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Mass production companies have become obliged to reduce their production costs and 
sell more products with lower profit margins in order to survive in competitive market 

conditions. The complexity and automation level of machinery are continuously 
growing. This development calls for some of the most critical issues that are reliability 

and dependability of automatic systems. In the future, machines will be monitored 
remotely, and computer-aided techniques will be employed to detect faults in the 
future, and also there will be unmanned factories where machines and systems 

communicate to each other, detect their own faults, and can remotely intercept their 
faults. The pioneer studies of such systems are fault diagnosis studies. Thus, we hope 

that this book will contribute to the literature in this regard.
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Preface

Mass production companies have become obliged to reduce their production costs and sell
more products with lower profit margins in order to survive in competitive market condi‐
tions. The complexity and automation level of machinery are continuously growing. This
development calls for some of the most critical issues that are reliability and dependability
of automatic systems. Furthermore, the maintenance and repair of these machines are both
costly and troublesome. In the factories where such automation systems are in use, even a
small fault in the production band stops the entire production line. Fault is defined as the
status where at least one characteristic feature or parameter is outside the limits allowed in
the normal state. These faults degrade the performance of the system by either causing dam‐
age to the system or completely disrupting the system. In production plants, even a few mi‐
nutes of production stop results in huge production losses and a remarkable increase in
costs. These unexpected failures take a long time to be repaired. The factories are trying to
pass through conventional maintenance and fault detection methods using various tests and
analysis after a fault occurs. In particular, car factories reserve a big portion of their budgets
to provide resources and trained maintenance personnel for detecting and solving any such
faults as quickly as possible. Since industrial maintenance costs account for 4–25% of the
total cost of production, technical maintenance departments have become one of the most
important parts in large factories.

In many production plants, machines are diagnosed and maintained with predictive mainte‐
nance methods or trained maintenance personnel. Predictive maintenance is in the last place
in maintenance variety with 12% in practice. However, predictive maintenance provides
many opportunities, which bring many opportunities for businesses. Nevertheless, predic‐
tive maintenance work can be carried out in certain periods. Failures that cannot be foreseen
during such a maintenance are detected after occurrence of the failure. These abnormal
events have significant economic, safety, and environmental impacts. Fault diagnosis is
mostly possible with predictive maintenance instruments. The main disadvantages of these
machines are the cost of the instruments and requirement of experienced personnel for in‐
terpreting the data. Moreover, even large-scale companies are only able to check their ma‐
chines once a failure happens or at prescheduled intervals. However, this is not a healthy
machine monitoring approach. In contrast, the ideal approach is monitoring the machines
online and handling fault diagnosis with artificial intelligence techniques. In this context,
machines will be monitored remotely, and computer-aided techniques will be employed to
detect faults in the future. Monitoring of status of machines with such artificial intelligence
will be provided by certain companies as an application service in cloud computing.

Depending on the advancement of technology, many factories are controlled by unmanned
intelligent systems. Recently, the concept Industry 4.0 gained great importance in Europe.



Current practices and studies focus almost exclusively on better products. Some of the most
apparent aims of Industry 4.0 are factory monitoring and predictive maintenance (produc‐
tion performance analysis, machine status, abnormal diagnostic, and sensor measurement).
Research on this issue is still ongoing. In South Korea, some manufacturers of car parts are
remotely controlling their production activities. But there is not a factory where all the ma‐
chines are solely controlled remotely.

A plant or system consists of three subsections: actuators, main process, and sensors. Over
time, there occur faults due to environmental reasons, aging, production mistakes, inappro‐
priate working conditions, misuse, human errors, etc. Fault diagnosis techniques are com‐
posed of three steps: fault detection, fault isolation, and fault analysis and identifications.
Fault detection is used to check whether there is any fault in the system and determine as
soon as it occurs. As the fault is detected, fault isolation is used to identify the location of the
faulty component. Then, fault analysis and identification are used to specify fault features
(e.g., type, shape, and size). A number of techniques are used in fault diagnosis. These tech‐
niques can be categorized as mathematical-based models and knowledge-based and data-
driven ones. Many factors such as process types, unexpected disturbances, open- or close-
loop structure, process nonlinearities, etc. influence the effectiveness and correctness of the
diagnosis.

Fault Diagnostics are used in many different industrial sectors like space systems, defense
systems (aviation, marine, and ground), commercial aerospace (aircraft, jet engines), ground
vehicles (locomotives, trucks, cars), high tech (networks and IT systems , disk drives, server
farms), and process control (IC manufacturing, refineries , power plants, oil and gas drilling).

We invited selected authors to contribute their original research articles as well as provide
literature review articles that will illustrate and stimulate the continuing effort to under‐
stand the fault diagnosis and detection. In this book, there are sections on bearing failures,
gear failures, electric motors, wind farms, petroleum equipment, planetary gearboxes, in‐
duction motors, rotating machinery, and electromechanical system fault diagnosis. The ac‐
cepted papers show a diversity of new developments in these areas. This issue has high-
quality articles containing original research results and survey articles of exceptional merit,
and it will let the readers of this book know more about fault diagnosis and detection.

In the future, there will be unmanned factories where machines and systems communicate
to each other, detect their own faults, and can remotely intercept their faults. The pioneer
studies of such systems are fault diagnosis studies. Thus, we hope that this book will con‐
tribute to the literature in this regard.

Dr. Mustafa Demetgul and Dr. Muhammet Ünal
Department of Mechatronics Engineering

Marmara University
Istanbul, Turkey
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Chapter 1

Fault Detection and Isolation

Rajamani Doraiswami and Lahouari Cheded

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67870

Abstract

Fault diagnosis of a class of linear multiple-input and multiple-output (MIMO) systems
is developed here. An emulator-based scheme is proposed to detect and isolate faults in
a system formed by interconnected subsystems. Emulators, which are hardware or
software devices, are connected to the input and measurement outputs in cascade with
the subsystems whose faults are to be diagnosed. The role of an emulator is to induce
variations in cascade combination of the nominal fault-free subsystem so as to mimic the
actual perturbations that may occur in the subsystem during the offline identification
phase. The emulator-generated data are employed in the reliable identification of the
nominal system, the associated Kalman filter, and a map that relates the emulator
parameters to the feature vector. In the operational stage, the Kalman filter residual is
used to detect a fault in the system; the emulator parameter that has varied is estimated,
and using the emulator-feature vector map, the faulty subsystem is isolated. The main
contributions of this work are accurate and reliable identification of the system, the fault
diagnosis of multivariable systems using feature vector-emulator map fault diagnosis of
multivariable systems, and the establishment of the key properties of the Kalman filter
for fault detection. The proposed scheme was successfully evaluated on a number of
simulated as well as physical systems.

Keywords: fault detection, fault isolation, fault diagnosis, Kalman filter, emulators,
identification, Bayes decision theory

1. Introduction

Fault detection and isolation (FDI) of physical systems—especially mission critical systems
including nuclear reactors, aircraft, automotive systems, spacecraft, autonomous vehicles, and
fast rail transportation—is becoming increasingly important in recent times thanks mainly to
advances in sensors, computing, and communication technologies. It still poses a challenge in

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



view of the stringent and conflicting requirements, high probability of correct detection and
isolation, low false alarm probability, and timely decision on the fault status.

The identification of the system model is crucial to the performance of the fault diagnosis
scheme. The more accurate the identified model, the higher is the probability of correct diagnosis
and the lower is the false alarm probability. The reliability and accuracy of the identification
hinges on ensuring that the identified model is captured completely and what is leftover is the
information-less zero-mean white noise process. As the Kalman filter is a zero-mean white noise
process if and only if there is no mismatch between the identified model and the model of the
system, the identification scheme should minimize the residual of the Kalman filter—instead the
equation error, which in general, is a colored noise [1]. The widely popular, consistent, and
efficient scheme that meets the above state requirement is the prediction error method (PEM)
[2]. The PEM identifies the system by minimizing the residual of the Kalman filter.

A physical system is subject to perturbation resulting from the variations of the parameters
and effects nonlinearities resulting in the deviation in the neighborhood of the nominal oper-
ating point. A model identified at a nominal operating point will not capture the static and the
dynamic behavior of the perturbed system. To overcome this, an emulator, which is a hard-
ware or a software device, is connected to either an accessible input or an accessible output in
cascade with a subsystem to mimic its operating scenarios [3–5]. The powerful concept of
emulators, which is employed to mimic the likely operating scenarios for single-input and
single-output (SISO) system, is extended to multiple-input and multiple-output (MIMO) and
multiple-input and single-output (MISO) system. The system is identified and the feature
vector-emulator map is estimated from the emulator-generated data covering all likely operat-
ing scenarios including the normal and the faulty ones similar in spirit to that employed in
training the neural network [6]. The identified nominal model, an optimal nominal model, is
robust to model perturbation in the neighborhoods of the nominal operating point. It may be
worth noting that the conventional scheme uses only the input-output data from the system in
the nominal operating scheme.

There are essentially three approaches to the failure detection and isolation problem: the non-
parametric approach, the parametric approach, and the combined approach. The non-para-
metric approach is based on analyzing a residual. The residual is defined as a signal, which is
ideally non-zero in a statistical sense when there is a failure present, and zero otherwise. The
residual may be generated using Kalman filters, observers, unknown-input observers, other
forms of detection filters, and parity equations [7–12]. In view of the following key properties
of the Kalman filter listed below, the Kalman filter is deemed the most preferable for both fault
detection and fault isolation [1]:

a. Model matching: The residual is a zero-mean white noise process if and only if there is no
mismatch between the actual model of the system and its identified model embodied in
the Kalman filter, that is, and its variance is minimum.

b. Optimal estimation: The estimate is optimal in the sense that it is the best estimate that can
be obtained by any estimator in the class of all estimators that are constrained by the same
assumptions.

Fault Diagnosis and Detection2
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c. Robustness: Thanks to the feedback (closed-loop) configuration of the Kalman filter with
residual feedback, the Kalman filter provides the highest robustness against the effect of
disturbance and model variations.

d. Model mismatch: If there is a model mismatch, the residual will not be a zero-mean white
noise process and an additive term termed fault-indicative term. The fault-indicative term
is affine in the deviation in the linear regression or the transfer function model.

The feature vector-emulator map relating the deviation of the feature vector and variations of
the emulator parameter is used for fault isolation if a fault is detected. The influence vector,
which is the partial derivative of the feature vector with respect to an emulator parameter,
plays a crucial role in pinpointing the faulty subsystem and tracks its parameter variation.

The main contributions here are the development of emulator-based system identification, and
estimation of the feature vector-emulator map and its application to performance monitoring
and fault diagnosis of multivariable system. The key properties of the Kalman filter, including
model matching, whitening of the equation error, and residual expression for the model-
mismatch case, are established for MIMO, MISO, and SISO systems.

The chapter is organized as follows. In Section 2, the mathematical model of the multiple-input
and multiple-output system in state-space, frequency-domain, and a linear regression form is
developed. The multiple-input and single-output and the single-input, single-output models
are derived. Modeling of faults is also given. In Section 3, the concept of emulators, the
generation of emulator-perturbed data, and its role in the identification of the system, the
estimation of the feature vector-emulator map for fault isolation is developed. In Section 4,
the identification of the system and the associated Kalman filter using prediction error method
is suggested. The feature vector-emulator map is estimated using the expression of the Kaman
filter residual in the model-mismatch case. In Section 5, the model of the Kalman filter, residual
model, and the key properties of this filter are given. The key properties of the residual are
established including whitening of the equation error, and expressions for the residual for the
model-mismatch case. In Section 6, Bayesian approach to fault diagnosis is explained. Finally,
in Sections 7 and 8, the successful evaluation of the proposed scheme on both a simulated and
physical system is given, respectively.

2. Mathematical model of the system

The MIMO state-space model of the system denoted ðA,B,CÞ is given by

xðkþ 1Þ ¼ AxðkÞ þ BrðkÞ þ EwwðkÞ
yðkÞ ¼ CxðkÞ þ vðkÞ ð1Þ

where xðkÞ ¼ ½ x1ðkÞ x2ðkÞ x3ðkÞ … xnðkÞ �T, yðkÞ ¼ ½ y1ðkÞ y2ðkÞ y3ðkÞ … yqðkÞ �T,
rðkÞ ¼ ½ r1ðkÞ r2ðkÞ r3ðkÞ … rpðkÞ �T , wðkÞ and vðkÞ, are respectively, nx1 state vector, qx1
output, px1 input to the system, px1 disturbance and qx1 measurement noise; A, B, C, Ew are nxn
state transition, nxp input, and qxn output and nxp input disturbance matrices;A andC are block

Fault Detection and Isolation
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diagonal matrices; A ¼
A1 0 : 0
0 A2 : 0
: : : :
0 0 : Aq

2
664

3
775;B ¼

B1
B2
:
Bq

2
664

3
775;Ew ¼

Ew1
Ew2
:

Ewq

2
664

3
775;C ¼

C1 0 : 0
0 C2 : 0
: : : :
0 0 : Cq

2
664

3
775,

Aj, Bj, Ewj,and Cj are, respectively, njxnj, njxp, njxp, and 1xnj matrices. The output of the system

is corrupted by disturbance wðkÞ and measurement noise vðkÞ; GðzÞ ¼ CðzI � AÞ�1B ¼ D�1ðzÞ
NðzÞ; I is an identity matrix; DðzÞ ¼ jðzI � AÞj ¼ 1þ

Xn

ℓ¼1

aℓz�ℓ ; Bj ¼ ½Bj1 Bj2 : Bjp �;

Ew ¼ ½Ewj1 Ewj2 : Ewjp �.
We assume that the system is controllable and observable, that is, ðA,CÞ is observable, ðA,BÞ is
controllable, implying that all the states may be estimated from the input and the output data,
and the input affects all the states. The disturbance wðkÞ and the measurement noise vðkÞ are
assumed zero-mean white noise processes. The covariance of wðkÞ and vðkÞ are

E½wwT � ¼ Q and E½vvT � ¼ R ð2Þ

where Q and R are positive definite and positive semi-definite matrices, Q > 0 and R ≥ 0. The
covariances Q and R are not known a priori.

The MIMO model in the frequency domain is

yðzÞ ¼ GðzÞrðzÞ þ ϑðzÞ ð3Þ

whereGðzÞ is qxpmatrix transfer function, andNðzÞ is the qxp numerator matrix; ϑðzÞ is the qx1
is the effect of disturbance wðkÞ and the measurement noise vðkÞ on the output yðzÞ.

ϑðzÞ ¼ CðzI � AÞ�1EwwðzÞ þ vðzÞ ð4Þ

2.1. Single-input single-output pairing

A single-input single-output (SISO) model derived from the state-space model relating the
input riðzÞ, and its associated output, termed yjiðzÞ, which is the same as the output yjðzÞ when

the input is riðzÞ and the rest of the inputs rjðzÞ ¼ 0 for j 6¼ i, is

yjiðzÞ ¼ GjiðzÞriðzÞ þ ϑjiðzÞ ð5Þ

where GjiðzÞ ¼ CjðzI � AjÞ�1Bji ¼ D�1
j ðzÞN jiðzÞ; and ϑjiðzÞ ¼ CjðzI � AjÞ�1EwjiwiðzÞ. The trans-

fer function GjiðzÞ may in general be a cascade combination of subsystems fGjiℓðzÞg:

GjiðzÞ ¼
Y
ℓ

GjiℓðzÞ ð6Þ

The subsystems GjiℓðzÞ may, for example, be a transfer function of a controller, an actuator, a
plant, or a sensor associated with a position control system, process control system, magnetic
levitation system, or other systems [4].
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Expressing the frequency-domain model (5) in a linear regression form yields

yjiðkÞ ¼ ψT
ji ðkÞθji þ υjiðkÞ ð7Þ

where υijðzÞ ¼ DjðzÞϑijðzÞ; ψT
ji ðkÞ is 1x2nj regression vector formed of the regression vectors,

formed ψT
yjiðkÞ associated with yjiðkÞ, and ψT

riðkÞ associated with input riðkÞ:

ψT
ij ðkÞ ¼ ½ψT

yjiðkÞ ψT
riðkÞ � ð8Þ

ψT
yjiðkÞ ¼ ½�yjiðk� 1Þ �yjiðk� 2Þ : �yjiðk� njÞ �; ψT

riðkÞ ¼ ½ riðk� 1Þ riðk� 2Þ : riðk� njÞ�;
θji is 2njx1 feature vector formed of the nj coefficients of the denominator polynomialDjðzÞ and
the numerator polynomial N ijðzÞ:

θji ¼ ½θyj θrji �T ð9Þ

Remarks: In the operational stage, we may not have access to the output yjðkÞ, termed yjiðkÞ,
generated by the input riðkÞ alone when rest of the inputs are set to zero. It is estimated during
the identification phase of the multi-input and single-output model relating the accessible
output yjðkÞ generated by all the inputs rðkÞ.

2.2. Multi-input and single-output pairing

Using Eq. (5), the output yjðzÞ is the output due to all the inputs rðkÞ of MISO system, which is

yjðzÞ ¼
Xp

i¼1

yjiðzÞ ¼ GjðzÞrðzÞ þ ϑjðzÞ ð10Þ

where GjðzÞ ¼ D�1
j ðzÞN jðzÞ ¼ ½Gj1ðzÞ Gj2ðzÞ : GjpðzÞ �; υjðkÞ ¼

Xp

i¼1

υijðkÞ.

Expressing the frequency-domain model (10) in a linear regression form yields

yjðkÞ ¼ ψT
j ðkÞθj þ υjðkÞ ; j ¼ 1, 2, 3,…, q ð11Þ

where ψT
j ðkÞ is 1xðnj þ njpÞ regression vector formed of the regression vectors ψT

yjðkÞ associated
with yjðkÞ, and ψT

r ðkÞ associated with rðkÞ:

ψT
j ðkÞ ¼ ½ψT

yjðkÞ ψT
r ðkÞ � ð12Þ

ψT
yjðkÞ ¼ ½�yjðk� 1Þ �yjðk� 2Þ : �yjðk� njÞ �; ψT

r ðkÞ ¼ ½ψT
r1ðkÞ ψT

r2ðkÞ : ψT
rpðkÞ �; θj is

ðnj þ njpÞx1 feature vector formed of the n coefficients of the denominator polynomial DjðzÞ
and the njp coefficients of the numerator polynomial N jðzÞ;
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θj ¼ ½θyj θrj �T ð13Þ

where θyj ¼ ½ aj1 aj2 : ajnj �T ; θrj ¼ ½θT
rj1 θT

rj2 : θT
rjp �T .

2.3. Multi-input and multiple-output system

Extending the results of the time-domain expression to the MIMO (3), we get

yðkÞ ¼ ψTðkÞθþ υðkÞ ð14Þ

where ψTðkÞ is qxðnþ npqÞ regression matrix formed of the regression vectors fψT
ij ðkÞg, and θ

is ðnþ npqÞx1 feature vector formed of θj, j ¼ 1, 2,…, q is given as follows:

ψTðkÞ ¼

ψT
y1ðkÞ ψT

r ðkÞ 0 0 : 0
ψT

y2ðkÞ 0 ψT
r ðkÞ 0 : 0

ψT
y3ðkÞ 0 0 ψT

r ðkÞ : 0
: : : : : :

ψT
yqðkÞ 0 0 0 : ψT

r ðkÞ

2
666664

3
777775
; θ ¼

θy
θr1
θr2
:

θrp

2
66664

3
77775

ð15Þ

The regression model (14) is the time-domain version of the frequency-domain model (3).
Expressing the time-domain model (14) in the frequency domain, we get

yðzÞ ¼ ψTðzÞθþ υðzÞ ð16Þ

2.4. Interconnected system

The system is an interconnection of subsystems such as the plant, the actuator, the sensors, and
the controllers shown in Figure 1. Subfigure A at the top shows that jth output of the system

yj ¼
Xp

i¼1

yji is given by Eq. (10) where yijðzÞ given in Eq. (5) is the output generated by the input

ri acting alone.

Subfigure B at the bottom shows that the transfer function GjiðzÞ in the path from the input ri to
the output yij is formed of subsystems {GijlðzÞ}. The subsystem GijlðzÞ is driven by the input

ujilðzÞ and its output is corrupted by the disturbance wjilðzÞ. The input and the output of GjiðzÞ
are ri and yji , respectively, vji is the measurement noise, ϑji given in Eq. (5) is the combined

effect of the disturbances {wjik} and {vji} on the output yjiðzÞ.

2.5. Modeling of faults

There are two types of fault models, namely the additive and the multiplicative (or parametric)
types. In the additive type, a fault is modeled as an additive exogenous input to the system,
whereas in the multiplicative type, a fault is modeled as a change in the parameters, which
completely characterize the fault behavior of the subsystems. Although the multiplicative and
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additive perturbation models are equivalent, the multiplicative-type perturbation model is
preferable. The multiplicative perturbation model of the cascade combination of subsystems
can actually model the particular perturbation in any one of the subsystems under consider-
ation.

3. Emulators

The emulator-based identification scheme is motivated by the model-free artificial neural
network approach to capture the static and the dynamic behavior by presenting neural net-
work data covering likely operating scenarios. An identified model at each operating point
characterizes the behavior of the system in the neighborhood of that point. In practice, how-
ever, the system model may be perturbed because of variations in the parameters of the
system. To overcome this problem, the system model is identified by performing a number of
emulator parameter-perturbed experiments proposed in [4–5]. Each experiment consists of
perturbing one or more emulator parameters. A linear model, termed optimal model, is identi-
fied as a best fit to the input-output data from the set of emulated perturbations. The optimal
model thus obtained characterizes the behavior of the system over wider operating regions (in
the neighborhood of the operating point), whereas the conventional model characterizes the
behavior merely at the nominal operating point (i.e., the conventional approach assumes that
the model of the system remains unperturbed at every operating point). The optimal model is
more robust, that is, the identification errors resulting from the variations in the emulator
parameters are significantly lower compared to those of the conventional one based on
performing a single experiment (i.e., without using emulators).

Figure 1. Pairing of the inputs and an output and the subsystem in the path ji.

Fault Detection and Isolation
http://dx.doi.org/10.5772/67870

7



During the system identification phase, a number of experiments are performed by (a) not
perturbing the emulator parameters and (b) perturbing the emulator parameters one at a time,
simultaneously perturbing two at a time, three at time, and so on till perturbing all of them.
The input-output data collected from all experiments are termed emulator-generated data.

• Nominal system model and the Kalman filter: The emulator-generated data are used to
identify the nominal optimal model of the system and the optimal Kalman filter model
using the prediction error method.

• Estimation of the influence vectors: Using the least-squares method, the influence vectors are
identified recursively using the input-output data obtained from the emulator-perturbed
parameter experiments. First, the influence vector for influence vector for the single
parameter perturbation is identified, and then using the estimated influence vector, the
influence vector for the two simultaneous emulator perturbations is estimated. Generaliz-
ing, the influence vector for m simultaneous perturbation is identified, and then using all
previous m estimates of the influence vectors, the ðmþ 1Þth influence vector is identified.

The emulators are transfer functions, which are connected in cascade with the subsystems to
generate likely operating scenarios including normal and faulty one for reliable and accurate
identification of the system, its associated Kalman filter, and the feature vector-emulator map.

Emulators are connected to the system during the identification phase and its parameter is
varied to generate likely operating scenarios. During the operational phase, the static emula-
tors are disconnected, as it were, by setting them to unit values. The dynamic emulator,
however, is not disconnected. Its gain is set to unity and its phase made a non-zero negligibly
small value so that (a) both of these parameters have a negligible effect on the dynamic
behavior of the system during the operational phase and (b) the order of the system during
the identification and the operational phases remains identical to ensure mathematical tracta-
bility without causing performance degradation. The role of the emulator-generated data
includes the following:

3.1. Emulator-generated data for MISO system

The MISO system is given by Eq. (11) relating all the inputs rðkÞ and the output yjðkÞ identified
by connecting an emulator EjðzÞ in cascade with rðzÞ. The emulator is a first-order all-pass filter
given by

EjðzÞ ¼ γj2

γj1 þ z�1

1þ γj1z�1

 !
ð17Þ

where jγj1j < 1 to ensure stability. The emulators γj1 and γj2 are varied one at a time, and both

simultaneously. During the identification, an emulator EjðzÞ, which is a first-order all-pass filter
(17), is connected to the input rjðkÞ in cascade with nominal model Gj0ðzÞ. A number of
experiments are performed by varying the emulator parameters γj1, γj2 one at a time and both

simultaneously to acquire emulator-generated data: it is assumed for simplicity that the same
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input is applied to all the experiments. Using Eq. (10), the MISO model relating rjðkÞ and yjðkÞ
becomes

yelj ðzÞ ¼ Gj0ðzÞEjðzÞrðzÞ þ ϑe
j ðzÞ, el ¼ 1, 2,…, n exp , l ¼ 1, 2, 3 ð18Þ

where ye1j ðzÞ, ye2j ðzÞ, and ye3j ðzÞ denote, respectively, the output generated by varying γj1, γj2

and both γj1, γj2.

3.2. Emulator-generated data for SISO system

The feature vector-emulator map of the SISO system (5) is estimated for the isolation of faults
in the subsystems fGijℓðzÞg. The emulators EjiℓðzÞ are connected to an accessible input or output
fujiℓg in cascade with the subsystems fGjiℓðzÞg to mimic their variations. In other words, the
known emulator parameter variations mimic those of the unknown parameters of the associ-
ated subsystems. The accessible inputs include the tracking error, the control input, actuator
input, and sensor output.

The emulator EjiℓðzÞ may be a dynamic system, a constant gain ðγjiℓÞ, a gain, and a pure delay

of d time instants ðγjiℓz
�dÞ, a first-order all-pass filter γjiℓþz�1

1þγjiℓz�1

� �
or a Blaschke product of all first-

order-pass filters
Y
ℓ

γjiℓ þ z�1

1þ γjiℓz�1

 !
[3]. The emulator EjiðzÞ is chosen to be a product of a static

gain and a first-order all-pass filter to mimic the behavior of the subsystem GjiðzÞ ¼
Yl

ℓ¼1

GjiℓðzÞ

of the SISO system given by Eqs. (5) and (6)

γji2

γji1 þ z�1

1þ γji1z�1

 !
ð19Þ

In order to ensure stability of the dynamic emulator, parameter γji1 is constrained by jγjiℓj < 1.

Connecting the emulator EjiðzÞ given in Eq. (19) to the nominal SISO model Gji0ðzÞ using
Eqs. (5) and (6), we get

yelji ðzÞ ¼ EjiðzÞGji0ðzÞriðzÞ þ ϑe
jiðzÞ, e ¼ 1, 2,…, n exp , l ¼ 1, 2, 3 ð20Þ

where ye1ji ðzÞ, ye2ji ðzÞ, and ye3ji ðzÞ denote, respectively, the output generated by varying γji1, γji2

and both γji1 and γji2.

Figure 2 shows an example of a closed-loop position control system formed of a controller, an
actuator, a plant, and a sensor in the path connecting the tracking error eriðkÞ ¼ riðkÞ � yjiðkÞ
and the output yji. Only eriðkÞ, uij1ðkÞ, and uij3ðkÞ are the measurement outputs. The emulators

Eji1ðzÞ ¼ γji1þz�1

1þγji1z�1, and Eji2 ¼ γji2 are connected to uji1, and Eji3 ¼ γji3 is connected to uji3 to mimic
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the perturbations in the dynamic plant Gji1ðzÞ, the static actuator Gji2ðzÞ ¼ kA and the static
sensor Gji3ðzÞ ¼ ks, respectively, where Eji1ðzÞ is dynamic, and Eji2 and Eji3 are static emulators.

The nominal static emulator is set to unit value γ0
ijk ¼ 1. The variation Δγjik of an emulator γijk

may be expressed in terms of its nominal value γ0
jik as Δγjik ¼ γjik � γ0

jik.

3.3. Feature vector-emulator map

The feature vector-emulator map for the SISO and the MISO systems is developed subse-
quently.

3.3.1. SISO system

Consider the emulator-perturbed SISO system (20) relating the inputs riðkÞ and yjiðkÞ and the

associated linear regression model (7). The feature vector θji is a nonlinear function of the

emulator parameter γji ¼ ½γji1 γji2 �. Assuming that the feature vector θji is a continuous

function of γji, then using Weierstrass approximation theorem, the feature vector-emulator
map becomes

Δθji ¼ Ωji1Δγji1 þΩji2Δγji2 þΩji12Δγji1Δγji2 ð21Þ

where Δθji ¼ θji � θ0
ji;Δγjℓ ¼ γjℓ � γ0

jℓ is the parameter variation;θ0
ji is the nominal feature

vector; Ωji1 is a 2njx1 vector of partial derivatives of the feature vector θji with respect to γji1

evaluated at the unperturbed nominal emulator value γ0
ji1. Similarly, Ωji2 is a 2njx1 vector of

partial derivatives of the feature vector θji with respect to γji2 evaluated at the unperturbed

nominal emulator value γ0
ji2, Ωji12 is the second partial derivatives with respect to γji1 and γji2

evaluated at the unperturbed nominal emulator value γ0
ji1 and γ0

ji2. The partial derivative terms

Ωji1, Ωji2 Ωji12, which are the Jacobean of the feature vector θji with respect to the emulator
parameters fγjikg, are termed influence vectors. The influence vectors play a crucial role in

isolating a fault occurring in any subsystem. The influence vectors Ωji1, Ωji2, and Ωji12 track
the degree of variations in the parameters of the subsystem perturbations.

Substituting for θji in (7), the variation ΔyjiðkÞ ¼ yjiðkÞ � y0jiðkÞ between the actual output yjiðkÞ
and the nominal fault-free output y0jiðkÞ becomes

1
1

1
11
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Figure 2. Position control system: emulators and subsystems.
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Figure 2. Position control system: emulators and subsystems.
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ΔyjiðkÞ ¼ ψT
ji ðkÞðΩji1Δγji1 þΩji2Δγji2 þΩji12Δγji1Δγji2Þ þ υjiðkÞ ð22Þ

Let Ωji be an influence matrix associated with the emulators located at the path ij

Ωji ¼ ½Ωjik Ωjikℓ Ωjikℓmn : Ωji12…q � ð23Þ

A number of emulator parameter-perturbed experiments are performed by perturbing the
parameters of the emulators (20). For each experiment, N input-output data ðyej ðkÞ, rðkÞÞ are

obtained, k ¼ 1, 2,…, N. The input rðkÞ for each experiment is chosen to be persistently exciting.
The regression models associated with the experiments and Eq. (22) are given as follows:

Δye1ji ðkÞ ¼ ψT
ji ðkÞΔγji1 Ωji1 þ υe1

ji ðkÞ
Λye2ji ðkÞ �ψT

ji ðkÞΔγji1 Ωji1 ¼ ψT
ji ðkÞΩji2Δγji2 þ υe2ji ðkÞ

Δye3ji ðkÞ �ψT
ji ðkÞðΔγji1 Ωji1 þΩji2Δγji2Þ ¼ ψT

ji ðkÞðΩji12Δγji12Þ þ υe3ji ðkÞ
ð24Þ

3.3.2. MISO system

Consider the emulator-perturbed MISO system (18) relating the inputs rðkÞ and yjðkÞ, and the

associated linear regression model (11). Similar to Eqs. (21) and (24), we get

Δθj ¼ Ωj1Δγj1 þΩj2Δγj2 þΩj12Δγj1Δγj2 ð25Þ

Δye1j ðkÞ ¼ ψT
j ðkÞΔγj1 Ωj1 þ υe1

j ðkÞ

Λye2j ðkÞ �ψT
j ðkÞΔγj1 Ωj1 ¼ ψT

j ðkÞΩj2Δγj2 þ υe2j ðkÞ

Δye3j ðkÞ �ψT
j ðkÞðΔγj1 Ωj1 þΩj2Δγj2Þ ¼ ψT

j ðkÞðΩj12Δγj12Þ þ υe3j ðkÞ

ð26Þ

4. Identification

The prediction error method can be derived from the residual model of the Kalman filter,
which is presented in the next section. It is used to identify both the nominal system and the
Kalman filter associated with the system without the need for a priori knowledge of the
covariances of the noise and the disturbance statistics. Prediction error method is consistent,
efficient, and a gold standard for system identification, and can identify open-loop and closed-
loop systems. The variance the parameter estimates asymptotically approaches the Cramer-
Rao lower bound.

Optimal models: The optimal system and the associated Kalman filter are identified using the
prediction error method using computationally efficient scheme. First, the MISO system is
identified and then the SISO system is derived from the estimate of feature vector associated
with the MISO system. The emulator-generated data generated using Eq. (18) are used to
identify MISO system (10) and the nominal feature vector θ0

j for Eq. (11), which is the best

least-squared fit to set all perturbed feature vector θj, and the Kalman gain Kj0 are estimated.
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Let the optimal state-space model of the MISO system be ðAj0,Bj0,Cj0Þ and associated Kalman
filter be ðAj0 � Kj0Cj0, ½Kj0 Bj0�,Cj0Þ. Let the optimal transfer matrix of the MISO system and the

optimal estimate of the output be Gopt
j ðzÞ and ŷoptj ðkÞ, respectively. Using Eq. (10), we get

ŷoptj ðzÞ ¼ Gopt
j ðzÞrðzÞ þ ϑjðzÞ ð27Þ

Then, the best estimate of the feature vector θji of the SISO system (7), denoted θ0
ji , and the

Kalman gain are estimated from θ0
j .

4.1. Estimation of the influence vectors

SISO system: Knowing the emulator parameter perturbations Δγji1, Δγji2, Δγji12 and the resulting

emulator-generated data, the influence vectors Ω̂ji1, Ω̂ji2, and ^Ωji12 are estimated recursively

using the least-squares method using Eq. (24)

Ω̂ ji1 ¼ argmin
Ωji1

kΔyeiji ðkÞ �ψT
ji ðkÞΩji1Δγji1k2

n o

Ω̂ ji2 ¼ argmin
Ωji2

kΛye2ji ðkÞ �ψT
ji ðkÞΔγji1 Ω̂ ji1 �ψT

ji ðkÞΩji2Δγji2k2
n o

Ω̂ ji12 ¼ argmin
Ωjiklm

kΔye3j ðkÞ �ψT
ji ðkÞðΔγji1 Ω̂ ji1 þ Ω̂ ji2Δγji2Þ �ψT

ji ðkÞΩji12Δγji12k2
n o

ð28Þ

where kxðkÞk2 ¼
XN

k¼1

x2ðkÞ.

MISO system: Similar to Eq. (28), the influence vectors Ω̂ jk, Ω̂ j2, and Ω̂ j12 are estimated.

5. Model of the Kalman filter

The Kalman filter forms the backbone of the MISO and the SISO systems fault detection and
for fault isolation, respectively. The Kalman filter is a closed-loop system, which is (a) an exact
copy of the identified nominal of the system driven by the residual, which is the error between
the output and its estimate, and (b) is stabilized by the Kalman gain.

MISO system: Using the state-space model ðAj0,Bj0,Cj0Þ derived from the identified nominal

feature vector θ0
j . The Kalman filter ðAj0 � Kj0Cj0, ½Kj0 Bj0�,Cj0Þ associated with the MISO

system (10) is

x̂jðkþ 1Þ ¼ ðAj0 � Kj0Cj0Þx̂jðkÞ þ Kj0yjðkÞ þ Bj0 rðkÞ
ŷjðkÞ ¼ Cj0x̂jðkÞ
ejðkÞ ¼ yjðkÞ � ŷjðkÞ

ð29Þ

where x̂jðkÞ and ŷjðkÞ are, respectively, the minimum variance estimates of the state and the

output.
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Figure 3 shows the nominal fault-free system and the Kalman filter. The structure of the
Kalman filter is based on the internal model principle, which embodies the nominal system
model ðAj0,Bj0,Cj0Þ. The inputs to the Kalman filter are the input rðkÞ and the output yjðkÞ
which is corrupted by the disturbance wjðkÞ and the measurement noise vjðkÞ.

5.1. Expressions of the residual

The expression for the residuals for the MISO system ejðzÞ and the SISO system ejiðzÞ is derived
from the Kalman filter (29).

MISO model: The frequency-domain expression, relating the nux1 input rðzÞ and output yjðzÞ to
the residual ejðzÞ is given by the following model, termed residual model:

ejðzÞ ¼
Dj0ðzÞ
Fj0ðzÞ yjðzÞ �

N j0ðzÞ
Fj0ðzÞ rðzÞ ð30Þ

where Fj0ðzÞ ¼ jzI � Aj0 þ Kj0Cj0j is the characteristic polynomial termed Kalman polynomial;

Dj0ðzÞ ¼ Fj0ðzÞ
�
I � Cj0ðzI � Aj0 þ Kj0Cj0Þ�1Kj0

�
-

N j0ðzÞ ¼ ½Nj10ðzÞ Nj10ðzÞ : Njp0ðzÞ � ¼ Fj0ðzÞ
�
Cj0ðzI � Aj0 þ Kj0C0Þ�1Bj0

�

SISO system: The residual ejiðzÞ is derived from the residual model (30) from the map relating
ejiðzÞ to yjðzÞ and riðzÞ:

ejiðzÞ ¼
Dj0ðzÞ
Fj0ðzÞ yjðzÞ �

Nji0ðzÞ
Fj0ðzÞ riðzÞ ð31Þ

where N0jiðzÞ is the ith element of N j0ðzÞ.

5.1.1. Key properties of the Kalman filter residual

The Kalman filter forms the backbone of the proposed scheme in view of its key properties
proved in [1]. These properties exploited in developing the system identification using the
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Figure 3. The system and its associated Kalman filter.

Fault Detection and Isolation
http://dx.doi.org/10.5772/67870

13



residual model, and in unified approach to fault detection and isolation fault, where a fault is
defined as an incipient fault resulting in the model mismatch.

5.2. Propositions

We establish important results, in the form of lemmas that are crucial to the development of the
proposed fault diagnosis scheme. In Lemma 1, it is shown that (a) the system transfer function
can be estimated from the residual model and (b) Kalman filter whitens the output error ϑjðzÞ
given in Eq. (10). Lemma 2 shows that the residual will not be a zero-mean white noise process
if there is a model mismatch, and there will be an additive fault indicating term, which is a
function of the deviation between the actual feature vector θj of the system model ðAj,Bj,CjÞ
and the nominal fault-free feature vector θ0

j of nominal fault-free model ðAj0,Bj0,Cj0Þ.

Case 1: The system and the nominal models are identical

Lemma 1:

Gj0ðzÞ ¼ D�1
j0 ðzÞN j0ðzÞ ¼ D

�1
j0 ðzÞN j0ðzÞ ð32Þ

where Gj0ðzÞ is the transfer function of the nominal fault-free model ðAj0,Bj0,Cj0Þ.
Proof: Substituting for yðzÞ from Eq. (10), the residual model (30) becomes

ejðzÞ ¼
Dj0ðzÞ
Fj0ðzÞ

��
D�1

j ðzÞN jðzÞ �D
�1
j0 ðzÞN j0ðzÞ

�
rðzÞ

�
þDj0ðzÞ

Fj0ðzÞ ϑjðzÞ ð33Þ

Correlating both sides with input rðkÞ, and invoking the orthogonality properties, the residual,
namely rðkÞ, is uncorrelated with both ejðkÞ and the output error ϑjðkÞ [4], we get

Dj0ðzÞ
Fj0ðzÞ

��
D�1

j ðzÞN jðzÞ �D
�1
j0 ðzÞN j0ðzÞ

�
rðzÞ

�
¼ 0 ð34Þ

Hence, Eq. (32) holds.

Corollary 1: The filter Dj0ðzÞ
Fj0ðzÞ whitens the output error ϑjðzÞ if there is no model mismatch:

ejðzÞ ¼
Dj0ðzÞ
Fj0ðzÞ ϑjðzÞ ð35Þ

Proof: Consider the expression for the model-matching case (33). Using Eq. (32), we establish
Eq. (35).

Case 2: System and the nominal model mismatch

Lemma 2: If there is model mismatch, then
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ejðzÞ ¼
Dj0ðzÞ
Fj0ðzÞ ΔGjðzÞ þ ϑjf ð36Þ

ejðzÞ ¼ ψT
jf ðzÞΔθj þ υjf ðzÞ ð37Þ

where ΔGjðzÞ ¼ D�1
j ðzÞN jðzÞ �D�1

j0 ðzÞN j0ðzÞ, Δθj ¼ θj � θ0
j ; ψ

T
jf ðzÞ ¼ Dj0ðzÞ

DjðzÞFj0ðzÞψ
T
j ðzÞ, ϑjf ¼ Dj0ðzÞ

Fj0ðzÞ ϑjðzÞ,
and ejf ðzÞ ¼ Dj0ðzÞ

DjðzÞFj0ðzÞ υjðzÞ are the filtered regression matrix ψT
j ðzÞ and filtered output error

ϑjðzÞ, filtered equation error υjðzÞ, respectively.
Proof:

Case 1: Consider expression (33). Using Eq. (32), we get

ejðzÞ ¼
Dj0ðzÞ
Fj0ðzÞ

��
D�1

j ðzÞN jðzÞ �D�1
j0 ðzÞN j0ðzÞ

�
rðzÞ

�
þ ϑjf ðzÞ ð38Þ

Substituting ΔGjðzÞ ¼ D�1
j ðzÞN jðzÞ �D�1

j0 ðzÞN j0ðzÞ, we get Eq. (36).

Case 2: Expressing the residual model (30) in an alternative form:

ejðzÞ ¼
Dj0ðzÞ
Fj0ðzÞ

�
yjðzÞ �D

�1
j0 ðzÞN j0ðzÞrðzÞ

�
ð39Þ

Using Eq. (32) and re-arranging, we get

ejðzÞ ¼
Dj0ðzÞ

Dj0ðzÞFj0ðzÞ
�
Dj0ðzÞyjðzÞ �N j0ðzÞrðzÞ

�
ð40Þ

Adding and subtracting yjðzÞ inside the bracket on the right-hand side yields

ejðzÞ ¼
Dj0ðzÞ

Dj0ðzÞFj0ðzÞ
�
yjðzÞ �

�
1�Dj0ðzÞ

�
yjðzÞ �N j0ðzÞrðzÞ

�
ð41Þ

Using the expression for the regression model (11) and substituting for the actual and the
nominal fault-free cases, we get

ejðzÞ ¼
Dj0ðzÞ

Dj0ðzÞFj0ðzÞψ
T
j ðkÞΔθj þ υjf ðkÞ ð42Þ

Remarks: If there is a model mismatch because of variations in the subsystem parameters, the
residual is no longer zero-mean white noise process. The residual has an additive term, which
is affine in the deviation in the system transfer function ΔGjðzÞ or equivalently affine in the

feature vector ψT
jf ðzÞΔθj. The additive terms are termed fault indicators. This shows that the

Kalman filter provides a unifying approach to handle both fault detection and fault isolation.
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In view of the key properties, the Kalman filter is employed for identification and the fault
diagnosis. In system identification, the criterion for determining whether the identified model
has captured completely the dynamic behavior of the system is that the residual (error
between the output and its estimate obtained using the identified model) is a zero-mean white
noise process. Consider the problem of identification of the system. Since the equation error
υðkÞ is a colored noise process, the parameter estimates will be biased and inefficient. To
overcome this, the input and the output are whitened using the Kalman filter as shown in
Eq. (35) of Corollary 1. The Kalman filter model (29) may be interpreted as an inverse system
generating the innovation sequence eðkÞ, or alternatively as a whitening-filter realization of a
state-space model that is driven by both the disturbance and measurement noise.

Lemma 3

ejiðzÞ ¼ ψT
jif ðzÞΔθji þ υjif ðzÞ ð43Þ

where Fji0ðzÞ ¼ jzI � Aji0 þ Kji0Cj0j, ψT
jif ðzÞ ¼ Dj0ðzÞ

DjðzÞFji0ðzÞψ
T
ji ðzÞ;υjif ðzÞ ¼ D0jðzÞ

DjðzÞFji0ðzÞ υjiðzÞ

Proof: The proof follows from Eqs. (31) and (37).

6. Bayesian approach fault diagnosis

The objective of fault detection is to assert whether the given residual belongs to a set of fault-
free data or faulty residual data, while fault isolation is determined to which class of emulator-
perturbed residual the given data belong. The problem of fault detection and fault isolation is
formulated by a pattern classification problem. Fault detection is a binary pattern classifica-
tion, while the fault isolation is a multi-class pattern classification. The Bayesian decision
strategy is employed to assert appropriate class label. The Bayesian decision strategy is based
on the a posteriori conditional probability of deciding a hypothesis given the data, a priori
probability of the hypothesis, and a performance measure. The decision strategy is determined
from the minimization of the performance measure with respect to all hypotheses.

The Nx1 residual eðkÞ is located in a different region of the N-dimensional plane depending
upon the fault type. In the ideal case regions, there will not be overlaps between regions
associated with different fault types. However, due to noise, disturbances, and other measure-
ment artifacts there will be overlap between the various regions. Hence, Bayesian strategy is
employed to asset an appropriate class label to ensure a high-probability correct decision, and
a low probability of false alarms.

6.1. Fault detection

Fault detection is posed as a binary hypothesis-testing problem. The criterion to choose
between the two hypotheses, namely the presence or an absence of a fault, is based on
minimizing the Bayes risk, which quantifies the costs associated with correct and incorrect
decisions. The Nx1 Kalman filter residual data eðkÞ generated by Eq. (29) is employed. The
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minimization of the Bayes risk yields the likelihood ratio test. The decision between the two
hypotheses is based on comparing the likelihood ratio, which is the ratio of the conditional
probabilities under the two hypotheses, to a threshold value. The resulting binary composite
hypothesis-testing problem compares the test statistics of residual eðkÞ with a threshold value
η:

tsðeÞ ≤ η no fault
> η fault

�
ð44Þ

The test statistics depends upon the input rðkÞ that generates the residual eðkÞ [4]:

tsðeÞ ¼

1
N

Xk

i¼k�Nþ1

eðiÞ
�����

����� rðkÞ ¼ constant

Peeðf 0Þ rðkÞ is a sinusoid
1
N

Xk

i¼k�Nþ1

e2ðiÞ rðkÞ is an arbitrary signal

8>>>>>><
>>>>>>:

ð45Þ

6.1.1. Computationally efficient scheme

A computationally efficient scheme is employed here for the detection:

• The status of each of the MISO systemsGjðzÞ relating all the inputs rðzÞ and all the outputs
yjðzÞ is evaluated for all j ¼ 1, 2,…, q using the binary hypothesis scheme (44). Using the

test statistics of the residuals ejðkÞ given by Eq. (30) yields

tsðejÞ
≤ ηj no fault
> ηj fault , j ¼ 1, 2, 3,…, q

�
ð46Þ

• If a fault is asserted in GjðzÞ, then the status of each of the p subsystems GjiðzÞ of the SISO
system is asserted using the test statistics of the residuals ejiðkÞ (31):

tsðejiÞ
≤ ηji no fault
> ηji fault , i ¼ 1, 2, 3,…, p

�
ð47Þ

Fault accommodation: If a fault is asserted, then the Kalman gain is adapted online, the system
re-identified, and the Kalman filter redesigned accordingly, thus the fault is accommodated
and, in the extreme case, the system is shut down for safety reasons.

7. Evaluation on simulated system

The proposed emulator-based system identification of the system, the associated Kalman filter,
feature vector-emulator map, and finally the fault diagnosis are illustrated using an example of
a position control system formed of an actuator, a sensor, and a plant.
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7.1. System model

A two-input and two-output system fault-free system ðA0,B0,C0Þ given by Eq. (1) is consid-
ered where

A0 ¼
0 �0:7 0 0
1 1:5 0 0
0 0 0 �0:82
0 0 1 1:8

2
664

3
775; B0 ¼

0:5 1
1 0
1 �0:3
0 1

2
664

3
775; C0 ¼ 0 1 0 0

0 0 0 1

� �
ð48Þ

The nominal transfer matrix of the MIMO system (3) is

G0ðzÞ ¼
G11ðzÞ G12ðzÞ
G21ðzÞ G22ðzÞ

" #
¼

1þ z�1

1� 1:5z�1 þ 0:7z�2

1
1� 1:5z�1 þ 0:7z�2

1
1� 1:8z�1 þ 0:82z�2

1� 0:2z�1

1� 1:8z�1 þ 0:82z�2

2
6664

3
7775 ð49Þ

The nominal MISO transfer matrix, Gj0ðzÞ ¼ D�1
0 ðzÞN j0ðzÞ, j ¼ 1, 2, of the system is

D0ðzÞ ¼ 1 � 3:3z�1 þ4:22z�2 � 2:49z�3 þ 0:574z�4

N0ðzÞ ¼
z�1 � 1:3z�2 �0:08z�1 þ 0:41z�2

z�1 � 1:8z�2 1:15z�1 � 0:2z�1

" # ð50Þ

Figure 4a shows the emulator-generated MISO output 1, ye11 MISO output 2, ye12 , SISO
output 11, ye111, SISO output 12, ye112, SISO output 21, ye121 and SISO output 22, ye122 given in
Eqs. (18) and (20) resulting from the variations of the emulator parameters γj1 and γji1,

respectively. Subfigures A and B show plots of the perturbed step responses ye11 ðkÞ and
ye12 ðkÞ with respect to time, while subfigures C–F show plots of the perturbed outputs
ye111ðkÞ, ye112ðkÞ, ye121ðkÞ, and ye122ðkÞ with respect to time. The outputs are in centimeters (cm)
and the time is in seconds (s). The plots are generated when the emulator parameter γj1 is

varied. The variations Δγj1 are { 0:1 0:5 0:9 1 }.

The mean-squared error (or residual), namely the error between the output of the optimal model,

denoted by ŷoptj ðkÞ and given by Eq. (27), and the perturbed outputs ye1j ðkÞ resulting from the

variations of the emulator parameter γj1. The mean-squared error, denoted msejðγj1Þ, is computed

as follows:

msejðγj1Þ ¼
1
N

XN

k¼1

�
ŷoptj ðkÞ � ye1ðkÞ

�2
ð51Þ

The conventional scheme identifies only the unperturbed nominal model. Let the identified

model of the MISO system (10) be Ĝj0ðzÞ, the estimated output be ŷcj0ðzÞ. The mean-squared

error, denoted msecj ðγj1Þ, becomes
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msecj ðγj1Þ ¼
1
N

XN

k¼1

�
ŷj0ðkÞ � ye1ðkÞ

�2
ð52Þ

The mean-squared errors msejðγj1Þ and msecj ðγj1Þ are plotted as functions of the emulator

parameter perturbations Δγj1. The mean-squared profiles of both the proposed emulator-

based and the conventional identification schemes are shown in subfigures A and B of
Figure 4b.
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Figure 4. (a) Emulator generated data and (b) performance of the identified model.
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The identified state-space model and the Kalman gain are

Â0 ¼

0:9843 �0:1588 0:0213 0:0224
0:1572 0:9266 0:2317 �0:2502
�0:0631 �0:3144 0:9090 �0:3230
0:0171 0:0153 0:1659 0:7225

2
6664

3
7775, B̂0 ¼

0 0
0:1 0:1

�0:3 �0:3
2:6 2:6

2
6664

3
777510

3,

Ĉ0 ¼
21 �564:2 �245:6 49:5
1679:2 �336:3 �211:4 44:0

� �

The ranges of the mean-squared errors msejðγj1Þ and msecj ðγj1Þ are given below:

1:8390 ≤mse1ðγj1Þ ≤ 2:225

0:0137 ≤msec1ðγj1Þ ≤ 7:1815
ð53Þ

18:2224 ≤mse2ðγj1Þ ≤ 21:7167

0:0007 ≤msec2ðγj1Þ ≤ 69:8841
ð54Þ

Remarks: The emulator-generated data cover the operating scenarios, including both the normal
and abnormal ones, exhibiting variations of the rise time, the settling times, and the overshoots.

The identified optimal model ðÂ0, B̂0, Ĉ0Þ is different from the nominal system model
ðA0,B0,C0Þ. Even the block diagonal strictures of A0 and B0 are not preserved.

It can be deduced from Figure 4b on the right, Eqs. (53) and (54), that compared to the
conventional scheme, the proposed emulator-based identification is significantly more
robust to variations in the operating points, which are simulated by emulator parameter
perturbations.

The poles of the MISO transfer functions G2ðzÞ of y2ðkÞ and G1ðzÞ of y1ðkÞ were, respectively,
0:8500 � j0:3122 and 0:7500 � j0:3708. The same emulator was used for inducing phase shift
to the MISO models. G2ðzÞwith poles close to the unit circle was affected more than G1ðzÞwith
poles well inside. In view of the difference in the perturbations induced in the two models, the
mean-squared errors mse2 and msec2 are higher than mse1 and msec1.

7.2. Fault diagnosis

Detection of a fault: Various types of faults include (a) actuator, (b) sensor, and (c) plant, we
introduced by varying the columns of B0, the rows of C0, and the diagonal matrices of A0. A
fault is detected using appropriate test statistics depending upon the reference input waveform
from Eq. (45). Since the reference input rðkÞ is a constant waveform, the test statistics for the
MISO and the SISO system using Eqs. (46) and (47) are

tsðejÞ ¼ 1
N

Xk

i¼k�Nþ1

ejðiÞ ; tsðejiÞ ¼ 1
N

Xk

i¼k�Nþ1

ejiðiÞ
�����

�����

�����

����� ð55Þ

A visual picture of the faulty and the normal subsystems may be deduced from the autocorre-
lations of the residuals associated with the fault-free, sensor fault, actuator fault, and the plant
faults shown in Figure 5. Subfigures A, and B, subfigures C and D, subfigures E, and F, and
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Â0 ¼

0:9843 �0:1588 0:0213 0:0224
0:1572 0:9266 0:2317 �0:2502
�0:0631 �0:3144 0:9090 �0:3230
0:0171 0:0153 0:1659 0:7225

2
6664

3
7775, B̂0 ¼

0 0
0:1 0:1

�0:3 �0:3
2:6 2:6

2
6664

3
777510

3,
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�����

�����

�����
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subfigures G and H show respectively autocorrelations of the residual for the ideal no fault, the
sensor fault, the actuator fault, and the plant fault.

Remarks: The maximum value of the autocorrelation of the residual (i.e., its variance) provides
an indication of the presence or an absence of the fault. In the case of the sensor fault intro-
duced by perturbing C20, it affects only the residual e2ðkÞ. The variance of the autocorrelation
e2ðkÞ is large while that of e1ðkÞ indicating a fault in C2. However, a fault in either the actuator
or the plant, depending upon which elements of B0 or A0 are perturbed, may affect both
residuals, and hence would be difficult to isolate.

7.2.1. Fault isolation

If a fault is asserted, and the path where the fault is located, then it is isolated using Bayesian
multiple hypotheses testing scheme. The size of the fault is also estimated. The objective of
fault isolation is to determine which of the emulator parameter has varied using the residual

200 400 600

0

2

4

A: e1: ideal 

200 400 600

0

1

2

3

B: e2: ideal

200 400 600

0

2

4

C: e1: sensor 

200 400 600
0

2000

4000

6000

8000

D: e2: sensor

200 400 600
0

20

40

60

80

E: e1: actuator 

200 400 600
0

1000

2000

3000

4000

F: e2: actuator

0 500
0

20

40

60

80

G: e1: plant 

200 400 600
0

1000

2000

3000

4000

H: e2:plant

Figure 5. Autocorrelations of the residuals: ideal, sensor fault, actuator fault, and plant faults.
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data generated or parameters using the expression for the Kalman filter residual for the model-
mismatch case given in Eq. (43). The residual ejiðkÞ is affine in the unknown emulator param-
eter variations fΔγijkg. The emulator parameter variation that is most likely to fit the perturbed

residual with additive term ψT
jif ðzÞΔθji is determined sequentially by first hypothesizing single

faults. If the estimates thus obtained do not fit the residual, then two simultaneous faults are
hypothesized. If again the estimates do not fit the residual model, then hypothesize triple
faults, and so on until the estimates fit the residual model. The maximum likelihood method,
which is efficient and unbiased, is employed herein to estimate the variation Δγ. The maxi-
mum likelihood estimates of the emulator parameters are obtained by minimizing the log
likelihood function [13].

Let Hð1Þ, Hð2Þ
, and Hð3Þ denote a hypothesis that emulator parameter γji1, γji2, and γji12 has

varied. The Kalman filter residual for Hð1Þ becomes

Hð1Þ : eð1Þji ðkÞ ¼ ψT
jif ðkÞΔθð1Þ

ji þ υjif ðkÞ ð56Þ

The least-squares estimate Δγ̂ji1 from

Δγ̂ji1 ¼ arg min
fΔγji1g

fkejiðkÞ �ψT
jif ðkÞΔθji k2g ð57Þ

If the estimate does not meet the criteria, then hypothesize that γji2 has varied. The criteria for

fitting a hypothesis are given later. The Kalman filter residual for Hð2Þ becomes

Hð2Þ : eð2Þji ðkÞ ¼ ψT
jif ðkÞΔθð2Þ

ji þ υjif ðkÞ ð58Þ

The least-squares estimate Δγ̂ji2 from

Δγ̂ji2 ¼ arg min
fΔγji2g

fkψT
jif ðkÞΔθð2Þ

ji þ υjif ðkÞk2g ð59Þ

If it does not meet the criteria, then hypothesize that γji12 has varied. The Kalman filter residual

for Hð3Þ becomes

Hð3Þ : eð3Þji ðkÞ ¼ ψT
ijf ðkÞΔθð3Þ

ji þ υjif ðkÞ ð60Þ

The least-squares estimate Δγ̂ji12 from

Δγ̂ ji12 ¼ arg min
fΔγji12g

k eð3Þji ðkÞ �ψT
ijf ðkÞΔθð3Þ

ji k2
n o

ð61Þ

where Δθð1Þ
ji , Δθ2

ji , and Δθ3
ji are deviations in the feature vector when γji1, γji2, and γji12 are

assumed to have varied.
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7.2.2. Criteria for asserting the hypothesis

The most likely hypotheses is determined by verifying which of the emulator parameter or
parameters have varied by comparing the deviation with some threshold value

Assert Hð1Þ if Δγ̂ji1 ≥ η1 ð62Þ

Assert Hð2Þ if Δγ̂ ji2 ≥ η2 ð63Þ

Assert Hð3Þ if Δγ̂ji12 ≥ η3 ð64Þ

where η1, η2, and η3 are threshold values. The subsystem associated with the subsystem is
asserted to be faulty if the criterion is met.

8. Evaluation on physical process control system

A laboratory-scale two-tank physical system is formed of a controller, a DC motor, a pump,
two tanks connected by a pipe, a flow rate sensor, and a liquid level sensor. The system is
interfaced to a PC with the National Instruments LABVIEW for data acquisition and
implementing the controller and the soft sensor [14]. The actuator, namely the pump driven
by the DC motor, sends the fluid to the first tank to maintain a specified fluid level in the
second tank. An evaluation of the proposed scheme for fault diagnosis was performed on a
benchmark laboratory-scale process control system using the National Instruments LABVIEW
as shown below in Figure 6. The sampling period is Ts ¼ 0:05.

Emulator-generated height and flow rate profiles under various types of faults are shown in
under the caption Height/Flow rate Profiles for PI controller with Consumer in Fig. 7. Fig-
ures 7a–c show the height and flow rate profiles when subjected to (a) leakage fault, (b) actuator
fault, and (c) sensor faults, respectively. The height profile is shown on the top and the flow rate
profile is shown at the bottom of Figure 7. The faults are induced by varying the appropriate
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emulator parameters to 0.25, 0.5, and 0.75 time the nominal values, in order to represent “small,”
“medium,” and “large” faults. However, by virtue of its control design objective, the closed-loop
PI controller will hide any fault that may occur in the system and hence will make it difficult to
detect it. In addition, the physical system exhibits a highly nonlinear behavior. The flow rate
saturates at 4.5 ml/s. The dead-band effect in the actuator exhibits itself as a delay in the output
response: when a step reference input is applied, the height output responds after some delay, as
a minimum force is required to drive the actuator. These nonlinearities affect the steady-state
value of the height: even though there is an integral action in the closed-loop control system, the
steady-state error is non-zero for a constant reference input.

The system is modeled as a single-input, multi-output system where r is the reference input,
and the outputs are the control input u, the flow rate f and the height h. Faults were induced in
the height sensor, the flow sensor, the actuator, and also as a leakage. The proposed fault
diagnosis successfully detected and isolated all the faults compared to SISO scheme [14],
where all the faults were detected and isolated using the reference input and the height output.
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emulator parameters to 0.25, 0.5, and 0.75 time the nominal values, in order to represent “small,”
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9. Conclusions

Fault detection and isolation of a class of linear multiple-input and multiple-output system
based on the Kalman residual and the emulators were presented. The key properties of the
Kalman filter, namely the residual, is a zero-mean white noise process if and only if there is no
model mismatch, drive the prediction error identification of the nominal system model, and
the Kalman filter. In view of the closed-loop configuration, the noise and the disturbance are
attenuated at the estimated output. The Kalman filter is the best minimum variance estimator
in the class of all linear estimators.

To handle fault isolation, the powerful and effective concept of emulators was introduced.
Similar in spirit to the training of the artificial neural network, a number of emulator parame-
ter-perturbed experiments were performed to capture the perturbation model of the subsys-
tems to help with fault isolation. The influence vectors of the emulator parameters, which are
indirectly the associated subsystems, were estimated. The influence vectors captured the
emulator perturbation model and hence that of the subsystem.

The residual of the Kalman filter was shown to have an additive fault indicating term when
there is a model mismatch due to emulator perturbations. The model-mismatch term is affine
in the emulator parameter variations. Using the expression for the fault indicating term, the
fault was isolated using the influence vectors and its size was estimated. The residual, being
affine in the emulator parameter variation, easily lends itself to the widely used and successful
composite Bayes hypothesis-testing scheme for fault isolation.

The future work generated from this work includes its extension to a class of nonlinear
multiple-input and multiple-output systems, and the development of a computationally effi-
cient identification of the Kalman filter directly from the input data even for unstable systems.
Although a gold standard for system identification, the prediction error method involves a
nonlinear optimization problem and hence can suffer from the existence of local minima.
Unlike the least-squares approach, it does not offer a closed-form solution to the parameter
estimation problem. Instead, it relies on a recursive solution that may be time-consuming
(slow convergence rate), computationally complex, and which may also suffer from initializa-
tion problems.
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Abstract

Vibration‐based condition monitoring and fault diagnosis are becoming more common 
in the industry to increase machine availability and reliability. Considerable research 
efforts have recently been directed towards the development of adaptive signal process‐
ing methods for fault diagnosis. Two adaptive signal decomposition methods, i.e. the 
empirical mode decomposition (EMD) and the local mean decomposition (LMD), are 
widely used. This chapter is intended to summarize the recent developments mostly 
based on the authors’ works. It aims to provide a valuable reference for readers on the 
processing and analysis of vibration signals collected from rotating machinery.

Keywords: signal processing, empirical mode decomposition, local mean 
decomposition, fault diagnosis, rotating machinery

1. Introduction

Signal processing methods with adaptive basis functions are more effective in revealing the 
overlapping components in vibration signals. They are able to adaptively disassemble non‐
linear and non‐stationary signals into some simpler signal components. The empirical mode 
decomposition (EMD) [1] method and the local mean decomposition (LMD) [2] method have 
been recognized to be such effective adaptive signal processing methods.

Since the introductions of EMD in year 1998 [1] and LMD in year 2005 [2], many improvements 
and applications have been reported. In this chapter, we summarize the recent developments 
mostly based on the authors’ works. We hope that it is a valuable reference for readers on the 
processing and analysis of vibration signals collected from rotating machinery. This chapter 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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is organized as follows. Section 2 briefly introduces the fundamentals of EMD and LMD. 
Section 3 summarizes key results on the improvements of EMD and LMD. Section 4 outlines 
future work and remaining challenges.

2. Fundamentals of EMD and LMD

The EMD method [1] decomposes a nonlinear and non‐stationary signal as a sum of some 
intrinsic mode functions (IMFs). Resembling the popular wavelet transform, EMD can also 
display the spread of signal energy on available frequencies locally in time [3]. Their key dif‐
ference is that the EMD method is direct and adaptive, so that some potential and valuable 
information can be obtained from the data without the influence from a priori basis. Hence, 
it is widely applied in diverse areas of signal processing, especially in the field of mechani‐
cal vibration, such as health monitoring and diagnosis, analysis and identification of weak 
vibration signals, mainly in rotating machinery with critical elements, bearings and gears [3].

Another adaptive signal processing method, the LMD method, was originally used as a time‐
frequency analysis tool of the electroencephalogram signals [2]. It is an iterative approach 
to decompose a signal into some product functions (PFs) [2], each of which is an amplitude‐
modulated and frequency‐modulated signal (AM‐FM signal) from which the instantaneous 
amplitude (IA) and the instantaneous frequency (IF) can be derived [4]. Compared with the 
corresponding IMF in EMD, as shown in Figure 1, the calculated IF and IA are not involved 
in the EMD and require adopting of the Hilbert transform (HT).

Figure 1. Main differences between EMD and LMD [4].
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Although the details of decomposition and the resulted signals are quite different, these 
two methods share some common advantages, for example, the adaptive property. They 
also share some common challenges, which will be addressed in Section 3. Ref. [4] pro‐
vides a comparative study, and Ref. [5] reviews applications of EMD in the field of fault 
diagnosis.

No matter which of two methods is used, a multi‐component signal, x(t), can be adaptively 
decomposed into k mono‐components, xp(t) (p = 1, 2, …, k) (IMFs for EMD or PFs for LMD) 
and a residue, uk, and can be reconstructed by summing them together, i.e.

  x(t ) =  ∑ 
p=1

  
k
     x  p  (t) +  u  k  (t).  (1)

3. Reported improvements in EMD and LMD

The EMD and the LMD methods are proven to be quite versatile in a broad range of appli‐
cations for adaptively extracting signals of interest from noisy data. This section discusses 
their main and common challenges, including end effects, mode mixing, feature signal selec‐
tion and strong noise reduction. After analysing each issue, the corresponding improvement 
is also shown. Other open issues, such as stopping criterion and envelope function, will be 
briefly discussed in Section 4.

3.1. End effects

End effects have plagued data analysis from the beginning of any known method [6]. The 
end effects were first mentioned in the spine fitting of the EMD. This section briefly reviews 
related improvements and then introduces an adaptive method to eliminate the end effects 
for the vibration signals collected from rotating machinery.

3.1.1. Improvements for eliminating end effects

Two ways have been proposed to eliminate end effects. One timid way is to use a sliding 
window [7], as is done routinely in Fourier analysis [6]. The sliding window is success‐
fully applied to Fourier analysis using various windows and continuous wavelet analyses. 
However, appropriate and reliable windows are often analysis method related but not related 
to the data themselves. It inevitably leads to sacrifice some precious data near the ends [8]. 
Furthermore, it would be a hindrance for data processing when the data are short.

The other elimination way is extension or prediction of data beyond their existing range, 
which is still the best basic solution. Huang et al. [1] first proposed to add characteristic waves 
to treat the effects, in which the extra points are determined by the average of n‐waves in the 
immediate neighbourhood of the ends. Motivated by this idea, some extension methods tried 
to extend the temporal waveforms forward and backward by using all available information 
in data, including feature‐based extension, mirror or anti‐mirror extension, intelligent predic‐
tion, pattern comparison, etc. [9].
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It is proven that prediction methods can provide good performance on the extension of data. 
It is not needed to predict the whole time series, but to predict the value and location of the 
extrema adjacent to the ends. However, as pointed out by Huang and Shen [6], the data exten‐
sion or prediction is a risky procedure even for linear and stationary processes. For nonlinear 
and non‐stationary processes, the problems, such as predictable conditions, method and accu‐
racy, are still open at present. Meanwhile, intelligent methods have their own shortcomings, 
including minima and over‐fitting in artificial neural network (ANN) and sensitiveness to 
parameter selection in both support vector regression and ANN.

No matter which method is developed, their main idea is that newly added points have mini‐
mal interior perturbations and extend the signal implicitly or explicitly beyond the existing 
range. Furthermore, the extending data can well repeat the form or feature of the original sig‐
nal. The reliability of such extension will sharply decrease as its distance away from the known 
data set increases, and thus it is necessary to be careful in extending a signal only by adding 
the extrapolation data to it [10]. Otherwise, the error of such operation would propagate from 
the end to the interior of the data and even cause severe deterioration of the whole signal [9].

For most of the vibration signals generated by rotating machinery, their non‐linear and non‐
stationary properties are definite, which is quite challenging for data extension. Although the 
mirror image extension is easier to be put into practice, the real case that the data are mostly 
from non‐stationary stochastic systems must be faced. Fortunately, the vibration signal has an 
advantage to assist the extension: it is cyclo‐stationary [11]. Meanwhile, the extension based 
on characteristics of the signal waveform seems to be more appropriate to describe such com‐
plexity of problems [10]. In the following section, an adaptive waveform extension method [9] 
is introduced to extend vibration signals and avoid error accumulation.

3.1.2. Adaptive data extension‐based spectral coherence

To facilitate applications to condition monitoring and fault diagnosis, the designed extension 
method should have good extension performance as well as easy operation to implement. 
An adaptive extension method [9] was designed for vibration signals, mainly including three 
steps: waveform segmentation, spectral coherence comparison and waveform extension. Its 
main idea is to automatically search inside waveforms having mostly similar frequency spec‐
trum to ends, and then use their successive segments for signal extension. In this method, a 
critical point is how to measure the waveform similarity. Although there are some similarity 
measures, such as correlation coefficient, cross‐correlation, waveform similarity, originally 
used in the field of data fusion, pattern recognition and speech recognition, most of them are 
susceptible to noise and not suitable for processing vibration signals since their acquisition 
and transmission often suffer from noise. Therefore, an index measuring the spectral coher‐
ence [12] is introduced here. The procedure is described as follows [9]:

Step 1. Waveform segmentation. Identify zero crossings of the analyzed signal and then sepa‐
rate the signal into N segments, ci(t) (i = 1, ···, N).

Step 2. Segment repetition and fast Fourier transform (FFT). Repeat each segment to form a long 
waveform and then conduct fast Fourier transform (FFT).
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Step 3. Spectral coherence comparison. Use Eq. (2) to calculate the revised spectral coherence 
(RSC) values of the first segment c1(t) and other segments, and then find the segment, 
denoted as cback(t), having the largest value of the RSC. Similarly, search the segment 
cfor(t) similar to the last segment cN(t).

    γ  i,j   =   
 ∑ 

F
      C  i  (F ) ×  C  j  (F )

  ________________________   
 √ 
____________________________

     (   ∑ 
F
      C  i  (F ) ×  C  i  (F ) )     (   ∑ 

F
      C  j  (F ) ×  C  j  (F ) )     

  ,  (2)

where Ci(F) and Cj(F) are frequency spectra of the signal components ci(t) and cj(t), respectively.

Step 4. Waveform extension. Use the pervious segment of cback(t) for extending backward and 
the next segment of cfor(t) for extending forward.

Based on this, the extended signal can be decomposed by the EMD or LMD method, and 
extended samples are at last truncated before further analysis. Using the hidden periodicity, 
a cyclo‐stationary signal, for example, a vibration signal, can be easily extended beyond its 
original range, and its temporal continuity in time domain and spectral coherence in fre‐
quency domain can be properly maintained.

3.1.3. Experiment and analysis

A vibration signal collected from an industrial traction motor [13] is shown in Figure 2. The 
specification of the experiment setup is given in Table 1. This signal is cyclo‐stationary with 
around three cycles, and its waveform is thus divided into six segments, which are marked in 
Figure 2. Figure 3 shows frequency spectra of these segments.

To estimate the influence caused by the end effects, a measure of energy change [14] before 
and after decomposition is defined as

  θ =   1 __  R  x  
    |   √ 
_

  ∑ 
p=1

  
k
     R  p  2  +  R  u  2    −  R  x   |   ,  (3)

where Rx, Rp and Ru are root‐mean‐square (RMS) values of the original signal x(t), the pth 
product function PFp(t), and the residue signal uk(t), respectively. The value of the measure is  
θ ≥ 0 . The closer the measure is to zero, the smaller the error between the original signal and 
decomposition results is; that is to say, the influence caused by end effects is smaller.

Figure 2. A raw vibration signal collected from a traction motor.

Adaptive Signal Decomposition Methods for Vibration Signals of Rotating Machinery
http://dx.doi.org/10.5772/67530

33



The revised spectral coherence (RSC) values γ1,j (j = 2, …, 6), i.e. RSC values between the seg‐
ment c1(t) and one of other segments, are shown above each sub‐figure in Figure 3. It can be 
seen that the segment c5(t) has the largest RSC value of 0.97 and its previous segment c4(t) is 
then used for backward extension of c1(t). In a similar way, c2(t) has the largest RSC value with 
the last segment c6(t), and thus the next one of c2(t), i.e. c3(t) is used for forward extension. The 
extended vibration signal is shown in Figure 4, where extended waveforms are shown in red. 
Its RSC value with the original signal is 0.94, and the measure θ is 0.005. If no extension, the 
measure θ is 0.106.

Section Tested object Fault type fs (kHz) fr (Hz) fd (Hz)
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3.2.1 Bearing An outer race 
defect on bearing

80 23.3 BPFO = 135
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pass frequency of the outer race; BPFI—the ball pass frequency of the inner race.
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After applying the LMD method to the extended signal and truncating extended parts, five PFs 
and a residue are obtained, the first three of which have larger correlation coefficient values 
with the original signal and thus are selected for further analysis. Their waveforms and enve‐
lope spectra are shown in Figure 5. In Figure 5(d), the identified characteristic frequency (104 
Hz) and its harmonics (around 2 × and 3 × BPFO) can be easily observed. The error between 
the theoretical value (114 Hz) and the identified one (104 Hz) is mainly caused by inaccurate 
shaft speed after long use and limited samples (only 0.12 second). In Figure 5(e) and (f), higher 
impulses are identified at the frequency of 25 Hz, corresponding to the motor rotating fre‐
quency. It indicates that PF1 is the signal generated by the inspected bearing with an outer race 
defect, and PF2‐3 is generated by the motor, which turned out to be caused by the eccentric 
problem after inspection. More cases on bearings and gears can be found in Ref. [9].

3.2. Mode mixing

Another open problem for EMD and LMD is the mode mixing. It is originally defined as a 
single IMF either consisting of signals of widely disparate scales, or a signal of a similar scale 
residing in different IMF components, which causes serious aliasing in the time‐frequency 

Figure 4. The extended vibration signal obtained by the adaptive waveform extension method [9].

Figure 5. Decomposition results PF1‐PF3 in (a)–(c) by applying the LMD to the signal in Figure 4, and their corresponding 
envelope spectra in the range of 0–1 kHz in (d)–(f).
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distribution and makes the meaning of IMF unclear [8]. This section focuses on the solution 
to the problem of mode mixing.

3.2.1. Separation of disparate components

According to the above definition, there are two possibilities: either completely different 
components existing in one IMF, or one component appearing in more than one IMF. To 
remove the former case, Wu and Huang [8] presented a noise‐assisted signal processing 
method, called ensemble EMD (EEMD). In this method, white noise with a pre‐setting ampli‐
tude is introduced to perturb the analyzed signal and enables the EMD method to visit all 
possible solutions in the finite neighbourhood of the true final IMF [8]; and the ensemble 
means of decomposition results help to remove the remaining noise in the results. For the 
EEMD method, two parameters, the noise amplitude and the ensemble number, are critical, 
the former of which has more influence on its performance [15]. In order to process signals 
adaptively, it is ideal to automatically find appropriate parameters for the analyzed signal. 
A parameter optimization method [13] is designed for the EEMD. In this method, an index 
termed relative root‐mean‐square error (RMSE) is first used to evaluate the performance of 
the EEMD method when fixing a small ensemble number and setting various noise ampli‐
tudes, and then the signal‐to‐noise ratio (SNR) is introduced to evaluate the remaining noise 
in the results when gradually increasing the ensemble number.

For a signal, xo(k), it is assumed that it consists of main component(s), background noise and 
some components having small correlation coefficients with the chief one, which has the largest 
correlation coefficient with the signal xo(k) is marked as cmax(k). The desired decomposition is to 
completely separate the component cmax(k) from others, and the relative RMSE is thus used to 
evaluate the separation performance when setting various noise amplitudes. Its formulation is

  Relative RMSE =  √ 

_______________

    
 ∑ 

k=1
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     ( x  o  (k ) −  c  max  (k ) )   2 

  ______________  
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where     x ¯¯    o    is the mean of the signal xo(k), and S is the number of samples in this signal. The 
value of this index is in the range of 0–1. The smaller this index is, the closer the component 
cmax(k) to the original signal. It means that the extracted IMF contains not only the main com‐
ponent of interest but also other components, and thus the objective is not achieved. However, 
there exists a value for the noise amplitude that maximises the index. At this point, the error 
between xo(k) and cmax(k) is from noise and other components, that is to say, the extracted IMF 
and the other in the original signal share no common component, and the main component 
of interest is extracted from the original signal. The corresponding value is the optimal noise 
amplitude. Its procedure is briefly described as follows [13]:

Step 1. Set a small value of the initial ensemble number, for example, NE = 10, and choose a 
relatively large value as the initial noise level, LN = l0. The noise amplitude A is to mul‐
tiply the noise level by the standard deviation of the signal.

Step 2. Perform the signal decomposition using the EEMD method and calculate the relative 
RMSE of the chief component cmax(k).
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Step 3. Decrease the noise level and repeat Step 2 until the change in the relative RMSE is 
negligible or small enough.

Step 4. Identify the optimal noise level corresponding to the maximal relative RMSE.

Once the optimal noise level is numerically determined, the ensemble number can be deter‐
mined by comparing the SNR values when gradually increasing the ensemble number from 
its pre‐setting value.

To demonstrate this method, a vibration signal was collected from a small motor [13] and is 
shown in Figure 7(a). In the experiment, a fault was set on the outer race of the tested bearing. 
The specification of the experiment is shown in Table 1. Initial parameters are set as: a larger 
value for the noise level, LN = 2, and the ensemble number NE = 10. During the execution of 
the above program, the noise level is gradually decreased. When 2 ≤ LN ≤ 0.1, the noise level is 
decreased in the step of 0.1; when 0.1 < LN ≤ 0.01, its decreasing step is 0.01; when 0.01 < LN ≤ 
0.001, its decreasing step is 0.001.

After applying the EEMD method with the above optimization method to decompose the 
vibration signal, the relative RMSEs for various noise levels are shown in Figure 6. As shown 
in this figure, the maximal relative RMSE is arrived at the noise level of 0.4, correspond‐
ing to the optimal one, and accordingly, the extracted IMF (IMF1) is shown in Figure 7(b). 
Comparing with the original signal, most of noise and redundant components are separated 
from IMF1, and its kurtosis value is 26.07.

To compare with this, extracted IMFs when setting any three non‐optimal noise levels are also 
shown in Figure 7. Figure 7(c) and (d) shows the results when setting the noise levels of 2 and 
1, respectively. Figure 7(e) shows the result when setting a quite small noise level of 0.009. 
Their kurtosis values of these IMFs are 11.68, 7.26 and 7.65, respectively. It demonstrates that 
better decomposition results are obtained after setting the optimal noise level.

Having determined the optimal noise level, appropriate ensemble number is then determined. 
The variation in the SNR is shown in Figure 8. As the figure shows, when the ensemble num‐
ber is less than 80, increasing the ensemble number gently accelerates the increase in the SNR 
value. When the ensemble number is larger than 120, the SNR value fluctuates smoothly. 

Figure 6. Relative RMSEs when adding white noise with various noise levels to the vibration signal in Figure 7(a), and 
the optimal noise level for this signal is 0.4.
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Figure 8. SNR values for various ensemble numbers when setting the optimal white noise (LN = 0.4) to the vibration 
signal in Figure 7(a).

Figure 7. A vibration signal from the bearing with an outer race defect and the corresponding selected IMFs when setting 
the optimal and three non‐optimal noise levels. (a) The signal to be analyzed; (b) IMF1 when setting LN = 0.4; (c) IMF2 
when setting LN = 2; (d) IMF2 when setting LN= 1; and (e) IMF1 when setting LN = 0.009.
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Further increasing its value contributes to minor increasing of the SNR, but definitely rising 
computation cost. Therefore, using this optimization method, parameters of the EEMD can be 
automatically determined according to the signal itself, instead of empirical setting or the trial 
and error. More cases on bearings can be found in Ref. [13].

3.2.2. Mixing of similar components

Although the EEMD method can successfully separate signal components with different 
scales, another mode mixing still exists in the decomposition results, that is to say, one com‐
ponent may spread in more than one IMF. This also belongs to the mode mixing and results 
in energy dispersion and some redundant components without physical significance. It may 
be caused by repeated sifting process and severe stopping criterion. A simple and convenient 
solution is to combine the components from the same source. Therefore, the index of spectral 
coherence in Eq. (2) is used to evaluate the spectral similarity of two successive components 
and then combine the components with similar spectra into a natural IMF [12].

Using the index of spectral coherence, the similarity criterion of two successive IMFs obtained 
by the EEMD method is described as:

(1) If γj,j+1 → 1, it means that the IMFs, cj and cj+1, have a relationship of similarity in frequency 
domain, that is to say, they have spectral coherence over the whole frequency range. Thus, 
these two IMFs should come from the same source and thus are combined to one natural 
IMF (NIMF).

(2) If γj,j+1 → 0, they have low, even no spectral coherence and thus are two natural IMFs.

(3) If γj,j+1 is around 0.5, the spectral coherence of two IMFs cannot be determined. Such signal 
components are also viewed as two natural IMFs and would not be combined together.

The signal in Figure 2 is used to demonstrate the process of similarity analysis and combina‐
tion. After applying the EEMD method with the noise level 0.2 and the ensemble number of 
30 to the signal, 12 IMFs are obtained, the first four of which have larger correlation coefficient 
values with the original signal and are shown in Figure 9. As shown in the figure, the fre‐
quency spectrum of IMF1 is a high‐frequency dominated signal and centred at the frequency 
of 12 kHz, and it indicates that IMF1 corresponds to the signal generated by the faulty bear‐
ing in the traction motor; as for IMF3 and IMF4, they share the common frequency of 920 Hz 
generated by the faulty motor. Furthermore, the revised spectral coherences of all IMFs are 
calculated and the results are shown in Table 2. According to this table, there are three local 
minimal points, i.e. γ2,3, γ5,6 and γ7,8. The RSC values of IMF3‐IMF4 and IMF4‐IMF5 are larger 
than 0.5 and it shows their similarity on frequency domain, and thus these three components 
are combined to one natural IMF. Between the second and the third local minimal values, 
IMF6 and IMF7 show the spectral similarity. Similarly, the remaining components, IMF8‐
IMF12, also show their spectral similarity, and thus are merged into another natural IMF. The 
RSC value of IMF1 and IMF2 is not close to 1 or 0 and these two IMFs are thus two natural 
IMFs. Final results are shown in Figure 10. The last two components are practically residues. 
Based on local minima of RSC, a fusion rule [12] was designed to automatically combine 
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components from the same source and remove the mode mixing in the original EMD method. 
Other applications on bearings can be found in Ref. [12].

3.3. Strong noise reduction

In real rotating machinery, a raw vibration signal generally consists of strong noise and two 
or more sources. Some vibrations, such as improper installation and surfacing of the installed 
sensors, random impacts from friction and contact forces and external disturbances [16], are 
also so strong that the signal of interest is completely overwhelmed. Therefore, the recovery 
of the feature signal from noise, while preserving its features is a challenging problem. This 
section introduces a hybrid signal processing method [17] for noisy vibration signals.

3.3.1. Problem analysis

Although the EEMD method improves the scale separation ability of EMD method, both 
methods are based on extrema to discriminate signals generated by various sources. When 
the signal of interest is completely overwhelmed by strong noise, there may be a lack of nec‐
essary extrema for the EEMD method to separate the real signal from noise. An experimental 
signal collected from a bearing with an inner race defects is used to illustrate this problem 
[17]. The specification of the experiments is shown in Table 1. To simulate strong noise in real 

Figure 9. IMF1‐IMF4 obtained by applying the EEMD (NE = 30, LN = 0.2) to the signal in Figure 2 and frequency spectra 
of these IMFs (a)‐(d) The temporal waveforms of IMF1‐IMF4, and (e)‐(h) corresponding frequency spectra of IMF1‐IMF4 
in (a)‐(d).

RSC γ1,2 γ2,3 γ3,4 γ4,5 γ5,6 γ6,7 γ7,8 γ8,9 γ9,10 γ10,11 γ11,12

Value 0.279 0.054 0.768 0.542 0.375 0.568 0.398 0.593 0.619 0.993 0.958

Table 2. RSC values of decomposition of the signal in Figure 2 by using EEMD (NE = 30, LN = 0.2).
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cases, Gaussian white noise was added to the experimental signal, and the generated noisy 
signal is shown in Figure 11. As shown in the figure, the impulses caused by faulty bearing 
are completely masked by strong noise. After applying the EEMD method to this signal, 13 
IMFs are obtained and the first four having larger correlation coefficient values with the origi‐
nal signal are shown in Figure 12, in which impulses are seldom observed and still buried in 
noise. It is because that the decomposition method lacks necessary extrema generated by the 
tested faulty bearing.

As for a signal with a relatively low signal‐to‐noise ratio, it is necessary to design an adaptive 
filter to extract the weak feature signal of interest from a noisy signal to facilitate further signal 
decomposition. A possible solution is to use the spectral kurtosis, which is proven to be a pow‐
erful tool to identify the existing of bearing faults buried in noise. Its value is large in frequency 
bands where the impulsive bearing fault signal is dominant, and is effectively zero where 
the spectrum is dominated by stationary components [16]. Based on this, an SK‐based filter 
[18] was used to pre‐process the signal in Figure 11 and remove part of noise before decom‐
position. It is a kind of band‐pass filter whose parameters, centre frequency and bandwidth, 

Figure 10. Five natural IMFs after applying similarity criterion to the results obtained by the EEMD.
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are optimized by using the kurtogram, a map formed by the STFT‐based (short‐time Fourier 
transform based) SK. The filtered result is shown in Figure 13. Although the filtered signal still 
contains some noise, its impulses are a little clearer than those in the original signal, and its 
kurtosis value is also increased from 3.07 to 3.97. Consequently, a hybrid method is used to 
reinforce the performance of noise reduction.

3.3.2. A hybrid method for strong noise reduction

By comparing individual performances of the foregoing two methods, a hybrid signal pro‐
cessing method that combines the EEMD and the SK‐based filter [17] is introduced. First, an 
optimal band‐pass filter based on SK is employed to remove part noise so that local extrema 

Figure 11. A vibration signal from a bearing with an inner race defect with the added white noise.

Figure 12. The first four IMFs obtained by applying the EEMD method to the signal in Figure 11.
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of the signal would not be completely concealed by noise. Then, the EEMD method with 
parameter optimization is applied to further decompose the filtered signal. As a result, the 
final signal can be separated from strong noise, which allows good detection of the defects but 
at the same time minimizes the distortion of the impulses. The main procedure is as follows:

Step 1. Pre‐processing. Filter the raw signal using an optimal band‐pass filter based on SK and 
obtain the filtered signal.

Step 2. Signal decomposition. Use the EEMD method to decompose the filtered signal into some 
IMFs.

Step 3. Selection of feature signal. Calculate the correlation coefficients between the obtained 
IMFs and the filtered signal, and select the IMF having the largest values of correla‐
tion coefficient (CC) as the resultant signal for further analysis.

3.3.3. Experiment and comparison

In this sub‐section, the filtered signal in Figure 13 is decomposed into 13 IMFs, the first three 
of which have CC values of 0.88, 0.76 and 0.18 with the filtered signal, and the rest of which 
have CC values close to zero. To save space, only the first four IMFs are shown in Figure 14. 
According to the calculation results of CC, IMF1 has a larger correlation coefficient (0.88) than 
the other signal components and contains the main component in the filtered signal, and it is 
thus viewed as the bearing signal recovered from the noisy experimental signal. This result 
is also verified by the identified BPFI and its multiples as shown in Figure 15. There is also 
an error between the theoretical and identified values of BPFI, which is caused by the same 
reason mentioned in Section 3.1.3.

Compared with the filtered signal in Figure 13, the extracted bearing signal (IMF1 in Figure 14) 
is much cleaner than the original signal, and the remaining noise in the filtered signal is almost 
completely separated and resides in IMF2. The kurtosis values of the raw signal, the filtered 
signal and IMF1 are 3.07, 3.97 and 11.29, respectively, as observably increasing. It indicates 
that this hybrid method successfully reveals temporal impulses from a noisy signal while pre‐
serving its important feature for accurate fault diagnosis. Figure 16 also shows the filtered 
signal by applying the normal wavelet threshold denoising to the same noisy signal, and its 
impulses are not as clear as those in Figure 14. More cases on faulty machine components, 
such as an outer race and a rolling ball, are given in reference [17].

Figure 13. The filtered signal using the SK‐based filter, and its kurtosis value is 3.97.
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Figure 14. The first four IMFs obtained by applying the hybrid method to the signal in Figure 11.

Figure 15. The envelope spectrum of IMF1 shown in Figure 14 in the range of 0–1 kHz.

Figure 16. The filtered signal obtained by applying the normal wavelet threshold denoising to the same signal in 
Figure 11.
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3.4. Feature signal component selection

After using the EMD or LMD method, many signal components are disassembled from the 
original signal. How to effectively select feature signals from many components is critical for 
further signal processing and analysis. This section primarily discusses the selection method 
of feature signal components.

3.4.1. Selection based on cluster analysis

For the feature signal selection, a popular solution is to calculate statistical indicators of the 
signal, for example, correlation coefficient (CC). Dybała and Zimroz [19] used this indicator 
to divide IMFs into three classes: noise‐only IMFs corresponding to low indices and low CC 
values, signal‐only IMFs and trend‐only IMFs corresponding to high indices and low CC 
values. However, it is possible that an impact signal caused by a damaged bearing is wrongly 
categorized into the class of noise [19]. Similar results can be found when only using single 
measurement. A more sophisticated diagnostic method is needed to avoid the misdiagnosis. 
Referring to the idea of the cluster analysis, an adaptive selection method based on multiple 
statistic indicators is designed for selecting the feature signal of interest from many signal 
components [20].

In the anomaly detection, a branch of cluster analysis, a detector is designed to detect any 
object that deviates from the known state (usually the healthy state) [21]. Referring to this, 
the decomposed signal components are classified into two groups: feature signals and unre‐
lated signals. The former is used for further analysis, and the latter is viewed as useless 
signals.

The key of this selection is how to evaluate useful content in the analyzed signal. If the feature 
signal is wrongly classified into the useless part, the state of the monitored object may be mis‐
judged. If an unrelated signal is wrongly marked as the feature signal, the conclusion based 
on the analyses of feature signals may be conflicting. To correctly classify them, some statistic 
indicators commonly used in the anomaly detection and feature extraction are introduced 
here. They are indicated by many literatures to be good at representing hidden features of 
the analyzed signal. Therefore, these indicators are jointly used to determine the classes of 
decomposed components, not to determine the fault types of the tested object. In addition, 
the strategy of using multiple indicators is very common in pattern recognition to combine 
various experts with the aim of compensating the weakness of each single expert [22]. This 
combination can be viewed as a kind of ensemble learning and can improve the classification 
accuracy in machine learning. What is interesting is that the idea of combining individuals’ 
opinions in order to reach a final decision is humans’ second nature before making any crucial 
decision [23].

As for a large number of indicators, the distance evaluation technique (DET) [24] is introduced 
to quickly organize the classification result of each indicator (or expert). For more than one 
expert, their conclusions may not always coincide, and thus the principle of minority obeying 
majority [22, 23] is introduced to solve their conflicts. The detailed selection is described in 
the following sub‐section.
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3.4.2. Adaptive feature signal selection

The process of the adaptive feature signal selection can be divided into two stages: classifica‐
tion of each expert and decision of all experts. Its procedure is described as follows:

Step 1. Calculate some statistics indicators in time and frequency domains for all decomposed 
signal components. The indicators include peak‐to‐peak (P‐P), mean, absolute mean, 
max, root mean square (RMS), standard deviation (SD), skewness, kurtosis, crest fac‐
tor (CF), shape factor (SF), impulse factor (IF), energy and correlation coefficient (CC).

Step 2. Normalize and sort in a descending order for each indicator.

step 3. Classify using the DET. For each indicator, the DET makes the distance within a class 
shorter and the distance between classes longer, and then the components are classi‐
fied into two groups.

Step 4. Vote by all ‘experts'. For each signal component, summary how many ‘experts’ (indi‐
cators) classify it into the same class.

Step 5. Draw a conclusion. Following the principle of minority obeying majority, the classifi‐
cation results of signal components can be finally determined.

Furthermore, the indicators that win in the voting are viewed as sensitive ones. After compar‐
ing the values of any sensitive indicator between the current state and the healthy one, signals 
in the class having obvious changes can be determined as feature signals.

3.4.3. Experiments and analyses

3.4.3.1. Case 1: a vibration signal collected from a bearing with single defect

One of experimental signals was collected from a small motor that involves a bearing with 
an outer race defect [17]. The specification of experiments is shown in Table 1. After apply‐
ing the LMD method to this signal, five PFs were obtained, and then indicator values of 
these five signal components are calculated by 13 indicators in time domain and another 13 
indicators in frequency domain. Figure 17 shows the indicator values after normalization. 
As shown in this figure, for the first indicator P‐P (peak‐to‐peak), using the DET, PF3 and 
other PFs are classified into two groups; while, for the indicator of Mean, PF5 and other PFs 
belong to different groups. The classification results for all indicators in time and frequency 
domains are shown in the columns ‘Case 1’ of Table 3. Based on the majority principle, PF1 
and PF2 are finally classified into one class, and the rest of PFs are classified into the other 
class. Comparing the energy value with that of a healthy bearing, PF1 and PF2 are deter‐
mined as feature signals of interest. To verify this conclusion, envelope spectra of PF1‐PF3 
are shown in Figure 18. The characteristic defect frequency fd and its multiples are only 
identified in the spectra of PF1 and PF2, which demonstrates the right selection of feature 
signals.
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Figure 17. Indicator values of the signal in Case 1 after normalization.

Indicator Case 1 (T) Case 1 (F) Case 2 (T) Case 2 (F)

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2

P‐P 3 12 45 345 12 123 4567 123 4567

Mean 5 12 34 2 345 1 2 13 4567 12 3 4567

Absolute 
mean

345 12 2 345 1 123 4567 12 3 4567

Max 3 12 45 345 12 123 4567 123 4567

RMS 345 12 345 12 123 4567 123 4567

SD 345 12 345 12 123 4567 123 4567

Skewness 1 3 2 45 45 12 3 123 467 5 123 45 67

Kurtosis 45 12 3 45 12 3 23 1 4567 123 45 67

CF 45 12 3 345 12 12 5 3 467 123 67 45

SF 45 12 3 5 12 34 2 45 1 367 1234 57 6

IF 45 12 3 5 12 34 12 5 3 467 1234 57 6

Energy 345 12 345 12 123 4567 123 4567

CC 345 12 345 12 123 4567 123 4567

Notes:
(1) Title line: T—time domain and F—frequency domain.
(2) Numerical values listed above represent the indices of signal components PFs. For example, in the row of Max, the 
value ‘3’ in the column of Case 1 (T) means that PF3 is classified into Class 1, and the values ‘1245’ in the column of Case 
1 (F) means that PF1, PF2, PF4 and PF5 are classified in to Class 2.
(3) Numerical values in bold indicate that the corresponding PFs are correctly classified after the final voting. And 
numerical values in Italic indicate that the corresponding PFs are wrongly classified. For example, if using the index of 
Max in Case 1(T), PF4 and PF5 should be classified into Class 1, not Class 2, and thus the numerical values ‘45’ in the 
column of Class 2 are italicized.

Table 3. Classification results of two experimental vibration signals.
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3.4.3.2. Case 2: a vibration signal collected from a machine with two defects

Another vibration signal was collected from a traction motor, which involves two faulty 
machine components, i.e. a faulty motor and a bearing with an outer race defect [13]. Its 
specification is also shown in Table 1. This signal was decomposed into seven PFs by using 
the LMD. Its classification results are shown in the columns ‘Case 2’ of Table 3. As a result, 
PF1, PF2 and PF3 are classified into one class, and others belong to another class. Figure 19 

Figure 18. Envelope spectra in the range of 0‐1 kHz of part components in Case 1.

Figure 19. Envelope spectra in the range of 0–1 kHz of part components in Case 2.
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shows envelope spectra in the range of 1 kHz of the first four PFs. As shown in this figure, 
the characteristic defect frequency fd and its multiples of the faulty bearing are identified 
in PF1, and the rotating frequency fr is identified in PF2 and PF3. No specific characteristic 
frequency can be identified in PF4. These results also match with real condition of the tested 
machine.

3.4.3.3. Discussion

Above results also indicate that statistic indicators have varying degrees on sensitivity to 
abnormal states. Some of them are sensitive and closely related to any faults, but others 
are not sensitive or stable. For above experiments, sensitive indicators include absolute 
mean, SD, RMS, energy, correlation coefficient in time domain, and max, peak‐to‐peak, SD, 
RMS, energy, correlation coefficient in frequency domain. The commonly used indicator, 
kurtosis in time and frequency domains does not show its sensitivity to feature signals. 
Although the indicator Energy is one of sensitive features, its values of five PFs in Case 
1 are 0.048, 0.053, 0.192, 0.293 and 0.223, the latter three of which corresponding to use‐
less components are much larger. Therefore, single measure is not suitable for fault detec‐
tion. Further work on assessment of feature signals is necessary for online monitoring and 
diagnosis.

4. Future work

Although EMD and LMD methods are quite simple in principle, they also depend on a number 
of user‐controlled tuning parameters and still lack an exact theoretical foundation. Feldman 
has given some theoretical analyses of the EMD method in Refs. [3, 25]. However, the follow‐
ing issues remain to be further addressed.

4.1. Stopping criterion

No matter which method, EMD or LMD, you use, the adaptive signal decomposition is a ‘sift‐
ing’ process, and you need to choose a criterion to stop it at the right time, which is critical 
for signal processing. The more times sifting is taken, the closer to zero the average will be 
[26], that is to say, by sifting as many times as possible, it is more likely to eliminate the riding 
waves and make the wave profiles symmetric. However, too many repetitions would result in 
the obliteration of the amplitude variation and the loss of physical meanings. Therefore, it is 
not an easy task to define an appropriate criterion that makes the definition of IMFs satisfied 
while retaining enough physical sense of amplitude and frequency modulations.

Standard stopping criterion is very rigorous and difficult to implement in practice. The 
most commonly used criterion is three‐threshold criterion [27], and the recommended set‐
ting for the three thresholds is applicable for most of the cases. Many modifications on this 
criterion are also reported, and their wide verifications are not yet finished. Since most of 
stopping criteria are the summations over the global domain, an undesired feature is that 
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the decomposition is sensitive to the local perturbation and to the addition of new data [8]. 
Therefore, an open problem is to eliminate extra sifting processes cause by local changes.

4.2. Connection between local extrema

In the sifting process of the EMD method, a spline interpolation function is needed to connect 
the identified local extrema. Commonly used spline functions include linear spline, quadratic 
spline, cubic spline and cubic Hermite spline (third‐order polynomial). Generally, the higher‐
order spline function can provide better fitting performance for the original signal, whereas, 
they require additional subjectively determined parameters and take considerable time for 
computation. The selection of spline function should satisfy the least interferences and maxi‐
mum smoothness.

Similarly, smoothed connecting between successive extrema is also required to form a smoothly 
varying continuous function in the LMD method, and the parameter selection of the moving 
averaging is still explored. Although modifications based on single connection method or a 
hybrid method are sporadically reported, an appropriate criterion on the selection of connec‐
tion methods receives little attention and remains an open problem.

Considering that the EMD and the LMD are data‐driven analysis methods, they are essentially 
algorithmic in nature and, hence, suffer from the drawback that there is no well‐established 
analytical formulation on the basis of theoretical analysis and performance evaluation [28]. 
Accordingly, relevant modifications mainly come from case‐by‐case comparisons conducted 
empirically. In spite of this, as adaptive signal processing methods, the EMD and the LMD 
methods are proven to be useful and adaptive signal processing tools for vibration‐based 
fault diagnosis and detection.
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Abstract

In this chapter, modified techniques for fault estimation in linear dynamic systems are
proposed, which give the possibility to simultaneously estimate the system state as well
as slowly varying faults. Using the continuous-time adaptive observer form, the consid-
ered faults are assumed to be additive, thereby the principles can be applied for a
broader class of fault signals. Enhanced algorithms using H∞ approach are provided to
verify stability of the observers, giving algorithms with improved performance of fault
estimation. Exploiting the procedure for transforming the model with additive faults
into an extended form, the proposed technique allows to obtain fault estimates that can
be used for fault compensation in the fault tolerant control scheme. Analyzing the ambit
of performances given on the mixed H2/H∞ design of the fault tolerant control, the joint
design conditions are formulated as a minimization problem subject to convex con-
straints expressed by a system of linear matrix inequalities. Applied enhanced design
conditions increase estimation rapidity also in noise environment and formulate a gen-
eral framework for fault estimation using augmented or adaptive observer structures
and active fault tolerant control in linear dynamic systems.

Keywords: linear dynamic systems, additive fault estimation, fault tolerant control
design, enhanced bounded real lemma, linear matrix inequalities, H∞ norm, H2/H∞

control strategy

1. Introduction

A model-based fault tolerant control (FTC) can be realized as control-laws set dependent,
exploiting fault detection and isolation decision to reconfigure the control structure or as fault
estimation dependent, preferring fault compensation within robust control framework. While
integration of FTC with the fault localization decision technique requires a selection of optimal
residual thresholds as well as a robust and stable reconfiguration mechanism [1], the fault

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



estimation-dependent FTC structures eliminate a threshold subjectivism and integrate FTC
and estimation problems into one robust optimization task [2]. The realization is conditioned
by observers, which performs the state reconstruction from the available signals.

The approach, in which faults estimates are used in a control structure to compensate the effects
of acting faults, is adopted in modern FTC techniques [3, 4]. FTC with fault estimation for linear
systems subject to bounded actuator or sensor faults, are proposed in [5]. The observer struc-
tures are in the Luenberger form [6] or realized as unknown input fault observers [7]. To
guarantee the desired time response, a linear matrix inequality (LMI) based regional pole
placement design strategy is proposed in [8] but such formulation introduces additive LMIs,
which increase conservatism of the solutions. To minimize the set of LMIs of the circle regional
pole placement is used; a modified approach in LMI construction is proposed in Ref. [9].

To estimate the actuator faults for the linear time-invariant systems without external distur-
bance the principles based on adaptive observers are frequently used, which make the estima-
tion of the actuator faults by integrating the system output errors [10]. First introduced in Ref.
[11], this principle was applied also for descriptor systems [7], linear systems with time delays
[12], system with nonlinear dynamics [13], and a class of nonlinear systems described by
Takagi-Sugeno fuzzy models [14, 15]. Some generalizations can be found in [16].

The H2-norm is one of the most important characteristics of linear time-invariant control
systems and so the problems concerning H2, as well as H∞, control have been studied by many
authors (see, e.g. [17–20] and the references therein). Adding H2 objective to H∞ control design,
a mixed H2/H∞ control problem was formulated in Ref. [21], with the goal to minimize H2

norm subject to the constraint on H∞ norm of the system transfer function. Such integrated
design strategy corresponds to the optimization of the design parameters to satisfy desired
specifications and to optimize the performance of the closed-loop system. Because of the
importance of the control systems with these properties, considerable attention was dedicated
to mixed H2/H∞ closed-loop performance criterion in design [22, 23] as well as to formulate the
LMI-based computational technique [24, 25] to solve them or to exploit multiobjective algo-
rithms for nonlinear, nonsmooth optimization in this design task [26, 27].

To guarantee suitable dynamics, new LMI conditions are proposed in the chapter for designing
the fault observers as well as FTCs. Comparing with Ref. [5], the extended approach to the D-
stability introduced in Ref. [28] is used to minimize the number of LMIs in mixed H2/H∞

formulation of the FTC design and the eigenvalue circle clustering in fault observer design. In
addition, different from Ref. [29], PD fault observer terms are comprehended through the
enhanced descriptor approach [30], and a new design criterion is constructed in terms of LMIs.
Since extended Lyapunov functions are exploited, the proposed approach offers the same
degree of conservatism as the standard formulations [2, 31] but the H∞ conditions are regular-
ized under acting of H2 constraint. Over and above, the D-stability approach supports
adjusting the fault estimator characteristics according to the fault frequency band.

The content and scope of the chapter are as follows. Placed after the introduction presented
in Section 1, the basic preliminaries are given in Section 2. Section 3 reviews the definition
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the D-stability circle criterion and Section 5 recasts the extended design conditions in the
framework of LMIs based on structured matrix parameters. Then, in response to fault
compensation principle for such type of fault observers, Section 6 derives the design condi-
tions for the fault tolerant control structures, reflecting the joined H2/H∞ control idea. The
relevance of the proposed approach is illustrated by a numerical example in Section 7 and
Section 8 draws some concluding remarks.

2. Basic preliminaries

In order to analyze whether a linear MIMO system is stable under defined quadratic con-
straints, the basic properties can be summarized by the following LMI forms.

Considering linear MIMO systems

_qðtÞ ¼ AqðtÞ þ BuðtÞ þDdðtÞ (1)

yðtÞ ¼ CqðtÞ (2)

where qðtÞ∈IRn, uðtÞ∈IRr, and yðtÞ∈IRm are vectors of the system state, input, and output vari-
ables, respectively, dðtÞ∈IRw is the unknown disturbance vector, A∈IRn ·n is the system dynamic
matrix, D∈IRn ·w is the disturbance input matrix, and B∈IRn · r, C∈IRm ·n are the system input
and output matrices, then the system transfer functions matrices are

GðsÞ ¼ CðsIn−AÞ−1B, GdðsÞ ¼ CðsIn−AÞ−1D (3)

where In∈IRn ·n is an unitary matrix and the complex number s is the transform variable
(Laplace variable) of the Laplace transform [32].

To characterize the system properties the following lemmas can be used.

Lemma 1 (Lyapunov inequality) [33] The matrix A is Hurwitz if there exists a symmetric positive
definite matrix T∈IRn· n such that

T ¼ TT > 0, ATTþ TA < 0 (4)

Lemma 2 [34] The matrix A is Hurwitz and ∥GðsÞ∥2 < γ2 if there exists a symmetric positive definite
matrix V∈IRn· n and a positive scalar γ2∈IR, such that

V ¼ VT > 0 (5)

AVþ VAT þ BBT < 0 (6)

trðCVCTÞ < γ2
2 (7)

where γ2 > 0, γ2∈IR is H2 norm of the transfer function matrix GðsÞ.
Lemma 3 (Bounded real lemma) [35] The matrix A is Hurwitz and ∥GdðsÞ∥∞ < γ∞ if there exists a
symmetric positive definite matrix U∈IRn ·n and a positive scalar γ∞∈IR such that
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U ¼ UT > 0 (8)

UAþ ATU ∗ ∗
DTU −γ∞Iw ∗
C 0 −γ∞Im

2
4

3
5 < 0, (9)

where Iw∈IRw ·w, Im∈IRm ·m are identity matrices and γ∞ > 0, γ∞∈IR is H∞ norm of the disturbance
transfer function matrix GdðsÞ.
Hereafter, * denotes the symmetric item in a symmetric matrix.

Lemma 4 [28] The matrix A is D-stable Hurwitz if for given positive scalars a, ϱ∈IR, a > ϱ, there
exists a symmetric positive definite matrix T∈IRn ·n such that

T ¼ TT > 0, (10)

�
−ϱT ∗

TAþ aT −ϱT

�
< 0, (11)

while the eigenvalues of A are clustered in the circle with the origin co ¼ ð−aþ 0iÞ and radius ϱ within
the complex plane S.

Lemma 5 (Schur complement) [36] Let O be a real matrix, and N (M) be a positive definite symmetric
matrix of appropriate dimension, then the following inequalities are equivalent

�
M O
OT −N

�
< 0 ⇔

�
MþON−1OT 0

0 −N

�
< 0 ⇔MþON−1OT < 0, N > 0, (12)

�
−M O
OT N

�
< 0⇔

�
−M 0
0 NþOTM−1O

�
< 0 ⇔NþOTM−1O < 0, M > 0: (13)

Lemma 6 (Krasovskii lemma) [37] The autonomous system (1) is asymptotically stable if for a given
symmetric positive semidefinite matrix L∈IRn· n there exists a symmetric positive definite matrix
T∈IRn · n such that

T ¼ TT > 0, (14)

ATTþ TAþ L < 0, (15)

where L is the weight matrix of an integral quadratic constraint interposed on the state vector q(t).

3. Proportional adaptive fault observers

To characterize the role of constraints in the proposed methodology and ease of understanding
the presented approach, the theorems’ proofs are restated in a condensed form in this section
and also for theorems already being presented by the authors, e.g., in Refs. [38–40].
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Despite different definitions, the best description for the formulation of the problem is based
on the common state-space description of the linear dynamic multiinput, multioutput (MIMO)
systems in the presence of unknown faults of the form

_qðtÞ ¼ AqðtÞ þ BuðtÞ þ FfðtÞ, (16)

yðtÞ ¼ CqðtÞ, (17)

where qðtÞ∈IRn, uðtÞ∈IRr, and yðtÞ∈IRm are vectors of the system, input, and output variables,
respectively, fðtÞ∈IRp is the unknown fault vector, A∈IRn ·n is the system dynamics matrix,
F∈IRn · p is the fault input matrix, and B∈IRn· r and C∈IRm · n are the system input and output
matrices, m, r, p < n,

rank
�
A F
C 0

�
¼ nþ p, (18)

and the couple (A,C) is observable.

Limiting to the time-invariant system (16) and (17) to estimate the faults and the system states
simultaneously, as well as focusing on slowly varying additive faults, the adaptive fault
observer is considered in the following form [41]

_qe ðtÞ ¼ AqeðtÞ þ BuðtÞ þ FfeðtÞ þ JðyðtÞ−yeðtÞÞ, (19)

yeðtÞ ¼ CqeðtÞ, (20)

where qeðtÞ∈IRn, yeðtÞ∈IRm, and feðtÞ∈IRp are estimates of the system states vector, the output
variables vector, and the fault vector, respectively, and J∈IRn ·m is the observer gain matrix.

The observer (19) and (20) is combined with the fault estimation updating law of the form [42]

_f eðtÞ ¼ GHTeyðtÞ, eyðtÞ ¼ yðtÞ−yeðtÞ ¼ CeqðtÞ, eqðtÞ ¼ qðtÞ−qeðtÞ, (21)

where H∈IRm · p is the gain matrix and G ¼ GT > 0, G∈IRp · p is a learning weight matrix that
has to be set interactively in the design step.

In order to express unexpectedly changing faults as a function of the system and observer
outputs and to apply the adaptive estimation principle, it is considered that the fault vector is
piecewise constant, differentiable, and bounded, i.e., ∥fðtÞ∥≤fmax < ∞, the upper bound norm
fmax is known, and the value of fðtÞ is set to zero vector until a fault occurs. This assumption, in
general, implies that the time derivative of ef ðtÞ can be considered as

_f ðtÞ≈0, _ef ðtÞ ¼ − _f eðtÞ, ef ðtÞ ¼ fðtÞ−feðtÞ: (22)

These assumptions have to be taking into account by designing the matrix parameters of the
observers to ensure asymptotic convergence of the estimation errors, Eqs. (21) and (22). The
task is to design the matrix J in such a way that the observer dynamics matrix Ae ¼ A−JC is
stable and feðtÞ approximates a slowly varying actuator fault fðtÞ.
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3.1. Design conditions

If single faults influence the system through different input vectors (columns of the matrix F), it
is possible to avoid designing the estimators with the tuning matrix parameter G > 0 and
formulate the design task through the set of LMIs and a linear matrix equality.

Theorem 1 The adaptive fault observer (19) and (20) is stable if there exists a symmetric positive
definite matrix P∈IRn· n and matrices H∈IRn· p, Y∈IRn ·m such that

P ¼ PT > 0, (23)

PAþ ATP−YC−CTYT < 0, (24)

PF ¼ CTH: (25)

When the above conditions hold, the observer gain matrix is given by

J ¼ P−1Y (26)

and the adaptive fault estimation algorithm is

_f eðtÞ ¼ GHTCeqðtÞ, (27)

where

eqðtÞ ¼ qðtÞ−qeðtÞ (28)

and G∈IRp · p is a symmetric positive definite matrix which values are set interactive in design.

Proof. From the system models (16) and (17) and the observer models (19) and (20), it can be
obtained that

_eq ðtÞ ¼ AqðtÞ þ BuðtÞ þ FfðtÞ−AqeðtÞ−BuðtÞ−FfeðtÞ−JðyðtÞ−yeðtÞÞ ¼
¼ ðA−JCÞeqðtÞ þ Fef ðtÞ ¼ AeeqðtÞ þ Fef ðtÞ,

(29)

where the observer system matrix is

Ae ¼ A−JC: (30)

Since eqðtÞ is linear with respect to the system parameters, it is possible to consider the
Lyapunov function candidate in the following form

vðeqðtÞÞ ¼ eTq ðtÞPeqðtÞ þ eTf ðtÞG−1ef ðtÞ > 0, (31)

where P, G are real, symmetric, and positive definite matrices. Then, the time derivative of
vðeqðtÞÞ is

Fault Diagnosis and Detection58



3.1. Design conditions

If single faults influence the system through different input vectors (columns of the matrix F), it
is possible to avoid designing the estimators with the tuning matrix parameter G > 0 and
formulate the design task through the set of LMIs and a linear matrix equality.

Theorem 1 The adaptive fault observer (19) and (20) is stable if there exists a symmetric positive
definite matrix P∈IRn· n and matrices H∈IRn· p, Y∈IRn ·m such that

P ¼ PT > 0, (23)

PAþ ATP−YC−CTYT < 0, (24)

PF ¼ CTH: (25)

When the above conditions hold, the observer gain matrix is given by

J ¼ P−1Y (26)

and the adaptive fault estimation algorithm is

_f eðtÞ ¼ GHTCeqðtÞ, (27)

where

eqðtÞ ¼ qðtÞ−qeðtÞ (28)

and G∈IRp · p is a symmetric positive definite matrix which values are set interactive in design.

Proof. From the system models (16) and (17) and the observer models (19) and (20), it can be
obtained that

_eq ðtÞ ¼ AqðtÞ þ BuðtÞ þ FfðtÞ−AqeðtÞ−BuðtÞ−FfeðtÞ−JðyðtÞ−yeðtÞÞ ¼
¼ ðA−JCÞeqðtÞ þ Fef ðtÞ ¼ AeeqðtÞ þ Fef ðtÞ,

(29)

where the observer system matrix is

Ae ¼ A−JC: (30)

Since eqðtÞ is linear with respect to the system parameters, it is possible to consider the
Lyapunov function candidate in the following form

vðeqðtÞÞ ¼ eTq ðtÞPeqðtÞ þ eTf ðtÞG−1ef ðtÞ > 0, (31)

where P, G are real, symmetric, and positive definite matrices. Then, the time derivative of
vðeqðtÞÞ is

Fault Diagnosis and Detection58

_vðeqðtÞÞ ¼ _v0ðeqðtÞÞ þ _v1ðeqðtÞÞ < 0, (32)

where

_v0ðeqðtÞÞ ¼ _e T
q ðtÞPeqðtÞ þ eTq ðtÞP _eqðtÞ ¼

¼ ðAeeqðtÞ þ Fef ðtÞÞTPeqðtÞ þ eTq ðtÞPðAeeqðtÞ þ Fef ðtÞÞ ¼
¼ eTq ðtÞðAT

e Pþ PAeÞeqðtÞ þ eTq ðtÞPFef ðtÞ þ eTf ðtÞFTPeqðtÞ, (33)

_v1ðeqðtÞÞ ¼ _eTf ðtÞG−1ef ðtÞ þ eTf ðtÞG−1 _ef ðtÞ ¼ −f Te ðtÞG−1ef ðtÞ−eTf ðtÞG−1 _f eðtÞ: (34)

Inserting Eq. (21) into Eq. (34) leads to

_v1ðeqðtÞÞ ¼ −eTq ðtÞCTHGG−1ef ðtÞ−eTf ðtÞG−1GHTCeqðtÞ

¼ −eTq ðtÞCTHef ðtÞ−eTf ðtÞHTCeqðtÞ
(35)

and substituting Eq. (35) with Eq. (30) into Eq. (33), the following inequality is obtained

_vðeqðtÞÞ ¼ eTq ðtÞ
�
ðA−JCÞTPþ PðA−JCÞ

�
eqðtÞ

þeTq ðtÞðPF−CTHÞef ðtÞ þ eTf ðtÞðFTP−HTCÞeqðtÞ < 0:
(36)

It is clear that the requirement

eTq ðtÞðPF−CTHÞef ðtÞ þ eTf ðtÞðFTP−HTCÞeqðtÞ ¼ 0 (37)

can be satisfied when Eq. (25) is satisfied.

Using the above given condition (37), the resulting formula for _vðeqðtÞÞ takes the form

_vðeqðtÞÞ ¼ eTq ðtÞððA−JCÞTPþ PðA−JCÞÞeqðtÞ < 0, (38)

and the LMI, defining the observer stability condition, is presented as

PðA−JCÞ þ ðA−JCÞTP < 0: (39)

Introducing the notation

PJ ¼ Y (40)

it is possible to express Eq. (39) as Eq. (24). This concludes the proof.
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3.2. Enhanced design conditions

The observer stability analysis could be carried out generally under the assumption (29), i.e.,
using the forced differential equation of the form

_eqðtÞ ¼ ðA−JCÞeqðtÞ þ Fef ðtÞ, (41)

eyðtÞ ¼ CeqðtÞ, (42)

while

Gf ðsÞ ¼ CðA−JCÞ−1F: (43)

It is evident now that ef ðtÞ acts on the state error dynamics as an unknown disturbance and,
evidently, this differential equation is so not autonomous after a fault occurrence. Reflecting
this fact, the enhanced approach is proposed to decouple Lyapunov matrix P from the system
matrices A, C by introducing a slack matrix Q in the observer stability condition, as well as to
decouple the tuning parameter δ from the matrix G in the learning rate setting and using δ to
tune the observer dynamic properties. Since the design principle for unknown input observer
cannot be used, the impact of faults on observer dynamics is moreover minimized with respect
to the H∞ norm of the transfer functions matrix of Gf(s), while a reduction in the fault ampli-
tude estimate is easily countervailing using the matrix G. In this sense the enhanced design
conditions can be formulated in the following way.

Theorem 2 The adaptive fault observer (19) and (20) is stable if for a given positive δ∈IR there exist
symmetric positive definite matrices P∈IRn ·n, Q∈IRn· n, matrices H∈IRn· p, Y∈IRn ·m and a positive
scalar γ∈IR such that

P ¼ PT > 0, Q ¼ QT > 0, γ > 0, (44)

QAþ ATQ−YC−CTYT ∗ ∗ ∗
P−Qþ δQA−δYC −2δQ ∗ ∗

0 δFTQ −γIp ∗
C 0 0 −γIm

2
664

3
775 < 0, (45)

QF ¼ CTH: (46)

When the above conditions are affirmative the estimator gain matrix is given by the relation

J ¼ Q−1Y: (47)

Proof. Using Krasovskii lemma, the Lyapunov function candidate can be considered as

vðeqðtÞÞ ¼ eTq ðtÞPeqðtÞ þ eTf ðtÞG−1ef ðtÞ þ γ−1 ∫
t

0
ðeTy ðrÞeyðrÞ−γ2eTf ðrÞef ðrÞÞdr > 0, (48)

where P ¼ PT > 0, G ¼ GT > 0, γ > 0, and γ is an upper bound of H∞ norm of the transfer
function matrix Gf ðsÞ. Then the time derivative of vðeqðtÞÞ has to be negative, i.e.,
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_vðeqðtÞÞ ¼ _e T
q ðtÞPeqðtÞ þ eTq ðtÞP _eqðtÞ þ _eTf ðtÞG−1ef ðtÞ þ eTf ðtÞG−1 _ef ðtÞ

þγ−1eTy ðtÞeyðtÞ−γeTf ðtÞef ðtÞ < 0: (49)

If it is assumed that Eqs. (34) and (35) hold, then the substitution of Eq. (35) into Eq. (49) leads to

_vðeqðtÞÞ ¼ _e T
q ðtÞPeqðtÞ þ eTq ðtÞP _eqðtÞ−eTq ðtÞCTHef ðtÞ−eTf ðtÞHTCeqðtÞ

þγ−1eTy ðtÞeyðtÞ−γeTf ðtÞef ðtÞ < 0: (50)

Since Eq. (41) implies

ðA−JCÞeqðtÞ þ Fef ðtÞ− _eq ðtÞ ¼ 0, (51)

it is possible to define the following condition based on the equality (51)

ðeTq ðtÞQþ _e T

q
ðtÞδQÞððA−JCÞeqðtÞ þ Fef ðtÞ− _eqðtÞÞ ¼ 0, (52)

where Q∈IRn· n is a symmetric positive definite matrix and δ∈IR is a positive scalar.

Then, adding Eq. (52) and its transposition to Eq. (50), the following has to be satisfied

_vðeqðtÞÞ ¼ _e T
q ðtÞPeqðtÞ þ eTq ðtÞP _eqðtÞ−eTq ðtÞCTHef ðtÞ−eTf ðtÞHTCeqðtÞ

þðeTq ðtÞQþ _eTq ðtÞδQÞððA−JCÞeqðtÞ− _eqðtÞÞ þ γ−1eTy ðtÞeyðtÞ
þððA−JCÞeqðtÞ− _eqðtÞÞTðQeqðtÞ þ δQ _eqðtÞÞ−γeTf ðtÞef ðtÞ

þðeTq ðtÞQþ _eTq ðtÞδQÞFef ðtÞ þ eTf ðtÞFTðQeqðtÞ þ δQ _eqðtÞÞ < 0: (53)

If the following requirement is introduced

eTf ðtÞðFTQ−HTCÞeqðtÞ þ eTq ðtÞðQF−CTHÞef ðtÞ ¼ 0, (54)

it is obvious that Eq. (54) can be satisfied when Eq. (46) is satisfied. Thus, the condition (54)
allows to write Eq. (53) as follows

_vðeqðtÞÞ ¼ _e T
q ðtÞPeqðtÞ þ eTq ðtÞP _eqðtÞ þ eTq ðtÞγ−1CTCeqðtÞ−γeTf ðtÞef ðtÞþ
þðeTq ðtÞQþ _eTq ðtÞδQÞððA−JCÞeqðtÞ− _eqðtÞÞþ
þðeTq ðtÞðA−JCÞT− _eTq ðtÞÞðQeqðtÞ þ δQ _eqðtÞÞþ

þ _eTq ðtÞδQFef ðtÞ þ eTf ðtÞδFTQ _eqðtÞ < 0: (55)

Relying on Eq. (55), it is possible to write the observer stability condition as

_vðedðtÞÞ ¼ eTd ðtÞPdedðtÞ < 0, (56)

where the following notations
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Pd ¼
QðA−JCÞ þ ðA−JCÞTQþ γ−1CTC P−Qþ δðA−JCÞTQ 0

P−Qþ δQðA−JCÞ −2δQ δQF
0 δFTQ −γIp

2
4

3
5 < 0, (57)

eTd ðtÞ ¼ ½ eTq ðtÞ _e T

q
ðtÞ eTf ðtÞ�, (58)

are exploited.

Introducing the substitution

QJ ¼ Y (59)

and using the Schur complement property with respect to the item γ−1CTC, then Eq. (57)
implies Eq. (45). This concludes the proof.

Theorem 3 The adaptive fault observer (19) and (20) is stable if there exists a symmetric positive
definite matrix Q∈IRn ·n, matrices H∈IRn · p, Y∈IRn·m and a positive scalar γ∈IR such that

Q ¼ QT > 0, γ > 0, (60)

QAþ ATQ−YC−CTYT ∗ ∗
FTQ −γIp ∗
C 0 −γIm

2
64

3
75 < 0: (61)

QF ¼ CTH: (62)

When the above conditions are affirmative the estimator gain matrix is given by the relation

J ¼ Q−1Y: (63)

Proof. Premultiplying the left side and postmultiplying the right side of Eq. (57) by the trans-
formation matrix

Tx ¼ diag½ In δ−1In Ip Im � (64)

gives

QðA−JCÞ þ ðA−JCÞTQþ γ−1CTC δ−1ðP−QÞ þ ðA−JCÞTQ 0
δ−1ðP−QÞ þQðA−JCÞ −2δ−1Q QF

0 FTQ −γIp

2
64

3
75 < 0: (65)

Considering that P ¼ Q and using the Schur complement property, then the inequality (65) can
be rewritten as

QðA−JCÞ þ ðA−JCÞTQþ γ−1CTC

þðA−JCÞTQ 1
2
δQ−1QðA−JCÞ þ ½ 0

QF
�γ−1Ip½ 0 FTQ � < 0:

(66)
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Since the first matrix element in the second row of Eq. (66) is zero matrix if δ = 0 and
considering that nonzero component unit of the last matrix element in this raw is certainly
positive semidefinite, it can claim that

QðA−JCÞ þ ðA−JCÞTQþ γ−1CTCþQFγ−1IpF
TQ < 0: (67)

Thus, applying the Schur complement property, it can be written as

QðA−JCÞ þ ðA−JCÞTQþ γ−1CTC QF

FTQ −γIp

" #
< 0, (68)

QðA−JCÞ þ ðA−JCÞTQ QF CT

FTQ −γIp 0
C 0 −γIm

2
64

3
75 < 0, (69)

respectively. With the notation (59) then Eq. (69) gives Eqs. (61). This concludes the proof.

Comparing with Lemma 3, it can be seen that Eqs. (60)–(62) is an extended form of the
bounded real lemma (BRL) structure, applicable in the design of proportional adaptive fault
observers.

4. Observer dynamics with eigenvalues clustering in D-stability circle

Generalizing the approach covering decoupling of Lyapunov matrix from the observer system
matrix parameters by using a slack matrix, with a good exposition of the given theorems, the
observer eigenvalues placement in a circular D-stability region is proposed to enable wide
adaptation to faults dynamics.

Theorem 4 The adaptive fault observer (19) and (20) is D-stable if for given positive scalars δ, a, ϱ∈IR,
a > ϱ, there exist symmetric positive definite matrices P∈IRn ·n,Q∈IRn· n,matricesH∈IRn · p, Y∈IRn·m

and a positive scalar γ∈IR such that

P ¼ PT > 0, Q ¼ QT > 0, γ > 0, (70)

−ϱQ ∗ ∗ ∗ ∗
aQþQA−YC −ϱQ ∗ ∗ ∗

P−Qþ δ
ϱ

a2−ϱ2

2
Qþ δ

ϱ
QA−

δ
ϱ
YC 0 −2δQ ∗ ∗

0 0
δ
ϱ
FTQ −γIp ∗

C 0 0 0 −γIm

2
6666666664

3
7777777775

< 0, (71)

QF ¼ CTH: (72)

When the above conditions are affirmative the estimator gain matrix can be computed as
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J ¼ Q−1Y (73)

and the adaptive fault estimation algorithm is given by (27).

Proof. Choosing the Lyapunov function candidate as

vðeqðtÞÞ ¼ eTq ðtÞPeqðtÞ þ eTf ðtÞG−1ef ðtÞ þ γ−1 ∫
t

0
ðeTy ðrÞeyðrÞ−γ2eTf ðrÞef ðrÞÞdr

þϱ−1 ∫
t

0
eTq ðrÞAT

e QAeeqðrÞdr > 0,
(74)

where P ¼ PT > 0, G ¼ GT > 0, Q ¼ QT > 0, γ > 0, γ is an upper bound of H∞ norm of the
transfer function matrix (43) and where the generalized observer differential equation takes the
form [28]

_eq ðtÞ ¼ AereqðtÞ þ Fref ðtÞ, (75)

while, with a > 0, ϱ > 0 such that ϱ < a, the matrices Acr, Frr are given as

Aer ¼ a
ϱ
Ae þ a2−ϱ2

2ϱ
In, Fr ¼ 1

ϱ
F: (76)

Then, the time derivative of vðeqðtÞÞ is

_vðeqðtÞÞ ¼ _e T
q ðtÞPeqðtÞ þ eTq ðtÞP _eqðtÞ þ _eTf ðtÞG−1ef ðtÞ þ eTf ðtÞG−1 _ef ðtÞþ

þeTq ðtÞAT
e ϱ

−1QAeeqðtÞ þ γ−1eTy ðtÞeyðtÞ−γeTf ðtÞef ðtÞ < 0: (77)

Assuming that, with respect to Eqs. (34) and (35), the inequality (50) holds, then Eq. (77) gives

_vðeqðtÞÞ ¼ _e T
q ðtÞPeqðtÞ þ eTq ðtÞP _eqðtÞ−eTq ðtÞCTHef ðtÞ−eTf ðtÞHTCeqðtÞ

þeTq ðtÞAT
e ϱ

−1QAeeqðtÞ þ γ−1eTy ðtÞeyðtÞ−γeTf ðtÞef ðtÞ < 0: (78)

Generalizing the equation (75), the following condition can be set

ðeTq ðtÞQþ _e T

q
ðtÞδQÞðAereqðtÞ þ Fref ðtÞ− _eqðtÞÞ ¼ 0, (79)

where Q∈IRn· n is a symmetric positive definite matrix and δ∈IR is a positive scalar. Therefore,
adding Eq. (79) and its transposition to Eq. (78) gives

_vðeqðtÞÞ ¼ _e T
q ðtÞPeqðtÞ þ eTq ðtÞP _eqðtÞ þ eTq ðtÞγ−1CTCeqðtÞ−γeTf ðtÞef ðtÞ

þðeTq ðtÞQþ _eTq ðtÞδQÞðAereqðtÞ− _eqðtÞÞ þ ðeTq ðtÞAT
er− _e

T
q ðtÞÞðQeqðtÞ þ δQ _eqðtÞÞ

þeTq ðtÞAT
e ϱ

−1QAeeqðtÞ þ _eTq ðtÞδQFref ðtÞ þ eTf ðtÞδFT
r Q _eqðtÞ < 0: (80)

From Eq. (80), using the notation (58), the following stability condition can be obtained
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_vðedðtÞÞ ¼ eTd ðtÞPdeedðtÞ < 0, (81)

where

Pde ¼
QAer þ AT

erQþ ϱ−1AT
e QAe þ γ−1CTC P−Qþ δAT

erQ 0
P−Qþ δQAer −2δQ δQF

0 δFTQ −γIp

2
4

3
5 < 0: (82)

It can be easily stated using Eq. (76) that

QAer þ AT
erQþ ϱ−1AT

e QAe ¼ a
ϱ
ðQAe þ AT

e QÞ þ a2−ϱ2

ϱ
Qþ 1

ϱ
AT

e QAe, (83)

so, completing to square the elements in Eq. (83), it is immediate that

QAer þ AT
erQþ ϱ−1AT

e QAe ¼ ðAe þ aInÞTϱ−1QðAe þ aInÞ−ϱQ: (84)

Substituting Eqs. (76) and (84) in Eq. (82) gives

−ϱQþ ðAe þ aInÞTϱ−1QðAe þ aInÞ þ γ−1CTC P−Qþ δ
ϱ
AT

e Qþ δ
ϱ

a2−ϱ2

2
Q 0

P−Qþ δ
ϱ
QAe þ δ

ϱ

a2−ϱ2

2
Q −2δQ

δ
ϱ
QF

0
δ
ϱ
FTQ −γIp

2
66666664

3
77777775
< 0 (85)

and using twice the Schur complement property, Eq. (85) can be rewritten as

−ϱQ ðAe þ aInÞTQ P−Qþ δ
ϱ
AT

e Qþ δ
ϱ

a2−ϱ2

2
Q 0 CT

QðAe þ aInÞ −ϱQ 0 0 0

P−Qþ δ
ϱ
QAe þ δ

ϱ

a2−ϱ2

2
Q 0 −2δQ

δ
ϱ
QF 0

0 0
δ
ϱ
FTQ −γIp 0

C 0 0 0 −γIm

2
66666666664

3
77777777775

< 0:

(86)

Thus, for Ae from Eq. (30) and with the notation (59) then Eq. (86) implies Eq. (71). This
concludes the proof.

Theorem 5 (Enhanced BRL) The adaptive fault observer (19) and (20) is D-stable if for given positive
scalars a, ϱ∈IR, a > ϱ, there exist a symmetric positive definite matrix Q∈IRn· n, matrices H∈IRn · p,
Y∈IRn·m and a positive scalar γ∈IR such that
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Q ¼ QT > 0, γ > 0, (87)

−ϱQ ∗ ∗ ∗
aQþQA−YC −ϱQ ∗ ∗

0 1
ϱ F

TQ −γIp ∗
C 0 0 −γIm

2
664

3
775 < 0: (88)

QF ¼ CTH: (89)

When the above conditions are affirmative the estimator gain matrix can be computed by Eq. (73).

Proof. Considering that in Eq. (86) P =Q, then premultiplying the left side and postmultiplying
the right side of Eq. (86) by the transformation matrix

Ty ¼ diag½ In In δ−1In Ip Im � (90)

gives

−ϱQ ðAe þ aInÞTQ 1
ϱ A

T
e Qþ 1

ϱ
a2−ϱ2
2 Q 0 CT

QðAe þ aInÞ −ϱQ 0 0 0
1
ϱ QAe þ 1

ϱ
a2−ϱ2
2 Q 0 −2δ−1Q 1

ϱ QF 0
0 0 1

ϱ F
TQ −γIp 0

C 0 0 0 −γIm

2
66664

3
77775
< 0: (91)

Then, using the Schur complement property, the inequality (91) can be rewritten as

−ϱQ ðAe þ aInÞTQ
QðAe þ aInÞ −ϱQ

� �
þ 1

ϱ A
T
e Qþ 1

ϱ
a2−ϱ2
2 Q

0

� �
δ
2 Q

−1 1
ϱ QAe þ 1

ϱ
a2−ϱ2
2 Q 0

� �

þ
0
0

1
ϱ QF

2
4

3
5γ−1Ip 0 0 1

ϱ F
TQ

h i
þ

CT

0
0
0

2
664

3
775γ−1Im½C 0 0 0 � < 0:

(92)

Since the second matrix element in Eq. (92) is zero matrix if δ = 0 and nonzero components of
the elements in the second raw are positive semidefinite, it can claim that

−ϱQ ðAe þ aInÞTQ
QðAe þ aInÞ −ϱQ

� �
þ 0

1
ϱ QF

� �
γ−1Ip 0 1

ϱ F
TQ

h i
þ

CT

0
0

2
4

3
5γ−1Im½C 0 0 � < 0 (93)

and so Eq. (93) implies the linear matrix inequality

−ϱQ ðAe þ aInÞTQ 0 CT

QðAe þ aInÞ −ϱQ 1
ϱ QF 0

0 1
ϱ F

TQ −γIp 0
C 0 0 −γIm

2
664

3
775 < 0: (94)

Thus, using Eq. (59) then Eq. (94) implies Eq. (88). This concludes the proof.
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Theorem 6 The adaptive fault observer (19) and (20) isD-stable if for given positive scalars a, ϱ∈IR, a >
ϱ, there exist a symmetric positive definite matrix Q∈IRn · n, matrices H∈IRn · p, Y∈IRn ·m such that

Q ¼ QT > 0, (95)

−ϱQ ∗
aQþQA−YC −ϱQ

� �
< 0: (96)

QF ¼ CTH: (97)

When the above conditions are affirmative the observer gain matrix can be computed by Eq. (73).

Proof. Considering only conditions implying from fault-free autonomous system (equivalent to
F = 0, C = 0), then Eq. (88) implies directly Eq. (96). This concludes the proof.

Note, due to two integral quadratic constraints, setting the circle parameters to define D-stabile
region is relatively easy only for systems with single input and single output.

5. Extended design conditions

In order to be able to formulate the fault observer equations incorporating the symmetric,
positive definite learning weight matrix G, Eqs. (21), (29), and (30) can be rewritten compos-
itely as

_eqðtÞ
_ef ðtÞ

� �
¼ A−JC F

−GHTC 0

� �
eqðtÞ
ef ðtÞ
� �

, (98)

eyðtÞ ¼ ½C 0 � eqðtÞ
ef ðtÞ
� �

: (99)

Since Eq. (98) can rewritten as follows

_eqðtÞ
_ef ðtÞ

� �
¼ A F

0 0

� �
−

In 0
0 G

� �
J
HT

� �
C 0 �½

� �
eqðtÞ
ef ðtÞ
� �

, (100)

introducing the notations

~eðtÞ ¼ eqðtÞ
ef ðtÞ
� �

, ~A ¼ A F
0 0

� �
, ~G ¼ In 0

0 G

� �
, ~J ¼ J

HT

� �
, ~C ¼ ½C 0 �, (101)

where ~A, ~G∈IRðnþpÞ · ðnþpÞ, ~J∈IRðnþpÞ ·m, ~C∈IRm · ðnþpÞ, ~eðtÞ∈IRnþp, then it follows

~_eðtÞ ¼ ð~A−~G~J ~CÞ~eðtÞ ¼ ~Ae~eðtÞ, (102)

eyðtÞ ¼ ~C~eðtÞ, (103)

where
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~Ae ¼ ~A−~G~J ~C, (104)

and ~eðtÞ is the generalized fault observer error.

It is necessary to note that, in general, the elements of the positive definite symmetric matrix G
are unknown in advance, and have to be interactive set to adapt the observer error to the
amplitude of the estimated faults. Of course, even this formulation does not mean the elimina-

tion of the matrix equality from the design conditions, because the matrix structure of ~Ae in
principle leads to the bilinear matrix inequalities.

Theorem 7. The adaptive fault observer (19) and (20) is stable if for a given symmetric, positive definite

matrix G∈IRp · p there exist symmetric positive definite matrix ~P∈IRðnþpÞ · ðnþpÞ and matrices
~Z∈IRðnþpÞ · ðnþpÞ, ~Y∈IRðnþpÞ ·m such that

~P ¼ ~P
T
> 0, ~P ~G ¼ ~G ~Z, (105)

~P ~A þ ~A
T ~P−~G ~Y ~C−~C

T ~Y
T ~G

T
< 0, (106)

where ~A, ~G∈IRðnþpÞ · ðnþpÞ, ~C∈IRm · ðnþpÞ, ~J∈IRðnþpÞ ·m take the structures

~A ¼ A F
0 0

� �
, ~G ¼ In 0

0 G

� �
, ~C ¼ ½C 0 �, ~J ¼ J

HT

� �
: (107)

When the above conditions hold, the observer gain matrix is given by

~J ¼ ~Z
−1 ~Y: (108)

Proof. Given ~A, ~G, ~C such that ð~A, ~CÞ is observable, the Lyapunov function can be chosen as

vð~eðtÞÞ ¼ ~eTðtÞ~P~eðtÞ > 0, (109)

where ~P is a positive definite matrix. Computing the first time derivative of Eq. (109), it yields

_vð~eðtÞÞ ¼ ~_e
TðtÞ~P~eðtÞ þ ~eTðtÞ~P~_eðtÞ < 0, (110)

which can be restated, using Eq. (102), as

_vð~eðtÞÞ ¼ ~eTðtÞð~AT
e
~P þ ~P ~AeÞ~eðtÞ < 0: (111)

By the Lyapunov stability theory, the asymptotic stability can be achieved if

~A
T
e
~P þ ~P ~Ae < 0, (112)

ð~A−~G~J ~CÞT ~P þ ~Pð~A−~G~J ~CÞ < 0, (113)

respectively. It is evident that the matrix product ~P ~G~J ~C is bilinear with respect to the LMI
variables ~P and ~J. To facilitate the stability analysis, it can be written as
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~P ~G~J ~C ¼ ~P ~G ~Z
−1 ~Z~J ~C¼~P~P

−1 ~G ~Z~J ~C¼~G ~Y ~C, (114)

~G ~Z
−1 ¼ ~P

−1 ~G, ~Z~J ¼ ~Y: (115)

Thus, Eqs. (113) and (115) imply Eqs. (105) and (106). This concludes the proof.

Theorem 8 The adaptive fault observer (19) and (20) is D-stable if for a given symmetric, positive
definite matrix G∈IRp· p and positive scalars a, ϱ∈IR, a > ϱ, if there exist a symmetric positive definite

matrix ~Q∈IRðnþpÞ · ðnþpÞ and matrices ~Z∈IRðnþpÞ · ðnþpÞ, ~Y∈IRðnþpÞ ·m such that

~Q ¼ ~Q
T
> 0, ~Q ~G ¼ ~G ~Z,

−ϱ~Q ∗
a~Q þ ~Q ~A−~G ~Y ~C −ϱ~Q

� �
< 0, (116)

where ~A, ~G, ~C, ~J are as in Eq. (107). When the above conditions are affirmative the observer
gain matrix can be computed by Eq. (108).

Proof. Theorem 8, constructed as a generalization of the results giving stability conditions for
adaptive fault observers, implies directly from Theorems 1 and 6. This concludes the proof.

6. Joint design strategy for FTC

It is assumed that the systems (16) and (17) are controllable, full state feedback control,
combining with additive fault compensation from f eðtÞ, is applied and an integral compo-
nent part is added to eliminate steady tracking error. In this structure, the control law takes
the form

uðtÞ ¼ −KqðtÞ, (117)

qTðtÞ ¼ ½ qTðtÞ fTe ðtÞ eTwðtÞ �, (118)

K ¼ ½Kq Kf Kw �, (119)

ewðtÞ ¼ ∫t0ðwðτÞ−yðτÞÞdτ, (120)

where wðtÞ is the reference output signal and qðtÞ∈IRnþpþm, K∈IRr · ðnþpþmÞ. Considering that in
the fault-free regime

fTe ðtÞ ¼ GHTCeyðtÞ≐0, (121)

and Eq. (120) follows directly

_ewðtÞ ¼ wðtÞ−yðtÞ ¼ wðtÞ−CqðtÞ, (122)

the systems (16) and (17), the fault estimation equation (21) and (121) can be expanded as

Enhanced Principles in Design of Adaptive Fault Observers
http://dx.doi.org/0.5772/67133

69



_qðtÞ
_f eðtÞ
_ewðtÞ

2
4

3
5 ¼

A F 0
0 0 0

−C 0 0

2
4

3
5

qðtÞ
feðtÞ
ewðtÞ

2
4

3
5þ

B
0
0

2
4

3
5uðtÞ þ

0
0
Im

2
4

3
5wðtÞ, (123)

yðtÞ ¼ ½C 0 0 �
qðtÞ
feðtÞ
ewðtÞ

2
4

3
5, (124)

where Im is the identity matrix of given dimension. Using the notations (118), (119), and

A ¼
A F 0
0 0 0

−C 0 0

2
4

3
5, B ¼

B
0
0

2
4

3
5, W ¼

0
0
Im

2
4

3
5, C

T ¼
CT

0
0

2
4

3
5, (125)

A∈IRðnþpþmÞ · ðnþpþmÞ, B∈IRðnþpþmÞ · r, W∈IRðnþpþmÞ ·m and C∈IRm· ðnþpþmÞ, then

_qðtÞ ¼ AqðtÞ þ BuðtÞ þWwðtÞ, (126)

yðtÞ ¼ CqðtÞ (127)

and applying the feedback control law (117) to the state space system in Eqs. (126) and (127),
the expanded closed loop system becomes

_qðtÞ ¼ AcqðtÞ þWwðtÞ, (128)

yðtÞ ¼ CqðtÞ, (129)

where the closed-loop system matrix of the expanded system is

Ac ¼ A−BK: (130)

In order to design the system with reference attenuations γ2 and γ∞, respectively, in the
following is considered the transfer function matrix

GwðsÞ ¼ CðsInþpþm−AcÞ−1B: (131)

Proposition 1 (H2 control synthesis) The state feedback control (117) to the system (126) and (127)
exists and ∥GwðsÞ∥2 < γ2 if for a given symmetric, positive definite matrix G∈IRp · p there exist

symmetric positive definite matrices V∈IRðnþpþmÞ · ðnþpþmÞ, E∈IRm ·m, a matrix Z∈IRr · ðnþpþmÞ and a
positive scalar η∈IR such that

V ¼ V
T
> 0, E ¼ E

T
> 0, trðEÞ < η, (132)

A V þ V A
T
−B Z−Z

T
B

T ∗
B

T
−Ir

� �
< 0, (133)
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where the closed-loop system matrix of the expanded system is

Ac ¼ A−BK: (130)

In order to design the system with reference attenuations γ2 and γ∞, respectively, in the
following is considered the transfer function matrix

GwðsÞ ¼ CðsInþpþm−AcÞ−1B: (131)

Proposition 1 (H2 control synthesis) The state feedback control (117) to the system (126) and (127)
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V ¼ V
T
> 0, E ¼ E
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> 0, trðEÞ < η, (132)

A V þ V A
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−B Z−Z

T
B

T ∗
B

T
−Ir

� �
< 0, (133)
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V �
CV E

� �
> 0, (134)

where

A ¼
A F 0
0 0 0

−C 0 0

2
4

3
5, B ¼

B
0
0

2
4

3
5, C ¼ ½C 0 0 �, (135)

A∈IRðnþpþmÞ · ðnþpþmÞ, B∈IRðnþpþmÞ · r, C∈IRm · ðnþpþmÞ.

When the above conditions hold, the control law gain is

K ¼ Z V
−1
: (136)

Proof. Replacing in the inequality (6), the couple ðA,BÞ by the pair ðAc,BÞ from Eqs. (125) and
(130), consequently redefines the linear matrix inequality (6) as

ðA−BKÞV þ VðA−BKÞT þ B B
T
< 0 (137)

and so using the Schur complement property and the notation

Z ¼ K V, (138)

Eq. (137) implies Eq. (133).

Analogously, replacing in Eq. (7), the couple ðC,VÞ by the pair ðC,VÞ, the objective of H2

control is now to minimize the constraint trðC V C
TÞ < γ2

2.

Introducing the inequality

E > C V C
T ¼ C V V

−1
V C

T
, trðEÞ ¼ η, (139)

with a new matrix variable E being symmetric and positive definite, and using Schur comple-
ment property, then Eq. (139) implies directly Eq. (134). This concludes the proof.

Note, to obtain a feasible block structure of LMIs, the Schur complement property has to be
used to rearrange Eq. (137) to obtain Eq. (133) while the dual Schur complement property is
applied to modify Eq. (139) to obtain Eq. (134).

Proposition 2 (H∞ control synthesis) The state feedback control (117) to the systems (126) and (127)
exists and ∥GðsÞ∥∞ < γ∞ if for a given symmetric, positive definite matrix G∈IRp· p there exist a

symmetric positive definite matrix S∈IRðnþpþmÞ · ðnþpþmÞ, a matrix X∈IRr · ðnþpþmÞ and a positive scalar
γ∞∈IR such that
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S ¼ S
T
> 0, γ∞ > 0, (140)

AS þ SA
T
−BX−X

T
B

T ∗ ∗
B

T
−γ∞Ir ∗

CS 0 −γ∞Im

2
64

3
75 < 0: (141)

where

A ¼
A F 0
0 0 0

−C 0 0

2
4

3
5,B ¼

B
0
0

2
4

3
5,C ¼ ½C 0 0 �, (142)

A∈IRðnþpþmÞ · ðnþpþmÞ, B∈IRðnþpþmÞ · r, and C∈IRm · ðnþpþmÞ.

When the above conditions hold, the control law gain is

K ¼ X S
−1
: (143)

Proof. Replacing in Eq. (9) the set of matrix parameters ðA,C,D, IwÞ by the foursome
ðAc,C,B, IrÞ and using the matrix variable U, then Eq. (9) gives

U Ac þ A
T
c U U D C

T

B
T
U −γ∞Ir 0

C 0 −γ∞Im

2
64

3
75 < 0: (144)

Defining the transform matrix

T ¼ diag½S In Im �, S ¼ U
−1
, (145)

and premultiplying the left side and postmultiplying the ride side of Eq. (144) by T, it yields

AcS þ S A
T
c B S C

T

B
T

−γ∞Ir 0
C S 0 −γ∞Im

2
64

3
75 < 0: (146)

Substituting Eq. (130) modifies the linear matrix inequality (146) as follows

ðA−B KÞS þ SðA−B
T
K

T
B SC

T

B
T

−γ∞Ir ∗
CS 0 −γ∞Im

2
64

3
75 < 0 (147)

and with the notation

X ¼ K S (148)

Eq. (147) implies Eq. (141). This concludes the proof.
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It is now easy to formulate a joint approach for integrated design of FTC, where qðtÞ is
considered as in Eq. (118).

Theorem 9 The state feedback control (117) to the systems (126) and (127) exists and ∥GwðsÞ∥2 < γ2,

∥GdðsÞ∥∞ < γ∞ if for given symmetric, positive definite matrix G∈IRp · p and positive scalars a, ϱ∈IR,
a> ρ, there exist symmetric positive definite matrices V∈IRðnþpþmÞ · ðnþpþmÞ, ~Q∈IRðnþpÞ · ðnþpÞ, matrices

X∈IRr · ðnþpþmÞ, E∈IRm·m, ~Z∈IRðnþpÞ · ðnþpÞ, ~Y∈IRðnþpÞ ·m, and a positive scalars γ∞, η∈IR such that

V ¼ V
T
> 0, ~Q ¼ ~Q

T
> 0, γ∞ > 0, η > 0, (149)

−ϱ~Q ∗
a~Q þ ~Q ~A−~G ~Y ~C −ϱ~Q

� �
< 0, (150)

~Q ~G ¼ ~G ~Z, (151)

A V þ VA
T
−B X−X

T
B

T ∗ ∗
B

T
−γ∞Ir ∗

CV 0 −γ∞Im

2
64

3
75 < 0, (152)

A V þ V A
T
−B X−X

T
B

T ∗
B

T
−Ir

� �
< 0, (153)

V ∗
C V E

� �
> 0, trðEÞ < η: (154)

where are ~A, ~G, ~C, ~J as in Eq. (107), A, B, C as in Eq. (142), and K as in Eq. (119).

When the above conditions hold

K ¼ X V
−1
, ~J ¼ Z

−1
Y: (155)

Proof. Prescribing a unique solution of K with respect to Eqs. (136) and (143), that is

V ¼ S, X ¼ Z, (156)

then Eqs. (132)–(134) and (140) and (141) in the joint sense imply Eqs. (152)–(154).

The design conditions are complemented by the inequalities (150) and (151), the same as
Eq. (116). This concludes the proof.

Note, the introduced H2H∞ control maximizes the H2 norm over all state-feedback gains K

while the H∞ norm constraint is optimized. The set of LMIs (152)–(154) is generally well
conditioned and feasible and, since Ac is a convergent matrix, it follows that the state of the
closed-loop system converges uniformly to the desired value.

The main reason for the use of D-stability principle in the fault observer design is to adapt the
fault observer dynamics to the dynamics of the fault tolerant control structure and the
expected dynamics of faults. But the joint FTC design may not be linked to this principle.
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7. Illustrative example

To illustrate the proposed method, a system whose dynamics is described by Eqs. (16) and (17)
is considered with the matrix parameters [43]

A ¼
1:380 −0:208 6:715 −5:676

−0:581 −4:290 0:000 0:675
1:067 4:273 −6:654 5:893
0:048 4:273 1:343 −2:104

2
664

3
775, B ¼

0:000 0:000
5:679 0:000
1:136 −3:146
1:136 0:000

2
664

3
775, F ¼

1:400
1:504
2:233
0:610

2
664

3
775, CT ¼

4 0
0 0
1 0
0 1

2
664

3
775:

To test the effectiveness and performance of the proposed estimators, the computations are
carried out using the Matlab/Simulink environment and additional toolboxes, while the
observer and controller design is performed by the linear matrix inequalities formulation using
the functions of SeDuMi package [44]. The evaluation is performed in a standard condition,
where the model to design the observer and the model for evaluation are the same and the
simulations are performed according to the presented configuration of inputs and outputs.

Solving Eqs. (70)–(72), the fault observer design problem is solved as feasible where, with the
prescribed stability region parameters a = 7, ϱ = 5 and the tuning parameter δ = 2, the resulted
matrix parameters are

P ¼

11:1225 0:4148 −3:7932 −0:3068
0:4148 4:8026 −2:6791 −1:6972
−3:7932 −2:6791 4:2310 −1:2725
−0:3068 −1:6972 −1:2725 6:2685

2
6664

3
7775,Q ¼

6:4684 0:3600 −3:1434 −0:1831
0:3600 6:7121 −4:6619 −0:3100
−3:1434 −4:6619 5:6540 −0:9782
−0:1831 −0:3100 −0:9782 2:7161

2
6664

3
7775,

γ ¼ 27:9325,H4 ¼
0:6166
−1:2500

� �
,Y ¼

18:4698 −53:1426
−1:7560 −25:4990
−6:6739 38:4146
0:5201 15:2858

2
6664

3
7775, J4 ¼

3:6529 −4:8333
0:7482 1:4554
1:6614 6:6685
1:1215 7:8699

2
6664

3
7775,

ρðAeÞ ¼ f−9:2971; −10:3524; −8:0807� 0:5938ig:

where ρðAeÞ is the observer system matrix eigenvalues spectrum. Using the same optional
parameters (if necessary), there are obtained the observer gains for the design conditions
introduced in Theorems 1–3 and 5–6, respectively, while

H1 ¼
0:1198
−0:0017

� �
, J1 ¼

3:6529 −4:8333
0:7482 1:4554
1:6614 6:6685
1:1215 7:8699

2
6664

3
7775, ρðAeÞ ¼

�
−3:4150; −5:2667

−12:4523� 20:2938i

�
,

H2 ¼
0:1809

−0:5370

� �
, J2 ¼

4:8866 3:6054
1:7146 2:5548
3:4303 15:4668
3:0854 8:3991

2
6664

3
7775, ρðAeÞ ¼

�
−1:0022; −7:4681
−10:4435; −24:1301

�
,
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−3:7932 −2:6791 4:2310 −1:2725
−0:3068 −1:6972 −1:2725 6:2685

2
6664

3
7775,Q ¼

6:4684 0:3600 −3:1434 −0:1831
0:3600 6:7121 −4:6619 −0:3100
−3:1434 −4:6619 5:6540 −0:9782
−0:1831 −0:3100 −0:9782 2:7161

2
6664

3
7775,

γ ¼ 27:9325,H4 ¼
0:6166
−1:2500

� �
,Y ¼

18:4698 −53:1426
−1:7560 −25:4990
−6:6739 38:4146
0:5201 15:2858

2
6664

3
7775, J4 ¼

3:6529 −4:8333
0:7482 1:4554
1:6614 6:6685
1:1215 7:8699

2
6664

3
7775,

ρðAeÞ ¼ f−9:2971; −10:3524; −8:0807� 0:5938ig:

where ρðAeÞ is the observer system matrix eigenvalues spectrum. Using the same optional
parameters (if necessary), there are obtained the observer gains for the design conditions
introduced in Theorems 1–3 and 5–6, respectively, while

H1 ¼
0:1198
−0:0017

� �
, J1 ¼

3:6529 −4:8333
0:7482 1:4554
1:6614 6:6685
1:1215 7:8699

2
6664

3
7775, ρðAeÞ ¼

�
−3:4150; −5:2667

−12:4523� 20:2938i

�
,

H2 ¼
0:1809

−0:5370

� �
, J2 ¼

4:8866 3:6054
1:7146 2:5548
3:4303 15:4668
3:0854 8:3991

2
6664

3
7775, ρðAeÞ ¼

�
−1:0022; −7:4681
−10:4435; −24:1301

�
,
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H3 ¼
1:3248
0:3732

� �
, J3 ¼

0:7403 0:6309

4:2089 9:4205

9:0063 15:8599

−0:3253 0:7215

2
66664

3
77775
, ρðAeÞ ¼

�
−3:4908� 0:7441i
−8:6876� 15:3550i

�
,

H5 ¼
0:4511
−0:7967

� �
, J5 ¼

3:4655 −5:0754

0:6678 0:8357

1:5777 5:1656

1:3275 4:4003

2
66664

3
77775
, ρðAeÞ ¼

�
−6:4021� 1:6720i
−9:3518� 0:4953i

�
,

H6 ¼
0:0232
−0:0440

� �
, J6 ¼

3:4682 −4:8675
0:6900 1:0472
1:5956 5:4720
1:3283 4:5180

2
6664

3
7775, ρðAeÞ ¼

�
−6:4178� 1:6979i
−9:4094� 0:6999i

�
:

Using an extended approach presented in Theorems 7 and 8, the effect of the learning
weight on the dynamic performance of the adaptive fault observer is analyzed. Setting the
weight G = 7.5 and using the optional factors as above, the resulted fault observer param-
eters are

H7 ¼
0:0530
0:1439

� �
, J7 ¼

−0:3895 −1:7257
0:4619 2:3599
2:8130 4:5175
−0:9425 −0:3893

2
6664

3
7775, ρðAeÞ ¼

�
−2:8840� 7:2479i
−3:3828� 0:6281i

�
,

H8 ¼
0:2053
0:3222

� �
, J8 ¼

2:8037 −2:6847
0:3667 2:0494
1:0796 7:2600
0:5665 6:6486

2
6664

3
7775, ρðAeÞ ¼

�
−6:6626� 1:3897i
−8:6430� 2:3545i

�
:

Separated simulations of fault estimation observer outputs are realized for system under the
force mode control, with the control law given as

uðtÞ ¼ −KnqðtÞ þWwwðtÞ: (157)

Since separation principle holds and (A, B) is controllable, the eigenvalues of the closed-loop
system matrix Ac = A − BK can be placed arbitrarily. Using the MATLAB function place.m, the
gain matrix K is chosen that Ac has the eigenvalues {−1, −2, −3, −4}, i.e.,

Kn ¼ −0:1014 −0:2357 0:0147 0:1030
−1:1721 −0:2466 0:1472 −0:4907

� �

and the signal gain matrix Ww is computed using the static decoupling principle as [45]
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W ¼ −ðCðA−BKÞ−1BÞ−1 ¼ 0:0024 0:1055

−0:0957 0:0401

" #
: (158)

To evaluate the validity of the proposed compensation control scheme, weighted sinusoidal
fault signals are considered. Since a weighted sinusoidal fault is suitable for evaluating the
tracking performance and the robustness of the control scheme because it reflects more than
slow changes in the fault magnitude, the faults in simulations are generated using the
scenario

f ðtÞ ¼ gðtÞ sin ðωtÞ, gðtÞ ¼

0; t ≤ tsa,
1

tsb−tsa
ðt−tsaÞ, tsa < tsb,

1; tsb ≤ tea,

− 1
teb−tea

ðt−tebÞ, tea < teb,

0, t ≥ teb,

8>>>>>>><
>>>>>>>:

(159)

where it is adjusted ω ¼ 1 rad=s, tsa ¼ 10 s, tsb ¼ 15 s, tea ¼ 35 s, teb ¼ 40 s.

Then, with the desired system output vector, the initial system condition and the external
disturbance are chosen as follows

wTðtÞ ¼ ½ 1 2 �, qð0Þ ¼ 0, DT ¼ ½ 0:610 2:233 1:504 1:400 �, σ2d ¼ 0:01,

the faults estimates, obtained using the conditions from Theorems 1 to 6, are plotted in
Figures 1–6. In all cases, the learning weight is set iteratively as G = 7.5. Simulations results
obtained under the same simulation conditions, but realized by applying Theorems 7 and 8 with
the prescribed weight G = 7.5, are given in Figures 7 and 8.

Figure 1. Estimation applying Theorem 1.
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Figure 3. Estimation applying Theorem 3.

Figure 4. Estimation applying Theorem 4.

Figure 2. Estimation applying Theorem 2.
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Figure 6. Estimation applying Theorem 6.

Figure 7. Estimation applying Theorem 7.

Figure 5. Estimation applying Theorem 5.
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Figure 5. Estimation applying Theorem 5.
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From these figures, it can be seen that fault estimation errors fast enough converge using an
adaptive fault observer. Further, the extended approach with a prescribed circle D-stability
region is also effective in suppressing the disturbance noise effect on fault estimates.

Considering in the followinganunforced system (126) and (127) and solving the set of linearmatrix
inequalities (132)–(135) to design FTC systemparameters, the solution is obtained as follows

V ¼

0:1995 0:0196 −0:2602 −0:1462 0:0794 0:2031 −0:0932
0:0196 1:4771 0:1384 0:2529 −0:0064 0:0036 0:3429
−0:2602 0:1384 1:4776 0:6864 −0:3175 0:1439 0:5436
−0:1462 0:2529 0:6864 0:9270 −0:0000 0:0696 0:6344
0:0794 −0:0064 −0:3175 −0:0000 1:4436 0:0080 −0:0224
0:2031 0:0036 0:1439 0:0696 0:0080 2:0837 0:0695

−0:0932 0:3429 0:5436 0:6344 −0:0224 0:0695 2:1627

2
666666666664

3
777777777775

,

Z ¼ −0:1746 −0:9058 0:8639 1:1472 0:3790 −0:0483 −0:2186
−1:9830 −0:8055 1:9320 −0:0805 −1:5775 0:2255 −0:3164

� �
,

E ¼ 3:5753 0:0965
0:0965 2:2941

� �
, trðEÞ ¼ 5:8694, trðCVC

TÞ ¼ 3:5155 < γ2
2:

Then, the set of control law matrix parameters is

Kq ¼
0:5396 −0:8207 0:1959 1:7572

−13:1540 0:0167 −0:2836 −1:9893

� �
,Kf ¼

0:2652
−0:4418

� �
,Kw ¼ −0:1308 −0:5055

1:4821 −0:1132

� �
,

while the eigenvalue spectrum of the closed-loop system matrix is

ρðAcÞ ¼ f0; −0:2917; −0:4757−1:1533� 6:7834i, −3:5221� 16:1696ig:

It is easy to see that the closed-loop system eigenvalues of the extended system strictly reflect the
integral part of the control law that is, the set of inequalities (132)–(135) can be directly applied.

Figure 8. Estimation applying Theorem 8.
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When solving the design conditions (140) and (141) for the equations of the unforced systems
(126) and (127), the result is the set of matrix variables

S ¼

2:9032 0:2418 −2:0149 −0:4081 0:4638 0:2910 −0:1012
0:2418 8:2299 1:0172 1:0940 −0:0375 0:0847 1:4138
−2:0149 1:0172 8:6558 3:9494 −1:8552 1:3284 2:0586
−0:4081 1:0940 3:9494 5:3411 0:0000 0:5492 2:6407
0:4638 −0:0375 −1:8552 0:0000 8:4354 0:3368 −0:2675
0:2910 0:0847 1:3284 0:5492 0:3368 11:1517 0:3447

−0:1012 1:4138 2:0586 2:6407 −0:2675 0:3447 12:1897

2
666666666664

3
777777777775

,

X ¼ −0:3425 −4:5974 4:3400 6:8529 2:2149 −0:1473 −1:0174
−13:2597 −4:3184 11:1859 −1:6190 −9:2177 1:7119 −2:1494

� �
,

γ∞ < 16:3245:

Based on these matrices, the closed-loop system matrix eigenvalues and the controller param-
eter (118) can be written out as

Kq ¼
0:1556 −0:7190 0:0494 1:5844
−4:1380 −0:3402 0:6571 −1:0205

� �
,Kf ¼

0:2545
−0:7353

� �
,Kw ¼ −0:0928 −0:3421

0:2609 −0:0846

� �
,

ρðAcÞ ¼ f0; −0:2054; −0:3514−1:2258� 6:3796i, −2:1825� 8:3875ig:

Finally, the design conditions are designed in such a way that the upper bounds of H2 and H∞

norm of the system transfer function are incorporated and the parameters of the feedback
controllers (117) and (118) are computed from the following set of matrix variables satisfying
Eqs. (152)–(155)

V ¼

1:9774 0:2903 −2:9899 −1:0427 0:8321 0:9891 −0:2776

0:2903 14:9964 1:0058 2:3203 −0:0673 −0:3526 2:3586

−2:9899 1:0058 14:8053 5:7641 −3:3284 1:0363 3:0673

−1:0427 2:3203 5:7641 7:6521 −0:0000 0:6069 4:0448

0:8321 −0:0673 −3:3284 −0:0000 15:1342 0:1550 −0:3263

0:9891 −0:3526 1:0363 0:6069 0:1550 19:6050 0:4331

−0:2776 2:3586 3:0673 4:0448 −0:3263 0:4331 20:8419

2
66666666666664

3
77777777777775

,

X ¼ −2:0516 −7:0574 9:0166 12:1638 3:9738 −0:1756 −1:7169
−23:6734 −9:4744 21:5697 −0:5497 −16:5377 1:7345 −3:7863

� �
,

E ¼ 33:4960 1:2672
1:2672 22:6309

� �
, trðCVC

TÞ ¼ 30:1764 < γ2
2, γ∞ < 22:8396,

while the controller matrix parameters are
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0:1556 −0:7190 0:0494 1:5844
−4:1380 −0:3402 0:6571 −1:0205

� �
,Kf ¼

0:2545
−0:7353

� �
,Kw ¼ −0:0928 −0:3421

0:2609 −0:0846

� �
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Finally, the design conditions are designed in such a way that the upper bounds of H2 and H∞

norm of the system transfer function are incorporated and the parameters of the feedback
controllers (117) and (118) are computed from the following set of matrix variables satisfying
Eqs. (152)–(155)

V ¼

1:9774 0:2903 −2:9899 −1:0427 0:8321 0:9891 −0:2776

0:2903 14:9964 1:0058 2:3203 −0:0673 −0:3526 2:3586

−2:9899 1:0058 14:8053 5:7641 −3:3284 1:0363 3:0673

−1:0427 2:3203 5:7641 7:6521 −0:0000 0:6069 4:0448

0:8321 −0:0673 −3:3284 −0:0000 15:1342 0:1550 −0:3263

0:9891 −0:3526 1:0363 0:6069 0:1550 19:6050 0:4331

−0:2776 2:3586 3:0673 4:0448 −0:3263 0:4331 20:8419

2
66666666666664

3
77777777777775

,

X ¼ −2:0516 −7:0574 9:0166 12:1638 3:9738 −0:1756 −1:7169
−23:6734 −9:4744 21:5697 −0:5497 −16:5377 1:7345 −3:7863

� �
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E ¼ 33:4960 1:2672
1:2672 22:6309

� �
, trðCVC

TÞ ¼ 30:1764 < γ2
2, γ∞ < 22:8396,

while the controller matrix parameters are
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Kq ¼
0:0531 −0:7236 0:0327 2:0030

−14:6891 −0:0607 −1:2295 −1:2123

� �
,Kf ¼

0:2561
−0:5650

� �
,Kw ¼ −0:0818 −0:3876

0:9351 0:0175

� �

and the spectrum of the closed-loop system matrix eigenvalues is

ρðAcÞ ¼ f0; −0:1770; −0:3009−1:5837� 7:1369i, −5:0472� 16:5305ig:

Considering the same fault generation method as above, but with ω ¼ 0:5 rad=s, then for the
desired system output vector, the initial system condition and the external disturbance chosen
are as follows

wTðtÞ ¼ ½ 1 2 �, qð0Þ ¼ 0, ~qeð0Þ ¼ 0, DT ¼ ½ 0:610 2:233 1:504 1:400 �, σ2d ¼ 0:01,

the output variable responses of the closed-loop system, obtained using the conditions from
Proposition 2 and Theorem 9, are shown in Figures 9 and 10 and are stable. To the structures
(141), (142), and (152)–(155), the fault estimation is designed by Eq. (116).

Summarizing the obtained simulation results it can be concluded that the adaptive fault
estimators, designed by the standard estimation algorithm, has the worst properties (Figure 1)
that are not significantly improved even though the conditions of synthesis are enhanced by a
symmetric learning weight matrix G (Figure 7). Somewhat better results can be achieved when
the synthesis conditions incorporate the H∞ norm of the fault transfer function (Figure 3), even
if they are combined with the use of an untying slack matrix Q (Figures 2 and 5). The best
obtained results in accuracy and noise robustness are with the design conditions combining
LMIs with constraints implying from D-stability principle (Figures 4, 6, and 8).

The efficiency of the proposed algorithm to compensate the effect of an additive fault on the
system output variables can be also observed. Figures 9 and 10 show that the proposed H2/H∞

method increases control robustness due to the joint mixed LMI optimization that guarantees

Figure 9. Compensation applying Proposition 2.
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system stability as well as the sufficient precision of compensation for a given class of slowly
warring faults. Since the additive fault profile does not satisfy strictly the condition (22), its
estimated time profile do not perfectly cover the actual values of the fault and where the
variation of the amplitudes of f(t) exceed its upper limit, there can be seen small fluctuations
in compensation.

8. Concluding remarks

In this chapter, a modified approach for designing the adaptive fault observers is presented,
and the D-stability circle principle into fault observer design to outperform the two-stage
known design approach in the fault observer dynamics adaptation is addressed. The design
conditions are established as feasible problem, accomplishing under given quadratic con-
straints. Taking into consideration the slack updating effect, to cope with realistic operating
conditions, the fault observer dynamics may be in the first case shifted to a stability region by
exploiting the value of the tuning parameter. Integrated with the fault tolerant structures, H2

and H∞ norm-based analysis is carried out for compensated FTC structure to conclude about
convergence of the fault compensation errors, and to derive the FTC design conditions. Using
the LMI technique, the exploited mixed H2H∞ control design is possible to regularize the
potential marginal feasibility of H∞-norm-based conditions. Presented illustrative example
confirms the effectiveness of the proposed design alternative to construct the control structure
with sufficient approximation of given class slowly warring faults and compensation of their
impact on the system output variables.
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Abstract

The ability to forecast motor mechanical faults at incipient stages is vital to reducing 
maintenance costs, operation downtime and safety hazards. This paper synthesized the 
progress in the research and development in condition monitoring and fault diagnosis of 
induction motors. The motor condition monitoring techniques are mainly classified into 
two categories that are invasive and non-invasive techniques. The invasive techniques 
are very basic, but they have some implementation difficulties and high cost. The non-
invasive methods, namely MCSA, PVA and IPA, overcome the disadvantages associ-
ated to invasive methods. This book chapter reviews the various non-invasive condition 
monitoring methods for diagnosis of mechanical faults in induction motor and concludes 
that the instantaneous power analysis (IPA) and Park vector analysis (PVA) methods are 
best suitable for the diagnosis of small fault signatures associated to mechanical faults. 
Recommendations for the future research in these areas are also presented.

Keywords: condition monitoring, fault diagnosis, mechanical faults, bearing distributed 
faults, gear faults

1. Introduction

Induction motors are the industry workhorse due to the fact that they are rugged, reliable 
and economical. Induction motors are used in industry for conversion of electrical energy 
into mechanical energy [1]. As shown in Figure 1, induction motors are being used in various 
applications, such as in the nuclear power plants, aviation industry, transportation industry, 
mining industry, chemical processing plants, paper mills and the petroleum industry [1].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The operation of induction motor in harsh industrial environment affects its reliability and 
has been a critical issue. The unexpected breakdown of induction motor might result in the 
disturbance of critical services such as medical applications, transportation military opera-
tions and aviation. An unexpected breakdown of a motor might result in costly maintenance 
or loss of life in applications where continuous process is needed and where down-time is 
not tolerable. The induction motors require only basic maintenance and have a very low fail-
ure rate. However, the burning of the motors causes a great deal of unacceptable production 
loss. Consequently, diagnosing incipient faults will prevent the problems of unexpected 
breakdowns of the machines and it helps in reducing the maintenance costs. As reported in 
[2], 50% of operating cost of manufacturing and processing plants is related to maintenance. 
Therefore, this is a major area of concern in industries. The researchers are constantly look-
ing for new techniques to minimize the unexpected machine failures and maintenance cost.

The scheduled replacement, scheduled maintenance and condition-based maintenance are the 
basic methods used in the industry for reliable operations of the machines. The scheduled 
replacement is a simple but expensive method as the replacement of machine parts is conducted 
on a regular basis. In the scheduled maintenance method, the checking and/or overhauling of 
the equipment has to be done on a regular basis and this method is widely used in industry 
as it is less expensive as compared to the scheduled replacement. The condition-based main-
tenance method determines the machine condition by taking measurements using sensors. 
By this method, the time periods between maintenance can be increased and machines can be 
monitored continuously so that maintenance can be scheduled on a needed basis. Condition 
monitoring (CM) is a method used in condition-based maintenance (CBM). It is an effective 
type of predictive maintenance (PM). The main steps involved in PM are shown in Figure 2.

Normally, the condition monitoring maintenance process would be monitoring the specific 
parameters like vibration, overheating, over current of equipment for early sign of coming 

Figure 1. Applications of induction motors.
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failures and to predict the need of maintenance before rigorous failures. CM could be per-
formed through visual inspection or through sophisticated fault diagnosis system. CM is suit-
able for continuous process plants where machine breakdowns can be very costly.

The methods of condition monitoring are categorized into two primary classifications, namely 
the offline tests and the online tests. The offline tests are performed by isolating the machine 
from main AC power supply. Although this is a comprehensive approach, sometimes causes 
unnecessary shutdowns on machines. Alternatively, the sensors which are installed on the 
machine are used to detect faults for online condition monitoring and fault diagnosis in an 
induction motors during the operation of the machine. The online tests cause fewer distur-
bances than offline tests but the results produced from online testing are more complicated 
and their interpretation is difficult than the offline tests. Over the past two decades, there has 
been an abundance of research work done in the online condition monitoring techniques for 
diagnosing problems in induction motors. For the detection of various faults usually affect-
ing machines, several different techniques have been not only proposed but also used suc-
cessfully. However, a good understanding of the mechanical and electrical properties of the 
machine in healthy and faulty conditions dramatically influences the accuracy and reliability 
of the online condition monitoring methods [3, 4]. Online condition monitoring techniques 
can be classified into two categories: firstly the classical method and secondly the digital 
method [4]. In classical method, electromechanical devices are used to protect the motors. 
The electromechanical devices are expensive, less efficient, having very slow response and 
not reliable as some of the devices have even shorter life than the motor itself. The digital 
method is the latest method for the condition monitoring and involves integrated circuits, 
micro-controllers, micro-processors and programmable logic controllers.

2. Overview of induction motors

An induction motor is normally composed of the following parts: frame, stator, winding, rotor 
and bearings. The structure of induction motor is shown in Figure 3. Induction motors are 

Figure 2. Activities in predictive maintenance.
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used in almost all types of industries. Induction motor is an asynchronous machine made up 
of a magnetic circuit that is joined to two electrical circuits; these circuits rotate with respect 
to each other. Electromagnetic induction is used to pass power from one circuit to the other. 
These electric motors are used to convert electrical energy into mechanical energy [5]. The 
conversion of energy is dependent upon the natural presence of the phenomena connecting 
magnetic and electrical fields in one side while motion and mechanical force are connected 
into the other side. On the basis of types of rotor winding, induction motors can be placed 
into two categories. They are the wound-rotor induction motors and squirrel-cage motors [6].

The squirrel cage induction motor is made up of conducting bars that are placed in slots of 
the rotor body. These conducting bars are short circuited through end rings. Magnesium, cop-
per, or aluminium alloys are the materials usually used in manufacturing of the rotor bars. 
Another kind of rotor is known as a form-wound rotor since it possesses a poly-phase wind-
ing much like that of the winding of the stator. There are three slip rings which are joined to 
the winding of the rotor shaft. In a form-wound rotor, the slip rings are joined to a variable 
resistance and can restrict the current as well as the heating of the rotor [6].

The squirrel-cage induction motor is economical and robust than the wound-rotor induc-
tion motor. At constant supply of voltages and frequency, squirrel-cage induction motor runs 
at a constant speed. In this motor, if there is an increase in the load torque, the speed will 
decrease slightly. Therefore, it is appropriate to be used in drive systems that run at a con-
stant speed [5, 6]. However, a variety of applications used in industrial areas need adjustable 
speeds drives. Traditionally, it is a direct current (DC) motor that is utilized in adjustable 
drive system. However, DC motors are expensive and possess carbon brushes that must be 
frequently maintained. As squirrel cage induction motors have no brushes so they are cheap 
and are preferred for high speed applications. Furthermore, due to the availability of solid 
state controllers, mostly high speed drive systems use squirrel cage induction motors. This 
type of induction motor is extensively utilized in drive applications of both low and high 
performance due to its versatility and ruggedness. Induction motors are suitable for almost 
all commercial and industrial applications due to their construction being so simple and they 

Figure 3. The structure of induction motor [5].
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have only a few parts, which reduce the cost of maintenance. Applications in both adjustable-
speed drive (ASD) and constant-speed drive are the main uses of induction motors.

Induction motors are often exposed to operating environments that may not be ideal and in 
some cases are even harsh. These situations could be due to insufficient cooling, inadequate 
lubrication, structure vibration, overload, frequent motor starts and stops, etc. In such situ-
ations, induction motors are put under detrimental stresses which can lead to failure [7, 8]. 
Because of the significant role that motors play in various applications, improvement in the 
reliability of motors is required. The reasons why electric motors fail in industry have been 
commonly reported as follows [9–11]

• Wrong-rated power, voltage and current

• Mistakes during repairs

• Unstable supply voltage or current source

• Post the standard lifetime

• Overload or unbalanced load

• Electrical stress from fast switching inverters or unstable ground

• Residual stress from manufacturing

• Harsh application environment

3. Faults in induction motor

As induction motor is most often symmetrical, so faults in the motor normally disturb the 
symmetry of the motor. Burning of motors in the industry could be due to following reasons: 
thermal overloading, overloading due to undesirable stresses, air-gap eccentricity, speed 
oscillations, stator winding failure, broken rotor bars, bearing failure, coupled gear failures 
and unbalanced voltages. A concise discussion is made regarding these defects based on how 
important they are with regard to the condition monitoring of induction motors. According to 
a survey conducted in 2005 by the Electric Power Research Institute, more than 40% burning 
of AC motors is due to the failure of bearings (more than 50% burning of the motor is due to 
mechanical defects, i.e. bearing defects, gear defects, belt and pulley defects). The summary 
of the survey report is shown in Figure 4 [2, 3, 12].

As stated in Peter Vas [13] and P.J. Tavner and J. Penman [14], the defects of the motor are cat-
egorized into two groups.

• Mechanical defects

• Electrical defects

Air gap eccentricities, bearing defects, shaft misalignment and abnormalities at the mechani-
cal transmission system are included in the list of mechanical defects. Broken rotor bar and 
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stator winding defects are included in the list of electrical defects. The detail of these defects is 
discussed in following subsections.

3.1. Mechanical defects

The typical examples of mechanical defects that usually occur in an induction motor are 
 presented as below.

3.1.1. Bearing defects

Bearings are widely used in rotating machinery across various industries that include paper, 
textile, aerospace, nuclear power plants, oil refineries, offshore pumping stations, steel, rail-
ways, construction, mining and renewable energy. The defects in the bearings cause break-
down of rotating machinery, which results in significant economic losses and in certain 
situations loss of human lives; for example, when a train derails or an aircraft engine fails 
due to a bearing defect. Bearings are typical components found in the motors that are used to 
allow for the shaft rotation. Majority of the motor failure is due to the bearing malfunctions. 
Bearings as shown in Figure 5 are made up of inner and outer races. Several rolling elements 
(balls) are placed in between these two races. Cage is used to keep the balls moving at equal 
distance from each other. Normally, stresses developed in the motor causes fatigue in the 
bearing races. This fatigue causes localized defects (single-point defects like spalling or pitting 
or dents or holes) and distributed defects (generalized surface roughness) in the bearings of 
the motor [15–17].

Figure 4. EPRI survey report 2005 [2, 3, 12].
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The localized defects are induced mainly due to the operational wear (contact fatigue) of 
bearings. If the bearings are properly installed, kept free of contamination and well lubricated 
during operation then bearing failure will occur only after the pre-determined life (millions 
of cycles) of the bearing. This type of failure initially starts in a subsurface at micro-scale level 
at a single-point and then due to continuous stress cycles, they eventually cause material to 
break. These single-point defects are characterized as spalling or pitting or localized defect 
[15–21]. Littman [22, 23] characterized as micro-scale subsurface defects as spalls and macro-
scale surface originated defects as pitting. These types of faults produce impulsive type of 
vibration and serve as indication of incipient failure and due to this reason many fault diag-
nosis techniques have been developed to diagnose these types of faults.

The distributed defects are induced due to the manufacturing errors or due to contamination, 
improper lubrication, corrosion, electrical fluting and misalignment during running opera-
tion of the bearing. In these types of faults, the magnitude of the contact force between race 
and ball varies continuously during shaft rotation. Distributed faults create continuous type 
of vibration and cause premature failure of the motor bearings and thus it is important to 
develop a suitable condition monitoring scheme to diagnose these types of faults. Figure 6 
shows the example of typical localized and distributed defects in bearings of induction motor.
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ings can also occur due to high bearing temperature. The temperature of the bearings should 
not increase beyond specific degrees at rated conditions. An example of this would be in 
the petroleum and chemical industries where the IEEE 841 standard specifies that the rise in 
temperature of the bearings under a rated load should not go above 45°C. Rise in the winding 
temperature, improper lubrication, the distribution of the temperature within the motor and 

Figure 5. The structure of ball bearing.
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the operating speed of the motor are the main factors for the rise of the bearing temperature. 
Consequently, the bearing temperature measurements can give helpful data to estimate the 
health of the bearings as well as health of the motor [25, 26].

3.1.2. Air-gap eccentricity

Air-gap eccentricity is a typical defect found in the rotor of the motor. Noise and vibration 
in the motor structure are usually produced due to eccentricity. For the healthy motors, the 
centre of the rotor and stator bore is perfectly aligned. Moreover, the centre of rotation for the 
rotor is the same as the stator bore centre. If the rotor is not aligned centrally, radial forces or 
magnetic pull will be developed, which causes the rotor-stator rub resulting in the damage 
of rotor and stator [27]. As demonstrated in Ref. [28] air-gap eccentricities are of three kinds

• Dynamic eccentricity

• Static eccentricity

• Mixed eccentricity

A dynamic eccentricity as shown in Figure 7 results in an unbalanced magnetic pull (UMP) 
that acts on the rotor. The rotation of the UMP is similar to the rotation of the motor. The UMP 
can be easily monitored via current or vibration analysis. On the other hand, eccentricity that 
is static possesses a constant pull in only one direction, which also causes a UMP. However, it 
is not easy to detect this type of UMP [29].

Sometimes, dynamic and static eccentricities often exist together. Moreover, one can never 
assume that ideal centric conditions exist. Therefore, a certain amount of eccentricity is always 

Figure 6. Example of bearing (a) localized defects and (b) distributed defects.
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expected in any real motor. This combination of eccentricities such as dynamic and static is 
known as mixed eccentricity.

3.1.3. Abnormalities in mechanical transmission system

Detecting abnormalities at the mechanical transmission system has been a vital area of study 
for quite a long time. Mechanical loads and gears are frequently connected to motors and a 
variety of faults such as defected gearing system, belt-pulley system and coupling misalign-
ment are possible in these mechanical arrangements. An example of the gear fault is shown 
in Figure 8. In some applications like in aircraft, the condition monitoring of gears coupled 
with drive system is very much important to enhance the reliability of the gear [30]. Gear 
failures tend to occur when a gear is working under high stress conditions. The common gear 
faults are related to gear tooth irregularities namely chipped tooth, root crack, spalling, wear, 
pitting, tooth surface damage and broken tooth. Gear faults usually have significant effects 
on power transmission. They create disablement of the drives, which often causes damage to 

Figure 7. Example of (a) static eccentricity and (b) dynamic eccentricity [29].

Figure 8. Example of the gear defects [30].
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other gearbox components such as the shaft, bearing, etc., by pieces of the broken tooth. The 
tooth breakage can be due to overload or impact and damage.

3.2. Electrical defects

The following subsections give some of the typical examples of electrical defects in induction 
motors.

3.2.1. Stator winding defects

The general belief is that damage in the insulation of the winding turns contributes majority 
of the defects related to stator. This kind of defect is known as a ‘stator turn defect’ [31]. In a 
symmetrical induction motor, a stator turn fault produces a huge amount of current to flow 
through turns which creates too much heat in the shorted turns. The motor will burn if this 
heat, which is in direct proportion to the square of the current, is more than the threshold 
value [32]. An example of the stator related fault is shown in Figure 9.

In induction motors, the insulation used in stator winding is subjected to degradation due to 
contamination, transient voltage stresses on the insulating material, mechanical stresses and 
thermal overloading. Notably, thermal stresses are the primary cause for the deterioration of 
the insulation in the winding of the stator. Insulation even of the best quality could experience 
a rapid failure if the motor is run at a temperature greater than its threshold value. Generally, 
the life time of the insulation is decreased by 50% for every 10°C increase over the threshold 
value of the temperature of stator winding [33]. Therefore, monitoring the temperature of the 
winding of the stator is vital so that the motor will not run at a level greater than its thermal 
capacity. To accomplish this, several methods have been introduced. However, these methods 
could not identify the exact heating-point at the earliest stage [34, 35].

Some factors that speed up the deterioration of the insulation include the defected bearings, 
broken rotor bars, vibrations of the rotor, movement of a coil and misalignment of the rotor 
and air-gap eccentricity [36]. Consequently, these mechanical failures should be identified 
before they cause the failure of the insulation in the stator winding [37, 38]. Another  problem 

Figure 9. The stator fault in induction motor [31].
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for the insulation is foreign materials such as dust and bearing grease which can cause con-
taminations over the insulation of the stator. This contamination could possibly cause the 
reduction in dissipation of heat from the stator winding [39]. Due to this reason it is recom-
mended that all the motors should be kept clean and dry.

3.2.2. Rotor fault

Most often, the rotor bars in lower rated motors are produced by methods of die casting. 
However, the rotor bars of high rating motors are manufactured using copper. Producing rotor 
bars using methods of die casting has been found to cause a variety of technologically problems. 
Asymmetries in the rotor of the induction motors have been found which were caused by either 
technological problems, or because of the melting of end rings or bars. On the other hand, there 
is abundance of other factors causing the failure of rotors. Some of these are listed below [12, 13]

• Metallurgical stresses that are non-uniform could possibly be created in the assembly of 
the cage during manufacturing process and these stresses could result in a failure while the 
motor is operating later on.

• When thermal stresses are put on the rotor bar at the start-up of the motor, the rotor might 
not be capable of moving longitudinally in its slot.

• Some stresses could be developed on the rotor bars due to heavy end rings.

The reasons mentioned above could cause damage to the bars of the rotor and at the same 
time cause the rotor to become unbalanced. Furthermore, asymmetrical rotor currents are 
produced due to asymmetry on the cage of the rotor. Because of this, damage to just one rotor 
bar could result in damage to the surrounding bars. This damage could then spread, result-
ing in fractures in several rotor bars. Cracks in bars cause overheating of the bar due to which 
the bar may break. Consequently, the bars in the surrounding area will begin to carry higher 
currents subjecting them to even greater mechanical and thermal stresses. These stresses can 
start cracking in rotor bars and rotor lamination will be damaged as well [13]. The distribu-
tion of the temperature throughout the lamination of the rotor is also altered because of the 
asymmetry of the rotor. Bar fractures can take place at different areas on the rotor. During fre-
quent starts of the motor, the chances of fracture in the rotor end rings increase [28]. Typical 
example of rotor faults is shown in Figure 10.

Figure 10. Example of rotor fault in induction motor [13].
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4. Condition monitoring techniques

Continuously evaluating the health status of an industrial plant and its machinery 
throughout the entirety of its service is known as condition monitoring. Incipient fail-
ure detection is a vital process by which detection of defects in the early stages of their 
development is possible [13]. Fault diagnosis of the induction motor with some com-
prehensive condition monitoring system is becoming even more vital. An early alert 
about forthcoming failure is possible through the use of condition monitoring system. 
Furthermore, scheduling of preventive maintenance of the machines is also possible. 
Optimal preventive maintenance schedules are the result of this and also lead to the least 
amount of down-time on the machines [14]. Moreover, condition monitoring system 
gives indication to maintenance staff to arrange the required spare parts before  serious 
breakdown occur on the machine, thus reduces overall down-time. Consequently, to 
improve productivity, reliability and safety of electric machines, a suitable condition 
monitoring system is essential. A tremendous significance has been put on by condition 
monitoring system in the environment of business because of several reasons that are 
listed below [13, 14]:

• To decrease the maintenance cost

• To determine the failure of machinery

• To enhance the reliability of both the machines and their parts

• To optimally use manpower and machine spare parts

• To maximize the performance of the machinery

• To enhance the failure prediction accuracy

The usage of condition monitoring for both mechanical and electrical machinery is not new. 
While there have been a variety of techniques developed and improved over time, invasive 
techniques such as acoustic emission analysis, noise analysis, thermal analysis, chemical 
analysis and vibration analysis, and non-invasive techniques such as motor current signa-
ture analysis (MCSA), stator current Park vector analysis and instantaneous power analysis 
(IPA) are considered as the most prominent methods in steady state operation conditions. 
The structure representing various motor faults and fault diagnosis techniques is shown in 
Figure 11.

It has been observed that even though invasive condition monitoring and fault diagnosis 
techniques are optimal for the diagnosis of bearing localized and distributed defects, how-
ever, costly sensors and their associated wiring is the major disadvantage of these methods 
[40–45]. For example, vibration sensors (accelerometers, velocity transducers) which are 
integral part of this technique are too much expensive. As a result, the use of invasive fault 
diagnosis methods is restricted in a variety of applications. This is particularly so with 
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applications using small sized motors as cost has an important role to play when making 
the decision as to which technique of condition monitoring is to be used. Another disad-
vantage of these techniques is that sensors need to be installed on the machine, and so it 
needs access to machine which is not possible in every application. Sensor needs to be 
mounted on the machine rightly for accurate results. As sensors also have some life period 
after which they fail, in this aspect, bearing life period is more significant than sensor life 
period [46–51].

Thus, the focus of this chapter is on the development of non-invasive condition monitoring 
and fault diagnosis method for induction motors.

5. Overview on non-invasive fault estimation parameters

Induction motor defects can be diagnosed via its terminal quantities, such as voltage, 
current, discharge and power, measurable outside the motor to give an indication of 
its condition. A fault in motor (i.e. in bearings or gears) produces a distortion of the 
electromagnetic field in the radial and circumferential plane due to which harmonic fre-
quencies appear in the stator current and in instantaneous power. The stator current or 
instantaneous power of the healthy motor would have a single component of supply 
frequency (fundamental component). Motor faults will modulate the air-gap flux distri-
bution which causes forward and backward rotating magnetic field and as a result side-
band harmonic frequencies appear around  fundamental component. Faults in the motor 
will generate one-side band below the supply frequency which is called lower-side band 
(LSB) and one side band above the supply frequency which is called upper-side band 
(USB).

Figure 11. The structure representing various motor faults and fault diagnosis techniques.
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Even though thermal and vibration monitoring have been utilized for decades, most of the 
recent researches have been directed towards electrical monitoring of the motor with empha-
sis on inspecting the stator current of the motor.

5.1. MCSA for bearing localized defects

The MCSA method was utilized for diagnosis of the motor and inverter defects using infor-
mation from the motor stator current. In majority of applications, the stator current of an 
induction motor is easily obtainable because it is utilized in the protection of the motors from 
over-currents, ground currents. Thus, for the condition monitoring and fault diagnosis via 
MCSA, no extra sensors are required. It is a non-invasive method as it does not require direct 
access to the motor for its implementation [25, 52–58]. Thus, MCSA for the condition moni-
toring of the induction motors finds its application majorly in nuclear power plants, offshore 
pumping stations and defence industry where access to the motor is not possible.

Due to its non-invasive feature, MCSA has received the attention of many researchers and 
intensive research has been conducted on the MCSA. Initial efforts in MCSA can be credited to 
Schoen et al. [25, 53, 54]. They present a method to diagnose the motor faults based on the spec-
tral analysis of stator current signal. Artificial neural networks were trained to learn the char-
acteristic defect frequencies in current spectrum for the online fault diagnosis. The detection 
algorithm was implemented on a custom-designed test rig and its performance was verified on 
various fault types. Benbouzid et al. [55–57] addressed the application of MCSA for the diag-
nosis and localization of electrical and mechanical faults of induction motors. The initial steps 
taken to investigate the efficiency of MCSA for the purpose of motor fault diagnostic were 
discussed. Experimental results clearly illustrate the stator current spectral analysis sensitivity 
to induction motor faults. Later, Duque et al. [58] validated the bearing fault detection capabil-
ity of MCSA on inverter-fed induction motor. In the current spectrum analysis of the motor, 
running values are compared with baseline values. In real time applications, baseline values 
are dependent on the operating conditions. To tackle this issue, Stack et al. [59] proposed new 
method which keeps track on baseline data at various operating conditions of the motor. They 
used different load conditions and for each case they compare the baseline values with run-
ning values to estimate the health condition of the motor. Along with the FFT method for the 
analysis of the spectrum, they used some advance signal processing and pattern recognition 
techniques for defecting analysis of the motor. An assessment of monitoring methods used for 
detection of bearing localized faults of induction motors was presented by Refs. [38, 60–62]. 
They proposed stator current monitoring as a very applicable technique in an industrial envi-
ronment. Their research presented the current spectrum analyses along with noise cancellation 
method to detect mechanical faults of a variety of motors. They also propose a new method to 
damage the bearings via shaft current. The interpretation of the spectrum of the motor current 
indicates that this technique can successfully diagnose the bearing localized defects.

An improved stator current-based monitoring scheme was reported in Ref. [63], which 
perfectly blends Fourier transform, self-adaptive filter and rotor slot harmonics-based slip 
 estimation techniques together. The experimental results on the bearing outer race localized 
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defects demonstrate that the presented scheme is effective. In order to diagnose the incipient 
faults in rotor bars, a bilinear time-frequency analysis of stator current along with adaptive 
filter technology was performed by Boqiang et al. [64]. The results indicate that the pro-
posed method has the capability to diagnose broken rotor bar faults at their incipient stages. 
Application of MCSA for the detection of artificially damaged rolling bearings in asynchro-
nous machine was confirmed by Trajin et al. [65]. Blodt et al. [66] and Terra et al. [67] uti-
lized the stator current analysis and vibration analysis techniques to detect bearing localized 
defects. They also proposed a new model for the investigation of the effect of load torque 
variations on the stator current spectrum. The experimental results indicated that oscillations 
of the torque produce the varying frequency contents which can be observed in the stator 
current spectrum. Bayindir et al. [68] and Ioannides et al. [69] presented an automated fault 
detection system for the induction motors based on programmable logic controllers. They 
used the speed sensor, temperature sensor and current sensor to measure the motor speed, 
motor temperature and running current. The system was developed to automatic turn-off the 
motor if any one of the measured variable exceeds the preset values. However, the proposed 
condition monitoring system proves to be very expensive due to involvement of the sensors.

A novel method for the use of the stator current and efficiency of the motors as pointer of 
rolling-bearing defects was proposed by Frosini et al. [70, 71]. Their work describes the exper-
imental results of bearing localized faults in outer and inner race of bearings. The analysis 
of the reduction in the efficiency of the motor due to defected bearings was also reported. 
Ebrahimi et al. [72] investigated the efficiency of the MCSA for the detection of stator faults 
in permanent-magnet synchronous motors. Experimental results indicate that the introduced 
method can detect the short-circuit fault incisively. Mehala [73] used the MCSA scheme to 
identify the bearing localized defects. FFT spectrum of the motor stator current was obtained 
and analysed. Experiments were conducted on the two defect levels (hole sizes 2 and 4 mm) 
in outer and inner race of the bearing under no-load and full-load conditions. The results 
obtained through the experiments indicate that under no-load condition, the change in ampli-
tude values at characteristic defect frequencies is very small (<5 dB) however for full-load 
conditions, the change in amplitude is detectable (>5 dB to <8 dB). Along with FFT analysis of 
stator current, the researcher also performs wavelet and Park vector analysis of stator current 
for diagnosis of various motor faults.

A novel method was proposed by Romero et al. [74] which merged information entropy 
analysis with fuzzy logic inference to diagnose and classify faults like broken rotor bars, 
bearing malfunctions, stator unbalance and combinations of faults by analysing stator 
current signal. The proposed method shows satisfactory results that prove its suitability 
for online detection of single and multiple faults in an automatic way through its hard-
ware implementation. Seera et al. [75] presented a novel approach to detect and clas-
sify comprehensive fault conditions of induction motors using a hybrid fuzzy min–max 
(FMM) neural network and classification and regression tree (CART). MCSA method was 
applied to form a database comprising stator current signatures under different motor 
operating conditions. Comparison of stator current analysis via FFT and wavelet trans-
form was shown in Ref. [76]. Experimental results indicates that stator current  analysis via 
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FFT can diagnose bearing localized defects only under steady state conditions, while, it 
is unable to diagnose the faults when motor is operating in transient condition. However, 
stator current analysis via wavelet transform has the capability to diagnose the faults 
under steady state and transient operating conditions of the motor. Recently, a stand-
alone multi-sensor wireless system for continuous condition monitoring of induction 
motors has been proposed by Ref. [77]. The proposed wireless system provides a low-
cost alternative to an expensive condition monitoring technology available through data 
acquisition equipment.

