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Preface

This volume is a collection of papers on the subject of manifolds. Manifolds are an impor-
tant and crucial structure in modern mathematics. They have been intensively investigated
over the last 60 years and provide a foundation over which much of modern differential
geometry has developed. The contributions represented here investigate manifolds of par-
ticular types, such as symplectic manifolds and submanifolds. They discuss what can be
learned about manifolds by defining and studying various structures on them. In particular,
there is a paper covering operator actions on manifolds and their spectral properties. There
is a paper on Bonnet surfaces which emphasizes the important role played by differential
equations in the study of manifolds and surfaces in particular. A paper on bifurcations and
manifolds and two papers on the application of manifolds to some areas of applied mathe-
matics are presented as well. Finally, there is a paper on symplectic affine actions on mani-
folds.

This book has been put together by an international group of invited authors, and it is a
pleasure to thank them for their hard work and significant contributions to this volume. I
gratefully acknowledge with great thanks the assistance and help provided by Ms. Iva Lip-
ovic who was the publishing manager throughout this process as well as the InTech pub-
lishing group for the opportunity to edit this volume on the subject of manifolds.

Paul Bracken

Department of Mathematics,
University of Texas,
Edinburg, TX, USA
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Chapter 1

Mutiple Hopf Bifurcation on Center Manifold

Qinlong Wang, Bo Sang and Wentao Huang

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/65674

Abstract

In this chapter, by researching the algorithm of the formal series, and deducing the
recursion formula of computing the nondegenerate and degenerate singular point quan-
tities on center manifold, we investigate the Hopf bifurcation of high-dimensional
nonlinear dynamic systems. And more as applications, the singular point quantities for
two classes of typical three- or four-dimensional polynomial systems are obtained, the
corresponding multiple limit cycles or Hopf cyclicity restricted to the center manifold
are discussed.

Keywords: high-dimensional system, center manifold, Hopf bifurcation, singular point
quantities

1. Introduction

This chapter is concerned with Hopf bifurcation restricted to the center manifold from the
equilibrium for three-, four-, and more higher-dimensional nonlinear dynamical systems.

Let us first consider the generic real systems which take the form

x = Ax + f(x) (1)

where x = (x1, xp, -+, x,) € R", A€ R"" n €N, and f(x) is sufficiently smooth with £(0) =0,
Df(0) = 0. Then the origin is an equilibrium. For dynamical analysis of systems (1), it is very
important to discuss the asymptotic behavior and the existence of periodic orbits at the origin.
When the Jacobi matrix A has an eigenvalue with zero real part, the phase portraits in the
vicinity of the origin is not easy to be determined. In particular, a system (1) has the following
form

I m EC H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [(cc) X N
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X1 = A1xq + f1(x1,%2) @)
Xy = Axxa + f2(x1,X2)
where x3 = (x1, x2, ..., xnc)T e R™, X3 = (X415, xn)Te R™ with n, +ns =n, Ay and A, are

constant matrices, and f1(x1, X2), f2(x1, X2) are functions with
£1(0,0) =0, £,(0,0) = 0, Df1(0,0) = 0, Df,(0,0) =0

Suppose that A; has n, critical eigenvalues (i.e., eigenvalues with Re A = 0) and all n; eigen-
values of A, satisfy Re A < 0. According to the Center Manifold Theorem (see, e.g., [1, 2]), there
exists a (local) center manifold x, = h(x;) with h(0) = 0, Dh(0) = 0, and system (2) is topolog-
ically equivalent near (0,0) to the system

{)21 = A1xq + f1(x1,h(x1)) 3)

)&2 = AzXz.

The first equation in Eq. (3) is called the restriction of system (2) to its center manifold at the
origin. The local center manifold, which is tangent to the (x1, xy,..., x, )-plane (hyperplane) at
the origin and which contains all the recurrent behavior of system (2) in a neighborhood of the
origin, since the second equation in (3) is linear and has exponentially decaying solutions (see,
e.g., [3]). Thus, the dynamics of Eq. (2) near a nonhyperbolic equilibrium are determined by
this restriction. Generally, the local center manifold is not necessarily unique, but if the origin is
a center restricted to a local center manifold for system (2), then the center manifold is unique
and analytic, which is presented by the Lyapunov Center Theorem proved in Ref. [4].

If A has a simple pair of purely imaginary eigenvalues £wi (w > 0), system (1) undergoes a
Hopf bifurcation or multiple Hopf bifurcation in a neighborhood of the origin on the local
center manifold under proper perturbations of parameters. The computation of focal values
(Lyapunov coefficients) plays an important role in the study of small-amplitude limit cycles
appearing in these bifurcations (see [5-14] and references therein). The projection method was
used for computing the first and the second focal values (see [2]), and a perturbation technique
based on multiple time scales was used for computing focal values (see [15]). For a class of
three-dimensional systems, the formal series method was presented with a recursive formula
for computing singular point quantities (see [16]), here the theory and methodology described
in Refs. [16, 17] can be applied to n-dimensional systems, where 1 > 4.

If A has some zero eigenvalues for system (1), the Hopf bifurcation problem at the origin on the
local center manifold becomes generally more difficult in comparison to the nondegenerate
case. Take the degenerate singular point with a zero linear part in planar system, for example,
the investigation of Hopf bifurcation from the equilibrium has to involve detecting the
monodromy and distinguishing between a center and a focus [18, 19]. For that matter, several
available approaches and corresponding results can be seen in [18-25], and one can easily find
that the results on the bifurcation of limit cycles are very less. Remarkably, the author of
reference [26] in 2001 gave the formal series method of calculating the singular point quantities
of the degenerate critical point, which made it possible to investigate multiple Hopf bifurcation
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of higher degree polynomial systems [27, 28]. Here we extend its application to the local center
manifold of more higher-dimensional system.

2. Case of the nondegenerate singular point

In this section, we consider Hopf bifurcation from the nondegenerate origin of system (1)
restricted to the center manifold, in which the Jacobian matrix A has a pair of pure imaginary
eigenvalues and its other eigenvalues are all negative. As the particular case, for planar
systems there exist some good computer algebra procedure to calculate the focal values (see
survey article [29], monograph [30], and references therein), here the formal series method of
computing singular point quantities on the local center manifold for high-dimensional system
originated from the work of [31-33] in planar systems.

2.1. The formal series method of computing nondegenerate singular point quantities on
center manifold

Considering the Jacobian matrix A at the origin of system (1) has a pair of purely imaginary
eigenvalues and a negative one, then by certain nondegenerate transformation, the system (1)
can be changed into the following system:

& v+ ¥ Agdyiul = X(x,y, u),

dt k4j+l=2
dy _ S Bkl —
=x+ Z Bk]lx yu = Y(x7 Y, M), (4)
dt kjti=2
du = . -
5 =—dou+ Y dgxyu' =U(x,y,u)
dt k=2

where X, Y, U, Akjl, Bkjl, Elkjl eR (k,j,lEN) and do > 0.

Here, we recall first the calculation method of the singular point quantities on center manifold
for the above real three-dimensional nonlinear dynamical systems. By means of transforma-
tion

z=x4vyi, w=x-yi, u=u, T=it, i=v-1 5)

system (4) is also transformed into the following complex system:

—=z+ agiz wu’ = Z(z, w, u),

dT k+]§l:2 o ( )

dw e i

= - b Zu' = -W(z, w, u), 6
a7 k+]§l:2 kil ( ) (6)
du - ko il

—==idou+ Y dyzwu = Uz, w, u)

dT k=2

where z, w, T, ayj, by, dii€C (k, j, | € N), the systems (4) and (6) are called concomitant.
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Theorem 1 (see [16]). For system (6), using the program of term by term calculations, we can
determine a formal power series:

F(z,w, u) = zw + i Capyz whu? (7)
a+p+y=3
such that
dF OF_ OF  OF = it
dr — 2" oy W+ u U= mély"’ (z0) ®)

where c119 = 1, c101 = co11 = C200 = Co20 = 0, cp0 = 0, k =2, 3, ---.

Definition 1. The ,, in the expression (8) is called the mth singular point quantity at the origin
on center manifold of system (6) or (4), m =1,2,---.

Theorem 2 (see [16, 34]). For the mth singular point quantity and the mth focal value at the origin on
center manifold of system (4), i.e., u, and vyyy1, m =1,2,---, we have the following relation:

m-1

V21 (20) = iy, + i1 3 &)y ©)
k=1

where EY) (k = 1,2,--,m — 1) are polynomial functions of coefficients of system (6). Usually, it is called

m
algebraic equivalence and written as vy 1 ~iTiL,,,.

Based on the previous work in Ref. [16], we have developed the calculation method of the focal
values on the center manifold for real four-dimensional nonlinear dynamical systems in Ref.
[35]. In fact, here Theorem 1 can be generalized in the n-dimensional real systems as follows

dx

? ="y + h.o.t. = X(x,]/,u),

d—:z =X+ h.o.t. = Y(x7y7u)’ (10)
% = _diui =+ hOt = l:[i(xyl/»u)» l = 1’2"”771_2

where u = (u1,up,-+,Uy), h.o.t denotes the terms in x.y,u1,uz, -,u,— with orders greater than
or equal to 2, and all d; > 0.

By means of transformation of Eq. (5), system (10) can be transformed into the following
complex system

dz o '
ﬁ =zZ+ Zk+j+1:2akjl ka]ul = Z(va7u)’
dw

dT — _w_z:jﬂzzbkjl w'zu' = -W(zwu), (1)

du; . - j .
dbll" =id; u; + ZHM:de]-leu)]ul = Ui(z,wu), i=1,2,-n-"2

n-2
where the subscript “kj1” denotes “kjlj--l,", u' = ujuZ--u'2, and 1= Y1, all u; €R,
i=1

z,w, T, a1, b1, dxjy € C (k, j, I; € N), we call that system (10) and system (11) are concomitant.
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Theorem 3. For system (11), using the program of term by term calculations, we can determine a
formal power series:

F(z,w,u) = zw + i Cap ¢ 2°w0PU’ (12)
a+p+=3
such that
dF OF _ OF n=2 oF =
= g = el ) S m+1 1
dT 0z ay W i§1 au,- u’ mzzllim (Zw) ( 3)

n-2
where the subscript “apt” denotes “afy, -y, ,", u* = u)'ub>--ul"3, and € = Y.y, and more setting
i=1

Capt = 0 with 0<a + B + €<2 except for c110 = 1, and cyo = 0 with k>2.

Proof. It is very similar to the proving course of Theorem 1.3.1 in [16], by computing carefully
and comparing the above power series with the two sides of (13), we can obtain the expression

of i, .

Definition 2. The p,, in the expression (13) is called the mth singular point quantity at the
origin on center manifold of system (11) or (10), m =1,2,---.

Remark 1. Similar to Theorem 2, there exists a equivalence between p, and vy,,,1, namely, if
Py =ty ==, 4 =0,u,#0, then v3 =v5 = -+ = vyy-1 = 0,02p41 = im,,, m=1,2,--, and
vice versa.

Corollary 1. The origin of system (10) or (11) is a center restricted to the center manifold if and only if
w,, = 0 for all m.

Remark 2. From the relation given by Remark 1 and Corollary 1, the center-focus problem and
Hopf bifurcation of equilibrium point restricted to the center manifold can be figured out by
the calculation of singular point quantities for system (10).

2.2. An example of four-dimensional system

Recently, the study of chaos has become a hot research topic, and the attention of many
researchers is turning to 4D systems from 3D dynamical systems, for example, the authors of
Ref. [36] investigated Hopf bifurcation of a 4D-hyoerchaotic system by applying the normal
form theory in 2012, but its multiple Hopf bifurcation on the center manifold have not been
considered. Here, we will investigate the system further by computing the singular point
quantities of its equilibrium point, which takes the following form

X1 = LZ(XQ—X1)

Xp = CX1—X2 + X4—X1X3 (14)
X3 = x1X0-bx; + ex?
3&4 = —KXQ

where a,b,c,e, KER. Obviously, system (14) has only one isolated equilibrium: O(0,0,0,0)
when K#0. Therefore, we only need to consider O. The Jacobian matrix of system (14) at O is
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-a a 0
-1 1
A—
0 0 -b 0
0 -K 0 0
with the characteristic equation:
(A +b)(A° + (a+ 1)A? + (a-ac + K)A +aK = 0. (15)

To guarantee that A has a pair of purely imaginary eigenvalues +i w(w > 0) and two negative

real eigenvalues A1,1,, we let its characteristic equation take the form

(A% + @?)(A-A1)(A-A3) = 0.

Thus, we obtain the critical condition of Hopf bifurcation at O:

a*(c-1) = @?, K=a(a+1)(c-1), Ay =-b, Ay =-a-1 (16)
where a > -1,b >0, c > 1, namely, ¢ = ”2;—;"2, K= M Under the conditions (16), one can

find a nondegenerate matrix

2 2

B ia ia 0 -
(a+1)@a+iw)w (a+1)(a-iw)w w?
ia ia a
P= RUE aw + w 0 =
0 0 1 0
1 1 0 1
such that
wi 0 0 0
o |0 —wi o0 0
PrAP = 0 0 -b 0
0 0 0 -a1

(17)

Namely, we can use the nondegenerate transformation and the time rescaling: T = ifw to make

the system (14) become the following same form as the complex system (11) with n = 4:

% =zt Zkzv/+l+n:zakﬂnzkwjul = Z(Z,ZU,M,U),

j_;("] - _w_zf—]+l+n:z bk;‘m W'l = ~W(zw,u0),
UL = U

% - (a . 1)1 v+ Zf+i+l+r,:26kflffzkzujulvn - V(Z7w7u’v)

where u€R, z, w, TeC, and all ayj, = b, = dijin = exjin = 0 except the following coefficients

(18)
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@+ a*(1 +iw) + iaw . a(w-ia)
- . o110 =
20 (a +iw +1) 2w (uz +a+ a)(w—i))

apo11 =

)

bigin = i (ikjl = 0011,0110),

dooss — ia®(1-a)e oot — - a*(2e +1)-a*(1 + iw)
w (a+ Dw*(a-iw)
Pw +iat(e +1) a*(2e + 1) + a®(iw-1)
doooo = ———5 3, 410 = VTP ——
(a4 1) w3 (a-iw) (a+1)w*(a+iw)
oy — 2ict (e +1) sy — - Aw-iat(e +1)
(a+ 123 (@ + w?)’ (a4 1w (a +iw)*’
€011 =~ fafa + 1) €110 =~ .
w(@®+2a+w?+1)° (a-iw)(a? +2a+ w? + 1)’
a
c1o10 = (a+iw)(a® +2a+ w? + 1)

where @, denotes the conjugate complex number of ag,.

According to Theorem 3, we obtain the recursive formulas of Capy and p,,.

Theorem 5. For system (18), setting cupyn = 0 with 0<a + B 4y + A<2 except for ciip0 = 1, and
cxroo = 0 with k=2, we can derive successively and uniquely the terms of the following formal series (12)
with n = 4, such that (13) with n = 4 holds and if a# or a = B, A* + y*#0, capy) is determined by
following recursive formula:
w
o = olap)+iby + (a+1)A)

{~da000(1 + y)cla=2,8,y + 1,A]~d1100(y + 1)cla-1,6-1,y + 1,A]-

e1o10(A + 1)cla- 1.6, 7-1,A + 1]~d10m ()/ + 1)c[a—1,ﬁ,y + 1,A-1]+

botio(B + 1)cla=1,8 + 1,y-1,A]=doooo (y + 1)clar,p-2,y + 1,A]- (19)

80110()\ + 1)C[ ap-1y-1,A + 1]—d0101 ()/ + 1)c[a,ﬁ—1,y + 1,/\—1]—

eoo11Acla,B,y=1,A]=dooo2 (y + 1)cla,B,y + 1,A-2]+

boor1 (B + 1)clae,p + 1,y-1,A-1]-ap110(e + 1)ca + 1,-1,y-1,A]-

agon (@ + Vel +1,8,y-1,A-1]/

and for any positive integer m, u, is determined by following recursive formula:

W, = dzo()()C[—Z +m,m, 1, O] (20)

+ dy1ooc[-1 + m,~1 + m, 1,0] 4 doxgoc[m,~2 + m, 1, 0]
and when a < 0or B <0o0ry <0or A <Oora=p,y=A=0 we have let cypyr =0, and where
each cla,B,y,A] denotes ¢

apyA”

By applying the above formulas in the Mathematica symbolic computation system, we figure
out easily the first two singular point quantities of the origin of system (18):

wy = dafy [la] be (a+1)%do]”,

21
i, = 108iab*f, f2 f, [|a| dod ?dr*ds) ™" D

where
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f, = 8a’ce + 8a’c-8a’e-8u~2a”bce + 2a*be + 8a*ce + 8a*c
~8a2e-8a% + ab®c + 3ab’e + 2ab* + 2abc-2ab + 3b%e + 3b?,
fr=@2a+b+ 2)%(2ae + 2a-b) (e + 1),
f, = 4a’e + 4a>~3abe-2ab + 4ae + 4a + b,
fy = 8a°c2-16a°c + 8a°-2a*bc? + 2a*be + 8a*c?~16a‘c + 8a* + 2a°b*c
2a°b*~4a’bc + 4aPb-5a2b°c + 4a*b® + 2a%b*c
~202b*-2a%bc + 2a*b-2ab>-b°,
do = (aPc + 2a + 1) (4a?c-4a? + b?)(c-1)*2,
dy = 8a3c—-8a3-2a%bc + 2a2b + 8a2c-8a? + 3ab® + 3b°,
dy = 8a%e + 8a2~2abe + 8ae + 8a + b* + 2b,
d3 = 9a*c-8a® +2a + 1,

and the above expression of i, is obtained under the condition of y; = 0.
From Remark 1 and the singular point quantities (21), we have
Theorem 6. For the flow on center manifold of the system (14), the first 2 focal values of the origin are
as follow
v3 = iTy,, U5 = im, (22)

where the expression of vs is obtained under the condition of v3 = 0.

Remark 3. In contrast to the result and process in [36], one can easily see that our first quantity
is basically consistent with its characteristic exponent of bifurcating periodic solutions, and our
algorithm is easy to realize with computer algebra system due to the linear recursion formulas,
and more convenient to investigate the multiple Hopf bifurcation on center manifold.

Considering its Hopf bifurcation form of Theorem 6, we have the following;:

Theorem 7. At least two small limit cycles can be bifurcated from the origin of the 4D-hyoerchaotic
system (14), which lie in the neighborhood of the origin restricted to the center manifold.

The rigorous proof of the above theorem is very similar to the previous ones in [14, 16], namely,
by calculating the Jacobian determinant with respect to the functions v3, v5 and its variables,
which will not be given here.

3. Case of the degenerate singular point

Up till now, study on bifurcation of limit cycles from the degenerate singularity of higher
dimensional nonlinear systems (1) is hardly seen in published references. Here, we will inves-
tigate the Hopf bifurcation problem from the high-order critical point on the center manifold.

3.1. The formal series method of computing degenerate singular point quantities on center
manifold

Let us consider the real n-dimensional systems with two zero eigenvalues and zero linear part
as follows
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dx > )
dt (6x_y) (x +y )‘7 Z Akjlxky]ul = X(x7yau)9
k+j+1=2q+2
d = .
dZ (=0y) (o +y*)"+ T Bpx'yu' = Y(xyw), (23)
k+j+1=2q+2
% = —diu,‘ + L 'il deﬂzkuﬂul = Ui(x,y,u), i= 1,2,---,7’1—2
+j+1=

where the subscript “kjl” denotes “kjl---l,-o", u! = ullu---u"2, and 1= Zl,, all d; >0,
i=1

X, Y, Ui, t, 0, Agjt, B, dii€R, g, k, j, [;EN. Obviously, the origin of system (23) is a high-order
degenerate singular point with two zero eigenvalues and n—2 negative ones.

In order to discuss the calculation method of the focal values on center manifold of the system
(23), from the center manifold theorem [1], we take an approximation to the center manifold:

u=u(x,y) = up(xy) + h.o.t. (24)
where u = (x; ,xz,---,xn_z)T, u, is a quadratic homogeneous polynomial vector in x and y, and h.

o.t. denotes the terms with orders greater than or equal to 3. Substituting u = u(x,y) into the
equations of system (23), we obtain a real planar polynomial differential system as follows

oy )+ 5 Xlwy) = Ky,

k=2q+2 (25)
d o -
T= o+ T Yilry) = V()

k=2q+2

where Xi(x,y), Yi(x,y) are homogeneous polynomials of degree k, and the origin is degenerate
with a zero linear part.

For system (25), some significant works have been done in Refs. [26] and [27]. Let us recall the
related notions and results.

By means of transformation (5)
z=x+yi, w=xvi, u=u, T=it, i=+-1,

system (25) is transformed into following system:

d o )

& (1-i0)zT w4+ % ak]-zkw’ =Z(z,w),

ST k+j=2q+2 (26)
w_ =-1+i0)Z"w™- ¥ by = -W(zw)

dr k+j=24+2

where z, w, T are complex variables and for any positive integer k, j, we have a; = by;, then
systems (25) and (26) are called concomitant.

For any positive integer k, we denote
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filzw)= % caﬁz“wﬁ
a+p=k

a homogeneous polynomial of degree k with coo =1, cix = 0, k =1, 2,---.

Theorem 8 ([26, 27]). For system (26) with 6 =0, we can derive successively the terms of the
following formal series:

= f m(2q+3) (z,w)
F(Z,ZU) =zwl|l + mZ:1 W (27)
such that
dF OF oF st
- =7 _ q m+1
T =% V4 awW (zw) mélym (zw)" ™. (28)

Definition 3. If 6 = 0 holds, 1, in expression (28) is called the mth singular point quantity at
the degenerate singular point for system (26) or (1.3.26) is also called the mth singular point
quantity of the origin on the center manifold of system (23), where m = 1,2,---.

Similar to Theorem 2, there also exists a equivalence between the mth singular point quantity
and the mth focal value vy,,41(27) at the origin on center manifold of system (23).

Theorem 9. For system (23) with 6 =0, and any positive integer m, the following assertion holds:

Vo1 (2n);nium, namely

m-1
V2m+1 (277) =in <1um + kglégj) 1uk> ’ (29)

where EX (k = 1,2,---,m~1) are polynomial functions of coefficients of system (26). Then, the relation
between vyy,11(210) and w,, is called the algebraic equivalence.

Remark 4. In fact, from Theorem 2, for any positive integer m = 2,3, if yi; = i, = - =p, , =0
and v1(271) = v3(21)-+- = v2,-1(271) =0 hold, and vice versa. And more the stability and
bifurcation of the origin of system (23) can be figured out by calculating the singular point
quantities.

Corollary 2. The origin of system (23) is a center restricted to the center manifold if and only if u, =0
for all m.

3.2. An example of three-dimensional system

Now we consider an example for system (23) with n = 3, it can be put in its concomitant form
as follows
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% = (1-10)22w + uz (a2 + anzw + apw?*) = Z,
;l_z; = —(1 + i0)zw?~uw (byow* + brywz + bez?) = -W, (30)
% =iu +idizw = U,
where d;#0 and
a; = A; +1iB;, b = A-iB;, A, Bi€R,ij=0,1,2, 31)

namely, a;; = Eij. Then for the center manifold of system (30), from the transformation (5), we
can determine the formal expression (24): u = u(x,y) = u(z,w), thus obtain

d . ~

d—; = (1-i0)2%w + iz (ax7* + aj1zw + apw?) = Z, )
9 ) .

d—? =-(1+ ié)zwz—uw (b20w2 + bpwz + bozzz) =-W

Remark 5. For system (32), the corresponding n = 1in (27) and (28) of Theorem 8, we figure out
that each p,, is related to only the coefficients of the first 2m + 3 order terms of system (32),
m =1,2,---. Here, we determine the above u just to the sixth-order term as follows

6

i(z,w) = kgzﬁk(z,w) (33)

where 11y is a homogeneous polynomial in z,w of degree k and

17[2 = —dlzw, 17!4 = Zédlzzwz, 1713 = fl4 = 1:l5 = 0,
itg = —idiwz((a0y—bao)d1w’z + (an1d1-b11d1-8i6%)w’z?
+(a20-bo)d1wz’). (34)

Hence, Z and W in system (32) are two polynomials with degree 9.

Theorem 10. For system (32) with 6 = 0, we can derive successively the terms of the formal series (27),
such that (28) holds (cup, p,, in Appendix A).

Applying the powerful symbolic computation function of the Mathematica system and the
recursive formulas in Theorem 10, and from Remark 5, we obtain the first three singular point
quantities as follows

Uy = =dy(a11-b11),
1y = di (baoboa—a20a02), (35)
1y = ~2id7 (ag220 + boabao—a02boa—a20b20)

In the above expression of each 1, k = 2,3, we have already let iy = -+ = 1, = 0.

Thus, from Theorem 9 and Egs. (35) and (31), we have

13
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Theorem 11. For the flow on center manifold of system (30),5—, the first three focal values
02i11(2m) (i = 1,2, 3) of the origin are as follows

U3 = 277d131,
U5 = 27'[[1% (AzB() + AOBZ), (36)
vy = Zmﬁ [(AO—A2)2 + (Bo + Bz)z]

Theorem 12. For the flow on center manifold of (30)s—o, the origin is a three-order weak focus, i.e.,
v3 =05 =0, vy # 0 if and only if

By =0, AyBy + AgBy = 0 and (Ag=A;)* + (By + By)? #0 (37)

Remark 6. For the coefficients of system (30)s-o, there exists necessarily a group of critical
values: A; = A7, B; = B (i =0, 1,2) such that the conditions (37) hold, for example:

Al =B =0,A =B,=1,B, =-A, =13 (38)

Now we consider Hopf bifurcation of limit cycles from the origin for perturbed system (30).

Theorem 13. At least three limit cycles can be bifurcated from the origin of system (30) restricted to the
center manifold, which lie in the neighborhood of the origin.

Proof. From Theorem 11, one can easily calculate the Jacobian determinant with respect to the
functions v3,v5,07 and variables By,Bg,Ao,

0(v3,05,07) 345 2 2
=T =-2 ApAr~A5-ByB,-B
J 3(B1,Bo,Ao) 0 d;[8(AgA2~A3-BoBy=B;)] (39)
Considering the conditions (37) of Theorem 12 and substituting the group of critical values of
Eg. (38) into Eq. (39), we obtain ] = 6497%d] # 0. Thus, we take some appropriate perturbations
for the coefficients of system (32) to make the following two conditions:

(01 (27‘[)—1)03 <0, 0305 < 0, v507 <0 (40)
and
01| <|v3 | <|vs| <|v7| (41)

hold, one must obtain that the succession function on the center manifold has three small real
positive roots, just the system (30) has at least three limit cycles in the neighborhood of the
origin. We can refer to references [16, 26, 27] for more details about the construction of limit
cycles.

Remark 7. In general, in order to find more limit cycles in the neighborhood of the origin of
system (30), we should add more higher order terms of #(z,w) determined in Eq. (33). Here we
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propose a conjecture that system (30) has at most three limit cycles through Hopf bifurcation
restricted to a center manifold from the origin. However, the center conditions or integrability
at the degenerate singularity will need further study.

4. Conclusion and discussion

The two classes of methods for computing the nondegenerate and degenerate singular point
quantities on center manifold of the three-, four-, and more higher dimensional polynomial
systems are discussed here, and more as the applications of them, the multiple limit cycles or
Hopf cyclicity of two typical nonlinear dynamic systems restricted to the corresponding center
manifolds are investigated.

Appendix A

clapl =

1
Sap) "
x dicla=17,8-13] + ((a11boz + a20b11)(20-p~a)—2bgab11 (5-3 + 2a)—
2a11a20(15 + 2p-3a))d;i cla—16,-14] + ((ao2bo + a11b11 + axbap) (20~
B-a)=(a3; + 2a0220) (10 + 28-3a)~(b3; + 2bobao) (10-38 + 2a))di cla—
15,6-15] + ((ag2b11 + a11b20) (20—B~a)=2b11b20 (15-3B + 2a¢)-2apa11 (5+
28-3a))d;cla—14,8-16] + (agabao(20-B-a)—-b3,(20-36 + 2a)-
a3, (2B-3a))d1c[a=13,8-17]-bo2 (5 + 3p-2a) + ax (5 + 2p-3a) )icla—
6,6-4]-(b11(3p-2a) + a11(2p-3a))i cla-5,8-5]

+(b20(5-3p + 2a) + ap (5-2 + 3a) )ic[a—4,5-6]

{63, (36-20x) + angboa (20-p—a)-a3,(20 + 2-3cv))

ila] = i_’l {(a3(a=20) 4 2a50bp2 (10-a) + b3,a)dic[a-17,a-13]
+(2a11a20(a=15)=2(a11bo2 + az0b11)(@=10) + 2bgab11 (a=5))d1cla—
16,a-14] + ((a3; + 2a02a20-2a02bor—2a11b11 + b3, ~2a20b20 + 2bgabao) (-
10))d1cla=15,a=15] + 2((agab11 + a11b20) (10~a)=b11b20 (15~ )—agaa11 (5~
a))dicla-14,a-16] + (b, (a—20)-2(agabao) (a-10) + adya)d;cla-13,a-
17] + (a20(=5)~bo2 (5 + @))i cla—6,a-4] + (a11-b11)aii c[a=5,a~
5]=(bao(a=5)-a02(5 + a))i cla—4,a-6]},

My = [ [5m],

where c[k,j] = cj.

15
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Abstract

The structure equations for a two-dimensional manifold are introduced and two results
based on the Codazzi equations pertinent to the study of isometric surfaces are obtained
from them. Important theorems pertaining to isometric surfaces are stated and a theo-
rem due to Bonnet is obtained. A transformation for the connection forms is developed.
It is proved that the angle of deformation must be harmonic, and that the differentials of
many of the important variables generate a closed differential ideal. This implies that a
coordinate system exists in which many of the variables satisfy particular ordinary
differential equations, and these results can be used to characterize Bonnet surfaces.

Keywords: manifold, differential form, closed, isometric, differential equation, Bonnet
surface

1. Introduction

Bonnet surfaces in three-dimensional Euclidean space have been of great interest for a number
of reasons as a type of surface [1, 2] for a long time. Bonnet surfaces are of nonconstant mean
curvature that admits infinitely many nontrivial and geometrically distinct isometries, which
preserve the mean curvature function. Nontrivial isometries are ones that do not extend to
isometries of the whole space E>. Considerable interest has resulted from the fact that the
differential equations that describe the Gauss equations are classified by the type of related
Painlevé equations they correspond to and they are integrated in terms of certain
hypergeometric transcendents [3-5]. Here the approach first given by Chern [6] to Bonnet
surfaces is considered. The development is accessible with many new proofs given. The main
intention is to end by deriving an intrinsic characterization of these surfaces which indicates

I m EC H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [{cc) X R



22 Manifolds - Current Research Areas

they are analytic. Moreover, it is shown that a type of Lax pair can be given for these surfaces
and integrated. Several of the more important functions such as the mean curvature are seen to
satisfy nontrivial ordinary differential equations.

Quite a lot is known about these surfaces. With many results the analysis is local and takes
place under the assumptions that the surfaces contain no umbilic points and no critical points
of the mean curvature function. The approach here allows the elimination of many assump-
tions and it is found the results are not too different from the known local ones. The statements
and proofs have been given in great detail in order to help illustrate and display the intercon-
nectedness of the ideas and results involved.

To establish some information about what is known, consider an oriented, connected, smooth

open surface M in E> with nonconstant mean curvature function H. Moreover, suppose M
admits infinitely many nontrivial and geometrically distinct isometries preserving H. Suppose
U is the set of umbilic points of M and V' the set of critical points of H. Many global facts are
known with regard to U,V and H, and a few will now be mentioned. The set U consists of
isolated points, even if there exists only one nontrivial isometry preserving the mean curva-
ture, moreover, UCV [7, 8]. Interestingly, there is no point in V-U at which all order derivatives
of H are zero, and V cannot contain any curve segment. If the function by which a nontrivial
isometry preserving the mean curvature rotates the principal frame is considered, as when
there are infinitely many isometries, this function is a global function on M continuously
defined [9-11]. As first noted by Chern [6], this function is harmonic. The analysis will begin
by formulating the structure equations for two-dimensional manifolds.

2. Structure equations

Over M there exists a well-defined field of orthonormal frames, which is written as x, ej, ez, €3
such that xeM, e3 is the unit normal at x, and ey, e, are along principal directions [12]. The
fundamental equations for M have the form

dx = wre1 + @y €2, dey = wiper + w1363, dey = —wrpeq + 363, des = —w13e1—wW3es. (1)

Differentiating each of these equations in turn, results in a large system of equations for the
exterior derivatives of the w; and wj;, as well as a final equation which relates some of the forms
[13]. This choice of frame and Cartan's lemma allows for the introduction of the two principal
curvatures which are denoted by a and ¢ at x by writing

w12 = hwy + ka)z, w13 = Aw1, W3 = CWy. (2)

Suppose that a > c in the following. The mean curvature of M is denoted by H and the
Gaussian curvature by K. They are related to a and c as follows

HI%(!I-FC), K=ua-c (3)

The forms which appear in Eq. (1) satisfy the fundamental structure equations which are
summarized here [14],
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dw, = wpAwo, dwr, = wiAw12
dans = wiphwos dwys = wizhwz, (4)

dw1y = ac wahwy = —K w1Aw,.

The second pair of equations of (4) is referred to as the Codazzi equation and the last equation
is the Gauss equation.

Exterior differentiation of the two Codazzi equations yields
(da—(a—c)hwy)Aw; = 0, (de—(a—c)kewr)Aaw, = 0. 5)

Cartan's lemma can be applied to the equations in (5). Thus, there exist two functions # and v
such that

1 1
a_—c d&l—ha)z = (u—k)a)1, E dc—ka)1 = (Z)—h)a)z (6)

Subtracting the pair of equations in (6) gives an expression for dlog(a—c)
dlog(a—c) = (u=2k) wi—(v-2h) w,. (7)
Define the variable | to be

J==(a—)>0. (8)

N —

It will appear frequently in what follows. Equation (7) then takes the form
dlog] = (u=2k)w;—(v-2h)w,. 9)

The w; constitute a linearly independent set. Two related coframes called 9; and «; can be
defined in terms of the w; and the functions u# and v as follows,

I = uwi +owy, O =-vwi + Uw;,

(10)
a1 = UW1~VW37, Ay = VW1 + UW@3.

These relations imply that 9; = 0 is tangent to the level curves specified by H equals constant
and a; = 0 is its symmetry with respect to the principal directions.

Squaring both sides of the relation 2H = a + ¢ and subtracting the relation 4K = 4ac yields

4(H?-K) = (a—c)*. The Hodge operator, denoted by % will play an important role throughout.
It produces the following result on the basis forms w;,

23
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*W] = Wy, Ky = —W1, x> =—1. (11)

Moreover, adding the expressions for da and dc given in Eq. (6), there results

1
e (da+ dc) = (u—k)wy + hwy + (v-k)ws + kwy = uwy + vwy = 9. (12)

Finally, note that
a1+ 2 * wp = Uw1—Vwy + 2 * (h(Ul + ka)z) = (u—2k)w1—(v—2h)a)2 = leg] (13)

Therefore, the Codazzi equations (12) and (13) can be summarized using the definitions of H
and | as

dH =]981, dlog] = a3 +2 % w, (14)

3. A theorem of Bonnet

Suppose that M* is a surface which is isometric to M such that the principal curvatures are
preserved [10-12]. Denote all quantities which pertain to M* with the same symbols but with
asterisks, as for example

The same notation will be applied to the variables and forms which pertain to M and M".
When M and M" are isometric, the forms w; are related to the w; by the following transforma-
tion

. . . .
@] = COST w1—siNT wy, W, = SINT w1 + €OST w;. (15)

Theorem 3.1 Under the transformation of coframe given by Eq. (15), the associated connection
forms are related by

W], = wp—dt. (16)

Proof: Exterior differentiation of @} produces

dw] = —sinT dtAwy + cosT dwi—cos T dTAw—sinT dw,
= dTA(=sin Tw1=COS Twy) + COS T W1pAWy—sIN Tw1Aw1 = (—dT + w1n)Aw;.

Similarly, differentiating w3 gives

dw; = cosTAw1 + sinT dwy—sin T dtAw; + cos T dw;
= dTA( €os Tw—SIn Twy) + Sin Tw1pAw; + €S TwiAw1, = WiA(=AT + w12).
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There is a very important result that can be developed at this point. In the case that 2 = a* and
¢ = c*, the Codazzi equations imply that

a1 + 2 % wyp = dlog(a—c) = dlog(a*~c") = a] +2 * w},.
Apply the operator * to both sides of this equation, we obtain
ar—2w1y = a5 -2w7,.
Substituting for wj, from Theorem 3.1, this is
2dt = ap-a;. 17)
Lemma 3.1
9 =97,

Proof: This can be shown in two ways. First from Eq. (15), express the w; in terms of the w;
. . . .
W1 = COST W] + siNT w), W, =-siNTw;+ €OST W;. (18)
Therefore,
. . *
V1 = uw1 + vw, = u( cos T wj + sinTw;) + v(-sinTw] + cosTw;) = urwi + v'w; = 97,

where u* = ucost-vsint and v* = usint + vcos 1. 0
Lemma 3.1 also follows from the fact that dH = dH" and Eq. (8).

Lemma 3.2
a0y = sin (27) ag + cos (27) a;.

Proof:
@y = (usinT + vcos 7)( cos Twi—sin Twy) + (1 cos T-vsin T)( sin Tw; + €os Tws)
= (usin (27) + v cos (27))w; + (-vsin (27) + u cos (27))wa
= sin (27)a; + cos (27)as.

Substituting a; from Lemma 3.2 into Eq. (13), dt can be written as
dt =

(ap=sin (27)ay—cos (27)as) = = ((1-cos (21))ay—sin (27)ay ). (19)

NI
N =

Introduce the new variable t = cot (1) so dt = —csc?(7) dt and sint =

—— COST =——,
1+t \ 1+t

hence the following lemma.
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Lemma 3.3 dt = tar—ap.

This is the total differential equation which must be satisfied by the angle 7 of rotation of the
principal directions during the deformation. If the deformation is to be nontrivial, it must be
that this equation is completely integrable.

Theorem 3.2 A surface M admits a nontrivial isometric deformation that keeps the principal
curvatures fixed if and only if

dag = 0, day = a1A\a;. (20)
Proof: Differentiating both sides of Lemma 3.3 gives

dtnay + tday—da, = (fa—as)Aaq + tdag—da; = 0.

Equating the coefficients of t to zero gives the result (20).

This theorem seems to originate with Chern [6] and is very useful because it gives the exterior
derivatives of the «;. When the mean curvature is constant, dH = 0, hence it follows from
Eq. (14) that 9; = 0. This implies that u = v = 0, and so @; and a, must vanish. Hence, dt =0
which implies that, since the ¢; is linearly independent, f equals a constant. Thus, we arrive at a
theorem originally due to Bonnet.

Theorem 3.3 A surface of constant mean curvature can be isometrically deformed preserving
the principal curvatures. During the deformation, the principal directions rotate by a fixed
angle.

4. Connection form associated to a coframe and transformation properties

Given the linearly independent one forms wq,w;, the first two of the structure equations
uniquely determine the form wi;. The wi,w; is called the orthonormal coframe of the
metric

2_ 2, 2
ds* = w] + w3,

and w1, is the connection form associated with it.
Theorem 4.1 Suppose that A > 0 is a function on M. Under the change of coframe

wy = Awy, wy = Awy, (21)

the associated connection forms are related by

W}, = wip + * dlogA. (22)

Proof: The structure equations for the transformed system are given as
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dw] = WA}, dw; = W] Aw],.
Using Eq. (21) to replace the w; in these, we obtain
dlog Ahw1 + dw1 = wi)Aws, dlogArw, + dwy = w1Aw],.
The w; satisfy a similar system of structure equations, so replacing dw; here yields
(wiy—w12)Aw, = dlog Ahwy, (wi,~wi2)Awr = —dlog Ahws.

Since the form w; satisfies the equations *w; = w, and *w, = -w;, substituting these
relations into the above equations and using O A (@) = O A (x()), we obtain that in
the form

WA * (W],~w12) = —w1 Adlog A, Wy A * (W],~w12) = —wahd log A.

Cartan's lemma can be used to conclude from these that there exist functions f and g such
that

*(wi,~w12) = —dlog A~fws, * (w],~w12) = —dlog A + gw;.

Finally, apply * to both sides and use x> = -1 to obtain

wi,~w1p = *dlogA + fwy,  wi,~wip = xdlogA + qwy.

The forms w; are linearly independent, so for these two equations to be compatible, it suffices
to put f = ¢ =0, and the result follows. o

For the necessity in the Chern criterion, Theorem 3.2, no mention of the set V of critical points
of H is needed. In fact, when H is constant, this criterion is met and the sufficiency also holds
with 7 constant. However, when H is not identically constant, we need to take the set V' of
critical points into account for the sufficiency. In this case, M-V is also an open, dense, and
connected subset of M. On this subset | > 0 and the function A can be defined in terms of the
functions # and v as

A=+Vur+02>0. (23)

To define more general transformations of the w;, define the angle 1 as
u=~Acos (¢), v=Asin(y). (24)
This angle, which is defined modulo 27, is continuous only locally and could be discontinuous

in a nonsimply connected region of M-V. With A and ¢ related to u and v by Eq. (24), the
forms 9; and «; can be written in terms of A and ¢ as
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91 = A(cos (¢) w1 + sin (P)wa), V2 = A(=sin () w1 + cos () wa),

a1 = A(cos (¢) wr—sin () @), @ = A(sin () w1 + cos () wy). (25)

The forms w;, 9;, a; define the same structure on M and we let w1y, 912, @12 be the connection
forms associated to the coframes wi,ws; 91,92; a1,02. The next theorem is crucial for what
follows.

Theorem 4.2
O = d + wip + xd log A = 2d + ays. (26)

Proof: Each of the transformations which yield the 9; and a; in the form (25) can be
thought of as a composition of the two transformations which occur in the Theorems 3.1
and 4.1. First apply the transformation w; — Aw; and T — -¢ with @} — 9; in Eq. (15), we

get the 9; equations in Eq. (25). Invoking Theorems 3.1 and 4.1 in turn, the first result is
obtained

O =d + wip + * leg A.
The transformation to the a; is exactly similar except that T — 1, hence
ap =-dy+wi;p + * dlog A.

This implies xdlog A = a1» + dip—w12. When replaced in the first equation of (26), the second
equation appears. Note that from Theorem 3.2, a1, = ay, so the second equation can be given
as Y = 2dl/) + as.

Differentiating the second equation in Eq. (14) and using da; = 0, it follows that

d * w1 = 0. (27)

Lemma 4.1 The angle ¢ is a harmonic function d * di = 0 and moreover, d * 91, = 0.

Proof: From Theorem 4.2, it follows by applying * through Eq. (26) that
*912 = xw1p + *dP—dlogA = 2 = dip-a. (28)
Exterior differentiation of this equation using 4 * wi» = 0 immediately gives
dxdp=0.

This states that 1 is a harmonic function. Equation (28) also implies that d 81, = 0.
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5. Construction of the closed differential ideal associated with M

Exterior differentiation of the first equation in (14) and using the second equation pro-
duces

dd + (0(1 + 2% a)lz)/\191 =0. (29)

The structure equation for the 9; will be needed,
dd1 = Ay = — % 1oAY (30)

From the second equation in Eq. (26), we have xw1,—d logA + a1 = *dy, and putting this in the
first equation of Eq. (26), we find

—% 9+ +2 *wip =2dlogA. (31)
Using Eq. (31) in Eq. (30),
d\91 + (0(1 + 2 % a)12)/\81 =2d IOgA/\\91 . (32)

Replacing 49, by means of Eq. (29) implies the following important result
d log AnS; = 0. (33)

Equation (33) and Cartan's lemma imply that there exists a function B such that

dlog A = BS,. (34)

This is the first in a series of results which relates many of the variables in question such as J, B,
and 91, directly to the one-form 8;. To show this requires considerable work. The way to
proceed is to use the forms a; in Theorem 3.2 because their exterior derivatives are known.
For an arbitrary function on M, define

df = fra1 +fra0. (35)
Differentiating Eq. (35) and extracting the coefficient of a1Aa,, we obtain

fafr+/2=0. (36)
In terms of the a;, *di) = 1, a0-1,a1, Lemma 4.1 yields

Y1+ 9 =0. (37)

Finally, since *81, = 2 * di)—a;, substituting for *di), we obtain that

29
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#0912 = —(2¢, + 1)ay +2¢; az. (38)
Differentiating structure equation (30) and using Lemma 4.1,
#*31pA d91 = 0,
so,
*912A912A =0

This equation implies that either 9y, or *91, is a multiple by a function of the form 3,. Hence,
for some function p,

Jp =-pd2, *V2 =pdy,

39
S = pd1, *#91p =pdy, (39)

Substituting the first line of Eq. (39) back into the structure equation, we have
81 =0. (40)

The second line yields simply d9; = p91A9,. Only the first case is examined now. Substituting
Eq. (40) into Eq. (29), the following important constraint is obtained

(0(1 + 2% a)lz)/\Sl =0. (41)
Theorem 5.1 The function 1) satisfies the equation
2y, cos (2¢) + (24, + 1) sin (2¢) = 0. (42)

Proof: By substituting *di into Eq. (28) we have

#9010 = 2 % (¢1a1 + l,bzaz)—al = —(21//2 + 1)&1 + 2¢1a2. (43)

Substituting Eq. (43) into Eq. (26) and solving for *wj,, we obtain that
*W1p = *\9]2— * dl,[) + lﬂOg A= *912— * dl,b + B\91 = *dz,b—al + BS1

This can be put in the equivalent form

2% wip + a1 =2 *dip-a; + 2B9. (44)

Taking the exterior product with 8; and using dy,, we get
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(a1 + 2 % wip)A = (2 x dip—a1 )AS = (24 * aq + 24, * ap—a1)AD;
= (24, cos (2¢') + (24, + 1) sin (2¢)) A 91.

Imposing the constraint (41), the coefficient of 9;A9, can be equated to zero. This produces the
result (42).

As a consequence of Theorem 5.1, a new function C can be introduced such that
2y, = Csin (2¢), 2y, +1 =-Ccos (2¢). (45)
Differentiation of each of these with respect to the a; basis, we get for i = 1,2 that
21, = Cisin (2¢) + 21, C cos (2¢), 21, = —Cjcos (2¢) + 21, Csin (2)).

Substituting f =1 into Eq. (36) and using the fact that ¢ satisfies Eq. (37) gives the pair of
equations

—Cy cos (2¢)—Cy sin (2¢) + 24, Csin (21)—(21p, + 1)C cos (21)-1 = 0,
Ci1 sin (2¢)-C cos (2¢) + 2y, C cos (2¢) 4+ (2¢, + 1)Csin (2¢) = 0.

This linear system can be solved for C; and C; to get
Ci+C(2¢, +1)+ cos(2¢) =0, Cr—2Ci,; + sin(2¢) = 0. (46)
By differentiating each of the equations in (46), it is easy to verify that C satisfies Eq. (36),

namely, Cip—Cy1-C, = 0. Hence, there exist harmonic functions which satisfy Eq. (42). The
solution depends on two arbitrary constants, the values of ¢ and C at an initial point.

Lemma 5.1
dC = (C*-1)9;, %91 =C9y. (47)

Proof: It is easy to express the 9; in terms of the a;,

91 = cos (2¢)a; + sin (2¢)as, 9 = —sin (2y)aq + cos (2y)as. (48)
Therefore, using Egs. (45) and (46), it is easy to see that

dC = Ciay + Cray = (C?-1)( cos (2¢)ay + sin (20)ay) = (C*-1)9y.
Using Eq. (45), it follows that

#9120 = —(2¢, + 1)ay + 29, a0 = Ccos (2Y)ay + Csin (2¢)az
= C(cos (2i)a1 + sin (2)az) = CI4.

This implies that 91, = -C9,.

31
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It is possible to obtain formulas for By, By. Using Eq. (48) in Eq. (34), the derivatives of logA can
be written down

(logA), = Bcos (21), (logA), = Bsin (2i)). (49)
Differentiating each of these in turn, we obtain fori =1, 2,
(logA),; = B; cos (2¢)-2By; sin (2¢), (logA),; = B;sin (2¢) + 2B, cos (21)). (50)
Taking f = logA in Eq. (36) produces a first equation for the B;,

By sin (21)) 4 2By, cos (21)-B, cos (24) + 2B, sin (2¢) + Bsin (2¢/) = 0. (51)
If another equation in terms of B; and B, can be found, it can be solved simultaneously with
Eq. (51). There exists such an equation and it can be obtained from the Gauss equation in (4)
which we put in the form
dwy = —ac wihw, = —ac A% aqhas.
Solving Eq. (26) for w1y, we have
w1 = dip + ay + (logA),a1—(logA), as.
The exterior derivative of this takes the form,
dwiy = [1-(logA);;~(logA),,~(logA); Jarnas.
Putting this in the Gauss equation,
~(logA),;—~(logA),, + {-(logA), + 1} + acA™> = 0.
Replacing the second derivatives from Eq. (50), we have the required second equation
-Bj cos (2i)-By sin (24) + B{2, sin (2¢)-(2, + 1) cos (2¢)} + 1 +acA™? = 0. (52)
Solving Egs. (51) and (52) together, the following expressions for By and B, are obtained
By + B2y, + 1)~(1 +acA?)cos (2¢) =0,  By—2By,—~(1 4 acA™?)sin (2¢) = 0. (53)

Given these results for By and By, it is easy to produce the following two Lemmas.

Lemma 5.2
dB= (BC+1+acA™?)9;, dlog] = (C+2B)d. (54)

Proof: Substituting Eq. (53) into dB, we get
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dB = Biay + Byay = (BC + 1 + acA)(cos (2¢)a; + sin (2u)az) = (BC + 14 acA™?) 9.

Moreover,

dlog] = a1 + 2 % w1z = a1 + 2(*01— * dY + dlogA) = ay + 2 * 915-2 * dip + 2dlogA
= *\912 + ZdIOgA = CSl + ZBS]
Lemma 5.3

dy = —% sin (21#)\91—%((? + cos (20))9,. (55)

Proof:
2d = 24 a1 + 21,5 = Csin (2¢)a;—(C cos (2¢) + 1)a;
= Csin (2¢)( cos (21)81~sin (21)9,)~(C cos (2¢) + 1)( sin (2¢))9;1 + cos (2¢)9)
= —sin (2¢)91—(C + cos (2¢)) 9.

In the interests of completeness, it is important to verify the following theorem.
Theorem 5.2 The function B satisfies Eq. (36) provided ¢ satisfies both Egs. (37) and (41).
Proof: Differentiating B; and B, given by Eq. (53), the left side of Eq. (36) is found to be

Byi=Bux + By = 21ty + Ba(24, + 1) +2B(yy + ¢y + ) + A7 ((ac), sin (29)~(ac), sin (29))
~2acBA™( cos (2¢)) sin (24)-sin (24) cos (2¢9)) + (1 + acA™)(2¢, cos (2¢) + (24, + 1) sin (2¢))
=2(1 +acA™)(2¢, cos (2¢) + (24, + 1) sin (2¢)) + A*((ac), sin (2y)~(ac), cos (21))).
To simplify this, Eq. (37) has been substituted. Using Eq. (48) and xd(ac) = (ac),ar—(ac),a, it
follows that

*d(ac)Ad, = ((ac), sin (2)—(ac), cos (2¢)))aiAay.

Note that the coefficient of a;Aa; in this appears in the compatibility condition. To express it in

another way, begin by finding the exterior derivative of 4ac = (a + ¢)*~(a—c)?,

4d(ac) = 2(a + ¢)(a—c)91-2(a—¢)* (a1 + 2 * wno).

Applying the Hodge operator to both sides of this, gives upon rearranging terms

d(ac)

2 %

= (a+ ¢)92-(a-c)(ar2w12).

Consequently, we can write

2 5 *#d(ac)A\ds = (1—2w12)AS2 = —(24, cos (2¢) + (24, + 1) sin (2¢))a1Aaz.

(a—c

Therefore, it must be that
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~(ac), sin (29) + (ac), cos (29) =~ (a-c)* (2, cos (24) + (24, + 1) sin (24)).

N —

It follows that when f = B, Eq. (36) finally reduces to the form

(1+ H2A™)24, cos (29) + (29, + 1) sin (24)] = 0.

The first factor is clearly nonzero, so the second factor must vanish. This of course is equivalent
to the constraint (41).

6. Intrinsic characterization of M

During the prolongation of the exterior differential system, the additional variables ¢, A, B, and
C have been introduced. The significance of the appearance of the function C, is that the process
terminates and the differentials of all these functions can be computed without the need to
introduce more functions. This means that the exterior differential system has finally closed.

The results of the previous section, in particular, the lemmas, can be collected such that they
justify the following.

Proposition 6.1 The differential system generated in terms of the differentials of the variables
Y, A, B, and C is closed. The variables H, ], A, B, C remain constant along the 9,-curves so
91 =0. Hence, an isometry that preserves H must map the 9;, 9, curves onto the
corresponding 97, 9; curves of the associated surface M* which is isometric to M.

Along the 91, 9, curves, consider the normalized frame,

Gy = cos (¢)er + sin (¢)ey, Gy = —sin(P)e; + cos (¢)ey. (56)
The corresponding coframe and connection form are
&1 = cos (P)wy + sin (P)wz, & =—sin(P)wr + cos (P)wr, E1p = dip + wio. (57)

Then 9; can be expressed as a multiple of &; and 9,,91, in terms of &,, and the differential
system can be summarized here:

O = A&, S =A&, V=& +xdlogA =-CAS,,
dlogA = ABE;,  dB=A(BC+1+4acA?)&,  dC=A(C-1)&, (58)
dH = AJ&,, d] = AJ2B+ C)&,.
The condition d9; = 0 is equivalent to
dANE + AdE = 0.

This implies that d&; =0 since dA is proportional to &;. Also, d * 91, =0 is equivalent to
d * (512 = 0
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Moreover, d * &1, = 0 is equivalent to the fact that the &;,&, curves can be regarded as coordi-
nate curves parameterized by isothermal parameters. Therefore, along the &;,&, curves,
orthogonal isothermal coordinates denoted (s,t) can be introduced. The first fundamental form
of M then takes the form,

[=& 4 & = E(s)(ds? + di?). (59)

Now suppose we set e(s) = \/E(s), then

& =e(s) ds, & =e(s) dt, = :;(Tss)cfz = é(—s) dt. (60)

s

This means such a surface is isometric to a surface of revolution. Since ¢, d*&1, = 0, Eq. (57)
implies that d* w1, = 0. This can be stated otherwise as the principal coordinates are isothermal
and so M is an isothermic surface.

Since A, B, C, H, and ] are functions of only the variable s, this implies that H and ], or H and K,
are constant along the f curves where s is constant. This leads to the following proposition.

Proposition 6.2

dHAK =0, & =-(C+ B)A&,. (61)
This is equivalent to the statement M is a Weingarten surface.
Proof: The first result follows from the statement about the coordinate system above. Since

912 = &np + #dlogA = —~CAE, and dA = A’BE,,

&1p = -CA&—# dlogA = ~CA&y- A™ dA = ~CAE,-AB x & = —(C + B)A&,

Consequently, the geodesic curvature of each &, curve, s constant, is

€(s) __
(e = AB+O),

which is constant.

To express the w; in terms of ds and df, start by writing w; in terms of the &; and then
substituting Eq. (60),

w1 = cos ()e ds—sin ()e dt, wp = sin (Y)e ds + cos ()e dt. (62)

Subscripts (s,t) denote differentiation and Hy = H is used interchangeably. Beginning with
dH = H ds and using Eq. (62), we have

dH = Hyw; 4+ Haw, = (Hy cos () + Hasin (1)) e ds + (—H sin () + Hy cos () e dt = H ds.

Equating coefficients of differentials, this implies that
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Hiecos () + Haesin (¢) = H,  -Hysin () + Hacos (¥) = 0.

Solving this as a linear system we obtain H;, Ho,

Hy = H? cos (), Hy= H? sin (). (63)

Noting that u = H; /] and v = H,/], using Eq. (57) the forms a; can be expressed in terms of
ds,dt

a1 = — (cos (2¢) ds—sin (2¢) dt), ar = —(sin (2¢) ds + cos (2¢) dt). (64)

H H
J J
Substituting &; from Eq. (60) into dH = AJ¢&;,

dH = Hds = AJ&; = Af e(s) ds.

Therefore, H = AJe > 0 and so H(s) is an increasing function of s. Now define the function
Q(s) to be

Q:%:A-e>0. (65)

Substituting Eq. (65) into Eq. (64), a; is expressed in terms of Q as well. Equations (20) in
Theorem 3.2 can easily be expressed in terms of 1) and Q.

Theorem 6.1 Equation (20) is equivalent to the following system of coupled equations in 1 and Q:

sin (2¢)(log(Q)); + 2 cos (2¢)ip~2sin (2¢)¢, = 0,

66
cos (29) log(Q)-2in (29,2 cos (24, = O )
Moreover, Eq. (66) is equivalent to the following first-order system
1 1 1
P, = —EQsin (2y), Y, = E(log(Q))S—EQcos (2¢). (67)

System (67) can be thought of as a type of Lax pair. Moreover, Eq. (67) implies that i is
harmonic as well. Differentiating ¢, with respect to s and ), with respect to ¢, it is clear that
satisfies Laplace's equation in the (s,t) variables 1, + 1), = 0. This is another proof that 1 is
harmonic.

Theorem 6.2 The function Q(s) satisfies the following second-order nonlinear differential
equation
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Q'(£)Qs)-(Q(s))* = Q*(s). (68)
There exists a first integral for this equation of the following form
Q) = Q)" +xQ(s)", reR. (69)

Proof: Equation (68) is just the compatibility condition for the first-order system (67). The
required derivatives are

1 1
Y = - cos (26) (l0gQ),Qc0s (29), ¥, = 2 (108Q)~5 Qs cos (29) + Qsin (249,
Equating derivatives i, = ., the required (68) follows.
Differentiating both sides of Eq. (69) we get
Q"(s) =2Q(s) + xQ(). (70)

Isolating «Q(s) from Eq. (69) and substituting it into Eq. (70), Eq. (68) appears.

It is important to note that the function C which appears when the differential ideal closes can
be related to the function Q.

Corollary 6.1
N
C=(=]. 71
(@ 7
Proof: Using 9; from Eq. (58) in Lemma 5.3, in the s,t coordinates

2dip = —sin (2¢) Ae ds—(C + cos (2¢)) Ae dt = P ds + ¢, dt

Hence using Eq. (67), this implies that 21p, = —sin (2¢) Ae = -Qsin (2¢), hence Q = Ae. The
second equation in Eq. (67) for 1, implies that (C+ cos(2¢)) Ae = Q cos (21/))—(10gQ)'.
Replacing Ae = Q, this simplifies to the form (71).

7. Integrating the Lax pair system

It is clear that the first-order equation in (67) for Q(s) is separable and can be integrated. The
integral depends on whether K is zero or nonzero:

/M2
! log (Z(K * \/KQ @ K)> =eVKs+y, K#0.

Q(s):es—i—y’ K =0;

(72)

37
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Here ¢ = &1 and y is the last constant of integration. Taking specific choices for the constants,

for example, e’ = 2+/K when K#0 and a = /K, the set of solutions (72) for Q(s) can be summa-
rized below.

Dom(s) — Q(s) Dom(s) Qls)
s>0 ! s<0 1
s s
0<s<™ ,a -—<s<0 —,a (73)
a sin(as) a4 sin (as)
s>0 . s<0 S
sinh(as) sinh(as)

It is presumed that other choices of the constants can be geometrically eliminated in favor of
Eq. (73). The solutions (73) are then substituted back into linear system (67). The first equation
in (67) implies that either

29
sin (2¢)

=0, modg; - Q. (74)

Substitute =0 into the second equation in (67). It implies that (logQ), = Q and ) = 1/2 gives
(logQ), = —Q. In both cases Q(s) is a solution which already appears in Eq. (73).

For the second case in Eq. (74), the equation can be put in the form

(log| tan (¢)]), = —Q.

Integrating we have for some function y(t) to be determined,

—J Q(s)ds

tan () = ¢ (). (75)

Therefore, tan(¢) can be obtained by substituting for Q(s) for each of the three cases in
Eq. (73). The upper sign holds for s > 0 and the lower sign holds if s < 0.

i. Q(s) = 571, —JQ(s)ds = log|s|" and
tan (¢) = 5% - y(1). (76)
ii. Q(s) = :I:#ms), —JQ(s)ds = log|csc(as)- cot (as)|™ and
tan () = ((tan (”23))1 (D). (77)

ii. Q(s) = £ 2— [Q(s)ds = Farctanh(e®), and

sinh(as)’ -
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tan (¢) = (tanh(5)* - y(#). (78)

In case (i), if s > 0 and y(t) = £1 then ¢ = £1(as + ), modr, and if s < 0 and y(f) = £1, then
¢ = +4as, modn.

It remains to integrate the second equation of the Lax pair (67) using solutions for both Q(s)
and tan (¢). The first case (i) is not hard and will be shown explicitly here. The others can be
done, and more complicated cases are considered in the Appendix.

(i) Consider Q(s) = s™! and tan (1)) = s™! - y(t). The second equation in (67) simplifies consid-
erably to y, = -1, therefore,

y(t) =-(t+0), tan (¢) = - (t Jg o) . (79)

For Q(s) =-s™' and tan(¢) =s-y(t), the second equation of (67) becomes y, = -/, there-
fore,

ylt)=-——, tan(y) = (80)

8. A third-order equation for H and fundamental forms

Since &;, = (loge(s)) dt, using Eq. (60) w1, can be written as

Wi = Ep-dyp = (log e(s)) di=dy. (81)
Using Egs. (14) and (64) for ay, it follows that

’

dlog(]) = Q( cos (2)) ds—sin (2¢) dt)-2 * (¢, dt + 1, ds) + 2 = (log(e(s))) dt.

when w; are put in the s,t coordinates, using *wi = w,, it can be stated that xds = dt and
«dt = —ds. Consequently, dlog(J) simplifies to

'

dlog(]) = (Qcos (29) + 2¢,-2(log(e(s))) ) ds + (-Qsin (2¢)-2¢,) dt. (82)
First-order system (67) permits this to be written using e(s) = \/E(s) as

(log()) + (log(E)) = (log(Q)) (83)

Hence, there exists a constant 7 independent of s such that E - | = 7Q or

39
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2
EZT%:T%. (84)

This result (84) for E is substituted into the Gauss equation —((log(E))s+(I0g(E))y)=2E(H*-J?)
giving

(0g(E)) = 2(log(Q)) ~log(t)" 20" (') (55)

Therefore, the Gauss equation transforms into a third-order differential equation in the s
variable,

H'\ H?
— | +2tH =2 2<1+ —,>. 86
(57) +2em =20 (1423 (56)

Thus, a characterization of Bonnet surfaces is reached by means of the solutions to these
equations. This equation determines the function H(s) and after that the functions J(s) and
E(s). Therefore, Bonnet surfaces have as first fundamental form the expression

[=E(s)(ds® +df?), E(s)= Tg,—((;). (87)

Since 1 is the angle from the principal axis e; to the s curve with t equals constant, the second
fundamental form is given by

Il = Lds* +2M ds dt + N d*. (88)
where the coefficients L, M, N are given by
L =E(H+]cos(2¢)) = EH + 1Qcos (2¢),
M = -EJsin (2¢) = -1Q sin (2¢), (89)
N = E(H-] cos (2¢)).

Appendix

It is worth seeing how the second equation in (67) can be integrated for cases (ii) and (iii). Only
the case s > 0 will be done with Q(s) taken from Eq. (73).

(a) Differentiating tan (1) given in Eq. (77), we obtain that

tan (%)

Y, = tanz(%) +]/2

y,(b).

The following identities are required to simplify the result,
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2tan (%) tan?(%)-y?
t = 2, 2y) = 8
an (as) tan?(9) cos (21)) tan2() 1 2
Substituting 1, into Eq. (67), we obtain
2tan (%) a tan?(%)-y2

5y, = —acot (as)-

tan2(%) +y sin (as) tan?(%) 4+ y*

Simplifying this, we get
éy _ ! (1—’tan2 (ﬁ))_} (co’c2 (@)_1)3/2_5@& (@) + csc? (ﬁ)yz
a’t 2 2 2 2 2 2)7°
This simplifies to the elementary equation,
a2
v =501, y(t) =tanh(Z+n
Here 1) is an integration constant. To summarize then,

an (¢) = tanh< +n) n(®25).

(b) Consider now s > 0 and take Q(s) from the last line of Eq. (73). Differentiating tan (¢’) from
(78), we get

h (%
l,Z)t: cot (2) 2yt(t)~

1+ coth? Sy

In this case, the following identities are needed,

as 2 as
tanh(as) = th) cos (2¢) = M.
1+ tanh™(%) 1+ coth”(2)y?
Therefore, Eq. (67) becomes
as 2 as
Lh(;)yt = —acoth (as)—— - tanl; (2)
1+ coth™(%)y? sinh(as) tanh® (%) +

This reduces to

—%yt = (1 + tanh? (%) + sech? (az_s» (cothz( ) + 1-csch? (2 ) )yz.

Simplifying and integrating, it has been found that

41
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a at
ytz—i(l—i—yz), y(t) = —tan (E—i—n).

To summarize then, it has been shown that,

tan () = cot (azt + r]) . coth(az—s).

These results apply to the case s > 0 and similar results can be found for the case s < 0 as well.
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Abstract

In this chapter, we introduce the theory of sub-manifolds of a Riemannian manifold. The
fundamental notations are given. The theory of sub-manifolds of an almost Riemannian
product manifold is one of the most interesting topics in differential geometry.
According to the behaviour of the tangent bundle of a sub-manifold, with respect to
the action of almost Riemannian product structure of the ambient manifolds, we have
three typical classes of sub-manifolds such as invariant sub-manifolds, anti-invariant
sub-manifolds and semi-invariant sub-manifolds. In addition, slant, semi-slant and
pseudo-slant sub-manifolds are introduced by many geometers.

Keywords: Riemannian product manifold, Riemannian product structure, integral
manifold, a distribution on a manifold, real product space forms, a slant distribution

1. Introduction

Let i: M — M be an immersion of an n-dimensional manifold M into an m-dimensional

Riemannian manifold (M, ). Denote by ¢ = i*§ the induced Riemannian metric on M. Thus, i
become an isometric immersion and M is also a Riemannian manifold with the Riemannian
metric ¢(X,Y) = g(X,Y) for any vector fields X,Y in M. The Riemannian metric ¢ on M is

called the induced metric on M. In local components, g = g,;B/Bf with g = g;d¥dx’ and
3 = gpaduldu.
If a vector field & of M at a point peM satisfies

8(Xp,&p) =0 (1)

for any vector X, of M at p, then &y is called a normal vector of M in M at p. A unit normal

vector field of M in M is called a normal section on M [3].

I m EC H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [®)sy ]



48 Manifolds - Current Research Areas

By T*M, we denote the vector bundle of all normal vectors of M in M. Then, the tangent
bundle of M is the direct sum of the tangent bundle TM of M and the normal bundle T*M of
MinM,ie.,

T™ = TM®T*M. ()

We note that if the sub-manifold M is of codimension one in M and they are both orientiable,
we can always choose a normal section { on M, i.e.,

8(X,&) =0, g(&,¢) =1, (3)

where X is any arbitrary vector field on M.

By V, denote the Riemannian connection on M and we put

VxY = VxY +h(X.Y) (4)

for any vector fields X, Y tangent to M, where VxY and /(X, Y) are tangential and the normal
components of VxY, respectively. Formula (4) is called the Gauss formula for the sub-manifold

M of a Riemannian manifold (M, g).

Proposition 1.1. V is the Riemannian connection of the induced metric g =i*g on M and
h(X,Y) is a normal vector field over M, which is symmetric and bilinear in X and Y.

Proof: Let @ and p be differentiable functions on M. Then, we have

Vax(BY) = a{X(p)Y + pVxY}
— a{X(B)Y + BVxY + Bh(X, Y)}

VaxBY + h(aX,pY) = apVxY + aX(B)Y + aph(X,Y) )
This implies that
Vax(BY) = aX(B)Y + apVyxY (6)
and
h(aX,pY) = aph(X,Y). (7)

Eq. (6) shows that V defines an affine connection on M and Eq. (4) shows that & is bilinear in X
and Y since additivity is trivial [1].

Since the Riemannian connection V has no torsion, we have

0= VxY-VyX-[X,Y] = VxY + h(X, Y)-VxY-h(Y, X)-[X, Y]. (8)

By comparing the tangential and normal parts of the last equality, we obtain
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VxY-VyX = [X,Y] 9)
and
h(X,Y) =h(Y,X). (10)

These equations show that V has no torsion and / is a symmetric bilinear map. Since the metric
g is parallel, we can easily see that

(Vxg)(Y,Z) = (Vx3)(Y.2)
3(VxY.Z) +3(Y.VxZ)

VxY + (X, Y), ) +3(Y,VxZ + h(X, Z))

xY,Z) +8(Y,VxZ)
VY. Z) + (Y, VxZ) (11)

g(v
8(

for any vector fields X, Y, Z tangent to M, that is, V is also the Riemannian connection of the
induced metric g on M.

We recall /1 the second fundamental form of the sub-manifold M (or immersion 7), which is
defined by

h:T(TM)xIT(TM) — T(T*M). (12)
If h = 0 identically, then sub-manifold M is said to be totally geodesic, where I'(T*M) is the set
of the differentiable vector fields on normal bundle of M.
Totally geodesic sub-manifolds are simplest sub-manifolds.

Definition 1.1. Let M be an n-dimensional sub-manifold of an m-dimensional Riemannian

manifold (M, 3). By h, we denote the second fundamental form of M in M.

H = Ltrace(h) is called the mean curvature vector of M in M. If H =0, the sub-manifold is
called minimal.

On the other hand, M is called pseudo-umbilical if there exists a function A on M, such that
3(h(XY), H) = Ag(X,Y) (13)

for any vector fields X, Y on M and M is called totally umbilical sub-manifold if
h(X,Y)=g(X,Y)H. (14)

It is clear that every minimal sub-manifold is pseudo-umbilical with A = 0. On the other hand,
by a direct calculation, we can find A = 3(H, H) for a pseudo-umbilical sub-manifold. So, every
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totally umbilical sub-manifold is a pseudo-umbilical and a totally umbilical sub-manifold is
totally geodesic if and only if it is minimal [2].

Now, let M be a sub-manifold of a Riemannian manifold (M, g) and V be a normal vector field
on M, X be a vector field on M. Then, we decompose

VxV =-AyX + ViV, (15)

where AyX and VxV denote the tangential and the normal components of VV, respectively.
We can easily see that AyX and V3V are both differentiable vector fields on M and normal
bundle of M, respectively. Moreover, Eq. (15) is also called Weingarten formula.

Proposition 1.2. Let M be a sub-manifold of a Riemannian manifold (M, ). Then

(a) AyX is bilinear in vector fields V and X. Hence, Ay X at point peM depends only on vector
fields V, and X,,.

(b) For any normal vector field V on M, we have
2(AyX,Y) = g(h(x, Y), v). (16)

Proof: Let @ and f be any two functions on M. Then, we have

Vax(BV) = aVx(BV)

= a{X(B)V + pVxV}
~AgvaX + Ve BV = aX(B)V-apAvX + apVyV. (17)
This implies that
AgvaX = afAyX (18)
and
Vi BV = aX(B)V + apVxV. (19)

Thus, Ay X is bilinear in V and X. Additivity is trivial. On the other hand, since gis a Riemann-
ian metric,

Xg(Y,V) =0, (20)

for any X, YE['(TM) and Vel (T*M).
Eq. (12) implies that

Z(VxY, V) +3(Y,VxV) =0. (21)

By means of Egs. (4) and (15), we obtain
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g (h(x, Y), V) ~4(AyX,Y) = 0. (22)

The proof is completed [3].

Let M be a sub-manifold of a Riemannian manifold (M, ?), and h and Ay denote the second
fundamental form and shape operator of M, respectively.

The covariant derivative of 1 and Ay is, respectively, defined by
(Vxh)(Y,Z) = Vxh(Y,Z)-h(VxY, Z)-h(Y,VxZ) (23)
and
(VxA)yY = Vx(AvY)-Ayy Y-Ay VxY (24)

for any vector fields X, Y tangent to M and any vector field V normal to M. If Vxh = 0 for all X,
then the second fundamental form of M is said to be parallel, which is equivalent to VxA = 0.
By direct calculations, we get the relation

g((Vxh)(Y,Z),V) - g((VXA)VY, z). (25)
Example 1.1. We consider the isometric immersion

¢:R? — R, (26)

O(x1,x2) = (x1, /231,32, /x3-1) (27)

we note that M = ¢(R?)cR* is a two-dimensional sub-manifold of R* and the tangent bundle
is spanned by the vectors

T™ = S,,{e1 = (\/Jc—%jl, x1,0,0>,e2 = (0, 0, \/ﬁ, x2>} and the normal vector fields
T'M = sp{wl _ (—xl, \/31.0,0),wz = (0,0, \/ﬁ) } (28)

By V, we denote the Levi-Civita connection of R*, the coefficients of connection, are given by

~ 2x14/x3-1
_ 1 1 (29)

V - - )

EAL o s e

6 ZXZ X%—l 1 (30)
€y = €r— w:

N T e
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and
V,er = 0. (1)
Thus, we have h(e,e1) = —M%lwh h(es,e2) = _2;5%—715"2 and h(ey,e1) = 0. The mean curvature
1 2
vector of M = ¢(R?) is given by
1
H:_E(wl +wy). (32)

Furthermore, by using Eq. (16), we obtain

e(Ay,e1,61) = g(h(el,el),wl) = _Zx;—l (x% + x%—l) =-1,
Q(Awe2,02) = g(h(ez,ez),m) = —%%g(wl,wz) =0, (33)
8(Awe1,e2) =0,
and
Q(Aw,e1,61) = g(h(el,el),wz) =0, (34)

Q(Awe1,6) = 0,8(Auw,e2,02) = 1.

Thus, we have
-1 0 0 0
Awl_(O 0) andAwZ—<0 _1). (35)

Now, let M be a sub-manifold of a Riemannian manifold (M ,8), R and R be the Riemannian

curvature tensors of M and M, respectively. From then the Gauss and Weingarten formulas, we
have
R(X,Y)Z = VxVyZ-VyVxZ-Vx vZ
= Vx(WZ+ (Y, 2))=Vy (VxZ + h(X, 2))-Vix 0 Z-h((X, Y], 2)
= VxVyZ + Vxh(Y, Z)-VyVxZ-Vyh(X,Z)-Vx v|Z-h(VxY,Z) + h(VyX, Z)
= VxVyZ-VyVxZ 4+ h(X,VyZ)-h(VxZ,Y) + Vxh(Y,Z)
~Any, 2y X-Vyh(X, Z) + Anx,2)Y-Vix, v} Z-h(VxY, Z) + h(VyX, Z)
= VxVyZ-VyVxZ-Vx yjZ + Vxh(Y, Z)-h(VxY, Z)
~h(Y,VxZ)-Vyh(X,Z) + h(VyX,Z) + h(VyZ,X)
+Anx,z) YAy, )X
=R(X,Y)Z+ (Vxh)(Y, Z)=(Vyh)(X, Z) + Ax,2) Y=Any, )X (36)
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from which

R(X,Y)Z = R(X,Y)Z 4+ Anx,2)Y-Any,2)X + (Vxh)(Y, Z)-(Vyh)(X, Z), (37)

for any vector fields X,Y and Z tangent to M. For any vector field W tangent to M, Eq. (37)
gives the Gauss equation

g(fz(x, Y)Z, w) - g(R(x, Y)Z, w) + g(h(Y, W), h(X, Z))—g(h(Y, 7). h(X, W)). (38)

On the other hand, the normal component of Eq. (37) is called equation of Codazzi, which is
given by

(R (X. y)z)l = (Vxh)(Y, Z)~(Vyh)(X, Z). (39)

If the Codazzi equation vanishes identically, then sub-manifold M is said to be curvature-
invariant sub-manifold [4].

In particular, if M is of constant curvature, R(X, Y)Z is tangent to M, that is, sub-manifold is
curvature-invariant. Whereas, in Kenmotsu space forms, and Sasakian space forms, this not
true.

Next, we will define the curvature tensor R* of the normal bundle of the sub-manifold M by

R (X, Y)V = VxVyV-VyViV-Viz \V (40)

for any vector fields X, Y tangent to sub-manifold M, and any vector field V normal to M. From
the Gauss and Weingarten formulas, we have

R(X,Y)V = VxVyV-VyVxV-Vx |V
= Vx(AvY + V3V)-Vy(-AvX + V3 V) + Ay[X, Y]-Vix |V
=-VxAyY 4+ VyAyX + 6){V#V-@yV§V + Av[X, Y]—V[lX’Y]V
= -VxAyY-h(X,AvY) + VyAyX + h(Y, AyX)
FVR VY V-V Vi V=Agiy X + Agiy Y + Av[X, Y]-Vix )V
= VxVyV-VyVxV-Vix \)V-Agiy X + Ay Y + Ay[X, Y]
-VxAvY + VyAy X-h(X,AvY) + h(Y, Ay X)
=RYX,Y)V + h(AvX, Y)-h(X,AvY)-(VxA), Y + (VyA), X. (41)

For any normal vector U to M, we obtain
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g(iz (X,Y)V, u) g(Ri(X, Y)V, u) n g(h(AvX, Y), u) —g(h(X,AVY), u)

g(RHX V)V, U) + g(AuY, AvX)=g(AvY, AuX)
$(RYX.Y)V,U) + g(AvAuY, X)~g(AuAv Y, X) (42)

Since [Ay, Av] = AyAyv-Ay Ay, Eq. (42) implies
(R VIV, U) = g (R V)V, U) +g([Au, A]Y, X). (43)
Eq. (43) is also called the Ricci equation.

If Rt = 0, then the normal connection of M is said to be flat [2].

- 1
When (R(X, Y)V) = 0, the normal connection of the sub-manifold M is flat if and only if the

second fundamental form M is commutative, i.e. [Ay, Ay] = 0 for all U, V. If the ambient space
_ . 1
M is real space form, then (R(X Y)V) = 0 and hence the normal connection of M is flat if and

only if the second fundamental form is commutative. If R (X, Y)Z tangent to M, then equation
of codazzi Eq. (37) reduces to

(Vx)(Y, Z) = (Vyh)(X, Z) (44)
which is equivalent to

(VxA),Y = (VyA), X. (45)

On the other hand, if the ambient space M is a space of constant curvature ¢, then we have

R(X,Y)Z = c{g(Y,Z)X~g(X,Z)Y} (46)

for any vector fields X, Y and Z on M.

Since R(X, Y)Z is tangent to M, the equation of Gauss and the equation of Ricci reduce to
g(REVZW) = c{g(Y. 2)g(X, W)g(X. Z)g(Y. W)}
(Y, 2).1(X, W) ) g (h(Y, W), h(X, Z)) (47)
and

g(RYX. V)V, U) = g(1Au, AVIX, V), (48)

respectively.
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Proposition 1.3. A totally umbilical sub-manifold M in a real space form M of constant
curvature c is also of constant curvature.

Proof: Since M is a totally umbilical sub-manifold of M of constant curvature ¢, by using
Egs. (14) and (46), we have

g(RE)ZW) = cfg(¥, 2)(X, W)-g(X, 2)g(Y, W)}
+8(H, H){g(Y, Z)g(X, W)=g(X, Z)g(Y, W)}
= {c+ g(H.H)H(Y. 2)3(X, W)g(X. Z)g(Y. W)} (49)

This shows that the sub-manifold M is of constant curvature ¢ + IH2Il for n > 2. If n =2,
HII = constant follows from the equation of Codazzi [3].

This proves the proposition.

On the other hand, for any orthonormal basis {e,} of normal space, we have

$(V.2)3(X W)g(X.Z)g(¥. W) = X [g (Y. 2).0) (H(X. W).r)

g (X, 2),e0)g (WY, W) 01)]
= D 8(A, Y, Z)3(A X, W)-8(Ae, X. 2)3(Aq, Y. W) (50)

Thus, Eq. (45) can be rewritten as

g(RO)ZW) = cfg(Y, 2)(X, W)-g(X, 2)g(Y, W)}

+2.[8(4, Y, 2)3(Ae, X. W)—g(A, X, Z)g(A:, Y, W) (1)

By using A,,, we can construct a similar equation to Eq. (47) for Eq. (23).

Now, let S- be the Ricci tensor of M. Then, Eq. (47) gives us
S(X,Y) = e{ng(X, Y)=g(ei, X)g(ei, Y)} (52)
+Z [g(AC’“ €i, ei)g(AE/1X7 Y>_g(Aea X’ ei)g(Afﬂ Ci, Y)}

= c(n-1)g(X,Y) + X [Tr(Ac,)g(Ae X, Y)-8(Ae, X. A, Y)), (53)

€

where {e1, e, ...,¢,} are orthonormal basis of M.

Therefore, the scalar curvature r of sub-manifold M is given by
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r= cn(n—l)ZTrZ(Agﬂ)—ZTr(Ag“)2 (54)

ZTr(Aeﬂ)2 is the square of the length of the second fundamental form of M, which is denoted

€

by |A,, % Thus, we also have

IR0 = Z g(h(ei,ej),h(ei,ej)) — 1A%, (55)

i,j=1
2. Distribution on a manifold

An m-dimensional distribution on a manifold M is a mapping D defined on M, which assignes
to each point p of M an m-dimensional linear subspace D, of TM (p). A vector field X on M

belongs to D if we have X,€D, for each peM. When this happens, we write Xel'(D). The

distribution D is said to be differentiable if for any peM, there exist m-differentiable linearly
independent vector fields X;€l'(D) in a neighbordhood of p.

The distribution D is said to be involutive if for all vector fields X,Yel'(D) we have
[X, Y]€T' (D). A sub-manifold M of M is said to be an integral manifold of D if for every point
peM, D, coincides with the tangent space to M at p. If there exists no integral manifold of D
which contains M, then M is called a maximal integral manifold or a leaf of D. The distribu-

tion D is said to be integrable if for every peM, there exists an integral manifold of D
containing p [2].

Let V and distribution be a linear connection on M, respectively. The distribution D is said to
be parallel with respect to M, if we have

VxYEI(D) for all Xel'(TM) and YeI' (D) (56)

Now, let (M,§) be Riemannian manifold and D be a distribution on M. We suppose M is
endowed with two complementary distribution D and D*, ie., we have TM = D@D".
Denoted by P and Q the projections of TM to D and D*, respectively.

Theorem 2.1. All the linear connections with respect to which both distributions D and D* are
parallel, are given by

VxY = PVyPY + QV4QY + PS(X,PY) + QS(X,QY) (57)
for any X, YE[(TM), where V' and S are, respectively, an arbitrary linear connection and
arbitrary tensor field of type (1,2) on M.

Proof: Suppose V' is an arbitrary linear connection on M. Then, any linear connection V on M
is given by
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VxY = VyY + S(X,Y) (58)

for any X, YE[(TM). We can put

X = PX + QX (59)

for any XeI'(TM). Then, we have

VxY = Vx(PY 4+ QY) = VxPY + VxQY = VyPY + S(X, PY)
+V4QY + S(X,QY) = PVyPY + QVyPY + PS(X,PY) + QS(X, PY)
+PV4QY + QV4QY + PS(X,QY) + QS(X,QY) (60)

for any X, YE[(TM).
The distributions D and D are both parallel with respect to V if and only if we have

¢(VxPY) = 0andP(VxQY) = 0. (61)

From Egs. (58) and (61), it follows that D and D* are parallel with respect to V if and only if

QVyPY + QS(X,PY) = 0 and PV, QY + PS(X,QY) = 0. (62)

Thus, Egs. (58) and (62) give us Eq. (57).
Next, by means of the projections P and Q, we define a tensor field F of type (1,1) on M by
FX = PX-QX (63)

for any Xe€I'(TM). By a direct calculation, it follows that F* = I. Thus, we say that F defines an
almost product structure on M. The covariant derivative of F is defined by

(VxF)Y = VxFY-FVxY (64)
for all X, YE[(TM). We say that the almost product structure F is parallel with respect to the
connection V, if we have VxF = 0. In this case, F is called the Riemannian product structure [2].

Theorem 2.2. Let (M, ) be a Riemannian manifold and D, D* be orthogonal distributions on

M such that TM = D@D*. Both distributions D and D* are parallel with respect to V if and
only if F is a Riemannian product structure.

Proof: For any X, YET'(TM), we can write

VyPX = VpyPX + VyPX (65)

and
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VyX = VpyPX + VpyQX + V oy PX + VoyQX, (66)

from which
8(VorPX,QZ) = QYg(PX,QZ)-§(VoyQZ, PX) = 0-8(V oy QZ, PX) = 0, (67)

that is, VoyPXeT' (D) and so PV gy PX = V oy PX,

QVyPX = 0. (68)
In the same way, we obtain
8(VpyQX,PZ) = PYg(QX,PZ)-§(QX, VpyPZ) =0, (69)
which implies that
PVpyQX =0 and QVpyQX = VpyQX. (70)

From Egs. (66), (68) and (70), it follows that

PVyX = VpyPX + V oy PX. (71)

By using Egs. (64) and (71), we obtain

(VyP)X = VyPX-PVyX = VpyPX + V oy PX-V pyPX-V 5y PX = 0. (72)

In the same way, we can find @Q = 0. Thus, we obtain

VF =V (P-Q) =0. (73)

This proves our assertion [2].

Theorem 2.3. Both distributions D and D" are parallel with respect to Levi-Civita connection V
if and only if they are integrable and their leaves are totally geodesic in M.

Proof: Let us assume both distributions D and D* are parallel. Since V is a torsion free linear
connection, we have

[X,Y] = VxY-VyXel(D), for any X, YEI' (D) (74)

and

(U, V] = VyV-VyUel(D*), for any U, Vel (D*) (75)

Thus, D and D* are integrable distributions. Now, let M be a leaf of D and denote by & the
second fundamental form of the immersion of M in M. Then by the Gauss formula, we have
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VxY = VyY +h(X,Y) (76)

for any X, YET'(D), where V' denote the Levi-Civita connection on M. Since D is parallel from
Eq. (76) we conclude h = 0, that is, M is totally in M. In the same way, it follows that each leaf
of D* is totally geodesic in M.

Conversely, suppose D and D* be integrable and their leaves are totally geodesic in M. Then
by using Eq. (4), we have

VxYeI' (D) for any X, Yel'(D) (77)
and
VuVer(D') for any U, Vel (D). (78)
Since g is a Riemannian metric tensor, we obtain
e(VuY, V) =-¢(Y,VyV) =0 (79)
and

g(VXV, Y) = —g(V, ny) =0 (80)

for any X, YET (D) and U, Vel (D). Thus, both distributions D and D* are parallel on M.

3. Locally decomposable Riemannian manifolds
Let (M, §) be n-dimensional Riemannian manifold and F be a tensor (1,1)-type on M such
that F? = I, F#¥1.

If the Riemannian metric tensor g satisfying

2(X,Y) =g(FX,FY) (81)

for any X, YET(TM) then M is called almost Riemannian product manifold and F is said to be
almost Riemannian product structure. If F is parallel, that is, ( \Y xF)Y =0, then M is said to be
locally decomposable Riemannian manifold.

Now, let M be an almost Riemannian product manifold. We put

P=-(I+F), Q==(I-F). (82)

N =
N —

Then, we have
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P+Q=1I P>*=P, Q*=Q, PQ=QP=0 and F=P-Q. (83)

Thus, P and Q define two complementary distributions P and Q globally. Since F*> = I, we
easily see that the eigenvalues of F are 1 and —1. An eigenvector corresponding to the eigen-
value 1 is in P and an eigenvector corresponding to -1 is in Q. If F has eigenvalue 1 of
multiplicity P and eigenvalue -1 of multiplicity g, then the dimension of P is p and that of Q is

g. Conversely, if there exist in M two globally complementary distributions P and Q of
dimension p and g, respectively. Then, we can define an almost Riemannian product structure

Fon M by M by F = P-Q [7].

Let (M,3,F) be a locally decomposable Riemannian manifold and we denote the integral
manifolds of the distributions P and Q by MP and MY, respectively. Then we can write

M = MPXMY, (p,g > 2). Also, we denote the components of the Riemannian curvature R of M
by Racwe 1<a,b,c,d<n = p +g.

Now, we suppose that the two components are both of constant curvature A and (1. Then, we have
Ricba = A{gdagcb_gcugdh} (84)

and

Rzyxw = #{gzwgyx_gngzx}' (85)
Then, the above equations may also be written in the form

1
Rjin = 5 (A + ){(8u8i8n8ki) + (FenFji=FjnFii) }
4 J: ) (86)

1
+ 1 A~ (Fung;i=Fingi) + (8 Fii=8juFri) }-

Conversely, suppose that the curvature tensor of a locally decomposable Riemannian manifold
has the form

Ryjin = a{(81,8;i8n8i) + (FunFji=FinFri) }

(87)
+0{(Fung;iFingyi) + (8 Fji=8juFii)}-
Then, we have
Rcdbtz = 2(‘1 + b){gdagcb_gcagdb} (88)
and
RZ}/XZU = 2(a_b){gzwgyx_gngzx}’ (89)

Let M be an m-dimensional almost Riemannian product manifold with the Riemannian structure

(F,g) and M be an n—dimensional sub-manifold of M. For any vector field X tangent to M, we put
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FX = fX + wX, (90)

where fX and wX denote the tangential and normal components of FX, with respect to M,
respectively. In the same way, for VeI'(T*M), we also put

FV =BV +CV, (91)

where BV and CV denote the tangential and normal components of FV, respectively.

Then, we have
24+ Bw=1Cw+wf=0 (92)

and

fB+BC=0,wB+C*=1. (93)
On the other hand, we can easily see that

8(X.fY) =g(fX.Y) (94)
and

8(X,Y) = g(fX.fY) + g(wX,wY) (95)

for any X, YeI'(TM) [6].

If wX=0 for all Xel(TM), then M is said to be invariant sub-manifold in M,
i.e, F(Tm(p))CTwm(p) for each peM. In this case, f> =1 and g(fX,fY) = g(X,Y). Thus, (f,g)
defines an almost product Riemannian on M.

Conversely, (f,g) is an almost product Riemannian structure on M, the w = 0 and hence M is

an invariant sub-manifold in M.
Consequently, we can give the following theorem [7].

Theorem 3.1. Let M be a sub-manifold of an almost Riemannian product manifold M with
almost Riemannian product structure (F,g). The induced structure (f,g) on M is an almost

Riemannian product structure if and only if M is an invariant sub-manifold of M.

Definition 3.1. Let M be a sub-manifold of an almost Riemannian product M with almost
product Riemannian structure (F,g). For each non-zero vector X,€Ty(p) at peM, we denote
the slant angle between FX, and Ty(p) by 6(p). Then M said to be slant sub-manifold if the
angle O(p) is constant, i.e., it is independent of the choice of peM and X,€Tm(p) [5].

Thus, invariant and anti-invariant immersions are slant immersions with slant angle 6 = 0 and
0 = 7, respectively. A proper slant immersion is neither invariant nor anti-invariant.
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Theorem 3.2. Let M be a sub-manifold of an almost Riemannian product manifold M with
almost product Riemannian structure (F,g). M is a slant sub-manifold if and only if there exists
a constant A€(0, 1), such tha

fF=AL (96)
Furthermore, if the slant angle is 0, then it satisfies A = cos?0 [9].

Definition 3.2. Let M be a sub-manifold of an almost Riemannian product manifold M with
almost Riemannian product structure (F,g). M is said to be semi-slant sub-manifold if there

exist distributions D? and DT on M such that

(i) TM has the orthogonal direct decomposition TM = D&D' .

(ii) The distribution DY is a slant distribution with slant angle 6.
(iii) The distribution D" is an invariant distribution, .e., F(Dr)CD’.

In a semi-slant sub-manifold, if O =7, then semi-slant sub-manifold is called semi-invariant
sub-manifold [8].

Example 3.1. Now, let us consider an immersed sub-manifold M in R’ given by the equations

x% + x% = xé + xé,x3 + x4 =0. (97)

By direct calculations, it is easy to check that the tangent bundle of M is spanned by the

vectors
0 0 0 8]
Z1 = COS@a + SiI‘l@a—x2 + COS‘Ba—x5 + SiI‘lﬁa—x6
— _yq _ - - 98
Z usin@ o + ucosO o .23 o o (98)

z4 = —usinf — + ucosp—,z5 = —
‘Bbxg, ‘BaJC(, ’ OJC7 ’

where 0, and u denote arbitrary parameters.

For the coordinate system of R” = {(x1,X2, X3, %4, X5, X, X7)|x;€R, 1 < i< 7}, we define the
almost product Riemannian structure F as follows:

0 ) 0 0
Fl[—)=—,F|— )| =—,1<i< 4<j<7.
(bxi> e <6xj) o i<3and4<j (99)

Since Fz; and Fz3 are orthogonal to M and Fzy,Fz4,Fzs are tangent to M, we can choose a
D = Sp{z2,24,25} and D" = S,{z1,23}. Thus, M is a 5-dimensional semi-invariant sub-mani-

fold of R” with usual almost Riemannian product structure (F, <, >).
Example 3.2. Let M be sub-manifold of R® by given

(1 + v, u~v, ucosa, usina, u + v, u=v, ucosP, usinp) (100)
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where u,v and § are the arbitrary parameters. By direct calculations, we can easily see that the
tangent bundle of M is spanned by

e *i—l—i—i—cosai—l—sinai—s-i—i—i—cos i—l—sin Kh
e 6x1 bxz 6x3 6x4 aX5 6x6 ﬁbX7 ‘B bxg
ezzi—i+i+i,e3:—usin—+ucosa—, (101)
6x1 6x2 bx5 6x6 6x3 OX4

., 0 0
eq = —usinf o + uCOS‘BO_xg'

For the almost Riemannian product structure F of R® = R*xR*, F(TM) is spanned by vectors

Fe —i+i+cosai+sinai—i+i—cos i—sin -
e g 0xp ox3 oxs Oxs Oxg p ox oxg’ (102)
Fe, = ———, Fez = e3 and Fey = —e¢4.

or; Ox; Oxs O

Since Fe; and Fe, are orthogonal to M and Fe; and Fe; are tangent to M, we can choose
Dl = Sp{es,es} and Dt = Sp{ei,e2}. Thus, M is a four-dimensional semi-invariant sub-mani-
fold of R® = R*xR* with usual Riemannian product structure F.

Definition 3.3. Let M be a sub-manifold of an almost Riemannian product manifold M with
almost Riemannian product structure (F,g). M is said to be pseudo-slant sub-manifold if there
exist distributions Dg and D, on M such that

i. The tangent bundle TM = Dg®D*.
ii. The distribution Dy is a slant distribution with slant angle 6.
iii. The distribution D* is an anti-invariant distribution, i.e., F(D*)CT*M.

As a special case, if 0 = 0 and 0 = 7, then pseudo-slant sub-manifold becomes semi-invariant
and anti-invariant sub-manifolds, respectively.

Example 3.3. Let M be a sub-manifold of R® by the given equation

( V/3u, v, vsin6, vcos6, scost, -scost) (103)

where u,v,s and t arbitrary parameters and 0 is a constant.

We can check that the tangent bundle of M is spanned by the tangent vectors

8] 8] 8] 8]
e1 =vV3—,ep = — + sinf— + cosf —,
aéxl Ay, 0xy Y, (104)
= t——cost—, e4 = —ssint — int—.
e3 = COS o COS 6y3 ,e4 SSIn s -+ ssin 6y3

For the almost product Riemannian structure F of R® whose coordinate systems
(X1, Y1, %2,Y,, X3, 15) choosing
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(105)
F 9 :i,lsjs&
; 0x;

Then, we have

d d d d
Fe; = /3—,Fey = —— + sinf — —cosf —
dy, ax; oy, 0x2 (106)

6]
Fes = cost— + cost—, Fey, = —ssint — —ssint —.
’ Ay * oy Y, 0x3

Thus, Dy = Sp{el,ez} is a slant distribution with slant angle a = . Since Fe; and Fey are
orthogonal to M, Dt = Sp{es,es4} is an anti-invariant distribution, that is, M is a 4-dimensional

proper pseudo-slant sub-manifold of R® with its almost Riemannian product structure
(F, <, >).
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Abstract

Differential operators that are defined on a differentiable manifold can be used to study
various properties of manifolds. The spectrum and eigenfunctions play a very signifi-
cant role in this process. The objective of this chapter is to develop the heat equation
method and to describe how it can be used to prove the Hodge Theorem. The Minakshi-
sundaram-Pleijel parametrix and asymptotic expansion are then derived. The heat equa-
tion asymptotics can be used to give a development of the Gauss-Bonnet theorem for
two-dimensional manifolds.

Keywords: manifold, operator, differential form, Hodge theory, eigenvalue, partial
differential operator, Gauss-Bonnet

1. Introduction

Topological and geometric properties of a manifold can be characterized and further studied
by means of differential operators, which can be introduced on the manifold. The only natural
differential operator on a manifold is the exterior derivative operator which takes k-forms to
k + 1 forms. This operation is defined purely in terms of the smooth structure of the manifold,
used to define de Rham cohomology groups. These groups can be related to other topological
quantities such as the Euler characteristicc. When a Riemannian metric is defined on the
manifold, a set of differential operators can be introduced. The Laplacian on k-forms is perhaps
the most well known, as well as other elliptic operators.

On a compact manifold, the spectrum of the Laplacian on k-forms contains topological as well
as geometric information about the manifold. The Hodge theorem relates the dimension of the
kernel of the Laplacian to the k-th Betti number requiring them to be equal. The Laplacian
determines the Euler characteristic of the manifold. A sophisticated approach to obtaining
information related to the manifold is to consider the heat equation on k-forms with its solution
given by the heat semigroup [1-3].

I m Ec H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [{cc) X IR
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The heat kernel is one of the more important objects in such diverse areas as global analysis,
spectral geometry, differential geometry, as well as in mathematical physics in general. As an
example from physics, the main objects that are investigated in quantum field theory are
described by Green functions of self-adjoint, elliptic partial differential operators on manifolds
as well as their spectral invariants, such as functional determinants. In spectral geometry, there
is interest in the relation of the spectrum of natural elliptic partial differential operators with
respect to the geometry of the manifold [4-6].

Currently, there is great interest in the study of nontrivial links between the spectral invariants
and nonlinear, completely integrable evolutionary systems, such as the Korteweg-de Vries
hierarchy. In many interesting situations, these systems are actually infinite-dimensional Ham-
iltonian systems. The spectral invariants of a linear elliptic partial differential operator are
nothing but the integrals of motion of the system. There are many other applications to physics
such as to gauge theories and gravity [7].

In general, the existence of nonisometric isospectral manifolds implies that the spectrum alone
does not determine the geometry entirely. It is also important to study more general invariants
of partial differential operators that are not spectral invariants. This means that they depend
not only on the eigenvalues but also on the eigenfunctions of the operator. Therefore, they
contain much more information with respect to the underlying geometry of the manifold.

The spectrum of a differential operator is not only studied directly, but the related spectral
functions such as the spectral traces of functions of the operator, such as the zeta function and
the heat trace, are relevant as well [8, 9]. Often the spectrum is not known exactly, which is why
different asymptotic regimes are investigated [10, 11]. The small parameter asymptotic expan-
sion of the heat trace yields information concerning the asymptotic properties of the spectrum.
The trace of the heat semigroup as the parameter approaches zero is controlled by an infinite
sequence of geometric quantities, such as the volume of the manifold and the integral of the
scalar curvature of the manifold. The large parameter behavior of the traces of the heat kernels
is parameter independent and in fact equals the Euler characteristic of the manifold. The small
parameter behavior is given by an integral of a complicated curvature-dependent expression.
It is quite remarkable that when the dimension of the manifold equals two, the equality of the
short- and long-term behaviors of the heat flow implies the classic Gauss-Bonnet theorem. The
main objectives of the chapter are to develop the heat equation approach with Schrodinger
operator on a vector bundle and outline how it leads to the Hodge theorem [12, 13]. The heat
equation asymptotics will be developed [14, 15] andit is seen that the Gauss-Bonnet theorem
can be proved for a two-dimensional manifold based on it. Moreover, this kind of approach
implies that there is a generalization of the Gauss-Bonnet theorem as well in higher dimensions
greater than two [16, 17].

2. Geometrical preliminaries

For an n-dimensional Riemannian manifold M, an orthonormal moving frame {e;,...,e,} can be
chosen with {wy,...,w,} the accompanying dual coframe which satisfy
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a)i(ej) = 51‘]', i,j = 1,...,n (1)
It is then possible to define a system of one-forms w;; and two-forms Q;; by solving the equations,

Vxei =Y wi(X) ¢,  R(X,Y)ei = ¥ Qi(X,Y)e ()
j j

It then follows that the Christoffel coefficients and components of the Riemann tensor for M are
wji(er) = Twq(er)eaeidy = (Vejseidg = A3)

Qjj(ex.es) = X (Qaj(ex.es)easei)g = ( Rlexes)ejeidg = Risii 4)
a

The inner product induced by the Riemannian metric on M is denoted here by (-, - ) : I'(TM)
x[(TM) — F(M) and it induces a metric on A¥(M) as well. Using the Riemannian metric and
the measure on M, an inner product denoted (( - , - )) : A¥(M)x A¥(M) — R can be defined on
A¥(M) so that for a, p € AF(M),

{ap)) = JM (@), dow 5)

where if (x!,...,x™) is a system of local coordinates,
doy = det(g,-j) dx'A...A dx™

is the Riemannian measure on M. Clearly, ({(«,p)) is linear with respect to a, f and({a,a))>0
with equality if and only if @ = 0. Hodge introduced a star homomorphism * : A*(M) —
A"*(M), which is defined next.

Definition 2.1. (i) For w = Y <..ci, f iy Wi A @i, define
o = . Z . fil---iké(il""V ik, jl"“’ jn—k)wfl/\m/\(‘)jn,k?
1< e <0k
1< <Jpxk

where cis 1, -1, or 0 depending on whether (i1,...,ik,j;;..-,j,) is an even or odd permutation of
(1,...,n), respectively.

(ii) If M is an oriented Riemannian manifold with dimension #, define the operator
5 — (_1)nk+n+1*d* . Ak(M) N Ak—l (M) (6)

In terms of the two operators d and 6, the Laplacian acting on k-forms can be defined on the
two subspaces
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AZM) = Beven A (M), A°M(M) = Boag A°(M) (™
The operator d 4 6 can be regarded as the operators on these subspaces,
Dy =d+6: A (M) — A (M), Dy =d+6: A M) — A% (M) 8)
Definition 2.2. Let M be a Riemannian manifold, then the operator
Dy =d+ 6 : A% (M) — A°44(M) 9)

is called the Hodge-de Rham operator. It has the property that it is a self-conjugate operator,
D}, = D; and Dy = Dj. It is useful in studying the Laplacian to have a formula for the operator

A = (d + 6)* and hence for DjDy and D’ D; as well.

Let {ey,...,e,} be an orthonormal moving frame defined on an open set U. Define as well the
pair of operators

Ef =wjA-+i(g) : A"(U) = A(U),  Ej =wjA-=ig) : A"(U) — A*(U) (10)

Lemma 2.1. The operators Eji satisfy the following relations
Ef]%-+ + E/ﬂEi+ = 20, E;rE]T + E]TE,»+ =0, EE +EE =-2b; (11)

If M is a Riemannian manifold and V : I (TM) xI'(TM) — I'(TM) is a Levi-Civita connection,
then a connection on the space A*(M), namely (X,w) — Vxw, can also be defined such that

(Vxw)(Y) = X(@(Y))-w(VxY), YeTI(TM)

The connection may be regarded as a first-order derivative operator (X,Y,w) — D(X,Y)w.

Definition 2.3. The second-order derivative operator (X,Y,w) — D(X,Y)w is defined to be

D(X,Y)(A) = vaya)—Vvaa) (12)
In terms of the operator (Eq. (12)), define a second-order differential operator A¢ : A*(M) —
A*(M) by

Ao = Z D(ei,e,'), (13)

where {e;}] is an orthonormal moving frame. The operator Ay in Eq. (13) is referred to as the
Laplace-Beltrami operator.

Theorem 2.1. (Weitzenbock) Let M be a Riemannian manifold M with an associated orthonor-
mal moving frame {¢;}]. The Laplace operator can be expressed as
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1 1
A=(d+06) = A5 T Rys E/EE(E; + 4R (14)
ijk.s

In Eq. (14), R is the scalar curvature, R = —};;R;j; and 4 is the Laplace-Beltrami operator (13).

The operator defined by Eq. (14) does not contain first-order covariant derivatives and is of a
type called a Schrodinger operator. Thus, Weitzenbock formula (14) implies the that Laplacian
can be expressed in the form A = -Ap—F and is an elliptic operator. The Schrodinger operator
(14) can be used to define an operator that plays an important role in mathematical physics.
The heat operator is defined to be

9
=—+A 15
H=5+ (15)
The crucial point for the theory of the heat operator is the existence of a fundamental solution.
In fact, the Hodge theorem can be proved by making use of the fundamental solution.

Definition 2.4. Let M be a Riemannian manifold, 7t : E — M is a vector bundle with connec-
tion. Let A : I'(E) — I'(E) be the Laplace-Beltrami operator, which is defined by means of the
Levi-Civita connection on M and the connection on the vector bundle E. Let F : ['(E) — I'(E) be
a F(M)-linear map. Then, A = -Ag-F is a Schrodinger operator. If a family of R-linear maps

G(tqp) : E, — E,

with parameter f > 0 and g,p € M satisfies the following three conditions, the family is called a
fundamental solution of the heat operator (15) where E, = 7! (p). First, G(t,q,p) : E, — E;is an
R-linear map of vector spaces and continuous in all variables t,q,p. Second, for a fixed w € E,,
let O(t,q) = G(t,q,p)w, for all t > 0, then 0 has first and second continuous derivatives in t and g,
respectively andsatisfies the heat equation, which for t > 0 is given by H0(t,q) = 0, which can
be written as

<§t + Aq> G(tg,p) =0 (16)

where A, acts on the variable g. Finally, if ¢ is a continuous section of the vector bundle E, then

lim J G(tg.p)e(p) dv, = ¢(q)
M

t—07"
for all ¢, where dv, is the volume measure with respect to the coordinates of p given in terms of
the Riemannian metric.

Definition 2.5. Suppose a Gy(t.q.p) is given. The following procedure taking Go(t.q.p) to
G(t,q,p) is called the Levi algorithm:
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0
Kolt.0.p) = (334, )Gl0.p),

t

Km+1 (t, q, P) = J

er Ko(t=1,9,2)Ky(7,2,p) do,
0o Jm

! (1)
K(tqup) = ZO (_1)"Z+1Kﬂ1(t7q’p)7

m=

t

G(ta ¢77P) = Go(t7‘7>p) +J

dfj Go(t-7,4,2)K(1,2,p) do.
0 M

The Cauchy problem can be formulated for the heat equation such that existence, regularity
and uniqueness of solution can be established. The Hilbert-Schmidt theorem can be invoked to
develop a Fourier expansion theorem applicable to this Schrodinger operator.

Suppose A : I'(E) — I'(E) is a self-adjoint nonnegative Schrodinger operator, then there exists a
set of C” sections {{;}C I'(E) such that

(W) = | (000 do = 5

Moreover, denoting the completion of the inner product space I'(E) by I'(E), the set {i},} is a

complete set in I'(E), so for any i €I'(E),

Y= Zl (SURTHRT
i=
Finally, the set {);} satisfies the equation

AY; = A, T, = eimi‘/’i

where A; are the eigenvalues of A andform an increasing sequence: 0 <Ay <A;<--- where
limk%.x, Ak = oo,

Denote U(t,q) by (Ty¢)(q) when U(0,q) = () and T, satisfies the semigroup property andT; is
a self-adjoint, compact operator.

Theorem 2.2. Let G(t, g, p) be the fundamental solution of the heat operator (15), then

Gltapyw= 5 e, (p)w)y(a) (18)

with w € E, holds in I'(E).

Proof: For fixed t > 0 and weE,, expand G(t,q,p)w in terms of eigenfunctions ,(q),
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G(t7q’p)w = ;1 Gi(t7p7w)¢i(q)7 Gi(tﬂp’w) = JM <‘Pi(‘7),G(f¢%P)w> dvﬂ
Differentiating with respect to t and using Ay, = A1), we get

0 0
&Ui(hpvw) = .[M <¢i<q)7&c(t7q7p)w> dv'i = JM<11[)1'(‘7) ,—AqG(t,q,p)w)qu

- j (Agti() G(tg.p)w) do, = —Al-j (,(9).Gltq.p)w) do,
M M
= -Aioi(t,p,w)

It follows from this that

ai(tpw) = ci(pw)e ™!

and since 0; depend linearly on w, so ¢;(p,w) = c;(p)w, where c;(p) : E, — R is a linear function.
There exists ¢;(p) independent of w such that ¢;(p)w = (¢;(p),w) so that

Gtap)w = T o a)(ei(p) w)
Consequently, for any g € I'(E), we have
o) =tim | Glap)p) do, = £ 0,(0)| o)) do,
- M k=1 M

Moreover, (g) can also be expanded in terms of the 1, basis set,

oo

B) = £ vil)| () Bip) doy

k=1
Upon comparing these last two expressions, it is clear that ¢x(p) = ¢, (p) for all k andwe are
done.

One application of the heat equation method developed so far is to develop and give a proof of
the Hodge theorem.

Theorem 2.3. Let M, E, A be defined as done already, then
1. H={p eTl(E)|Ap = 0} is a finite-dimensional vector space.

2. For any ¢ € I'(E), there is a unique decomposition of ¢ as ¢ = 1, ®1,, where ;€ H and
¥,€ A(L(E))-

The first part is a direct consequence of the expansion theorem and due to the fact HLA(I'(E)),
the decomposition is unique.
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The Hodge theorem has many applications, but one in particular fits here. It is used in
conjunction with the de Rham cohomology group H}j; (M). Define

ZK(M) = ker{d : AK(M) — AMH(M)) = {a € AX(M)| da = 0} (19)

B*(M) = Im {d : AFY (M) — A¥(M))=d(A* (M) (20)

Since d* = 0, it follows that B¥(M) c Z¥(M) andthe k-th de Rham cohomology group of M is
defined to be

Hir(M) = ZX(M)/B“(M) 1)

From Eq. (21), construct
HZR (M) = @ HZR(M) (22)

In 1935, Hodge claimed a theorem, which stated every element in H' (M) can be represented
by a unique harmonic form «, one which satisfies both da = 0 and 0a = 0. Denote the set of

harmonic forms as H*(M).

Theorem 2.4. Let M be a Riemannian manifold of dimension 7, then
H"(M) = ker {d + 6 : AF(M) — A*(M)} = ker {A : AX(M) — A¥(M)} (23)

where A = (d + 6)%.
Proof: Since A = db + 6d, this implies that A(A*(M)) c A¥(M) andit is clear that

HY(M) c ker{d + 6 : AF(M) — A*(M)} C ker{A : AX(M) — A*(M)} = ker {A : AF(M) — AF(M)).
To finish the proof, it suffices to show that ker{A :A"(M) — A*(M)} c HY(M). 1f
aegker{A : AF(M) — A¥(M))}, that is Aa = 0, then

((Aaa)) = (((d + 6 wa)) = (((d + 0)a(d + d)a)) = ((dada)) + ((da,0a)) + 2((dav,da))
= ((dar,dar)) 4 ((da,0a)) = 0

This implies that da = 0 and 6a = 0, hence a € H*(M).

Theorem 2.5. Let M be a Riemannian manifold of dimension #, then
1. HY(M) is a finite dimensional vector space fork=0,1,2,..., n.

2. There is an orthogonal decomposition of A*(M) as

AR(M) = HY (M) + d(AFY (M) + 5(AF (M) (24)
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Proof: By Theorem 2.1, A : A¥(M) — A¥(M) is a Schrodinger operator, so the Hodge theorem
applies. Thus H*(M) is of finite dimension, so the first holds. The second part of the Hodge
theorem is AF(M) = H*(M) + A(A*(M)). Since A(A*(M))cd(A*1(M)) 4 6(AF1(M)), we have
AN(M) = HY (M) + d(AF1(M)) 4 6(A¥1(M)). The three spaces in this decomposition are
orthogonal to each other, so (ii) holds as well.

Theorem 2.6. (Duality theorem) For an oriented Riemannian manifold M of dimension 7, the
star isomorphism * : H*(M) — H"*(M) induces an isomorphism

Hjp(M) = Hjz (M) (25)

The k-th Betti number defined as by(M) = dimH*(M, R) also satisfies by(M) = b,_x(M) for
0<k<n.

3. The Minakshisundaran-Pleijel paramatrix

Let M be a Riemannian manifold with dimension n and E a vector bundle over M with an
inner product and a metric connection. Here, the following formal power series is consid-

ered with a special transcendental multiplier /4 and parameters (t,p,q)€(0,%0) x Mx M,
defined by

H.(tq,p) = PN Y Fupg) Ey — E, (26)
k=0

(4rct)"/>

In Eq. (26), the function p = p(p.q) is the metric distance between p and g in M, E, = "' (p) is
the fiber of E over p and ux(p,q) : E, — E; are R-linear map.

It is the objective to find conditions for which Eq. (26) satisfies the heat equation or the
following equality:

(% + A,,)Hw(t,q,p)w =0 (27)

To carry out this, a normal coordinate system denoted by {x1,...,x,} is chosen in a neighbor-
hood of point p and is centered at p. This means that if g is in this neighborhood about p, which
has coordinates (xy,...,x,), then the function p(p,q) is

p(p, q) = \/x] + - +22 (28)

In terms of these coordinates, we calculate the components of g,
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0 0
8ij = <6_x1’6_x]>’ G = det(gy) (29)
and define the differential operator

0

a:; dxx

The notion of the heat operator (15) on Eq. (26) is worked out one term at a time. First, the
derivative with respect to t is calculated

0 _ 1 —p% /4 p* k-1
&Hw(t,pg)w —We P t{(4t2 2t> Y ur(p, q)w + Z k" ue(pyg)w }

1 2 k (30)

It is very convenient to abbreviate the function appearing in front of the sum in Eq. (30)
follows:

e_PZ /4t

D(p) = W (31)

Let {e1,....e,

} be a frame that is parallel along geodesics passing through p and satisfies

0
alp) = 5y

In terms of the function in Eq. (31), the operator A, acting on Eq. (26) is given as

BoH(tpaw = (2o @) (£ Fupayw)
n o - w (32)
+2Y (e;D) - V,, (Z tkuk(p,q)w) + DAy ( Y tkuk(p,q)w>
=1 k=0 k=0

The individual components of (32) can be calculated as follows; since @ is a function
Ve, @ = ¢, and so

'(p) —2%<D<p>, 33

Consequently,
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: 11
eap:%, ()’ =1, Aop:%JrE@ logVG

and the Laplace-Beltrami operator on the function @ is given by

2

Ao @ = cb(p)<(f—t2— zlt) th (n-1-010gV/C )) (34)

Expression (34) goes into the first term on the right side of Eq. (32). The second term on the
right-hand side of (32) takes the form,

S (f )
q)w

)

2; (e,l(D)-Vg“(i uk(pq) ) 20 ()i
a/p(Z tuk(

Substituting these results into (32), it follows that

21 1
Ao Hm(tq,p) :@(p) [‘ftz o ?tm 1- alog\/—) Va /p+A0:| Y u(p, q) (36)

Combining Eq. (36) with the derivative of H.. with respect to ¢ in Eq. (35), the following version
of the heat equation results:

(%—AO—F)Hm(t,q,p)w: @[(v +iaG> THo(pa)w i [(Vs +k+%86)uk(zﬁq)w
~(Ao + F)ugr (p,g)w }t" 1} (37)

This is summarized in the following Lemma.

Lemma 3.1. Heat equation (27) for H..(t,p,q) is equivalent to
1 A
<V5 +k+ Ea G> ur(p.gq)w = (Ao + F) w1 (p.g)w (38)

forallk=0,1,2,... and Eq. (38) is initialized with u_;(p,q) = 0.

In fact, for fixed p € M and w € E,, there always exists a unique solution to problem (Eq. (38))
over a small coordinate neighborhood about p.

Definition 3.1. Denote the solution of Eq. (38) by u(p,q)w, which depends linearly on w. Then,
um(p,q) : E; — E; and the Minakshisundaram-Pleijel parametrix for heat operator (Eq. 15) is
defined by
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1 2 s
H.. _ —p* /4t m » -E. > E 3
(taP,EI) (4:7'(t)n/2 e WIEO " u (PaCI) P q ( 9)

Based on Eq. (39), the N-truncated parametrix is defined based on Eq. (39) to be

., N
ey () E, — E, (40)

HN(t7qap) N (47'[t)n/2 m=0

Theorem 3.1. Choose a smooth function ¢ : MxM — M and let Go(t.q,p) = ¢(q,p)Hn(t,q.,p).
Then Gy (t,q,p) is a k-th initial solution of the heat operator (15), where k = | ¥~ | and|z] is the
greatest integer less than or equal to z.

Proof: Clearly, Gy is a linear map of vector spaces andis continuous and C” in all parameters.
From the previous calculation, it holds that

PN TE (g + Fyun(pg)w (41)

0
<&—A0—F> HN(taqvp)w - (4nt)n/2

and uy(p,g) is C* with respect to p and g. Since N3¢ #"/4 is C¥([0,00) x MxM), hence
H(p(p,q)Hn(tg,p))€CF([0,00) x Mx M). Consider integrating Gy against ¢(s,f),

7 4(q.8) 1 (5,9)9 (5.B) o, (42)

N
J Go(taEIaS)E[’(S,ﬁ) dZ]S — Z th
M

n=0  Jm (4mt)"?

The integral of Eq. (42) over M can be broken up into an integral over Q,(§) = {s € M|p(q.s)
< ¢/2} anda second integral over the set M-M,(5). On the latter set, the limit converges
uniformly hence

e’Pz /4t

Iim ——~=0
fvoe (4nt)"/ 2

To estimate the remaining integral, choose a normal coordinate system at q and denote the
integration coordinates as (s1,...,s,), then the integrand of Eq. (42) is given as

1 2 O 0O
b sy LR
(4m)n/2e ©(q.8)um(s,q)(s,B)4 [ det( %, ’bs]-> dsy-+-ds,

Therefore, in the limit using Definition 2.4,

ltlil(} JM((/Z) (4:7'Ct)"/2 et ©(q,8)um(s,9)1(s,B) dvs = um(9,9)¢(q,8)

This result implies that
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lim JM Golt4:)p(5) dos = T lim " (q.9)¢(q.6) = Y(q.p)uo(9.9) = Y(q.6)  (43)

t=0 m=0 =

The convergence here is uniform.

There exists an asymptotic expansion for the heat kernel which is extremely useful and has
several applications. It is one of the main intentions here to present this. An application of its
use appears later.

Theorem 3.2. (Asymptotic expansion) Let M be a Riemannian manifold with dimension n
andE a vector bundle over M with inner product and metric Riemannian connection. Let
G(t,9,p) be the heat kernel or fundamental solution for heat operator (Eq. (15)) and (Eq. (39))
the MP parametrix. Then as t — 0, G(t,p,p) has the asymptotic expansion G(t,p,p)~Heo(t,p,p),

that is, for any N > (), it is the case that

G(t LI =02 44
(tp.p) W’EO u(p,p) = O(£"7) (44)

and the symbol on the right-hand side of Eq. (44) signifies a quantity & with the property that
&
R
Proof: It suffices to prove the theorem for any large N. Let Go(t.q,p) = @(q.p)Hn(t,q.,p) as in
Theorem 3.2. The conclusion of the theorem is equivalent to the statement

G(t’PaP)‘GO (t,P,P) =0 (tNi%)

From the previous theorem and existence and regularity of the fundamental solution, the
result G of Levi iteration initialized by Gy is exactly the fundamental solution. Equality
(Eq. (41)) means that there exists a constant A such that for any t€(0,T),

a —n
[Ko(t,q.p)| = | <& + A) Go(tq.p)| < AtNE

Let v(M) be the volume of the manifold M. Using this result, the following upper bound is
obtained

¢
|K1(t7q,p)|SJ dTJ |Ko(t=7,9,5)Ko(T,5,p)| dos
0 Jm

t 1 n t n n tN_%+1
SJ [A%(t-1)N 2N Fp(M)] dr SJ APTNENy(M) dr < AB———
0 0 N_E +1

We have set B = A - TN u(M). Exactly the same procedure applies to |Ky(t,q,p)|- Based on the
pattern established this way, induction implies that the following bound results
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m ¢Nm m " N
|Kn(t.qp)|<A B (N—%+1)(N—%+2)"'<N_%+m) sA-B m! s

The formula for Levi iteration yields upon summing this over m the following upper bound

8

|I~<(t7q7l7)| < Z |Km(taq7p)| <A eBttN_g

m=0

Using this bound, the required estimate is obtained,

t
|G(t,9,p)-Go(t,q.p)| < IJ dTJ dv.Go(t-1,4.2)K (T,z,p)|
0 M

t —p? /4(t-7) .
SJ dTJ 67/2 APt N g,
o Jm (4n(t-1))"

t
. 1 .
< MnAeBtJ ™Edro(M) = ——M,A - oM
0 N-5+1

This finishes the proof.

Now if all the Hodge theorem is used, formal expressions for the index can be obtained.
Suppose D : I'(E) — I'(F) is an operator such that D*D and DD* are Schrodinger operators
andD" is the adjoint of D. Suppose the operators D*D : I'(E) — I'(E) and DD* : I'(F) — I'(E)
are defined, so they are self-adjoint and have nonnegative real eigenvalues. Then the spaces
I'y(E) and I',(F) can be defined this way

[u(E) =g € [(E)ID'Dp = e}, Iu(F) = {pel (F)IDDp = pep} (45)
For any m > 0, the dimensions of the spaces in (44) are finite and moreover,
I'o(E) =ker{D : I'(E) — I'(F)}, I'y(F) =ker(D" : I'(F) — I'(E)}
Consequently, an expression for the index Ind (D) can be obtained from Eq. (45) as follows

Ind D = dim ker D-dim ker D* = dim I'o(E)~-dim ['¢(F)

Definition 3.2. For the Schrodinger operator A, let ¢4 : I'(E) — I'(E), for t > 0 be defined as
(")) = JM Gta.p)e(p)do, (46)

where G(t,q,p) is the fundamental solution of heat operator (Eq. (15)).

Let0< Ay < Ay < -+ — e be the eigenvalues of the operator A and {i;,,,...} the corresponding

~tA

eigenfunctions. Intuitively, the trace of ¢ is defined as
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et = T (e g (47)
This is clearly Yxe ™ or 3, e dim I',(E), so the definition of tr is well-defined if and only if

Y <o (48)
k

Theorem 3.3. For any p,geM, let {e;(p),....exn(p)} and {f,(q),...,fy(q)} be orthonormal bases on
E, and Eg, respectively, then the following two results hold for t > 0,

(a) [ J g (G(t.g.p)ea(p) £,(9))* dvgdv, < =,
JMJab=1 (49)

o N 2
© <] | (Gltaplp) 0 dogds, <
k=1 MJab=1

Proof: When ¢ > 0, G(t,q.p) is continuous and hence satisfies (a). For and w € I'(E), Theorem

2.5 yields the following expansion for G(t,q,p) € I'(E), hence the Parseval equality yields

J Gltg.p)ol do, = 3 &2 (p, (p),w)?
M k=1

Replacing w by the basis element ¢,(p), this implies that

N 2
D j G(tqp)ea(p) do,
M

a=1

= LI ey = T2 e Gpa®l = I e im0

a=1k=1 k=1a=1

Then for any m, it follows that

g e Mt = E J e W (), P(p)) dv, < J i MW (p) () dvy
k=1 k=1 JM M k=1
N

N 2 2
=j dvpj S 1G(tap)ea(p) dvq=j j Y (G(Lap)ea(p) £,())? dogdo, < oo
M M a=1 M JM ab=1

b=

Theorem 3.4. For any t > (,

fr () = JMtr Gltpp) do, (50)

Proof: From Theorem 2.2, it follows that
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M=z

b Gltpp) = 3 (Gltpp)ea(p) ealp)) =

a

< 5 e (D)ea () (p) <p>>
=1 k=1
= L T et uia®) = et )0

a=1 —

Integrating this on both sides, it is found that

J tr G(tpp) dvp:j T e (p) 0 (p)  doy = T e = b (1)
M M k=1 k=1

Note that Eq. (48) is a series with positive terms which converges uniformly as t — eo. There-
fore,

lim tr ¢ = Y lim ™ = dim To(E) (51)

k=1 o

In fact, as t — 0, the equality

1 1
G(tpp) = ———+0(—=
(pp) (4mct)"/? (t”/2>

and the previous theorem imply that lim; o tr ¢ = .

4. An application of the expansions: the Gauss Bonnet theorem
As far as Ind (D) is concerned, it is the case for all t > 0 that,

Ind (D) = tr ¢ P~ trePP = J tr G, (tp,p) dvp—J tr G_(t,p,p) dv,
M M

by Theorem 3.5, where G (t,p,p) are the fundamental solutions of d; + D*D and 9d; + DD". As
t — 0, Theorem 3.2 assumes the form

oo

1
Gi(tpp)~HZ(tpp) = ———= % t"usump,
«(Lp.p)~Ho(tpp) (4m)n/2m§0 m(p3p)

Lemma 4.1. Let {A;} be the spectrum of the Laplacian on zero-forms, or functions, on M. Then,

oo

1
% oMt — (4m)”/2 kgo JM uy(x,x) doy (52)
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Proof:

%e‘”t = J tr G(tx,x) do, = 1)”/2% (JM Uy (x,%) dvx) t*

M (4t

The spectrum of the Laplacian on functions characterizes a lot of interesting geometric infor-
mation. Note that Eq. (52) can be written as

1 oo
A’t,\, =
;e (4rct)"? ,EO %t o JM (%) dox

and the trace does not appear in the case of functions. The superscript on the Laplacian A”
denotes the form degree acted upon andsimilarly on other objects throughout this section.

Two Riemannian manifolds are said to be isospectral if the eigenvalues of their Laplacians on
functions counted with multiplicities coincide.

Corollary 4.1. Let M and N be compact isospectral Riemannian manifolds. Then M and N have
the same dimension and the same volume.

Proof: Let {A;} denote the spectrum of both M and N with dimM = m and dimN = n. Then it
follows that

mkio (JM%A(P’P) dv%’)tk - igo e (47'(1)”/2 éo (JN e 09 dvq> ’

This implies that m = n, which in turn implies that

)

z (JMuQA (pp) dvp—JN wN(g.q) do )¢

1 M J N ]
u p)do,~| u(gq) dv,| =—
m/2 UM 0 (P P) 4 N (q q) i (4nt)"'/2 k=1

(4mt)

Since the right-hand side of the equation depends on ¢, but the left-hand side does not, this
result implies that

| o, p) e, = | . o, (53)
M N

Iterating this argument leads to the set of equations

J w'(p, p) dvp:[ (g, 9) do, (54)
M JN

for all k > 0. In particular, since uy = 1, Eq. (53) leads to the conclusion vol (M) = vol (N).
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The proof illustrates that in fact there exist an infinite sequence of obstructions to claiming that
two manifolds are isospectral, namely the set of integrals J uy dvy. The first integral contains
M

basic geometric information. It is then natural to investigate the other integrals in sequence as
well. Recall that Ry, VR, denote the covariant derivatives of the curvature tensor at p. A
polynomial P in the curvature and its covariant derivatives is called universal if its coefficients
depend only on the dimension of M. The notation P(R,,VR,,... ,VkRp) is used to denote a
polynomial in the components of the curvature tensor and its covariant derivatives calculated
in a normal Riemannian coordinate chart at p. The following theorem will not be proved, but it
will be used shortly.

Theorem 4.2. On a manifold of dimension 7,
wi(p,p) =P{(Ry),  u(pp) = Pi(Ry,VRy,..V¥?Ry), k22 (55)

for some universal polynomials P}.

Thus, P} is a linear function with no constant term and u;(p,p) is a linear function of the
components of the curvature tensor at p, with no covariant derivative terms. The only linear
combination of curvature components that produces a well-defined function u;(p,p) on a

manifold is the scalar curvature R(p) = RZ andso there exists a constant C such that
ur(pp) = C-R(p).
Theorem 4.3.

w(pp) = gR() (56)

Proof: The proof amounts to noticing that P} is a universal polynomial, so it suffices to
compute C over one kind of manifold. A good choice is to integrate over S" with the standard
metric and work it out explicitly in normal coordinates. It is found that u;(p.,p) = n(n-1)/6
andit is known that R(p) = n(n-1) for all peS" andthis implies Eq. (56).

The large t or long-time behavior of the heat operator for the Laplacian on differential forms is
then controlled by the topology of the manifold through the means of the de Rham cohomol-
ogy. The small ¢ or short-time behavior is controlled by the geometry of the asymptotic
expansion. The combination of topological information has a geometric interpretation. This is
made explicit by means of the Chern-Gauss-Bonnet theorem. The two-dimensional version of
this theorem will be developed here.

These results can be summarized by the elegant formula

o a1 1 ) 2
z et = ) {v(M) + 6JM R(x) doy - t+ O(t )}

where v(M) is the volume of M.
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Suppose that A is positive and here we let E/; denote the possibly trivial eigenspace of A on p-
forms. If w € E’; then it follows that AP"'dw = dAPw = A dw, hence dw € E};\H. Thus, a well-
defined sequential ordering of the spaces can be established. If w€E| has the property that
dw =0, then Aw = APw = (6d 4 d6)w = d dw. Therefore, since A#0, it is found that w = d (3 6w).
Thus, the sequence 0 — E} —7 ... »?E — 0 is exact. Since the operator d -+ is an isomor-

phism on @ E%, it follows that

Y (-1)’dim E =0 (57)

S

Theorem 4.4. Let {A}} be the spectrum of the operator 4, then

Y1 rett = Y (-1)°dim ker A°. (58)

S S

Proof: By (57),
ST e = BT e
k

s s
The sum on the right Y’ is only over eigenvalues such that A/ = 0 and so
¥ ¢Mt = dim kera?.

This has the consequence that

Y (1Y tret =y (-1)Py et (59)

P p k

is independent of the parameter t. This means that its large or long t behavior is the same as its
short or small ¢ behavior. To put it another way, the long-time behavior of tr e is given by the
de Rham cohomology, while the short-time behavior is dictated by the geometry of the
manifold. Using the definition of the Euler characteristic, it follows that

X(M) = ¥,(-1)Pdim HY, (M) =Y, (-1)"dim ker A7 = ¥,(-1) tre ™’

=LA | b Glea) do, (60)
M
From the asymptotic expansion theorem, the following expression for x (M) results
1 o n
XM) = —75 J tr uf(x,x) doy ) t* 61
M (4mt)"/? ;EO( M s§0 k) ) (61)

The u; in Eq. (61) are the coefficients in the asymptotic expansion for tr (¢*4"). Since x(M) is
independent of £, only the constant or t-independent term on the right-hand side of Eq. (61) can
be nonzero. This implies the following important theorem.
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Theorem 4.5. If the dimension of M is even, then

! J an (-1)° tr up(x.x) doy = (62)
M

(47‘()’1/2 s=0 xM), k=

NS
NS -

Theorem 4.6. (Gauss-Bonnet) Let M be a closed oriented manifold with Gaussian curvature K
and area measure day, then

xXM) = %Lﬂ K day (63)

Proof: By the last theorem and the fact that tr u} (x,x) = tr uﬁ_l (x,x), it follows that

1 2 1
xXM) = EJM ZO( Pt ul dayy = EJM( tr ud- tr ul + tr u?) day
p=
(64)

1 1 2
:EJM (2 tr ud- tr ul) day =i JM (§K_ tr ul) day

since the scalar curvature is two times the Gaussian. Now it must be that tr ui(x,x) =

CR(x) = 2CK(x), for some constant C. The standard sphere S? has Gaussian curvature one
andso C can be calculated from Eq. (64),

2 %L (5-C) days = 5 (3-C) - (4m)

Therefore, C = -2/3 and putting all of these results into Eq. (64), Eq. (62) results.

As an application of this theorem, note that the calculation of u; gives another topological
obstruction to manifolds having the same spectrum.

Theorem 4.7. Let (M,) and (N,h) be compact isospectral surfaces, then M and N are
diffeomorphic.

Proof: As noted in Corollary 4.1,
J ! (xx) dog = J ' (y.y) doy
M N

On a surface, the scalar curvature is twice the Gaussian curvature, so by the Gauss-Bonnet
theorem,

6mx (M) = JM ut(x,x) do, = JN uY (y.y) do, = 6mx(N) (65)

However, oriented surfaces with the same Euler characteristic are diffeomorphic.
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5. Summary and outlook

The heat equation approach has been seen to be quite deep, leading both to the Hodge theorem and
also to a proof of the Gauss-Bonnet theorem. Moreover, it is clear from the asymptotic development
that there is a generalization of this theorem to higher dimensions. The four-dimensional Chern-

Gauss-Bonnet integrand is given by the invariant -1 {K*~4p, > + |R|?}, where K is the scalar curva-
ture, |p, 1% is the norm of the Ricci tensor, |R|* is the norm of the total curvature tensor andthe signature

is Riemannian. This comes up in physics especially in the study of Einstein-Gauss-Bonnet gravity
where this invariant is used to get the associated Euler-Lagrange equations.

Let R be the components of the Riemann curvature tensor relative to an arbitrary local frame
field {e;} for the tangent bundle TM and adopt the Einstein summation convention. Let m = 2s
be even, then the Pfaffian E,,(g) is defined to be

1 i 1 j j
Em (g) — W Ri] iy "'Ri25_1 Psefnes g(e TN N ’efl A--- N2 ) (66)

The Euler characteristic x(M) of any compact manifold of odd dimension without boundary
vanishes. Only the even dimensional case is of interest.

Theorem 5.1. Let (M,g) be a compact Riemannian manifold without boundary of even dimen-
sion m. Then

x(M) = jM En(g) dou (67)

This was proved first by Chern, but of greater significance here, this can be deduced from the
heat equation approach that has been introduced here. There is a proof by Patodi [18], but
there is no room for it now. It should be hoped that more interesting results will come out in
this area as well in the future.
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Chapter 5

Symplectic Manifolds: Gromov-Witten Invariants on
Symplectic and Almost Contact Metric Manifolds

Yong Seung Cho
Additional information is available at the end of the chapter
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Abstract

In this chapter, we introduce Gromov-Witten invariant, quantum cohomology, Gromov-
Witten potential, and Floer cohomology on symplectic manifolds, and in connection
with these, we describe Gromov-Witten type invariant, quantum type cohomology,
Gromov-Witten type potential and Floer type cohomology on almost contact metric
manifolds. On the product of a symplectic manifold and an almost contact metric
manifold, we induce some relations between Gromov-Witten type invariant and quan-
tum cohomology and quantum type invariant. We show that the quantum type coho-
mology is isomorphic to the Floer type cohomology.

Keywords: symplectic manifold, Gromov-Witten invariant, quantum cohomology,
Gromov-Witten potential, Floer cohomology, almost contact metric manifold, Gromov-
Witten type invariant, quantum type cohomology, Gromov-Witten type potential, Floer
type cohomology

1. Introduction

The symplectic structures of symplectic manifolds (M, w,]) are, by Darboux’s theorem 2.1,
locally equivalent to the standard symplectic structure on Euclidean space.

In Section 2, we introduce basic definitions on symplectic manifolds [1-5, 10-13] and flux
homomorphism. In Section 2.1, we recall J-holomorphic curve, moduli space of J-holomorphic
curves, Gromov-Witten invariant and Gromov-Witten potential, quantum product and quan-
tum cohomology, and in Section 2.2, symplectic action functional and its gradient flow line,
Maslov type index of critical loop, Floer cochain complex and Floer cohomology, and theorem
of Arnold conjecture.

In Section 3, we introduce almost contact metric manifolds (M, g,¢,n,&,¢) with a closed
fundamental 2-form ¢ and their product [4, 7, 8]. In Section 3.1, we study ¢-coholomorphic

I m EC H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [{cc) X IR
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map, moduli space of ¢-coholomorphic maps which represent a homology class of dimension
two, Gromov-Witten type cohomology, quantum type product and quantum type cohomol-
ogy, Gromov-Witten type potentials on the product of a symplectic manifold, and an almost
contact metric manifold [5, 6, 13]. In Section 3.2, we investigate the symplectic type action
functional on the universal covering space of the contractible loops, its gradient flow line, the
moduli space of the connecting flow orbits between critical loops, Floer type cochain complex,
and Floer type cohomology with coefficients in a Novikov ring [7, 9, 13].

In Section 4, as conclusions we show that the Floer type cohomology and the quantum type
cohomology of an almost contact metric manifold with a closed fundamental 2-form are
isomorphic [7, 13], and present some examples of almost contact metric manifolds with a
closed fundamental 2-form.

2. Symplectic manifolds

By a symplectic manifold, we mean an even dimensional smooth manifold M*" together with a
global 2-form w which is closed and nondegenerate, that is, the exterior derivative dw = 0 and
the n-fold wedge product w" never vanishes.

Examples: (1) The 2n-dimensional Euclidean space R*" with coordinates (X105 oo es Xy Ygs o0 Yy

admits symplectic form wy = de,'/\dyi.
i=1

(2) Let M be a smooth manifold. Then its cotangent bundle T*M has a natural symplectic form
as follows. Let w: T*"M — M be the projection map and x1, ...,x, are local coordinates of M.
Then g, = xjomt,i = 1,2, ..., n together with fiber coordinates p, ...,p, give local coordinates of
T*M. The natural symplectic form on T*M is given by

W= ;dqi/\dqj. (1)

(3) Every Kahler manifold is symplectic.

Darboux’s Theorem 2.1 ([6]). Every symplectic form w on M is locally diffeomorphic to the standard
form wo on R

A symplectomorphism of (M,w) is a diffeomorphism ¢eDiff(M) which preserves the
symplectic form ¢"@ = w. Denote by Sym(M) the group of symplectomorphims of M. Since
w is nondegenerate, there is a bijection between the vector fields XeI'(TM) and 1-forms
w(X,)eQ! (M). A vector field XeT'(TM) is called symplectic if (X, ) is closed.

Let M be closed, i.e., compact and without boundary. Let ¢ : R — Diff(M), t—¢, be a smooth
family of diffeomorphisms generated by a family of vector fields X,eI'(TM) via,
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d .
£ = Xio. 9 = id. @

Then ¢,€Symp(M) if and only if X;€l'(TM,w) the space of symplectic vector fields on M.
Moreover, if X, Yel(TM,w), then [X,Y]el[(TM,w) and w([X,Y],")=dH, where
H=w(X,Y): M — R. Let H: M — R be a smooth function. Then the vector field Xy on M
determined by w(Xy,-) = dH is called the Hamiltonian vector field associated with H. If M is
closed, then Xy generates a smooth 1-parameter group of diffeomorphisms ¢}, €Diff(M) such
that

d .
30 = Xirehy 0 = id. 6)

This {¢};} is called the Hamiltonian flow associated with H. The flux homomorphism Flux is
defined by

Flux{¢',} = { (X4, -)dt. 4)

Theorem 2.2 ([6]). p€Sym (M) is a Hamiltonian symplectomorphism if and only if there is a homotopy
[0,1] — Sym(M), t, such that ¢, = id, ¢, = ¢, and Flux({¢,}) = 0.

2.1. Quantum cohomology

Let (M, ) be a compact symplectic manifold. An almost complex structure is an automor-
phism of TM such that J* = -I. The form w is said to tame ] if w(v, Jv) > 0 for every v#0. The set
J:(M,w) of almost complex structures tamed by w is nonempty and contractible. Thus the
Chern classes of TM are independent of the choice J€J;(M,w). A smooth map
¢ (M1,];) — (Ma,],) from M to M is (J1,],)-holomorphic if and only if

d¢x°]1 = ]2°d¢x )

Hereafter, we denote by Hy(M) the image of Hurewicz homomorphism M — Hy(M,Z). A
(i,])-holomorphic map u : (X,z1, ...,2zx) — M from a reduced Riemann surface (L, ) of genus g
with k marked points to (M, ]) is said to be stable if every component of X of genus 0 (resp. 1),
which is contracted by 1, has at least 3 (resp. 1) marked or singular points on its component,
and the k marked points are distinct and nonsingular on X. For a two-dimensional homology
class A€H>(M) let M, x(M, A;]) be the moduli space of (j, ])-holomorphic stable maps which
represent A.

Let B := C” (X, M; A) be the space of smooth maps
u:—-M (6)

which represent AeH,(M).
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Let us consider infinite dimensional vector bundle E — B whose fiber at u is the space
E, = Q"Y(Z,u*TM) of smooth J-antilinear 1-forms on ¥ with values in u*TM. The map
9y : B— E given by

Oj(u) = 5 (du + Jedusj) ™)

N —

is a section of the bundle. The zero set of the section 9y is the moduli space Mg x(M, A;]).

For an element ue M, x(M, A;]) we denote by

D, : Q°(Z,u*TM) = T,B — Q" (Z,u* TM) (8)

the composition of the derivative

d(é])u : TMB — T(u,o)E (9)

with the projection to fiber T, oE — Q%'(Z,u*TM). Then the virtual dimension of
Mg (M, A;]) is

dimM, (M, A;]) = indexD,, : Q°(Z, u*TM) — Q*'(Z,u*TM) (10)
=201(TM)A + n(2-2g) + (63-6) + 2k.

Theorem 2.1.1. For a generic almost complex structure J€J.(M, w) the moduli space Mg (M, A;]) is
a compact stratified manifold of virtual dimension,

dimMg (M, A;]) = 2¢1(TM)A + n(2-2g) + (63-8) + 2k. (11)
For some technical reasons, we assume that c1(A)>0 if w(A) > 0 and A is represented by some

J-holomorphic curves. In this case, we call the symplectic manifold M semipositive. We define
the evaluation map by

ev M (M A;]) — M*, ev((usz1, ...ozi]) = (u(z1), ..o u(zi)). (12)

Then the image Im(ev) is well defined, up to cobordism on ], as a dimM, (M, A;]) : =m-

dimensional homology class in M*.

Definition. The Gromov-Witten invariant CDQA;CA is defined by

o H' (M) - Q@ ()= [ eviea (13)

M,k (M, AS])

where « = PD(a)€Ho - (Mk ) and e is the intersection number of ev and « in MF.

The minimal Chern number N of (M, w) is the integer N := min }7BA|c;(A) = A20, A€H,(M)}.
We define the quantum product a * b of a€H*(M) and beH (M) as the formal sum
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axb= ), (axb),q" YN (14)
AeH, (M)

where ¢ is an auxiliary variable of degree 2N and (a * b) ,€H*""*14)(M) is defined by
J(axb), = 0 (a@b®r) (15)
C

for CEHy1-2¢,(4)(M), r = PD(C). Hereafter, we use the Gromov-Witten invariants of ¢ = 0 and
k = 3. Then the quantum product a * b is an element of

QH" := H"(M)®Qlq] (16)

where Q[g] is the ring of Laureut polynomials of the auxiliary variable g.

Extending * by linearity, we get a product called quantum product
*: QH"(M)®QH" (M) — QH*(M). (17)

It turns out that * is distributive over addition, skew-commutative, and associative.

Theorem 2.1.2. Let (M, w) be a compact semipositive symplectic manifold. Then the quantum coho-
mology (QH* (M), +,%) is a ring.

Remark. For A = 0€H,(M), the all J-holomorphic maps in the class A are constant. Thus
(axb), =aUb. The constant term of a * b is the usual cup product aUb.

We defined the Novikov ring A, by the set of functions A : Hy(M) — Q that satisfy the
finiteness condition

#{A€H(M)|A(A)#0, w(A) < ¢} < oo (18)

for every ceR. The grading is given by deg(A) = 2c;(A).

Examples ([5]). (1) Let peH*(CP") and A€H,(CP") be the standard generators. There is a
unique complex line through two distinct points in CP" and so p *p" =g. The quantum
cohomology of CP" is

QH*(CP";Qlq]) = % (19)

(2) Let G(k, ) be the Grassmannian of complex k-planes in C". There are two natural complex
vector bundles C* — E — G(k,n) and C"™* — F — G(k,n). Let x; = ¢;(E*) and y, = c;(F*) be
Chern classes of the dual bundles E* and F*, respectively. Since E@®F is trivial,
Z],::oxiyj—i =0,j=1,...,n. By computation x; *y, . = (-1)"*q. The quantum cohomology of
G(k,n) is

93



94  Manifolds - Current Research Areas

* . o Q[xl,...,xk,q]

Let f{ey, ..., e,} be an integral basis of H*(M) such that ¢y = 1eH° (M) and each ¢; has pure
degree. We introduce n + 1 formal variables to, ..., t, and the linear polynomial 4; in t, ..., 1,
with coefficients in H*(M) by a; = tyep + - + tye,. The Gromov-Witten potential of (M, w) is a
formal power series in variables fo, ..., t, with coefficients in the Novikov ring A,,

c1(A)
kZZ (Dg/lk (@, ..., a5)q N
>4k
21)
e(ko, ... ks (
T Zk 3; (k§| ! >q)3/,11}A(€]5°®"'®e'Z")‘(to)kO-~-(f”)k”‘7cl(A)/N-
ARB k!

Examples ([4]). (1) O (f) = Tto?t + (etl—l—tr%).

tkz tk,

n R At d
@0 (=1 Y ttp+ Y. Y Nalke.k) kiz' k”,e“q,
z+]+k n d>0ky. 25ee e

where Ny(ka...k,) = OC2" A (p2.p2, .., p"...p").
We define a nonsingular matrix (g;;) by g; = felJej and denote by (g7) its inverse matrix.
M

Theorem 2.1.3 ([4, 51). The Gromov-Witten potential @™ of (M, w) satisfies the WDV V-equations:

Zat Ot Ot (I)M ”"bt}latkét q)M(t) = S,‘jk . Zatjatkat”@M(t)g“"Bf“atiat CDM(t), (22)
U,
where gy — (~1)de8(e)(Gesle)+deg(e)

2.2. Floer cohomology

Let a compact symplectic manifold (M, ) be semipositive. Let H;.1 : M — R be a smooth 1-
periodic family of Hamiltonian functions. The Hamiltonian vector field X; is defined by
(X4, ) = dH;. The solutions of the Hamiltonian differential equation x(t) = Xy (x(1)) generate
a family of Hamiltonian symplectomorphisms ¢, : M — M satisfying 4 ¢, = X;e, and ¢, =

For every contractible loop x : R/Z — M, there is a smooth map u : D := }7BzeC||z|<1} — M
such that u(e?™) = x(t). Two such maps u; and u, are called equivalent if their boundary
sum(uq )#(-uz) is homologus to zero in Hy(M). Denote by (x,[u1]) = (x, [u2]) for equivalent
pairs, LM the space of contractible loops and LM the space of equivalence classes. Then
LM —LM is a covering space whose covering transformation group is H»(M) via,
A(x, [u]) = (x, [A#u]) for each A€H,(M) and (x, [u])em.

Definition. The symplectic action functional ay is defined by
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ag : IM — Ryay(x,[u]) = —Iu w—th( ) (23)

For each element ¥ := (x, [u])€LM and EeTy LM, we have

dap (x = cu( ( ) 5) dt. (24)

Thus the critical points of ay are one-to-one correspondence with the periodic solutions of
x(6)-X; (x(t)) = 0. Denote by PHCLM the critical points of ay and by PHCLM the set of

periodic solutions.

The gradient flow lines of aj are the solutions u : R? — M of the partial differential equation

Oy + (1) (atu—Xt(u)) =0

with conditions u(s, t + 1) = u(s, t),
lim u(s, t) = x*(¢) (25)

§—too

for some x"€PH.

Let M(x™,x™) be the space of such solutions u with x* = X #u. This space is invariant under
the shift u(s,t)~u(s +so,t) for each speR. For a generic Hamiltonian function, the space
M(x7,%") is a manifold of dimension

dimM (&%) = p(E ) (). (26)
Here u: PH — Z is a version of Maslov index defined by the path of symplectic matrices
generated by the linearized Hamiltonian flow along x(f).
Let p(x)-p(y) =1. Then M(%,y) is a one-dimensional manifold and the quotient by shift
M(%,y)/R is finite. In this case, we denote by n(¥,y) = #( ME,§) ) the number of connecting

orbits from X to y counted with appropriate signs.

We define the Floer cochain group FC*(M, H) as the set of all functions & : PH — Q that satisfy
the finiteness condition,

#{x€PH|&(X)#0, ap (X)<c} < oo (27)
for every ceR. The complex FC*(M, H) is a /A-module with action

(Ax&)(% ZA E(A#R). (28)

The degree k part FC*(M, H) consists of all £eFC*(M, H) that are nonzero only on elements
%ePH with u(x) = k. Thus the dimension of FC*(M, H) as a /A,-module is the number #(PH).
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We define a coboundary operator 6 : FC*(M, H) — FC*™'(M, H) by

8(E)(x) = 2, n(E.HE®). (29)
uy)=k

The coefficients of 5(6(&)(X)) are given by counting the numbers of pairs of connecting orbits
from ¥ to y where p(X)-u(y) = 2 = dimM(x, ). The quotient M(x,y)/R is a one-dimensional
oriented manifold that consists of pairs counted by 6(6(&)(x)). Thus the numbers cancel out in

pairs, so that 6(6(5)) =0.
Definition. The cochain complex (FC*(M, H),d) induces its cohomology groups

Kerd : FC*(M,H) — FC""'(M, H)

FH*(M,H) := — -
Imé6 : FC*'(M, H) — FC"(M, H)

(30)

which are called the Floer cohomology groups of (M, w, H,]).

Remark. By the usual cobordism argument, the Floer cohomology groups FH*(M,H) are
independent to the generic choices of H and |. Let f : M — R be a Morse function such that
the negative gradient flow of f with respect to the metric g(-,-) = w(-,]-) is Morse-Smale. Let

=—¢f : M — R be the time-independent Hamiltonian. If ¢ is small, then the 1-periodic

solutions of x(t)-Xp (x(t)) =0 are one-to-one correspondence with the critical points of f.

Thus we have PH = Crit(f) and the Maslov type index can be normalized as
u(x, [u]) = indy(x)n (31)
where u : D — M is the constant map u(D) = x.

We define a cochain complex MC*(M; /) as the graded A,-module of all functions
&: Crit(/)H2(M) — Q (32)

that satisfy the finiteness condition

#(x, A)|E(x, A)#0, w(A)2c} < oo (33)

for every ceR. The A,-module structure is given by (A * &)(x,A) = ) A(B)&(x, A + B) and the
grading deg(x, A) = indf(x)-2c; (A). The gradient flow lines u : R — M of f are the solutions of
1(s) = =Vf(u(s)). These solutions determine coboundary operator

5 : MCK(M; Ay) — MCH (M3 Ay) (34)
8(&)(x, A) = anxy )E(y, A) (35)

where 7¢(x,y) is the number of connecting orbits u from x to y satisfying limu(s) = x,
§——00

lim u(s) = y, counted with appropriate signs and indy(x)-inds(y) = 1

S§——+oo
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Definition-Theorem 2.2.1. (1) The cochain complex (MC*(M;A),0) defines a cohomology group
_ Ker§ : MC*(M; A,) — MC (M; A,)

MH*(M;A,) =
( ) Imd : MC* Y (M; A,) — MC*(M; A,,)

(36)

which is called the Morse-Witten cohomology of M.
(2) MH*(M; A,) is naturally isomorphic to the quantum cohomology QH*(M; A\y,)).
Theorem 2.2.2 ([5]). Let a compact symplectic manifold (M, w) be semipositive. There is an isomor-
phism

® : FH*(M,H) — QH*(M; A,) (37)
which is linear over the Novikov ring /.

Let H : M — R be a generic Hamiltonian function and ¢ : M — M the Hamiltonian symplecto-
morphism of H. By Theorems 2.2.1 and 2.2.2

FH*(M, H)~QH"(M; A,)~H"(M)®A,, (38)
The rank of FC*(M, H) as a /A,-module must be at least equal to the dimension of H*(M). The
rank is the number #(PH) which is the number of the fixed points of ¢.

Theorem 2.2.3 (Arnold conjecture). Let a compact symplectic manifold (M, w) be semipositive. If a
Hamiltonian symplectomorphism ¢ : M — M has only nondegenerate fixed points, then

2n

#(Fix(9))2)_bj(M) (39)
i=0
where b;(M) is the jth Betti number of M.

3. Almost contact metric manifolds

Let be a real (21 + 1)-dimensional smooth manifold. An almost cocomplex structure on M is
defined by a smooth (1,1) type tensor ¢, a smooth vector field £, and a smooth 1-form 1 on M
such that for each point xeM,

@2 =1+ n,®&. (&) =1, (40)

where I : T,M — T;M is the identity map of the tangent space T, M.

A Riemannian manifold M with a metric tensor ¢ and with an almost co-complex structure

(@, &,1) such that
8(X,Y) = g(@X, Y) + n(X)n(Y), X, YET (TM), (41)

is called an almost contact metric manifold.
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The fundamental 2-form ¢ of an almost contact metric manifold (M, g, p, &, n) is defined by
P(X,Y) = g(X,Y) (42)
for all X, YEI'(TM). The (2n + 1)-form ¢"An does not vanish on M, and so M is orientable. The
Nijehuis tensor [8, 11] of the (1,1) type tensor ¢ is the (1,2) type tensor field N, defined by
No(X,Y) = [pX, oYX, YI-p[pX, Y]-p[X, @Y] (43)

for all X, YEI'(TM), where [X, Y] is the Lie bracket of X and Y. An almost cocomplex structure
(p,&,n) on M is said to be integrable if the tensor field N, =0, and is normal if

Ny +2dn®¢& = 0.

Definition. An almost contact metric manifold (M, g, @, 1, &, ¢) is said to be

1. almost cosymplectic (or almost co-Kahler) if d) = 0 and dn =0,

2. contact (or almost Sasakian) if ¢ = dn,

3. analmost C-manifold if d¢ = 0, dn#0, and dn#¢,

4. cosymplectic (co-Kéhler) if M is an integrable almost cosymplectic manifold,
5. Sasakian if M is a normal almost Sasakian manifold,

6. a C-manifold if M is a normal almost C-manifold.

An example of compact Sasakian manifolds is an odd-dimensional unit sphere SZ”H, and the

one of the co-Kahler (almost cosymplectic) manifolds is a product MS' where M is a compact
Kahler (symplectic) manifold, respectively.

Let (M%’““ .81, P151y,€1) and (M%"ZH ,82 P51y, &2) be almost contact metric manifolds. For the
product M := M;M,, Riemannian metric on M is defined by

8((X1.72). (X2, Y2)) = (X1, X2) + 8,11, Ya). (44)

An almost complex structure on M is defined by

1Y) = (03(X) + m(Ven 9 (V) (X)&2)- (45)

Then J* = -I and the fundamental 2-form ¢) on M is ¢ = ¢, + ¢, + 1,A1,. If ¢, ¢, and 1, and
1, are closed, then ¢ is closed. Thus we have

Theorem 3.1. Let (M%”1 + 81>®1, 14> &1) be almost contact metric manifolds, j = 1,2, and (M, g,,])
be the product constructed as above.

1. If¢i and n,;, i=1,2, are closed, then ¢ is closed.

2. Jis an almost complex structure on M.
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3. IfM,;, i=1,2, are cosymplectic, then M is Kihler.

Let (Mf”l,gp J1) be a symplectic manifold, and (M%”ﬁl,gz,(pz,nz,éz) be an almost contact
metric manifold. Then & =1, =0, and w; = ¢, on Mj.

Theorem 3.2. Let (M, g, ¢, 1, &) be the product constructed as above.
1. If My is contact, then M is an almost C-manifold.
2. If M, is a C-manifold, then M is an almost C-manifold.

3. If M, is almost cosymplectic, then M is almost cosymplectic.

3.1. Quantum type cohomology

In [10, 11] we have studied the quantum type cohomology on contact manifolds. In this
section, we want to introduce the quantum type cohomologies on almost cosymplectic, con-
tact, and C-manifolds.

Let (M2”H, 3. ¢,n,&) be an almost contact metric manifold. Then the distribution
9 = {XeTM|n(X) = 0} is an n-dimensional complex vector bundle on M.

Now fix the vector bundle $— M. As the symplectic manifolds, a (1,1) type tensor field
@ : 9 — H with ¢? = -I is said to be tamed by ¢ if ¢(X,pX) > 0 for XeH\0} is said to be
compatible if (X, pY) = (X, Y).

Assume that the almost contact metric manifold M has a closed fundamental 2-form ¢, i.e.,
d¢p = 0. An almost contact metric manifold M with the ¢ is called semipositive if for every
Aemy (M), ¢p(A) >0, c1($H)(A)23-n, then ¢1(9)(A) > 0 [13]. A smooth map u : (X,j) — (M,¢)
from a Riemann surface (X, /) into (M, @) is said to be ¢-coholomorphic if duej = @edu.

Let A€H,(M;Z) be a two-dimensional integral homology class in M. Let My 3(M; A, @) be the
moduli space of stable rational ¢-coholomorphic maps with three marked points, which
represent class A.

Lemma 3.1.1. For a generic almost complex structure ¢ on the distribution, C" — H — M, the
moduli space Mo 3(M; A, ) is a compact stratified manifold with virtual dimension 2c1($)[A] + 2n.

Consider the evaluation map given by

ev: Mos(M; A, @) — M, (46)
ev(X;z1,2p,23,U) = (u(zl),u(zz),u(23)). (47)

We have a Gromov-Witten type invariant given by
3" H (M) = Q (48)

o @)= [ evi(a) =ev.[Mos(M;A )] - PD(a) (49)
Mo, 3(M;A, @)
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which is the number of these intersection points counted with signs according to their orienta-
tions.

We define a quantum type product * on H*(M), for aeH*(M) and peH (M),

axf= ), (axp)qr@AN (50)

A€H, (M)

where N is called the minimal Chern number defined by

<1 (ﬁ),Hz(M) >= NZ (51)
The (a * ) ,€H*2@A(M) is defined for each C€Hy, o, ()14 (M),

{ (@xp), = Doy (a®P®y).y = PD(C). (52)

We denote a quantum type cohomology [11, 13] of M by

QH*(M) := H"(M)®@Qlq] (53)
where Qlq] is the ring of Laurent polynomials in g of degree 2N with coefficients in the rational
numbers Q. By linearly extending the product * on QH" (M), we have

Theorem 3.1.2. The quantum type cohomology QH"*(M) of the manifold M is an associative ring
under the product .

Let (M%”l ,81,J1, 1) be a symplectic manifold and (M%”ZH, 82> P15 &2, P,) be an either almost
cosymplectic or contact or C-manifold.

Let the product (M**!, ¢, 0,1, &, $) be construct as Theorem 3.2 where 1 = 11 + 1. Now we
will only consider the free parts of the cohomologies. By the Kiinneth formula,

H* (M)EH* (M1)®H* (Mz) in particular, H, (M)ﬁHz (Ml@(Hl (M1)®H1 (Mz))@Hz (Mz))
Assume that a two-dimensional classA = Ay + Ax€Hy(M;)®H»(2)CHy (M).

Lemma 3.1.3. Let (M, g,9,n,&,¢) be the product M = MyM, constructed as above. For a generic
almost cocomplex structure ¢ on M

(1) the moduli space Mo 3(M; A, @) is homeomorphic to the product
Mo3(Mi, A, J1) Mo3(Ma, Az, @), (54)
dimMo3(M, A, @) = 2[c1(TM1)(A1) + c1(92)(A2)] + 2(m + n2). (55)
Theorem 3.1.4. For the product (M,g,¢,1n,&¢) = (M1,gy,]1,01)(M2,85, 90,15 E2,P,), if

A = Ay + AyeHy(Mq)®H(Mz)CH» (M), then the Gromov-Witten type invariants satisfy the follow-
ing equality
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M,A,p _ sMi1,A1LL M, As, 0,
(1)0,3 - (D0,3 ’ q)O,:’) . (56)

The complex (17 + 1, )-dimensional vector bundle
TM1@®%, — M = MiM» (57)

has the first Chern class ¢1 (TM1®$2) = c1(TM;) + ¢1(97).
The minimal Chern numbers N and N, are given by N1Z =< ¢;(TM;),Hx(M;) > and

NoZ =< c1($2), Ha(M2) > . (58)

For cohomology classes
a = o ®@,eH" (My)QH (M,)cHN (M), (59)
B = p1®p,eH" (M1)®H" (Ma)CH' (M), (60)

ki 4+ k, = k, the quantum type product a * § is defined by

axf= 3 (a1#P) " AN @y % py) s g7 N (61)
AleHz(Ml)
AzeHz(Mz)

where g, is a degree 2N; auxiliary variable, i=1,2, and the cohomology class

(ai * B;) o, €Hk, 11-20,(a;) (M) is defined by the Gromov-Witten type invariants as follows:
M, Ai, p;

f(“i *B) 4 = D 5 (i®B,®7;) (62)

Gi

where C;€Hy. ¢, (4,)(Mi), y; = PD(C;) and @, := ];,i = 1,2, respectively.
The quantum type cohomology of M is defined by the tensor product

QH* (M) = H"(M)®Qld; 45, (63)

where Q[q,,4,] is the ring of Laurent polynomials of variables g, and g, with coefficients in Q.
Extend the product * linearly on the quantum cohomology QH"(M); similarly, we define the
quantum cohomology rings

(64)

{ QH" (M) = H*(M1)®Q[q,],
QH* (M) = H"(M2)®Q[q,]-

Theorem 3.1.5. There is a natural ring isomorphism between quantum type cohomology rings
constructed as above,

QH*(M) = QH"(M1)®QH" (M2). (65)

Let (M, g, ¢, $) be the product of a compact symplectic manifold (M7™, g,,];,@;) and an either

almost cosymplectic or contact or C-manifold (M§"2+1,g2,(p2,172,52,¢2). We choose integral
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bases, eg,e1,....,er, of H'(M;) and f07f1""’fk2 of H*(M;) such that eo:leHO(Ml),

fo = 1€H"(M,) and each basis element has a pure degree. We introduce a linear polynomial
of ky + 1 variables ty, t1, ..., t,, with coefficients in H*(M;)

a; = toeg + tiey + -+ + fr e, (66)
and a linear polynomial of k, + 1 variables sg, s1, -+, S, with coefficients in H*(M,)
as == sof g +s1f 1+ + Sk, f, - (67)
By choosing the coefficients in Q, the cohomology of M is
H*"(M)=H"(M;)®H"(M,). (68)

Then, H*(M) has an integral basis {¢;Qf;]i =0, ..., k1,j =0, ..., k2}. The rational Gromov-Witten
type potential of the product (M,w) is a formal power series in the variables
{t;, s]-|z' =0,...,k1,j =0, ..., kp} with coefficients in the Novikov ring A, as follows:

Jo

wM(t,s) ZZ (DSA,;‘ (4,4, ..., 1,Qas)e A

[ (69)
_ oAl le Maudn]s J(‘)z
ZZ 0 m th, sl ZZ (Do o Asyeeey {15)6 2

Aq m1 Ay mz

:‘1’341( ) Wpo (s )~

Theorem 3.1.6. The rational Gromov-Witten type potential of (M, @) is the product of the rational
Gromov-Witten potentials of My and M, that is,

W' (ts) = Wy (1) - W (s). (70)

3.2. Floer type cohomology

In this subsection, we assume that our manifold (M*'*' ¢,p,n,&,¢) is either a almost
cosymplectic, contact, or C-manifold.

Let H; = Hyq : M — R be a smooth 1-periodic family of Hamiltonian functions. Denoted by
X; : M — TM the Hamiltonian vector field of H;.

The vector fields X; generate a family of Hamiltonian contactomorphisms 1, : M — M satisfy-
ing 414, = X;o, and ¢, = id

Leta: R/Z — M be a contractible loop, then there is a smooth map u : D — M, defined on the
unit disk D = {zeC||z|<1}, which satisfies u(e*™) = a(t). Two such maps u1,up : D — M are
called equivalent if their boundary sum u;#(-u) : S* — M is homologus to zero in Hy(M).
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Let @ := (a, [u]) be an equivalence class and denoted by LM the space of equivalence classes.

The space LM is the universal covering space of the space LM of contractible loops in M whose
group of deck transformation is Hy(M).

The symplectic type action functional ay; : LM — R is defined by

an (@, [u]) = ~[uw' o[ Hy (a(t))at, (71)
D 0

then satisfies ay (A#a) = ap(a)-¢(A).

Lemma 3.2.1. Let (M, @) the manifold with a closed fundamental 2-form ¢ and fix a Hamiltonian
function HEC™(R/ZM) . Let (a, [u])€LM and VeT,LM = C™(R/Z,a"TM). Then

1
(a1 0 (V) = [ (X, (a), V)t (72)

We denote by P(H) CLM the set of critical points of ay and by P(H)CLM the corresponding set
of periodic solutions.

Consider the downward gradient flow lines of ay with respect to an L>-norm on LM. The
solutions are

u:R* = M, (s, t)=u(s,t) (73)

of the partial differential equation

(1) + p(u) (3u=Xy(u) ) = 0 (74)
with periodicity condition
u(s,t+1) =u(s,t) (75)
and limit condition
lim u(s, t) = a(t), IirB u(s,t) =b(t), (76)

where a,beP(H).
Let M(a,b) := M(a,b, H, ) be the space of all solutions u(s, t) satisfying (74)~(76) with

at#u =b. (77)

The solutions are invariant under the action u(s, t)—u(s + r,t) of the time shift reR. Equivalent
classes of solutions are called Floer connecting orbits.
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For a generic Hamiltonian function H, the space M(a,b) is a finite dimensional manifold of
dimension

dimM(@, ) = u(@)(b), (78)
where the function u: P(H) — Z is a version of the Maslov index defined by the path of

unitary matrices generated by the linealized Hamiltonian flow along a(t) on D .

If Hi=H is a C>-small Morse function, then a critical point (a,[u]) of H; is a constant map
u(D) = a with index indp (a).

If u(a)-p(b) = 1, then the space M(a,b) is a one-dimensional manifold with R action by time
shift and the quotient M(a,b)/R is a finite set. In fact, u(a)em; (U(n))~Z.

If u(@)-u(b) =1, a, beP(H), then we denote

n(a,b) := #(Mgg,z}))’ (79)

where the connection orbits are to be counted with signs determined by a system of coherent

orientation s of the moduli space M(,b). These numbers give us a Floer type cochain com-
plex.

Let FC*(M, H) be the set of functions

&E:P(H) —R (80)

that satisfy the finiteness condition

#H{EEP(H)|&(%)#0, ay (% )<c} < o (81)
for all ceRR.
Now we define a coboundary operator

6" : FC*(M,H) — FC*"'(M,H), (82)

@@= X n@beb) (83)

u(@)=u(b)+1

where EeFCY(M, H), u(a) = k+ 1 and u(b) = k.

Lemma 3.2.2. Let (M, @) be a semipositive almost contact metric manifold with a closed functional 2-
forms. The coboundary operators satisfy 616" = 0, for all k.

Definition - Theorem 3.2.3. (1) For a generic pair (H, @) on M, the cochain complex (FC*,0) defines
cohomology groups
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. Kero
FH*(M,¢,H,p) = b

(84)

which are called the Floer type cohomology groups of the (M, ¢, H, @).

(2) The Floer type cohomology group FH*(M,$,H,q) is a module over Novikov ring Ay and is
independent of the generic choices of H and ¢.

4. Quantum and Floer type cohomologies

In this section, we assume that our manifold M is a compact either almost cosymplectic or
contact or C-manifold. In Section 3.1, we study quantum type cohomology of M and in Section
3.2 Floer type cohomology of M. Consequently, we have:

Theorem 4.1. Let (M, g, 9,1, &, ) be a compact semipositive almost contact metric manifold with a
closed fundamental 2-form ¢. Then, for every reqular pair (H, ), there is an isomorphism between
Floer type cohomology and quantum type cohomology

@ : FH* (M, ¢, H, @) >QH* (M, Ay). (85)

Proof. Let h : M — R be a Morse function such that the negative gradient flow of & with respect to
the metric ¢( - (p()) + n®n is Morse-Smale and consider the time-independent Hamiltonian

H, = —¢h, teR. (86)

If ¢ is sufficiently small, then the 1-periodic solutions of
a(t) = Xi(a(t)) (87)

are precisely the critical point of h. The index is
u(a, us) = n=indy(a) = ind(a)-n (88)
where u, : D — M is the constant map u,(z) = a.

The downward gradient flow lines u : R — M of h are solutions of the ordinary differential
equation

i(s) = J(u)Xi(u). (89)

These solutions determine a coboundary operator
0:C"(M,h,Ay) — C* (M, h,/\y). (90)
This coboundary operator is defined on the same cochain complex as the Floer coboundary o,

and the cochain complex has the same grading for both complex C*(M,h, Ay), which can be
identified with the graded /s module of all functions
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& : Crit(h)Hy (M) — R (91)

that satisfy the finiteness condition

#{(a, A)|E(a, A)20, p(A)2c) < oo (92)

for all ceR. The Ag-module structure is given by

(v &) (a,A) Zv &(a,A+B), (93)

the grading is deg(a, A) = indj,(a)-2c1(A), and the coboundary operator ¢ is defined by
(6&)(a, A) Znh (a,b)&(b, A), (a, A)eCrit(h)Hy (M), (94)

where 1;,(a,b) is the number of connecting orbits from a to b of shift equivalence classes of

solutions of
{u(s) + Vu(s) =0, limu(s) = a, lim u(s) = b, (95)

§——00 §—> o0

counted with appropriate signs.

Here we assume that the gradient flow of 1 is Morse-Smale and so the number of connecting
orbits is finite when indj(a)-ind;,(b) = 1. Then the coboundary operator 6 is a /Ag-module
homomorphism of degree one and satisfies 626 = 0. Its cohomology is canonically isomorphic
to the quantum type cohomology of M with coefficients in A.

For each element 2€P(H) we denote M (a, H, ¢) by the space of perturbed ¢-cohomomorphic
maps u : C — M such that u(re*™") converges to a periodic solution a(t) of the Hamiltonian
system H; as r — . The space M(a,H, ¢) has dimension n-u(a). Now fix a Morse function
h : M — R such that the downward gradient flow u : R — M satisfying (95) is Morse-Smale.
For a critical point beCrit(h) the unstable manifold W*(b,h) of b has dimension indj(b) and
codimension 2n-indy (b) in the distribution D.

The submanifold M (b, a) of all ueM(a, H, ) with u(0)eW"(b) has dimension
dimM(b,a) = indy,(b)-u(a)-n. (96)

If indy(b) = p(a) + n, then M(b,a) is 0zero-dimensional and hence the numbers n(b,a) of its
elements can be used to construct the chain map defined by

@ : FC*(M,H) — C*(M,h,/y) (97)
(@) (b, A)A Y. n(b,a)E(A#a) (98)
ind;,(b):/,l(ﬁ)wLn

which is a Ay-module homomorphism and raises the degree by n. The chain map ® induces a
homomorphism on cohomology
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® : FH* (M, Ay) — H* (M., Ag) = If;r(f ~QH" (M, Ay). (99)

Similarly, we can construct a chain map,
W C"(M,h,Ay) — FC*(M,H) (100)
Wo@ = X nlA#LLED,A). (101)

w(@)+n=indy(b)-2c1(A)

Then @ and W are chain homotopic to the identity. Thus we have an isomorphism ®.

We have studied the Gromov-Witten invariants on symplectic manifolds (M, ,]) using the
theory of J-holomorphic curves, and the Gromov-Witten type invariants on almost contact
metric manifolds (N, g, ¢, 1, &, ¢) with a closed fundamental 2-form ¢ using the theory of ¢-
coholomorphic curves. We also have some relations between them. We can apply the theories
to many cases.

Examples 4.2.

1. The product of a symplectic manifold and a unit circle.

2. The circle bundles over symplectic manifolds.

The almost cosymplectic fibrations over symplectic manifolds.

The preimage of a regular value of a Morse function on a Kdhler manifold.
The product of two cosymplectic manifolds is Kahler.

The symplectic fibrations over almost cosymplectic manifolds.

N S J e @

The number of a contactomorphism is greater than or equal to the sum of the Betti
numbers of an almost contact metric manifold with a closed fundamental 2-form.

Examples 4.3. Let N be a quintic hypersurface in CP* which is called a Calabi-Yau threefold.
Then N is symply connected, ¢;(TN) =0 and its Betti numbers by =bg =1, by =b5 =0,
b2 = b4 =1and b3 = 204.

Let A be the standard generator in Hy(N) and heH?*(N) such that h(A) = 1. The moduli space
My 3(N,A) has the dimension zero. The Gromov-Witten invariant (D(I)\f ’3A(u1,a2,a3) is nonzero
only when deg(a;) =2,i=1,2,3. In fact, CDS%A (h,h,h) =5 [4, 5]. The quantum cohomology of
Nis QH*(N) = H*(N)®/A where A is the universal Novikov ring [5].

Let (N,g,w1,];) be the standard Kahler structure on N and (Sl,gz,(pzzo,nz:de,

& =45, ¢, = 0) the standard contact structure on S'. Then the product M = NS' has a canon-
ical cosymplectic structure (M, g, ¢,1,&,¢) as in Section 3. The quantum type cohomology of
Mis

107



108 Manifolds - Current Research Areas

QH*(M) = QH" (N)®QH"(S") (102)

Let ¢, : N — N be a Hamiltonian symplectomorphism with nondegenerate critical points.
6
Then #Fix(ip,)>) b;(N) = 208.

i=0

Let ¢, : M — M be a Hamiltonian contactomorphism with nondegenerate critical points. Then
7
#Fix(1,)>) b;(M) = 416.

i=0
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Abstract

For the last decades, manifold learning has shown its advantage of efficient non-linear
dimensionality reduction in data analysis. Based on the assumption that informative and
discriminative representation of the data lies on a low-dimensional smooth manifold
which implicitly embedded in the original high-dimensional space, manifold learning
aims to learn the low-dimensional representation following some geometrical protocols,
such as preserving piecewise local structure of the original data. Manifold learning also
plays an important role in the applications of computer vision, i.e., face image analysis.
According to the observations that many face-related research is benefitted by the head
pose estimation, and the continuous variation of head pose can be modelled and
interpreted as a low-dimensional smooth manifold, we will focus on the head pose
estimation via manifold learning in this chapter. Generally, head pose is hard to directly
explore from the high-dimensional space interpreted as face images, which is, however,
can be efficiently represented in low-dimensional manifold. Therefore, in this chapter,
classical manifold learning algorithms are introduced and the corresponding application
on head pose estimation are elaborated. Several extensions of manifold learning algo-
rithms which are developed especially for head pose estimation are also discussed and
compared.

Keywords: manifold learning, head pose estimation, nonlinear feature reduction,
supervised manifold learning, local linearity, global geometry

1. Introduction

Manifold learning becomes well known due to its property to learn the representative geom-
etry in low-dimensional embedding, with which data analysis and visualization are signifi-
cantly benefitted. From the observation of some nonlinear data, a low-dimensional smooth
manifold (differentiable manifold) is embedded in the original high-dimensional space, which
is implicit if we only consider the metrics of the original space. Manifold learning algorithm

I m Ec H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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purpose is to learn such embedding according to some protocols, e.g., local linearity and global
structure preserving. For the remainder of this chapter, the term manifold is used to refer as the
smooth manifolds (differentiable manifolds) for convenience. As a complex high-dimensional
data, face image analysis is a difficult topic in the field of computer vision due to the compli-
cated facial appearance variations, among which the head pose challenges many face-related
applications. Accurate head pose estimation is advantageous to face alignment and recogni-
tion, because frontal- or near-frontal faces are easier to handle compared with other poses. It
has been found that facial appearance is lying on a manifold embedded form in the original
high-dimensional space represented as face images. Correspondingly, the head pose can also
be represented as a low-dimensional embedding, which is more representative and discrimi-
native to model the variation. Therefore, the head pose estimation can be implemented by the
manifold learning.

In principle, head pose refers to the view of the face to the imaging system, i.e., the camera
center. 3D head transformation involves 6 degrees of freedom (DOF), which can be interpreted

as the 3D translations (tx,ty,tz)T and rotations (a.0.y)" from the head to the camera center.
Among the six variables, the 3D rotations that are formally represented by pitch, roll, and yaw
are taken as the head pose [1]. A schematic demonstration taken from reference [1] is shown in
Figure 1. This definition reduces the head pose to 3 DOF which are sufficient to model most of
the in- and out-plane rotation of the head. It can be found that the pitch and yaw generate
more self-occlusions and roll can be easily corrected by the position of eyes. So, in this chapter,
the 2 DOF including yaw and pitch are considered. Usually, the head poses of yaw and pitch
lead to the problem of self-occlusion, which subsequently results in the loss of informative
features, e.g., facial texture and shapes. By comparing, frontal- or near-frontal faces are rela-
tively easier to deal with. Examples of various head poses [2] are given in Figure 2. The task of
the head pose estimation is actually to determine the yaw and pitch of an unknown face image
or search the frontal face in a database. Once the head pose is obtained, further applications
such as face alignment and recognition will be benefitted in efficiency and accuracy. Therefore,
modern development of face-related research prefers to estimate the head pose and correct the
head orientation by positioning the face to near frontal or warping the faces in various poses to
a frontal face template [3].

Basically, head pose estimation methods broadly fall into several categories. Template-based
methods treat the head pose estimation as a verification (or classification) problem. The testing
face is projected to the data set labeled with known poses, the one from which the most
significant similarity measured by various metrics is retrieved for the testing pose [4, 5].
Furthermore, pose detectors can be learned to simultaneously localize the face and recognize
the pose [6]. Regression-based methods estimate a linear or nonlinear function with the origi-
nal faces or extracted facial features as input variables and discrete or continuous poses as
output [2]. Deformable models learn flexible facial modes [7-9]. By manipulating a set of
parameters which specifies the pose, specific face example can be generated, which will be
used to match the testing face. With the development of manifold learning [10-13], more
promising results of head pose estimation are achieved. The essence of such methods is based
on the assumption that the discriminative modes for head pose lie on low-dimensional mani-
folds embedded in high-dimensional space, i.e., the original color space or other low level
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feature space [14]. The low-dimensional representation of the head pose images can be learned
by unsupervised or supervised manifold learning.

Figure 1. The 3 DOF of head pose proposed in reference [1]. The roll does not introduce any self-occlusion of the face,
which can be easily corrected. Compared with the pitch, the yaw produces more serious self-occlusion problem.

Figure 2. Examples of various head poses. The images are cropped, centered, and resized to 64 x 64 pixels from the
originals. One individual is selected and shown in different yaw and pitch. From left to right represents the variation in
yaw: -90, —60, -30, 0, 30, 60, and 90°. From top to bottom represents the variation in pitch: 30, 0, and -30°. One can find that
the effects of self-occlusion occur with an increasing yaw and pitch. The frontal faces (center image) show a full overview
of the face.
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In contrast, the template-based methods have the problem of serious dependence on training
data. If similar poses to the query pose do not exist in the training set, the estimated result
would be biased. The regression-based methods often require to use complicated regression
models, for example, a high-order polynomial. However, complicated nonlinear function
would cause the problem of overfitting, which will result in poor generalization of the model.
The deformable models require the localization of dense facial features, such as landmarks of
facial components, which are seriously influenced by the head pose. The manifold learning-
based methods are somehow limited by some problems, such as identity and noise sensitivity;
however, simple efforts can be made to efficiently improve the performance [15]. More impor-
tantly, the manifold learning-based methods show promising performance of generalization.
And the head pose can be easily modeled and better visualized with low-dimensional features.
More details will be given in following sections.

According to the previous analysis, the main focus of this chapter will be on the manifold
learning based on head pose estimation. The main notations used in this chapter are listed and
interrupted in Section 2. In Section 3, classical manifold learning algorithms will be elaborated.
In Section 4, adaptions and extensions of manifold learning algorithms, which are more
suitable for head pose estimation, are discussed. Section 4 summaries the work, and some
available resources of manifold learning are given.

2. Notations

x;i = (xi1,xn, ...,xiD)T represents the ith data point in the original D-dimensional space. x with-
out subscript is used to represent an arbitrary data point.

X = (x1,x2, ...,x\) represents the M-data points collection.

N(i) represents the set of K-nearest neighbor of the ith data point.

Y, = (.Y ---Y,)" represents the d-dimensional representation of the ith data point after
dimensionality reduction. Similarly, y without subscript is used to represent an arbitrary data
point.

Y = (y;.Y,, ..., y,,) denotes the data collection in the low-dimensional space.

M

C = XXT is the covariance matrix for the centered data, where ﬁz 1% = 0. Usually, this can
M

be enabled by mean subtraction: x = x-¢, and y = ﬁz X

W = {w;} is the weight matrix to model the graph for pairwise face images, which will be
specified by different metrics, e.g. w;; = 1 if the jth data point is one of the K nearest neighbors
of the ith data point, and w;; = 0 otherwise.

D = {d;} is the distance matrix measuring the pairwise distances among the data points,
which can be Euclidean or other distance metrics.

A =diag(A1, Ay, ..., Ap) is a diagonal matrix whose elements are the D eigenvalues (ranked
decreasingly A12A,2...2Ap>0 decomposed from an D x D matrix.
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V = (01,02, ...,04d, ..., UD-d41, ---» Up) is the projection matrix, which is consisted of the eigen-
vectors corresponding to the ranked eigenvalues. (v, 72, ..., v4) are the top d eigenvectors, and
(UD-d+1, ---,Up) are the bottom d eigenvectors.

I denotes the identity matrix.

3. Characteristics of manifold learning algorithms

Given a set of data points, for example, face images, it is difficult to directly estimate or extract
the most significant modes from such high-dimensional representation of the data. If the
distribution of data in the original feature space can be linearly structured, the classical
principal component analysis (PCA) will be able to estimate the discriminative modes and
then reduce the feature dimensions. An example of such a type of data is shown in Figure 3.
However, if the data distribution of the original data is nonlinear, for example, the famous
“swiss roll” shown in Figure 4(a), which is a smooth, continuous but nonlinear surface embed-
ded in the 3D space, the structure interpreted as Euclidean distance is less preferable to
represent the distribution of the data. Taking the two circled points sampled from the manifold
shown in Figure 4(b), for instance, their Euclidean distance is close, while this is not
guaranteed if the 3D structure is considered. The embedded structure can be explored with
the help of nonlinear dimensionality reduction, such as manifold learning algorithms. The
learned low-dimensional representation can approximately model the real distance of the
sampled data points as shown in Figure 4(c).

g b=

05

Figure 3. A data set sampled from a multivariate Gaussian distribution. The most significant modes indicated by the red
orthogonal axis can be learned by PCA, which preserve the largest variations in the original data.
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(a) (b) (c)

Figure 4. An example of the data set including a potential “swiss roll” structure. The figures are produced based on the
code from [16]. (a) The original 3D surface. (b) The data points sampled from (a). The Euclidean distance indicated by
dash line between the circled points cannot represent the distance lying on the potential structure. (c) The distance
measured in the learned low-dimensional can more accurately model the data.

In this section, in order to reveal the essence of manifold learning, the PCA is initially detailed.
Other classical manifold learning algorithms will be elaborated in the following.

3.1. Principal component analysis (PCA)

PCA is one of the most popular unsupervised linear dimensionality reduction algorithms. The
intrinsic feature of PCA is to estimate a linear space whose basis will be able to preserve the
maximum variations in the original data. Mathematically, the low-dimensional data can be
obtained by a linear transformation from the original data as denoted in Eq. (1).

y=Vix 1)

where x is the centered data point. The entry of the projection matrix V is the column vector
that represents the principal components in the projection space. Let us take one of the
principal components for instance. The objective is to preserve the maximum variations in the
transformed data.

1 1
T — - T 2 _ T T _ T
max Var(v'X) = max llo" XII max (' X)(X"v) ml?x(v Cco) (2

i makes Eq. (2) an unbiased estimation, which can be replaced by M if it is sufficiently large.
Eq. (2) is a form of Rayleigh’s quotient, which can be maximized by eigenvector decomposition
of covariance matrix C. The d eigenvectors corresponding to the top d positive eigenvalues are
taken to construct the low-dimensional space Vp « ;4 to which the original data are projected.
Actually, Eq. (2) can be converted to

x=Vy (3)

which means that the original data can be linearly represented as a combination of the
principal components.
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Taking the head pose images of one identity shown in Figure 2, for example, the PCA is
applied on the vectorized images. Figure 5 visualizes the low-dimensional representation of
the face images in the first 3D dimensions. One can find obvious transitions for pitch and yaw
along a 3D shape of valley. The three principal components are visualized in Figure 6, from
which one face image is decomposed into a weighted accumulation of variations in the mean
face. The first and third eigenfaces (principal component) clearly show the variation in yaw.
Therefore, PCA can model the head poses as some of the discriminative principal components.

Figure 5. Visualization of the low-dimensional features obtained by PCA. A surface of valley can be found. Blue dots
show the face images sampled from the surface. Some face images are selected and shown. (a) The variation in pitch is
shown with the yaw of 90" in a specific view of the surface. (b) The variation in yaw is shown with the pitch of 0" in
another view of the surface.

Mean Face Mode #1 Mode 82 Mode #3

" — ‘.q-{'mm' +IM}:P4+IGHH=+ ood

Figure 6. Representation of one face image by the mean face and first three eigenfaces obtained from PCA.

3.2. Locally linear embedding (LLE)

From the observation of the data shown in Figure 4, the smooth manifold is globally nonlinear
but can be seen as linear from a local neighborhood. On the basis of this observation, the LLE
attempts to represent each of the data by a weighted linear combination of a number of
neighbors [11]. The weight matrix W can be obtained by the following objective function.

M 2
min Z “xi_ Z wi]-x]- H (4)
lw;ll=17= JEN(I)

where w; denotes the ith row vector of matrix W. Eq. (4) shows that the LLE aims to minimize
the total reconstruction error for the data from the corresponding nearest neighbors. Specifi-
cally, W is a sparse matrix which assigns optimal weights for neighboring data points and
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zeros for nonneighboring data points. As a result, both the global nonlinearity and local
linearity are included in one identical form. A close form of the weights matrix W = {w;;} can
be efficiently computed.

K
Zn 1 ;111
Zm 1Zn 1 mn

where K is the number of nearest neighbors tuned for specific problem; C = {c;,} is the

®)

w,-j

neighborhood correlation matrix that is specified for each data: ¢, = E,Lén where &, and &,
are the mth and nth neighbors of the ith data point.

Moreover, the weight matrix W is locally invariant to linear transformation, i.e., translation,
rotation, and scaling. Therefore, it is reasonable to propose that low-dimensional representa-
tion of the data can also preserve the local geometry as featured in the original space with the
same weight matrix W. The next step is then to estimate such low-dimensional (d-dimension)
representation Y by the following equation.

min Z v X wqyJH (©)
JEN(i)

Eq. (6) can be rewritten as

min YMY” (7
Y

where M = (I-W)(I-W)". Two constraints are made to center the data and avoid degenerate

solutions: Zi\ilyl 0 and Zl 1¥:Y;T =Iixq. Then Y can be obtained, of which the columns
correspond to the bottom d eigenvectors of M.

The same data set used in the last experiment is processed with LLE and shown with the first
three dimensions in Figure 7. The variation of the head pose in yaw with different pitch is
obviously shown. The transition from a pose to another pose tends to be continuous and easy
to locate. The learned manifold is smoother and more discriminative than PCA.

3.3. Isomap

Isomap [10] is an abbreviation of isometric feature mapping [17], which is an extension of the
classical algorithm of multidimensional scaling (MDS) [18]. From the previous section, one can
learn that the LLE represents the nonlinearity of the original data by preserving the local
geometrical linearity. In contrast, the algorithm of Isomap proposed a global solution by
constructing a graph for all pairwise data. This idea ensures the global optimum.

Specifically, Isomap firstly constructs a graph that can be represented as G =(V,E) with V as the
vertices (the data points) and E as the edges (the adjacent connections). The adjacent vertices
will be connected with edges according to particular metrics. Taking the ith and jth data points
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for instance, an edge will be added between them if llx;—x;ll <e (e-neighbor) or x; is the K-
nearest neighbor of x; and vice versa (K-nearest neighbor). The graph is then assigned with
distances among all pairwise vertices according to the edges. The distance between the vertices
associated with edges will be d;; = llx;—x;ll (Euclidean distance). For the other pairwise vertices,
the geodesic distances are considered, which can be simply computed as the shortest path
(Floyd'’s algorithm). This weighted graph is capable of modeling the isometric distances, which
can preserve the global geometry in the learned manifold.

al.,

LN

0.

Qs

Figure 7. Visualization of the low-dimensional features obtained by LLE. A surface of “wings” is observed. (a) The
variation in yaw with the pitch of -30" is found along the edge of one “wing” of the 3D surface. (b) Another variation in
yaw with pitch of 0" is found along the ridge of the 3D surface.

From the distance matrix D = {d;;}, an objective function is defined as
miny |v(Dx)~+(Dy)| ®)

where 7(Dx) and 7(Dy) denote the distances conversion to inner products for the original data
and the low-dimensional data, respectively. The operator 7 is defined as 7(D) = -HSH/2;
S = D? is the squared distance matrix; H = I~ 11" is the centering matrix. This design of the
objective function aims to preserve the global structure represented as a graph associated with
geodesic distance. The low-dimensional embedding should be featured with similar global
geometry with the original data. The optimization of the objective function can be solved by
MDS. The d-dimensional representation Y is obtained by decomposing the matrix of 7(Dx) and
preserving the top d eigenvectors.
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Figure 8 shows the results of the low-dimensional head poses obtained from Isomap. An
interesting shape of “bowl” of the embedding surface obtained for the head pose images.

Figure 8. Visualization of the low-dimensional features obtained by Isomap. (a) The variation in yaw with the pitch of -
30" is found along the edge of the shape. (b) Another variation in yaw with pitch of 0" is found along the geodesic path in
the middle of the shape. The interesting thing is the frontal face locates approximated at the center.

3.4. Laplacian eigenmaps (LE)

Compared to Isomap, the idea of graph representation of the data is also taken by the algo-
rithm of LE. However, the difference is the later attempts to construct a weighted graph (other
than distance graph) for the data, which is then represented as a Laplacian [12].

The first step of LE is to construct an adjacent graph whose vertices are the data points and
edges are the adjacent connections for neighbors. A pair of points x; and x; are e-neighbors and
will be connected with edge if Ilx; — x;ll < &. The other criterion to connect or disconnect the
pair of points is to find if they are K-nearest neighbors for each other. The second step is to
choose appropriate weights for the graph. There are two options: the heat kernel defines the

=112

weight as w; = ¢ 7 if the two points of x; and x; are connected and zero otherwise. The
other option is straightforwardly setting w;; =1 for connected edges and zero otherwise.

The third step is to minimize an objective function

. 2
min —Y.) w;; 9
y:yAyTzl‘;]' (yl y]) / ( )

where the diagonal matrix of A = diag{a;} is computed by column sums of W: a; = Z]' wji.

From the definition of the objective function, the goal of LE is to preserve the weights for the
mapped data from the original data. If the pair of data is close or apart from each other in the
original space, they should be also kept close or apart in the embedding. The weight matrix
strongly punishes the “connection” for apart data points. Next, the objective function can be
derived to
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Ly = AAy (10)

where L = A - W is the Laplacian matrix for the weighted graph. Such form is a generalized
eigenvector decomposition. And the matrix Y whose columns are the bottom 4 eigenvectors
decomposed from Eq. (10) is the d-dimensional representation of the data. To be compared, the
LE is less sensitive to outlier and noise due to its property of local preservation. The weights for
nonedges are set to be zeros, which diminish the problem of short circuiting.

As shown in Figure 9, the embedding surface with the shape of parabolais generated by LE,
which is similar to the results obtained by LLE. But the latter produces smoother and more
symmetric shape of the surface. The variation in yaw from left to right is shown symmetrically,
and the frontal face approximately locates on the vertex of bottom.

0.1

Figure 9. Visualization of the low-dimensional features obtained by LE.
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3.5. Laplacian preserving projections (LPP)

The previously introduced algorithms do not clarify how an unseen data is projected to the
low-dimensional space. To solve this problem, LPP reformulates the LE by representing the
dimensionality reduction as a linear projection from the original to the low-dimensional data.
The first two steps of LPP are exactly the same as LE, which construct the adjacent graph and
compute the weights for each connection. The most significant difference is the LPP
representing the dimensionality reduction from the original to the low-dimensional space as a
projection y = V'x. The problem is converted to the one which aims to find a projection space
instead of directly compute the low-dimensional features. The generalized eigenvector decom-
position defined in Eq. (10) is then reformulated as follows:

XLX"v = AXAXTo (11)

The bottom d eigenvectors decomposed from Eq. (11) construct the projection matrix
Vpxa = {v;}. Any data from the original space can be dimensionally reduced through y = V'x.

More improved nonlinear manifold learning algorithms are developed [13, 19], but in this
section, the main idea of how to derive the low-dimensional representation of the head poses
is the core. Details of the advanced versions of the manifold learning algorithms can be
explored in the original references.

4. Head pose estimation via manifold learning

The manifold learning methods can successfully model the head pose variations in both yaw
and pitch as discussed in the previous sections. However, there are still several difficulties to
state. The introduction of noise, for example, identity, and illumination variations will affect
the performance of those methods on the head pose estimation. Another point is that they do
not infer how the low-dimensional representation of an unseen head pose image is obtained
(except LPP) and how the pose is estimated. In this section, more sophisticated methods are
introduced to solve these problems based on the original or extended manifold learning
algorithms.

4.1. PCA-based head pose estimation

In Ref. [20], the PCA has been turned to be robust to invariance of identity. Another important
conclusion is that the angle of 10" is found to be the lower bound to be discriminative. For the
data set constructed following this finding, the PCA would produce promising results for head
pose estimation.

A kernel machine-based method is proposed using the kernel PCA (KPCA) and kernel support
vector classifier (KSVC) [21]. The KPCA is an extension of the classical PCA. Let
o(x) : RP — R” be a kernel that maps the original dimensional into a higher dimensional,
which makes the nonlinearly separable data linearly separable in the higher dimensional
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space. Correspondingly, the covariance matrix C is replaced by C = ®®, of which the bold ®
is the kernel represented data points set. The projection matrix V can be similarly obtained
through eigenvector decomposition of matrix C. After the feature dimensionality reduction, a
multiclass KSVC is trained which can estimate the view of head. Given a testing image x, it is
first mapped by the kernel and then the low-dimensional features can be obtained by the
projection matrix learned from KPCA y, = Vch(xts) which will be fed into the KSVC to
predict the head pose estimation. This method is proved to be outperformed its linear coun-
terpart, i.e., PCA + SVC.

4.2. View representation by Isomap

The derivation of how the Isomap reduces the dimensionality of the original data to a low-
dimension has been introduced in the previous section. Now the problem is how to connect
the head pose to the features. A pose parameter map F is proposed in Ref. [22] to build such
connections.

® = FY (12)

where ® = (01, 05, ..., 0)) denotes the angles of the head poses from the training data and Y is
the low-dimensional representation of the data obtained from Isomap. Actually, the matrix of F
can be seen as a set of linear transformations that map the features to corresponding pose
angles. During training time, the head poses ® are given as annotations, and the low-dimen-
sional features Y can be learned by manifold learning, then, F can be obtained using the
singular value decomposition (SVD) of Y".

F' = PyW,' U0’ (13)

where Py, Wy, and Uy are the SVD of Y.

Given a testing image x4, the goal now is to obtain the low-dimensional feature according to
the embedding Y. The first step is to construct a geodesic distance vector for the testing image
to all the training images dis v = (dfs’l,dfs,z,...,dfs’M,)T. Then, d;s = diag(Y"Y)~ds . Next, the
low-dimensional representation of the testing image is obtained by

Y, = % ((YTY)’lYT)TdtS (14)

Finally, the estimated pose of the testing image is computed from

O = Fyts (15)

The insight of this method focuses on the conversion from testing data to the subspace learned
by nonlinear manifold learning. The algorithms of LLE and LE can also be generalized by the
proposed idea.
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4.3. The biased manifold embedding (BME)

The head pose estimation is subjected to the identity variation. The ideal case is to eliminate
such negative effects, which means the face images with close pose angles should maintain
nearer and the ones with quite different poses should stay farther in the low-dimensional
manifold, even the poses are from the same identity. Based on this statement, the BME is
proposed to modify the distance matrix according to the pose angles, which can be extended
with almost all the classical algorithms [23].

The modified distance between a pair of data points x; and x; is given by:
* p(i,] -

dy = 4 max (plm,m))p(i. ) (16)
0, pli.j) =0

where p(i,j) = |p; - p;| is simply defined as the absolute difference of the angles of two poses.
From the modified distance matrix, one can find that the distance between images with close
poses is biased to be proportionally small. The images with the same poses are defined to be
zero-distance.

In fact, the BME can be seen as a nalve version of the supervised manifold learning. The head
pose information is used as the supervision to enhance the construction of the graph. For the
head pose estimation stage, the generalized regression neural network (GRNN) [24] is applied
to learn the nonlinear mapping for the unseen data points, and linear multivariate regression is
applied to estimate the head pose angle. This idea can be easily extended to the classical
algorithms, e.g., Isomap, LLE, and LE, among which the biased LE achieves the lowest error
rate on the data set of FacePix [25].

4.4. Head pose estimation as frontal view search

The two remarkable head poses, i.e.,, yaw and pitch, cause the problem self-occlusion. Com-
pared with pitch, the yaw makes the problem more serious. An extended manifold learning
(EML) method is proposed to specify the head pose estimation only considering the variation
in the yaw [15]. This work resorts to the frontal view search instead of directly estimating the
head pose, which is more efficient and robust. The idea is based on the observation that the
frontal face locates nearly at the vertex in the symmetrical shape of the embedding. However, if
the pose distribution of the data is asymmetric, the location of the frontal face in the manifold
will shift from the vertex. Therefore, the first trial of the EML method is data enhancement. All
the images are horizontally flipped and both the original and flipped images are used for
manifold learning. In order to make the method more robust to variations in environment, for
example, illumination, the localized edge orientation histogram (LEOH) is presented to repre-
sent the original color mappings as more representative features. The idea is inspired by the
classical HoG feature [14]. The first step of LEOH is to apply a Canny edge detector on the
original images. Then, the whole image is divided into M x N cells. The gradient orientation
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is quantized into N bins. Next, histograms of the gradient orientation of the cells locating in a
block consisted of P x Q cells are accumulated and normalized. Finally, the LEOH feature is
obtained by the block features concatenation. The proposed ideas can be easily incorporated in
various manifold learning methods that improve the performance of the frontal view
searching.

4.5. Head pose estimation by supervised manifold learning

A taxonomy of methods, which structures the general framework of manifold learning into
several stages, is proposed to incorporate the head pose angles in one or some of the stages to
enable the supervised manifold learning [26]. A straightforward solution could be the adap-
tion of the distance and weight matrix according to the angle difference between pairwise face
images. The head pose estimation problem is then interrupted as a regression problem, which
was usually solved as a classification problem. As a result, continuous head poses can be
generalized by the model.

The general framework of manifold learning can be represented as follows: Stage 1, neighbor-
hood searching; Stage 2, graph weighting; Stage 3, low-dimensional manifold computation;
and Stage 4, projection from unseen data to the manifold and pose estimation.

In Stage 1, the distance matrix of D = {d;;} can be adapted as follows:

d; = F(16-6,)) - d; (17)

where 0; and 0; are the angles of two poses, which keep the same denotation as previous
sections. The fis some reciprocal increasing positive function, for example, f(u) = a - u/(f~u).
The introduction of f encourages the distance decreasing of the nearer poses and increasing of
farther poses. The farther the poses are, the more penalties the distance will gain.

In Stage 2, the weight matrix of W = {w;} can be adapted by similar idea of supervision
information incorporation.

ZZ’ij = wj - 8(|0:-6j]) (18)
where g is defined as some positive decreasing function, which is similar to the f applied in
Stage 1.

In Stage 3, let us take the LLE for an instance. The original objective function of LLE shown in
Eq. (6) can be adapted as follows:

M
min Z
Yis

2
v X wi/’y/‘H +A§Z(%_y]‘)2Aij (19)
JEN(i) 1,]

where the A = {A;;} measures the similarity between the angles of pairwise poses. A possible
form of A is the heat kernel.
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2
N = E_M’ if the i and j”’data points are neighbours (20)

0, otherwise

The adaption of the objective function can preserve the local linearity of the original data and
enhance the similarity for neighborhoods, which are facilitated with similar poses. This is
implemented by the second term of Eq. (19) that introduces the supervision information.
Following the derivation from Eq. (6) to Eq. (7), Eq. (19) can be simplified as:

minYYMYT +AYLYT = min Y(M + AL)YT (21)

where L is the Laplacian matrix of A. For the low-dimensional embedding, eigenvectors
decomposition of M + AL can be performed. By the supervision information incorporation,
the method is much capable of imposing discriminative projection to the learned embedding.

In Stage 4, the GRNN algorithm is applied to produce the mapping from unseen data to the
low-dimensional embedding. During testing time, the support vector regression (SVR) with
RBF kernel and smoothing cubic splines are taken.

A novel method of supervised manifold learning for head pose estimation [27, 28] is proposed
based on the framework from the former method. Similarly, angles of poses are incorporated
in all three stages of the general manifold learning structure.

In Stage 1, an improved version of fis proposed as:

d; = f(10:=6])" - d(p > 0) 22

. : - : o 16,61 :
where f is defined as a rectified reciprocal form f(|0;-0;|) = O oo, oo e @ 1S a

positive constant and ¢ is an arbitrary small positive constant that avoids the denominator of
fbeing zero. This adaption for the distance matrix further enhances the effects of the supervi-
sion information during the procedure of neighbors search.

In Stage 2, taking LLE (NPE [29]), for an example, the local distance matrix shown in Eq. (4) is
modified as

Conn = &mn * Cmn (23)
‘Qi_em | ‘ 9,'—9,, ‘

(max,,,, n { ‘ 0,,=0, ‘ }7‘ 6n=0, ‘ +e
tion enhances the supervision during the computation of local correlated matrix.

where g, =

7 0; is the angle of the reference face image x;.This opera-

In Stage 3, a supervised neighborhood-based fisher discriminant analysis (SNFDA) is pro-
posed. The basic idea is to make the neighboring data points as close as possible and the
nonneighboring data points as far as possible in the low-dimensional embedding. The SNFDA
can be seen as a postprocessing procedure in this stage. Based on the low-dimensional
represented data Y obtained from the original LLE or the modified LLE in Stages 1 and 2, the
within- and between-neighborhood scatter matrices are defined as:
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Z Aj( ) (24)
iy j=1
Z Aj( —y)' (25)
iyj=1
where
w ﬂ l)
Ajj K’ (26)
0, 0therw1se
1 .
Ajj ]\7[ » Y€ N(i)
Aw e (27)
71], otherwise

Ajj is the affinity between y; and y;, which is defined as the form of heat function:

ny,-—yjuz

Ai]' =e¢ 22 (28)

Details about the inference of the scatter matrices can be found in the original reference. The
transformed matrix Tsnepa of SNFDA is computed from the generalized eigenvector decom-
position problem

Sge = AS,e (29)

The top d eigenvectors span to the Tsyppa and the transformed feature is obtained by
z = Tonppay. This supervised learning manner successfully introduces the supervision infor-
mation in a framework to provide a “good” projection from the original data to the low-
dimensional. Due to the supervised learning, when the projection is applied on original data,
more discriminative features can be obtained for head pose estimation.

In Stage 4, during testing time, the GRNN is applied to map the unseen data point to the low-
dimensional embedding and the relevance vector machine (RVM) [30] is adopted to accom-
plish the pose estimation. Experimental results obtained by the proposed method performing
on the database of FacePix [25] and MIT-CBCL [31] show big improvements compared with
other state-of-the-art algorithms [23, 26] in Stage 3 and Stages 1 + 2 + 3. This means that this
method is more robust for identity and illumination variations.

5. Summary

In this chapter, the head pose estimation, one of the most challenging tasks in the area of
computer vision, is introduced, and the main types of methods are demonstrated and
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compared. Particularly, the manifold learning-based methods are attracted more attention. In
reality, data distribution is usually nonlinear in high-dimensional represented space, e.g., the
head pose images. Some potential structures are lying on nonlinear but smooth manifolds
which are embedded in the original space. The manifold learning algorithms are able to
discover and visualize such embedding. Almost all the algorithms are formalized based on
the assumption of the local linearity of the nonlinear data. Those algorithms highly benefit the
application of head pose estimation, because the face orientations (yaw and pitch) are found to
be distributed along some specific manifolds. Promising performance is achieved by the
classical manifold learning methods, which, however, are highly improved by the supervised
manifold learning. It proves that the supervised information represented as angles of head
poses is helpful in head pose estimation. However, there are still hurdles to take. Most of the
methods are tested in different settings, e.g., different database is used in different method. A
common framework could help to offer fair justifications. Other feature instead of the simple
color space can be considered to better represent the face images. Some useful tools are
available online to help better understand the work [16, 32, 33].
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Abstract

Spectral analysis-based dimensionality reduction algorithms, especially the local mani-
fold learning methods, have become popular recently because their optimizations do
not involve local minima and scale well to large, high-dimensional data sets. Despite
their attractive properties, these algorithms are developed based on different geometric
intuitions, and only partial information from the true geometric structure of the under-
lying manifold is learned by each method. In order to discover the underlying manifold
structure more faithfully, we introduce a novel method to fuse the geometric informa-
tion learned from different local manifold learning algorithms in this chapter. First, we
employ local tangent coordinates to compute the local objects from different local
algorithms. Then, we utilize the truncation function from differential manifold to con-
nect the local objects with a global functional and finally develop an alternating optimi-
zation-based algorithm to discover the low-dimensional embedding. Experiments on
synthetic as well as real data sets demonstrate the effectiveness of our proposed method.

Keywords: dimensionality reduction, manifold learning

1. Introduction

Nonlinear dimensionality reduction (NLDR) plays an important role in the modern data
analysis system, since many objects in our world can only be electronically represented with
high-dimensional data such as images, videos, speech signals, and text documents. We usually
need to analyze a large amount of data and process them, and however, it is very complicated
or even infeasible to process these high-dimensional data directly, due to their high computa-
tional complexity on both time and space. Over the past decade, numerous manifold learning
methods have been proposed for nonlinear dimensionality reduction. From methodology,
these methods can be divided into two categories: global algorithms and local algorithms.
Representative global algorithms contain isometric mapping [1], maximum variance unfolding

I m Ec H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [{cc) XN
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[2], and local coordinates alignment with global preservation [3]. Local methods mainly
include Laplacian eigenmaps (LEM) [4], locally linear embedding (LLE) [5], Hessian
eigenmaps (HLLE) [6], local tangent space alignment (LTSA) [7], local linear transformation
embedding [8], stable local approaches [9], and maximal linear embedding [10].

Different local approaches try to learn different geometric information of the underlying
manifold, since they are developed based on the knowledge and experience of experts for their
own purposes [11]. Therefore, only partial information from the true underlying manifold is
learned by each existing local manifold learning method. Thus, to better discover the underly-
ing manifold structure, it is more informative and essential to provide a common framework
for synthesizing the geometric information extracted from different local methods. In this
chapter, we propose an interesting method to unify the local manifold learning algorithms (e.
g., LEM, LLE, HLLE, and LTSA). Inspired by HLLE which employs local tangent coordinates
to compute the local Hessian, we propose to utilize local tangent coordinates to estimate the
local objects defined in different local methods. Then, we employ the truncation function from
differential manifold to connect the local objects with a global functional. Finally, we develop
an alternating optimization-based algorithm to discover the global coordinate system of lower
dimensionality.

2. Local tangent coordinates system

A manifold is a topological space that locally resembles Euclidean space near every point. For
example, around each point, there is a neighborhood that is topologically the same as the open
unit ball in RP. The simplest manifold is a linear manifold, usually called a hyperplane. There
exists a tangent space at each point of a nonlinear manifold. The tangent space is a linear
manifold which locally approximates the manifold. Suppose there are N points {x1.,...,xx/ in
RP residing on a smooth manifold MCRP, which is the image of a coordinate space YCR?
under a smooth mapping ¢ : Y — RP, where d<D. The mapping ¢ is assumed as a locally
isometric embedding. The aim of a NLDR algorithm is to acquire the corresponding low-
dimensional representation y,€) of each x;€M and preserve certain intrinsic structures of data
at the same time. Suppose M is smooth such that the tangent space Ty (M) is well defined at
every point xe M. We can regard the local tangent space as a d-dimensional affine subspace of
RP which is tangent to M at x. Thus, the tangent space has the natural inner product induced
by the embedding MCRP. Within some neighborhood of x, each point x€M has a sole closest
point in Ty(M), and therefore, an orthonormal coordinate system from the corresponding
local coordinates on M can be associated with the tangent space.

A manifold can be represented by its coordinates. While the current research of differential
geometry focuses on the characterization of the global properties of manifolds, NLDR algo-
rithms, which try to find the coordinate representations of data, only need the local properties
of manifolds. In this chapter, we use local coordinates associated with the tangent space to
estimate the local objects over the manifold. To acquire the local tangent coordinates, we first
perform Principal Component Analysis (PCA) [12] on the points in NV'(x;) = {x;, x;,,..., x;,} that
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is the local patch built by the point x; and its k nearest neighborhoods, and get d leading PCA
eigenvectors Vi=f v} pé,...pfi J which correspond to an orthogonal basis of T, (M) (the orthog-
onal basis can be seen as a d-dimensional affine subspace of R” which is tangent to M at x;).
For high-dimensional data, we employ the trick presented by Turk and Pentland for
EigenFaces [13]. Then, we obtain the local tangent coordinates U = O,u’b...,ui} of the neigh-
borhood N (x;) by projecting the local neighborhoods to this tangent subspace:

u]i = (Vi)T(xi,—xi) 1)

An illustration of the local tangent space at x; and the corresponding tangent coordinates
system (i.e., the point x; s local tangent coordinate is u;) is shown in Figure 1.

Figure 1. Local tangent space and tangent coordinates system.

3. Reformulations of LEM, LLE, HLLE and LTSA using local tangent
coordinates

3.1. Reformulation of Laplacian eigenmaps

The method LEM was introduced by Belkin and Niyogi [4]. We can summarize the geometrical
motivation of LEM as follows. Assume that we are searching for a smooth one-dimensional
embedding f : M — R from the manifold to the real line so that data points near each together



136  Manifolds - Current Research Areas

on the manifold are also mapped close together on the line. Think about two adjacent points,
x,ze€M, which are mapped to f(x) and f(z), respectively, we can obtain that

|f @~ () SIV pef () l1z=xl] + O(llz=x]1%) )

where V f is the gradient vector field along the manifold. