (The case ¢; < 0 can be done similarly.) Then, we can choose t;>t) and d > 0
such that

00 S

Jt a(s)f(qjt b(u)Au)As <d, 2,

where ¢; = g(2d) > 0. Let X be the partially ordered Banach space of all real-valued continuous

functions endowed with supremum norm llxll = sup |x(t)| and with the usual pointwise
te[t, o)

ordering <. Define a subset Q of X such that

Q= 1{xeX: d<x(t)<2d, =t}

For any subset B of Q, infBe Q and supBe€ (), ie, (Q, <) is complete. Define an operator
F:0— Xas

0 S

(Fx)(H) = d + Jt a(s)f(J

f

b(u)g(x(u))Au)As, 2.

The rest of the proof can be completed similar to the proof of Lemma 3.1(a). So, it is omitted.

Exercise 3.8 Let T=7Z. Use Theorem 3.7 to justify that (x,,y,) =(1+2",-2") is a
nonoscillatory solution in M, ., of

Axn: 2%71(:%1)%
411
Ay, :‘W(xn)-

For convenience, set

oo

I[= qu(t)f(kj b(s)As)At, k0. 11)

In order to obtain the nonemptiness of M, _,, we apply Theorem 2.11 and use the similar
discussion as in Lemma 3.1(a).

Theorem 3.9 M, _.#@ if for some k > 0 and any dy > 0 (k < 0 and d; < 0)
I <o and J b(t)g(dlj a(s)As)At = oo,
to t

where 1 is defined as in Eq. (11) and f is an odd function.
Exercise 3.10. Prove Theorem 3.9.

We reconsider system (1) in the next section to emphasize the existence of nonoscillatory
solutions in M*.
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4. Delay Dynamical Systems on Time Scales

This section is concerned with the delay system

3ty = a(f ()
{ 3(t) = -b(B)g(x(x() (12

with  a,b€ Cu([ty, )1, R"), 1€Cul[to.)p, [to,)p), T()<t and 7(t) =0 as t— oo,
f,8€C(R,R) are nondecreasing functions such that uf (1) > 0 and ug(u) > 0 for u#0. Moti-
vated by Ref. [34] in which t(t) = -1, n > 0, our purpose in this section is to obtain the criteria
for the existence of nonoscillatory solutions of Eq. (12) based on Y (ty) and Z(t;). However, note
that the results in Ref. [34] do not hold for any time scale, e.g., T = ¢, g > 1, because t-1 is
not necessarily in T. In fact, theoretical claims in this section follow from Ref. [35].

Since system (12) is oscillatory for the case Y(t)) = o and Z(#y) = oo, the existence results on
any time scale are obtained in the next subsections based on the other three cases of Y(t) and
Z(tp). Let (x,y) be a nonoscillatory solution of system (12) in M* such that the component
function x is eventually positive. Then by the second equation of system (12), y is eventually
decreasing. In addition, using the first equation of system (12), we have that x(t) — c or e and
y(t) = dor0ast— o for 0 <c <o and 0 < d < c. Therefore, we have the following sub-
classes of M*:
My p ={(cy) eM" :limlx(f)| = ¢, lim|y(t)] = d},

f—so0

Mo ={(x,y)eM" : lim|x(t)] = ¢, lim|y(t)| = 0},

t—oo

MZ g = {(x,y) M : lim|x(¢)] = oo, lim|y(t)| = d},

Mig = {(x,y) €M* : limlx(t)| = o=, limly(t)| = 0}.
In the literature, solutions in My, M ; and M are called subdominant, dominant and inter-
mediate solutions, respectively, see Ref. [36]. Any nonoscillatory solution of system (12) belongs
to M* or M given in Section 3. Also, it is important to emphasize that Lemma 3.1 holds for
system (12) as well.

4.1. The case Y(ty) = cc and Z(tp) < oo

We restrict our attention to M' in this subsection because M~ = @ when Y(ty) = e and
Z(ty) < . The following lemma specifies the limit behavior of the component functions of
nonoscillatory solutions (x,y) under the case Y(ty) = o and Z(f) < oe.

Lemma 4.1 If |x(f)| — ¢, then y(t) — 0ast — oo for 0 < ¢ < o,

Proof. Assume to the contrary. So y(t) — d for 0 < d < e as t — . Then since y(¢) > 0 and
decreasing eventually, there exists t12fy such that f(y(t(t)))>f(d) =k for £2t;. By the same
discussion as in the proof of Theorem 3.3, we obtain
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x(t)zkjt a(s)4ds, 2.

51

However, this gives us a contradiction to the fact that x(f) — ¢ as t — . So the assertion
follows.

Remark 4.2. The discussion above and Lemma 4.1 yield us My ; = @.
Theorem 4.3. M}, ,#@ if and only if [ < .

Proof. Suppose that there exists a solution (x,y) € Mf, such that x(t) > 0, x(z(t)) > 0 for tt,,
x(t) — c1 and y(t) — 0 as t — . Because x is eventually increasing, there exist f;>fy and c; > 0
such that ¢, <g(x(t(t))) for t2t1. Integrating the second equation from ¢ to o gives

y(t) :J b(s)g(x(t(s)))4s, t=2h. (13)

Also, integrating the first equation from #; to ¢, Eq. (13) and the monotonicity of g result in

t

x(t)ZLa(s)f(J

S

=

ta(s)f(csz(u)Au)As.

51

b(u)g(x(T(u)))Au)Aszj

Setting ¢, = k and taking the limit as t — e prove the assertion. (For the case x < 0 eventually,
the proof can be shown similarly with k < 0.)

Conversely, suppose I < e for some k > 0. (For the case k < 0 can be shown similarly.) Then,
choose t12tj so large that

J:a(t)f (kfb(sms)m < %1 B,

where k = g(c1). Let X be the space of all continuous and bounded functions on [f;,%) with
the norm lyll = sup |y(t)|. Then, X is a Banach space. Let Q be the subset of X such that

tE[tr, o)y

Q:={xeX: %SX(TU))SCL T(t)2h),

and define an operator F : O — X such that

oo

(E)(0) = -] ator([

S

o0

b(u)g(x(r(u)))Au)As, ()2t

It is easy to see that (2 is bounded, convex and a closed subset of X. It can also be shown that F
maps into itself, relatively compact and continuous on 2 by the Lebesques dominated conver-
gence theorem. Then, Theorem 2.9 gives that there exists X € (2 such that X = Fx. As t — o, we
get X(t) — ¢ > 0. Setting
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() = fb(u)g(f(w»mu S0, (b2

shows y(t) — 0 as t — oo. Taking the derivatives of ¥ and ¥ yield that (¥,y) is a solution of
system (12). Hence, M ;#@.

We demonstrate the following example to highlight Theorem 4.3.

Example 4.4 Let T= 2" and consider the system

Aox(t) = zit‘é (y(t))%

t

Apy(t) = ‘mx(z)-

(14)

First, it must be shown Y (ty) = e and Z(ty) < eo. Indeed,

i

1 n-1 1
implies Y (ty) = E%ﬂz(zm); = oo
m=2

Ja(s)As:% Z s

sE [4, i)ZND

and
n-1

f 3 | 3 1
<— E - <1 E <
j b(s)As< 16, implies  Z(ty) < 16%133«"1:2?" <

fo [4,),80

by the geometric series, where t= 2", s= 2", m,n>2. Note that
YRV LR <3y “*11731. 1 1) 3
, (s) S<1e Z 5 implies Z(t)_ﬁnllgzz_m_gngg ) =&
selt, T)ZNO m=2

Letting k = 1 and using the last inequality gives

oo

! T1(3) 3| 1
J zz(t)f(kJ b(s)As)AtSJ 4<3> At = (3) - .
ty t 1o 2¢5 \8t 8/ 2 refiT . B

Therefore, we have

J:a(t)f(kfb(s)ASMtg (g)g;il .

2n
n:025

11
by the geometric series. It can be seen that (x,y) = (8—;, t_z) is a nonoscillatory solution of Eq. (14)

such that x(t) — 8 and y(t) — 0 as t — o, i.e., M (*@.

17
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The existence in subclasses M ; and M, is not obtained on general time scales. The main
reason is that setting an operator including a delay function gives a struggle when the fixed
points theorems are applied. In fact, when we restrict the delay function to 7(t) = t—1 for 720, it
was shown M ;#@, see Ref. [34]. Nevertheless, the existence in M  and M for system (1) is
shown in Subsection 4.4.

4.2. The case Y(t) < e and Z(#;) < o

Because the component functions x and y have finite limits by Lemma 3.1(e) and (f), the
subclasses M7, ; and M, are empty. Since the existence of nonoscillatory solutions in My, is

shown in Theorem 4.3, we only focus on M ; in this subsection.

The Knaster fixed point theorem is utilized in order to prove the following theorem.

Theorem 4.5 Mj; z#@ if and only if

ra(s)f<d1 + kJ b(u)Au)As <o, kdi#0. (15)

Proof. The proof of the necessity part is very similar to those of previous theorems. So for
sufficiency, suppose Eq. (15) holds. Choose t12fy, k > 0 and d; > 0 such that
J a(s)f(dl +kJ b(u)Au)As <dy,
t s

where k = g(2d1). (The case k,d; < 0 can be done similarly.) Let X be the Banach space of all

continuous real-valued functions endowed with the norm llxll = sup |x(¢)| and with usual
te[h,)p

point-wise ordering <. Define a subset (2 of X as
Q:={xeX: di<x(t(t)<2d1, 7T(t)2h}.

For any subset B of (2, it is clear that infB € (2 and supB € (2. An operator F : {2 — X is defined as

t oo

(Fx)(H) = dy +J a(s)f(d1 +J b(u)g(x(T(u)))Au)As, (b2t

b

It is obvious that F is an increasing mapping into itself. Therefore,

t

=

a(s)f(d1 +g(2d1)J b(u)Au)AsSZdl, T(t)2h.

S

di < (Fx)(t) <d; + J

t

Then, by Theorem 2.11, there exists ¥ € (2 such that ¥ = Fx. By setting

=

7(t) = dy +j b(u)g(e(t(w), T(b)2h,

t

we get that
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7 (1) = -b(Dg(F(x(1))). (16)

Also taking the derivative of ¥ and Eq. (16) give that (¥,) is a solution of system (12). Hence,
we conclude that ¥(t) — a and (t) — d1 as t — o, where 0 < a < o, i.e,, ngBaﬁ@. Note that a
similar proof can be done for the case k < 0 and d; < 0 with x < 0.

Example 4.6 Let T= 2" and consider the system

P p—_—— 1

263(3t +1)3
A t——i(l | i "
2y(H) = 2t(6t—4)x(1)'

We first demonstrate Y (ty) < oo and Z(ty) <

t
J a(s)As _1 Z . implies Y (to) = —hmz 5 < oo

fo 2 [4t %(3S+1) 2m § 2m+1)%

W=

by the Ratio test for t= 2", s= 2", n=2. Similarly,

t 1 1 n-1
J b(s)As == Z P implies = —11m o 2’"

2 n—el
to €[4, H),m,

Because Y (ty) < oo and Z(ty) < e, it is easy to show that Eq. (15) holds. One can also verify that
(6-1,3 +1) is a nonoscillatory solution of system (17) such that x(t) — 6 and y(t) — 3ast — oo, i.e,
Mg, g#@ by Theorem 4.5.

4.3. The case Y(tg) < o and Z(#y) =

Lemma 3.1(c) yields M" = @ for the case Y(fy) < e and Z(ty) = c. Thus, we pay our attention
to M in this subsection. The proof of the following remark is similar to that of Theorem 3.7.

Remark 4.7 My . #@ if and only if integral condition (7) holds.
Exercise 4.8 Prove Remark 4.7 and also show that (3 + 1t ,—t= %) is a nonoscillatory solution of

Max(t) =——— (y(1)}
2t5(# +1)5

2£2-1 t
Ay(t) = ——L1 (4L
) 263(3t + 4)° <x(4))

in My ..#@ when T= 2Mo,

4.4. Dominant and intermediate solutions of Eq. (1)

Note that the existence of nonoscillatory solutions of system (1) in M., Mg 5 and M, 5 is not
shown on a general time scale. In fact, the existence in these subclasses is obtained for system
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(1) in Section 3. Since system (12) is reduced to system (1) when 7(¢) = ¢, notice that the results
obtained for system (12) in Section 4 also hold for system (1). Therefore, we only need to show
the existence of nonoscillatory solutions for Eq. (1) in M ; and M, which are not acquired
for Eq. (12) on a general time scale. To achieve the goal, we assume Y(¢y) = o and Z(ty) < .

Theorem 4.9 M ;@ if and only if

me(s)g(clr a(u)Au)As < oo, (170. (18)

to

Proof. The necessity part is left to readers as an exercise. Therefore, for sufficiency, suppose that
Eq. (18) holds. Choose ti2ty, c; > 0 and d; > 0 such that

rb(s)g(clr b(u)Au)As <di, £h, (19)
b b

where ¢; = f(2d;1) > 0. (The case c; < 0 can be done similarly.) Let X be the partially ordered
Banach space of all real-valued continuous functions endowed with supremum norm

Ixll = sup - and with the usual point-wise ordering <. Define a subset Q of X such that

te [t,o0)p a(s)As
h

t t

a(s)As<x(t) Sf(2d1)J a(s)As, 2h}.

5]

Q=1{reX: f(dl)J

a1

For any subset B of Q, infBe Q and supBe (), ie., (Q, <) is complete. Define an operator
F:0Q — Xas

t oo

(Fx)(¢) = J afs)f (dr + Jt b(u)g(x(u))du)ds, 2ty

b

It is obvious that it is an increasing mapping, so let us show F := Q — Q.

t

)| ats)ss ()

| SJ;a(s)f(dl + L

sf(2d1)J a(s)As

51

oo

u

b(u)g(f(Zdl)J a(A)A)\)Au)As

51

by Eq. (19). Then, by Theorem 2.11, there exists X € (Q such that ¥ = Fx and so

oo

TA(F) = a(t)f(d1 + Jt b(u)g(y(u))Au), £2h.

oo

Setting y(t) = di + j b(u)g(X(u))Au leads us ¥ = -bg(¥) and so, (¥,¥) is a solution of system
t
(1) such that x(t) >0 and y(t) > 0 for £2#; and X(t) — o and y(t) —dy >0 as t — o, ie,

M #@.
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Theorem 4.10 M (#@ if

I=oc and rb(t)g(lra(s)ﬂs>ﬂt < oo,

fo

where I is defined as in Eq. (11), for any k > 0 and some 1 > 0 (k < 0and I < 0).

Exercise 4.11 Prove Theorem 4.10 using Theorem 2.11.

5. Emden-Fowler Dynamical Systems on Time Scales

Motivated by the papers [28, 36, 37], we deal with the classification and existence of
nonoscillatory solutions of the Emden-Fowler dynamical system

{xﬂ(t) = a(B)ly(B)]rsgn y(1 20)
y(0) = (0 (6 Fsgm 2 (1)

where a, 8 > 0a,b € Cyy([tg,>), RT) and x7 (f) = x (0(t)). The main results of this section follow
from Ref. [38]. If T =Z, system (20) is reduced to a Emden-Fowler system of difference
equations while it is reduced to a Emden-Fowler system of differential equations when
T =R, see Refs. [32, 39, 40], respectively. We also refer readers to Refs. [41-46] for quasilinear
and Emden-Fowler dynamic equations on time scales.

Note that any nonoscillatory solution of system (20) belongs to M* or M~ given in Section 3.
Also, it could be shown that Lemma 3.1 holds for system (20) as well.

5.1. The case Y(ty) = oo and Z(ty) < oo

In this case, we have M™ = @, see Lemma 3.1(d). By a similar discussion as in Subsection 4.1,
solutions in M* belongs to one of the subclasses My, M 5 and MZ .

Let us set
oo 1

Jo= J:a(t) (Jt b(s)As) At
Kj = Eb(t) (J:t)a(s)ds)ﬁAt.

1
Note that integral I, defined as in Eq. (11), is reduced to ], by replacing f(z) = z« and g(z) = zF.
The following theorem can be proven similar to Theorem 4.3.

Theorem 5.1 My #@ if and only if ], < ce.
Exercise 5.2 Prove Theorem 5.1.

Next, we provide the existence of dominant and intermediate solutions of system (20) along
with examples.

21
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Theorem 5.3 M_, z#@ if and only if Kg < oo.

Proof. Suppose that there exists (x,y) € M" such that x > 0 eventually, x(t) — e and y(t) — d as
t — oo for 0 < d < eo. Integrating the first equation from #; to o(f), using the monotonicity of y
and integrating the second equation from #; to t of system (20) give us

a(t) 1 1 (o)
a(s)ya(s)As > daJ a(s)4s. (21)

51

x7(t) = x(k) + J

51

and

t

wln)-u) = | o) () s, 22)

t

respectively. Then, by Egs. (21) and (22), we have

Jf b(s) (JU(S)a(u)Au)ﬁ As < dﬂt b(s) (x"(s))ﬁ As = ﬁ(y(tl)—y(t))

H H H

So ast — oo, it follows Kg < 0.

Conversely, suppose Kp < «. Choose t;2ty so large that

J:b(s) (JAU(S)a(u)Au)ﬁAs < %

51

for arbitrarily given d > 0. Let X be the partially ordered Banach Space of all real-valued

continuous functions with the norm ||x|| = sup*¥— and the usual point-wise ordering <.

t>h a(s)As
t

Define a subset Q of X as follows:

a(s)AsSx(t)s(Zd)%Jtu(s)As for t> t1}.

t

1t
Q:{xeX: dEJ

f

First, since every subset of (2 has a supremum and infimum in Q, (Q, <) is a complete lattice.
Define an operator F: Q — X as

00 1

b(u) (x“(u))ﬂﬂ’c) “ps.

t

(Ex)(t) = La(s) (d +J

S

The rest of the proof can be finished via the Knaster fixed point theorem, see Theorem 4.9 and
thus is left to readers.
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Example 5.4 Let T = g™, q > 1 and consider the system

t
4= 112t lylsgny
(23)
A _ U|ﬁ

=% X | sgnx.
y q1+[5tﬁ+2‘ &

It is left to readers to show Y (t) = o and Z(ty) < . In order to show Kg < o, we first calculate

B
T olt) B 1 s2(g-1)
b(t) (J a(s)As) At = Z s Z (g-1)t
,[to to e q1+ﬁtﬁ+ e 1+ 2s
(g-1)F*! 1 B g1 1
< T > tl_+ﬁ( > 5) <7 >
te[LT) se[Lalt)),s FE[LT)

where s = g™ and t = q" for m,n € Ny. Since

%lin Z 1:2l<oo

o n
rellT) 5 =01

by the geometric series, we have Kg < oo. It can be verified that (t, + + 2) is a nonoscillatory solution of
system (23) in M 5.

Theorem 5.5 M (#@ if ], = o and Ky < .

Proof. Suppose that ], = « and Kz < = hold. Since Y (ty) = *°, we can choose t; and t; so large
that

00 a(t) B ty
J b(t) (J a(s)As) At<1  and j a(s)As21, t2t2h.
t

to 5]

Let X be the Fréchet Space of all continuous functions on [t;, %), endowed with the topology of
uniform convergence on compact subintervals of [t;,). Set
t

Q:={xeX: 1Sx(t)£J a(s)As for 2t}

51
and define an operator T : Q — X by
t

(Tx)(H) =1+ La(s) (J

S

0o

K=

b(u)(x“(u))ﬁAu) . (24)

We can show that T : Q — Q is continuous on 2cX by the Lebesque dominated convergence
theorem. Since

23
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Q=

0<[(Tx)(1)] = a(t) (L bu) (x*(w))' 2u)

oo o (u) 1

<a(t) (Jt b(u) (L a(A)A/\)ﬁ Au)Z < o,

it follows that T is equibounded and equicontinuous. Then by Theorem 2.10, there exists ¥ € (2
such that ¥ = Tx. Thus, it follows that X is eventually positive, i.e nonoscillatory. Then differ-
entiating X and the first equation of system (20) give us

j(t) = (a(lt))a(zﬂ(t))a - Jjb(u) (i"(u))ﬁ Au>0, f2h. (25)

This results in that ¥ is eventually positive and hence (X,%) is a nonoscillatory solution of
system (20) in M. Also by monotonicity of X, we have

() =14+ Jt as) (Jjb(u) (zﬁ(u))’8 Au) %z(m))ﬁ J

3

t

a(s) (fb(u)Au) g

f

Hence as t — oo, it follows X(t) — . And by Eq. (25), we have y(t) — 0 as t — . Therefore
ML 2.

Example 5.6 Let T = q™°, g > 1 and B < 1. Consider the system

1
x4 = (1+t)lylasgny
A

6
o (26)

_ o|B
1+ 6)(1 +tg)f " < [sgn x.

It is easy to verify Y (ty) = o and Z(ty) < oo. Letting s = g™ and t = q", where m,n € Ny gives

JTa(t)(JTb(s)As)%Atz > oasnl 2 % (g-1)t

to t te[LT) seltT) (1+5s)(1+sq)
2g-1? Y 1+ (;)t EPEIED p—
te L) 5 (1+ 51+ tg)**! te 1), (14 tg)**!
So we have
tZ i q2n
lim = =
Tﬂwte[;":)qNo 1+ tq)ﬁ+1 HZ:; 1+ qn+1)/3+1

by the Test for Divergence and § < 1. Now let us show that Kg < oo. Since

nga(s)As = Z (1+45s)(g-1)s<tq(1 + tq),

to se LN

we have
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JTb(t) (r(t)a(s)As)ﬁ ars Y axl—)ﬁﬂ (g1 + tq))'g Ha-1)

fo fo tG[LT)qNO + (1 + tq
ey Y
<q q- .
fE[l,T)qNo 1 + t
Therefore by the Ratio test,

limgf (q- — =g
limf (-1 Z =7

te[lT), = (

gives Kg < oo, It can also be verified that (1 +t, m) is a nonoscillatory solution of Eq. (26) in MZ .

Exercise 5.7 Show that the following system

' 1
{ ¥ =eylasgny
y = —ae'@h)|xPsgn x
has a nonoscillatory solution (ef,e™) in M.

Next, we intend to derive a conclusion for the existence of nonoscillatory solutions of system
(20) based on @ and B. The proof of the following lemma is similar to the proofs of Lemmas 1.1,
3.2,3.3,3.6 and 3.7 in [47].

Lemma 5.8

a. If], <o, or Kg < oo then Z) < eo.

b. IfKg = oo, then Y (ty) = e or Z(ty) =

¢ If], =oo then Y(ty) = oo or Z(ty) = oe.

d. Let a>1.If ], < oo, then Ky < oo

e. Let B<1. IfKg < oo, then Jg < oe.

f. Leta <. IfKg < oo, then ], < ooand K, < oo.
g Leta>B.If], <o then Kg < eoand Jg < ee.

Exercise 5.9 Prove Lemma 5.8.

The following corollary summarizes the existence of subdominant and dominant solutions of
system (20) in this subsection by means of Lemma 5.8.

Corollary 5.10 Suppose that Y (ty) = o and Z(ty) < . Then
a. Mg ,#@ if any of the followings hold:

(@) ], <o (i) a < B, p2land g < oo,

25
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(iii) o < B and Kp < oo, (iv) a<land K, < 0.
b. M z#@ if any of the followings hold:
(@) Ky < oo, (ii) a1 and Jp <eo

(ii) o > pand |, < ce.

5.2. The Case Y(ty) < ccand Z(tj) < oo

With the similar discussion as in Subsection 4.2, we concentrate on M}, z and My . Actually, the
existence in M is shown in Subsection 5.1. Also, we use the same argument of the proof of

Lemma 3.1(a) so that the criteria for the existence of nonoscillatory solutions of system (20) in
Mg gis Y(ty) < e and Z(ty) < o=

The most important question that arose in this section is about the existence of nonoscillatory
solutions of the Emden-Fowler system in M. The existence of such solutions in My .., M., can
similarly be shown as in Theorems 3.7 and 3.9. When concerns about and M, ; come to our

attention, we need to assume that ¢ must be differentiable, which is not necessarily true on
arbitrary time scales, see Example 1.56 in [6]. The following exercise is a great observation
about the discussion mentioned above.

Exercise 5.11 Consider the system

2 1
A(t) = - [y(£)[2 t
O e e o
A _ (t+1)3 g % o
yoh) = Rea+ o) |7 () Psgn x° (1)

in T= 2" and show that (2 + H% ,=3 + %) is a nonoscillatory solution of system (27) in Mg .
Note that o(t) = 2t is differentiable on T= 2.
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Oscillation Criteria for Second-Order Neutral Damped
Differential Equations with Delay Argument
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Abstract

The chapter is devoted to study the oscillation of all solutions to second-order nonlinear
neutral damped differential equations with delay argument. New oscillation criteria are
obtained by employing a refinement of the generalized Riccati transformations and
integral averaging techniques.

2010 Mathematics Subject Classification: 34C10, 34K11.

Keywords: neutral differential equation, damping, delay, second-order, generalized
Riccati technique, oscillation

1. Introduction

In the chapter, we are mainly concerned with the oscillatory behavior of solutions to second-
order nonlinear neutral damped differential equations with delay argument of the form

(0 (=0)") +p0(®) +af(xto)) =0. t2n, (M)
where a1 is a quotient of positive odd integers and
z(t) = x(t) + a(t)x(z(t). ©)

Throughout, we suppose that the following hypotheses hold:
i. 1, p, geC(F, RT), where .5 = [fy, ) and R* = (0,00);
ii. aeC(f, R),0<a(H)<1;

I m EC H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [{cc) X IR



32

Dynamical Systems - Analytical and Computational Techniques

iii. 7eC(J, R), t(H)<t, T(f) — 0 ast — oo
iv. 0eC'(F, R), o(t)t, 0 (£)20, 6(t) — 0 as t — oo;

v. feC(R, R), such that xf(x) > 0 and f(x)/xP>k > 0 for x/= 0, where k is a constant and f is
the ratio of odd positive integers.

By a solution of Eq. (1), we mean a nontrivial real-valued function x(t), which has the property
2(HeC!([Tx, «)), r(t) (z'(t))aeCl([Tx, %)), Tx>to, and satisfies Eq. (1) on [Ty, =). In the sequel,

we will restrict our attention to those solutions x(t) of Eq. (1) that satisfy the condition

sup {|x(t)] : TSt < oo} >0 for T=2Ty. 3)

We make the standing hypothesis that Eq. (1) admits such a solution. As is customary, a
solution of Eq. (1) is said to be oscillatory if it is neither eventually positive nor eventually
negative on [Ty, «) and otherwise, it is termed nonoscillatory. The equation itself is called
oscillatory if all its solutions are oscillatory.

Remark 1. All the functional inequalities considered in the sequel are assumed to hold even-
tually, that is, they are satisfied for all ¢ large enough.

Oscillation theory was created in 1836 with a paper of Jacques Charles Frangois Sturm
published in Journal des Mathematiqués Pures et Appliqueés. His long and detailed memoir [1]
was one of the first contributions in Liouville's newly founded journal and initiated a whole
new research into the qualitative analysis of differential equations. Heretofore, the theory of
differential equations was primarily about finding solutions of a given equation and so was
very limited. Contrarily, the main idea of Sturm was to obtain geometric properties of solutions
(such as sign changes, zeros, boundaries, and oscillation) directly from the differential equa-
tion, without benefit of solutions themselves.

Henceforth, the oscillation theory for ordinary differential equations has undergone a signifi-
cant development. Nowadays, it is considered as coherent, self-contained domain in the
qualitative theory of differential equations that is turning mainly toward the study of solution
properties of functional differential equations (FDEs).

The problem of obtaining sufficient conditions for asymptotic and oscillatory properties of
different classes of FDEs has experienced long-term interest of many researchers. This is
caused by the fact that differential equations, especially those with deviating argument, are
deemed to be adequate in modeling of the countless processes in all areas of science. For a
summary of the most significant efforts and recent findings in the oscillation theory of FDEs
and vast bibliography therein, we refer the reader to the excellent monographs [2-6].

In a neutral delay differential equation the highest-order derivative of the unknown function
appears both with and without delay. The study of qualitative properties of solutions of such
equations has, besides its theoretical interest, significant practical importance. This is due to the
fact that neutral differential equations arise in various phenomena including problems
concerning electric networks containing lossless transmission lines (as in high-speed computers
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where such lines are used to interconnect switching circuits), in the study of vibrating masses
attached to an elastic bar or in the solution of variational problems with time delays. We refer the
reader to the monograph [7] for further applications in science and technology.

So far, most of the results obtained in the literature has centered around the special undamped
form of Eq. (1), i.e, when p(t) = 0 (for example, see Refs. [8-18]). For instance, in one of the
pioneering works on the subject, Grammatikopoulos et al. [8] studied the second-order neutral
differential equation with constant delay of the form

(x(t) + a(t)x(t-1)" + g(t)x(t-1) = 0 (4)
and proved that Eq. (4) is oscillatory if

fq(s) (1—a(s—1))ds = oo, (5)

Later on, Grace and Lalli [9] extended the results from [8] to the more general equation
(O +alx=) ) +g0)f (x(t-1)) =0, (6)

with
"

0 7(8)

@2& k>0 and J = oo (7)

and showed that Eq. (6) is oscillatory if there exists a continuously differentiable function p(t)
such that

- (r©) r)
| | pots)a-ate-m) L |ds == ®

In Ref. [10], Dong has involved to study the oscillation problem for a half-linear case of Eq. (1)
and by defining a sequence of continuous functions has obtained various kinds of better
results. Afterward, his approach has been further developed by several authors, see, e.g., [11-
14]. However, it appears that very little is known regarding the oscillation of Eq. (1) with p(t)#0
and a#p. Motivated by the results of Ref. [10], this chapter presents some new oscillation
criteria, which are applicable on Eq. (1).

On the other hand, Eq. (1) can be considered as a natural generalization of the second-order
delay differential equation of the form

() (¥®)") +p0(x®)" +qte)f (o) ) =0. ©9)

Very recently, the authors of [19] studied the oscillation problem of Eq. (9) with p(t) = 0 and
a = B. Their ideas, which are based on careful investigation of classical techniques covering
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Riccati transformations and integral averages, will be extended to the more general equa-
tion (1).

2. Main results

For the simplicity and without further mention, we use the following notations:

Al = exp (-] Bas). ) =k (1-sto())', (10)

S S (BN
R = [ (55) s, 0 = a0 (1=atot0) S 7). (1)
P =SB0 i =+ [ G e (12)

where ¢(t)eC' (.7, R) is a given function and will be specified later.

The organization of this chapter is as follows. Before stating our main results, we present two
lemmas that ensure that any solution x(t) of Eq. (1) satisfies the condition

2(t) >0, Z(t) >0, Qﬁ(ﬂﬂf)<o, (13)
for t sufficiently large. Next, we get our main oscillation results for Eq. (1) by employing the

generalized Riccati transformations and integral averaging techniques. We base our arguments
on the assumption that the function P(t) is positive or negative.

[

holds and Eq. (1) has a positive solution x(f) on .#. Then there exists a T€.#, sufficiently large,
such that

Lemma 1. Assume that

28 >0, Z(f) >0, @o@wf)<a (15)

on [T, ).

Proof. Since, x(t) is a positive solution of Eq. (1) on .7, then, by the assumptions (iii) and (iv),
there exists a t;€.% such that x(7(¢)) > 0 and x(c(¢)) > 0 on [t;, o). Define the function z(f) as in
Eq. (2). Then it is easy to see that z(f)2x(t) > 0, for £2t;, and at the same time, from Eq. (1), we
get
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(vt (z’(t))“)' +p(t) (z’(t))“ = -q(t)f (x(o(t))) < 0. (16)
We assert that % (z(t)) “is decreasing. Clearly, by writing the left-hand side of Eq. (16) in the
form
(r(t) (z’(t))“)' n %r(t) (z’(t))a <0, 17)
we get
(28 ()") =~ 1 xtotey) <o 18)

and so the assertion is proved.

Now, we claim that z' () > 0 on [t1, ). If not, then there exists t,€[t;, ) such that z'(t,) < 0.

, @
Using the fact that % (z (t)) is decreasing, we obtain, for f2t,,

UONENCESN (C) NN
20 (z (t)) <c= g0 (z (tz)) <0. (19)
Integrating the above inequality from #, to ¢, we find that
[t (A(s)\
z(t) < z(t2) + C«L (@) ds (20)

for £2t,. By condition (14), z(t) approaches to —o as t — o, which contradicts the fact that z(¢) is
eventually positive. Therefore, z () > 0 and from Eq. (1), we have that (r(t) (z(t))a) < 0. The

proof is complete.

Lemma 2. Assume that

r(u) As)

fo

J, (Aw [ Qetots) djd” - ”

holds and Eq. (1) has a positive solution x(t) on .#. Then there exists T€.#, sufficiently large,
such that

2(0)>0, Z()>0, (1) (z’(t))“)' <0, (22)

on [T, o).
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Proof. Similarly to the proof of Lemma 1, we assume that there exists t,€.# such that z'(t) <0
on [t, ). Taking Eq. (18) into account, we have

() AG)\F
z(s)s<mm> z (1), (23)

for s>t>t,. Integrating the above inequality from ¢ to t, t >t>t;, we get

z(F)<z(t) + (%) ;z’(t)J: <%> T1‘cls. (24)
Letting t — oo, we have
(2R (%)lz’u), @s)
which yields

x(t) = 2(t)-a(t)x(x()
>2(t)-a(t)2(x(1)) .
(x(t)

> (1000 < )zt

which together with Eq. (1) and the assumption (v) yields

(r(t)(z'(t))“)'+p(t)(z'(t))“ <kq(t) (1-a(o (1) “io” )ﬁzﬁ(a(t))

(28)
=-kQ(1)2 (a(1)).
On the other hand, from Eq. (23), we have
r)(20)" r(e)(2(1)"
AN S Am) @)
that is,
r) (oo rk) (o N\ e
m(—z (t)) > A(;) (—z (t2)> L=y (30)

for some positive constant y. Setting Eq. (30) into Eq. (25), we obtain
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z2(t)>yR(t) (31)
and so, Eq. (28) becomes
(0 (z®)") +p0)(z0) <FQOR (1), (32)
where y : = k). Now, if we define the function
u(t) = r(t) (—z’(t))“ >0, (33)
then
U0+ S U QR o 1), (34)
or, equally
(e
Integrating the above inequality from f, to t, we get
U(t)Z)?A(t)J; st (36)
or
20 (—z’(t))“ZfA(t)J; st (37)
It follows from this last inequality that
0< z(t)Sz(tz)—)?J; (f((;‘)) Jt Q(S)ﬁfs()“ (%) ds)édu (38)

for t2f;. As t — oo, then by condition Eq. (21), z(t) approaches to -, which contradicts the
fact that z(t) is eventually positive. Therefore, z'(t) >0 and from Eq. (1), we have

(r(t) (z'(t))a)' < 0. The proof is complete.

Lemma 3. Assume that
- (Aw Q6 \
I (T)de) = )

holds and Eq. (1) has a positive solution x(t) on .#. Then there exists T€.#, sufficiently large,
such that either
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2 >0, Z(t)>0, (r(t (z’(t))“)' <0, (40)
on [T, ) or ltlirgo x(f) =0.

Proof. As in the proof of Lemma 1, we assume that there exists t,€. such that z () < 0 on
[f2, ). S0, z(t) is decreasing and

limz(t) =: b0 41)

oo

exists. Therefore, there exists t3€[t;, =) such that
z(a(t)) > z(H)2b > 0. (42)

As in the proof of Lemma 2, we obtain Eq. (27), i.e.,

o) 2(1=ato(0) S )a(o(0)

(1)
(43)
o REEONY
2b<1 a(a(t)) R(o(6) ) for >t3.
Thus,
, ay’ , @ - R B
(ro(zw) ) +pw(Fw) <ba®) (1—a(o(t)) %)
=-bQ(), (44)
where b := kbP.
Define the function U(t) as in Eq. (103). Then Eq. (44) becomes
Uy 45 Q)
(M) 9. (45)
Integrating the above inequality twice from f3 to ¢, one gets
0< z(t)Sz(tg)—EL (fr‘((;t)) J:ffi;“) du, (46)

for t2t5. As t — oo, then by condition (39), z(t) approaches to -, which contradicts the fact that
z(t) is eventually positive. Thus, b = 0 and from 0<x(t)<z(t), we see that ltim x(t) = 0. The

proof is complete.
Using results of Lemmas 1 and 2, we can obtain the following oscillation criteria for Eq. (1).

Theorem 1. Let conditions (i)—-(v) and one of the conditions (14) or (21) hold. Furthermore,
assume that there exists a positive continuously differentiable function ¢(t) such that, for all
sufficiently large, T, T12T,
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P(t)=0 47)
on [T, ) and
o) (o(9) (Ps)"
] 00 Q(S) t a® S)r(o(s S
1 HA()| =—=ds + - 2 = oo,
imsup 0 64| FHas o+ [ o0 ove) |
(48)
where
c1, c1 is some positive constant if § > «
1, iff=a
=9 . (49)
2 (J r‘i(s)ds> w , Cp is some positive constant if f < a.
T

Then, Eq. (1) is oscillatory.

Proof. Suppose to the contrary that x(¢) is a nonoscillatory solution of Eq. (1). Then, without
loss of generality, we may assume that there exists Te€.# large enough, so that x(t) satisfies the
conclusions of Lemma 1 or 2 on [T, ) with

x(t) >0, x(z(t)) >0, x(a(t)) >0 (50)
on [T, o). In particular, we have
2(>0, Z()>0, (1) (z'(t))a), <0, for T (51
By Eq. (2) and the assumption (iii), we get
x(t) = z(t)-a(t)x(z(1))

>z(t)-a(t)z(t(t)) (52)
>(1-a(t))z(1),

which together with Eq. (1) implies
(r0(E®)) +22(0)" skan (1-ato(e)) #(o(0)

r(f) (53)
—-QOF(a(t)).
We consider the generalized Riccati substitution
w(t) = (1) M >0, for £T (54)
(o (t)) ’ o

As in the proof of Lemma 1, we get Eq. (18), which in view of the assumption (v) yields
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") ) Q)
(55 (0)") =SB #eon,
Integrating Eq. (55) from ¢ to e and using the fact that z(t) is increasing, we have

) (oo Q)
o) (z (t)) th mzﬁ(o(s))ols

2zﬁ(a(t))f%ds.

So it follows from Eq. (56) and the definition (54) of w(t) that

0z )" " Q0s)
o) 040, G

By Eq. (53) we can easily prove that

W) = (o ())a)’zﬁ%(i)) (ﬁ%éi))) 10z 0))"
< ¢%t ( ( )ﬁ + Q2P (a(t) )

. o(t) (2 (a(t))
+r() (2 (1) (zﬁf(ff?»- zﬁ&(“(“) ))
00+t (50-14)

oN
() (12 (o()o ()
R

On the other hand, since r(t) (z'(t))a is decreasing, we have

Z((t) [ r(t) \’
Z() ‘<r<o<t>>>

and thus Eq. (58) becomes

Now, we consider the following three cases:

Case: § > a.

(55)

(56)

(57)

(58)

(59)

(60)
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In this case, since z'(t) > 0 for t>T, then there exists T;>T such that z(c(t))>c for t>T;. This

implies that
27 (0()2T = ¢

Casell: = a.

In this case, we see that zg(a(t)) =1

Case III: B < a.

Since r(t) (Z(i)) “is decreasing, there exists a constant d such that
r(t) (z’(t))asd

for £2T. Integrating the above inequality from T to f, we have

z(ﬂsz(T)+—J;<;gs>%ds

Hence, there exists T1>T and a constant d; depending on 4 such that

t
z(t)§d1J ri(s)ds, for T,
T

and thus

fo o

(oo ow)

B fa
e o

za (a(t))zdli

for some positive constant ds.

Using these three cases and the definition of ¢(t), we get

o (p(t) 1

W (=-(HQ(E) + P(H)w(t)- -0 (1)
(etro))
for £2T1>T. Setting
A :=P(1),
g BTOR0)
(e(tr(o®))’

and using the inequality

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)
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Lia as Aa+1
Au-Bu'= Sm?, (69)
we obtain
p(r(om) (Pw)"™
a ro
W (5PN +— 7 e (70)
@+ D™ (po' ()
Integrating the above inequality from T to ¢, we have
or(o(9)(Pe)"
t a® s)r(o(s s
W(f)Sw(Tl)—L 0600 CE) ds. (71)
Taking Eq. (57) into account, we get
w(Ty) z¢(t)A(t)f%ds
(72)

o oo (Pe)
@+ (pos)p(s))

+Jt P(s)Q(s)- ds.
T

Taking the lim sup on both sides of the above inequality as ¢t — o, we obtain a contradiction to
the condition (48). This completes the proof.

Remark 2. Note that the presence of the term q[)(t)A(t)J %ds in Eq. (57) improves a number
t

of related results in, e.g., [9, 1318, 20].

Setting ¢(t) = t in Eq. (57), then the following corollary becomes immediate.

Corollary 1. Let conditions (i)-(v) and one of the conditions (14) or (21) hold. Assume that, for
all sufficiently large, T, T12T,

tp(t)<r(t) (73)

on [T, ) and

| _ @ " ) a® S}’(O’(S)) (
fim Sup{tA(t)Jt A(S) ds J’T1 SQ(S) (OC + 1)a+1 (ﬁU’(S)w(S)

[

N—
=3

where )(t) is as in Theorem 1. Then Eq. (1) is oscillatory.
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Corollary 2. Assume that the conditions (39) and (74) hold. Then Eq. (1) is oscillatory or
lim x(t) =0.

t—s00

Next, we present some complementary oscillation results for Eq. (1) by using an integral
averaging technique due to Philos. We need the class of functions F. Let

Do ={(t,s):t>s2y} and D={(Ls):t> s>} (75)
The function H(t, s)eC(D, R) is said to belong to a class F if

(@) H(t, t) =0 for £2T, H(t, s) > 0 for (¢, s)€Dy

(b) H(t, s) has a continuous and nonpositive partial derivative on Dy with respect to the
second variable such that

a% (H(t, s)¢(s))—H(t, ) ‘P(:()f)(s) = —h(t, ) (H(t, s)qb(s))ﬁ (76)

for all (¢, s)eDy.

Theorem 2. Let conditions (i)-(v) and one of the conditions (14) or (21) hold. Furthermore,
assume that there exist functions H(t, s), h(t, s)EF such that, for all sufficiently large, T, for
T12T,

lim sup

N SUP T J (H(t, 9)(9(5)Q05) + pE)p(s)p(s))

" et T, s)r(a(s))) e o (77)

@+ g (o' (5)p(s))”

where ¢(t) and p(t) are continuously differentiable functions and (¢) is as in Theorem 1. Then
Eq. (1) is oscillatory.

Proof. Suppose to the contrary that x(t) is a nonoscillatory solution of Eq. (1). Then, without
loss of generality, we may assume that there exists T€.# large enough, so that x(t) satisfies the
conclusions of Lemma 1 or 2 on [T, «) with

() >0, x(z() >0, x(a(t))>0 (78)

on [T, «). In particular, we have

2(H >0, Z(t) >0, (r(t)(z’(t))“)ko, for fT. (79)

Define the function w(t) as

w(t) = () <(Zm)a n p(t)) o (r(Dp(t) (80)
P00 2 ’

where p(t)eC!(.7, R). Similarly to the proof of Theorem 1, we obtain the inequality
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w(ts 6000+ 00 (r0p(t) + (2550 )ty
OO (u-pitrtp(n)
(6o

(81)

Multiplying Eq. (81) by H(t, s), integrating with respect to s from T; to ¢ for £2T12T, and using

(a) and (b), we find that
[ 16 9900 (@10 s

< oo« [ 9 (B3-S o
BHIt, )0 (5)y(5) e
e (TOREN

J (o))’ S

<

= H(t, s)w(s)|T1t+Jt <§SH(t s)+ H(t, s) <¢—” @»w(s)ds

(

o[ B (s >) ds
(¢6)re))

= H(t, T1)w(Ty) + r -

' BH(t, 5)0'(s)Y(s)
| (w(s)o(s)r(s)p(s) ) - ds
JTl ((p(s)r(o_(s)))a ( )

v
-

—
1%2)

~

Settin
e . ) s g BHE IOV
A= =S HEEFT, B :
(¢)r((s)
and
C:=d(s)r(s)p(s)
and using the inequality " a+1
Au-B(u-C)'%" ch+(a+aWABT’
we obtain

J, He.sy000 (@ (pto) o
<H(t, T1)w(Ty) +J ~h(t, s)r(s)p(s)[H(t. s)(s)]71ds

Ty
et K e (065)) 4
+JT1 (a+ 1)“+1 (a (s )

(82)

(83)

(84)

(85)

(36)
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Thus,

HG (™) 2| H(e906) (Q)-(rs)pts)) )as
+ | bt Srop@ (e oo ds s7)

T,

_Jt a® KT, s)r(a(szk) .
@+ D g (5 (5)g(s))

That is,
H(tt, T1)w(Ty) ,
H(t, 5)9() (Q(s)-(r(s)p(s) ) ) ds

n J;—r(s)p(s) (2 (1 3009) -t 22 )

! a® BN s)r(o(s )

x P ( S) (88)
= [ 1. 9(66006) + p95(5p(5)) s

Ty

v

[ a® BN, s)r(o(s)
=H(t, s)p(s)r(s)p(s) '~ ) - ds
oty A

It follows that

|| He 9 (06106) + peiptem)os
3 a® RO, s)r(a(s)) d

L @0 g ()
<H(t, T1) (w(T1)-¢(T1)r(T)p(T1)),

which is a contradiction to Eq. (77). The proof is complete.

Remark 3. Authors in [15, 20] studied a partial case of Eq. (1) by employing the generalized
Riccati substitution (80). Note that the function p(t) used in the generalized Riccati substitution
(80) finally becomes unimportant. Thus, we can put p(t) = 0 and obtain similar results to those
from [15, 20].

In the next part, we provide several oscillation results for Eq. (1) under the assumption that the
function P(t) is nonpositive. These results generalize those from [10] for Eq. (1) in such sense
that a#p and p(t)#0

Theorem 3. Let conditions (i)—(v) and one of the conditions (14) or (21) hold. Furthermore,
assume that there exists a continuously differentiable function ¢(t) such that, for all sufficiently
large, T, T12T,
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P(#)<0 (90)

on [T, ) and

j%ds—i-r

lim sup {(P(t)A(t)J A(s)

f—o0

o(s) <Q(s)—A(s)P(s)Jw%du> ds} = oo, 91)

Ty s

Then Eq. (1) is oscillatory.

Proof. Suppose to the contrary that x(t) is a nonoscillatory solution of Eq. (1). Then, without
loss of generality, we may assume that there exists T€.# large enough, so that x(t) satisfies the
conclusions of Lemma 1 or 2 on [T, e) with

x(t) >0, x(z(t)) >0, x(co(t))>0 (92)

on [T, ). In particular, we have

2(t) >0, Z(f) >0, (r(t)(z’(t))“)ko, for £T. (93)

Proceeding as in the proof of Theorem 1, we obtain the inequality (66), i.e.,
Bo' (HY(t) i

w(Hs ¢ + Pltw(t)- L0 () %)
(e(tr(o®))’

for £2T12T. Using Eq. (90), and setting Eq. (57) in Eq. (94), we get

w(t) <oHQ(t) + (,i)(t)A(t)P(t)r Qls) ds

¢ Als)
_MW%U) (95)
(¢>(t)r(o(f)))Z
<P(HQH) + ‘P(t)A(t)P(t)L %d&

that is,

w (t) + q)(t)Q(t)—(p(t)A(t)P(t)Jj % ds<0. (96)

Integrating the above inequality from T to t, we have

w(Ty) >w(t) + JTl (¢<s>Q<s>—¢<S>A<S>P (S)f %d”) & 97)

so0A® [ Las+ [ (o61060-0646P6 [ 2 du ) ds
¢ Als) A(u)

Ty s

Taking the lim sup on both sides of the above inequality as t — o, we obtain a contradiction to
condition Eq. (91). This completes the proof.
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Setting ¢(t) = 1, we have the following consequence.

