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Preface

Lagrangian mechanics is widely used in several areas of research and technology. It is sim‐
ply a reformulation of the classical mechanics by the mathematician and astronomer Joseph-
Louis Lagrange in 1788. The approach formulates the physical phenomena through a
function called Lagrangian, which is a function of generalized coordinates and contains the
dynamics of the system through the derivatives.

Lagrangian mechanics is good for systems with conservative forces. If the dissipative forces
are included, these forces should be separated into potential and nonpotential forces. This
formulation gives a set of modified Euler-Lagrange equations. The user can choose general‐
ized coordinates such as the symmetries in the system or the geometry of the constraints.
This may simplify the solutions for the motion of the system.

Lagrangian mechanics is also important for its role in deep understanding of physics be‐
sides its broad applications. It is applicable to most of the fundamental theoretical physics,
such as quantum mechanics and relativity theory, even though Lagrange considered only
the classical mechanics in Mecanique Analytique. Hamilton’s principle is closely related to La‐
grangian mechanics, since it can be employed in the derivation of Lagrangian equations.

Lagrangian mechanics can also be applied to other systems. An example of these systems is
the coupled electric circuit including inductive and capacitive components. Lagrangian me‐
chanics is a good alternative in solving mechanical problems in physics and engineering,
especially when Newton’s formulation of classical mechanics is not convenient. It can also
be used in the optimization problems of dynamic systems.

In this book, the section authors provide state-of-the-art research studies on Lagrangian
mechanics. Hopefully, the researchers will benefit from the book in their studies. It is
probable that the presented studies may lead the researchers to develop new ideas in
conducting their research.

Dr. Hüseyin Canbolat
Yildirim Beyazit University,

Ankara, Turkey
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Chapter 1

Singular Lagrangians and Its Corresponding
Hamiltonian Structures

Alvaro Restuccia and Adrián Sotomayor

Additional information is available at the end of the chapter
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Provisional chapter

Singular Lagrangians and Its Corresponding
Hamiltonian Structures

Alvaro Restuccia and Adrián Sotomayor

Additional information is available at the end of the chapter

Abstract

We present a general procedure to obtain the Lagrangian and associated Hamiltonian
structure for integrable systems of the Helmholtz type. We present the analysis for
coupled Korteweg-de Vries systems that are extensions of the Korteweg-de Vries
equation. Starting with the system of partial differential equations it is possible to
follow the Helmholtz approach to construct one or more Lagrangians whose station-
ary points coincide with the original system. All the Lagrangians are singular. Follow-
ing the Dirac approach, we obtain all the constraints of the formulation and construct
the Poisson bracket on the physical phase space via the Dirac bracket. We show
compatibility of some of these Poisson structures. We obtain the Gardner ε-deforma-
tion of these systems and construct a master Lagrangian which describe the coupled
systems in the weak ε-limit and its modified version in the strong ε-limit.

Keywords: integrable systems, conservation laws, partial differential equations, rings
and algebras

1. Introduction

The Lagrangian mechanics has a wide range of applications from classical mechanics to
quantum field theory. There are two main reasons to introduce a Lagrangian in order to
describe a physical model. Its stationary points, defined in terms of functional derivatives,
provide the classical equations of motion or classical field equations governing the evolution of
the physical system while the action functional constructed from the Lagrangian provides the
path integral approach to quantum mechanics and quantum field theories. In this chapter, we
analyze several aspects of singular Lagrangians, which are relevant in various areas of physics.
They are essential in the description of the fundamental forces in nature and in the analysis of
integrable systems. In this chapter, we consider recent applications of singular Lagrangians in
the area of completely integrable systems.

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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The analysis of integrable systems, in particular the Korteweg-de Vries equation and exten-
sions of it [1–16], have provided a lot of interesting results from both mathematical and
physical points of view.

Besides the physical applications of coupled KdV systems at low energies [17–19], one of the
Poisson structures of the KdV equation is related to the Virasoro algebra with central terms.
The latest is a fundamental symmetry of string theory, a proposal for a consistent quantum
gravity theory.

In this chapter, we discuss a general approach based on the Helmholtz procedure to obtain a
Lagrangian formulation and the Hamiltonian structure, starting from the system of time
evolution partial differential equations describing the coupled KdV systems. Once the
Lagrangian, whose stationary points corresponds to the integrable equations, has been
obtained we follow the Dirac approach to constrained systems [20] to obtain the complete set
of constraints and the Hamiltonian structure of the system. We discuss the existence of more
than one Poisson structures associated with the integrable systems. Some of them are compat-
ible Poisson structures and define a pencil of Poisson structures. We also discuss duality
relations among the integrable systems we consider. The extensions of the KdV equation
include a parametric coupled KdV system [21, 22], which we discuss in Section 3. In Section 8,
we present a coupled KdV system arising from the breaking of a N ¼ 1 supersymmetric model
[15]. In Section 11, we discuss an extension of the KdV equation where the fields are valued on
the octonion algebra and the product in the equation is the product on the octonion algebra
[23]. This system has a supersymmetric extension which may be directly related to a model of
the D ¼ 11 supermembrane theory, a relevant sector of M−theory. The latest is a proposal of
unification of all fundamental forces at very high energy.

2. The Dirac procedure for constrained systems

The Dirac approach for constrained systems [20] is a fundamental tool in the analysis of
classical and quantum aspects of a physical theory. From a classical point of view, it provides
a precise formulation of the initial valued problem for a time evolution system of partial
differential equations. The initial data for the initial valued problem, given in terms of a
constrained submanifold of a phase space, defines the physical phase space provided with
the corresponding Poisson structure which gives rise to the canonical quantization of the
system. In field theory, the starting point is a Lagrangian formulation. Its stationary points
determine the classical field equations, generically a time evolution system of partial differen-
tial equations. From the Lagrangian density L, one defines the conjugate momenta
pi; i ¼ 1,…; N; associated with the original independent fields qi; i ¼ 1,…; N; defining the
Lagrangian:

pi ¼
∂L
∂ _qi

: (1)

L is assumed to be a function of _qi and a finite number of spatial derivatives.

Lagrangian Mechanics4



The analysis of integrable systems, in particular the Korteweg-de Vries equation and exten-
sions of it [1–16], have provided a lot of interesting results from both mathematical and
physical points of view.

Besides the physical applications of coupled KdV systems at low energies [17–19], one of the
Poisson structures of the KdV equation is related to the Virasoro algebra with central terms.
The latest is a fundamental symmetry of string theory, a proposal for a consistent quantum
gravity theory.

In this chapter, we discuss a general approach based on the Helmholtz procedure to obtain a
Lagrangian formulation and the Hamiltonian structure, starting from the system of time
evolution partial differential equations describing the coupled KdV systems. Once the
Lagrangian, whose stationary points corresponds to the integrable equations, has been
obtained we follow the Dirac approach to constrained systems [20] to obtain the complete set
of constraints and the Hamiltonian structure of the system. We discuss the existence of more
than one Poisson structures associated with the integrable systems. Some of them are compat-
ible Poisson structures and define a pencil of Poisson structures. We also discuss duality
relations among the integrable systems we consider. The extensions of the KdV equation
include a parametric coupled KdV system [21, 22], which we discuss in Section 3. In Section 8,
we present a coupled KdV system arising from the breaking of a N ¼ 1 supersymmetric model
[15]. In Section 11, we discuss an extension of the KdV equation where the fields are valued on
the octonion algebra and the product in the equation is the product on the octonion algebra
[23]. This system has a supersymmetric extension which may be directly related to a model of
the D ¼ 11 supermembrane theory, a relevant sector of M−theory. The latest is a proposal of
unification of all fundamental forces at very high energy.

2. The Dirac procedure for constrained systems

The Dirac approach for constrained systems [20] is a fundamental tool in the analysis of
classical and quantum aspects of a physical theory. From a classical point of view, it provides
a precise formulation of the initial valued problem for a time evolution system of partial
differential equations. The initial data for the initial valued problem, given in terms of a
constrained submanifold of a phase space, defines the physical phase space provided with
the corresponding Poisson structure which gives rise to the canonical quantization of the
system. In field theory, the starting point is a Lagrangian formulation. Its stationary points
determine the classical field equations, generically a time evolution system of partial differen-
tial equations. From the Lagrangian density L, one defines the conjugate momenta
pi; i ¼ 1,…; N; associated with the original independent fields qi; i ¼ 1,…; N; defining the
Lagrangian:

pi ¼
∂L
∂ _qi

: (1)

L is assumed to be a function of _qi and a finite number of spatial derivatives.

Lagrangian Mechanics4

If the Hessian matrix ∂2L
∂ _qi∂ _qj

is singular we cannot express, from the above equation defining the

conjugate momenta, all the _qi velocities in terms of the conjugate momenta.

The system presents then constraints on the phase space defined by the conjugate pairs
ðqi; piÞ, i ¼ 1,…; N: The phase space is provided with a Poisson structure given by

{qi; pj} ¼ δij; {qi; qj} ¼ {pi; pj} ¼ 0: (2)

In general, it is a difficult task to disentangle all the constraints on the phase space associated
with a given Lagrangian. The Dirac approach provides a systematic way to obtain all the
constraints on phase space. Moreover, it determines the Lagrange multipliers associated with
the constraints (eventually after a gauge fixing procedure) in a way that if the constraints are
satisfied initially then the Hamilton equations ensure that they are satisfied at any time. In this
sense, it provides a precise formulation of the initial value problem, the initial data is given by
the set of ðqi; piÞ conjugate pairs satisfying the constraints on phase space. The Hamilton
equations then provide the time evolution of the system. This constrained initial data, with its
associated Poisson structure (also obtained from the Dirac construction) provides the funda-
mental structure to define the canonical quantization of the original Lagrangian.

From the equation defining momenta one obtains, in the case of singular Lagrangian, a set of
constraints φMðq; pÞ ¼ 0, where the argument is a shorthand notation for p; q and their deriv-
atives with respect to the spatial coordinates xa; a ¼ 1,…; k:

Also, by performing a Legendre transformation one gets a Hamiltonian H0 ¼
ðþ∞

−∞
dxH0, where

the Hamilton density is given by

H0 ¼ ∑
i
pi _qi−L, (3)

where L is the Lagrangian density. Then, we obtain a new Hamiltonian H ¼
ðþ∞

−∞
dxH with a

densityH ¼ H0 þ λMφM. The conservation of the constraints, which have to be satisfied at any
time, yields

_φM ¼ {φM; H} ¼ 0: (4)

{φM; H} ¼ 0 may (i) be identically satisfied on the constrained surface φm ¼ 0,

(ii) determine Lagrange multipliers, or

(iii) give new constraints.

In Case (i) or (ii), the procedure ends; in Case (iii), the iteration follows exactly in the same way.
At some step, the procedure ends, assuming that there is a finite of physical degrees of
freedom describing the dynamics of the original Lagrangian. In the procedure, a set of
Lagrange multipliers may be determined and others may not. The constraints associated with
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the ones that have been determined are called second class constraints, the other constraints for
which the Lagrange multipliers are not determined are related to first class constraints. The
first class constraints are the generators of a gauge symmetry on the time evolution system of
partial differential equations. A difficult situation may occur in field theory when there is a
combination of first and second class constraints. In order to separate them, one may have to
invert some matrix involving fields of the formulation which may render dangerous non-
localities in the final formulation.

All physical theories of the known fundamental forces in nature are formulated in terms of
Lagrangians with gauge symmetries. All of them have first class constraints in their canonical
formulation. In addition, they may also have second class constraints. In the analysis of field
theories which are completely integrable systems like the ones we will discuss in this chapter
only second class constraint appear. In this case, there are short cut procedures to simplify the
Dirac procedure. However, the richness of the Dirac approach is that from its formulation one
can extrapolate gauge systems which under a gauge fixing procedure reduce to the given
system with second class constraints only. This is one of the main motivations of this chapter,
to establish the Lagrangian and Hamiltonian structure for coupled KdV systems, which may
allow the construction of gauge systems which are completely integrable.

In the case in which the constrained system has second class constraints, Dirac introduced the
Poisson structure on the constrained submanifold in phase space. It determines the “physical”
phase space with its Poisson bracket structure given by the Dirac bracket. They are defined in
terms of the original Poisson bracket {, } on the full phase space by:

{F; G}DB ¼ −{F; φM}{φM; φN}
−1{φN; G} (5)

where {φM; φN}
−1 is the inverse of the matrix {φM; φN} which, in the case where φM ¼ 0 are

second class constraints, is always of full rank.

The difficulty in field theory occurs when the matrix {φM; φN} depends on the fields describing
the theory and its inverse may lead to nonlocalities in the formulation. In our applications,
those difficulties will not be present.

The Dirac bracket of a second class constraint with any other observable is zero. Consequently,
the time conservation of the second class constraints is assured by the construction. For the
same reason, there is no ambiguity on which Hamiltonian is used in determining the time
evolution of observables.

3. A parametric coupled KdV system

Avery interesting and well-known integrable system is the Korteweg-de Vries (KdV) equation.
It arises from a variational principle of a singular Lagrangian. In what follows, we consider an
extension of it. A coupled KdV system formulated in terms of two real differentiable functions
uðx; tÞ and vðx; tÞ given by the following partial differential equations [21]:

Lagrangian Mechanics6
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ut þ uux þ uxxx þ λvvx ¼ 0 (6)

vt þ uxvþ vxuþ vxxx ¼ 0 (7)

where λ is a real parameter.

When discussing conserved quantities, we will assume that u and v belong to the real Schwartz
space defined by

C∞
↓ ¼ w ∈ C∞ðRÞ= lim

x!�∞
xp

∂q

∂xq
w ¼ 0; p; q ≥ 0

� �
(8)

When λ ¼ þ1 the system is equivalent to two decoupled KdV equations. When λ ¼ −1 the
system is equivalent to a KdV equation valued on the complex algebra. By a redefinition of v
given by v ! vffiffiffiffi

jλj
p the system for λ > 0 reduces to the λ ¼ þ1 case and the system for λ < 0

reduces to the λ ¼ −1 case. The case λ ¼ 0 is an independent integrable system.

The system (6) and (7) for λ ¼ −1 describes a two-layer liquidmodel studied in references [17–19].
It is a very interesting evolution system. It is known to have solutions developing singularities
on a finite time [24]. Also, a class of solitonic solutions was reported in [25] through the Hirota
approach [26] and in [27] via a Bäcklund transformation in the sense of Wahlquist and
Estabrook (WE) [28].

The system (6) and (7) for λ ¼ 0 correspond to the ninth Hirota-Satsuma [6] coupled KdV
system given in Ref. [29] (for the particular value of k ¼ 0) (see also [30]) and is also included in
the interesting study that relates integrable hierarchies with polynomial Lie algebras [31].

4. The Lagrangian associated with the parametric coupled KdV system

In this section, we obtain the Lagrangian and associated Hamiltonian structure of the coupled
KdV system. We present the main results in Ref. [22].

The Lagrangian construction requires the introduction of the Casimir potentials w and y
given by

uðx; tÞ ¼ wxðx; tÞ
vðx; tÞ ¼ yxðx; tÞ:

(9)

The system (6) and (7) rewritten in terms of w and y is given by

wxt þ F½w; y� ¼ 0; F½w; y� ¼ wxwxx þ wxxxx þ λyxyxx
yxt þ G½w; y� ¼ 0; G½w; y� ¼ wxxyx þ yxxwx þ yxxxx:

(10)

We notice that the matrix constructed from the Frechet derivatives of F and G, with respect to
w and y, is self-adjoint. We then conclude from the Helmholtz procedure that
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L1 ¼ −
1
2
wxwt−

1
2
λyxyt þ

ð1
0
ðwF½μw; μy� þ yλG½μw; μy�Þdμ, (11)

where λ ≠ 0, and

L2 ¼ −
1
2
wxyt−

1
2
wtyx þ

ð1
0
ðyF½μw; μy� þ wG½μw; μy�Þdμ, (12)

for every real value of λ, are two Lagrangian densities which give rise, from a variational
principle to Eqs. (6) and (7).

The Lagrangians associated with Li; i ¼ 1; 2 are given by Liðw; yÞ ¼
ðT
0
dt
ðþ∞

−∞
dxLi; i ¼ 1; 2:

Independent variations of Li, for each i, with respect to w and y give rise to the field
equations

δwLi ¼ 0
δyLi ¼ 0 (13)

which coincide, for each i, with Eqs. (6) and (7). In the above equations δw and δy denote the
Gateaux functional variation defined by

δwLðw; yÞ ¼ lim
e!0

Lðwþ eδw; yÞ−Lðw; yÞ
e

δyLðw; yÞ ¼ lim
e!0

Lðw; yþ eδyÞ−Lðw; yÞ
e

:
(14)

The explicit expressions for L1 and L2 are given by

L1 ¼ −
1
2
wxwt−

1
6
wx

3 þ 1
2
wxx

2−
λ
2
wxyx

2−
λ
2
yxyt þ

λ
2
yxx

2; (15)

L2 ¼ −
1
2
wxyt−

1
2
wtyx−

1
2
w2

xyx−yxwxxx−
λ
6
y3x: (16)

The Lagrangians Li; i ¼ 1; 2, are singular Lagrangians, we thus expect a constrained Hamilto-
nian formulation associated with them. The same happens for the corresponding KdV
Lagrangian that can be obtained from L1 by imposing λ ¼ 0.

We consider first the Lagrangian L1. The conjugate momenta associated with w and y, which
we denote by p and q, respectively, are given by

p ¼ ∂L1

∂wt
¼ −

1
2
wx; q ¼ ∂L1

∂yt
¼ −

λ
2
yx: (17)

We define

φ1 ≡ pþ 1
2
wx; φ2 ¼ qþ λ

2
yx: (18)

Lagrangian Mechanics8
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Hence, φ1 ¼ φ2 ¼ 0 are constraints on the phase space. We then follow the Dirac procedure to
determine the whole set of constraints. It turns out that these are the only constraints on the
phase space.

The Hamiltonian density may be obtained directly from L1 by performing a Legendre trans-
formation,

H1 ¼ pwt þ qyt−L1: (19)

The Hamiltonian density is then given by

H1 ¼ 1
6
w3

x−
1
2
w2

xx þ
λ
2
wxy2x−

λ
2
y2xx (20)

and the Hamiltonian by H1 ¼
ðþ∞

−∞
dx H1:

We introduce a Poisson structure on the phase space by defining

fwðxÞ,pðx̂ÞgPB ¼ δðx−x̂Þ
fyðxÞ,qðx̂ÞgPB ¼ δðx−x̂Þ (21)

with all other brackets between these variables being zero.

From them we obtain

f∂nxwðxÞ, ∂mx̂ pðx̂Þg ¼ ∂nx∂
m
x̂ fwðxÞ, pðx̂Þg: (22)

It turns out that φ1; φ2 are second class constraints. In fact,

fφ1ðxÞ,φ1ðx̂ÞgPB ¼ δxðx−x̂Þ
fφ1ðxÞ,φ2ðx̂ÞgPB ¼ 0
fφ2ðxÞ,φ2ðx̂ÞgPB ¼ λδxðx−x̂Þ:

(23)

In order to define the Poisson structure on the constrained phase space, we need to use the
Dirac brackets.

The Dirac bracket between two functionals F and G on phase space is defined by

fF; GgDB ¼ fF; GgPB−〈〈fF; φiðx′ÞgPBCijðx′; x″Þfφjðx″Þ,GgPB〉x′〉x″ (24)

where <>x′ denotes integration on x′ from −∞ to þ∞. The indices i; j ¼ 1; 2 and the Cijðx′; x″Þ
are the components of the inverse of the matrix whose components are fφiðx′Þ,φjðx″gPB.

This matrix becomes

∂x′δðx′−x″Þ 0
0 λ∂x′δðx′−x″Þ

� �
(25)
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and its inverse is given by

½Cijðx′; x″Þ� ¼

ðx′
δðs−x″Þds 0

0
1
λ

ðx′
δðs−x″Þds

2
6664

3
7775: (26)

It turns out, after some calculations, that the Dirac brackets of the original variables are

fuðxÞ,uðx̂ÞgDB ¼ −∂xδðx−x̂Þ; fvðxÞ,vðx̂ÞgDB ¼ −
1
λ
∂xδðx−x̂Þ

fuðxÞ,vðx̂ÞgDB ¼ 0:
(27)

We remind that this Poisson structure has been constructed assuming λ ≠ 0.

From them, we obtain the Hamilton equations, which of course are the same as Eqs. (6) and (7):

ut ¼ fu; H1gDB ¼ −uux−uxxx−λvvx
vt ¼ fv; H1gDB ¼ −uxv−vxu−vxxx:

(28)

We notice that adding any function of the constraints to H1 does not change the result, since the
Dirac bracket of the constraints with any other local function of the phase space variables is zero.

Using the above bracket relations for u and v, we may obtain directly the Dirac bracket of any
two functionals Fðu; vÞ and Gðu; vÞ. We notice that the observables F and Gmay be functionals
of w; y; p, and q, not only of u and v. In this sense, the phase space approach for singular
Lagrangians provides the most general space of observables.

We now consider the action L2 and its associated Hamiltonian structure. In this case, we
denote the conjugate momenta to w and y by p̂ and q̂, respectively. We have

p̂ ¼ −
1
2
yx, q̂ ¼ −

1
2
wx: (29)

In this case, the constraints become

cφ1 ¼ p̂ þ 1
2
yx ¼ 0, cφ2 ¼ q̂ þ 1

2
wx ¼ 0: (30)

The corresponding Poisson brackets are given by

fcφ1ðxÞ,cφ1ðx′Þg PB
¼ 0, fcφ2ðxÞ,cφ2ðx′ÞgPB ¼ 0,

fcφ1ðxÞ,cφ2ðx′ÞgPB ¼ ∂xδðx−x′Þ:
(31)

From them, we can construct the Dirac brackets after which some calculations yield the
Poisson structure for the original variables

Lagrangian Mechanics10
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fuðxÞ,uðx̂ÞgDB ¼ 0; fvðxÞ,vðx̂ÞgDB ¼ 0;
fuðxÞ,vðx̂ÞgDB ¼ −∂xδðx−x̂Þ: (32)

The Hamiltonian H2 ¼
ðþ∞

−∞
dxH2 is given in terms of the Hamiltonian density

H2 ¼ 1
2
w2

xyx þ yxwxxx þ λ
6
y3x: (33)

The Hamilton equations follow then in terms of the Dirac brackets, they are

ut ¼ fu; H2gDB, vt ¼ fv; H2gDB, (34)

which coincide with the field Eqs. (6) and (7) for any value of λ. We have thus constructed two
Hamiltonian functionals and associated Poisson bracket structures. These two Hamiltonian
structures arise directly from the basic actions L1 and L2. In Section 6, we will construct two
additional Hamiltonian structures by considering a Miura transformation for the coupled
system.

5. A pencil of Poisson structures for the parametric coupled KdV system

We have then constructed two Lagrangian densities Li; i ¼ 1; 2; we may now introduce a real
parameter k and define a parametric Lagrangian density

Lk ¼ kL1 þ ð1−kÞL2: (35)

The field equations obtained from the corresponding Lagrangian Lk ¼
ðT
0
dt
ðþ∞

−∞
dxLk are equiv-

alent to Eqs. (6) and (7) in the following cases: If λ < 0 for any k. If λ ¼ 0; for k ≠ 1: If λ > 0 for
k ≠ 1

1þ ffiffiffi
λ

p and k ≠ 1
1−
ffiffiffi
λ

p . From now on, we will exclude these particular values of k.

The parametric Lagrangian Lk is singular for any value of k (excluding the above mentioned
particular cases). The corresponding phase space formulation contains constraints, which are
determined by the use of the Dirac procedure. We denote p and q the conjugate momenta
associated with w and y, respectively. From their definition, we obtain the primary constraints.

φ1≡
k
2
wx þ ð1−kÞ

2
yx þ p ¼ 0 (36)

φ2≡
λk
2
yx þ

ð1−kÞ
2

wx þ q ¼ 0: (37)

We may then define the Hamiltonian density Hk through the Legendre transformation, we get
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Hk ¼ pwt þ qyt−Lk ¼ kH1 þ ð1−kÞH2: (38)

We now follow the Dirac algorithm to determine the complete set of constraints. It turns out
that these are the only constraints in the formulation.

The Poisson brackets of the constraints obtained from the canonical Poisson brackets of the
conjugate pairs are

fφ1ðxÞ,φ1ðx̂ÞgPB ¼ k∂xδðx−x̂Þ
fφ2ðxÞ,φ2ðx̂ÞgPB ¼ λk∂xδðx−x̂Þ

fφ1ðxÞ,φ2ðx̂ÞgPB ¼ ð1−kÞ∂xδðx−x̂Þ:
(39)

Hence, they are second class constraints. We will denote by fgkDB the Dirac bracket
corresponding to the parameter k. We then proceed to calculate the Dirac brackets of the
original fields u and v.

We obtain

fuðxÞ,uðx̂ÞgkDB ¼ λk

−λk2 þ ð1−kÞ2 ∂xδðx−x̂Þ

fvðxÞ,vðx̂ÞgkDB ¼ k

−λk2 þ ð1−kÞ2 ∂xδðx−x̂Þ

fuðxÞ,vðx̂ÞgkDB ¼ 1−k

−λk2 þ ð1−kÞ2
�
−∂xδðx−x̂Þ

�
:

(40)

where the denominator is different from zero for the values of kwe are considering. The above
brackets define the Poisson structure of the corresponding Hamiltonian

Hk ¼
ðþ∞

−∞
dxHk: (41)

The Hamilton equations

ut ¼ fu; HkgDB
vt ¼ fv; HkgDB

(42)

coincide, as expected, with the coupled Eqs. (6) and (7).

In Section 3, we constructed two Poisson structures for the coupled system (6) and (7). We now
show they are compatible. It follows, for any two functionals F and G that

fF; GgkDB ¼ −λk

−λk2 þ ð1−kÞ2 fF; Gg
1
DB þ

1−k

−λk2 þ ð1−kÞ2 fF; Gg
0
DB; (43)

where fF; Gg1DB, corresponding to k ¼ 1, and fF; Gg0DB, corresponding to k ¼ 0, are the two
Dirac brackets structures obtained in Section 3. In particular, for any λ≠0; 1 and k ¼ 1

1−λ, we get
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fF; GgkDB ¼ fF; Gg1DB þ fF; Gg0DB, (44)

which implies that any linear combination of fF; Gg1DB and fF; Gg0DB, for any λ≠0; 1, is a Poisson
bracket. That is, the two Poisson structures obtained in Ref. [22], corresponding to k ¼ 1 and
k ¼ 0, are compatible.

For the particular value of λ ¼ 0, and any k≠1 we obtain

fF; GgkDB ¼ k

2ð1−kÞ2 fF; Gg
1
2
DB þ

1−2k

ð1−kÞ2 fF; Gg
0
DB: (45)

For k ¼ 2
5 the two coefficients on the right-hand member of Eq. (45) are equal. It implies that the

Poisson structures for k ¼ 1
2 and k ¼ 0 are compatible.

We have thus constructed a pencil of Poisson structures, except for λ ¼ 1, for which the
coupled system reduces to two decoupled KdV equations.

6. The Miura transformation for the parametric coupled KdV system

It is well known that the KdV equation admits two Hamiltonian structures, one of them is
a particular case of our previous construction. It is obtained by considering only the uðx; tÞ
field, imposing vðx; tÞ ¼ 0: In this case, the two previous Hamiltonians structures reduce to
only one and there is no pencil of Poisson structures. The second Hamiltonian structure
for the KdV equation arises from a Miura transformation, which is also a particular case of
the following construction. The corresponding Miura transformation for our coupled sys-
tem becomes

u ¼ μx−
1
6
μ2−

λ
6
ν2

v ¼ νx−
1
3
μν:

(46)

and the modified KdV system (MKdVS)

μt þ μxxx−
1
6
μ2μx−

λ
6
ν2μx−

λ
3
μννx ¼ 0

νt þ νxxx−
1
6
μ2νx−

λ
6
ν2νx−

1
3
μνμx ¼ 0:

(47)

It is interesting that from Eq. (47), following the Helmholtz procedure, which is also valid
for the MKdVS system, we obtain two singular Lagrangians densities LM

i ; i ¼ 1; 2,
expressed in terms of the Casimir potentials σ; ρ where μ ¼ σx; ν ¼ ρx :
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LM
1 ¼ −

1
2
σtσx−

λ
2
ρtρx−

1
2
σxσxxx−

λ
2
ρxρxxx þ

1
72

σx4 þ λ2

72
ρx

4 þ λ
12

ρ2
xσ

2
x (48)

and

LM
2 ¼ −

1
2
σtρx−

1
2
σxρt−σxxxρx þ

1
18

σx3ρx þ
λ
18

ρx
3σx, (49)

Eq. (48) being valid only for λ≠0.

Each of them has a Poisson structure that follows from the Dirac approach. The Dirac
brackets, for the original fields u; v in the coupled system (6) and (7) are given by

fuðxÞ,uðx̂ÞgDB ¼ ∂xxxδðx−x̂Þ þ 1
3
uxδðx−x̂Þ þ 2

3
u∂xδðx−x̂Þ

fvðxÞ,vðx̂ÞgDB ¼ 1
λ
∂xxxδðx−x̂Þ þ 1

3λ
uxδðx−x̂Þ þ 2

3λ
u∂xδðx−x̂Þ

fuðxÞ,vðx̂ÞgDB ¼ 1
3
vxδðx−x̂Þ þ 2

3
v∂xδðx−x̂Þ,

(50)

which is the Poisson structure associated with LM
1 and

fuðxÞ,uðx̂ÞgDB ¼ λ
3
vxδðx−x̂Þ þ 2λ

3
v∂xδðx−x̂Þ

fvðxÞ,vðx̂ÞgDB ¼ 1
3
vxδðx−x̂Þ þ 2

3
v∂xδðx−x̂Þ

fuðxÞ,vðx̂ÞgDB ¼ ∂xxxδðx−x̂Þ þ 1
3
uxδðx−x̂Þ þ 2

3
u∂xδðx−x̂Þ,

(51)

the Poisson structure associated with LM
2 .

The corresponding Hamiltonian densities HM
1 and HM

2 are given in terms of the fields u and
v by

HM
1 ¼ v2−u2

HM
1 ¼ −uv:

(52)

The Hamilton equations obtained from these Hamiltonian structures coincide, of course, with
Eqs. (6) and (7).

From these two Poisson structures, we may construct a pencil of Poisson structures as we
described in the previous section, see Ref. [22] for the details of the construction. We notice
that LM

1 and LM
2 in the construction are of the same dimension. It is then not possible to

construct a hierarchy of higher order Hamiltonians from them. The same occurs with L1 and
L2. However, the two pencils are of different dimensions and we may obtain from them a
hierarchy of higher order Hamiltonians which extends the hierarchy of the KdV equation.
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7. A duality relation among the Lagrangians of the parametric coupled
KdV system

We consider a generalization of the Gardner construction for the KdV equation. The Gardner
transformation for the system (6) and (7) is given by

u ¼ rþ εrx−
1
6
ε2ðr2 þ λs2Þ (53)

v ¼ sþ εsx−
1
3
ε2rs, (54)

where ε is a real parameter and rðx; tÞ, sðx; tÞ are the fields which describe the Gardner
ε-deformation. The Gardner equations are

rt þ rxxx þ rrx þ λssx−
1
6
ε2½ðr2 þ λs2Þrx þ 2λrssx� ¼ 0 (55)

st þ sxxx þ rsx þ srx−
1
6
ε2½ðr2 þ λs2Þsx þ 2rsrx� ¼ 0: (56)

Any solution of Eqs. (55) and (56) define through Eqs. (53) and (54) a solution of the system (6),
(7).
ðþ∞

−∞
dx rðx; tÞ and

ðþ∞

−∞
dx sðx; tÞ are conserved quantities of the system (55) and (56). Assuming a

formal power series on ε of the solutions of Eqs. (55) and (56) and inverting Eqs. (53) and (54),
one obtains an infinite sequence of conserved quantities for the system (6), (7). It is an integra-
ble system in this sense.

If we consider the ε ! 0 limit for the Gardner transformation Eqs. (53), (54) and Gardner
Eqs. (55) and (56), we get the original system (6) and (7). On the other side, if we
redefine

μ ≡ εr (57)

ν ≡ εs (58)

and rewrite Eqs. (53) and (54), we get

u ¼ μ
ε
þ μx−

1
6
μ2−

1
6
λν2 (59)

v ¼ ν
ε
þ νx−

1
3
μν: (60)

Taking the limit ε ! ∞ we obtain
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û ¼ μx−
1
6
μ2−

1
6
λμ2 (61)

v̂ ¼ νx−
1
3
μν (62)

which is exactly the Miura transformation. In the same limit, we obtain from Eqs. (55), (56) the
Miura equations given by Eq. (47).

We now construct using the Helmholtz approach a master Lagrangian for the Gardner equa-
tions. The master Lagrangians, there are two of them, are ε dependent and following the above
limits we obtain all the Lagrangian structures we discussed previously. The KdV coupled system
and the modified KdV coupled system are then dual constructions corresponding to the weak
coupling limit ε ! 0 and to the strong coupling limit ε ! ∞ respectively, of the master construc-
tion. A direct relation of these two systems arises from the present construction.

We introduce the Casimir potentials

r ¼ wx; s ¼ yx (63)

and using the Helmholtz approach we obtain the Lagrangian densities

LG1 ¼ −
1
2
wxwt−

1
6
ðwxÞ3 þ 1

2
ðwxxÞ2−λ2 wxðyxÞ2−

λ
2
yxyt þ

λ
2
ðyxxÞ2

−
1
6
ε2 −

1
12

ðwxÞ4−λ2 ðwxÞ2ðyxÞ2
� �

þ ε2

72
λ2ðyxÞ4;

(64)

LG2 ¼ −
1
2
wxyt−

1
2
wtyx−

1
2
ðwxÞ2yx−yxwxxx−

λ
6
ðyxÞ3

þ 1
18

ε2ðwxÞ3yx þ
1
18

ε2λðyxÞ3wx:
(65)

If we take the weak coupling limit ε ! 0 we obtain

lim
ε!0

LG1 ¼ L1 ; lim
ε!0

LG1 ¼ L2 (66)

where L1 and L2 were defined in Section 3.

If we redefine

σ ¼ εw ; ρ ¼ εy
LM
G1 ¼ ε2LG1 ; LM

G2 ¼ ε2LG2
(67)

and take the strong coupling limit ε ! ∞, we get

lim
ε!∞

LM
G1ðσ; ρÞ ¼ LM

1 ðσ; ρÞ
lim
ε!∞

LM
G2ðσ; ρÞ ¼ LM

2 ðσ; ρÞ, (68)
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2
wtyx−

1
2
ðwxÞ2yx−yxwxxx−

λ
6
ðyxÞ3

þ 1
18

ε2ðwxÞ3yx þ
1
18

ε2λðyxÞ3wx:
(65)

If we take the weak coupling limit ε ! 0 we obtain

lim
ε!0

LG1 ¼ L1 ; lim
ε!0

LG1 ¼ L2 (66)

where L1 and L2 were defined in Section 3.

If we redefine

σ ¼ εw ; ρ ¼ εy
LM
G1 ¼ ε2LG1 ; LM

G2 ¼ ε2LG2
(67)

and take the strong coupling limit ε ! ∞, we get

lim
ε!∞

LM
G1ðσ; ρÞ ¼ LM

1 ðσ; ρÞ
lim
ε!∞

LM
G2ðσ; ρÞ ¼ LM

2 ðσ; ρÞ, (68)
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where LM
1 and LM

2 were defined in Section 5. Consequently, all the Lagrangian structure and
the associated Hamiltonian structure of the coupled system (6), (7) arises from the master
Lagrangians. They can also be combined to a unique master Lagrangian depending on a
parameter k as was done in Section 4. The field equations of the master Lagrangians are the
Gardner equations, the spatial integral of rðx; tÞ and sðx; tÞ define an ε-deformed conserved
quantity of the Gardner equations which implies an infinite sequence of conserved quantities
of the original coupled KdV system (6), (7).