In a recent study, the fault frequencies inside the stator current spectrum were analysed 
through iterative method which provides an efficient fault diagnosis in the non-linear 
motor operations [78]. The winding function approach was used by Ref. [79] to diagnose 
rotor faults. The theoretical derivations were validated with experimental results. To 
enhance the reliability of the fault diagnosis system, Choi et al. [80] proposed a condition 
monitoring scheme which is based on speed feedback error management. In Ref. [81] a 
cross-correlation-based condition monitoring system was used to diagnose the induction 
motor eccentricity faults. The validity of the proposed method was confirmed through real 
time experiments performed on digital signal processing (DSP)-based motor drive. In a 
recent paper, Aydin et al. [82] proposed a hybrid approach based on multiple wireless sen-
sor systems for fault diagnosis of induction motors. The proposed method was shown to 
be useful for analysing and monitoring signals from multiple induction motors. A novel 
analytical model based on stator current monitoring was developed by Blodt et al. [83] 
for the analysis of bearing defects. The results obtained through spectral analysis of the 
measured quantities validate the proposed theoretical approach. Stack et al. [84] presented 
various techniques to simulate artificial defects in the bearings of induction motor. Motor 
asymmetrical fault signatures were identified by Benbouzid et al. [85] through spectral 
analysis of motor current signal. An envelope analysis of the vibration signal was used to 
diagnose bearings localized defects [86]. The results achieved with proposed technique are 
shown to be strong function of selection signal bandwidth [86]. A wavelet-based condi-
tion monitoring system using analysis of the acoustic emission signal was proposed by 
Kang et al. [87]. A generalized fault analysis system in multi-phase machines was pro-
posed by Choi et al. [88].The fault diagnosing capability of the proposed scheme has been 
verified mathematically through simulations. Wang et al. [89] has used an improved com-
bination of the Hilbert and wavelet transforms to analyse the incipient bearing localized 
defects. Experimental results indicate that the extraction capability of bearing localized 
fault frequencies is greatly enhanced by the proposed method. An intelligent fault diagno-
sis scheme based on an independent component analysis was presented by Widodo et al. 
[90]. An integrated system for motor bearing fault identification is presented in Ref. [91]. 
Hwang et al. [91] proposed an integrated fault diagnosis system based on cepstrum coef-
ficient method for feature extraction from motor vibration signals. The experimental results 
indicate the effectiveness of cepstrum in diagnosing the bearing health. Neural networks 
models with a decision structure are presented in Ref. [92] to analyse the bearing localized 
defects. The results show good performance of the implemented model and its ability to 
identify the bearing localized faults.
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FFT can diagnose bearing localized defects only under steady state conditions, while, it 
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5.2. MCSA for gear defects

Gears are the main part of an electromechanical power transmission system in majority of 
industrial applications [93]. Unexpected failures can be prevented through detection of incip-
ient gear faults. This will also help to reduce machine down-time and minimize financial 
consequences of gear damages. This cannot be realized without using an efficient fault diag-
nosis and condition monitoring system [94]. Although vibration analysis has been shown to 
be the reliable method for gear fault detection but the sensitivity to the installation position 
and the background noise due to external mechanical excitations are main drawbacks of the 
vibration measurement for gear and researchers are constantly looking to have non-invasive 
method for gear fault diagnosis [95, 96]. The gear fault detection using non-invasive method 
offers great advantages over invasive techniques principally due to its effective cost and the 
need of minimum changes in the system installation. In this context, an extensive research 
has been performed during recent years for the gear fault diagnosis using non-invasive 
 techniques, example, using current and voltage measurements in the vicinity of motor drive 
 systems [97–101].

As related to this, Blodt et al. [102] examined the detection of mechanical fault-related load 
torque oscillations in induction motors using a stator current monitoring. They developed 
a theoretical model to show the link between torque oscillation and modulation of a stator 
current component. However, they neglect the impact of the gear stiffness on the stator 
current. The effect of gearbox characteristic frequencies in the stator current of induction 
machine was studied by Ref. [95]. It was shown that the input shaft, layer shaft and output 
shaft frequencies in a multi-stage gearbox appear in the electromagnetic torque spectrum. 
Also, these harmonics appear as the sideband frequencies around the electric supply fre-
quency of the stator current. The mesh frequencies were also well identified in the mea-
sured stator current. Their experimental investigation indicates that magnitudes of some 
rotation and mesh related frequencies are sensitive to the gear tooth fault [95, 103, 104]. A 
more rigorous attempt was carried out by Kia et al. [105, 106] to analyse the impact of motor 
coupled gear on the stator current spectrum. Their theoretical and experimental investiga-
tions indicate that harmonics appeared in motor current spectrum at mesh frequencies and 
mesh-related frequencies for healthy gears. For defected gear, additional harmonics related 
to fault-induced mechanical impacts are produced at the rotational frequency. The experi-
mental results indicate that mesh and mesh-related frequencies have very weak signatures 
and are suppressed in the noise. The diagnosis of damaged tooth of the gear through MCSA 
at motor full-load conditions was reported in Refs. [107–109]. They also presented the com-
parison of diagnosis capabilities of vibration, acoustics and stator current analysis tech-
niques. Stator current has been shown to be the suitable non-invasive method to diagnose 
gear faults. A simplified dynamic model considering a realistic behaviour of gear with mini-
mum number of gear mechanical parameters was used to study the effect of gear torsional 
vibrations on motor current spectrum [110–112]. The impact of transmission error in gear 
was shown to be related to pinion and wheel eccentricities and tooth profile abnormalities 
which produces pinion and wheel rotation sidebands around the fundamental and mesh 
frequencies.
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An attempt has been performed by Ottewill et al. [113] to diagnose the tooth pitting fault in a 
multi-stage gear. They have used a low-degree of freedom model for gear dynamic model. It was 
verified by Girsang et al. [114] that the gear teeth faults may generate mechanical impacts which 
can be observed in the torque and hence in machine electrical signatures. In Ref. [115], Huh et 
al. focused on extracting operating point independent fault signatures by using a kinematic 
error observer, spatial domain sampling methods and spatial domain signal filtering methods 
for gear fault diagnostics of electromechanical actuators. Bogiatzidis et al. [116] reported the 
identification of mechanical vibrations due to backlash phenomena appearing between the pin-
ion gear and the girth gear rim of the kiln is realized using the MCSA. The proposed diagnostic 
method was tested on under-scale laboratory test rig. It was shown that due to fault in pinion 
gear, the pinion rotation frequencies appear around fundamental supply frequency.

An online gear fault diagnosis system was reported in Refs. [108, 117] using a non-invasive 
stator current space vector analysis. The proposed algorithm is based on the computation of 
the fault index by using fault-related frequencies in the current space vector instantaneous 
frequency spectrum. Tests performed with different load levels demonstrate a possible online 
condition monitoring and fault diagnosis of gear tooth surface damage fault detection. It has 
been demonstrated that incipient faults in gears produce small fault signatures that are some-
times buried in environment noise and thus could not be reliably detected through MCSA. 
Recently, a statistical tool called spectral kurtosis with reference has been proposed to define 
the electromechanical system healthy state reference. This technique proves its effectiveness 
in case of load torque oscillation fault only [118].

Although MCSA has the capability to diagnose gear defects and bearing localized defects, 
however, very small change in amplitude occurs at characteristic defect frequencies under 
no-load condition. Also in an arbitrary noise condition, the small fault signatures are buried 
in noise and it is difficult to discriminate between change in amplitude value due to fault and 
random noise [38, 53–72]. Another disadvantage of the MCSA is that sometimes two side 
band components (LSB and USB) lie near to the fundamental component and amplitude of 
the side band components is suppressed by the highest peak at fundamental component. This 
can create misdetection in an online fault diagnosis system [107–118].

6. IPA for motor electrical defects

Since bearings are used to support the rotor during rotation, hence any defect in bearing will 
affect the radial movement of rotor. Due to this radial movement, air-gap between rotor and 
stator will change to cause magnetic flux variations. These flux variations create modulations 
(oscillations) in the instantaneous power which could be observed as two sideband components, 
at (2fe – fv), (2fe + fv), and one fault component appears directly at the vibration frequency (fv). The 
location of these harmonic frequencies allows the identification of abnormalities in the bearing.

The instantaneous power analysis (IPA) method has been used by several researchers to 
detect rotor and eccentricity defects. Ahmad [119] uses the motor current, voltage, flux and 
IPA methods to investigate the broken rotor bars and eccentricity defects of the motor. His 
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study shows that although the rotor bars and eccentricity defect of the motor can be detected 
through current, voltage and flux analysis, however, these techniques are not effective under 
no-load conditions of the motor. On the other hand, the instantaneous power analysis scheme 
diagnosis the rotor and eccentricity defects effectively even under no-load condition of the 

Figure 12. The stator current spectrum under no-load conditions of the motor (a) healthy motor and (b) defected bearing 
with 2 mm outer race defect.
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motor. This is due to the reason that the motor power is the product of the supply voltage 
and current so it contains more information than the current and voltage only. In later work, 
the superiority of the IPA method over MCSA was confirmed in [120–123] for the diagnosis of 
faults in rotor, stator and eccentricity.

The comparison of the MCSA and IPA for 2 mm bearing outer race defect is shown in Figures 
12 and 13, respectively. It has been observed from Figures 12 and 13 that the MCSA is not 

Figure 13. Instantaneous power spectrum under no-load conditions of the motor (a) healthy motor and (b) defected 
bearing with 2 mm outer race defect.
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 suitable for detection of defects at lower load levels because very small change in the ampli-
tude value (2 dB) appears at characteristic defect frequencies of 28 and 128 Hz in stator cur-
rent spectrum. However, comparatively large change in amplitude value (7 dB) appears at 
characteristic defect frequencies of 21, 79 and 179 Hz in instantaneous power spectrum. Also, 
it has been observed that the IPA carries an additional characteristic frequency component 
that provides an extra piece of information that can be utilized in a reliable intelligent condi-
tion monitoring system. Thus, IPA has more capability to detect bearing defects at low-load 
conditions as compared to MCSA.

7. Impact of environmental noise on decision making of existence of fault 
signatures

Incipient defects are defined as slowly developing defects or small unpredictable variations 
in the system. They are characterized by small amplitude compared to the useful signal. 
Considering the definition of incipient defects, as a slowly developing defect, it is important 
to address the issue of detecting these defects at the earliest possible stage meaning smallest 
amplitude (smallest severity). It has been observed that the low energy harmonics are pro-
duced due to incipient bearing localized faults and stator current analysis technique proves 
to be less efficient to detect low energy fault signatures especially under noisy environment. 
The IPA method has the ability to detect low energy fault signatures but in an online testing 
system it is difficult to discriminate the amplitude changes due to environment noise and 
due to existence of the fault. Therefore, it is unlikely to make decisions without considering 
the noise variations. As related to this, in an online fault diagnosis system the environmen-
tal noise modelling has been a practical issue and many studies have been performed to 
deal with it.

The averaging of multiple spectrums of stator current was used to eliminate the noise dis-
turbances [124]. Recently, in Ref. [125], Wiener filter is used to eliminate all signatures that 
are irrelevant to the motor fault signatures. To achieve the high performance of the condition 
monitoring system, a statistical process control (SPC) is used [63]. Golafshan et al. [126, 127] 
presented the Singular Value Decomposition (SVD) and Hankel matrix-based de-noising pro-
cess for the elimination of the background noise and the improvement in the reliability of the 
fault detection process. However, the proposed method is proven to be computationally inten-
sive. A classical multiple signal classification method has been proposed by Kia et al. [128] to 
suppress the noise during the fault diagnosis of the motor. However, the proposed method 
takes long computation time to find fault signatures and is affected by the low signal-to-noise 
ratio. To solve this problem, an algorithm that is based on zooming in a specific frequency 
range of the FFT spectrum was proposed in [129]. Kim et al. [130] proposed the idea for sepa-
rating rotor faults and load oscillations to reduce the false alarm rates in an online fault diag-
nosis system. It was reported in Ref. [131] that Wigner–Ville spectrum analysis based on cyclic 
spectral density (CSWVS) was able to separate the bearing fault  patterns from random noise 
in the vibration signal. As compared with the envelope analysis for rolling element bearing 
diagnosis, the strongest element of CSWVS may be its diagnostic ability for bearing with 
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distributed faults. In the experimental study, the results of envelope analysis, no matter what 
filtering techniques are used, fail to extract bearing fault features and might be misinterpreted 
as a gear fault. However, CSWVS utilizes the second order cyclo-stationary property of the 
vibration signals produced by bearing distributed fault, and clearly extracts its fault features 
reducing the masking effect of additive stationary noise. Wang et al. [132] addressed chal-
lenging issues on de-noising and identification of the incipient fault deterioration grade from 
the noisy vibration signal for aircraft engine rotor prognostics. The enhanced robust methods 
include an adaptive wavelet de-noising technique for weak signature enhancement and corre-
lation dimension for performance degradation assessment. The experimental results verified 
that the weak vibration signal features of rotor are successfully revealed and enhanced using 
adaptive wavelet de-noising method, and correlation well identify the rotor rub-impact fault 
deterioration grade.

Eccentricity faults in induction motor were analysed by Refs. [133, 134] using a cross-cor-
relation method. The pre-determined threshold levels that have been used are as follows: 
amplitude less than –60 dB healthy motor, amplitude –60 dB to –40 dB tolerable defects and 
amplitude higher than –40 dB severe defects. A statistically derived adaptive threshold defini-
tion was proposed by Toliyat et al. [135]. The experimental results confirm the validity of the 
proposed approach to diagnose eccentricity and rotor fault at 70% loading condition of the 
motor. Although, the proposed approach considers the noise variations in real time applica-
tions; however, the performance of the proposed approach was not tested under variable 
operating points of the motor. In a similar work, Rajagopalan et al. [136] use an adaptive 
threshold scheme based on percentage of the fundamental current signal. The advanced sig-
nal processing algorithms are used to diagnose fault signatures [137]. In this study, the thresh-
old is pre-determined based on prior tests before the diagnostic procedure starts. Although, 
the statistical performances of the instantaneous noise and bias with respect to motor operat-
ing points are not provided in that study but the suggested solutions present an intuitive way 
to design a performance oriented adaptive threshold scheme for an online fault diagnosis 
system. An analytical model to detect the incipient faults in the plant process in presence of 
an arbitrary noise was recently presented in Refs. [138–141]. Their modelled threshold scheme 
that is based on the probability distribution function has shown higher efficiency for incipient 
fault detection in noisy environment.

Notably, the pre-determined threshold schemes for reliable diagnosis of electrical faults in 
induction motor faults using MCSA presented in Refs. [133–137] could be used to estimate the 
fault severity, but these threshold schemes tend to detect sufficiently strong fault signatures 
to avoid noise interference. Thus the scheme could not be used to diagnose small fault signa-
tures associated to motor mechanical faults under no-load conditions.

Fournier et al. [142] defined the threshold references in healthy condition of the motor based 
on the statistical spectral kurtosis measurements. The threshold scheme produces efficient 
results at specific speed and load levels of the motor. However, this threshold scheme does 
not consider instantaneous noise variations with respect to motor operating point (load, 
speed), so errors in the detection occur when operating point of the motor changes. Picot et 
al. [143] proposed a threshold scheme for the detection of small fault signatures related to 
bearing cage defects in permanent magnet synchronous motor (PMSM). The noise variance of 
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the measured motor current spectrum was minimized by integration process and threshold 
was designed by calculating mean and standard deviation of the frequency bins. Although, 
the proposed method was shown to produce good performance at various speeds (variable 
supply frequency) of the PMSM, however, it has some limitations. Firstly, the performance of 
their designed threshold was not measured at various load conditions. Secondly, the designed 
threshold scheme is dependent on the sampling size and window size. The large window 
size may attenuate the amplitude of bearing fault signatures. The impact of noise variations 
with respect to load variations on the reliable decision making of the existence of small fault 
signatures needs to be investigated. Notably, this work provides intuitive way towards the 
design of performance-based decision making system independent of environment impacts 
and motor operating points.

Limitations of the existing non-invasive fault diagnosis techniques considering environment 
impacts are described in Table 1.

Reference Fault type Threshold design 
technique

Limitations

[133, 134] 2008, 
2011

Eccentricity Pre-determined 
threshold

• Does not count non-linear noise variations 
with respect to motor speed and load

• Detection with two sideband fault signa-
tures have ambiguities

[135]
2012

Eccentricity, Rotor Statistically derived 
threshold

• Does not count non-linear noise variations 
with respect to motor speed

• Detection with two sideband fault signa-
tures have ambiguities

[136]
2006

Eccentricity Pre-determined 
threshold

• Does not count non-linear noise variations 
with respect to motor speed and load

• Detection with two sideband fault signa-
tures have ambiguities

[137]
2006

Bearing, Rotor Zero input test-based 
statistical analysis

• Does not count non-linear noise variations 
with respect to motor speed and load

• Detection with two sideband fault signa-
tures have ambiguities

[142]
2013

Unbalance Reference-based 
statistical analysis 
(spectral kurtosis)

• Does not count non-linear noise variations 
with respect to motor load

• Detection with two sideband fault signa-
tures have ambiguities

[143]
2014

Bearing cage Defect Reference-based 
statistical analysis (mean 
and standard deviation)

• Does not count non-linear noise variations 
with respect to motor load

• Detection with two sideband fault signa-
tures have ambiguities

Table 1. Limitations of previously used MCSA-based fault diagnosis techniques considering environment impacts.
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8. Park vector analysis for bearing localized defects

Park vector analysis (PVA) of motor current which is mainly used for field oriented control of 
induction motor has received a growing attention in the recent years in condition monitoring 
applications. Few researchers have used PVA with emphasis on the bearing localized faults, 
rotor faults, eccentricity faults and stator faults [144–147]. In Park’s transformation process, 
the three balanced AC quantities (Ia, Ib, Ic) are reduced to two DC quantities (Id, Iq). In analysis 
of three-phase synchronous machines, Park’s transformation transfers three-phase stator and 
rotor quantities into a single rotating reference frame to eliminate the effect of time varying 
inductances [144, 145].

The Park vectors under ideal conditions of the motor represent a circular pattern centred at 
the origin. However, the shape of the circle changes in presence of the faults inside the motor 
and the various types of faults generate various types of shapes. Thus by detection of various 
patterns, one can analyse the type of fault inside the motor. The Park’s transform is a graphi-
cal method to analyse the status of motor and does not require analytical expressions to cal-
culate any specific defect frequency.

Zarie et al. [144] performed experiments on induction motor to diagnose bearing localized 
and extended defects (multiple holes in inner or outer race). Classification of the various 
faults was achieved through utilization of neural networks. It was concluded in their study 
that the proposed method provides a powerful and general approach to incipient fault 
detection. Spyropoulos et al. [145], Laughman et al. [146] and Parra et al. [148] reported 
that impact of the motor stator related faults could be examined through the Park vector 
transformation approach. It was claimed that by using this approach, effects of stator faults 
can be differentiated from time-varying loads. Salem et al. [147] measure the thickness of 
Park vector curve using curve splitting factor. The experimental results on bearing outer 
race defect indicate that thickness of the Park vector curve increases due to fault. Rezig et 
al. [149] and Salem et al. [150, 151] conducted experimental study to diagnose the bear-
ing localized defects and eccentricity faults through Park vector transform of motor stator 
current. Experimental results indicate that Park vector transform method can detect the 
occurrence of faults but unable to identify the fault locations. In a recent study, Kuruppu 
et al. 152] demonstrated that Park vector analysis method has capability to diagnose stator 
inter-turn faults in inverter-fed field-oriented control motors. Proof of accurate fault detec-
tion capability for a wide speed range is presented through simulation and experimental 
results.

The example of Park vector analysis of stator current for bearing localized defects is 
shown in Figure 14. It can be observed from Figure 14 that bearing localized defects 
cause an increase in thickness of the Id, Iq curves. The increase in curve thickness is due to 
the  harmonics induced by the localized defects inside the bearing of the motor. Therefore 
the analysis of the Id, Iq curves can be a useful means for the fault diagnosis of induction 
motors.
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current. Experimental results indicate that Park vector transform method can detect the 
occurrence of faults but unable to identify the fault locations. In a recent study, Kuruppu 
et al. 152] demonstrated that Park vector analysis method has capability to diagnose stator 
inter-turn faults in inverter-fed field-oriented control motors. Proof of accurate fault detec-
tion capability for a wide speed range is presented through simulation and experimental 
results.

The example of Park vector analysis of stator current for bearing localized defects is 
shown in Figure 14. It can be observed from Figure 14 that bearing localized defects 
cause an increase in thickness of the Id, Iq curves. The increase in curve thickness is due to 
the  harmonics induced by the localized defects inside the bearing of the motor. Therefore 
the analysis of the Id, Iq curves can be a useful means for the fault diagnosis of induction 
motors.
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Figure 14. Example of Park vector analysis of stator current for (a) healthy bearing, (b) outer race localized defect and 
(c) inner race localized defect.
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9. Non-invasive method for diagnosis of bearing distributed defects

Most of the published work on the bearing condition monitoring via non-invasive techniques 
as discussed in focused on diagnosis of bearing localized defects. It is based on some char-
acteristic fault frequencies that appear in spectrum of the stator current or instantaneous 
power. However, the absence of clear characteristic fault frequencies should not be inter-
preted as a completely healthy condition of the bearing. On the other hand, the bearing dis-
tributed faults produce unpredictable broadband effects which are not necessarily related 
with specific fault frequencies. These faults are common in industry, while they are often 
neglected in the research literature.

Time-domain analysis is a useful feature extraction tool for condition monitoring and fault diag-
nosis of electrical motors. Time domain averaging (TDA) is a traditional and typical method 
to detect fault signals in electrical motors. It extracts a periodic component of interest from a 
noisy compound signal. Data-clustering techniques are used to extract an average pattern that 
serves as the mechanical imbalance indicator. Zhang et al. [153] proposed the idea of creating 
artificial distributed defects in bearings of induction motor via externally applied shaft current. 
This idea was important as the defects would be sorted according to the kind of signatures 
generated by defects instead of where the defects were located physically. Most of the condi-
tion monitoring approaches concerning fault detection found in the literature have been mainly 
focused on identifying single-point defects. Indeed this class of defects is quite important, how-
ever, an approach that is comprehensive and robust must have the capability of detecting not 
only single-point defect but also distributed defects in the bearing. The data obtained from 10 
bearings failed by their proposed method, was analysed in time domain. It was shown that 
drastic variations in machine vibration and stator current occur in case of defected bearings. A 
method to segregate the bearing localized and distributed defects based on the time domain 
analysis of vibration, stator current and acoustic emission signals was presented by Navarro et 
al. [154]. The RMS values of the multi-sensory signal for healthy bearing, bearing localized and 
distributed defects were collected and faults were classified based on fuzzy inference analysis. 
In Refs. [155, 156], it was reported that generalized roughness in bearings of the motor pro-
duces a frequency spreading of the characteristic fault frequencies, thus making it difficult to 
detect with MCSA method. In the papers, it was proposed to use a statistical analysis of typical 
bearing faults in order to identify the spreading bandwidth related to bearing surface rough-
ness faults, relying on current and vibration measurements only. A diagnostic index based on 
computation of energy in the previously defined bandwidth was used to diagnose bearing 
surface roughness faults. The proposed method was validated experimentally with vibration 
and current signals, with robust and reliable results. However, implementation of their pro-
posed method needs computational efforts and implementation of this method for inner and 
outer race surface roughness was not given. In a recent study, Dalvand et al. [157] analyse bear-
ing distributed defects in inner and outer race of bearing simultaneously. They use statistical 
analysis of the instantaneous frequency of motor voltage space vector (MVSV) and vibration 
signal. The statistical indices like mean value (M), RMS value, standard deviation (SD), global 
kurtosis (GK), skew factor (SF) and crest factor (CF) were utilized to analyse the measured sig-
nal. It was shown that mean value and RMS are not proper indices to analyse the distributed 
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defects in bearings because the values of these indices for healthy and defected bearings are not 
significantly different. However, the GK, SF and CF are proper indices to diagnose bearing dis-
tributed faults. Experimental results indicate that although the statistical time domain analysis 
of MVSV and vibration signals have capability to diagnose the bearing distributed defects; 
however the reliability of MVSV is better than vibration monitoring. The analysis of individual 
defect in bearing elements was not presented in their study.

10. Condition monitoring issues

The literature review has shown that the invasive methods like vibration analysis, acoustic 
emission, noise analysis, chemical analysis and temperature measurements were applied to 
protect motors from various faults. However, sensors used in these methods are very expen-
sive. Another disadvantage of these methods is that they require access to machine for sensor 
installation which is not possible in every application. Also it requires special expertise for 
the proper installation of sensors on the machine for accurate results. Therefore sensor-based 
condition monitoring methods are not reliable.

Review papers presented in Refs. [158–163] on the condition monitoring techniques for the 
induction motors demonstrate that extensive research has been carried out in the last decade 
on the development of a non-invasive condition monitoring system for diagnosis of gear 
defects and bearing localized faults. It has been found that the mechanical vibration produce 
characteristic frequencies in stator current spectrum. The magnitude of the specific character-
istic frequencies increases with the increase of vibration. Every type of the motor defect has 
its own unique characteristic defect frequencies. The MCSA has been extensively used to find 
out these frequency modulations.

The implementation of MCSA for motor condition monitoring is not so complex. However, 
low amplitude fault signatures are induced due to incipient faults under no-load condition and 
thus could not be reliably diagnosed through MCSA. Recent developments in non-invasive 
condition monitoring scheme demonstrate that PVA of motor stator current has the capability 
to diagnose the motor faults at incipient stages. It was shown that the proposed method would 
give good analysis of machine faults even if accurate fault frequency information is unavail-
able. In recent years, IPA method to diagnose rotor, stator and eccentricity faults at incipi-
ent stages conditions was proposed by few researchers. However, applicability of the IPA for 
mechanical fault diagnosis in induction motor has not been reported in literature [164–170].

The incipient defect diagnosis in the machinery with unknown distribution of measured sig-
nals and unknown changed parameters is an important issue. However, most of the fault 
diagnosis techniques need a priori knowledge on the signal distribution, changed parameters 
and the changed amplitude. Fault detection plays a key role in enhancing today’s technologi-
cal system’s high demands for performance, productivity and security. The sensitivity of the 
condition monitoring and fault diagnosis methods depends on the application of main goals. 
When productivity is the main goal then the sensitivity requirement of condition monitoring 
and fault diagnosis system is weak and only large defects should be detected. However, when 
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security is the main goal, undetected defects even with very small severity assessment may 
result in catastrophic growing failures. For online fault diagnosis, when safety is the main 
priority, it is crucial to be able to diagnose incipient faults in presence of environment noise. 
Although IPA has some implementation advantages over MCSA for incipient fault detection 
but the signatures of IPA are affected by industrial noise perturbations. There is much scope 
for research to improve the capabilities of IPA in reliable online fault diagnosis in an arbitrary 
environment noise.

Notably, the substantial number of research studies has been found focusing into detection of 
bearing localized faults via non-invasive condition monitoring methods. Nonetheless, bear-
ing distributed defects does not produce localized defect frequencies and thus could not be 
analysed via these methods. Recently, few studies have been found focusing on time domain 
analysis of stator current signal and extracting the features like RMS and kurtosis values. 
However, complexity involved in time domain analysis of stator current signal is the major 
drawback. As PVA performs the graphical analysis of stator current and does not require 
frequency information for fault detection thus its capability to diagnose bearing distributed 
defects should be further researched.

The advantages and drawbacks of the existing non-invasive condition monitoring methods 
are presented in Table 2.

11. Future directions

Based on the findings, there are further problems to be considered both in the development of 
the technique and in the experimental design. These include

• Development of non-invasive condition monitoring scheme to diagnose faults in an arbi-
trary environment noise conditions

No CM technique Advantages Drawbacks Reference

1. MCSA • Inexpensive

• Non-invasive

• Unable to detect defects at incipient 
stages

• Fault detection affected by environment 
noise

[25, 38, 52–73]

2. PVA • Inexpensive

• Non-invasive

• Further investigation required to test its 
capability for bearing distributed defects

[144–152, 171]

3. IPA • Inexpensive

• Non-invasive

• Can detect rotor 
and eccentricity 
defects at incipi-
ent stages

• Fault detection affected by environment 
noise

• Capability to diagnose mechanical faults 
needs to be tested

[119–123]

Table 2. Advantages and drawbacks of non-invasive condition monitoring methods.

Fault Diagnosis and Detection114



security is the main goal, undetected defects even with very small severity assessment may 
result in catastrophic growing failures. For online fault diagnosis, when safety is the main 
priority, it is crucial to be able to diagnose incipient faults in presence of environment noise. 
Although IPA has some implementation advantages over MCSA for incipient fault detection 
but the signatures of IPA are affected by industrial noise perturbations. There is much scope 
for research to improve the capabilities of IPA in reliable online fault diagnosis in an arbitrary 
environment noise.

Notably, the substantial number of research studies has been found focusing into detection of 
bearing localized faults via non-invasive condition monitoring methods. Nonetheless, bear-
ing distributed defects does not produce localized defect frequencies and thus could not be 
analysed via these methods. Recently, few studies have been found focusing on time domain 
analysis of stator current signal and extracting the features like RMS and kurtosis values. 
However, complexity involved in time domain analysis of stator current signal is the major 
drawback. As PVA performs the graphical analysis of stator current and does not require 
frequency information for fault detection thus its capability to diagnose bearing distributed 
defects should be further researched.

The advantages and drawbacks of the existing non-invasive condition monitoring methods 
are presented in Table 2.

11. Future directions

Based on the findings, there are further problems to be considered both in the development of 
the technique and in the experimental design. These include

• Development of non-invasive condition monitoring scheme to diagnose faults in an arbi-
trary environment noise conditions

No CM technique Advantages Drawbacks Reference

1. MCSA • Inexpensive

• Non-invasive

• Unable to detect defects at incipient 
stages

• Fault detection affected by environment 
noise

[25, 38, 52–73]

2. PVA • Inexpensive

• Non-invasive

• Further investigation required to test its 
capability for bearing distributed defects

[144–152, 171]

3. IPA • Inexpensive

• Non-invasive

• Can detect rotor 
and eccentricity 
defects at incipi-
ent stages

• Fault detection affected by environment 
noise

• Capability to diagnose mechanical faults 
needs to be tested

[119–123]

Table 2. Advantages and drawbacks of non-invasive condition monitoring methods.

Fault Diagnosis and Detection114

The non-invasive IPA has shown some implementation advantages over MCSA to 
reliably diagnose mechanical faults. However, small fault signatures under low load 
conditions are buried in noise and it is difficult to discriminate amplitude changes 
due to fault and due to noise. Thus, there is a need to develop a robust non-invasive 
condition monitoring scheme to make reliable decisions on the existence of fault 
signatures.

• Development of non-invasive condition monitoring scheme to diagnose bearing distrib-
uted faults

Most of the published work on the bearing condition monitoring via non-invasive tech-
niques is focused on diagnosis of bearing localized defects. It is based on the some 
characteristic fault frequencies that appear in spectrum of the stator current or instanta-
neous power. Nonetheless, bearing distributed defects does not produce characteristic 
defect frequencies and thus could not been analysed via MCSA or IPA. These faults are 
common in industry, while they are often neglected in the research literature. As PVA 
performs the graphical analysis of stator current and does not require characteristic 
defect frequencies information for fault detection thus its capability to diagnose bear-
ing distributed defects should be further researched.

• Development of hand-held instrument for on-site machine condition monitoring

The IPA and PVA algorithms could be embedded to develop a hand-held instrument for 
on-site condition monitoring of induction motors. This will help to reduce the installation 
cost of the data acquisition system especially for small and medium scale industrial use.

• Reliability tests for mainstream industries

The developed IPA and PVA algorithms should be expanded and utilized to analyse 
faults in turbines and generators. For consideration to be acceptable by the main stream 
industries, a reliability test of the developed algorithms should be conducted on large 
size motors (more than 40 HP).

• Multiple bearing faults analysis

Even though the two techniques as proposed i.e. the instantaneous power analysis and 
Park vector analysis can monitor the conditions of induction motors from various scenar-
ios, however these are not sufficient for most applications because outcomes of the analy-
sis are based on the assumptions that each fault occurs independently. The extension of 
the approach as proposed in this work, to understand how each approach reacts to a com-
bination of several faults (e.g. stator, rotor, eccentricity, bearings, etc.), would be useful.

12. Conclusion

The ability to forecast motor faults at incipient stages is vital to reducing maintenance costs, 
operation down-time and safety hazards. This paper synthesized the progress in the research 
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and development in condition monitoring and fault diagnosis of induction motors. The 
review presented in this paper has contributed to an improved understanding of the devel-
opment of practical non-invasive condition monitoring and diagnostic tool for induction 
motors. The non-invasive methods, namely MCSA, PVA and IPA overcome the disadvantages 
associated to invasive methods. The MCSA, PVA and IPA can successfully diagnose the gear 
and bearing localized defects. However, further research is required to analyse bearing dis-
tributed faults via non-invasive condition monitoring methods. It has been observed that IPA 
has some implementation advantages over MCSA for incipient fault detection but IPA can be 
affected by environment noise perturbations. There is much scope for research to improve the 
capabilities of IPA in reliable online fault diagnosis system operating in an arbitrary environ-
ment noise. Furthermore, to realize the greatest economic and implementation benefits of IPA 
and PVA, it is important to design a hand-held condition monitoring system based on IPA 
and PVA techniques by considering the asset management perspective.
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Abstract

Dealing with industrial applications, the implementation of condition monitoring
schemes must overcome a critical limitation, that is, the lack of a priori information
about fault patterns of the system under analysis. Indeed, classical diagnosis schemes,
in general, outdo the membership probability of a measure in regard to predefined
operating scenarios. However, dealing with noncharacterized systems, the knowledge
about faulty operating scenarios is limited and, consequently, the diagnosis performance
is insufficient. In this context, the novelty detection framework plays an essential role for
monitoring systems in which the information about different operating scenarios is
initially unavailable or restricted. The novelty detection approach begins with the
assumption that only data corresponding to the healthy operation of the system under
analysis is available. Thus, the challenge is to detect and learn additional scenarios
during the operation of the system in order to complement the information obtained by
the diagnosis scheme. This work has two main objectives: first, the presentation of
novelty detection as the current trend toward the new paradigm of industrial condition
monitoring and, second, the introduction to its applicability by means of analyses of
different novelty detection strategies over a real industrial system based on rotatory
machinery.
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reduction, industrial monitoring applications, novelty detection, open set recognition
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1. Introduction

Currently, condition monitoring plays a key role in the reliability and safety strategies of
most of the industrial applications [1]. Classical industrial condition monitoring methodolo-
gies imply the estimation of numerical features and their posterior processing in order to
characterize the available physical magnitudes acquired during the operation of the system
under analysis. Such numerical feature vectors are, then, presented to a classification algo-
rithm in order to obtain a diagnosis outcome [2]. In this procedure, the algorithm of classifi-
cation is previously trained with available data representative of different system conditions.
Thus, during the regular operation of the condition monitoring scheme, each measurement
acquired from the system will be transformed to a vector of numerical features, and its
similarities with previous patterns will be evaluated in order to obtain the related probabil-
ity. During the last decades, a great deal of studies has been done around different aspects of
the electromechanical condition monitoring, that is, the potentiality of different physical
magnitudes for fault detection, the analysis of time, frequency and time-frequency domains
for numerical features’ estimation, the effect of feature reduction techniques for patterns’
characterization and dealing with data-based approaches and multiple classification strate-
gies for diagnosis improvement [3, 4]. All of these works are, with no doubt, a major step
forward to the study, research and development of enhanced condition monitoring schemes
to be applied to electromechanical systems. However, currently, the scientific and industrial
communities are working together toward more demanding industrial challenges in the
frameworks of Industry 4.0 [5] and Zero-defect manufacturing [6]. Indeed, further capabili-
ties are expected from the condition monitoring developments in order to face questions
about their practical implementations, questions such as: How must condition monitoring be
managed in front of new operating scenarios not previously considered?,How to detect new operating
scenarios?, Which numerical features should be used for unknown patterns’ detection?, How to
preserve the diagnosis reliability in the presence of new patterns?, Is it possible to automate these
considerations or is the aid of an expert required? In order to find answers to such questions,
specific research is being gathered around the so-called novelty detection topic, which can be
defined as the task of recognizing that the data under analysis differ, in some respect, from
the initial available data.

Indeed, a priori characteristic fault patterns of specific rotatory machinery are not usually
available and highly difficult to estimate through theoretical approaches. Thus, condition
monitoring strategies capable of detecting novel operating conditions, alongside the classifica-
tion of known conditions, represent the most convenient solutions [7]. This approach is known
as the open set recognition problem, where only a reduced set of known operating scenarios
are included in the initial dataset and used during the training stage, and, then, novel
(unknown) scenarios may appear during the online diagnosis stage. In general terms, in order
to deploy a novel detection strategy, a model must be trained with all the available data
describing the initial-known scenarios of the machinery under monitoring. Thus, the model
generates a threshold system that allows to discriminate between known scenarios and mea-
surements corresponding to new cases, novelties. Different approaches differ in the way that
the threshold system is generated [8].
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In this chapter, first, a more comprehensive description of the novelty detection topic, includ-
ing different approaches and their dependencies, is introduced. Later, the practical application
of novelty detection applied over an industrial electromechanical system is described. The
performances obtained with different novelty detection strategies, including the effect of
feature reduction, are discussed finally.

2. Novelty detection

The introduction of novelty detection into the classical monitoring chain represents a previous
condition to the diagnosis assessment. The classical step flow to implement novelty detection
is shown in Figure 1. The procedure begins with the off-line processing of the available
information (generally, the healthy behavior of the electromechanical chain). Such processing,
in regard to the raw data acquired (stator currents, temperatures, etc.), consists of the defini-
tion of the same blocks as in classical diagnosis procedures, that is, feature estimation (calcu-
lation of a set of numerical features) and feature reduction (feature vector transformation for
improved characterization). Once the available data is characterized by vectors of D features,
the configuration of the novelty detection model follows. This part depends entirely on the
nature of the novelty model (different approaches can be applied); however, the objective is the

Figure 1. Implementation scheme of novelty detection, including the offline initialization for knowledge delimitation and
the online monitoring for novelty evaluation.
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delimitation of the available knowledge defining a set of mathematical descriptions in the
D-dimensional feature space in which the available database is projected [9].

Thus, during the online monitoring, the novelty detection model will analyze the new acquisi-
tions and will determine if the new data correspond to known operating scenarios previously
learned or present different characteristics and can be considered novel representations. In case
of known operating scenarios, the diagnosis follows. It must be noted that the diagnosis
procedure could include different feature estimation and feature reduction stages because its
objective is completely different. In this sense, the novelty detection does not require different
labels since all data belongs to the class knowledge or normal. The diagnosis, however, requires
to maintain different labels in order to allow the identification of the different operating
scenarios. In case of unknown operating scenarios, the diagnosis cannot be carried out since
the diagnosis reliability would be affected. In this case, the presence of novel data is reported
and, after the supervision of an expert, the measurements are stored in order to upgrade the
known operating scenarios, which will imply the retraining of the novelty model [10].

In order to illustrate the novelty detection operation, an example is shown in Figure 2. A
D = 2-dimensional feature space is considered, in which a set of measurements representing
the available data has led to the definition of the boundaries corresponding to the known
conditions. When new measurements are acquired, the novelty model analyzes them and
determines, in this example by means of their position in the 2-dimensional feature space, if
they represent novelty or if the behavior is still considered known. If a significant amount of
novel acquisitions with the same characteristics are detected, then, a novel operation mode is
detected and, if validated, the data will be included as known behaviors.

Indeed, the detection of novel events is an important ability of any condition monitoring
scheme. Considering the fact that it cannot be trained within a machine learning system with
all possible systems’ variability, it becomes important to include the differentiation capability
between known and unknown object information during the system's monitoring. However, it
has been considered in practice by several studies that the novelty detection is an extremely

Figure 2. Example of a novelty detection basic operation, including available data, Δ, mathematical description of the
available data, --, novel behaviors detected as outliers, □ and novel behaviors detected as the novel operating scenario, Ο.
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challenging task. It is for this reason that there exist different approaches of novelty detection
that have been demonstrated to perform well under different applications [11, 12]. Unfortu-
nately, it is clearly evident that there is no single best model for novelty detection, and the
success depends not only on the type of the method used but also on the statistical properties
of the available data. Next, the three basic novelty detection approaches are described, includ-
ing probabilistic, domain-based and distance-based methods.

2.1. Probabilistic methods

Probabilistic approaches to novelty detection are based on estimating the probability density
function (PDF) of the available data. The resulting distribution may then be thresholded to
define the boundaries of normality in the feature space and assess whether a new measurement
belongs to the same distribution or not. The training data is assumed to be generated from
some underlying probability distribution. This estimation usually represents the novelty
model, and a novelty threshold can be set over such estimation. The estimation of the under-
lying data density from a multivariate training dataset is a well-established topic [10].

Probabilistic methods are divided in parametric and nonparametric approaches. Parametric
approaches impose a restrictive model on the data, which results in a large bias when the
model does not fit the data. Nonparametric approaches set up a very flexible model by
making fewer assumptions over the data: The model grows in size to accommodate the
complexity of the data, but it requires a large sample size for a reliable fit out of all the free
parameters. The opinion in the scientific literature is divided as to whether various tech-
niques should be classified as parametric or nonparametric. For the purposes of providing
probabilistic estimators, Gaussian Mixture Model (GMM) and Kernel Density Estimator
(KDE) have proven popular. The GMM is typically classified as a parametric technique [11]
because of the assumption that the data is generated from a weighted mixture of Gaussian
distributions. The KDE is typically classified as a nonparametric technique [13] as it is closely
related to histogram methods, one of the earliest forms of nonparametric density estimation
approaches.

2.1.1. Gaussian-mixture model

The GMM is a parametric probability density function represented as a weighted sum of
Gaussian component densities. The GMM parameters are estimated from the available train-
ing data using, for example, the iterative expectation-maximization algorithm or the maximum
a posteriori estimation. Thus, a GMM is a weighted sum of M component Gaussian densities,
mathematically described as,

pðxjλÞ ¼
XM

i¼1

wi g xjμi,
X

i
� �

(1)

where x is a D-dimensional vector, wi, i=1,..M are the mixture weights and gðxjui,X iÞ, i=1,..,M
are the component Gaussian densities. Each component density is a D-variate Gaussian func-
tion of the form,
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with mean vector µi and covariance matrix Σi. The mixture weights satisfy the constraint that
XM

i¼1wi ¼ 1. The complete Gaussian mixture model is parameterized by the mean vectors,
covariance matrices and mixture weights from all component densities. These parameters are
collectively represented by the notation λ ¼ fwi,μi,Σig, i ¼ 1, ::,M. There are several variants
on the GMM. The covariance matrices, Σi, can be in full rank or constrained to be diagonal.
Additionally, parameters can be shared, or tied, among the Gaussian components, such as
having a common covariance matrix for all components. The choice of model configuration is
often determined by the amount of data available for estimating the GMM parameters and
how the GMM is used in a particular application [14]. In fact, GMM can suffer from the
requirement of large numbers of training examples to estimate model parameters. A further
limitation of parametric techniques is that the chosen functional form for the data distribution
may not be a good model of the distribution that generates the data.

One of the major issues in novelty detection is the selection of a suitable novelty threshold.
Within a probabilistic approach, novelty scores can be defined using the unconditional proba-
bility distribution zðxÞ ¼ pðxÞ and a typical approach to setting a novelty threshold k is to
threshold this value, that is, pðxÞ ¼ k. However, because pðxÞ is a probability density function,
a threshold on pðxÞ has no direct probabilistic interpretation. Some studies have interpreted the
model output pðxÞ probabilistically, by considering the cumulative probability P associated
with pðxÞ, that is, determining the probability mass obtained by numerically estimating the
integral of pðxÞ over a region R for which the value of pðxÞ is above the novelty threshold k [15].
For unimodal distributions, one can integrate from the mode of the probability density func-
tion to the probability contour defined by the novelty threshold pðxÞ ¼ k, which can be
achieved in a closed form for most regular distributions.

2.1.2. Kernel density estimator

Nonparametric approaches do not assume that the structure of a model is fixed, that is, the
model grows in size necessary to fit the data and accommodates the complexity of the data.
The simplest nonparametric statistical technique is the use of histograms. The algorithm
typically defines a distance measure between a new test data point and the histogram-based
model of normality to determine if it is an outlier or not [10]. For multivariate data, attribute-
wise histograms are constructed and an overall novelty score for a test data point is obtained
by aggregating the novelty scores from each attribute. However, when a histogram is defined,
it is necessary to consider the width of the bins (equal subintervals in which the whole data
interval is divided) and the end points of the bins (where each of the bins starts). In conse-
quence, the histograms present a nonsmooth behavior. In order to alleviate this deficiency, the
kernel estimators were proposed.

It must be considered that observations are being drawn from some unknown probability
density function pðxÞ in a Euclidian D-dimensional feature space. Thus, considering a region
R containing the D-dimensional measurement x, the probability mass associated with this
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region is given by P ¼
ð

R
pðxÞdx. Taking into account a dataset comprising N observations

drawn from pðxÞ, each data point has a probability P of falling within R, and the total number
K of points that lie inside R will be distributed according to the binomial distribution

BinðKjN,PÞ ¼ N!
K!ðN�KÞ!P

Kð1� PÞ1�k. The mean fraction of points falling inside the region is

E½KjN� ¼ P, and the variance around this mean is var½KjN� ¼ Pð1� PÞ=N. For large N, this
distribution will sharply peak around the mean and so K ffi NP. If, however, it is assumed that
the region R is sufficiently small that the probability density pðxÞ is roughly constant over the
region, then P ffi pðxÞV, where V is the volume of R. Thus, density estimate is obtained in the
form,

PðxÞ ¼ K
NV

(3)

Note that the validity of Eq. (3) depends on two contradictory assumptions, namely that the
region R is sufficiently small that the density is approximately constant over the region and yet
sufficiently large (in relation to the value of that density) that the number K of points falling
inside the region is sufficient for the binomial distribution to sharply peak. The resultant Eq. (3)
can be exploited in two different ways. Either it can be fixed K and the value of V can be
determined from the data, which gives rise to the K-nearest-neighbor technique that will be
presented later, or it can be fixed V and K can be determined from the data, giving rise to the
kernel approach. It can be shown that both the K-nearest-neighbor density estimator and the
kernel density estimator converge to the true probability density in the limit N ! ∞, provided
V shrinks suitably with N, and K grows with N [13]. Thus, considering the region R as a small
hypercube centered on the point x at which is desired to determine the probability density, the
number K of points falling within region is defined as follows,

KðuÞ ¼ 1, juij ≤ 1
2
, i ¼ 1, ::,D

0, otherwise

(
(4)

which represents a unit cube centered on the origin. The function KðuÞ is an example of a
kernel function and in this context is also called a Parzen window. From Eq. (4), the quantity
K x�xi

h

� �
will be one if the data point xi lies inside a cube of side h centered on x and zero

otherwise. The total number of data points lying inside this cube will therefore be

K ¼
XN

i¼1
k x�xi

h

� �
. Substituting this expression in Eq. (3) gives the following result for the

estimated density at x,

pðxÞ ¼ 1
N

XN

i¼1

1
hD

k
x� xi
h

� �
(5)

where V ¼ hD for the volume of a hypercube of side h in D dimensions. Eq. (5) represents the
kernel density estimator [16]. Even though Gaussian kernels are the most often used, there are
various choices among kernels that can be found in the literature [17].

Evaluation of Novelty Detection Methods for Condition Monitoring applied to an Electromechanical System
http://dx.doi.org/10.5772/67531

137



2.2. Domain-based method

Domain-based method requires a boundary to be created based on the structure of the training
dataset. These methods are typically insensitive to the specific sampling and the density of the
target class because they describe the target class boundary, or the domain, and not the class
density. Class membership of unknown data is then determined by their location with respect
to the boundary. Domain-based novelty detection is approached with the two-class problem in
terms of Support Vector Machine (SVM), where the location of the novelty boundary is
determined using only those data that lie closest to it (in a kernel-based transformed space),
by means of the support vectors. All other data from the training set (those that are not support
vectors) are not considered when setting the novelty boundary. Hence, the distribution of data
in the training set is not considered, which is seen as an easy novelty detection approach [7].
The original SVM is a network that is ideally suited for binary pattern classification of data that
are linearly separable. Indeed, the SVM defines a hyperplane that maximizes the separating
margin between two classes. Since the introduction of the original idea, several modifications
and improvements have been made.

2.2.1. Support vector data description

A data domain description method, inspired by the support vector machine approach, called
the Support Vector Data Description (SVDD), is used for novelty or outlier detection. The
objective is the definition of a spherically shaped decision boundary around a set of measure-
ments by a set of support vectors describing the hypersphere boundary. The method allows the
possibility of transforming the data to new feature spaces, where the SVDD can obtain more
flexible and more accurate data descriptions. The minimizing problem to delimitate the radius

of the hypersphere is expressed as the Lagrangian, L ¼
X

i
αiðxi�xiÞ �

X
i, j αiαjðxi�xjÞ, under

the constraints of 0 ≤αi ≤C and
X

i
αi ¼ 1, where αi, j are the Lagrange multipliers, xi, j are the

data training points, the variable C gives the trade-off between simplicity (or volume of the
sphere) and the number of errors (number of target objects rejected). For those objects the
coefficients αi, j will be nonzero and are called the support objects. In order to determine
whether a new measurement is within the hypersphere, the distance to the center of the sphere
has to be calculated. A new measurement z is considered known when this distance is smaller
than the radius,

ðz�zÞ � 2
X
i

αiðz�xiÞ þ
X
i, j

αiαjðxi�xjÞ ≤ r2 (6)

where a is the center of the sphere and r is the radius [18]. Kernels could be applied to soften
the margins of the sphere, being applied over the measures and data descriptors.

2.2.2. One-class support vector machine

The One-Class SVM, OC-SVM, is based on the definition of the novelty boundary in the
feature space corresponding to a kernel, by separating the transformed training data from the
origin in the feature space, with the maximum margin. This approach requires fixing a priori
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the percentage of positive data allowed to fall outside the description of the normal class. This
makes the OC-SVM more tolerant to outliers in the normal training data. However, setting this
parameter strongly influences the performance of this approach. The shape of the domain
delimiting the boundaries depends on the kernel selected. Thus, the development of the
algorithm is the classic SVM approach. The difference with the other domain-based method
approach is that OC-SVM does not consider a specific structure (e.g., a hypersphere) to delimit
the domain and therefore does not automatically optimize the model parameters by using
artificially generated unlabeled data which are uniformly distributed. The detection of novelty
is therefore delimited by,

f ðxÞ ¼
XN

i¼1

αiKðxi, xÞ � p (7)

where p is an offset. The famous kernel trick is the procedure of using a kernel function in
input space, Kðxi, xÞ, to replace the inner product of two vectors into a huge, or even infinite,
dimensional feature space. Some drawbacks of these methods are found in literature reviews
[7], and it turns out to be surprisingly sensitive to specific choices of representations and
kernels in ways which are not very transparent. In addition, the proper choice of a kernel is
dependent on the number of features in the binary vector. Since the difference in performance
is very dramatic based on these choices, this means that the method is not robust without a
deeper understanding of these representation issues.

2.3. Distance-based method

Distance-based methods represent a novelty detection approach similar to that of estimating
the PDF of data. Distance-based methods such as nearest neighbors or clustering are based on
well-defined distance metrics to compute distance, as the similarity criterion, among data
points.

2.3.1. Nearest neighbor

The main idea that rears this technique is that the normal data is projected near their neighbor-
hoods, while novelties will be projected far from their neighbors. That is, considering an
unknown data point x, this point is accepted as normal if the distance to its nearest neighbor
y, in the training set, is less than or equal to the distance from y to the nearest neighbor of y in
the training set. Otherwise, x is considered as novelty. Euclidian distance is the most popular
choice for univariate and multivariate continuous attributes,

‖x� y‖ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

i¼1
ðxi � yiÞ2

r
(8)

Several well-defined distance metrics to compute the distance (or the similarity measure)
between two data points can be used, which can broadly be divided into distance-based
methods, such as the distance to the kth nearest neighbor and local density-based methods in
which the distance to the average of the k's nearest neighbors is considered [11].
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In conclusion, novelty detection approaches differ on the assumptions made about the nature
of the available data. Each approach exhibits its own advantages and disadvantages and faces
different challenges for complex datasets. Table 1 collects the main characteristics of the
considered methods. Thus, probabilistic methods make use of the distribution of the training
data to determine the location of the novelty boundary. Domain-based methods determine the
location of the novelty boundary using only those data that lie closest to it and do not make
any assumptions about the data distribution. Distance-based methods require the definition of
an appropriate distance measure for the given data.

3. Case study

In order to illustrate the practical implementation of novelty detection in an industrial appli-
cation, an interesting case study is proposed next. Indeed, as it has been mentioned, currently,
due to the worldwide market situation, the industrial sector is being subjected to a high degree
of competitiveness. Critical sectors as the automotive industry are investing in higher levels of
quality and safety assessment procedures in order to reduce costs without compromising the
attributes of their mechanical manufactured assets. In regard to the automotive rotatory
mechanical components, such as the electrical-assisted power steering columns (EPS), end-of-
line tests (EOLs) are carried out to analyze their performances. The EPS column is rotated by a
test machine in order to quantify the required torque to perform a complete revolution of the
EPS column without the influence of any external load. Thus, if the recorded torque is com-
pared with a reference pattern for decision support purposes, then, the EOL test is complete.
However, the condition monitoring of the EOL machines, as the represented in Figure 3, has

Method Advantages Disadvantages

Domain-
based
i.e. One-class
SVM

Robust to labeled outliers in training by forcing
them to lie outside the description.
Robust to unlabeled outliers in training.

Several configuration parameters.
Sensitive to the scaling of the feature values.
Requires a minimum number of training.

Probabilistic
parametric
i.e. Gaussian
mixture models

Great advantage when a good probability
distribution is assumed.
Provides a more flexible density method.

Requires a large number of training samples to
overcome the curse of dimensionality.
The distribution of the data is assumed.
Unlabeled outliers in training affect the estimation
of the covariance matrix.

Probabilistic
nonparametric
i.e. Kernel
density
estimator

Flexible density model.
Possible configuration of the kernel width h on
each feature direction.
Low computational cost for training.
The density estimation is only influenced locally.

Requires a large number of training samples to
overcome the curse of dimensionality.
Expensive computational cost for testing.
Limited applicability of the method when there is a
large dataset in high-dimensional feature spaces.

Distance-
based
i.e. k-NN

Rejects parts of the feature space which are within
the target distribution.
Lack of configuration parameters, besides k;
therefore, it relies completely on the training
samples.

Scale sensitive due to the use of distances in the
evaluation of test objects.
Performance affected when unlabeled outliers are
presented in training.
Sensitive to noise.

Table 1. Summary of the main characteristics of the novelty detection approaches.
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not being attended classically. The maintenance program is limited to a preventive approach,
leading to torque response deviations due to EOL machine degradation that are not detected
by the machine operator until an evident malfunction. In this regard, the detection and
identification of EOL malfunctions during its operation becomes an impactful contribution to
the sector and is considered a challenging condition-based monitoring scenario.

In this work, a specific end-of-line test machinery is analyzed. The system under monitoring is
based on an electrical drive, where a 1.48 kW at 3000 rpm servomotor connected to a 60:1
reduction gearbox emulates the input torque of the steering wheel to perform a 180� turn in
order to evaluate the mechanical performances of power-assisted steering systems. The

Figure 3. End-of-test machine, composed by a servomotor, a gearbox, an encoder, a torque transducer and a pneumatic
clamp to hold the intermediate shaft of the EPS column.
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measurement equipment is focused on the acquisition of the torque signal and the rotatory
shaft position from the encoder. Data acquisition is done at 1 kHz of sampling frequency by
means of a NI cDAQ-9188, composed by the modules NI-9411 and NI 9215.

The torque induced by the drive is expected to follow a specific predefined set point pattern.
However, these test systems present two main limitations: first, if the test machine does not
generate the input of the torque set point correctly, an inaccurate result is obtained during the
assessment of the power-assisted steering system, leading to the nonvalidation of the compo-
nents under test and second, the lack of malfunctions’ characterization over the testing machine,
since the faults’ variability and appearance in the torque generation test are unpredictable. Thus,
this work presents an electromechanical system novelty detection approach, based on the tem-
poral torque signal characterization by statistical time features and the evaluation of different
novelty detection algorithms (probabilistic, domain-based and distance-based), for novelty
assessment.

In order to analyze the performance of the proposed methodology, some faulty conditions
have been induced in the machine to provoke different severity degrees of a common fault
scenario. Three operating scenarios are considered, that is, healthy, H, a coupling low wear,
CLW, and a coupling high wear, CHW. The coupling wear fault is emulated by employing two
different intermediate elastomers in the torque limiter coupling, each one with different
dynamic torsional stiffness (DTS). The values of the DTS of the pieces under test are all lower
than the standard used in the machine in order to emulate classical wear, thus, 2580 Nm/rad
corresponds to CLW and 2540 Nm/rad to CHW.

3.1. Method

During the test, the assisting motor of the EPS is not powered. The test starts smoothly in a
clockwise direction for the first 45� until a speed set point is reached. The acceleration time
depends on the drive capability. During the next 360�, the speed is fixed at the set point, in this
case 15 rpm. The last additional 45� is for a mild brake of the EPS column under test. Then, the
same procedure is employed to return to the original start point in the opposite direction. The
drive is applied to the steering shaft of the EPS. Then, the torque signal analysis is carried out
during the stationary speed set point corresponding to a 360� turn of the EPS column. It is
expected that malfunctions and anomalies could appear during segments of the revolution of
the EPS column; therefore, the segmentation represents a viable strategy to gain resolution
during the characterization. That is, the 4-second torque signal (time taken to perform the 360�

turn) is segmented in four parts of 1 second. A set of five statistical time-domain features is
calculated from each segment of the torque signal. The proposed features are listed in Table 2.
These features have been successfully employed in different studies for electromechanical
systems’ fault detection [19]. Therefore, a total of 20 features are calculated from each torque
signal measurement.

High-dimensional datasets complicate the learning task of novelty detection as well as multiclass
classification methods, because of the possible presence of nonsignificant and redundant infor-
mation in the data, compromising the proper convergence of the algorithms. Indeed, the empty
space phenomenon states that to cover the whole space, it needs a number of samples that grows
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exponentially with dimensionality. Thus, the curse of dimensionality implies that in order to
learn successfully, it needs a number of training examples that also grows exponentially with the
dimensionality. The “concentration of measure” phenomenon seems to render distance measures
not relevant to whatever concept is to be learned as the dimension of the data increased. For
these reasons, there is a necessity to apply dimensionality reduction techniques in condition
monitoring applications. Thus, in order to analyze the performance of different novelty detection
approaches, two main dimensionality reduction approaches are applied over the 20-dimensional
vectors, that is, Principal Component Analysis, PCA, and Laplacian Score, LS.

Indeed, the dimensionality reduction strategies differ in the criteria applied over the data in
order to reach a reduced feature space. PCA is one of the most commonly used techniques for
unsupervised dimensionality reduction. It aims to find the linear projections that best capture
the variability of the data [13]. Another well-known technique is the LS, where the merit of
each feature is measured according to its locality preservation power. A nearest neighbor-
based graph is constructed from the training set and analyzed to rank each feature individu-
ally according to a weighting approach selected for the graph's edges. To rank each feature, its
LS is computed, which is a measure of the extent to which the analyzed feature preserves the
structure present in the graph divided by the variance of the feature. For a feature to be
selected, it must have a low LS, which implies high variance and locality [20].

Finally, the necessity of evaluating the novelty detection performance is critical. The use of a
particular score depends on multiple interests, and then, the analysis of complementary scores
represents the most interesting solution. Next, the most useful and common scores in a discrete
scenario are described in order to be used later during the analysis of the experimental results.

• Accuracy and classification error (1-accuracy): One of the most frequent scores used to
evaluate discrete classification in electromechanical diagnosis is accuracy. This score is
indicative of the classification error committed while evaluating, in our case, two classes,

Accuracy ¼ FPþ FN
N

(9)

where FP is the number of false positives, FN is the number of false negatives and N, the
total number of analyzed measures. Two novelty detection approaches could exhibit the
same accuracy but provide a different novelty ratio for each class (normal data and
novelty data).
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Table 2. Statistical time-domain features used for torque signal characterization.
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• True positive rate (recall or sensitivity): This measure provides a proportion of one kind of
sample that was correctly assessed. But it only evaluates the positive cases,

Recall ¼ TP
TPþ FN

(10)

where TP is the number of true positives.

• Precision: This performance metric evaluates the correct classification of the positive class,

Precision ¼ TP
TPþ FP

(11)

• F-measure: This score can help to solve any contradiction that may appear between
precision and recall scores. F-measure leaves out the TN performance. Several versions
exist. The most common expression is,

F1 ¼ 2½Precision � Recall�
½2 � Precisionþ Recall� (12)

3.2. Experimental results

In order to expose the novelty detection performances, the outline of the experimental results
is presented as follows: The initial database is characterized by the proposed set of features,
then both feature reduction approaches are applied and, finally, over each reduced set of
features, the three novelty detection approaches are applied. The application of the novelty
detection is done sequentially, that is, first, the data corresponding to the healthy, H, operating
scenario is characterized by the novelty model. Second, the first fault operating scenario, CLW,
is presented as well as additional measures of the H operating scenarios. At this point, the
performance of the novelty detection model is analyzed. Third, the novel data identified is
included in the upgraded version of the novelty model by retraining, and over this updated
novelty model, the second fault operating scenario, CHW, is presented as well as the additional
measures of the CLW and H operating scenarios. At this point, the performance of the novelty
detection models is analyzed again. Finally, the novel data identified is included in an
upgraded version of the novelty model by a new retraining.

Three novelty detection methods have been implemented, that is, the mixture of Gaussians as
the probabilistic approach, one-class support vector machines as the domain-based novelty
detection approach and, finally, k-nearest neighbors as the distance-based novelty detection
approach. Next, the PCA variant of the novelty detection methodology is shown in Figure 4.

The proposed scores during the assessment of the novelty detection models in front of a new
set of measurements are shown next. Thus, in Table 3, the scores in regard to the PCA feature
reduction and the novelty detection models ‘performance, dealing with the projection of new
measurements corresponding to H and CLW operating scenarios over the novelty models
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trained with the H operating scenario, can be seen. It should be noted that, in regard to all the
scores shown in the next tables, a 10-fold cross validation strategy has been considered, in
which the mean and the dispersion ratio of the obtained scores is shown.

Figure 4. Performance of the three novelty detection models in a PCA-based 2-dimensional feature space. MG mixture of
Gaussian, OC-SVM, one-class support vector machine and k-NN, k-nearest neighbor. (a) Novelty models’ boundaries
during the characterization of the H operating scenario. (b) Projection of new measurements corresponding to H and CLW

operating scenarios over the novelty models trained with the H operating scenario. (c) Novelty model boundaries’ update
by the incorporation of the H and CLW operating scenarios’ measures detected as novelties and the projection of new
measurements corresponding to H, CLW and CHW operating scenarios over the novelty models. (d) Novelty model
boundaries’ update by the incorporation of the H, CLW and CHW operating scenarios’measures detected as novelties.

MG OC-SVM k-NN

Accuracy 0.912 (�0.033) 0.952 (�0.025) 0.950 (�0.034)

Recall 1.000 (�0.000) 1.000 (�0.000) 1.000 (�0.000)

Precision 0.898 (�0.035) 0.942 (�0.029) 0.949 (�0.038)

F1 score 0.946 (�0.019) 0.970 (�0.015) 0.974 (�0.02)

Table 3. Associated scores to the PCA and novelty detection performance dealing with the class H as normal and CLW as
novelty.
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Also, in Table 4, the scores in regard to the PCA feature reduction and the novelty detection
models’ performance, dealing with the projection of new measurements corresponding to H,
CLW and CHW operating scenarios over the novelty models trained with the H and CLW operat-
ing scenarios, can be seen.

Similarly, next, the LS variant of the novelty detection methodology is shown in Figure 5.

The proposed scores during the assessment of this variant of novelty detection models in front
of a new set of measurements are also shown next. Thus, in Table 5, the scores in regard to the
LS feature reduction and novelty detection models’ performance, dealing with the projection
of new measurements corresponding to H and CLW operating scenarios over the novelty
models trained with the H operating scenario can be seen.

Also, in Table 6, the scores in regard to the LS feature reduction and novelty detection models’
performance, dealing with the projection of new measurements corresponding to H, CLW and
CHW operating scenarios over the novelty models trained with the H and CLW operating
scenarios can be seen.

MG OC-SVM k-NN

Accuracy 0.930 (�0.025) 0.863 (�0.014) 0.966 (�0.014)

Recall 0.997 (�0.005) 0.995 (�0.006) 0.985 (�0.005)

Precision 0.902 (�0.033) 0.822 (�0.013) 0.962 (�0.022)

F1 score 0.947 (�0.018) 0.901 (�0.01) 0.973 (�0.010)

Table 4. Associated scores to the PCA and novelty detection performance dealing with the H and CLW as known
operating scenarios and CHW as novelty.

MG OC-SVM k-NN

Accuracy 0.956 (�0.021) 0.971 (�0.026) 0.967 (�0.028)

Recall 1.000 (�0.000) 1.000 (�0.000) 1.000 (�0.000)

Precision 0.940 (�0.023) 0.965 (�0.031) 0.960 (�0.033)

F1 score 0.969 (�0.012) 0.982 (�0.016) 0.980 (�0.017)

Table 5. Associated scores to the LS and novelty detection performance dealing with the class H as normal and CLW as
novelty.

MG OC-SVM k-NN

Accuracy 0.910 (�0.016) 0.841 (�0.032) 0.890 (�0.014)

Recall 0.955 (�0.017) 0.925 (�0.021) 0.865 (�0.044)

Precision 0.922 (�0.027) 0.840 (�0.044) 0.940 (�0.030)

F1 score 0.938 (�0.012) 0.879 (�0.021) 0.899 (�0.014)

Table 6. Associated scores to the LS and novelty detection performance dealing with the H and CLW as known operating
scenarios and CHW as novelty.
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In regard to the feature reduction effect over the novelty detection performance, it has been
taken into account that both methods, PCA and LS, represent linear approaches to the reduc-
tion of the initial 20-dimensional feature set. This premise is not a limitation to the analysis of
the novelty detection models considered; however, the feature space could be further
improved in order to maximize the obtained results for the specific application.

Independently of the novelty detection model, the first test stage, that is, the assessment of new
measurements corresponding to H and CLW operating scenarios over the novelty models
trained with the H operating scenario, shows a clear superiority of the LS approach. The
accuracy obtained with the LS approach reaches till 97% and is, in all cases, better than using
PCA that reaches a maximum of 92%. However, the second test stage, that is, the assessment of
new measurements corresponding to H, CLW and CHW operating scenarios over the novelty
models trained with the H and CLW operating scenarios, shows a clear superiority of the PCA
approach. The accuracy obtained with the PCA approach reaches till 96% and is, in most of the
cases, better than using LS that reaches a maximum of 91%.