Corollary 3. Let conditions (i)—(v) and one of the conditions (14) or (21) hold. Assume that

lim sup [A(t)f %ds + Jt Q(S)ds] = oo, (98)

t—o0 T1

for all sufficiently large T, for T1=T. Then Eq. (1) is oscillatory.

Define a sequence of functions {y, (t)/,_, as

=

w) = | a1 99)

t

_ ["Ba(5)¥(s) e _
yn(t)fjt m(%ﬂ(s)) dsty(h), BT, n=123..., (100)

for T>t) sufficiently large.
By induction, we can see thaty, <y, ,,n=1,2,3,....

Lemma 4. Let conditions (i)—(v) and one of the conditions (14) or (21) hold. Assume that x(¢) is
a positive solution of Eq. (1) on .#. Then there exists Te.#, sufficiently large, such that

w(t)2y, (1), (101)

where w(t) and y, (t) are defined as Eqgs. (54) and (100), respectively. Furthermore, there exists a
positive function y(t) on [T, =), T12T, such that

tim 3, (1) = 1) (102)

and
O e ) R (103)
Proof. Similarly to the proof of Theorem 3, we obtain Eq. (95). Setting ¢(f) = 1 in Eq. (95), we get

for £T,>T. Integrating Eq. (104) from ¢ to ¢, we get

N OO
w(t)-w(t) + Jt g(s)ds + Jt 200) (s)ds<0 (105)
or
- "B (s)P(s) ree
w(t) w(t)+jt 20()) w e (5)ds<0. (106)

We assert that
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If not, then
w“’)sw(”'ﬁ %wﬁ% e (108)

as t — oo, which contradicts to the positivity of w(t) and thus the assertion is proved. By
Eq. (104), we see that w(t) is decreasing that means

lim w(t) =k, k0. (109)

t—so0
By virtue of Eq. (107), we have k = 0. Thus, letting f — o in Eq. (105), we get

w(t) zré(s)ds + r GAOLIOBEETAPE

i) o
—yolt) + | P sy,
t 1a(o(s))
that is,
w(t)ZL g(s)ds =y, (t). (111)
Moreover, by induction, we have that
w(t)zy,(t), for 2T, n=1,23,.... (112)

Thus, since the sequence {y, (1)}, _, is monotone increasing and bounded above, it converges
to y(t). Letting n — o and using Lebesgue monotone convergence theorem in Eq. (100), we get
Eq. (103). The proof is complete.

Theorem 4. Let conditions (i)—(v) and one of the conditions (14) or (21) hold. If

im i 1 [7po(s)e(s) e a
1 mf<y0(t) Jt ra(a(s)) (3/0(5)) ds) > (a+1)1%‘, (113)

t—s00

where ¢(t) is as in Theorem 1, then Eq. (1) is oscillatory.

Proof. Suppose to the contrary that x(¢) is a nonoscillatory solution of Eq. (1). Then, without
loss of generality, we may assume that there exists T€.# large enough, so that x(f) satisfies the
conclusions of Lemma 1 or 2 on [T, e) with

x(t) >0, x(z(t) >0, x(o(t) >0 (114)

on [T, e). In particular, we have
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2(t) >0, Z(f) >0, (r(t)(z’(t))“)ko, for £T. (115)

By Eq. (113), there exists a constant > ﬁ such that
a+1) @

imin ~po'(s)y(s) e
1H°°fyo(t) Jt ri(a(s)) (yo(s)) ds > y. (116)

Proceeding as in the proof of Lemma 4, we obtain Eq. (110) and from that, we have

w(t) >1 + L r ‘BGJ(SW(S) (yds))lﬁa(M)%ds (117)

Vo) v )i ri(als)) Yo(s)
Let
- w(t)
A=inf——=. 118
tzt{yo(t) (118)
Then it is easy to see that A>1 and
A>1 + A%y, (119)

which contradicts the admissible value of A and y, and thus completes the proof.

Theorem 5. Let conditions (i)-(v), one of the conditions (14) or (21) hold, and y, () be defined
as in Eq. (100). If there exists some y, (¢) such that, for T sufficiently large,

a

a(t) .
lim sup y,,(¢) (JT r’N(s)ds> >$, (120)

[

where ¢(t) is as in Theorem 1, then Eq. (1) is oscillatory.

Proof. Suppose to the contrary that x(¢) is a nonoscillatory solution of Eq. (1). Then, without
loss of generality, we may assume that there exists Te.# large enough, so that x(t) satisfies the
conclusions of Lemma 1 or 2 on [T, ) with

x(t) >0, x(z(t)) >0, x(o(t))>0 (121)
on [T, o). In particular, we have
2(0)>0, Z()>0, (n() (z'(t))“)' <0, for pT. (122)

Proceeding as in the proof of Theorem 3 and using defining w(f) as in Eq. (54), for T12T, we get
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S C(0)
w(t) r(t)(z’(t))a
9(t) (2(o())\°
45 (7))
a(t) a
7@ Z(T1)+JT1 r‘%(s)r%(s)z'(s)ds (123)
N r t) Z’(t)
olt) a
ZIP(t)( rT(s)ds)
Ty
Thus,
a(t) . a
oy ([
w(t)g ﬂ(s)ds> R0} O E— (124)
' J r7a(s)ds
And therefore,
. o) | @ 1
fimn stp () (L r“(s)ds) STOR (125)

which contradicts Eq. (120). The proof is complete.

Theorem 6. Let conditions (i)-(v), one of the conditions (14) or (21) hold, and y, () be defined
as in Eq. (100). If there exists some y, (¢) such that

" t B (s)gls) 2 .
JTIq(t)exp (JTI 2o09) yn(s)ds)dt— (126)

or

[ EOsitno < [ &IP(;)}, (S)ds) T (127)

T ri(a(t)) T, 7i(o(s)

for T sufficiently large and T12T, where 1(¢) is as in Theorem 1, then Eq. (1) is oscillatory.

Proof. Suppose to the contrary that x(¢) is a nonoscillatory solution of Eq. (1). Then, without
loss of generality, we may assume that there exists Te.# large enough, so that x(t) satisfies the
conclusions of Lemma 1 or 2 on [T, o) with

x(£) >0, x(z(t) >0, x(o(t) >0 (128)
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on [T, e). In particular, we have
2() >0, (1) >0, (r(t (z’(t))“) <0, for T

From Eq. (103), we have

: ﬁo Hy() e
y ()= 2o(0) (y(t)) q(),
for all £2T>T. Since y(t)2y, (t), Eq. (130) yields
MO LAGLIU PR

ri(a(t))

Multiplying the above inequality by the integration factor

"o (s)P(s) 1
P (Jn ri(o(s)) yn(s)ds>,

one gets

T, re(o

y(b)s exp(] ﬁ‘igs)(‘/’)())ms)ds)

[ atsrexn ([ 70000 2
(y(tl) Jrlq(s) p(L A o(w)) valu)d >d5>’

from which we have that

[ a)ex (L Ww(u)du) ds<y(Th) <

Ty o(u

This is a contradiction with Eq. (126).

Now denote

Taking the derivative of u(t), one gets

(129)

(130)

(131)

(132)

(133)

(134)

(135)
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Proceeding in a similar manner to that above, we conclude that

J ﬁa( )ll}( )]ﬁl(t)yo(t) exp (J ﬁa](si)ll}(;)y%(s)ds) dt < oo,

Ty ”‘*(0( )

7, 13(0(s)

which contradicts to Eq. (127). The proof is complete.
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Abstract

Preservation is related to local asymptotic stability in nonlinear systems by using
dynamical systems tools. It is known that a system, which is stable, asymptotically
stable, or unstable at origin, through a transformation can remain stable, asymptotically
stable, or unstable. Some systems permit partition of its nonlinear equation in a linear
and nonlinear part. Some authors have stated that such systems preserve their local
asymptotic stability through the transformations on their linear part. The preservation
of synchronization is a typical application of these types of tools and it is considered an
interesting topic by scientific community. This chapter is devoted to extend the method-
ology of the dynamical systems through a partition in the linear part and the nonlinear
part, transforming the linear part using the Tracy-Singh product in the Jacobian matrix.
This methodology preserves the structure of signs through the real part of eigenvalues
of the Jacobian matrix of the dynamical systems in their equilibrium points. The princi-
pal part of this methodology is that it permits to extend the fundamental theorems of the
dynamical systems, given a linear transformation. The results allow us to infer the
hyperbolicity, the stability and the synchronization of transformed systems of higher
dimension.

Keywords: preservation, synchronization, Tracy-Singh product, chaotic dynamical
system
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1. Introduction

In nonlinear autonomous dynamical systems, the study of synchronization is not new. We can
see several papers about these themes from different approaches. Some examples show the use
of change of variables, that is, through a diffeomorphism of the origin. From this, it is possible
to say if a system is stable, asymptotically stable, or unstable. Some results are also obtained by
the product in a vector field in the nonlinear dynamical system by a continuously differentia-
ble function at the origin [1]. On one hand, there are studies showing the use of statistical
properties to characterize the synchronization [2]. The eigenvalues of a system determine a
system dynamics, but they are not derivable from the statistical features of such a system. One
way to observe the stability is through a linear part of a dynamical system. But the problem to
preserve stability by the transformation of its linear part in a nonlinear autonomous system has
just been analyzed recently.

In [3], it is presented a methodology under which stability and synchronization of a dynamical
master-slave system configuration are preserved under a modification through matrix multi-
plication. The conservation of stability is important for chaos control. A generalized synchro-
nization can also be derived for different systems by finding a diffeomorphic transformation
such as the slave system written as a function of the master system. One example of preserva-
tion for asymptotic stability is the use of transformations on rational functions in the frequency
domain [4, 5].

This class of transformation can be interpreted as noise in the system or as a simple distur-
bance on the value of the physical parameters of the model. The chaotic synchronization
problem studied in [6] is mainly related to preservation of the stability of the master-slave
system presented in it. Results included therein show that stability is preserved by
transforming the linear part of system. The same results can also be used in the chaos suppres-
sion problem. In [7], the authors show the viability of preserving the hyperbolicity of a master-
slave pair of chaotic systems under different types of nonlinear modifications to its Jacobian
matrix.

In [8], the developed methodology is used to study the problem of preservation of synchroni-
zation in chaotic dynamical systems, in particular the case of dynamical networks. Given a
chaotic system, its transformed version is also a chaotic system. By means of a master-slave
scheme obtained a controller for the system using a linear-quadratic regulator, preserving the
stability even after the master-slave controller is transformed. This chapter is inspired by the
same objective, that is, to preserve the stability in a master-slave system even through a
transformation is performed over it. One way to achieve it is by extending some of the results
in [8], particularly those of the local stable-unstable manifold theorem and extension of the
center manifold theorem based in the preservation of the linear part of the vector field in
nonlinear dynamical systems. As we will see, these results depart from the hypothesis of the
existence of a constant state feedback as anominal synchronization force. In this work, we
elaborate another approach to the problem of preservation of synchronization. We focus
particularly on autonomous nonlinear dynamical systems, extending the previous results
already mentioned.
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This chapter is organized as follows: First, in Section 2, we will give basic concepts of dynam-
ical systems. The fundamental theorem for linear systems, the local stable-unstable manifold
theorem, the center manifold theorem, the Hartman-Grobman theorem and the concept of
group action are introduced. In Section 3, we present some definitions about matrices and
Tracy-Singh product of matrices. Also in this section, the main result is presented as a general-
ization of Proposition 4 in [6]. In Section 4, we will show that it is possible to preserve
synchronization under a class of transformations defined under a certain method. Numerical
experiments on the stability preservation for chaotic synchronization are shown in Section 5.
Finally, a set of concluding remarks is given in Section 6.

2. Classical concepts of dynamical systems

We introduce theorems and classical definitions on properties of dynamical systems in this
section. The fundamental theorem for linear systems, the local stable-unstable manifold theo-
rem and the center manifold theorem are those important propositions mainly needed to
develop analyses in this chapter. We will combine them with the Hartman-Grobman theorem
in order to achieve a necessary generalization for those particular results of this chapter.

Theorem 2.1. (The local stable-unstable manifold theorem [9]). Let E be an open subset of R"

containing the origin. Let f € C'(E) and ¢, be the flow of the nonlinear system of the form % = f(x).
Suppose that f(0) = 0 and that Df (0) are the Jacobian matrix, which has k eigenvalues with negative
real part and n—k eigenvalues with positive real part.

1.  (Stable manifold) Then, there exists a k-dimensional differentiable manifold S tangent to the stable
subspace E° of the linear system ¥ = A(x) at xo such that for all t >0, ¢,(S)CS and for all xo€S,
lim; .. ¢,(x) = 0.

2. (Unstable manifold) Also there exists an n—k dimensional differentiable manifold W tangent to the
unstable subspace EV of ¥ = A(x) at xo such that for all t <0, ¢,(W)CW and for all xp€W,
lim;_ .. ¢, (xp) = 0.

It should be noted that the manifolds S and W mentioned in Theorem 2.1 are unique. We
define now the central manifold theorem in the following.

Theorem 2.2. (The center manifold theorem [9]). Let E be an open subset of R" containing the
origin and r 2 1. Let f € C'(E), that is, f is a continuously differentiable function on E of order r. Now
we suppose that f(0) = 0 and that Df (0) have k eigenvalues with negative real part, j eigenvalues with
positive real part and | = n—k—j eigenvalues with zero real part. Therefore, there exists an |

-dimensional center manifold W(0) of class C" tangent to the center subspace ES of % = A(x) at 0
which is invariant under the flow ¢, of ¥ = f(x).

By what it is established in Theorem 2.2, the center manifold W (0) is not unique, which is an
important difference for the stable character of the systems to be studied.

57



58 Dynamical Systems - Analytical and Computational Techniques

Theorem 2.3. (The Hartman-Grobman theorem [9]). Let E be an open subset of R" containing the
origin, let ¢, be the flow of the nonlinear system x = f(x). Now, we assume that f(0) = 0, that is, the
origin is an equilibrium point of the dynamical system; also the Jacobian matrix evaluated at the origin,
A = Df(0). If H is an homeomorphism of an open set W onto an open set V such that for each xo€W, it
exists an open interval Iy C R such that for all xo € W and t € I

Hod,(x0) = ¢"'H(xo); 1)

that is, H maps trajectories of the nonlinear system x = f(x) near the origin onto trajectories of ¥ = Ax
near the origin and preserves the parametrization.

From the following argument, it is show that for any matrix A = U’ T,U, there exists an
homeomorphism H = UH such that for an open set W containing the origin onto an open set
V also containing the origin such that for each xo€W and there is an open interval [pCR
containing zero such that for all xo€W and tel,

H e ¢,(x0) = ¢"'H (x0); @)

This last equality is a consequence of the Hartman-Grobman theorem and of the fact of

Uet = 74U, that is, H maps trajectories of the nonlinear system % = f(x) near the origin onto
trajectories of x = T 4x near the origin and preserves the parametrization.

On the other hand, some classical definitions are now included. A linear system of the form
x = Ax where x € R", A is a nxXn matrix and x = %. It is shown that the solution of the linear
system together with the initial condition x(0) = x, is given by x(t) = e**xo. The mapping
et i R" — R" is called the flow of the linear system.

Definition 2.1. For all eigenvalues of a matrix A(nXn) have nonzero real part, then the flow e is
called a hyperbolic flow and therefore, x = Ax is called a hyperbolic linear system [9].

Definition 2.2. A subspace ECR" is said to be invariant with respect to the flow e : R" — R" if
eMCE for all teR [9].

Lemma 2.1. Let AeR™ ", If R" = E°@E"@®E where E°, E" and E€ are the stable, unstable and
center subspaces of the linear system X = Ax. By the above,E*,E" and E° are invariant with
respect to the flow e!, respectively [9].

Definition 2.3. Let E be an open subset of R" and let f € C'(E), that is, f is a continuous differentiable
function defined on E. For xo € E, let ¢(t,x0) be the solution of the initial value problem
x = f(x),x(0) = xo defined on its maximal interval of existence I(xo). Then for t€l(x), the mapping
¢, : E — E defined by ¢,(x0) = ¢,(t,x0) is called the flow of the differential equation [9].

Definition 2.4. For any xo€R", let ¢,(xo) be the flow of the differential equation through xo.(i) The
local stable set S corresponding to a neighborhood V of xq is defined by S = 5(0) ={xo e R":
¢y(x0) € V,t20 and ¢,(xo) — 0 as t — oo}. (ii) The local unstable set W of xo corresponding to a
neighborhood V of xg is defined by W = W(0) = {xo€R" : ¢,(x0)€V, t <0 and ¢,(xg) — 0as t — o}
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Then, these stable and unstable local sets are submanifolds of R" in a sufficiently small neighborhood V
of x0[9].

Definition 2.5. If G is a group and X is a set, then a (left) group action of G on X is a binary function
GxX — X, denoted by [9]

(8:x)g - x ®)
which satisfies the following two axioms:

1. (g¢h)-x=g-(h-x)forallg,he Gandx € X;
2. e-x =x forevery x € X (where e denotes the identity element of G).

The action is faithful (or effective) if for any two different g,h € G, there exists an x € X such that
g - x # h-x; or equivalently, if for any g # e in G, there exists an x € X such that g - x # x.

The action is free or semiregular if for any two different g, € G and all x € X, we have
g-x#h-x; or equivalently, if g - x = x for some x implies g = e.

For every x € X, we define the stabilizer subgroup of x (also called the isotropy group or little
group) as the set of all elements in G that fix x:

Gy={g€eG:g-x =x} 4)

This is a subgroup of G, though typically not a normal one. The action of G on X is free if and
only if all stabilizers are trivial.

3. Tracy-Singh product and other mathematical extensions

In this third section, we show a definition and some properties of the Tracy-Singh product. We
also include a simple extension of the local stable-unstable manifold theorem and the center
manifold theorem, using the tools presented in Section 2. These extensions are tools that will
also be used in Section 4, where we will present the results on preservation of synchronization
in nonlinear dynamical systems.

Definition 3.1. Let A be an eigenvalue of the n x n matrix A of multiplicity m<n. Then fork =1, ...,m,
any nonzero solution w of [9]

(A-ADfw =0 )

is called a generalized eigenvector of A.

In this case, let w; = u; + v; be a generalized eigenvector of the matrix A corresponding to an
eigenvalue A; = g; + ib; (note that if b; = 0 then v; = 0). Then, let B = {U1,01, ooy Uk, Uy« ey Uiy U }

be a basis of R" (with n = 2m-k as established by Theorems 1.7.1 and 1.7.2, see [9]). Now, we
introduce the definition of Tracy-Singh product and some properties.
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Definition 3.2. If taken the matrices A = (a;;) and C = (c;;) of order m xn and B = (by) of order p xq.
Let A = (Ajj) be partitioned with Aj; of order m;xn; as the (i,j) th block submatrix and B = (By) of
order p,.xq, as the (k,I) th block submatrix (Y,m; = m,Yn; = n,Yp, = p,2.q, = q). Then, the defini-
tions of the matrix products or sums of A and B are given as follows [10].

Tracy-Singh product

AoB = (AifoB)ij = ((Af]®Bkl)kl>i]. (6)

where A;j®Byy is of order mip, X n;q,, AjjB is a Kronecker product of order m;p X n;q, and AeB is of order
mp X nq.
Tracy-Singh sum

AHB = Ael, + I,°B (7)
where A = (Ay;) and B = (By) are square matrices of respective order mxm and p x p with Ay of order
m; xm; and By of order p, X py; I, and 1,, are compatibly partitioned identity matrices.
Theorem 3.1. Let A, B,C, D, E, and F be compatibly partitioned matrices, then [10]
1. (AeB)(CeD) = (AC)+(BD).
2. AoB# BeA.

3. (CeB = BeC) where C = (c;;) and c;; is a scalar.

4. (AeB) = AB.
5. (A+D)o(B+E) = AeB + AcE + DeB + DeE.
6. (AeB)oF = Ao(BeF)

The next proposition presents some extensions to the local stable-unstable manifold theorem
and to the center manifold theorem.

Proposition 3.1. Let E be an open subset of R” containing the origin, let f € C'(E) and ¢, be
the flow of the nonlinear system x =f(x) = Ax + g(x). Suppose that f(0) =0 and that
A = Df(0) have k eigenvalues with negative real part and n—k eigenvalues with positive real
part, that is, the origin is an hyperbolic fixed point. Then for each matrix M € Ay, there
exists a k

-dimensional differentiable manifold Sy tangent to the stable subspace E]SVI of the linear system

X = MAx at 0 such that for all t > 0, (pM,t(SM)CSM and for all xo € Sp [8],

lim ¢, ,(x0) =0, 8)

t—o0
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where ¢, , is the flow of the nonlinear system x = MAx + g(x) and there exists an n—k dimen-

sional differentiable manifold W), tangent to the unstable subspace Ej; of ¥ = MAx at 0 such
that for all <0, ¢M,t(WM)CWM and for all xo€Wyy,

lim ¢y, (x0) = 0. ©)

An interesting property is that Proposition 4.1 is valid for each geC'(E) such that % = f(x)
= Ax + g(x) and

I3(x) Il

lxll,

— Qaslixll, = 0. (10)

In consequence, the set of matrices Ay generates the action of the group Ay on the set of the
hyperbolic nonlinear systems, formally on the set of the hyperbolic vector fields feC'(E),
¥ = f(x) = Ax +3(x) with geC'(E) and

AeQy ={PeR™" : P = U' TpU with Tp any upper triangular matrix} (11)

Satisfying the last condition, where U is a fixed unitary matrix, the action is generated by the
action of the group Ay on the set (. By that this first action preserves the dimension and a
nonlinear systems of the stable and unstable manifolds, that is, an hyperbolic nonlinear system

(3& =Ax + g(x)) is mapped in a hyperbolic nonlinear systems (x = MAx + g(x)) and
dimS = dimSy and dimW = dimWy,.
The proof of this Proposition 3.1 can be revised in Ref. [8].

Given a particular nonlinear system, the stable and unstable manifolds S and W are unique;
then for each matrix MeAy, there exists an unique pair of manifolds (Sy;, W) in such a way
that it is possible to define a pair of functions in the following form

O : AyxXMang — Mang

O(M,S) =S
(M,S) = Su 1)
O : Ay xManyw — Many
DM, W) =Wy

Where Mang is the set of stable manifolds and Many is the set of unstable manifold for
autonomous nonlinear systems.

Therefore, we can say that if A = Df(0) is an stable matrix A has all the n eigenvalues with
negative real part, then the origin of the nonlinear system x = MeAx + g(x) is asymptotically
stable; but if A = Df(0) is an unstable matrix A has n-k (with n > k) eigenvalues with positive
real part, then the origin of the nonlinear system x = MeAx + g(x) is unstable.
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As an extension of the local stable-unstable manifold theorem in terms of Tracy-Singh product
of matrices in Ay and the matrix A of the vector field f(x), we present the following proposi-
tion.

Proposition 3.2.

1. Let E be an open subset of R" containing the origin, let feC' (E) and let ¢, be the flow of the
nonlinear system X = f(x) = Ax + g(x). We suppose that f(0) = 0 and that A = Df(0) have a k
eigenvalues with negative real part and n—k eigenvalues with positive real part; thus, the origin
is a hyperbolic fixed point. Now, take a fixed continuously differentiable function

F: CYE) — CY(E) (13)
such that F(g) = ¢ where § : ECR™ — R™ is a fixed continuously differentiable function with

domain all C'(E); moreover, §€C'(E) with E an open subset of R" containing the origin such
that

Ig(x) I,

lxlly

—0as llxll, — 0. (14)

Then, for each matrix MeAy of mxm, there exists a mk— dimensional differentiable manifold
Si.a tangent to the stable subspace Ej,,, of the linear system ¥ = (MeA)x at 0 such that for all
>0, (pMoA,t(SMnA)CSMQA and for all xo€Su.4,

lim 4., (30) = 0, (15)

where ¢, ., , be the flow of the nonlinear system x = (MoA)x + ¢(x) and there exists an m(n—k)

dimensional differentiable manifold Wy, tangent to the unstable subspace Ejy, of
% = (MeA)x at 0 such that for all <0, (j)MaA’t(WMoA)CWMoA and for all xo€W 1.4,

lim 4, (x0) = 0. (16)

2. Also, there exists a function of the group Ay and the set of all the autonomous hyperbolic
nonlinear systems of dimension 1 (hyperbolic vector fields of dimension #) denoted by I',, to
the set I',, of all the autonomous hyperbolic nonlinear systems of dimension mn (hyperbolic
vector fields of dimension mn); this function (which is similar to an action of the group Ay on
the set T')) is defined as follows

S: AyxT, =T,

9 (M, Ax + g(x)) = (MeA)x + §(x) (17)

and the new nonlinear system is
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i= S(M, Ax + g(x))

(18)
%= (MeA)x + §(x))

which satisfies the following two axioms:

1. (gh)-z=ge(h-z)forall g,heAy and zel,;

2. For every zel',, there exists an unique Z€l',,, such thate-z =2 and h*z =h - z (e denotes
the identity element of Ay, that is, is the identity matrix I,, of mxm).

Where z is associated with Ax + g(x) (denoted by z=Ax + g(x)); h - z means (MjeA)x + §(x)
(denoted by & - z=(MjeA)x + g(x)); gh is associated with the usual product of matrices M,, M),
that is, gh=M;M, and e - z means (I,;»A)x + g(x), that is, (e - z=(IeA)x +g(x)) and ge(h - z)
means (Mgel,)(MyeA)x + g(x) (denoted by ge (h - z)=(Mgel,,) (MyeA)x 4 §(x)).

Proof.

1. Consider a matrix A with eigenvalues A; fori = 1,2, ...,n and the matrix M with eigenvalues
g for j=1,2,...,m. Then, the eigenvalues of the matrix M-A are the mn numbers A, and

taking account that y; > 0 for eachj = 1,2, ..., m. Therefore, the matrix MeA has mk eigenvalues

with negative real part and m(n—k) eigenvalues with positive real part. For this, the result is a
consequence of the stable-unstable manifold theorem.

2. The function 9 : Ay xTI',, — I, is well defined, since F : Cl(E) — ! (E) is a fixed function;
then given g(x), the vector field ¢(x) is unique; for a fixed matrix M,€Ay, then
Mje : R™" — R™*™ g a fixed function and their matrix Mj°A is unique.

Axiom (i): Since Ay is a multiplicative group if My, M €A, then M M, €EAy.

Then, by Theorem 3.1, we have that for all g,h€Ay and z€Tl,
(§h) - z=(MgMpeA)x + §(x) = (Mgel,)(MyeA)x + g (x)=g® (h - 2) (19)

Axiom (ii): For every zeTl,, there exists an unique Z€l',, such that e-z=(I,,cA)x + g(x) =2,
then by the Theorem 2.1

hez=(Mpel,)(IyeA)x + §(x) = (MyeA)x + §(x)=h - z (20)

From what it has been said above, we can note that if A = Df(0) is as stable matrix A4, it has all
the n eigenvalues with negative real part, then the origin of the nonlinear system
X = (MeA)x + §(x) is asymptotically stable; if A = Df(0) is an unstable matrix A, it has
n-k(n > k) eigenvalues with positive real part, then the origin of the nonlinear system
X = (MeA)x + g (x) is unstable.

Now the following Proposition 3.2 is an extension of the center manifold theorem, similar to
Proposition 3.1.
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Proposition 3.3. Let be feC’(E) where E is an open subset of R"

containing the origin and r21. Suppose that f(0) = 0 and that Df(0) have k eigenvalues with
negative real part, j eigenvalues with positive real part and | = n—k—j eigenvalues with zero real
part. Then,

1. For each matrix M€Ay, there exists a m— dimensional differentiable center manifold
W,(0) of class C" tangent to the center subspace Ej; of the linear system ¥ = MAx + g(x)
at 0 which is invariant under the flow ¢, , of the nonlinear system x = MAx + g(x).

2. If taken a fixed continuously differentiable function
F:C'(E)— C'(E) (21)
such that F(g) = ¢ where § : ECR™ — R™ is a fixed continuously differentiable function

with domain all C'(E); moreover, $€C'(E) with E an open subset of R" containing the
origin such that

Ig(x) I,
lxll,

—0as llxll, — 0. (22)

Then for each matrix MeAy of mxm, there exists a ml- dimensional differentiable center

manifold W¢, ,(0) tangent to the center subspace Ej,,, of the linear system % = (MoA)x at 0
which is invariant under the flow ¢, , , of the nonlinear system x = (MeA)x + g(x).

Proof.

The proof is similar to proof of Proposition 3.1 and we make use of the center manifold
theorem.

Also, there exists a similar function 9 to 9, which satisfies the axiom (i) and axiom (ii) of
Proposition 3.2. However, in this case, there does not exist similar functions to ® and ®. due to
that in general, a center manifold is not unique.

Notice that in this case, if the matrix A has | = n—k—j#0 eigenvlues with zero real part, then the origin
of the nonlinear system ¥ = MAx + ¢(x) and x = (MeA)x + g(x) are not asymptotically stable.

Propositions 3.1 and 3.2 generalize Proposition 3 in Ref. [6] and give new tools for preservation
of basic properties of dynamical systems and some of these properties are the stability and
instability.

4. Synchronization in nonlinear dynamical system
In this section, we present that it is possible to preserve synchronization even though the

dimension of the systems changes by the action of a class of transformation on the linear part
to a chaotic nonlinear system. If we consider the following two n-dimensional chaotic systems,
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X = Ax + g(x)
j = Ay +£(y) + u(t) )
Where A€R™" is a constant matrix. On the other hand,u€R" is the control input and
f,g:R" — R" are continuous nonlinear functions. Synchronization considered in this section
is through the master and the slave system is synchronized by designing an appropriate
nonlinear state-feedback control u(t) attached to slave system such that lim;_... x(f)-y(t) — 0,
where | - I is the Euclidean norm of a vector [8]. If we consider the error state vector
e = y—x€R",f(y)~f(x) = L(x,y) and an error dynamics equation is ¢ = Ae + L(x,y) + u(t). Tak-
ing the active control approach [5], to eliminate the nonlinear part of the error dynamics and
choosing u(t) = Bu(t)-L(x,y), where B is a constant gain vector which is selected such that
(A, B) be controllable, we obtain:

¢ = Ae + Bo(t) (24)

We can see that the original synchronization problem is equivalent to stabilize the zero-input
solution of the slave system through a suitable choice of the state-feedback control [8]. If the
pair (A, B) is controllable, then one such suitable choice for state feedback is a linear-quadratic
regulator [5], which minimizes the quadratic cost function in the next expression,

J(un) = { (e(£)TQe(t) + o(H)Ro(t))dt (25)

Where Q and R are positive semi-definite and positive definite weighting matrices, respec-

tively. The state-feedback law is given by v = -Ke with K = R'B'S and S the solution to the
Riccati equation

ATS +SA-SBR'BT +Q =0 (26)

This state-feedback law makes the error equation to be ¢ = (A-BK)e, with (A-BK) a Hurwitz
matrix." The linear-quadratic regulator is a technique to obtain feedback gains [5]. It is an
interesting property of (LQR) which is robustness. On the other hand, if we consider TER™*™
be a matrix with strictly positive eigenvalues, supposing that the following two nm-dimen-
sional systems are chaotic:

27)

for some f,§ : R™ — R™ continuous nonlinear functions and #€R™ is the control input.
Then, for the Proposition 4.1 and the former procedure, we have that i(t) = O(t)-L(x,y)

stabilizes the zero solution of the error dynamics system, where 0(t) = —(BKeT)e, that is, the
resultant system

'A Hurwitz matrix is a matrix for which all its eigenvalues are such that their real part is strictly less than zero.
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¢ = (ToA)e + O (t)é = (ToA-TeBK)e (28)
is asymptotically stable. Then, by using Lemma 2.1 and K = -R"'B'S, we obtain that:

6= (To(A + BK))e

6= (TO(A_BRleTS))e (29)

Now, the original control u(t) = BKe-L(x,y) is preserved in its linear part by the Tracy-Singh

product Te(-) and the new control is given by i (t) = —(TeBK)e-L(x,y). Therefore, we can
interpreted the last procedure as one in which the controller u(t) that achieves the synchroni-
zation in the two systems is preserved by the transformation Te(-) so that i(t) achieves the
synchronization in the two resultant systems after the transformation. For that, a similar
procedure is possible if we consider the transformation (-)T.

In general, under the transformation (A,g) — (MA,g) or (A,g) — (MeA,g) and under the
hypothesis of existence of a constant state feedback U = —Kx, which achieves synchronization
of the original chaotic systems and also that the transformed system is chaotic, then synchro-
nization can be preserved [8]. The major contribution does not refer a better synchronization
methodology; it deals that synchronization is preserved when a chaotic system changes from a
lower dimension to a higher dimension.

5. Synchronization of the classical Lii system

In this section, we present the synchronization of a chaotic system. First, we propose a master
and slave system. Then, from these systems, we will apply a linear transformation that allows
us to preserve the synchronization. We will use the well-known Lii and Chen [11] model to
show the possibility to preserve synchronization, described by

J&l = a(xz—xl)
9&2 = CX2—X1X3 (30)
X3 = x1x2-bx3

which has a chaotic attractor when the parameters are 2 = 35,b = 3 and ¢ = 14.5. In order to
observe synchronization behavior, we have a modified Lii attractor arranged as a master-slave
configuration. The master and the slave systems are almost identical and the only difference is
that the slave system includes an extra term which is used for the purpose of synchronization
with the master system. The master system is defined by the following equations,

)&] = 35(3(2—2(71)
3&2 = 28.X2—X1X3 (31)
)&3 = X1XZ—3X3

and the slave system is a copy of the master system with a control function u(t) to be
determined in order to synchronize the two systems.
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y:1 =35(y,~y,) +u(t)
Yo = 28y,=y,y5 + ua(t) (32)

Y3 = Y1¥,73Y5 + ua(t)
Now, we consider the errors e; = x1-y;,e2 = x2—Y, and e3 = x3Y,,; then, the error dynamics
can be written as:

6] = 35(62—61) + U (t)
€2 = 28er—y, Y5 + x1x3 + uz(t) (33)
€3 = Y Y, x1X2-3e3 + us(t)

If we introduce the matrices

35 35 0 0 1 (£)
A= 0 145 0 |,L(x,y)=| -y +x1x3 |,u= | us(t) |. (34)
0 0 -3 V1Yo~ X1X2 uz(f)

and selecting the matrix B such that (A, B) is controllable: B = I, the LQR controller is obtained
by using weighting matrices Q = I and R = B'B = I. Then, state-feedback matrix is given by

00143 00101 0
K= {00101 290587 0 (35)
0 0 01623

From the formerly said, we now present simulations made for the synchronized system of Lii
and for the system also synchronized, but after the transformation of its linear part. All
simulations here presented were made in Matlab software. In Figure 1, we show the trajectories
of the master system of Lii. Each line represents one trajectory of the system along the time,
taking an initial condition of (1,1,1).

For the case of Figure 3, we show the trajectories of the slave system of Lii. As it was in the first
case, each line represents one trajectory of the system along the time, taking a initial condition
as (3,3,3). Figures 2 and 4 are phase space mappings of each system while maintaining the
same initial condition.

On the other hand, in Figure 5, we can see the error magnitude between master and slave
systems. Phase space of synchronization of the master and slave systems in Figure 6 is
presented. Now, we shall present a system showing modifications performed on the Lii
attractor. The modified Lii master and slave systems linear and nonlinear parts may be defined
as follows:

X = (T°A)x + [0 —X1X3 x1x20 —X4X6 X4Xs5 }T

. 36
y=(TAy+[0 viys v1%0 WY Yuys]'+u (30)
Considering the error vector e = y-x, then the error dynamics can be written as:
e = (TeA)e+L(x,y) +u 37)

with u = -L(x,y) + v and v = —(T<BK)e and
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Figure 1. Master system of Lii.
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Figure 2. Master system of Lii.
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Figure 3. Slave system of Lii.
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Figure 4. Slave system of Lii.
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Figure 5. Magnitude of the error between the master and the slave systems.
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Figure 6. Synchronization of master and slave system of Lii.
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35 35 0 L1
— — — T
A=| 0 145 0 |.T= ( ),B = [111111]", (38)

0 0 -3 0 1
Lx,y) = [0 -yys +x1x3 yyYpx1x2 0 —YyYg + XaXe  YuY5~xaxs5]!

Now, the LQR controller is obtained by using weighting matrices, B=1Q =Iand R =B'B=1.
So the vector L(x,y) takes these values because T is an upper triangular matrix and the value
one on the diagonal is repeated.

35 35 35 35 0 0
0 145 0 145 0 0
0 0 =35 35 0 0
TA=10 0 0 145 0 0 (39)
0O 0 0 0 -3 -3
0O 0 0 0 0 -3
0.0143  0.0101 0 -0.0071  0.0050 0
0.0101 23.3051 0 -0.0151 11.5941 0
K 0 0 0.1614 0 0 -0.0757 “0)

-0.0071 -0.0151 0 0.0214  0.0050 0
0.0050 11.5941 0 0.0050 34.8411 0
0 0 -0.0757 0 0 0.2324

x1,x2 %3, %4 x5 %6

Figure 7. Transformation of the master system of Lii.
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-40
x2 -40 X1

Figure 8. Phase space of the transformation of the master system of Lii.

¥1.y2,y3,y4.y5 y6

Figure 9. Transformation of the slave system of Lii.
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y2 20 -20

Figure 10. Phase space of the transformation of the slave system of Lii.

25 T T r T

Figure 11. Magnitude of the error between the transformation of master and slave systems.



74  Dynamical Systems - Analytical and Computational Techniques

50 -

40-

30 -

x3y3

20 5

104

w2y2

Xyl

Figure 12. Synchronization of the transformation of the master and slave systems of Lii.

After the transformation in its linear part of Lii attractor, we also have several simulations
allowing us to analyze the dynamics of the transformed system. In Figure 7, we present the
trajectories of the transformation of the master system of Lii. Each line represents one trajec-
tory of the system along with the time taking an initial condition of (0.5,0.5,0.5,0.5,0.5,0.5).
For the case of Figure 9, we show the trajectories of the transformation of the slave system of
Li. Each line represents one trajectory of the system also, along the time, taking an initial
condition of (3,3,3,3,3,3). Figures 8 and 10 are the phase space mappings of each transformed
system while maintaining the same initial condition. By last, in Figure 11, we can see the error
magnitude of the transformation of synchronized system. A phase space mapping of the
transformation of synchronized system is presented in Figure 12.

6. Conclusion

We have studied the preservation of stability of a chaotic dynamic system, from an extension
of the stable-unstable manifold theorem and an extension of the center manifold theorem
based on the preservation of the linear part in nonlinear dynamical systems. However, we
can check that given a chaotic system, its transformed version is also chaotic. A scheme
consisting of a master-slave system for which a controller gain is obtained using a linear-
quadratic regulator has been presented and synchronization is achieved and preserved even
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after the master-slave controller is transformed, obtaining as a consequence that the chaotic
system changes to an higher dimension. It is important to note the transformation of the linear
part of the chaotic system from Tracy-Singh product in which it was used to modify a Lii
system, showing the effectiveness of the proposed method. The results can be extended to
other techniques for feedback design, for example, adaptive control, sliding mode regulator
and etcetera.
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Abstract

This chapter exposes the important connection between ratio control and the state
control reflecting equality constraint for linear discrete-time systems, which allows
significant reduction in computational complexity and efforts. Based on an enhanced
bounded real lemma form, to outperform known approaches, the existence of the state
feedback for such defined singular task is proven, and the design procedure based on
the linear matrix inequalities is provided. The proposed principle, guaranteeing feasibil-
ity of the set of inequalities, improves steady-state accuracy of the ratio control and
essentially reduces the design effort. The approach is illustrated on simulation examples,
where the validity of the proposed method is demonstrated.

Keywords: discrete-time systems, ratio control, state feedback, equality constraint, sin-
gular systems, linear matrix inequalities

1. Introduction

The problem of the ratio feedback control is one of the specific topics in the theory of control
synthesis. It is well practically motivated by applied realizations but not favorable developed
in a state control technique or in combination with the state estimation theory. However, a
considerable number of problems in the ratio control design have to deal with systems
subjected to constraint conditions, which are other than linear, or directly formulated as
singular constrained tasks. In the typical case [1, 2] where the system state reflects certain
physical entities, constraints usually prescribe the system state, the region of technological
conditions. If the ratio control is not formulated as a task with the equality constraints, the
application requires further procedures of controlling the evolution of the set-valued ratio.
Notably, a special form of the problems can be defined while the system state variables satisfy
constraints and interpreted as descriptor systems [3-6]; but, the system with state equality

I m EC H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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constraints generally does not satisfy the conditions under which the results of descriptor
systems can be used. Moreover, if the design task is interpreted as a singular problem, con-
straint associated methods have to be developed to design the controller.

In principle, it is possible to design the controller that stabilizes a system and simultaneously
forces its closed-loop properties to satisfy given constraints [7, 8]. Following the idea of linear
quadratic (LQ) control application, these approaches heavily rely on set-valued calculus as
well as on min-max theory [9, 10], which are not simple and lead to rather cumbersome
technical and numerical procedures. A more simple technique, using equality constraints
formulation for discrete-time multiinput/multioutput (MIMO) systems, is introduced in Refs.
[11, 12]. Based on the eigenstructure assignment principle, a slight modification of equality
constraint technique is presented in Ref. [13].

Many tasks that arise in state-feedback control formulation can be reduced to standard convex
problems that involve matrix inequalities. Generally, optimal solutions of such problems can
be computed by using the interior point method [14], which converges in polynomial time
with respect to the problem size. A review of the progress made in this field can be found in
Refs. [15-17] and the references therein. In the given sense, the stability conditions are
expressed in terms of linear matrix inequalities (LMI), which have a notable practical interest
due to the existence of numerical LMI solvers [18, 19].

The chapter devotes the design conditions to obtain a closed-loop system in which minimally
two state variables are rebind by the prescribed ratio. The generalized ratio control principle is
reformulated as the full-state feedback control with one equality constraint. Solving this
problem, the technique for an enhanced BRL representation [20, 21] is exploited, to circumvent
potentially ill-conditioned singular task concerning the discrete-time systems control design
with state equality constraints [22]. Due to application of the enhanced BRL, which decouple
the Lyapunov matrix and the system matrices, the design task stays well-conditioned. These
conditions impose such control that assures asymptotic stability for time-invariant discrete
control under defined equality constraints. The presented way, based on projecting the target
state variables into a subset of the system state space, adapts the idea of performing the LQ
control principle in the fault tolerant control and the constraint control of discrete-time sto-
chastic systems [23, 24].

The outline of this chapter is as follows. Continuing the introduction outlines in Section 1, the
problem formulation is principally presented in Section 2. Section 3 is dedicated to the math-
ematical backgrounds supporting the problem solution and the exploited discrete-time LMI
modifications are given in Section 4. These results are used in Section 5 to examine the
linearization problems in bilinear matrix inequalities, so that in Section 5, these results can be
given with convex formulation of control design condition, guaranteeing a feasible solution of
the generally singular design task. Subsequently, numerical examples to illustrate basic prop-
erties of the proposed method are presented in Section 6, and Section 7 is finally devoted to a
brief concluding remarks.

Throughout the chapter, the following notations are used: x” and X" denote the transpose of
the vector x and matrix X, respectively, for a square matrix X < 0 that X is a symmetric
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negative definite matrix, the symbol I,, represents the nth order unit matrix, Y ©' denotes the
Moore-Penrose pseudoinverse of a nonsquare Y, || - || represents the Euclidean norm for vectors
and the spectral norm for matrices, R denotes the set of real numbers and R" * " the set of all
n x r real matrices.

2. Problem formulation

Through this chapter, the task is concerned with design of the full-state feedback control to
discrete-time linear dynamic systems in such a way that the closed-loop system state variables
are constrained in the prescribed ratio. The systems are defined by the set of state equations

q(i+1) = Fq(i) + Gu(i), 1)
y(i) = Cq(i), @)

where q(i) € R" is the vector of the state variables, u(i) € R" is the vector of the input variables,
y(i) € R™ is the vector of the output variables, and nominal system matrices FER"*", GER" ",
and C € R™ * " are real matrices, and i € Z,.

The discrete transfer function matrix of dimension m x r, associated with the system Egs. (1)
and (2) is defined as

(z

z

N3

H(z) = C(zI - F)'G = 3)

=

~

where I, € R" * " is the identity matrix, #(z) and #(z) stand for the Z transform of m dimen-
sional output vector and r dimensional input vector, respectively, and a complex number z is
the transform variable of the Z transform [25].

In practice, the ratio control maintains the relationship between two state variables [26, 27] and
is defined for all i € Z as
qh (1 + 1)

m:ah?%(ﬂrl)*ahﬂlk(“ﬂ):0~ “4)

Assuming the parameter vector ¢, the task can be expressed by using the system state vector
qi+1)as

ergi+1)=0, 5

where
el =[0; -« 1, - - - 0] 6)
g+ = [q(i+1) - q(i+1) - gl+1) - q(+1)]. (7

It is evident that the generalized ratio control can be defined by a composed structure of e, as
well as by a structured matrix E [28].
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The task formulated above means the design problem that can be generally defined as the
stable closed-loop system synthesis using the linear full-state feedback controller of the form

u(i) = —Kq(i), ®)

where K € R"* " is the controller feedback gain matrix, and the design constraint is considered
in the general matrix equality form

Eq(i+1) =0, 9)

with E € RP ™", rank E = p <r. In general, the matrix E reflects prescribed fixed ratio of two or
more state variables. The equality Eq. (9) evidently implies AEg(i + 1) =0, where A € R” “? isan
arbitrary matrix.

It is considered in the following the discrete-time system is controllable and observable that is,
rank(zI — F,G) =n Vze( and rank(zl —F, CT) =n VzeC(, respectively [29], and that all
state variables are measurable.

3. Basic preliminaries

Proposition 1. (Matrix pseudoinverse) Let ® is a matrix variable and A, B, and II are known
nonsquare matrices of appropriate dimensions such that

AGB =1I. (10)
Then all solution to ® means that
® = A®'AB®' + @° — A®'A®°BB®", (11)
where
A®' = AT(AAT)™, B = (B"B) 'B’, (12)

while A® ! is the left Moore-Penrose pseudoinverse of A, B® ' is the right Moore-Penrose pseudoinverse
of B and ©° is an arbitrary matrix of appropriate dimension.

Proof. (see, e.g., Ref. [15])

Proposition 2. Let E € R" " is a real square matrix with nonrepeated eigenvalues, satisfying the
equality constraint

eT

[

—0, (13)

then one from its eigenvalues is zero, and the (normalized) vector e” is the left raw eigenvector of &
associated with the zero eigenvalue.
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Proof. If 2 € R" ™ " is a real square matrix satisfying the above given eigenvalues limitation,
then the eigenvalue decomposition of & takes the following form

E=NIM' (14)
N=[m - mn], M=[m - m,], MIN=1I, E=diag[z; - 2z, (15)
where , is the right eigenvector and m] is the left eigenvector associated with the eigenvalue z;

of , and {z, [ =1, 2,...n} is the set of the eigenvalues of Z. Then Eq. (13) can be rewritten as
follows:

0=el[n - my - mn,ldiaglzi -~ z - z,]M. (16)

If e’ = m], then orthogonal property Eq. (15) implies
0=[0; - 1, - 0,]diag[z; - 2z - zn]MT (17)

and it is evident that Eq. (17) can be satisfied only if z;, = 0. This concludes the proof. m

Proposition 3. (Quadratic performance) Given a stable system of the structure Eqs. (1) and (2), then it
yields

i(yT(l)y(l) —y2u’ (Du(l) >0, (18)
1=0

where y.. € R is the H.. norm of the transfer function matrix of the system Eq. (3).
Proof. Since Eq. (3) implies

y(z) = H(z)u(z), (19)
then, evidently,

1y @< [[H(2)]|2[[u(z)]], (20)

where || H(z) || is H, norm of the discrete transfer function matrix H(z).
Since the H.. norm property states
1

T IH(2)ll. < 1H(2)ll2 < VP H(2) .., Ay

using the notation || H(z) ||.. = ¥, then Eq. (21) can be naturally rewritten as

(P O 163]

i Sy )l

< yi IH()l,<VF 22)

Thus, based on the Parseval’s theorem, Eq. (22) gives
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) >y @y()
1< e )
) Yoy | D_uT (i)u(i)
i=0

and using squares of the elements, the inequality Eq. (23) subsequently results in

>y (i)y() = y2 > _u"(u(i) > 0. (24)

i=0 i=0
Thus, Eq. (24) implies Eq. (18). This concludes the proof. m

If it is not in contradiction with other design constraints, Eq. (18) can be used as the extension
to a Lyapunov function candidate for linear discrete-time systems, since it is positive.

4. Quadratic performances

The above presented assumptions are imposed to obtain LMI structures exploiting H.., norm,
known as the bounded real lemma LMIs. To simplify proofs of theorems in following, proof
sketches of the BRL are presented, since more versions of BRL can be constructed.

Proposition 4. (Bounded real lemma) The autonomous system Eqs. (1) and (2) is stable with the
quadratic performance y.., if there exist a symmetric positive definite matrix P € R" ™" and a positive
scalar y.. € R such that

P=P'>0, y.>0, (25)
—-P * % %
F'p —-P ¢
G'P 0 -1 « |0 (26)

0 C 0 VoI

where I, € R"™ " and I, € R™ ™ ™ are identity matrices, respectively.
Hereafter,  denotes the symmetric item in a symmetric matrix.

Proof. (compare, e.g., Refs. [16] and [23]) Defining the Lyapunov function candidate as follows:

i—

1
o(q() = q" (OPq(0) +y2' Y (y" Dy() — y2u" Du(D) >0, 27)

=0

then Eq. (18) implies that with the H., norm y.. of the transform function matrix Eq. (3), the
inequality Eq. (27) is positive. The forward difference of Eq. (27) along a solution of the
autonomous system Eq. (1) can be written as
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Ao(q(i)) = o(q(i + 1)) - o(q() 8)
=q'(i+)Pq(i+1) — 4" ()Pq(i) + 'y  (y(i) — yu' (u(i) <0
and, using the description of the state system Egs. (1) and (2), the inequality Eq. (28) becomes

Av(q(i)) = q" (i) (y.'C'C — P+ F'PF)q(i) + u" (i)G' PFq(i)

+q" (i))F"PGu(i) + u" (i) (G PG — y_I,)u(i) < 0. 29)
Thus, introducing the notation
9:() =[q"() w"()], (30)
it is obtained
Av(q, (1)) = 4; ()Peq, (i) <0, (31)
where
T 1T T
Pe= [F . +G7/FP1€ oF GTIfGP—GymI,} 0 (32)

Since, using the Schur complement property with respect to the matrix element y-'C’C,
Eq. (32) can be rewritten as

-P 0 cr F'p
P.=|0 —yI 0 + | G'P

c 0 Vol 0

P'[PF PG 0]<0, (33)

then, applying the dual Schur complement property, Eq. (33) implies Eq. (26). This concludes
the proof. o

Direct application of the second Lyapunov method [30, 31] and BRL in the structure given by
Egs. (25) and (26) for affine uncertain systems as well as in constrained control design is in
general ill-conditioned owing to singular design conditions [13]. To circumvent this problem,
an enhanced LMI representation of BRL is proposed, where design condition proof is based on
another form of LMIs.

Proposition 5. (Enhanced LMI representation of BRL) The autonomous system Eqs. (1) and (2) is
stable with the quadratic performance y.., if there exist a symmetric positive definite matrix P € R" ™",
a regular square matrix Q € R" ™", and a positive scalar y.. € R such that

P=P' >0, y_ >0, (34)
P-Q-Q7 =« * %
_ F'Q —P * *
Y= Q" s . <0, (35)
0 C 0 —VNIm

where I, € R"* "and I, € R™ ™ ™ are identity matrices.
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Proof. Since, Eq. (1) can be rewritten as
Fq(i) + Gu(i) —q(i+1) =0, (36)
with an arbitrary square matrix Q € R" ™", it yields
q"(i+ 1)Q(Fq(i) + Gu(i) — q(i+ 1)) = 0. (37)

Now, not substituting Eq. (1) into Eq. (28), but adding Eq. (37) and its transposition to Eq. (28),
it can be obtained that

Av(q(i)) = " (i + 1D)Pq(i + 1) — g7 (i)Pq(i) + vty  (1)y (i) — y.u” (Du(i)
+ (Fq(i) + Gu(i) — q(i+1)'Q"q(i + 1) (38)
+ g7 (i +1)Q(Fq(i) + Gu(i) — q(i+1)) < 0.

Thus, considering Eq. (2), then Eq. (38) can be rewritten as

q°" ()P°g°(i) < O, (39)
where
9°' ()= [4"() q"(+1) u'()] (40)
and
-P+y'C'C F'QT 0
P° = QF P-Q-Q" QG | <0 (41)
0 G'Q" —Velr
Since Eq. (41) can be written as
—P F'Q" 0 cT
P°=|QF P-Q-Q" QG |+yz'| o0 |[C 0 0]<0O, (42)
0 GTQT —y I, 0

then, using the dual Schur complement property, Eq. (43) can be transformed in the form

—y.I. C 0 0
cr -p FTQ" 0
Q T <0. (43)
0 QF P-Q-Q" QG
0 0 G'Q" —y I,

To obtain a LMI structure visually comparable with Eq. (26), the following block permutation
matrix is defined
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0 0 I, 0
. 0 I, 0 0
T, = 0 0 0 I (44)
I, 0 0 0

Then, premultiplying the left side of Eq. (43) by T,° and postmultiplying the right side of
Eq. (43) by the transposition of T,° lead to the inequality in Eq. (35). This concludes the proof.o

It is evident that Lyapunov matrix P is separated from the matrix parameters of the system F,
G, and C, i.e., there are no terms containing the product of P and any of them. By introducing
the slack variable matrix Q, the product forms are relaxed to new products QF and QG, where
Q needs not be symmetric and positive definite. This enables a robust BRL, which can be
obtained to deal with linear systems with parametric uncertainties, as well as with singular
system matrices.

Considering a symmetric positive definite matrix Q € R" *", the following symmetric enhanced
LMI representation of BRL is evidently obtained.

Corollary 1. (Enhanced symmetric LMI representation of BRL) The autonomous system Eqgs. (1) and
(2) is stable with the quadratic performance y.., if there exist symmetric positive definite matrices
P, Q € R" ™" and a positive scalar y.. € R such that

P=P'>0, Q=Q">0, y_ >0, (45)
P-20Q = * *
FT -P = *

2 <0, (46)

G'Q o0 —y.I
0 C 0 VoI

where I, e R"™ ", I, € R™ ™™ are identity matrices.

Note, Corollary 1 provides the identical condition of existence to Proposition 4, if the equality
P=Qis set.

5. Control law parameter design

The state-feedback control problem is finding, for an optimized (or prescribed) scalary > 0, the
state-feedback gain K such that the control law guarantees an upper bound of y., of the closed-
loop transfer function, while the closed-loop is stable. Note, all the above presented BRL
structures applied in the control law synthesis lead to bilinear matrix inequalities and have to
be linearized.

Theorem 1. System Eqs. (1) and (2) under control Eq. (3) is stable with quadratic performance y.., if
there exist a positive definite symmetric matrix R € R" ™", a matrix Y € R" ™ ", and a positive scalar
Y € R such that
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R=R">0, y_ >0, (47)
-R
RFT —Y'GT —*R : : 0 48
G’ 0o —y.I * <U (48)
0 CR 0 Yol

When these inequalities are satisfied, the control law gain matrix is given as

K=YR (49)

Proof. Since P is positive definite, the transform matrix T.. can be defined as follows:

T.=diaglR R I, I,], R=P" (50)

Then, premultiplying the left side of Eq. (35) and postmultiplying the right side of Eq. (35) by

T.. gives
—R FR G 0
RF" -R 0  RC'
GT 0 —y I, 0 <0. (51)
0 CR 0 —y.In
Inserting F < F,. = (F — GK) into Eq. (51) gives
-R (F-GK)R G 0
R(F - GK)' -R 0 RCT
(=K . o N | <o (52)
0 CR 0 _lem
and with
Y =KR (53)
Eq. (53) implies Eq. (48). This concludes the proof. m

Theorem 2. System Eqs. (1) and (2) under control Eq. (3) is stable with quadratic performance y.., if
there exist positive definite symmetric matrices S, O € R" ™", a matrix Y € R"™ ", and a positive scalar
Y € R such that

§=8">0, 0=0">0, y.>0, (54)
O -2S§ * * *
SFT —Y'G" -0 =« *
G’ 0 —y.I ast <0 (55)
0 cS 0y,

When these inequalities are satisfied, the control law gain matrix is given as
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K=YS" (56)

Proof. Considering that Q is positive definite, the transform matrix T;, can be defined as
follows:
T: =diag[S S I, I,], S=Q" (57)

Therefore, premultiplying the left side of Eq. (46) and postmultiplying the right side of Eq. (46)
by the matrix T, gives

SPS—-2S FS G 0
SF'  -SPS 0 sc’
GT 0 I, 0 <0. (58)
0 cs 0 —y.In
Substituting F < F. = (F — GK) into Eq. (58) gives
spPS-28 (F-GK)S G 0
S(F-GK)"  —SPS 0 sc’
( T ) <0. (59)
G 0 .1 0
0 s 0 —y.I,
and with
Y =KQ, O =SPS, (60)
Eq. (59) implies Eq. (55). This concludes the proof. o

6. Ratio control design

Using the control law Eq. (3), the closed-loop system equations take the form
q(i+1) = (F - GK)q(i), (61)
y(i) = Cq(d)- (62)

Prescribed by a matrix E€ R” * ", rank E=p <r, itis considered the design constraint Eq. (9) for
all nonzero natural numbers i. From Proposition 2, it is clear that such kind of design is a
singular task, where Eq. (9) gives

Eq(i+1) =E(F - GK)q(i) =0, (63)

which evidently implies

E(F — GK) = 0. (64)
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Evidently, the equality

EF = EGK (65)
can be satisfied, as well as the closed-loop system matrix F. = F — GK has to stable (all its
eigenvalues are from the unit circle in the complex plane Z).

Lemma 1.The equivalent state-space description of the system Eqgs. (1) and (2) under control Eq. (3),
in which closed-loop state variables satisfying the condition Eq. (9) is

q(i+1) = (F — GK)q(i), (66)
y(i) = Cq(i), (67)

where
K=J+LK, J=(EG®EF, L=1I, - (EG)" (EG(EG)T) e (68)

while L € R" ™" is the projection matrix (the orthogonal projector of EG onto the null space N'gg [23))
and K° € R" ™ " is the ratio control gain matrix.

Proof. Premultiplying the left side of Eq. (65) by the identity matrix, it yields

EG(EG)” (EG(EG)T) 'EF — EGK, (69)

which implies the particular solution

K = (EG)®'EF, (70)
where

(EG)®" = (EG)T(EG(EG)T)_l (71)

is the left Moore-Penrose pseudoinverse of EG.

Using the equality Eq. (65), then Eq. (69) can be also written as
T T\ !
EG(EG) (EG(EG) ) EGK = EGK, (72)
which implies
-1
EG (Ir — (EG)" (EG(EG)T) EG)K =0, (73)

EG (I, - (EG)elEG>K =0, (74)
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respectively, where I, € R” * ¥ is the identity matrix. It is evident that Eq. (74) can be satisfied
only if

I, — (EG)®'EG = 0. (75)

Thus, Eq. (11) implies all solutions of K as follows

K = (EG)®'EF + (1, - (EG)@EG)KO, (76)

where K° is an arbitrary matrix with appropriate dimension, and evidently Eq. (76) gives
Eq. (68). This concludes the proof. O

Considering the model involving the given ratio constraint on the closed-loop system state
variables Egs. (66)—(68), the design conditions are presented in the following theorems.

Theorem 3. System Eqs. (1) and (2) under the control (3), and satisfying the constraint Eq. (4) is
stable with the quadratic performance y.., if there exist positive definite matrices S, O € R" ™", a matrix
Y°e R"™", and a positive scalar y.. € R such that

§=8">0, 0=0">0, y_>0, (77)
O-2§ * * *
SF-GN)'—=YTL'TGT -0 « *
T <0. (78)
G 0o —y. I *
0 CS 0 —V.X,Im

When these inequalities are satisfied, the control law gain matrices are given as

K°=Y°S"', K=J+LK° (79)

where J, L are defined in Eq. (68).
Proof. Substituting Eq. (68) into Eq. (59) gives

0-25§ (F-GL-GLK®S G 0
S(F - GJ — GLK®)" -0 o s’
( J T ) <0. (80)
G 0 Vo Ir 0
0 CS 0 VoI
Using the notation
Y°=K°S (81)
Eq. (80) implies Eq. (78). This concludes the proof. o

The ratio control does not exclude a forced regime given by the control law
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u(i) = —Kq(i) + Ww(i), (82)

where w(i) € R" is desired output signal vector and W € R * ™ is the signal gain matrix. Using
the static decoupling principle, the conditions to design the signal gain matrix W can be
proven.

Lemma 2. If the system Eqs. (1) and (2) is square, which is stabilizable by the control policy Eq. (82)
and Ref. [32]

F G
rank[c 0} =n+m, (83)
then the matrix W takes the form
1Nl
W= (C(I” — (F-GK))™ G) , (84)

where I, € R" ™" is the identity matrix.

Proof. In a steady state, the system equations Egs. (1) and (2), and the control law Eq. (82) imply
g, = (F - GK)q, + GWw,, (85)

where ¢q,, w, are the steady-state values of the vectors g(i), w(i), respectively. Since from
Eq. (85), it can be derived that

g, = (I, — (F— GK)) ' GWu, (86)

and
y, = C(I, — (F — GK)) ' GWuw,, (87)
considering y, = w,, Eq. (87) implies Eq. (84). This concludes the proof. o

Theorem 4. If the closed-loop system state variables satisfy the state constraint Eq. (63), then the
common state variable vector q,(i) = Eq(i), q4(i) € R* attains the steady-state value

9, = EGWw,. (88)
Proof. Using the control policy Eq. (82), then
Eq(i+1) = E(F — GK)q(i) + EGWw(i). (89)
Since K satisfies Eq. (65), then Eq. (89) implies
Eq(i+ 1) = EGWuw(i) (90)

and it is evident that the tied state variable g,(i) of the closed-loop system in a steady state is
proportional to the steady state of the desired signal w, and takes the value Eq. (88). This
concludes the proof. o
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7. Illustrative examples

To demonstrate properties of proposed approach, the classical example for a helicopter control
[33] is taken, where the discrete-time state-space representation Egs. (1) and (2) for the sam-
pling period At = 0.05s consists of the following parameters

09982 0.0013  0.0004 —0.0229 0.0221  0.0086
p_ |0.0023 09507 -0.0048 -01962| . _ | 01733 —0.3705
~ 100049 00176 09670 0.0679 |° [ -02697 02173 |’
0.0001 0.0004 0.0492  1.0017 —0.0068  0.0055
0100
C‘L 00 0]' O1)

The state constraint, defining the ratio control of two state system variables, is specified as

t
%) 15 Lp—[-15 0 0 1] (92)
0, (t)
and subsequently it yields
o [—24.1737 ] 00332 —0.1793
(EG) [ 4428 L7 | 01793 0.9668]" 93)
J_[361914 00372 11755 250447 (o4)
= | 67113 00069 —02179 —4.6443 "

Solving Egs. (77) and (78) using self-dual-minimization (SeDuMi) package for Matlab [19], the
feedback gain matrix design problem in the constrained control is feasible with the results

29027  0.2117  0.1103 —1.7595
02117 1.3174 -0.1751 —-0.1245

O=1 01103 —01751 04162  0.0060 |"
~1.7595 —0.1245 0.0060  3.2464
24910 01375 0.0792 —1.4957
g_ | 01875 10779 —0.0910 —0.0030 (95)
~ | 00792 —0.0910 03735 —0.0348 |
—~1.4957 —0.0030 —0.0348  3.0926
o [-22113 02435 —0.0819  1.4281 B
Y= 119M5 -13129 04416 —7.7011| V- 85565 (96)

Inserting Y° and S into Eq. (79), the gain matrix K°is computed as
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Ke — —0.8887  0.3441  0.0562  0.0329 ©7)
| 47926 -1.8555 —0.3028 —0.1775
and Eq. (79) implies the full-state feedback gain matrix values
K— 35.3027  0.3813 -1.1191 -25.0117 98)
-~ [11.5040 —1.8486 —0.5208 —4.8217 ]
It can be easily verified that the closed-loop system matrix takes the format
0.1179 0.0088  0.0296  0.5722
F.—F—GK - —1.8528 0.1997 -0.0038  2.3515 (99)

7.0258 05223 0.7783 —5.6297 |’
0.1768 0.0132  0.0444  0.8583

while the ratio control law rises up the stable closed-loop system with the closed-loop system
matrix eigenvalues spectrum

p(F.) = {09527, 0.7566, 0.0000, 0.2449}. (100)

Note that one from the resulting eigenvalue of F, is zero (rank(E) = 1)), because Proposition 2
prescribes this constrained design task as a singular problem. Using the connection between
the eigenvector matrix N and M as given by Eq. (17), it is possible to show that this instance is
documented also by the structure of M, while

—0.3109 —-0.1105 —0.0800 —0.0184
—0.6937 —-0.3384 —-0.4690 —0.7382

0.4522 09197 0.8793  0.6738
—0.4664 —-0.1657 —-0.0218 -0.0276

k]

(101)
~34197 —03938 —05157  0.2213
102685 13777 14844 —7.4555
~15.2705  0.0000  0.0000 10.1803 |’
82076 —1.6162 —0.1958 —3.2577

where the structure of the third row of M correspondents to the structure of the constraint
vector E, while ay = m] (1)/ml (4) = —1.5.

To illustrate the closed-loop system property in the forced mode, the signal gain matrix W is
computed by using Eq. (84) as follows

1.4575 35.9137
W=1_17651 11.6521 | (102)
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Therefore, according to Theorem 4, the constraint given on the states of the system under study
is satisfied with zero offset in the autonomous regime and with offset value equal 44, in the
forced mode, i.e.,

q,=0, 4, = EGWw, = 3.0001, (103)
while

wli) = [;] for all i, (104)

The simulation results of the closed-loop system response in the autonomous and forced mode
are presented, where Figure 1 is concerned with the system state variables response in the
autonomous regime and Figure 2 with the system state variables response in the forced mode.
It is evident that the condition Eq. (9) is satisfied at all time instant, except initial time instant in
the above given way (see the time response of the additive of variable, which is included as
74(i) in the figures).

For comparison, an example is given for default design of state feedback gain matrix using
BRL structure of LMIs. Solving Eqs. (54) and (55), the task is feasible with the Lyapunov matrix
variables

a, (i)
g0
08H G4l |
a,(i)
_a i)
o6 la
04} E
%
02F | 1
IFy =
0f=— T ——
-0.2} |
0.4 . ; . . . .
05 10 15 20 25 30 a5 40 4.5

t[s], Ts=0056s

Figure 1. State response in autonomous regime.
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16
a,0)
a0
0]
a0
a0
% -
» i i i i i i i i
0 05 10 15 20 25 3.0 35 40 45

t[s], Ts=005s

Figure 2. State response in forced mode.

0.1438 —-0.1090 -0.1619 -0.2191
—0.1090 1.5603 —-0.2198  0.2945

0= —0.1619 —-0.2198  1.6006 —0.4711 |’
—0.2191  0.2945 -0.4711  1.8586
0.1338 —0.0840 —-0.1490 -0.1928

S— —0.0840 1.2736 —-0.2314  0.2439

~0.1490 —02314 1.6729 —0.5520 |’ (105)
—0.1928 02439 —05520 1.829

and parameter matrix variable

0.6210 —0.8607 —2.6800 —0.7582
Y‘{o.4017 —2.6793  —0.3804 0.1788}’ V. = 31301 (106)

Therefore, using Eq. (56), the nominal control law gain matrix K is computed as

(107)

K — 0.8951 —-0.8107 —-1.8928 —0.7830
T 124671 —2.0742 -0.0947  0.6056 |’

the closed-loop system matrix takes the form
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0.9571 0.0371 0.0431 —-0.0108
0.7613 0.3227 0.2881  0.1639

Fe=F=GK=1_0808 02498 04771 —02749 | (108)
—0.0073 0.0063 0.0368  0.9931
while the closed-loop system matrix eigenvalues spectrum is
p(F;) = {0.1207, 0.6570, 0.9733, 0.9990 }. (109)

To apply in the forced mode, the signal gain matrix W is now computed by using Eq. (84) as
follows:
—0.8296 0.9567

W=1_22360 24922/ (110)

The simulation results of the nominal closed-loop system response are illustrated in Figures 3
and 4, where Figure 3 is concerned with the system state variables response in the autonomous
regime and Figure 4 with the system state variables response in the forced mode.

Since these two control structures are of interest in the context of full-state control design,
matching the presented results, it is evident that the system dynamics in both cases are
comparable.

0.6 T T r 1 f T r i
- Qi)
05H o1
d,i)
04p - Alih
n 3 L -
0.2
% 01 e ——————— —— £ =y

=01

0.2

=0.2

-0.4

TL__
ot =S -
-:

|

|

0.5 1.0 1.5 2.0 2.5 30 35 4.0 4.8
t[s], Ts=006s

Figure 3. State response in autonomous regime.
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3 - - 1 ' 1 1 :
a (i)
q,{1)
250 I
gqfi)
a,i
2K
1.5
s n
o5H
0 o g
-05H
-1 . . . . . . .
0 0.5 10 1.5 2.0 25 a0 15 4.0 4.5

t[s], Ta=006s

Figure 4. State response in forced mode.

8. Concluding Remarks

In this chapter, an extended method is presented, based on the classical memoryless feedback
H.. control principle of discrete-time systems, if the ratio control is reformulated by an equality
constraint setting on associated state variables. The asymptotic stability of the control scheme
is guaranteed in the sense of the enhanced representation of BRL, while resulting LMIs
are linear with respect to the system state variables, and does not involve products of the
Lyapunov matrix and the system matrix parameters, which provides one way of solving
the singular LMI problem. Moreover, formulated as a stabilization problem with the full-state
feedback controller, the control gain matrix takes no special structure. The formulation allows
to find a solution without restrictive assumptions and additional specifications on the design
parameters. It is clear from Theorem 4 that the control law strictly solves the problem even in
the unforced mode. The validity of the proposed method is demonstrated by numerical
examples.
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Abstract

Climate system consisting of the atmosphere, ocean, cryosphere, land and biota is
considered as a complex adaptive dynamical system along with its essential physical
properties. Since climate system is a nonlinear dissipative dynamical system that pos-
sesses a global attractor and its dynamics on the attractor are chaotic, the prediction of
weather and climate change has a finite time horizon. There are two kinds of predict-
ability of climate system: one is generated by uncertainties in the initial conditions
(predictability of the first kind) and another is produced by uncertainties in parameters
that describe the external forcing (predictability of the second kind). Using the concept
of the ‘perfect’ climate model, two kinds of predictability are considered from the
standpoint of the mathematical theory of climate.

Keywords: climate system, deterministic chaos, predictability, stability

1. Introduction

High-complexity computational models that simulate earth's climate system (ECS) have
earned well-deserved recognition as the indispensable and primary instrument for numerical
weather prediction (NWP) as well as for the study of climate change and variability caused by
both natural processes and human activities [1-4]. In spite of dramatic progress achieved over
the past few decades in weather forecasting and climate simulation thanks to the advances in
computing hardware and algorithms and to a substantial increase in the volume of climato-
logical data, contemporary computational climate models can reconstruct the real world only
with a certain degree of validity [3]. There are several major sources of discrepancy between
climate model simulation results and reality. First of all, climate models remain an ideal
mathematical abstraction of a real physical system, namely the ECS. These models ignore
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some physical, dynamical and chemical processes or, at least, represent them in a simplified
fashion. As a result, various physical simplifications in the formulation of climate models
substantially influence their adequacy [5]. Second, the NWP and climate simulation are math-
ematically an initial-value (Cauchy) and/or a boundary-value (Dirichlet or von Neumann)
problem, which is solved numerically using finite-difference, spectral or another appropriate
method. Consequently, uncertainties emerging in the initial and boundary conditions as well
as in the climate model parameters and external forcing, approximation, truncation and
round-off errors lead to distinctions between the model output and the observed real state of
the ECS. Third, let us suppose that we have the “perfect’ model of the ECS. It means that exact
governing equations are known exactly and can be solved. However, even in this, hypotheti-
cally ideal, case the ability of climate models to predict the future remains limited. This can be
explained by the fact that the atmosphere, which is the most rapidly changing component of
the ECS, is strongly nonlinear and exhibits irregular (chaotic) spatial-temporal oscillations on
all scales ranging from millimetre seconds (turbulent fluctuations) to thousands of kilometres
and several years (climate variability). This phenomenon known as deterministic chaos was
first discovered by Lorenz [6]. The chaotic nature of the atmosphere significantly limits our
ability to successfully predict the weather and climate since the predicted trajectory of the ECS
is unstable with respect to both the infinitesimal errors in initial conditions and external forcing
[7]. Even with a perfect atmospheric model and accurate initial condition, we cannot predict
the weather beyond approximately two weeks.

For further discussion, we need to clarify that terms ‘weather” and ‘climate’ have different
meanings. Weather is defined as the daily conditions of the atmosphere in terms of such
atmospheric variables as temperature, humidity, wind direction and velocity, surface pressure,
cloud cover and precipitation. In turn, the climate represents an ensemble of states traversed
by climate system over a sufficiently long temporal interval (about 30 years, according to the
World Meteorological Organization). Here, the ensemble includes not only a set of system
states but also the probability measure defined on this set. Therefore, climate, roughly speak-
ing, can be considered as the ‘average’ weather, in terms of mean and variance, in a certain
geographical location over many years.

Time horizon of a forecast's usefulness and validity can be characterized by the specific measure
known as predictability. Predictability is commonly understood as the degree to which it is
possible to make an accurate qualitative or quantitative forecast of the future system's state. The
study of atmospheric predictability was initiated by Thompson [8] and Lorenz [6, 9] more than
50 years ago and was extensively explored theoretically using various numerical and statistical
models since then (e.g. [10-17]). One of the obvious measures of predictability that can be used to
verify a weather forecast is the mean-squared error (the average of the squared differences
between forecasts and observations). This measure increases over time and asymptotically
approaches some finite value known as the saturation value. Therefore, predictability is lost
when the forecast errors become comparable to the saturation value in magnitude. If this
happens, the forecast result is not better than any randomly selected trajectory of the system.
However, for a number of reasons, mean-squared error and other weather forecast verification
metrics (e.g. mean absolute error and mean error) are rarely used to estimate the climate system
predictability in practice (for details, see Ref. [18]).
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Predictability characterizes both the physical system itself and the model of this system that is
used to make a forecast. However, in atmospheric and climate studies we are interested in the
predictability of real dynamical processes rather than the predictability of the model used in
simulations.

According to Lorenz [19], in weather and climate modelling we are facing the predictability of
two kinds reflecting the internal and external variability of the climate system, respectively.
The predictability of the first kind relates to the Cauchy (initial value) problem, namely the
prediction of sequential states of the ECS for constant values of external parameters and given
variations in the initial conditions. In contrast, the predictability of the second kind refers to a
boundary-value problem, specifically to the prediction of response of the climate system in
asymptotical equilibrium to perturbations in external parameters (forcing).

This chapter considers both the predictability of atmospheric and climate processes with
respect to the initial data errors (predictability of the first kind) as well as the predictability
with respect to external perturbations (predictability of the second kind). The stability of
dynamical system is also discussed since stability is a key problem related to predictability in
dynamical systems.

2. Climate system as a complex adaptive dynamical system

Let us begin with some preliminary notes and definitions which will be used in this chapter.

The term ‘system’ generally refers to a goal-oriented set of interconnected and interdependent
elements that operate together to achieve some objectives [20]. The system is called complex if
it possesses such characteristics as emergent behaviour, nonlinearity and high sensitivity to
initial conditions and/or to perturbations, self-organization, chaotic behaviour, feedback loop,
spontaneous order, robustness and hierarchical structure. Complexity in systems arises from
nonlinear spatio-temporal interactions between their components. These nonlinear interac-
tions lead to the appearance of new dynamical properties (for example, synchronous oscilla-
tions and other structural changes) that cannot be observed by exploring constituent elements
individually.

Complex systems include a special class of systems that have the capacity to adapt to system's
environment. These systems are known as complex adaptive systems. In a complex adaptive
system, parts are linked together in such a way that the entire system as a whole has the
capacity to transform fundamentally the interrelations and interdependences between its
components, the collective behaviour of a system and also the behaviour of individual compo-
nents due to the external forcing. Complex adaptive systems are dynamical systems since they
evolve and change over time. These systems have a number of properties that include the
following [21, 22]: co-evolution, connectivity, sub-optimality, requisite variety and iteration,
edge of chaos and, certainly, emergence and self-organization.

The ECS (S) is understood as a complex, large-scale physical system that consists of the
following five basic and interacting constituent subsystems [23]:
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1. Atmosphere (A), the gaseous and aerosol envelope of the earth that propagates from the
land, water bodies and ice-covered surface outwards to space.

2. Hydrosphere (H), the ocean and other water bodies on the surface of our planet, and
water that is underground and in the atmosphere.

3. Cryosphere (C), the sea ice, freshwater ice, snow cover, glaciers, ice caps and ice sheets
and permafrost.

4. Lithosphere (L), the solid, external part of the earth.

5. Biosphere (B), the part of our planet where life exists, i.e.

S=AuUuHuUCULUB

The ECS components are characterized by a finite set of distributed variables whose values at a
given time determine their state. The most unstable and rapidly oscillating component of the
ECS is the atmosphere.

The ECS is a large-scale and unique physical system that possesses a number of specific
properties (e.g. [24-29]) making the exploration of this system a high complexity problem. In
contradistinction to many problems in physics, the study of the climate system, its change and
variability cannot be implemented by a direct physical experiment due to climate system's
essential features as a large-scale physical system. Laboratory experiments and analytical
approaches have a very limited applicability to climate exploration by virtue of extreme
complexity of the ECS. As a result, in climate studies the computational simulation represents
the primary instrument and as such requires the development of appropriate mathematical
models and numerical algorithms.

The utilization of mathematical models in climate research involves the development of a
specific mathematical theory that allows one to explore the climate system along with its
mathematical models. The contemporary mathematical theory of climate is based on methods
of the qualitative theory of differential equations that enables us to explore the behaviour of
climate system in its phase space [30]. In other words, the dynamical system theory is currently
the theoretical foundation of mathematical climate theory. In this context, the ECS can be
viewed as a complex adaptive dynamical system [21, 22].

The ECS belongs to the class of complex adaptive systems due to the following factors:

1. The ECS is a complex large-scale physical system combining the atmosphere, hydro-
sphere, cryosphere, land and biota together with global biochemical cycles (such as cycles
of CO,, N,O and CH,) and aerosols. Components of the climate system are heterogeneous
thermo-dynamical subsystems characterized by specific variables that determine their
states. Elements of the ECS have strong differences in their structure, dynamics, physics
and chemistry. They cover processes with different temporal and spatial scales, and link
together via numerous physical coupling mechanisms, which can be either weak or
strong. Each subsystem of the ECS can in turn be viewed as being composed of sub-
systems, which are themselves composed of subsystems. For example, the atmosphere
can be divided into several layers based on its vertical temperature distribution. These
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layers are respectively the troposphere, stratosphere, mesosphere and thermosphere. The
atmosphere can also be divided into surface layer, boundary layer and free atmosphere
based on the influence of surface friction.

Each component of the ECS is characterized by a specific response time. This fact is very
important to building the ECS’ models. The relation of a certain component to some ECS’
model is determined by the ratio between the temporal scale of processes under consider-
ation and its response time. For example, the atmosphere, which has a response time of
about one month in the troposphere, can be considered a sole component of the ECS’
model for processes with temporal scales of days to weeks. In this case, oceans, land
surface and ice cover are considered as the boundary conditions and/or external forcing.
If we study processes which have temporal scales of months to years, the atmosphere and
ocean must be included in the ECS” model together with sea ice. Thus, computational
models of the ECS are built up from hierarchy of models, forming finally a complex
integrated model.

The ECS has a large number of positive and negative feedback mechanisms which control
the behaviour of the ECS. Some examples of these mechanisms are ice-albedo feedback
(positive feedback), water vapour feedback (positive feedback), cloud feedback (both
positive and negative feedbacks), carbon cycle feedback (negative feedback), feedback
due to Arctic methane release (positive feedback) and many others.

Physical and dynamical processes in the ECS cover a broad spectrum of temporal and
spatial scales. Time scales are varied from seconds to decades, and spatial spectrum of
dynamical processes covers molecular to planetary scales. Dynamical processes in the
ECS and its components are nonlinear. Subsystems of the ECS interact with one another
nonlinearly producing, under certain conditions, a chaotic behaviour of subsystems and
the overall climate system.

The ECS and its components inherently have emergent properties. Examples of atmo-
spheric emergent phenomena include but are not limited to clouds, large-scale eddies
(cyclones and anticyclones) and small-scale vortices such as tornados. Examples of climate
emergent phenomena are the El Nifio-Southern Oscillation, which is a quasi-periodical
irregular variation in the ocean surface temperature over the Pacific in tropics that
strongly influences global climate, ocean circulation patterns and glacial-interglacial
cycles. Natural emergent phenomena appear spontaneously under certain favourable
conditions.

The ECS is a thermodynamically open and non-isolated system because it exchanges
energy with its surroundings. However, the ECS is a closed system with respect to the
exchange of matter with its surroundings. The energy that drives the ECS is mainly solar
energy. The ECS is affected by changes in external driving forces, which imply natural
causes such as solar activity variations and volcanic activities, as well as man-made
changes in chemical composition of the atmosphere. However, the impact of the ECS on
the outer space is insignificant. Currently, changes in climate are mostly affected by
variations in the atmospheric composition of particles and gases. In the Arctic, the role of
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changes in albedo (reflection coefficient) is also tangible. The most influential gas compo-
nent to affect the climate is CO,, which comprises about 70% points of the global warming
potential.

7. The components of the ECS are also non-isolated systems. They act as cascading systems
and interact with each other in various ways including through the transfer of momen-
tum, sensible and latent heat, gases and particles. All together they compose the climate
system, which is a unique large-scale natural system.

8. Dynamical processes in the ECS fluctuate due to both internal factors (natural oscillations)
and external forcing (forced oscillations). Natural fluctuations are caused by internal
instability (for example, hydrodynamic instability such as barotropic and baroclinic) with
respect to stochastic perturbations. Human impacts, both intentional and unintentional,
belong to the category of external forcing.

Undoubtedly, there are other specific properties of the ECS that should be taken into account
while studying climate as a complex adaptive system and building models of the ECS.

To simulate the ECS, we should assign some mathematical object that is an abstract represen-
tation of the real climate system taking into account its essential features mentioned above.
This object is known as a perfect model of the ECS. It is usually assumed that a perfect model is
deterministic semi-dynamical system that is dissipative, ergodic and possesses a global attrac-
tor. It is also assumed that any trajectory generated by the model is unstable [30].

Formally, an abstract climate system model represents a set of multi-dimensional nonlinear
differential equations in partial derivatives, which generates finite dimensional deterministic
semi-dynamical system of the form [24, 30]

dx/dt = F(x,p.f), x€R"x|,_y=x0,t20, @

where x is the state vector, the components of which characterize the state of a system at a
given time ¢, xo is a given initial state of a system, n is the dimension of dynamical system,
p € R? is the vector of model parameters and f is the external forcing. The solution to climate
model equations (1) cannot be found analytically and one needs to employ available numerical
methods. For that reason, in order to obtain numerical solution, the original set of partial
differential equations is replaced with discrete spatio-temporal approximations using any
appropriate technique (e.g. finite-difference method, Galerkin approach, etc.). Thus, in weather
and climate simulation we mainly deal with discrete dynamical systems.

Suppose that the set of n real variables x1,x3,...,x, defines the current state of discrete-time
dynamical system representing the ECS. A certain particular state x = (x1,xz,...,%,) corre-
sponds to a point in an n-dimensional space Q € R", known as the system phase space. Let
tw€Zy (m=0,1,2,...) be the discrete time, and let f = (f,,f,,....f,) be a smooth vector-
valued function defined in the domain Q C R”. This function describes the evolution of the
system state from one moment to another. Then, a deterministic discrete-time semi-dynamical
system that approximates the continuous time dynamical system (1) can be specified by the
following equation:
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x(tm+1):f(x(tm)), (k) =xo, m=0,1,2,...,. )

It is obvious that a family of operators forms a semi-group:
fowp=fefp fo=1Vs,peZ., 3)

where [ is the identity operator. Therefore, the system state x(f,,) at time ¢, can be explicitly
expressed via the initial condition x:

X(tw) = f"(x0), 4)

where f denotes an m-folding application of f to xo. The sequence {x(t,)},, _, is a trajectory of
system (2) in its phase space, which is uniquely defined by the initial values of state variables
X0.

For reference, let us reproduce a couple of definitions [30].

Definition 1. The solution x(t) to system (1) is Lyapunov stable if Ve > 0, 35(¢) > 0 such that

lxo=x) I < 8(¢) = lx(t)=x" (D)1 < &, ¥t >0, (5)

where x*(t) is the solution to the system

dx' fdt = F(x'.p.f). ¥l =15 (6)

Definition 2. The solution x(t) to system (1) is stable with respect to the continuous perturbation
OF if Ve > 0, 356(¢) > 0 such that

I0F I < 6(e) = llx(t)—x*(t) I < &,Vt=0, (7)

where x(t) is the solution to the following perturbed equation:

dx*/dt = F(x*,p,f) + OF, x"|,_y = x;. (8)

These definitions are important when considering both kinds of predictability.

The key point for further consideration is the assumption that climate system model described
by the set of nonlinear partial differential equations (1) is ‘perfect’. We suppose that system (1)
is nonlinear dissipative semi-dynamical system (t > 0) that has an absorbing set in the phase
space and its solution exists and is unique for any t > 0. Next, we assume that the system (1)
possesses a global attractor of finite dimension that is a certain set in the system's phase space
towards which a system tends to evolve for a wide variety of initial conditions of the system.
Global attractor is characterized by the attraction property and invariance [30]. So, the dynam-
ics of system (1) can be formally divided into to two phases: (1) movement towards the
attractor and (2) motion on the attractor. When studying the climate system stability and
predictability we assume that the system trajectory is on the attractor and its dynamics are
chaotic. We also assume that system (1) possesses the property of ergodicity. Thus, statistical
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characteristics of the climate system (e.g. the first ¥ = (x) and second var(x) = (x?)-¥*
moments) can be calculated by averaging along a certain trajectory.

Structurally, any climate system model represents a set of interacting and interdependent
models of lower level (i.e. atmospheric model, model of the ocean, etc.). The number of
these lower level models is determined by the objectives of a problem under consider-
ation. For example, to study the large-scale climate variability the model can include the
following major components: tropical, mid-latitude and polar troposphere, stratosphere,
ocean, land ice, ocean and sea ice, surface and boundary layers, hydrological cycle, clouds
(e.g. convective and stratiform), precipitation, aerosols, CO, and CH, cycles, solar radia-
tion, terrestrial emission, etc. Other subsystems of the ECS (e.g. vegetation, land surface
and biota) can be considered as the boundary conditions and external forcing. In numer-
ical weather prediction problem, some atmospheric model (either global, regional or local)
is the main component of the forecasting system, while ocean, sea ice, land surface are
used only to impose boundary conditions. Note that models of general circulation of the
atmosphere and the ocean represent main computational instruments for simulating the
ECS.

3. Climate model governing equations

The main energy source of the ECS is the Sun. Spatial inhomogeneity and temporal changes of
the heat energy that the earth's surface receives from the Sun are the main cause of motions in
the atmosphere and ocean. Equations that govern the atmospheric and oceanic circulation
represent the mathematical expressions of fundamental laws of physics: conservation of
momentum, conservation of mass, conservation of water and conservation of energy (the first
law of thermodynamics). Some diagnostic relationships between variables are also used (i.e.
the equation of state). Almost every model uses a slightly different set of equations tailored to a
specific problem. However, all climate models include the following basic equations: two
equations for horizontal motions (or equation for the vorticity and divergence), equation for
the vertical velocity (or hydrostatic equation), continuity equation, as well as thermodynamic
and moisture equations. Equations of motion are derived from the law of conservation of
momentum applicable to a rotating system. These equations describe all types and scales of
atmospheric motions that are important for the formation of weather and climate (i.e. large-
scale Rossby waves, planetary waves and gravity waves). Conservation of mass is mathemat-
ically expressed in the form of continuity equation, equation for conservation of moisture and
equations for conservation of other substances taken into account in a particular climate
model.

The set of equations that describes the general circulation of the atmosphere can be
written in the spherical co-ordinate system (A,¢) defined by longitude A and latitude ¢,
with normalized pressure as a vertical coordinate o = p/p,, where p is pressure and p, is
the surface pressure [1, 31]. The set of the model equations includes two momentum
equations:
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ou 1 0 RT, olnp, . ou

S = - 65 =Fu +Fun,

a acos@é)\( +X acos@ OA 70 v ©)
ov 10 RT,0lnp, .ov
—=-nu-—-——(P+K)- $ —6—=Fyw +Fon, 10
o - M ab(p( +5 a op %0 v o (10)

where 1 and v are zonal and meridional velocities, a is the earth's average radius, 0 = do/dt is
the vertical velocity in the o co-ordinate system, @ is geopotential, T is temperature, R is the
gas constant for dry air, K = (u? + v*) /2 is the kinetic energy, 1 = ¢ + f is the absolute vorticity,
f is the Coriolis parameter and ¢ is the relative vorticity that is given by

1 [ov o
acos<p [6/\ op (ucos (P)] (1)

The virtual temperature T, is represented as

rotfi (%) @

where T is the temperature, g is the specific humidity and R, is the gas constant for water
vapour. The terms F,y and F,y describe the vertical friction and terms F,y and F,y the
horizontal diffusion. Generally, however, the momentum equations are transformed into the
equations for the absolute vorticity 7 and the divergence D using new independent variable

p = sing:

on 1

) 10
3t a(l-u?)oA (Ny + cos pFyy)=—<—(Ny + cos F,v) + Fyu, (13)

aou

oD 1 0 10
— N F ——(No F, E
o ~ a0 /\( u« +cos ”V)+aVy( + cos pFyy) + Fpy (14)
-V3(®@ 4+ K+ RToln p,),
where the horizontal divergence is given by
1 [ou O
1
 acos ¢ {6)\ dp (vcos (P)] (15
The spherical horizontal Laplacian can be written as
1 ¥ 10 )
2 _
+55 16
2(1-12) 1% az@#{( y)u} {16

To provide the computational effectiveness of numerical integration scheme, the virtual tem-
perature is partitioned into two parts, one of which T is a function of the vertical coordinate
only, ie. T,(A, u,0,t) = To(o) + T, (A, y, 0,t). Then, the nonlinear dynamical terms N, and N,
can be represented in the following form:
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;1olnp, .oU
u = -RT, - s - N0 1
Nu=nv “a oA 70 (17)
7 - 2 1
Nv:—nU—RTUMm ;Y (18)

a ou do’

where U = ucos ¢ and V = vcos ¢.

The thermodynamic equation, which represents the mathematical expression of the first law of
thermodynamic, is written for a perturbation in temperature T’ calculated with respect to the
mean T (o) mentioned above:

!

oT 1 9 19, . T RT,w
=~ (UT)--—(VT)+TD-6—
of ~ afmyon T T g VT A TP 05+

’ (19)

1
+Q+FTV +FTH_C_*[M(FL¢V +FMH) +U(FUV +F'UH)]7
P

where Q is the diabatic heating rate, w is the pressure vertical velocity and c; is given by

¢ =c {1 + C—p—lﬂ (20)

Here, c, is the specific heat of dry air at a constant pressure and c; is the specific heat of water
vapour at a constant pressure.

The equation for specific humidity is used to describe the hydrologic cycle in the atmosphere:

%_ 1 8, 10 s
FYi a(l—yz)a/\(uq) aa‘u(Vq)—&-qD GGG—I—S—I—FqVJrFqH, (21)

where the term S describes the source/sink processes for water vapour, and F;y and Fyp are the
vertical and horizontal water vapour diffusion.

Let us consider now the continuity equation that represents the conservation of mass law:

o a(l-p?) oA a ou o

Olnp, U olnp, Volnp, D- oo (22)

Integrating this equation from the top (¢ = 0) to the bottom (¢ = 1), with the vertical boundary
conditions 6 = 0 at 0 = 1 and ¢ = 0, one can obtain the equation for surface pressure prediction:

1
Olnp, U odlnp, Valnp,
3 ”D+a(l—y2) 1 T4 u do. (23)

Combining the continuity equation and the equation for the surface pressure, one can derive
the diagnostic equation for the vertical velocity ¢:
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1
U adnp, Volnp, U dnp, Voalnp,

a:a“DJra(l_yz) Tt }da—”DJra(l_yz) S T ey
0 0

Two diagnostic equations, the hydrostatic equation and the equation of state, are also compo-
nents of a set of equations that are used to simulate the atmospheric general circulation. The
hydrostatic equation is

0®/0lno = -RT,. (25)

In the integral form, this equation can be written as

Q= @s—J RT,dIn o, (26)
1

where @; is the geopotential at the earth's surface. The equation of state is written as

p = pRTy, (27

where p is the air density.

Boundary conditions in the longitudinal direction are periodic, and the solution to the atmo-
spheric model equations is bounded at the north and south poles. Vertical boundary condi-
tions represent the vanishing of vertical velocity both at the bottom and at the top of the
atmosphere: 6 =0ato=1and o =0.

Equations used in the ocean model are written in the Boussinesq hydrostatic approximation
with a rigid lid in the spherical coordinate system, with depth z as a vertical coordinate defined
as negative downwards from z = 0, which denotes the ocean surface [1, 31]. The set of model
equations include the following;:

1. The horizontal equations of motion:

ou u op du

_ L — — —_ = —_— Fu, 2

T () (f * ﬂtanqo)v * ap,cos @ oA "ozt @8
d u 1 op v
at+L(U)+(f+ﬁtal’l(p>u+apoaq)kVaZ2+F7], (29)

where ky is the vertical eddy viscosity coefficient, p, is the density of sea water and the
advection operator, L(a), is given by

L(a)

1 <6ua évaCOS(p>+6wa (30)

:aCOS(p oA dp oz

The horizontal viscosity terms, F, and F,, are defined as
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—tan2 ;
E, = ki [V2u N (1 tar; Q)u  2sing av}

- x© 1
a2cos? pOA|’ 1)

(32)

Ey — ki [Vzv N (1-tan’p)v  2sing Gu}

a? a2cos? OA|’

where ky is the horizontal eddy viscosity coefficient. The given form of the diffusion
terms, F, and F,, is required for conserving angular momentum property.

2. The hydrostatic equation:

op/0z = —gp. (33)
3. The thermodynamic equation:
oT >*T 2
E‘I—L(T) = KV@‘FKHV T, (34)

where kv and ky are, respectively, the vertical and horizontal eddy diffusivity coefficients.