8. Hamiltonian structure for a KdV system valued on a Clifford algebra

In this section, we continue the discussion of the Lagrangian and Hamiltonian structures for
the coupled KdV systems. We discuss a coupled system arising from the breaking of the
supersymmetry on the N ¼ 1 supersymmetric KdV equation. The details of this system may
be found in Ref. [15]. The system is formulated in terms of a real valued field uðx; tÞ and a
Clifford algebra valued field ξðx; tÞ. The field ξðx; tÞ is expressed in terms of an odd number of
generators ei; i ¼ 1,… of the Clifford algebra

ξ ¼ ∑
∞

i¼1
ϕiei þ ∑

ijk
ϕijkeiejek þ⋯ (69)

where

eiej þ ejei ¼ −2δij, (70)

and ϕi; ϕijk; … are real valued fields. We define by ξ the conjugate of ξ,

ξ ¼ ∑
∞

i¼1
ϕiei þ ∑

ijk
ϕijkekejei þ⋯ (71)

where ei ¼ −ei. We denote by PðξξÞ the projector of the product ξξ to the identity element of
the algebra

PðξξÞ ¼ ∑
∞

i¼1
ϕ2
i þ ∑

ijk
ϕ2
ijk þ⋯ (72)

We proposed in Ref. [15] the following coupled KdV system arising from the breaking of the
supersymmetry in the N ¼ 1 supersymmetric equation [9]:

ut ¼ −uxxx−uux−
1
4
ðPðξξÞÞx

ξt ¼ −ξxxx−
1
2
ðξuÞx:

(73)
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In distinction to the N ¼ 1 supersymmetric KdV equation the coupled system (73) has only a
finite number of local conserved quantities,

Ĥ 1
2
¼
ðþ∞

−∞
ξdx;

Ĥ1 ¼
ðþ∞

−∞
udx;

V≡Ĥ3 ¼
ðþ∞

−∞

�
u2 þ PðξξÞ

�
dx;

M≡Ĥ5 ¼
ðþ∞

−∞
−
1
3
u3−

1
2
uPðξξÞ þ ðuxÞ2 þ PðξxξxÞ

� �
dx:

(74)

It is interesting to remark that the following nonlocal conserved charge of Super KdV [32] is also
a nonlocal conserved charge for the system (73), in terms of the Clifford algebra valued field ξ,

ð∞
−∞
ξðxÞ

ðx
−∞
ξðsÞdsdx: (75)

However, the nonlocal conserved charges of Super KdV in Ref. [33] are not conserved by the
system (73). For example,

ð∞
−∞
uðxÞ

ðx
−∞
ξðsÞdsdx: (76)

is not conserved by Eq. (73).

The system (73) has multisolitonic solutions. In Ref. [34], we showed that the soliton solution is
Liapunov stable under perturbation of the initial data.

9. The Lagrangian and Hamiltonian structure of the Clifford valued
system

We introduce the Casimir potentials w and η defined by

u ¼ wx and ξ ¼ ηx: (77)

We notice, as in the previous sections, that Eq. (73) may be expressed as stationary points of a
singular Lagrangian constructed following the Helmholtz approach. We denote

Pðw; ηÞ ¼ wxxxx þ wxwxx þ 1
4
ðPðηxηxÞÞx

Qðw; ηÞ ¼ ηxxxx þ
1
2
ðwxηxÞx

(78)

The Lagrangian becomes L ¼
ðT
0
dt
ðþ∞

−∞
dxL in terms of the Lagrangian density L given by
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L ¼ 1
2
wxwt þ 1

2
ðPðηxηtÞ−

ð1
0
wPðμw; μηÞdμ−

ð1
0
PðQðμw; μηÞηÞdμ: (79)

From the Lagrangian L, we may construct its Hamiltonian structure using the Legendre
transformation. We denote ðp; σÞ the conjugate momenta to ðw; ηÞ:

p :¼ ∂L
∂ð∂twÞ ¼

1
2
wx ¼ 1

2
u

σ :¼ ∂L
∂ð∂tηÞ ¼

1
2
ηx ¼

1
2
ϕ:

(80)

Eq. (80) describes constraints on the phase space.

Performing the Legendre transformation we obtain the Hamiltonian of the system

H ¼
ðþ∞

−∞
dx
�
pwt þ PðσηtÞ−L

�
(81)

where H ¼ 1
2 Ĥ5 in (74).

Following the Dirac approach, the conservation of the primary constraints (80) determines the
Lagrange multipliers associated with the constraints (80). There are no more constraints on the
phase space. It turns out that both constraints are second class ones. The Poisson structure of
the constrained Hamiltonian is then determined by the Dirac brackets, see Ref. [15] for the
details. We identify by an index i the independent components of a field η or σ valued on the
Clifford algebra. We may rewrite the constraints as

v :¼ p−
1
2
wx

vi :¼ σi−
1
2
ηix:

(82)

Introducing vI :¼ ðv; viÞ, we then have

fvIðxÞ, vJðx′Þg ¼ −δIJ∂xδðx−x′Þ: (83)

The Poisson structure of the constrained Hamiltonian is then determined by the Dirac brackets
[20]. For any two functionals on the phase space F and G, the Dirac bracket is defined as

fF; GgDB :¼ fF; Gg−〈〈fF; vIðx′ÞgfvIðx′Þ,vJðx″Þg−1〉x′fvJðx″Þ,Gg〉x″ , (84)

where

〈fvIðx′Þ,vJðx″Þg−1gðx″Þ〉x″ ¼ −δIJ

ðx′
−∞
gð~xÞd~x: (85)

We then have
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fuðxÞ,uðyÞgDB ¼ ∂xδðx; yÞ,
fϕiðxÞ,ϕjðyÞgDB

¼ δij∂xδðx; yÞ,
fuðxÞ,ϕiðyÞgDB ¼ 0:

(86)

Consequently,

∂tu ¼ fu; HgDB ¼ −
1
2
ðu2Þx−uxxx−

λ
4
ðϕ2

i Þx
∂tϕi ¼ fϕi; HgDB ¼ −ϕixxx−

λ
2
ðuϕiÞx,

(87)

where H is given by the last conserved quantity in Eq. (74) and can be directly expressed in
terms of u and ξ.

10. Positiveness of the Hamiltonian for the Clifford valued system

An interesting property of the Hamiltonian H of the Clifford coupled system (73) is its a priori
positiveness. In fact,

Ĥ3 þ Ĥ5 ¼ ∥ðu; ξÞ∥2H1
þ
ðþ∞

−∞
−
1
3
u3−

1
2
uPðξξÞ

� �
dx (88)

where the Sobolev norm ∥∥H1
is defined by

∥ðu; ξÞ∥2H1
:¼
ðþ∞

−∞
½u2 þ PðξξÞ þ ux2 þ PðξxξxÞ�dx: (89)

We also noticed that

Ĥ3 ¼ ∥ðu; ξÞ∥2L2 (90)

where ∥∥L2 is the L
2 norm.

We then have

Ĥ3 þ Ĥ5 ≥ ∥ðu; ξÞ∥2H1
−
1
2

ðþ∞

−∞
juj
�
u2 þ PðξξÞÞdx: (91)

We now use the bound

supjuj ≤ ∥u∥H1ffiffiffi
2

p ≤
∥ðu; ξÞ∥H1ffiffiffi

2
p , (92)

to obtain

Ĥ3 þ Ĥ5 ≥ ∥ðu; ξÞ∥2H1
−

1
2
ffiffiffi
2

p ∥ðu; ξÞ∥H1
∥ðu; ξÞ∥L2 : (93)
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2
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Consequently,

Ĥ3 þ Ĥ5 þ 1
4
ffiffiffi
2

p
� �2

Ĥ3 ≥ ∥ðu; ξÞ∥H1
−

1
4
ffiffiffi
2

p ∥ðu; ξÞ∥L2
� �2

≥0: (94)

Finally,

Ĥ5 ≥ − 1þ 1
4
ffiffiffi
2

p
� �2

 !
Ĥ3, (95)

Hence, for a normalized state satisfying ∥ðu; ξÞ∥L2 ¼ 1, we have

Ĥ5 ≥ − 1þ 1
4
ffiffiffi
2

p
� �2

 !
: (96)

The Hamiltonian is then manifestly bounded from below in the space of normalized L2
configurations and it is thus physically admissible.

The property of the Hamiltonian is relevant from the physical point of view. In particular, in
showing that the soliton solution of the Clifford coupled system is Liapunov stable. The
stability analysis follows ideas introduced in Ref. [35] for the KdV equation. It is based on the
use of the conserved quantities of the system. It is interesting that only the first few of them, in
the case of the KdV equation, are needed. In the case of the Clifford coupled system these are
all the local conserved quantities of the system.

11. The KdVequation valued on the octonion algebra

A famous theorem by Hurwitz establishes that the only real normalized division algebras are
the reals R, the complex C, the quaternions ℍ, and the octonions O. In particular, these division
algebras are directly related to the existence of super Yang-Mills in several dimensions: 3, 4, 6,
and 10 dimensions [36]. The octonion algebra may be explicitly used in the formulation of
superstring theory in 10 dimensions and in the supermembrane theory in 11 dimensions,
relevant theories in the search for a unified theory of all the known fundamental forces in
nature.

The extension of the KdV equation to a partial differential equation for a field valued on a
octonion algebra is then an interesting goal [23].

We showed in the previous sections that an extension of the KdV equation to the field valued
on a Clifford algebra give rise to a coupled system with Liapunov stable soliton solution but
without an infinite sequence of local conserved quantities.

In the present section, we analyze the KdV extension where the field is valued on the octonion
algebra. The system shares several properties of the original real KdV equation. It has soliton
solutions and also has an infinite sequence of local conserved quantities derived from a
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Bäcklund transformation and a bi-Lagrangian and bi-Hamiltonian structure [23]. We will
show in this section the construction of the bi-Lagrangian structure.

The octonion algebra contains as subalgebras all other division algebras, hence our construc-
tion may be reduced to any of them.

The KdVequation on the octonion algebra can be seen as a coupled KdV system, as we will see
it has some similarities to the construction in the previous sections. However, it is invariant
under the exceptional Lie group G2, the automorphisms of the octonions, and under the
Galileo transformations. Those symmetries are not present in the model constructed on a
Clifford algebra.

We denote u ¼ uðx; tÞ a function with domain in R ·R valued on the octonionic algebra. If we
denote ei; i ¼ 1,…; 7 the imaginary basis of the octonions, u can be expressed as

uðx; tÞ ¼ bðx; tÞ þ B
!
ðx; tÞ (97)

where bðx; tÞ is the real part and B
! ¼ ∑7

i¼1Biðx; tÞei its imaginary part.

The KdV equation formulated on the algebra of octonions, or simply the octonion KdV
equation, is given by

ut þ uxxx þ 1
2
ðu2Þx ¼ 0, (98)

when B
! ¼ 0

!
it reduces to the scalar KdV equation. In terms of b and B

!
the equation can be

reexpressed as

bt þ bxxx þ bbx−∑
7

i¼1
BiBix ¼ 0, (99)

ðBiÞt þ ðBiÞxxx þ ðbBiÞx ¼ 0: (100)

Eq. (98) is invariant under the Galileo transformation given by

~x ¼ xþ ct;
~t ¼ t;
~u ¼ uþ c

(101)

where c is a real constant.

Additionally, Eq. (98) is invariant under the automorphisms of the octonions, that is, under the
group G2. If under an automorphism

u ! φðuÞ (102)

then

u1u2 ! φðu1u2Þ ¼ φðu1Þφðu2Þ (103)
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and consequently

½φðuÞ�t þ ½φðuÞ�xxx þ
1
2

�
½φðuÞ�2

�
x
¼ 0: (104)

12. The Gardner formulation for the octonion valued algebra KdV
equation

Associated with the real KdV equation, there is a Gardner ε-transformation and a Gardner
equation which allows to obtain in a direct way the corresponding infinite sequence of con-
served quantities. There exists a generalization of this approach for the KdV valued on the
octonion algebra. The generalized Gardner transformation, expressed in terms of a new field
rðx; tÞ valued on the octonion is given by

u ¼ rþ εrx−
1
6
ε2r2: (105)

The generalized Gardner equation is then

rt þ rxxx þ 1
2
ðrrx þ rxrÞ− 1

12

�
ðr2Þrx þ rxðr2Þ

�
ε2 ¼ 0 (106)

where ε is a real parameter.

If rðx; tÞ is a solution of the generalized Gardner equation (106), then uðx; tÞ is a solution of the

octonion algebra valued KdV equation (98). It has been shown in Ref. [23] that
ðþ∞

−∞
Re½rðx; tÞ�dx

is a conserved quantity of Eq. (106). We can then invert Eq. (105), assuming a formal ε-
expansion of the solution rðx; tÞ, to obtain an infinite sequence of conserved quantities for the
KdV equation valued on the octonion algebra.

13. The master Lagrangian for the KdVequation valued on the octonion
algebra

We may now use the Helmholtz procedure to obtain a Lagrangian density for the generalized
Gardner equation. The master Lagrangian formulated in terms of the Casimir potential sðx; tÞ,

rðx; tÞ ¼ sxðx; tÞ, (107)

is

LεðsÞ ¼
ðtf
ti
dt
ðþ∞

−∞
LεðsÞdx (108)

where the Lagrangian density is given by
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LεðsÞ ¼ Re −
1
2
sxst−

1
6
ðsxÞ3 þ 1

2
ðsxxÞ2 þ 1

72
ε2ðsxÞ4

� �
: (109)

The Lagrangian density LεðsÞ is invariant under the action of the exceptional Lie group G2.

Independent variations with respect to s yields

δLεðsÞ ¼ Re −
1
2
ðδsÞxst−

1
2
sxðδsÞt−

1
6

�
ðδsÞxðsxÞ2 þ sxðδsÞxsx þ ðsxÞ2ðδsÞx

�� �

þ Re 1
2

�
ðδsÞxxsxx þ ðδsÞxxsxx

�
þ 1
72

ε2
�
ðδsÞxðsxÞ3 þ sxðδsÞxðsxÞ2 þ ðsxÞ2ðδsÞxsx þ ðsxÞ3ðδsÞx

�� �
:

(110)

Using properties of the octonion algebra we obtain from the stationary requirement δLεðsÞ ¼ 0
the generalized Gardner equation (106).

In the calculation the property to be a division algebra of the octonions is explicitly used.

If we take the limit e ! 0, we obtain a first Lagrangian for the KdV equation valued on the
octonion algebra,

LðwÞ ¼
ðtf
ti
dt
ðþ∞

−∞
dxRe −

1
2
wxwt−

1
6
ðwxÞ3 þ 1

2
ðwxxÞ2

� �
: (111)

Independent variations with respect to w yields, using u ¼ wx, the octonionic KdV equa-
tion (98). If we consider the following redefinition

s ! ŝ ¼ εs
LεðsÞ ! ε2LεðŝÞ (112)

and take the limit e ! ∞ we obtain

lim
e!∞

e2LeðŝÞ ¼ LMðŝÞ, (113)

where

LMðŝÞ ¼ Re −
1
2
ŝxŝt þ 1

2
ðŝxxÞ2 þ 1

72
ðŝxÞ4

� �
: (114)

We get in this limit the generalized Miura Lagrangian

LMðŝÞ ¼
ðtf
ti
dt
ðþ∞

−∞
dxLMðŝÞ: (115)

The Miura equation is then obtained by taking variations with respect to ŝ, we get

r̂t þ r̂xxx−
1
18

ðr̂Þ3x ¼ 0; r̂ ≡ ŝx, (116)
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and take the limit e ! ∞ we obtain

lim
e!∞
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1
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while the Miura transformation arises after the redefinition process, it is u ¼ r̂x− 1
6 r̂

2:

Any solution of the Miura equation, through the Miura transformation, yields a solution of the
KdV equation valued on the octonion algebra. Since LεðsÞ is invariant under G2, the same occurs
for LðwÞ and LMðŝÞ, and consequently for the equations arising from variations of them.

The Lagrangian formulation of the octonionic KdVequation may be used as the starting step to
obtain the Hamiltonian structure of the octonion algebra valued KdV equation.

14. Conclusions

We analyzed the relevance of the Dirac approach for constraint systems applied to singular
Lagrangians. Several interesting theories are described by singular Lagrangians, notoriously
the gauge theories describing the known fundamental forces in nature. In this chapter, we
emphasized its relevance in the formulation of completely integrable field theories. We
discussed extensions of the Korteweg-de Vries equation in different contexts. All these exten-
sions, together with the KdVequation, allow a construction of a Lagrangian and a Hamiltonian
structure arising from the application of the Helmholtz procedure. That is, starting with a time
evolution partial differential system we construct, following the Helmholtz procedure, a
Lagrangian associated with it. We present the construction of several Lagrangians and their
corresponding Hamiltonian structures associated with the coupled KdV systems. All of them
are characterized by second class constraints. The physical phase space is obtained by the
determination of the complete set of constraints and the corresponding Dirac brackets. We
established the relation between the several constructions by obtaining a pencil of Poisson
structures. The application includes systems with an infinite sequence of conserved quantities
together with a system with finite number of conserved quantities but presenting soliton
solutions with nice stability properties. The final application is an extension of the KdV
equation to the case in which the fields are valued on the octonion algebra. We constructed a
master formulation from which two dual Lagrangian formulations are obtained , one
corresponding to the KdV valued on the octonions and the other one corresponding to the
extension of the modified KdV equation to fields valued on the octonions.

One important extrapolation of the analysis we have presented is the construction of gauge
theories describing completely integrable systems. In fact, it is natural to extend the analysis by
constructing a gauge theory which under a gauge fixing procedure reduces to the completely
integrable systems of the KdV type we have discussed.
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Abstract

In this chapter, we provide an overview on the Lagrangian subspaces of manifolds,
including but not limited to, linear vector spaces, Riemannian manifolds, Finsler mani-
folds, and so on. There are also some new results developed in this chapter, such as finding
the Lagrangians of complex spaces and providing new insights on the formula for mea-
suring length, area, and volume in integral geometry. As an application, the symplectic
structure determined by the Kähler form can be used to determine the symplectic form of
the complex Holmes-Thompson volumes restricted on complex lines in integral geometry
of complex Finsler space. Moreover, we show that the space of oriented lines and the
tangent bundle of unit sphere in Minkowski space are symplectomorphic.

Keywords: Lagrangian subspace, differential geometry

1. Introduction

In differential geometry and differential topology, manifolds are the main objects being studied,
and Lagrangian submanifolds are submanifolds that carry differential forms with special prop-
erty, which are usually called symplectic form in real manifolds and Kahler form in complex
manifolds.

This book chapter is concerned with explicit canonical symplectic form for real and complex
spaces and answer to the questions on the existence of Lagrangian subspace. One can find and
explicitly describe the set of Lagrangian subspaces of R2 with Lp norm, 1 ≤ p < ∞, as a an
example of Finsler spaces. Since Holmes-Thompson volumes, as measures, depend on the
differential structures of the spaces, the symplectic structure determined by the symplectic
form can be used to determine the symplectic form of Holmes-Thompson volumes restricted
on lines in integral geometry of Lp spaces, as an application to integral geometry.

Some ingenuous ideas in physics and engineering actually originated from mathematics. For
example, the relativity theory in physics, to some sense, originated from Riemmanian geometry.

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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The real Finsler spaces, as generalizations of real Riemannian manifolds, were introduced in Ref.
[1] about a century ago and have been studied by many researchers (see, for instance, Refs. [2–
4]), and Finsler spaces (see, for instance, Refs. [5, 6]) have become an interest of research for the
studies of geometry, including differential geometry and integral geometry, in recent decades. By
the way, there are applications of Finsler geometry in physics and engineering, and in particular,
Finsler geometry can be applied to engineering dynamical systems, on which one can see Ref.
[7]. As a typical Finsler space, Lp space, 1 < p < ∞, has the main features of a Finsler space. As
such, we focus on Lp space, 1 < p < ∞, in this chapter, but some results can be generalized to
general Finsler spaces, on which one can refer to Ref. [8]. The Lp space, 1 < p < ∞, as a general-
ization of Euclidean space, has a rich structure in functional analysis (see, for instance, Refs.
[9, 10]), and particularly in Banach space. Furthermore, it has broad applications in statistics (see,
for instance, Refs. [11, 12]), engineering (see, for instance, Ref. [13, 27]), mechanics (see, for
instance, Ref. [14]), computational science (see, for instance, Ref. [15]), biology (see, for instance,
Ref. [16]), and other areas. Along this direction, Lp, 0 < p ≤ 1, in the sense of conjugacy to the
scenario of Lp, 1 < p < ∞, also has broad applications, in particular, signal processing in engi-
neering, on which one can see Refs. [17–19].

This chapter is structured as follows: In Section 2, we provide a description on Gelfand
transform, which is one of the most fundamental transforms in integral geometry; in Section
3, we introduce density needed for the measure of length of curves; in Section 4, we further
study the Lagrangian subspaces of complex Lp spaces; in Section 5, we work on tangent bundle
of unit sphere in Minkowski space and its symplectic or Lagrangian structure; in Section 6, we
apply the Lagrangian structure to establish the length formula in integral geometry; and in
Section 7, we further apply the Lagrangian structure of a Minkowski space to establish the
formula for the Holmes-Thompson area in integral geometry.

2. Gelfand transform

Given a double fibration:

R2←
π1 F!π2Gr1ðR2Þ (1)

where

F ¼
n
ððx;yÞ, lðr;θÞÞ : ðx;yÞ∈R2, lðr;θÞ∈Gr1ðR2Þ, ðx;yÞ∈ lðr;θÞ

o

≃
n
ðx;y;r;θÞ : x cos ðθÞ þ y sin ðθÞ ¼ r

o
;

π1 and π2 are the natural projections of fibers. The Gelfand transform of a 2-density ϕ ¼
jdr∧dθj is defined as

GTðϕÞ ¼ π1�π
�
2ϕ; (2)

which is a 1-density R2.
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3. 1-Density

Lemma 3.1. For any v ¼ ðα;βÞ∈Tðx;yÞR2;

GTðϕÞððx;yÞ, vÞ ¼ 4jvj: (3)

Proof. For v ¼ ðα;βÞ∈Tðx;yÞR2; there exists

~v ¼ ðα;β;αcosðθÞ þ βsinðθÞ,θÞ∈Tððx;yÞ, lðr;θÞÞF; (4)

such that dπ1ð~vÞ ¼ v. Therefore, we have

GTðϕÞðvÞ ¼
ð

π−1
1 ððx;yÞÞ

π�
2ϕð~v, ▪Þ

¼
ð

fðx;yÞ, lðp;θÞ: xcosðθÞþysinðθÞ¼rg

jdr∧dθjð~v;▪Þ

¼
ð2π

0

jαcosðθÞ þ βsinðθÞjdθ

¼
ð2π

0

jv � ðcosðθÞ, sinðθÞÞjdθ

¼ jvj
ð2π

0

cosðθ0 þ θÞdθ where α ¼ jvj cos ðθ0Þ, β ¼ jvj sin ðθ0Þ

¼ 4jvj: (5)

Remark 3.2. By Alvarez’s Gelfand transform for Crofton type formulas, we know that

ð
l∈R2

#ðγ∩lðr;θÞÞdrdθ ¼
ð

γ
GTðϕÞ: (6)

Thus, we have now proved the Crofton formula: Given a differentiable curve γ in R2, the
length of γ can be computed in the following formula:

LengthðγÞ ¼ 1
4

ð

l∈R2
#ðγ∩lðr;θÞÞdrdθ: (7)

Lagrangian Subspaces of Manifolds
http://dx.doi.org/ 10.5772/67290

31



4. Lagrangian subspaces of complex spaces

Some of the results have obtained in Ref. [8], but because the Lagrangian subspaces of complex
spaces are essential to establish the generalized volume formula in complex integral geometry,
let us give an expository on the Kahler strut rue of generalized complex spaces.

Theorem 4.1. The set of Lagrangian subspaces of C2 with L1 norm is T2∪T1, where

T2 :¼ fspanððz; 0Þ, ð0;wÞÞ : z;w∈Uð1Þg≅Uð1Þ·Uð1Þ (8)

and

T1 :¼ �P : P ¼ fλðz;wÞ : λ∈R;z;w∈Uð1Þ, zw is a constant in Uð1Þg�≅Uð1Þ: (9)

Proof. First, we can show that

P ¼ fλðz;wÞ : λ∈R;z;w∈Uð1Þ, zw is a constant in Uð1Þg (10)

is identical to some

P′ :¼ spanððz1;z1eiθÞ, ðz2; z
2
1z2
jz1j2

eiθÞÞ (11)

where z1;z2 ∈C\f0g. For any λðeiϕ;eiψÞ∈P, let z1 ¼ λeiϕ, θ ¼ ψ−ϕ, we have P ¼ spanððz1;z1eiθÞ,
ðz2;z21z2jz1 j2 e

iθÞÞ ¼ P′ where z2 ∈C\f0g.

We can get κ1ðz1; 0Þ, ð0;z2ÞÞ ¼ 0. On the other hand, for any

ðz;wÞ ¼ λ1ðz1;z1Þ þ λ2ðz2; z
2
1z2
jz1j2

Þ∈ spanððz1;z1Þ, ðz2; z
2
1z2
jz1j2

ÞÞ, (12)

where λ1;λ2 ∈R,

jwj2 ¼ ðλ1z1 þ λ2
z21z2
jz1j2

Þðλ1z1 þ λ2
z1 2z2
jz1j2

Þ
¼ λ2

1z1z1 þ λ1λ2z1z2 þ λ2λ1z1z2 þ λ2
2z2z2

¼ ðλ1z1 þ λ2z2Þðλ1z1 þ λ2z2Þ
¼ jzj2;

(13)

that implies jwzj ¼ 1. Therefore, we have

κðz;wÞððz1;z1Þ, ðz2;z21z2jz1 j2 ÞÞ ¼ 3
2 ðImðz2z1Þ þ 3

2 Imðz21z2jz1j2 z1ÞÞ
−1
2 Imð zw jwz jðz

2
1z2
jz1 j2 z1−z1z2ÞÞ

¼ 3
2 ðImðz2z1Þ þ Imðz1z2ÞÞ

¼ 0:

(14)

So κ vanishes on spanððz1;z1Þ, ðz2;z21z2jz1 j2 ÞÞ for any z1;z2 ∈C\f0g, Imðz1z1Þ≠0.
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Conversely, suppose that κ vanishes on a plane P spanned by ðz1;w1Þ and ðz2;w2Þ. We know
that

ð1þ 1
2
jw
z
jÞImðz2z1Þ þ ð1þ 1

2
j z
w
jÞImðw2w1Þ þ 1

2
Imð z

w
jw
z
jðw2z1−w1z2ÞÞ ¼ 0 (15)

holds for any ðz;wÞ∈ spanððz1;w1Þ, ðz2;w2ÞÞ. In the following argument, we divide it into three
cases to discuss in terms of jwzj and w

z jwzj.
The first case is that jwzj ¼ λ for some fixed λ > 0. Let ðz;wÞ ¼ λ1ðz1;w1Þ þ λ2ðz2;w2Þ for any
λ1;λ2 ∈R, then jλ1w1 þ λ2w2j ¼ λjλ1z1 þ λ2z2j, that implies jw1j ¼ λjz1j, jw2j ¼ λjz2j and

Reðw1w2Þ ¼ λ2Reðz1z2Þ. It follows that w1 ¼ λeiθz1, w2 ¼ λeiθz2, or w1 ¼ λeiθz1, w2 ¼ λeiθ z21z2
jz1 j2

for some θ∈ ½0; 2πÞ.
In the sub-case of w1 ¼ λeiθz1, w2 ¼ λeiθz2 for some θ∈ ½0; 2πÞ, by Eq. (15) we have

ð1þ λ
2
ÞImðz2z1Þ þ ð1þ 1

2λ
Þλ2Imðz2z1Þ þ λImðz2z1Þ ¼ ð1þ λÞ2Imðz2z1Þ ¼ 0; (16)

which implies Imðz2z1Þ ¼ 0 and furthermore Imðw2w1Þ ¼ 0. That means ðz1;w1Þ and ðz2;w2Þ are
colinear. So this case cannot occur.

However, for the other sub-case of w1 ¼ λeiθz1, w2 ¼ λeiθz21z2
jz1 j2 for some θ∈ ½0; 2πÞ, by Eq. (15) we

have

ð1þ λ
2
ÞImðz2z1Þ þ ð1þ 1

2λ
Þλ2Imðz1z2Þ ¼ ð1−λ2ÞImðz2z1Þ ¼ 0: (17)

Then λ ¼ 1 or Imðz2z1Þ ¼ 0, but ðz1;w1Þ and ðz2;w2Þ cannot be colinear. So, we have λ ¼ 1
which gives

P ¼ spanððz1;z1eiθÞ, ðz2; z
2
1z2
jz1j2

eiθÞÞ, (18)

where z1;z2 ∈C\f0g and Imðz1z2Þ≠0 for some θ∈ ½0; 2πÞ. This finishes the first case.
The second case is w

z jwzj ¼ eiθ for some fixed θ∈ ½0; 2πÞ. Let w1 ¼ λ1eiθz1;w2 ¼ λ2eiθz2 for some
λ1;λ2 > 0. Then it follows from (15) that

ð1þ λ1
2 ÞImðz2z1Þ þ ð1þ 1

2λ1
Þλ1λ2Imðz2z1Þ þ 1

2 ðλ1 þ λ2ÞImðz2z1Þ
¼ ð1þ λ2

2 ÞImðz2z1Þ þ ð1þ 1
2λ2

Þλ1λ2Imðz2z1Þ þ 1
2 ðλ1 þ λ2ÞImðz2z1Þ

¼ ð1þ λ1Þð1þ λ2ÞImðz2z1Þ
¼ 0

(19)

at the points ðz1;w1Þ and ðz2;w2Þ, which implies Imðz2z1Þ ¼ 0 and furthermore Imðw2w1Þ ¼ 0.
Thus, z1 and z2, w1, and w2 are colinear, which implies that P equals a plane spanned by one
vector from fðz1; 0Þ, ðz2; 0Þg and the other from fð0;w1Þ, ð0;w2Þg. Thus P∈T2.

The last case is the negative to the first one and the second one. It gives Imðz2z1Þ ¼ Imðw2w1Þ
¼ 0 and w2z1−w1z2 ¼ 0 because of the linear independence, but the former implies the latter by
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linear transformation, so it is brought down to Imðz2z1Þ ¼ Imðw2w1Þ ¼ 0. Thus, we have P∈T2

by the second case, and that concludes the proof.

5. Tangent bundle of uni-sphere in Minkowski space and symplectic or
Lagrangian structure

In this section, we show that the space of oriented lines and the tangent bundle of unit sphere
in Minkowski space are symplectomorphic.

Let us consider a Minkowski plane ðR2;FÞ first, where F is a Finsler metric. The natural
symplectic form on T�R2 is dx∧dξþ dy∧dη, and then the natural symplectic form on TR2

induce by the Finsler metric F is

ω :¼ dx ∧d
∂F
∂ξ

þ dy∧d
∂F
∂η

¼ ∂2F
∂ξ2

dx ∧dξþ ∂2F
∂ξ∂η

ðdx∧dηþ dy∧dξÞ þ ∂2F
∂η2

dy∧dη:
(20)

Define a projection π : TR2 ! Gr1ðR2Þ by

πððx;yÞ; ðξ;ηÞÞ ¼ ððx;yÞ−dFðξ;ηÞððx;yÞÞðξ;ηÞ; ðξ;ηÞÞ: (21)

Let SF be the unit circle in the Minkowski plane and TSF be its tangent bundle. It is a fact that

TSF≅Gr1ðR2Þ. On the other hand, since TSF is embedded in TR2, it inherits a natural symplectic
form ω0 :¼ ωjTSF from TR2.

Theorem 5.1. π�ω0 ¼ ωjS�R2 :

Proof. Applying the equality

∂F
∂ξ

dξþ ∂F
∂η

dη ¼ 0; (22)

we obtain

π�ω0 ¼ ∂2F
∂ξ2

dðx−dFðξ;ηÞððx;yÞÞξÞ∧dξþ ∂2F
∂ξ∂η

ðdðx−dFðξ;ηÞððx;yÞÞξÞ∧dη

þ dðy−dFðξ;ηÞððx;yÞÞηÞ∧dξÞ þ ∂2F
∂η2

dðy−dFðξ;ηÞððx;yÞÞηÞ∧dη

¼ ∂2F
∂ξ2

dx∧dξþ ∂2F
∂ξ∂η

ðdx∧dηþ dy∧dξÞ þ ∂2F
∂η2

dy∧dη

−dðdFðξ;ηÞððx;yÞÞÞ∧ð∂
2F
∂ξ2

ξdξþ ∂2F
∂η2

ηdηþ ∂2F
∂ξ∂η

ðξdηþ ηdξÞÞ:

(23)
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By the positive homogeneity of F, one can get the useful fact that Fðξ;ηÞ ¼ ξ∂F
∂ξ þ η∂F

∂η. Therefore,

ξ
∂F
∂ξ

þ η
∂F
∂η

¼ 1: (24)

By differentiating (24), we get

∂2F
∂ξ2

ξdξþ ∂2F
∂η2

ηdηþ ∂2F
∂ξ∂η

ðξdηþ ηdξÞ þ ∂F
∂ξ

dξþ ∂F
∂η

dη ¼ 0: (25)

Applying (22) again, we have

∂2F
∂ξ2

ξdξþ ∂2F
∂η2

ηdηþ ∂2F
∂ξ∂η

ðξdηþ ηdξÞ ¼ 0: (26)

Thus, the claim follows.

Remark 5.2. For a n-dimensional Minkowski space ðRn;FÞ, we just need to add more indices,
then the theorem above is also true for ðRn;FÞ.
Therefore, letting F be a Finsler metric on Rn and SF be the unit sphere in the Minkowski space
ðRn;FÞ, we obtain the following general theorem:

Theorem 5.3. The symplectic form on the space of lines in a Minkowski space ðRn;FÞ is the canonical
symplectic form on the tangent bundle TSF as imbedded in TRn.

We have the following remarks:

Remark 5.4. Theorem 5.3 provides a perspective that we can transform calculus on Gr1ðR2Þ to
ones on TSF.

and

Remark 5.5. We can analyze the differential structure of the Minkowski space by considering
its symplectic form or Lagrangian structure. The Lagrangian structure of tangent spaces of
Minkowski space gives the symplectic structure of the space of geodesics in the Minkowski
space, and in general, the measures on a space or manifold in integral geometry depend on the
differential structures of the space or manifold. Holmes-Thompson volumes are defined based
on Lagrangian structure (see, for instance, Refs. [12, 20]), so, as an application, the symplectic
structure determined by the symplectic form can be used to determine the symplectic form of
the Holmes-Thompson volumes restricted on lines in integral geometry of Minkowski space,
about which one can see Refs. [21–23].

Another remark from the proof of Theorem 5.1 is that

Remark 5.6. A combination of (26) and Gelfand transform (see Ref. [6]) may be used to provide
a short proof of the general Crofton formula for Minkowski space.
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6. Application to generalized length and related

For any rectifiable curve γ in the Euclidean plane, the classic Crofton formula is

LengthðγÞ ¼ 1
4

ð∞
0

ð2π
0
#ðγ∩lðr;θÞÞdθdr; (27)

where θ is the angle from the x-axis to the normal of the oriented line l and r is the distance
form the origin to l. Let us denote the affine l-Grassmannians consisting of lines in R2 by

Gr1ðR2Þ.
As for Minkowski plane, it is a normed two dimensional space with a norm Fð�Þ ¼ jj � jj, in
which the unit disk is convex and F has some smoothness.

Two significant and useful tools that are used to obtain the Crofton formula for Minkowski
plane are the cosine transform and Gelfand transform. Let us explain them one by one first and
see the connections between them later. A important fact or result from spherical harmonics
about cosine transform is that there is some even function on S1 such that

Fð�Þ ¼
ð

S1
j〈ξ; � 〉jgðθÞdθ; (28)

if F is an even C4 function on S1. A great reference for this would be [24] by Groemer. As for
Gelfand transform, it is the transform of differential forms and densities on double fibrations,

for instance, R2←
π1
I!π2Gr1ðR2Þ, where I :¼

n
ðx;lÞ∈R2 ·Gr1ðR2Þ : x∈ l

o
is the incidence rela-

tions and π1 and π2 are projections. A formula one can take as an example of the fundamental
theorem of Gelfand transform is the following:

ð

γ
π1�π�

2jΩj ¼
ð

l∈Gr1ðR2Þ
#ðγ∩lÞjΩj, (29)

whereΩ :¼ gðθÞdθ∧dr. However, here we provide a direct proof for this fundamental theorem
of Gelfand transform.

Proof. First, consider the case of Ω ¼ dθ∧dr. For any v∈Txγ, since there is some v′ ∈Tx′I , such
that π1�ðv′Þ ¼ v, then

ðπ1�π�
2jΩjÞxðvÞ ¼ ð

ð

π−1
1 ðxÞ

π�
2jΩjÞxðvÞ

¼
ð

x′ ∈π−1
1 ðxÞ

ðπ�
2jΩjÞx′ðv′Þ

¼
ð

S1
ðπ�

2jdθ∧drjÞðv′Þ

¼
ð

S1
jdrðπ2�ðv′ÞÞjdθ

¼
ð

S1
j〈v;θ〉jdθ

¼ 4jvj:

(30)
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Thus, we have

ð

γ
π1�π�

2jΩj ¼ 4LengthðγÞ ¼
ð

l∈Gr1ðR2Þ
#ðγ∩lÞjΩj (31)

by using the classic Crofton formula.

For the general case of Ω ¼ f ðθÞdθ∧dr, we just need to substitute dθ by gðθÞdθ in the equali-
ties in the first case.