Figure 5. Performance of the three novelty detection models in a LS based 2-dimensional feature space. MG mixture of
Gaussian, OC-SVM, one class support vector machine, and k-NN, k-nearest neighbor. (a) Novelty models boundaries
during the characterization of the H operating scenario. (b) Projection of new measurements corresponding to H and CLW

operating scenarios over the novelty model trained with the H operating scenario. (c) Novelty model boundaries update
by the incorporation of the H and CLW operating scenarios measures detected as novelties, and projection of new
measurements corresponding to H, CLW and CHW operating scenarios over the novelty models. (d) Novelty model
boundaries update by the incorporation of the H, CLW and CHW operating scenarios measures detected as novelties.
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This effect is reasonable in dealing with the available data because the LS approach allows a
better representation in terms of novelty detection. That is, considering that all the available
data corresponds to the unique class normal or known, the performance of the novelty detection
model will be enhanced if less data dispersion is presented. In this sense, the LS feature space
shows a more compact projection of the data, at least during the first test stage, a fact that
facilitates the definition of the novelty detection boundaries and the posterior accuracy. How-
ever, dealing with the second test stage, the maximization of the variance by means of the PCA
avoids false negatives. In fact, the dispersion of data is desired when complexity of data is
considered, since new operating scenarios could be assessed as known measurements. This
performance of the feature reduction techniques over the novelty detection performance is a
critical aspect during the condition monitoring configuration, since a trade-off between feature
space complexity and data dispersion must be reached. Nevertheless, in this case study, the
proposed novelty detection methodology including both the feature reduction techniques
exhibits high ratios of performances.

In regard to the novelty detection models, independently of the feature reduction technique,
the first test stage, that is, the assessment of new measurements corresponding to H and CLW

operating scenarios over the novelty models trained with the H operating scenario, shows a
clear superiority of the OC-SVM and k-NN approaches in terms of accuracy, precision and
F1-score, considering that the recall is maximum in all three cases. However, the second test
stage, that is, the assessment of new measurements corresponding to H, CLW and CHW operat-
ing scenarios over the novelty models trained with the H and CLW operating scenarios, shows a
superiority, of the k-NN approach, mainly in terms of accuracy and precision, although the MG
shows also good behavior in terms of recall.

In fact, as it has been mentioned, the probabilistic novelty detection approach, represented by
the MG technique, assumes a data dispersion that, dealing with unknown operating scenarios,
cannot be the optimum. This fact is smoothened when the data density increases, since more
information is available in order to infer a proper PDF. In case of OC-SVM and k-NN, both
techniques showwide novelty detection boundaries, which allow a better characterization of the
data distribution by means of good generalizations. However, it must be taken into account that,
qualitatively, a more complex partition of the feature space is reached by the k-NN, and
although, as it has been explained, this can be controlled by the value of k, such tuning is not
trivial and, then, OC-SVM represents a more simple solution.

4. Conclusions

A condition monitoring scheme for novelty detection is applied to an industrial end-of-line test
machinery of electrical-assisted power steering columns, where the healthy data is the initial
available information. The fault conditions considered consist of two severities of one com-
monly presented fault in the mechanical parts of the electrical drive of the test machine,
coupling wear. The fault condition is presented in two stages, in order to analyze the detection
and learning capabilities of the considered approaches. These fault severities represent a
challenge for the data analysis due to the similitudes between the torque signals characterizing
each fault.
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Six variants of the methodology are proposed and analyzed. Thus, two feature reduction
approaches by means of PCA and LS are considered in order to emphasize the information
contained in the 20-dimensional vectors of statistical time-based features in which each torque
measurement is characterized. Later, three novelty detection modelling approaches are intro-
duced and implemented, that is, the probabilistic method by means of the mixture of Gaussians,
domain-based methods by means of one-class support vector machine and distance-based
methods, by means of k-nearest neighbors. A comparison and analysis between the novelty
models and the feature reduction procedures is performed to analyze the proper selection of
novelty models for these scenarios. The results have shown that the combination of PCA as
feature reduction and k-NN as the novelty detection model reaches, in general, the best-consid-
ered scores, mainly the accuracy, 96 and 90%, and precision, 96 and 94%. However, the OC-SVM
alternative must also be considered due to its simpler configuration requirements and good
performances.
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Abstract

To avoid severe damages and unexpected shutdowns, fault diagnosis and health assess-
ment of rotating machinery have received considerable attention in recent years. On the
other hand, as a great amount of data become acquirable and accessible in industry,
data-driven tools have become an emerging research area, acting as a complement to the
model-based (or physics-based) fault diagnosis and health assessment methods. In this
chapter, based on the kernel density estimation (KDE) and the Kullback-Leibler diver-
gence (KLID), a new data-driven fault diagnosis approach and a new health assessment
approach are introduced. By utilizing the KDE, the statistical distribution of selected
features can be readily estimated without assuming any parametric family of distribu-
tions, whereas the KLID is able to quantify the discrepancy between two probability
distributions of selected features. An integrated Kullback-Leibler divergence, which
aggregates the KLID of all the selected features, is introduced to discriminate various
fault types or health status of rotating machinery. The effectiveness of the proposed
approaches is demonstrated through three case studies of fault diagnosis and health
assessment of rotating machinery.

Keywords: data-driven approach, fault diagnosis, health assessment, kernel density
estimation, kullback-Leibler divergence, rotating machinery

1. Introduction

Rotating machinery has widespread applications in advanced manufacturing and engineer-
ing systems, e.g., wind turbines, power generators, and machining tools. The crucial compo-
nents in rotating machinery, such as bearings and gears, are oftentimes suffering undesirable

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



stresses and sudden shocks under which initial defects will appear [1]. If maintenance
activities cannot be taken properly and timely, tiny defects will gradually propagate and
eventually cause severe damages and unexpected shutdown to the entire systems. It is,
therefore, of paramount importance to accurately detect the presence of faults as early as
possible and track the growth of the tiny faults to avoid the consequence of severe damages
caused by faults and also facilitate preventive maintenance planning before the complete
failure of engineering systems [1].

Fault diagnosis and health assessment are the two important tools for detecting the operating
condition of rotating machinery based on which preventative maintenance can be scheduled
in a timely manner. In general, existing methods for fault diagnosis and health assessment
can be classified into two categories [2]: model-based (or physics-based) approaches and data-
driven approaches. The model-based approaches require specific mechanistic knowledge and
theory relevant to the monitored machine, and a particular fault or health status of a system
can be determined by comparing available system measurements with a priori information
represented by the corresponding system’s analytical/mathematical model [3]. These methods
could be very accurate when a correct model can be built up. For example, several models have
been developed to characterize the crack growth [4, 5]. However, due to the limited knowledge
of underlying mechanisms and physics, it becomes very difficult, or even impossible, to fully
understand the evolution of defects and faults of complex engineered systems [1, 2]. With the
fast development of condition monitoring and intelligent computing technologies, data-driven
approaches have received considerable attention in recent years. Many advanced classification
methods have been applied to data-driven fault diagnosis [6–9]. Among them, support vector
machine [9, 10] and artificial neural network (ANN) [11] are two representative and powerful
classification methods, and they have been extensively used in fault diagnosis for rotating
machinery [9–13]. By using the data-driven approaches, the fault type or health status of a
system can be mapped into the feature space [1, 2]. In other words, the relation between
features extracted from condition monitoring data and fault model/damage levels can be
acquired from a set of training data. Thereby, compared to the model-based approaches, the
data-driven approaches possess two merits: (1) by the data-driven approaches, fault diagnosis
or health assessment can be executed automatically without heavy involvement of engineers
and (2) unlike the model-based approaches that need professional expertise to make judg-
ments, the data-driven approaches do not rely on expertise and knowledge from experts too
much [13].

In most cases, a data-driven approach for fault diagnosis and health assessment of rotating
machinery consists of five basic steps as shown in Figure 1. The raw data, e.g., vibration
signals, collected from condition monitoring serve as inputs of a data-driven fault diagnosis
or health assessment approach. Subsequently, by using advanced signal processing algo-
rithms, e.g., the fast Fourier transform (FFT), the empirical model decomposition (EMD), and
the wavelet transform, a bunch of features which are more or less relevant to the health status
of the monitored device can be extracted from the raw data. A subset of the most significant
features, which are sensitive to a specific fault type or health status of the system, will be
chosen from all the extracted features. On the other hand, irrelevant and redundant features
can be eliminated at this stage to mitigate the computational burden and improve the accuracy

Fault Diagnosis and Detection154



stresses and sudden shocks under which initial defects will appear [1]. If maintenance
activities cannot be taken properly and timely, tiny defects will gradually propagate and
eventually cause severe damages and unexpected shutdown to the entire systems. It is,
therefore, of paramount importance to accurately detect the presence of faults as early as
possible and track the growth of the tiny faults to avoid the consequence of severe damages
caused by faults and also facilitate preventive maintenance planning before the complete
failure of engineering systems [1].

Fault diagnosis and health assessment are the two important tools for detecting the operating
condition of rotating machinery based on which preventative maintenance can be scheduled
in a timely manner. In general, existing methods for fault diagnosis and health assessment
can be classified into two categories [2]: model-based (or physics-based) approaches and data-
driven approaches. The model-based approaches require specific mechanistic knowledge and
theory relevant to the monitored machine, and a particular fault or health status of a system
can be determined by comparing available system measurements with a priori information
represented by the corresponding system’s analytical/mathematical model [3]. These methods
could be very accurate when a correct model can be built up. For example, several models have
been developed to characterize the crack growth [4, 5]. However, due to the limited knowledge
of underlying mechanisms and physics, it becomes very difficult, or even impossible, to fully
understand the evolution of defects and faults of complex engineered systems [1, 2]. With the
fast development of condition monitoring and intelligent computing technologies, data-driven
approaches have received considerable attention in recent years. Many advanced classification
methods have been applied to data-driven fault diagnosis [6–9]. Among them, support vector
machine [9, 10] and artificial neural network (ANN) [11] are two representative and powerful
classification methods, and they have been extensively used in fault diagnosis for rotating
machinery [9–13]. By using the data-driven approaches, the fault type or health status of a
system can be mapped into the feature space [1, 2]. In other words, the relation between
features extracted from condition monitoring data and fault model/damage levels can be
acquired from a set of training data. Thereby, compared to the model-based approaches, the
data-driven approaches possess two merits: (1) by the data-driven approaches, fault diagnosis
or health assessment can be executed automatically without heavy involvement of engineers
and (2) unlike the model-based approaches that need professional expertise to make judg-
ments, the data-driven approaches do not rely on expertise and knowledge from experts too
much [13].

In most cases, a data-driven approach for fault diagnosis and health assessment of rotating
machinery consists of five basic steps as shown in Figure 1. The raw data, e.g., vibration
signals, collected from condition monitoring serve as inputs of a data-driven fault diagnosis
or health assessment approach. Subsequently, by using advanced signal processing algo-
rithms, e.g., the fast Fourier transform (FFT), the empirical model decomposition (EMD), and
the wavelet transform, a bunch of features which are more or less relevant to the health status
of the monitored device can be extracted from the raw data. A subset of the most significant
features, which are sensitive to a specific fault type or health status of the system, will be
chosen from all the extracted features. On the other hand, irrelevant and redundant features
can be eliminated at this stage to mitigate the computational burden and improve the accuracy

Fault Diagnosis and Detection154

of results. It is followed by the fault classification or health assessment where the selected
features will be used as inputs of fault/health status classifier. Many advanced classification
methods can be applied. Among many, the support vector machine (SVM) [10] and the
artificial neural network (ANN) [11] are two representative approaches.

In this chapter, a new data-driven fault diagnosis approach and a data-driven health assess-
ment approach are put forth. Two statistical tools, i.e., the kernel density estimation (KDE) and
the Kullback-Leibler divergence (KLID), are used jointly to identify fault modes/health status
of rotating machinery from a statistical viewpoint. The KDE, which is a nonparametric proba-
bility density estimation approach, is able to adaptively fit a data set to a smooth density
function without pre-specifying a particular distribution type [14, 15]. On the other hand, the
KLID, which is so-called information divergence or relative entropy, is a measure of the
discrepancy between two probability distributions [16]. By using the KDE and KLID jointly,
an integrated Kullback-Leibler divergence can be developed to identify faults modes/health
status of rotating machinery.

The rest of this chapter is rolled out as follows: Section 2 introduces the principle of the KDE
and the KLID. The proposed fault diagnosis approach together with two case studies is
presented in Section 3. In Section 4, the proposed health assessment approach and its applica-
tion to a case study are elaborated. The chapter closes with a brief conclusion in Section 5.

2. The kernel density estimation (KDE) and the Kullback-Leibler
divergence (KLID)

2.1. The kernel density estimation

The kernel density estimation originally introduced by Rosenblatt and Parzen [14, 15] is a non-
parametric tool to infer the probability density function of a data set. It stems from the empirical
probability density function.

Let X1, X2, ⋯, Xn represent n independent and identically distributed (i.i.d.) random samples
from a random quantity X with an unknown probability density function f(x). The kernel
density function is defined as:

Figure 1. The basic procedures of data-driven fault diagnosis or health assessment methods.
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x−Xi
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where K(�), a symmetric function with integration equal to 1, is the kernel function. The kernel

function may not be necessary a position function but has to guarantee bf h xð Þ satisfies the basic
requirement of a probability density function. Many different types of kernel functions have
been proposed in Ref. [15], e.g., uniform, Gaussian, triangle, Epanechnikov, and quaritic.
Particularly, the Gaussian kernel function, which has been extensively adopted due to many
mathematical properties, such as centrality and gradual decay, is formulated as:

K uð Þ ¼ 1ffiffiffiffiffiffi
2π

p exp −
1
2
u2

� �
(2)

The bandwidth h (h > 0) of the kernel function has a heavy influence on the smoothness of
bf h xð Þ. A larger h indicates that a greater region of samples around the centre point x influences
the probability density estimation, vice versa. A proper setting for the bandwidth h is, there-
fore, of great significance for the KDE. The mean integrated squared error (MISE) is the most
common optimality criterion to choose a proper bandwidth, and it is defined as [15]:

MISE hð Þ ¼ E
ð
bf h xð Þ−f xð Þ
� �2

dx (3)

Under weak assumptions on f(�) and K(�), one has:

MISE hð Þ ¼ AMISE hð Þ þ ο
1
nh

þ h4
� �

(4)

where ο(�) is infinitesimal. The AMISE is the asymptotic MISE, and it is defined as:

AMISE hð Þ ¼ R K �ð Þð Þ
nh

þ 1
4
m2 K �ð Þð Þ2h4R f ″ �ð Þ� �

(5)

where R(g) =
Ð
g(x)2dx; m2(K) =

Ð
x2K(x)dx; f″(�) is the second-order derivative of f (�); and n is the

total number of samples. The following differential equation can be used to seek the minimal
value of the AMISE as:

∂
∂h

AMISE hð Þ ¼ −
R K �ð Þð Þ
nh2

þm2 K �ð Þð Þ2h3R f ″ �ð Þ� � ¼ 0 (6)

Thus, the minimal value of h is:

h�AMISE ¼ R K �ð Þð Þ1=5

m2 K �ð Þð Þ2=5R f ″ �ð Þ� �1=5
n1=5

(7)

It should be noted that the above equation is implicit and contains the unknown density function
f (�) or f″(�). In engineering practice, the density to be estimated is also Gaussian if the Gaussian
basis function is used to approximate univariate data. Thus, the optimal value of h is:
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h�AMISE ¼ 4bσ5

3n

 !1
5

≈1:06bσn−15 (8)

where bσ is the standard deviation of samples. Such approximation called the Gaussian approx-
imation is adopted in this work.

2.2. The Kullback-Leibler divergence

The Kullback-Leibler divergence (KLID) was first introduced by Solomon Kullback and Rich-
ard Leibler in 1951 [16], and it has been applied to quantify the difference of two distributions.
For two discrete probability distributions P and Q, the KLID of Q from P is written as:

DKL PjjQð Þ ¼
X
i

ln
P ið Þ
Q ið Þ
� �

P ið Þ (9)

In essence, Eq. (9) is the expectation of the logarithmic difference between the probabilities P
and Q, and the expectation is taken by the probability P. The KLID is valid if the integration of
P and Q is both equal to 1. If Q(i) = 0, then P(i) = 0 for all i. For the case where P(i) = 0 and P(i)/Q
(i) = 0, ln(P(i)/Q(i))P(i) = 0 since limx!0 xln xð Þ ¼ 0.

Based on the Gibbs’ inequality, DKL(P||Q) = 0 if and only if P = Q holds almost everywhere. A
smaller value of DKL(P||Q) represents a greater similarity between the two probability distri-
butions. It is noteworthy that although the KLID can quantify the distance between two
probability distributions, it does not fully satisfy some important properties of distance mea-
sure, e.g., symmetry and triangle inequality. For instance, the KLID of P overQ is generally not
exactly equal to the KLID of Q over P. Nevertheless, the symmetry property is very crucial in
the classification issue. In our work, the symmetrized distance of KLID defined in Ref. [12] is
adopted to measure the discrepancy between two probability distributions, and it is formu-
lated as:

DKL P;Qð Þ ¼ 1
2
DKL PjjQð Þ þDKL QjjPð Þ½ �: (10)

3. The proposed fault diagnosis approach

Follow the basic procedures of data-driven fault diagnosis method as shown in Figure 1, the
proposed approach for the fault diagnosis of rotating machinery is given in Figure 2. A set of
time- and frequency-domain features will be first extracted from the raw vibration signals by
the ensemble empirical mode decomposition (EEMD), the Hilbert Transform, and so on. The
distance-based feature selection method will be used to identify a subset of sensitive fea-
tures. The kernel density estimation (KDE) and the Kullback-Leibler divergence (KLID)
introduced in Section 2 will be used together as a new classifier to discriminate various fault
types.

Fault Diagnosis and Health Assessment for Rotating Machinery Based on Kernel Density Estimation and Kullback…
http://dx.doi.org/10.5772/67360

157



3.1. The details of the proposed method

In this section, feature extraction, feature selection, kernel density estimation, and Kullback-
Leibler divergence will be integrated together to realize the fault diagnosis for rotating
machinery. Some important symbols to be used hereinafter are explained here:

1. KDj
i (j = 1, 2, ⋯, n; i = 1, 2,⋯, C) denotes the KDE function of the jth feature of the training

samples for type i fault. The vector KDi ¼ KD1
i ,KD

2
i ,⋯,KDn

i

� �
is the KDE function set of

all the n selected features of the training samples for type i fault.

2. TKDj
i(j = 1, 2, ⋯, n;i = 1, 2, ⋯, C) is the KDE function of the jth feature of the training

samples for type i fault after adding a testing sample. The vector TKDi ¼ TKD1
i ,TK

�

D2
i ,⋯;TKDn

i Þ is the KDE function set of all the n selected features of the training samples
for type i fault after a testing sample is added.

3. KLji (j = 1, 2, ⋯, n; i = 1, 2, ⋯, C) is the KLID between KDj
i and TKDj

i. The vector

KLi ¼ KL1i ,KL
2
i ,⋯,KLni

� �
contains the KLIDs of all the n selected features.

The overall flowchart of the proposed approach for classifying two fault types is shown in
Figure 3.

In Figure 3, the proposed method is illustrated through classifying two fault models, i.e., type I
fault and type II fault. The sample sets from these two types of fault modes act as the training
sample sets, whereas one sample set with unknown fault mode serves as the testing sample set
to be classified. Nine time-domain features together with 10 frequency-domain features are
extracted from the raw vibration signal and the first four IMFs decomposed by the EEMD. The
technical details of the EEMD can be found in Refs. [17, 18]. Thus, the original feature set
consists of 95 features. The distance-based evaluation approach is, then, applied to assess the
effectiveness of each feature. The corresponding effectiveness factor of the jth (j = 1, 2, ⋯, 95)
feature is denoted as αj (see Ref. [19] for more details on the distance-based evaluation
approach). The features with a larger effectiveness factor are more sensitive to these particular
fault types. By sorting all the features by their effectiveness factors in a descending order, the
first m features are selected from the original feature set and serve as the inputs of the classifier.
Thereby, the importance of the jth feature to the fault classification is formulated as:

Figure 2. The procedures of the proposed fault diagnosis approach for rotating machinery.
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Fj ¼
αj

Xn

i¼1

αi

, j ¼ 1, 2,⋯,mð Þ (11)

The probability density of the selected features of each training set can be then characterized by the
kernel density function. For instance, KD1

1 and KD1
2 are the first feature of type I and type II faults,

respectively, are shown in Figure 3. If one sample from the testing sample set is added into the two
training sets, respectively, and the corresponding probability distributions of the two new sample
sets of the first feature can be also estimated by the kernel density function and denoted as TKD1

1

and TKD1
2, respectively. In the same manner, KDj

1, KD
j
2, TKD

j
1, and TKDj

2 (j = 1,2,3,....,m) for all

the selected features can be estimated. It is followed by computing the KLj1 and KLj2, the symme-

trized Kullback-Leibler divergences (KLIDs) between KDj
1 and TKDj

1, KDj
2 and TKDj

2

(j = 1, 2,⋯,m), via Eq. (10). To get an overall assessment of all the n selected features, an integrated

KLID, denoted as IKLi, is defined here to aggregate all the symmetrized KLIDs KLji for the type i
fault together as:

IKLi ¼
Xm

j¼1

Fi ·KL
j
i (12)

where Fj(j = 1, 2, ⋯, m) computed by Eq. (11) is the importance of the jth feature and
F = (F1, F2, ⋯, Fm). Using Eq. (12), IKL1 and IKL2 of any sample from the testing sample set

Figure 3. The flowchart of the proposed fault diagnosis approach for the case with two fault types.
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with respect to the type I and type II faults can be obtained. A smaller value of IKLi implies that
the testing sample is similar to the corresponding training sample set in a statistic sense. Put
another way, adding the testing sample into the training sample set causes a slight influence on
the statistical distribution of the training sample set. Hence, the fault type of the testing sample
can be discriminated. For instance, if IKL1 > IKL2, it can be concluded that the fault implied by
the testing sample is more prone to the type II fault than type I fault. By this way, all the testing
sample sets can be classified into one of the two fault types.

Following the same manner, the proposed method can be straightforwardly applied to a more
general case in which the number of fault modes/damage levels to be classified is greater than
two. In this case, the fault modes/damage level of the testing sample can be distinguished by
looking for the smallest integrated KLID among all the known fault modes/damage levels.

3.2. Two case studies

The effectiveness of the proposed method in terms of diagnosing rotating machinery faults is
validated in this section through two case studies of the bevel gears and the rolling element
bearings.

3.2.1. Experimental rigs

Case 1: Experiments are performed on a machinery fault simulator produced by Spectra Quest,
Inc. The experimental setup and the bevel gears to be tested are presented in Figure 4. The
experimental setup composed of a motor, a coupling, bearings, two bevel gearboxes (one good
right angle gearbox and one worn right angle gearbox), discs, belts, and a shaft. The bevel
gearbox is driven by an AC motor and coupled with rub belts. The rotation speed was fixed to
1800 r/min. Three faulty gears, i.e., worn gear, gear with missing teeth, and gear with broken
tooth, were simulated on the experimental setup. The raw vibration data were collected by an
accelerometer that was mounted on the top of the gearbox. The data sampling rate was 20 kHz,
and the data length was 4096 points [20].

Figure 4. The experiment rig and the four bevel gears with different damages. (a) Normal gear, (b) gear with broken
tooth, (c) gear with missing teeth, and (d) gear with worn tooth.
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can be discriminated. For instance, if IKL1 > IKL2, it can be concluded that the fault implied by
the testing sample is more prone to the type II fault than type I fault. By this way, all the testing
sample sets can be classified into one of the two fault types.

Following the same manner, the proposed method can be straightforwardly applied to a more
general case in which the number of fault modes/damage levels to be classified is greater than
two. In this case, the fault modes/damage level of the testing sample can be distinguished by
looking for the smallest integrated KLID among all the known fault modes/damage levels.

3.2. Two case studies

The effectiveness of the proposed method in terms of diagnosing rotating machinery faults is
validated in this section through two case studies of the bevel gears and the rolling element
bearings.

3.2.1. Experimental rigs

Case 1: Experiments are performed on a machinery fault simulator produced by Spectra Quest,
Inc. The experimental setup and the bevel gears to be tested are presented in Figure 4. The
experimental setup composed of a motor, a coupling, bearings, two bevel gearboxes (one good
right angle gearbox and one worn right angle gearbox), discs, belts, and a shaft. The bevel
gearbox is driven by an AC motor and coupled with rub belts. The rotation speed was fixed to
1800 r/min. Three faulty gears, i.e., worn gear, gear with missing teeth, and gear with broken
tooth, were simulated on the experimental setup. The raw vibration data were collected by an
accelerometer that was mounted on the top of the gearbox. The data sampling rate was 20 kHz,
and the data length was 4096 points [20].

Figure 4. The experiment rig and the four bevel gears with different damages. (a) Normal gear, (b) gear with broken
tooth, (c) gear with missing teeth, and (d) gear with worn tooth.
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Case 2: The experimental data are from the Case Western Reserve University [21]. The exper-
imental rig is consisting of the Reliance Electric 2HP IQPreAlet, which is connected to a
dynamometer. The bearings supporting the motor shaft were examined. Faults were artificially
generated by creating crack size of 0.007, 0.014, 0.021, and 0.028 inches on the drive-end
bearing through the electric discharge machining. These faults are separately distributed on
the inner raceway, rolling element, and outer raceway. The raw vibration signals were collected
by the two accelerometers mounted on the motor housing and the outer race of the drive-end
bearing. The sampling frequency was set to be 12 kHz, whereas the sampling length was 12 k.
The rotating speed was 1750 r/min. The detailed settings of this experiment can be found in
Ref. [21].

3.2.2. Experimental testing and results

The raw data from the above two experimental setups are used to validate the proposed
method. Without loss of generality, the data sets with the same type of defects or severity are
randomly divided into training samples and testing samples. Table 1 gives the training and
testing sample sizes, the places of defects, and the defect sizes of the two case studies. The data
set A in Table 1 is from the Case 1, whereas the data sets B and C come from the Case 2. The
capability of the proposed method in distinguishing the types of defects is examined through
the data sets A and B. The capability of the method in identifying the severity of the same type
of defect is validated through the data set C.

Two hundred and eighty data sets with four different operation conditions, i.e., normal condi-
tion, bevel gear with broken tooth, bevel gear with missing teeth, and bevel gear with worn
tooth, are included in the data set A. The defect sizes of training and testing sample sets are
exactly the same. It can be, thus, regarded as a four-class classification problem.

Data set
Number of training
samples

Number of testing
samples

Defect size (inch)
(training/testing)* Condition

A 35 35 – Normal

35 35 – Broken tooth

35 35 – Missing teeth

35 35 – Worn tooth

B B1 35 35 0.007/0.021 Inner race

35 35 0.007/0.021 Ball

B2 35 35 0.021/0.007 Inner race

35 35 0.021/0.007 Ball

C 35
35
35

35
35
35

0.007
0.014
0.021

Inner race

*‘-’ for the data set A denotes the defect sizes of the training and testing samples are exactly the same but unmeasurable by
a physical dimension.

Table 1. The data sets for defect and severity classification.
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The data set B composed of 280 data sets of the faulty bearings has only two types of fault
modes, i.e., inner race fault and ball fault. The data set B is divided into two subsets, i.e.,
subsets B1 and B2. Each of the subsets has 140 data samples. The study can be conducted to
investigate the effectiveness of the proposed method if the fault mode of the training sample
set is exactly the same as the testing sample set but the defect sizes are different. For the subset
B1, 70 samples with the fault detect size of 0.007 inches are treated as the training sample set,
whereas the remaining 70 samples with the fault detect size of 0.021 inches are the testing
samples. To the contrary, for the subset B2, the training sample set of the subset B1 is treated as
the testing set of the subset B2 and the testing set of the subset B1 is treated as the training
sample set of the subset B2.

The data set C is consisting of 210 samples. The data set C is collected from the case where a
defect is on the inner race. The defect sizes for the data set are 0.007, 0.021, and 0.028 inches.
The aim of examining these three data sets is to validate the effectiveness of the proposed
method in terms of identifying the defect severity (damage levels).

We exemplify the implementation of the proposed method to the data set A. Ninety-five time-
and frequency-domain features are firstly extracted from the data set A. The effectiveness
factors αj of all the 95 features computed by the distance evaluation approach are shown in
Figure 5, and the first 10 features with the greatest values are selected among all the 95
features.

Consequently, the probability density functions of the jth feature of the training sample sets for
the four conditions, i.e., bevel gears with normal, broken tooth, missing teeth, and worn tooth

Figure 5. The effectiveness factor of all the extracted features.
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conditions respectively, can be obtained by the KDE, and they are denoted as KDj
i(i = 1,2,3,4).

In the next step, a sample randomly picked up from the testing sample sets is included into the

four training sets, and then, the corresponding probability density functions TKDj
i(i = 1,2,3,4)

for the new sample set can be estimated. Figures 6 and 7 give two examples of the probability

density functions TKDj
i of the first feature for the four training sample sets when a sample from

the one of the four testing sampling sets is added.

In Figures 6 and 7, the red curves with circles are the original probability density functions of the
first feature of the corresponding training set. The blue curves with dots represent the new
probability density functions when a testing sample is included. For instance, as observed in
Figure 6(a), when a testing sample from the normal condition is added, the new probability
density function of the first feature is almost the same as the original probability density function.

Figure 6. The original probability density functions of the four training sample sets and the corresponding new proba-
bility density functions after adding a normal testing sample.
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However, as seen from Figure 6(b)–(d), the probability density functions exhibit a larger discrep-
ancy when the testing sample from the normal condition is included to the other three training
sample sets. Because the statistical characteristics of the first feature of the testing sample from the
normal condition are distinct from these samples from the other three conditions, and the new
probability density functions, therefore, generate a larger discrepancy from the original ones.
Likewise, as observed in Figure 7, if the conditions of the new sample and the training sample
sets (i.e., missing teeth) are the same, the new sample added to the training sample sets has minor
impact on the probability density functions, otherwise a greater influence can be seen.

In the next step, the KLID is used to measure the difference between the original and the new
distributions of the first feature in a quantitative way. The results are denoted as KL1i (i = 1,2,3,4)
for the four different conditions. Following the same manner, the KLIDs can be evaluated for
all the selected features. The integrated KLIDs, denoted as IKLi(i = 1,2,3,4), that aggregate the
KLIDs of all the selected features are assessed based on the weights of the 10 selected features
through Eq. (12).

Figure 7. The original probability density functions of the four training sample sets and the corresponding probability
density functions after adding a testing sample with missing teeth.
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The classification accuracy that is measured by evaluating the percentage of correctly
distinguishing the fault modes or defect levels for the three data sets is presented in Table 2.
A greater value of the percentage is favorable. The advantages of the proposed method are
demonstrated through comparing the results from two conventional data-driven fault diagno-
sis methods, i.e., SVM-based fault diagnosis method and the back-propagation (BP) network-
based fault diagnosis method. The parameter σ in SVM was optimized by the grid search
method. The three-layer BP network was used, and it thresholds and weights were determined
by the genetic algorithm to seek the global optimal solution. The results of the comparative
study are presented in Table 2. For the data set A, the training and testing accuracy of the BP
network-based fault diagnosis method are higher than those of the SVM-based fault diagnosis
method. As opposed to the data set A, the SVM-based fault diagnosis method has a high
training and testing accuracy for the data set B, whereas the BP network-based fault diagnosis
method is inferior for the data set B and its accuracy is less than 90%. For the data set C, both
the SVM-based fault diagnosis method and the BP network-based fault diagnosis method
exhibit a relatively high accuracy. As seen from Table 2, the proposed method is superior to
the two conventional methods on all the three data sets, and its accuracy reaches 100%.

4. The proposed heath assessment approach

Following the similar framework as Section 3, the procedures of the proposed data-driven health
assessment approach for rotating machinery are presented in Figure 8. Instead of using the
distance-based feature selection method, which is a supervised feature selection approach and
needs to set the number of the states to discriminate, the principle component analysis (PCA) as an
unsupervised feature selection tool is used here. The KDE and KLID are used together to construct
a new health indicator, reflecting the health condition of the monitored rotating machinery.

Data set SVM (%) BP network (%) The proposed method (%)

Training Testing Training Testing Training Testing

A 95.25 92.14 100 99.62 100 100

B 100 98.10 89.29 87.14 100 100

C 100 97.86 100 96.19 100 100

Table 2. The classification accuracy of the three methods.

Figure 8. The procedures of the proposed health assessment approach for rotating machinery.
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4.1. The principle component analysis (PCA)

The PCA proposed by Pearson [22] is a statistical procedure aiming to extract the directions
with strong variability in a data set, and it can convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated variables. As its good capabil-
ity in terms of reducing the dimensionality of data set, the PCA has been extensively used to
deal with multivariate data in the field of pattern recognition, image processing, etc.

Mathematically, given a set of p dimensional feature vectors xi(i = 1, 2,…, n), the corresponding
covariance matrix of the feature vectors can be computed by:

C ¼ 1
n

Xn

i¼1

xi−μð Þ xi−μð ÞT; (13)

where

μ ¼ 1
n

Xn
t¼1

xi (14)

The principal components (PCs) can be computed by solving the eigenvalue and eigenvector
of the covariance matrix C as follows:

Cν ¼ λν (15)

where λ = [λ1, λ2, …, λp] are the eigenvalues of the covariance matrix C in a descending order
and v = [v1, v2, …, vp] are the associated eigenvectors.

To represent the original feature vector through a lower dimensional feature vector, the first m
(m ≤ p) eigenvectors that correspond to the first k largest eigenvalues will be selected. Often-
times, a pre-specified threshold θ(θ ∈ [0,1]) needs to be given for a particular problem by user
to satisfy:

Xm

i¼1

λi

,Xp

i¼1

λi≥θ (16)

A greater value of θ indicates to maintain a higher accuracy of the original feature vectors, and
thus, more eigenvectors will be included. By this way, the number of eigenvectors for a
particular problem can be determined so as to maintain the desired accuracy. The m dimen-
sional feature vectors can be formulated as:

εj ¼ VTxj, j ¼ 1, 2,…, n (17)

By using the PCA, the dimensionality of the original feature vectors can be significantly
reduced. The importance of the new feature vectors is denoted as F = (F1, F2, …, Fm), and the
importance of each new feature i can be evaluated by:
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Fi ¼ λi=
Xm

j¼1

λj, i ¼ 1, 2,⋯,mð Þ (18)

4.2. The procedure of the proposed health assessment approach

The key idea behind the proposed health assessment approach is that the statistical character-
istics of the samples at the good condition would exhibit an apparent discrepancy with that of
the samples at the abnormal condition. In our work, the statistical characteristics of the
samples are characterized by the KDE, whereas the KLID provides a quantitative way to
measure the statistical discrepancy of the online monitoring samples with respect to the
reference samples that are collected when the monitored device is at its good condition.

The overall flowchart of the proposed health assessment approach is shown in Figure 9. As
shown in Figure 9, the features sensitive to the health status of rotating machinery are chosen.
By conducting the PCA, the dimensionality of the selected features can be further reduced so
as to reduce the computational burden in the ensuing steps. A moving window with width k
will be used to dynamically construct a set of samples to evaluate the health condition of the
monitored rotating machinery. An illustration of constructing sample sets over time through
the moving window is delineated in Figure 10. With the assumption that the rotating machin-
ery is at its good condition at the early stage of use, the samples collected by the moving
window at the beginning of use will serve as the reference samples, whereas the samples
collected by the moving window at the later stage will be statistically compared with the
reference samples.

Figure 9. The flowchart of the proposed health assessment approach.
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The statistical characteristic of each sample set in the moving window is characterized by the

kernel density function, and it is denoted as KDj
i for the jth (j = 1, 2,…,m) PCA feature at the ith

(i = 1, 2,…,N − k + 1) window.KDi ¼ KD1
i ,KD

2
i ,⋯,KDm

i

� �
is a collection of all the PCA features

at the ith (i = 1, 2, …, N − k + 1) window. The statistical discrepancy between the samples at the
ith (i = 1, 2, …, N − k + 1) window and KD1 ¼ KD1

1,KD
2
1,⋯,KDm

1

� �
is quantified by the KLID

and denoted as KLi ¼ KL1i ,KL
2
i ,⋯,KLmi

� �
where KLji computed by Eq. (10) is the KLID of the

jth (j = 1, 2, …, m) PCA feature at the ith (i = 1, 2, …, N − k + 1) window. By taking into account
the importance of the PCA features, the integrated KLID, denoted as IKLi (i = 1, 2, …, N − k),
can be evaluated by Eq. (12), where Fi(i = 1, 2, …, m) in Eq. (12) takes values from Eq. (18). It
should be noted that in the proposed approach IKLi act as the health indicator for rotating
machinery. A smaller value of IKLi represents that the condition of the monitored device is
close to the normal condition. On the contrary, if the condition of the monitored device
gradually deviates the normal condition due to defects or faults, IKLi will become a greater
value.

4.3. A case study

To validate the effectiveness of the proposed method in terms of assessing the health status of
rotating machinery, a case study for rolling element bearing is presented in this section.

4.3.1. Experimental setup

The experimental data are from the intelligent maintenance system (IMS) at the University of
Cincinnati [23]. The run-to-failure data were collected from the experimental rig as shown in
Figure 11, where the rolling bearings were working under a constant load condition. The
rolling bearing test rig hosts four test Rexnord ZA-2115 double row rolling bearings on one
shaft. Each row of the rolling bearings has 16 rollers, the section diameter is 71.5 mm, the
rolling diameter is 8.4 mm, and the contacting angle of the roller is 15.17°. The rotation speed
was set to be 2000 rpm. The sampling rate was 20 kHz, whereas the data length was 20,480
points. Three testing (i.e., Testings 1, 2, and 3) with identical rolling bearings were executed on
this experimental rig.

In the reported experiment, three run-to-failure data sets were collected. At the end of Testing
1, an inner race defect occurred on Bearing 3. Bearing 4 developed a roller defect. At the end of

Figure 10. An illustration of the k-width moving window.

Fault Diagnosis and Detection168



The statistical characteristic of each sample set in the moving window is characterized by the

kernel density function, and it is denoted as KDj
i for the jth (j = 1, 2,…,m) PCA feature at the ith

(i = 1, 2,…,N − k + 1) window.KDi ¼ KD1
i ,KD

2
i ,⋯,KDm

i

� �
is a collection of all the PCA features

at the ith (i = 1, 2, …, N − k + 1) window. The statistical discrepancy between the samples at the
ith (i = 1, 2, …, N − k + 1) window and KD1 ¼ KD1

1,KD
2
1,⋯,KDm

1

� �
is quantified by the KLID

and denoted as KLi ¼ KL1i ,KL
2
i ,⋯,KLmi

� �
where KLji computed by Eq. (10) is the KLID of the

jth (j = 1, 2, …, m) PCA feature at the ith (i = 1, 2, …, N − k + 1) window. By taking into account
the importance of the PCA features, the integrated KLID, denoted as IKLi (i = 1, 2, …, N − k),
can be evaluated by Eq. (12), where Fi(i = 1, 2, …, m) in Eq. (12) takes values from Eq. (18). It
should be noted that in the proposed approach IKLi act as the health indicator for rotating
machinery. A smaller value of IKLi represents that the condition of the monitored device is
close to the normal condition. On the contrary, if the condition of the monitored device
gradually deviates the normal condition due to defects or faults, IKLi will become a greater
value.

4.3. A case study

To validate the effectiveness of the proposed method in terms of assessing the health status of
rotating machinery, a case study for rolling element bearing is presented in this section.

4.3.1. Experimental setup

The experimental data are from the intelligent maintenance system (IMS) at the University of
Cincinnati [23]. The run-to-failure data were collected from the experimental rig as shown in
Figure 11, where the rolling bearings were working under a constant load condition. The
rolling bearing test rig hosts four test Rexnord ZA-2115 double row rolling bearings on one
shaft. Each row of the rolling bearings has 16 rollers, the section diameter is 71.5 mm, the
rolling diameter is 8.4 mm, and the contacting angle of the roller is 15.17°. The rotation speed
was set to be 2000 rpm. The sampling rate was 20 kHz, whereas the data length was 20,480
points. Three testing (i.e., Testings 1, 2, and 3) with identical rolling bearings were executed on
this experimental rig.

In the reported experiment, three run-to-failure data sets were collected. At the end of Testing
1, an inner race defect occurred on Bearing 3. Bearing 4 developed a roller defect. At the end of

Figure 10. An illustration of the k-width moving window.

Fault Diagnosis and Detection168

Testing 2, an outer race defect was found on Bearing 1. At the end of Testing 3, an outer race
defect happened on Bearing 3. In our study, the run-to-failure data sets from Testings 1 and 2
are used to validate our proposed approach.

4.3.2. Results and analysis

In our study, the tools, like the ensemble empirical mode decomposition (EEMD), were first
used to extract 95 representative features from the raw data sets. These features were
transformed by the PCA to reduce the dimensionality. The importance of the principle compo-
nents for Bearing 3 in Testing 1 and Bearing 1 in Testing 2 is shown in Figure 12(a) and (b).

From Figure 12, one can see that by using the first 10 principal components only, 90% accuracy
can be maintained. On the other hand, with such a small sacrifice of accuracy, the dimension-
ality of features can be dramatically reduced from 95 to 10. Therefore, the first 10 principal

Figure 11. The rolling bearing experimental rig [23].

Figure 12. The importance of the principle components. (a) Bearing 3 in Testing 1 and (b) Bearing 1 in Testing 2.
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components were used as selected features and put into the proposed health assessment
approach. The integrated KLID values from the proposed approach are plotted in Figure 12
(a) and (b) for Bearing 3 in Testing 1 and Bearing 1 in Testing 2, respectively, and these curves
acting as the health indicator reflect the health status of the monitored bearings.

As shown in Figure 13(a), the health indicator of Bearing 3 in Testing 1 has slight fluctuations
at the early stage of the experiment. At the 1750th point, the health indicator rose up steeply
and reached a great value in a short period of time (at the 1800th point). Such observation
could indicate that the bearing put into use had a small manufacturing defects or a slight
damage. It, therefore, leaded to the slight fluctuations of the health status at the beginning of
the experiment. The tiny defect became serious suddenly at the 1750th points.

In Figure 13(b), the health indicator of Bearing 1 in Testing 2 experienced two stages, namely
the slight damage stage and the severe damage stage. Due to the slight damage, the health
curve went up at the 680th point and reached the first peak value around the 700th point.
However, as the bearing entered a new unhealthy but stable state, the health status of the
bearing has a slight improvement as one can observed that the health curve dropped down for
a while. Two hundred points (around 70 hours) later, the bearing jumped into the severe
damage stage as shown in Figure 13(b).

To illustrate the effectiveness of the proposed approach, the results from a recent literature are
compared. The Locality Preserving Projection and Gaussian mixture model (GMM) was devel-
oped in Ref. [24] to construct a health assessment model for Bearing 1 in Testing 2. As found in
Ref. [24], the health curve changed after the 700th point, indicating the occurrence of a slight
damage. However, our proposed health indicator which rose up at the 680th point and
reached the first maximum value at the 700th point. To examine the status of Bearing 1 in
Testing 2 at the 680th point, the empirical mode decomposition (EMD) [25] was used to
decompose the collected vibration data to four levels. The Hilbert transformation (HT) was

Figure 13. The results of health assessment. (a) Bearing 3 in Testing 1 and (b) Bearing 1 in Testing 2.
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performed on the four intrinsic mode functions (IMFs). For more details about HT, please refer to
Ref. [20]. The corresponding results are shown in Figure 14. From Figure 14(b), one can easily
find the frequency component of 236.3 Hz and its 2–4 times frequency components. On the other
hand, the ball bass frequency at outer race (BPFO) can be theoretically calculated as follows:

f BPFO ¼ 1
2
· n · 1− d=Dð Þ · cosϕ½ � ·N ¼ 236:4Hz (19)

Thereby, one can conclude that the outer race defect occurred at the 680th point. Furthermore,
this result illustrates that the proposed health assessment approach has a better capability to
detect the incipient defect than the method proposed in Ref. [24].

5. Conclusion

In this chapter, based on the kernel density estimation and the Kullback-Leibler divergence, a
new data-driven fault diagnosis approach and a new health assessment approach are developed

Figure 14. The results of the EMD and the corresponding Hilbert spectrum of Bearing 1 in Testing 2 at the 680th point. (a)
The first four IMFs and (b) the Hilbert spectrum.
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by examining the statistical characteristics of the collected sample sets. By using the KDE and the
KLID, the fault types or health status can be identified by comparing the integrated KLID of
selected features. As demonstrated in the fault diagnosis examples, the proposed fault diagnosis
approach has an exceptional performance on faulty pattern recognition, and it outperforms the
conventional SVM-based and BP network-based methods. Meanwhile, in the example of health
assessment, the proposed health assessment approach, which takes account of the statistical
characteristics of sample sets, is capable of quantitatively tracking the health condition of the
monitored rotating machinery.
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Abstract

Vibration analysis has been widely used to diagnose gear tooth fault inside a planetary 
gearbox. However, the vibration characteristics of a planetary gearbox are very compli-
cated. Inside a planetary gearbox, there are multiple vibration sources as several sun-
planet gear pairs, and several ring-planet gear pairs are meshing simultaneously. In 
addition, due to the rotation of the carrier, distance varies between vibration sources and 
a transducer installed on the planetary gearbox housing. Dynamics-based vibration signal 
modeling techniques can simulate the vibration signals of a planetary gearbox and reveal 
the signal generation mechanism and fault features effectively. However, these techniques 
are basically in the theoretical development stage. Comprehensive experimental valida-
tions are required for their future applications in real systems. This chapter describes the 
methodologies related to vibration signal modeling of a planetary gear set for gear tooth 
damage diagnosis. The main contents include gear mesh stiffness evaluation, gear tooth 
crack modeling, dynamic modeling of a planetary gear set, vibration source modeling, 
modeling of transmission path effect due to the rotation of the carrier, sensor perceived 
vibration signal modeling, and vibration signal decomposition techniques. The methods 
presented in this chapter can help understand the vibration properties of planetary gear-
boxes and give insights into developing new signal processing methods for gear tooth 
damage diagnosis.

Keywords: dynamic simulation, effect of transmission path, gear mesh stiffness, signal 
decomposition, fault diagnosis

1. Introduction

Planetary gearboxes are widely used in military and industrial applications. For example, 
they are main transmission components in military helicopters, wind turbines, and mining 
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trucks as shown in Figure 1. Comparing with fixed-shaft gearboxes, planetary gearboxes can 
afford higher torque load due to the load sharing among multiple gear pairs and generate 
larger transmission ratio with equal or smaller volume.

Figure 2 illustrates the structure of a one-stage planetary gear set that is composed of a sun 
gear, a ring gear, a carrier, and several planet gears. This planetary gear set can achieve multi-
ple transmission scenarios as illustrated in Table 1. One transmission scenario can be selected 
in real applications based on individual application requirements. A planetary gear set is 
much more versatile in transmission scenarios comparing with a fixed-shaft gear set.

However, the versatility of planetary gearbox transmissions comes at a price: planetary gear 
sets are much more complicated to design and analyze. In the afternoon of April 1, 2009, a 
helicopter crashed into the North Sea and all 16 crew members died [1]. Later analysis con-
cluded that this accident was caused by gear fatigue crack. Therefore, it is crucial to be able 
to detect early fault of planetary gearboxes; otherwise, large economic losses or catastrophes 
may occur. Vibration analysis, acoustic analysis, oil debris analysis, temperature analysis, and 
strain analysis are common techniques in the condition monitoring of gearbox systems. In 
this chapter, we only focus on the study of vibration analysis. Vibration analysis relies on the 
analysis of vibration signals to detect faults in a planetary gearbox.

There are mainly two ways to detect planetary gearbox damages based on vibration analysis. 
One way is to physically measure vibration responses of planetary gearboxes using vibration 
sensors and then analyze these vibration signals using advanced signal processing techniques 
to determine the health condition of planetary gearboxes [2–6]. Figure 3 gives an example 
which is a planetary gearbox test rig located in the Department of Mechanical Engineering 
of the University of Alberta. Four types of experiments were performed in this test rig: gear 
tooth crack experiments, tooth pitting experiments, run-to-failure experiments, and various 
load and speed experiments [2]. Planetary gear fault detection/classification techniques were 
developed [3–6] by analyzing vibration signals collected from this experimental test rig. The 
second way is to model system responses (vibration signals) of planetary gearboxes using 
physical laws, like the Newton’s laws of motion and then analyze simulated vibration sig-
nals aiming to reveal the nature of fault symptoms. The simulated vibration signals do not 
have the environmental noise interference. They can reveal fault features more easily than 
the physically measured signals. However, environmental noise did exist in real applications. 
The fault features revealed by the simulated signals may be submerged by the noise and 

Figure 1. Applications of planetary gearboxes: (a) helicopter, (b) wind turbine, and (c) mining truck.
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Figure 2. Structure of a planetary gear set.

Option Inputs Output

1 Sun (carrier fixed) Ring

2 Ring (carrier fixed) Sun

3 Carrier (sun fixed) Ring

4 Ring (sun fixed) Carrier

5 Sun (ring fixed) Carrier

6 Carrier (ring fixed) Sun

7 Sun and carrier Ring

8 Ring and sun Carrier

9 Ring and carrier Sun

Table 1 Transmission scenarios of a planetary gear set as given in Figure 2.

Figure 3. A planetary gearbox test rig located in the University of Alberta.
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become ineffective. Therefore, environmental noise effect should be considered before apply-
ing the fault detection techniques developed using the simulated signals. In this chapter, we 
limit our focus on the second way of planetary gearbox modeling and fault diagnosis.

Three types of system responses can be obtained from analytical or numerical modeling of 
planetary gearboxes. The first type analysis mainly focuses on gear nature frequency and 
mode analysis [7–12]. The second type analysis is to analyze vibration properties of indi-
vidual gears or dynamic forces of a gear pair among a planetary gear set [13–27]. In the first 
two types of analysis, the effect of gear transmission path is not considered. Figure 4 illus-
trates three possible transmission paths for a vibration induced by a sun-planet meshing. 
Due to the effect of transmission path, some vibrations may be attenuated or submerged in 
the process of reaching a transducer located on the gearbox housing. Some researchers mod-
eled the resultant vibration signals sensed by a transducer by considering multiple vibration 
sources inside a planetary gearbox and the effect of transmission path [5, 28–33]. A planetary 
gearbox has multiple vibration sources due to several sun-planet gear pairs and ring-planet 
gear pairs are meshing simultaneously. The effect of transmission path is mainly induced by 
the rotation of the carrier that causes the varying distance between a planet gear and a trans-
ducer mounted on the gearbox housing. The resultant vibration signals are the third type of 
system response. In the real applications, we generally install transducers on gearbox housing 
or bearing housing to collect vibration signals. Multiple vibration sources go through differ-
ent transmission paths and reach the transducer. Therefore, it is important to consider both 
multiple vibration sources and the transmission path effect in vibration signal modeling. In 
this chapter, we focus on the modeling of resultant vibration signals of a planetary gearbox. 
An improved lumped parameter model [31] is used to simulate gearbox vibration source sig-
nals. This model is similar to the one reported in Ref. [7] with three distinctions: (1) the planet 
deflections are described in the horizontal and vertical coordinates, (2) both the gyroscopic 
force and the centrifugal force are incorporated, and (3) more accurate physical parameters 
are adopted. In addition, a modified Hamming function is used to model the effect of trans-
mission path. This model is an improvement of widely used Hamming model [5, 28, 29]. The 
procedures to obtain resultant vibration signals are summarized in Figure 5. In the end, a new 
signal decomposition technique is used to enlarge gearbox fault signatures based on analysis 
of simulated vibration signals.

Figure 4. Transmission paths [5].
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In this chapter, we present detailed procedures of modeling resultant vibration signals of a 
planetary gearbox with tooth damages and vibration signal decomposition techniques for 
fault diagnosis. Some challenges are described and analyzed. The remaining part of this chap-
ter is organized as follows. In Section 2, a dynamic model is illustrated to simulate vibration 
source signals of a planetary gearbox. In Section 3, the methods to evaluate model param-
eters are described. In Section 4, the modeling of transmission path effect is given. Section 5 
presents simulated vibration signals and fault symptoms. Section 6 describes vibration signal 
decomposition techniques for gear tooth damage diagnosis. Section 7 draws a summary and 
points out future research topics in dynamics-based vibration signal modeling and fault diag-
nosis of planetary gearboxes.

2. Dynamic modeling for simulation of vibration source signals

Planetary gearbox transmission systems are complex, and it is hard to consider all details of 
the transmission. As a result, people simplify the problem as much as possible while retain-
ing all of the important and relevant features. A gearbox transmission can be modeled as 
a lumped system or a distributed system. A lumped system is simpler than a distributed 
system. A distributed system may be able to cover more details of a gearbox transmission, 
but its governing equations are hard to solve. The dependent variables of a lumped sys-
tem are functions of time alone, and in general, the equation of motions is represented by 
ordinary differential equations. By contrast, the dependent variables of a distributed system 
are functions of time and one or more spatial variables, and the equation of motions can 
only be expressed by partial differential equations. Generally, the more details covered for 
a gearbox transmission system, the more complicated the equation of motions. Analytical 
solutions to complicated differential equations are hard to obtain. Numerical methods are 
mostly applied to solve them. However, four types of errors may be induced using numeri-
cal methods: round-off error, truncation error, accumulated error, and relative error [34]. It is 
time-consuming to solve complicated differential equations and sometimes it is even impos-
sible to get a proper solution. Therefore, it is a trade-off between details to be covered and 
computation difficulties.

Figure 6 gives a typical modeling of a planetary gear set [30]. It is a 2D lumped parameter 
model. Each gear has three degrees of freedoms: angular rotation and transverse motions in 
the x- and y-directions. The gear mesh interface is modeled as a spring-damper system. Each 
bearing is also modeled as a spring-damper system. Other practical phenomena such as gear 
transmission error, backlash, tooth friction, gear shaft effect, gearbox housing effect, and gear 
misalignments are not considered in that model, but these can be selectively supplemented 

Figure 5. Procedures to obtain resultant vibration signals.
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according to individual future research of interest. The model reported in Ref. [30] is used 
directly in this chapter to simulate vibration source signals of a planetary gearbox. The gov-
erning equations for this model are available in Ref. [30]. The vibration source signals will be 
illustrated later in Section 5.

3. Evaluation of physical parameters

For the dynamic model given in Figure 6, governing equations are available in Ref. [30]. But, 
several physical parameters in this model need to be evaluated before solving these equa-
tions, for example, gear mesh stiffness and damping, bearing stiffness and damping, and gear 
moment of inertia.

Figure 6. Modeling of a planetary gear set [30].
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The most important one physical parameter is gear mesh stiffness. There are basically two 
ways to evaluate gear mesh stiffness: finite element method (FEM) and analytical method 
(AM). FEM is flexible to model any shaped gear and gear fault, but it is sensitive to contact tol-
erances, mesh density, and the type of finite elements selected. As the increase of mesh density, 
the numerical accuracy is improved, but the computation cost goes up. To reduce computation 
cost of FEM, Parker et al. [35] and Ambarisha and Parker [8] developed a combined element/
contact mechanics model in gear mesh stiffness evaluation. Liang et al. [36] used linear finite 
element analysis to save computation cost in gear mesh stiffness evaluation. AM assumes a 
gear tooth as a nonuniform cantilever beam and beam theories are applied to evaluate gear 
mesh stiffness. AM has higher computational efficiency than FEM. But, AM is hard to model 
shape-complicated gear teeth and some gear faults. Potential energy method is one popular 
AM. This method has been used to evaluate mesh stiffness of perfect gears [37, 38], gears with 
crack [39–45], gears with a single tooth pit/spalling [46, 47], gears with multiple tooth pits [36], 
gears with a chipped tooth [39], gears with tooth plastic inclination deformation [19], gears 
with tooth profile modification [48], and gears with carrier misalignment errors [22].

In this section, the potential energy method used in Ref. [43] is illustrated to evaluate the 
mesh stiffness of a planetary gear set in healthy and cracked tooth conditions. The gear 
tooth is modeled as a nonuniform cantilever beam starting from gear base circle. The total 
energy stored in a pair of meshing gears is considered to be the summation of Hertzian con-
tact energy, bending energy, shear energy, and axial compressive energy that corresponds to 
Hertzian contact stiffness, bending stiffness, shear stiffness, and axial compressive stiffness, 
respectively. When a gear tooth crack occurs, the effective tooth length, the area, and area 
moment of tooth sections of a cracked tooth are different from that of a perfect tooth, which 
leads to the gear mesh stiffness reduction. In Ref. [43], the gear tooth crack path is modeled 
in a straight line shape starting from the critical area of tooth root as shown in Figure 7. The 
critical area is around the maximum principle stress point at the tooth root. The equations for 
Hertzian contact stiffness (kh), bending stiffness (kb), shear stiffness (ks), and axial compressive 
stiffness (ka) are derived and available in Ref. [43]. These equations are expressed as a function 
of gear rotation angle (given gear geometry, material information, and crack information). 
Users can use these equations directly to evaluate gear mesh stiffness even though they are 
not familiar with beam and/or gear meshing theories. The total effective mesh stiffness kt can 
be obtained as follows:

   k  t   =  ∑ 
i=1

  
m
      1  _______________________   

  1 ___  k  h,i  
   +   1 ___  k  b1,i  

   +   1 ___  k  s1,i  
   +   1 ___  k  a1,i  

   +   1 ____  k  b2.i  
   +   1 ___  k  s2,i  

   +   1 ___  k  a2,i  
  
    (1)

where i represents the ith pair of meshing teeth and the subscripts 1 and 2 denote the driving 
gear and the driven gear, respectively.

Figure 8 summarizes the steps to obtain mesh stiffness of a planetary gear set. First, the mesh 
stiffness of a pair of sun-planet gears (a pair of external gears) and a pair of ring-planet gears 
(a pair of internal gears) should be evaluated using the potential energy method, respectively. 
Then, by incorporating gear mesh phase relationships [49], the mesh stiffness of other sun-
planet gear pairs and ring-planet gear pairs can be obtained.
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Figure 7. Tooth crack modeling.

Figure 8. Steps to obtain mesh stiffness of a planetary gear set [31].
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Table 2 gives the physical parameters of a planetary gear set. Figure 9 illustrates the mesh 
stiffness of one sun-planet gear pair and one ring-planet gear pair of this planetary gear set 
using the method given in Ref. [43]. Two health conditions are given: perfect condition and 
4.3 mm tooth crack condition. This crack length is illustrated in Figure 7. The tooth crack is in 
the planet gear (ring side). Under this scenario, the mesh stiffness of the sun-planet gear pair 
is assumed not to be affected by this planet gear tooth crack [43], while the mesh stiffness of 
the ring-planet gear pair reduces.

Parameters Sun Planets (4, equally spaced) Ring

Number of teeth 19 31 81

Module (mm) 3.2 3.2 3.2

Pressure angle   20   ο    20   ο    20   ο  

Mass (kg) 0.700 1.822 5.982

Face width (m) 0.0381 0.0381 0.0381

Young’s modulus (Pa) 2.068 × 1011 2.068 × 1011 2.068 × 1011

Poisson’s ratio 0.3 0.3 0.3

Base circle radius (mm) 28.3 46.2 120.8

Root circle radius (mm) 26.2 45.2 132.6

Reduction ratio 5.263

Bearing stiffness ksx= ksy= krx= kry=kcx=kcy= kpnx= kpny= 1.0 × 108 N/m

Bearing damping csx= csy= crx= cry= ccx= ccy= cpnx= cpny= 1.5 × 103 kg/s

Table 2. Physical parameters of a planetary gear set [30].

Figure 9. Mesh stiffness in perfect and cracked tooth conditions.
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Similar methodology can be used to evaluate the effect of other gear faults like tooth pitting 
[36] on the mesh stiffness of a pair or gears. While many studies have been performed to 
evaluate gear mesh stiffness, the studies on the evaluation of gear mesh damping, bearing 
stiffness, and damping are rare. Gear mesh stiffness is assumed to be constant or propor-
tional to gear mesh stiffness [40]. Bearing stiffness and damping are mostly assumed to be 
constant [30].

4. Modeling of transmission path effect

In Figure 4, three transmission paths are illustrated. However, most researchers only consid-
ered and modeled the effect of transmission path 1 since it has a shortest distance between 
vibration sources and the transducer. All researchers assumed that with the rotation of the 
carrier, the influence of a planet on vibration signals perceived by a transducer mounted on 
the gearbox housing reached its maximum when this planet was closest to the transducer; 
then this planet’s influence decreased as the planet went away from the transducer. The trans-
mission path effect model is assumed to be independent of gear fault modes. It can be used 
for gear tooth crack, pitting, spalling, wear, and so on. A Hanning function was used in Refs. 
[28, 29], and a Hamming function was used in Refs. [32, 50] to represent the effect of transmis-
sion path. A modified Hamming function with adjustable window bandwidth was proposed 
in Ref. [30]. Liu et al. [33] used the modified Hamming function to model the transmission 
path along the casing and also proposed two constants to represent the transmission path 
inside the casing. In this study, the modified Hamming function reported in Ref. [30] is used 
to represent the effect of transmission path. The resultant vibration a(t) is modeled as the sum-
mation of weighted vibration of each planet gear as follows:

  a (t)  =  ∑ n=1  N     e   a  (mod ( w  c  t+φ,2π) −π)    2    H  m   (t)   a  n   (t)   (2)

where N represents the number of planet gears, wc denotes carrier rotation speed, φ represents 
circumferential angle of the nth planet gear, Hm(t) is the Hamming function, an(t) represents 
the acceleration signal of the nth planet gear, and the parameter a is used to control bandwidth 
of a Hamming function.

5. Vibration signal analysis and fault symptoms

Figure 10 gives the vertical acceleration signals of a single planet gear under healthy and 
cracked tooth conditions. The large spikes on this figure are generated by the meshing of the 
cracked tooth. The angular interval of these large spikes is 31 θm where θm represents the rota-
tion angle of a planet gear in one tooth mesh period. The ring gear has 81 teeth, and therefore, 
in one revolution of the carrier, a planet gear’s angular displacement is 81 θm.

Figure 11 shows the resultant vibration signals of a planet gearbox obtained using Eq. (2). 
Amplitude modulation can be observed from resultant vibration signals because four planet 
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Figure 10. Vibration of a single planet gear.

Figure 11. Resultant vibration of a planetary gearbox [31].
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gears pass through the transducer sequentially in one revolution of the carrier and their effects 
on resultant vibration signals vary according to their locations. The amplitude of resultant 
vibration signals is smaller than that of a single planet gear because some vibration signals are 
attenuated during transmission. The amplitude of large spikes generated by the cracked tooth 
varies largely because the signal attenuation is not uniform. The farther between a planet gear 
and a transducer, the larger signal attenuation for this planet gear.

Similarly, for other types of planetary gear faults, the resultant vibration signals can be simu-
lated by considering both vibration source signals and the effect of transmission path. The 
vibration source signals are related to gear faults by a dynamic model. The transmission path 
effect model is irrelevant with gear faults.

6. Vibration signal decomposition for fault diagnosis

From Figure 11, we can see that the time duration of large spikes generated by the cracked 
tooth is very short. These large spikes are not such obvious in experimental signals because 
of noise pollution [31]. Actually, they are very weak according to the experimental findings 
in Ref. [30, 31]. Therefore, people proposed signal decomposition techniques to enlarge the 
fault symptoms generated by a damaged gear tooth. In Ref. [51], McFadden used a window 
function to sample the vibration signals of a planetary gearbox when the planet gear of 
interest was passing the transducer and then the signal samples were mapped to the corre-
sponding teeth of the sun gear or a planet gear to construct the vibration signals of the sun 
gear or a planet gear. The decomposed signal reduces the interference from other gear vibra-
tions and emphasizes the fault symptoms of the gear of interest. Liang et al. [31] proposed 
another windowing and mapping strategy to generate the vibration signal of each tooth of 
the planet gear of interest. If a planet gear has N teeth, the resultant vibration signal can be 
decomposed into N subsignals. Each subsignal corresponds to one tooth. Examining the 
differences of these N subsignals, the health differences of these N teeth can be measured. 
The detailed signal decomposition techniques will not be described in detail in this chapter 
as they are available in the published papers [31, 51]. Figure 12 illustrates the effective-
ness of the windowing and mapping strategy proposed in Ref. [31]. Figure 12(a) gives the 
resultant vibration signal of a planetary gearbox with a single tooth crack on a planet gear. 
Figure 12(b) and (c) illustrate the decomposed vibration signals according to a perfect tooth 
and the cracked tooth, respectively. More obvious fault symptoms can be observed from 
Figure 12(c) than the original resultant vibration signal as shown in Figure 12(a). Examining 
the differences between Figure 12(b) and (c), it is easy to tell that Figure 12(c) is generated 
by a cracked tooth.

This vibration signal decomposition technique [31] is able to identify the tooth health condi-
tion differences. If some teeth are in healthy condition while others are in damaged condition, 
this method will be effective for fault diagnosis. In an extreme case, if all gear teeth have the 
same damage severity, like evenly distributed pitting, this method will be ineffective as there 
is no difference between the health conditions of teeth.
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7. Summary and future work

This chapter describes techniques for dynamics-based vibration signal modeling and fault 
diagnosis of planetary gearboxes. The planetary gearbox vibration signal modeling contains 
two parts: the simulation of vibration source signals and the modeling of transmission path 
effect. The current research status and challenges of dynamic modeling-based fault diagnosis 
are introduced. In the example given in this chapter, vibration source signals are obtained 
by a lumped parameter dynamic model, the gear fault is reflected by the time-varying mesh 
stiffness which is evaluated using the potential energy method, and the effect of transmis-
sion path is modeled using a modified Hamming function. Other window functions are also 

Figure 12. Vibration signal decomposition of a planetary gearbox [31]: (a) resultant vibration signal, (b) decomposed 
signal for a perfect tooth, and (c) decomposed signal for a cracked tooth.
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described to model the effect of transmission path. However, further researches to test and 
validate these window functions are required. In the end, vibration decomposition techniques 
are briefly described for gear tooth damage diagnosis. Comparing between the raw signal 
and the decomposed signal, we can find that the signal decomposition technique can enlarge 
gearbox fault symptoms and facilitate fault diagnosis.

Based on the research scope of this chapter, the following perspectives are suggested for 
future consideration:

(1) Mesh stiffness evaluation with crack/pitting in multiple teeth.

(2) Mesh stiffness evaluation with multiple fault modes.

(3) Experimental validation of methods in evaluating gear mesh stiffness.

(4) Gear mesh damping evaluation.

(5) Bearing stiffness and damping evaluation.

(6) Time-varying load or random load effect on the vibration signals.

(7) Experimental validation of models for transmission path effects.

(8) Effects of noises from internal and/or external sources.

(9) Dynamic and vibration properties of gearboxes with multiple faults (multiple fault 
locations and/or multiple fault modes).

(10) Development of fault diagnosis techniques based on the understanding of vibration 
properties.
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Abstract

The last years of research and development in the automotive industry were still
focused on designing electrical propulsion units to be eco-friendly and diminish the
drawbacks of classical combustion engines. Besides being energy efficient, silent, and
high in power density, these must have a serious fault-tolerant ability as driver, and
passengers’ safety is probably the most important issue in this filed. The chapter will
detail fault-tolerant machines and power electronic architectures with their control for the
most common ones, such as switched reluctance machines (SRM) and the permanent-
magnet synchronous machines (PMSM). Besides detection, solutions will be presented for
the machine-drive unit to wisely overcome and compensate occurred faults. A novel
modular structure of SRM is presented with increased fault tolerance and possibility of
fast repair in case of any machine damage. The solutions will be validated via simulated
and experiment-based results.

Keywords: fault tolerant, electrical machines, drives, control, fault detection, fault
compensation, SRM, PMSM

1. Introduction

Electromechanical systems became in the last decade an indispensable part of nearly every
electrical energy consumer. Taking advantage of the technological advance in the world of
engineering, the demands in terms of performance, efficiency, reliability, and safety which
were raised are continuously pushed forward [1]. Latest technological developments for such
systems are based on sophisticated control strategies that have the ability to accommodate
component failures automatically. By this, the system’s stability is maintained in acceptable
range of performances reaching what one can entitle fault-tolerant system [2].

This chapter focuses on switched reluctance and permanent-magnet synchronous machines
(SRM and PMSM), dedicated for fault-tolerant applications. Modular and multiphase designs
will be presented for both types of machines together with their electronic converters,

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



developed to serve such applications. The motivation for choosing these two electrical
machines and their drives comes with the tendency of the actual market to focus research to
electrify the propulsion systems in the automotive industry. Researches involved complex
studies in developing solutions for fault-tolerant SRMs with their drives, solutions that are
flexible and able to do online fault diagnosis and compensation [3]. Other studies were focused
on electronic failure diagnosis, like the one in Ref. [4]. Winding malfunctions, such as short
circuits [5] and open circuits [6], were engaged, offering solutions for intelligent control strat-
egies. The proposed modular SRM adds to the actual status of research by a novel structural
design that allows isolation and easy replacement of the faulted coils.

In the field of PMSMs, winding fault is usually the main cause of malfunctions due to short or
open circuit faults. Usually, these are observed and compensated by implementing intelligent
control strategies [7, 8]. Research activities were carried out also in the field of electronic faults,
such as short circuit, proposing control strategies to avoid the error and try to keep the
machine operational [9]. Field Programmable Gate Array (FPGA) based control methods for
fault recognition and compensation based on a residual calculation were proposed in Ref. [10].
The multiphase PMSM detailed in the chapter offers a simple motor-drive fault-tolerant solu-
tion that by its architecture comes in addition to the preliminary studies.

2. Fault-tolerant switched reluctance machines and drives

By the nature of operation and by their construction, SRMs are considered up to an extent fault
tolerant because these are able to operate in case of one-phase failure. However, adding to its
natural fault-tolerant ability a dedicated modular stator design, one can reach a high level of
safety and reliability when the application demands it. Even more, adding to such a machine a
more complex electronic power converter, able to isolate and compensate the occurred fault,
increases radically the fault-tolerant abilities.

The modular design of the SRM’s stator consists of eight individual modules isolated between
them with nonmagnetic displacers as shown in Figure 1. One machine phase is compounded
of the coils wound on diametrically opposed modules. These are fixed to the end caps of the
machine using nonmagnetic rods that pass through them. Using the nonmagnetic displacers
between adjacent modules, the magnetic flux’s path is forced only via the energized module
and the corresponding rotor poles as seen in Figure 1. The machine’s rotor is a classical design
having 14 poles.

The concept regards that the coils of each phase are fed independently. In this case, with
independent supply and because one stator slot is not shared by coils from different phases,
in case of short circuits, overheating, etc. of one coil, the remaining ones are not influenced nor
altered.

This way, if a coil of one phase is faulted, the machine will continue operating with the
remaining diametrically opposed coil. This event can occur from one to all phases of the
machine, and it can still operate in satisfactory conditions. One solution to compensate
the faulted coils, is to increase the current of the remaining healthy ones. This is allowed by
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their design, even if it will mean saturation of the core and increase of the machine’s tempera-
ture. It is easy to understand that the developed torque and speed in case of fault will be lower
than in normal condition but, still, will reach satisfactory values till safe stop of the machine is
possible.

This design allows besides isolation of the coils and of the magnetic cores simple and fast
replacement of the damaged modules with new ones. Extracting the fixing rods permits
removal of the nonfunctional modules without the need of uncoupling the shaft from the
application and without moving the machine out of its housing. The prototype built to prove
the concept was rated at 300 Vdc, 6 A, 600 rpm, and 5 Nm, as specifications for the design
process.

2.1. The design of the modular SRM

Due to the fact that the machine has nonclassical features, its design process is based on an
analytical model combined with particular calculations required by the modular structure. The
number of rotor poles (QR) is a function of the number of stator modules (NmS) and the number
of phase to coil division (ndiv):

QR ¼ ndiv �NmS � ndiv (1)

The design process followed complex algorithms [11–13] to shape the geometry of the core
assemblies but at the same time, to size and determine the machine’s characteristics such as
torque, losses, flux densities, etc.

Figure 1. The 3D model of the modular SRM and its flux paths on one phase and the coil distribution.
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The shaping process starts by imposing several parameters that will characterize the perfor-
mances of the future machine. These regard the supply voltage (UN), the rated current (I), the
number of phases (m), the machine’s rated power (P2N), the mechanical air gap (g), the air-gap
flux density in aligned position (Bgmax), the rated speed (nN), and the rated torque (TN).

For any SRM, classical or modular one, the most important parameter that has important
influence on its performances is the mean diameter, as value measured in the middle point of
the air gap [14]:

Dg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2N �Qs � kσ
QR � π2 � kL � nN60 � Bgmax � 1� 1

Kcr

� �
� AS

3

vuut (2)

where (QS) and (QR) are the numbers of stator and rotor poles. Coefficients (kσ) and (kL) regard
the leakage flux factors, as values between 0.75 and 0.95, the aspect factor, respectively, are
calculated like

kL ¼ π
2
� 1ffiffiffiffiffiffiffi

QR
3
p (3)

The electrical loading AS will be chosen in an interval between 54 and 154 A/m, while Carter’s
factor KCR considers the shape of the salient poles and the flux path’s distortion due to this
shape [15]. It is chosen in a range between 1.4 and 2.

Computing the ratio of the mean diameter (Dg) with respect to the aspect of coefficient yells for
a preliminary value of the machine’s active stack length (la) that can be later adjusted as
function of the resulted developed torque. Usually, this value can be restricted by the housing
of the machine.

Because the stator is compounded of eight independent modules, it is enough to size only one of
them. The complete circle described by the inner stator diameter is split into (NmS) arcs, equal
with the number of the stator modules. The length of one arch described by one module is

Lm ¼
2 � π � Dg

2 þ g
2

� �

NmS
(4)

The SRM by its nature due to its saliency and due to its switched current operation has the well-
known torque ripples, influenced also by the saturation of the pole tips. When discussing about
analytical calculation of the mean torque, it is quite difficult to take into account all the factors.
Hence, as themost influential parameter on the torque development is the core saturation, instead
of the geometrically defined air gap (g), an equivalent value will be used in the following calcula-
tions, the latter considering the saturation of the poles in aligned position by (ksat) coefficient:

gx ¼ ksat � g (5)

To ensure correct isolation between the modules, it was considered necessary that the spacers
between them (lD) should be at least 10 but not larger than 20 times the air gap.
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The arch defined by one stator module (see Figure 2) computed with Eq. (4) includes also the
arch defined by the spacer. Hence, the pole pitch described just by the module itself without
the spacer is half of the difference between (Lm) and (lD):

τS ¼ Lm � lD
2

(6)

Sizing the width of the stator poles is based on ranging their values between 0.5 and 0.8 of the
module total pitch. The value has to be considered in order to leave space to fit the winding
and to ensure correct overlapping with the rotor poles. Round values are indicated to be used,
as it simplifies the building process. Hence, the stator pole width was considered to be

bpS ¼ round 0:58 � τSð Þ (7)

Finalizing the computation of the stator pole width requires to recompute the value of the
spacers between the modules, in order to close the circle described by the inner stator radius.
By now, only a preliminary value of the spacer was considered. Before proceeding to this
calculation, firstly the rotor pole pitch has to be computed:

LarcPR ¼
π � Dg

2 � g
2

� �
� 360QR

180
� 2 � bpR

2
(8)

where bpR is the rotor pole width, considered equal with the stator pole width (bpS). To
calculate the real dimensions of the spacer, the stator slot opening width (LarcCS) needs to be
computed:

LarcCS ¼ round
π Dg

2 þ g
2

� �
� uC

180

0
@

1
A (9)

where (uC) is the angle described by the rotor pole pitch arc, calculated as

Figure 2. Sizing the stator module.
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u ¼
π � Dg

2 � g
2

� �
� 360

QR
� bpS

π � Dg

2 � g
2

� � (10)

To finalize the sizing of the module spacers, it is considered that the stator and rotor slots are
equal and the distance between them is just the air gap. Hence, the spacer can be sized as

lD ¼ Lm � 2 � bpS � LarcCS (11)

By now, only the module’s yoke height remains to be sized. To make sure that proper satura-
tion is reached advantaging fast demagnetization when the phase is switched in off state, the
yoke was considered to be 0.85 of the pole’s width:

hjS ¼ round 0:85 � bpS
� �

(12)

Because no information is yet available about the size of the coils that need to be fitted inside
the stator slot, only a preliminary value can be considered to the height of the stator poles,
simply obtained as

hpS ¼ round 1:01 � Lmð Þ (13)

This value will be recomputed after sizing the coils. However, the active stator pole surface
will be

ApS ¼ bpS � la (14)

Before sizing the coils, which will require information about the length of the flux paths, the
rotor must be sized. As already stated, the rotor pole pitch is equal with the one of the stator.
As the width of the rotor poles are also at the same size as the one of the stator poles, one can
compute the rotor slot opening like

bcR ¼ round LarcR � bpR
� �

(15)

As seen in Figure 1, the magnetic flux closes only via the energized module and the
corresponding rotor poles; hence, the yoke of the rotor (hjR) can be considered equal with the
one of the stator (hjS). Imposing the diameter of the machine’s shaft (dax), it is possible to
compute rotor pole height (see Figure 3):

hpR ¼ round
Dg

2
� gx

4
� hjR � dax

2

� �
(16)

As mentioned earlier, after sizing the rotor, it is possible to compute the dimensions of the coils
in relation with the magnetic field (H) and the machine’s geometrical dimensions.

To be able to compute the required magnetomotive force, the length of the flux paths through
the stator (ls), air gap (lg), and rotor (lr) must be calculated:
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ls ¼ 2 � hpS þ LarcCS
lg ¼ 2 � g
lr ¼ 2 � hpR þ LarcCR

(17)

Based on Ampere’s law, it is easy to compute the magnetomotive force, and from there the
number of turns per coil Nf is

Θ ¼ HFe � ls þ lrð Þ þHg � lg
Nf ¼ round Θ=Ið Þ (18)

Function of the desired current and the number of turns, one can easily determine the size of
the coil (hbob) that will allow the final computation of the height of the stator module:

hm ¼ hlim þ hbob þ hjS (19)

Having all the abovementioned data, sizing process of the machine is finished. To validate the
breviary, the designer has to compute the developed mean torque using

Tv ¼ kunal �Nop Nf � I
� �2 �Dg

2
� μ0 �

la
4 � gx

(20)

where (Nop) is the number of modules of one phase and (kunal) is a constant that considers the
contribution of the magnetic flux in unaligned position.

2.2. The operation of the fault-tolerant SRM

Validation of the modular SRM’s design was accomplished via both finite element simulations
and experimental testing in the laboratory. In both cases, the electronic converter had half-H
bridges for each coil like in Figure 4. Hence, the two coils of one phase had each an indepen-
dent half-H bridge (e.g., phase Ph1 is compounded of two independently but synchronously
supplied coils, Ph1A and Ph1B). The concept was to permit the converter and the controller to
separate and compensate the faulted coils. During normal operation, the coils of one phase
were supplied with the same current using hysteresis current controller.

Figure 3. Sizing the rotor of the machine.
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It is clear that in case of any fault, the controller stops feeding with current the damaged coil
and supplies only the healthy remaining one. This structure is indeed a more complex one than
in the case of classical converters, but it is motivated by the highly increased fault-tolerant
application of the machine.

Using Flux2D software, several tests were performed in both healthy and faulty conditions with
1–4 open circuit coils. In Figure 5(a), (b), and (c), the healthy condition is depicted. The currents
are plotted separately for all the eight coils of the machine (coils Ph1A, Ph2A, Ph3A, and Ph4A in
plot b) and (coils Ph1B, Ph2B, Ph3B, and Ph4B in plot c). The developed RMS torque is 5.7 Nm at
the rated current of 6 A. In case of one faulted coil (open circuit of Ph1A of phase 1), as it can be
seen in Figure 5d, correspondence to the missing coil’s (Figure 5e) current of the torque falls,
being generated only by Ph1B of phase 1. Due to separate supply of the two coils of the phases
(see Figure 4), Ph1B remains operational, as it is depicted in Figure 5f. The machine continues to
operate even if the ripples are increased. It has to be mentioned also that all the tests were carried
out only with classical hysteresis control strategy just to prove the machine’s operational skills.

In case of more sever faults, as it can be seen in Figure 6 for two to four opened coils, the RMS
torque decreases and yells for more ripples, still the machine being able to perform continuous
operation.

Figure 4. The electronic converter’s topology.

Figure 5. Finite element simulation results in healthy (a–c) and one-coil open fault (d–f).
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The experimental validation of the concept and of the machine itself was accomplished by
building the modular SRM with regard to the design specifications and setting up a test bench
like the one in Figure 7. The modules were cut out of lamination and fixed into an aluminum
housing. The test bench was compounded of the SRM, an induction machine as a load, a
torque meter, the complex converter, and a dSPACE 1104 card for its control. An encoder was
mounted on the shaft of the machine to provide feedback of the speed and the rotor position.
To prove the operational skills of the machine, the same tests were carried out on the test bench
like those performed in simulations.

The experimental results depicted in Figure 8(a) to (c) in healthy condition and Figure 8(d)
to (f) in open fault condition prove that the machine reaches the same performances as in
simulations. As the measured results are quite close to the ones obtained in simulations, the
same explanations that were detailed with regard to Figure 5 are valid for the measured
results.

In Figure 9, the results for faulted condition in experimental testing are depicted. The same
remarks described for the simulated results of each fault scenario are valid also for the mea-
sured ones. By this, it was proved that the design breviary and the experimental model of the
SRM are in accordance and the machine reaches the desired performances. In case of faults, if
the currents on the remaining coils are not increased, the torque ripples are intensified. How-
ever, the machine can continue its operation even if four of the eight coils are not operational.
The slight differences between the simulated results in Figure 5 and those obtained in real
measurements in Figure 8 are due to low sampling speed and quite low precision in rotor
position measurement, as an encoder was used instead of a resolver.

Figure 6. Simulated results in faulted conditions: two coils (a), three coils (b), and four coils (c).

Figure 7. The modular stator of the SRM (left) and the experimental test bench (right) [8].
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Comparing the results obtained from simulations and those obtained in experimental testing,
one can conclude that even in faulty condition, the machine reaches quite good performances.
Comparing the results gathered in Table 1, it can be stated that there are quite good agree-
ments between them. The biggest difference was reached in four opened coil conditions, about
0.65 Nm. However, in any fault condition, the SRM is able to develop more than 60% of the
rated torque, this correspondence to the worst case scenario (four opened coils).

Figure 8. Experimental results in healthy (a–c) and one-coil open fault (d–f).

Figure 9. Experimental results in faulted conditions: two coils (a), three coils (b), and four coils (c).

Condition

RMS torques (N�m)

Simulated Measured

Healthy machine 5.5 5.3

One faulted coil 4.9 4.68

Two faulted coils 4.34 4.05

Three faulted coils 3.8 3.32

Four faulted coils 3.3 2.65

Table 1. The RMS torque obtained in simulated and experimental analysis.
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Proving the concept and the operational skills, it is worth mentioning that, due to simple
hysteresis control strategy, in case of faults, the torque ripples are quite high. However,
engaging torque-smoothing strategies, such as direct instantaneous torque control or current
profiling, it is possible to reach satisfactory torque characteristic, quite close to a linear one
[9, 10], even in case of fault operation.

3. Fault-tolerant permanent-magnet synchronous machines and drives

The PMSMs due to their high power density, maturity, and reliability became in the last decade
more and more used in all the fields of electromechanical systems. Many applications such as
aircrafts, military, medicine, electric propulsion, etc. embed such machines, demanding in the
same time high fault-tolerant capabilities. Hence, fault-tolerant PSMSs became a hot topic.
Investigating ideas like six-phase inverters with common mode voltage elimination [16], or
using series-connected six-phase inverter with a three-phase motor to use the same inverter for
two machines [17] or adding a supplementary leg to the three-phase inverter, used only in
faulty condition [18, 19] became widely used solutions for fault PMSM-tolerant applications.
However smart-design considerations [20, 21] and dedicated control strategies [22, 23] were
applied to increase the fault-tolerant potential of the machine.

In order to achieve a more increased level of fault tolerance, a nine-phase PMSM is proposed
supplied from a special electronic converter able to overcome and compensate the occurred
fault, like the one in Figure 10. The design of the machine, the power converter, and their
operation will be described in the following, highlighting the benefits of using such a complex
but fault-free system.

Figure 10. The structure of the nine-phase PSMSM (left) and its flux paths (right).
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3.1. The design of the nine-phase PMSM

Taking into account published solutions to reduce significantly the torque ripples using frac-
tional-slot winding configuration [24, 25], a PMSM with 8 pole pairs and 18 slots was
designed. The machine has nine phases, and in the addition to classical designs, each phase is
formed by one coil that surrounds only one tooth. Hence, the phases are magnetically sepa-
rated, increasing its reliability by diminishing the influence of one faulted phase over the
remaining healthy one. The ratings for this machine are 48 Vdc, 500 rpm, 1.8 Nm, and 66.6
Hz of fundamental current frequency.

The sizing process is based on a generalized algorithm that one can use for any type of PMSM
indifferent of the number of phases, slots, or pole pairs. Neglecting the leakage reactance, the
output power can be a computed function of the estimated efficiency (η), the number of phases
(nph), the peak value of the mmf (Emax), and the peak value of the phase current (Imax):

Pout ¼ η � nph � Emax � Imax
QR ¼ ndiv �NmS � ndiv

(21)

In Eq. (22), the peak value of the mmf can be a computed function of its coefficient (kE), the
number of turns per phase (Nt), the air-gap flux density (Bgap), the active stack length (Lm), the
supply current frequency (fs), and the number of pole pairs (p):

Emax ¼ kE �Nt � Bgap � Lm � f s=p (22)

Defining the geometric coefficient, kL = Lm/Dgap, the current coefficient ki = Imax/Irms, and defin-
ing the phase load in ampere-turns:

At ¼ 2=π �Nt � Irms=Dgap (23)

One can compute the air-gap mean diameter, just like for the SRM in Eq. (2), using

Dgap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � p � Pout

π � nph � At � kE � ki � kL � η � Bgap � f s
3

s
(24)

Based on the value computed with Eq. (23), it is possible to size all the rest of geometrical
dimensions of the machine, based on classical models. The resulting air-gap flux density can be
determined with

Bgap ¼ hm � Brm
Dgap

2 � ln Rsi�gap
Rcr

� �
þ ln Rsi

Rsi�gap
� �� � (25)

where (hm) is the length of the permanent magnet, (Brm) is the permanent magnet’s remanent
flux density, (Rsi) is the stator inner diameter, (Rcr) is the rotor core diameter, and (gap) is
the air-gap length. The rest of the electromagnetic parameters can be computed based on the
air-gap flux density. The phase emf, proportional with the frequency and the number of turns,
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the flux linkage, and the demagnetization coefficient (kd) given by the permanent magnet’s
specifications (around 0.8–0.9) can be determined:

Eph ¼
ffiffiffi
2

p
� π � f s �Nt � kws �Ψm � kd (26)

where (kws) is the winding coefficient, specific for the used winding type.

The PMSM’s speed is given proportional with the emf and inverse proportional with its
coefficient:

Ω ¼ Eph=kE

Tm ¼ Pout=Ω
(27)

The developed mean torque is a computed function of the output power and the machine
speed. All that remain now, having the machine designed, are to validate its operation both in
simulations and in laboratory measurements.

3.2. The operation of the nine-phase PMSM

Before proceeding to validation of the machine, it is important to describe the dedicated
electronic power converter attached to the machine and the concept of its control, in order for
the reader to be able to understand the choice of the system’s assemblies.

One solution for a converter to be fault tolerant is to create H bridges around each phase and
control them independently. However, such a structure is very expensive, and at the same
time, it is quite difficult to create its proper control. A cost-effective solution is to build a
converter like the one depicted in Figure 11. The concept of the inverter is to divide the nine
phases of the machine in three groups of three phases [24, 25]. Each group of three phases
forms a star connection obtaining a neutral point that is connected to an additional inverter leg.
This is operated only if fault occurs on one of the three phases of one star. By this, the machine
can be operated even if three phases are faulted, with only one of the three sets of phases.
Moreover, even if one of the last three remaining phases is faulted, the machine can continue
its operation with only two of the nine phases.

In case the fault occurs on one phase of a group of 3, this is automatically isolated by keeping
the power switches around it open. However, due to the imbalance, the zero sequence current
is not null anymore. To keep the balance, this current, (I0), has to reach the supply. This is
where the additional leg is operated, ensuring that the zero sequence current reaches the
supply and by this, practically, the remaining healthy phases keep their balance driving
normal currents to the machine.

In order to have a better understanding of the phenomenon, the discussion that follows will be
held on a system of three-phase currents. However, as practically the three-phase machine has
3 · 3 phases, the concept is extendable applying the same procedures.
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In a three-phase system, the currents in a rotating reference frame are governed by

Ia ¼ Id � sin ωtð Þ þ Iq � cos ωtð Þ þ I0

Ib ¼ Id � sin ωt� 2
π
3

� �
þ Iq � cos ωt� 2

π
3

� �
þ I0

Ic ¼ Id � sin ωtþ 2
π
3

� �
þ Iq � cos ωtþ 2

π
3

� �
þ I0

(28)

Writing those in fixed reference frame will give

Ia ¼ 3
2
Iα þ

ffiffiffi
3

p

2
Iβ

Ib ¼
ffiffiffi
3

p
Iβ

Ic ¼ 0

(29)

The electromagnetic torque in general relation is expressed as

Tm ¼ 3
2
� p � Iq �Ψm þ Ld � Lq

� � � Id � Iq
� �

(30)

In relation to Eq. (30), it can be seen that to maintain a constant torque, the dq components of
the currents must remain the same. The link between fixed and rotating referenced frame
currents is given by

Iα ¼ Id � cos ωtð Þ � Iq � sin ωtð Þ
Iβ ¼ Id � sin ωtð Þ þ Iq � cos ωtð Þ (31)

Hence, substituting Eq. (31) into Eq. (29) gives the three-phase current law needed to keep the
developed electromagnetic torque constant:

Figure 11. The nine-phase fault-tolerant inverter structure.
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Ia ¼
ffiffiffi
3

p
Id � sin ωtþ 2π

3

� �
þ ffiffiffi

3
p

Iq � cos ωtþ 2π
3

� �

Ib ¼
ffiffiffi
3

p
Id � sin ωtð Þ þ ffiffiffi

3
p

Iq � cos ωtð Þ
Ic ¼ 0

(32)

Eq. (32) proves that the machine can keep the developed torque constant only if the currents

are increased with
ffiffiffi
3

p
. However, if the currents are not increased, in case of fault, the machine

will develop only 2/3 of the rated torque. This concept demonstrates that, in case of faults, the
machine can be supplied to develop the same torque by controlling the magnitude of the dq
currents. It has to be mentioned that for such applications, the winding must be sized properly,
to be able to handle increased currents without the risk of burnout.

Validation both in simulations and in laboratory experiments will be focused on injecting
currents in the neutral point using the additional inverter leg, to compensate the fault occurred
in each star connection of the machine.

Flux2D software, a software based on finite element analysis, was used to validate the machine
via simulations.

In Figure 12 the normal and one-phase fault conditions are depicted for the nine-phase PMSM.
As it can be seen for the normal condition, all the nine currents are present developing torque,
reaching 1.8 Nm, the rated value. In case of fault, this was set to occur at 0.01 s; it can be seen
that the lack of one phase creates torque ripples and its RMS value diminishes to 1.6 Nm. In
order to prove the concept, no currents will be increased, highlighting that the value of the
torque is diminished with 2/3 for each phase.

Figure 13 depicts several fault condition tests that were performed. When two phases from
two star connections are lacking (Figure 13, top-left), the torque ripples increase even more,
and the RMS value reaches 1.5 Nm. If a third phase (Figure 13, top-right), from the third star
connection, is faulted, the ripples increase again, and the RMS value of the torque decreases to
1.35 Nm. The worst case scenario is depicted in Figure 13 (bottom). Here, two phases from one
star and one from each of the other stars are faulted. Hence, only five phases remain

Figure 12. Simulated result in healthy (left) and one-phase fault (right).
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operational in the machine. High torque ripples are reached in this case, and the torque
developed barely passes 1 Nm as mean value.

The experimental validation of the nine-phase PMSMwas done with the test bench depicted in
Figure 14. Its main assemblies are the PMSM, a torque meter, an induction machine as load,
the complex electronic converter, nine current sensors, a power supply, and a dSPACE 1103
card for the control [16].

In order to highlight the benefit of using the additional leg of each star connection, a debate
will be focused on only one of the three star connections, the phenomenon being the same for
the entire machine. The three-phase currents and the developed torque in healthy condition
are depicted in Figure 15 (top). The amplitude of the currents and torque reaches rated values;
these are being measured at the rated speed. The deformation of the currents is given by low

Figure 13. Simulated results in faulted conditions: two phases (top-left), three phases (top-right), and four phases
(bottom).

Figure 14. The nine-phase PMSM test bench.
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switching frequency. The developed torque is about 1.72 Nm as RMS value, quite close to the
one obtained in simulations. In case of a phase fault of one star (obtained by forcing open
circuit), without engaging the fourth leg, the currents become shifted with 180°, like in
Figure 15 (middle). However, engaging the fourth leg, this will complete the switching table
of a three-phase system, keeping the currents shifted with the proper angle.

The torque is diminished in this case, but the ripples are much lower than in the case when the
fourth leg was not engaged. The RMS torque obtained was 1.62 Nm, quite close to the one
resulted simulations wise.

This analysis proves the benefits of using such a configuration of an additional fourth leg
correspondence for each group of three phases in star connection. This operational concept is
extendable for any number of phases. As the machine in study has nine phases, the same fault
conditions that were tested in simulations will be applied in the experimental validation too.

In Figure 16, nine-phase currents are plotted for healthy machine operation. The reason of the
distortion was already explained in the above paragraphs. To compare the results with those
obtained in simulation, firstly two phases are opened from two different star connections. It
can be seen in Figure 16 (top-right) that for this condition the torque ripples are higher than in
the case of only one phase fault. The RMS torque developed was about 1.42 Nm. Another fault
condition was to open three phases, each from a different star connection. The result plotted in
Figure 16 (bottom-left) shows not only the high torque ripples but also some instability of the

Figure 15. The currents (left) and the instantaneous torque (right) for healthy machine (top) and in one-phase fault
without (middle) and with (bottom) the contribution of the fourth leg.
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characteristic. In this case about 1.28 Nm RMS torque was developed. The worst case scenario
is having two opened phases from the first star connection and other two phases from each of
the remaining stars. The torque depicted in Figure 16 (bottom-right) presents the highest
torque ripples and an RMS torque of 1.18 Nm. Comparing the results from simulations and
from experimental measurements in the same operation conditions, there are quite consistent
differences between them. The reasons are due to the fact that the analysis conditions were
quite different. The switching frequency during experiments was limited to the computation
power of dSPACE. By this, the shape of the currents included a certain content of harmonics
that has direct impact on the shape of the torque. The rotating assemblies of the test bench had
consistent inertia adding together one of the loads of the mechanical coupling and of the
PMSM’s itself. Overall, the analysis highlighted the benefits of using a fractional-slot design
for the machine to diminish the torque ripples supplied by a special electronic converter able to
isolate and compensate the faults. The level of fault tolerance was proven by the fact that the
machine is able to operate with only five of its nine phases, continuing to develop quite a
reasonable quantity of torque.

4. Conclusions

In the present chapter, fault-tolerant electrical machines and drives are presented for particular
applications in the light electric vehicle industry. The goal was to analyze the most used
machine nowadays in this area such as the switched reluctance and the permanent-magnet
synchronous machines. The latter one was designed in a multiphase structure, having nine-
phases, each three of them connected in a star connection. Operating this machine with a
dedicated special architecture electronic converter, one can reach continuous operation despite
open-phase conditions. Numerical simulations and experimental tests prove the operational
skills of the machine.

Figure 16. The nine-phase currents (top-left) and the instantaneous torque for fault on two star connections (top-right),
fault on three star connections (bottom-left), and fault on two phases of a star and fault of one phase of each of the other
two stars (bottom-right).
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The fault-tolerant SRM was designed in a novel concept, to have a modular stator, each
module caring independent coils. Each diametrically opposed two coils form one stator phase,
but each coil is supplied independently from a half-H bridge. For this machine also numerical
and experimental studies proved the integrity and the usefulness of the machine.

The presented structures are part of a step forward in the field of high reliability electrical
machines. These, controlled with the proposed electronic converters and adding intelligent
control strategies, are able to reach high fault-tolerant capabilities. On the other hand, consid-
ering the price of implementing such structures, it is clear that these are higher than the
classical ones. However, fault-tolerant systems are by default high-cost designs, and these
costs are increasing with their complexity and reliability.
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Abstract

The problem of fault diagnosis in a class of nonlinear system is considered. Systems that can
be written in the so-called Generalized Hamiltonian Representation (which is equivalent
to an Euler-Lagrange representation) are studied, and a model-based observer approach
for this class of systems is developed. The main advantage of the proposed approach is
the facility to design the required observers, which take advantage of the system struc-
ture given by the Hamitonian representation. In order to show the proposed schema, a
model of a permanent magnet synchronous machine is revised and the fault diagnosis
schema presented. Simulation results confirm the effectivity of the proposed schema.

Keywords: fault diagnosis, Hamiltonian systems, nonlinear systems, observers, fault
isolation

1. Introduction

Safety operation and reliability of industrial processes are highly prized by the contemporary
society. A key to achieve safety and reliability in industrial processes is through the use of
diagnosis and fault-tolerant control algorithms. Note that a fault is understood as a change of a
parameter out of the tolerance limits. Physical systems are liable to potentially harmful fault
events, which could cause a negative effect on the system functionality, as well as under-
performance. Faults can be originated by diverse reasons, for example, natural wear caused
by common use, aging, use under stress conditions and so on. The importance of detecting and
isolating the fault occurrence in a system lies in the possibility to reduce the maintenance and/
or dead-time for repairing on a production line.
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There exist a lot of results related to fault diagnosis for linear systems, as it can be seen in the
literature, for example, in Refs. [1–6], among others. For the case of nonlinear systems, there
are also some available solutions based on diverse model structures, see, for example, Refs.
[7, 8]. Fault diagnosis in nonlinear systems has been considered in Ref. [9], where the solution
is based on a geometric approach, and the conditions of existence are not easily satisfied. Other
approaches consider Lipschitz-type nonlinear systems together with an observer-based
method [10, 11]. Ref. [12] is related to the problem of fault estimation for a class of switched
nonlinear systems of neutral type, where the problem formulated as an H∞ filtering is solved
using a switched observer-based fault estimator. In Ref. [13], the fault diagnosis is made for a
class of bilinear systems considering only the case of faults on the actuator.

In Ref. [14], an unknown input observer (UIO) for a class of nonlinear state-affine systems for
fault diagnosis is proposed. By using sum-of-squares (SOS) theory and Lie geometry as the main
tools, the rank constraint in the traditional UIO approach is relaxed and the design procedure
simplified, especially for the case of nonlinear polynomial systems. In Ref. [15, 16], an approach
to fault detection and isolation for the class of nonlinear systems with linear parameter varying
(LPV) systems is shown. A different idea is to use a energy index in the diagnosis process, as in
Ref. [17]. In Ref. [18], an algorithm for the diagnostics of nonlinear systems is presented where
the solution is based on the estimation of the system parameters using the nonlinear response.
The use of a bank of high-order sliding mode observers has been proposed in Ref. [19].

From the above discussion, it is clear that even if some approaches are available to settle the
fault diagnosis problem, in general there is no systematic way to design it (a model-based or an
observer-based approach), because of the difficulty to design an observer for nonlinear sys-
tems even if the system is known. The available solutions consider a specific class of nonlinear
systems, but each of these class of systems is more related to some mathematical (or system)
properties and not necessarily to a wide class of systems from a practical point of view.
Systems in Hamiltonian representation form represent a wide range of physical systems
considering the relationship between Euler-Lagrange and Hamiltonian systems [20–22].

In this chapter, a solution to the problem of fault detection and isolation applying the observer-
based residual generation method is proposed. The class of nonlinear systems considered
includes all systems, which admit a generalized Hamiltonian representation. The proposed
solution begins with a mathematical nonlinear model of a system with faults. A nonlinear
decoupling is applied to the faulty system in order to obtain a set of subsystems with sensibil-
ity to a particular fault or group of faults. Then, each subsystem is represented in a generalized
Hamiltonian form, for which, a nonlinear observer is designed. Using the nonlinear observer,
the residual generator is designed for each subsystem. One contribution of this work is the
systematic way for residual generator design (an observer-based approach with weak design
requirements). Note that the observer-based approach is guaranteed because of the Hamilto-
nian representation. Fault detection and isolation follow from the residual analysis. The struc-
ture of the Hamiltonian system representation is exploited to guarantee the residual existence
for each subsystem. The approach is then applied to the model of a permanent magnet
synchronous machine with additive faults. The faults are detected and isolated conveniently,
showing the effectiveness of the proposed approach.
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2. Generalized Hamiltonian representation of a system

Consider a nonlinear system described in general form as follows:

_x ¼ fðx;uÞ;
y ¼ hðxÞ; ð1Þ

where x∈ℝn is the state vector, u∈ℝr is the input vector, y∈ℝm represents the output vector,
and the function f : ℝn ·ℝr ! ℝn associates with each value of x and u a corresponding n
dimensional vector.

A special class of Generalized Hamiltonian representation is defined by Sira-Ramierez and
Cruz-Hernandez [23],

_x ¼ ½JðxÞ þ S� ∂HðxÞ
∂x

þ FðxÞ þGu;

y ¼ C
∂HðxÞ
∂x

;

ð2Þ

where x∈ℝn denotes the state vector, u∈ℝr is the input vector, G∈ℝn · r is a constant matrix,
FðxÞ∈ℝn denotes a vector that contains the nonlinearities, y∈ℝm denotes the output vector,
and C∈ℝm ·n is a constant output matrix. Some nonlinear systems such as these described by
Eq. (1) can be represented by Eq. (2) if satisfies the following conditions: There exists a smooth
energy function HðxÞ that is positive definite in ℝn and described by:

HðxÞ ¼ 1
2
xTMx; ð3Þ

the column gradient vector denoted by ∂HðxÞ
∂x ¼ Mx can be obtained using Eq. (3), where

M∈ℝn· n must be a symmetric matrix constant and positive definitive, JðxÞ∈ℝn ·n must be
satisfied for all x∈ℝn, and S∈ℝn· n is a constant symmetric matrix,

JðxÞ ¼ �JTðxÞ; S ¼ ST : ð4Þ

These conditions allow that a wide set of nonlinear systems can be brought to a generalized
Hamiltonian representation, such as electromechanical systems, electric systems, mechanical
systems, etc.

In the generalized Hamiltonian representation, the additive faults can be represented as in
Eq. (5), where these appear as additional inputs (unknown inputs).

_x ¼ JðxÞ ∂HðxÞ
∂x

þ S
∂HðxÞ
∂x

þ FðxÞ þGuþNðΔf Þ;

y ¼ C
∂HðxÞ
∂x

þQðΔf Þ,
ð5Þ

where NðΔf Þ∈ℝn and QðΔf Þ∈ℝm represent the additive faults of the system.
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3. Fault detection and isolation

In a general sense, if the fault diagnosis consists in the detection of a fault, then it is called fault
detection(FD), and similarly, if the fault diagnosis consists in the detection and isolation of a
fault, then it is called fault detection and isolation (FDI). The fault detection consists in deter-
mine the occurrence of faults in the functional units of the process, which leads to undesired
behavior of the system, and the fault isolation consists in to classify the detected faults. The
observer based fault diagnosis technique is a scheme of the model-based fault diagnosis
approach. In this technique, the idea is to replace the process model by an observer which
estimates the fault-free process outputs. The difference between the measured process vari-
ables and the estimated process variables defines the residual. The fault effect is contained in
the measured process variables. Thus, a residual signal includes the fault effect. Ideally, if the
residual is different from zero then a fault has occurred, otherwise the process is fault free. The
residual generation allows to know the occurrence of faults, and the residual evaluation is
necessary to extract the fault information. Figure 1 shows a common diagnosis scheme.

In this contribution, a fault detection and isolation approach to nonlinear systems that admit a
generalized Hamiltonian representation is considered. The proposed approach follows the
classical procedure of fault diagnosis: First, a fault decoupling in order to get subsystems with
sensibility to a specific fault is developed. Second, an observer-based residual generator for
each subsystem is designed. Third, a residual analysis is performed to determine which
functional unit has failed.

Figure 2 shows the proposed fault detection and isolation scheme, where Cn is the nominal
control, ΣH is a system in Hamiltonian representation, and the diagnostic block contains the
observer and the residual generator.

y(t)

fault

generator

directional
residual

residual

Σ
−

ref Cn Σ
H

Figure 2. Diagnostic scheme.
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+

Figure 1. Fault diagnosis scheme.
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The fault decoupling consists in to define a transformation over the system in order to get a
subsystem with sensibility to a fault or a set of faults, and this subsystem is coupled with a
fault and decoupled from the rest of possible faults. There are some works on the analysis and
synthesis of these transformations, see, for example, Refs. [9, 24, 25].

For the case of the generalized Hamiltonian representation with faults, Eq. (5) considers the
following nonlinear transformation

ζ ¼ TðxÞ: ð6Þ

It is required that

_ζ ¼ ∂TðxÞ
∂x

_x; ð7Þ

_ζ ¼ ∂TðxÞ
∂x

JðxÞ ∂HðxÞ
∂x

þ S
∂HðxÞ
∂x

þ FðxÞ þGuþNðΔf Þ
� �

; ð8Þ

and the transformation TðxÞ be selected in such a way that the resulting transformed system
has the desired fault sensibility, that is, suppose NðΔf Þ ¼ ½n1ðΔf Þ n2ðΔf Þ ⋯ nlðΔf Þ� where
NðΔf Þ represents the columns associated with the faults that requires no to affect a specific

subsystem and NðΔf Þ are the columns related to the faults that are required to affect the

subsystem. With ∂TðxÞ
∂x NðΔf Þ ¼ 0 and ∂TðxÞ

∂x NðΔf Þ 6¼ 0. In Ref. [24], it can be found details about
the existence of this transformation.

Assumption 1. Consider the system Eq. (1) in generalized Hamiltonian representation with faults as
in Eq. (2) as well as the nonlinear transformation TðxÞ satisfying decoupling requirements. Also, the
transformed system (decoupled) can be represented in the Hamiltonian form given by Eq. (2).

For some examples, at least, the assumption is satisfied and consequently, a systematic way to
fault isolation is obtained. At the moment, we do not have a result on the characterization of
the class of systems for which the assumption is satisfied. The resulting decoupled system is
represented in a Hamiltonian form.

_ζ ¼ JðζÞ þ S
� � ∂HðζÞ

∂ζ
þ FðζÞ þG

u
þNðΔf Þ;

yζ ¼ C
∂HðζÞ
∂ζ

;

ð9Þ

where ζ∈ℝnζ denotes the state vector, JðζÞ∈ℝnζ ·nζ , S∈ℝnζ · nζ , u∈ℝrζ is the input vector,
G∈ℝnζ · rζ is a constant matrix, FðζÞ∈ℝnζ denotes a vector that contains the nonlinearities,
yζ ∈ℝmζ denotes the output vector, and C∈ℝmζ ·nζ is a constant output matrix.

After a subsystem has been determined, the next step is to design an observer for each
subsystem. From the decoupled subsystem in the generalized Hamiltonian representation
Eq. (9), an observer can be designed as follows [26]:
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_̂ζ ¼ Jðζ̂Þ ∂Hðζ̂Þ
∂ζ̂

þ S
∂Hðζ̂Þ
∂ζ̂

þ Fðζ̂Þ þGuþKðyζ � ŷζÞ;

ŷζ ¼ C
∂Hðζ̂Þ
∂ζ̂

;

ð10Þ

where K∈ℝn ·m is the observer gain, ^ζ ∈ℝn is the estimated state, ŷζ ∈ℝm is the estimated

output calculated in terms of ζ̂, ∂Hðζ̂Þ
∂ζ̂

¼ Mζ̂ is the gradient vector with M∈ℝn ·n as a symmet-

ric positive definite matrix.

For this observer, the conditions design is described in the following Theorem:

Theorem 1. The state x of the nonlinear system in the generalized Hamiltonian representation Eq. (9)
can be globally, exponentially, asymptotically estimated by the observer Eq. (10), if the pair (C,S) is
observable or at least detectable and the matrix

M S� 1
2
ðKCþ CTKTÞ

� �
MþΠ; ð11Þ

is negative definite. With Π ¼ 1
2 M ∂FðrÞ

∂x þ ∂FðrÞ
∂x

� �T
M

� �
and ρ is a vector such that ρ∈ ðx;ζ̂Þ.

⋄⋄⋄

The proof of Theorem 1 is fully defined and explained in Ref. [26]. Then, for the decoupled
system, a residual generator is defined as follows

Theorem 2. For the decoupled nominal system (Eq. (9) with N ¼ 0). The system

_̂ζ ¼ Jðζ̂Þ ∂Hðζ̂Þ
∂ζ̂

þ S
∂Hðζ̂Þ
∂ζ̂

þ Fðζ̂Þ þGuþK yζ � C
∂Hðζ̂Þ
∂ζ̂

 !
; ð12Þ

r ¼ yζ � C
∂Hðζ̂Þ
∂ζ̂

; ð13Þ

is a directional residual generator if the pair ðC; SÞ is observable or at least detectable and the matrix

M S� 1
2
ðKCþ C

T
KTÞ

� �
MþΠ; ð14Þ

is negative definite. With Π ¼ 1
2 M ∂FðrÞ

∂ζ þ ∂FðrÞ
∂ζ

� �T
M

� �
and ρ is a vector such that ρ∈ ðζ;ζ̂Þ.

⋄⋄⋄
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Theorem 2. For the decoupled nominal system (Eq. (9) with N ¼ 0). The system

_̂ζ ¼ Jðζ̂Þ ∂Hðζ̂Þ
∂ζ̂

þ S
∂Hðζ̂Þ
∂ζ̂

þ Fðζ̂Þ þGuþK yζ � C
∂Hðζ̂Þ
∂ζ̂

 !
; ð12Þ

r ¼ yζ � C
∂Hðζ̂Þ
∂ζ̂

; ð13Þ

is a directional residual generator if the pair ðC; SÞ is observable or at least detectable and the matrix

M S� 1
2
ðKCþ C

T
KTÞ

� �
MþΠ; ð14Þ

is negative definite. With Π ¼ 1
2 M ∂FðrÞ

∂ζ þ ∂FðrÞ
∂ζ

� �T
M

� �
and ρ is a vector such that ρ∈ ðζ;ζ̂Þ.

⋄⋄⋄
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Proof:

The proof of Theorem 2 is a consequence of the proof of Theorem 1.

⋄⋄⋄

4. Application example

In this section, the results to apply in the permanent magnet synchronous machine (PMSM)
the proposed approach for fault detection and isolation are presented. The closed loop system
is used in the fault diagnosis analysis where any specific control law is used.

The PMSM mathematical model in the stationary reference frame dq0 (direct-quadrature-zero
axes) is taken from Ref. [27] and is described by:

_x ¼ fðxÞ þGmum; ð15Þ

where x ¼ ½id iq ω�T , Gm ¼ diag
1
L

1
L

� 1
Jm

� �
, um ¼ diag½ ud uq τL � and

fðxÞ ¼

�R
L
id þ Pωiq0:3cm

�R
L
iq � Pωid � PΦ

L
ω0:3cm

3PΦ
2Jm

iq � B
Jm

ω

2
666664

3
777775
;

where B is the viscous friction coefficient, R is the stator resistance, L is the inductance, Φ is the
flux linkage, P is the pole pairs, id and iq are the electric currents on the direct and quadrature
axis, respectively, ud and uq are the voltages on the direct and quadrature axes, respectively, ω
is the rotor speed, Jm is the rotor inertia, and τL is the load torque.

In the fault diagnosis analysis, it is considered that the system is operating in nominal condi-
tions, which implies that the system is in closed loop with any controller. In this case, a back-
stepping nonlinear control [22] is used in the PMSM.

In order to obtain the Hamiltonian representation Eq. (2) of the PMSM described by Eq. (15), a
Hamiltonian energy function is defined as follows:

HðxÞ ¼ 1
2

i2d þ Li2q þ
2
3
Jmω

2
� �

; ð16Þ

with a gradient vector

∂
∂x

HðxÞ ¼ id Liq 2
3 Jmω

� �T
; ð17Þ

∂HðxÞ
∂x

¼ Mx ) M ¼ diag 1 L
2Jm
3

� �
; ð18Þ
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where M is a symmetric, positive definite and constant matrix so that the Hamiltonian repre-
sentation of the PMSM is as follows:

_x ¼ JðxÞ ∂H
∂x

þ S
∂H
∂x

þ FðxÞ þGu; ð19Þ

y ¼ C
∂H
∂x

; ð20Þ

where x ¼ ½id iq ω�T , u ¼ ½ud uq τL�T ,

JðxÞ ¼

0 0 0

0 0 � 3PΦ
2JmL

0
3PΦ
2JmL

0

2
66664

3
77775
;

S ¼

�R
L

0 0

0 � R
L2

0

0 0 � 3B
2J2m

2
6666664

3
7777775
; C ¼

1 0 0
0 1=L 0

0 0
3
2Jm

2
6664

3
7775;

FðxÞ ¼
Pωiq

�Pωid

0

2
664

3
775; G ¼

1
L

0 0

0
1
L

0

0 0 � 1
Jm

2
6666664

3
7777775
:

Solving the Hamiltonian representation Eq. (19) for each of the state equations, the same model
described by Eq. (15) is obtained, so that the Hamiltonian representation is correct since it
fulfills the conditions Eq. (4).

An intermittent connection, signal lost or signal offset are some of the sensor faults prone to
occur in electrical machines [28], the control objective is affected mainly by first and second
faults. The nominal value of the load torque is known, an unknown change in this parameter is
considered as an additive fault. The PMSM may occur faults on elements such as sensors,
actuators and components. The following additive faults are considered in this contribution:
Δω is a fault in the speed sensor, f a is a fault in the control input, and ΔτL is an unknown
change in the load torque.

When these faults are considered, the Hamiltonian representation of the PMSM is as follows:

_x ¼ JðxÞ ∂H
∂x

þ S
∂H
∂x

þ FðxÞ þGuþNðDfÞ;

y ¼ C
∂H
∂x

þQðDfÞ;
ð21Þ
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faults. The nominal value of the load torque is known, an unknown change in this parameter is
considered as an additive fault. The PMSM may occur faults on elements such as sensors,
actuators and components. The following additive faults are considered in this contribution:
Δω is a fault in the speed sensor, f a is a fault in the control input, and ΔτL is an unknown
change in the load torque.

When these faults are considered, the Hamiltonian representation of the PMSM is as follows:

_x ¼ JðxÞ ∂H
∂x

þ S
∂H
∂x

þ FðxÞ þGuþNðDfÞ;

y ¼ C
∂H
∂x

þQðDfÞ;
ð21Þ

Fault Diagnosis and Detection222

where x, S, JðxÞ, FðxÞ,G and u are the same as in the nominal case when there are no faults and

NðDfÞ ¼
f a
f a
ΔτL

2
64

3
75; QðΔfÞ ¼

0
0
Δω

2
4

3
5:

Once defined the mathematical model of the PMSM with faults, the fault decoupling is done
for each fault presented in the system. From this fault, decoupling analysis is obtained sub-
systems with sensibility to a particular fault and without sensibility for the rest.

Subsystem sensitive to the control input fault f a: For this subsystem, decoupling the output y3 is not
used to avoid the sensor fault effect. Considering the first two equations and the outputs y1 and
y2 of the faulty system Eq. (21) a subsystem sensitive to the actuator fault is obtained, as follows:

_x1 ¼ �R
L
x1 þ Px3x2 þ 1

L
ud þ f a; ð22Þ

_x2 ¼ �R
L
x2 � Px3x1 � Pφ

L
x3 þ 1

L
uq þ f a; ð23Þ

y ¼ 1 0 0
0 1=L0

� �
∂H
∂x

; ð24Þ

solving Eq. (23) for x3

x3 ¼ L
Pφþ PLx1

�R
L
x2 � _x2 þ 1

L
uq þ f a

� �
; ð25Þ

now replacing x3 in Eq. (22)

_x1 ¼ �R
L
x1 þ Lx2

φþ Lx1
�R
L
x2 � _x2 þ 1

L
uq þ f a

� �
þ 1
L
ud þ f a; ð26Þ

multiplying Eq. (26) by φ
L þ x1
� �

and solving for φ
L _x1 þ x1 _x1 þ x2 _x2 ¼ _υ1,

_υ1 ¼ R
L
v1 � R

2L
ðx21 þ x22Þ þ

uq
L
x2 þ ud

L
φ
L
þ x1

� �

þ f a x2 þ φ
L
þ x1

� �
;

ð27Þ

yυ1 ¼ υ1; ð28Þ

Eqs. (27) and (28) are the subsystem 1 with sensitivity to the control input fault f a, where x1
and x2 are quantities available in measurable outputs y1 and y2, respectively.

Subsystem sensitive to the load torque fault ΔτL: once more the output y3 is not used to avoid
sensitivity to the sensor fault. Subtracting Eq. (22) to Eq. (23)
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ð _x1 � _x2Þ ¼ �R
L
ðx1 � x2Þ þ Px3ðx1 þ x2Þ þ 1

L
ðud � uqÞ þ Pφ

L
x3; ð29Þ

if a new state _υ2 ¼ _x1 � _x2 is defined, Eq. (29) becomes Eq. (30), this equation and the third
equation of Eq. (21) define the subsystem 2,

_v2 ¼ �R
L
v2 þ Px3ðv2 þ 2x2Þ þ 1

L
ðud � uqÞ þ Pφ

L
x3; ð30Þ

_x3 ¼ 3Pφ
2Jm

x2 � B
Jm

x3 � τL
Jm

þ ΔτL; ð31Þ

yv2 ¼
υ2
x3

� �
; ð32Þ

where x2 is available in the measurable output y2.

Subsystem sensitive to the sensor fault Δω: since this subsystem must be sensitive to the sensor
fault, the output y3 is used. Using the transformed state _υ3 ¼ _x1 � _x2, the subsystem 3 is
obtained with sensibility to the sensor fault:

_υ3 ¼ ðPx3 � R
L
Þv3 þ 2Px2x3 þ Pφ

L
x3 þ 1

L
ðud � uqÞ; ð33Þ

yv3 ¼ v3; ð34Þ

where x3 and x2 are quantities available in the measurable outputs y1 and y2, respectively.

Once decoupled subsystems were obtained, for the residual generator design an observer for
each one for each of the decoupled subsystem is designed.

For decoupled subsystems sensitive to f a and Δω, the observer design using the proposed
approach in Ref. [26] coincides with a Luenberger observer [29, 30], but, however, this does not
apply for decoupled subsystems sensitive to ΔτL.

The observer design and the residual generator for the decoupled subsystem sensitive to ΔτL
are presented. The decoupled subsystem sensitive to ΔτL can be expressed as follows:

_υ2 ¼ �R
L
v2 þ Px3ðv2 þ 2y2Þ þ

Pφ
L

x3 þ 1
L
ðud � uqÞ;

_x3 ¼ 3Pφ
2Jm

y2 �
B
Jm

x3 � τL
Jm

þ ΔτL;

yv2 ¼
v2
x3

� �
:

ð35Þ

Which can be written in the form Eq. (9) with

HðxÞ ¼ 1
2
R
L
v22 þ

1
2
B
Jm

x23; ð36Þ
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Jm

x3 � τL
Jm
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L
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L
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each one for each of the decoupled subsystem is designed.

For decoupled subsystems sensitive to f a and Δω, the observer design using the proposed
approach in Ref. [26] coincides with a Luenberger observer [29, 30], but, however, this does not
apply for decoupled subsystems sensitive to ΔτL.

The observer design and the residual generator for the decoupled subsystem sensitive to ΔτL
are presented. The decoupled subsystem sensitive to ΔτL can be expressed as follows:

_υ2 ¼ �R
L
v2 þ Px3ðv2 þ 2y2Þ þ

Pφ
L

x3 þ 1
L
ðud � uqÞ;

_x3 ¼ 3Pφ
2Jm

y2 �
B
Jm

x3 � τL
Jm

þ ΔτL;

yv2 ¼
v2
x3

� �
:

ð35Þ

Which can be written in the form Eq. (9) with

HðxÞ ¼ 1
2
R
L
v22 þ

1
2
B
Jm

x23; ð36Þ
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where xa ¼ ½υ2 x3�T whose gradient vector is defined as follows

∂HðxaÞ
∂xa

¼ R
L
υ2;

B
Jm

x3

� �T
) M ¼ diag

R
L
;
B
Jm

� �
; ð37Þ

and with

JðxaÞ ¼
0

JmPφ
2BL

� JmPφ
2BL

0

2
664

3
775; S ¼

�1
JmPφ
2BL

JmPφ
2BL

�1

2
664

3
775; u ¼

ud � uq

ΔτL

" #
;

FðxaÞ ¼
Px3ðv2 þ 2y2Þ
3Pφ
2Jm

y2 �
τL
Jm

2
64

3
75; G ¼

1
L

0

0 1

2
64

3
75; C ¼ L

R
Jm
B

� �
:

For this case, the pair ðC,SÞ is observable, and thus, there exists a matrix K that satisfies both
the requirements of Theorem 1 for the observer design and the requirements of Theorem 2 for
the residual generator design, and thus the observer is as follows

_̂υ2 ¼ Pφ
L

x̂3 � R
L
υ̂2 þ Px̂3ðυ̂2 þ 2y2Þ þ

1
L
ðud � uqÞ þ L2ðυ2 � υ̂2Þ;

_̂x3 ¼ � B
Jm

x̂3 � τL
Jm

þ 3Pφ
2Jm

y2 þ L3ðx3 � x̂3Þ;

ŷv2 ¼
υ̂2

x̂3

" #
:

ð38Þ

and the directional residual generator for the decoupled subsystem sensitive to ΔτL is given by

r2 ¼ υ2 � υ̂2: ð39Þ

For decoupled subsystem sensitive to control input f a Eqs. (27) and (28), the observer and its
directional residual generator are as follows:

_̂υ1 ¼ �R
L
υ1 � R

2L
ðy22 þ y21Þ þ ud

y1
L
þ φ

L2

� �

þ uqy2
L

þ L1ðυ1 � υ̂1Þ;
ð40Þ

ŷυ1 ¼ υ̂1; ð41Þ

r1 ¼ υ1 � υ̂1: ð42Þ

Finally, for the decoupled subsystem sensitive to the sensor fault Δω Eq. (33), the observer and
its directional residual generator are as follows:
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_̂υ3 ¼ �R
L
υ3 þ Py3ðy1 þ y2Þ þ

Pφ
L

y3 þ
1
L
ðud � uqÞ

þ L4ðυ3 � υ3Þ;
ð43Þ

ŷv3 ¼ v̂3; ð44Þ

r3 ¼ v3 � v̂3: ð45Þ

To summarize the fault sensitivity results of each residual (associated to each subsystem), see
Table 1.

Where the fault affecting the residual is indicated with √, and the symbol ∅means that there is
no connection between the fault and the corresponding residual.

As can be appreciated from Table 1, there is a one-to-one relationship between faults and
residuals so that perfect decoupling has been attached. One nice thing of perfect decoupling is
that the occurrence of faults can be detected and isolated without problems.

The following results were obtained by computer simulation. Table 2 shows the considered
faults. About 10% of the nominal value of each variable is the fault magnitude considered,
where 34 : 62 is the nominal value of the control input on the stationary reference frame dq0,
100 rad=sec is the nominal value of the angular speed, and 1 : 4 Nm is the nominal value of the
load torque.

Residual (subsystem) Fault

f 1
Actuator fault (f a)

f 2
Sensor fault (Δω)

f 3
Change of charge (ΔτL)

1 √ ∅ ∅

2 ∅ √ ∅

3 ∅ ∅ √

Table 1. Fault incidence table.

Case Fault Fault interval
ðsec:Þ

Magnitude

1 0 0 0

2 f a ½2; 2 : 5� 3 : 462

3 Δω ½3; 3 : 5� 10

4 ΔτL ½4; 4 : 5� 0 : 14

5 f a, Δω, ΔτL ½3; 3 : 5�, ½4; 4 : 5�, ½2; 2 : 5� 3 : 462, 10, 0:14

Table 2. Fault cases.
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Table 3 shows the PMSM parameters, which were taken from Ref. [22].

Figure 3 shows the evolution of PMSM states in the time (the time scale is given in seconds),
that is, the current in the direct axis idðtÞ, the current in the quadrature axis iqðtÞ and the
angular velocity ωðtÞ in nominal conditions (without faults). Actually, this figure represents
the response of the PMSM with nominal parameters.

The evolution of the residuals when an actuator fault f a occurs is depicted in Figure 4, where
both residuals 2 and 3 are equal to zero since these are insensitive to the fault f a, while residual
1 is different from zero indicating the sensitivity to control input fault f a. Note that the
magnitude of the two first residuals represents deviations between nominal and measurement
currents with respect to the time (time is given in seconds). The third residual represents the
deviation of the nominal and measured angular velocity of the PMSM rotor.

Figure 5 shows the residuals evolution when the sensor fault occurs, where residuals 1 and 3
are zero at all time due to its insensitivity to this fault, while residual 2 differs from zero due to
its sensitiveness to this fault.

Figure 6 shows the residuals evolution when the load torque fault occurs, where residuals 1
and 2 are null and residual 3 is different from zero, indicating the sensitivity to load torque
fault. Note that the fault magnitude is of 0:14; however, the residual becomes a value around 3,
that is, the effect of the fault is not directly the magnitude of this. Extra work is required in the
design of the observer-based residual in order to get at the residual a more approximated value
of the fault magnitude.

Figure 7 shows the case when all three faults occur, even if not at the same time. The effect of
the faults is manifested in the correct residual. It means that the problem of fault isolation in
multiple faults can be carried out effectively.

As a final note, it can be appreciated a minimum transient at the beginning of all residuals
signals, and this transient does not affect the fault detection and isolation process.

Parameter Numerical value

Resistance (R) 1.6 Ω

Rotor inertia (Jm) 76.5 · 10�6kg m2

Viscous friction coefficient (B) 4 · 10�6Nm/rev/min

Flux linkage (Φ) 0.29Nm/A

Inductance (L) 9.4H

Load torque (τL) 1.4Nm

Pole pairs (P) 1

Table 3. PMSM parameters.
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Figure 4. Residual sensitive to the actuator fault f a .
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Figure 5. Residual sensitive to sensor fault Δω.
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Figure 6. Residual sensitive to ΔTL.
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5. Concluding remarks

Fault diagnosis for a wide class of nonlinear systems, the class of systems that admit a
Hamiltonian representation, has been considered. An observer-based solution with weak
existence conditions for the fault diagnosis has been proposed, and this approach allows the
detection and isolation of additive faults.
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The proposed procedure follows the traditional way, namely: First, a decoupling methodology
is applied to systems with Hamiltonian representation in order to obtain subsystems that
preserve the Hamiltonian structure. Observer-based residual generators are designed for each
subsystem so that each residual generator is sensible to a fault (or to a specific group of faults).
The residual has the property of remain close to zero (or under a threshold value) if no fault is
present in the system and non zero (or greater than a threshold value) when a fault affects the
system. The proposed approach solves the fault isolation problem, and it permits a systematic
design of the required residual generators. In contrast with other methodologies, for systems
with Hamiltonian representation, an easy way to design an observer has been introduced. In
addition, a wide set of nonlinear systems can be represented in the Hamiltonian structure,
making the proposed solution widely applicable.

The proposedmethodology has been applied to a synchronous machine, showing that, using the
proposed approach, it is possible to detect and isolate additive faults in scenarios such as a fault
in the control input, a change in the load torque as well as a fault in the angular velocity sensor.

Future work includes the study of multiplicative fault type.

Author details

Luis Humberto Rodriguez-Alfaro, Efrain Alcorta-Garcia*, Cornelio Posadas-Castillo and
David Alejandro Diaz-Romero

*Address all correspondence to: efrain.alcortagr@uanl.edu.mx

Universidad Autónoma de Nuevo León México, San Nicolás de los Garza, Mexico

References

[1] Blanke M, Kinnaert M, Lunze J, Staroswiecki M. Diagnosis and fault-tolerant control. 2nd
ed. Berlin, Germany: Springer Berlin Heidelberg; 2006. doi:10.1007/978-3-540-35653-0

[2] Chen J, Patton RJ. Robust model based fault diagnosis for dynamic systems. Kluwer
Academic Publishers Group; 1999. doi:10.1007/978-1-4615-5149-2

[3] Ding SX. Model-based fault diagnosis techniques. Springer; 2008. doi:10.1007/978-3-540-
76304-8

[4] Frank PM. Fault diagnosis in dynamic systems using analytical and knowledge-based
redundancy—a survey. Automatica. 1990;26:459–474. doi:10.1016/0005-1098(90)90018-D

[5] Isermann R. Fault-diagnosis systems: an introduction from fault detection to fault toler-
ance. 1st ed. Springer; 2006. doi:10.1007/3-540-30368-5

[6] Zhang K, Jiang B, Shi P. Fast fault estimation and accommodation for dynamical systems.
IET Control Theory and Applications. 2009;3(2):189–199. doi:10.1049/iet-cta:20070283

Fault Detection and Isolation of Nonlinear Systems with Generalized Hamiltonian Representation
http://dx.doi.org/10.5772/68084

233



[7] Alcorta Garcia E, Frank PM. Deterministic nonlinear observer based approaches to fault
diagnosis: a survey. Control Engineering Practice. 1997;5(5):663–670. doi:10.1016/S0967-
0661(97)00048-8

[8] Jiang B, Staroswiecki M, Cocquempot V. Fault estimation in nonlinear uncertain systems
using robust sliding mode observers. IEE Control Theory and Application. 2004;151:29–
37. doi:10.1049/ip-cta:20040074

[9] Persis CD, Isidori A. A geometric approach to nonlinear fault detection and isolation.
IEEE Transactions on Automatic Control. 2001;46(6):853–865. doi:10.1109/9.928586

[10] Chen W, Saif M. Unknown input observer design for a class of nonlinear systems: an LMI
approach. In: Proceedings of the American Control Conference. Mineapolis, MN; 2006.
pp. 834–838.

[11] Pertew AM, Marquez HJ, Zhao Q. Design of unknown input observers for Lipschitz
nonlinear systems. In: Proceedings of the American Control Conference. Portlend; 2005.
pp. 4198–4203.

[12] Liu X, Yuan S. On designing H∞ fault estimator for switched nonlinear systems of neutral
type. Communications in Nonlinear Science and Numerical Simulation. 2011;6
(2011):4379–4389. doi:10.1016/j.cnsns.2011.03.017

[13] Jiang B, Wang JL. Actuator fault diagnosis for a class of bilinear systems with uncertainty.
Journal of the Franklin Institute. 2002;339:361–374. doi:10.1016/S0016-0032(01)00051-5

[14] Xu J, Lum KY, Xie L, Loh AP. Fault detection and isolation of nonlinear systems: an
unknown input observer approach with sum of squares techniques. Journal of Dynamic
Systems, Measurement, and Control. 2012;134:041005-041005-7. doi:10.1115/1.4006074

[15] Bokor J, Szabó. Fault detection and isolation in nonlinear systems. Annual Reviews in
Control. 2009;33:113–123. doi:10.1016/j.arcontrol.2009.09.001

[16] Lopes dos Santos P, AzevedoPerdicoilis TP, Jank G, Ramos JA, Martins de Carvalho JL.
Leakage detection and location in gas pipelines through an LPV identification approach.
Communications in Nonlinear Science and Numerical Simulation. 2011;16(2011):4657–
4665. doi:10.1016/j.cnsns.2011.03.029

[17] Márton L, Ossmann D. Energetic approach for control surface disconnection fault detec-
tion in hydraulic aircraft actuators. In: Preprints of the 8th IFAC Symposium on Fault
Detection, Supervision and Safety of Technical Processes (SAFEPROCESS). Mexico; 2012.
pp. 1149–1154.

[18] Samadani M, Kwuimy CAK, Nataraj C. Model-based fault diagnostics of nonlinear sys-
tems using the features of the phase space response. Communications in Nonlinear Science
and Numerical Simulation. 2014;20(2015):583–593. doi:10.1016/j.cnsns.2014.06.010

[19] Rios H, Edwards C, Davila J, Fridman L. Fault detection and isolation for nonlinear
systems via HOSM multiple-observer. In: Preprints of the 8th IFAC Symposium on Fault

Fault Diagnosis and Detection234



[7] Alcorta Garcia E, Frank PM. Deterministic nonlinear observer based approaches to fault
diagnosis: a survey. Control Engineering Practice. 1997;5(5):663–670. doi:10.1016/S0967-
0661(97)00048-8

[8] Jiang B, Staroswiecki M, Cocquempot V. Fault estimation in nonlinear uncertain systems
using robust sliding mode observers. IEE Control Theory and Application. 2004;151:29–
37. doi:10.1049/ip-cta:20040074

[9] Persis CD, Isidori A. A geometric approach to nonlinear fault detection and isolation.
IEEE Transactions on Automatic Control. 2001;46(6):853–865. doi:10.1109/9.928586

[10] Chen W, Saif M. Unknown input observer design for a class of nonlinear systems: an LMI
approach. In: Proceedings of the American Control Conference. Mineapolis, MN; 2006.
pp. 834–838.

[11] Pertew AM, Marquez HJ, Zhao Q. Design of unknown input observers for Lipschitz
nonlinear systems. In: Proceedings of the American Control Conference. Portlend; 2005.
pp. 4198–4203.

[12] Liu X, Yuan S. On designing H∞ fault estimator for switched nonlinear systems of neutral
type. Communications in Nonlinear Science and Numerical Simulation. 2011;6
(2011):4379–4389. doi:10.1016/j.cnsns.2011.03.017

[13] Jiang B, Wang JL. Actuator fault diagnosis for a class of bilinear systems with uncertainty.
Journal of the Franklin Institute. 2002;339:361–374. doi:10.1016/S0016-0032(01)00051-5

[14] Xu J, Lum KY, Xie L, Loh AP. Fault detection and isolation of nonlinear systems: an
unknown input observer approach with sum of squares techniques. Journal of Dynamic
Systems, Measurement, and Control. 2012;134:041005-041005-7. doi:10.1115/1.4006074

[15] Bokor J, Szabó. Fault detection and isolation in nonlinear systems. Annual Reviews in
Control. 2009;33:113–123. doi:10.1016/j.arcontrol.2009.09.001

[16] Lopes dos Santos P, AzevedoPerdicoilis TP, Jank G, Ramos JA, Martins de Carvalho JL.
Leakage detection and location in gas pipelines through an LPV identification approach.
Communications in Nonlinear Science and Numerical Simulation. 2011;16(2011):4657–
4665. doi:10.1016/j.cnsns.2011.03.029

[17] Márton L, Ossmann D. Energetic approach for control surface disconnection fault detec-
tion in hydraulic aircraft actuators. In: Preprints of the 8th IFAC Symposium on Fault
Detection, Supervision and Safety of Technical Processes (SAFEPROCESS). Mexico; 2012.
pp. 1149–1154.

[18] Samadani M, Kwuimy CAK, Nataraj C. Model-based fault diagnostics of nonlinear sys-
tems using the features of the phase space response. Communications in Nonlinear Science
and Numerical Simulation. 2014;20(2015):583–593. doi:10.1016/j.cnsns.2014.06.010

[19] Rios H, Edwards C, Davila J, Fridman L. Fault detection and isolation for nonlinear
systems via HOSM multiple-observer. In: Preprints of the 8th IFAC Symposium on Fault

Fault Diagnosis and Detection234

Detection, Supervision and Safety of Technical Processes (SAFEPROCESS). Mexico; 2012.
pp. 534–539.

[20] Ortega R, Espinoza-Pérez G, Astolfi A. Passivity based control of AC drives: theory for
the user and examples. International Journal of Control. 2013;86:625–635. doi:10.1080/
00207179.2012.753643

[21] van der Schaft A. L2 gain and passivity techniques in nonlinear control. Springer; 2000.
doi:10.1007/978-1-4471-0507-7

[22] Zhou J, Wang Y. Adaptive backstepping speed controller design for a permanent magnet
synchronous motor. IEE Proceedings - Electric Power Applications. 2002;149(2):165–172.
doi:10.1049/ip-epa:20020187

[23] Sira-Ramierez H, Cruz-Hernandez C. Synchronization of chaotic systems: a generelazed
Hamiltonian systems approach. International Journal of Bifurcation and Chaos. 2001;11
(5):1381–1395.

[24] Seliger R, Frank PM. Fault diagnosis by disturbance decoupled nonlinear observers. In:
Proceedings of the CDC ‘91, Brighton, England; 1991. pp. 2248–2253.

[25] Alcorta Garcia E. ModelgestützeResiduengenerierungfür die Diagnose von additiven
and multiplicativenFehler in dynamischenSystemen (in german) PhD [Thesis]. Gerhard-
Mercator University of Duisburg (Duisburg-Essen Universität), Germany. Duesseldorf,
Germany; 1999.

[26] Rodriguez-Alfaro LH, Alcorta-Garcia E, Lara D, Romero G. A Hamiltonian appraoch to
fault isolation in a planar vertical take off and landing aircraft model. International
Journal of Applied Mathematics and Computer Science. 2015;25(1):65–76. doi:10.1515/
amcs-2015-0005

[27] Krause PC, Wasynczuk O, Sudhoff SD. Analysis of electric machinery and drive systems.
John Wiley and Sons, Inc. Publication; 2002. doi:10.1109/9780470544167

[28] Campos-Delgado DU, Espinoza Trejo DR, Palacios E. Fault-tolerant control in variable
speed drives: a survey. IET Electric Power Applications. 2008;2(2):121–134. doi:10.1049/
iet-epa:20070203

[29] Luenberger DG. Observing the state of a linear system. IEEE Transactions on Military
Electronics. 1964;8(2):74–80. doi:10.1109/TME.1964.4323124

[30] D’Azzo J, Houpis CH. Linear control system analysis and design with matlab. 5th ed.
Marcel Dekker; 2003. doi:10.1201/9780203911426

Fault Detection and Isolation of Nonlinear Systems with Generalized Hamiltonian Representation
http://dx.doi.org/10.5772/68084

235





Chapter 10

Process Monitoring Using Data-Based Fault Detection
Techniques: Comparative Studies

Mohammed Ziyan Sheriff, Chiranjivi Botre,
Majdi Mansouri, Hazem Nounou,
Mohamed Nounou and Mohammad Nazmul Karim

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67347

Abstract

Data based monitoring methods are often utilized to carry out fault detection (FD) when
process models may not necessarily be available. The partial least square (PLS) and
principle component analysis (PCA) are two basic types of multivariate FD methods,
however, both of them can only be used to monitor linear processes. Among these
extended data based methods, the kernel PCA (KPCA) and kernel PLS (KPLS) are the
most well-known and widely adopted. KPCA and KPLS models have several advan-
tages, since, they do not require nonlinear optimization, and only the solution of an
eigenvalue problem is required. Also, they provide a better understanding of what kind
of nonlinear features are extracted: the number of the principal components (PCs) in a
feature space is fixed a priori by selecting the appropriate kernel function. Therefore, the
objective of this work is to use KPCA and KPLS techniques to monitor nonlinear data.
The improved FD performance of KPCA and KPLS is illustrated through two simulated
examples, one using synthetic data and the other using simulated continuously stirred
tank reactor (CSTR) data. The results demonstrate that both KPCA and KPLS methods
are able to provide better detection compared to the linear versions.

Keywords: principal component analysis, partial least squares, kernels, fault detection,
process monitoring
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1. Introduction

Process monitoring is an essential aspect of nearly all industrial processes, often required both
to ensure safe operation and to maintain product quality. Process monitoring is generally
carried out in two phases: detection and diagnosis. This chapter focuses only on the fault
detection aspect. Fault detection methods can be categorized using a number of different
methodologies. One popular method of categorization is into quantitative model-based
methods, qualitative model-based methods, and data (process history)-based methods [1–3].
Figure 1 illustrates a general schematic of fault detection phase.

Quantitative model-based methods require knowledge of the process model, while qualitative
model-based methods require expert knowledge of the given process. Hence, data-based
methods are often used as they require neither prior knowledge of the process model nor
expert knowledge of the process [4].

Data-based monitoring methods can be further classified into input model-based methods and
input-output model-based methods. Input model-based methods only require the data matrix
of the input process variables, while input-output model-based methods require both the input
and output data matrices in order to formulate a model and carry out fault detection [5]. Input
model-based methods are sometimes utilized when the input-output models cannot be formed
due to the high dimensionality and complexity of a system being monitored [6]. However,
input-output model-based methods do have the added advantage of being able to detect faults
in both the process and the variables [5].

Principal component analysis (PCA) is a widely used input model-based method that has been
used for monitoring a number of processes including air quality [7], water treatment [8], and
semiconductor manufacturing [9]. On the other hand, partial least squares (PLS) are an input-
output model-based method that has been applied in chemical processes to monitor online
measurement variables and also to monitor and predict the output quality variable [10]. PLS

Figure 1. Schematic illustration of detection phase.
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has been applied for the monitoring of distillation columns, batch reactors [11], continuous
polymerization processes [12], and other similar industrial processes, which are described by
input-output models. However, both PCA and PLS are fault detection techniques that only
work reasonably well with linear data. PCA and PLS have been extended to handle nonlinear
data by utilizing kernels to transform the data to a higher dimensional space, where linear
relationships between variables can be drawn. The extensions kernel principal component
analysis (KPCA) and kernel partial least squares (KPLS) have both shown improved perfor-
mance over the conventional PCA and PLS techniques when handling nonlinear data [5, 13].
T2 and Q charts are commonly used as fault detection statistics. In the literature, it has been
seen that T2 test is less effective fault detection technique compared to Q statistic; this is
because T2 test can only represent variation of the data in the principle component and not in
residue of the model [14].

In our previous works [5, 13, 15], we addressed the problem of fault detection using linear and
nonlinear input models (PCA and kernel PCA) and input-output model (PLS and kernel PLS)-
based generalized likelihood ratio test (GLRT), in which PCA, kernel PCA, PLS, and kernel
PLS methods are used for modeling and the univariate GLRT chart is used for fault detection.
In the current work, we propose to use the PCA, kernel PCA, PLS, and kernel PLS methods for
multivariate fault detection through their multivariate charts Q and T2. The fault detection
performance is evaluated using two examples, one using simulated synthetic data and the
other utilizing a simulated continuous stirred tank reactor (CSTR) model.

The remainder of this chapter is organized as follows. Section 1 introduces linear PCA and
PLS, along with the fault detection indices used for these methods. Section 2 then describes the
idea of using kernels for nonlinear transformation of data, along with the kernel fault detection
extensions: KPCA and KPLS. In Section 3, two illustrative examples are presented, one using
simulated synthetic data and the other utilizing a simulated continuous stirred tank reactor. At
the end, the conclusions are presented in Section 4.

2. Conventional linear fault detection methods

Before constructing either the PCA or PLS models, data are generally preprocessed to ensure
that all process variables in the data matrix are scaled to zero mean and unit variance. This step
is essential as different process variables are usually measured with varying standard devia-
tions and means and often using different units.

2.1. Principal component analysis (PCA)

Consider the following input data matrix, X ∈ Rn · m, where m and n represent the number of
process variables and the number of observations, respectively. After preprocessing the data,
single value decomposition (SVD) can be utilized to express the input data matrix as follows:

X ¼ TPT (1)
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where T ¼ t1, t2, t3…tm½ �∈Rn·m is a matrix of the transformed variables, where each column
represents the score vectors or the transformed variables, and P ¼ p1, p2, p3…pm

� �
∈Rm ·m is a

matrix of the orthogonal vectors, where each column is also known as loading vectors, and
these are eigenvectors that are associated with the covariance matrix of the input data matrix
X. The covariance matrix can be computed as follows [13]:

X
¼ 1

n� 1
XTX ¼ PΛPT with PPT ¼ PTP ¼ Im (2)

where Λ ¼ diag λ1;λ2;…;λmð Þ is a diagonal matrix that contains the eigenvalues that are
related to the m principal components λ1 > λ2 > … > λmð Þ, and Im is the identity matrix [16].
It should be noted that the model built by PCA uses the same number of principal components
as the original number of process variables in the input data matrix (m). However, since many
industrial processes may contain process variables that are highly correlated, a smaller number
of principal components can be utilized to capture the variation in the process data [6]. The
quality of the model built by PCA is dictated by the number of principal components obtained.
Overestimating the number could introduce noise that may mask important features in the
data, while underestimating the number could decrease the prediction ability of the model [17].

Therefore, selection of the number of principal components is vital, and several methods have
been developed for this purpose. A few popular techniques are cumulative percent variance
(CPV) [13], scree plot and profile likelihood [18], and cross validation [19]. CPV is commonly
utilized due to its computational simplicity and because it provides a good estimate of the
number of principal components that need to be retained for most practical applications. CPV
can be computed as follows [13]:

CPV lð Þ ¼
Xl

i¼1
λi

trace Σð Þ · 100 (3)

CPV is used to select the smallest number of principal components that represents a certain
percentage of the total variance (e.g., 99%). Once the number of principal components to retain
is determined, the input data matrix can then be expressed as [13]:

X ¼ TP ¼
hbT ~T

ihbP ~P
iT

(4)

where bT ∈Rn· l and ~T ¼ ∈Rn ·m�l represent the matrices containing the l retained principal
components and the ignored (m� l) principal components, respectively. Likewise, the matrices
that contain the l retained eigenvectors and the ignored (m� l) eigenvectors are represented by
bP ∈Rm· l and ~P ∈Rm ·m�l, respectively.

After expansion X can be expressed as [13]

X ¼ bTbPT þ ~P ~TT ¼ XbPbPT
zfflffl}|fflffl{bX

þX Im � bPbPT
� �zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{E

(5)
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where matrix bX is the modeled variation of X computed utilizing only the l retained principal
components, while matrix E represents the residual space formed by variations that corre-
spond to process noise.

The PCA model can be illustrated as shown in Figure 2.

2.2. Partial least squares (PLS)

PLS is a popular input-output technique used for modeling, regression and as a classification
tool, which has been extended to fault detection purpose [20]. PLS includes process variables
(X ∈ Rn · m) and the quality variables (Y ∈ Rn · p) with a linear relationship between input and
output score vectors. Nonlinear iterative partial least square (NIPALS) algorithm developed by
Word et al. is used to compute score matrices and loading vectors [21]:

X ¼ TPT þ E ¼
XM

i¼1

tipi þ E

Y ¼ UQT þ F ¼
XM

j¼1

ujqtj þ F
(6)

where E ∈ Rn · m and F ∈ Rn · p are the PLS model residues; T ∈ Rn · M andU ∈ Rn · M are the
orthonormal input and output score matrix, respectively; P and Q are the loading vectors of
the input (X) and output (Y) matrices, respectively; m and n are the number of process vari-
ables and observations in input (X) matrix; p is the number of quality variables in output (Y)
matrix; and M is the total number of latent variables extracted. NIPALS method is shown in

Figure 2. Schematic illustration of PCA.
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Algorithm 1; X and Y matrixes are first standardized by mean centering and unit variance.
NIPALS algorithm is initialized by assigning one of the columns of output matrix (Y) as output
score vector (u); at each iteration t, u, p, and q are computed and stored; M latent variables are
extracted.

Another modification to NIPALS algorithm has been published in the literature [22]. In other
work, different variations of PLS technique have been stated. Qin et al. have presented recur-
sive PLS model [23], where PLS model is updated with new training data set; MacGregor et al.
[24] have developed multiblock PLS model to monitor subsection of process variables. While
for process monitoring of batch processes, PLS has been extended to multiway PLS technique
[25] to incorporate past batches in training data set.

PLS being an input-output type model can also be used as a regression tool, to predict quality
variable (Y) from online measurement variable (X). From PLS, model input and output matri-
ces are related by

Y ¼ BXþ G (7)

The regression coefficient B is computed as shown in Eq. (8):

B ¼ W PTW
� ��1

CT (8)
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rj ¼ ∏
j�1

i¼1
Im ·m � wipTj
� �

wj, j > 1:

5. Input Score vector: t = Xr/rTr. (15)
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8. Output score vector: u = Yq/qTq. (18)

9. Normalizing weights, loading vectors and scores:

p ¼ p
norm pð Þ ,w ¼ w · norm pð Þ, t ¼ t· norm pð Þ: (19)

10. Input and output matrices are deflated:

X ¼ X� tpT

Y ¼ Y � tqT
(20)

11. Store latent score vectors in T and U, loading vectors in P and Q

12. Repeat steps 2 to 11 until M latent variables are computed

2.3. Fault detection indices

Different fault detection indices can be used for the linear PCA and PLS techniques. The two
most popular indices are the T2 and Q statistics. T2 measures the variation of the model, while
the Q statistic measures the variation in the residual space, and these statistics will be
described next.

2.3.1. T2 statistic

The T2 statistic measures the variation in the principal components at different time samples
and is defined as follows [26, 27]:

T2 ¼ XTbPbΛbPT
X (21)

where bΛ ¼ diag λ1;λ2;…;λlð Þ is the diagonal matrix that contains the eigenvalues that are
associated with the retained principal components. For testing data, a fault is declared when
the T2 value exceeds the value of the threshold as follows:

T2 ≥T2
α ¼ n2 � 1

� �
l

n n� lð Þ F l, n� lð Þ (22)

where α is the level of significance, generally assigned a value between 90 and 99%, and F
(a, n � a) is the critical value of the Fisher-Snedecor distribution with n and n�a degrees of
freedom.

2.3.2. Q statistic

The Q statistic measures the projection of the data on to the residual subspace and allows the
user to measure how well the data fit the PCA model. The Q statistic is defined as follows [16]:

Q ¼ ~X
�� �� ¼ I � bPbPT

� �
X

���
���
2

(23)
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For testing data, a fault is declared when the threshold value is violated as follows [16]:

Q ≥Qα ¼ ϕ1

h0cα
ffiffiffiffiffiffiffiffi
2ϕ2

p
ϕ1

þ 1þ ϕ2h0 h0 � 1ð Þ
ϕ2
1

(24)

where ϕi ¼
Xm

j¼lþ1
λi
j i ¼ 1, 2, 3, h0 ¼ 1� 2ϕ1ϕ3

3ϕ2
2
, where cα is the value obtained from the normal

distribution of significance α.

3. Nonlinear fault detection methods using kernel transformations

A popular nonlinear version of PCA and PLS is the projection of nonlinear data to a high-
dimensional feature space, where the linear fault detection method is applied in the features
space, F. The authors in Ref. [28] used projection of X for PLS response surface modeling using
the quadratic function as the mapping function:

Φ : χ ¼ R2 ! F ¼ R3 (25)

However, it is difficult to know the accurate nonlinear transformation function for nonlinear
data matrix to be linear in the feature space. According to Mercer’s theorem, orthogonal semi-
positive definite function can be used to map the data into the feature space instead of
knowing the explicit nonlinear function. This nonlinear function is called the kernel function
and is defined as the dot product of the mapped data in the feature space:

k Xi;Xj
� � ¼ Φ Xið ÞΦ Xj

� �
(26)

Thus, kernel-based multivariate methods can be defined as nonlinear fault detection methods
in which the input data matrix is mapped into high-dimensional feature space and developed
linear models can be applied in the feature space for fault detection purposes.

Commonly used kernel functions are given below [29]:

Radial basis function (RBF):

K X;Yð Þ ¼ exp
� X� Yk k2

c

 !
(27)

Polynomial function:

K X;Yð Þ ¼ X;Yh id (28)

Sigmoid function:

K X;Yð Þ ¼ tanh β0 X;Yh i þ β1
� �

(29)
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The next section describes the methodology of utilizing kernel transformations to extend linear
PCA and PLS to the hyperdimensional space in order to carry out fault detection of nonlinear
data.

3.1. Kernel principal component analysis (KPCA)

While PCA seeks to find the principal components by minimizing the data information loss in
the input space, KPCA does this in the feature space (F). For KPCA learning using training
data, X1,X2,…,Xn ∈Rm, nonlinear mapping gives Φ: X ∈ ℜm ! Z ∈ ℜh, where input data are
extended into the hyperdimensional feature space, where the dimension can be very large and
possibly infinite [30].

The covariance in the feature space can be computed as follows [31]:

CF ¼ 1
n

Xn

j¼1

Φ Xj
� �

Φ Xj
� �T

(30)

Similar to PCA, the principal components in the feature space can be found by diagonalizing
the covariance matrix. In order to diagonalize the covariance matrix, it would be necessary to
solve the following eigenvalue problem in the feature space [31]:

λv ¼ CFv (31)

where λ ≥ 0 and represents the eigenvalues.

In order to solve the eigenvalue problem, the following equation is derived [32]:

nλα ¼ Kα (32)

where K and α are the n · n kernel matrix and eigenvectors, respectively.

For test vector X, the principal components (t) are extracted projecting Φ(X) onto the eigenvec-
tors vk in the feature space where k = 1,…,l:

tk ¼ vk,Φ Xð Þh i ¼
XN

i¼1

αk
i Φ Xið Þ,Φ Xð Þh i (33)

It is important to note that before carrying out KPCA, it is necessary to mean center the data in
the high-dimensional space. This can be accomplished by replacing the kernel matrix K with
the following [32]:

K ¼ K� 1nK�K1n þ 1nK1n (34)

where 1n ¼ 1
n

1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

������

������
∈Rn· n.
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3.1.1. T2 statistic for KPCA

Variation in the KPCA model can be found using T2 statistic, which is the sum of normalized
squared scores, computed as follows [31]:

T2 ¼ t1;…; tl½ �Λ�1 t1;…; tl½ �T (35)

where tk is obtained from Eq. (33).

The confidence limit is computed as follows [31]:

T2
l,n,α � l n� 1ð Þ

n� l
Fl,n�l,α (36)

3.1.2. Q statistic for KPCA

In order to compute the Q statistic, the feature vector Φ(X) needs to be reconstructed. This is
done by projecting tk into the feature space using vk as follows [31]:

bΦn Xð Þ ¼
Xn

k¼1

tkvk (37)

The Q statistic in the feature space can now be computed as [31]

Q ¼ Φ Xð Þ � bΦl Xð Þ
���

���
2

(38)

The confidence limit of the Q statistic can then be computed using the following equation [31]:

Qα � gχ2
h (39)

This limit is based on Box’s equation, obtained by fitting the reference distribution obtained
using training data, to a weighted distribution. Parameter g is the weight assigned to account
for the magnitude of the Q statistic, and h represents the degree of freedom. Considering a and
b the estimated mean and variance of the Q statistic, g and h are approximated using g = b/2a
and h = 2a2/b.

3.2. Kernel partial least square (KPLS)

The KPLS methodology works by mapping the data matrices into the feature space and then
applying the nonlinear partial least square algorithm and computing the loading and score
vectors.

The mapped data points are given as

Φ : χ ! F

χ ! ffiffiffiffiffi
λ1

p
ϕ1 Xð Þ, ffiffiffiffiffi

λ2
p

ϕ2 Xð Þ,…,
ffiffiffiffiffiffi
λn

p
ϕn Xð Þ

� � (40)
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The kernel gram function can be used to map the data into the feature space instead explicitly
using the nonlinear mapping function; this is called the kernel trick. Kernel gram function is
defined as the dot product of the mapping function:

k Xi;Xj
� � ¼ Φ Xið ÞΦ Xj

� �
(41)

As with the KPCA algorithm, the kernel matrix has to be mean centered before applying the
NIPALS algorithm using Eq. (34).

The input score matrix and weights are computed as

t ¼ φ Xð ÞTR
R ¼ ΦTU TTKU

� ��1 (42)

Thus, the score matrix is given as [33]

t ¼ KttZ (43)

where Z ¼ U TTKU
� ��1

.

Now, the relationship between the input and output score matrices can be derived by combing
Eqs. (15), (17), and (18):

t ¼ XXTu (44)

In the feature space, replace X by its image Φ:

t ¼ ΦΦTu (45)

Substituting the kernel gram function, K = ΦΦT, input and output scores are given by

t ¼ Ku
u ¼ Yt

(46)

After every iteration, input kernel (K) and output matrix (Y) are deflated as

ΦΦT ¼ Φ� ttTΦ
� �

Φ� ttTΦ
� �T

(47)

ΦΦT dot product is replaced by kernel gram function K:

K ¼ K � ttTK � KttT þ ttTKttT

Y ¼ Y � ttTY
(48)

Let Xif gni¼1 be the training data and Xj
� �n

j¼1 be the testing data, Φ(Xi) is the mapped training

data, and Φ(Xj) is the mapped testing data. Kernel functions for the testing data are given as

Process Monitoring Using Data-Based Fault Detection Techniques: Comparative Studies
http://dx.doi.org/10.5772/67347

247



Kt ¼ K X;Xtð Þ ¼
Xn

i¼1

ffiffiffiffiffi
λi

p
ϕi Xð Þ

ffiffiffiffiffi
λi

p
ϕi Xtð Þ ¼ Φ Xð Þ � Φ Xtð Þð Þ ¼ Φ Xð ÞTΦ Xtð Þ

Ktt ¼ K Xt;Xtð Þ ¼
Xn

i¼1

ffiffiffiffiffi
λi

p
ϕi Xtð Þ

ffiffiffiffiffi
λi

p
ϕi Xtð Þ ¼ Φ Xtð Þ � Φ Xtð Þð Þ ¼ Φ Xtð ÞTΦ Xtð Þ

(49)

KPLS algorithm can also be used to predict output matrix Y from input matrix X as

Yt ¼ ΦtB (50)

Φt is mapped testing data in feature space from Xj
� �n

j¼1, and B is the regression coefficient

which is given as [34]

B ¼ ΦTY TTKU
� ��1

TTY (51)

Thus combining Eqs. (50) and (51), we get predicted output quality matrix:

Yt ¼ KtU TTKU
� ��1

TTY (52)

Algorithm 2: Kernel partial least square (KPLS) algorithm

1. Compute Kernel matrix: K.

2. Kernel matrix is mean centered using Eq. (34).

3. For first iteration, initialized score matrix: u = yi.

4. Calculate scores t and u using Eq. (46).

5. Deflate K and Y, using Eq. (48)

6. Score vectors t and u are stored in cumulative matrix T and U

7. Repeat steps 1 to 6 to extract M latent variables.

3.2.1. T2 statistic for KPLS

The T2 statistic for KPLS can be computed as

T2
t ¼ tTΛ�1t (53)

where Λ ¼ n� 1ð Þ�1TTT and the score matrix being orthonormal matrix TTT = I, leading to

Λ ¼ n� 1ð Þ�1I. The score matrix is t ¼ KttZ; hence the T2 statistic is given by [33]

T2
t ¼ n� 1ð ÞKttZZTKtt (54)

The threshold value for T2 statistic is computed using the f-inverse distribution and is given
by [35]
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T2
α ¼ g � finv α;m; hð Þ (55)

where n and m are the total number of observations and variables in the input data matrix X,
respectively, and

g ¼ m n2 � 1
� �

n n�mð Þ
h ¼ n�m

(56)

3.2.2. Q statistic for KPLS

As with the other data-based models, the Q statistic computes the mean square error of the
residue from the KPLS model:

Q ¼ φ� ~
φ

����
����
2

Q ¼ φ
T
φ� 2φ

T ~
φþ ~

φT ~φ

(57)

Substituting the kernel gram functions as the dot product of mapped points:

Q ¼ Ktt � 2KT
t KZtþ tTTTKTt (58)

where Z ¼ U TTKU
� ��1

.

The threshold value for the Q statistic under the significance level of α [36] is given by

Qα ¼ gχ2
α hð Þ (59)

where g and h are given by

g ¼ variance Qð Þ
2 ·mean Qð Þ

h ¼ 2 · mean Qð Þð Þ2
variance Qð Þ

(60)

A fault is declared in the system if the Q statistic value is higher than threshold value (Qα) for
new data set.

The following section demonstrates the implementation of the fault detection methods described
above and analyzes the effectiveness of all techniques.

4. Illustrative examples

The effectiveness of the kernel extensions of PCA and PLS for fault detection purposes will be
demonstrated through two illustrative nonlinear examples, using a simulated synthetic data
set and a simulated continuous stirred tank reactor (CSTR).
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4.1. Simulated synthetic data

Synthetic nonlinear data can be simulated through the following model [37]:

x1 ¼ u2 þ 0:3 sin 2πuð Þ þ ε1
x2 ¼ uþ ε2
x3 ¼ u3 þ uþ 1þ ε3

(61)

where u is a variable that is defined between�1 and 1 and εi is a variable of independent white
noise distributed uniformly between �0.1 and 0.1. Training and testing data sets of 401
observations each are generated using the model above. The performance of KPCA and KPLS
techniques is illustrated and compared to the conventional PCA and PLS methods for two
different cases. In the first case, the sensor measuring the first variable x1 is assumed to be
faulty with a single fault. In the second case, multiple faults are assumed to occur simulta-
neously in x1, x2, and x3.

Figure 3 shows the generated data.

Case 1

In this case, a single fault of magnitude unity is introduced between observations 200 and 250
in x1 in the testing data set. The Gaussian kernel was chosen to model the nonlinearity in the
process data. The most common fault detection metrics used are the missed detection rate, the
false alarm rate, and the out-of-control average run length (ARL1). The missed detection rate is

Figure 3. Generated data.
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when a fault goes undetected in the faulty region, while the false alarm rate is when an
observation is flagged as a fault in the non-faulty region. The false alarm and missed detection
rates are also commonly referred to as Type I and Type II errors, respectively. ARL1 is the
number of observations, and it takes for a particular technique to flag a fault in faulty region
and is used to assess the speed of a detection. The fault-free and faulty data are shown in
Figures 4 and 5, respectively.

The fault detection (FD) performance of PCA-, KPCA-, PLS-, and KPLS-based Q methods is
shown in Figures 6 and 7 as well as Table 1. The results show that both KPCA and KPLS-
based Q provide a better FD performance than the linear PCA- and PLS-based Q methods and
are able to detect the faults with lower missed detection rates, false alarm rates, and ARL1

values (see Table 1).

Case 2

In this case, a multiple faults of magnitude unity are introduced between observations 200 and
250 in x1, 100 and 150 in x2, and 385 and 401 in x3 in the testing data set (as shown in Figure 8).

The FD performance of the kernel PCA and kernel PLS methods is illustrated and compared to
that of the conventional PCA and PLS methods using the Q statistic. The Q statistic was chosen
for analysis, since it is often better able to detect smaller faults using the residual space and for
simplicity of analysis as well. The fault detection performance of a particular process monitor-
ing technique can be monitored using multiple fault detection metrics.

Figure 4. Fault-free data.
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As can be seen through Figures 9(a) and 10(a) and Table 2, the conventional linear PCA and
PLS techniques are unable to effectively capture the nonlinearity present in the data set, which
leads to entire sets of faults going undetected for both the linear PCA and PLS techniques.
However, as demonstrated in Figures 9(b) and 10(b), the KPCA and KPLS-based Q techniques
are better able to detect the faults with lower missed detection rates, false alarm rates, and
ARL1 values than the linear PCA and PLS methods (as shown in Table 2). These improved
results can be attributed to the fact that the kernel techniques are able to capture the nonlinearity

Figure 5. Faulty data in the presence of single fault in x1.

Figure 6. Monitoring single fault using PCA- and KPCA-based Q methods—case 1.
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Missed detection (%) False alarm (%) ARL1

PLS-based Q statistic 90.1961 13.1429 36

KPLS-based Q statistic 3.9216 0 2

PCA-based Q statistic 100 7.4286 -

KPCA-based Q statistic 27.4510 5.1429 1

Table 1. Summary of missed detection (%), false alarms (%), and ARL1 for case 1.

Figure 7. Monitoring single fault using PLS- and KPLS-based Q methods—case 1.

Figure 8. Faulty data in the presence of multiple faults in x1, x2, and x3.
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in the hyperdimensional feature space, providing better detection especially in this case where
there are multiple faults in the system.

4.2. Simulated CSTR model

In order to effectively assess the performance of the kernel PCA and kernel PLS techniques, it is
also necessary to examine the performance of the techniques using an actual process applica-
tion as well. A continuous stirred tank reactor model can be used to generate nonlinear data,
and the fault detection charts can be applied to test their performance.

Figure 9. Monitoring multiple faults using PCA- and KPCA-based Q methods using simulated synthetic data—case 2.

Figure 10. Monitoring multiple faults using PLS- and KPLS-based Q methods using simulated synthetic data—case 2.

Missed detection (%) False alarm (%) ARL1

PLS-based Q statistic 67.2269 0 58

KPLS-based Q statistic 6.7227 0 1

PCA-based Q statistic 42.8571 0 1

KPCA-based Q statistic 8.4034 2.8369 1

Table 2. Summary of missed detection (%), false alarms (%), and ARL1 for case 2.
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4.2.1. CSTR process description

The dynamic for the CSTR that was utilized for this simulated example is represented as
follows [5]:

∂CA

∂t
¼ F

V
CA0 � CAð Þ � k0e�E=RTCA

∂T
∂t

¼ F
V

T0 � Tð Þ þ �ΔHð Þ
ρCP

e�E=RTCA � q
VρCp

q ¼ aFbþ1
c

Fc þ aFbc
2ρcCpc

� � T � Tcinð Þ
(62)

where k0, E, F, and V represent the reaction rate constant, activation energy, flow rates (both
inlet and outlet), and reactor volume, respectively. The concentration of A in the inlet stream
and of B in the exit stream is represented by CA and CB, respectively. The temperatures of the
inlet stream and of the cooling fluid in the jacket are Ti and Tj, respectively. ΔH, U, A, ρ, and Cp

represent the heat of reaction, overall heat transfer coefficient, area through which the heat
transfers to the cooling jacket, density, and heat transfer coefficient of all streams, respectively.

Using the described CSTR model, 1000 observations were generated, which was assumed to be
initially noise-free. Zero-mean Gaussian noise with a signal-to-noise ratio of 20 was used to
contaminate the noise-free process observations, in order to replicate reality. Figure 11 shows

Figure 11. Generated continuously stirred tank reactor (CSTR) data.
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the generated CSTR data. This data set was then split into training and testing data sets, of 500
observations each. Faults of magnitude 3σ were added to the temperature and concentration
process variables in the testing data set, at three different locations: observations 101–150,
251–350, and 401–450. σ is the standard deviation of that particular process variables.
Figures 12 and 13 show the unfaulty and faulty data, respectively. Similar to the previous
example, the performance of kernel PCA and kernel PLS methods is compared to the conven-
tional linear PCA and PLS methods using the Q statistic.

For this example, comparing the two conventional techniques, we can see that the PCA-based
Q statistic is unable to all faults (see Figure 14 (a)), while the PLS-based Q model is able to
better detect the faults (see Figure 15 (a)). However, the kernel PCA and kernel PLS-based Q
techniques are able to provide result charts with lower missed detection rates, false alarm
rates, and ARL1 values than their corresponding conventional techniques (see Figures 14(b)
and 15(b)). These improved results can once again be attributed to the kernel techniques being
able to effectively capture the nonlinearity of the data in the hyperdimensional feature space.
The FD results using the two examples showed that the kernel PLS-based Q provides a relative
performance compared to the kernel PCA Q. This is because kernel PCA is an input space
model and cannot take into consideration outcome measures and most chemical processes or
many of them are usually described by input-output space models.

Figure 12. Fault-free data.
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Figure 13. Faulty data in the presence of multiple faults in temperature and concentration.

Figure 14. Fault detection using PCA- and kernel PCA-based Q methods using CSTR data.

Figure 15. Fault detection using PLS- and kernel PLS-based Q methods using CSTR data.
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5. Conclusion

In this chapter, a nonlinear multivariate statistical techniques are used for fault detection.
Kernel PCA and kernel PLS have been widely used to monitor various nonlinear processes,
such as distillation columns and reactors. Thus, in the current work, both kernel PCA and
kernel PLS methods are used for nonlinear fault detection of chemical process. A commonly
used fault detection index is Q-square statistic, and it is used to detect fault in the system. The
fault detection performance using linear and nonlinear input models (PCA and kernel PCA)
and input-output models (PLS and kernel PLS) is evaluated through two simulated examples,
synthetic data set and continuous stirred tank reactor (CSTR). Missed detection rate, false
alarm rate, and ARL1 are the parameters used to compare the fault detection techniques. The
results of the two case studies showed that the kernel PCA and kernel PLS-based Q provide
improved fault detection performance compared to the conventional PCA- and PLS-based Q
methods.
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Abstract

This chapter provides a comprehensive analysis of noninvasive methods to diagnose
stator winding insulation faults of an induction motor. Further, a novel noninvasive
method is proposed to diagnose the root cause of winding failure due to unbalanced
voltage to avoid catastrophic failure. Therefore, a winding function approach is utilized
to derive an analytical expression for stator winding distribution andmagnetomotive force
(MMF). This tactic qualifies the conductor segment that generates MMF, and it also helps
to analyze a healthy current spectrum. One can easily observe higher order harmonics in
current spectrum; therefore, a new series of rotor harmonics is introduced to diagnose
unbalanced supply. The locus of these harmonics is dependent on the poles, rotor bars,
and slip. Due to the rapid complexity in industrial plants, it is inconceivable to continue
human inspection to diagnose the faults. Thus, to avoid human inspection, in addition to
new series of rotor harmonic, a fully automatic method based on neural network is
proposed. This method not only diagnoses unbalanced voltage but it also recognize the
percentage of unbalanced voltage by use of feed-forward multilayer perceptron (MLP)
trained by back propagation. Finally, the experimental results shows the validation of this
research work proposed method.

Keywords: artificial neural network (ANN), diagnosis, fault detection, induction
machine, interturn short circuit, rotor harmonic, unbalanced voltage
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1. Introduction

Condition monitoring is of a great concern to ensure continue production, reliability, and conse-
quently, avoid catastrophic failures. Therefore, online condition monitoring of induction motor
has become a subject of interest and a challenging task for the protection of a motor [1, 2]. In
induction motor, the most critical component, which is also considered the main source of motor
failures, is stator winding insulation failure [3–6]. Over the last few decades, numerous surveys
have been carried out on the reliability of induction motor. It has been experienced that 37% of
motor failure is due to insulation breakdown.

It is found that unbalanced voltage is a major source of insulation breakdown. The unbalanced
voltage results in an unscheduled shutdown of the process and causes enormous costs. Thus, it is
desirable that the misalignment in the voltage source, which can result in a severe failure, should
be identified at an incipient stage. A substantial amount of work has been proposed based on
current and voltage [7], current residue, the phase shift in current and voltage [8], and sequence
components [4, 9–11]. The majority of the methods to diagnose the unbalanced voltage essen-
tially (invasive or noninvasive) monitor single or multiple indicators of stator faults. Most of the
latter are extracted from a signature analysis. Therefore, it is important to be familiar with the
spectrum of a healthy motor, which is a challenging task due to the complexity of electromag-
netic processes, time, and space variables of an induction motor. Conversely, it is essential to
have a mathematical modeling that enables to extract a geometrical representation of the motor.
Beside this, to interpret the results from the mathematical model it is necessary to introduce an
appropriate analytical model. The modeling of stator conductor segments and MMF is a most
reliable approach to execute correct interpretation of induction motor.

As mentioned earlier that the unbalanced voltage is a major source of insulation breakdown,
therefore, the aim of this paper is to diagnose this fault at an incipient stage. The unbalanced
voltage can lead to turn-turn fault, phase-phase fault, phase-ground fault, and even a destruc-
tive effect on the stator core. During the last few decades, the condition monitoring of induc-
tion motor has become a vigorous area of research. Substantial work has been executed to
propose and develop various techniques and methods to diagnosis motor faults. Through
most relevant literature, three major classes of methods are discovered which support the task
of fault monitoring [8]. The first class is based on a signal analysis [12, 13] that uses spectra in a
frequency domain, time domain, time-frequency domain, and high-order harmonics. The
second approach is based on analytical modeling [14] that involves mathematical models to
measure input and output feature such as residuals, state estimation, and parameter estima-
tion that incorporate the artificial intelligence (AI) to online automate analyze the health of
induction motor through measured signals [15]. In engineering the AI tools are of great
significance to solve various complex problems [16, 17]. The AIs are classified into four
different groups as an expert system, genetic algorithm (GA), fuzzy logic, and artificial neural
networks (ANNs) [18].

This paper aims to analyze the current spectrum of the induction motor to diagnose and
distinguish between balanced and unbalanced voltage against the different level of unbalanced
voltage. In the first part of the chapter, a comprehensive analysis of noninvasive methods is
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tion motor has become a vigorous area of research. Substantial work has been executed to
propose and develop various techniques and methods to diagnosis motor faults. Through
most relevant literature, three major classes of methods are discovered which support the task
of fault monitoring [8]. The first class is based on a signal analysis [12, 13] that uses spectra in a
frequency domain, time domain, time-frequency domain, and high-order harmonics. The
second approach is based on analytical modeling [14] that involves mathematical models to
measure input and output feature such as residuals, state estimation, and parameter estima-
tion that incorporate the artificial intelligence (AI) to online automate analyze the health of
induction motor through measured signals [15]. In engineering the AI tools are of great
significance to solve various complex problems [16, 17]. The AIs are classified into four
different groups as an expert system, genetic algorithm (GA), fuzzy logic, and artificial neural
networks (ANNs) [18].

This paper aims to analyze the current spectrum of the induction motor to diagnose and
distinguish between balanced and unbalanced voltage against the different level of unbalanced
voltage. In the first part of the chapter, a comprehensive analysis of noninvasive methods is
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presented to diagnose electrical faults. While in the second part, an analytical model is derived
for the conductor segments, which are responsible for the generation of MMF. In third part, a
reminiscence is carried out onMMF and an expression is derived to modify MMFwith reference
to the slot conductors that play an import role in the generation of MMF by introducing all
harmonics terms that have influence in MMF waves. Further, a novel noninvasive technique
based on ANN is presented in Section 6 along with results and test procedure to diagnose and
distinguish unbalanced voltage at incipient stage in order to avoid catastrophic failure. Finally,
conclusions and future work are presented in Section 7.

2. Noninvasive stator fault diagnosis methods

Diagnosis of stator winding insulation failure has been extensively studied. Some of the
approaches are based on laboratory tests while other are based on experimental results and
analysis through simulation. Mostly, the researchers divide the diagnosis techniques into two
main categories, i.e., invasive and noninvasive. Although invasive fault diagnosis methods
help to diagnose the defect but it has many drawbacks, some are mentioned as: most of the
invasive techniques are offline or sensor bases, for installation of the sensors the normal
operation of an induction motor is disturbed. Moreover, by influenced operation of contiguous
equipment, there is no proper capability to diagnosis the weak faults. In contrast, noninvasive
methods make use of stator current and voltage, or other important electrical quantities. There
is no constraint of sensors to be installed. It is a cost-effective approach because in industries,
current and voltages are usually measured, thus the economic cost of current and voltage
measurement is not imposed on the system. Therefore, noninvasive methods in recent years
are preferred over invasive. The next subsection describes the operating principle of noninva-
sive indexes of how the stator winding faults are diagnosed.

2.1. The air-gap torque

The air-gap torque between the stator winding and the rotor is induced by current and flux
linkages that are sensitive to asymmetry caused by unbalanced voltage supply. The fault can
be diagnosed by stator current and voltage. The motor with interturn short circuit will
generate forward and backward rotational fields; the forward rotational field has a constant
torque with correspondence to the motor rotating field, while the backward rotational field
has twice the oscillating torque as compared to motor supplied frequency [19]. Therefore, the
frequency of backward rotating field may be used as an interturn fault index. However, the
induction motor with unbalanced three-phase voltages also accesses the same oscillating
torque component. This index may be an expensive approach because it requires measuring
both current and voltage. Moreover, this index cannot distinguish between interturn and
unbalanced voltage.

2.2. The stator line current

The stator line current is the index that may be used to reflect a variety of noninvasive indexes to
diagnose interturn fault. The stator line current indexes are briefly described in the succeeding
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text. First, consider three current sequences positive, negative, and zero of a three phase as
follows:

X0 ¼ 1
3
ðXa þ Xb þ XcÞ ð1Þ

Xþ ¼ 1
3
ðXa þ aXb þ a2XcÞ ð2Þ

X� ¼ 1
3
ðXa þ a2Xb þ aXcÞ ð3Þ

where a ¼ ej2π=3. The healthy induction motor without any fault or symmetry has zero current
for a negative sequence, whereas the interturn fault in motor generates considerable negative
sequence current. While there is minute change observed for positive sequence current, there is
no effect of load variation on the negative sequence current, but it is highly sensitive to the
imbalance of the supply voltages and can easily inherent asymmetry [19]. Therefore, this index
does not properly indicate the interturn fault and unbalanced voltage.

Park vector estimation, analysis uses the machine line current to diagnose interturn faults [20].
Under healthy condition, the motor Park vector pattern corresponds to a circular pattern.
While in the occurrence of interturn short circuits, the Park vector pattern manifests to an
elliptic representation and with the severity of fault the ellipticity increases. Through experi-
ments and simulation results it has been proven that Park vector is a reliable approach to
detect the interturn fault but does not investigate unbalanced voltage supply [20, 21].

In induction motor, the motor current signature analysis (MCSA) is the most extensively used
diagnosis index [22, 23]. It is observed that current spectrum is also affected by unbalanced
voltage supply. Thus, the current spectrum will have third-order harmonics under interturn as
well as under unbalanced conditions. Therefore, MSCA is confused with the similar behavior
of induction motor harmonics under faulty and unbalanced conditions. Hence, MCSA
approach is not a reliable index to sufficiently identify the faults.

2.3. Power

The instantaneous electrical power is one of the reliable faults diagnose indexes for induction
motor [24], and some of the power frequency components have been identified as the stator
windings fault index [8]. Power frequencies are only dependent on the severity of the fault but
independent of the speed. The major factor that makes this index less reliable is that it is
influenced by peripheral factors such as inherent asymmetries, unbalanced supply voltage,
measuring equipment, and load variations. It is an expensive fault index because this requires
measurement of both voltage and current signals.

2.4. Sequence impedance matrix

Negative sequence apparent impedance is a noninvasive method and is used as a fault index to
detect stator winding faults [25, 26]. The impedance is obtained through the phasor voltage
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and phasor current. When interturn fault occurs, the impendence of the motor will be dis-
turbed. In this way, the change in the impedance is an indication of the faulty motor. This index
is less sensitive to load variation and unbalanced voltage. Therefore, it can be a preferable
method to diagnose the interturn stator winding faults, but it is a bit expensive and lengthy
approach because both the signal voltage and current have to be monitored.

2.5. Stator voltage

Stator voltage is also used as an index to detect the stator winding faults [27, 28]. By adopting
this approach, the algebraic sum of three-phase voltages is useful because this approach relies
on the variation of residual voltage caused by an interturn fault. For healthy motor, the
residual voltage is zero, while it is nonzero for an interturn motor. In a real scenario even in
the healthy induction motor, there are no balanced three-phase windings. Therefore, this index
is less reliable under load conditions. In this method, machine voltage harmonics are observed
by disconnecting the terminals [27], so this method cannot be applied for online condition
monitoring. After disconnecting the voltage terminals, the odd harmonics of the motor are
observed and used as interturn fault index [28].

From the above-mentioned methods, none of the methods is capable of distinguishing unbal-
anced voltage. Thus, to tackle unbalanced anomalies at the incipient stage all the three classes
of conditioning monitoring techniques are implemented in this research to diagnose unbal-
anced voltage at incipient stage, i.e., signal analysis class, analytical modeling class, and
knowledge-based class.

3. Analytical expression for spatially distributed stator winding

In induction motors, the armature winding is at the stator side between the stamped slots.
Figure 1 shows a stator with 12 slots and it can be illustrated that the winding in an induction
motor is not a single coil but is composed of a number of coils that are spatially distributed and
placed in the axial direction to provide room for the generation of magnetic flux.

Moreover, the stator winding of an induction motor is distributive in nature and can be
elucidated either by a discrete or by a continuous formulation. The discrete description refers
to the number of conductors in a slot while continue distribution is based on the density of the
windings. However, the conductors of stator winding are not placed in a continuous manner,
but rather are located in the slots. As the conductors have a physical size, which could be
viewed with sufficient resolution, therefore, the stator winding can be described mathemati-
cally to derive an analytical expression for the conductor segments that are responsible for the
generation of MMF that is the first task of proposed work and each slot is partition down to
slot and end conductors as shown in Figure 2.

The main focus of this section is to derive an analytical model for the slot conductors that are
oriented in axial direction. The reason to focus more on slot conductors is that these windings
are the portion of stator conductor that establishes MMF and that is involved in the production
of a torque. Figure 1(a) illustrates the stator of induction motor with 12 slots, whereas the
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stator windings are located in each slot. The notation Wss,i indicates the conductors in the ith
slot where “as” refer to phase-a of the stator winding. The conductors in the slots are shown as
open circles. Subsequently, the notation can be used to derive an expression for the segment of
slot conductors. For more generalize case, generalizing this notation, Wss,i is the conductors of
any phase in slot ith of winding:

Wss ¼
Xn

i¼1

Wss, iuðWss, iÞ ð4Þ

Figure 3 is a version of a developed diagram of the stator winding of induction motor. In this
developed diagram, instead of front or back view of a machine, the angle of vision is from the
center of a stator to outward. Within the slots,Wx,i denotes the number of slot conductors of ith

slot. Where, Wos and Wis are the variables representing front end conductor directed to the left
or right, respectively. It can be illustrated that for a symmetrical induction motor without any
fault, these conductors are same in numbers as given in expression:

Figure 1. Stator winding arrangement in the slots.

Figure 2. Partition of stator winding into slot and end conductions.
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Xn

i¼1

Woss, iuðWss, iÞ ¼
Xn

i¼1

Wiss, iuðWss, iÞ ð5Þ

In most of the induction motors, the stator winding is multilayered that contains conductors
from multiple windings (phases) as shown in Figure 4. Conductors out of the slot are known
as end conductors and are of importance because they contribute to the inductance and
resistance of the winding. Thus, total end conductors are given as in Eqs. (6)–(7).

Ess ¼
Xn

i¼1

Woss, i þ
Xn

i¼1

Wiss, i ð6Þ

Ess ¼
Xn

i¼1

Ess, iuðEss, iÞ ð7Þ

Figure 3. Aversion center view of stator through a developed diagram.

Figure 4. Multilayer stator winding. (a) Resolution of multilayer. (b) Bird view of multilayer.
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As the stator winding is segmented into slot and end conductors, therefore the total number of
turns associated with the winding will be the combination of slot conductors and end conductors:

WT ¼
Xn

i¼1

Wss, iuðWss, iÞ þ
Xn

i¼1

Ess, iuðEss, iÞ ð8Þ

Further, to calculate a center of stator teeth and stator slot, respectively, the following expres-
sion can be used based on the developed diagram:

∅ss, i ¼ πð2i� 2Þ
Ts

þ∅ss,1 ð9Þ

∅st, i ¼ πð2i� 3Þ
Ts

þ∅ss,1 ð10Þ

where Ts represents total stator slots, while ∅ss and ∅st represent the center of slot and teeth,
respectively.

4. Analytical derivation of stator and rotor MMF with reference to
modified slot conductors

4.1. Analytical expression of stator MMF

In induction motors, the primary goal of windings is to produce a rotating MMF. Therefore, the
windings of induction motors are designed in such a way that the induced EMF or produced
MMF consists predominantly of the space-fundamental sinusoidal component. The phase wind-
ings of an induction motor are identical but distributed and shifted in space for 2π/3p. The
winding of each phase occupies one-third of the number of the total slots in an axial direction.
The regions of stator winding within the slot known as slot conductors are of great importance
because these are the portions of stator conductor that establish MMF and that are involved in
the production of torque. The stator MMF is given as [29]

Fssðt,θÞ ¼
X

μ
Mμcosðωt� μpθÞ ; μ ¼ 6xþ 1; x ¼ 0, � 1, � 2, � 3,…: ð11Þ

where Mμ a harmonic term, representing the MMF amplitude of each harmonic p, refers to the
total number of poles. It can be illustrated through the equation that besides the fundamental
MMF there exist MMF waves of, i.e., 5p, 7p, 11p…n pole pairs.

The stator winding is not a simple coil, but it consists of a number of identical coils that are
placed in a distributive manner with certain angular coordinates as

WssðθÞ ¼
Wss: 1� a

2π

� �
, θ1 ≤θ ≤θ2

�Wss:
a
2π

, for otherθ

8<
: ð12Þ

Wss is the slot conductors and a is a pitch.
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4.2. Analytical expression of rotor MMF

The winding function of stator MMF is nothing else but MMF per unit current. In further text,
the concept of stator MMF could be alternatively utilized to derive an expression for rotor MMF.
Let us consider the rotor bars as a slot conductor and the end rings of the rotor will form a coil.
Consequently, the combination of rotor bars with closed end ring forms coils at the rotor side:

WRRðθÞ ¼
1� 1

R

� �
, � π

R
≤θ ≤

π
R

1
R
, for other θR

8><
>:

ð13Þ

The expression for rotor winding function can be derived by introducing Fourier series over
the function in Eq. (13).

f ðxÞ ¼ a0 þ
X∞

n¼1

ðancos nxþ bnsin nxÞ ð14Þ

WRRðθRÞ ¼
X∞

x¼1

2
xπ

sin x
π
R

� �
cos ðxθRÞ ð15Þ

Thus, following expression is achieved for rotor MMF:

FRRðt,θRÞ ¼
X∞

x¼1

2
xπ

sin x
π
R

� �
cos ðxθRÞIRcosðsωtÞ ð16Þ

Apply product formula:

FRR1ðt,θRÞ ¼
X∞

x¼1

Kμx½cosðsωtþ xθRÞ þ cosðsωt� xθRÞ� ð17Þ

Referring to Eq. (11), it is clear that besides fundamental MMF there exist MMFs due to
additional waves with 5p, 7p, 11p,…, n. Consequently, the MMF of the rotor will also exit due
to additional waves with 5p, 7p, 11p. Further, Figure 5 shows test rig designed to experimen-
tally validate and capture MMF of induction motor. The test rig consists of 0.25 kW three-
phase induction motor with 2 poles, 28 stator slots, and 30 rotor slots. While the spectrum of
MMF is captured through PASPORT magnetic field sensor connected to PC through PASCO
interface. The advantage of using PASPORT magnetic field sensor is that it offers very high
sensitivity and is capable of monitoring the signal from�1000 to +1000 G as shown in Figure 6.

Figure 7 shows MMF spectrum against different harmonics, i.e., μ = 1,5,7,11, and 13 with
corresponding μp = 2,10,14,22, and 26. It is more obvious that the additional harmonics waves
will depend on the rotor bars and number of poles. Thus, besides the fundamental harmonic,
rotor as well as stator MMF will exit for higher space harmonics. The abovementioned series of
MMF due to μ harmonic term which could be defined as
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Figure 5. Test rig for measuring MMF.

Figure 6. Spectrum of MMF two-axis magnetic field sensor.

Figure 7. MMF at an instant (p = 2, R = 30, μ = 1, 5, and 7).
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μ ¼ 6uþ 1; u ¼ 0, � 1, � 2, � 3,…:

The higher order harmonics are the consequence of the generation of rotor MMF. Due to
analytical and experimental analysis, in this research work, an additional harmonic term “μ”
is introduced to a rotor MMF. The rotor loops are 2π/R apart from each other with a phase shift
of μ.p.2π/R,; therefore, the frequency and the magnitude of the current will be same. The MMF
in the consecutive rotor loop will be

FRR2ðt,θRÞ ¼
X∞

x¼1

Kμx cos sωtþ xθR � xþ μpð Þ 2π
R

� �
þ cos sωt� xθR þ ðx� μpÞ 2π

R

� �� �

ð18Þ

The resultant MMF of the rotor will be the resultant of all the rotor loops along with all the
harmonics.

FRðt,θRÞ ¼
XR�1

j¼0

X∞

x¼1

Kμx cos sωtþ xθR � j:ðxþ μpÞ 2π
R

� �
þ cos sωt� xθR þ j:ðx� μpÞ 2π

R

� �� �

ð19Þ

The harmonics in the rotor is due to fundamental and waves with 5p, 7p, 11p, …, n poles.
Moreover, from Eq. (19) through inspection, it is found that more prominent MMF waves exist
if x = �μp as well as x ¼ �lRþ μp or x ¼ �lR� μp where, l ¼ 1, 2, 3…. Suppose if it is stated
that x should be a positive integer, then MMF waves only exist for higher order harmonics,
i.e., x ¼ j � μpj, x ¼ j � lRþ μpj and x ¼ �lR� μp. Thus, for each of these waves in addition
to fundamental MMF x ¼ j � μpj, there are rotor harmonics at x ¼ j � lRþ μpj with respect
to the waves with 5p, 7p, 11p, …poles. If these MMFs are observed from stator side, they will
have the following expression:

Fssðt,θRÞ ¼ FssFðt,θsÞ þ FssRHðt,θsÞ þ FssRHðt,θsÞ ð20Þ
Fssðt,θsÞ ¼ Mμcosðωt� μpθsÞ ð21Þ

FssRHðt,θsÞ ¼ Mμ cos 1� lR
P
ð1� sÞ

� �
ωtþ ðlR� μpÞθs

� �
ð22Þ

FssRHðt,θsÞ ¼ Mμ cos 1þ lR
P
ð1� sÞ

� �
ωt� ðlRþ μpÞθs

� �
ð23Þ

To validate and justify aforementioned discussion, the spectrum of MMF is obtained against
harmonics of (μ = 1, 5, and 7) with respect to wave with 5p, 7p, 11p, …poles. From Figure 8, it is
obvious that against fundamental wave with, i.e., μ = 1, there will be rotor harmonics of
order R� μP, Rþ μP, 2R� μP, and 2Rþ μP, i:e:, 8th, 32th, 58th, and 68th as shown in
Figure 8(a). For μ = 5, the rotor harmonic of order 20th, 40th, 50th, and 70th are shown in
Figure 8(b). Similarly, for μ = 7 and rotor harmonic are of order 16th, 44th, 46th, and 74th as
shown in Figure 8(c). Similarly, the MMF at the stator side will exit for 5p, 7p, 11p,…. Further,
this rotor harmonic will be useful to diagnose the faults.
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Figure 8. Harmonic order of MMF (p = 2, R = 30, μ = 1, 5, and 7).
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4.3. Analysis of unbalanced voltage and its effect on MMF

As mentioned earlier, unbalanced voltage supply is one of the major sources of stator winding
failure. Under unbalanced voltage, the symmetry of induction motor is disturbed and the
effect of unbalanced voltage is equivalent to negative sequence voltage. Motor acts as two
different motors, one for the positive sequence and the other for the negative sequence. Each
set of the sequence will produce corresponding balanced currents and the synthesis of the two
sets of current is an actual current produced by the original unbalanced voltages. The response
of a motor to the positive sequence voltage is the same as for normal voltage. However, the
negative sequence currents set up a reverse MMF, so if a slip of a motor is (s) with respect to the
positive sequence field, it will be (2-s) relative to the negative sequence MMF. Moreover, a
motor behaves as two separate motors, one running at slip (s) with a terminal voltage while
the other running with a slip of (2-s).

5. Fault diagnosis system through experimental results

For a reliable fault diagnostic method, it is essential to have a good understanding of the motor
response for healthy and faulty conditions. To eliminate additional cost for monitoring scheme,
it is important to find out the fault through current signature. The current signature can be
easily measured and are most sensitive to any fault. Moreover, the cost of current monitoring is
not imposed on the system because in every industry the current sensors are embedded. Thus,
in proposed work, two methods are proposed to diagnose unbalanced voltage. In the first
method, unbalanced voltage is diagnosed through an efficient MCSA technique. Due to the
rapid complexity in industrial plants, it is inconceivable to continue human inspection to
diagnose the faults. Consequently, to avoid human inspection, in addition to MCSA, AI-based
ANN high performance fully automated method is proposed.

5.1. Diagnosis of unbalanced voltage through harmonic component

It is reported that MCSA is a noninvasive and an economically most suitable method to
diagnose motor faults. Thus, the basis of MCSA is of fundamental importance to diagnose
unbalanced voltage supply. Asymmetry in the power supply will generate negative sequence
current that will produce a backward rotating field at double slip frequency with respect to the
forward rotating rotor. The MMF that is caused by both the fields will induce voltage and
current at the stator side, and the effect of this current will be more prominent at newly
introduced rotor harmonic frequency given as

f RH ¼ 1=2 k
2Nr

P

� �
ð1� sÞ � 1

� �
Fs, k ¼ 1, 2, 3……… ð24Þ

where, Nr and p represent rotor bars and poles, respectively, while s and Fs are the slip and
applied frequency, respectively. It can be analyzed through modified expression of rotor
harmonic that spectral content of current will be more prominent at these frequencies.
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5.2. Experimental diagnosis of unbalanced voltage

To validate the proposed methods at an incipient stage, experimental data and justification are
required. For this purpose, a number of experiments are carried on the induction motor. The
motor is assembled and designed in electrical machine lab to study the behavior of the motor
under different degree of unbalanced voltage in a single phase.

The block diagram and a testbed are shown in Figures 9 and 10, which are composed of a
three-phase squirrel cage induction motor connected in star layout with, two pole pairs,
variable adjustable voltage. The variation in the voltage supply is achieved through Lab-
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Figure 11 shows the experimental results of current signature of three-phase induction motor
supplied with a perfectly balanced voltage source. Referring to analytical expression (24), from
the current spectrum, it is obvious that the current harmonics components at 450 and 550 Hz
are due to induced EMF. It can easily be seen that the new series of rotor harmonic are the most
prominent in the current spectrum. Hence, these frequency components in the current spec-
trum can be selected as yardsticks to measure the effects of unbalanced voltage.

To investigate the effect of unbalanced voltage, the percentage unbalanced in a single phase
of an induction motor is varied through Lab-Voltage variable Power supply model 8821-2A.
Further, the system response is analyzed through a new series of rotor harmonic. It is
obvious from Figures 12–14 that show that with the variation in the voltage supply there
is a significant variation in the amplitude of the harmonic component at 450 and 550 Hz. It
is also apparent that the amplitude of these harmonic is directly proportional to the degree
of unbalanced voltage. Thus, the increase in the degree of unbalanced voltage will signifi-
cantly increase the harmonic components at 45 and 550 Hz. Unbalanced voltage supply has
drastic consequences on the motor operation because it can lead the current 6–10 times
higher than the nominal rate. The increase in current will be much severed for the winding
because even a 10% increase in temperature damages half of the winding insulation and
results in short circuit. Thus, the proposed method will be a more appropriate and nonin-
vasive technique to diagnose unbalanced voltage supply at in incipient stage and avoid
catastrophic failure.

Motor feature

Motor type Three-phase induction motor

Balanced line voltage (V) 415

Synchronous speed (rpm) 3000

Rated speed (rpm) 2700

Motor slip 0.1

Power (W) 250

Frequency (Hz) 50

Poles 2

Stator slots 24

Rotor slots 22

Table 1. Rated values of induction motor.

Voltage phase_1 (V) Voltage phase _2 (V) Voltage phase _3 (V) % total voltage unbalanced

Balanced voltage 415 415 415 0

Unbalanced voltage 415 415 385 7.5

Unbalanced voltage 415 415 355 15

Unbalanced voltage 415 415 335 21

Table 2. Asymmetry in voltage supply.
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5.3. Results and discussions

Figure 12. 7.5% Unbalanced voltage.

Figure 13. 15% Unbalanced voltage.

Figure 11. Balanced voltage.
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6. Fully automated detection of unbalanced voltage

6.1. ANN classifier design

The recognition of the pattern has been a key factor in the growth of fault diagnosis methods.
Over the last few decades, automated techniques adopting the ANN have attracted the
researchers due to excellent innovation in various industrial applications such as aerospace,
pneumatic, chemical, and renewable energy. Similarly, in an electrical field, a major part of the
research has been conducted on parameters such as identification in control systems, power
system, and particularly detection of induction motor faults. The ANN is most feasible and
reliable approach because these techniques are less model dependent of the process and in
their generalization capacity. Moreover, ANN provides interpretation of real-time tracking by
accommodating variation in the learning data. This efficiency is dependent on the choice of the
data that are selected as inputs representing the defects. Hence, the ultimate obligation for
effective implementation of ANN to diagnose the exact fault is the availability of relevant rich
statistics that are identified as an input data for each fault. Therefore, it is compulsory that the
input data of ANN should be meaningful indicators of the faults. Selection of such a data set is
not an easy task. However, a convenient way is to select the parameter as a fault indicator that
gives the most information about the fault and discard the rest [30]. In this work, feed-forward
multilayer perceptron (MLP) ANN is used while the ANN is trained by the back-propagation
(BP) algorithm.

6.2. Description of the proposed method

The choice of eccentricity harmonic detection, which increases the discernment between
healthy and faulty motor, is of great interest that most of the researchers look for. From
experimental results, most of the researchers confronted with the fact that the amplitude of
third-order harmonic was considered alone distinction criterion between the healthy and

Figure 14. 21% Unbalanced voltage.
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unbalanced voltage source, which is not sufficient owing the unbalanced condition because the
third-order harmonic also exits for a perfect balanced source. In proposed work, the main
focus is to use ANN technique in such a way that it is able to identify and declare healthy or
faulty condition after reception of each data set. To acquire the desired results, certain stages
must be carried out such as relevant input variables, output variables, and layers and neurons
in each layer as shown in Figure 15.

The proposed method is based on the current signature of an induction motor. From the
current signature, two indicators of voltage unbalanced are extracted, i.e., (I-1, I-2) based
on new series of rotor harmonic (Eq. (20)). As shown in Figure 16, these indicators are fed to
the ANN for automatic fault detection. The computation of this input is performed as illus-
trated in Figure 16. Initially, fast Fourier transformer (FFT) is performed at line currents to
extract the magnitude and the phase angle of each line current. After that, the magnitude and
phases of certain harmonic components are extracted and fed to ANN. Accordingly, the used
multilayer feed-forward neural network with two input and four outputs is depicted in
Figure 16 with:

I-1: The magnitude of new series of rotor harmonic.

I-2: The phase angle of new series of rotor harmonic.

The neural network approach to diagnose unbalanced voltage is carried out in two phases, i.e.,
training and testing. In the first phase known as training phase, the ANN is automated trained
to capture the underlying relations among inputs and desired outputs. While in the second
phase the results are computed through ANN testing, the data set used for testing is random,

Figure 15. ANN architecture.
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which is not used before to check the efficiency of ANN. Note that in this proposed work,
experimental data are collected for the testbed designed in electrical machine lab. The variation
in the voltage supply is achieved through Lab-Voltage variable Power supply model 8821-2A.

6.3. Experimental results of the proposed ANN technique

6.3.1. Testbed description

To validate the proposed methods, experiments are carried on the induction motor. The
testbed is shown in Figure 10, and its parameters are listed in Table 1. The variation in the
voltage supply is achieved through Lab-Voltage variable Power supply model 8821-2A. For
data acquisition, FLUKE interface and Intel (R) Xeon (R) computer having CPU E5-
1650V2@3.50GHz, 64 GB RAM, and 64-bit operating system are used. Furthermore, for data
acquisition, these analogy sensors are connected to PC through FLUKE interface. A total of
2040 samples of data for each class from FLUKE interface are interpreted by MATLAB
(R2015a) software in order to compute the desired harmonics and the phase shift of each
phase. This task is carried out through developed algorithm and the achievement of the fault
diagnosis task by the NN.

In this research, different sequences of tests are conducted on the motor. The results of these
tests are the basis to carry-out the next two phases of fault detection technique, i.e., training
and the test phase, in order to experimentally validate the performance of the NN. The tests
are conducted by configuring degree of unbalanced voltage in phase-C, for the following
variations:

Figure 16. Model of proposed ANN multilayer feed-forward neural network.

Noninvasive Methods for Condition Monitoring and Electrical Fault Diagnosis of Induction Motors
http://dx.doi.org/10.5772/67245

281



1. All the three phases are perfectly balanced.

2. Phase-C with 7.5% of unbalanced voltage while other two phases with nominal voltage.

3. Phase-C with 15% of unbalanced voltage while other two phases with nominal voltage.

4. Phase-C with 21% of unbalanced voltage while other two phases with nominal voltage.

6.3.2. Experimental characteristics of new series of harmonic

The plot in Figures 17–19 illustrates the experimental characteristics in a new series of rotor
harmonic for unbalanced voltage, respectively, with increasing degree of the unbalanced
voltage of 7.5, 15, and 21%. It is obvious from the experimental computed result that there is
a direct impact of unbalanced voltage on the amplitude of new rotor harmonics. With increas-
ing unbalanced voltage, there is a direct increase in the amplitude of new series of harmonics
in phase-A and phase-B, while there is a decrease in the amplitude of phase-C, which reflects
that the unbalanced is in phase-C. Despite the difference in values, the evolution in the
amplitude of plotted curves against increasing percentage of unbalanced voltage is an indica-
tor to the permutation in the increasing degree of unbalanced voltage.

6.3.3. Training results

A number of input and output data set are processed during the learning phase. Thus, a series
of training data set is fed to the ANN. The training data is extracted from the current signature
and the targeted input database (I-i) with corresponding output database (S-i). The input data
set of training is composed of different degree of unbalanced voltage. Each training data set is
represented by input and output vectors, i.e., [I-1, I-2] = [S-1, S-2, S-3, S-4].

Total training input data set consists of 80 successive sequences of 20 examples to balanced
voltage, 20 examples of 7.5% of unbalanced voltage, 20 examples of 15% of unbalanced

Figure 17. Characteristic of new harmonic on phase-A.
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voltage, and 20 examples of 21% of unbalanced voltage in phase-C of an induction motor. The
training output data are arranged in order to accomplish desired outputs (S-i) using a logical
expression, i.e., (0 and 1) to identify the condition of the motor as follows:

S-1 = 1 All the three phases are perfectly balance; otherwise, S-1 = 0.

S-2 = 1 Phase-C with 7.5% of unbalanced voltage while other two phases with nominal voltage;
otherwise, S-2 = 0.

S-3 = 1 Phase-C with 15% of unbalanced voltage while other two phases with nominal voltage;
otherwise, S-3 = 0.

Figure 19. Characteristic of new harmonic on phase-C.

Figure 18. Characteristic of new harmonic on phase-B.
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S-4 = 1 Phase-C with 21% of unbalanced voltage while other two phases with nominal voltage
otherwise, S-4 = 0.

To elucidate the state, the outputs (S-1, S-2, S-3, S-4) are set to:

[0, 0, 0] All the three phases are perfectly balance.

[1, 0, 0] Phase-C with 7.5% of unbalanced voltage.

[0, 1, 0] Phase-C with 15% of unbalanced voltage.

[0, 0, 1] Phase-C with 21% of unbalanced voltage.

The total training input data set consists of 80 successive sequences of 20 examples to balanced
voltage, 20 examples of 7.5% of unbalanced voltage, 20 examples of 15% of unbalanced
voltage, and 20 examples of 21% of unbalanced voltage in phase-C of an induction motor.
Using the NN structure with two inputs, four outputs, and 10 hidden neurons, as shown in
Figure 16, the classifier is trained on the experimental data shown in Figures 17–19. It is
obvious that satisfactory training results are achieved. From Figure 20, it can be perceived that
mean squared error (MSE) reached to 4.63 × 10�09 after 1000 epochs. The corresponding MSE
shows that successful classification is accomplished with low errors.

6.3.4. Test results

The objective of test results is to evaluate the feasibility and accuracy of the NN. Thus, to test
the performance of proposed method, random and successive range of data is fed to ANN
classifier with 20 examples of each case. From the MSE results, it can be analyzed that error is
very low, and this is the indication that the proposed ANN model has correctly classified all
the classes. Usually, the classifier performance is evaluated by estimating its generalization
error. However, in many cases the low value of error is not enough to judge and ensure that the
features were correctly learnt because too low error can also refer that the network has over
fitted the data [31].

Figure 20. Performance of proposed ANN.
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To properly classify the network performance Receiver Operating Characteristic (ROC)
and confusion matrix are presented in this work. The ROC curve is a two-dimensional
measurement that represents the classifier performance rate. It expresses the probability
rate of corrected samples classified versus misclassified ones. In practice, ROC curve
shows performance of proposed method through area under the curve. The performance

Figure 21. ROC curve w.r.t. (a) balanced-unbalanced 7.5%, (b) balanced-unbalanced 15%, (c) balanced-unbalanced 21%,
(d) unbalanced 7.5%-unbalanced 15%, (e) unbalanced 7.5%-unbalanced 21%, (f) unbalanced 15%-unbalanced 21%.
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of the network depends on the trade-off between robustness and sensitivity. The robust-
ness and sensitivity of proposed techniques can be discovered through a series of experi-
ments. ROC curve is carried out to detect and evaluate the proposed methodology that
how efficiently propose technique diagnoses the level of unbalanced voltage supply. The
ROC curve can be evaluated for each class to extract the performance against that partic-
ular class. From Figure 21, the ROC graph shows the trade-off between the probabilities
of true positives rate (tpr) versus the probability of false positives rate (fpr). From ROC
curve of each class, it can be seen that for all the classes the curve is closer to the top left
corner which demonstrate that area under the curve is higher and the proposed method
has efficiently diagnosed the level of unbalanced voltage supply. Mathematically, tpr and
fpr can be expressed as

tpr ¼ true positives
true positivesþ false negatives

ð25Þ

f pr ¼ false positives
false positivesþ true negatives

ð26Þ

Further, confusion matrix is constructed of each class to report the performance of a classifier. In
Table 3, a confusion matrix is presented with dimension defined by the number and the type of
classes. For clarification, the headings pointed out in confusion matrix of Table 3 are defined as
follows: 0 � balanced voltage supply, 1 � 7.5% unbalanced voltage supply, 2 � 15% unbalanced

Table 3. Confusion matrix of (a) balanced-unbalanced 7.5%, (b) balanced-unbalanced 15%, (c) balanced-unbalanced 21%,
(d) unbalanced 7.5%-unbalanced 15%, (e) unbalanced 7.5%-unbalanced 21%, (f) unbalanced 15%-unbalanced 21%.
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voltage supply, and 3 � 21% unbalanced voltage supply. The percentage of proper or correct
identification of unbalanced voltage is represented in the major diagonal, while the out of major
diagonal represents the errors (means the confusion) among the various classes. The results of
confusionmatrix demonstrate high degree of accuracy that shows that the classification associated
with the use of proposedmethod is reliable to diagnose and distinguish between different levels of
unbalanced voltage supply. The overall accuracy of proposed model is 85%, which is a big
achievement.

The synthesis of the proposed work helps to conclude the feasibility and efficiency through the
accuracy of the result that how close the ANN results are to the actual results. In this work, it is
illustrated through experimental and classifier work that how accurate the proposed method is
in locating the degree of unbalanced voltage. Moreover, the proposed method is robust and
can be suggested to demonstrate the health of any motor.

7. Conclusion and future directions

As in recent era, the majority of induction motor fault diagnosis techniques are essentially
noninvasive (online) to ensure continue production, reliability, and consequently. There-
fore, in this chapter, a comprehensive analysis of noninvasive techniques is carried out,
which are used to diagnose stator winding failure. Further, this chapter presents derivation
by utilizing winding function approach to find out the conductor segments responsible for
the generation of MMF. The knowledge of induced voltage at stator winding through MMF
helps to propose a new noninvasive regime in order to diagnose unbalanced voltage. Thus,
a new series of rotor harmonics are introduced and one can easily observe the performance
through a graph that the amplitude of higher order harmonics increases against the various
level of unbalanced voltage. Due to the rapid complexity in industrial plants, it is incon-
ceivable to continue human inspection to diagnose the faults. Thus, to avoid human inspec-
tion, in additional to new series of rotor harmonic, a fully automatic method based on a
neural network is proposed to diagnose unbalanced voltage at an incipient stage. The
diagnostic process of ANN is fully automated; it can be observed through the pattern or
the trend of ANN graphs that there is a significant rise in the new series of current har-
monic. Further, through ROC curve, confusion matrix and overall accuracy of proposed
method show that the novel features extraction are more reliable for diagnosing the fault.
The classification tasks of proposed automated noninvasive method not only diagnoses
unbalanced voltage but it also distinguishes between various levels of unbalanced voltage,
which reflects the effectiveness and reliability of the proposed diagnosis process. The scope
of this research can readily be extended to identify and locate the exact unbalanced voltage
phase through a current spectrum. In proposed method, the features are extracted through
the current harmonics, while the research can be extended to extract the unbalanced fea-
tures through phase shift.
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Abstract

The method fitness-for-service (FFS) provides the means by which the operator of a
technical system can decide: It can continue to work safely, reducing of working param-
eters or stopping the equipment and reparation it. A case study concerning a natural gas
pipeline is introduced. It brings some applicative aspects: the introduction of the failure
probability as an indicator; the reduction of the degree of conservatism; a maintenance
program based on pipeline intelligent gauge.

Keywords: fitness-for-service, pipeline, maintenance program

1. Introduction

While an equipment (pressure vessel, pipeline, tank, etc.) is pressurized and has a certain state
of degradation, the operator must decide: Whether it can continue to work safely, reducing the
working parameters or the equipment must be stopped and refurbished, avoiding injury of the
personnel or other persons, and unexpected environmental accidents [1]. The method fitness-
for-service (FFS) provides the means by which the operator can take these decisions based on
reliable engineering knowledge.

The main factors that have to be considered when determining the applicability and limita-
tions of a procedure for evaluating a pipeline by FFS are data available on pipeline, operation
and maintenance history of the pipeline. For pipelines used to the transport of hydrocarbons
standard, API 579 [2, 3] (whose assessment procedures are in turn based on the ASME B31G
and the RSTRENG criteria [4]) recommends several levels of evaluation. Level 1—Evaluation
procedures included in this level are aimed at securing conservative monitoring criteria that
can be used with a minimum amount of information and inspections concerning the pipeline.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



They can be implemented by the technical personnel of the user. Level 2—Evaluation pro-
cedures included in this level are designed to ensure a more detailed assessment, which leads
to more precise results compared to Level 1 assessment. In this level, the information from
inspections is consistent with those provided for Level 1, but using more laborious calculations
for their interpretation. Level 2 assessment should normally be realized by technical staff with
experience in assessments of this type. Level 3—Evaluation procedures included at this level
are aimed at ensuring the accurate assessment, leading to more accurate results compared to
Level 2 assessment. In this level, the most detailed information and recommended inspections
of the pipeline are typically required, and analysis is based on numerical techniques such as
finite element method or experimental techniques. It is expected that this level assessment to
be carried out only by experts with proven experience and expertise in such evaluations. Many
papers are devoted to this topic. Shekari et al. [5] have used FFS assessment methodology for
process equipment to track and predict pitting corrosion. Pit density was modeled using a
non-homogenous Poisson process and induction time for pit initiation is simulated as the
realization of a Weibull process. The distributions of the operating pressure and the estimated
burst pressure of the defected component are integrated with Monte Carlo simulations and
first-order second-moment (FOSM) method to calculate the reliability index and probability of
failure. Scano [6] has used FFS assessment for a pipeline connecting the boiler of a paper mill to
the cogeneration turbine and the process headers. Because of the elevated number of in-service
hours, an API 579-1 Level 3 assessment was required, and a FE shell model of the line was set
up to evaluate plastic strain accumulation due to creep through a time-dependant inelastic
analysis. The results of the assessment led to an estimate of 70,000 hours of residual life for the
pipeline. Almeida et al. [7] have proposed a modeling of a pressure vessel under internal and
external corrosion using the fitness-for-service (API 579). Non-destructive testing by ultra-
sound was used to obtain loss of thickness wall measurements for pressure vessel damaged
and develop the modeling. The objective is to analyze and evaluate the values of maximum
allowable working pressure (MAWP) provided by the fitness-for-service assessment using
numerical thermal transient analysis using finite element. Janelle [8] has reviewed the technical
basis for the fitness-for-service assessment procedures for general and local metal loss. Exten-
sive validation of these procedures along with additional development was presented. The
conclusions of the study are recommended as the best practices to be included in future
versions of API 579. Adib-Ramezani et al. [9] have studied the notch stress intensity factor
concept, and SINTAP structural integrity procedure is employed to assess gas pipelines integ-
rity. The external longitudinal defects have been investigated via elastic-plastic finite element
method results. The extracted evaluations are compared with the limit load analysis based on
ASME B31G, modified ASME B31G, DNV RP-F101. The comparison among extracted safety
factors exhibits that SINTAP predictions are located between lower and upper safety factor
bounds. Ahammed [10] has used deterministic model to evaluate the remaining strength of
corroded steel pipeline over time. This model evaluates the remaining strength of corroded
steel pipeline over time. The model also can be used to evaluate the maximum allowable failure
pressure of corroded pipelines. Ahammed [11] has developed previous calculation model.
Because of the presence of nonlinearity in the limit state function and also of the presence of
non-normal variables, the Level II advanced first-order second-moment iterative method is
employed for carrying out reliability analyses. Li et al. [12] have used an original methodology
for predicting corrosion remaining life of underground pipelines with a mechanically based
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probabilistic model by taking effect of randomness into account in pipeline corrosion. The
results show that the corrosion defect depth and radial corrosion rate are the key factors
influencing pipeline failure probability and remaining life. Netto et al. [13] have studied the
effect of external corrosion defects via a series of small-scale experiments and through a
nonlinear numerical model based on the finite element method. The model was used to
determine the burst pressure as a function of material and geometric parameters of different
pipelines and defects. Teixeira et al. [14] have evaluated the reliability of pipelines with corro-
sion defects subjected to internal pressure using the first-order reliability method (FORM). The
limit-state function is defined based on the results of a series of small-scale experiments and
three-dimensional non-linear finite element analysis of the burst pressure of intact and cor-
roded pipelines. Minescu and Pana [15] have demonstrated the equivalence of the results
obtained with the assessments procedures API 579 and ASME B31G over a pipeline transport
system. In Section2.1.1, there are revealed the novelty aspects of this work. In conclusion, it
should be said that the FFS method is extensively applied in industry in various fields; the
progress of theoretical and experimental applied methods has improved the application
results; method deserves to be consistently applied in technologic systems.

2. Using fitness-for-service assessment method—case study

2.1. Characteristics of fitness-for-service method

A case study concerning a natural gas pipeline is introduced for example. In this evaluation,
which is essentially a FFS method, different ways are suggested from those used in the
standards DNV RP 101 [16], API 579 and ASME B31G.National Regulatory Authority for
Energy (NRAE) from Romania supervises the activity of the transmission system operators
(TSO) for petroleum products. Such the transporters are obliged to fulfill certain procedures.
Effectiveness of these procedures is measured by several indicators as the number of defects
per km of pipeline; accidents found during operation; accidents caused by third parties;
complaints of customers, etc. [17]. Pipeline (both for liquid petroleum products and for the
gaseous hydrocarbons) from Romania is inspected by pipeline intelligent gauge (PIG) technol-
ogy. Appreciation of the failure limit of a pipeline (for the case when the pipeline destruction is
possible because of corrosion defects) can be done in two ways [18, 19]:

a. It makes the difference between failure pressure and the pressure of the operating.

b. It makes the difference between the thickness of the resistance (usually 80% of the pipe
wall thickness) and depth of corrosion of corresponding to the defect that was detected in
the pipeline wall.

Mustaffa et al. [20] have achieved an excellent review over limit state methods. Recently, some
authors have developed models for the limit state (based on similarity theory) including the
geometrical parameters of the pipeline, geometrical characteristics of major defects and pipe-
line operating conditions. A good study over the subject has accomplished by Zecheru et al.
[21]. This is another way of estimation of the limit state, which was added to the two methods
above. Caleyo et al. [18] have used the first-order second-moment iterative reliability method,
and the Monte Carlo integration technique and the first-order Taylor series expansion of the

Detection and Analysis of Petroleum Equipment Faults
http://dx.doi.org/10.5772/intechopen.68227

293



limit state function (LSF) are used in order to estimate the probability of failure associated with
each corrosion defect over time. De Leon and Macias [19] have studied the reliability of a
pipeline using FFS method. Several degrees of spatial correlation are assumed for the corrosion
in determined segments of a pipeline, and their effects on the global reliability are examined.
The pipeline is assumed to be a series system. The failure mode is considered to be controlled
by the stresses due to internal pressure and the presence of corrosion. Component reliability is
calculated by first-order second-moment approximations. The defects identification and appre-
ciation of their evolution in time are valuable if it ends with a maintenance program indicating
when and where to intervene to repair the pipeline, before producing an unwanted incident.
The application further described has the following enhancements:

a. Provide a maintenance program based on the information during the inspection. This
program has implemented since 2008 in TSO main companies from Romania Transgaz
SA and Conpet SA.

b. In the theoretical model further exposed, the operating pressure was considered in the
place where the fault occurs. Considering the pressure at the defect position reduces the
degree of conservatism of the evaluation method.

c. Based on geometrical parameters, characteristics of major defects and pipeline operating
conditions can calculate the probability of pipeline failure. This indicator is better than
traditional indicators used by NRAE as it includes measurement results PIG.

2.2. Theoretical model

The appreciation of the limit state of a pipeline can be made by several methods [12, 18, 20],
from which, in this paper, it was used the difference between the failure pressure of the
pipeline PFi corresponding to the defect i and the pressure of operating POi corresponding to
the position of this defect:

Zi ¼ PFi � POi: ð1Þ

The pressure of failure has more computing methods [4, 15, 16], from which, in this paper, it
was used for exemplification the RSTRENG1 method:

PFi ¼ 2 �UTS � t
D
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whereUTS is the ultimate tensile strength of the material of the pipeline; ti is the wall thickness
of the pipeline at defect location; D is the outer diameter of the pipeline; di is the depth of the
defect; Mi the bulging factor(Folias); li is the length of the defect. The pressure of operating at

1Remaining Strength of Corroded Pipe (RSTRENG) assessment procedure, www.rstreng.com.
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the defect position POi was calculated considering a linear variation of the pressure along the
pipeline:

POi ¼ POstart � POstart � POend

Lp
Li, ð4Þ

where POstart is the operating pressure at the inlet of the pipeline; POend is the pressure at the
outlet of the pipeline; Lp is the length of the pipeline; Li is the distance from the beginning of
the pipe at the location of the defect i. The values used in the relations above are li, di, ti, Li from
the results of the PIG inspection; D, PO,UTS probabilistic variables (the mean value is known
and the value of standard deviation is based on statistical studies [15, 21–23] Table 4). To
calculate the probability of failure FPi of the defect i, the Monte Carlo method [5, 18] was used.
If the difference expressed by Eq. (1) is positive, the situation is favorable and the pipeline does
not fail. If the difference is less or equal to zero, the pipeline fails. We note the number of attempts
for Z ≤ 0 with nd. The probability of failure expressed for a number of N tests performed is as
follows:

FPi ¼ nd
N

: ð5Þ

For a pipeline with a number of defects n, it is considered a system in series with n critical
elements, and the probability of failure FP is [19]:

FP ¼ 1�
Yn

i¼1

ð1� FPiÞ: ð6Þ

The variation of the size of defect over time (the time is denoted with T) was calculated with
the relations:

liðTÞ ¼ liðT0Þ � Va, iðT � T0Þ, ð7Þ
diðTÞ ¼ diðT0Þ � Vr, iðT � T0Þ, ð8Þ

where T0 is the time of inspection of the pipeline. We considered the values of the corrosion
rates (at each defect i) in the axial direction Va, i and in the radial direction Vr, i, and their values
were determined at the time of the inspection (and constant further considered):

Va, i ¼ liðT0Þ
T0

, ð9Þ

Vr, i ¼ diðT0Þ
T0

: ð10Þ

2.3. Results obtained

For example, it was used a steel pipeline (52 · SR 11082 material and 57km length) located
between cities Constanta and Ploiesti. The example is extracted from research work [23]. The
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pipeline was inspected using an ultrasound method [the usual methods of inspection there are
magnetic flux and ultrasound and the device is named pipeline intelligent gauge (PIG)],
Figure 1. We used for the inspection a20″ Ultrasonic Intelligent Pig, Korsonic 324, with the
following specifications: PIG diameter 350 mm; body length 850 mm; overall pig length 950
mm; temperature max. for PIG 65�C; pressure max. 50 barg; min. bend radius 3 · Internal
diameter; transducer frequency 0.5 MHz; transducer focus plane; min. measurable thk 3 mm;
max. measurable thk 0.7 m; inspection sensitivity �0.1 mm; repetition rate 2300 kHz; inspec-
tion speed Max. 5 m/min; max. inspection capacity 120 h; axial sampling distance min. 3 mm;
circumferential resolution 5.5 mm. The ultrasonic signal is induced directly in the wall to be
inspected, EMAT technology. It notes that the procedure for determining defects of the pipe-
lines uses three-dimensional images that are offered to users in the form of Excel files, Table 1.
These images were obtained over the last 20 years with a precision increasingly better. The
instrument measures the thickness of the pipeline in a network of points, Figure 2. The image
is reported as an Excel file. An example is shown in Table 1. As the beneficiary of the contract
imposed certain conditions of confidentiality, they have been used data from a pipeline seg-
ment of 8622 m. So the probability of failure calculation refers only to this segment and not to
the entire pipeline. The total number of defects found was 56.824. These can be classified after
the geometrical characteristics (Table 2) and the cause that determined the defect: manufactur-
ing, construction, corrosion, mechanical damage and repair (Table 3, column 10).

The defects characteristics were included in a data matrix size (56,824; 10) each row represent-
ing a defect, Table 3. The significance of columns of the data matrix is as follows: the distance
at which the welds are located on the pipeline segment measured from the start of the pipeline

Figure 1. Pipeline intelligent gauge — tip Korsonic 324 – Cala & Cdria Pipeline Services Company Ltd: Ultrasonic
Transducer (UT) is mounted inside the inspection device.
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circumferential resolution 5.5 mm. The ultrasonic signal is induced directly in the wall to be
inspected, EMAT technology. It notes that the procedure for determining defects of the pipe-
lines uses three-dimensional images that are offered to users in the form of Excel files, Table 1.
These images were obtained over the last 20 years with a precision increasingly better. The
instrument measures the thickness of the pipeline in a network of points, Figure 2. The image
is reported as an Excel file. An example is shown in Table 1. As the beneficiary of the contract
imposed certain conditions of confidentiality, they have been used data from a pipeline seg-
ment of 8622 m. So the probability of failure calculation refers only to this segment and not to
the entire pipeline. The total number of defects found was 56.824. These can be classified after
the geometrical characteristics (Table 2) and the cause that determined the defect: manufactur-
ing, construction, corrosion, mechanical damage and repair (Table 3, column 10).

The defects characteristics were included in a data matrix size (56,824; 10) each row represent-
ing a defect, Table 3. The significance of columns of the data matrix is as follows: the distance
at which the welds are located on the pipeline segment measured from the start of the pipeline

Figure 1. Pipeline intelligent gauge — tip Korsonic 324 – Cala & Cdria Pipeline Services Company Ltd: Ultrasonic
Transducer (UT) is mounted inside the inspection device.
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Axial direction

1 2 3 4 5 6 7 8 9 10

1 14.20 14.00 13.00 13.00 13.10 13.20 13.60 14.20 14.20 14.20

2 13.20 13.20 13.40 13.40 13.40 13.40 13.60 14.00 14.00 13.40

3 13.60 13.40 13.40 13.80 13.60 13.60 13.80 13.80 13.60 13.20

4 13.60 13.80 13.40 13.60 13.60 13.60 13.40 13.20 13.20 13.00

5 13.60 13.67 13.73 13.80 13.60 13.40 12.80 12.80 12.80 11.60

6 13.50 13.30 12.95 12.60 12.80 13.00 12.80 11.60 11.80 10.80

7 13.40 14.00 13.00 12.80 12.80 12.57 12.33 12.40 11.80 11.60

8 13.60 12.80 13.00 12.80 12.45 12.10 11.87 11.80 11.40 11.00

9 13.80 13.80 13.40 13.20 12.60 12.00 11.40 11.40 11.20 11.00

10 13.80 13.20 14.20 14.00 13.00 12.00 11.20 11.50 11.20 11.00

11 13.60 13.40 13.60 12.80 12.80 12.80 13.40 11.60 11.30 11.00

12 13.40 13.00 12.60 12.10 11.60 11.70 11.80 11.60 11.40 11.10

13 13.40 13.40 13.60 13.80 14.00 13.60 12.80 13.60 12.00 11.50

14 13.60 13.80 13.60 13.40 13.60 13.60 13.80 13.40 12.60 12.10

15 13.60 13.70 13.75 13.80 13.80 13.80 13.60 13.60 13.20 13.40

16 13.60 13.60 13.80 13.80 13.60 13.40 13.40 13.40 13.40 13.40

17 13.60 13.60 13.80 14.20 13.60 13.30 13.50 13.40 13.60 13.20

18 13.60 13.80 13.60 13.60 13.60 13.20 13.60 13.40 13.20 13.00

19 13.40 13.60 13.80 13.50 13.20 13.40 13.40 13.40 13.40 13.40

ACP 13.20 12.80 12.60 12.10 11.60 11.70 11.20 11.40 11.20 10.80

11 12 13 14 15 16 17 18 19 20

1 12.80 14.20 14.00 13.60 13.40 13.40 14.20 14.20 14.20 14.20

2 13.20 13.00 14.20 13.60 13.20 13.00 13.40 13.00 13.20 13.20

3 13.20 13.20 13.00 13.20 13.40 13.00 13.40 13.60 13.40 13.40

4 13.00 13.00 13.20 13.40 13.40 13.20 13.60 13.40 13.20 13.20

5 11.00 10.80 10.60 11.00 11.40 12.28 13.16 13.50 13.10 13.00

6 10.60 11.00 12.60 11.00 11.30 11.76 12.68 13.60 13.00 13.20

7 11.40 11.20 11.00 11.00 11.20 11.20 11.51 11.83 11.53 11.96

8 11.40 11.00 10.80 10.80 11.00 10.47 10.09 10.06 10.07 10.73

9 11.70 11.70 11.60 11.70 10.56 9.73 9.36 8.98 8.60 9.83

10 11.70 12.40 12.40 11.25 10.12 9.00 8.80 8.60 8.40 9.06

11 11.00 11.00 11.00 10.80 9.88 8.96 8.44 8.32 8.20 8.00

12 10.80 10.60 10.80 10.40 9.60 8.80 8.00 8.67 9.33 10.85

13 11.20 11.40 11.00 11.40 11.07 10.27 9.66 9.80 10.47 11.24
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Axial direction

1 2 3 4 5 6 7 8 9 10

14 11.60 11.60 12.00 12.40 12.53 11.80 11.31 11.27 11.60 12.32

15 13.60 13.60 13.60 13.40 14.00 13.40 12.97 12.73 13.07 13.40

16 13.60 13.40 13.40 14.20 13.40 13.40 13.80 14.20 13.40 13.40

17 14.20 13.20 13.20 13.20 13.60 13.60 13.40 13.60 13.30 13.90

18 13.80 13.40 13.40 13.40 13.20 13.40 13.50 13.00 13.20 14.20

19 13.40 13.60 13.40 13.20 13.60 13.40 13.60 13.60 13.60 13.60

ACP 10.60 10.60 10.60 10.40 9.60 8.80 8.00 8.32 8.20 8.00

21 22 23 24 25 26 27 28 29 30

1 14.20 13.40 13.20 14.20 13.90 13.60 13.60 14.20 14.20 14.20

2 13.20 13.00 13.00 14.20 13.20 13.20 13.70 14.20 14.20 13.60

3 13.20 13.20 13.60 13.20 13.40 13.40 13.40 13.00 12.40 13.40

4 13.40 13.80 13.20 13.20 13.40 13.80 13.30 13.40 13.40 13.40

5 13.00 13.00 12.80 13.60 13.40 13.60 13.20 13.20 13.20 13.60

6 13.00 12.80 13.60 13.00 13.20 13.40 13.20 13.20 13.20 13.20

7 12.85 13.20 14.20 13.20 13.40 13.20 13.40 13.40 14.00 13.40

8 11.62 12.51 13.40 13.40 13.20 13.60 13.20 13.80 13.60 13.40

9 11.05 12.28 13.50 13.50 13.50 14.00 13.60 13.60 13.60 13.60

10 10.57 12.09 13.60 13.60 13.80 13.40 13.40 13.40 13.60 13.20

11 10.85 13.70 13.00 13.20 13.40 13.40 13.60 13.20 13.40 14.20

12 13.80 13.20 13.40 13.40 13.40 13.40 13.60 13.90 14.20 13.40

13 13.50 13.20 13.40 13.40 13.80 13.60 13.60 13.60 13.60 13.40

14 13.20 13.60 13.80 13.80 13.60 13.40 13.60 14.20 13.40 13.30

15 13.60 13.60 13.90 14.20 13.60 13.40 13.47 13.80 13.20 13.20

16 13.40 13.80 13.80 13.60 13.20 13.50 13.47 13.40 13.40 13.90

17 14.20 14.00 13.80 13.40 13.40 13.60 13.60 13.40 13.30 13.55

18 14.20 13.40 13.40 13.40 13.60 13.40 13.30 13.20 13.20 13.20

19 13.60 13.40 13.40 13.80 13.20 13.40 13.20 13.25 13.30 13.35

ACP 10.57 12.09 12.80 13.00 13.20 13.20 13.20 13.00 12.40 13.20

31 CCP Defect characteristics

1 13.40 12.80 ACP axial critical profile

2 13.60 13.00 CCP circumferential critical profile

3 13.20 12.40 Pressure max. 6.4MPa; Temperature 20˚; Internal diameter 473.6mm

4 13.20 13.00 Nominal thickness 14.2mm; Uniform loss of material LOSS 0.77mm

5 13.20 10.60 Corrosion allowance FCA 1.524mm; API 5L X-52 steel material

Fault Diagnosis and Detection298



Axial direction

1 2 3 4 5 6 7 8 9 10
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13 13.50 13.20 13.40 13.40 13.80 13.60 13.60 13.60 13.60 13.40

14 13.20 13.60 13.80 13.80 13.60 13.40 13.60 14.20 13.40 13.30

15 13.60 13.60 13.90 14.20 13.60 13.40 13.47 13.80 13.20 13.20

16 13.40 13.80 13.80 13.60 13.20 13.50 13.47 13.40 13.40 13.90

17 14.20 14.00 13.80 13.40 13.40 13.60 13.60 13.40 13.30 13.55

18 14.20 13.40 13.40 13.40 13.60 13.40 13.30 13.20 13.20 13.20

19 13.60 13.40 13.40 13.80 13.20 13.40 13.20 13.25 13.30 13.35

ACP 10.57 12.09 12.80 13.00 13.20 13.20 13.20 13.00 12.40 13.20

31 CCP Defect characteristics

1 13.40 12.80 ACP axial critical profile

2 13.60 13.00 CCP circumferential critical profile

3 13.20 12.40 Pressure max. 6.4MPa; Temperature 20˚; Internal diameter 473.6mm

4 13.20 13.00 Nominal thickness 14.2mm; Uniform loss of material LOSS 0.77mm

5 13.20 10.60 Corrosion allowance FCA 1.524mm; API 5L X-52 steel material
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31 CCP Defect characteristics

6 13.30 10.60 Conventional extension limit: Sc ¼ 360 MPa

7 13.40 11.00 Ultimate tensile strength of thematerial 490–620 MPa

8 13.40 10.06 Percentage elongation after break: A2 in ¼ 22%;

9 13.40 8.60 Modulus of elasticity (Young): E ¼ 205,000 MPa

10 13.50 8.40 Transverse contraction coefficient (Poisson); μ ¼ 0.3

11 13.60 8.00 Safety coefficient Cs ¼ 1.4

12 13.60 8.00 Allowable resistance Sa ¼ Sc/cs ¼ 344.75/1.4 ¼ 257.14 MPa

13 13.60 9.66 Distance to the nearest discontinuity Lmsd ¼ 700 mm

14 13.60 11.27 RSFa accepted allowable resistance coefficient ¼ 0.9

15 13.60 12.73

16 13.00 13.00

17 13.10 13.10

18 13.20 13.00

19 13.40 13.20

ACP 13.00

Table 1. The matrix of the measured thicknesses corresponding to a specific defect (Figure 2).

Figure 2. The results of the inspection: tridimensional images of the defects.
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(column 1), distance between weld and defect (column 2), the distance from the defect to
equipment (column 3), the thickness of the wall of the pipeline at defect position (column 4),
clock orientation (column 5), the length of the defect (column 6), the width of the defect
(column 7), maximum depth of the defect (column 8), average depth of the defect (column 9),
the type of defect (as the cause) (column 10). Where eliminated from the analysis 1662 defects
whose causes (column 10) were manufacture, construction activities, repairs, accidental inter-
ventions because: They have shallow depths below 20% of the thickness of the pipeline and not
due to corrosion, so their development in time is not probable. The remaining 55,162 defects
are the following types (Table 2): general metal loss, spots, axial and circumferential groove.

As it is seen a large number 55,162 corrosion defects reported by the inspection, but many of
them are superficial. Defects have been chosen only to the depth of more than 20% of the
thickness the pipeline; their number is 212. The geometrical elements of these defects are in
Table 3. For the variables D, UTS and PO we considered the values from Table 4, [11, 21, 23].
After 8 years of operation (T0 ¼ 8 years), the probability of failure FP versus operating pressure
is represented in Figure 3 (calculated at the end of each working year).

The fault location is important to value of the probability of failure FP. If we consider the
operating pressure of the pipeline: FP is 0.03 for PO of 5 MPa and equal to 1 for the other
pressures of operation of the pipeline. If we consider pipeline pressure at fault position then for
PO of 5 and 7 MPa, FP is zero, at 9 MPa FP is equal with 0.24 and equal with 1 at 11, 13 and
15 MPa. If we choose the limit of the probability of failure of 0.5 (highly conservative methods
of calculus [4] justifies this value), the first case of assessment tells us that at the work pressures
above 5 MPa we could not use the pipeline. The second case of assessment tells us that we can
use the pipeline at the pressures of 7 and 9 MPa, too. We have thus a lower degree of
conservatism. Based on the considerations we made, it can be appreciated the defect evolution
in time. It is true that these considerations include several simplifying assumptions, but also
includes the results of PIG measurements. In the situation where it is considered the pipeline

Defect type Characteristics

General loss of metal ½w ≥ 3A� and ½l ≥ 3A�f g
Circumferential notch ½w ≥ 1A� and ½0 < l < A�f g
Axial groove ½1A ≤w < 3A� and l

w ≥ 2
� �� �

Circumferential groove l
w ≤ 0:5A
� �

and ½1A ≤ l < 3A�� �

Pin ½0 < w < 1A� and ½0 < l < 1A�f g
Axial notch ½0 < w < 1A� and ½l ≥ 1A�f g
Spots ½1A ≤w < 6A� and ½1A ≤ l < 6A� and 0:5 <

l
w
< 2

� �

and not ð½w ≥ 3A� and ½l ≥ 3A�Þ

8<
:

9=
;

The geometric parameter A is defined as follows: if 0 < t < 10 mm then A ¼ 10 mm, if t ≥ 10 mm, then A ¼ t, according to
Ref. [2]; l defectlength; w defectwidth.

Table 2. The classification of corrosion defects after geometrical aspect.
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Reference
distance of
welding
[m]

Distance of
defect to
welding
[m]

Distance to
equipment
[m]

Wall
thickness
[mm]

Clock
orientation
of defect

Length
of
defectL
[mm]

Width
of
defectL
[mm]

Maximum
depth of
defect [%]

Average
depth of
defect
[%]

Type
of
defect

1 2 3 4 5 6 7 8 9 10

19.1 �6.12 2 14.2 8:02 23 18 8 5 Axial
groove

28.04 �1.39 1.4 14.2 12:14 11 18 14 10 Axial
groove

Table 3. The Excel file filled with data analysis elements (values of ultrasonic inspection).

Variable Distribution law Mean value Standard deviation

Outer Diameter, D Normal 508 [mm] 14 [mm]

Ultimate tensile strength of thematerial, UTS Normal 517 [MPa] 30 [MPa]

Pressure of operating, PO Gumbel Steps 5; 7; 9; 11; 13; 15 [MPa] 0.1 [MPa]

Table 4. The probabilistic variables used in the simulation.

Figure 3. The influence of the defect position versus the probability of failure.
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pressure at the defect position was represented the progress of defect probability of failure in
time (with a step of 2 years) Figure 4. If the pipeline operating pressure is 5 MPa is observed
that after 14 years FP grow rapidly, showing that the operator should perform repairs to the
system. In the case of operating pressure of 7 MPa since the 12th year of exploitation, FP
increases of and between years 12th to 14th FP rises further reaching value 1. Operation of the
pipeline to 9 MPa shows a probability of failure which reaches 1 (sure failure) between years
from 8th to 12th. Obviously, in situations where the probability of failure is high (it has chosen
the 0.5 limit) should intervene to repair the pipeline. By choosing this limit, some defects
become critical. The list of defects which should be repaired is given in Table 5. If these defects
are repaired, then the pipeline FP falls, and it can be used safely for many years, and over a
range of operating pressures as shown in Figure 5. The method described above was
implemented on programs (in Matlab) made by the authors [22, 23]. It is generated a list of
defects to be repaired every year, Table 5 (an example for two pressures 5 and 7 MPa). If the
number of the defects is high, an economic analysis of whether a repair or a replacement of the
section of the pipeline is required. So we have a procedure of action based on the results of
inspection and the accomplished analysis, useful in the maintenance process. The effect of the
repair is seen immediately; the pipeline is less likely to fail. However, at higher operating

Figure 4. Probability of failure depending on operating pressure and time, if the critical defects are not remedied.
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pressure, the pipeline conditions lead to a FP equal to 1 regardless of its status. All theoretical
models are tested on samples taken from the defective pipeline s. 2.4, to verify the accuracy of
the assumptions used [23].

Year The working pressure 5 [MPa], the number of defects
to be repaired 15

The working pressure 7 [MPa], the number of defects
to be repaired 33

The number1 of the defect repaired The number of the defect repaired

12 – 37 102

14 – 22 25 104 187

16 37 102 104 187 9 16 45 57 61 99 100 127

18 22 25 57 19 50 72 75 111 126 155 166

20 45 50 61 99 100 127 166 205 17 35 51 55 91 101 114 154 162 165 205

1The defects are numbered from 1 to 212.

Table 5. List of the defects with the probability of failure greater than 0.5, which must be repaired at the beginning of
each year (example of the maintenance program).

Figure 5. Probability of failure depending on operating pressure and time, when the critical defects are repaired.
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2.4. Experimental determination of pressure burst for the pipes with faults type losses of
material

Experimental verification of the behavior of the mechanical elements of pipeline with defects
of various kinds is one of the methods for establishing the reserve strength of mechanical
resistance. It can draw conclusions about the level of trust that must be attached to the results
of assessing the seriousness of defects by the available analytical methods. Studies should
include up to burst pressure test of the pipe that have been identified local defects such as
loss of material [8]. The following example shows how to perform a test (external diameter
De ¼ 508 mm, wall thickness s ¼ 6.3 mm) of a specimen, which was taken from a section on
which were discovered defects of the type material loss. Figure 6 has revealed defects of the
type of material loss that were discovered on that section after inspection with smart devices
by type PIG. The geometrical characteristics of defects of the type material loss from the
sample under test pressure are given in Table 6.

The sample for internal pressure testing consists of a fragment cut from a pipe and two bottoms
dished welded ends, which were mounted two connections: the first for ventilation of the sample
prior to pressurizing and subsequently for manometer mounting and the second for filling of the

Figure 6. Defects loss of material from the sample being tested.
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sample with water and pressurizing it. The stand that has been tested the sample to internal
pressure (up to burst) was conducted at the Petroleum—Gas University of Ploiesti and reproduce
diagram in Figure 7, which presents the constructive elements: the high pressure pump and a
platformworking in the organization of the stand, Figure 8. While conducting the experiment, on
the sample of pipeline were applied around the fault with code 2c (defect considered to be the
most dangerous depending on the geometrical characteristics), transducers in two directions,
circumferential direction TER 1 and the axial direction TER 2. Duringwork, the computer controls
data acquisition by using the SPIDER 8 by means of specialized software Catman, which has
multiple facilities on determining the number of channels, frequency of data acquisition, storing
them in formats that allow the processing with specialized programs, etc. Results of the experi-
mental analysis by resistive tensometry are summarized in the graphs in Figures 9 and 10.

Processing of the experimental results was performed as follows: Mechanical tensions were mea-
sured in the circumferential direction σθij and axial direction σzij, using known formulas [24]:

σθij ¼ E
1� μ2 ðεθi þ μεzjÞ ð11Þ

σzij ¼ E
1� μ2 ðεzj þ μεθiÞ ð12Þ

Geometric characteristics of the defect

Location area Defect code Maximum depth, d, [mm] Circumferential extension, lc [mm] Axial extension, la [mm]

1 1a 3.3 35 30

1b 1.7 25 25

1c 2.6 25 25

1d 3.1 30 30

1e 2.2 25 25

2 2a 3.2 35 35

2b 5.0 50 35

2c* 5.0 40 45

2d 3.6 40 30

2e 3.9 40 35

3 3a 1.6 15 15

3b 4.1 35 40

3c 3.6 30 40

4 4a** 4 3.2 … 4.8 190

*Defect to which the tenso resistive transducer was glued.
**Zone wherein the breaking of the sample occurred.

Table 6. The geometric characteristics of the defects type loss of material subjected to the burst pressure test.
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Figure 7. Sketch of the stand used to inner pressure test of pipe samples with local surface defects type loss of material.

Figure 8. Main components of the stand used to inner pressure test of pipe samples.
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where E is the longitudinal modulus of elasticity and μ is Poisson’s ratio for steel sample; εθi is
specific deformation in the circumferential direction; εzj is specific deformation in the axial direction
(i and j are the identificationnumbersof transducers). It havebeenbuilt experimentaldependencies
of the circumferential and axial deformations shown in Figure 9, respectively, Figure 10, and these
dependencieswere comparedwith the theoretical ones σθ, σz as described by the formulas:

σθ ¼
pp �De

2t
ð13Þ

σz ¼
pp �De

4t
ð14Þ

Figure 9. The results of experimental analysis (method of resistive tensometry) for sample with defects type material loss:
circumferential stress.

Figure 10. The results of experimental analysis (method of resistive tensometry) for sample with defects type material
loss: axial stress.
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In conclusion, experimental verification of the behavior of the mechanical elements of pipeline
sets the level of confidence to be associated with the results of assessing the seriousness of
defects by analytical methods; the stand designed and built at the Petroleum—Gas University
of Ploiesti allows research concerning the pipes behavior with or without defects and can
provide results obtained using electro transducers—strain gauges applied to the sample and
the sample burst pressure.

3. Conclusions on the case studies

As mentioned in Section 2.1, the case study presented it is focused on practical aspects for the
maintenance of pipeline systems. Total length of the pipelines in Romania national gas trans-
port system is 14,500 km and for liquid petroleum products 6000 km. These pipes have a
lifetime of between 8 and 45 years, and most of the pipelines have been installed before year
2000. Therefore, the transporters have a real problem with the defects that have appeared over
time. Solving them in economic conditions is a difficult problem for these companies. Valori-
zation of PIG inspection results in economic conditions involves selecting of defects. The
studies and collaborations of authors with the national companies Transgaz SA and Conpet
SA led to implementing maintenance programs (based on the foregoing ideas) that involved
the reduction of expenses. Faults evaluation was based on the pressure at the defect position,
which reduced the degree of conservatism and maintenance costs. We can do that because we
know the position of the defect. The authors of this paper are also working with NRAE from
Romania organization dealing with energy issues in Romania. We propose to be added to the
indicators that relate to the safety of hydrocarbon transport systems, the probability of failure
(with relation from 2.2, an example is introduced in 2.3). This indicator compared to the
number recorded accidents through inspections, the number of accidents reported by third
parties, the number of accidents that occurred on km of pipe, is a prediction, helping to
increase security in transport systems. A procedure was made and submitted for discussion.
The role of the experiment in certifying the results and building the trust of the beneficiaries
(TSOs) s. 2.4 is underlined by describing the stand used for testing samples of pipeline sections.

Currently, technique for determining the image of defects in the pipelines achieved results
increasingly better [25, 26]. On the basis of tridimensional images of the defects can make the
three types of analysis described in the introductory part.

The analyzes use only defect length and depth of the defect (level 1); critical profile of the
defect in the longitudinal and transverse direction (level 2) Figure 11a and b; a tridimensional
image of the defect generated based on readings during inspection stage, transformed into a
solid object and subjected to finite element analysis (level 3) Figure 11c–e. Based on the defect
report (Table 1), we can achieve a three-dimensional model, using a mesh (Figure 11c) and the
analyze with finite element method (Figure 11d). In Figure 11, e is a detail with defect zone.

The technique described in this case study uses also other features representing the variation of
parameters of evaluation: material characteristics; the initial thickness of the pipe; operating
pressure. The main objective is to intervene in economic conditions to repair a defect that
evolves over time.
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Figure 11. Using different levels of analysis: (a) critical axial profile used in a Level 2 analysis; (b) critical circumferential
profile used in a Level 2 analysis; (c) treedimensioal model and the mesh of finite elements for a Level 3 analysis; (d)
simulation model (solidworks simulation); a detail with the defect zone.
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The truth is that we do not know very well the moment. There are many influences including
corrosion rate, an important parameter with a variation difficult to estimate. If we compare
with a real-life situation in which political decisions (which are based in many cases on less
knowledge) can affect the lives of millions of people, we are still much better.

We know the shape and location of the fault. Finite element analysis seems to be the best method
of assessment and perhaps soon a probabilistic assessment, showing that the three-dimensional
shape change of the defect in timewill be possible. Therefore, the precision regarding of best time
for intervention into the system, to avoid a critical situation, it will be increased.

In conclusion, we consider that the main contribution of the article is to transform ideas,
indications of standards and inspection data in a coherent system to prevent critical situations,
in economic conditions.
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Abstract

Due to the pollution and health hazards of nonrenewable resource-based energy genera-
tion systems, now focus is on the use of renewable resources. This chapter aims as
providing an automated fault-detection system for increasing the robustness of offshore
located wind farms. The method is based on the use of flexible threshold for calculation of
the collected sample values. A fuzzy inference system (FIS) is designed for the automatic
real-time fault detection system named as FIS-based fault detection system (FFDS) for
offshore wind farms. The method uses the concept of combination-summation (CS) and
flow-directions to determine the extent of fault occurrence in the wind farm. Based on the
working conditions of the wind farm, preventive or corrective measures are suggested to
the remote observer. The performance of these methods is evaluated on MATLAB.

Keywords: wind farm, wireless sensor networks, threshold, fault detection, network
lifetime

1. Introduction

Wind energy is freely available everywhere in abundance. It is a renewable resource that will
never get exhausted. This energy if properly utilized can lead to greener and safer energy
generation compared to coal generated electricity. It is also one of the lowest priced renewable
energy technologies available nowadays [1].

In 2015, energy produced in the United States was about 91% of U.S. energy consumption due
to less import of petroleum [2]. Majority of energy production being due to fossil fuels, i.e.,
coal, petroleum, and natural gas. According to Ref. [2], natural gas contributed 32% of total
generation, petroleum 28%, coal 21%, renewable energy 11%, and nuclear electric power 9%.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



However, using natural gas for energy generation has several issues. First, leakage of methane
during drilling and extraction of natural gas from wells and its transportation in pipelines [3].
Methane is stronger than CO2 at trapping heat and causing global warming. Methane emis-
sions range from 1 to 9% of total life cycle emissions. Natural gas-fired power plants contribute
to acid rain and ground-level ozone, both of which can damage forests and agricultural
crops [4].

The present renewable energy-based generation plants such as offshore wind farms are not
entirely capable of fulfilling the future needs of the society. Due to this reason, wind-based
energy generation is still not very popular and is unable to replace coal or natural gas-based
energy production. The monitoring and control systems used are now obsolete and new
methods are required.

The control and maintenance actions require complete human interference, and it is a time-
consuming process. These challenges lead to extra cost on emergency maintenance, compo-
nent screening, and physical designs.

Wind turbines consist of several components and are subject to various failures of electrical
and mechanical nature [5], e.g., imbalance in electrical controls, gearbox, and yaw system.
Some are more frequent and cause larger downtime of the whole system. These faults cause
rotor imbalance, unbalances and harmonics in air gap flux, increase torque pulsation, and
increase losses and reduction in efficiency by directly affecting the power, current, and voltage
output of the generator. Therefore, monitoring of these critical components should be on the
highest priority so that plant downtime can be reduced. The offshore located wind turbine
generator system requires monitoring of parameters such as sea-surface temperature, wind
velocity, water salinity, wave heights, and strain measurement [6, 7]. However, the monitoring
of wind turbine parts has several practical difficulties, e.g., limited accessibility, large size and
complex geometry of the blades, effect of environmental parameters, etc.

Several papers have discussed methods to detect faults in wind farms, e.g., gearbox fault detection
using discrete wavelet transformation [8]. Similarly, high frequency vibration data collected from
gearbox testing were used to gearbox fault detection in Ref. [9], which included k-means clustering
algorithm. The drawbacks of this system are the assumption that the underlying process is
stationary and the time factor is eliminated. Brandão et al. [10] discuss neural networks for fault
forecasting of wind turbine gearbox. Badihi [11] presents protection of against the decreased power
generation caused by turbine blade erosion and debris on the blades. A fault diagnosis method
based on signal analysis and recognition is presented [12]. Time-frequency representations have
been proposed in the literature [13–15]. These techniques have high complexity and poor resolu-
tion [16]. One approach used Hilbert transformation in a doubly fed induction generator-based
wind turbine [17].

Hence, there should be some automated systems to remotely monitor these parameters and
notify about faults in the system. By using wireless sensor networks (WSNs), we can ensure
reliable operation of wind farm. This helps in reducing manual interference and wind farm can
be completely monitored for 24 hours every day. The following sections discuss how this can
be performed.
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2. Flexible threshold selection scheme

In the past, the monitoring systems used constant threshold to record the data independent of
time of the day or month. The constant threshold is calculated as the average of the dataset. As
a result of several observations, it can be concluded that such a scheme does not give accurate
results if there are changes in the scene or environment pertaining to parameters under
consideration, e.g., the temperature of air during daytime is higher compared to night time.
Similar variation is true during different seasons, e.g., average temperature during winter
season is different from the average temperature during summer season. Hence, if constant or
fixed threshold value is chosen for the entire dataset, it is likely to give unoptimized results for
both the scenes. Moreover, if the chosen fixed threshold value is very high, it will result in
many missed detections, and if it is very low, it will lead to many false positives.

Hence, threshold value should be selected using an appropriate scheme that allows dynamic
change in the threshold value to accommodate the variations in time of data recording. This
method gives better performance in terms of sensed parameters. The threshold provides a
reference for finding values that are higher or lower than the threshold both of which may
indicate health failures in the wind farm.

The WSN topology in wind farm consists of tower fixed nodes [18]. These are wireless sensor
nodes attached to the tower nodes that can continuously sense the parameter values (samples)
throughout the day and night. This information is converted into data packets that are trans-
mitted to the sink node by taking multiple hops through the scattered sensor nodes. The sink
node is located at the end of the wind farm. Every tower-fixed node is allocated a fixed local
unique address called as RTN id (row-tower-node), which is transmitted as an identification of
the originator of packet.

Suppose XD is a set of samples collected by the tower-fixed sensor nodes during the day
period, where

XD ¼ {X1, X2, X3,…, Xi,…, XN} ð1Þ

and YN is a set of samples collected by the tower-fixed sensor nodes during the night period,
where

YN ¼ {Y1, Y2, Y3,…, Yi,…, YN} ð2Þ

The samples collected during the night period.

The decision of choosing a new threshold for the dataset depends on the correlation between
the datasets. The correlation is the measure of the similarity content between the two datasets.
If the correlation of the two datasets is high, it means that the two datasets correspond to the
similar time duration of the collected data and hence eliminate the need for calculating another
threshold for the new dataset. Similarly, low correlation is indicative of large variations and
necessitates the calculation of new thresholds for better data interpretation.

The correlation between the two datasets RðXD,YNÞ can be expressed as [19]:
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RðXD, YNÞ ¼

XN

i¼1

ðXi � XmÞ � ðYi � YmÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ðXi � XmÞ2 �
XN

i¼1

ðYi � YmÞ2
vuut

ð3Þ

where Xi and Yi are the values of datasets XD and YN at “i” time instant. Xm and Ym are the
average values of the datasets, XD, YN , and N is the number of samples in each dataset which
should be the same for XD and YN.

Figure 1 shows the scatter plot for wind speed dataset and its computed correlation coefficient.
Table 1 shows the degree of similarity between the datasets depending on the calculated
correlation coefficients.

To calculate the thresholds, TX and TY , the method prefers geometric mean of the datasets with
“N” samples, instead of arithmetic mean given as below:

TX ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2 � :::: � xNN

p ð4Þ

TY ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1 � y2 � :::: � yNN

p ð5Þ

We consider geometric mean because the datasets are characterized by a majority of similar
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values and relatively very few extreme values. Being strongly influenced by few extreme
observations, the threshold values calculation based on arithmetic means would fail to provide
a real means of identifying the extreme values.

The use of a geometric mean normalizes the range being averaged, so that no range dominates
the weighting, and a given percentage change in any of the properties has the same effect on
the geometric mean. Table 2 shows the calculated threshold values for the flexible threshold
method and the mean method (MM).

Furthermore, the method requires ranging of the infinite sample values into discrete levels
without changing the meaning of information using quantization. To do this, first, the distance
matrices dX and dY are calculated as below

dX ¼ ½XD � TX� ð6Þ
dY ¼ ½YN � TY� ð7Þ

where these matrices represent the values of XD and YN after thresholding where,

dX ¼ {x10, x20, x30,…, xi0,…, xN 0} ð8Þ
dY ¼ {y1

0, y2
0, y3

0,…, yi
0,…, yN

0} ð9Þ

Finally, the quantization is performed on the above values independently with respect to their
maximum and minimum values. This can be expressed as

QαðmaxðdÞ �minðdÞÞ ð10Þ

where Q is the number of quantization levels for distance matrix d.

Sl. No. Corr_coeff. Degree of similarity New threshold required

1 �0.7 to +0.7 Low Yes

2 Less than �0.71 High No

3 More than +0.71 High No

Table 1. Criterion for new threshold selection [18].

SRC Variation range Wind speed

Range values Corr. coeff FTS (TFTS) MM (TMM) TFTS � TMM

1(X) (Min) 0.4000 �0.0784 10.6938 5.9778 4.7160

(Max) 12.6000

2(Y) (Min) 0.1000 12.6125 6.6347

(Max) 14.4000

Table 2. Threshold values [18].
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The present scenario considers five quantization levels 0, 1, 2, 3, and 4 calculated as from
Eq. (10). If the variation in the datasets and the total number of samples in it is large, the
number of levels may also increase for better accuracy in fault prediction. This would
lead to increase in the size of transmitted packets because the number of bits required to
encode each level into binary will also increase. This would cause greater energy deple-
tion in packet transmission, reception by the sensor nodes thus lowering the WSN net-
work lifetime. Thus, the choice of the number of quantization levels should be able to
provide accurate fault prediction without compromising the network lifetime. Each level
carries a significant and distinct meaning regarding the sensed value, e.g., level “0”
indicates that there is no difference between the sample value and the threshold. Simi-
larly, levels “2,” “3,” and “4” indicate increased levels of variation. Figure 2 depicts the
above method.

2.1. Simulation results and discussion

The flexible threshold selection (FTS) method is compared with the mean method (MM). We
have considered a total of 72 samples collected during daytime and nighttime for wind
speed. The sampling frequency is 1 sample per 10 minutes over a period of 12 hours daytime
and 12 hours nighttime. As observed by the simulation results, the flexible threshold method
gives a better performance and accurate results for parameter monitoring. Table 2 depicts
the range of collected samples and their calculated thresholds using flexible threshold selec-
tion (FTS) and mean method (MM). As observed, the datasets for source 1(X) and source 2(Y)
have small variations. If both the datasets from the sources are instead, considered to be one
single dataset, the variation of values is large. This causes the static threshold selected using
the MM method tends to be biased toward the higher values. However, this is not the case
with dynamic threshold. We can calculate different thresholds for datasets collected at
different times, which will adapt with the true variations of the values known to nature.
Hence, the flexible method is unbiased toward any extreme values and gives a balanced
view of the data under consideration. The MM method does not consider computing new
threshold every time but it remains unchanged for any dataset making it an unrealistic
choice.

Two different thresholds for both the sources find the correlation between them by considering
them individually.

It is clear from the above discussion that the choice of appropriate threshold has a large impact
on the quantization levels. The MM method for threshold selection is only able to detect large
variation in the values, i.e., levels “2” and “3” whereas in the FTS method the detected levels
have a distributed pattern, i.e., it can detect both small and large variations. Also, the levels
detected by the FTS method is consistent compared to the MM method, which provides a very
accurate status of the conditions of the wind farm.

Figure 2 shows that the FTS method suggests a majority of level “0” occurrences over other
levels unlike the MM method where the majority is level “2” occurrences. Thus, it can be
concluded that the flexible method is unbiased toward the larger values in the datasets and
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hence provides better accuracy of monitored parameters. The graph in Figure 2 is generated
from real-time data from the Burbon-Nysted wind farm, Denmark.

Figure 2. Comparison between MM and flexible method for monitored parameter wind speed [19, 20]. (i) Collected
samples of maximum and minimum wave heights, (ii) quantized levels using the FTS method, and (iii) quantized levels
using the MM method.
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3. Fault detection scheme

This system is called a fuzzy inference system (FIS)-based fault detection method (FFDS). This
is an automated system, gives precise information of the health condition of the wind farm to
the remote observer, and gives alarms for taking corrective or preventive measures for
maintaining the reliability of the farm.

The observer needs not observe all the properties of the parameter values as a single signal,
rather, the degree of similarity between the values finds the basis for choosing a new threshold.
This is a simple method that helps in finding real-time data for monitoring purposes. These
data when analyzed can predict all possible fault occurrences.

3.1. Automatic fault diagnosis method

The fault detection scheme uses combination-summation (CS) and flow directions (FDs) to
design the FIS [9]. This aids to derive significant information from the quantized levels about
fault event occurrence in the monitored data samples of offshore wind farm. The received
quantized levels corresponding to monitored data samples represent the surrounding envi-
ronmental conditions in offshore wind farm. The received values being fuzzy in form use FIS
to provide accurate interpretation of the environmental conditions.

For determining the CS and FD, five consecutive received levels are considered in one period
of time “T” where

T ¼ t1 þ t2 þ t3 þ t4 þ t5 ð11Þ

which represents five consecutive time intervals. Depending on the permutation and the
summation of the levels, fuzzy logic is used to predict fault occurrences. For example, consider
the levels received at “t” times are lt1 ,lt2 , lt3 , lt4 , and lt5 then the summation of levels is

CS ¼
Xi¼t5

i¼t1

li ¼ lt1 þ lt2 þ lt3 þ lt4 þ lt5 ð12Þ

where the range of CS is [0–20]. The numeral 20 indicates constant occurrence of level 4, i.e.,
44,444. The obtained levels can be either repeating or nonrepeating, e.g., 22,222, 31,224, 01,234,
and 43,210 as depicted in Figure 3. The CS for these levels is 10, 12, 10, and 10. As observed,
this alone is not sufficient for fault prediction. Fault prediction can give accurate results if the
corresponding FD is also considered with the values. Here, FD means whether the received
levels are in state of increasing, decreasing, remaining stable, or varying constantly. For exam-
ple, if the CS is 10, it has multiple values, but if FD has raising edge, it means the combination
suggests fault event occurrence in the future and calls for immediate preventive action. If the
levels increase constantly, then FD is considered to be raising edge shown by arrow in upward
direction (Figure 3).

The remote observer is able to predict meaningful information from these received quantized
levels based on the fuzzy-logic rules as presented in Table 3.
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In this system, the fuzzy-set “F” can be described [7, 8] as

F ¼ {ω, mðωÞjω∈U} ð13Þ
U ¼ {0� 3, 1} ð14Þ

Figure 3. Illustrations of repeating-level and nonrepeating-level combinations. (a) Stable flow, (b) average flow, and
(c) raising/dropping flow.
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m : ω ! ½Normal operation, Low risk, High risk� ð15Þ

where ω is the combination-summation and flow-directions of the received levels by the
remote observer, m(ω) is the membership function for the received level and U is the universal
set representing the set of all levels, as shown in Table 3. The membership function alerts the
remote observer whenever the probability of fault occurrence becomes high (Figure 4). It can
be formulated with risk Ri as

ðFDi,CSiÞ ! Ri ð16Þ

This method is very simple to implement and efficient in enhancing the WSN lifetime.

Table 4 shows the comparison for wind speed data computed from Figure 2. The results
confirm the belief that FFDS is able to predict accurate conditions of the wind farm. As shown,
it predicts normal operation of the farm, whereas MM is only able to detect extreme values of
level “0” and “3.” This leads to false alarm for corrective measures due to inaccurate calcula-
tions. Thus, it can be concluded that the FTS method is unbiased toward the larger values in
the datasets and hence provides better accuracy of monitored parameters.

3.2. Simulations and discussion

Table 5 provides the details of simulation parameters used in the study. The sink node is
located at the farthest point in the field. Figure 5 shows the round in which all the nodes in
the area become dead (network-lifetime).

The method FTS gives an accurate view of the parameter values in real time and the threshold
selection does not indicate any biasing toward a particular value, which is confirmed from
Table 4. Also, as observed from Figure 5, the network lifetime of WSN network is also
increased by nearly 10 times with a packet size of 23 bits.

Sl. No. Flow directions Combination-summations Result (MF)

1 Stable (S) 0, 5 Normal

2 Stable 10 Low risk

3 Stable 15 High risk

4 Stable 20 Very high risk

5 Rising (R) 10 High risk

6 Dropping (D) 10 Low risk

7 Average (A) 1–4 Normal

8 Average 5–6 Low risk

9 Average 7–9 High risk

10 Average ≥ 10 Very high risk

Table 3. Fuzzy rule base.
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Figure 4. Flowchart to depict working of fuzzy inference system.

Levels Number of quantized levels Number of consistent quantized levels

FTS MM FTS prediction MM Prediction

“0” 136 19 32 Normal operation 1 Fault has occurred (corrective measures)

“1” 5 37 0 3

“2” 2 37 0 3

“3” 1 51 0 9

Table 4. Wind speed [19].

Sl. No. Parameter Value

1. Area size 1000 m � 1000 m, 2000 m � 2500 m, 300 m � 4500 m, 4000 m � 6000 m

2. Total number of nodes 416–1216

3. Total number of fixed nodes 216

4. Total number scattered nodes 200–1000

5. Total number of turbines 72

Table 5. Simulation parameters.
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These observations conclude that the flexible threshold selection method improves WSN
network-lifetime by increasing energy savings with respect to earlier methods. Moreover, it is
suitable for automated monitoring for all area sizes, large number of nodes and if amount of
information to be transmitted is large.

4. Conclusions

This chapter discusses the flexible threshold selection method for efficient environment mon-
itoring of the offshore wind farm. It uses degree of similarity between the previous and the
current datasets for calculating geometric mean-based flexible threshold as it does not get
biased due to extreme values in the datasets. The method is compared with the static threshold
mean method of threshold selection and the performance is seen to be enhanced.

Also, the automated fault detection method is presented in this chapter. This is a simple
method that uses small integer values for indicating faulty conditions of the wind farm in real
time. The method uses fuzzy inference system that takes integer values as input and gives
output in the form of fault status prediction of the farm. Based on these predictions, the system
suggests corrective or preventive measures. The method is proved to be very accurate in
predicting the fault condition based on sensed parameter values. In addition, this method
allows reduction in the size of the transmitted data packets to 23 bits, which help in increasing
the overall network lifetime of the WSN system deployed in the wind farm.

Figure 5. Round in which all the nodes become dead [21].
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Mass production companies have become obliged to reduce their production costs and 
sell more products with lower profit margins in order to survive in competitive market 

conditions. The complexity and automation level of machinery are continuously 
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