4. The equation for the mass continuity of salinity:

%fH(S) = KvngKHVZS. (35)
5. The equation of continuity:
b_w:_ 1 ou_ 1 bvcosgol (36)
0z acos oA acosg 0@
6. The equation of state:
p=p(T.Sp). (37)

Due to their extreme complexity, weather and climate models can be implemented on com-
puters only using numerical techniques. Since models are based on partial differential equa-
tions, it is necessary, first, to ensure that the problem under consideration is well posed, i.e. it
has a unique solution that depends on the boundary and initial conditions. Thus, both the
initial and boundary conditions must be properly specified. Next, weather and climate math-
ematical models should be transformed into numerical models that can be implemented on
computers. The most widely used technique for solving differential equations of weather and
climate models is the finite-difference method according to which the derivatives in the partial
differential equations are approximated on a certain temporal-spatial grid. Thus, instead of
continuous functions, which describe the state of climate system and its components, we deal
with discrete functions defined only for specific times separated by the time step At and
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specific space locations separated by spatial (horizontal As and vertical Ah) steps. As a result,
instead of partial differential equation we obtain finite-difference equations (numerical model).
It is very important that numerical schemes used for the discretization of model differential
equations must satisfy several fundamental requirements: finite-difference equations must be
consistent with model differential equations, the solution of finite-difference equations must
converge to the solution of differential equations and numerical schemes must be computa-
tionally stable. In practice, finite difference is not the only method used to solve weather and
climate problems. The most popular among other methods are the family of Galerkin tech-
niques, spectral, finite-volume and finite element approaches.

In contemporary climate models, due to their discrete spatial and temporal structure, a
large number of physical processes and cycles cannot be clearly represented and formu-
lated by model equations. Climate models are theoretically incapable of simulating pro-
cesses on spatial scales of the order of magnitude that is twice the model grid length [32].
Such thermo-dynamical, physical and chemical processes and cycles are parameterized, i.
e. expressed parametrically using simplified description. Study of the climate system by
computer simulation requires extensive computational resources. As a result, the predict-
ability problem is usually studied either on the basis of low-order models, which possess
the main properties of the climate system (nonlinearity, chaos, dissipative, etc.), or on
the basis of complex climate models using the ensemble approach or the Monte Carlo
method.

4. Predictability of climate system

4.1. Predictability of the first kind

The first kind predictability of climate processes (predictability of climate processes with
respect to the initial conditions) will be considered under the assumption that the climate
system (1) evolves on its attractor. Since system (1) is a nonlinear dissipative dynamical system,
its attractor, known as a strange attractor, has an extremely complex fractal structure and can
be characterized by such parameters as dimension, characteristic Lyapunov exponents, invari-
ant measure and asymptotically steady solution and others. If some trajectory of system (1) is
enclosed in a bounded phase volume (attractor), then the system's dynamics demonstrate
deterministic chaos: the behaviour of simulated system resembles a stochastic process despite
the fact that the system is described by deterministic laws and its evolution is governed by
deterministic differential equations. So, all orbits of a system that start close enough will
diverge from one another, however, will never depart from the attractor. The rate of separation
of infinitesimally close orbits is characterized by positive Lyapunov exponents. The number of
directions along which the orbit is unstable is equal to the number of positive Lyapunov
exponents 1, (note that 7, < n, where 1 is a system'’s dimension). Thus, trajectories of climate
dynamical systems are Lyapunov unstable.

To consider the initial growth rates of errors in the initial conditions let us linearize Eq. (1)
around some trajectory to obtain the equation in variations:

113



114 Dynamical Systems - Analytical and Computational Techniques

dx [dt = Mixj, (38)

where M; = 0F/0x is the tangent propagator along the trajectory between the initial state x;
and the forecast state x’ at a certain time ¢ (actually M; is a Jacobian matrix). Obviously, one can
obtain

Ix ()17 = (Myx, Mix)y) = (M} Mix}, xp), (39)

where () is the inner product in R” and M"* is the transpose of M. Since the operator M; M is
self-adjoint, then for any ¢ one can consider the following eigenvalue problem:

MiMp); = oiyp;, (40)

where ¢; is the ith eigenvalue of the matrix M;M; and 1), is the corresponding eigenvector.

Representing x; in the form of series as x; = Y a;i);, one can get | X (2= Zaia,-z. So, the
1 1

forecast error on temporal interval [0, ¢ depends on errors in the initial distribution of eigenvec-
tors 1, and singular values of the tangent linear propagator M;. Since system (1) is ergodic,

we can also calculate the Lyapunov exponents A; in accordance with the multiplicative theorem
[33]:

1
A= }im;ln oi(MiM;), i=1,..,n. (41)

The Lyapunov exponents define the exponential growth (decay) of linear independent compo-
nents of x’ at ¥ — 0. The knowledge of the Lyapunov exponent spectrum of a dynamical
system allows one to estimate the attractor fractal dimension, the rate of Kolmogorov-Sinai
entropy production and the characteristic e-folding time. Knowledge of these parameters is
very important for the stability and predictability analysis of dynamical systems. The fractal
dimension of attractors of dissipative dynamical systems can be determined by applying the
Kaplan-Yorke conjecture [34]:

J
Dgy =]+ ,Zl Aif|Aigal, (42)

where | is the maximum integer such that the sum of the ] largest exponents is still non-

negative, i.e. Z{:l/\,’ > 0. The sum of all positive Lyapunov exponents, according to theorem
[35], gives an estimate of the Kolmogorov-Sinai entropy, i.e. the value showing mean diver-
gence of the trajectories on attractors. The arrangement of the Lyapunov exponents in (42) is as
follows: A1 > A, 2...2A,,. The multiplicative inverse (reciprocal) of the largest Lyapunov
exponent is referred to as the characteristic e-folding time.

Let 6 be the initial perturbation of x" used to integrate equation (8). Since the system is
Lyapunov unstable, after some sufficiently large temporal interval of integration the distance
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between two hyper-points in the phase space reaches the value of ;. Let &; be the accepted
error tolerance, then the predictability time of a system can be roughly estimated as

Ty o In(6:/09), (43)

where A,y is the leading Lyapunov exponent. The error doubling time can be calculated as
t = In2/Amax. However, Lyapunov exponents are very useful instrument to estimate the pre-
dictability of low-order dynamical systems [36].

Climate data observations are subject to measurement errors. The simplest way to represent
the resulting uncertainty is to define the probability density function (PDF) p(x, fy) or, gener-
ally, the set of a finite measure p, on which the initial state xy is concentrated. The time
evolution of a system leads to a divergence and mixing of points of this set. Since the initial
state xo is concentrated on a set having the measure y,, then after some period of time the
measure will become p,. Let I be the invariant ergodic measure. Suppose the convergence
theorem u — 1 does exist. Hence, at a certain time t — ¢, the measure yu, falls into the e-
neighbourhood of fi. Consequently, the initial data information characterized by p, will be
completely lost. So, one can say that the time ¢, defines the potential predictability of a system
under consideration [16]. Thus, a focal point of the predictability problem is to prove the
existence of ergodic measure and the existence of convergence theorem. This problem, how-
ever, is extremely difficult to solve because the structure of the invariant measure generated on
the system attractor is sophisticated and non-smooth. To avoid this problem, the stochastic
regularization can be applied [37]. So, in lieu of system (1), the following stochastic dynamical
system will be considered [16]:

dx/dt = F(x) + (1), (44)

where 1 is a Gaussian stochastic process: (ni(t)nj(t/» = 2d;;5(t-t ), d;j 2 0. This procedure is
correct since our knowledge about the model parameters is always limited, thus real climate
models have random errors, which are represented by the term . Under the assumption that
d;j = d, one can write the Fokker-Plank equation with respect to PDF p(x,t), which describes
the evolution of p [30]:

dp/ot + div(F(x)p) =dAp,p 2 O,J pdx =1. (45)

Let p be a stationary solution to Eq. (45), i.e. div (F (x) p) = dAp. If x belongs to the compact

manifold without boundary, then p is asymptotically stable [37]. The existence of a station-
ary solution (i.e. attractor) at infinity has been proved for finite-dimensional dynamical
systems [38].

Suppose that the initial condition x¢ is specified then the condition p|,_, = 8(x—xp) is also
specified and enable us to solve Eq. (45). The numerical integration of Eq. (45) transforms the
PDF p(x,t), which asymptotically evolves to the stationary solution p: p — p at t — t,. Thus, at
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sufficiently large time t, predictability is finally lost. There is a question: how can we estimate
the time ¢,? Let us consider the following one-variable stochastic dynamical equation [16].

dx/dt = —yx + 1, (46)
x| = x0, (N(B)N(F)) = 2P5(t=F ), (1) = O, (47)

where xj is the known initial condition and 7 is the Gaussian 0-correlated process. If we
average Eq. (46) we obtain

d(x)/dt = =y (x), ()0 = X0, (48)

thus (x) = xoe!. For the newly introduced variable O(t) = (x?), we can obtain the following
equation:

a6/dt = -2y0 + 2(n - x). (49)

¢
Since x(t) = xpe" + Jeﬂﬂ) n(t)dt, then
0

do/dt = -2y0 + 4. (50)
The solution to this equation is

ot) = 2 (1-e2). (51)

Equation for the PDF p has the following form:
dp/dt = d(pxy) /dx + P*Fp /x> (52)
The stationary solution to Eq. (52) can be found if we suppose that the left-hand side is equal to

zero. Then, we have p = (1 /V n@) ¢*/9 where 0 = 2n%/y. We assume that the solution to
Eq. (48) is of the form

(53)

By substituting (53) into (52) one can be convinced that if 6(¢) and (x(t)) satisfy Eq. (48) and
Eq. (50), respectively, then Eq. (53) is the solution to the Fokker-Planck equation (52). As a
result, any initial data that is normally distributed will be attracted to the steady solution of
Eq. (62), which is also normally distributed. The dissipation parameter y determines the rate at
which PDF p approaches p. The auto-correlation function for the stationary stochastic process
(46) can be written as
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>
C(t) = z%e’“ = 0e7". (54)

Thus, the potential predictability of system (46) can be characterized by the auto-correla-
tion function of the process x(t) and, therefore, the convergence of p(tf) to p can be
explored based only on function C(t) with time lag 7. This conclusion is valid for the set
of multi-dimensional differential equations [16]. In this case, however, the covariance
matrix is used instead of the auto-correlation function. It is very important that for climate
models the convergence of the covariance matrix C(t) to the covariance matrix of station-
ary process C is defined only by climatological values of climate model variables. As a
result, potential predictability is also determined by climatological data.

Generally, the potential predictability can be defined as the convergence time of initial
distribution to the equilibrium one. To quantify the rate of convergence of one-dimen-
sional distributions to the equilibrium ones, the concept of entropy can be used. If the

information entropy S = Jpln pda is taken as a measure of predictability, then for the

Gaussian distribution p = (1/ \/27102)8"(“"5)2/ (29) information entropy can be expressed as
S =1no*+ C. It can be shown that the variance and, therefore, the entropy are directly
dependent on the Lyapunov exponents [39]. To study the predictability of climate system,

the relative entropy S, = Jpln(p/ﬁ)da, where p is an equilibrium PDF, is a more suitable

measure [40]. Relative entropy is invariant with respect to nonlinear transformations of «
and p — p at t — oo,

4.2. Predictability of the second kind

Predictability of the second kind relates to the predictability of changes in climate system
caused by infinitesimal perturbations in the parameters that describe the external forcing.
Climate prediction does not involve forecasting weather conditions at either a certain
geographical region or globally. On the contrary, climate prediction aims to forecast
statistics of the climate system averaged over sufficiently long period of time. So, we are
interested in how external perturbations affect certain aspects of climate statistic, such as
the first X (mean) and/or second o2 (variance) moments. One of the most important
problems in the exploration of predictability of the second kind is to distinguish the
response signal of the climate system to perturbed external forcing from the noise in the
model output results. The signal-to-noise ratio can be used to make the conclusion with
respect to the usefulness of the obtained climate system response. Thus, the predictability
of the second kind is mathematically reduced to finding the response function of the
climate system model [39].

Consider the following finite-dimensional dynamical system that is controlled by some exter-
nal forcing f (e.g. the concentration of carbon dioxide in the atmosphere):
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dx/dt = F(x) + f,x|,_o = o, (55)

Suppose that system (55) possesses the attractor A and let i be its invariant measure. The
behaviour of this system will be explored on the attractor A. Since system (55) a priori possesses
the property of ergodicity, its statistical characteristics are calculated by averaging along a
single, sufficiently long, random trajectory. Thus, the average state (x) and variance (02) of
system (55) are defined, respectively, as

T
() = fim . [x(ttt = [ (02 = [(x-t0 P (56)
0 A A

Let system (55) be perturbed by an infinitesimal disturbance in the external forcing 6f such that

of < f:

dx*/dt = F(x") + f + of . (57)

For this system (x*) = Jx*dy* and (0%) = J(x*—(x*))zdy*. Let us introduce the new variable
A A
X (t) = x(t)-x*(t). Assuming that llx'll is rather small then, combining (55) and (56), one can

obtain the following linear equation for variable x:
dx' Jdt = J(x)x + of. (58)

where J(x) = OF /0x is the Jacobian. Let 0f be a staircase function that is activated at t = 0 then
the solution to Eq. (58) can be written in terms of the Green's function:

t

Y () = JG(t, £)6f (F)dt (59)

0

t
The operator R = JG(t, t')dt is a sought-for response function (operator). If at t = 0 the distri-

0
bution of initial states is identical for both unperturbed (55) and perturbed (57) systems, then

one can calculate the average response operator:

t

(R) = J(G(t, £)ydt = JG(t—t’)d(t—t’). (60)
0

0

By averaging both sides of Eq. (59), one can get the following linear equation to calculate the
system's response to the external forcing:
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() = (R)f. (61)

Suppose that system (55) is regular, i.e. for this system the quadratic conservation law is valid
and system itself satisfies the Liouville equation for incompressibility in the phase space.
Assume also that the system is in equilibrium. Taking into consideration the fluctuation
dissipation theorem [41], the average impulse response operator of the regular system in
equilibrium is expressed via system's statistics:

(G(t,1)y = G(t-t') = C(t - £)C(0), (62)

where C(t-t') = (x(t)xT(t)) is the system's auto-correlation matrix with time lag 7 = t-#. Now
we can combine (60) and (62) to get the following well-known formula [42]:

(xy = JC(t)C‘l(O)dt - f . (63)
0

Thus, the mean response of climate system to external forcing is determined by observations of
unperturbed climate oscillation.

5. Concluding remarks

The prediction of climate change caused by natural processes and human-induced drivers is
one of the most critical scientific issues facing the mankind in the 21st century. Computer-
simulated climate models represent a very powerful and, perhaps, the only research instru-
ment for studying climate and its dynamics. One of the key components of climate models,
namely the model of the atmospheric general circulation, currently also serves as a primary
tool for the numerical weather prediction all around the globe. However, the climate (atmo-
spheric) system's trajectory calculated via numerical integration of multi-dimensional partial
differential equations that describe the climate (atmospheric) system evolution is unstable with
respect to both perturbations (errors) in the initial conditions and infinitesimal external forcing
expressed by some model parameters and/or boundary conditions. This instability limits the
time horizon of the validity of the climate (weather) forecast and leads to predictability
problem.

In this chapter, the climate system is considered as a complex adaptive dynamical system
that possesses a number of specific properties such as, for example, dissipativity,
nonlinearity and chaoticity. From this perspective, the climate predictability problem is best
discussed and analysed by formally examine two kinds of predictability. The first kind of
predictability refers to the initial value problem (estimating the impact of perturbations in
the initial conditions on the forecast skill), while the second kind of predictability relates to
the boundary value problem (estimating the impact of external forcing on the system's
behaviour).
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Abstract

We explore the properties of quantum states and operators that are conjugate to the
Hamiltonian eigenstates and operator when the Hamiltonian spectrum is continuous,
i.e., we find time-like operators T such that [T, H] = iA. This is a property expected for a
time operator. We explicitly unfold the momentum sign degeneracy of energy states. We
consider the free-particle case, and we find, among other things, that the time states are
also the solution of the quantized version of the classical motion of the particle.

Keywords: time operator, time eigenstates, conjugate states, free-particle time
eigenstates

1. Introduction

The problem of the time operator in quantum mechanics has been studied by numerous
researchers for many years and remains a subject of current research. There are many instances
in which a time variable is useful. An example of such a situation is calculating the tunneling
time of a particle passing through a barrier. This time was recently measured, and it was
shown to vanish [1, 2].

There are several approaches in this area that were developed by Kijowski [3], Hegerfeldt et al.
[4], Weyl [5], Galapon [6], Arai and Yasumichi [7, 8], Strauss et al. [9, 10], and Hall [11], among
others. The work by these authors may appear to be in four differing approaches; however, we
shall show that they are simply different approaches to the same theme, approximated ones.

I m EC H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited. [(cc) ExgIN
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Some of these approaches are similar to the work of Weyl on periodic functions [5]. Weyl
defined the Hermitian form

) g (1)

where {x,,} are the components of a vector in the basis e /n, m=0,1,..., n-1. Galapon,
Arai et al., Straus et al., and Hall used a similar expression but with a factor of one instead of
the (-1)"™ factor. Their results are valid in a limited region of the Hilbert space for the
expression of Galapon and Arai. Strauss wanted to obtain a Lyapunov function; instead, he
obtained a function that only gives the sign of time, as was shown by Hall. A different factor
might result in a time operator that would be valid over the entire Hilbert space. In this
chapter, we find a proper factor to obtain sensible time-like kets and operators that are valid
over the entire Hilbert space, for the purely continuous energy spectrum case.

We introduce time-like kets and operators following a different route. We search for the states
that are conjugate to the energy eigenstates, which is a natural approach to this subject. We
find time kets and operators that are valid over the entire Hilbert space. We also find that we
can make contact with the operators defined by other authors. These operators lack the
oscillatory function found in this work.

Time is typically viewed as a parameter and not as a dynamical variable in classical and
quantum mechanics. However, the characteristics of the time variable depend on the represen-
tation being considered. In classical mechanics, we have shown that we can talk of translations
along the energy direction; in that case, the energy variable becomes a parameter, and time
becomes a dynamical variable, a function of the phase-space variables [12].

For comparison, let us consider the coordinate representation of quantum mechanics. If a
variable, s, with units of length is the parameter used in the shifting along the coordinate
isp / h

direction through the displacement operator, & in the momentum representation, s

becomes the coordinate operator and the momentum P becomes a parameter. A similar
behavior is expected when considering energy-time representations. However, the problem is
to define a time representation in quantum mechanics, and we use the conjugacy concept in
this chapter to find such a representation.

The basis for this work is that time is another coordinate that has to be determined. The
conjugate pair coordinate-momentum is a pair of conjugate coordinates that are used to define
representations of wave functions and operators. Similarly, energy and time can be used as an
alternative coordinate set, but the time coordinate has to be defined. As coordinate and
momentum eigenstates, the time eigenstates will also be nonnormalizable, and their peculiar-
ities originate from the type of coordinate that energy is a semibounded quantity.

In Section 2, we use the rewriting of the identity operator in terms of energy eigenstates to
define the states that are conjugate to the energy eigenstates and subsequently determine some
of their properties and several time-like operators. We define time states for negative and
positive momentum values.
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Section 3 is devoted to time-like operators and their properties. Time operators are written in
three different forms. We verify that the time kets are eigenkets of the time operators. We find
“evolution equations” for time kets and note that the time operators are the generators for
translations along the energy direction. We also discuss how a wave packet is shifted along the
energy direction.

In numerical calculations, we have to address finite regions of variables and not infinite
intervals. Therefore, we focus our attention on approximate expressions for time operators in
Section 4. We find approximate expressions of time operators that can be used in numerical
calculations and are of help in the understanding of the expressions found by other authors.

The free-particle problem is analyzed in Section 5. We find expressions for the time kets for the
free particle. The coordinate matrix elements of the time operators are also found, and we learn
that the time states are also a solution to the quantum analog of the classical motion. The
support of the time states embodies the classical trajectories, and as 7 — 0, we recover the
classical motion.

We conclude the chapter with some concluding remarks.

2. Time eigenstates

In this section, we define the states that are conjugate to the energy eigenstates and the
corresponding conjugate operator to a given quantum Hamiltonian H. We also derive some

of their properties. The definition of conjugacy between the operators T and H that we will use
here is the usual one, i.e., that these operators should comply with the constant commutator

relationship [T,H] = ih. We will consider the case of a purely continuous energy spectrum

~ ~ 2 ~ o~ —~
with a Hamiltonian operator H of the form H =P /2m + V(Q), where P is the momentum

operator, Q is the coordinate operator, and \7(@) is the potential energy operator. We will also
consider that the sign of the momentum operator commutes with the Hamiltonian. The
continuous eigenvalues of the Hamiltonian are denoted by E € [0, <) and correspond to the
eigenkets {|E)}.

We will base our definition of time states on rewriting the identity operator in terms of energy
eigenstates and using the integral representation of the Dirac delta function. We assume that
the Hamiltonian is self-adjoint. Thus, we will work on the span of the Hamiltonian eigenstates,
denoted by

b= {ivi|w) = | aevEie. vie - @ @

Em
We assume that the closure relationship for the energy eigenstates holds, I = J dE|E)(E|. The
0

i times the derivative is self-adjoint in a finite interval and hence will work in the subspace
E€|0,E,), Em < o, which implies thatp € [-p,,..p,.], p,, < .
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We start with the rewriting of the identity operator in terms of the energy eigenkets,

Eom En
I:J dE|E)E| =J dE'dES(E — E')|E'Y(E| = J dE’dE%J dt " EE)/nEny(E|
0 0 0

(32)

oo En ﬂtE h ITE/h
- dtJ dEdES E'Y(E
| e

where we have made use of the properties of the Dirac delta function. We can separate the
negative and positive momentum parts of the above expression by means of the closure
relationship for the momentum states, obtaining

R P Enn P En ' ' , '
= dpj dE|E><E|p><p|E><E|=j dpj dE dES(E — E)[EYE |p) (plE)(E]
-p 0 -p 0

m m

P En 1 (= . ,
dp| " aEdE s | e GIEXE (3b)
N .

ﬂtE /h ztE h

oo |E'NE [P XplEXE| —s= Nz

ad pm E’”
= dtJ dpj dE'dES
- “Pm

Thus, we define time-like kets as

En ﬂtE/h En 71tE h
= | "AES—lE), ) = | "aE flExE\p). )

With these kets, the identity operator is written as

) - o
P= [ o= | @] aplpnae)l =1+ 1., (sa)
- - P
where
R o 0 R = P
o] af aonee) Lo=] af apeo. (5b)

Then, the identity operator is written in terms of the time evolution of some bras and kets,
which are composed of all the energy eigenstates.

Now, we define time-like operators Tand T, by introducing a factor ¢ in the integrand of Eq. (5):
T= J dt t|E)(t|, (6a)

and



Emergence of Classical Distributions from Quantum Distributions: The Continuous Energy Spectra Case
http://dx.doi.org/10.5772/109722

N oo 0 N oo P
T_:=j dttj aplt ) ). T :=j dttj dplt () H(p) - (6b)
—oo 7pm —oo 0

The function ¢E/" exists only for E €0, E,, so that, for the sake of simplicity of notation, we,
sometimes, will include explicitly the function ®(E) — @(E — E,;), where @ is the step function,

when necessary, otherwise we will omit this factor.

The commutator between these operators and the Hamiltonian operator is

Ep wE'/h GitE/R ) N
J dttJ dEdE\/_\/_[\E)(E\,H}

Em « H '
J dE’dE—J dt t " E-EVMNE — E')|E'V(E]|
0 o

i[5(E) = (E — En)] )" E)/A)(E — E)|E XE|

|

En , 1 o it ,
_ 1 iHE-E)/h B _ 2 0
J dEdEznhLdte (©(E) — O(E — Enin~

0
+iR[S(E) — 8(E — En)]J(E — E)|E )(E|

E 0o
. " ’ 1 it(E—E' ’ ' "|Em
*”‘L aE EL‘”E*(E EVA(E — E)[E WE B,

- JE dE'dES(E — E') {m%m[a( ) = S(E — En)] | (E — E)[E)(E]|
0

_thEm dE'S(E — E')(E — E)|EWE||E,
0

EHX B
= J JE'E 8(E — E')in- (E — E')|E)(E|
0 JF

+th£'" AE'dE 8(E — E')[S(E) — 8(E — En)|(E — E')|E)(E|
0

En
= ihj dE'dE §(E — E')E')(E|
0

Em 0
+J dE'dES(E — E')(E — E’)|E')iha—E(E| th dE|E)E]
0
= ihl,
(7a)
where we have made use of the integration by parts. This is one of the properties that a time

operator should comply with—the constant commutator with the Hamiltonian. We also have
that
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0 —itE /h 1tE/h

V2nh V21

0 F VN
=[] Tapaeg | areet T - E)EXER)GIENE
p”l

[T,,H} - J: dtt dpJEm dE'dES (E’\p)<p|E>[|E’><E|,H}

- “Pm

0 Emd , 1 o0 a
‘med’io puey | di(-in 3 O(F) - O - )

HAIB(E) — O(E — En)Je" ) ) (E — E)ENEp)pIEXE]
5}

0 Tt oo i

- JO dpJEm dE'dELr dt e EE) [[O(E) — O(F - Ey)| i
- 2nh
+ih[0(E) — O(E — En)|(E — E)|E')(E'[p)(p|EXE]|

N R S T
_mj dpJO dE'Zn—hJ dt MEE(E — B [EV(E p)plEXE]
N -

0 E )
= J dpJ AE'dES(E — E') [ihﬁ + ih[6(E) — 6(E — Em)]}
Pu VO (7b)

(E — E)|E'XE|p)(p|EXE]

0 En
i j dp jo dE'S(E — E)(E — E)|EYE Ip)(p|EXE[E",
_pm

0 En ) T
| an| " apaese - Ein S (6~ EVEXE ) plENE
p”l

+mJO dprm dEES(E — ENS(E) — 5(E — Ey)]
Do 0

(E— E)|EXE|p)(p|EXE]|

0 E.
= i|dp| "dEaES(E - EVEXEDGIEE
PY”

0 Em ! ’ ’ ’ ! : a
+L} dpJ AEES(E — E)(E - E)|ENE p)in - (pIE)E|

m

0
:mj dpj JE|E)E|p)(p|E)E| = ifl._,
“Pm
o~ o~ p”l E"I A
(T ) = ] " dp| " AEIEXER)pIENE| = . (70)
The operator

l§)
—ifi = iH[O(E) — O(E ~ Eu) ®)
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is a time-like operator in the energy representation, which is symmetric in the interval [0, E,,]
regardless of the boundary conditions at E = 0, E,,,, when the functions exist only in the interval
[0, E,..].

Thus, we can say that the kets

En  p—itE/h e—itH Jh
) = | " A e ER) =) ©oa)
En  p—itE/h

can be considered as time-like kets. We will study some of their properties in what follows.

The inner product between time states is

(o] _ L 2 —i(t—t')H/h _ i 2 _ !
{E(PIEp)) =5 (P'le Py =5 P'lp(t = 1)), (10a)
, En , En Gt E/h o—itE[h 1 (En o
£ty =| dE(f|E) (E|t ::J dEAAAAfAAA—f::AAAJ dE ¢/t ~DE/M
(i Jo (e <1> 0 V2nh \E/Znh 2nth ), (10b)
_ i(f —t)Ep/2h i [ Em o
= t)e sin (Zh (t t)>,

with limit
i

m. (10c)

lim (|t = %6({ —t)+

m—

Thus, the time states are not orthogonal due to the bounded nature of the Hamiltonian
operator.

2.1. Properties of the transformation function between energy and time states
The transformation function between energy and time representations is given by

o itE/h

<E|t>:ﬁ,

E€[0,E,], te(—o,00). (11)

A property of this transformation function is that it is a sort of eigenfunction of the time-like
operator, if(d/dE)[®(E) — ©(E — E,;)] — iA[6(E) — 8(E — E,)], when the functions exists in the
interval E € [0, E,, ], in the energy representation,

IAIB(E) — B(E — Ey)] — ih

it g O(E) = O(E — En)] | (HE) = H{O(E) — O(E — En)] (HE),  (12)

and it is also an eigenfunction of the energy operator, i d/dt,

129



130 Dynamical Systems - Analytical and Computational Techniques

o o efitE/h
ih—(E|t) = ih———
! at< £ =1 ot\2mth

This is similar to the corresponding properties of the transformation function between coordi-
nate and momentum representations. The squared modulus of the transformation function is
constant for all values of t and E, as is desired for coordinate variables.

= E(EJt). (13)

Time kets can be used as a coordinate system for quantum systems and are similar to coordinate
or momentum eigenkets. The norm of a wave packet in the time representation is (see Eq. (5))

oo oo En p-itE/h ItE/h
Wy =| dxylt) “'””:J,ftjo A dE—o— (YIE) —o—r(EIY)

E, ) 1 = ) .
= | dEdE(V|E) (E|v)——| dtetEE)N/n
AEAE (IE) EW) 5| dre

E (14)

-], dE'dE(p|E"y (E|)S(E —E)

En

=, dE|(E[)|*.

Thus, we will obtain well-defined quantities if the wave packet |¢}) is normalized in the energy

oo

representation, i.e., if J dE|(E|Y)* = 1. We also note that the transformation from energy to
0

time representations is norm preserving, i.e., it is unitary.

2.2. The time eigenstates are conjugate to the energy eigenstates
Now, the Fourier transform of the time states is
oo PitE/ oo HME/n (En  o—itE/h Ep 1 ' ’
dt——|t :[ dt J dE E :J dE'|E’ —J dt e EE)/h
L, \/2nh| ) —w  V2mhlo \/Znh| ) 0 | V2 o (15)

Em
= J dE'|ENS(E — E) = |E),
0

Thus, the kets |t) and |E) are conjugate indeed, i.e., the definition (9) is consistent; |t) and |E)
are the Fourier transforms of each other, and then an eigenstate contains all the conjugate
eigenstates with the same weight.

3. Time operators

We now focus on the time operators obtained from the time kets of the previous section and on
their properties. Time operators for negative, positive, and any value of the momentum are
defined as

- = . <,
T-= L, dt[ dplt(p))Kt(p)I. T = L dtL dplt(p))Kt(p)], (16a)

“Pm
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and

T = r At E(t]. (16b)

The last construction was also introduced, from another perspective, by Hegerfeldt et al. [4].
Our construction is different from that of Hegerfeldt et al. because it involves all the energy
eigenstates and not only those that are time reflection invariant. Our time operator exhibits the
time reversal property already.

Time operators can be written in three equivalent forms in the energy representation. One
form is

r-[ j Al e

Pm

" _ztE h ztE h
J Jp J dEdE\/*‘|E>(E\P)t(p\E) <E|F

1o b 0 it E'/h
_ ’ B n o r_ —i
= hJ dtJ_pm dpj dE dE(zhaE, O(E") — O(E' — Ey)le

—in[d(E') = (E' — En)le™ E/") [EXE'p) (plEXELe" E/"
1 r ' n_ " it Efny O
" 2mh L, dTJf dPJ dE dE( (O(E) = O(E —E)le Min—
—ih[B(E') = B(E" — Ex)le™" £/ ) [E')(E ) (plE) (Ele" E/*

1 ol 0 Em ) ,
+ﬂj dt[pm d]aJ0 dEih [©(E)
,@(El o Em)]efitE'/fl‘Eerrlp) <P|E> (EleitE/hlgm:O

0 En
= J dpJ dE'dES(E — E')( —[O(E) — O — Em)]ihi
P IO OE

—ih[B(E") — O(E — E)] ) [EE [p)pIE) (E|

(17a)

0 E,
+in[ dp| "aEs (B EVO(E) - O(E - EIENET) GIEXEIL,
-P

m

" [ aE—0E) - OE - Eyylin
|, @] driom) - - Ealingy

—ih [6(E) — 6(E — En)])|[EXE|p)|(p|EXE]

0

+in|  dplENE) GIENEE,
7pm

0

—JO d JE’"dE(—iha|E><E| >)< |E><E|—ihj dp|E)(pIEY(E
- s p 0 aE p p p p E=0

0
+mj dp|E|(p|E") PAE B
7pm

_ JO dpJEm dE(—fni |E><E|p>> PIENE
. o ’

0
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where we have performed an integration by parts. We also have that

and

ro= | e = [ o] e (<ingg xem piese. a7

T— r dtle £ (1] = J " dE (—m— |E)) (E|. (17¢)
—oo 0

These are the forms in which the time operators act on energy eigenkets, but they take a
different form when they act on states or on both, eigenstates and wave packets.

A second

energy representation of time operators is

1

_ Jw d JO ' —it E'/h 0
- (| o arae e GlENE (- in 0 - O - B
“Pm

2nth ) _..
+in[6(E) — 6(E — Em)])eit E/h
oo 0 Enn .
ﬁj dtJ dpJO AEE e F/'E)(E'p) | (O(E)
Pm
~O(E — Ey)]ih o+ ihIB(E) — O(E — En) ) plEXE]E" "

i 0
sl ip| " S EENE ) (IENER

0 E o
J dpJ dE’dE%J dteleE>/h|E><E|p>m = (PIEXE]
P O T

0 Enn *° . /
+ih| dp . dE'dE;z—hJ dt " E-EVMEN (E'|p)[S(E)
“Pm -
{° o1 (E-E)/h
—ih| dp 0 dE'ﬁJ dt " EEVMEN(E p) (plEXE||g2,
—Pm
(O E 1 (" it(E—E')/h E
~in| dp| dE'ﬁJ dt e EEVM N E p) (plEXE]IE,
“Pm -
0 En ., 0
dp . dE'dE 8(E — E')|E'NE'|p)ih = (pIEXE]
“Pm
O EHX

., 0
dp|  dE|E) (Elp)ih 5 (p|EXE],
,pm 0
(18a)

Enn

- =P P
T+:Ldtjo aplt(p)) £ ()| :L dpj AEIENE|p)in = (pIE)E], (18b)
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and

E

T= J:. dt|ty t (t] = L d

dE|E)ih —= (E]. (18¢)

These are the various forms in which the time operators can act on states in the energy
representation. The difference with the time operators when acting on energy eigenkets is a
minus sign.

Other symmetric expressions for the time operators can also be obtained:

oo 0
P j dtj dplt(p)) ¢ (H(p)|

P

oo 0 En it E/n ItE/R
| | | et — ) @)l B

P T ViR
0 E 1 (19a)
= @] "aEarE) Ep gie) @ | areeon
P 0 2nh ) _.,

0 E. ’
——in| dp| "aEaEE) (ETp) (G1E) CEIOCE ),
“Pm

R Do Em
T —-in] “dp] " aeaEl) el GIE) (EOE - B (19b)

and

EYH
T= —th dE'dE|E"Y (E|5'(E' — E). (19¢)
0

The domain of our time operators is D, defined in Eq. (2). The convergence of quantities depends
on the type of wave packet that these operators act on. A wave packet of type L*(0, E,,) in the
energy representation is a good choice (see Eq. (14)). Thus, the domain is invariant under the
action of the time operators, and the commutator between the Hamiltonian and the time
operators is thus valid in the entire domain D.

3.1. Time matrix elements of the Hamiltonian

The matrix elements of the Hamiltonian in the time representation are given by

L En GE/h | mitE/n 1 (Eu VE I _itEh
fIHI = | dEdE E|HEYS— = | dEdE E'F/he i EE
i = | e o e = | A,
1 (B " d . d
=— | dEEE = in (F|1) = —ih— (£ |t).
ZnhL ¢ ih g (1) = —ih o (el

This is the Schrodinger equation for time kets in the time representation.
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3.2. The time ket is the eigenstate of the time operator

We can find the characteristic operator of the commutators [-, H] and [T, ]. Because [T, H] =

(see Eq. (7a)), the commutator between the operator eieT/ h e [0, E,,], and the Hamiltonian is

TR = L () i = L (<) e e T )

n=0 n=1

Similarly, the commutator between the time operator and the time propagator is

(7, e /) — i% (ﬁ) (7, E" = i (1) i Er = et/ ()

n=0 1

where teR.

The time ket |£) is the time propagation of a zero time ket [0y,

_[ e”E/ “aH iy oy L [T
=] Sl = /M0y Jo) = ——— | aEiE) (23)

Thus, according to Eq. (22), we can say that the time ket is an eigenstate of the time operator
T|ty = Te /M0y = /1T (0) 4 ¢ = #H /M0y — 1), (24)

where we have set T|0) = 0 because |0) is the zero-time state.

An “evolution equation” for the energy eigenstate is (see Eq. (15))

N o0 eztE/h 00 eztE/h

T\E):J_ dt\/_T|t>—J_wdt\/_t\t>
B " HIB(E) = S(E — En)] S
[ n(in g 008) - O(E — BT imlO(E) ~ o(E - Ex] S ) .
= < m% [©(E) — ©(E — E,)] + ih[6(E) — 6(E — Em)]> |E)

— [O(E) — ©(E  Ey) (—m diE) ).

Thus, the time operator is the generator of translations along the energy direction. All quanti-
ties are well defined as long as E and ¢ belong to the allowed set of values for them. For other
values of E and E + &, we will get a linear combination of the energy eigenstates [14].
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3.3. Shifting of operators

The shifting of the Hamiltonian along the energy direction is (see Eq. (21))
H(E) = e—ié‘T/flﬁeié'T/fl —(H efiET/fl I ge—ié‘T/h)eiET/h —H+e (26)
where 0<E + ¢. For the translation of the time operator (see Eq. (22)), we have
T(t) := e”ﬁ/f’Te*”ﬁ/f’ = eitﬁ[/h(e’”ﬁ/hf + te’”ﬁ/h) =T+t (27)

These operations are well defined as long as E + ¢ >0 [6, 14]. The derivative with respect to ¢ of
the time-shifted operator (27) is

—T() =1, (28)

that is, in the energy-time representations, ¢ is the value that the time operator T can take and
not simply a parameter. Similarly, in the case of a translation of the Hamiltonian operator by
the time operator, i.e., Eq. (26), we find that

d

Ef{(e) =1 (29)

Therefore, in the energy-time representations, ¢ is not simply a parameter, but it is related to

the values that the Hamiltonian H can take.

Thus, the use of energy and time eigenkets and operators instead of coordinate and momen-
tum eigenkets and operators is similar to going from a parametric representation of curves,
with time being the parameter of evolution, to a nonparametric representation in which time is
now one of the coordinates.

4. Approximate expressions

In this section, we make contact with other expressions that have been used by other authors.
Other works have not made use of the Sa(x;1) factor that appears in our results. The results in
this section will allow us to obtain a better understanding of previous results.

4.1. Approximating the integral in an infinite interval

As an approximation, we replace the integral in an infinite interval (271)_1J dt with the

T/2 -
integral in the finite interval t € [-T/2,T/2], lTim (1/ T)J dt. Then,
e -T/2
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19 0
7o [ dtj )|

1 (/2 En - , ’ ‘
—J dtJ dpJ dEdE e "E/ME"y (E'|p)Kp|E) (E|e"E/
P 0

T) 1
T/2 '
:J J dEdEIE)y (Ep) (p|E) (E|=- J dt ¢ HE-E)/n (302)
T/2
- J CdEGE|E) (Ep) (pIE) (El—s (T (E—-E); 1)
“Pm
ih T N
:Jo “F (2h(E E); )|E><E|I|E> (El.
a En ih T ' .
T*zjo _F <2h(E E); )|E> (ELL|E) (El, (30b)
and
Fe T
T=Jo IEAEE) (Bl g (Zh(E E“) (300)

where the Sa function of type one is defined as

sin (x)

Sa(x;1) := — cos (x). (31)

A plot of this function can be found in Figure 1. This function is zero at x = 0 and oscillates
between = + 1. The limit T — o of the integral of Sa(Tx/2;1)/Tx times a function f(x) gives an
approximation to the derivative of the latter at x = 0.

sin o
S cos(ir)
.
TN PR TR I N NI P A I T SR B PR
—0 10 o | 1) 20
05
-1 F

Figure 1. A plot of the function Sa(x; 1) := sin (x)/x — cos (x).

Expressions that resemble Eq. (30c), but without the Sa factor, were used by other authors as a
function that gives the sign of time in the continuous energy spectrum case [9-11].
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5. The free particle

As an example of the time kets provided by our method, let us apply the derived results to the
free-particle system. We find expressions for time eigenkets, including the case when a distinc-

tion of the sign of the momentum is needed. In this model, the momentum operator P commutes
with the Hamiltonian operator H, indicating a symmetry, allowing for some simplifications.

A set of energy eigenfunctions, in the coordinate representation, for the free-particle model is
E:ti\/2mEq/h

W, EG[O,‘”) (32)

(qlE+) =

The subscripts in these functions indicate the sign of the momentum of the particle.

Thus, the zero-time eigenstate for the free particle is given as

1 Jw pivV2mE q/h 1 Jw p dp eEip a/h
0

* 1
(q105) ':Jo dE\/2—n—h<q|Ei> T V2rh  Namhlo m v2mh (33)

(N L ivam (0@ ©
_m<+lhdq>2nhjo dp ¢ _+1mdq 2 ian ’
1

where we have made the change in variable E = p?/2m. The unit of the last ket is time ™.
Various other authors have used kets obtained by direct quantization of the classical expres-
sion for the time variable and have obtained a time ket with units of time'/>. However, our kets
exhibit the properties discussed in this chapter.

Figure 2 shows a three-dimensional plot of the approximation of the squared modulus of the
time states (g|t_) and (g|t,.), obtained by not integrating from E = 0 to o but up to a finite, large,
value of E. They start highly localized at the origin and subsequently they move away from it and
spread with time. The support of these functions resembles the classical motion curve mq = pt.

2 ’
(gt v (qlt+)?

0.1 1
0.06 q 0.06 q

Figure 2. Three-dimensional plots of the squared modulus of the approximate time kets |[{g|t_)|* and |(g]t; )|* for the free-
particle model. The density is initially a highly localized density at g =0 but subsequently it spreads and moves away from
the origin. Dimensionless units.

For the sake of completeness, we write down the matrix elements of the time operators in the
coordinate representation. They are
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o~ = il\/Z_nfq /h R e¢i\/ﬁq/fz
T dE{(q'|E h E _—
([Tl = j ' g(z )< Llg) = j — ( )

OE) 2nh
oo +iv/2mEq' [ h Fiv2mEq/h oo
_ if peV I m g S iLqJ dp =0/ (34)
0 V2nh V2mE~ +/2mh 2nh " )o
o(g -4 i }
=+ + _|.
i [ 2 2n(q —4')

5.1. Solution to the quantized version of the classical motion of a free particle

The following calculation shows that the time states can also be the solution to the quantized
classical expression for the motion of a free particle initially located at 4 =0, i.e., the quantiza-
tion of mq = pt. Let us rewrite the product mq(q|t_) as follows:

En  p-itE/h Ey e—itE/he—i\/ZWEq/h
mq(q|t,):qu dE* <‘7|E )= Jo dE\/ﬁW

(=)

71tp2/2mh eipa/h

mq

pm m \2mh V2nh
JO ﬂtp /2mh ( ) R > ei pq/h
—m —ih— ) —
. m o) \2nh
J zpq/h <h ) p eflth/th i p efztp /2mh ipq/h |
ap m /znh m /2n p_ Pm
1pq/h 1 2 —itp? /2mh
lhmj iy (__ -B_fr’)e_
—p,  V2mh\m  m2mh) \/2nh
+ mz% o2 /2 i,/ (35a)

' 0 elpalh q p—itp?/2mn 0 elba/h PZ pitp?/2mh
=ihm +t

p———— dp ————
-p,, p\/Znhm V2nh P pVZTCflm V2nh

2

( " d)JO ; eiPa/h p ity /2mh " 0 giPa/h pitp® /2mh
=t| —ih— — 1 J
dq) ), p\/2nhm V2nh - \/271 V2rh

1 jPm oity?, 2mh ip,q/
27

< ) (qlt-) + lflj dp{qlp) (p|E) + i%f”ﬁfnﬂmhei Pud/h
“Pm

= Kq|P|t_) + ih((gl_|E) + (q|P|p,,) (P.|E)),

mq(qlts) = Kq|P|ts) + in((q|L[EY — (qP|p,,) (p.|E)). (35b)

We can think of the last two terms in the above equations as quantum corrections to the
classical trajectory of a free particle. These correction terms seem to vanish when # — 0.



Emergence of Classical Distributions from Quantum Distributions: The Continuous Energy Spectra Case
http://dx.doi.org/10.5772/109722

On the other hand, the straightforward solution to the quantized version of the classical
expression for the motion of a free particle gives a quite different function. The solution to the
differential equation

AV
mq f(g; ) = t(—zhd—q)ﬂq, b (36)
flg: =N & mr/an, (37)

where N is a normalization constant. The squared modulus of this function is constant for all g
and for all £. The squared modulus of the corresponding momentum function,

Flps ) =Ny fiz et 720, (38)

is not a localized function either; it actually is proportional to the transformation function
between energy and time representations, in momentum representation. Thus, the route of
forming conjugate states to the energy eigenstates seems to be a better path for obtaining
appropriate time eigenstates.

6. Conclusions

We have introduced time-like states and time-like operators that are conjugate to the energy
eigenstates and Hamiltonian operator, respectively. We have also given an interpretation of the
obtained states and operators, and we have found that expressions obtained via other approaches
to finding time eigenstates can be related to our expressions. However, the oscillatory Sa factor that
we use solves many difficulties found in previous treatments. We have found the form of the time
states for the free particle and a time operator that is valid for any L*-type wave functions.

The approximation to time operators that we have introduced in this chapter uses expressions
that can be adapted to the case of discrete energy spectra. We will explore this possibility in a
later paper. From the literature on time operators, it might be believed that the treatment for a
continuous energy spectrum is different from that for discrete energy spectrum systems. But, the
results of this study suggest that both types of systems can be addressed in a similar manner.

Finally, we have found that the spectral measure M(dt) of Tisa nonorthogonal resolution of
the identity defined by

L eit(E'—E)/h

This measure exhibits the covariance property, as was previously stated by Holevo [13].
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Abstract

In this chapter, we present a recollection of fixed point theorems and their applications
in fractional set-valued dynamical systems. In particular, the fractional systems are used
in describing many natural phenomena and also vastly used in engineering. We con-
sider mainly two conditions in approaching the problem. The first condition is about the
cyclicity of the involved operator and this one takes place in ordinary metric spaces. In
the latter case, we develop a new fundamental theorem in modular metric spaces and
apply to show solvability of fractional set-valued dynamical systems.

Keywords: fractional set-valued dynamical system, fixed point theory, contraction,
modular metric space

1. Introduction

Dynamical system is a wide area that deals with a system that changes over time. The two
main characteristics of the time domain here are identified with the discrete and continuous
manners. In discrete time domain, major considerations turn to the difference equations and
generating functions. While in the latter one, which we shall be considering mainly for this
chapter, the system is usually represented by differential equations. It might be more influen-
tial to talk about the inclusion problems if a set-valued system is to be analyzed.

The very first and fundamental dynamical system is known nowadays under the term Cauchy

problem. It is represented with the following C' initial-valued problem:

I m EC H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [{cc) X N
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{u'(f) = f(t,u(t)),
u(0) = up

In this case, we assume that f : [0, T|xR — R is continuous and u € C'([0, T]). From simple
calculus, we may see that this system is equivalent to the following integral equation:

() =0+ | fsu(o)ds ()

[0,1]

This is where Banach got the idea to solve the problem. He proposed his famous fixed point
theorem known today as the contraction principle in 1922 [1], mainly to solve this Cauchy
problem effectively. Recall that the contraction principle states that if X is a complete metric
space and T : X — X is Lipschitz continuous with constant 0 < L < 1, then T has a unique
fixed point.

Let us consider a map A : C'([0, T]) — C*([0, T]) given by

AQu)(b) = u0+J F(s,u(s))ds, VueC'((0,T]), vte[0,T]

(0.1]

One can notice that u € C' ([0, T]) solves Eq. (1) if and only if it is a fixed point of A. With this
approach, by considering C' ([0, T]) with the supremum norm || - ||.., we end up with the local
solvability of the Cauchy problem. To obtain the global solution, we have to apply some
techniques to extend the boundary of the local solution.

It is not very obvious that renorming by the L-weighted norm ||f|l. := sup,c o 7 e’tf(t), with
L > 0, will resolve such difficulty. We shall give the short solvability result of the Cauchy
problem with the contraction principle here, to illustrate the concept of how we apply fixed
point theorem to continuous dynamical systems. Under the assumption that f must be
Lipschitz in the second variable with constant L > 0, we have for any x,y € C'([0,T]) the
following:

e A (D-Ay)(H)] = e'LtILO t]f (5,x(s))f (s, y(s) ds|

J[ o XE) 6,35l
Se’”J Letsets|x(s)-y(s)|ds
[0,1]
<eM||lx—yl| Lj Lelses ds
(0,4]

<et(e-1) lx—yl;
< (1—€'LT)IIx—yIIL-

Taking supremum over ¢ € [0, T yields the result and the solvability thus follows.
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This is the alternative technique to guarantee the solvability of the Cauchy problem, without
obtaining the local solution first. It is important to remark that there are many mathemati-
cians that can later adapt different technique and different direction to obtain the solvability
of various classes of dynamical systems, under one unifying fact—by applying fixed point
theorems.

It is natural to raise the situation of set-valued integral, which proved itself for its importance
in practical applications especially in engineering. In 1965, Aumann [2] introduced the concept
of definite set-valued integral on real line and Euclidean spaces. Suppose that ¥ is an interval
0, T], where T > 0. Let F : W — 2% be a set-valued operator. A selection of F is the function
f:W — RU{ £ oo} such that f(t) € F(t) a.e. te V. We write F to denote the set containing all
integrable selections of F. According to Aumann [2], the set-valued integral is determined by
the operator | in the following;:

JyE(Hdt == {Lf(t)dt ; fe%}

that is, the set of the integrals of integrable selections of F.

On the other hand, in elementary calculus, one deals with derivatives and integrals, includ-
ing the higher-integer-order iterations. Here, in fractional integral, one looks at a broader
concept where the real-order iteration is taken into account. There are many approaches to
study this kind of extensions. In our context, we shall use the classical notion introduced by
Riemann and Liouville, the latter of which is the first one to point out the possibility of
fractional calculus in 1832. Given a function fe€L'(W,u), the fractional integral of order
a > 0 is given by

10 (t)dt := ﬁqu(t—f)“*f(f)df

Naturally, we may further consider the following fractional integral:

JyF(tdt == {If(t)dt ; fe F}

These two concepts have brought up the studies of new systems, the set-valued dynamical
systems and the fractional dynamical systems. Even the combination of the two, the fractional
set-valued dynamical systems, is an emerging area in research. We shall be particular with this
latter class of systems and give some brief investigations over the problem.

The very concept of set-valued fractional integral operator was first proposed by El-Sayed and
Ibrahim [3-5] and this has opened a new universe of investigation to fractional operator
equations. It has been reflected that such theory can better describe nonlinear phenomena,
compared to the classical theory of differential and integral equations. The extensive use of this
theory lays naturally in automatic control theory, network theory and dynamical systems (see,
e.g. [6-10]).
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The central system that we are going to investigate in this chapter is the following delayed
system:

u(t)—iﬁi(t)u(t—fi)eI“F(t,u(t)); ae(0,1], te]:=[0,T], T>0 ()
i=1

where 7; €0, for all i€{1,2,-+,n}, F:JXR — CB(R), I"F(t,u(t)) is the definite integral of
order a given by

I“F(t,u(t)) :== {FLJ (t=0)* " f (,u(1))d7 ; fESF(M)}

a))o

and
Sr(u) :== {f €L} (J,R); f(t) €F(t,u(t)) ae. te]}

denotes the set of selections of F and f8; : ] — R is continuous for each i €{1,2, ---,n}. Also, set

B:= max1gignsupte]ﬁi(t).

In this chapter, we shall bring up some recent results in fixed point theory in several
approaches and then show how these theorems apply to different classes of dynamical sys-
tems. Going precise, in Section 2, we investigate the system (2) in standard metric spaces
through a newly developed fixed point theorem. The mentioned fixed point theorem deals
with an operator that satisfied the so-called implicit contractivity condition only on a portion
of a space, where such partial partition is obtained from the cyclicity behavior that we
imposed. We also note the relation between this cyclicity behavior and the one that arises from
the partial ordering relation approach. The solvability of the dynamical system (2) in this
section is naturally obtained via the cyclicity and implicit contractivity assumptions. For
further readings related to this topic, consult [11-17]. In Section 3, we consider a newly
emerged approach of studying fixed point theory, i.e., fixed point theory in modular metric
spaces. This theory has only been introduced to researchers only a few years ago and has been
investigated reasonably in such a short duration. We bring up one of the fundamental fixed
point theorem in this modular metric spaces, give appropriate examples and then apply it to
guarantee the solvability of, again, the system (2). Even the studies of modular metric spaces
are relatively limited at the time, we suggest that further readings from Refs. [18-20] should
give some ideas about the theory itself and also how to develop further dynamical systems in
this framework.

2. Cyclic operators in metric spaces

In this section, we consider a very general class of operators that satisfy the implicit
contractivity condition. Moreover, we also assume the operator to be cyclic over its domain.
This cyclicity weakens the contractivity only to a portion of the space. This is a more general
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case than the contractivity on comparable pairs, as we show later in this chapter. This also
allows the coexistence result that is better than the exact solution and the sub-/super-
solution.

Note that results in this section are based on our paper [21]. Recall the following notion of
cyclic operators.

DeriNiTION 2.1. Let X be a nonempty set and A1, Ay, -, A, be nonempty subsets of X. An

operator F:U_, Ay —2U_,4 is called a phset-valued cyclic operator over U/_Aj if

F(A;)CAjj forallie (1,2, -, p-1} and F(A,)CA;.

There is a special property about the location of fixed point of this operator, as illustrated in the
following.

ProPOSITION 2.2. Let x be a nonempty set and A1, Ay, -+, A, be nonempty subsets of X. If F is a set-
valued cyclic operator over U]_, Ay, then we have the inclusion Fix(F)Cn_, Ay, where Fix(F) denotes
the fixed point set of F.

Proor. If either Fix(F) = ptyset or ;_, Ay = ptyset, the conclusion is clear. Thus, let z € U,_, A; be
a fixed point of F. Then, z € A, for some g €{1,2, ---,p} and z € FzC A;,1. Consequently, we also
haveze€ FzC A;.». Itis easy to see that z€ A, for all n €N. Therefore, it is enough to conclude
thatze ﬂ’Z:lAk.

The following classes of functions are necessary to our further contents.

DerINITION 2.3. Let @ be the class of functions ¢ : R — R, satisfying the following conditions:
(®1) ¢ is right continuous.

(@2) ¢ (0)=0.

(DP3) p(t)<tforallt> 0.

DEFINITION 2.4. Let W be the class of functions ¢ : RS — R satisfying the following condi-
tions:

(V1) ¢ is continuous.
(¥2) ¢ is nondecreasing in the first variable and is nonincreasing in the remaining variables.

(W3) There exists a function ¢ €® such that, for all u,v>0, either ¢ (u,v,u,v,0,u 4+ v)<0
or P(u,0,0,0,u,v)<0 implies that u<¢(v).

(V4) ¥(u,0,u,0,0,u),P(u,u,0,0,u,u) > 0 for all u > 0.

REMARK 2.5. If ¢ € D, then ¢"(t) — 0.

ExampLE 2.6 ([22]). The following functions are contained in the class V:

a. Y, (t,to, -, te) == i—amax{ty, t3, ta}=(1-a)[ats + bts), where ¢ €[0,1) and a,b € [0, 3).

b. l,[iz(tl, ty, «-e, té) = tl—(p(max{tz, t3, tg, %[i’5 + fgl}), where (pE(D.
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c. Pyt t, oute) == -t (aty + Ptsyts)-Otsts, where a >0 and B,7,60 with a +p+y < 1
and o +6 < 1.
2.1. Fixed point theorem for cyclic operators
Now, we give the main fixed point theorem for cyclic implicit contractive operators.
THEOREM 2.7. Let (X, d) be a complete metric space and let A1, A, ..., Ay be nonempty closed subsets of
X. Suppose that F is a proximal set-valued cyclic operator over U]_, Ay in which there exists some ) € ¥/
satisfying
Y(H(Fx, Fy),d(x,y),d(x, Fx),d(y, Fy),d(x, Fy),d(y, Fx)) <0
whenever either (x,y) € AiX Aipq or (x,y) € Ajy1 X A; holds for some i € {1,2, -, p}. Then, we have the
following:
) F has at least one fixed point;
In F has no fixed point outside rf_, Ag.

Prook. For (I), let xy be chosen arbitrarily from some Aj. Choose any x1 € Fxo. Then, we define
implicitly a sequence (x,) by choosing x,.1 € Fx,, satisfying

d(xn, xn+1) = d(xna Fxn)~
Note that this definition is valid since F is a proximal operator. Also note that by this definition,
we may derive that

d(xy, xy41) <H(Fxy-1, Fxy) 3)

Now, since (x,11,X,) € Ajyni1 X Ajrn, we have

H(Fxn+17Fxn)7 d(xiH»l’xn)» d(xn+l»Fx11+l)7
d(X”, Fxn)a d(xn+1,Fxn)7 d(xnvpxnﬂ)

H(Fxn,Fxn+1)7 d(Xn,x,1+1),H(FX,1, Fxn+1),
d(xn,xn+l), 0, d(xn7xn+l) + H(Fxn,Fanrl)

Suppose that ¢ € @ is chosen according to (¥3). Thus, we have

H(Fxm Fxn+1) S(P(d(xna xn+1))

At this point, we assume that x,#x,.1 for all n €N, otherwise a fixed point is already obtained.
Together with Eq. (3), we may deduce that

A(xpy X11) SH(Fxo1, Fx) (A (X1, %)) < - <" H(d (30, x1))

Therefore, we have immediately that d(x,, x,+1) — 0.
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Next, we show that (x,,) is Cauchy. Suppose to the contrary. So, we may find ¢, > 0 and two
strictly increasing sequences of integers () and (1) in which

A (X, X )2E0

We can assume, without loss of generality, that 1, > m > k and 1y is minimal in the sense that
Ad(Xp, xr) < &o for all mp<r < ny.

Consequently, d(x,,Xn-1) < €. Moreover, we may obtain that &9 <d(xy,,x,,) <d (X, Xp-1)
+d(Xp-1, Xy, ) < €0 + d(Xp-1, %, ). Letting k — oo, we have d(xy,,, X, ) — €.

On the other hand, for each k€N, we may find j, €{1,2, ---,p} in which m—my + j,=1(modp).
For k sufficiently large, we may see that m—j, > 0. Observe that

‘d(xmk—jkaxnk)_d(xnk’xmk>| < d(xmk_jk’xmk)
jk’l
< Zd (X +1> Xy +141)
-

Zd(xmk—jkﬂ 5 xmk—jk+l+1 )
1=0

IA

Letting k — o, we have d(xy-j , Xn,) — €o. Also consider that

|d (. xfnk’jk)_d(ka*jk’ Xiyt1)] SA(Xs Xy 1)
As k — oo, we have d(xy—j,, X, +1) — €0 Similarly, we have
|d(xmk—jka xnk)_d(xnk7xmk—jk+1)‘ Sd(xmk_jk’ x'”k‘fk+1)'
So, we get d(xy,, Xum—j,+1) — € as k — e. Also observe that
1A (%> Xre+1) = (X1 Xy +1) | S A (X5 X 11) -

Again, letting k — o, we obtain that d(x;1,%m-j+1) — €. Finally, by the fact that
(X, » Xn, ) € Ai X Ajy1 for some i €(1,2, -+, p} and Eq. (3), we may obtain that

H(Fxyyj,, Fxn, ), d(Ximj » Xy )
0>

(xmk—jk ) Fxmk—jk ) ’ )
d(xp,, Fxp, ), d(xmk_jk ,Fxy,)

d

d(xp,, Fxmk_jk)

N A= 115 X1)> A(Xmg=jr Xy ) A (X » Xy +1)> A (Xer X 11),
( d(xmk—jk, xnk+1)’ d(xnk’ xmk—]'k) + d(xmk-jks Fxmk—fk) )
(d(xmkij, X t1)s A(Xmyy s Xy )» A (X » Xy 11 )5 A (K> X 11), )

d(xmk—jk 5 xﬂk+1 ) 5 d(xnk7 xmk—jk) + d(xmk—jk s xmk—jk+1)

By the condition (V4) and letting k — oo, we may deduce that
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OZI,D(EQ, &0, 0,0, €0, Eo) >0

which is absurd. Hence, the sequence (x,) is Cauchy. Since U;_, Ay is closed, it is complete and
therefore (x,) converges to some unique point x, € UﬁzlAk.

Next, we shall prove that x, is, in fact, a fixed point of F. Let us assume now that d(x,, Fx,) > 0.
Note that for any n €N, (x,,x,) € A; x Aj1 for some i (1,2, -, p}. So, it is followed that
0 > IP(H(FX*’FXH)’ d(x*,xn), d(x*, FX*), d(xnv FX”), d(x*,Fxn), d(xm FX,,))
d(xn+l> Fx*)s d(x*vxn)a d(x*, Fx*)? d(xna xn+1)7
d(xe,xn) 4+ d(xy, Fxy), d(x,, Fx.)
- d(X”_H,FX*), d(x*wxn), d(x*a FX*), d(xn,xn+1)7
d(x*,xn) + d(xn’xn+1)7 d(xn, Fx*)

Passing to the limit as n — oo, we obtain that

02¢(d(xs, Fx,),0,d(x., Fx.),0,0,d(x., Fx,)) > 0

which is absurd. Therefore, d(x,, Fx.) = 0. Since Fx, is closed, we conclude that x, € Fx..

To obtain (II), apply Proposition 2.2.

2.2. Ordered spaces as corollaries

Let X be a nonempty set, recall that the binary relation g is said to be a ph(partial) ordering on
X if it is reflexive, antisymmetric and transitive. By an phordered set, we shall mean the pair
(X,E) where X is nonempty and C is an ordering on X. A ph(partially) ordered metric space is
the triple (X, C,d), where (X, E) is an ordered set and (X, d) is a metric space.

In this part, we show that contractivity on comparable pairs is particularly a cyclic operator
over a single set. The following general assumption on the ordered structure is central in the
few forthcoming theorems.

DermTioN 2.8. Let (X, C, d) is said to satisfies the phcondition () if every convergent sequence
(xn) in X and every point zy € X such that zo E x, for all n €N, there holds the property z)CEx.,
where x, € X is the limit of (x,,).

THEOREM 2.9. Let (X,C,d) be a complete ordered metric space satisfying the condition (@) and let
F : X — CB(X) be a nondecreasing proximal operator in the sense that if x,y € X satisfies x Ty, then
u L v for all u € Fx and v € Fy. Suppose that there exists 1 € ¥ such that

Y(H(Fx, Fy),d(x,y),d(x, Fx),d(y, Fy),d(x, Fy),d(y, Fx)) <0 “4)

for all x,y € X in which we can find some z € X satisfying both zC x and zCy. If there exists xo € X
such that xo Cw for all w € Fxo, then F has at least one fixed point.
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Proor. By the existence of such a point x(, we shall now construct a set

C(xo) := {z€X; xCz}

Taking any sequence (x,) in C(xg). By the condition (®) with zy := xp, we may see that if (x;,)
converges, its limit is also included in C(x,). Hence, C(xo) is closed and therefore it is complete.

On the other hand, we define an operator G : C(xg) — CB(X) by

G:= FlC(JC(])‘

For any z € C(x,), observe that xoCw for all w € Gz. Thus, G(C(x())CSC(xp) so that G is cyclic
over C(xg). Moreover, for any x, y € C(xg), we have by definition that xoCx and xoCy, so that the
inequality (4) holds whenever (x,y) € C(xo) x C(xp). Therefore, we can now apply Theorem 2.7
to obtain that G has at least one fixed point. Passing this property to F, we have now proved
the theorem.

CoroLrary 2.10. Let (X,C,d) be a complete ordered metric space and let F:X — CB(X) be a
nondecreasing proximal operator in the sense that if x,y € X satisfies xCy, then uCv for all u € Fx and
v € Fy. Suppose that there exists 1p € W such that

Y(H(Fx, Fy),d(x,y),d(x, Fx),d(y, Fy),d(x, Fy),d(y, Fx)) <0

whenever x,y € X satisfy xEy. Also assume that if the sequence (x,) in X is nondecreasing and
converges to x, € X, then x,Cx, for all n € N. If there exists xo € X such that xoEw for all w &€ Fx,
then F has at least one fixed point.

Proor. Note that if x,iy € X are comparable, then, according to Theorem 2.9, we may choose
z := x € X so that zEx and zCy.

On the other hand, let (y,) be a sequence in X which is both nondecreasing and convergent to
¥, € X. According to the condition (@), set zp := ;. We may see easily that, in this case, X
satisfies the condition (®). We next apply Theorem 2.9 to finish the proof.

2.3. An example

We now give a validating example for our fixed point theorem to help the understanding of the
content.

ExampLE 2.11. Consider the Euclidean space E* with its standard metric d. For each t € R, we define

lo=[0.3]x{0), 1= [O,%]x{%}, and £, = [O,%]x{—%}.

Suppose that A; and A, are two closed sets defined by
Ay ={L4ul; and A, := (yuls.

Let F : AjUA; — 219 be an operator defined by
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{X}, ifXEfo,

Fx:={ Pl(x)ndy, ifxely, (5)
Pl(x)nA1, ifxel,.

Note that the notation P as is appeared in Eq. (5) is the metric projection onto the

corresponding sets {1 and {5, respectively. The cyclicity of F is apparent.

Claim. The operator F satisfies the inequality in Theorem 2.7 with 1 defined as in (c) of
Example2.6 whena =3, =y =land 6 =1

The case x,y € {j is trivial and so we omit it. For the case xe{p asy ey and x € {1 asy € {,, we
consider the following calculation.

From Table 1(a), we have
[H(Fx.Fy)]?
= (xl_%)z +3
< (& +i +) (v +)
5 (G +1) + 25 v + 3+ (y)? + 1)
- ¢<x1—yl>2+%(% ¢(x1—y1)2+%+;—ﬁ) + (v +3)
= H(Fx,Fy)lad(x,y) + pd(x,Fx) + yd(y, Fy)| + 6d(x, Fy)d(y, Fx)

for all x € {y and y € {1. We can similarly obtain from Table 1(s) the following:

(A)yxetyasyet,

HE R (v, 172

() Ve P 172
0

d(x, Tx)
d(y. Ty) 1/v2
d(x, Ty) (x1—y1)2 12

N

) Ve +1/

B)xeliasyel,

H(Fx,Fy) /(xl—y1)2 1/
d(x,y) V)P +2
1

N

d(x, Tx)

d(y, Ty) 1

d(x, Ty) [x1=y, |
d(y, Tx) 1=y

Table 1. Distances.
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[H(Fx.Fy)]”

= (xl_yl)z +3

< GvE+ VD) () +)

< VD) ()2 +3) + V2 () +

< sy +) + VI )t

= f\/ (w2 +2)” + 3w +2) +v2- ) 43
< %\/(m—yl)z+%)2+%(<x1—y1>2+%)+x/§- (ry)’ +4

= %\/((xl_yl)z + %) ((961—y1)2 +1+ 3) + V2 ()t + 1

= 3y (G P+ ) (G +2) V2l P

= \/(xl_yl)z‘f'%(zgo \/(xl_%)z"'z"'% +k>
= H(Fx,Fy)[ad(x,y) + pd(x, Fx) + yd(y, Fy)]
< H(Fx,Fy)lad(x,y) + Bd(x, Fx) + yd(y, Fy)] + od(x, Fy)d(y, Fx)

for all x € {1 and y € {». Therefore, we have now proved our claim.

Observe now that Fix(F) = £y = A1nA,, coincide with the Theorem 2.7.

2.4. Fractional set-valued dynamical systems

For convenience, we shall always consider the nonempty closed and bounded subspace
QcC(],R) :={u : ] — R ; uiscontinuous},
endowed with the supremum norm || - || given by

llull == suplu(t)|.

te]

The solutions for the problem (2) are assumed to be in QQ under this circumstance. Moreover,
we shall need some more notions in order to obtain the existence of solutions for the problem

2)-

DeriNiTION 2.12. Let (X, d) be a metric space and let ] be an interval of R. An operator F : ] — 2%
is said to be measurable if for each x € X and t €], the mapping x+d(x, F(t)) is measurable.

Next, we shall define the set-valued operator / : Q — 29 given by
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i=1

(Au)(t) == {WGQ; w(t) = Zn:ﬁi(t)”(t_Ti) + Uf (5 u(t)), fESF(M)}, (6)

where U is the ordinary single-valued fractional integral.
We shall next illustrate that the operator /A possesses closed values.
LEMMA 2.13. Suppose that the operator A is given as in (2.4), then Au is closed for all u € Q.

Proor. Let u € Q and let (ux) be a sequence in Au which converges to some u, € Q. We shall
prove the statement by showing that limits of convergent sequence in /Au are in Au. Then, there
exists a sequence (f,) in Sp(u) in which

u(f) = Zﬁi(f)u(f—ﬂ) + Uf(tu(t)).

Also note that this sequence (f,) converges to some f, € L'(J,R). Since F(t,u(t)) is closed,
f. €5r(u). Actually, we have

n

w,(t) = Bi(tyu(t-m;) + U°f, (tu(t)) € Au.

i=1

This completes the proof.
Now, we give the solvability of the system (2).

TrEOREM 2.14. According to Eq. (2), assume that there exist non-empty closed subsets Iy, 1, -, IT, in
Q such that §_ ITy = Q and F has the following properties:

1. t—F(t,u(t)) is measurable for each u € (;
2. there exists a function & : Ri — R such that

H(F(t,u(t)), F(t,0(t))) <&E(lu—vl|, d(u, Au),d (v, Av), d(u, Av), d(v, Au))whenever either
(u,v) €Il x I1;yq or (u,v) €141 X I1; holds for some i € {1,2, -+, p};

3. Ais proximal and cyclic over U,_,IT; = Q.
If the function i : RS — R, given by

O

e b)) = t—nBlr—
Y(t, b, -+, te) == t1—nBty Fa+1)

E(ta, 3, by, t5, F)

is in the class W, then the problem (1.2) has at least one solution.

Proor. Let (u,v) € [1; x ;1 for some i €{1,2, -+, p}. By 2, we may choose some f, (¢, u(t)) € F(t, u(t))
and f, (t,v(t)) € F(t,v(t)) in which
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1 (& u()~f, (t o()[ < E(llu—oll, d(u, Au), d(v, Av), d(u, Av), d(v, Au))

Consider the two functions

wi(t) = Y Fi(0u(t-ty) + U, (1, (1) € Au

and

wy(t) = _Bi(tu(t—) + Uf,(t.o(t) € Av.

i=1
Next, observe that

[or (t)-wa (B)]

< Zﬁ u(t=i)=v(t=t;)| + [U°f (£, u(t)-Uf, (£, 0(1))|

< Zﬁ u(t=1;)=0(t=i)| + U*|f (£, u(t)~f, (8, 0(1)))|

< nBlluoll + 5 —— Lfltu )~fa(to(t))]

< nBllu—vII—i—ﬁ (lu=oll, d(u, Aw), d(v, Av), d(u, Av), d(0, Aw))

It follows that

(04

T
H(Au, Av)<nBl|lu- —
(Au, Av) <mBllul + s

E(lu—ol|, d(u, Au),d(v, Av),d(u, Av),d(v, Au)).

Consequently, we have for each (u,v) €I1;x 11, i€{1,2,---,p}, that

IP(H(AI’[?AU)’ ||M_U||, d(u’ AM), d(U,AU), d(l/l,AU), d(va Au)) <0
We may deduce similarly that the above inequality holds also in the case (u,v) € IT;y1 xI1;.
Apply Theorem 2.7 to obtain the desired result.

We next consider the existence of solutions to Eq. (2) in the case when an ordering C is defined
on ( in such a way that for u,v € Q,

uCvsu(t)<o(t) ae. te]j
It is easy to see that if (u,) is a nondecreasing sequence in QO which converges to some u. € Q,

then u,Cu, for all n€N. In the further step, we shall need in the initial state that a weak
solution to Eq. (2) exists.
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DEerINITION 2.15. Suppose that (Q,E) is a partially ordered set. A phweak solution for the
problem (2) (w.r.t. C) is a function u € (2 such that uCv for all v € Au.

CoroLLARY 2.16. According to Eq. (2), assume that there is an ordering T defined on Q. Suppose also
that we have the following properties:

1. t—F(t,u(t)) is measurable for each u € Q;
2. there exists a function & : Ri — R such that

H(F(t,u(t)), F(t,0(t))) <&(lu-o||,d(u, Au),d(v, Av), d(u, Av),d(v, Au)) whenever u,ve€ Q are
comparable;

3. Ais proximal and nondecreasing;

4.  aweak solution ug € Q to the problem (2) exists.

If the function i : RS — R. given by

o

o ) i= f—nBlym
Y(ty, b, -+, te) = ti—nBty Fat D)

E(ta, t3, by, 15, 16)

is in the class W, then the problem (2) has at least one solution.
Proor. As in the proof of the previous theorem, we may similarly derive that
Y(H(Au, Av), lu=o||,d(u, Au), d(v, Av), d(u, Av),d(v, Au)) <0

whenever u,v€( are comparable. Therefore, we may apply Corollary 2.10 to obtain the
desired result.

3. Fractional set-valued systems in modular metric spaces

In this section, we shall consider on fixed point inclusions that are studied within a modular
metric spaces. With certain conditions, we can extend Nadler’s theorem to the context of
modular metric spaces successfully. A modular metric space is a relatively new concept. It
generalizes and unifies both modular and metric spaces. It is therefore not necessarily
equipped with a linear structure.

Before we go further, let us first give basic definitions and related properties of a modular
metric space.

DErNtTION 3.1. ([23]). Let X be a nonempty set. A function w : (0,%0) x Xx X — [0, + ] is said to
be a phmetric modular on X if the following conditions are satisfied for any s,t >0 and
x,y,z€X:

1. x =yifand only if w(x,y) = 0 forall ¢ > 0.
2. wi(x,y) = wiy, x).
3. wer(x,y) Sws(x,z) + wi(z, ).
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Here, we use w;(-,-) == w(t, -,-). In this case, we say that (X, w) is a phmodular metric space.
Notice that the value of a metric modular can be infinite.

Since we are focusing on the generalized metric space approach, we shall not be discussing
about modular space theory here. Suppose that (X, d) is a metric space, then w;(-, ) :== d(-,-) is
a metric modular on X.

Now, we turn to basic definitions we need in this particular space. We start by giving the
topology of the space.

Let (X, w) be a modular metric space. By defining an open ball with B,,(x;r):={z€X; supsow;(x,z)
<r}, we can define a Hausdorff topology on X having the collection of all such open balls as a
base. The convergence in this topology can therefore be written by:

(xn) — Xosup wi(x,,x) — 0,
>0

where (x,)CX and X € X. With this characterization, we now have a good hint to define the
Cauchy sequence. A sequence (x,)CX is said to be phCauchy if for any given ¢ > 0, there exists
1, € N such that

Supw (X, X,) < €
>0

whenever m,n > n.. Naturally, X is said to be phcomplete if Cauchy sequences in X converges.

We next give another route of investigation of fixed point inclusion in modular metric spaces.
This time, we shall apply more on analytical assumptions. Briefly said, we shall use the
contractivity assumptions.

Before we could stomp into the main exploration, we need the following knowledge of metric
modular of sets.

We write C(X) to denote the set of all nonempty closed subsets of X. For any subset ACX,, and
point x € X, we denote w;(x, A) := inf, c swi(x, y).

Given two subsets A,BeC(X), define w;(A,B) := sup,. o AW(x,B). Most importantly, the
Hausdorff-Pompieu metric modular W,(A, B) := max{w(A, B),w;(B, A)}.

LEMMA 3.2. Let (X, w) be a modular metric space, A € C(X) and x € X. Then,
wi(x,A)=0 for all t >0 & xeA.

DErNITION 3.3. Given a modular metric space (X, w) and an arbitrary point x € X. A subset YCX
is said to be phreachable from x if

inf sup w(x,y) =sup w(x,Y) < oo.
YEY 10 >0

This lemma gives a simple criterion of when the reachability holds.
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LEMMA 3.4. Let (X, w) be a modular metric space with w being l.s.c., YCX a nonempty compact subset.
For a point x € X, if either inf, c ysup,_  w;(x,y) < o or sup,_w;(x,Y) < s, then Y is reachable from
X.

The following lemma is essential in showing the solvability of fixed point inclusion for
contractivity condition.

LEMMA 3.5. Suppose that Y, Z € C(X) are nonempty and z€ Z. If Y is reachable from z, then for each
e > 0, there exists a point y, € Y such that sup,_, w(z,y,) <sup,. , Wi(X,Y) + e.

3.1. Fixed point inclusion in modular metric spaces

Now, we state the notion of the contraction and the Kannan’s contraction. Make note that these
two concepts are not generalizations of one another.

DEFINITION 3.6. Let (X, w) be a modular metric space. A set-valued operator F : X=X is said to
be a phcontraction if there exists a constant k € [0, 1) such that

W(Fx, Fy) <kw:(x,y), (7)

forallt > 0and x,yeX.

If k is restricted in [0,1) and Eq. (7) is replaced with the following inequality:

Wi(E(x), F(y)) <k[wi(x, F(x)) + wi(y, F(y))]-

Then, we call F a phKannan’s contraction
Now, we present the main existence theorems.

THeOREM 3.7. Let (X, w) be a complete modular metric space with w being l.s.c. and F a contraction on
X having compact values with contraction constant k. Suppose that there exists a pair of points xog € X
and x1 € F(xo) with the following properties:

(A) the set {xo,x1} is bounded,
(B) F(x1) is reachable from x;.
Then, F has at least one fixed point.

Proor. Since F(x1) is reachable from x;, by using Lemma 3.5, we may choose x, € F(x1) such
that

sup wy(x1,x2) <sup wi(F(xq), F(x1)) + k.

>0 >0

From the above evidence and the hypothesis that {x¢,x1} is bounded, it comes to the follow-
ing inequalities:
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sup wi(x2, F(x2)) < sup w(F(x1), F(x2))

w>0 >0

< ksup wi(x1,x2)
£0

Klsup Wi(F(xo), F(x1)) + K
£0

IEsup wy(xo,x1) 4 K
£>0

7AN

IN

IN

0o,

By the assumptions, we apply Lemma 3.4 to guarantee that F(x,) is actually reachable from x,.

Inductively, by this procedure, we define a sequence (x,) in X, with the supplement from
Lemma 3.5, satisfying the following properties for all n € N:

Xy € F(xy-1),
sup wi (X, Xpi1) <sup Wi(F(xy-1), F(xn)) + K",
t>0 >0

F(x,) is reachable from x;,.

Hence, by the contractivity of F, we have

sup wi(xp, Xp11) < sup Wi(F(xp1), F(xy)) + K"

£>0 >0
< ksup w(xy-1,%,) + K"
>0
< klk sup wi(xp—2,X4-1) + S
>0
< kzsup Wi (X2, X)) + 2Kk,
>0

Thus, by induction, we have

sup wi(xy, Xp41) <K"'sup wy(xo, x1) + nk”.
>0 £>0

Moreover, it follows that

suprt(xn,an) <sup wt(xo,x1)Zk” + an” < oo,
>0

>0 yeN neN neN

Without loss of generality, suppose m,n €N and m > n. Observe that

sup wi(xy, X)) < sup[wm%”(xn,xﬂﬂ) 4+ ..+ wﬁ(xm,l,xm)}
) >0

< sup wi(xy, Xpg1) + ...+ sup wi(Xp-1, Xp)
>0 t>0
< > sup wy(xy Xni1)
S 10
< e

for all m > n>n, for some n, € N. Hence, (x,) is a Cauchy sequence so that the completeness of
X, implies that (x,) converges to some point x € X;,. Consequently, we may conclude from the
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contractivity of F that the sequence (F(x,)) converges to F(x). Since x, € F(x,-1), we have for
any t > 0,

0<w;(x, F(x)) Sw:(x, ) + Wi(F(xy1), F(x)),
which implies that w;(x, F(x)) = 0 for all t > 0. Since F(x) is closed, it then follows from Lemma
3.2 that x e F(x).

ExamrLE 3.8. Suppose that X = [0,1] and w : (0, 4 ) XXX X — [0, + o] is defined by
1
wi(x,y) = m|x_y|~

Clearly, w is an l.s.c. metric modular on X. Notice that any two-point subset is bounded. Now,
we define a set-valued operator F : X=X by

F(x) := {%71]

for every xe X.

Observe that F has compact values on X. Note that for each t > 0 and x,y € X, we have

Wy (Fx, Fy) = ﬁ |x-y| S%wt(x,y).

Therefore, F is a contraction with contraction constant k = 1. Moreover, it is easy to see that the
conditions (A) and (B) hold. Finally, we have that 1 is a fixed point of F (and it is unique).

Next, we shall show that the fixed point in the above theorem needs not be unique, as we shall
see in the following example:

ExampLE 3.9. Suppose that X is defined as in the previous example. Consider the operator
G : X3 X given by

x+1}

for each x € X.

Note that this operator G is also a contraction with constant k =} and takes compact values on
X. Also, the conditions (A) and (B) hold. However, every point in X is a fixed point of G. This
shows the nonuniqueness of fixed points for a set-valued contraction.

THEOREM 3.10. Replacing F in Theorem 3.7 with a Kannan's contraction yields the same existence result.

Proor. Since F(x1) is reachable from x4, by using Lemma 3.5, we may choose x, € F(x1) such that
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sup wy(x1,%2) <sup Wi(F(xo), F(x1)) + k.

t>0 t>0

supwy(x2, F(x2))

t>0
<

<
<

<

INA

S‘(-;P Wi(F(x1),F(x2))
Zsup wy(x1, F(x1)) + k sup wy(x2, F(x2))

>0 >0
k sup Wi(F(xo), F(x1)) + k sup w;(x2, F(x2))
>0 >0
k sup wy(xo, F(xq)) + k sup we(x1, F(x1)) + k sup w(x2, F(x2))
0

>0 t>0 >
k sup wi(xo,x1) + k sup wi(x1, F(x1)) + k sup wy(x2, F(x2)).

>0 >0 >0

Writing ¢ := ﬁ < 1, we obtain, from the boundedness of {x,x;} and the reachability of F(x1)

from x1, that

sup wy(x2, F(x2)) <& sup wy(xo,x1) + & sup wi(x1, F(x1)) < oe.
) ) )

Thus, from the assumptions and Lemma 3.5, we may see that F(x;) is reachable from x;.

Inductively, we can construct a sequence (x,) in X with exactly the same properties appearing
in the proof of Theorem 3.7.

Now, consider further that

Moreover, we get

sup Wi (X, Xp41)

£0
< sup Wi(F(x,1), F(x)) + K
£>0
< ksup wy(xy-1, F(x,-1)) + k sup wy (x,, F(x,)) + K
t>0 >0
< ksup wi(xp-1, F(x,-1)) 4 k sup wi (%, 1) + k"
£0 0
kl’l
sup wt(xn,xn+1) < Esup wt(xn—l,xn) +ﬁ<
0 £0
2 K" K"
< sup WX, Xy1) +—= +
3 t>0p t(Xn-2,X5-1) Ty
n
< & sup wy(Xpp, Xp-1) + 2 -
f>{})) t(Xn-2,Xp-1) e
< & sui:) wy(xo,x1) +né".

t>0

As in the proof of Theorem 3.7, the sequence (x,) converges to some x € X. Observe now that
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sup w(x, F(x))

>0

= sup wt({x}a F(x))

t>0

< sup wy({x}, F(xy)) + sup we(F(x,), F(x))
£0 0
= sup wy(x, F(xy)) + sup wi(F(x,), F(x))
t>0 >0
< sup wi(x, xy41) + sup Wi(F(x,), F(x))
£0 £0
< sup wi(x, xy41) + k sup wi(x,, F(x,,)) + k sup wi(x, F(x))
>0 t>0 t>0

= (1 +k)sup wi(x,x,41) + k sup wi(x, F(x)).

t>0 t>0

Thus, we have

1+k
sup wy(x, F(x)) Sl—i_k sup we (X, X,41).
t>0 >0

Letting 1 — oo to conclude the theorem.

3.2. Fractional integral inclusion

In this particular subsection, we shall use notations a bit differently than those of earlier
sections. This is due to conventional uses of variables and functions that is common to integral
and differential equations.

Suppose that ¥ is the interval mentioned in the previous section. Let us assume throughout
the section that the real line R is equipped with the metric modular

1
wHA{(x»y) = m|x_y|v

for A > 0 and x,y € R. Thus, for the space C(¥) of all continuous (in @®-topology) real-valued
functions on ¥, we shall use the metric modular

@ (@, ) = sup wf (p(b), (1),

teV

for A > 0 and ¢, ¢ € C(¥). Note that both @™ and w“") satisfy the Fatou’s property. Also note
that the set R is second countable, i.e., it has a countable base, w.r.t. a)]R—topology. Moreover, it
is clear that the set {p,} is bounded w.rt. w“"), for any ¢,iy€C(W). Suppose that
F:WxR — 2% is a set-valued operator with nonempty compact values and u € C(¥). We shall
use the following notation to explain the collection of integrable selections:

Se(u) = {f €L (W, u); f(t) €F(tu(t))aeteV}.

It is clear that Sp(u) is closed. Next, for each i€{0,1,-,N}, NeN, assume that §, : W — R is
continuous and 7; : ¥ — R, is a function with 7;(f)<t. We write B := maXg<i<nsup, . yp;(t)-
The main aim of this section is to consider the fractional integral inclusion:
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u(t)—zl\]:ﬁi(t)u(t—fi(t)) eI E(tu(h)dt, ae(0,1]. (FII)
=0

In the above inclusion, the summation here is interpreted to be the delay term.
We shall define a set-valued operator /A : C(W) — 2¢) by

N

Au) == {wEC(W) s w(t) = Zﬁi(t)u(t—”[i(t)) + Iy, f (t,u(t))dt, fGS[:(M)}.

i=0
Note here that for any ¢ € C(¥), we have /A(¢) is reachable from ¢ w.r.t. o). To restrict the
operator /| with some nice property, we assume that Sg(u) is nonempty.
LEMMA 3.11. The operator A given above is compact valued if Sp(u) is nonempty.

Proor. For the proof, we shall show the compactness by its sequential characterization. Sup-
pose that u € C(¥) and (w,) is an arbitrary sequence in /A(u). By definition, there corresponds a
convergent sequence (f,) in Sp(u)CF(-, u(-)) satisfying

wa(t) = Y _Bi(Bult-Ti(t)) + Lyf (. u())dt

The conclusion is then followed.

Now, we shall state now the solvability result for the problem (FII). It is clear that u € C(¥)
solves Eq. (FII) if and only if u is a fixed point of A.

THEOREM 3.12. Suppose that F defined above is compact-valued and Sg(u) is nonempty. Assume further that

(F1) for any given u,ve C(W) and a selection f € S¢(u) of F, there corresponds a function f € Sp(v)
such that

{wﬂf(f( u(t)).f (t.o(h)) = W (f, (tu(h). F(t,o(h))),
E(F(tu(h)).f (o)) <Lag™ (u,0),

forall teV;

(F2) BHELEAHLT. < 1.

Then, A has a fixed point.
Proor. For each u,v e C(V), we may choose, from the assumption, functions f,,f, such that
f1€Sk(u),
f2€S5k(v),
Wy (f1 (tu(D). f,(t (1)) = @i (fy (£ u(t)), F(t,0(1))),
W3 (Fy (b u(h).fo(t ,v<t>>> <Lay™ (u0),
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for each t € W. Consider the two functions w; € A(u) and w, € A(v), respectively as follows:

Zz oﬁ u(t=i(t)) + Iy f (£ u(t))dt,
Zz oﬁ o(t=Ti(t)) + Lyf, (£, 0(f))dt

Now, consider the following computation:

wj (w1 (1), wa(t))
N
< D Bihwl (u(t-ni(t)), o(t-i(t))
i=0

+ S F (8 u() At T8, (£ u(h)dE)

< (N+1)Bwg " (1,0) + Tk (f (1 ult)). f (£ 0(1))
< (N+1)BaS" (u,0) +%w;‘f’>(u,v)
EERLIDES )
It follows that
05" (4. A [T o0,

The proof ends here by applying Theorem 3.7.
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Abstract

In this chapter, the connection between general linear interpolation and initial, bound-
ary and multipoint value problems is explained. First, a result of a theoretical nature is
given, which highlights the relationship between the interpolation problem and the
Fredholm integral equation for high-order differential problems. After observing that
the given problem is equivalent to a Fredholm integral equation, this relation is used in
order to determine a general procedure for the numerical solution of high-order differ-
ential problems by means of appropriate collocation methods based on the integration
of the Fredholm integral equation. The classical analysis of the class of the obtained
methods is carried out. Some particular cases are illustrated. Numerical examples are
given in order to illustrate the efficiency of the method.

Keywords: boundary value problem, initial value problem, collocation methods, inter-
polation, Birkhoff, Lagrange, Peano, Fredholm

1. Introduction

The relationship between interpolation and differential equations theories has already been
considered. In Ref. ([1], p. 72), Davis observed that the Peano kernel in the interpolation
problem

y@a)=a, yb) =4, a,b,a,pER, (1)

is the Green’s function of the differential problem

I m EC H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [{cc) X IR
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¢"(x) = f(x)
¢(a) = ¢(b) =0

where ¢(x) = y(x)-P; [y](x), being P;[y](x) the unique interpolatory polynomial for Eq. (1).

He observed that “these remarks indicate the close relationship between Peano kernels and Green’s
functions, and hence between interpolation theory and the theory of linear differential equations.
Unfortunately, we shall not be able to pursue this relationship” [1].

Later, Agarwal ([2], p. 2), Agarwal and Wong ([3], pp. 21, 151, 186) considered some separate
boundary value problems and the related Fredholm integral equation, using only polynomial
interpolation, without taking into account the related Peano kernel. They used Fredholm
integral equation in order to obtain existence and uniqueness results for the solution of the
considered boundary value problems.

Linear interpolation has an important role also in the numerical solution of differential prob-
lems. For example, finite difference methods (see, for instance, [4-6] and references therein)
approximate the solution y(x) of a boundary value problem by a sequence of overlapping
polynomials which interpolate y(x) in a set of grid points. This is obtained by replacing the
differential equation with finite difference equations on a mesh of points that covers the range
of integration. The resultant algebraic system of equations is often solved with iterative pro-
cesses, such as relaxation methods.

Many authors (see [7-10] and references therein) used linear interpolation with spline func-
tions for the numerical solution of boundary value problems.

Here, we take into account a more general nonlinear initial/boundary/multipoint value prob-
lems for high-order differential equations

xel=ab], r21

{ ¥ ) =1 (x.y() @

Lilyl(x) =w;, i=0,...,r-1, x€l
where y(x) = (y(x),y (x),...,y7(x)), 0 < g < r,y € 7"(I), and L; are r linearly independent
functionals on "(I). Moreover, we suppose that the function f : [a,b] x RI™" — R is continu-
ous at least in the interior of the domain of interest, and it satisfies a uniform Lipschitz

condition in y, which means that there exists a nonnegative constant A, such that, whenever
(% Yor Yp» -+ yq) and (x,Y,, ¥y ---» yq) are in the domain of f, the following inequality holds

q
\f(xvyo’yl’~~-qu)_f(x’yo’y17“w%)‘ < AZ’%F?}J' )
k=0

If Lily] = CD(y(a)),i =0,...,7-1, then (2) is an initial value problem (IVP); if L;[y] = (D(y(a),

y(b)),i =0,...,r-1, then (2) is a boundary value problem (BVP); if L;[y] = (D(y(x]-)) ,i=0,...,
r=1,j =0,...,m 2 2, then (2) is a multipoint value problem (MVP).
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In this chapter,

- we assume that the conditions for the existence and uniqueness of solution of problem (2) in a
certain appropriate domain of [a,b] x R7™ are satisfied and that the solution y(x) is differen-
tiable with continuity up to what is necessary;

- we get the Fredholm integral equation related to problem (2), by polynomial interpolation
and the Peano kernel of the linear interpolation problem L;[y](x) = w;, i = 0,...,r=1. In this
way, we point out the close relationship between Green’s function and Peano kernel;

- then, we construct a class of spectral collocation (pseudospectral) methods which are derived
by a linear interpolation process.

The reason for which we prefer collocation methods is their superior accuracy for problems
whose solutions are sufficiently smooth functions. Recently, Boyd ([11], p. 8) observed that
“When many decimal places of accuracy are needed, the contest between pseudospectral algorithms and
finite difference and finite element methods is not an even battle but a rout: pseudospectral methods win
hands-down.”

2. The Fredholm integral equation for problem (2)

We consider the general differential problem (2), and we prove that it is equivalent to a
Fredholm integral equation.

Proposition 1[1, p. 35] The linear interpolation problem
Li[P](x) = w;, wi, €ER, i=0,...,r-1, P€EP, 1, x€I 4)

with Li, i = 0,...,r=1, linearly independent functionals on ~"(I), has the unique solution

wo

w1

Li[x] o G= Ll s e ©)

Wr-1

Proof. Since the L;, i =0,...,7-1 are linearly independent, the result follows from the general
linear interpolation theory.
Proposition 2 If ye «"(I) and L;[y|(x) = w;, i = 0,...,r=1, x €1, then

y(x) = Praly](x) + JbK’,‘(x, f) y(”(t) dt, Vx €l fixed, (6)

with Li[y] = Li[Pya], i = 0,...,7=-1, Pra[y](x) = Py (x), and
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K:(x.f) =

e Cal! 0

where index x means that K (x, t) is considered as a function of x.

Proof. It follows by observing that P, [(x)g](t) = (t)’:p j=0,...,r-1 and from Peano kernel
Theorem [1].

Theorem 1 With the above notations and under the mentioned hypothesis, problem (2) is equivalent to
the Fredholm integral equation

y(2) = Pralye) + | K (100 ®)

Proof. The result follows from the uniqueness of the Peano kernel and from Propositions 1 and 2.
Corollary 1 It results L;[K;] = 0,i = 0,...,r-1.

From Theorem 1, general results on the existence and uniqueness of solution of problem (2) by
standard techniques [2, 3] can be obtained. In the following, we will not linger over them, but
we will outline the close relationship between interpolation and differential equations. Partic-
ularly, we will use linear interpolation in order to determine a class of collocation methods for
the numerical solution of problem (2).

3. A class of Birkhoff-Lagrange collocation methods

Integral Eq. (8) allows to determine a very wide class of numerical methods for Eq. (2), which
we call methods of collocation for integration.

Let {x;};.; be m distinct points in [a,b] and denoted by I;(t), i =1,...,m, the fundamental
Lagrange polynomials on the nodes x;, that is
W (t) m

et et = ) ©)

Li(t)

Theorem 2 If the solution y(x) of Eq. (8) isin " (I), then

() = Praly)(2) + 3, (1150 + Ty ) (10)
where
b
Dy in() = J KE(e, L) db, = 1p0om, (1)

and the remainder term T, ,(y,x) is given by:
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1 b
Tron(03) =1 | KDty (&), (12)

being &, a suitable point of the smallest interval containing x and all x;, i =1,...,m.

Proof. From Lagrange interpolation
Yy (@) =D @)y (xi) + Ru(y.x) (13)

where

_ 1
Ryn(y,x) = —om(tly"™ (&) (14)

is the remainder term. From (2), f(x,y(x)) = Z:ﬂ: 1l,'(x)y(’> (x;) + Ruu(y, x). Then, from Theorem
1, inserting Eq. (13) into (8), we obtain Eq. (10).

Theorem 2 suggests to consider the implicitly defined polynomial
m
o8 = Pl 1) + D 0 (36,050 (15)
i=1

For polynomial (15), the following theorem holds.

Theorem 3 (The main Theorem). Polynomial (15), of degree r + m-1, satisfies the relations

L,-[y,’m](x) = w;, i=0,..,r1, xel, w,eR

U0n0) =f (59,()) =L, (16)

that is, y, , (x) is a collocation polynomial for Eq. (2) at nodes xj, j = 1,...,m.

Proof. From (15), Corollary 1 and the linearity of operators L;, we get Li[y, ,|(x) = w;, i =0,...,

r-1. By Theorems 1 and 2, we obtain y"")(x;) = ygr}ﬂ (x;), and from Eq. (11), pg’m(x) = l;(x).
Hence, relations (16) follow.

Remark 1 (Hermite-Birkhoff-type interpolation). Theorem 3 is equivalent to the general Hermite-
Birkhoff interpolation problem [12]: given w; €R, i =0,...,7-1, and a; €R, j = 1,...,m, determine, if
there exists, the polynomial Q(x) € .7 1,1 Such that

L,[Q] = w;j, i:O,...,V—l
Q) =aj, j=1,..m xel (17
Remark 2 In the case of IVPs, for each method (15), we can derive the corresponding implicit Runge-
Kutta method. For example, for r = 2, let b = xo 4+ h and x; = xo + c;h with ¢; € [0, 1). With the change
of coordinates x = xo + th, t €10, 1], we can write
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t (r
Pran® =it t 10 =02 [ asir, 1ts) =
i, A olo k=1Ci—Ck
k#i

Ci

Putting f(xi,y, ,(x:)) =y, ,(xi)=Ki, aij = p, ;(x;) = hZJ (ci=s)1;(s) ds, we have
0

=

m
K; :f (JCO + C,’h,]/o + y,oth + Zai,]‘Kj)
and

Y1 (D=Y, (X0 + th) = yo + ¥ oth + 1Y p, ;. (x0 + t)K;
i=1

y'l(t)sy'r,m(xo + th) = yroh + hzzp,r,i,m(xo + th)Kz
i=1

m. - S—C

(18)

(19)

(20)

Egs. (19) and (20) are the well-known continuous Runge-Kutta method for second-order differential

equations. Particularly, for t = 1 we have the implicit Runge-Kutta-Nystrom method.

3.1. A-priori estimation of error

In what follows, we consider the norm

IFl = malef@(m, Vfe » ().
=0

ast<b
Moreover, we define

Q, = lepﬂmll, F(x) = JK"(x t)dt, H= maX\R,,,(y, 1],

a<t<bh

where R, (y, t) is defined as in (14).
Theorem 4 With the previous notations, if AQ,, < 1, then

=y | H|F|
]/ yr,m - 1_AQm

Proof. By deriving Egs. (10) and (15), s times, s = 0,..., 4, we get

v ), Zp,,m [(xi,y<xi>)—f(xi,y,,m<xi>)}+%j:1<’;<x,t>ﬁm

It follows that

21

(22)

(23)

(24)



Relationship between Interpolation and Differential Equations: A Class of Collocation Methods
http://dx.doi.org/10.5772/66995

IN

m q
@)@ <P @A Iy (x)-y®, ()l + H [FO ()]
i=1 k=0

m B (25)
<Aly-y, 1> p¥, (@) + HIFO (x)].
=1

From this, we obtain inequality (23).

4. Algorithms and implementation

To calculate the approximate solution of problem (2) by polynomial y, , (x) at x €I, we need the

values yﬁf}n (xk), k=1,...,m, 5 =0,...,q. In order to get these values, we propose the following

algorithm:

- Put y,(f) = yﬁffﬂ (xx), k=1,...,m,5s=0,...,q and consider the following system

yl((s) = PSil W) (xx) + Zpisf (ee)f (xi, ;) (26)

i=1

k=1,..,m,5=0,...q, where y, = (y,,y/ 1, ....y").

System (26) can be written in the form

Y-AF(Y) =C (27)
where
Ay O 0
0 - :
A= : 0 (28)
0 0 Aq m(q+1) xm(q+1)
with
~(s)
ﬁ(lsi A1
As=| i Zzl(f) = pf)-(x,'), §=0,...,q, (29)
® =6 j j
aml am,m
mxXm
Y = (Yo,...Y,)! Y= (v, ...y (30)
0s--5 Ig m(g+1)x1> s yl ""’ym ’
T T
F(Y)= (Fu,...Fu)", Fy={(f1.-f) > fi=f(xiy,), (31)
q
Bo = (PO )(xo), s PAIG) ) C = (BovoossBy)pgnyr (32)

From Eq. (27), we get
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Y = AF(Y) +C, (33)

or, putting G(Y) = AF(Y) + C,

Y=G(Y). (34)
For the existence and uniqueness of solution of system (34), we can prove, with standard
technique, the following theorem.

Theorem 5 If T = Al|All.. <1, system (34) has a unique solution which can be calculated by an
iterative method

Ydsr =G((Vn))s  v20 (35)

with a fixed (Y,), € R™Y and G(Y,,) = AF(Y,) + C.
Moreover, if Y is the exact solution,

Tv
1-T

(Y)ysg=Y o € == 1 (¥o)y=(Yor)o e - (36)

Remark 3 If fis linear, then system (27) is a linear system which can be solved by a more suitable method.
Remark 4 System (27) can be considered as a discrete method for the numerical solution of (2).
Remark 5 Method (15) can generate the polynomial sequence

(yr,m(x))v = P”‘l [yr,m}(x) + Zpr,i,m(x)f(xi’ (yr,m(xi))v—])7 (yr,m)() = P'_l L]/] (X) (37)

i=1

which is equivalent to the discretization of Picard method for differential equations.

4.1. Numerical computation of the entries of matrix A

To calculate the elements &f’s,z of the matrix A in Eq. (27), we have to compute the integrals
TR
P = 2 | K G d (3)
X a

for x = x;. Integrating by parts, it remains to solve the problem of the computation of

xi X/‘

li(t)di', Fik(x]-) = J Fi,k_l(t)dt k= 2,...,1’1 (39)

a

Fia(xj) = J

a

b b
Mi(xj) = J Li(t)dt, Mi(xj) = J M (t)dt  k=2,...,n (40)

X %

i,j = 1,...m. To this aim, it suffices to compute
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x}:tk t-1 t
J J [ Tm’i(t)dtdtl"-dtk_l (41)

c c Jc

wherec=aorc=0b, rop(t) =1,

T, i(F) = (t=x1) - (F=xi1) (F=Xig1 ) -+ (=) i=1,2,...,m. (42)
For the computation of the integral (41), we use the recursive algorithm introduced in Ref. [13]:
for each i =1,...,m, let us consider the new points z]@ =yx; if j <1, and z}” =xjy1 if j21.
Moreover, let us define gg’)u(x) =x—cand fors=1,...,m-1

g(i){ (x): = tﬂ... " t—zgi> t—z(zi> t—zgi) dtdh'"dt'—l- (43)
e =] (") (#28") (127

c c

(x—)
Jil

We can easily compute ggi J(x) = . For the computation of Eq. (43), the following recur-

rence formula [13] holds

gii;,c(x) = (x_zga)g:gl—)lﬁj,c(x)_jggl—)LjJrLc(x)' (44)
Thus, if W; = ﬁ (xi~x¢), then
k=1, ki
(@) (i)
St joa(X7) St b (X7)
Fiyj) = =560, M) = (1) =5 (43)

Remark 6 An alternative approach for the exact computation of integrals (39) and (40) is to use a
quadrature formula with a suitable degree of precision.

4.2. Outline of the method
Summarizing the proposed method consists of the following steps:

1. determine the interpolation polynomial P, [y|(x) satisfying the boundary conditions and
compute the Peano remainder;

2. approximate y'")(x) by Lagrange interpolation on a set of fixed nodal point;
3. compute the elements of matrix A (28) and solve system (26);

4. obtain polynomial (15).

5. Some particular cases

Now we consider some special cases of problem (2), and for each case, we determine P, [y](x)
and K7 (x, f). We also show how the proposed class of methods includes the methods presented
in previous works [12-24].
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5.1. Initial value problems

In the case of initial value problems, in Refs. [13, 17, 25], problem
Y (@) = f(x.y(x)) (46)

has been considered, while in Ref. [23], the authors introduced the more general equation

v @) = f(xy@).y @),y @), gl (47)
In both cases
Pralyl(x) = ) o (48)
and
K¥(x,t) = (r—ll)! (x-1)". (49)

If {x;}!", are the zeros of Chebyshev polynomials of first and second kind, the explicit expres-
sion for polynomials p, ; , (x) can be obtained [13, 17, 25] for some values of r.

Particularly, forr = 1 and r = 2, in the case of zeros of Chebyshev polynomials of first kind, we get
180T (x) Tealx) (D! 2i-1
Prin(®) = mkz_;{ k1 k1 R | <2mk”>
1 2i-1
+— [x +1+ cos (l— n> (xz—l)}
m 2m

where Ty1(x) and Ty41(x) are the Chebyshev polynomials of the first kind and degree k-1 and
k + 1, respectively, and

(50)

11(2i-1) .
1 {(x n 1)2 . x3—3x—2 [ cos o + x cos 1t(2i-1)

Pz,i,m(x) - 2 3 p”

18 kn(2i-1) [ Tepa(x) Ty (x)
+§kz:;cos o {(k -2

}. o1

Tia(x)  12k(-1)°  4(-1)f
D2 Ke-ea) e © Y

In the case of zeros of Chebyshev polynomials of second kind
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2 o k+Dmi 1 ‘
Prin(®) = o S0 g D sin o g [Tea () + () (52)
and
(x) = 1 . LT (x+ 1)
pz.i,m —m+1511’1m+1 Slnm+1

" . (53)

Zl krti [Ty (x)  Tia(x) Y +£ (-1)*

2k [kl K P

In Refs. [13, 25], the authors presented the corresponding implicit Runge-Kutta methods too.

In Ref. [26], Coleman and Booth used also a polynomial interpolant of degree n for y”, but they
started from an identity different to Eq. (8) and derived a collocation method for which the

nodes {x;};"; are the zeros of Chebyshev polynomials of second kind.

5.2. Boundary value problems
5.2.1.Caser =2n

For n = 1, for the exact solution y(x) of the second-order BVP

y'(x) =fley).y (), y(-1) =y, y(1) =y, (4
€[-1,1], it is known that
) =Y I [,y ) (59)
where
(GRaD G DR

3 = 56
A T o 0

By applying method (15), we get [16]
o) =PI S S (v ) (57)

1
withp, ; (x) = J K3 (x, t)l;(t)dt .
-1

If x; = cos i=1,...,m, we obtain explicitly the expression of p, ; , (x) [18]

TEn
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1 o |NSGe(x) . ki 2 . TU
pr’i’m(x)fm_Fl sin -~ ; P smm+1+(x 1)smm_~_1 (58)
where
2x even k
T Tr

Gyla) = 11 _Tirl) ey (59)

+ k35— oddk.

-1

The same method has been presented in Ref. [24], where also stability has been studied.
Now assume [a,b] = [0,1] and r > 2. Several types of boundary conditions can be considered.

-Hermite boundary conditions [22]:

yW0)=ay, yP(1)=p,, h=0...,n-1 (60)
with ay, B, h = 0,...,n-1 real constants.
In this case, P,; is the Hermite polynomial of degree 2n-1
n-1 ) .
Poa[y)(x) = Y (" (0)Ha (x) + ¥ (1)Ha(x)) (61)
i=0
with
i1 -l 4 s=1
H () = £07%) ( )xs
il
5=0 n-1
(62)
xn 1—X ini-1/n + S—l
Hp(x) = 21120 (1)
B3\ onl
The kernel is
n-1 2n-i-1
(-1)
H; <t<
— (2n-i-1)! 1) Ostsx
K;n (.X, t) = 17—1 2n-i-1 (63)
- &H‘z(x) x<t<1.
— (2n-i-1)!
-Lidstone boundary conditions [19]:
y ) =ay, y?1)=p, h=0,.,n-1 (64)

where ay,,f,, h = 0,..., n are real constants.
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In this case, P, is the Lidstone interpolating polynomial [3] of degree 211

n-1

Parcaly]() = Y [¥® 0)Ax(1=x) + ¥ (1) Ax(x) (65)
k=0

where Ay (x) are the Lidstone polynomials of degree 2k + 1 [3], and the function K3, (x, t) is

w1 pn2k-1
Z( 22k (1=x) t<x
ICHEER S 1 (g2 (66)
(2n—2k il oo M) x<t.
522 Caser=2n+1
If we consider the following boundary conditions
y(0) =ao, yPVO0) =, y* V(1) =B, h=1..n (67)

with &y, ay,p,, h = 1,...,n real constants, then P, is the complementary Lidstone interpolat-
ing polynomial [27] of degree 21 [3, 24, 27, 28].

Pab) = y0) + 3 12V 0) (ox()-1-0)) + ¥V () (0040 (@8)

k=1

where vy (x) are the complementary Lidstone polynomials of degree k [27]. The kernel is

t2n n t2n—2k+1

@n)l & n2k 1 1)!
(1_t) 2n-2k+1

PN e GO et

(vk(l—x)—vk(1)> F<x

Koyt (x,1) = (69)

In Ref. [19], the proposed method applied to problem (2) with conditions (64) and (67),
respectively, has been examined in detail.

5.2.3. Other special boundary conditions

If ¥ = n-1 and [a,b] = [0, 1], we can consider Bernoulli boundary conditions [21]
yO) =pp vy =pi ¥V =frgs k=Town2 (70)

with g, k = 0,...,n—1 real constants. The method has been examined in [14].

5.3. Multipoint boundary value problems

Let us now consider [15] the following conditions in I = [-1, 1]
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y“‘)(—l) =ar, k=0,..,s1, y(s)(xi) =w; i=1,...,rs. (71)
In this case
Pyl = S & - Do : 1 f’:wkpnk(x) , (72)
pry sl
with
poal) = || (-0t 73)

and [(t) are the fundamental Lagrange polynomials on the points x;,j = 1,...,7-s. P,-1(x) is the
unique polynomial of degree <r-1 which satisfies the Birkhoff interpolation problem

PS’f)l(—l) =, k=0,...,51, Pﬁi)l(xz) =w;, i=1,...,rs, s<r-1 (74)

with-1 < x3 < -+ < x< 1. Hence, the solution of problem (2), with multipoint condi-
tions (71), is

) = Pralyl(x) + || K2y 0, (75)

with P, [y](x) given in Eq. (72) and

X _ 1 r 1 r-1 r s-1
Ki(x,t) = =1 [(x ( >sZpr im . (76)

Observe that Eq. (74) is a special type of Birkhoff interpolation problem with incidence matrix
E = (e;;) defined by ejj = e;; = 1,j = 0,--,5-1,i = 2,...,7-s + 1, ¢;; = 0 otherwise and r > 1.

In Ref. [23], P,1[y](x) is presented in a little different form:

s-1 i =S
Pralyl(x) = Z ai + > wiEs(x, (%)) (77)
i=0 k=1

where Eq(x, lk(x)) :J J L (t)dt---dt.
-1 Ja

S

Let us now consider the following conditions [12, 20]

y(-1) = wo, y(1) = w y'(xi) = w; i=1,.,r2. (78)

The solution to the Birkhoff interpolation problem
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Py-1(-1) = wo, Pr1(1) = @, P (xi) = wy,

with-1 < x1 <+ < x,0 < 11is[12]

W + @) We1—wy |
Pralyl(x) = ==+ T Y gl
i=1
with
1
1,00 = | KiGeon(nar
-1
and

(t+DED

Ki(x,t) =

( +—ia(t 1)
X —
Y x <t

Hence, the solution of problem (2) is
1
) = Praly3) + || K2 (el 0,

with P,4[y](x) given in Eq. (80) and

(17 (14 )

Kﬂnwaém[@ﬁn S e ) D RHC IO

6. Numerical examples

Jwi

http://dx.doi.org/10.5772/66995

(79)

(80)

(81)

(82)

(83)

(84)

In this section, we present some numerical results obtained by applying method (15), which
we call CGN method, to find numerical approximations y, ,,(x) to the solution of some test

problems. In order to solve the nonlinear system (19), we use the so-called modified Newton
method [29] (the same Jacobian matrix is used for more than one iteration) and we use
algorithm (44) for the computation of the entries of the matrix, when polynomials p, ;  (x) are

not explicitly known. Since the true solutions of the analyzed problems are known, we con-

sider the error function ey, (x) = |y(x)-y, ,(x)|-

The maximum values of e,,(x) over the interval [4, b] have also been calculated by using Matlab,

particularly the built-in solvers

* odel5s, a variable-step, variable-order multistep solver based on the numerical differenti-

ation formulas of orders 1-5;
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¢ ode45, a single-step solver, based on an explicit Runge-Kutta (4, 5) formula, the Dormand-
Prince pair

for initial value problems, and the finite difference codes;

¢ bvp4c (with an optional mesh of 200 points) that implements the three-stage Lobatto IIla formula;
*  bvp5c that implements the four-stage Lobatto IIIa formula.

for boundary value problems.

All solvers have been used with optional parameters RelTol=AbsTol=1e-17.

Moreover, the powerful tool Chebfun [30] has been used.

Example 1 Consider the following linear ninth-order BVP [28]

YO (x) = -9¢" + y(x) x€[0,1]
y0)=1- j=0,..,4 (85)
y(1)=-je j=0,..,3

with exact solution y(x) = (1-x)e*.

The unique polynomial Pg(x) = Pgly](x) of degree 8 satisfying the boundary conditions Pg)(o) =1+
forj=0,...,4,and ng (1)=-jej=0,..3is

Pg(x) = 1—%;:2—1 3 % 4 —1 —? -
1321 g e (7L o 3 oo (6521 ) (86)
24 2 ’
From Eq. (7), we get
704 (x*—4x° + 6x5—4x7 + xB) + 56> (= + 10x°-20x° + 1527 —4x®)+
281%(x2-20x> + 45x°-36x7 + 10x3) + 817 (—x + 35x°-84x® + 70x7-20x%)+
. £8(1-56x° + 140x°-120x7 + 35x%) 0<t<x
Ki(x,t) = Tk —x8 4 8tx7-2812x0 + 56£3x + 70t (—4x> + 6x°—4x7 + x8)+ (87)

561> (10x°-20x° + 15x7-4x3) 4 28t°(-20x> 4 45x°-36x7 + 10x8)+
8t7(35x5-84x° + 70x7-20x3)+
£8(-56x° + 140x°-120x” + 35x8) x<t<1

Now we calculate the values of the integrals (39) by using Eq. (45), and we solve system (26). Thus, we
obtain the approximate solution (15) to problem (85).

Table 1 shows the numerical results. The absolute errors are compared with those obtained in Ref. [28],
where a modified decomposition method is applied for the solution of problem (85). The second and third
columns of Table 1 show the error, respectively, in the method in Ref. [28] and in the CGN method,
using in both cases polynomials of degree 12. The last column contains the error in the approximation
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by a polynomial of degree 14 using CGN method. As collocation points, equidistant nodes in [0,1] are
chosen. Amnalogous results are obtained by using Chebyshev nodes of first and second kind, and
Legendre-Gauss-Lobatto points.

The maximum absolute error max{e,(x)} on [0, 1] has also been calculated by using Matlab (Table 2).

x Method in [28] CGNm =4 CGNm=6
0.1 2.0e-10 1.45¢-14 0.00

0.2 2.0e-10 3.93¢-13 1.11e-16
0.3 2.0e-10 2.16e-12 9.99¢-15
0.4 2.0e-10 5.70e-12 2.00e-15
0.5 2.0e-10 9.27¢-12 2.55e-15
0.6 6.0e-10 1.00e-11 2.66e-15
0.7 1.0e-9 7.04e-12 2.44e-15
0.8 2.0e-9 2.70e-12 2.83¢-15
0.9 3.4e-9 2.98¢-13 4.91e-15

Table 1. Absolute error e,,(x) in MDM and CGN methods for problem (85).

Chebfun bvp4c bvp5c

1.46 1.55¢-12 4.44e-16

Table 2. Maximum absolute error in problem (85) using Matlab built-in functions.

x Cheb I Cheb II EqPts
m=4 m=6 m=9

0.1 1.11e-16 0.00 0.00

0.2 9.54¢-15 0.00 0.00

0.3 5.47¢-13 3.33¢e-16 0.00

0.4 9.45¢-12 1.11e-16 4.44e-16

0.5 8.50e-11 4.22¢-15 1.11e-16

0.6 5.05e-10 3.470-14 2.11e-15

0.7 2.25¢e-9 2.08¢-13 1.55¢-15

0.8 8.08¢e-9 9.68¢-13 1.44e-14

0.9 2.74e-8 3.72¢-12 9.18¢-15

1.0 6.64¢-8 1.22¢-11 1.37e-14

Table 3. Problem (88)—example 2.
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Example 2 Consider the fifth-order initial value problem [13]

y(0) = }/’(0) =0, y"(0)=-2 (88)

y® + (32x +120x)y = 160%™ x€[0,1]
y'(0)=0, y¥(0)=12

with solution y(x) = e

Table 3 shows the absolute error in some points of the interval [0,1] for CGN method in the case,
respectively, of Chebyshev nodes of first kind (Cheb I), of second kind (Cheb II) and in the case of
equidistant nodes (EqPts).

The maximum absolute errors calculated by using Matlab are displayed in Table 4.

Chebfun odel5s ode45

2.11e-11 1.35¢-13 1.33e-15
Table 4. Maximum absolute error in problem (88) using Matlab built-in functions.
Example 3 Consider now the following nonlinear problem [31]

. 2
y¥(x) = sinx + SIn 2x- (y”(x)) x€0,1]

y(0)=0 y(0)=1
y(1) = sin(1)  y(1) = cos(1)

(89)

with exact solution y(x) = sin (x).

This kind of problems models several nonlinear phenomena such as traveling waves in suspension
bridges [32] or the bending of an elastic beam [33].

Suspension bridges are generally susceptible to visible oscillations, due to the forces acting on the bridge
(including the force due to the cables which are considered as a spring with a one-sided restoring, the
gravitation force and the external force due to the wind or other external sources). f represents the
forcing term, while y represents the vertical displacement when the bridge is bending.

In the case of elastic beam, f represents the force exerted on the beam by the supports. x measures the
position along the beam (x = 0 is the left-hand endpoint of the beam), y and y' indicate, respectively,
the height and the slope of the beam at x. y' measures the curvature of the graph of y, and, in
physical terms, it measures the bending moment of the beam at x, that is, the torque that the load
places on the beam at x.

The considered boundary conditions state that the beam has both endpoints simply supported. Moreover,
the derivative of the deflection function is not zero at those points, and it indicates that the beam at the
wall is not horizontal.

Table 5 shows the comparison between the NMD method presented in Ref. [31] and the CGN method
with m =5 and m =9, respectively. The approximating polynomial of NMD method has degree 11,
while the polynomial considered in CGN method for m = 5 has degree 8.
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The maximum absolute errors calculated by using Matlab are displayed in Table 6.

x NMD [31] CGNm =5 CGNm =9
0.1 7.78¢-8 4.45¢-10 1.53e-15
0.2 2.72e-7 5.54e-10 3.02¢e-15
0.3 5.24e-7 8.95¢-11 7.77e-16
0.4 7.77e-7 2.03e-10 6.66¢-16
0.5 9.71e-7 3.32e-11 5.55e-17
0.6 1.05e-6 1.53¢-10 0

0.7 9.63e-7 9.48e-11 0

0.8 6.84e-7 5.18e-10 1.11e-16
0.9 2.71e-7 4.15e-10 0

Table 5. Error of NMD and CGN methods—problem (89).

Chebfun bvp4c bvp5c

1.67e-16 1.22¢-8 8.88e-16

Table 6. Maximum absolute error in problem (89) using Matlab build-in functions.
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Abstract

Computational modeling of nano-plasmonic structures is essential to understand their
electrodynamic responses before experimental efforts in measurement setups. Similar to
the other ranges of the electromagnetic spectrum, there are alternative methods for the
numerical analysis of nano-plasmonic problems, while the optics literature is dominated
by differential equations that require discretizations of the host media with artificial
truncations. These approaches often need serious assumptions, such as periodicity,
infinity, or self-similarity, in order to reduce the computational load. On the other hand,
surface integral equations based on integro-differential operators can bring important
advantages for accurate and efficient modeling of nano-plasmonic problems with arbi-
trary geometries. Electrical properties of materials, which may be obtained either experimen-
tally or via physical modeling, can easily be inserted into integral-equation formulations,
leading to accurate predictions of electromagnetic responses of complex structures. This
chapter presents the implementation of such accurate, efficient, and reliable solvers based
on appropriate combinations of surface integral equations, discretizations, numerical inte-
grations, fast algorithms, and iterative techniques. As a case study, nanowire transmission
lines are investigated in wide-frequency ranges, demonstrating the capabilities of the devel-
oped implementations.

Keywords: surface integral equations, multilevel fast multipole algorithm, surface
plasmons, computational electromagnetics

1. Introduction

As in all areas of electrodynamics, numerical study of plasmonic problems is essential to under-
stand interactions between electromagnetic waves and matter at the higher range of the spec-
trum. Applications include nanowires for negative refraction, imaging, and super-resolution
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[1, 2], and nanoantennas for energy harvesting, single-molecule sensing, and optical links [3-9],
to name a few. At optical frequencies, some metals are known to possess strong plasmonic
properties [10] that are crucial for a majority of such applications, while their accurate analysis
requires more than perfectly conducting models that are common in radio and microwave
regimes. In the infrared region, it may not be obvious when perfect conductivity or impedance
approximation methods can safely be used. Hence, it is desirable to extend the plasmonic-
modeling capabilities across wide ranges of frequencies until they converge to the other forms.
While, in the literature, experimental studies are often supported by differential solvers, their
applicability to complex problems is usually limited to small-scale and/or simplified models due
to well-known drawbacks, such as need for space (host-medium) discretizations that are accom-
panied with artificial truncations. Major tools of computational electromagnetics, that is, surface
integral equations [11, 12] employing integro-differential operators, are recently applied to
plasmonic problems with promising results for realistic simulations of complex structures
[13-23]. In fact, surface integral equations need only the discretization of boundaries between
different media, which usually correspond to the surface of the plasmonic object. In addition to
homogeneous bodies, they are also applicable to piecewise homogeneous cases, making it
possible to analyze structures with coexisting multiple materials [24].

Using surface integral equations, it is possible to solve plasmonic problems involving finite
models with arbitrary geometries, without periodicity, self-similarity, and infinity assump-
tions. When the object is large in terms of wavelength, fast and efficient methods, such as the
multilevel fast multipole algorithm (MLFMA) [25], are available to accelerate solutions [26-28].
For plasmonic modeling, effective permittivity values with negative real parts are required,
while they are already available via theoretical and experimental studies [10]. In the phasor
domain with time-harmonic sources, which is considered in this chapter, permittivity is a
simulation parameter with a fixed value at a given frequency. Then, frequency sweeps can be
performed by using the discrete values of the permittivity with respect to frequency. As
theoretical models, Drude (D) or Lorentz-Drude (LD) models are commonly used. While these
models (especially the Lorentz-Drude model) provide reliable permittivity values in wide-
frequency ranges, they deviate from experimental data at higher frequencies of the optical
spectrum. From the perspective of surface integral equations, it does not matter where the
permittivity values are obtained from. Besides, there is a great flexibility in geometric model-
ing, allowing sharp edges and corners, tips, and subwavelength details [29]. On top of these,
the background of surface integral equations provides self-consistency and accuracy-check
mechanisms, such as based on the equivalence theorem, enabling accuracy analysis without
resorting to alternative solvers [30].

From numerical point of view, surface integral equations bring their own challenges when they
are applied to plasmonic problems. In free space, plasmonic objects are naturally high-contrast
problems [15], leading to difficulties in maintaining the accuracy and/or efficiency. Consider-
ing the equivalence theorem, ideal mesh size for surface formulations can be selected based on
wavenumber of the host medium, where the impressed sources are located [26]. Therefore, the
source of the inaccuracy is not directly the discretization size, but a combination of geometric
deviation (for smooth objects), numerical integration, and imbalanced contributions from
inner/outer media. Efficiency of iterative solutions may also deteriorate due to imbalanced
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matrix blocks that lead to ill-conditioned matrix equations [31]. On the other hand, numerical
challenges are not only due to the high contrasts of plasmonic objects. The effective permittiv-
ity of a plasmonic medium is typically negative, which becomes increasingly large at lower
frequencies. In numerical solutions, integro-differential operators become localized with expo-
nentially decaying Green’s function. This localization is responsible for the evolution of
plasmonic formulations into perfectly conducting types, while this process may not be
achieved smoothly in discrete forms. Some traditional formulations break down due to dom-
inant inner contributions, which are difficult to compute accurately [32], if not impossible.
Classical singularity extractions may fail to provide smooth integrands, leading to increasingly
inaccurate near-zone interactions. While all formulations may be improved by manipulating
integrations into more suitable forms, our focus is to develop new formulations that reduce
into perfectly conducting formulations in the limit. All results presented in this chapter are
obtained by such a stabilized integral-equation formulation, namely a modified combined
tangential formulation (MCTF), which provides accurate results using the conventional Rao-
Wilton-Glisson (RWG) discretizations [33].

The chapter is organized as follows. In Section 2, we present surface integral equations, with
the emphasis on MCTEF. Discretization is presented in Section 3, including implementation
details that may be followed by the readers to develop their own solvers. MLEMA is further
discussed in Section 4, demonstrating how to accelerate numerical solutions. Finally, we
present an extensive case study, involving nanowire transmission lines in a wide range of
frequency to illustrate the significant differences between the analytical models and measure-
ment data for the permittivity values. In the following, time-harmonic electrodynamic prob-
lems are considered with exp(- iwt) time dependency, where i* = -1 and w = 27tf is the angular
frequency.

2. Surface integral equations

For deriving surface formulations, we consider a plasmonic object with permittivity/perme-
ability (¢,/u,) located in unbounded free space with permittivity/permeability (e, /u,)- Alter-

native surface integral equations can be obtained by considering the boundary conditions on
the surface of the object. In a general form, we have

[z“ zu} _ {J](r) _ [ ai X it X E™~ef x H™ "), (1)

Zy Zx» M CﬁXﬁXHinc+gﬁXEinC

where J = i x H and M = —n X E are the equivalent currents written in terms of the tangential
electric field intensity E and the magnetic field intensity H on the closed surface (r € S). In the
above, n is the unit vector outward the object, and E™ and H™ are the incident electric and
magnetic fields, respectively, created by impressed sources located in the host medium. At an
observation point on a locally planar surface (solid angle = 27), the combined operators can be
written as
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2y =-axax(an, T, +bn,Ty) + i x(eKpv,of Kev,p)~(e +f)I/2 )
Zpp = ixitx (aKpy, o + bICpy, ) ~(a-b)i X T /2 + i (en, T o=, ) )
Zo1 = —ixa X (cKpy, , + dICpy, p) + (c-d)i x L /2-1 X (ST?UTo_h’?pTP) 4)
Zyp =-axax(cn T, + dn;lTp) + i x (§Kpy, o= Kpv, p)—(g + 1)L /2, ®)

where {a, b, ¢, d, e, f, g, h} are generalized coefficients. In the above, 1, = /i, //€, is the intrin-
sic impedance of the host medium, whereas 1, = | /i, //€ is the complex intrinsic impedance

of the plasmonic object. The integro-differential and identity operators are derived as

T .AX}(r) = iku/sdt" (X(r) + % v X(r')V]gu(r, r) (6)
Koy o{X}(r) = dr X(r') x V'gu(r, r) (7)

PV, S
Z{X}r) = X(r) (8)

for re S, where PV indicates the principal value of the integral, V = x0/0x + 0/dy + 20/0z is
the differential operator, g, (r, r') = exp (ik,|r-r)/(4nt|r-r]) is the homogeneous-space Green’s
function, and k, = 21/A, = w, /[, &, is the wavenumber for u = {o, p}.

The conventional formulations can be obtained by setting the generalized coefficients to
suitable values such that the outer and inner problems are coupled while the internal reso-
nances are removed. By using nonzero values for {e, f, g, h} while setting {a, b, c, d} to zero
leads to N-formulations, such as the Miiller formulation and the combined normal formulation
[12]. These formulations contain the identity operator Z, which usually dominates the matrix
equations when Galerkin discretization is used. Therefore, matrix equations derived from N-
formulations are generally easier to solve iteratively. On the other hand, T-formulations are
obtained by selecting {a, b, ¢, d} nonzero, while inserting zero values for {e, f, g, h}. The Poggio-
Miller-Chang-Harrington-Wu-Tsai formulation [34] and the combined tangential formulation
[12] are among the well-known T-formulations. As opposed to N-formulations, T-formulations
contain either the rotational identity operator 71 xZ or no identity operator at all (when a =b
and ¢ = d). Hence, using a Galerkin discretization, T-formulations do not contain a dominant
identity operator and they produce matrix equations that are potentially ill-conditioned.
Finally, when a mixture of coefficients are used from the sets {a, b, ¢, d} and {e, £, g h}, mixed
formulations are obtained. For example, the JM combined-field integral equation [35] is a
mixed formulation when all coefficients are nonzero. Obviously, mixed formulations always
contain a dominant identity operator (due to either Z or n xZ).

Discretization is an important stage of numerical solutions. All formulations described above
can be discretized in different ways such that the derived matrix equations can be well
conditioned, and, at the same time, they may produce accurate results. On the other hand,
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using a Galerkin scheme employing the same set of basis and testing functions, N-formula-
tions and mixed formulations usually produce better-conditioned matrix equations than
T-formulations, as mentioned above. In addition, when low-order discretizations are used,
the existence of a dominant identity operator is critical in terms of accuracy. It is well known
that a discretized identity operator acts like a discretized integro-differential operator with a
Dirac-delta kernel [36]. Therefore, a low-order discretization of the identity operator may
produce large errors, leading to inaccurate results if the operator is directly tested such that it
dominates the matrix equation. RWG discretizations of N-formulations and mixed formula-
tions have this serious drawback, making them less preferred (despite their faster iterative
solutions) in comparison to T-formulations in many applications. The tradeoff between the
efficiency and accuracy has been resolved in many studies [37] by improving the accuracy of
N-formulations and mixed formulations via alternative discretizations and/or by improving
the efficiency of T-formulations via preconditioning.

In the context of plasmonic problems, further challenges appear in surface formulations. First,
considering that their permittivity values can be written as ¢, = &,(-¢r + i¢;), where both &g
and ¢; are positive, plasmonic objects are naturally high-contrast structures in free space
(except for very high frequencies for which —eg — 1). Then, the matrix equations derived from
surface formulations can be unbalanced, leading to efficiency and/or accuracy problems. For
planar discretizations of curved surfaces, fine discretizations are needed to capture the geom-
etry of the object. At lower frequencies of the optical range, ¢r can be very large (as large as
1000 and beyond) such that the localization of the operators as 7, —-Z/2 and
Kpv,,-L /2 — =T /2 when eg — o leads to numerical problems if the blocks are not weighted
properly (that occurs in many conventional formulations). While the well-known perfectly
conducting models may be used at lower frequencies, it may not be obvious where the
plasmonic model can be omitted for a given structure. Hence, it is desirable to extend the
applicability of the surface integral equations in wide-frequency ranges until other kinds of
approaches can safely be used. In a recent study, we show that a new tangential formulation,
namely MCTE, provides reliable and convergent solutions in wide ranges of frequencies of the
optical spectrum [32]. Considering the general form, MCTF is obtained by usinga = b = 1 and
¢ =d = n,n,, while setting e = f = ¢ = I = 0. Therefore, we obtain

ZNT = —ixax (n,To+n,T)p) ©)
ZVF = axax (Kpy, o + Kpy, p) (10)
ZHT = —hxaxn,n, (Kev, o + Kev, ) (11)
ZHT = —ixax (0, To +1,T)- (12)

It can be observed that MCTF is completely free of the identity operator, and it can be shown
that it smoothly turns into the electric-field integral equation for perfectly conducting objects
as the frequency drops and ¢r goes to infinity. In the following, we consider numerical
solutions of plasmonic problems formulated with MCTF.
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3. Discretization

Similar to the diversity of surface integral equations, discretization can be performed in
alternative ways. Using a Galerkin scheme, the basis and testing functions are selected as
the same set of N functions locally defined on the surface. As a popular choice for triangu-
lar discretizations, which is also considered in this chapter, the RWG functions are defined

as [33]
i (r-rm), reS
2An1 r=rp), ¥ nl
fur)=9 L ) (13)
A, (ro—r), Fre€Sp

0, ré&sS,.

Each RWG function is located on a pair of triangles sharing an edge. In the above, [, represents
the length of the main edge, A,; and A, are, respectively, the areas of the first (S,;) and the
second (S,) triangles, and r,,; and r,, represent the coordinates of the nodes opposite of the
edge. The RWG functions are divergence conforming and their divergence is finite every-
where, that is,

Anl ) re Sﬂl

Vefur) =9 _ L (14)
A, s resS,,
0, ré&S,

while the charge neutrality is satisfied locally as A1l /Am—Anly /A = 0.

By selecting the basis and testing functions (b, and t,, for {n, m} = {1,2, ..., N}) as the same set
of the RWG functions, MCTF can be discretized as

[ZM ZM] ] [M] 13
712\/{CTF 712\/£CTF ay wg/ICTF

where a; and ay are vectors containing complex coefficients to expand the current densities.
The matrix elements and the elements of the right-hand-side vector are derived as

—=MCTF =T =T
le = 770 To + ’7,; Tp (16)
—MCTF —T —T
le = _KPV, U_KPVA, P (17)
—MCTF —T —T
Zy =10,1,(Kpy o + Kpy ) (18)

—MCTF T =T
Z22 :ino +7]qu (19)
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and
WMCTF _ _ / drt(r) - E™(r) (20)
Sl”
e / drty(r) - H(r), @1)

m

respectively. Furthermore, the discretized operators can be written as

Tf[m, n| =ik, [ drt,,(r)- [ dr'g,(r, ) / drt,,(r) - d;'Vgu(r )V b, ()  (22)

S Sn

Kg\,’ Jm,n] = / drty,(r) - / ar'b, (1) XV,gu (r, 1), (23)
S PV, S,

where the integrals are evaluated on the supports of the testing and basis functions (S,, and S,,).

At this stage, we can consider the interaction of two half RWG functions associated with the
ath triangle of the mth edge and bth triangle of the nth edge, respectively ({a, b} = {1, 2}). One
can obtain

Lyl 1 f 1
TT[m n,a,b] = Vina ' u ar(r—ruq) —/ ar'(r'=ry)g, (r, 1)
4 Ama Sima A”h Snb (24)

i1
— lmln——/ dr—/ ar'g, (r, r')
ymaynb ku Am” ma nlr gl

L, 1 1 ,
KPV JIm, n,a,b) = Yma i / Ar(r=ruq) - (r=rup) X — / ar'vg,(r, r'), (25)
4 Ama S Aup PV, S,

where y,,, y,,, = £1, depending on the direction of the basis and testing functions on trian-
gles. For the integrations on the testing and basis triangles, alternative methods can be used.
Applying Gaussian quadrature is common in the literature, if the singularity of Green’s func-
tion is extracted from the inner integrals. In any case, the integration methods used on the
testing and basis triangles do not have to be the same, that is, different sampling schemes can
be used. For the sake of brevity, we consider a single-point testing scheme by using the center

point of each triangle r{; , leading to

_ Lul,
TZ[m, n, a, b) %Zk (Fog™Tma) - / ar'(r'=ru)g, (Ko, ')

(26)
ymaynbl l k Anb/ dr’ gu ma’ )
L ymaynbl’”ln . cr ’
T, [m7 n,a, b] = ?ﬂ{u(ﬂ,m_f)mu ’ d' P pma gu( ma> ¥ )
bnlw &
+%lk“(pma_pma) (Pma_pnb) b/ dr gu( ma’ ') (27)

Vmaynblml k Anb/ dr' gu mw ’)

Sub
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min 1 ! !
Ky 0] = B0 e (e oax ol [ Vg ), 08)
nb PV 5,,1,

where {p', p,.., Pops P} Tepresent the projections of {r, Fua, rup, 1} onto the basis plane.

It is generally more efficient to compute the interactions via triangle by triangle (rather than
RWG by RWG) since common integrals related to a basis triangle can be evaluated once and
used in multiple interactions related to the triangle. For MCTE, interactions are calculated (for
a=12andb=1,2, and u =0, p) as

—MCTF maln lmln .
le\g [T’I’l, n]@%lkunu{(pmu_pma) ’ [ ma, nb, u (pma_pnb) ma, nb, u] kz I:Lr‘m nb, u} (29)

—MCTF YuaVn lml ik oM or 4
ZZZ [m7 Tl]<— 4b ik u n s {(pma_pma) : [Iﬁm, nb, u + (pmu_pnb)l‘;;:a, nb, u}_ﬁlfm, nb, u (30)
—ZMCTF 7/171117/}1 l l
A e Th (r5rma) - () } I E Y] (31)
—MCTF Vimaln lml »<r
Zoy )= g (5 mra) - (05 r) X D ) (32)

where « indicates the update operation. Each matrix element is obtained by combining the

contributions of four triangle-triangle interactions. By using triangle-triangle interactions, a
basis integral 1 ) or I™ are used in nine different RWG-RWG interactions.

ma, nb, u’ “ma, nb, u’ ma, nb, u

These common integrals (with singularity extractions) can be listed as

1
= ar' = —
ma nb, u nh /ﬁb gu mm nb u( mas ¥ ) 4n|,.%u_y’

Sub (33)
4+ —— [
Anb Sy 47z|r |
1 1
IB _ ,l ST
ma, nb, u Anb (p pmﬂ)gu Wlﬂ’ A /nhd' P Pma |: ( Fing» ¥ ) 4n|rcmra_rf|:| (34)
1
+ o dr! 1_ ACr
Anb ~/th (P pma) 47z|r§§a—r |
1 1 1
= [ g =t [ ot
ma, nb, u Anb PV, S, r gu( ma’ ) Anb PV, S,p ¥ u( ma’ ) 47T|V%a—l"| (35)

T L aew ( L )
i r - ).
Anb PV, S, 4n|rnm_' "

Using the same convention and single-point testing, the elements of the right-hand-side vec-
tors are evaluated as
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Ly i
T ) e P (1 ) - B (1) G6)
Yima lm i
T e L ) H, o

fora = {1,2}.

Matrix equations obtained as summarized in this section can be solved in different ways,
particularly via iterative techniques accelerated via fast algorithms. Once the current coeffi-
cients a; and ay are found, electric and magnetic fields can be obtained at any location inside
or outside the object. Using the RWG functions, secondary fields can be written as

N Ly . 2
E(r) = D> eyl 5 kan, S (ppua) i (1) By ()= 5 15 ()
n=1b=1 u
> amln] % (r=r) X I, , (1) (38)
n=1b=1
N & ik, 2
H*(r) =Y > ann] P B (L), () + Loy (1)~ 1S, (1)
n=1b=1 2 nu kﬁ
N 2 v
Yyl 20 (o) X I (1), (39)
n=1b=1
where
A 1 ! r
L) = o [ ) (40)
’ Anb Sib
B 1 1ot ’
Inb, u(r) = A_ dr (P _p)gu(rv l’) (41)
nb J S,
1 ,
15, ,(r) = ar'v.g, (r.r'). (42)
' Anb snb

Similar to the matrix elements, a triangle loop (rather than an RWG loop) can be used to
efficiently perform the near-field computations. If the observation point r is close to the surface
of the object, singularity extractions must be used for accurate integrations. If the medium
parameters are set to ¢, and y,, the computations above lead to inner electromagnetic fields,
while the fields outside the surface vanish due to the equivalence theorem. In fact, this can be
used to assess the accuracy of numerical solutions, since any nonzero field outside corresponds
to a numerical error. Similarly, using ¢, and y,, inner fields must be zero, while secondary
fields are obtained outside. Then, the total fields outside the object can be obtained as
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E(r) = E™(r) + E*(r) (43)

H(r) = H™(r) + H*(r). (44)
4. Matrix-vector multiplications with MLFMA

Plasmonic problems often involve large structures in terms of wavelength. In addition, typical
A,/10 triangulations may not be sufficient to obtain accurate results, and dense discretizations
are usually needed, leading to a large number of unknowns. Since direct solutions
(e.g., Gaussian elimination) of the resulting matrix equations may not be feasible, fast iterative
solvers are required for efficient analysis of plasmonic structures in reasonable processing
times and using available memory. MLFMA is an efficient algorithm that can be used to
perform fast matrix-vector multiplications with O(NlogN) complexity for an NxN dense
matrix equation derived from an electrodynamic problem [25, 26]. Hence, MLFMA can be
used within a Krylov subspace algorithm, such as the generalized minimal residual (GMRES)
method, for efficient iterative solutions.

MLFMA is well known in the literature as a method with controllable accuracy. In practice,
however, its accuracy heavily depends on the expansion method. In the most standard form,
plane waves are used to diagonalize the addition theorem for Green’s function. Then, the
interaction distances, hence, the recursive clustering of the electrodynamic interactions, are
limited by a low-frequency breakdown. For example, two to three digits of accuracy (1% and
0.1% maximum relative error) using a one-box-buffer scheme need a minimum box size of
around A,. It is possible to use smaller boxes and/or to achieve higher accuracy, if alternative
expansion tools [38, 39], such as a direct application of multipoles [40] or evanescent waves
[41], are employed. In this chapter, where numerical solutions are performed with maximum
1% error, we restrict ourselves to the plane-wave expansion.

Using plane waves, Green’s function is decomposed as

g (r, ) = SR Ulr]) _ oxplikulw 1)) (;k”)z [ @ik o) @)
s

47t|r—r'| 4rtiw + v|

forw = |w| > v = |v|, where k,, = kk,, d°k = d0d¢ sin 0, and

Blky, v) = exp (iky - v) (46)
ey w) = 30 2t + D) (ko) Py - ) 47)
t=0

are diagonal shift and translation operators, respectively. It is remarkable that, as a result of the
factorization, the shift vector v and the translation vector w, which satisfy w+ v = r-r, are
separated. In addition, with the help of the diagonalization, sampling of the shift and transla-
tion operators leads to diagonal matrices, as the shift or translation of a plane wave in a given
direction does not contribute to plane waves in other directions. In the above, the translation
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operator is written in terms of the Legendre polynomials P; and the spherical Hankel function

of the first kind hgl) , while 7 is the truncation number that can be found via excess-bandwidth
formulas [42]. We note that the derivatives of Green’s function can also be obtained as

V. (r, )~ (;’;) ! / P (i, B, ¥)ere (s ) (48)

VVgur )

k(kyk,)Bky, v)ae (ky, w). (49)

These expressions can directly be used to factorize the discretized operators by replacing
Green’s function with the diagonalized forms. In the context of MCTF, we have

. 2
TI [m, n,a,b] = <Z‘—;> / PERT (ky, rc) - e (ky, ro=re) Sy (ky, 1) (50)

— ik,

Koo = (50)] [ PRE (b r0)-aclho, rere)Sutbore), D

where rc and r are testing and basis centers, respectively. Using the RWG functions, the
radiation and receiving patterns of the half basis and testing functions are derived as

Sk rc) = D0 (B 5k Bl 1) (' 0) (52)
)ll7
T malm T I 1 1
R, (ky, rc) = (I3x3-kk) ) arB(ky, r=rc)(r—rug) (53)
ma J Sy,
K Ymalm 7 1 7 T
Ry, (ky,rc) =— ) k x A s drB(ky, r=rc)(r—rms) = kxR, (k,, rc), (54)

where I3x3 = kk + 60 + ¢p¢. Using a single-point integration, the patterns can be calculated
as

Sk rc) =D Bk, rms) (PO - (5 (55)
Zm =3x3 &

R, ks r) = P28 (ke 155mr) (P k) - (155 1) (56)

Rﬁu(kih VC) = _IE X RZg(kuv Vc), (57)

where r;7 and r{} represent the centers of the associated testing and basis triangles, respec-

tively. Then, the radiation/receiving patterns of the full RWG functions can be obtained as

S, =81+ S, and R,’,S’T = Rﬁl’T + R%T by combining the contributions of the half func-
tions. These patterns, as well as the truncation operator, are sampled on the unit sphere, where
the sampling scheme is a matter choice depending on the implementation.
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In a standard implementation of MLFMA, the object is placed inside a computational cubic
box, which is divided into sub-boxes until the smallest possible box size determined by the
desired accuracy. Empty boxes that do not contain a part of the object (discretized surface) are
omitted directly and are not divided further. This way, it is possible to construct a tree structure
(consisting of L = O(logN) levels) involving nonempty boxes at different levels with O(N)
complexity. Using the child/parent relationship between the boxes, the stages of a matrix-
vector multiplication, namely aggregation, translation, and disaggregation, are as follows.

In an aggregation stage, radiated fields of boxes are computed from bottom to top. At the
lowest level, we have

a[n] S, (ky, re) — S (ky, re), (b,eC), (58)

where the coefficients provided by the iterative solver are used to weight the contributions of

the basis functions to the overall radiation patterns of the boxes C’ at the lowest level. At higher
levels (I = 2,3,..., L), aggregation is performed recursively as

Blku, rpicyrc)Sc (ku, ro) — Spicy (ku, picy)s (59)

where P{C'} represents the parent of C. Due to the exponential shifts from different locations
within a box, the radiated fields become more oscillatory as the box size gets larger. Hence, the

sampling rate must be increased, generally with O(k2D?) where D is the box size.

After completing an aggregation stage, the radiated fields are translated between the boxes at
the same level. For I = 1,2,..., L, this can be written as

(b, rc=r ) S (ky, 1) — Gelky, re), (C eF{C)), (60)

where F{C} represents the far-zone boxes for a given box C. It is remarkable that F{C} contains
O(1) elements since interactions between too far boxes, for example, C and C at level I, are
made at a higher level (I' > I). Using a one-box-buffer scheme, the condition for translation is
that the boxes should not intersect at a surface, line, or corner, while their parents must
intersect at a surface, line, or corner.

In a translation stage, incoming fields are collected at the box centers, but they are only partial
data, since the total incoming fields at the center of a box contain contribution from its parent
(if exists) due to the translations at higher levels. Therefore, a disaggregation stage is
performed recursively for [ = L-1,L-2,...,1 as

Ge(ky, rc) + Blku, re=rpicy) Gy (ku, ¥picy) — GE(Ku, ¥e). (61)

At the lowest level, the testing functions receive the incoming fields as

ik \* [ o:
<E) /dsz:vftT(kuv rc)- Gé(kuv rc) H.VFF[m]v (tweC), (62)
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where

N
Y m) = >"Z" [m, nlaln] (63)

n=1

for m =1,2,..., N. The overall matrix-vector multiplication is completed by also considering
the near-field interactions (that cannot be calculated via aggregation-translation-disaggrega-
tion stages) as

ylm) = y¥m] + Z"" [m, nlaln). (64)

Using MLFMA, each matrix-vector multiplication can be performed in O(NlogN) time and
using O(NlogN) memory.

For plasmonic objects with high negative permittivity values, electromagnetic interactions
decay quickly with respect to the distance between the observation and source points. For a
given accuracy, interactions at long distances can be omitted since the inner and outer interac-
tions are combined in the surface formulations and outer interactions (related to the free space)
dominate the related matrix elements [30]. The threshold distance for this purpose can also be
found by considering the exponential behavior of the decay for large imaginary values of the
wavenumber. This way, the processing time for the matrix-vector multiplication can signifi-
cantly be reduced. As the negative permittivity increases, far-zone interactions related to the
inner medium may completely vanish, leaving only near-zone interactions. In the limit, near-
zone interactions further reduce into self interactions of basis/testing functions, leading to the
Gram matrix to represent the inner medium.

5. Case example: numerical simulations of nanowires

Using surface integral equations and MLFMA, electrical properties of a plasmonic object are
simply parameters, which can be used as variables in the implementations. For the electrical
properties, that is, permittivity and permeability, alternative choices, including measurement
data and those based on certain models for the materials, can be used. As an example, Figure 1
presents the relative permittivity of silver (Ag) with respect to frequency from 200 to 1600 THz.
In addition to measurement data [10], Drude (D) and Lorentz-Drude (LD) models are used to
predict the real and imaginary parts of the relative permittivity. It can be observed that the real
part of the permittivity has large negative values at the lower (infrared) frequencies and it
increases smoothly toward unity as the frequency increases to the visible range and beyond.
For imaginary values, which represent ohmic losses, we observe varying values between 0.01
and 10, while large discrepancies exist between measurement and D/LD models (especially
considering the logarithmic scale of the y-axis). These discrepancies are responsible for differ-
ent results in the simulations of plasmonic problems presented below.
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Figure 1. Real and imaginary parts of the relative permittivity of Ag with respect to frequency. In addition to measure-
ment data [10], values based on Drude (D) and Lorentz-Drude (LD) models are depicted.

As a case study, we consider transmission though a pair of Ag nanowires described in Figure 2.
The length of the nanowires is 5um and each nanowire has 0.1 x 0.1um (square) cross section.
The distance between the nanowires is also 0.1um. The transmission line is excited by a pair of
Hertzian dipoles oriented in the opposite directions and located at 0.2um distance from the
nanowires. Figure 3 presents the electromagnetic response of the transmission line in the
infrared frequencies from 250 to 430 THz. The power density in dB scale (dBW/m?) in the
vicinity of the nanowires is depicted (normalized to 0 dB and using 40-dB dynamic range),
when LD model and measurement data are used for the permittivity values. It can be observed
that the electromagnetic power is effectively transmitted from the source region (right) to the
transmission region (left). Coupling to the free space at the end of the line leads to two beams
with decaying amplitudes due to propagation. Comparing the results, we observe very good
agreement between the power density values when LD and measurement permittivity values
are used. Considering Figure 1, the negative real permittivity dominates the response of the
nanowires at these frequencies.

Cross _ ... 0.
Section "

A
A

Figure 2. A transmission line involving two Ag nanowires of length 5pm. The nanowires are excited by a pair of dipoles
located at 0.2um distance.
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Figure 3. Power density in the vicinity of the nanowire system (Figure 2) from 250 to 430 THz. Numerical results
obtained by using permittivity values derived from the LD model (left column) and those based on the measurement
data (right column) are compared.



206 Dynamical Systems - Analytical and Computational Techniques

Figure 4 presents similar results when the frequency is in the visible range. In this case, there
are significant discrepancies between the power density values when the LD model and the
measurement data for the permittivity are used. This is mainly due to the higher values for the
imaginary permittivity predicted by the LD model. As the frequency increases, using the LD
model, the transmission ability of the nanowire system deteriorates significantly. Specifically,
the power density on the surfaces of the nanowires decreases and the transmitted power
toward the left-hand side of the nanowires diminishes, leading to progressively weaker beams.
It is remarkable that, using the measurement data that may be more accurate description of
Ag, the transmission ability of the nanowire system is still at high levels, indicating that the
transmission line operates as desired. These results may explain some of the contradictory
results (especially simulations vs. measurements) for the nanowire and similar plasmonic
systems investigated in the visible spectrum.

As depicted in Figure 5, nanowires cannot maintain a good transmission ability as the
frequency increases. Using the measurement data, the transmission of the nanowire system
deteriorates significantly at the higher frequencies of the visible spectrum (e.g., at 770 THz).
At 750 THz, the power density drops to less than —40 dB after a few um along the nanowires.
We note that the effective length of the nanowires increases with the frequency. For example,
at 250 THz, the length of the nanowires is approximately 4.17A,, while it is around 12.54, at
750 THz. In addition, the effective distance between the sources and the nanowires increases.
However, investigating the power values on the nanowire surfaces close to the source, it is
obvious that the poor power transmission cannot be explained only with the increasing
effective lengths at the higher frequencies. Since the power cannot be coupled to the free
space, the power density along the nanowires possesses an oscillatory behavior. At the end of
the visible spectrum, the discrepancy between the results obtained by using the LD and
measurement values decreases, both predicting reduced interaction between the sources
and nanowires.

Figure 6 presents the results even at higher (lower-ultraviolet) frequencies. In this range, the
nanowires are not expected to demonstrate transmission abilities, as predicted by both LD
model and measurement data for the permittivity values. At lower frequencies of the range,
the nanowires are more visible close to the source region, while, as the frequency increases,
their effects diminish and the power distribution becomes close to that of two dipoles in free
space. Figures 7 and 8 present the summary of input/output of the transmission line, for the
LD model and measurement data, respectively, from 450 to 750 THz. For the input, the power
density is sampled at 30 nm distance from the nanowires on a horizontal line from -1 to 1um.
The double-peak pattern due to two dipoles in opposite directions is clearly visible, with some
variations due to reflections from the nanowires. For the output, samples are selected again on
a horizontal line from -1 to Ipm in the transmission side at 40 pm distance from the
nanowires. Using the LD model, the output pattern deteriorates significantly as the frequency
increases. Using measured permittivity values, however, the double-peak pattern is effectively
maintained for most frequencies until 750 THz, at which the transmission fails. Figure 9 pre-
sents the average input/output graphics, confirming consistency between the LD model and
measurement data at lower and higher frequencies. On the other hand, at some frequencies in
the visible range, there is more than 30 dB difference between the predicted output levels.
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Figure 4. Power density in the vicinity of the nanowire system (Figure 2) from 450 to 630 THz. Numerical results
obtained by using permittivity values derived from the LD model (left column) and those based on the measurement
data (right column) are compared.



208

Dynamical Systems - Analytical and Computational Techniques

LD Model Permittivity Values Measurement Permittivity Values

N :

o

i_

o

L

w

N

b

|_

=]

=

w

N

&

i_

=]

[o}]

o

N

T

|_

o

S 0dB

N 3

l:|_: -10 r_ib(

o

m U

. z

. -20 Z
a

= =

3 30 §

5

T -40

o

N

N

T

|_

=]

[o}]

M~

N

I

=

b=

w

]

=

|_

3

8 A A

Figure 5. Power density in the vicinity of the nanowire system (Figure 2) from 650 to 830 THz. Numerical results
obtained by using permittivity values derived from the LD model (left column) and those based on the measurement
data (right column) are compared.



Integral-Equation Formulations of Plasmonic Problems in the Visible Spectrum and Beyond 209
http://dx.doi.org/10.5772/67216

LD Model Permittivity Values Measurement Permittivity Values

N I/ ﬂ

o o

= .

o

[Ty

w

N

&

|_

=]

=

o0

N

=

|_

o

o

w

N

I

|_

e 0dB

=2

p g

: ﬂ ﬂ 3 E

o

ci: U

% g
20 £

(Y] ‘f-.

T g

2 a5 =

3 g

£

= -40

o

M~

[s}]

|—

o

Lo} ]

o

[}

o

|_

o

[=]

o

Figure 6. Power density in the vicinity of the nanowire system (Figure 2) from 850 to 1000 THz. Numerical results
obtained by using permittivity values derived from the LD model (left column) and those based on the measurement
data (right column) are compared.



210 Dynamical Systems - Analytical and Computational Techniques

LD Model Permittivity Values

Power Density (dBW/ms)

2058 06 04 02 0 02 04

Input/Qutput Location (um)

Figure 7. Power density on the input and output sides of the nanowire system (Figure 2) from 450 to 750 THz. For the
input and output, the samples are selected on 2um lines at 30 and 40 nm distances from the nanowires. LD model is used

for the permittivity values.
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6. Concluding remarks

Surface integral equations combined with iterative algorithms employing MLFMA provide
accurate solutions of nano-plasmonic problems without resorting to fundamental assump-
tions, such as periodicity and infinity. Three-dimensional and finite structures, which are
typically of tens of wavelengths, but at the same time containing small details, can be investi-
gated both precisely and efficiently. In addition to the visible ranges, the developed solvers are
very beneficial at higher frequencies, where the discrepancy between the experimental results
and theoretical predictions, such as based on the Drude and Lorentz-Drude models, increases.
Surface formulations enable trivial integration of electrical parameters, allowing for fast tuning
of the numerical results with the increasingly precise measurements. On the other hand, such a
reliable simulation environment can be constructed only with appropriate combinations of
surface integral equations, discretizations, numerical integrations, fast algorithms, and itera-
tive techniques, as shown in this chapter. We present how to construct such an implementation
with all details from formulations to iterative solutions using MLFMA, along with a set of
results involving a nanowire transmission line in a wide range of frequencies to demonstrate
the capabilities of the developed solvers.
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Abstract

This paper is devoted to the existence of a true random periodic solution near the
numerical approximate one for a kind of stochastic differential equations. A general
finite-time random periodic shadowing theorem is proposed for the random dynamical
systems generated by some stochastic differential equations under appropriate condi-
tions and an estimate of shadowing distance via computable quantities is given. Appli-
cation is demonstrated in the numerical simulations of random periodic orbits of the
stochastic Lorenz system for certain given parameters.

Keywords: random chaotic system, stochastic differential equations, random periodic
shadowing, stochastic Lorenz system

1. Introduction

The investigation for the dynamical properties of the random periodic orbits in some specific
stochastic differential equations (SDEs) is a difficult problem [1]. In general, numerical compu-
tation is still one of the most feasible methods of studying random periodic orbits of SDEs
describing many natural phenomena in meteorology, biology and so on [2-4]. As the chaotic
systems is sensitive to the initial value and random noise is constantly affected the systems
constantly, to estimate a particular solution of a random chaotic system by numerical solutions
for a given length of time is even more difficult. Therefore, it is always difficult to infer the
existence of a random periodic orbit rigorously from numerical computations. Shadowing
property plays important roles in the theory and applications of random dynamical systems
(RDS), especially in the numerical simulations of random chaotic systems generated by some
SDEs. As we know, numerical experiments can lead to many nice discoveries, a new numerical
method is presented to establish the existence of a true random periodic orbit of SDEs which

I m EC H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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lies near a numerical random periodic orbit. Furthermore, the reliability and feasibility of
numerical computations is considered as well.

There are two main motivations for this work. On the one hand, it follows from the classical
shadowing lemma that many studies about the periodic dynamics of deterministic chaotic sys-
tems have been performed in Ref. [3] and references therein. Many nice works on the numerical
analysis of RDS had been completed in Refs. [5] and [6]. On the other hand, our results in this
article have been inspired by our earlier work in Refs. [7] and [8], on shadowing orbits of SDEs
where we established in a rather general setting. To the best of our knowledge, shadowing is still
an interesting method for studying their random periodic dynamic behavior of SDE, and there is
no investigations of the random periodic shadowing theorem of SDE exist in the literatures.

In this work, two computational issues should be considered first. One is the definition of
(w, 6)-pseudo random periodic orbit, in which a true random periodic orbit is sufficiently
closed. Another issue is that in which conditions the random chaotic systems generated by
some SDE possess the so-called pseudo hyperbolicity for certain given parameters. With some
additional numerical computations, we can show the existence of a true random periodic orbit
near the (w, 6)-pseudo random periodic orbit under appropriate conditions. Therefore, the
main difference between the existing work and the current one is that the random periodic
case is concerned, and there is no hyperbolicity assumption on the original systems.

Utilizing the existence of the modified Newton equation’s solution, a random periodic
shadowing theorem for some kind of SDEs is proposed. The result shows that under some
appropriate conditions, there exists a true periodic orbit near the numerical approximative one
and the upper bound for the shadowing distance is given.

This paper is organized as follows. In Section 2, background materials on random shadowing
for random dynamical system generated by SDEs, including the definitions of (w, 6)-pseudo
random periodic orbit and the pseudo hyperbolic in mean square, are given. The main result
on random periodic shadowing is then stated in Section 3. Illustrative numerical experiments
for the main theorem are included in Section 4. The numerical implementations in details are
presented in the following section. And, the proof for the main result is presented in Section 6.
The final section is devoted to summarize the main results in the current work.

2. Preliminaries

Let (QO, F, P) be a canonical Wiener space, {F};cg be its natural normal filtration, and W(#)(t €R)
is a standard one-dimensional Brownian motion defined on the space (Q, F,P). And, we assume
that Q := {w e C(R,R) : w(0) = 0}, which means that the elements of Q can be identified with
paths of a Wiener process w(t) = Wi(w). We consider a class of Stratonovich SDEs in the form of

dx; = f(x)dt + px odW;,  x(0) = xo(w)€R?, (1)

where the random variable x(w) is independent of F and satisfies the inequality E|xo(w)|*
< oo, and  is a nonzero real number.
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2.1. Basic assumptions and notations

We define the metric dynamical systems (Q,F,P,0') by the mapping 0 : R x Q — Q, such
that for w € Q),

O'w(s) = w(t+s)-w(t),

where s, t € R.

Let O(w) be a one-dimension random stable Ornstein-Uhlenbeck process which satisfies the
following linear SDE

dO; = =Odt + dW,.

And let

z2(t,w) := exp (—uO¢(w))x;(w) € RY,
then SDE (1) can be changed to a random differential equation (RDE) in the form of

= = exp (-40N@))f (exp (1OU(@))2) + KOz = f(0'02). @

It follows from Doss-Sussmann Theorem in Ref. [9] that the solution of RDE (2) is the solution
of SDE (1).

In this paper, we make the following assumptions:

* We suppose that f, : OXR? — R? be a measurable function which is locally bounded,

locally Lipschitz continuous with respect to the first variable, and be a C' vector field on R”.

By Theorem 2.2.2 in Ref. [2], RDE(2) generates a unique RDS ¢ on the metric dynamical
systems (Q, F, P, 0') as follows

t
o, thw)z=z+ Jfl(GTa), @(s, 7, w)z)dTER?, 3)

and which is C'-class with respect to z in Ref. [8].
And there exists a diffeomorphism ¢ : RxRx Q) xR — RY, (s, t,w,z) == @(s,t, w)ze]Rd.
We also make use of the following notations which is similar to the Ref. [8].

* The norm of a random variable x = (x1,2,..., ¥;)€L*(Q,P) is defined in the form of

1
2

llxll2 = UQHM(CUNZ +x2(@) + s + xa(@) PlAP(@) | < oo,

where L?(Q, P) is the space of all square-integrable random variables x : Q — R
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 The norm of a stochastic process x(t,w) with x;(w)€L?*(Q,P) and teR is defined as

llx(t, )l = supllx¢(w)ll, < e°.

teR
¢ For a given random matrix A, and the operator norm | - |, the norm of A is defined as
follows
1
Al 2.5 = [BIAP).
¢ Normally, the norm || - ||, and | - || 12(Q,p) are denoted as || - || for simplicity reason, unless

otherwise stated.

2.2. Some extended definitions

Definition 2.1. For a given positive number 6, if there is a sequence of positive times

{t‘k}kl\];[)l7 0<ty<t <,..., <1< tyq1, T, and a sequence of random variables

[y (0% w), Fr ),

Yy (6%w) is Fy -adapted, such that
f1y.(0%w))y, (6%w) # 0, P-almost surely for k=0,1,2,..., N,
and the following inequalities P-almost surely hold

11 (0% @)= (b, s, 0% @)y, (6% w)]] € 6, k=0, 1,..., N-1,

and

lyn (0% @)=y, (6° @)l <0, ()

then the random variables {(y, (0%w), Fy,)}i_, are said to be a (w, 6)-pseudo random periodic
orbit of RDS (3) generated by SDE (1) in mean-square sense.

Definition 2.2. For a given positive number ¢ and a (w, 6)-pseudo random periodic orbit
{(y(6"w), Fy, )}t of RDS (3) generated by SDE (1) with associated times {t;}r', if there is a

sequence of times {hk}llﬁol, hoshis, ..., <t<hnga, such that the following inequalities hold

lly, (6% w)-xx (0™ )| < €,0 < =Ty < e,k = 0, 1,...., N,

and the random variables {(x;(0"w), Fy, )}t are on the true orbits of RDS (3) generated by
SDE (1), that is

ka(Qhk“w) = (p(l’lk,hk+1, tha))xk(E)hka)), k=0,1,2,..., N-1,

and
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xo(Gh”a)) = (p(hN,hNH,QhNa))xN(Gh’\’a)), (5)

then the (, 6)-pseudo random periodic orbit {(y, (6" w), Fy I}, is said to be (w, 8)-periodic
shadowed by a true orbit of RDS (3) generated by SDE (1) in mean-square sense.

Remark 2.3. As the g-algebra F,(20) is nondecreasing, in order to guarantee the random
variables x(0"w)(k =0,1,2,..., N) are F;-measurable, we need the shadowing condition

0sti—Iy<e instead of |t—hi|<e. We refer to the Ref. [2] for the deterministic counterpart. Here,

we choose a sequence of times {hk}kl\]jo1 = {tk}kl\’jo1 in sequels.

Definition 2.4. The RDS ¢ : RxRxQxR? — R? is said to be pseudo hyperbolic in mean
square if the temple variables «i(w), x2(w)21, vi(w),v2(w)20 exist, such that the following
inequations hold with RY = F*(w)®E" (w),

Ellp(s, t1, 0)x[|* < k1 (w)e 1 @O RIE|p(s, ta, 0)x||*, Yt > 1 > 5,x € E*(w),

Ell@(s, ta, @)x||* < 2 (w)e™> @O RIE| (s, t, w)x||?, VH > t>s,x € E*(w).

This means that there is a splitting into exponentially stable (E°(w)) and unstable (E"(w))
components. The multiplicative ergodic theorem (MET) of Oseledets in [10] provides the
stochastic analogue of the deterministic spectral theory of matrices, and a method to check
the pseudo hyperbolicity.

3. Random periodic shadowing for RDS generated by SDEs

3.1. Theoretical foundations

Let {(y,(0%w), Fy, )1, be a (w, 6)-pseudo random periodic orbit of RDS (3) generated by SDE
(1) and yk(Qhka))eLz(Q,]P’) (k=0,1,..., N). Assume that we have a sequence of d x d random
matrices {(Yi(0%w), Fy, )1, such that

Y k1(6% 1 @)-D (b, tis1, 0% w)y, (0% w)|| <6, for k=0,1,..., N-1,

and
1Yo(68"@)-Dep (b, b+1, 0% @)y (6% @)l 5. ©)
A sequence of d x (d - 1) random matrices (S(0"w), F;,) are chosen such that its columns form

an approximate orthogonal basis for the subspace orthogonal to T(x;) and k=0, 1, ..., N, where
T(xk) = f,(6%w, xx), the approximate orthogonal means that the following inequality holds

15k(6" @) S (0% w)-I|l < b1,

for some positive number &;€(0,0), where ~ denotes the transpose of matrix.

Now a sequence of (4 — 1) x (d — 1) random matrices Ax(0"w) is chosen which satisfy
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[AK(60 @)=, (0™ @) Yi(0%w) S (0% w)|| <6, for k=0,1,...N-1,

and

| AN (6% @)=S5(6" ) YN (0™ @)Sn (6™ )| <6.

Next, a linear operator L is defined as follows. If random variables & = {&; (0" a))}kN:0 are in the
space (RTHN! then we let L& = {[LE] N, to be

L&), = &1 (0% ) =Ar (0% w) & (0% w), for k=0,1,..., N-1.

and

L&)y = &(0"0)-An (0" 0)én (0% @).

It follows from Section 4.2 that the operator L has right inverses and we choose one such right
inverse L™,

At last, we define some constants. Let U be a convex subset of R? containing the value of the

(@, 8)-pseudo orbit {(y, (0% w), Fy, )} Therefore, we define

At = Inf At = Inf (f1—tH).
0<ksN KT ogng(kJrl )

Next, we choose a positive number 0 < €y<At such that ||x—yk(6tk w)||<€p, then the solution
@(s, t, w)x(s<t) is defined and remains in U for 0 < <t + ¢y P-almost surely.

Finally, we define

My = supl|f;(6'w,x(t))ll,

xel

M; = sup||Df, (0'w, x())l,
xel

M, = supl||D*f,(0'w, x(t)) ||
xel

and
®= sup [Yi(0*w)l,
0<k<N-1
where
[0, (0'w, x(t))
Dfl - {T ’

We first introduce the following lemma which has been proved in the Ref. [8] and will be
applied to the main theorem [11].

Lemma 3.1 Let X and Y be finite-dimensional random vector spaces of the same dimension,
and B be an open subset of X. Let vy be a given element of B. Suppose that G : B — Y be a C*
function and satisfy:
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i. the derivative DG(v) of function G at vo€B is right inverse with K;
ii. B contains a closed ball whose center is vy and radius is €, where € = 2||K||||G(vo)l;
iii. the inequality 2M||K |G (o)l <1 holds, where

M = sup{|ID*G(0)]| : v€B, ool < };
Then, there is a solution 7 of the equation G(v) = 0 satisfying [[o-v|| < €.

3.2. Main results
Now, we state the main theorem and postponed its proof in the latter section.

Theorem 3.2. For a given bounded (w, 6)-pseudo random periodic orbit of RDS (3) generated
by SDE (1) {(y,(6"w), F, )}y, assume that

C := max{M" (1 + O|ILH|I), IL7!|I}. (7)

If the quantities shown in Section 3.1 together with 6 and ¢ satisfy:
i G=C<%

iil. C, =4C < €;

iii. C3 = 8C2(3(M0M1 + 2M; exp (M1 At) + MaAt - exp (2M1At))<1;

Then there exists a sequence of times {hk}kN:bl (hoshis,..., <hny1<tny1) such that the (w, 0)-

pseudo random periodic orbit {(y, (0% w), F t,{)}kN:0 is (w, 0)-periodic shadowed by a true random

periodic orbit of SDE (1) containing points {(x(6"w), Fy, )}y, in mean-square. Moreover,
shadowing distance satisfies £<4C).

4. Numerical experiments

Here, we apply the random periodic shadowing theorem to rigorously establish the existence
of random periodic orbits of the stochastic Lorenz equation. And, this section will provide
numerical experiments to compute the shadowing distance.

4.1. Experimental preparation
Consider the following Stratonovich stochastic Lorenz equation (SSLE) in R?,
dX; = f(Xy)dt + uXpedWi(w), X(0) = xeR? 8)

where X; = (x,y, z)TE]R3, x, y and z are the state variables, o, p and § are positive constant
parameters, and
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—0X + oy ux
fXe) = | pxyxz |, uXe= | uy |-
—Bz + xy Uz

Make the transformation as follows:

{x(t, w) = exp (~uO0(w

S e
NS R

)
y(t,w) = exp (-uO¢(w)
Z(t,w) = exp (~uO(w)

It follows from the transformation that the above SSLE (8) can be transformed to the random
differential equation (RDE) in the following form

pu
d—’t‘ — 0(% +7) + 4Oy (w)x

at

d% =-XZ+ px—y + uOy(w)y )
4

d—i =Xy-Pz + uOs(w)z

The existence and uniqueness of solution of RDE (9) can be proved by the same approaches as
proposed in the Refs. [2] and [12] though a normally required linear growth condition does not
be satisfied. Hence, a RDS ¢ can be generated by the solution operator of RDE (9).

In this experiment, it appears numerically that the stochastic Lorenz equations have asymptot-
ically stable random periodic orbit for the parameter values o = 10,p = 100.5,8 = §.

Firstly, we generate Brownian trajectories in the following way
Wo =0,Wiinar = Wiar + ¥4

where
¥, = N(O,VAt),i=1,2,..., N

Secondly, it follows from the reference [13] that a global attractor, i.e., a forward invariant
random compact set U of RDS ¢ generated by RDE (9) is the closed ball B; with center zero
and radius R(w), that is, B; = {X,€R>: ||X;|| <R(w)}, where

0
R(w) = CZL exp (c15-20Ws(w))ds

and
1 = min(1,8,0),c2 > 0,2(BX, X;) < —c1|X* + 2,

-« o 0
B=p -1 0].
0 0 -B
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It has been proved in Ref. [13] that the RDS ¢ generated by Eq. (8) lies in the forward invariant
random compact set U for P-almost surely we(2 on the finite interval.

4.2. Numerical results

We first present the results of our computations of the (w, 6)-pseudo random periodic orbits for
the stochastic Lorenz equation. To generate a good (w, 0)-pseudo random periodic orbit, we
numerically computed the orbit for some time with a rough guess of initial value. In this
experiment, we take the initial value (xo, yo, 2o) = (1.76, —4.48, 80.99), time step size Af = 0.00007
and iterative step N = 100000. The (w, 6)-pseudo random periodic orbits of Eq. (9) in Figure 1
are generated by the Euler-Maruyama scheme in Ref. [14] and the refined initial data. This also
shows that there exists a forward invariant random compact set.

- Psaudo random perodic solulion X camponent of peeudo randem periadic Solution

8

<30
-0
s
&0
B0 . . " . . " &0 . A i i
&0 M 20 10 o w0 20 e 0 0o Qo 003 004 D05 008 OCT OO0B QD8 Q1
b 1
y componant of pseudo random peniodic sclulion z componant of psoude randoem parodic soution
H
20
{1}
o
Y.m
-20 "
=30 8
=) Ta
=50 &0
ﬂn n‘m U;I? ﬂ‘m tl;:ll- UE& I.'lJIH- ﬂ‘ﬂ? IJJI:G U;H a1 55II!II I}..tn I}.D? I!EB I:I.l:ll- ﬂ:ﬂ ﬂ.:)ﬂ I!;D? I}.Bﬁ- n.m @

Figure 1. (w, 6)-pseudo random periodic orbits of SLS.

Secondly, we briefly describe the details of the computation of the key quantities listed in
Table 2. It follows from the methods shown in Section 3, and we can determine the parameters
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of Theorem 3.2. Tables 1 and 2 present the important quantities and the necessary inequalities

pertaining to this (w, 6)-pseudo random periodic orbit.

Parameters

At

Xo

N

Approx. period

Xo623

Il X2623 = Xoll

Value

0.00007

(1.76, —4.48, 80.99)

10°

7=0.1837

(-0.6911, -7.7293, 81.6553)
41241

Table 1. Value of the parameters.

Inequalities

C

Gy

(@)

Cs

Shadowing distance ¢

Shadowing time f

Table 2. Comparison of the inequalities.

Figure 2. The distance || X, — Xol|.

Parameters
&o

Mo

M,

M,

(C]

o

I

Value

2.01

<9.8037
<0.0185
0.0014
<1.0013
<4.1265
<4.8218¢-03

Value
<0.1025
<0.4229
<1.6918
<0.0757
1.2688
70

In conclusion, there is explicit dependent relationship between the shadowing distance and the
pseudo orbit error, and there exists the true periodic orbit in the appropriate neighborhood of the
(w, 0)-pseudo random periodic orbit of SLS (Figure 2). Figures 3a and 3b demonstrate the relation
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between (w, 0)-pseudo random periodic orbits and true periodic orbits of Eq. (8). The blue lines
denote (w, 0)-pseudo random periodic orbit for the random dynamical system, and the domain
between two blue lines has at least a true orbit for the corresponding random dynamical system.

(@) (b)
- Pagudd random periedic solution i _z compangnt of pseudo random periedic sohelion
£ 140} -
20 1304 +
10 120} !
o 1105 '\ . . ].
¥z Z. L |’ I
[ 1§ | \ I
=2f B - W 4
| VUV
30 B0 ¥ ]
20 0 d 1
<50 50F
-B0 i i i i i 50k i i i i i i i i i ]
=1 -3 20 =10 o 10 2 3 0 0001 0002 0003 OO0 0008 0008 0007 0008 0008 009
X t

Figure 3. (a) The symbolic drawing of the relation between true orbit and pseudo orbit plane. (b) The approximative
structure of pseudo random periodic solution projected on the z plane.

5. Choice of the operator L™

We are going to verify that the linear operator L along the obtained (w, 6)-pseudo random
periodic orbit {(y, (0" w), Fy,)}1, is invertible for P-almost surely w€Q

Let g = {g,(0%w)}}, be in V. To find & = L™!g, we have to solve the random difference equation

&1 (0% w) = Ap(6%w) & (0% w) + g, (6%w), for k=0,...N-1,
&p(0"w) = AN(O™N w)En (0™ w) + gy (0™ w).

With the same choice of the parameters as Section 3, it can be shown that random matrix
Ar(6%w) is upper triangular with positive diagonal entries. Therefore, there is an integer ! such
that for most k, the first / diagonal entries of Ax(6"w) exceed 1 and the rest are less than 1 in mean
square for P-almost surely we€Q [15]. We can partition the random matrix Ax(6"*w) in the form

Pi(0"w)  Qu(0"w)

Ak(@tka)) = 0 Rk(Qt"w)

k=0,1,.., N,

where Pi(0%w) is1 x [ random matrix,Q;(0%w)is ! x (d —I-1) random matrix, and Ry(6"w)
is(d-1-1) x (d-1-1) random matrix.

It follows from multiplicative ergodic theorem that the Lyapunov exponents of Ax(0%w) are
nonzero. Then it suggests that the RDS ¢ generated by SDE (1) along the obtained (w, 0)-
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pseudo orbit {(y,(0%w), Fy)}}, is pseudo hyperbolicity in mean square for P-almost surely
w€e(). It can be written as

£ (6% w) = Py(8"0) &M (6" w) + Q6" w)EP (8% w) + gl (6" w)
&2 (6"1w) = Ri(6"w)e? (6" w) + g (6" w)

fork=0,1,...,N-1,and

{ &) (0" w) = Py(0™ @)Y + Qu(0™w)EY (0% w) + g\ (0™ w)
£ (6"w) = Ru(0"w)EQ (0Vw) + g7 (6™ w)

Let 532)(6%) = 0 solve forwards the second equation of the first equations above. The substi-
tute it into the first equation with E]((z)(Gtk w), and let 55\?(9“’ w) = 0, then solve it backwards.
Finally, the solutions élgn (Gtka)) are obtained. Therefore, the right inverse L7!is obtained as

L], = [V (0%w), P (0" w)]T, k= 0,1...., N.

Hence, invertibility of the operator L is proved, which is an important for the application of the
random shadowing lemma.

6. Proof of the main theorem

Proof. For a given (w, 6)-pseudo random periodic orbit {(y, (0%w), Fy, )}, of RDS ¢ (3) gener-
ated by SDE (1), and an associated sequence of d x d random matrices {Y(0%w)}}., satisfying
Eq. (6). Our aim is to show that {(y,(0%w), Fy )}, is (w, 0)-periodic shadowed by a true
random periodic orbit containing {(xx(6™w), F, )}, where x;(0"w) lies in the random hyper-
plane Hy(6"%w) through v, (6" w).

Suppose that the random hyperplane H,(6"w) is approximately normal to T(y,) = f, (6" w,v,)
at the point y, (6% w). Therefore, we only need to find a sequence of times {f}h ' = (il
ho<his,..., <hyyi<tyy and a sequence of points {(xx (6™ w), Fi, )y with x(0"w)eH; (6% w)

being contained in the e-neighborhood of y, (0% w) such that

X1 (0" @) = @(hy, hiyr, " @)x (0" w), for k=0,1,..., N-1,

and

x0(0"w) = @(hy, Iy, 0™ 0)xn (0™ w).

By the assumption, we obtain that S¢(6%w) isa d x (d — 1) random matrix whose columns form
an approximative orthogonal basis for H;(6%w). We first define the random hyperplane
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Hi(0%w) as the image of R through the map z—y, (0%w) + S¢(0%w)z, which can be viewed

as a subspace of the tangent space at y, (6" w).

Therefore, the problem of finding appropriate sequences of ki and x becomes that of finding a

sequence of times {i iy := {f}h and a sequence of points {(zx(0" @), Fi, )}, in R such

that
Yieyr (0% @) + Spy1 (0% @) zge11 (0" w)
= (he hes1, 0" @) (4, (0" @) + Sx(0" W)z (0" w)), k=0,1,..., N-1,
and

Yo (0" @) + So (6" w)zo(0" @) = @(hn, hns1, 0™ @) (Y (0™ @) + Sn(6™ w)zn (0™ w)).

We next introduce the space X = RN*2x (R‘H)N ! with norm

I (sl AT )l =ma><{ sup ||, sup ”Ck”}/

0<k<N+1 0<k<N

and the space Y = (R)M*! with norm

N
= max
”{81(}1(:0” ngsN“gk”/

where s; € R, {; € R*! and g, e R".

Now, we let B be a properly chosen e-open neighborhood of vy = ({t}y ', 0) in X which

contain the point v = ({s}Y 21, (Gt — o)- And, we introduce the function G : B — Y given by

[G(U)}k = yk+1 (th“ (U) + Sk+1 (@tkﬂ a))Ck+1 (95k+1 w)
~ (5K, Sk11, 6% @) (y, (0% @) + Sk(0%w) k(6% w)), for k=0,1,..., N-1,

and

[G@)ly = ¥o(0"w) + So(0"@)Go(67w)

(10)
~P(sn, Sn41, 07 @) (1, (0™ w) + Sn (0™ @) Ty (0™ w)).

It is the fact that Theorem 3.2 will be proved if we can find a solution 7= ({l}r 1,
{2 (6™ w)},) of the equation
G@) =0, as.

in the closed ball of radius ¢ about vy = ({t}ry', 0).

In order to apply Lemma 3.1, those hypotheses (i) — (iii) for the map G as Eq. (10) should be verified.
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Step I:
First and foremost, it follows from the construction of pseudo orbits that ||G(vp)l| <6. Secondly,

the Gateaux derivative of the map G at vy with u = ({Tk}kN:Bl, {& (0" cu)}kN:O) €X is given by

[G(vo + eu)=G(vo)l,
€
= TT() + Sk (0% w) - & (0% @)
~D(ti, i1, 0% @)y, (0% w) - Sp(0%w) - & (0% w),

[DG(vo)u], = lim,_

fork=0,1,...,N-1,and

[DG(vo)uly = —tnT(yy) + 50(9%)) : cfo(etow)

t I3 l3 13 (11)
—DQD(tN, fN+1, 0 ”a))yN(G N(U) . SN(Q Na)) . EN(Q N(U).

We will approximate DG(v,) by another operator. Now, we define the operator 7 : X — ) for
u€X. Let T u be the approximation of [DG(vy)u], in Ref. [16], we have

Tt = ~TT(Yeq) + Sk1 (0% @) - &1 (0% w)
=Y (0" w) - Sx(0%w) - & (0" w), k=0,1,..., N-1,

and
Tau= ~tTyy) + So(6°0) - £o(0") 12)
-Yn(0™w) - SN(O™w) - En (O™ ).
Now, we need to prove that 7 is invertible. Therefore, we must show that for all g = {g, }; €Y,
there is a solution of the following equation

Tiu =g,
thatis, fork=0,1,..., N-1,
“TT (Y1) + St (0% @) &1 (0 @)=Y (0" w) Sk (0" ) k(0" ) = g (0" w),
and

-inT(yy) + SO(Qth)) . Eo(etoa))—YN(GtNa)) . SN(QtNa)) En(ONw)

_ gN(Qth)' (13)

As we know, the matrix

T(y,) ’ t }
Sk(0*w
e[
is orthogonal for each k. Then this set of equations is equivalent to the following two sets of
equations, one set obtained by premultiplying the kth member in Eq. (13) by T"(y,,,) and
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T*(y,), respectively, the other set obtained by premultiplying the kth member in Eq. (13) by
Si1(0" w) and Sj(6"w), respectively. Therefore, we obtain for k=0, 1, ..., N -1,

TN T (W) =T (Y1) Yi(0"@0)Sk(0" @) Ex(0" @) = T(yy,1) "8 (0" w),

and
T (o) IP=T() Y (6% @)Sn (0™ @) En (0¥ ) = T(y)" gy (0% ), (14)
ékH(Gtk“a))—Ak(Gtkw)ék(kaw) = S;(Gtk“a))gk(etka)), k=0,1,..., N-1,
and
&o(0"w)-AN (0™ w)én (0™ w) = Sy (0% w)gy (0™ w). (15)
If we write § = {S;(0%w)g, (0" w)}Y.,, it follows from the condition (7) that the solution of
Eq. (15) is
&= (L7 (16)
If Eq. (16) is substituted into Eq. (14), we obtain for k=0, 1, ..., N -1,
L T(ykﬂ)* b fe -1 tet te
Tk = 5" [Yk(G a))Sk(G a))L Sk+1(9 a)) + 1}gk(9 a)),
1T (s )l
and
_ T(yo)* ) tn tn N1 to tn
IN=""T— 15 [YN(Q (U)SN(Q (/.))L 50(9 w) + 1]gN(6 (U). (17)
T (o)l
Taking into account Egs. (16) and (17), we define the right inverse of 7 in the form of
T'g = [t (& (0% ).
It follows from Eq. (17) that 7 is invertible and the following inequality holds
1771 <C. (18)

Therefore, we can construct the invertibility of DG(vp). By the operator theory, we obtain
(19)

K =[1+TY(DG(vo)-T) " T

By Egs. (11) and (12) and the assumption (i) of Theorem 3.2, we obtain that

171 (DG (vo)-T)II<IT  IDG(vo)-T |
77| - [sup || (D@(te, tis1, 0 @)y, (0% @)=Yk (0% @) Sk(6% @) &k (6" ) ]

IA

C6<§.

IN
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Then the inverse [+ 7' (DG(v9)-T)] ™" exits and K is a right inverse of DG(vy). Furthermore,

I+ 7 (DG(vo)-T) |l < 2.

Therefore, we have verified hypothesis (i) of Lemma 3.1.
Step II:
It follows from Egs. (18)—(20) that we have

[ICI<2C.

and

IG(wo)ll = supllyy,; (6" @)=(t, trs1, 6% @)y, (6% w) || <0.
k

By the assumption (i) of Theorem 3.2, we obtain that
e =2|IKING(vo)ll <4Co < &.

That is, the closed ball of radius ¢ around v, is contained in the open set B. Therefore, we have
verified hypothesis (ii) of Lemma 3.1.

Step I11:

We only need to estimate |[D*G(v)]|. Then we choose # = ({rk}lk\]:t)l, {nk}Ik\IZO) and calculate the

second order Gateaux differential of G(v) for k=0, 1, ..., N as follows
[DG(v + tu)u-DG(v)u],
|t
= —TkrkDT[yk(thw) + S (0% ) G (0" w)] - TLyk(tha)) + Sk(0" ) G (0% w)]
—TkDT[yk(thw) + Sk(0%w) G (0% w)]-
Do(t, tii1, 0% @) (1 (0" w) + Sk(0%@) G (0% @)) - Si(0" w)n (0" w)
—rkDTh/k(tha)) + Si(0%w) (0% w)]-
Dot b1, 0% @) (4, (0% w) + Si(0%w) (6% w)) - Sk(0% @) Ex (0" w)
~D*(t, b1, 0% ) (y,(0" w)
+5(0% ) G(0%w)) - [Sk(6% @) Ex(6" )] - [Sk(6% @)1, (6% w)].

[DG(v)ut), = ltlrr01

By the norm property, i.e., subadditivity, we obtain

M = sup||D*G(v)]|| £ MoM; + 2M; exp (M1 At) + MpAtexp (2M;At).
k

It follows from the assumption (iii) of Theorem 3.2 and
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G (o)l <&, IK|I><4C?,

that
2MIKIPIIG(vo)ll 1.

Then we have verified hypothesis (iif) of Lemma 3.1. Therefore, the conclusion follows from
Lemma 3.1. This finishes the proof.

Remark 6.1 The proof is similar to the paper [8], and we extend it to the random periodic case.

7. Conclusion

The main result presented here is the random periodic shadowing theorem of the RDS gener-
ated by some SDEs. To conduct the study, we have extended the random shadowing theorem
to the random periodic scenario by taking advantage of mean square and stochastic calculus.
We show that the existence of the random periodic shadowing orbits of the SSLE so that the
numerical experiments are performed and match the results of theoretical analysis. Although
some progresses are made, more accurate numerical methods of estimating the shadowing
distance are needed in practice, which will be presented in our further work.
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Chapter 11

Solution of Differential Equations with Applications to
Engineering Problems
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Additional information is available at the end of the chapter
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Abstract

Over the last hundred years, many techniques have been developed for the solution of
ordinary differential equations and partial differential equations. While quite a major
portion of the techniques is only useful for academic purposes, there are some which are
important in the solution of real problems arising from science and engineering. In this
chapter, only very limited techniques for solving ordinary differential and partial differ-
ential equations are discussed, as it is impossible to cover all the available techniques
even in a book form. The readers are then suggested to pursue further studies on this
issue if necessary. After that, the readers are introduced to two major numerical methods
commonly used by the engineers for the solution of real engineering problems.

Keywords: differential equations, analytical solution, numerical solution

1. Introduction

1.1. Classification of ordinary and partial equations

To begin with, a differential equation can be classified as an ordinary or partial differential
equation which depends on whether only ordinary derivatives are involved or partial deriva-
tives are involved. The differential equation can also be classified as linear or nonlinear. A
differential equation is termed as linear if it exclusively involves linear terms (that is, terms to
the power 1) of y, i/, y" or higher order, and all the coefficients depend on only one variable x as
shown in Eq. (1). In Eq. (1), if f{x) is 0, then we term this equation as homogeneous. The general
solution of non-homogeneous ordinary differential equation (ODE) or partial differential
equation (PDE) equals to the sum of the fundamental solution of the corresponding homogenous
equation (i.e. with f(x) = 0) plus the particular solution of the non-homogeneous ODE or PDE.
On the other hand, nonlinear differential equations involve nonlinear terms in any of y, v/, y",
or higher order term. A nonlinear differential equation is generally more difficult to solve than
linear equations. It is common that nonlinear equation is approximated as linear equation

I m EC H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [&)sy |
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(over acceptable solution domain) for many practical problems, either in an analytical or
numerical form. The nonlinear nature of the problem is then approximated as series of linear
differential equation by simple increment or with correction/deviation from the nonlinear
behaviour. This approach is adopted for the solution of many non-linear engineering
problems. Without such procedure, most of the non-linear differential equations cannot be
solved. Differential equation can further be classified by the order of differential. In general,
higher-order differential equations are difficult to solve, and analytical solutions are not avail-
able for many higher differential equations. A linear differential equation is generally
governed by an equation form as Eq. (1).

dny dn_ly B
T +a1(x) T 1 + . Fa, )y =f(x) (1

“Non-linear” differential equation can generally be further classified as

1. Truly nonlinear in the sense that F is nonlinear in the derivative terms.

u ou du
F sl 3 3. S, | T 2
<xl’x1’x " 6x1 bxz axlaJQ) ( )
2. Quasi-linear 1st PDE if nonlinearity in F only involves u but not its derivatives
ou u
A1 (x1,%0,u) =— 4+ Az(x1, X2, 1) =—— = B(x1, %2, 1) 3)

oxq oxy

3. Quasi-linear 2nd PDE if nonlinearity in F only involves u and its first derivative but not its
second-order derivatives

11 1,42, U, ax1 5 axz ax% 12 1,42, U, axl s axz axlaxZ 22 1,42, 4, ax1 5 axZ ax%
ou Ou
:F _ —
(Xl,xz,uaxl > 6x2>
4)

Examples of differential equations:

1. % = 3x + 2; first-order ODE (linear)/nonhomogeneous

2. (y —2x)dy — 3ydx = 0; first-order ODE (nonlinear)/homogenous
4 4 2y(4)” 4 y = 0; second-order ODE (nonli

3. F+t y(m) +y = 0; second-order (nonlinear)/homogenous

4, ‘;471‘ +5 ‘Z;Té‘ + 7x = sint; fourth-order ODE (linear)/nonhomogeneous

5 &4 g—; = 2z; first-order PDE (linear)/homogeneous
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6. a ¥+ 57 a Y+ 4x + 3y — uz = 0; second-order PDE (linear)/nonhomogeneous
7. x ax;‘ + 2u + 3u? = 0; second-order PDE (linear)/homogeneous

8. ‘fi—: —Z=6x; 1st ODE (linear) for two unknowns/nonhomogeneous

1.2. Typical differential equations in engineering problems

Many engineering problems are governed by different types of partial differential equations,
and some of the more important types are given below.

y > 0 :elliptic

bzu _
Tricomi equation: y 3% + &4 0{ Y < 0 hyperbolic

Laplace equation (or varzants) e 657‘5 =V =0

Poisson’s equation: Bx(f + 35 (p =f(x,y)

Helmbholtz equation axz + C+c2p=0
Plate bending: V*V?w = Viw =

Wave equation (1D-3D): £4 — ¢ (227” + g%) =

2
Fourier equation: &L = (—% Z)
X

There are many methods of solutions for different types of differential equations, but most of
these methods are not commonly used for practical problems. In this chapter, the most impor-
tant and basic methods for solving ordinary and partial differential equations will be
discussed, which will then be followed by numerical methods such as finite difference and
finite element methods (FEMs). For other numerical methods such as boundary element
method, they are less commonly adopted by the engineers; hence, these methods will not be
discussed in this chapter.

1.3. Separable differential equations

For equations which can be expressed in separable form as shown below, the solution can be
obtained easily as

dy _ dy _ dy _
= Flxy) g =l | b= [ e+ (5)
M(x,y)dx + N(x,y)dy = 0 M(x)dx = —N(y)dy (6)

then[ M(x)dx = —J N(y)dy + ¢ @)
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Example:
dy _ 3.2 dy 3
— = 1 =
T x(y+):>y2+1 x’dx
dy [ .5 R _ L4
Jy2+l—dex+c:>tan y=g% +C=y=tan X +c
Example:

d X X
z= 32(;4 +2 subject to y(0) =

Since this is a separable function, the problem can be solved as
2(y — 1)dy = (3x + 4x + 2)dx
V¥ -2y=x>+2*+2x+c
Based on the boundary condition, ¢ = 3, hence y* — 2y = x® + 2x* + 2x + 3.

This quadratic equation in y* can be solved with two solutions by the quadratic equation as
y=1-vVx3+2x2+2x+4andy =1+ Va3 +2x2 + 2x + 4.

Since the second solution does not satisfy the boundary condition, it will not be accepted;
hence, the solution to this differential equation is obtained.

1.4. Variation of parameters

For the following equation form, it is possible to solve it by variations of parameters.

d
For d—y =px)y+ Q(x) ©)
X
Puty = c(x)ef PO By differentiating, it gives % = 1) el P c(x e«[ x)dx. Substitute
%,_/
Py

it to the original ODE %) — Q(x)eir P& Comparing the terms, it gives
o(x) = J Q)e @iy 17 ©)

Example:

d.]/ X n+1
(x+1)dx ny=e(x+1)

This equation is now expressed as
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Y poy + Q)

dy _
dx  x+1

y+e(x+1)"
(x)
Q(x

Forx # —1
Solving the homogeneous part of the ODE

dy _ n_ Y _ n
= +1ytheny = dx

Inly| = ninlx + 1| + 1
y=clx+1)"

Look for solution y = ¢(x)(x + 1)", where ¢(x) is the variation of parameters. Substitute it to the
ODE

B )" 4 )+ 1) = el 1 e+ 1)
dy_ n ¥ n
aoxr1/ e &1

: 3 de(x) _ x
Comparlson glves -~ =¢

Integration of this equation gives c(x) = ¢* + C
General solution is hence given by y = (x +1)"(¢* + C)

The Bernoulli equation is an important equation type which can be solved in a similar way by
variation of parameters. Consider the following form of equation

a
= p(x)y + Q)Y (10)
x
Step1: Putz=y'™" (11)
Step 2 : Then dz =(1- n)y’”d—x
dx dy
) (12)
Z—(1-n)PE)z+ (1 - n)Qw)
dx
The non-linear ODE now becomes linear ODE. It can be solved by formula
Step 3: n=—1, z=y*. Inverting z to get y
2
@y_y . x (13)

A2 2y

237
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dz 1 5
=z 14
o2ty (14)

1
72— eJix (J 2o gy 4 c) =cx+ §x3 (15)
Back substitution of z = 12

2 1;

Yy =cx+ 7 (16)

1.5. Homogeneous equations

For equation of the following type, where all the coefficients are constant, it can be evaluated
according to different conditions.

ﬂ_alx—é—bﬂ/—l—cl

= 17
dx  mx+by+o (7
Casel:ci=c =0
by
W_axthy D o)) (18)
dx ax+by ay+byt X

Step 1: Setu =4, then%zxfl—z—i-u

Step 2: :g(“%. The resulting non-linear ODE is hence separable and can be solved

implicitly.
Step 3: Inverting u to get y.

ap a

C 2:
ase b by

=0

a1b2—a2b1 :Othen%:%:k

d_y_a1x+b1y+C1 _ k(axx +byy) +c1

dx  @mx+by+c  @mx+by+o = f(ax + bay) (19)
By change of variables as u = a,x + byy
d — gy 4+ by % = g, + byf (1), then
le-i-db% =dx (20)

The resulting non-linear ODE is now separable and can be solved.
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ap  a
by by

Case 3: #0c¢;#0and ¢; #0

t{a1x+bly+C1—0

tx + by +0 =0 Intersecting point of these two lines on xy - plane and (o, ) # 0

xy — plane and (a, 8) # (0,0) (21)
Apply change of variables
{X:x—a{x:X+a )
Y=y-ply=Y+p

a1x+b1y+c1 :al(X+a) +b1(Y+ﬁ)+C1 :a1X+b1Y+(u1a+b1ﬁ+cl)

23
mx+by+c=mX+a)+b(Y+B)+c=mX+bY+ (ma+bp+c) @)

The original ODE will now become 4% = Z;ﬁizg which is homogeneous and separable!
di x4y—1
Example: 3 = Afz 5
x+y—-1=0 4
Solve for {x—y+3—0 wehavea = -1, =2

Change of variables X=x+1, Y=y — 2

_
LT

Then, 4 — ¥ _ *ty-1 _ X4y

7AX T dx T ox—y+3 T XY T 1)

. 2 —
Use a change of variable u = % X4 = Lt (- _ dx

v 1nZ X
1
= tan"'u — Eln(l +u?) =In|X| +c

= tan~'u = In[vT+ uX] +c = In[\/(X* + Y*)] + ¢

= tan~! (%) = ln\/(x +1°% 4 (y—2)° +c

There are various tricks to solve the differential equations, like integration factors and other
techniques. A very good coverage has been given by Polyanin and Nazaikinskii [29] and will
not be repeated here. The purpose of this section is just for illustration that various tricks have
been developed for the solution of simple differential equations in homogeneous medium, that
is, the coefficients are constants inside a continuous solution domain. The readers are also
suggested to read the works of Greenberg [14], Soare et al. [34], Nagle et al. [28], Polyanin et al.
[30], Bronson and Costa [4], Holzner [18], and many other published books. There are many
elegant tricks that have been developed for the solution of different forms of differential
equations, but only very few techniques are actually used for the solution of real life problems.
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1.6. Partial differential equations

In many engineering or science problems, such as heat transfer, elasticity, quantum mechanics,
water flow and others, the problems are governed by partial differential equations. By nature,
this type of problem is much more complicated than the previous ordinary differential equa-
tions. There are several major methods for the solution of PDE, including separation of
variables, method of characteristic, integral transform, superposition principle, change of
variables, Lie group method, semianalytical methods as well as various numerical methods.
Although the existence and uniqueness of solutions for ordinary differential equation is well
established with the Picard-Lindelof theorem, but that is not the case for many partial differ-
ential equations. In fact, analytical solutions are not available for many partial differential
equations, which is a well-known fact, particularly when the solution domain is nonregular
or homogeneous, or the material properties change with the solution steps.

1.6.1. Classification of second-order PDE

Refer to the following general second-order partial differential equation:

Fu _Pu  Pu  du D
- S A DA EL f Fu4+G =0 (24)

A—+B—
w2t oxdy  oy? ox Oy

To begin with, let us consider a review of conic curves (ellipse, parabola and hyperbola)

Ax* +Bxy+Cy* + Dx +Ey+F=0 (25)

The conic curve can be classified with the following criterion.

> 0 hyperbola
B> —4AC = { =0 parabola (26)
< 0 ellipse

Following the conic curves, the general partial differential is also classified according to similar
criterion as

B?> — 4AC > 0 : elliptic

Classificationq B* — 4AC = 0 : parabolic (27)
B? — 4AC < 0 : hyperbolic

This classification was proposed by Du Bois-Reymond [41] in 1839. In this section, only some
of the more common techniques are discussed, and the readers are suggested to read the
works of Hillen et al. [16], Salsa [33], Polyanin and Zaitsev [31], Bertanz [2], Haberman [15]
and many other published texts.

1.7. Parabolic type: heat conduction/soil consolidation/diffuse equation

The following equation form is commonly found in many engineering applications.
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u  du
2—:— L 2
S 6t’0<x< ,JE>0 (28)

Initial condition: u(x,0) = f(x),0<x<L
Boundary condition: u(0,t) = 0,u(L,t) =0, >0

a” is a constant known as the thermal diffusivity or coefficient of consolidation. For soil
consolidation problem, the governing conditions are given by

Initial excess pore pressure

U,(2,0) = u;(z),0<z<2d

(29)
u,(0,£) = 0,u,(2d,t) = 0,t > 0

Drained boundary

Py =u;,0<x <L, t>0
u(0,t) =0,u(L,t) =0,t >0 (30)
u(x,0) = f(x),0<x<L

Assuming variable u(x, t) can be separated, using separation of variables

u(x,t) = X(HT(#) (31)
a?X'T = XT'
X _1r
X a7 (32)
X 1T X +AX=0
T=5==-1-
X a7 T +a?AT =0

A PDE now becomes two ODE which can be solved readily. Based on the boundary condition
u(0,t) = 0,u(L,t) =0,t >0

u(0,t) = X(0),T(t) =0
X(0) =0,X(L) =0 (33)
X' +AX =0,X(0)=0,X(L) =0

This is an eigenvalue problem which has solution only for certain A. The eigenvalues are given
by

n?m?

/\n :7,7121,2,3,... (34)

Hence the eigenfunctions are expressed as

241
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X (x) —sm(nz ) n=1,2,3... (35)

For the time-dependent function T,

T +a?AT =0 (36)
dTT = —a?Adt
—a n2m2t (37)

hence T, = k,e~("me/ L)zt, ky, constant. The fundamental solutions are then expressed as

u(x, £) = e (/L m("zx) n=1,2,3.. (38)

The Fourier series expansion in x is given by

u(0,t) = f(x),0<x<L (39)
x,t) = icnu,1 (x,t) = icne*("”“/ Ltsin (?) (40)
n=1 n=1
Initial condition is given as
u(x,0) =f(x) = ni;cnsin (HLE) 41)
L . (MTX
Jof( )sm( )dx = chJ sm< ) ( T )dx

L

J;f(x)sin (?) dx = c”Lsin2 (?) dx = cn%

Solution of the soil consolidation equation is hence given by

— = —(nma/L)*t . nrx 42
t) ;cne sin (—L ) (42)
2 (* . /nmx .
=7 f(x)sin (T) dx (EulerFourier formulas) (43)
0

1.8. One-dimensional wave equation

One-dimensional (1D) wave equation appears in many physical and engineering problems.
For example, a vibrating string or pile driving process is given by this type of differential
equation. This problem is also commonly solved by the method of separation of variables
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Py = Uy, 0 < x < L, t >0
u(0,£) = 0,u(L,t) = 0,t>0
u(x,0) = f(x),u(x,0) =0,0<x<L

Consider u(x, t) is given by X(x)T(t). The wave equation will give

X_1T_ [ X +Ax=0
X @27 T +a?At =

The partial differential equation will then be given by two equivalent ODEs.

= o
-
Il
b
=
—
—
-
)
< |
IA
=
A
=
H
—
o
S~—

=0

X' +AX =0,X(0)=X(L) =0

Xu(x) = sin(?),n =1,2,3,...
nrm
/\n = ?,f’l = 1,2,3,
For the time-dependent function T,
T +@AT=0

T(0)=0A, =nn/L
Then T(t) = kicos(nmat/L) — kysin(nmat/L)
Since T (0) =0k, =0
Therefore, T(t) = kycos(nmat/L)

Fundamental solution is given by

t
uy(x,f) = sm( Zx)cos(?),n =1,2,3...

The general solution is then given by
t) = chun (x,1) Zc,&n( ) <n7mt>
n=1 L

Applying the boundary condition

(x 0) =f(x),0<x<L
o L

f(x) Z sm( ) — oy = %J f(x)sin(?)dx

0

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(1)

(52)

(53)

(54)
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The final solution is then given by

u(x,t) = icnsin (”Lﬂ) cos (mzat) (55)
n=1
Cn = %sz(x)sin (?) dx (56)

1.9. Laplace equation

Laplace equation forms an important governing condition for many types of problems. Some
of the more common forms are given by

three-dimensional Laplace equation iy, + uy, + tz; =0
two-dimensional heat conduction a® (i, + Uyy) = Uy

two-dimensional seepage problem (kytix, + kyttyy) = 0

There are two major types of boundary conditions to this problem:
Dirichlet problem: boundary conditions prescribed as u

Neumann problem: normal derivative u, or u, are usually prescribed on the boundary for many
mathematical problems. This case can be solved by the use of complex analysis or series
method for which many analytical solutions are available in the literature. In many aniso-
tropic seepage problems, however, the normal of a derived quantity at any arbitrary direc-
tion (seepage flow normal to an impermeable surface) is 0 instead of u, or u, being zero. For
such cases, it is very difficult to obtain the analytical solution if the solution domain is
nonhomogeneous, and the use of numerical method such as the finite element method
appears to be indispensable.

Consider the given Laplace equation, using separation of variables for the analysis.

Uy 1ty = 0,0 <x <a,0<y <b
u(x,0) =0,u(x,b) =0,0 <x <a (57)
u(0,y) = 0,u(a,y) = f(y),0 < y<b

Using separation of variables, u(x, t) = X(x)Y(y)

XY+XY =0

X' Y’ X' —AX=0 (58)
—:——:A—)

X Y Y +AY =0

Uey + 1ty =0,0<x<a,0<y<b (59)

u(x,0) =0,u(x,b) =0,0<x<a

(60)
u(0,y) =0,u(a,y) =f(y),0 <y<b
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u(0,y) =X(0)Y(y) =0,0 <y <b— X(0) =0,
u(x,0) = X(x)Y (O)—OO<x<a—>Y(O)—O (61)
u(x,b) =X(x)Y(0) =0,0<x<a—Y() =
X' —AX=0,X(0)=0
Y +AY =0,Y(0)=0,Y(b) =0 62)
2.2
)\n:%,Yn(y)zsin<nbﬂ>,n:1,2,3,... (63)
X" — AX = 0, hence X(x) = kycosh(nmx/b) — kosin(nmx/b)
Since X(0)=0, k; =0
X(x) = kpsinh (?) (64)
uy(x,y) = sinh (nzx)sm (nzy)n =1,2,3... (65)

ua,y) =f(y),0<y<b

nm 66
xY) =D cattn(x,y) = chsm< ) ( by) (66)
n=1
Based on the Fourier expansion as given by

Jf(y)sm( Py =37 1cnsmh(”g“)stm($)sm(”bﬂ)dy

b . (nmx . mna  (* ., mux . mma b (67)
Jof(x)sm (T>dx = sthanszn (T) dx = sznthn 5

u(a,y) =f(y) = Zn 1cnsmh< Za)sin (%)

cpsinh (n;m) = % JZf(y)sin (?) dy

2 sinh (ﬂZﬂ) B r’f(y)Sin (”bﬂ) dy

0

Cﬂ -

1.10. Introduction to numerical methods

In general, analytical solutions are not available for most of the practical differential equations,
as regular solution domain and homogeneous conditions may not be present for practical
problems. Moreover, the solution domain may be indeterminate (free surface seepage flow),
the displacement is large so that the solution may deform under motion, or in an extreme case
part of the material may tear off from the main body with continuous formation and removal
of contacts. Many engineering problems fall into such category by nature, and the use of
numerical methods will be necessary. Currently, there are several major numerical methods
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commonly used by the engineers: finite difference method, finite element method, boundary
element method and distinct element. There are also other less common numerical methods
available for practical problems, and many researchers also try to combine two or even more
fundamental numerical methods so as to achieve greater efficiency in the analysis. In general,
the solution domain is discretized into series of subdomains with many degrees of freedom.
The number of variables or degrees of freedom may even exceed millions for large-scale
problems, and sometimes very special material properties are encountered so that the system
is highly sensitive to the method of discretization and the method of solution. Similar to the
ODE and PDE, it is impossible to discuss the details of all the numerical methods and the
author choose to discuss the finite element method due to the wide acceptance of the method
and this method is more suitable for general complicated methods.

Except for some simple problems with regular geometry and loading, it is very difficult to solve
most of the boundary value problems with the yield of analytical solutions. Towards this, the
use of numerical method seems indispensable, and the finite element is one of the most popular
methods used by the engineers [32, 38]. There are two fundamental approaches to FEM, which
are the weighted residual method (WRM) and variational principle, but there are also other
less popular principles which may be more effective under certain special cases. In finite
element analysis of an elastic problem, solution is obtained from the weak form of the equiva-
lent integration for the differential equations by WRM as an approximation. Alternatively,
different approximate approaches (e.g. collocation method, least square method and Galerkin
method) for solving differential equations can be obtained by choosing different weights based
on the WRM and the Galerkin method appears to be the most popular approach in general.

Specifically, in elasticity for instance, the principle of virtual work (including both principle of
virtual displacement and virtual stress) is considered to be the weak form of the equivalent
integration for the governing equilibrium equations. Furthermore, the aforementioned weak
form of equivalent integration on the basis of the Galerkin method can also be evolved to a
variation of a functional if the differential equations have some specific properties such as
linearity and selfadjointness. Principles of minimum potential energy and complementary
energy are two variational approaches equivalent to the fundamental equations of elasticity.

Since displacement is usually the basic unknown quantity in FEM, only the principle of virtual
displacement and minimum potential energy will be introduced in the following section. In
this case, the FEM introduced herein is also called displacement finite element method
(DFEM). There are other ways to form the basis of FEM with advantages in some cases, but
these approaches are less general and will not be discussed here.

1.11. Principle of virtual displacement

The principle of virtual displacement is the weak form of the equivalent integration for
equilibrium equations and force boundary conditions. Given the equilibrium equations and
force boundary conditions in index notation,

i +f; = 0, (in domain V) (68)

o;in; — T; = 0, (on domain boundary S,) (69)
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In WRM, without loss of generality, the variation of true displacement 6u; and its boundary
value (i.e. —0u;) can be selected as the weight functions in the equivalent integration

J (5141'((7,']‘,/ —|—f1‘)dV — J 514,‘((71‘]'11/ — Ti)dS =0 (70)
\%4

o

The weak form of Eq. (70) is given as

J (—58,‘]'01‘]' + 6u,f,)dV + J ou; T;dS =0 (71)
V (e

S

It can be seen clearly from Eq. (71) that the first item in the volume integral indicates the work
done by the stresses under the virtual strain (i.e. internal virtual work), while the remaining
items indicate the work done by the body force and surface force under the virtual displace-
ment (i.e. external virtual work). In other words, the summation of the internal and external
virtual works is equal to 0, which is called the principle of virtual displacement. Under this
case, we can conclude that a force system will satisfy the equilibrium equations if the summa-
tion of the work done by it under any virtual displacement and strain is equal to 0.

1.12. Principle of minimum potential energy (PMPE)

Based on Eq. (71), we can deduce that

J (68ijDijk15kl — 6ulfz)dV + J 6uiTidS =0 (72)
14

n

Due to the symmetry of the constitutive matrix D;j;, we can further obtain
1
(6€ij)Dijpen = 5<§ Dz‘jkzez‘j«?kz) = OU(&mn) (73)
where U(¢&,,) is the unit volume strain energy. Given the assumptions in linear elasticity
=0 (u;) = fou;, — o (u;) = Tidu; (74)
Eq. (72) is further simplified to
8ITp =0 (75)

[Ip is the total potential energy of the system, which is equal to the summation of the potential
energy of deformation and external force and can be expressed as

1
ITp =Tlp(u;) = J <§ Dijkﬁ,‘]‘é‘k/ —fl-u,‘> dv — J T;u;dS (76)
1% Sq

Eq. (75) shows that, among all the potential displacements, the total potential energy of system
will take stationary value at the real displacement, and it can be further verified that this station-
ary value is exactly the minimum value which is the principle of minimum potential energy.
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1.13. General expressions and implementation procedure of FEM

The solution of a general continuum problem by FEM always follows an orderly step-by-step
process which is easy to be programmed and used by the engineers. For illustration, a three-
node triangular element for plane problems is taken as an example to illustrate the general
expressions and implementation procedures of FEM.

1.13.1. Discretization of domain

The first step in the finite element method is to divide the structure or solution region into
subdivisions or elements. Hence, the structure is to be modelled with suitable finite elements.
In general, the number, type, size, and arrangement of the elements are critical towards good
performance of the numerical analysis. A typical discretization with three-node triangular
element is shown schematically in Figure 1.

Mesh generation can be a difficult process for a general irregular domain. If only triangular
element is to be generated, this is a relatively simple work, and many commercial programs
can perform well in this respect. There are also some public domain codes (EasyMesh or
Triangle written in C) which are sufficient for normal purposes. For quadrilateral or higher
elements, mesh generation is not that simple, and it is preferable to rely on the use of commer-
cial programs for such purposes.

1.13.2. Interpolation or displacement model

As can be seen from Figure 1(b), the nodal number of a typical three-node triangular element
is coded in anticlockwise order (i.e. in the order of i, j and m), and each node has two degrees of
freedom (DOFs) or two displacement components which is stored in a column vector in index
notation as follows:

=] jom) )
Y 4 Vi
"X, Vo) Ui
o
#
¢
i // \ ¥
// \
L s
I(x:'s }"."} —_h_____‘———h U,
J ¥)
X Ll
0 ) L 0 i
(a) Discretization (b) 3-node triangular element

Figure 1. Discretization of a two-dimensional domain with three-node triangular element.
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Totally, each element has six nodal displacements, i.e. six DOFs. Putting all the displacements
in a column vector, we can obtain the element nodal displacement column matrix as

a = a]- = |U; U u]‘ ZJ]‘ Uy Um]T (78)

In FEM, a nodal displacement is chosen as the basic unknowns, so interpolation at any
arbitrary point is based on the three nodal displacements of each element, which is called a
displacement mode. For a three-node triangular element, linear polynomial is utilized, and the
element displacement in both x -direction and y-direction are

U= P+ Box +p3y (79)
0=y + Psx + By (30)
Obviously, displacements of all the three nodes should satisfy Egs. (79) and (80). By substitut-

ing the six nodal displacement components into these equations, it is easy to obtain another
form of displacement mode as

u = Nju; + Nju]‘ + Ny (81)
v = Njv; + Njvj + Ny (82)
where
1 ..
Ni = 5 (@ + bix + ciy) (i, m). ®3)

In Eq. (81), N;,N; and N, denote the interpolation function or shape function for the three
nodes, respectively. A is the area of the element, and a;,b;, ¢;-+, ¢;, are constants related to the
coordinates of the three nodes. Similarly, Egs. (81) and (82) can also be expressed in the form of
matrix as

= Na* (84)

where N is the shape function matrix and a° is the element nodal displacement vector. For the
geometric equations, element strains are

Eyx
e=| & :Lu:LNLIGIL[Ni N]' Nm}lle

Vi (85)

= [B, B] Bm]ae = Bae
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where L is the differential operator and B is the element strain displacement matrix which can

be given as
[0 T [ON; ]
o ! x !
O [N, © ON;
=ILN;=| 0 =— ! =10 i
B; = LN; Y [ 0 Ni:| 3 (i,j,m) (86)
0 9 ON; ON;
|0y Ox | | Oy  Ox |
Substitute Eq. (85) by the stress-strain relation,
Ox
o= |0y | =De=DBa = Sa° (87)
Tay
where
S=DB=D[Bi B Bu]=1[S S Su] (88)

S is called the element stress matrix. It should be noted that both the strain and stress matrices
are constant for each element, because in a three-node triangular element, the displacement
mode is a first-order function, and differentiating this function will give a constant function.

1.13.3. Stiffness equilibrium equation (SEE) of FEM derived from PMPE

For elastic plane problems, the total potential energy Ilp in Eq. (76) can be expressed in matrix
formulation as follows:

Ilp:[ leTDsMx@/—J uﬁﬁu@/—j u' TtdS (89)
I} 2 Q So

where ¢, f, and T denote the thickness, body force and surface force, respectively. For an FEM
problem, the total potential energy is the summation of that from all the elements. Therefore,
substituting Eqs. (84) and (85) into Eq. (89) gives

Ilp = ZHE = Z(a“TJ %BTDBtdxdyae> - Z(aﬂj NTftdxdy) — Z(a"TJ NTTtdxdy)
e e Qe e -Oe e Snc
(90)
Eq. (90) can be viewed as

K = J B' DBtdxdy, P; = J N'ftdxdy
(1)
%szWm@y=$+%
s

e
o
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where K°and P° are named as the element stiffness matrix and equivalent element nodal load
matrix, respectively. Substitute Eq. (91) to Eq. (90), the total potential energy of the structure
can be simplified as

1
Ilp = aTEZ(K")a - aTZ(Pe) (92)
e e
Given
K=>K.P=>P (93)
e e
Eq. (92) is further simplified as
1
Ilp = EaTKa —a'Pa (93a)

where Kand P are global stiffness matrix and global nodal load matrix, respectively.

For PMPE, the variation of ITp is equal to 0 and the unknown variable is g, thus Eq. (75) gives

ollp
——=0 94
3 (%4)
which finally comes to the SEE of FEM as
Ka=P (95)

From Eq. (93), we know that the global stiffness matrix and the global load matrix are the
assemblage of the element stiffness matrices and equivalent element nodal load matrices,
respectively. Specifically, in order to solve Eq. (93), element stiffness matrix, element equivalent
nodal load vector, global stiffness matrices and global nodal load vector are all determined
together with some given displacement boundary conditions. Without the provision of ade-
quate boundary condition, the system is singular as rigid body motion will produce no stress
in the system and such mode will be present in the SEE.

1.13.4. Derivation of element stiffness matrices (ESM)

For a three-node triangular element, the element strain matrix B is constant, thus Eq. (91) gives

Ki  Kij Kin
K°=B'DBtA= | Kii Kj Kin (96)
Kmi ij Kmm
of which the submatrix
ki,xx ki,xy
Kij = { kij-yx k;w} 97)
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Kjj indicates the ith nodal force along the x- and y-directions in the Cartesian coordinate system
when the displacement of the jth node is unit along the x- and y-directions, which can be easily
obtained. Moreover, the element stiffness matrix is symmetric, and the computational memory
required in an FEM program can be reduced by using this property.

It should be noted that for a higher order triangular element (e.g. six-node triangular element)
or quadrilateral element for which higher order terms are involved, the strain matrix B is not
constant any more so that the element stiffness matrix needs to be evaluated by numerical
integration (direct integration is seldom adopted). Towards this, numerical integration
methods such as the Gaussian integration or the Newton-Cotes integration can be utilized.

1.13.5. Assembling of ESMs and ENLMs

For an FEM process, we need to solve Eq. (95) which is the global equilibrium equation. Most
of the elements in the matrix Kare 0 simply because each node is only shared by a few
surrounding elements. In view of that, a rectangular matrix can represent the global stiffness
matrix (which is a square matrix), and the half bandwidth D can be defined as

D = (1 + NDIF) x NDOF (98)

where NDIF denotes the largest absolute difference between the element node numbers among
all the elements in the finite element mesh.

In conclusion, the properties of the global stiffness matrix can be summarized as: symmetric,
banded distribution, singularity and sparsity. Among all the properties, singularity will vanish
by introducing appropriate boundary conditions to Eq. (95) to eliminate the rigid body motion.
Also, other properties like banded distribution should be fully taken into consideration to
reduce the computational memory and enhance the computation efficiency.

1.13.6. Isoparametric element and numerical integration

Most of the engineering structure is not regular in shape, and some of them even have very
complicated boundary shapes. Although the use of triangular element can always fit a com-
plicated boundary, the accuracy of this element is low in general. To cope with the irregular
boundary shape with a higher accuracy in analysis, one of the most common approaches is the
use of higher-order element, and the isoparametric formulation is the most commonly used at
present. Consider an arbitrary four-node quadrilateral element as an example which is sche-
matically shown in Figure 2. If we can find the transformation from Figure 2(a) to (b), then it
will become easier to carry numerical integration with complicated shapes for an arbitrary
element. In Figure 2(a), we define the Cartesian coordinate system, while in Figure 2(b), we
define the local coordinate system (or natural coordinate system) within a specific domain (i.e.
&,ne(—1,1)). The relation between these two kinds of coordinate system can be described as

G-

which can be further modified by the interpolation function at nodes in the local coordinate
system as follows:
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Figure 2. Isoparametric transition.
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J(L1)
| |

]
(P& )

2(1.-1)

(100)

where (x;,y,) are coordinates in the Cartesian coordinate system corresponding to the ith node

in local coordinate system, N is interpolation function of the ith node in local coordinate
system and m is the number of nodes chosen to transform the coordinates. Therefore, the
regular element in the natural coordinate system can be transformed to the irregular element
in the Cartesian coordinate system. The former element is called the parent element, while the
latter is called the subelement. Specifically, Eq. (101) can be further expanded as

x_N10N20 N3ON40
y_ONl 0N2 ON3 0N4

X1
Y1
X2
Y
X3
Y3
X4

Yy

(101)

Using the same interpolation functions, the element displacement model can be written as

M7N10N20 N30N40
ZI_ONl ON2 0N3 0N4

31
(41
U
(%)
us
U3
Uy
U4

(102)
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where | denotes the Jacobi matrix while the interpolation functions are given by

N1 =-2(1+&0+n),Na=7(1-&)(1+n)

(103)
N; =

(14+&A+n),Na=—(1-&(1+1n)

N N
NN

As mentioned before, during the derivation of the element stiffness matrix and the equivalent
load vector, the derivative of the shape function and the integration in element surface or
volume in the Cartesian coordinate system are required. Since the shape functions adopted
herein are expressed in natural coordinates, therefore, derivative and integration transforma-

tion relationships are essential when isoparametric element is used.

1.13.7. Derivative and integral transformation

According to the law of partial differential,

aNi B aN,' ox aNi 6y
5 dx OE ' Jy A&’
¢ owoc oyol (104)
aN,»_aN@ aN,-a_y
an  oxdn dyon
or in matrix form
ON; b_x G_y ON; ON;
o | |0& o ox | ox
oN; (T |ar ay|)on T/ N, (105)
on on onl \ dy oy
Inverse of Eq. (105) gives
le- aZ\]i
ox | aé
o [~ YN (106)
oy on
where
rox dy i@x. iaNiy
]_£$7z‘:1651i:1651
B U B R AR
(o ol |5 2 Y
= on = on (107)
B o of o8 o X2 Y,
TloNn oy AN N | [
L On o on 0 X4 Yy
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For an infinitely small element, the area under the Cartesian coordinate system and the natural
coordinate system are related by

ds = dxdy = |J|d&dn, (108)

where |J| is the determinant of the Jacobian matrix J. Therefore, element stiffness matrix and
equivalent nodal load matrix in Eq. (91) can be transformed to

k= | BBz 7y = | Nz
o o (109)
pg:J NTT|J|d&dn
SJ&’

For solving the integral equation, usually the Gaussian integration method is employed. In
practice, both two and three integration points along each direction of integration are com-
monly used. Since the discretized system is usually overstiff, it is commonly observed that the
use of two integration points along each direction of integration will slightly reduce the
stiffness of the matrix and give better results as compared with the use of three integration
points. The use of exact integration is possible for some elements, but such approaches are
usually tedious and are seldom adopted. The advantage in using the exact integration is that
the integration is not affected by the shape of the element while the transformation as shown in
Eq. (109) may be affected if the poor shape of the element is poor. The author has developed
many finite element programs for teaching and research purposes which can be obtained at
ceymchen@polyu.edu.hk. The programs available include plane stress/strain problem, thin/
thick plate bending problem, consolidation in 1D and 2D (Biot), seepage problem, slope
stability problem, pile foundation problems and others.

1.14. Distinct element method

In practical applications, a limit equilibrium method based on the method of slices or method
of columns and strength reduction method based on the finite element method or finite
difference method are used for many types of stability problems. These two major analysis
methods take the advantage that the in situ stress field which is usually not known with good
accuracy is not required in the analysis. The uncertainties associated with the stress-strain
relation can also be avoided by a simple concept of factor of safety or the determination of the
ultimate limit state. In general, this approach is sufficient for engineering analysis and design.
If the condition of the system after failure has initiated is required to be assessed, these two
methods will not be applicable. Even if the in situ stress field and the stress-strain relation can
be defined, the post-failure collapse is difficult to be assessed using the conventional
continuum-based numerical method, as sliding, rotation and collapse of the slope involve very
large displacement or even separation without the requirement of continuity.

The most commonly used numerical methods for continuous systems are the FDM, the FEM
and the boundary element method (BEM). The basic assumption adopted in these numerical
methods is that the materials concerned are continuous throughout the physical processes.
This assumption of continuity requires that, at all points in a problem domain, the material
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cannot be torn open or broken into pieces. All material points originally in the neighbourhood
of a certain point in the problem domain remain in the same neighbourhood throughout the
whole physical process. Some special algorithms have been developed to deal with material
fractures in continuum mechanics-based methods, such as the special joint elements by Good-
man [13] and the displacement discontinuity technique in BEM by Crouch and Starfield [5].
However, these methods can only be applied with limitations [21]:

1. large-scale slip and opening of fracture elements are prevented in order to maintain the
macroscopic material continuity;

2. the amount of fracture elements must be kept to relatively small so that the global stiffness
matrix can be maintained well-posed, without causing severe numerical instabilities; and

3. complete detachment and rotation of elements or groups of elements as a consequence of
deformation are either not allowed or treated with special algorithms.

Before a slope starts to collapse, the factor of safety serves as an important index in both the
LEM and SRM to assess the stability of the slope. The movement and growth after failure have
launched which is also important in many cases that cannot be simulated on the continuum
model, and this should be analyzed by the distinct element method (DEM).

In continuum description of soil material, the well-established macro-constitutive equations
whose parameters can be measured experimentally are used. On the other hand, a discrete
element approach will consider that the material is composed of distinct grains or particles that
interact with each other. The commonly used distinct element method is an explicit method
based on the finite difference principles which is originated in the early 1970s by a landmark
work on the progressive movements of rock masses as 2D rigid block assemblages [6]. Later,
the works by Cundall are developed to the early versions of the UDEC and 3DEC codes
[9, 10, 12]. The method has also been developed for simulating the mechanical behaviour of
granular materials [8], with a typical early code BALL [7], which later evolved into the codes of
the PFC group for 2D and 3D problems of particle systems (Itasca, 1995). Through continuous
developments and extensive applications over the last three decades, there has accumulated a
great body of knowledge and a rich field of literature about the distinct element method. The
main trend in the development and application of the method in rock engineering is
represented by the history and results of the code groups UDEC/3DEC. Currently, there are
many open source (Oval, LIGGGHTS, ESyS, Yade, ppohDEM, Lammps) as well as commercial
DEM programs, but in general, this method is still limited to basic research instead of practical
application as there are many limitations which include: (1) difficult to define and determine
the microparameters; (2) there are still many drawbacks in the use of matching with the macro
response to determine the microparameters; (3) not easy to set up a computer model; (4) not
easy to include structural element or water pressure; (5) extremely time consuming to perform
an analysis; and (6) postprocessing is not easy or trivial. It should also be noted that DEM can
be formulated by an energy-based implicit integration scheme which is the discontinuous
deformation analysis (DDA) method. This method is similar in many respect to the force-
based explicit integration scheme as mentioned previously.
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In DEM, the packing of granular material can be defined from statistical distributions of grain
size and porosity, and the particles are assigned normal and shear stiffness and friction
coefficients in the contact relation. Two types of bonds can be represented either individually
or simultaneously; these bonds are referred to the contact and parallel bonds, respectively
(Itasca, 1995). Although the individual particles are solid, these particles are only partially
connected at the contact points which will change at different time step. Under low normal
stresses, the strength of the tangential bonds of most granular materials will be weak and the
material may flow like a fluid under very small shear stresses. Therefore, the behaviour of
granular material in motion can be studied as a fluid-mechanical phenomenon of particle flow
where individual particles may be treated as “molecules” of the flowing granular material. In
many particle models for geological materials in practice, the number of particles contained in
a typical domain of interest will be very large, similar to the large numbers of molecules.

One of the primary objectives of the particle model is the establishment of the relations between
microscopic and macroscopic variables/parameters of the particle systems, mainly through
micromechanical constitutive relations at the contacts. Compared with a continuum, particles
have an additional degree of freedom of rotation which enables them to transmit couple
stresses, besides forces through their translational degrees of freedom. At certain moment, the
positions and velocities of the particles can be obtained by translational and rotational move-
ment equations and any special physical phenomenon can be traced back from every single
particle interactions. Therefore, it is possible for DEM to analyze large deformation problems
and a flow process which will occur after slope failure has initiated. The main limitation of
DEM is that there is great difficulty in relating the microscopic and macroscopic variables/
parameters; hence, DEM is mainly tailored towards qualitative instead of quantitative analysis.

DEM runs according to a time-difference scheme in which calculation includes the repeated
application of the law of motion to each particle, a force-displacement law to each contact, and
a contact updating scheme. Generally, there are two types of contact in the program which are
the ball-wall contact and the ball-ball contact. In each cycle, the set of contacts is updated from
the known particles and known wall positions. Force-displacement law is firstly applied on
each contact, and new contact force is then calculated according to the relative motion and
constitutive relation. Law of motion is then applied to each particle to update the velocity, the
direction of travel based on the resultant force, and the moment and contact acting on the
particles. Although every particle is assumed as a rigid material, the behaviour of the contacts
is characterized using a soft contact approach in which finite normal stiffness is taken to
represent the stiffness which exists at the contact. The soft contact approach allows small
overlap between the particles which can be easily observed. Stress on particles is then deter-
mined from this overlapping through the particle interface.

1.15. General formulation of DEM

The PFC runs according to a time-difference scheme in which calculation includes the repeated
application of the law of motion to each particle, a force-displacement law to each contact, and
a contact updating a wall position. Generally, there are two types of contact exist in the
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program which are ball-to-wall contact and ball-to-ball contact. In each cycle, the set of
contacts is updated from the known particle and the known wall position. The force-
displacement law is first applied on each contact. New contact force is calculated and replaces
the old contact force. The force calculations are based on preset parameters such as normal
stiffness, density, and friction. Next, a law of motion is applied to each particle to update its
velocity, direction of travel based on the resultant force, moment and contact acting on particle.
The force-displacement law is then applied to continue the circulation.

1.16. The force-displacement law

The force-displacement law is described for both the ball-ball and ball-wall contacts. The
contact arises from contact occurring at a point. For the ball-ball contact, the normal vector is
directed along the line between the ball centres. For the ball-wall contact, the normal vector is
directed along the line defining the shortest distance between the ball centre and the wall. The
contact force vector F; is composed of normal and shear component in a single plane surface

F; = Fi(t) + F(t + At) (110)

The force acting on particle i in contact with particle j at time ¢ is given by
Fi(t) = ky (r,- +ri— zij(t)) (111)

where r; and r; stand for particle i and particle j radii, [j(t) is the vector joining both centres of
the particles and k, represents the normal stiffness at the contact. The shear force acting on
particle i during a contact with particle j is determined by

Fy(t + At) = £min(Fj (1) + kAsj, fIFL(t + Ab)) (112)

where fis the particle friction coefficient, k, represents the tangent shear stiffness at the contact.
The new shear contact force is found by summing the old shear force (min Fj(t)) with the shear
elastic force. As;; stands for the shear contact displacement-increment occurring over a time
step At.

ASi]‘ = U?]-At (113)

where V7, is the shear component of the relative velocity at contact between particles i and j
over the time step At.

1.17. Law of motion

The motion of the particle is determined by the resultant force and moment acting on it. The
motion induced by resultant force is called translational motion. The motion induced by
resulting moment is rotational motion. The equations of motion are written in vector form as
follows:
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- (Translational motion)

ZFij + m;g + F? = mx} (114)
j

- (Rotational motion)

> riFj+M{ = 1,6; (115)
j

where x; and 6'; stand for the translational acceleration and rotational acceleration of particles
i. I, stands for moment of inertia. F{ and MY stand for the damping force and damping
moment. Unlike finite element formulation, there are now three degree of freedom for 2D
problem and six degree of freedom for 3D problems. In Cundall and Strack’s explicit integra-
tion distinct element approach, solution of the global system of equation is avoided by consid-
ering the dynamic equilibrium of the individual particles rather than solving the entire system
simultaneously. That means, Newton’s law of motion is applied directly. This approach also
avoids the generation and storage of the large global stiffness matrix that will appear in finite
element analysis. On the other hand, the implicit DDA approach will generate a global stiff-
ness matrix which is even larger than that in finite element analysis, as the rotation is involved
directly in the stiffness matrix.

In a typical DEM simulation, if there is no yield by contact separation or frictional sliding, the
particles will vibrate constantly and the equilibrium is difficult to be achieved. To avoid this
phenomenon which is physically incorrect, numerical or artificial damping is usually adopted
in many DEM codes, and the two most common approaches to damping are the mass
damping and non-viscous damping. For mass damping, the amount of damping that each
particle “feels” is proportional to its mass, and the proportionality constant depends on the
eigenvalues of the stiffness matrix. This damping is usually applied equally to all the nodes. As
this form of damping introduces body forces, which may not be appropriate in flowing
regions, it may influence the mode of failure. Alternatively, Cundall [11] proposed an alterna-
tive method where the damping force at each node is proportional to the magnitude of the out-
of-balance-force, with a sign to ensure that the vibrational modes are damped rather than the
steady motion. This form of damping has the advantage that only accelerating motion is
damped and no erroneous damping forces will arise from steady-state motion. The damping
constant is also non-dimensional and the damping is frequency independent. As suggested by
Itasca [20], an advantage of this approach is that it is similar to the hysteretic damping, as the
energy loss per cycle is independent of the rate at which the cycle is executed. While damping
is one way to overcome the non-physical nature of the contact constitutive models in DEM
simulations, it is quite difficult to select an appropriate and physically meaningful value for the
damping. For many DEM simulations, particles are moving around each other and the dom-
inant form of energy dissipation is for frictional sliding and contact breakages. The choice of

259



260 Dynamical Systems - Analytical and Computational Techniques

damping may affect the results of computations. Currently, most of the DEM codes allow the
use of automatic damping or manually prescribed the damping if necessary.

To capture the inherent non-linearity behaviour of the problem (with generation and removal
of contacts, non-linear contact response and stress-strain behaviour and others), the displace-
ment and contact forces in a given time step must be small enough so that in a single time step,
the disturbances cannot propagate from a particle further than its nearest neighbours. For most
of the DEM programs, this can be achieved automatically and the default setting is usually
good enough for normal cases. It is, however, sometimes necessary to manually adjust the time
step in some special cases when the input parameters are unreasonably high or low. Most of
the DEM codes use the central difference time integration algorithm which is a second-order
scheme in time step.

1.18. Measuring logic

If the local results in DEM are analyzed, it is found that there will be large fluctuations with
respect to both locations and time. Such results are not surprising, as the results are highly
sensitive to the interaction between particles and hence the time step under which the results
are monitored. It can be viewed that such local results can be meaningless unless the results are
monitored over a long time span or region. A number of quantities in a DEM model are
defined with respect to a specified measurement circle. These quantities include coordinate
number, porosity, sliding fraction, stress and strain rate. The coordination number and stress
are defined as the average number of contacts per particle. Only particles with centroids that
are contained within the measurement circle are considered in computation. In order to
account for the additional area of particles that is being neglected, a corrector factor based on
the porosity is applied to the computed value of stress.

Since measurement circle is used, stress in particle is described as the two in-plane force acting
on each particle per volume of particle. Average stress is defined as the total stress in particle
divided by the volume of measurement circle. Thus, shape of particle is regardless of the
average stress measurement because the reported stress is easily scaled by volume unity. The
reported stress is interpreted as the stress per volume of measurement circle.

1.19. Discussion and conclusion

There are also various publications on the numerical solutions of differential equations, and
the readers are suggested to the works of Lee and Schiesser [24], Jovanoic and Suli [22], Veiga
et al. [37], Sewell [35], Morton and Mayers [27], Logg et al. [25], Holmes [17], Lui [26], Lapids
and Pinder [23] and Iserles [19]. It is impossible for the author to cover every available
analytical or numerical method; hence, the author has chosen some methods that are actually
used for teaching and research. The readers are strongly encouraged to consult the numerous
resources available in various books and publications. There are still new developments
available for the solutions of specific differential equations in large-scale problems, and this is
also the current trend in the development of differential equation solution.
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Due to the importance of the solution of differential equations, there are other important
numerical methods that are used by different researchers but are not discussed here, which
include the finite difference and boundary element methods (computer codes for learning can
also be obtained from the author). Differential equations rely on the Taylor’s series, and the
derivatives in the differential equation can be replaced with finite difference approximations
on a discretized domain. This will result in a system of algebraic equations that can be solved
implicitly or explicitly. There are various ways to form the derivatives, and the most common
methods are the forward difference, backward difference and the central difference schemes.
While the finite difference methods may be more suitable for different types of differential
equations, this method is less convenient to deal with irregular boundary conditions as com-
pared with the finite element method. For highly irregular domain where it is not easy to form
a nice discretization, the finite element method will also be much easier and natural to deal
with for such condition. In this respect, it is not surprising that many engineering programs are
written by the use of the finite element method than the finite difference method.

The boundary element method (BEM) is another numerical method for solving linear partial
differential equations which can be formulated as integral equations. The boundary element
method uses the given boundary conditions to fit boundary values into the integral equation.
In the post-processing stage, the integral equation will be used to calculate the solution directly
at any given point inside the solution domain numerically. BEM is applied to problems for
which Green’s functions can be calculated, thus this method is initially designed for problems
in linear homogeneous media. The dimension of the problem will then be reduced by one. For
example, two-dimensional problem will be effectively reduced to one-dimensional problem
along the boundary, and this will greatly improve the efficiency of computation. The require-
ment from the boundary element method imposes considerable restrictions on the range and
generality of problems to which the boundary element method can usefully be applied. There
are some new developments to the boundary element method so that it can be used for non-
linear problem or problems with several major materials (problems with random distribution
of material properties are still not applicable). The fundamental solutions are often difficult to
integrate. One important property of boundary element analysis is the solution of a fully
populated matrix as compared with that in the finite element/difference method. For compli-
cated problems, the boundary element will lose its advantage as compared with other numer-
ical methods. Due to the various limitations, there are only limited boundary element
programs available to the researchers. Interested readers can consult the works of Banerjee
[1], Brebbia et al. [3] and Trevelyan [36]. It appears that there are less interest in the use and
development of the boundary element method in the recent years, due to the various limita-
tions of this method in general non-linear non-homogeneous problem.

In history, various techniques have been developed for ordinary differential equations and
partial differential equations under different boundary conditions. While these tricks appear to
be elegant, they are not readily adopted for normal engineering use due to various limitations.
Being an engineer, the author seldom adopted the methods as outlined in this chapter in actual
applications (but do adopt for teaching), except the numerical methods as outlined in this
chapter. At present, there are many proprietary or open source finite elements or distinct
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element codes being used for many complicated real problems. The computer codes (usually
in Fortran or C) are usually difficult to be read (if available), and the computer codes for all the
partial differential forms (including some extended formats) that have been discussed in this
chapter can be readily available from the author for learning purposes. There are also very
powerful and general finite element tools or differential equations solver such as FreeFem++,
Comsol, Matlab, Mathematica, Maple and Maxima which are used by many scientists and
engineers [39, 40]. The use of parallel computing is also strongly influenced by the needs to
solve complicated partial differential equations over large solution domain.
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