Furthermore, we can also see, from the above proof and eq:exist, that

ð

γ
π1�π�

2jΩj ¼
ðb
a
ðπ1�π�

2jΩjÞðγ′ðtÞÞdt ¼
ðb
a
4Fðγ′ðtÞÞdt ¼ 4LengthðγÞ, (32)

for any curve γðtÞ : ½a;b� ! R2 differentiable almost everywhere in the Minkowski space.
Therefore, by using (29), we obtain that

LengthðγÞ ¼ 1
4

ð

l∈Gr1ðR2Þ
#ðγ∩lÞjgðθÞdθ∧drj (33)

for Minkowski plane.

The Holmes-Thompson area HT2ðUÞ of a measurable set U in a Minkowski plane is defined as

HT2ðUÞ :¼ 1
π

ð

D�U
jω0j2, where ω0 is the natural symplectic form on the cotangent bundle of R2

and D�U :¼ fðx;ξÞ∈T�R2 : F�ðξÞ ≤ 1g. To study it from the perspective of integral geometry,

we need to introduce a symplectic form ω to the space of affine lines Gr1ðR2Þ and construct an
invariant measure based on ω.

7. Application to HT area and related

Now let us see the Crofton formula for Minkowski plane, which is

LengthðγÞ ¼ 1
4

ð

Gr1ðR2Þ
#ðγ∩lÞjωj: (34)

To prove this, it is sufficient to show that it holds for any straight line segment

L : ½0;jjp2−p2jj� ! R2; LðtÞ ¼ p1 þ
p2−p1

jjp2−p1jj
t; (35)

starting at p1 and ending at p2 in R2. First, using the diffeomorphism between the circle bundle
and co-circle bundle, which is

Lagrangian Subspaces of Manifolds
http://dx.doi.org/ 10.5772/67290

37



ϕF : SR2 ! S�R2

ϕFðx;ξÞ ¼ ðx;dFξÞ, (36)

we can obtain a fact that
ð

L· { p2−p1
jjp2−p1 jj}

ϕ�
Fα0 ¼

ð

ϕFðL · {
p2−p1

jjp2−p1 jj}Þ
α0

¼
ðjjp2−p1jj
0

α0dF p2−p1
jjp2−p1 jj

ðð p2−p1
jjp2−p1jj

, 0ÞÞdt

¼
ðjjp2−p1 jj
0

dF p2−p1
jjp2−p1 jj

ð p2−p1
jjp2−p1jj

Þdt; (37)

where α0 is the tautological one-form, precisely α0ξðXÞ :¼ ξðπ0�XÞ for any X∈TξT�R2, and
dα0 ¼ ω0. Applying the basic equality that dFξðξÞ ¼ 1, which is derived from the positive

homogeneity of F, for all ξ∈ SR2, the above quantity becomes
ðjjp2−p1jj
0

1dt, which equals jjp2−p1jj.

Let R :¼ fξx ∈S�R2 : x∈ p1p2g and T ¼ fl∈Gr1ðR2Þ : l∩p1p2≠Øg, and p′ is the projection (com-

position) from S�R2 to Gr1ðR2Þ.
Apply the above fact and p′�ω ¼ ω0,

ð

T
jωj ¼

ð

p′ðRÞ
jωj ¼

ð

R
jp′�ωj ¼

ð

R
jω0j

¼ j
ð

Rþ
ω0j þ j

ð

R−
ω0j

¼ j
ð

∂Rþ
α0j þ j

ð

∂R−
α0j

¼ 4jjp2−p1jj:

(38)

Thus, we have shown the Crofton formula for Minkowski plane.

Furthermore, combining with (33), we have

1
4

ð

l∈Gr1ðR2Þ
#ðγ∩lÞjΩj ¼ 1

4

ð

Gr1ðR2Þ
#ðγ∩lÞjωj, (39)

where Ω ¼ gðθÞdθ∧dr. Then, by the injectivity of cosine transform in Ref. [24], jΩj ¼ jωj.
To obtain the HT area, one can define a map

π : Gr1ðR2Þ ·Gr1ðR2Þ\Δ ! R2

πðl;l′Þ ¼ l∩l′;
(40)

extended from Alvarez’s construction of taking intersections. The following theorem can be
obtained.
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Theorem 7.1. For any bounded measurable subset U of a Minkowski plane, we have

HT2ðUÞ ¼ 1
2π

ð

x∈R2
χðx∩UÞjπ�Ω2j: (41)

Proof. On the one hand,

1
π

ð

D�U
ω2

0 ¼
1
π

ð

∂D�U
ω2

0 ¼
1
π

ð

S�U
α0∧ω0: (42)

On the other hand,

1
π

ð

x∈R2
χðx∩UÞπ�Ω2 ¼ 1

π

ð
n
ðl;l′Þ∈Gr1ðR2Þ ·Gr1ðR2Þ\Δ:l∩l′ ∈U

oΩ2

¼ 1
π

ð

fðl;l′Þ∈Gr1ðR2Þ ·Gr1ðR2Þ\Δ:l∩l′ ∈Ug
ω2

¼ 1
π

ð

T�U\fðx;ξ;ξÞ:ξ∈S�xUg
p′�ω2

¼ 1
π

ð

T�U\fðx;ξ;ξÞ:ξ∈S�xUg
ω2

0

¼ 2
π

ð

fðx;ξ;ξÞ:ξ∈S�xUg
α0∧ω0

¼ 2
π

ð

S�U
α0∧ω0;

(43)

where

T�U :¼
n
ðx;ξ;ξ′Þ : ξ;ξ′ ∈S�xU

o
: (44)

So the claim follows.

Remark 7.2. Lagrangian structure provides the underlying differential structure needed to
measure the Holme-Thompson area in integral geometry and therefore is essential and
doundamental in integral geometry. For Finsler manifolds, real or complex, it is necessary to
analyze the Lagrangian structure of the Finsler manifolds, in the forms of symplectic structure
and Kahler structure, and many Finsler manifolds may not have a Lagrangian structure, about
which one can refer to Ref. [25]. However, for smooth projective Finsler spaces, the integral
geometry formulas have been studied in Ref. [26], for instance.
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Abstract

This chapter reviews complete integrability in the setting of Lagrangian/Hamiltonian
mechanics. It includes the construction of angle-action variables in illustrative examples,
along with a proof of the Liouville-Arnol’d theorem. Results on the topology of the
configuration space of a mechanical (or Tonelli) Hamiltonian are reviewed and several
open problems are high-lighted.

Mathematics Subject Classication (2010): 37J30; 53C17, 53C30, 53D25

Keywords: Hamiltonian mechanics, Lagrangian mechanics, integrability, topological
obstructions, topological entropy

1. Introduction

Lagrangian mechanics employs the least-action principle to derive Newton’s equations from a
scalar function, the action function L. In classical mechanics, L is the difference of kinetic and
potential energies and therefore appears as an artifice. It is somewhat mysterious, then, that
the reformulation of Newtonian mechanics in terms of momentum and position, rather than
velocity and position as in Lagrangian mechanics, leads immediately to the total energy
function H and a plethora of geometric structure that is hidden in the native setting.

Due to the advantages of the Hamiltonian perspective, this chapter studies Lagrangian sys-
tems from this dual point of view. The organization of the chapter is this: Section 2 recalls the
classic construction of angle-action variables in 1 degree of freedom via several examples, then
states and proves the Liouville- Arnol’d theorem; Section 3 discusses the relationship between
the topology of the configuration space and the existence of integrable mechanical systems;
and it reviews several constructions of integrable systems whose configuration space is the
sphere or torus. Section 3 provides a number of open problems that may stimulate interested
researchers or students.
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2. Integrability in Hamiltonian mechanics

2.1. Integrability in 1 degree of freedom

One of the central problems in classical mechanics is the integrability of the equations of
motion. The classical notion of integrability is loosely related to exact solvability, and roughly
corresponds to the ability to solve a system of differential equations by means of a finite
number of integration steps.

2.1a. Example: Harmonic oscillator Let us take the simple harmonic oscillator, or an idealized
Hookean spring-mass system, with mass m and spring constant k. If q is the displacement from
equilibrium and p the momentum, then the total energy is

H ¼ 1
2m

p2 þ k
2
q2; and equations of motion are

_q ¼ p=m;
_p ¼ −kq

� �
: (1)

The change of variables ðq; pÞ ¼ ðQ=λ; λPÞ transforms the system to, with λ ¼ ffiffiffiffiffiffi
km4

p
,

H ¼ ω
2
ðP2 þQ2Þ; and equations of motion are

_Q ¼ ωP,
_P ¼ −ωQ

� �
, (2)

where ω ¼ ffiffiffiffiffiffiffiffiffi
k=m

p
. A second change of variables ðQ; PÞ ¼ ð ffiffiffiffiffi

2I
p

cosθ‚
ffiffiffiffiffi
2I

p
sinθ‚Þ transforms the

system to

H ¼ ωI; and equations of motion are
_θ ¼ ω,
_I ¼ 0

� �
: (3)

The differential equations in (3) are trivial to integrate since the right-hand sides are constants.
Let us explain the sequence of transformations. The change of coordinates ðq; pÞ ! ðQ; PÞ is an
area-preserving linear transformation that transforms the elliptical level sets of H into circles.
The transformation ðQ; PÞ ! ðθ, IÞ is analogous to the introduction of polar coordinates–
indeed the transformation ðr;θÞ ¼ ð ffiffiffiffiffi

2I
p

;θÞ is a transformation to polar coordinates. Because
the area form dP dQ ¼ r dr dθ, we see that the transformation dP dQ ¼ dI ¼ dθ.

Therefore, the change of coordinates ðq; pÞ ! ðθ‚ IÞ not only reveals the exact solutions of the
harmonic oscillator equations, it is area preserving.

Suppose that for some reason one did not know to introduce “polar” coordinates. One might
still determine the change of coordinates using only that the transformation ðQ; PÞ ! ðθ‚IÞ
preserves area. Indeed, since d ðP dQ−I dθÞ ¼ 0, there is a function ν ¼ νðQ, θÞ such that
P dQ−I dθ ¼ dν or P ¼ ∂v

∂Q and I ¼ − ∂v
∂θ. Then, upon substituting the identity P ¼ νQ into (2),

one obtains

ν≡
ðQ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H=ω−Q2

q
dQ ¼ 1

2
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H=ω−Q2

q
−ðH=ωÞ arccosðQ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2H=ω

p
Þ; (4)

where ≡ indicates that ν equals the right-hand side up to the addition of a 2π-periodic function
of θ.
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If ðQ;PÞmake a complete circuit around the contour fH ¼ cg then one obtains from (4) and the
identity that P ¼ νQ that

Δν ¼ ∮
fH¼cg

P dQ ¼ ðH=ωÞ 2π: (5)

On the other hand, since d2 ¼ 0 and I is held constant on the contour, Green’s theorem implies
that

Δν ¼ ∮
fH¼cg

dνþ I dθ ¼ ∮
fH¼cg

I dθ ¼ 2πI: (6)

Equating (5) and (6) shows that H ¼ ωI.

These calculations show that one may determine H as a function of I without explicit knowl-
edge of the coordinate transformation ðQ;PÞ ! ðθ;IÞ–but one does need to solve the Hamilton-
Jacobi equation

HðQ; νQÞ ¼ c; (7)

for ν, as performed in Eq. (4). At this point, if one wants to derive the change of coordinates
from ν, Eq. (4) shows that it is easier to write ν ¼ νðQ, IÞ, in which case P dQþ θ dI ¼ dν or

θ ¼ νI ¼ − arccos ðQ=
ffiffiffiffiffi
2I

p
Þ; (8)

so Q ¼ ffiffiffiffiffi
2I

p
cos ðθÞ and P ¼ νQ ¼ ffiffiffiffiffi

2I
p

sin ðθÞ.
Let it be observed that if, in Eq. (4), one had chosen the anti-derivative to be arcsin rather than
−arccos, then Q would be

ffiffiffiffiffi
2I

p
sin ðθÞ and P would be � ffiffiffiffiffi

2I
p

cos ðθÞ. However, because
dP dQ ¼ dI dθ , one would be obligated to choose the negative square root to define P;
otherwise, dP dQ ¼ −dI dθ .

2.1b. Example: the planar pendulum. Let us take the idealized planar pendulum with a mass-less
rigid rod of length l suspended at a fixed end with a bob of mass m at the opposite end
(Figure 1). The total energy is

H ¼ 1
2m

p2 þmlgð1− cos qÞ; and
_q ¼ p=m;
_p ¼ −mlg sin q

� �
: (9)

To simplify the exposition, assume that the mass m ¼ 1 and let ω2 ¼ 16lg, where ω is 4 times
the frequency of the linearized oscillations at q ¼ p ¼ 0. The substitution q ¼ 2Q, p ¼ P=2
transforms the Hamiltonian to

8H ¼ P2 þ ω2 sin 2Q, and
_Q ¼ P=4
_P ¼ −ω2 sin ð2QÞ=8

� �
: (10)

If one tries to solve for a generating function ν ¼ νðQ, IÞ of a coordinate change ðQ,PÞ ! ðθ, IÞ
such that H ¼ HðIÞ, then one obtains from P ¼ νQ that
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ν ≡
ðQ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8H−ω2 sinQ

p
dQ ¼ ω

k
EðQ, kÞ (11)

where ≡ indicates equality up to a 2π-periodic function of θ, H ¼ ω2=ð8k2Þ and E is the elliptic

integral of the second kind defined by Eðx, kÞ ¼
ðx
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−k2 sin 2x

p
dx.

If ðQ,PÞ make a complete circuit around the contour {H ¼ c}, then one obtains from Eq. (11)
that

Δν ¼ 4
ω
k
KðkÞ (12)

where KðkÞ ¼ EðQþðkÞ, kÞ and QþðkÞ ¼ arcsinð1=kÞ if k > 1 and π=2 if k < 1 (in which case, K is
the complete elliptic integral of the second kind). The area of the shaded region K in Figure 2
shows the geometric meaning of KðkÞ for k > 1. Along with the identity (6), one obtains

I ¼ 2
π
ω
k
KðkÞ, (13)

which determines H ¼ HðIÞ implicitly.

Figure 3 graphs H as a function of I using the definition of I in (13) with ω ¼ 1, along with the
graph for the harmonic oscillator. Although H appears to be a smooth function of I on the
interval depicted, this is a numerical artifact. Indeed, there are two distinct proofs that H
cannot be differentiable in I over the interval [0,1]. Without loss of generality, it is assumed
that ω ¼ 1.

Figure 1. The planar pendulum with potential energy V ¼ mlgð1− cos qÞ.
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The first, calculus-based, proof is this: as k ! 1þðH ! 1=8−Þ, ∂I=∂k ! ∞. If H is a differentiable
function of I, then ∂H=∂I ¼ 0 at I ¼ 2=πðH ¼ 1=8Þ. But then the entire level set consists of fixed
points, which is false.

The second, topological, proof is this: each level set {H ¼ c}, c < 1=8, is connected; each level set
for c > 1=8 has exactly two connected components (c.f. Figure 2). If the generating function v
were differentiable in ðQ, IÞ on any rectangle containing R=πZ · f2=πg, then Eq. (13) would
determine a homeomorphism H ¼ HðIÞ, and so the level sets of H would remain connected on
either side of the critical level at height 1/8. Absurd.

Figure 2. The contours of the pendulum Hamiltonian with ω ¼ 1 (9).

Figure 3. The graph of H ¼ HðIÞfor the pendulum.
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To derive the change of coordinates ðQ,PÞ ! ðθ, IÞ from the generating function ν, one uses the
identity θ ¼ νI and properties of the elliptic integrals to deduce

θ ¼ π
2

FðQ, kÞ
ðQþðkÞ, kÞ

) Q ¼ amk
2Fþ
π

θ
� �

(14)

where Fðx, kÞ ¼
ðx
0
dx=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−k2 sin 2x

p
is the elliptic integral of the first kind, Fþ ¼ FðQþðkÞ, kÞ and

amkðuÞ is the Jacobian amplitude function, a local inverse to F ([1], Chapter 2). Along with
P ¼ νQ, (14) implies that

P ¼ ω
k
dnk

2Fþ
π

θ
� �

, (15)

where dnkðuÞis the Jacobian elliptic function.

2.1c. Example: a mechanical system. Let V ¼ VðQÞ be a smooth potential function of a 1-degree-
of-freedom Hamiltonian system with

H ¼ 1
2
P2 þ VðQÞ: (16)

If one attempts to find the generating function ν ¼ νðQ, IÞ of an area-preserving transformation
ðQ,PÞ ! ðθ, IÞ that transforms H ¼ HðIÞ, then one deduces that

ν≡
ðQ
Q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðH−VðQÞÞ

p
dQ, (17)

up to a function depending only on I. Then, in a complete circuit around the connected contour
{H ¼ c}, one has 2π ¼ Δθ ¼ ΔνI identically, so

2πI ¼ ∮
{H¼c}

P dQ: (18)

and, upon solving (18) for H ¼ HðIÞ, one inverts

θ ¼ 1ffiffiffi
2

p
ðQ
Q0

HIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H−VðQÞp dQ, (19)

to obtain Q ¼ Qðθ, IÞ, and finally P ¼ νQ yields P ¼ Pðθ, IÞ. Since the change of coordinates is
area-preserving, the Hamiltonian form of the equations of motion are preserved, so the
resulting equations are

H ¼ HðIÞ and
_θ ¼ ∂H=∂I
_I ¼ 0

� �
: (20)

2.2. The generating function

The above three examples use a generating function ν ¼ νðQ, IÞ of a mixed system of coordi-
nates in order to create an area-preserving change of coordinates to angle-action variables ðθ, IÞ.
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2.2a. Question: why do the angle-action variables exist? In order to understand the generating
function, it is necessary to clarify the existence of the coordinates ðθ, IÞ, which are commonly
called angle-action variables. Let H : X ! R be a smooth function from an oriented surface X to
the reals. If it is assumed that A⊂X is an open, connected, saturated ðH−1ðHðAÞÞ∩A ¼ AÞ subset
of the domain of H,HjAhas no critical points and HjA is proper, then HjA is a submersion onto

the interval B ¼ HðAÞ⊂R. SinceHjA is proper, for each b∈B, the level set ðHjAÞ−1ðbÞ is a compact
one-manifold and hence its components are circles. Since A is connected andHjA is critical-point
free, the level set must be connected, so it is a circle. Therefore, the submersion theorem implies

that A is diffeomorphic to A′ ¼ S1 ·B.1 To make this system of coordinates concrete, note that
there is a complete vector field U on A such that dHðUÞ≡1. Let γ⊂A be a segment of an integral
curve of U which is maximal (i.e. an integral curve that strictly contains γ intersects X−A). For
each a∈A, let t ¼ tðaÞ be the time along the flow line of the Hamiltonian vector field XH

beginning at the initial condition γ∩H−1ðHðaÞÞ. The function t is multi-valued, since the flow line
is closed, so it should be considered as a function on the universal cover of A.

Since the tangent space at a∈A is spanned by XH and U, Ω is determined by ΩðXH ,UÞ. But
QðXH,UÞ ¼ −dHðUÞ ¼ −1, so Ω ¼ dHdt.

Let T be such that 2πT is the least period of the function t (i.e. the first return time to γ). Then
T ¼ TðHÞ is a function of H alone. Define θ by

θ ¼ t=TðHÞ ðmod 2πÞ and I by dI ¼ TðHÞ dH: (21)

The function θ is the normalized time along the flow lines of Hamiltonian vector field XH,
while dH=dI ¼ 1=TðIÞ is the frequency. One computes that the oriented area form
Ω ¼ dHdt ¼ dIdθ. Moreover, in the coordinates ðθ, IÞ, the Hamiltonian vector field

XH ¼
_θ ¼ 1=TðHÞ ¼ dH

dI
,

_I ¼ 0

8<
:

9=
;: (22)

This proves the existence of an area-preserving diffeomorphism φ : D ·S1 ! A, where D⊂R is
an open interval, such that the Hamiltonian H is transformed to a function of I alone; and φ is
as smooth as H and the area form Ω are (e.g. if both are real-analytic, then φ is real-analytic).

2.2b. Question: what kind of “function” is ν? In the first instance, ν is not single-valued. Indeed, one
postulates the area-preserving change of coordinates φ : ðQ,PÞ ! ðθ, IÞ to deduce that

dðPdQþ θdIÞ ¼ 0, (23)

so that locally there is a function ν such that

P dQþ θdI ¼ dν: (24)

1
If one prefers a purely “elementary” proof, one might apply the inverse function theorem at this point.

Topology and Integrability in Lagrangian Mechanics
http://dx.doi.org/10.5772/66147

49



But since θ is an angle variable, this equation can only hold globally modulo 2πZ dI. So, in this
formulation of the generating function, ν can only be defined globally modulo 2πZ I. Or,
equivalently, νI is a function with values in the circle R=2πZ.

The way to resolve these ambiguities or difficulties is simple: the domain of the change of
coordinates φmust be non-simply connected (a disjoint union of open annuli, in fact, as can be
deduced from the discussion above) and so one should view (24) as holding globally on the
universal cover of this annulus where θ is a single-valued real function (c.f. 21). In this case, the
lift of a closed contour {H ¼ c} is a path that projects to the contour and whose endpoints differ
by a deck transformation–which in the angle-action coordinates is ðθ, IÞ ! ðθþ 2π, IÞ. Since I
is constant along this path, the path integral of PdQ equals the path integral of dν, i.e. Δν, the
change in ν from one preimage to its translate. With this understanding, Eq. (18) is correct.
And, indeed, one sees that the integral in Eq. (17) is defined not on the domain of the
coordinate change φ but on its universal cover; the same is true for the integral in Eq. (19), but
the marvellous fact about that integral is that it is 2π-periodic: this follows from the observa-
tion that Δθ ¼ 2π identically around a closed connected contour in {H ¼ c}.

So to answer the question that started the section, the generating function ν is a function
defined on the universal cover of the union of regular compact levels of H which implicitly
defines a 2π-periodic change of coordinates to “angle-action” variables ðθ, IÞ.

2.3. Integrability in 2 or more degrees of freedom and Tonelli Hamiltonians

Integrability in 2 or more degrees of freedom is substantially more involved than the case of
1 degrees of freedom. Of course, a sum of n distinct, non-interacting 1-degree-of-freedom
Hamiltonians is a simple case; and upon reflection, a not-so- simple case, because this
condition is not coordinate independent. Indeed, a necessary and sufficient condition is that
the Hamiltonian vector field be Hamiltonian with respect to two distinct non-degenerate
Poisson brackets {, }i that are compatible in the sense that the linear space spanned by the
brackets is a space of Poisson brackets, and maximal in the sense that a “recursion” operator
naturally defined from the two brackets has a maximal number of functionally independent
eigenvalue fields [2].

Let us turn now to a definition which generalizes mechanical Hamiltonians.

Definition 2.1 (Tonelli Hamiltonian). Let Σ be a smooth n-manifold and T�Σ its cotangent bundle. A
smooth function H : T�Σ ! R which satisfies ðT1ÞHjT�

xΣ is strictly convex for each x∈Σ; and
ðT2Þ Hðx, tpÞ=t ! ∞ uniformly as t ! ∞, is called a Tonelli Hamiltonian.

As noted, Tonelli Hamiltonians are natural generalizations of mechanical systems. For this
reason, Σ will be referred as the configuration space of the Hamiltonian H.

If Qi are coordinates on Σ and Θ ¼ ∑iPi dQi are the coordinates of the 1-form Θ, then the
canonical symplectic structureΩ ¼ dΘ ¼ ∑dPi∧dQi on T�Σ. The symplectic formΩ equips the
space of smooth functions on T�Σ with a Poisson bracket denoted {,} that satisfies

{Pi,Qj} ¼ −{Qj,Pi} ¼ δij {Qi,Qj} ¼ {Pi,Pi} ¼ 0 (25)
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for all i, j. The Poisson bracket is fundamental to Hamiltonian mechanics. For each smooth
function H, one has a smooth vector field XH ¼ {H, }, and the skew symmetry of the bracket
implies that H is preserved by the flow. One says that H1 andH2 Poisson commute if {H1,H2}≡0.

A fundamental result in Hamiltonian mechanics is the Liouville-Arnol’d theorem, which pro-
vides a semi-local description of a completely integrable Hamiltonian and the Poisson bracket.

Theorem 2.1 (Liouville-Arnol’d). Let H : T�Σ ! R be a smooth Hamiltonian. Assume there exists n
functionally independent, Poisson commuting conserved quantities F ¼ ðF1 ¼ H,…,FnÞ : T�Σ ! Rn.
If L⊂F−1ðcÞ is a compact component of a regular level set, then there is a neighbourhood W of L and a
diffeomorphism φ ¼ ðθ, IÞ : Tn ·Bn ! W such that

F ¼ FðIÞ {Ii,θj} ¼ δij, {Ii, Ij} ¼ {θi,θj} ¼ 0,

XFi ¼ ∑
∂FiðIÞ
∂Ij

∂
∂θj

,

that maps L to Tn · {0}.

In such a situation, it is said that His Liouville, or completely, integrable. The torus Tn · {I0} is a
Liouville torus, the neighbourhood Tn ·Bn is a toroidal ball and the conserved quantities are first
integrals. Systems with k first integrals, of which l < k Poisson commute with all k first inte-
grals, where kþ l ¼ 2n are called non-commutatively integrable; when k ¼ 2n−1, the system is
also called super-integrable c.f. [3, 4].

There are several proofs of the Liouville-Arnol’d theorem in the literature. The basic ideas are
already captured in the one-dimensional case discussed in Section 2.2.

It can be assumed, without loss, that L ¼ F−1ðcÞ. Since c∈Rn is a regular value of F, the
submersion theorem implies that there is an open neighbourhood C of c consisting of regular
values of F and the open set F−1ðCÞ is diffeomorphic to L ·C. Therefore, there is a smooth n-
dimensional submanifold M⊂F−1ðCÞ such that M transversely intersects each level set
Lf ¼ F−1ðf Þ, f∈C. Possibly by shrinking the open set C, it can be assumed that M is Lagrangian:
ΩjM≡0.2

Because the functions Fi,…, Fn Poisson commute and are functionally independent, the Ham-
iltonian vector fields XF1 ,…,XFn span the tangent space TxLf , for each x∈Lf , f∈C. Because Lf is
compact, each vector field is complete, so there is a well-defined flow map φFi : R· F−1ðCÞ
! F−1ðCÞ. Because Fi,…, Fn Poisson commute, the respective flow maps commute, so there is
an action of Rn on F−1ðCÞ defined by

φt ¼ φtn
Fn ∘ ⋯ ∘φt1

F1 (26)

for all t∈Rn. Define a map

2
The existence of M is a consequence of Darboux’s theorem. Of course, a less elementary proof would appeal to
Weinstein’s theorem and Moser’s isotopy lemma.
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Φðt, mÞ ¼ φtðmÞ, t∈Rn,m∈M: (27)

This is a smooth map which is a local diffeomorphism of Rn ·Mwith F−1ðCÞ. Indeed, φt carries
each level Lf into itself and carriesM into a submanifold φtðMÞ transverse to Lf at φtðmÞ; on the

other hand, the derivative of φt with respect to t is a surjective linear map onto Tφt ðmÞLf .

Therefore, dΦ is surjective, so injective, hence Φ is a local diffeomorphism onto its image.
Compactness and connectedness of the levels Lf imply that the image of Φ is F−1ðCÞ.
For each m∈M, let PðmÞ⊂Rn be the set of t such that Φðt, mÞ ¼ m. Since each level set is
compact, PðmÞ is a discrete subgroup of Rn isomorphic to Zn. This is the “period lattice” of
the action φ. If one selects a basis of PðmÞ, one obtains a mapM ! GLðn;RÞ,m ! 2πTðmÞ. The
implicit function theorem implies that there is a smooth map amongst these maps. Moreover,
since FjM is a bijection onto its image, one can take the components of F as coordinates on M,
or in other words, T ¼ TðFÞ.
Define functions θ ¼ ðθ1,…,θnÞ by

θ ¼ TðFÞ−1 � t ðmod 2πÞ, θ : Rn ·C ! Rn=2πZn: (28)

The flow map Φ therefore induces a diffeomorphism F−1ðCÞ ! Tn ·C : x ! ðθðxÞ, FðxÞÞ.
To complete the proof, one might show that each vector field ∂=∂θi is Hamiltonian with
Hamiltonian function Ii and that F is functionally dependent on I so that ðθ, IÞ is a canonical
system of coordinates on F−1ðCÞ. This is performed indirectly. Define the functions Ii ¼ IiðFÞ by

2πIi ¼ ∮ ΓiðFÞξ, (29)

where ξ ¼ P � dQ is the primitive of the symplectic form Ω and ΓiðFÞ is the cycle on LF on
which θi increases from 0 to 2π and the other angle variables are held equal to 0. To show that
ðθ, IÞ is a system of coordinates on F−1ðCÞ, one computes the Jacobian ½∂Ii=∂Fj�:

2π
∂Ii
∂Fj

¼ lim
s!0

1
s

ð

Cj

ð

ðF, sÞ

Ω, (30)

where, in the ðt, FÞ coordinate system,

CjðF, sÞ ¼ {ðuTðFþ υejÞi, Fþ υejÞju∈½0, 2π�, υ∈½0, s�}

is the “cylinder” obtained by sweeping out the cycles ΓjðFþ vejÞ as the j-th component of
Fincreases from Fj to Fj þ s, and Ti is the i-th column of the period matrix T. Since

Ω
∂
∂Fj

,
∂
∂tk

� �
¼ ∂Fk

∂Fj
¼ δjk, (31)

which implies
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∂Ii
∂Fj

¼ Tji: (32)

Since the period matrix T is non-singular, the transformation ðθ, FÞ ! ðθ, IÞ is a
diffeomorphism.

Finally, the functions I1,…, In Poisson commute and since M is Lagrangian, the functions
ti,…, tn Poisson commute, which implies θ1,…,θn Poisson commute. And, since {Fi, tj} ¼ δij,
this implies that {Ii,θj} ¼ δij.

The remainder of the theorem follows from the fact that the angle-action coordinates ðθ, IÞ are
canonical and F ¼ FðIÞ.

3. Topology of configuration spaces

The central problem in the theory of completely integrable Tonelli Hamiltonian systems is to

Problem 3.1. Determine necessary conditions on the configuration space Σ for the existence of a
completely integrable Tonelli Hamiltonian H.

This is a broad, overarching problem which has motivated research by many authors over an
almost 40-year period, including many of the author’s publications. It is helpful to pose several
sub-problems which address aspects of this problem and that appear to be amenable to
solution. The remainder of this section is devoted to an elaboration of this problem, along with
known results. We start with two-dimensional configuration spaces.

3.1. Surfaces of genus more than one

As a rule, completely integrable Tonelli Hamiltonians are quite rare, as are the configuration
spaces Σ which support such Hamiltonians. Indeed, in two dimensions, the compact surfaces
that are known to support a completely integrable Tonelli Hamiltonian are the 2-sphere, S2, the
2-torus T2 and their non-orientable counterparts. With some quite mild restrictions on the
singular set–called condition ℵ−, and assuming that the Hamiltonian is Riemannian, Bialy has
proven these are the only compact examples [5]. This extended an earlier result of V. V. Kozlov
[6]; the author has obtained a similar result for super-integrable Tonelli Hamiltonians [7].

V. Bangert has suggested to the author that Bialy’s argument should extend to prove the non-
existence of a C2 integral that is independent of the Hamiltonian when Σ is a compact surface
of negative Euler characteristic (c.f. [8]). The idea of such a proof would be the following
(assuming that H is Riemannian): Suppose that H enjoys a C2 integral F that is independent
on a dense set, hence that the union of Liouville tori is dense. Let Γ⊂H−1ð12Þ be the union of
orbits which project to minimizing geodesics. It is known, due to results of Manning and
Katok [9, 10], that Γ contains a hyperbolic invariant set Λ on which the flow is conjugate to a
horseshoe. Let λ⊂Λ be a closed orbit of the geodesic flow of period T. Since the union of
Liouville tori is dense, for each E > 0, there is a Liouville torus Lλ, E that contains an orbit of
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the geodesic flow that remains within a distance E of λ over the interval ½0,T�. Hence, π1ðLλ, EÞ
has a homotopy class mapping onto λ. Since λ is minimizing, it has no conjugate points and so
for E sufficiently small, the same is true for the orbit on Lλ, E over the time interval ½0,T�. This
implies that the image of π1ðLλ, EÞ is (free) cyclic and the kernel is generated by a cycle that
bounds a disc–in classical terminology, this means that Lλ, E is compressible. It follows that Lλ, E
bounds a solid torus Tλ≅T1 ·B2 that is invariant for the geodesic flow. The integral FjTλ

induces a singular fibration of the solid torus by invariant 2-tori.

Thus, for each closed orbit λ in the hyperbolic invariant set Λ, we have produced an invariant
solid torus Tλ that shadows λ–at least in some rough, homotopic sense. This fact alone should
suffice to achieve a contradiction.

Problem 3.2. Let Σ be a compact surface of negative Euler characteristic. Extend the above argument to
prove the non-existence of a smooth Tonelli Hamiltonian H : T�Σ ! R with a second C2 integral F that
is independent on a dense set; or give an example of a completely integrable Tonelli Hamiltonian
H : T�Σ ! R.

V. Bangert proposes similar problems in his contribution in ([8], Problems 1.1, 1.2).

There is a similar, but possibly more accessible, problem for twist maps. Recall that if we
discretize time, the notion of a Tonelli Hamiltonian is replaced by that of a twist map
f : T�Σ ! T�Σ which is a symplectomorphism that satisfies a condition analogous to T1. If f enjoys n
independent, Poisson commuting first integrals, then the Liouville-Arnol’d theorem implies
that some power of f acts a translation on the Liouville tori. We noted above that the Hamilto-
nian flow of a Tonelli Hamiltonian has a horseshoe on an energy level.

Problem 3.3. Let f : T�T1 ! T�T1 be a twist map. If f has a horseshoe and a C1 first integral F, is F
necessarily constant on an open set?

3.2. The 2-torus

Let us turn now to the torus. The 2-torus T2 admits a family of completely integrable Riemann-
ian Hamiltonians which are called Liouville. These are of the form

H ¼
p2x þ p2y

2½f ðxÞ þ gðyÞ� F ¼
gðyÞp2x−f ðxÞp2y
f ðxÞ þ gðyÞ (33)

where f , g : T1 ! R are smooth positive functions and ðx, y, px, pyÞ is a canonical system of

coordinates on T�T2. The degenerations of the Liouville family include the rotationally sym-
metric ðf ≡const:Þ and flat ðf , g≡const:Þ.
The Liouville family is obtained from two uncoupled mechanical oscillators with periodic
potentials,

G ¼ 1
2
ðp2x þ p2yÞ þ aðxÞ þ bðyÞ, (34)
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on an energy level E ¼ αþ β > maxaþmaxb such that f ¼ α−a, g ¼ β−b. The Maupertuis prin-
ciple states that orbits of the Hamiltonian flow of G on the energy level {G ¼ E} are orbits of the
Hamiltonian flow ofH up to a change in time along the orbit. The complete integrability of G is
explained in Sections 2.1c and 2.3.

It is a remarkable fact that the Liouville family exhausts the list of known completely integra-
ble Riemannian Hamiltonians whose configuration space is T2. Indeed, in 1989, Fomenko
conjectured that these are the only examples possible when the second integral in polynomial-
in-momenta [11]. Most recently, in 2012, Kozlov, Denisova and Treschëv reiterate Fomenko’s
conjecture ([12], p. 908).

Let us note that it is a well-known fact that, if the first integral F is real- analytic, then
F ¼ ∑N≥0FN where each term FN is polynomial-in-momenta with real-analytic coefficients,
homogeneous and of degree N and since {H, FN} is polynomial-in-momenta, homogeneous
and of degreeN þ 1, each graded piece of F is a first integral. So, there is no loss in generality in
restricting attention to polynomial-in-momenta first integrals–and, indeed, a slight increase in
generality because the coefficients of the polynomial-in-momenta first integral are not
assumed to be real-analytic.

In [13, 14], Kozlov and Denisova prove that if, when ðx, yÞ are isothermal coordinates, and

H ¼ 1
2Λ

ðp2x þ p2yÞ, (35)

with the conformal factor Λ a trigonometric polynomial, then the existence of a second inde-
pendent first integral that is polynomial-in-momenta implies that H is Liouville.

In [12], Denisova, Kozlov and Treschëv prove that, if one only assumesΛ is smooth, thenH has
no irreducible polynomial-in-momenta first integral F that is of degree 3 or 4 that is indepen-
dent of H. Mironov separately proves the non-existence of F of degree 5, but as noted in ([12],
p. 909), Λ satisfies an extra unstated hypothesis [15]. The line of attack used in these papers is
pioneered in [16], where Kozlov and Treschëv introduce the notion of the spectrum S⊂2nZ2 of
the function Λ as the support of the Fourier transform of Λ. This spectrum is finite iff Λ is a
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delicate. The bulk of [12], for example, is devoted to a study of solutions to a PDE that
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An alternative approach, due to Bialy and Mironov, is to observe that the equation {H, F} ¼ 0
coupled with the hypothesis that F is polynomial-in-momenta of degree N implies that when
we write F as

F ¼ ∑
N

j¼0
ajðx, yÞpN−j

x pjy (36)
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then the coefficients a0,…, an satisfy a semi-linear PDE [17, 18]. Indeed, there is a system of
coordinates ðτ,υÞ on T2 such that, when F is written in the adapted canonical coordinates as

F ¼ ∑N
j¼0ujðτ, υÞðpυ=gÞjpðN−jÞ

r then this equation is of the form

uυ þ TðuÞur ¼ 0 (37)

where u0 ¼ 1, u1 ¼ g, u ¼ ðu1, u2,…, uNÞ and

TðuÞij ¼
uiþ1 if j ¼ iþ 1,
ðiþ 1Þuiþ1−ðN−1−iÞui−1 if j ¼ 1,
0 otherwise,

8<
: (38)

where we adopt the convention that u_1 ¼ uNþ1≡0.

A standard technique to solve a quasi-linear PDE like (37) is to diagonalize it, that is, to find
Riemann invariants, so that it is equivalent to

rυ þ ΔðrÞrr ¼ 0 where ΔðrÞ ¼ diagðδ1ðrÞ,…, δNðrÞÞ,
r ¼ ðr1,…, rNÞ: (39)

To find Riemann invariants, Bialy and Mironov employ the following trick: let pυ ¼ g cos ðθÞ,
pr ¼ sin ðθÞ parameterize cotangent fibres of H−1 1

2

� �
. The invariance condition fH, Fg ¼ 0

translates to Fvg−1 cos ðθÞ þ Fτ sin ðθÞ ¼ 0 along the locus where Fθ ¼ 0, i.e. where dF and dH
are co-linear. If one supposes that θi ¼ θiðτ, υÞ, i ¼ 1,…,N, is a smooth parameterization of the
critical-point set, then the critical values ri ¼ Fðr,υ,θiðr, υÞÞ are Riemann invariants with
δi ¼ gðτ, vÞ· tan ðθiÞ. Of course, the main problem is to determine the relationship between
the Liouville foliation–the singular foliation of T�T2 by the Liouville tori and their degenera-
tions–and the system 39.

In ([18], Theorems 1 and 2), Bialy and Mironov prove that if N≤4, then in any region where a
multiplier δi is non-real, the metric is Liouville. One can view the result of Bialy and Mironov as a
partial confirmation of Fomenko’s conjecture and an important step toward resolving that conjecture.

The key step in Bialy and Mironov’s proof is to show that, in any region where δi is non-real,
the imaginary part of the Riemann invariant ri satisfies an elliptic PDE. It appears that the
properties of this PDE are key to proving stronger results.

Problem 3.4. Extend Bialy and Mironov’s work to show that there are no regions where any multiplier
δi is non-real on T2, i.e. show that (39) is a hyperbolic system.

There is good reason to believe that the multipliers δi are always real. When ∅⊈δ−1i ðC\RÞ⊈T2,
Bialy and Mironov prove that the Riemann invariant ri is real and constant, say ri ¼ si. This
implies that the common level set F−1ðsiÞ∩H−1ð12Þ, a subset of the complexified cotangent bundle

T�
CT

2, has a tangent with the fibres of T�
CT

2 on an open set. That picture is dramatically at odds
with the real picture, where the tangency can occur along a one-cycle at most. Because of this,
it seems likely that there is a geometric proof of Problem 3.4.
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Hyperbolicity of Eq. (39) has additional meaning. As the previous paragraph alluded to, the
points where Fθ ¼ 0 are the critical points of the canonical projection map π : T�T2 ! T2

restricted to a common level F−1ðrÞ∩H−1 1
2

� �
. Such tori necessarily bound a solid torus in H−1 1

2

� �
and are not minimizing. Based on Fomenko’s conjecture, it is expected that these solid tori
must be quite rigid in a well-defined sense: in homology, they should generate at most two
transverse subgroups of H1ðT�T2Þ.
There is an alternative approach to Fomenko’s conjecture that is based on topological
entropy. In a series of papers based on Glasmachers dissertation results, Glasmachers and
Knieper study Riemannian Hamiltonians on T�T2 with zero topological entropy [19, 20].
They prove the closure of one of the above-mentioned solid tori is a union of one or two
closed, minimizing geodesic orbits and their stable and unstable manifolds ([20], Theorem
3.7c).3 The picture that emerges from their work is that there is a family of minimizing
closed geodesics of the same homology class, and their stable and unstable manifolds,
which bound a family of invariant solid tori. Bialy [5] describes the boundary of this set as
a separatrix chain. The projection of the separatrix chain covers T2. A neighbourhood of the
separatrix chain in the complement is fibred by invariant Lagrangian tori that are graphs, i.
e. that are a union of minimizing orbits. The multipliers δi, or rather the angles θi mentioned
above, define sections of the unit cotangent bundle trapped within a separatrix chain.

Let us reformulate this as:

Problem 3.5. Prove the vanishing of the topological entropy of the geodesic flow of a Riemannian
Hamiltonian on T�T2 that is completely integrable with a polynomial-in-momenta first integral F.

In various special cases, such as when F is real-analytic or Morse-Bott, it is known that the
topological entropy vanishes [21].

Finally, since topological entropy is an important invariant in the study of these systems, let us
state a number of problems that are directly relevant to the preceding discussion. If one
assumes Fomenko's conjecture is true and that the Liouville family of Riemannian Hamilto-
nians equals the set of completely integrable Riemannian Hamiltonians on T2, then it should
be true that

Problem 3.6. The topological entropy of a non-Liouville Riemannian Hamiltonian on T�T2 is positive.

Glasmachers and Knieper [20, 19] have studied the structure of geodesic flows with zero
topological entropy on T�T2. The picture that emerges is the phase portrait looks remarkably
like that of an integrable system. It seems likely that their results admit a strengthening: in
particular, they are unable to determine the number of primitive homology classes represented
by non-minimizing geodesics (for Liouville metrics, this is at most 4).

On the other hand, it is known, from results of Contreras, Contreras and Paternain and
Knieper and Weiss that an open and dense set of Riemannian Hamiltonians have positive

3
Although the minimizing orbits have stable and unstable manifolds, it is not suggested that they are hyperbolic.
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topological entropy [22–24]. In the case of this particular problem, the natural point of depar-
ture is to look at Riemannian Hamiltonians that are close to Liouville, i.e. where the conformal
factor in (35) is of the form

ΛE ¼ Λ0 þ EΛ1 þOðE2Þ (40)

where Λ0 is Liouville-and has no T1 symmetry–and ΛE is not Liouville for all E≠0. Based on the
study in [25, 26] of the phase portrait of such systems, it should be possible to prove that the
perturbed flow develops transverse homoclinic points.

3.3. The 2-sphere

The unit two-dimensional sphere S2⊂R3 admits a completely integrable geodesic flow. Indeed,
the geodesic flow of an ellipsoid is also completely integrable with the second integral of
motion that is, in general, a quadratic form in the momenta.

The fundamental problem is to describe the moduli space of completely integrable Hamilto-
nians on T�S2. The sub-problem of describing the integrable Riemannian (resp. natural or
mechanical) Hamiltonians H has received wide-spread attention. When H is Riemannian, the
most common approach is to assume the second integral F is polynomial-in-momenta, and
without loss of generality, homogeneous. If the degree of F is fixed, then the problem of
determining H&F is reducible to a non-linear PDE in the coefficients of F. When the degree is
1, the first integral F is a momentum map of a T1 isometry group (see below). When the degree
is 2, then the Hamiltonian is Liouville, a classical result due to Darboux c.f. [27]. In degree 3,
there is the well-known case due to Goryachev-Chaplygin, and more recent cases due to
Selivanova, Dullin and Matveev and Dullin, Matveev and Topalov and Valent [28–33]. In
degree 4, Selivanova and Hadeler & Selivanova have produced a family of examples using
the results of Kolokol’tsov [34, 27]. Beyond degree 4, Kiyohara has provided a construction of a
smooth Riemannian metric H with an independent first integral F of degree k for any k≥1. In
this construction, the metric H depends on a functional modulus, and so for each k, the set is
infinite dimensional [35].

3.4. Super-integrable systems with a linear-in-momenta first integral

Let us review the work of Matveev and Shevchishin in more detail [36]. These authors impose
an additional formal constraint that the metric possess one first integral that is linear-in-
momenta. In conformal coordinates ðx, yÞ where H ¼ 1

2cðxÞðp2x þ p2yÞ, the existence of a cubic

integral is reduced to a second-order ODE involving c.

From a geometric perspective, it is more natural to introduce coordinates adapted to the
isometry group. That is, the existence of a linear-in-momenta first integral is equivalent to the
existence of an isometry group containing T1. The action of T1 on S1 induces a cohomogeneity-
1 structure. The fixed set of the T1 action is a set of points {p−, pþ} which are equidistant along

any minimal geodesic; and the principal T1-orbits are orthogonal to these geodesics. If
γ : ½−T,T� ! S2 is a minimal geodesic such that γð�TÞ ¼ p�, then we can let ðr,θÞ be ‘polar’
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coordinates adapted to this structure. The Hamiltonian H and polynomial-in-momenta inte-
gral F can be written in the adapted coordinates as

H ¼ 1
2

�
p2r þ sðrÞp2θ

�
, F ¼ eivθ · ∑

j¼0
ajðrÞpjrpN−j

θ , (41)

where v∈Z, 3≤N is a positive integer and the coefficients aj are to be determined. The equation
{H, F}≡0 is equivalent to a differential system that couples the coefficients a0,…, aN, s and an
anti-derivative S of vs:

dS ¼ vs dr, (42a)

daj ¼ 1
2
ðN þ 2−jÞaj−2 ds−aj−1 dS; ðj ¼ 0,…,NÞ, (42b)

ds ¼ 2vaN=aN−1 dr (42c)

where a−2 ¼ a−1 ¼ 0. It is clear that the general solution of (42b), without the compatibility
condition (42c), is obtained via repeated quadratures of products of s and S. The compatibility
condition distinguishes those solutions which may arise from (41). The behaviour of s at
r ¼ �T ultimately determines whether the solution obtained arises from a T1-invariant Rie-
mannian Hamiltonian H and an independent first integral F on T�S2.

In case N ¼ 3, the differential system reduces to a third-order nonlinear ODE similar to that
studied by Chazy, in his generalization of the Painlêvé classification ([37], Eq. (6)). Based on the
work of Matveev and Shevchishin [36], we know the solutions to this equation are real-analytic
and define a parameterized family of super-integrable Riemannian metrics with cubic-in-
momenta first integral. The latter authors do not solve the ODE explicitly.

Problem 3.7. Solve the N ¼ 3 case of the differential system (42).

It appears to the author that this differential system may be soluble via hypergeometric
functions. A successful resolution to the N ¼ 3 case will naturally lead to the higher degree
cases, which appear to be somewhat more involved.

Problem 3.8. Solve the higher degree cases of the differential system (42).

3.5. Super-integrable systems with a higher degree first integral

The author believes that the differential system 42 provides the key to understanding the
subspace of super-integrable Riemannian Hamiltonians which admit a cohomogeneity-1 struc-
ture. Super-integrability alone does not imply the existence of such a cohomogeneity-1 struc-
ture. Without this additional hypothesis, there is very little known. Indeed, the extremely
valuable construction of Kiyohara is the only construction that provides a smooth Riemannian
Hamiltonian with a polynomial-in-momenta first integral of degree N > 3–super-integrable or
not [35, 38].

Let us explain Kiyohara’s construction in some detail. Let H0 be the Riemannian Hamiltonian
of the standard unit sphere in R3. Let F0, F1 be linear-in-momenta first integrals of H0 that are
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linearly independent and let l≥k≥1 be integers such that N ¼ kþ l≥3. Define a polynomial-in-
momenta first integral G0 ¼ Fk0F

l
1. For almost all q∈S2, the functions G0,H0jT�

qS
2 are dependent

along two distinct lines through 0; this defines a pair of mutually transverse line bundles L��
over S2\fp�0 , p�1 g. The excluded, singular set consists of the anti-podal points p�j where Fj
vanishes identically on the fibre (equivalently, the corresponding Killing field vanishes). This
pair of line bundles provides a branched double covering

Φ : T2 ¼ R2=2πZ2 ! S2 (43)

with simple branch points at fp�0 , p�1 g ¼ ΦðπZ2Þ. The line bundles L�� pullback to the line

bundles R dxj on T2 ¼ {ðx1, x2Þmod2πZ}. Kiyohara shows that in these coordinates, the pull-
back of the function r which measures the time along the unique geodesic γ through fp�0 , p�1 g
(see Figure 4) satisfies the second-order PDE

∂2r
∂x1∂x2

þ 1
B1 þ B2

∂B1

∂x2

∂r
∂x1

þ 1
B1 þ B2

∂B2

∂x1

∂r
∂x2

¼ 0 (44)

where B1 and B2 are functions that describe the line bundles L� in terms of the basis
{dr, sin ðrÞ dθ}.
Kiyohara writes a function R ¼ r0 þ r where r0 is the solution to (44) given by Φ�r and r is a
solution of (44) with C2 small boundary conditions satisfying

rðs, 0Þ ¼ u1ðsÞ, rð0, sÞ ¼ u2ðsÞ, (45a)

where uiðsÞ ¼ uið−sÞ ¼ uiðπ−sÞ, forall i, s, and (45b)

uið½−E, E�Þ ¼ 0: (45c)

Then, by means of this perturbed function R, Kiyohara writes down an explicit formula for the
perturbed Riemannian Hamiltonian H and polynomial-in-momenta first integral F. The con-
dition for the Poisson bracket {H, F} to vanish is shown to reduce to the satisfaction of Eq. (44)
by R for the given values of B1 and B2 (this legerdemain is the real trick that makes the
construction work).

Condition (45b) ensures that R factors through Φ to a function on S2, while the condition (45c)
ensures that R is C∞ on S2 and coincides with r on a neighbourhood of the branch set fp�0 , p�1 g
(hence that H and F coincide with H0 and F0, respectively, on a neighbourhood of the cotan-
gent fibres of the branch set).

Let us now state several problems related to Kiyohara’s construction. First, Kiyohara’s
vanishing condition on the boundary values (45c) is used to deduce the Riemannian Hamilto-
nians are not real-analytic. Since all the remaining constructions involve real-analytic data, this
serves to show his examples are genuinely different.

Problem 3.9. Does Kiyohara’s construction extend to real-analytic boundary conditions u1, u2 that
satisfy (45b) ? Do these real-analytic metrics include other known cases?
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In particular, the obtained metrics are unlikely to have a T1 isometry group, so the question is
really whether the known examples in degree 3 and 4 are obtainable via this construction [12–
14, 28–30, 34, 39, 40].

Second, Kiyohara’s construction produces a polynomial-in-momenta first integral F factors

as Al
0A

m
1 where Ai are linear-in-momenta functions. It is clear that the reducibility of the first

integral F is forced by the desire to use a very simple branched covering.

Problem 3.10. Is reducibility of the first integral F necessary?

It ought to be fruitful to ask three related questions. The reducibility of F is very special, with
just two distinct factors.

Problem 3.11. Is it possible to extend Kiyohara’s construction so that the polynomial-in-momenta first
integral F has more than 2 distinct linear factors?

It would be natural to try to extend the construction to the case where the zeros all lie on the
same geodesic γ. More generally, one might attempt to mirror Kiyohara’s construction but in
a more abstract way: start with a simple ramified covering Φ : ∑ ! S2 with a branch set
Y⊂S2. Let F0 be a product of linear first integrals of H0 that vanishes identically on T�

YS
2 and

not elsewhere. The stumbling block is that we need to clarify the intrinsic geometric meaning
of the PDE that governs the perturbed systems (44).

Problem 3.12. Describe in explicit terms the third, independent first integral of H that is of least
degree.

Kiyohara proves in his paper that H is super-integrable (he proves the geodesic flow is 2π-
periodic, in fact), but that proof does not proceed by finding this third first integral.

Figure 4. Kiyohara’s construction. The zero set of the pair of Killing fields determines the equatorial geodesic γ. A choice
of zeros {pþ0 , p

þ
1 } determines the polar coordinate system ðr,θÞ.
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3.6. Three-dimensional configuration spaces

In comparison to the wealth of results and examples for surfaces that were surveyed above,
comparatively little is known about the three-dimensional analogues. Tăĭmanov tells us that if
the Tonelli Hamiltonian is completely integrable with real-analytic first integrals, then the

three-dimensional configuration space ∑ has a finite covering p̂ : ∑
^ ! ∑ such that the funda-

mental group π1ð∑
^ Þ is abelian and of rank at most 3 [41–43]. Based on the resolution of the

Poincaré conjecture, this result implies that, up to finite covering the only such configuration
spaces are

S3, S2 ·T1 or T3: (46)

The author generalized Kozlov’s result on surfaces to three-manifolds. In this result, if the
Tonelli Hamiltonian is completely integrable and the singular set is topologically tame, then
Tăĭamanov’s list extends to include those three-manifolds ∑ such that π1ð∑Þ is almost solvable
(equivalently, due to the resolution of the geometrization conjecture, ∑ admits either a Nil or
Sol geometry) [44]. Both results are sharp, like Kozlov’s, in the sense that all such admissible
configuration spaces admit a geometric structure and the Riemannian Hamiltonian of such a
structure is completely integrable with first integrals of the requisite type [45, 46].

There are a large number of questions that this strand of research has opened. Let us sketch a
few.

3.7. The 3-sphere

The case of S3 is perhaps best understood. It has been known since Jacobi proved the complete
integrability of the geodesic flow of an ellipsoid via separation of variables, that the Liouville
family of metrics on S3 is completely integrable. These systems possess three independent
quadratic-in-momenta first integrals.

Based on the analogous problem for the two-sphere,

Problem 3.13. Describe the structure of the super-integrable Riemannian Hamiltonians on S3.

Researchers who specialize in super-integrable classical and quantum systems have developed
tools for constructing and classifying super-integrable systems c.f. [47–49]. Unfortunately,
some key ingredients in these constructions lead to systems with singularities.

The first method is based on the cohomogeneity-1 structure of S3 with the group G ¼ SOð3Þ
acting as the linear isometry group of R3⊂R4. If one represents

S3 ¼ fðx, rÞjx∈R3, r∈R, jxj2 þ jrj2 ¼ 1g, (47)

then we see that G acts freely on T�S3\T�
FS

3 where F ¼ {ð0, � 1Þ} is the fixed-point set of the G-
action on S3. This is enough to see that any G-invariant Hamiltonian on T�S3 is non-
commutatively integrable (analogous to the same fact for S2). If K : soð3Þ� ! R is a positive-
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definite quadratic form, and Ψ : T�S3 ! soð3Þ� is the momentum map of the SO(3)-action,
then an invariant Riemannian Hamiltonian can be written as

H ¼ 1
2
p2r þ

1
2
sðrÞΨ�K, (48)

for some function s > 0 such that s · ð1� rÞ2 ! const:≠0 as r ! ∓1.

If one employs the ansatz of Matveev & Shevchishin (c.f. Section 3.3), one would like to find
first integrals that are polynomial-in-momenta of the form

F ¼ ∑
N

j¼0
bjðx, rÞ pjr Ψ�ηN−j (49)

where ηN−j : soð3Þ� ! R is a homogeneous polynomial of degree N−j. In (41), the pre-factor

exp ðivθÞ appears to ensure that the coefficients of the first integral F are common
eigenfunctions of the Casimir ΔS1 ¼ ∂2

∂θ2 parameterized by r. In the current case, the ansatz
suggests that the coefficients bj should factor as φλðθÞajðrÞ where φλ is an eigenfunction of the
Casimir ΔS2 with eigenvalue λ and θ ¼ x=jxj.
Problem 3.14. Extend the construction sketched, above to higher dimensional spheres.
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Abstract

Mixed cells (multicomponent cells) emerging in the development of Lagrangian-Eulerian
(ALE) or Eulerian numerical techniques for solving the gas dynamics and elastoplasticity
equations in multicomponent media contain either interfaces between materials or a
mixture of materials. There is a problem of correctly approximation of the equations in
such cells and the ALE code accuracy and performance depend on how the problem is
resolved. Many approximation methods use the equation splitting into two stages, one of
which consists in solving a given equation in Lagrangian variables. If mixed cells are
simulated, the system of equations describing the gas dynamics and elastoplasticity is
unclosed and there is a need to introduce additional closure relations that will allow
determining the thermodynamic parameters of components using the available data for
the mixture of components, as a whole. The chapter presents a review of the equation
closure methods and results of themethods verification using several test problems having
exact solutions.

Keywords: ALE method, mixed cell, closure model, numerical simulation, verification

1. Introduction

Mixed cells in arbitrary Lagrangian-Eulerian (ALE) or Eulerian methods contain interfaces
between different materials or a mixture of materials. In the next section, we will not distin-
guish these two methods, considering that both methods solve the advection equation, includ-
ing the vicinity of mixed cells. Most of these methods use a two-stage approximation of
equations. The first stage considers gas dynamics or elastoplasticity equations without convec-
tive terms. The convective transfer comes into play at the second stage. Among many similar
methods, we consider only the ALE methods that contain Lagrangian gas dynamics and
elastoplasticity in the pure form, and the problem of mixed cells at that particular stage is the
subject of research reported here. Note that mixed cells can be present even in purely

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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Lagrangian techniques, and the problems related to their presence should also be addressed in
this case.

Here, we will generally use the term “Lagrangian gas dynamics” (or simply “gas dynamics”),
bearing in mind that, in the case of elastoplasticity, this will also involve equation terms related
to the stress tensor deviator. Historically, several approaches to the problem of mixed cells in
gas dynamics associated with materials distinction in such cells have been considered. In this
chapter, we consider only the single-velocity model of matter. The major approach that has
become predominant these days uses complete thermodynamic distinction of materials.1 Next,
we will use the term “material” meaning that, mathematically, an interface can also divide
identical materials; moreover, one of the materials can be vacuum and/or a perfectly rigid
body.

Thermodynamic parameters in gas dynamics include density, internal energy, and pressure. If
other processes are modeled, the number of parameters increases; for example, for elastoplasticity,
additional parameters will include components of the stress tensor deviator. In addition to
thermodynamic parameters, volume fractions of constituent materials are introduced in each
mixed cell that can be used to determine the geometric location of the interface inside a mixed
cell, which is used in some models.2

This approach to materials identification allows one to model mixed cells containing not only
contacting but also intermingled materials. When mixed cells are used for gas dynamics
equations, additional closing relations are needed, which in fact define the interaction of
materials inside the cell (the subcell interaction). Most of the known models manage with
information about volume (or mass) fractions of the materials and their thermodynamic states
[12–26]. Such models can be divided into two classes according to the number of computa-
tional stages involved.3

The first class of models is based on introducing closure models at a single stage, while
the second class includes two-stage models, in which the second stage is in fact complemen-
tary to the first one and involves additional interaction between materials inside a mixed cell
(so-called subcell interaction).

Next, we often use the terms “model” and “method” without distinction. One should note
here that a method is understood to be an algorithm implemented in the form of a program
and based on some physical model.

1
Early in the development of Eulerian methods, a smaller number of parameters have been used to identify the materials;
for example, in [1, 2], mass fractions of the materials and average energy of matter were employed. Accordingly, other
closing relations were used, the required number of which in this case is plus one compared with the complete materials
distinction. The models thus considered include the “isobar-isothermal” and the “isobar-isodQ”models, which, although
successful in some respect, in the general case failed to deliver acceptable accuracy of results.
2
The problem of identifying the contact location based on the material volume fractions is beyond the scope of this study;
it is a separate problem discussed in dedicated studies (see, e.g. [1, 3–11]).
3
Our classification and description of models is limited to the case of two materials in a cell, although many formulas
mentioned in this chapter are also suitable for their larger number. For this reason, some models developed specifically for
the case of several materials in a cell are left beyond the scope of our review.
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Basic single-stage closure methods include the following:

1. Method based on the model of equal pressures of constituent materials (the P method) [12],

2. Tipton's method [13],

3. Delov's method based on the acoustic Riemann solver [14] (this approach is also used in the
DSS [22] and KSR [23] methods developed later),

4. The K&S method based on a local Riemann problem [15]. This method is not described in
this work because of its impracticability, as noted in [15], but its test simulation results are
given for comparison.

Note that these four models and methods developed on their basis are relaxation with respect
to pressure. In a number of studies, nonrelaxation methods have been proposed, which use the
following assumptions (models):

5. Equal velocity divergences (∇ � u) of the materials [17].

6. Equal pressure changes (Δ p) of the materials [18],

7. Equal velocities (Δ u) of the materials behind a weak shock wave [19].

Two-stage models include the stage of subcell interactions between the materials in the
nonequilibrium state; so the first stage here can only use models 5–7. This approach for closure
models has been proposed independently in [20, 21]. The subcell pressure relaxation method
in [20] is versatile and it is used in combination with models 5–7, denoted as the ∇ � u-PR, Δ p-
PR and Δ u-PR (pressure relaxation) methods.

All the above-mentioned methods do not employ the contact location inside a mixed
cell. However, there are methods that make essential use of the information about the
contact location. A method of this kind was first proposed in [21] and then developed in
the “interface-aware subscale dynamics” IA-SSD method [24, 25] for the multimaterial
case. It offers a two-stage model, the first stage of which employs the ∇ � u model. At the
second stage, driven by the materials’ individual pressures, the interface between the
materials moves normally to it. The interface is reconstructed based on the volume
fractions, and its motion is accomplished based on the solution of an acoustic Riemann
problem (model 3).

Let us point out one common feature (associated with the assumptions made in the models) of
all the above closure methods. Velocity in the methods is normal to the interface (definite or
imaginary) irrespective of interface location relative to the vector of velocity. In fact, they are
isotropic in the sense that compression (expansion) ratios of materials are assumed to be equal
in all directions. One can mention a number of other closure methods that employ algorithms
similar to those used in the above-mentioned models [27–33]. This property of the methods is
quite acceptable for most applications, but there are problems (see below), as applied to which
it results in significant errors in simulations.

In [34], anisotropic closure methods, ACM-1 and ACM-2, are proposed, which are an exten-
sion of models 5–7. They possess all the advantages of methods 5–7, which are central to the
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EGAK code [35] when modeling flows, for which one can assume that they are isotropic, but
have an important advantage when modeling more complex flows.

Apart from the basic closure method, mixed cells require additional relations to address the
ways of pressure and artificial viscosity calculations for the whole cell and artificial viscosity
calculations for the materials. Six approaches to calculate the artificial viscosity of materials are
discussed in [36].

2. Finite difference approximation of elastoplasticity equations

2.1. Initial equations for multimaterial elastoplasticity

The initial set of equations solved at the Lagrangian stage for 2D elastoplastic flows is the
following:

du
dt

¼ −
1
ρ
∇ � T, (1)

dρξ
dt

¼ −ρξ∇ � uξ, (2)

dβξ
dt

¼ βξð∇ � uξ−∇ � uÞ, (3)

deξ
dt

¼ 1
ρξ

SpðTξDξÞ, (4)

dr
dt

¼ u: (5)

In this set of equations: u(ux, uy) is the velocity, ρ is the density, T is the stress tensor, D is the
strain rate tensor, and е is the specific internal energy, βis the volume fraction of the material

(βξ ¼ Mξ
V ), r(x,y) is the radius vector. The subscript ξ is the material index; also note that in the

expression for the velocity divergence (or simply divergence for short) it relates to the diver-
gence as a whole, rather than to the velocity. Bold type here and below is used to indicate the
vector, tensor, and deviator.

Eq. (3) can be derived from the equation of continuity (2), in which the materials’ density is

substituted with its expression in the form of ρξ ¼ Mξ
Vξ
, where Mξ and Vξ are the mass and

volume of the materials in the Lagrangian cell. We obtain dVξ
dt ¼ Vξ∇ � uξ and then introduce an

expression for Vξ in terms of volume fractions Vξ = βξV into this equation. Thus, Eq. (3) is a
consequence of Eq. (2), and we give it here solely for the purpose of empathizing that the
volume fractions for multimaterial matter should also be updated to tn+1. In the single-material
case, Eqs. (1)–(5) come down to usual Lagrangian gas dynamics equations, because Eq. (3) is not
present in this case, and the quantities in other equations are written without material indices.
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Stress and strain rate tensors are expressed as follows:

T ¼
Txx Txy 0
Tyx Tyy 0
0 0 Tφ

2
4

3
5, D ¼

dxx dxy 0
dyx dyy 0
0 0 dφ

2
4

3
5: (6)

The stress tensor is represented as a sum of the spherical part (pressure p) and the deviator S(Sxx,
Syy , Sxy , Sφ). Deviator components are defined by the relation Sij = Tij - δijp.

For the materials, we define equations of state

pξ ¼ Pξðρξ, eξÞ, (7)

and equations to express the deviator Sξ as a function of the strain rate tensor Dξ

f ξðSξ,DξÞ ¼ 0: (8)

The specific form of Eq. (8) is determined by the model of matter adopted.

EGAK uses decomposition in physical processes, in which the pressure-related terms are
approximated at the Lagrangian gas dynamics stage, and the terms related to the stress tensor
deviator, at the other stage of the computation. In the present technique, materials can be both
different substances with their equations of state and vacuum.

2.2. Finite difference approximation of elastoplasticity equations

EGAK uses a quadrangular mesh with node-centered velocities and all the other quantities
(ρξ , βξ, eξ, pξ, Sξ) defined at cell centers and for each material individually. Also note that for
the purpose of program implementation, pressure in Eqs. (1)–(5) is replaced with a sum of
pressure and artificial (computational) viscosity for matter as a whole and for the materials,
p ! p + q and pξ ! pξ + qξ, respectively. Known quantities (basic variables) in Eqs. (1)–(5) in
the 2D case include ux , uy, ρξ , βξ, eξ, pξ, Sξ, and the quantities p, S, q, qξ, ∇�uξ, Dξ need to be
determined. In the following formulas, the subscript means discretization in space and the
material number ξ in the multimaterial case, and the superscript denotes discretization in
time. Cell-centered quantities are marked with a semi-integer superscript (for example, i +1/2),
and the node-centered ones, with an integer superscript (i). If in a specific formula it is clear
from the context that the superscripts are the same for all the quantities, they are omitted.
Cell masses in Lagrangian gas dynamics remain constant in the course of calculations, so
they have no temporal indexing.

Suppose that we know all the basic quantities at time tn and that we seek to update their values
at time tn+1 = tn + τ, where τ is the timestep chosen based on the requirement that the difference
scheme should be stable (these issues are beyond the scope of this work). Let us write the
difference scheme of EGAK for the multimaterial case.

First half-timestep (determination of predicted pressure)
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rnþ1=2 ¼ rn þ τ � un, (9)

Vnþ1=2
iþ1=2, jþ1=2 ¼ V rnþ1=2

iþ1, jþ1, r
nþ1=2
i, jþ1 , rnþ1=2

iþ1, j , r
nþ1=2
i, j

� �
, (10)

pnξ ¼ Pðρnξ, enξÞ, (11)

∇ � un ¼ ðVnþ1=2−VnÞ
ðτ � VnÞ , (12)

pnþ1=2
ξ ¼ pnξ−χ � ρn

ξ � ðcnξÞ2 � τ � ∇ � un
ξ: (13)

In Eq. (13), χ ¼ 0:6 (this value was chosen in [17]), cnξ is the speed of sound.

Full timestep

Mi, j ¼ 0:25 �
X
ξ

Mξ, i−1=2, j−1=2 þMξ, i−1=2, j−1=2 þMξ, iþ1=2, j−1=2 þMξ, iþ1=2, jþ1=2
� �

, Mξ ¼ ρξ � βξ � V,

(14)

Mi, j
ðunþ1

i, j −un
i, jÞ

τ
¼ ∇gnþ1=2 þ ∇ � Sn
� �

i, j
, (15)

) unþ1
i, j ¼ un

i, j−
τ

Mi, j

� �
� ∇gnþ1=2 þ ∇ � Sn
� �

i, j
, (16)

unþ1=2 ¼ ðun þ unþ1Þ=2, (17)

rnþ1 ¼ rn þ τ � unþ1, (18)

Vnþ1
ξ ¼ Vn

ξ þ τ � Vnþ1
ξ ∇ � unþ1

ξ , (19)

ρnþ1
ξ ¼ Mξ

Vnþ1
ξ

, (20)

βnþ1
ξ ¼ Vξ

Vnþ1 , (21)

enþ1
ξ ¼ enξ −

τ
ρnξ

� gnþ1=2
ξ � ∇ � unþ1=2

ξ − Snξ,xxd
nþ1=2
ξ,xx − Snξ,yyd

nþ1=2
ξ,yy − 2Snξ,xyd

nþ1=2
ξ,xy þ Snξ,xx þ Snξ,yy

� �
d
nþ1=2
ξ,ϕ

h i
:

(22)

In Eq. (22), gnþ1=2
ξ ¼ pnþ1=2

ξ þ qnξ. The methods to calculate the materials’artificial viscosity qnξ are
discussed in Section 4. The bar denotes the difference counterpart of a corresponding operator
(the formulas are generally known, so we skip them). In the following, we will not use the bars
assuming that all the operators are difference operators. We have not described the way of
updating the materials’ stresses, i.e., the approximation of Eq. (16), as it is beyond the scope of
this work; we only note here that these equations include components of the tensor Dξ.
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The formulas for total pressure, viscosity, and stress deviator are the following:

pnþ1=2 ¼
X
ξ

ψξp
nþ1=2
ξ ,

qn ¼
X
ξ

ψξq
n
ξ,

Sn ¼
X
ξ

ψξS
n
ξ:

(23)

where the factor ψξ is determined by the chosen closure model (see below).

Thus, the quantities that are not yet determined in Eqs. (14)–(22) include ∇ � uξ, ψξ, qξ, and Dξ.
To calculate these, one needs to use some closure relations, being the consequences of different
assumptions (models) about thermodynamic states of the materials in mixed cells.

When introducing the closure relations, one should fulfill some requirements resulting from
the laws of conservation.

Requirement 1 is additivity of volumes (the law of conservation of “volume”)

V ¼
X
ξ

Vξ

or
X

βξ ¼ 1,

(24)

the consequence of which is the relation

ΔV ¼
X
ξ

ΔVξ,

or

X
βξ∇ � uξ ¼ ∇ � u:

(25)

The natural extension of relation (25) is D ¼
X

βξDξ, which is fulfilled at

Dξ ¼ D
∇ � uξ

∇ � u
� �

: (26)

Formula (26) is used to determine Dξ in Eq. (22) and when approximating Eq. (16).

Requiment 2 is additivity of energies (the law of conservation of energy)

e ¼
X

αξeξ, (27)

where the mass fraction αξ ¼ Mξ
M is given by the following expression:
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αξ ¼ βξ �
ρξ

ρ
,

where
ρ ¼

X
βξρξ:

(28)

The requirement (27) can also be written for increments of specific energies

Δe ¼
X

αξΔeξ, (29)

where Δeξ is the energy increment for the constituent material, and Δ e, for the whole cell.

Let us consider closure methods for the case of approximation of gas dynamics equations. In
EGAK, the difference approximation of the energy equation (22) for the constituent materials
has the following form:

Δeξ ¼ −
τgnþ1=2

ξ

ρn
ξ

∇ � unþ1=2
ξ : (30)

We insert their expression (30) into Eq. (29) for Δeξ and, using Eq. (28), obtain

−
τgnþ1=2∇ � unþ1=2

ρ
¼ −

τ
X

β
ξ
gnþ1=2
ξ ∇ � unþ1=2

ξ

ρ
þ
X

α
ξ
Δe=ξ: (31)

Using Eq. (23) and the given ways of finding ∇ � uξ from Eq. (31) one can obtain the values of

Δe=ξ that represent additional changes in the materials’ internal energy to meet the energy
balance requirement.

Given that gnþ1=2
ξ ¼ gnþ1=2, it follows from Eq. (31) that

X
αξΔe

=
ξ ¼ 0. Thus, this term repre-

sents the change in the materials’ internal energy as a result of their pressure relaxation. If no

pressure relaxation is used, i.e., Δe=ξ ¼ 0, then the definitions of ψξ follow directly from the
closing conditions.

In the general case of nonequal pressures, the requirement Eq. (31) can be fulfilled, when some
conditions imposed on the function ψξ are satisfied. These conditions are discussed in Section 3.

Let us write the expression for ψξ as

ψξ ¼ βξλξ, (32)

where the quantity λξ is determined by the chosen model of distributing the total divergence
of the mixed cell to the constituent materials from the relation

∇ � uξ ¼ λξ∇ � u: (33)
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3. Closure methods for gas dynamics equations

There is no single closure method for gas dynamics equations in mixed cells that might be
suitable for all types of flow. Closing relations are quite numerous, but many of them are not
used nowadays and are of historical interest only. Next, we consider the most frequently used
closure methods, most of which have been implemented in EGAK.

3.1. Isotropic single-stage closure methods

It will be convenient to introduce some closure methods if we consider the 1D problem, as
shown in Figure 1. The i – 1/2th cell is mixed; it contains two materials; the interface is
denoted by point A. Depending on the way of velocity definition at the point A, one can
derive one or another method for calculating divergences (and densities) of the materials in
the mixed cell.

3.1.1. Method based on the equal pressure model

Method 1 uses the assumption that the materials have equal pressures (as proposed in [1]); in
addition, artificial viscosities are assumed to be equal, too:

pξ ¼ p,
qξ ¼ q: (34)

For EGAK, method 1 based on the model (Eq. (34)) has been developed in [37].

This method first calculates the energy increment for the cell as a whole:

ΔE ¼ ðenþ1=2−enÞM ¼ −
τðpnþ1=2 þ qnÞ

ρn ∇ � unþ1=2M

¼ −τðpnþ1=2 þ qnÞ∇ � unþ1=2Vn ¼ ðpnþ1=2 þ qnÞμΔV,
(35)

where μ ¼ −∇ � unþ1=2Vnτ=ΔV.

By analogy with Eq. (35), the energy increment equation for the materials can be rewritten by
adding respective material indices in the quantities ΔV and ΔE. Then, using expressions (25)
and (34), one can write the following closed system of equations:

Figure 1. Computational mesh. Point A is the interface.
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ΔEξ ¼ ðpnþ1=2 þ qnÞμΔVξ,

ΔV ¼
X
ξ

ΔVξ,

P
Mξ

Vn
ξ þ ΔVξ

,
Eξ þ ΔEξ

Mξ

 !
¼ pnþ1=2:

(36)

The system (Eq. (36)) contains 2N + 1 equation in 2N + 1 unknown ΔVξ, ΔEξ, and pn+1/2 and
can be solved iteratively. Solving the system of equations gives updated values of specific
energies and volume fractions of the materials:

enþ1=2
ξ ¼ eξ þ

ΔEξ

Mξ
, βnþ1=2

ξ ¼ Vξ þ ΔVξ

V þ ΔV
: (37)

Among the drawbacks of this method one should note its expensiveness because of the
iterative methods that are needed for solving the system (Eq. (36)) with complex equations of
state. Also note that the assumption about equal pressures can turn out to be inconsistent, for
example, in problems associated with energy release at every timestep.

3.1.2. Tipton's method

The model underlying Tipton's method is close to the model (34). Let us consider it as applied
to the difference scheme implemented in [22] and being slightly different from Eqs. (9)–(22). At
the first half-timestep, instead of Eq. (9) the method uses the equation rnþ1=2 ¼ rn þ τ=2 � un,

and in Eq. (13), χ ¼ 1:0. Then,

pnþ1=2
ξ ¼ pnξ−ρ

n
ξ � ðcnξÞ2 � τ � ∇ � un

ξ: (38)

This method assumes that the pressures of the constituent materials at the half-timestep
should equal the average pressure pnþ1=2, which requires

pnþ1=2 ¼ pnþ1=2
ξ þ Rnþ1=2

ξ , (39)

where Rnþ1=2
ξ is different for different materials. The following equation is used to determine

this quantity:

Rnþ1=2
ξ ¼ −ρnξ � cnξ � hn � ∇ � un

ξ, (40)

where hn is the characteristic mesh spacing.

Eqs. (38) and (39) can be combined into one equation.

pnþ1=2 ¼ pnξ−~Bξ
n∇ � un

ξ, (41)

where ~Bξ
n≡ðcnξÞ2ρn

ξ � τ 1þ hn
ðτcnξÞ

h i
:
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ξ , (39)

where Rnþ1=2
ξ is different for different materials. The following equation is used to determine

this quantity:

Rnþ1=2
ξ ¼ −ρnξ � cnξ � hn � ∇ � un

ξ, (40)

where hn is the characteristic mesh spacing.

Eqs. (38) and (39) can be combined into one equation.

pnþ1=2 ¼ pnξ−~Bξ
n∇ � un

ξ, (41)

where ~Bξ
n≡ðcnξÞ2ρn

ξ � τ 1þ hn
ðτcnξÞ

h i
:
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Eq. (41) together with the requirement (Eq. (25)) constitutes a closed set of algebraic equations
with the unknowns ∇ � un

ξ and pnþ1=2. As mentioned in Section 3.1.1, the system can be solved;
for ξ = 1, 2, the solution is the following:

∇ � un
ξ ¼ ðpnξ−pnÞ þ B

n � ∇ � un

~Bn
ξ

,

pnþ1=2 ¼ pn−B
n∇ � un, (42)

where the barred terms denote average values of the quantities

pn≡

X
ðβnξpnξ=~B

n

ξ
Þ

X
ðβnξ=~B

n

ξ
Þ

and B
n
≡
X βnξ

~B ξ

� �� �−1
: (43)

Eq. (42) leads to an expression for the change in the volume fractions

Δβnþ1=2
ξ ¼ βnξ

pnξ−p
n

~Bξ
n

 !
þ βnξ τ

B
n

~Bξ
n −1

 !" #
∇ � un: (44)

To update the quantities at tn+1, another assumption is made that increments of the quantities
after a full timestep are twice the half timestep increments:

Δβnþ1
ξ ¼ 2Δβnþ1=2

ξ

and

βnþ1
ξ ¼ βnξ þ 2Δβnþ1

ξ :

(45)

The difference energy equation for the materials in the cell is the following:

enþ1
ξ ¼ enξ−p

nþ1=2 ΔV
nþ1
ξ

Mξ
, (46)

where ΔVnþ1
ξ ¼ Δβnþ1=2

ξ � Vnþ1.

3.1.3. Delov's method

Method 3 based on the acoustic Riemann solver is proposed in [14]. Let us consider this
method as applied to the one-dimensional problem (see Figure 1) with a single velocity
component u. We consider the following acoustic Riemann problem in a mixed cell:

p ¼ pn1 , u ¼ unþ1=2
i−1 for m < mА,

p ¼ pn2 , u ¼ unþ1=2
i for m > mА,

(47)

where m is the mass variable (mA is the cell mass).

The set of equations for the quantities similar to the Riemann invariants along the advanced
and retarded characteristics has the following form:
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unþ1=2
A þ pnþ1=2

A

ðρcÞn1
¼ unþ1=2

i−1 þ pn1
ðρcÞn1

,

unþ1=2
A −

pnþ1=2
A

ðρcÞn2
¼ unþ1=2

i −
pn2

ðρcÞn2
:

(48)

The solution to this set will be the following expression for the velocity unþ1=2
A :

unþ1=2
A ¼ unþ1=2

i−1 � ðρcÞn1 þ unþ1=2
i � ðρcÞn2 þ pn1−p

n
2

ðρcÞn1 þ ðρcÞn2
: (49)

Now, let us write the equation of continuity for the problem at issue. By replacing the diver-
gence with a corresponding expression, we obtain the following equation:

1
ρnþ1=2 −

1
ρn

¼ τ � u
nþ1=2
i −unþ1=2

i−1

M
, (50)

where M ¼ ρh is the linear cell mass.

A similar equation for the materials is obtained if one of the velocities is replaced with a
velocity at the point A and a respective index is attached to density and mass. After substitut-
ing the expressions for velocity (49) into the equation of continuity (50), we obtain

1

ρnþ1=2
1
2

� �
−

1
ρn

1
2

� � ¼ τ
M 2

1

� � �
ðρcÞn 2

1

� �

ðρcÞn1 þ ðρcÞn2
� unþ1=2

i −unþ1=2
i−1

� �
þ pn1 − p

n
2

ðρcÞn1 þ ðρcÞn2

2
664

3
775: (51)

Thus, as distinct from models 1–3, the present model does not employ any equilibration
algorithm for pressure relaxation in this method, because the volume changes of the materials
are also controlled by their pressures.

The extension of Eq. (51) in the multimaterial case without constraint of the number of
materials can be written as follows:

1

ρnþ1=2
ξ

¼ 1
ρn
ξ
þ λn

ξ

αn
ξ
� 1

ρnþ1=2 −
1
ρn

� �
þ ω � τ
βnξ � ρn

ξ � hn
ðpnξ − pnPÞ �

1
ðρсÞnP , (52)

where

pnP ¼ 1
N

XN

ξ¼1

pnξ, (53)

ðρcÞnP ¼ 1
N

XN

ξ¼1

ðρcÞnξ, (54)
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� � �
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� �
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3
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Thus, as distinct from models 1–3, the present model does not employ any equilibration
algorithm for pressure relaxation in this method, because the volume changes of the materials
are also controlled by their pressures.

The extension of Eq. (51) in the multimaterial case without constraint of the number of
materials can be written as follows:

1

ρnþ1=2
ξ

¼ 1
ρn
ξ
þ λn

ξ

αn
ξ
� 1

ρnþ1=2 −
1
ρn

� �
þ ω � τ
βnξ � ρn

ξ � hn
ðpnξ − pnPÞ �

1
ðρсÞnP , (52)

where

pnP ¼ 1
N

XN

ξ¼1

pnξ, (53)

ðρcÞnP ¼ 1
N

XN

ξ¼1

ðρcÞnξ, (54)
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λn
ξ ¼ 1

ðN−1Þ 1−
ðρcÞnξ
XN

ζ¼1

ðρcÞnζ

0
BBBB@

1
CCCCA
, (55)

where hn is the characteristic mesh spacing, and ω∼1 is the factor introduced to improve
stability conditions of the difference scheme.

From Eq. (55), using Eq. (12), one can obtain an expression for divergences:

∇ � un
ξ ¼ λn

ξ

βnξ
� ∇ � un þ ω �

ðpnξ − pnPÞ
βnξ � hn � ðρсÞnP

: (56)

Now, let us consider the quantity λn
ξ. The change in the materials’ volume, as we see from

Eq. (55), can be written as

Vnþ1
ξ −Vn

ξ ¼ λn
ξ

βnξ
� ðVnþ1−VnÞ þ ω � τ �

ðpnξ − pnPÞ
ðρсÞnP : (57)

From this, using the requirement (Eq. (25)), we obtain that the equality
XN

ξ¼1

λn
ξðβnξÞ−1 ¼ 1 must

be fulfilled. One can easily see that in the 1D case, for ω = 1 andN = 2, Eq. (52) includes Eq. (51).

Now, let us show that the quantity λn
ξðβnξÞ−1 can be taken as a function ψξ (ψξ ¼ λn

ξðβnξÞ−1) for
determining the average pressure using Eq. (23). For this purpose, it will suffice to consider the
case when the materials have equal pressures. Indeed, in this case, the second term in (56) is
equal to zero, and to meet the energy additivity requirement (31), it will be sufficient to assume
that in Eq. (23)

ψξ ¼ λn
ξ=β

n
ξ: (58)

If the materials have different pressures, when we use Eq. (58), the right-hand member of the
energy equation should be corrected by Δe′ξ, for example, in the form of

Δe′ξ ¼ ω � τ
αξρn � hn �

ψξ

ðρcÞnΣ
�
X
ξ

pnξ � ðpnξ−pnΣÞ: (59)

This method provides good results in Lagrangian calculations, when the materials’ volume
fractions in the cell are invariable and close to each other, i.e., at 1≫βξ≫0. However, the values
of β in ALE calculations can range freely within 0 < β < 1 and, at β close to zero, the method
gives a noticeable error associated with the presence of division by β in Eq. (58). This situation
is physically attributed to the fact that, in Riemann problem calculations, waves travel some
distance that must be equal to or less than the size of the region occupied by each of the
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materials. As the choice of the timestep is based on the Courant constraint, the necessary
requirement can be violated, which leads to unphysical results (e.g., a negative updated value
of material volume). To fix this, additional constraints on volume increments are required.

3.1.4. Method 5 based on the equal compressibility model

Method 5 rests upon the most frequently used model of equal compressibility of materials, or
to put it differently, of their equal divergences. The model has been proposed in [17]; it has also
been considered in [38, 39] and is formulated as follows:

∇ � un
ξ ¼ ∇ � un: (60)

Naturally, it is also assumed that ∇ � unþ1
ξ ¼ ∇ � unþ1.

Thismethod,whichappears at first glance tobe strange, results fromtheassumption that thevelocity
at the point A (Figure 1) is determined by distance-linear interpolation between nodal velocities. In
the 2D case, thismethod is generalized on the assumption of volume-linear interpolation.

In this method, λξ = 1 and formula (25) gives

ψξ ¼ βξ, (61)

which ensures the fulfillment of the requirement (31) at Δe′ξ ¼ 0. As a result, formula (23)
transforms to

p ¼
X

βξpξ: (62)

Thus, all the quantities we need to solve Eqs. (9)–(22) are defined.

Formula (62), which is natural for a homogeneous mixture of ideal gases, has a simple inter-
pretation for a heterogeneous mixture. Let us consider a mixed cell containing two materials of
volume V0 (see Figure 2).

Let us assign pξ to the centers of their volumes. If the volume is used as a variable, then the
linear interpolation of pressure over the cell volume can be written as

pðVÞ ¼ 2 � p2− p1
Vo

V−
V1

2

� �
þ p1: (63)

Figure 2. Graphic illustration of Formula (62).
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If we insert the value of V ¼ V0=2 into Eq. (63), we will obtain the very same Formula (62). It is
easy to demonstrate that for the case of an arbitrary number of materials, the value of pressure
at the point V0=2 will also be defined by Formula (62) (first, two materials are considered, and
then other materials are added one by one). Thus, in the heterogeneous case, for linear
interpolation of pressure between the materials’ pressures, Formula (62) defines the pressure
at the volume center of the mixed cell. As the approximation of the momentum equation uses
cell-related pressures, Formula (62) is consistent enough for determining the average pressure
in the mixed cell.

Strengths and weaknesses of method 5 are evident. It is easy to implement and inexpensive in
operation, but it can lead to nonphysical states of the materials. The point is that the materials
in the mixed cell in calculations by this method are compressed uniformly, which leads to
different pressures of the materials, which do not relax with time (see the test calculations in
Section 5). Nevertheless, the method delivers quite acceptable results when used for flows with
distinct interfaces.

3.1.5. Method 6 based on the equal pressure increments model

Bondarenko and Yanilkin [18] proposed a closure method based on the equality of pressure
increments of the materials in the mixed cell. This model is mathematically expressed as

ρξc
2
ξ∇ � uξ ¼ ρζc

2
ζ∇ � uζ: (64)

The condition (64) is derived as follows. For adiabatic flows,

∂p
∂t

¼ ∂p
∂ρ

� ∂ρ
∂t

¼ c2ρ∇ � u: (65)

Going over in Eq. (65) to the materials and claiming that ∂pξ
∂t ¼ ∂pζ

∂t , we obtain the condition (64).

The set of algebraic equations (64), Eq. (25) is closed, and its solution is given by

∇ � un
ξ ¼ λξ∇ � un, (66)

where

λξ ¼ βk
ρkc

2
k

� �−1

� ðρξc
2
ξÞ−1: (67)

When this model is used in calculations for adiabatic flows, pressures will stay approxi-
mately equal, if the materials’ initial pressures in the cell are equal. However, in some cases,
pressures may turn out to be different: if energy release is specified for one of the materials;
behind a strong shock in the mixed cell, because the condition of equal pressure increments
is incorporated in the adiabatic approximation; after calculating convective fluxes at the
Eulerian stage, etc. In this case, the use of this model in its original form is associated with
some problems.
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One of them is the following. Let pnξ ≠ p
n
ς . For an ideal gas, the following estimate is true:

∇ � uξ ∼ ðρξc
2
ξÞ�1 ∼ ðγξpξÞ�1: (68)

It follows from Eq. (68) that at close values of γξ, the values of ∇ � uξ are inversely proportional
to pξ. As a result, the material with a lower pressure relaxes more actively on relief, with an
opposite trend in compression. However, according to the physics of the process, pressure
relaxation should take place in any case. The predicted pressure for the lower pressure mate-
rial can even turn out to become negative. To fix this flaw, in the case of cell expansion, method
5 uses a requirement that relative rather than absolute pressure increments of the materials
should be equal. Let us write the modified equation (Eq. (65)) as

∇ � uξ≈ −
Δpξ
pξ

� pξ
τpξdpξ=dpξ

, (69)

require that the condition Δpξ=pξ ¼ Δpζ=pζ is fulfilled, and obtain formula (70):

λξ ¼ −
p
ξ

p
ξ
c2
ξ

� 1X
βkpk=ðρkc2kÞ

: (70)

This value of λξ will also be used in Eq. (32) to determine ψξ, which meets the requirement (31)
at Δe′ξ ¼ 0.

3.1.6. Method 7 based on the equal velocity increments model

This model has been proposed in [19]. The assumption that the materials’ velocity increments
are equal that is the consequence of the fact that the set of gas dynamics equations is solved in
the one-velocity approximation. Since the materials’ velocities in the mixed cell are equal at
any time, it is natural that the changes in the materials’ velocities at every timestep will also be
equal. One can treat changes in physical quantities over a timestep as those resulting from the
propagation of some perturbations. If one assumes that these perturbations are plane acoustic
waves, for which Δρ=ρ ¼ Δu=c, then for ∇ � uξ one can write the following expression:

∇ � uξ≈ −
Δρξ

ρξτ
¼ −

Δuξ
cξτ

: (71)

Considering that the materials’ velocity increments Δuξ in the mixed cell are assumed to be
equal, for ∇ � uξ we obtain the following relation (72):

cξ∇ � uξ ¼ cζ∇ � uζ: (72)

The set of algebraic equations (72) and (25) is closed, and its solution can be given by
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∇ � un
ξ ¼ λξ∇ � un, (73)

where

λξ ¼ cξ
X
k

βk
ck

 !−1

¼ c
cξ

, (74)

with

c ¼
X
k

βk
ck

 !−1

:

This value of λξ will also be used in Eq. (32) to determine ψξ, which satisfies the requirement
(31) at Δe′ξ ¼ 0.

3.1.7. Pressure relaxation methods

The use of models 5–7 as single-stage methods in real simulations is associated with a number
of problems that sometimes lead to inconsistent results. All these cases are related to the
absence of the pressure relaxation mechanism for materials in mixed cells. The analysis shows
that, even in model 6, despite the equal pressure increments of the materials at a timestep,
equality of pressures at tn+1 is not always the case. The situation in the other twomodels is even
worse.

For this reason, methods 5–7 that can be used as single-stage methods are combined with
subcell pressure relaxation. Next, we consider two known relaxation methods. In all the two-
stage isotropic closure models, cell divergence is redistributed among the materials only if it is
different from zero. As for the second (subcell) stage of the models, it involves interactions
between the materials if these are in the nonequilibrium state with no mandatory requirement
that the divergence should be nonzero.

3.1.7.1. The PR method

Let us consider the PR pressure relaxation method proposed in [20]. As the materials occupy
finite volumes in the mixed cell, equilibration of the materials’ pressures occurs not instanta-
neously (instantaneous pressure equilibration occurs only at the points of the surface, along
which the materials contact each other), but over some time in several timesteps.

This method calculates ∇ � uξ at the timestep in two stages:

∇ � uξ ¼ ∇ � uξ1 þ ∇ � uξ2: (75)

In Eq. (75), ∇ � uξ1 is the material's divergence at the first stage obtained by one of the above
methods. The second stage includes pressure relaxation of the materials. The second stage
imposes the requirement that both ∇ � u and the total internal energy, i.e., ΔE2 = 0, should
remain unchanged at that stage. Pressure relaxation is implemented by calculating additional
divergences of the materials ∇ � uξ2 by the formulas
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∇ � uξ2 ¼ −
Δpξ
τρξc

2
ξ
, (76)

where

Δpξ ¼ A
cτ
h
ðp−pξÞ, (77)

where p is the average pressure. Expression (76) was derived using a known relation in the
adiabatic approximation, Δp ¼ −ρc2τ∇ � u. The factor cτ=h, equal to the ratio of the timestep to
the characteristic pressure equilibration time of the mixed cell h=c, determines the fraction of
the materials’ pressure difference, by which the materials’ pressure equalizes. According to the
meaning of expression (77), A ∼ 1; in this case, the materials’ pressures will not relax over a
single timestep.

As p in the equilibration algorithm (not to confuse with the average pressure at the basic
stage done by Eq. (23)) we take Eq. (62). Then, the requirement that the cell volume should be

constant at this stage,
X

βξ∇ � uξ2 ¼ 0, will be satisfied automatically. The choice of the

formula for p is ambiguous. For example, the choice based on Eq. (23) may prove to be
unbeneficial. Let us illustrate this with the following example. Suppose a mixed cell contains
two ideal gases having the same EOS γ1 = γ2 = γ, but disparate pressures and volume
fractions. Let p1 = 1000, β1 = 0.9 and p2 = 1, β2 = 0.1. Using Eqs. (23) and (25) combined with
the relation ρξc

2
ξ ¼ γξpξ, one can easily calculate that p = 10. Thus, the cell-average pressure

calculated by Eq. (23) is a hundred times lower than the pressure in the material occupying
nearly the whole cell. Formula (62) is free of this flaw and, as shown above, has a certain
mathematical basis.

This method results in the internal energy exchange between the materials. Indeed, let us
represent the total change in the materials’ internal energies as

ΔE ¼ −PþΔVþ−P−ΔV−, (78)

where
Pþ ¼

X
βξpξ if pξ > p;

P− ¼
X

βξpξ if pξ ≤ p
and ΔVþ and ΔV− are the volume changes of these materials.

With pressure equilibration, the materials with Pþ expand, so ΔVþ > 0 and ΔV− < 0. As far as it
follows from the volume conservation condition that ΔVþ ¼ jΔV−j, and by definition Pþ>P−, ΔE
in the pressure equilibration procedure by Eq. (78) will always be negative. This situation is
associated with the fact that motion of interfaces causes internal (subcell) motion in the cell, and
part of the cell's internal energy converts into the subcell kinetic energy. Since the subcell kinetic
energy is not taken into account in the calculations, it is returned to the materials in the form of
internal energy increments Δe′ξ in accordance with the equation
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constant at this stage,
X

βξ∇ � uξ2 ¼ 0, will be satisfied automatically. The choice of the

formula for p is ambiguous. For example, the choice based on Eq. (23) may prove to be
unbeneficial. Let us illustrate this with the following example. Suppose a mixed cell contains
two ideal gases having the same EOS γ1 = γ2 = γ, but disparate pressures and volume
fractions. Let p1 = 1000, β1 = 0.9 and p2 = 1, β2 = 0.1. Using Eqs. (23) and (25) combined with
the relation ρξc

2
ξ ¼ γξpξ, one can easily calculate that p = 10. Thus, the cell-average pressure

calculated by Eq. (23) is a hundred times lower than the pressure in the material occupying
nearly the whole cell. Formula (62) is free of this flaw and, as shown above, has a certain
mathematical basis.

This method results in the internal energy exchange between the materials. Indeed, let us
represent the total change in the materials’ internal energies as

ΔE ¼ −PþΔVþ−P−ΔV−, (78)

where
Pþ ¼

X
βξpξ if pξ > p;

P− ¼
X

βξpξ if pξ ≤ p
and ΔVþ and ΔV− are the volume changes of these materials.

With pressure equilibration, the materials with Pþ expand, so ΔVþ > 0 and ΔV− < 0. As far as it
follows from the volume conservation condition that ΔVþ ¼ jΔV−j, and by definition Pþ>P−, ΔE
in the pressure equilibration procedure by Eq. (78) will always be negative. This situation is
associated with the fact that motion of interfaces causes internal (subcell) motion in the cell, and
part of the cell's internal energy converts into the subcell kinetic energy. Since the subcell kinetic
energy is not taken into account in the calculations, it is returned to the materials in the form of
internal energy increments Δe′ξ in accordance with the equation
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−
τ
ρn
X
ξ

βξðpnþ1=2
ξ þ qnξÞ∇ � unþ1=2

ξ2 þ
X
ξ

αξΔe′ξ ¼ 0, (79)

The quantity ∇ � unþ1
ξ2 present in this expression is calculated by the formula

∇ � unþ1
ξ2 ¼ ∇ � un

ξ2ð1−Acτ=hÞ:

It remains to decide how to distribute the dissipated kinetic energy among the materials

(formula (79) defines only the total dissipated energy ΔE ¼
X
ξ

αξΔe′ξ). In [20], it is assumed

that Δe′ξ ¼ Δe′. In this case, for all the materials in the mixed cell we obtain from Eq. (79) that

Δe′ξ ¼ Δe′ ¼ τ
ρn
X
ξ

βξðpnþ1=2
ξ þ qnξÞ∇ � unþ1=2

ξ2 : (80)

Note that this pressure relaxation approach is universal, i.e., it is independent of the way, the
total velocity divergence in the mixed cell is distributed among the materials. In EGAK, it is
employed for the three above-mentioned methods. However, its application to physically
inconsistent generation of pressure difference between the materials through the basic closure
relation may lead to excessive energy exchange between them, so for each specific method its
consistency needs to be validated by test simulations.

3.1.7.2. Method of Barlow, Hill and Shashkov (BHS)

This method is described in detail in [25]; here we briefly summarize and illustrate the basic
concept of the method for the case of two materials, which is sufficient for understanding the
whole method. In its complete form, the method has been developed for the multimaterial
case; for details see [25].

This method assumes that the total change in the material volume over a timestep is the sum of
two terms:

ΔVξ ¼ ΔV1ξ þ ΔV2ξ, (81)

where the subscripts 1 and 2 denote the two stages of the closure model.

The first stage employs model 5, which assumes that the materials’divergences are equal and
do not require the information on the contact location in the cell. The equality of divergences
means that

ΔV1ξ ¼ β1ξΔV: (82)

The second (subcell) stage uses the model based on the acoustic Riemann problem (Delov's
model), which calls for the reconstruction of the contact location in the mixed cell. In cell 1234,
as shown in Figure 3, it is the segment AB.
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After the first stage, P1 > P2. Then, after the subcell stage, the contact will move to the location
CD. The quantity of volume increment is represented by the quadrilateral ABCD determined
based on the solution of the acoustic Riemann problem

ΔV2 ¼ p1− p2
ρ1c1 þ ρ2c2

SABτn, (83)

where all the unindexed quantities are taken after the first stage, and SAB is the area of the
boundary between the materials.

Thus,

ΔV21 ¼ ΔV2,
ΔV22 ¼ −ΔV2:

(84)

The updated volumes of the materials calculated by formula (81) accounting for the volume
increments must satisfy the following inequalities:

Vnþ1 > Vnþ1
ξ > 0, (85)

which, however, is not always the case for the same reason as in Delov's method (see the
remark at the end of Section 3.1.3). Therefore in [25], the authors introduce constraints on
volume increments, which complicate the method significantly, especially in the multimaterial
case.

3.2. Anisotropic closure models

3.2.1. Model fundamentals

Let us consider two limiting cases of contact location relative to the wave motion (shock,
acoustic, or elastic wave) presented in Figure 4, in which cells contract or expand, i.e., the
divergence is nonzero. In the first case (Figure 4a), most of motion is normal to the interface,
so all the above models 1–7, each having its own accuracy, are suitable. In the second case
(Figure 4b) most of motion occurs along the interface, while the lateral motion is insignificant

Figure 3. Contact location reconstructed after the first stage.
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and is therefore auxiliary. It means that the materials contract or expand tangentially to the
interface; thus, equality of compressibilities, i.e., model 5, may be more consistent in this case.
Indeed, calculations show that, for example, using models 6 and 7 for such flows in the
elastoplastic case one can obtain a considerable error, while model 5 provides good accuracy.

The above fact implies that closure models 5–7 are inappropriate for modeling such flows.
Thus, to ensure acceptable modeling accuracy for the two different types of flow (in different
directions relative to the interface), different closure relations need to be used. For this pur-
pose, two-stage models are proposed.

3.2.2. The ACM-1 model

At the first stage in the anisotropic model ACM-1 [34], matter in the mixed cell moves as a
whole, and all nonuniformities (including the interface) are assumed to be frozen. The freezing
condition in terms of closing in the first approximation means that the materials’ divergences
are equal.

The second stage includes relaxation of pressure (and stresses) concurrent with such motion. The
work [34] suggests using the above pressure relaxation procedure at this stage with the degree
of relaxation made dependent upon the mutual orientation of the velocity direction and the
interface. If the velocity is normal to the interface, the pressure relaxation is the highest, and if
the velocity is directed along the interface, it is the smallest.

In the implementation of the ACM-1 model, two stages are used to calculate ∇ � uξ at a
timestep

∇ � uξ ¼ ∇ � uξ1 þ ∇ � uξ2: (86)

In Eq. (86), ∇ � uξ1 is calculated at the first stage in accordance with closure model 1:

∇ � uξ1 ¼ ∇ � u: (87)

The second stage includes pressure relaxation of the materials in mixed cells according to
the algorithm, basically similar to the algorithm described in Section 3.1.7.1. The only
distinguishing feature is that for the ACM-1 model, the coefficient A in Eq. (76) depends on

Figure 4. Two cases of contact location relative to wave motion.
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the mutual orientation of the velocity and the interface. The total divergence is written as the
sum of two components:

∇ � u ¼ ∇ � uτ þ ∇ � un, (88)

obtained by velocity decomposition to two components: along the interface (uτ) and normal to
it (un). We also assume that

A ¼ A0 � ∇ � un

∇ � u , (89)

where A0 is some constant.

Thus, the coefficient A is a variable in this case. If the velocity is normal to the interface
(Figure 4a), ∇ � un ¼ ∇ � u and A = A0; this is the case with the highest pressure relaxation. If
the velocity is directed along the interface (Figure 4b), ∇ � un ¼ 0 and A = 0, i.e., there is no
pressure relaxation at all, and only the first stage of the closure method is in effect, i.e.,
formula (87).

The constant A0 in Eq. (89) must be determined based on test simulation results. In [34], its
value was determined in several simulations, and it proved to coincide with the value of the
constant A in Section 3.1.7.1, i.e., A0 = 1.

3.2.3. The ACM-2 model

The anisotropic model ACM-2 is formulated as follows. We divide the divergence of the entire
cell and its materials into two components: normal and tangential (relative to the contact
location):

∇ � u ¼ ∇ � un þ ∇ � uτ

∇ � uξ ¼ ∇ � uξn þ ∇ � uξτ
: (90)

Along the interface, the materials are assumed to have equal compressibilities, i.e., the distri-
bution of the corresponding divergence component among the materials is described by the
relation

∇ � uξτ ¼ ∇ � uτ: (91)

As for the divergence in the direction normal to the interface, it can be distributed to the
materials using any of closure models 5–7. In this work, we use model 7, which, as shown in
[40, 41], is the most widely applicable with respect to modeling different kinds of flow. It
follows from it that

∇ � uξn ¼ λξ∇ � un

λξ ¼ cξ
X
k

βk
ck

 !−1
: (92)

Once this part of divergence is distributed to the materials, relaxation of their pressures is
carried out by the algorithm described in Section 3.1.7.1, which makes an additional
contribution,∇ � u′

ξn, to the divergence ∇ � uξn:
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∇~�uξn ¼ ∇ � uξn þ ∇ � u′
ξn: (93)

The ultimate formula for the distribution of ∇ � u among the materials will be

∇ � uξ ¼ ∇~�uξn þ ∇ � uξτ: (94)

4. Artificial viscosity

For mixed cells, closure relations for calculating divergences of constituent materials are
insufficient. Such cells require an additional relation to determine the artificial viscosity for
the cell as a whole and for each individual material. Two approaches can be used to calculate
the viscosity of the materials.

The first approach is based on viscosity calculations directly for the materials based on their
individual parameters. The viscosity for matter as a whole is then calculated based on the
procedure used to calculate the average pressure from the materials’ pressures.

The second approach is based on the calculations of the viscosity for the cell as a whole based
on the cell-average parameters of matter and its distribution to the materials according to some
assumptions on the way of its distribution.

The first approach is more expensive both in terms of research effort, and in terms of compu-
tations; therefore, the less complicated second approach has been developed more widely. This
work mostly considers viscosity definition procedures based on the second approach.

4.1. Artificial viscosity for matter as a whole

The viscosity of matter as a whole in EGAK is calculated in the cells, and it is a combination of
the von Neumann and Richtmyer type quadratic viscosity and linear viscosity

qn ¼ C1 � ρnðhn∇ � unÞ2 þ C0 � ρn � с � hn∇ � un if ∇ � un < 0

qn ¼ 0 if ∇ � un≥0
:

(
(95)

In Eq. (95), C1 = 1 and C0 = 0.2 are the fixed coefficients. In addition, expression (95) contains
the characteristic dimension h and the divergence ∇ � un of the cell. Here, we will not address
the issues of determining these quantities, as it does not matter for our purposes. Let us
consider the approaches to viscosity distribution to materials.

4.2. Artificial viscosity of materials in mixed cells

The research summarized below has been carried out in [36]. Viscosity calculations for
materials represent an ambiguous problem; for solving it correctly, it is usually insufficient
to have data on the subcell behavior of the materials. The way of the materials’ viscosity
representation governs the distribution of energy dissipated in the cell on shock propaga-
tion to the materials. The problem of energy distribution to the materials is a subcell
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problem that lacks information needed for obtaining the exact solution. In reality, the
shock front width is generally much smaller than the mesh spacing, so the shock propa-
gates through each material in the heterogeneous mixture practically independently.
Shock parameters in each material are different, and they differ from average values in
the mixed cells, so it is practically impossible to determine uniquely the fraction of
dissipated energy for each material. Pressures and velocities of the materials are different
behind the shock, and the processes of pressure and velocity relaxation provide additional
redistribution of dissipated energy between the materials.

When considering the approaches to viscosity definition for the materials, let us characterize
these approaches in terms of dissipated energy distribution among the materials and resulting
changes in the materials’ pressures at a timestep. Before we consider different kinds of material
viscosities, let us note that the cell-average value of viscosity is determined using Eq. (23), i.e.,

q ¼
X

ψξqξ, ψξ ¼ βξλξ, where λξ is a normalizing factor (see Section 3), which imposes a

constraint on the closure methods (all the procedures described below have been studied using
EGAK on methods 5–7 and ACM-1).

In accordance with the difference scheme of EGAK, the viscosity-related change in the mate-
rials’ specific internal energy over a timestep is given by the formula

Δeξ ¼ −
qnξ
ρn
ξ
� λn

ξ � τ � ð∇ � unþ1=2Þ: (96)

The viscosity-related change in the materials’ pressure at a timestep can be obtained as follows.
For adiabatic flows, it holds true that

Δp ≈
∂p
∂ρ

� �

S
� Δρ ≈ −ρ � c2 � τ � ∇ � u: (97)

considering that Δρ≈−ρ � ∇ � u � τ.
Using the EOS p = P(r,e), the total pressure change at a timestep in the general case can be
represented as

Δp ≈
∂p
∂ρ

� �

e
Δρþ ∂p

∂e

� �

ρ
Δe: (98)

For adiabatic flows, the energy increment is calculated by the formula

Δe ¼ −
p
ρ
� τ � ∇ � u: (99)

Substituting this expression into Eq. (98) and comparing it with Eq. (96), considering Eq. (97),
we obtain
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∂p
∂ρ

� �

e
þ ∂p

∂e

� �

ρ
� p
ρ2 ¼ c2: (100)

On shock propagation, the energy increment is calculated by the formula

Δe ¼ −
pþ q
ρ

� τ � ∇ � u: (101)

Using Eq. (100) from Eq. (98), we obtain the total pressure increment in the form of

Δp≈− ρ � c2 þ ∂p
∂e

� �

ρ
� q
ρ

" #
τ � ∇ � u: (102)

It follows from Eq. (102) that the materials’ viscosity-related pressure increment at a timestep
equals

Δpqξ≈−
∂pξ
∂eξ

� �

ρ
� q

n
ξ

ρn
ξ
� λn

ξ � τ � ð∇ � unþ1=2
ξ Þ: (103)

Now, let us consider models to material viscosity definition. Six models have been explored.
Table 1 provides their descriptions and formulas and changes in specific energy and pressure
in accordance with Eqs. (96) and (103).

Thus, in these six models to the materials’ viscosity definition, distribution of dissipated
energy to the materials is differently dependent on their density, speed of sound, and diver-
gence. The choice of one model or another depends both on the closure method, and on the
modeled problem. Based on the test calculations in [36], the best performance was demon-
strated by model 3.

Description of the approach to calculating qξ
Formula Δeξ Δpξ

1 Equal to the cell-average viscosity qξ ¼ q λξ=ρξ ∂pξ
∂eξ

� �
ρ
� λξ
ρξ

2 Viscosity with its quantities ρξ , hξ ¼ βξh,∇ � uξ qξ ¼ q
ρξβ

2
ξλ

2
ξX

ρkβ
3
kλ

3
k

β2ξλ
3
ξ

∂pξ
∂eξ

� �
ρ
β2ξξ

3
ξ

3 Proportional to material densities qξ ∼ ρξ qξ ¼ q
ρξX
ρkβkξk

λξ ∂pξ
∂eξ

� �
ρ
λξ

4 Same energy increment Δeξ ¼ Δeζ qξ ¼ q
ρξ
ρλξ

Δeξ ¼ Δeς ∂pξ
∂eξ

� �
ρ

5 Same increment ΔpξΔpξ ¼ Δpζ qξ ¼ q
ρξ

λξ
∂pξ
∂eξ

� �
ρ

X βkρk
ð∂pk=∂ekÞρ

1
ð∂pξ=∂eξÞρ

Δpξ ¼ Δpς

6 Proportional to Δpξ in adiabatic

approximation qξ ∼△pξ

A ·ρξc
2
ξ ¼ ð∂pξ=∂eξÞρqξ=ρξ , where A is the

proportionality factor

λξρξc
2
ξ

ð∂pξ=∂eξÞρ
λξρξc

2
ξ

Table 1. Models to calculate the viscosity and specific energy and pressure increments of the materials.
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5. Method for calculating mixed cells with vacuum

One of the materials available in EGAK is a zero-pressure “vacuum.” For the case of vacuum, a
special algorithm has been developed, which is the same for closure methods 1 and 5–7. The
development of this algorithm was motivated by the fact that the pressure for vacuum is
specified rather than controlled by the closure method.

In a mixed cell with vacuum, two cases are possible: ∇ � u > 0 and ∇ � u ≤ 0.

The case of ∇ � u > 0. In this case, it is assumed that

∇ � uξ ¼ ∇ � u: (104)

The case of ∇ � u ≤ 0. In this case, the cell volume is assumed to decrease only due to a decrease
in the vacuum volume, while the volumes of the other materials change only after the vacuum
gets closed. This can be represented by the following formula:

∇ � uξ ¼ −
2ðρnþ1

ξ −ρnξÞ
ðρnþ1

ξ þ ρnξÞτ
,

ρnþ1
ξ ¼ Vnβnξρ

n
ξ

Vnþ1βnþ1
ξ

,

βnþ1
ξ ¼ βnξð1−βnþ1

vac Þ
ð1−βnvacÞ

,

βnþ1
vac ¼ βnvacV

n−minfΔV; βnvacVng
Vnþ1 :

(105)

The following is proposed for the anisotropic methods ACM-1 and ACM-2: we represent the
total divergence, like in Eq. (88), as a sum of two items, ∇ � uτ and ∇ � un. If the cell expands, i.
e., if ∇ � u≥0, then ∇ � uξ ¼ ∇ � u.
When the cell contracts, i.e., when ∇ � u < 0:

- if ∇ � un < 0, then ∇ � uξ ¼ ∇ � uξτ, ∇ � uvac ¼ ∇ � u−βξ � ∇ � uξ=βvac;

- if ∇ � un ≥ 0, then ∇ � uξ ¼ ∇ � u.
Let us consider the cases illustrated in Figure 4. Suppose the cell is contracting. Then, if the
velocity is normal to the interface (Figure 4a), we have ∇ � un ¼ ∇ � u, ∇ � uτ ¼ 0, and as
∇ � un < 0, we obtain ∇ � uvacuum ¼ ∇ � u, i.e., only the vacuum is contracting. If the velocity is
directed along the interface (Figure 4b), ∇ � un ¼ 0 and ∇ � uξ ¼ ∇ � u.

6. Test problems and results

The author does not have results of testing all of the above closure methods on the
problems modeled in the section, so below he basically presents the results for methods 1
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velocity is normal to the interface (Figure 4a), we have ∇ � un ¼ ∇ � u, ∇ � uτ ¼ 0, and as
∇ � un < 0, we obtain ∇ � uvacuum ¼ ∇ � u, i.e., only the vacuum is contracting. If the velocity is
directed along the interface (Figure 4b), ∇ � un ¼ 0 and ∇ � uξ ¼ ∇ � u.

6. Test problems and results

The author does not have results of testing all of the above closure methods on the
problems modeled in the section, so below he basically presents the results for methods 1
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(P), 5(∇ � u), 6(Δ p), 7(Δ u), and, correspondingly, for the methods ∇ � u-PR, Δ p-PR, Δ u-PR,
and ACM-1 and ACM-2, which have been developed with his direct participation. These
methods have been tested on numerous problems, including those not included in this
work (see [40, 41]). It does not seem possible to present results of all such calculations, so
the author confines himself to three one-dimensional and one two-dimensional problem
having analytical solutions. All the 1D calculations were done in Lagrangian variables, and
the 2D one in Eulerian.

The following unified types of data processing are provided for all the calculations.

• Tables with quantities characterizing the order of convergence of the integral error of basic
quantities in the calculations in the L1 norm at a reference time.

• Tabulated values of basic quantities in mixed cells at a reference time.

The error is calculated by formula (106):

δy ¼‖ycomp−yexact‖1 ¼ Ahσ, (106)

where h is the initial mesh spacing and ycomp and yexact are the calculated and the exact value of
the quantity at the cell center, respectively.

In EGAK calculations, mixed cells were of the same size as pure cells in pure-cell calcula-
tions. In the mixed cell calculations, domain coordinates were shifted to the right at a
distance of δx = h/2, where h is the mesh spacing in the corresponding calculation. In other
studies, the size of mixed cells was doubled, but their number was less than one cell.

In addition, a two-dimensional problem of elastic wave propagation in a thin plate is discussed,
for which only EGAK results are presented and the analytical solution is given in [42]. For this
problem, we have calculated the velocity of a longitudinal elastic wave in a plate. In [42], we
have also solved this problem numerically using EGAK in the absence of mixed cells, which
demonstrated good accuracy of the calculations in this setup. In [34], this problem has been
solved numerically in the setup, in which interfaces are misaligned with grid lines thus produc-
ing mixed cells.

6.1. The water-air shock tube problem

Setup. The problem has the following initial conditions [43]:

ðγ, p∞,ρ, e, p,uÞ ¼
ð4:4; 6 � 108; 103; 1:07 � 106; 109; 0Þ; if 0 ≤ x ≤ 0:7;

ð1:4; 0; 50; 5 � 104; 106; 0Þ; if 0:7 < x ≤ 1:

(
(107)

The EOS of water is p ¼ ðγ−1Þρe−γp∞, for which the squared speed of sound is calculated by
the formula c2 ¼ γðγ−1Þðe−p∞=ρÞ ¼ γðpþ p∞Þ=ρ.
The final time of the calculation is t = 2.2 � 10-4. The exact solution to the problem has been
obtained in [44]. The calculations were carried out on meshes having 250, 500, and 1000 cells.
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Results. Table 2 presents the values of the factor A and the order of convergence of the integral
error in the basic quantities at t = 2.2 � 10-4, and Table 3 shows the exact and calculated values
of the basic quantities for the closure methods, for which data are available in publications.
Figure 5 shows the L1 norm of the absolute error as a function of h.

Method

p ( · 10−6) ρ e (· 10−3) u

A (· 10−2) σ A ( · 10−2) σ A ( · 10−2) σ A ( · 10−2) σ

Pure (EGAK) 5.13 0.84 1.92 0.86 1.3 0.84 6.0 0.91

∇ � u 4 0.79 12.4 1.10 14.5 1.16 3.56 0.79

p 4.43 0.80 2.5 0.89 1.14 0.81 1.8 0.71

Δ p 8.2 0.83 5.08 0.93 5.18 0.96 3.62 0.79

Δ u 8.29 0.84 16.2 0.96 9.41 0.90 15.1 0.92

∇ � u-PR 4.1 0.79 2.28 0.89 1.03 0.80 1.57 0.70

Δ p-PR 7.11 0.87 4.20 0.88 5.78 0.92 6.97 0.88

Δ u-PR 6.26 0.85 2.49 0.83 2.04 0.83 4.27 0.84

Pure (Delov) 4.96 0.97 2.15 0.94 1.06 0.87 3.73 0.91

Delov 7.42 0.94 8.45 0.96 18.4 0.98 22.1 1.03

Pure (K&S, Tipton) 7.65 0.99 2.18 0.97 0.7 0.90 4.12 0.92

K&S 6.95 0.99 3.63 1.01 3.09 1.01 7.98 1.03

Tipton 4 0.79 12.4 1.10 14.5 1.16 3.56 0.79

Table 2. Factor A and the rate of convergence σ with mesh refinement.

Method p1 ( + 10-7) p2 ( + 10-7) ρ1 ( + 10-2) ρ2 ( + 10-2) e1 ( + 10-5) e2 ( + 10-5)

Exact 1.599 1.599 8.050 2.204 9.704 1.813

Pure (EGAK) 1.599 1.599 7.993 1.535 9.773 2.605

p 1.595 1.595 7.764 1.377 10.062 2.896

∇ � u 3.111 0.078 8.030 0.401 9.784 0.484

Δ p 99.034 1.351 9.972 4.606 10.707 7.332

Δ u 39.664 0.065 8.931 0.174 10.001 0.931

∇ � u-PR 1.594 1.594 7.579 1.504 10.306 2.650

Δ p-PR 1.599 1.599 7.455 0.471 10.477 8.479

Δ u-PR 1.599 1.599 7.395 1.104 10.562 3.620

Pure (Delov) 1.599 1.599 8.113 1.409 9.629 2.835

Delov 1.595 1.594 8.044 0.249 9.711 16.015

Pure (K&S, Tipton) 1.599 1.599 7.983 1.669 9.785 2.394

K&S 1.599 1.599 7.352 1.364 10.625 2.930

Tipton 1.599 1.599 7.315 0.591 10.680 6.765

Table 3. Exact and calculated values of the basic quantities in mixed cells on a mesh having 1000 cells at t = 2.2 + 10
-4.
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6.2. The mixed-material shock transition problem

Setup: The problem has been proposed in [18]. The domain −2 < x < 1 contains a mixture of
two ideal gases having the following parameters: ρ01 ¼ 1; e01 ¼ 0; γ1 ¼ 3; β01 ¼ 0:5 (material 1)

and ρ02 ¼ 1; e02 ¼ 0; γ2 ¼ 1:2; β02 ¼ 0:5 (material 2). A constant velocity of u = 2 is given at the

Figure 5. L1 norm of the absolute error as a function of h.
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left boundary. Due to the specified boundary condition, a strong shock starts moving across
the mixture. The problem has an analytical solution obtained in [20] assuming that the mate-
rials’ pressures are equal.

The values of densities are determined based on the condition that the shock is strong for each
of the materials: ρξ ¼ ðγξ þ 1Þ=ðγξ−1Þρ0ξ. It is implicitly supposed here that only one shock
travels across the gases (additional waves reverberating between the interfaces are ignored).
The volumes occupied by the materials behind the shock equal Vξ ¼ V0

ξρ
0
ξ=ρξ. The average

density behind the shock front then equals

ρ ¼
X

MξX
Vξ

¼
X

V0
ξρ

0
ξX

Vξ
¼

X
V0

ξX
Vξðγξ−1Þ=ðγξ þ 1Þ ρ

0: (108)

The laws of conservation of mass, momentum, and total energy for the shock (the Rankine-
Hugoniot relations) traveling across each of the materials make it possible to find the param-
eters of the gases behind the shock front:

D ¼ ρ=ðρ−ρ0Þu, (109)

u2 ¼ pð1=ρ0−1=ρÞ, (110)

e ¼ 0:5pð1=ρ0−1=ρÞ: (111)

Using Eq. (109), we obtain the shock velocity, using Eq. (110), the average pressure, and using
Eq. (111), the average energy of the mixture. The pressures of the materials are equal to the
average pressure due to the assumption we made, and the energies of the materials can be
obtained from the corresponding EOS.

This problem was calculated on a mesh having 600 cells. This problem is also of interest in
terms of examining the effect of the approach to calculate the artificial viscosity for the
materials.

Results: This problem differs from the two problems discussed above. First, there are no pure
cells, so pure-cell calculations are inapplicable in this case. Second, only some of the above
dependences can be obtained for this problem, and these are presented below. In particular, it
has almost no sense to perform convergence calculations for this problem, because the steady-
state solution in the mixed cells does not depend on the mesh spacing. Table 4 presents the
values of the parameters in the mixed cell with x = 0.2 at t = 2 for the materials behind the shock
obtained using Eqs. (109)–(111) and in the calculations (for thematerials’ viscosities by approach 3).
Table 4 shows the results obtained with different viscosities for the method∇ � u-PR.

6.3. 2D problem of elastic wave propagation in a plate

Next, we consider a 2D problem, in which a longitudinal elastic wave propagates in a thin
plate and the wave velocity for which has been obtained analytically in [42]. The problem has
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been calculated using EGAK in the absence of mixed cells in [42] and with mixed cells in [34].
As a surrounding medium in the problem, we used air or vacuum.

Setup: In the calculations, a titanium projectile of length L = 10 cm flying at a velocity of v0 =
0.01 km/s surrounded by air or vacuum hits a “rigid” wall. This produces an elastic wave in
the projectile traveling toward its rear surface. Figure 6 shows a schematic drawing of the
initial problem geometry; H = 1 is the thickness of the wall. The calculations were carried out
on a fixed mesh having a mesh spacing of h = 0.2 cm. The parameters of the EOS and the model
of matter for the materials are shown in Tables 5 and 6.

The mesh was constructed in such a way that the projectile was initially surrounded by mixed
cells containing titanium and vacuum (air) with a ratio β = 0.5. We also carried out calculations
on an oblique mesh with a varied volume fraction. The field of volume fractions of titanium
and a mesh fragment for this simulation are shown in Figure 7.

Method D p1 p2 ρ1 ρ2 e1 e2

Exact 2.839 5.677 5.677 2.0 11 1.419 2.581

p 2.997 5.992 5.992 1.694 13.422 1.769 2.232

∇ � u 3.456 13.219 0.581 2.379 2.379 2.778 1.222

Δ p 2.830 5.753 5.477 2.032 10.596 1.416 2.584

Δ u 2.827 5.886 5.324 2.053 10.372 1.434 2.567

∇ � u-PR 2.859 5.715 5.715 1.956 11.253 1.461 2.539

Δ p-PR 2.837 5.668 5.668 2.011 10.939 1.409 2.591

Model 1 2.916 5.820 5.820 1.844 12.013 1.578 2.422

Model 2 2.965 5.909 5.909 1.762 12.720 1.677 2.323

Model 3 2.817 5.640 5.640 2.047 10.754 1.378 2.622

Model 4 2.859 5.715 5.715 1.956 11.253 1.461 2.539

Model 5 2.535 5.049 5.049 3.503 7.697 0.720 3.279

Model 6 3.11 6.207 6.207 1.545 15.587 1.991 3.110

Table 4. Exact and calculated values of the basic quantities in the cell with + = 0.2 at t = 2 on a mesh having 600 cells (model 1 is
the way of cell viscosity distribution to the materials for the closure method Δ u-PR).

Figure 6. Geometry of the problem of elastic wave propagation in a plate.
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Results: In this problem, there is certain difficulty determining the longitudinal wave velocity.
To address this difficulty, the following approach has been proposed in [42]. Suppose the
elastic wave front does not “smear” as it propagates in the material. As the projectile hits the
“rigid” wall, the velocity of the projectile material behind the wave should be zero. Therefore,
the rate of deceleration of the projectile's center of mass can be related to the elastic wave
velocity. Figure 8 shows the time-history plots for the velocity of the projectile's center of mass
for three simulations. The plots demonstrate that these dependences are nicely approximated
by a linear function (v = v0 - At). The time it takes the step-like elastic wave to travel all the way
along the projectile is T = v0/A. Here, T is the time, at which v = 0, which corresponds to the
time of wave traveling all the way along the projectile. The longitudinal wave velocity is then
defined as cw = L/A. The error associated with the displacement of the projectile's rear end as
the wave travels all the way along the projectile can be neglected, because the material's
velocity is small compared to the wave velocity. Table 7 shows the values of longitudinal wave
velocities for all simulations.

The calculations of this 2D problem demonstrated that, for both of the anisotropic closure
methods, the difference between the calculated elastic wave velocity and the exact solution is
∼4%, whereas for the method Δ u-PR it is ∼10%. No comparison with other methods was
made, because the Δ u-PR method proved to be the most versatile among all the methods in
EGAK as applied to a wide range of different problems.

ρ0 (g/cm3) c0 (km/s) n Γ

4.5 4.842 3.4243 1.18

Table 5. Mie-Grüneisen EOS parameters.

b (GPa) k c m Cv (kJ/(g +K)) Tm (K) G (GPa) ν

1.098 1.092 0.93 0.014 1.1 580 + 10-6 1878 43 0.32

Table 6. Johnson-Cook model parameters.

Figure 7. Distribution of volume fractions in the simulation on a fragment of the oblique mesh.

Lagrangian Mechanics100



Results: In this problem, there is certain difficulty determining the longitudinal wave velocity.
To address this difficulty, the following approach has been proposed in [42]. Suppose the
elastic wave front does not “smear” as it propagates in the material. As the projectile hits the
“rigid” wall, the velocity of the projectile material behind the wave should be zero. Therefore,
the rate of deceleration of the projectile's center of mass can be related to the elastic wave
velocity. Figure 8 shows the time-history plots for the velocity of the projectile's center of mass
for three simulations. The plots demonstrate that these dependences are nicely approximated
by a linear function (v = v0 - At). The time it takes the step-like elastic wave to travel all the way
along the projectile is T = v0/A. Here, T is the time, at which v = 0, which corresponds to the
time of wave traveling all the way along the projectile. The longitudinal wave velocity is then
defined as cw = L/A. The error associated with the displacement of the projectile's rear end as
the wave travels all the way along the projectile can be neglected, because the material's
velocity is small compared to the wave velocity. Table 7 shows the values of longitudinal wave
velocities for all simulations.

The calculations of this 2D problem demonstrated that, for both of the anisotropic closure
methods, the difference between the calculated elastic wave velocity and the exact solution is
∼4%, whereas for the method Δ u-PR it is ∼10%. No comparison with other methods was
made, because the Δ u-PR method proved to be the most versatile among all the methods in
EGAK as applied to a wide range of different problems.

ρ0 (g/cm3) c0 (km/s) n Γ

4.5 4.842 3.4243 1.18

Table 5. Mie-Grüneisen EOS parameters.

b (GPa) k c m Cv (kJ/(g +K)) Tm (K) G (GPa) ν

1.098 1.092 0.93 0.014 1.1 580 + 10-6 1878 43 0.32

Table 6. Johnson-Cook model parameters.

Figure 7. Distribution of volume fractions in the simulation on a fragment of the oblique mesh.

Lagrangian Mechanics100

6.4 Discussion of results and conclusions

The calculated data presented here and not included in this work demonstrate that all the
methods under consideration have good convergence (the order of convergence is ∼1) to
the exact solution with mesh refinement as applied to all 1D problems with interfaces.
When comparing the methods, one should note that the order of convergence of calcula-
tions with closure methods is mostly governed by the order of convergence of the basic
difference scheme. As for the error of the closure methods themselves, it is basically con-
trolled by the value of the factor A in formula (106). The reader himself can choose the
method he likes. However, two circumstances need to be mentioned, which are important
when choosing the method. First, the methods differ in the amount of calculations. Second,
the methods differ in the complications in program implementation associated with limita-
tions in their applicability.

Closure method Surrounding medium cw (km/s)

Exact 5.3

Pure cells Air 5.2

Δ u-PR Vacuum 4.8

ACM-1 Vacuum 5.1

ACM-2 Vacuum 5.1

ACM-1 (oblique mesh) Vacuum 5.1

Δ u-PR Air 4.7

ACM-1 Air 5.1

Table 7. Theoretical and calculated values of longitudinal elastic wave velocity in a plate.

Figure 8. Velocity of the plate's center of mass as a function of time in calculations with different closure conditions for
mixed cells (simulations with air).
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As for the 2D problem, the anisotropic methods have no alternative. They possess the
same accuracy as the basic methods on the 1D problems, because they rest upon the
same closure models, and are more accurate as applied to the 2D problem. Of the two
anisotropic methods, it is worth giving preference to ACM-1, because it is easier to
implement.
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Abstract

Large-capacity rope shovels are used as primary production equipment in many surface
mining operations. Current rope shovels have payload capacities in excess of 100 tons
per pass. The dynamic payload and formation resistive forces result in severe stress
loading of  the shovel  front-end assembly.  Material  flaws,  high stresses,  and harsh
excavation conditions can initiate cracks in the dipper-teeth assembly. These cracks,
under high stresses, can propagate to critical lengths resulting in fatigue failure of front-
end assembly.  Dipper-related problems can significantly reduce shovel  availability.
There is no fundamental research for understanding dipper fatigue failure resulting
from high stress intensity, crack initiation, and propagation, the subject matter of this
study. The Newton-Euler algorithm is used to build kinematics and dynamic models of
the cable shovel front-end assembly. The models incorporate the dynamic resistive
forces on the dipper-teeth assembly. Numerical simulations are used to generate the
dynamic payload force and its dynamic left. Virtual simulation, based on the P&H
4100XPC shovel prototype in ANSYS (R15), is run to generate stress loading of the
dipper-teeth assembly and equivalent (von Mises) stresses. Stress intensity factors are
computed  for  various  crack  lengths  in  the  dipper-teeth  assembly,  and  the  crack-
propagation lives are computed for these cracks. The results show that a 75-mm crack
can propagate to the critical length in 16 days. This research study provides a pioneering
effort toward understanding shovel dipper fatigue failure due to high stress intensity,
crack initiation, and propagation for understanding shovel reliability and availability
for production efficiency and bulk production economics.

Keywords: formation excavation, machine kinematics and dynamics, virtual simula-
tion, stress profile intensity
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1. Introduction

Cable  shovels  are  used  as  primary  excavation  equipment  in  large-scale  surface  mining
operations. The overall efficiency of shovel-truck surface mining operations is largely dependent
on shovel efficiency. Dipper payloads of the shovels have seen an increasing trend over the years,
and current shovels have payloads in excess of 100 tons per scoop [1, 2]. The payloads, combined
with dipper weight, rigging, and variable material diggability, result in varying mechanical
energy inputs and stress loading of the shovel’s front-end assembly across the working bench.
Furthermore, the repeated shovel loading and unloading cycles induce fatigue stresses in shovel
components. The induced stresses over time may exceed the yield strength of steel/material of
the shovel leading to fatigue failure, teeth losses, and boom and handle cracks. High stresses
and fatigue failure in shovel front-end assembly cause unplanned downtimes resulting in
reduced efficiency and increased production costs. Dipper-related problem can be a significant
contributor to the shovel downtime [3]. The current practice for the shovel front-end assembly
repair is based on experience and history rather than science.

Electric rope shovel consists of the lower, upper, and the front-end assembly as illustrated in
Figure 1. The lower assembly consists of the propel drive and crawler systems and provides
a solid and stable base for the excavator. This helps excavator propel, reposition, and relocation
during its operation.

Figure 1. Nomenclature of a cable shovel.

The shovel’s upper assembly is a roller and left-pin system mounted on the lower mechanism.
The upper assembly consists of multiple decks with housing for the hoist and swing machinery
and electronic control cabinet on the lower deck and the operator’s cab on the upper deck.
Additionally, the upper assembly provides a platform for boom attachment and the counter
weight for the dipper. The front end consists of the boom, crowd machinery, dipper handle,
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dipper, and ropes. During the normal duty cycle, the shovel stays at one position, and only the
front end engages with the formation.

2. Shovel resistance forces and modeling

The dipper excavation processes can be categorized into penetration, cutting, and scooping
processes [4, 5]. Penetration is the insertion of a tool into a medium, and cutting is the lateral
movement of a tool, executed at a constant depth. The dipper teeth penetrate the formation,
and the lip cuts the material. Excavation models are based on the formation resistive forces
acting on the cutting tool. The resistive forces combine the cutting forces at the dipper teeth
and lip and the excavation forces due to material movement along, ahead, and inside the
dipper. Both the experimental and analytical models are based on these resistive forces. The
model proposed by Hemami [6] is by far the most comprehensive model and consists of six
component forces (f1 to f6), which must be overcome during excavation, as in Figure 2. All these
forces, except f6, are dynamic forces. The six forces acting on the dipper, from the initial to the
end point on trajectory, consist of the following:

f1: The force required to overcome the payload weight in and above the dipper

f2: The resultant resistive force due to material movement toward the dipper

f3: The friction force between the bucket walls and the excavated material as it slides into the
dipper

f4: The resistance to cutting and/or penetrating that acts at the dipper tip and side walls

f5: The inertia force of the material inside and above the dipper

f6: The force required to move the empty dipper (modeled as part of f1)

Figure 2. Forces on a dipper during excavation [7].
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The forces, f1 and f5, are the dynamic forces [7], where f1 changes both in magnitude and the
point of application, and f5 depends on the bucket acceleration. The force (f6) was originally
defined as a part of f1 and f5. The dipper payload force (f1) is the dominant force for the large-
capacity dippers [6, 8, 9]. Awuah-Offei et al. [8] proposed a model based on the Balovnev [10]
excavation model using the six forces. The force (f2) can be set to zero [6]. Forces, f3 and f4, are
the cutting forces and can be combined as a single force and estimated using the empirical
model [11] given by Eq. (1).

This empirical model is a result of extensive experimentation on frozen soils [11]. z is the
coefficient that accounts for the blade impact on cutting force, which depends on w and d.
Table 1 is used to estimate z for d (between 25 cm and 50 cm). z increases as d decreases, and
it also depends on the ratio Ts/Tw (Ts is the spacing between the teeth, and Tw is the tooth width).
Table 2 lists the multiplying factors for z based on Ts/Tw. Force f5 can also be set to zero if the
dipper moves with a uniform velocity through the muck pile. Force f6 can be modeled as part
of f1:

Length of horizontal surface (w, m) 0.25–0.50 0.50–0.75 0.75–1.00 1.00–1.25

Coefficient z 0.55–0.75 0.63–0.78 0.69–0.8 0.71–0.82

Table 1. Dependence of “z” on “d,” and “w”.

Ratio Ts/Tw Ts = Tw Ts = 2Tw−3Tw Ts = 4Tw Ts = 5Tw

z 1.2 1 1.1 1.25

Table 2. Dependence of z on Ts/Tw [11].

1.35
oP=10C  d  (1+2.6w)(1+0.0075 ')zb (1)

3. Kinematic model of the cable shovel front end

A kinematic model of the shovel is required to completely describe the motions (accelerations,
velocities, and displacements). The kinematic model further provides a basis for the dynamic
model, which can be used to calculate the torques and forces on individual components. The
complete shovel digging process involves propel, crowd, and swing motions. However, during
the normal duty cycle, the shovel positions itself against the working face without propel. In
this situation, only the front-end assembly moves. Further, the maximum forces are involved
during the excavation phase. Therefore, a dynamic model of the front-end assembly alone can
suffice to describe the normal duty cycle of cable shovel. Figure 3 shows the shovel front-end
assembly, whose mechanism is modeled as a three-link system (saddle, crowd arm, and dipper)
with three links and three joints. The saddle is a fixed length link and is free to rotate in the
vertical plane. The rotation of the saddle block controls the vertical position of the dipper. The
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crowd arm is connected to the saddle block through a prismatic joint, and its length varies
during the crowding action of the digging operation.

The length of the crowd arm controls the horizontal position of the dipper. The crowd arm and
the saddle have the same rotation cycle, while the dipper is oriented at a fixed angle, β, to the
crowd arm. The dipper is also a fixed length link. The rotation of the saddle block and the
length of the crowd arm together control the position of the dipper in the vertical plane and
its trajectory. The structural kinematic parameters of the shovel using the Denavit-Hartenberg
(D-H) notation [12] are represented in Figure 3 and Table 3. Here, four values are assigned to
each link following the D-H notation.

Figure 3. Structural kinematics using D-H procedure.

Link i Joint description αi ai di θi

1 Saddle-boom joint 0 0 0 θ1

2 Saddle-dipper handle joint 90 a1 0 0

3 Dipper handle-dipper joint −90 0 d2 0

Table 3. Structural kinematic parameters.

The two values (ai, di) are for the links and represent the constant and variable lengths of the
links, while the other two (αi, θi) are for the connection between links (i.e., joints), and, thus,
represent the rotation of the coordinate frame and rotation of the joint, respectively. For a
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revolute joint, ai, αi, and di are fixed and θi is a variable. On the other hand, for a prismatic
joint (or translational motion), ai, αi, and θi are fixed and di is a variable. The crowd-arm
movement is via a prismatic joint. A kinematic scheme relates the movements of the links and
translates the motions and rotations in the reference coordinate frame. The D-H scheme is used
to relate the movements and rotation of the links. The movements and rotations of individual
links are measured in the coordinate frames assigned at every joint location using the D-H
scheme [12]. The lower part of the shovel is stationary and fixed for this analysis.

The XoYoZo frame, the reference coordinate frame, is selected with Zo along the rotating axis
of the saddle block. The coordinate frame X1Y1Z1 coincides with the XoYoZo frame and measures
the rotation of the dipper handle via the saddle block. Next, the coordinate frame X2Y2Z2 is set
at the intersection of the saddle block and the dipper handle, with the Z2 axis along the
translation movement of the dipper handle (joint 2 being a prismatic joint). The movement of
the dipper handle is measured along this Z2 axis. The coordinate frame X3Y3Z3 is set at the end
point of the dipper handle with Z3 normal to Z2. This frame is at a fixed angle from coordinate
frame 2. And finally, the frame X4Y4Z4 is set at the tip of the dipper with Z4-axis parallel to Z3.
The material resistive forces acting on the shovel are defined in this frame. The coordinate
frame assignments are also shown in Figure 3.

Forward kinematics of cable shovel front-end assembly: The forward kinematic model defines the
positions and motions of the dipper with known dipper-handle rotation and extension.
External dynamic forces act on the shovel dipper during excavation. A transformation scheme
is used to translate point coordinates in one coordinate frame to the first coordinate frame. The
homogenous transformation matrix for transferring coordinates from i−1 coordinate frame to
i frame, in its general form for revolute and prismatic joints is given in Eqs. (2) and (3),
respectively [13]. These equations can be derived considering two links (i−1 and i) connected
through revolute or prismatic joints, respectively. These transformation equations are a
combination of rotation and translation matrices:

(2)

(3)

The individual transformation matrices Tii − 1 are formulated using Eqs. (2) and (3). These

matrices relate the geometry of a point in the two adjacent coordinate frames as in Figure 3
and can further be multiplied together to obtain a transformation matrix between any two
coordinate frames. These transformations are required for the shovel front-end kinematic and
dynamic models using the Newton-Euler procedure. The Newton-Euler method is an iterative
method for computing the velocities, accelerations, joint torques, and forces from crowd arm
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homogenous transformation matrix for transferring coordinates from i−1 coordinate frame to
i frame, in its general form for revolute and prismatic joints is given in Eqs. (2) and (3),
respectively [13]. These equations can be derived considering two links (i−1 and i) connected
through revolute or prismatic joints, respectively. These transformation equations are a
combination of rotation and translation matrices:

(2)

(3)

The individual transformation matrices Tii − 1 are formulated using Eqs. (2) and (3). These

matrices relate the geometry of a point in the two adjacent coordinate frames as in Figure 3
and can further be multiplied together to obtain a transformation matrix between any two
coordinate frames. These transformations are required for the shovel front-end kinematic and
dynamic models using the Newton-Euler procedure. The Newton-Euler method is an iterative
method for computing the velocities, accelerations, joint torques, and forces from crowd arm
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to dipper in the forward direction and from dipper tip to the saddle block in the reverse
direction. Newton-Euler method has an advantage of being iterative, which makes it more
suitable for computer simulations.

The propagation of angular and linear velocities from joint to joint is given by Eqs. (4) through
(7) [13]. For rotational motion, the angular and linear velocities are defined by Eqs. (4) and (5),
respectively. For prismatic joint, the angular and linear velocity relations are given by Eqs.
(6) and (7), respectively:

i+1 i+1 i i+1
i+1 i i i+1 i+1

ˆω = R ω +θ Z& (4)

(5)

(6)

(7)

The required rotation matrices are derived from the transformation matrices in Eqs. (2) and (3).

The 3x3 matrix, within a transformation matrix Tii − 1, represents the corresponding rotation

matrix Rii − 1. The forward kinematic starts from the first link (saddle block) and moves

outward toward the last link (dipper). The objective is to determine the propagation of the joint
rotation and velocities from the joint 1 to the dipper tip. The model uses the same start point
equations and basic simplifying assumption from Frimpong et al. [14], and as a result, the
kinematic equations are very similar as well. However, the resulting dynamic model is different
due to the improved resistive forces in this model. The reference frame {0} is fixed with the
lower frame through the boom. The lower structure of the shovel is fixed, so its linear and
angular velocities and accelerations remain zero at all times during the excavation as shown
in Eqs. (8) and (10). These values change only during the propel motion of shovel which is not
considered in this research. The joint velocity can be determined by taking the derivative of
rotation of joint 1 as shown in Eqs. (9) and (11), respectively. Similarly, the linear velocity of
the stationary lower structure of the shovel is zero:
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Eq. (12) is obtained from Eq. (4) for joint 1 (i = 0), a revolute joint. It is evident from this equation
that the angular velocity of the first link is only around Z-axis and is equivalent to the rate of
change of angular rotation around joint 1. The linear velocity propagation to joint 1 can be
computed using Eq. (5) as Eq. (13). The first link experiences only the rotational motion.
Therefore, the linear velocity of joint 1 is zero:
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For the prismatic joint 2 (i = 1), Eq. (6) computes the angular velocity of the link 2 (the crowd
arm). The propagation of angular velocity to joint 2, as given in Eq. (14), shows that the angular
velocity of joint 2 is dependent upon the rate of change of angular rotation of joint 1, and there
is only an axis shift involved (from Z-axis to Y-axis) during the propagation:
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(15)

The linear velocity propagation to joint 2 is calculated as Eq. (15). Similarly, the angular and
translational velocities are calculated for joint 3 as Eqs. (16) and (17). Again, the angular velocity
of joint 3 is equivalent to the rate of change of angular rotation of joint 1. There is only one
rotation of the joint involved for the front end during the digging cycle. Thus, the angular
velocity of joint 4 is also the same as the angular velocity of joint 1. Alternately, it can be stated
that the whole front-end assembly gets the same rotation as the joint 1 during the digging cycle,
and the angular velocity only involves the axis shift. Eqs. (8) through (18) define the forward
kinematics of the shovel front end. The angular and linear velocities of the shovel front-end
components are defined using these equations with known initial rotation and crowd-arm
extension:

3
3

1

0
0w
q

é ù
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(16)

(17)

(18)
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ë û

(19)

Inverse kinematics of cable shovel front-end assembly: The inverse shovel kinematics determine the
set of joint angles and the length for the crowd arm when the desired position and orientation
of the shovel dipper are known in the reference coordinate frame 0. This inverse kinematic is
useful when the dipper traverses a known trajectory to determine the joint rotation and crowd-
arm extension required to achieve this trajectory. An approach, similar to the one used by Wu
[15] for the reverse kinematic model of cable shovel, is used to determine the crowd-arm
extension and rotation with known trajectory points. The inverse kinematic model can be
achieved by coordinate transformations to obtain the dipper coordinate in coordinate frame
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4, relative to coordinate frame 1. The modifications of the transformation matrix equations
result in Eqs. (19), (20), and (21):

11 0 0
4 1 4T T T

-
é ù= ë û (20)
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The individual matrix elements are given as follows:
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Here, (px, py, and pz) are the coordinates of the dipper tip in the reference coordinate frame 0.
Eq. (22) can be derived from Eq. (2) and Eq. (23) from Eq. (20). Comparing the individual matrix
elements on both sides of Eq. (23) and using simple arithmetic and trigonometric operations,
the crowd-arm extension and rotation can be computed using Eqs. (25) and (26), respectively.
The inverse kinematic model can be used to compute the positions and velocities of individual
links and joints of the front-end assembly for a known trajectory:

1 1

1 1 10
1

c s 0 0
s c 0 0

T
0 0 1 0
0 0 0 1

-

é ù
ê ú-ê úé ù =ë û ê ú
ê ú
ë û

(22)
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( )22 2 2 2
2 2 1 2 1 2 22x yd a s p p a a a a c a sb b b= + + - - - + (24)

( )22 2
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è ø
(25)

4. Dynamic model of the cable shovel front-end assembly

The dynamic model defines forces and torques acting on the shovel links and joints from the
kinematics parameters, such as accelerations. The forces require the computation of angular
and linear accelerations, which can be obtained by time integration of the angular and linear
velocities computed in the kinematic model. In its general form, the dynamic model can be
defined as in Eq. (26) from Frimpong et al. [16]:

(26)

This dynamic model for a shovel is built using the Newton-Euler method and the position,
velocity, and acceleration relationships computed from the kinematic model. The Newton-
Euler dynamic algorithm for computing the crowd force and the hoist torque comprises of the
following steps:

1. Compute the angular acceleration  of every link in the forward direction, starting from
the saddle and moving outward toward the last link (the dipper).

2. Compute the acceleration  of every link in the system in the forward direction.

3. Compute the acceleration  at the left of mass (centroid) of every link in the system in the
forward direction.

Mechanics of Electric Rope Shovel Performance and Reliability in Formation Excavation
http://dx.doi.org/10.5772/65333

117



4. Determine the force (Fi) acting on every link at the centroid of the link using  and mass
of the link.

5. Compute the joint torque (Ni) for every link.

The force and torque are computed at the centroid of each link. Therefore, the velocity and the
acceleration of the centroid are computed for every link.

5. Numerical modeling and simulation of the dipper-formation
interaction

The dynamic model is a system of ordinary differential equations (ODEs), which results from
an iterative process and includes a number of ODE subprocesses. The ODEs are numerically
solved in MATLAB using the embedded Runge-Kutta algorithm. The simulation model
consists of MATLAB programs (.m files) and SIMULINK design-based models and sub-
models. The simulation model consists of the main model and sub-models. These sub-models
define the dipper’s trajectory, the crowd-arm extension and rotation, and the resistive forces
(cutting forces, material, and dipper’s weight) on the dipper. The following sub-models and
main model are created:

1. Test bench geometry and trajectory: Figure 4 shows the test bench geometry created for the
digging process simulation. The excavated material characteristics can be selected for
various digging conditions. A simulation step size is selected to make the dipper move
with a constant linear velocity following field experimental results [17]. The failure surface
is modeled as a quadratic function given by Eq. (27), and bench face is modeled as a
straight-line function L(x). During the simulation process, the coordinates of the dipper
tip (O4(x,y)) and the dipper depth into the working bench (d) are continuously computed
at every time step using Eqs. (28) and (29), respectively:

20.9927x  22.557x 1 17.68y = - + (27)

2 2
4  , 0.4837 2.4351 12.053,          0.9927 * 22.557 * 117.68O x y t t x xé ù= - + + - +ë û (28)

( ) ( )4d O x L x= - (29)
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2. Crowd-arm extension and rotation angle: This sub-model calculates the extension and
rotation of the crowd arm at every simulation step using Eqs. (24) and (25).

3. Payload and force f1: The payload forms the basis for the dynamic payload force (f1). Figure 4
defines the dipper trajectory in such a way that the dipper is filled as it leaves the bank
without any material spillage. At any instant, therefore, the payload is equivalent to the
area between the trajectory curve and bench face.

Figure 4. Representative bench geometry.

At each simulation step, the (x, y) trajectory coordinates and the area excavated (Ac) are
numerically computed using Eq. (30) [8] and built-in routines in MATLAB R2012a. This area
is used to calculate the force (f1) due to the payload weight using Eq. (31) [8]. An optimization
algorithm [8] is used to define the geometry of the payload based on the material distribution
from Hemami [6]. The centroid of each material geometry, a polygon inside the dipper, is
computed using a special algorithm [18]. This centroid is a dynamic point, which is used as
the point of application for the dynamic force f1. This force (f1) is computed continuously at
every instant of the excavation process:

( ) ( )21  
2

t

o

x

c t o
x

A x x tan f x dxa= - - ò (30)

1 cf A gwr= (31)

4. Material resistive force f6: The force, due to the weight of the dipper, is calculated during the
digging cycle along the trajectory. The computation of centroids of payload geometry and
dipper suggests that these two centroids can be considered concentric. Therefore, both f1

and f6 are combined into single force acting at the dynamic left of the payload geometry.

Mechanics of Electric Rope Shovel Performance and Reliability in Formation Excavation
http://dx.doi.org/10.5772/65333

119



5. Digging resistive forces f3 and f4: The resistive forces, f3 and f4, are combined as a single cutting
force (Fr) and calculated using Eq. (1) [11]. The cutting force (Fr) acts along the tangent of
the trajectory at the dipper tip. This force is resolved into its rectangular components, one
along the dipper base and the other normal to it. These tangent and normal components
(Ft and Fn) of the resistive force (Fr) are computed at every trajectory point in this sub-
model.

6. The main model and numerical simulation: The dynamic model of the dipper-teeth assembly
is solved in the main model. The outputs from all the sub-models, along with system
constants and time steps are fed into the main model as inputs. The main model then
numerically solves the mathematical model and generates the desired outputs. Two of the
important results or outputs from this solution are the hoisting force (F1) and crowd-arm
torque (T1).

During this numerical simulation process, four of the six resistive forces (f1, f3, f4, f6) are
computed as separate subsystems, while the other two resistive forces (f2 and f5) are set to zero.
The resistive force f2 is set to zero by selecting an appropriate trajectory of the dipper [6]. The
excavation trajectory is selected in such a way that the dipper stays clear off the material and
does not compress the material. This assumption is reasonable in the sense that it involves
proper bench geometric design and operator skill. An improper bench geometric design would
lead to undue stresses on the shovel, which must be avoided during the excavation process.
The force f5 represents the dipper and payload inertia. This force can be set to zero if the dipper
moves through the material with a constant velocity and hence with zero acceleration. For this
research, it is assumed that the dipper moves through the bench with a constant velocity and
hence a zero acceleration. This assumption is consistent with the field observations [17] for
hoist rope extension.

6. Virtual shovel prototype simulation

A virtual 3D prototype of the rope shovel is built in AutoCAD-2012 as shown in Figure 5. The
dimensions of the shovel front-end assembly are chosen to represent the dimensions of the
P&H 4100XPC shovel and are measured from a scaled model [19]. The front-end geometry is
simplified to avoid unnecessary geometric complications. The model consists of one revolute
and two prismatic joints that control the motion of the dipper into the formation. The boom
and saddle are modeled as rigid bodies. The boom is considered fixed to the ground. Both
joints are constrained; the revolute joint allows rotation only in the z-axis, and the prismatic
joints allow motion only in the x-axis. The resistive forces of the formation are applicable as a
remote force available at the teeth. The material force is also modeled as a remote force acting
on the dipper. The revolute joint is given a fixed rotation at every time step to ensure the
completion of the digging cycle in 3 s. The contacts and boundary conditions are shown in
Figure 6. The dipper body is modeled using brick elements with a minimum of three elements
through the thickness of the dipper.
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The dipper trajectory is given as an input function to the shovel simulation process in MAT-
LAB/SIMULINK. The dipper traverses the known trajectory, and the reverse kinematic model
is used to determine the crowd-arm extension (d2) and rotation (θ1) requirements to achieve
this trajectory. These two output parameters from the numerical simulation process are used
as inputs for the shovel prototype. Together, these two inputs define the dipper trajectory.
Similarly, the resistive forces computed during the shovel dynamic simulation are modeled as
higher order polynomial in MATLAB and are fed into the system as time functions. The
payload also exerts a force on the dipper side walls. This force is modeled using the earth
pressure at-rest theory [20] and is considered to be acting uniformly over the side wall.

Figure 5. Simplified 3D model of cable shovel and dipper.

Figure 6. Boundary conditions and external forces on shovel front end.
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7. Shovel stress modeling and analysis

The steel used for cable shovel dippers and teeth has high strength properties. The yield
strength is the most important strength property, as the shovel experiences high levels of stress
loading. Limited data is available for shovel components [21]. One research reported csa-
g40.21-350WT steel used for shovel boom [21]. This steel has high yield strength of 320 MPa
[21, 22]. It is assumed in this study that the same steel is used for the dipper and the shovel
boom, and their properties are given in Table 4. The angular rotation and extension of the
dipper arm, external digging forces, and dynamic material weight forces from the dynamic
simulated model are used as inputs for the virtual prototype. The shovel stress analysis is
performed in ANSYS Workbench-R15.0 [30]. First, a rigid-body analysis is performed to ensure
that the dipper follows the given trajectory for the given angular rotation, crowd-arm exten-
sion, and external forces. Afterward, a transient analysis is performed for the dipper and teeth
stress analysis in ANSYS Workbench R15. For this analysis, the dipper-teeth assembly and
crowd arm are converted into flexible bodies, allowing ANSYS to compute stresses on the
dipper components. All force functions are the same as that used for the rigid-body analysis.
The joint functions are defined for the desired trajectory generation. The flexible dipper bodies
are meshed appropriately, using sweepable bodies and controlled meshing. The simulations
are performed for a 3 s interval. The simulation is run in two steps with multiple sub-steps for
better convergence.

Property Value Unit

Density 7900 kg/m3

Young’s modulus 2.3E+11 Pa

Poisson’s ratio 0.3

Tensile yield strength 3.2E+08 Pa

Compressive yield strength 3E+08 Pa

Tensile ultimate strength 4.6E+08 Pa

Table 4. Properties of steel for dipper and teeth.

Stress loading (von Mises) is computed for the dipper-teeth assembly, dipper bottom plate,
dipper side wall, and teeth. Figure 7 shows the representative stress profile. The stresses on
the dipper-teeth assembly vary with time. The maximum stress values vary from 151 MPa to
282 MPa. These stress values are higher than the lower limits of yield strengths for low,
medium, and high carbon steel (Table 5). Permanent damage to the dipper components is
possible, if the steel used has lower yield strength. The stress contour maps are used to identify
the high and lower stress regions for fatigue fracture modeling and analysis.
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dipper arm, external digging forces, and dynamic material weight forces from the dynamic
simulated model are used as inputs for the virtual prototype. The shovel stress analysis is
performed in ANSYS Workbench-R15.0 [30]. First, a rigid-body analysis is performed to ensure
that the dipper follows the given trajectory for the given angular rotation, crowd-arm exten-
sion, and external forces. Afterward, a transient analysis is performed for the dipper and teeth
stress analysis in ANSYS Workbench R15. For this analysis, the dipper-teeth assembly and
crowd arm are converted into flexible bodies, allowing ANSYS to compute stresses on the
dipper components. All force functions are the same as that used for the rigid-body analysis.
The joint functions are defined for the desired trajectory generation. The flexible dipper bodies
are meshed appropriately, using sweepable bodies and controlled meshing. The simulations
are performed for a 3 s interval. The simulation is run in two steps with multiple sub-steps for
better convergence.

Property Value Unit

Density 7900 kg/m3

Young’s modulus 2.3E+11 Pa

Poisson’s ratio 0.3

Tensile yield strength 3.2E+08 Pa

Compressive yield strength 3E+08 Pa

Tensile ultimate strength 4.6E+08 Pa

Table 4. Properties of steel for dipper and teeth.

Stress loading (von Mises) is computed for the dipper-teeth assembly, dipper bottom plate,
dipper side wall, and teeth. Figure 7 shows the representative stress profile. The stresses on
the dipper-teeth assembly vary with time. The maximum stress values vary from 151 MPa to
282 MPa. These stress values are higher than the lower limits of yield strengths for low,
medium, and high carbon steel (Table 5). Permanent damage to the dipper components is
possible, if the steel used has lower yield strength. The stress contour maps are used to identify
the high and lower stress regions for fatigue fracture modeling and analysis.
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Figure 7. Equivalent stress (von Mises) profile of dipper.

Steel Yield strength [MPa]

Low carbon steel 140–2400

Medium carbon steel 245–1740

High carbon steel 375–3340

Table 5. Yield strengths of steel [23].

8. Fatigue failure modeling of dipper components

Rope shovel excavation is cyclic in nature. The stresses on the front-end assembly vary
continuously during the duty cycle [24]. This variation, combined with the material flaws, can
initiate fatigue cracks in shovel components. Environmental factors (e.g., freezing tempera-
tures and corrosive materials) affect metal toughness. Fatigue crack may grow rapidly to
undesirable lengths under cyclic loading conditions. There are three modes for metal fatigue
failure: (i) mode-I (crack opening), (ii) mode-II (in-plane shear or crack opening), and mode-
III (out-of-plane shear or crack twist). Metal failure can also be a result of mixed-mode fatigue.
Mode-I fatigue research has dominated the fatigue analysis and life-expectancy field. Three
common fatigue failure analysis approaches are typically used, including the stress life, strain
life, and fracture mechanics. Each approach has its own application with overlapping boun-
daries. The fracture mechanics approach is used to estimate a crack’s propagation life. For this
approach, the initial crack lengths are either assumed or known (welds, known defects,
porosities, and cracks found during nondestructive testing). Fracture mechanics principles and
theories are applied to estimate crack-propagation rates and, thus, crack-propagation lives.
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A typical crack-growth curve has three distinct regions: crack initiation, crack propagation,
and rapid increase in crack growth leading to failure. Fatigue life may, however, occur for a
longer period of time during the crack-propagation phase as the majority of crack time is spent
during this phase. A number of models are available to predict the crack-propagation phase
(the middle region on the curve). Paris’ law [25], defined by Eq. (32), is the most commonly
used method to estimate the crack propagation. The slope of the linear region of the fatigue
curve defines the crack-growth rate with every cycle. The material constants (C, m) can be
found for different metals in literature or computed using standard tests (ASTM E647):

( )da C K
dN

= D (32)

K is the stress intensity factor (SIF). According to the linear elastic fracture mechanics (LEFM)
theory, computation of stress intensity factor (SIF) at the crack tip is necessary to predict the
crack growth. SIFs for many simple geometries and loading situations are available in
published literature [26–29]. For complex geometries and stress loading conditions, numerical
methods are used to compute the reliable SIF values. The most common methods for calcu-
lating SIF are the J-integral and energy release rate. Finite element techniques evaluate the SIF
using the energy release rate method. Many commercial software packages, such as ANSYS
Workbench (R15), have options for calculating these parameters. In these techniques, energy
release is estimated around the crack tip nodes in close loops, in the form of contours. For 2D
cases, the node at the crack tip forms the first contour, while for 3D cases, all nodes forming
the crack front determine the first contour. The shape, length, and depth of a crack determine
the crack life at a specific location.

For fracture modeling of the dipper, representative cracks can be induced in the virtual shovel.
Figure 8 illustrates the location and geometry of an elliptical crack in the dipper’s bottom plate.
The crack is induced in the high stress region and is along the stress lines. This representative
crack is 3 in. long and is 1 in. deep. A localized reference system defines the geometry of this
crack. The crack plane lies on this XZ plane, while the width of crack is along the Y direction
of this plane. The crack grows along the X and Z directions. A number of parameters control
the crack failure modeling, including crack geometry, shape, orientation, and stress environ-
ment. The crack definition is explained in Figure 9. This crack front is divided into a number
of segments, and six circular contours (also divided into segments) are generated around the
crack front. All these divisions represent the node locations for the finite element model. The
J-integral values are computed for every contour along the crack front. These values are used
to compute the SIFs at the crack tip and for life estimations.

The crack size is the most critical aspect of fatigue crack modeling and dipper life estimation.
The SIFs are highly dependent upon the crack size (length and depth). The relationship
between SIF and crack length is nonlinear. Estimating the variation of SIFs with size is the most
important and critical aspect for life estimation. The experimentation is performed for multiple
size cracks. ANSYS R15 software is used to compute the J-integrals around the predefined
crack tips. As explained in Figure 9, contours are generated around the crack front to represent
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The crack size is the most critical aspect of fatigue crack modeling and dipper life estimation.
The SIFs are highly dependent upon the crack size (length and depth). The relationship
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crack tips. As explained in Figure 9, contours are generated around the crack front to represent
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the closed paths for J-integral. There are six contours around every modeled crack as illustrat-
ed in Figure 10. A very fine mesh size is generated around the crack tip, and J-integrals are
computed for all these contours. The first contour is very close to the tip and may represent
erroneous results. Therefore, the J-integral values for the first contour are ignored to ensure
accuracy [30].

Figure 8. Elliptical crack at the side of the dipper bottom plate.

Figure 9. Crack definition in ANSYS for J-integral computations.
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Figure 10. ANSYS contours for J-integral computations.

SIFs are computed, using plane stress conditions for all the contours, and an average value of
five contours (contour 2–6) is used for further fatigue analysis. Crack lengths are increased
from smaller to larger crack sizes at selected locations, and SIFs are computed for each crack
size. The results are used to generate the crack-growth curves and for life expectancy of dipper
components. The SIF variation curves for the bottom-plate crack tip are obtained through a
least square regression and curve fitting process, Eq. (33), and are plotted in Figure 11. The
crack is in a high stress region, and, thus, the SIF is very high. Further, the SIFs show a steep
increase with crack size. It is expected that the cracks at this location will propagate rapidly:

3 24.98 04 8.75 02 5.14 2.96 01SIF E a E a a E= - - - + + + (33)

Figure 11. SIFs for the bottom-plate crack tip.
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9. Remaining life expectancy of dipper components

Fatigue life is modeled by integrating the Paris’ law [25] in Eq. (34). The equation has three
input parameters (c, m, and ΔK). The two material constants are computed following standard
laboratory procedures. For common materials, the values for these variables can also be found
in literature [31, 32]. The “c” values are between 3 and 4, and some common values for “m”
are available in literature [33]. For this research, the material constants are taken from research
conducted by Yin et al. [21, 22]. They estimated the crack growth for the shovel boom cracks
and measured the material constants (“c” and “m”) following the ASTM standard E1820:

( )

f

i

a

f c
a

daN
m K

=
Dò (34)

It is also assumed that the steel properties for the dipper and teeth are similar to that for the
boom. With these parameters, Eq. (34) becomes Eq. (35). As the computations become complex,
it is numerically solved using Gauss-Legendre quadrature in MATLAB. The outputs from Eq.
(35) include number of cycles (Nf) for a crack to propagate from an initial length (ai) to a final
length (af). The number of cycles is converted to number of days assuming that one digging
cycle of shovel is equivalent to one fatigue cycle:

( )3.27125.89 K

f

i

a

f
a

daN
-

=
Dò (35)

Following the Palmgren-Miner’s rule [34] for equivalent damage, the total number of fatigue
cycles per day is equal to the digging cycles of the shovel per day. The total number of cycles
for a shovel per day is counted using the cycle time and the operational efficiency. The shovel
digging cycle is assumed to be 3 s for this research. However, a typical complete excavation
cycle time for P&H 4100XPC is about 30 s. The 3 s cycle time is consistent with the numerical
simulation results. Using this cycle time and assuming a 95% shovel operational efficiency, the
total number of digging cycles for shovel is calculated as 2730 cycles per day. This assumption
is very close to field observations [22] where researchers counted 2880 cycles per day for a cable
shovel working continuously over a period of 2 weeks. For this research, a middle-ground
value of 2800 cycles per day is assumed to convert the cycles to days.

The remaining useful life for the cracked components can be estimated, with knowledge of
critical crack lengths for dipper material. The critical crack length is the length of the crack at
which the material at the crack tip starts behaving like a plastic material, and the crack
propagation becomes very rapid. It is represented as the boundary between the second and
third zones for a fatigue crack. The critical lengths for metals are generally measured using
laboratory fatigue toughness tests following the standard procedures. A critical length limit
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may also be implemented based on field operating conditions or using the crack-growth
curves.

The crack-growth curve for the dipper bottom plate is shown in Figure 12. It is observed that
the crack-propagation rates become very high after a certain crack length. A critical length1 of
100 mm is set for this crack. As illustrated in this figure, the estimated life for a 50 mm bottom-
plate crack is 38 days. However, once the crack grows to 75 mm, the remaining life is only 16
days for the same crack.

Figure 12. Critical crack length and remaining life expectancy for an initial length of 50 mm.

10. Significant contributions

The research underlying this chapter is a pioneering effort for understanding electric rope
shovel dipper stress analysis using dynamic resistive forces. The research results contribute to
the existing body of knowledge on health and longevity of shovel dipper-teeth assembly. It
advances shovel reliability, maintainability, and availability, which influence surface mining
productivity. Previous research generally ignored the dynamic forces due to the weight of the
dipper and payload. Given the size of current large shovels with 100+ tons per pass, these
forces must be accounted for in any meaningful and comprehensive dynamic model. The
research models provide detailed information on the forces and torques for all joints and links
within the shovel front-end assembly. This research is also the first attempt to model the fatigue
life of the shovel dipper-teeth assembly. It lays a foundation for understanding dipper fatigue
failure resulting from high stress intensity, crack initiation, and propagation for rope shovel
front-end assembly. Research shows that dipper-related breakdowns are among the highest
for shovel excavation downtimes [4]. The current maintenance practice for the shovel front-
end assembly is based on experience rather than science. This chapter lays a foundation for

1 Crack length in this text (and in literature) is always referred as half of the total length of crack. A critical length of
100 mm would be 200 mm total length of the crack.
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the scientific modeling and understanding of the shovel dipper-teeth stress and fatigue failure
studies. The life expectancy of the shovel components should help reduce the operating costs
of shovel excavation. Overall, the study contributes to the health and longevity of the large
rope shovels by providing a more scientific basis to the subject matter and should be helpful
in the design and development of the next generation of excavators. The results of these models
can be used to design and build the next generation of shovel dippers for the surface mining
industry and advance frontiers and knowledge in shovel dipper stress and fatigue failure
modeling.

11. Conclusions

Estimating electric rope shovel health and longevity is a complicated task and requires a
thorough understanding of the shovel digging process. Thus far, the shovel front-end assembly
repair model is based on experience and judgment rather than science. Shovel kinematic and
dynamic models provide a scientific basis for shovel repair and fatigue failure modeling. The
shovel dynamic model requires a good estimation of shovel digging forces. Current rope
shovels have large dipper capacities, and their digging resistive forces can be significant.
Shovel payload is a dynamic and significant contributor of these digging forces. The dynamic
forces result in stress loading of shovel front-end components. The maximum stress values can
be as high as 282 MPa and can be higher than the lower yield strength limits for low, medium,
and high carbon steel. Material flaws, high stresses, and other environmental factors can
initiate cracks on the dipper. Under severe stress loading conditions, these cracks can propa-
gate to critical lengths in no time. The estimated life for a 50 mm bottom-plate crack was found
to be 38 days. However, once the crack grows to 75 mm, the remaining life can be as low as 16
days only. This chapter lays a foundation for the fatigue failure analysis of dipper-teeth
assembly. The virtual prototype is a scaled and simplified model. It is recommended that the
work be extended for real full-scale virtual prototype for the actual steel materials used.

Nomenclature

Co number of impacts to sink a cylindrical tip in a standardized test by 10 cm

ρ the angle that the rupture surface makes with the horizontal

β tool cutting angle for Zelenin model

d tool working depth, depth of dipper into the bench

w width of tool

z coefficient for teeth configuration in the Zelenin model [11]

w dipper width

da/dN crack-growth rate per cycle as defined by Paris’ law
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a crack length

Nf number of cycles to failure

K stress intensity factor

C, m material constants for Paris’ law

ai, af initial and final/critical known/assumed crack length

C(ϴ,ϴ) generalized Coriolis and centripetal torque

D(ϴ) generalized inertia matrix

G(ϴ) generalized gravity torque

m1, m2 mass of crowd arm and dipper, respectively

αi rotation of coordinate frame with respect to i−1 frame

β constant inclination of link 3 from link 2 (inclination of X4 from X3)

θi rotation of ith coordinate frame

θ inclination of coordinate frame {4′} from coordinate frame 3

ai length of the ith link

a1 crowd-arm length from pivot to connection point between arm and dipper (length of 1st link)

a2 length between dipper tip and connect point of arm and dipper (length of second)

si, ci sinθi and cosθi, respectively

di offset distance of the gravity left in link i

Fn, Ft normal and tangential cutting resistive forces on dipper tip

i+1Ti transformation matrix to transfer the coordinates from i to i+1

i+1Ri rotational matrix, extracted from i+1Ti

L(x) straight-line function representing the bench face
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Abstract

A Lagrangian formalism is used to model a PVTOL in order to obtain an aircraft model.
The Euler-Lagrange model of the PVTOL is used to develop an algorithm for fault diag-
nosis. Diagnosis implies the detection, isolation and identification of a fault. The consid-
ered approach is based on the knowledge of a system model as well as the model of the
possible faults. The idea is to use non-linear decoupling approach to derivate a set of
subsystems, each related to a specific fault or a set of faults. An observer-based residual
generation is designed for each subsystem, this structure allows the fault detection and
isolation stage, for fault identification a kind of approximated inversion algorithm to meet
the different diagnostic levels. The results are obtained taking advantage of the structure
given by the Euler-Lagrangemodelling of the PVTOL as well as from recent results related
to observer design and fault identification.

Keywords: fault diagnosis, Lagrangian systems, non-linear systems, observers, fault
isolation

1. Introduction

Nowadays, the unmanned aerial vehicles (UAVs) represent a big boom in the electronic industry,
thanks to their versatility and largely due to the falling cost of the electronic parts and the UAV by
itself. UAV is a kind of an aerial vehicle that is able to take off vertically, such as helicopters and
some special airplanes, and it is represented by the planar vertical take-off landing (PVTOL)
aircraftmodel. Note that PVTOL aircraftmodels representmore than onlyUAV systems. Reliabil-
ity requirements in aerial vehicles bring the necessity of a fault detection and isolation schema. In
general, they are non-linear systems, and so a non-linear inspired strategy for the detection and
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isolation of faults could also be used. An idea consists in taking advantage of the structure given
by the Lagrangianmodel of a PVTOL in order to develop an algorithm for the detection, isolation
and identification of faults.

Many research studies dealing with the fault detection and isolation (FDI) problem have been
already published, most of them deals with linear systems, see for instance Refs. [1–3]. On the other
hand, for non-linear systems, some solutions exist, based on the inherited characteristics, see Refs.
[4, 5] for more details. The most common approach used for FDI is the hardware redundancy;
however, this approach normally represents an increment in weight and economical cost of the
aircraft. In order to avoid thisproblem, somemathematical relations couldbeused, the simplestway
is to compare two or more internal signals, having as goal to create a residue, which, in fact will be
zero if the system isworkingnormallyanddifferent fromzero if not. In order to create such relations
it is common to exploit some intrinsic characteristics of the systems. See for instance Ref. [6].
Diagnosis for thePVTOLsystemhasbeenconsideredpreviouslyusingaHamiltonian formalism [7].

A Lagrangian formalism is used to model a PVTOL in order to obtain an aircraft model. The
Euler-Lagrange model of the PVTOL is used to develop an algorithm for fault diagnosis. Diag-
nosis implies the detection, isolation and identification of a fault. The considered approach is
based on the knowledge of a systemmodel as well as the model of the possible faults. The idea is
to use non-linear decoupling approach to derivate a set of subsystems, each related to a specific
fault or a set of faults. An observer-based residual generation is designed for each subsystem.
Detection and isolation of faults can be reached at this stage, for fault identification a kind of
approximated inversion algorithm to meet the different diagnostic levels. The results are
obtained taking advantage of the structure given by the Euler-Lagrangemodelling of the PVTOL
as well as from recent results related to observer design and fault identification.

Fault diagnosis algorithms can be developed for a more or less general Euler-Lagrange model
of a system, which, in fact, also include a PVTOL system. Fault diagnosis includes detection,
isolation and identification of faults. In order to meet a diagnosis task, an observer-based
residual generator is designed in order to determine whether a fault is present. A decoupling
approach is used in order to guarantee also a fault isolation task. As discussed, both steps
could be systematically developed for the considered system model. Further, fault isolation is
approached using a kind of approximated system inversion to develop approximated fault
estimation through dynamic inversion of the corresponding residual equation. The schema is
shown using a specific example of a PVTOL. As presented in the results, the proposed
approach can be used effectively for the diagnosis of a PVTOL system.

2. Lagrangian modelling

There is a huge amount of literature about Lagrange's equations of movement, however, see
for example Ref. [8]. The structure of a Planar-Vertical-Take-Off and Landing (PVTOL) is
represented in Figure 1.

The absolute linear position to the PVTOL is defined in the inertial frame x� y� z axes with two

generalized coordinates ξT ¼Δ ½ y z �. One additional generalized coordinate, the angular position,
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is defined in the inertial frame. Note that the pitch angle θ, i.e. the rotation angle around the y-
axis, and yaw angleΨ , i.e. the rotation of the PVTOL around the z-axis, are zero. The only angular
movement is the roll angle φ, i.e. the rotation around the x-axis.

ξ ¼ y
z ; η ¼ φ; q ¼

y
z
φ

2
4

3
5

3
5

2
4 (1)

The origin of the body frame (also the origin of the inertial frame) is the centre of mass of the
PVTOL system. The PVTOL is assumed to have a symmetric structure with the two arms
aligned with the body x-axis. The inertia is represented by Jx.

The Lagrangian is defined as the sum of kinetic energy minus the potential energy ðEpotÞ. In the
case of the PVTOL, the kinetic energy consist of two parts, one related to the translational
energy ðEtranÞ and the second related to the rotational energy ðErotÞ:

Lðq; _qÞ ¼ Etran þ Erot � Epot (2)

The movement equations of Lagrange are given by

d
dt

∂Lðq; _qÞ
∂ _q

� �
� ∂Lðq; _qÞ

∂q
¼

f y
f z
ℓ

2
4

3
5 (3)

where f y represent the generalized forces on the y-axis, f z represent the generalized forces on

the z-axis and ℓ is the torque.

Figure 1. Schema of the PVTOL system.
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For the PVTOL results:

Etran ¼ 1
2
m½ _y _z � _y

_z

� �
(4)

Erot ¼ 1
2
Jxω

2 ¼ 1
2
Jx _φ

2 (5)

Epot ¼ mgz (6)

So that the Lagrangian results

Lðq; _qÞ ¼ 1
2
m _y2 þ 1

2
m _z2 þ 1

2
Jx _φ

2 �mgz (7)

and the terms
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mg
0
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4

3
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The generalised forces (in the inertial frame) are given by

f y ¼ cos ðφÞUy � sin ðφÞUz (11)

f z ¼ sin ðφÞUy þ cos ðφÞUz (12)

where Uz represents the total thrust force (the sum of the forces of each rotor), acting on the
z-axis of the body frame. Uy corresponds to the side forces on the y-axis of the body frame. The
moment acting on the rolling angle is given by ℓ.

The movement equations are given by

m 0 0
0 m 0
0 0 Jx

2
4

3
5

€y
€z
€φ

2
4

3
5þ

0
mg
0

2
4

3
5 ¼

cos ðφÞ � sin ðφÞ 0
sin ðφÞ cos ðφÞ 0

0 0 1

2
4

3
5

Uy
Uz
ℓ

2
4

3
5 (13)

3. Diagnosis approach

Fault diagnosis aim to detect the fault occurrence in the functional units of the system, as well
as to classify the different faults and to determine the type, magnitude and cause of faults,
which leads to undesired behaviour of the whole system. The fault diagnosis can be achieved by
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hardware redundancy or software redundancy also called analytical redundancy. One technique
of fault diagnosis is the model-based fault diagnosis, which employs software redundancy.

In the model-based fault diagnosis technique, the system behaviour is online reconstructed by
a mathematical model, which is implemented in the software form. In this scheme, the system
model run in parallel to the system and both of them are driven by the same control inputs.
Thus, in the fault-free case, reconstructed system variables by the system model follow the
corresponding real system variables and show a derivation in the faulty case.

A comparison of the measured system variables with their estimates by the system model is
called residual. Thus, a residual signal includes the fault effect, and ideally if the residual signal is
different from zero, then a fault has occurred otherwise the system is fault free. The residual
generation process is carried out in two stages, first, the system outputs have to be estimated,
then, the difference between those signals and the signal coming from sensors is computed [9].

Figure 2 shows the general scheme for residual generation using a model-based fault diagnosis
technique.

In this contribution, a fault diagnosis for systems with model Euler-Lagrange is presented. A
model-based fault diagnosis technique with analytical redundancy is used to obtain a residual
generation.

Consider a dynamic system without faults described by the following Euler-Lagrange equations

d
dt

∂Lðq, _qÞ
∂ _q

� �
� ∂Lðq, _qÞ

∂q
¼ τ,

yo ¼ q,
(14)

where τ∈Rn is the vector of generalized forces, q∈Rn is the vector of generalized coordinates,
L is the Lagrangian and y is the vector output.

In this work, additive faults in control input and sensor are considered. The Euler-Lagrange
model of the faulty system is defined as

Residual

Generation

Σ

residuals

faults

systemcontrolre yf

−

Figure 2. General scheme for residual generation.
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d
dt

∂Lðq; _qÞ
∂ _q

� �
� ∂Lðq; _qÞ

∂q
¼ ðτþQFaÞ;

yf ¼ ðqþNFsÞ;
(15)

where Fa ∈Rn is the vector of control input faults, Q∈Rn�n is a constant matrix, Fs ∈Rn is the
vector of sensor faults and N∈Rn�n is a constant matrix.

Assumption 1. Consider an Euler-Lagrange system with faults described by Eq. (15) and the system
behaviour is on line reconstructed by the Euler-Lagrange system without faults Eq. (14), then the faults
presented in the system Eq. (15) can be detected by the residual generator

rðtÞ ¼ yf ðtÞ � yoðtÞ (16)

4. Application results

The method presented in the previous section is applied in a PVTOL. Only additive faults are
taken into account, the faults could affect sensors (y, z and φ) and the control inputs (uz, uy and ℓ),
the faulty case is restricted to one fault at a time, meaning that it is assured that if a fault appears,
it is impossible that another fault occurs. Once the fault has occurred, it still presents until the end
of the simulation.

The faulty PVTOL system is defined as
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2
664

3
775; (18)

where f uy is the fault in the control input Uy, f uz is the fault in the control input Uz, f ℓ is the

fault in the control input ℓ, f sz is the fault in the sensor of position in the vertical movement, f sy
is the fault in the sensor of position in the horizontal movement and f sφ is the fault in the sensor

of angle φ.

Among the different detection methods available in the literature [2], the threshold-based
approach is one of the most common thanks to its simplicity and accuracy. The principle of
this approach is based on the idea that the parameters of the system (e.g. mass and dimen-
sions) could vary because of the measurement or estimation errors. Those data are used to
determine a threshold, which is computed by varying the internal parameters of the system in
a certain � percentage. This is carried out in order to avoid false alarms caused by the
difference between the mathematical model and the real system.
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The internal parameters of the PVTOL that may vary are the mass (m) and the inertia (Jx), in
order to cover the worst case scenario, both parameters vary at the same time þ10 and �10%.
As a result, the thresholds are fixed as depicted in Figure 3.

As explained in the beginning of this section only additive faults are taken into account, since
the controller is designed to stabilize the system in hover flight, the fault amplitude is defined
as a percentage of the initial value for sensors and a percentage of the maximum amplitude of
the input control. This percentage is fixed �10% for sensors and �5% for control inputs. The
faults are triggered 7 seconds after the beginning of the simulation and it is persistent until the
end.

In order to detect the fault, six different residues are computed, for this, it is assumed that the
entire state is available, according to the previous section as follows:

R1 ¼ yf � y (19)

R2 ¼ zf � z (20)

R3 ¼ φf � φ (21)

R4 ¼ _yf � _y (22)

R5 ¼ _zf � _z (23)

R6 ¼ _φ f � _φ (24)

where the suffix f denotes the signal coming from the sensor.

Time
0 5 10

R
1

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 1

Time
0 5 10

R
2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 2

Time
0 5 10

R
3

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 3

Time
0 5 10

R
4

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 4

Time
0 5 10

R
5

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 5

Time
0 5 10

R
6

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 6

Figure 3. Amplitudes of the detection thresholds. - -, detection threshold; —, residues.
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4.1. Sensor faults

The sensor faults considered in this work affect the vertical measurement (z), the horizontal (y)
and the inclination angle (φ), as explained before the amplitudes of the faults are 0.2 m, 0.1 m
and 0.2�, respectively. The controller is designed to decouple the sensor faults, as a result each
fault is independent of the others and by consequence all of them are detectable and isolable,
thanks to their different fault signatures. Figures 4–6 depict the sensor faults.
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Figure 4. Fault affecting y sensor. - -, detection threshold; —, residues.
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Figure 5. Fault affecting z sensor. - -, detection threshold; —, residues.
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4.1. Sensor faults

The sensor faults considered in this work affect the vertical measurement (z), the horizontal (y)
and the inclination angle (φ), as explained before the amplitudes of the faults are 0.2 m, 0.1 m
and 0.2�, respectively. The controller is designed to decouple the sensor faults, as a result each
fault is independent of the others and by consequence all of them are detectable and isolable,
thanks to their different fault signatures. Figures 4–6 depict the sensor faults.
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Figure 5. Fault affecting z sensor. - -, detection threshold; —, residues.
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Once the residue exceeds the detection threshold, the fault is considered detected and it will be
isolable if and only if the fault signature is different among the others. As expected, and thanks
to the controller design every fault affecting the sensors is isolable. The fault signatures are
presented in Table 1. X means that the residue exceeds the threshold; O means that even if the
residue is affected, it does not surpass the threshold and by consequence this residue is not
triggered.

4.2. Control inputs faults

The fault amplitudes of the control inputs are fixed by obtaining the 5% of the maximum size
of them during an unfaulty simulation, after this processes the amplitudes are fixed to 0.5,
0.425 and 0.008 for uy, uz and ℓ, respectively. Thanks to the controller design, the faults
affecting the control inputs are detectable and isolable. Figures 7–9 shows that the detection
threshold is exceeded once a fault occurs, by consequence, fault detection is accomplished.
Table 2 depicts the fault signatures, it is straightforward to see that they are all different, this
behavior confirms that every single fault is detected and isolated.

Time
0 5 10

R
1

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 1

Time
0 5 10

R
2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 2

Time
0 5 10

R
3

-0.2

-0.15

-0.1

-0.05

0

0.05

Residue 3

Time
0 5 10

R
4

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 4

Time
0 5 10

R
5

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 5

Time
0 5 10

R
6

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Residue 6

Figure 6. Fault affecting φ sensor. - -, detection threshold; —, residues.

Fault R1 R2 R3 R4 R5 R6

Sensor y X O O O O O

Sensor z O X O O O O

Sensor φ O O X O O O

Table 1. Fault signatures of sensors.
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Figure 7. Fault affecting uz . - -, detection threshold; —, residues.
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Figure 8. Fault affecting uy. - -, detection threshold; —, residues.
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Figure 7. Fault affecting uz . - -, detection threshold; —, residues.
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Figure 8. Fault affecting uy. - -, detection threshold; —, residues.
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5. Conclusion

This work presents a fault detection and isolation approach applied to Lagrangian systems.

Every fault is detectable and isolable as it can be seen in Tables 1 and 2, this result is obtained
thanks to the special design of the state feedback controller, by consequence the faults affecting the
sensors are easily isolable, and the residues affectedduring a control input fault are those related to
themeasures affecting the states, for instance a fault affecting uy triggers the residues related to the
y and _y measures; on the other hand, the faults affecting the control input ℓ trigger all the residues,
this is because the direct relation between this control input and theφmeasure, as could be seen in
Eq. (13) besides the φ measure appears in the other states, as a result every residue is triggered;
however, this signature is unique, by consequence this fault is considered detected and isolated.
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Figure 9. Fault affecting ℓ. - -, detection threshold; —, residues.

Fault R1 R2 R3 R4 R5 R6

Control input uz O X O O X O

Control input uy X O O X O O

Control input ℓ X X X X X X

Table 2. Fault signatures of control inputs.
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Fuzzy Logic and S-Lagrangian Dynamics of Living
Systems: Theory of Homeostasis

Uziel Sandler and Lev Tsitolovsky

Additional information is available at the end of the chapter

Abstract

A key peculiarity of living organisms is their ability to actively counteract degradation
in a changing environment or being injured by using homeostatic protection. In this
chapter, we propose a dynamic theory of homeostasis based on a recently proposed
generalized Lagrangian approach (S-Lagrangian). Following the discovery of homeosta-
sis W. Cannon, we assume that homeostasis results from the tendency of the organisms
to decrease the stress and avoid death. We show that the universality of homeostasis is
a consequence of analytical properties of the S-Lagrangian, while peculiarities of
the biochemical and physiological mechanisms of homeostasis determine phenomeno-
logical parameters of the Lagrangian. We show that plausible assumptions about
S-Lagrangian features lead to good agreement between theoretical descriptions and
observed homeostatic behavior.

Keywords: Homeostasis, S-Lagrangian, Dynamics, living systems, stress

1. Introduction

A primary difference between living creatures and non-living things is the capacity for repro-
duction. However, if one considers only individual life rather than the existence of species, the
major paradox is that living things actively counteract degradation in a continuously changing
environment or being injured through homeostatic protection. By homeostasis, we refer to the
ability of living organisms to maintain viability and stability of physiological functions in a
changing external environment. The system remains alive as a consequence of homeostasis
maintaining system integrity in the presence of perturbing influences. Cessation of homeosta-
sis leads to inevitable death. In living systems, the relationship between cause and effect is
paradoxical: organisms are characterized by poorly predictable motility, which is supposedly
managed by their internal motives. Homeostatic motivation transforms an object into a subject
by virtue of its own behavior. Thus, the mystery of arbitrary actions may be disclosed by
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exploring homeostasis [1]. It should be noted that homeostasis may evidently produce both
maintenance of life and the will to act [2].

Although homeostasis is present in all living systems and relates to large numbers of different
biochemical and physiological mechanisms, it reveals amazingly similar features and behav-
ior. Such universality is not unique in the physical world. For example, physical systems, from
crystals to large biomolecules, demonstrate universal behavior near critical points in spite of
considerable differences in its structures and intermolecular interactions. This occurs due to
the critical behavior of the systems being determined by the analytical properties of free energy
near critical points, while the peculiarities of system structure and intermolecular interactions
are “hidden” within the phenomenological parameters of the free energy.

We assume that the universality of homeostasis is a consequence of the analytical properties of
the S-Lagrangian, which determines the dynamic equation associated with homeostasis, while
peculiarities of the biochemical and physiological mechanisms determine phenomenological
parameters of the Lagrangian. We show in Section 2 that plausible assumptions about
S-Lagrangian properties lead to good agreement between theoretical descriptions and observed
homeostatic features.

2. Biological background

2.1. Homeostasis levels

Living beings actively oppose their degradation in continuously changing environments by
means of homeostasis [3] that supports the intrinsic bodily constants within acceptable limits.
Maintenance of individual life requires evaluating and regulating its inner state. Homeostatic
regularities can be traced to the level of particular cellular parameters, cells, in general, phys-
iological systems of an organism, and an organism as a whole. In this study, we primarily
focus on homeostasis of neurons and the nervous system. A cell, as a body, manifests complete
homeostasis. This occurs not only to maintain biological constants but also to regulate physi-
ological functions and motivational behavior. The behaving animal is sensitive to single
neuronal spikes and even to their temporal patterning [4]. Moreover, a neuronal spike can
serve as a tool of reaction for the whole animal [1]. Individual neurons act in concert to govern
behavior [5].

At first glance, homeostatic mechanisms are not complicated. In theoretical research, the
problem is often evaluated by the introduction of positive- and negative-feedback loops
between the sensor and the metabolic flaw (e.g., [6, 7]). Attempts to model homeostatic
regulation consider only simple homeostasis, with regulation of each variable described by
the introduction of specific individual controllers. However, when homeostatic protection
begins to work against a permanent environmental factor or severe injure, these mechanisms
become ineffective and living systems utilize indirect paths to assign optimal parameters,
depending on the situation.

Homeostatic function depends on sensors, which register deviations from the norm. Appear-
ance of a metabolic flaw triggers the homeostatic device to compensate for the shortage.
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However, homeostatic resources may not be sufficient to restore disturbed functions. In these
cases, living systems may try to change the environment, requiring the environment to be
included in the interaction.1

The status of the internal environment is not sustainable for all life. Conditions remain stable
only at intervals of time as compared to environmental variability. At these intervals, homeo-
stasis counteracts weak disorders in the system and recovers initial conditions (direct
regulation). Over time, adapting to strong external influences enables life to modify its param-
eters (indirect regulation). If the value of a deviated parameter is not restored, the organism may
be able to maintain it by restructuring the optimum of other parameters. For example, stabili-
zation of neuronal activity can be achieved by configuring both synapse efficiency and cell
autonomous homeostasis [8]. Homeostasis readjusts to save some supreme quality criterion
that distinguishes the living from the nonliving. The living entity keeps track of a special
criterion the degree of remoteness from its destruction. This criterion determines the intensity
of homeostatic protection. However, damage may reach such an extent that homeostasis is
unable to overcome the irreversible destruction of the living system.

The nature of the general sensor for damage-recovery viability is unclear, though there are
options that are significant to the survival of cells and the whole organism. These include
energy (ATP level), excitability, intracellular pH levels, and concentration of certain proteins
(caspases, cytokines, or antioxidants). These cannot be disregarded by the highest sensors,
which could lead to death. For example, a supreme neuronal sensor might be excitability [1].

2.2. Protection generates action

Misalignment of homeostasis leads to damage, the increase in the activity, and leads to further
aggravation of injury. As a rule, the response of neurons is proportional to the coming stimu-
lation. However, superfluous stimulation and neuronal injury are intimately connected
(excitotoxicity) [9]. Thus, the injured neurons generate spikes.

It should be noted that extensive damage of nerve tissue reduces excitability and violates its
function, while protection temporarily restores excitability. Therefore, there is a region of the
paradoxical states of excitable tissues, where excitation is reduced due to damage, but irre-
versible deterioration of the tissue has not yet occurred. In such a case, inhibition (or decreased
excitation) counteracts the damage, paradoxically recovers the normal excitability, and pro-
motes the generation of action (parabiosis, in accordance with N.E. Vedensky) [10]. Properties
of homeostatic protection make it tempting to consider homeostasis as a driving force that
induces actions directed against actual or anticipated damage. However, in cases where the
damage cannot be completely compensated for by available resources, metabolic problems
may be solved through actions directed at the environment.

To outside observers, the resulting behavior will resemble the emergence of motivation, will to
live, and be match with conscious decision. The optimal state corresponds to such conditions
that do not threaten the lives and do not evoke attempts to change structure and functioning of

1
We do not consider this complicated form of homeostasis in this study; however, our approach is extendable to this case,
as well.
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the brain. A minimum of homeostatic load will serve as a criterion for this state. Joint behavior
of a huge variety of such systems generates to complex forms of awareness. The neural tissue
concentrates within itself the ability to evaluate its own state and endeavor to survive. A single
cell, neurons in particular, can live, learn, want, suffer, delight, and try to survive [1]. Exertion
of neuronal metabolism, leading to protection and goal-directed behavior, is rather appropri-
ate for the description of conscious actions. Purposeful behavior corresponds to conscious
decision and resembles a kind of generalized “pursuit of life.” To the outside observer, this is
reminiscent of intentional action and a manifestation of will.

2.3. Emergence of the feeling of a death threat

The essence of subjective feeling, goals, and will is still the amazing mysteries. The establishment
of the theory of systems regulating optimal constants of their own state gives hope for under-
standing the problem of subjectivity, as homeostasis is the key tool that supports the system
alive. The emergence of self as a state separated from the external environment is probably a
direct consequence of the vitality of living systems. Alive system should assess its own vitality,
and the phenomenon of maintaining its life is impossible to distinguish from instrumental
actions. Probably, life appears along with the ability of an individual to evaluate its own integrity
and health, and the homeostatic protection is a material manifestation of the pursuit of life.

Maintenance of vital activity resembles a manifestation of the mystical “vital force,” which
prevents disorder and violates the laws of thermodynamics. Homeostatic activities are so
rational that their discoverer, W. Cannon, described them as “Wisdom of the body.”

The appearance of self-dissatisfaction plays a crucial role in triggering homeostatic protection,
especially in the emergence of aware decisions. Nevertheless, it is difficult to provide a formal
definition for the subjective feelings of discomfort that coincide with the appearance of dam-
age. The assessment of general parameters is qualitative and is guided by the “injure-repair”
scale. Living systems somehow regulate the avoidance of injury and the aspiration to life as it
shifts toward death or life, that is, behaves as an object possessing minimum awareness. This
mysterious variable may not be a function of the state and should depend on the previous
history of the system, since homeostasis, as well as behavior, improves after exercise [1].

We have no possibility of determining how a neuron evaluates its own state, but we know that
injury decreases positive feelings, while protection decreases distress. In any case, the
approach of death increases cellular efforts to operate. A living system reacts to damage as if
it is having a negative sensation. Homeostasis entails a relationship between physiology and
mind. The problems of consciousness and the problem of life self-maintenance are inseparable.
It is likely that the origin of life necessarily leads to the emergence of consciousness.

2.4. Homeostatic regulation

Theoretically, there are two explanations for homeostatic operation:

1. Rigid mechanistic programs that evaluate all options for possible injures.

2. Spontaneous relaxation, which minimizes injury.
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If it is algorithmically predetermined by the Genetics, the body needs to recognize its own
current state and select a genetically pre-tuned course of recovery. However, the number of
possible optima can be as high as the number of non-lethal states of external environment and
this would create invalid load on the genome. Besides, genetic defects often have limited
impact on the relevant functional paths, since homeostasis is capable of compensating for
many such defects [11, 12]. Therefore, it is reasonable to assume that spontaneous recovery to
a sustained state is the main mechanism of homeostasis.

In general, a living system is open and its dynamics is irreversible. Living beings are somehow
able to evaluate their remoteness or closeness to death. While this is beyond doubt, we cannot
specify the exact mechanism of evaluation. Movement of a living being within the space of its
parameters should minimize this global parameter, that is, proximity to death.

3. Theory of homeostasis

3.1. Dynamics equations of homeostasis

Consider a living organism, whose state is described by n variables, q ¼ {q1,…, qn}. These
variables can describe both behavioral and physiological or neurophysiological features and
we consider them as coordinates of the abstract state space of the system.2 As we have
mentioned in Section 1.4, living organisms are somehow able to evaluate their level of discom-
fort or stress (see Ref. [1] for comprehensive discussion), so we consider this feature as addi-
tional scalar variable, S, and will call S as stress-index (S-index). It is a typical phenomenological
variable, which cannot be directly measured,3 but it should be emphasized that although S
corresponds to the “feeling” quantity, it is an objective feature of the living beings [1].

In experiments with living organisms, many parameters that influence on the system's behav-
ior are out of control, which leads to considerable deviations in numerical values of the exper-
imental results. It means that small differences in the values of the experimental data became
insignificant and the state of a system should be described by a domain of points rather than a
single point in the state space. This kind of uncertainty does not have stochastic nature and L.
Zadeh has introduced for its notion of the fuzzy sets [13] and theory of possibility [14–16].

We assume that the dynamics of the living systems satisfies causality principle in the form (see
Ref. [1] for details):

• “If, at the time tþ dt, the system is located in the vicinity of the point x, then at the
previous time t, the system could be near the point x′≈x− _x ′dt, or near the point x″≈x− _x″dt,
or near the point x‴≈x− _x‴dt, or …, and so on, for all possible values of the velocity _x.”

2
We assume that the state space has trivial local topology, which means that any inner point of any small domain in the
space belongs to the space as well.
3
The phenomenological variables, which cannot be directly measured, are widely used in physics, for example “mechan-
ical action” of the physical systems, order parameter of the superfluid phase transition, and so on.
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where x ¼ {q;S}. Since velocities { _q; _S} cannot be precisely obtained, we describe them by the

function Posð _q; _S; q;S;tÞ,4 which indicates possibility that the system has velocities { _q; _S} near the
point {q;S} at the time t. The most possible velocities satisfy

Posð _q; _S; q;S;tÞ ¼ 1 (1)

and only this case will be considered in this chapter.

It has been shown in Ref. [17] that if a system's evolution satisfies the causality principle, the
system's state space has trivial local topology, and if state can be described by a compact fuzzy
set, then the most possible system's trajectories {qðtÞ, SðtÞ} satisfy the generalized Lagrangian-
like equations

d
dt

∂L
∂ _qi

−
∂L
∂qi

¼ ∂L
∂S

∂L
∂ _qi

; (2a)

dS
dt

¼ Lð _q;q;S;tÞ, (2b)

where Lð _q;q;S;tÞ is the solution of Eq. (1) with respect to _S. (We will call Lð _q;s;S;tÞ as “most
possible S-Lagrangian” or S-Lagrangian for short. The equations of motion (2a) and (2b) are
more general than the common Lagrangian equations. Since these equations can describe
the dynamics of sets, they can be differential inclusion instead differential equations. The
second extension is dependence of the Lagrangian on S-variable5 (S-Lagrangian). In this case, the
Lagrangian equations of motion acquire a non-zero right side, proportional to the derivative of
the S-Lagrangian with respect to S. It has been shown in Ref. [17] that the equations of motion
with S-Lagrangian lost time reversibility, the energy and momentum are not conserved even in
closed systems. Note that S-Lagrangian is not an invariant under the addition of a function
which is a total derivative with respect to time.6 It should be emphasized that the derivation of
these equations in Ref. [17] does not depend on any specific properties of the system or its
Lagrangian. This means that Eqs. (2a) and (2b) give a reasonable method of applying the
Lagrangian approach to non-physical systems. So, we believe that the dynamics of homeosta-
sis can be described by Eqs. (2a) and (2b) with appropriate choice of the S-Lagrangian
Lð _q;q;S;tÞ.
Attempting to decrease stress and proximity to death is a basic feature of the living organisms.
It is important that this feature exists already on a single-cell level (see Ref. [1] for comprehen-
sive discussion). Deviation of the system's parameters from their ground values leads to
increasing discomfort and the organisms try to decrease discomfort by generating the protec-
tion mechanisms. These mechanisms, in turn, generate the system's activity (see Section 1.3 or

4
It should be emphasized that the function Posð _q; _S; q;S;tÞ cannot be identified with any probability density ρð _q; _S; q;S;tÞ,
because it has different mathematical features. Actually, Posð _q; _S; q;S;tÞ is a function, while ρð _q; _S; q;S;tÞ is a functional [17].
5
In the classical mechanics, S-variable is nothing more than common mechanical action.

6
In the classical mechanics, S-variable is nothing more than common mechanical action.
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[1]), which can be described by time derivatives of the variables, _q. Following the discovery of
homeostasis W. Cannon [3], we assume that homeostasis results from a tendency of the
organisms to decrease the stress and avoid death and that the dynamics of the stress is
determined by competition between damage and the protection mechanisms. So we write

dS
dt

¼ Lð _q;q;S;tÞ ¼ −Pð _q;q;SÞ þ Iðq;S;tÞ, (3)

where function Iðs;S;tÞ describes increasing of stress by deviation of the system's parameters,
while Pð _q;q;SÞ corresponds to decreasing of stress by the protection mechanisms.

Experimental observations of homeostatic behavior (see Ref. [1] and references there) show
that functions Iðq;S;tÞ and Pð _q;q;SÞ should satisfy the following:

i. Deviation of the system's variables from the ground states corresponds to injury or
damage, even if S-index does not have the time to change.

ii. If stress is high, the same perturbation of the variables can strongly increase S-index, than
its increasing at low levels of stress.

iii. Protection is reinforced by moderate stress, but if stress is very high, the protection
mechanism becomes less effective.

Below, we consider time intervals, which is much shorter than the time of relevant changes in
environmental conditions, so that we can neglect time dependence in Eq. (3) and write

Lð _q;q;SÞ ¼ −Pð _q;q;SÞ þ Iðq;SÞ, (4)

and will call Iðq;SÞ as Injure and Pð _q;q;SÞ as Protection for short.

By using Eq. (4), we rewrite Eqs. (2a) and (2b) as

−
d
dt

∂P
∂ _qi

þ ∂
∂qi

½P−I� ¼ ∂P
∂ _q i

∂
∂S

½P−I� (5a)

dS
dt

¼ −PðS; _q;qÞ þ Iðq;SÞ: (5b)

Equations (5a) and (5b) are the main dynamic equations of homeostasis. It should be noted that S-
index

S ¼ S0 þ
ðt
0
½−PðSðt′Þ, _qðt′Þ, qðt′ÞÞ þ Iðqðt′Þ, Sðt′ÞÞ�dt′ (6)

is not function of a state but depends on the system's history.

For small-to-moderate activity, we can expand Pð _q;q;SÞ with respect to _q. We have7:

7
Summating on the repeated indices (Einstein summation) is assumed.
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P≃Aðx;ξ;SÞ þ aiðx;ξ;SÞ _ξi þ 1
2
mijðx;ξ;SÞ _xj _x i; (7)

where we designate by the Latin symbol: x the variables with zero linear terms in Eq. (7) and
by the Greek symbol: ξ the variables with non-zero linear terms8 and keep in Eq. (7) only the

terms with lowest order on _ξ and _x. For reasons that will be clarified later, we will refer to x as
stationary variables (C-variables) and ξ as running variables (R-variables).

The term Aðx;ξ;SÞ corresponds to short-term compensation of stress (e.g., by immediate releas-
ing of the endorphins (“endogenous morphine”), which are quickly produced in natural
response to pain [1]). The other terms correspond to long-term protection by generating the
activity.9 In the last terms, matrix mij determines character rates of changing of the variables x:
small mii corresponds to the fast-changing variables, while large mjj corresponds to the slow-
changing ones. The function aðx;ξ;SÞ determines the behavior of the R-variables (see page 13)).

Therefore, Eqs. (5a) and (5b) take the form:

mij€xj þ W
∂mij

∂S
−
∂W
∂S

mij

� �
_x j ¼ −

∂
∂xi

ðW−aj _ξ jÞ; (8a)

Ω−1
ij
_ξj þ ∂ai

∂xj
_x j ¼ ∂W

∂S
ai−W

∂ai
∂S

−
∂W
∂ξi

; (8b)

dS
dt

¼ −
1
2
mij _xj _x i þ

�
Wðx;ξ;SÞ−aj _ξ j

�
: (8c)

where we designated

Wðx;ξ;SÞ ¼ Iðx;ξ;SÞ−Aðx;ξ;SÞ: (9)

Ω−1
ij ¼ ∂ai

∂ξj
−
∂aj
∂ξi

þ ai
∂aj
∂S

−aj
∂ai
∂S

: (10)

and in the first approximation with respect to _x and _ξ we have omitted in Eqs. (8a) and (8b) the

terms that are proportional to oð _xk _xj; _xk _ξjÞ.

Since Ω−1
ij is an antisymmetric matrix, Ω−1

ij ¼ −Ω−1
ji , Eq. (11b) may include the rotation of R-

variables in the {ξ} subspace. This means that even in the ground state, where C-variables

possess stationary stable points _xc ¼ 0; _Sc ¼ 0, R-variables are functions of time (this is why we
refer to these variables as running variables).

By using Eq. (8b), Eqs. (8a) and (8c) can be rewritten as

8
In order to ensure that P would increase along with increasing activity, the matrix mij should be positively defined.

9
Interestingly, various human activities, for example, aerobic exercise, stimulate the release of endorphins as well [18].
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mij€xj þ W
∂mij

∂S
−
∂W
∂S

mij þ ∂
∂xi

alΩlk
∂ak
∂xj

� �� �
_xj ¼ −

∂U
∂xi

; (11a)

_ξ j ¼ Ωij
∂W
∂S

aj−W
∂aj
∂S

−
∂aj
∂xk

_xk

� �
; (11b)

dS
dt

¼ −
1
2
mij _xj _xi þ aiΩij

∂aj
∂xk

� �
_xk þUðx;ξ;SÞ, (11c)

where

U ¼ W 1þ ajΩjk
∂ak
∂S

� �
þ ajΩjk

∂W
∂ξk

: (12)

Equations (11a) and (11c) represent dynamic equations of homeostasis for the systems with
temperate activity.

3.2. Behavior near the stable states

In order for the running variables to not disturb the ground state, Sc ¼ 0, xc ¼ const:, we
should assume that

∂
∂xkc

ajðxc;ξ;ScÞ ¼ 0;
∂
∂Sc

ajðxc;ξ;ScÞ ¼ 0;
∂
∂ξk

Wðxc;ξ;ScÞ ¼ 0: (13)

(see Eqs. (11a) and (12)).

Stable states of Eqs. (11a) and (11c) are defined by

Wðxc;ScÞ ¼ ¼ 0; (14a)

∂W
∂xci

¼ 0: (14b)

There are two types of solutions for Eqs. (14a) and (14b), which could be called as ground
states (GSSs) and as local stable states (LSSs). At GSS, the injure reaches its global minimum
Iðxc1;Sc1Þ ¼ 0 that leads to

Aðxc1;ScÞ ¼ 0: (15)

In order for Eq. (15) to be valid for any set of xc1 that satisfy Eq. (14a), the function AðSc;xc1Þ
should be factorized as

Aðxc1;SÞ ¼ SΨ ðxc1;SÞ, (16)

given that Ψ ðxc1;SÞ≠0 (see Eq. (22)).

Unlike at LSS, where the system remains injured
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Iðxc2;Sc2Þ > 0; (17)

S-index is non-zero, because

Aðxc2;Sc2Þ > 0 ) Sc2 > 0: (18)

This means that near LSS, the system is stressed, but its state is stable.

Consider the case where mij ¼ mijðx;SÞ andW ¼ Wðx;SÞ, a ¼ aðξÞ. If deviations from the stable
state

y ¼ x−xc; (19a)

w ¼ S−Sc; (19b)

are small, we can expand Eqs. (11a) and (11c) with respect to y and w. In the first-order
approximation, we obtain10

€yi þ γc _yi ¼ −Kijyj; (20a)

_w ¼ −γcw: (20b)

where

γc ¼ −
∂Wc

∂Sc
;

Kij ¼ m−1
ik ðxc;ScÞ

∂2Wc

∂xck∂xcj
:

Equations (20a) and (20b) are simple and can be easily solved:

yj ¼ e−γct=2∑
α
ðQjαe

iωαt þQ�
jαe

−iωαtÞ; (21a)

w ¼ w0e−γct: (21b)

where

ωα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λα−

γ2
c

4

r
;

w0;Qjα are constants and λα are eigenvalues of the matrix, Kij. We see that in order for the
stationary state, xc, to be stable, it needs to be

10
The terms that are proportional to w in Eq. (20a) and to y in Eq. (20b) have vanished because of conditions (14a) and

(14b).
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∂Wc

∂Sc
< 0: (22)

Additionally, matrix Kij should be positively defined. The ground states correspond to zero
damage and S-index, while the disturbed stationary states correspond to the local minimums
of Wðx;SÞ.
Consider the behavior of R-variables near the ground state with a ¼ aðξÞ. In accordance with
Eqs. (11b) and (14a), we have

_ξi ¼ −γcðxc;ScÞΩijðξÞ ajðξÞ, (23)

so the behavior of the R-variables is determined by the function aðξÞ.11 It is convenient to
present ξ in the form ξðtÞ ¼ ξðtÞnðtÞ, where ξðtÞ and nðtÞ are the scalar and vector functions,
respectively, with jnj ≡1. Then Eq. (23) takes the form

_ξ ¼ −γcniΩij aj; (24a)

_ni ¼ −
γc

ξ

�
Ωij aj−niðnkΩkjajÞ

�
: (24b)

If a ¼ ϕðξÞξ, where ϕðξÞ is a scalar function, these equations are simplified:

_ξ ¼ 0; (25a)

_ni ¼ −
γcϕ
ξ

Ωij nj: (25b)

Therefore, in this case, ξ ¼ ξ0 ¼ const:.

In the case of two R-variables, we can write ξ as

ξ ¼ ξ0
cosϕ
sinϕ

� �
; (26)

which implies that ϕ ¼ ϕð cosφ; sinφÞ, and Eq. (25b) takes the form

dφ
dt

¼ −
γcϕ
ξ0

cosφ
∂ϕ

∂ sinφ
− sinφ

∂ϕ
∂ cosφ

� �−1

: (27)

Therefore,

11
Note that because matrix Ωij is antisymmetric, R-variables exist only if there are at least two R-variables.
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ξ1 ¼ ξ0 cos ðφðtÞÞ, (28a)

ξ2 ¼ ξ0 sin ðφðtÞÞ: (28b)

where function φðtÞ should be obtained from Eq. (27).

3.3. Simulation results

For easy visualization of the typical behavior of systems with homeostasis, we consider a
system with two C-variables and two R-variables: x ¼ {x1;x2}, ξ ¼ {ξ1;ξ2} and mij ¼ miδij with
constant m1≪m2, making x1 fast and x2 slow variables. In order to clarify the influence of C-
variables and S-index upon the homeostatic behavior, we choice also W ¼ Wðx;SÞ and a
simplest form of a

a ¼ a01 0
0 a02

� �
ξ1
ξ2

� �
; (29)

with constant a01; a02. In this case, Eqs. (11a), (11b) and (11c) are simplified and we have12

mi €x i−
∂W
∂S

mi _xi ¼ −
∂W
∂xi

(30a)

_ξi ¼ ∂W
∂S

Ωijaj; (30b)

dS
dt

¼ −
1
2
mi _x2i þWðx;SÞ: (30c)

Conditions (i)–(iii) on page 8 allow us to choose the functions Iðx;SÞ and Aðx;SÞ in the form13

Iðx;SÞ ¼ Φ1ðSÞJðxÞ, (31a)

Aðx;SÞ ¼ SΦ2ðSÞΓðxÞ, (31b)

where Φ1ðSÞ and Φ2ðSÞ are monotonically increasing and decreasing functions of S, respec-
tively, with {Φ1ð0Þ,Φ2ð0Þ} > 0 and JðxÞ ≥ 0;ΓðxcÞ > 0.14

Results of the simulation are shown in Figures 1 and 2 for the different initial conditions.

12
There is no summation on i.

13
Generally speaking, both Iðx;S;ξÞ and Aðx;S;ξÞ may depend on R-variables far from the stable states, but here we have

neglected this opportunity.
14
Simulation shows that the qualitative behavior of xðtÞ, SðtÞ, and ξðtÞ weakly depends upon the concrete choice of the

functions Φ1ðSÞ,Φ2ðSÞ and JðxÞ, ΓðxÞ if they satisfy conditions (i)–(iii). For results are shown below we have used

Φ1ðSÞ ¼ ð1þ bSkÞ; Φ2ðSÞ ¼ ð1þ cSnÞ−1; with b ¼ c ¼ 1 and k ¼ n ¼ 2.
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In Figure 1A, light injuring of the system causes the main ground state to be slightly disturbed.
We see that the fast and slow C-variables15 quickly find their stable points. Injure (Figure 1A,
row 4) and S-index (Figure 1A, row 5) approach zero, while the R-variables (Figure 1A, rows 6
and 4) remain running. Therefore, in this case, homeostasis cares for the injury, fully reduces
the stress (S-index becomes zero), and returns the system to its main ground state. Interest-
ingly,16 in spite of the fact that injury and protection can quickly oscillate, S-index approaches
zero much more smoothly and does not “feel” the quick alteration of the injure parameter
(Figure 1A, row 4).

In Figure 1B, the initial perturbation was somewhat stronger, resulting in the system being
unable to return to the main ground state. However, after further trials, homeostasis finds
another non-distressing (zero S-index) ground state (Figure 1B, rows 1 and 2), where injury
and distress are vanished, as well (Figure 1B, rows 4 and 5).

In Figure 1C, the initial perturbation was more stronger, so protection (Figure 1C, row 3)
cannot fully reduce injury and distress. Nevertheless, homeostasis finds the region of C-
variables where the system is stable (Figure 1C, rows 1 and 2), because protection was able
to compensate the injury, but, unlike the previous case, the protection mechanisms should
be permanently running. So the system remains damaged and distressed (Figure 1C, rows
4 and 5).

Figure 2 shows a situation where the system was heavily injured. We see that protection
(Figure 2A, row 3) failed to compensate for the injury (Figure 2A, row 4) and after short-time
damage and stress drastically increasing (Figure 2A, rows 4 and 5), C-variables leave the life-
compatible region (Figure 2A, rows 1 and 2) and the system inevitably moves toward death or
destruction. We see that crossover to this way can be very sharp. Moreover, in this situation,
the behavior of R-variables differs considerably from the behavior near the stable states. The
system appears to be “crying” in response to the dangerous situation (Figure 2A, row 6).
Interestingly, a similar situation occurs in the case of an initially strongly stressed system,
although the initial injury was small (Figure 2B).

It should be emphasized that the decreased protection observed in Figures 1A and B and
Figure 2 is different. In Figure 1, the protection mechanism has done the work and the system
returns to its ground state with zero stress and injury, unlike the situation observed in Figure 2
where protection fails to compensate for the injury and slows down due to the stress level
becoming too high.

If a system has a “latent time” between consequent actions (“time of decision making”),
differential equations (11a)–(11c) should be replaced by finite-difference equations. Although
Eqs. (11a) and (11c) are deterministic equations, the system imitates random trial-and-error
behavior if the latent time is not very small (Figure 3). It should be noted that such a pseudo-
chaotic behavior of finite-difference equations’ solution is quite typical for many nonlinear

15
Figure 1A, rows 1 and 2 correspondingly.

16
This is quite typical for the considered situation.
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finite-difference equations and it was widely discussed in the literature. A particular example
of such a behavior was considered in Ref. [17] and a general explanation of this phenomenon
can be found in Ref. [19].

4. Discussion

Feeling of stress or proximity to death is a basic feature of the living organisms and this feature
exists already at a single cell [1]. The discovery of homeostasis W. Cannon [3] assumed that
homeostasis results from tendency of the organisms to decrease the stress and avoid death.
This point is a biological basis for our theory.

It has been shown in Ref. [17] that if system evolution complies with the causality principle
and a system state space displays trivial local topology, system dynamics inevitably satisfy
generalized Lagrangian equations (2a) and (2b) with an additional “S-variable.” Since the
above conditions are quite general, we believe that they are applicable to the living organisms.
In the chapter, we identified S-variable with a level of feeling of stress (called S-index). It should
be emphasized that the feeling of stress or discomfort is not metaphor for biological systems,
but real feature of the living organisms (see Sections 1 and [1]). Note that S-index is a

Figure 1. Homeostasis for different initial conditions. Here, x1 and x2 are C-variables and ξ1 and ξ2 are R-variables. (A)
Light injury. (B) The system cannot return to the main ground state, but finds another comfortable state without damage
and distress. (C) Homeostasis cannot fully compensate for injury and distress, but some discomforting stable state exists.
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phenomenological quantity and cannot be directly measured.17 It should be noted that such a
kind of the phenomenological variables (which cannot be directly measured) is widely used in
physics (e.g., “mechanical action” of the physical systems, order parameter in superfluid phase
transition, etc.).

Supposing that dynamics of the stress is determined by competition between damage and the
protection mechanisms, we have obtained an S-Lagrangian and dynamical equations of

Figure 2. “Death-pathway” of the system. (A) System was heavily injured. (B) System was strongly distressed (initial S-
index was high; graph B5 begins from 20), although initial injury was small.

17
Note, however, that in medical practice level of stress often is subjectively defined by the patients.
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homeostasis given in Eqs. (11a), (11b) and (11c). Moreover, since other systems, such as social
systems, may also possess distress or discomfort, they may also undergo homeostasis.

Solutions of the dynamical equations of homeostasis show that there are four types of system
behavior. In the first, the system generates activity that quickly takes it to the main ground
state with zero damage and stress (Figure 1A). In the second, the main ground state cannot be
achieved; however, the system finds another ground state without damage and stress as well
(Figure 1B). In the third, homeostasis cannot find the state with zero damage and stress and
the system arrives at the damaged and distressed, but stable stationary states (Figure 1C). In
the last type of behavior, the system cannot achieve any stable state, level of stress dramatically
increases, system variables leave the life-compatible region, and the system moves toward
death (Figure 2). It should be noted that there is a critical value of injure, which leads to fatal
instability of a system by violation of the condition (21). Apparently, there is a critical value of
the stress as well, so if S-index exceeds this value, an organism inevitably moves toward death.
Note that near the injured stable states, where Iðxc;ScÞ > 0, the critical value of the stress may
be lower than near uninjured states,18 that is, injured organism is more sensitive to the stress
than the healthy one.

All types of behavior are described by the same system of Eqs. (11b) and (11c) and S-Lagrang-
ian, but differ by initial and/or environmental conditions (which are described by parameters
of the Lagrangian). It was found that systems exhibiting homeostasis may have at least two
types of variables. The first type is C-variables, which have stationary values in the stable states
of the system. Injury disturbs these values and excites protection mechanisms. The other types

Figure 3. Pseudo-random behavior of the system with latent time of “decision making”. Circle designates an initial state
and Star designates the finish state.

18
For Iðx;SÞ and Aðx;SÞ from Eqs. (29a) and (29b), the critical value of S-index is obtained from ∂Φ1

∂S�
J− Φ2ðS�Þþð S� ∂Φ2

∂S�
ÞΓ ¼ 0.
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of variables are R-variables, which can run in a stable state without disturbing system comfort.
This finding agrees with the experimental data. Examples of the C-variables are ATP level,
intracellular pH level, intracellular and blood concentration of Naþ, Kþ, Caþ, and intracellular
levels of certain proteins (caspases, cytokines, and antioxidants), and so on. Examples of the
R-variables are blood flow, α-rhythm of brain, heart contraction, brain pacemakers, and so on.

Interestingly, if a system has a “latent time” between consequent actions (“decision-making
time”), it imitates random trial-and-error behavior. This corresponds to a real situation in a
brain. Although the physical parameters of the brain are continuously changing, time intervals
that are shorter than the nerve impulse duration (milliseconds) do not have physiological
sense. Moreover, decisions in the brain take tens of milliseconds. Therefore, psychological time
is more discrete. Consequently, the chaotic behavior of nerve processes inevitably arises in
nerve tissue and can serve as the basis of free decision-making target. This creates an opportu-
nity for trial-and-error behavior. A random search will be targeted if instability fluctuations
increase with increasing deviation from the optimum. For example, on/off switching of volt-
age-dependent channels in neurons can occur more than 100 times/s, which is an adequate
speed for searching for the homeostatic optimum. This mechanism ensures that obstacles can
be overcome [20]. Therefore, chaotic behavior, illustrated in Figure 3, can play a crucial role in
homeostasis. It should be emphasized that this chaotic behavior is not determined by some
stochastic process, but rather is governed by deterministic equations.

The simulation results displayed satisfactory agreement between the biological properties of
homeostasis and theory. Figure 1 demonstrated direct homeostasis for a weak injury and
indirect homeostasis with the restructuring of some parameters for more severe damage.
Damage aggravation caused the model to transfer to a working state, although the discomfort
was not completely removed. Modeling was also amenable to the process of system destruc-
tion (Figure 2), with the behavior of the model depending not only on damage severity but
also on “subjective” assessment (i.e., death threats).

The theory predicts that increasing of the stress itself (even without internal injure) leads to
disturbing of the physiological parameters, that is, to physiological damage of the organism.
This prediction is supported by the recent experimental data, which show that both in human
and in animal models, the expression of many genes changed in response to early and to late
stresses [21].
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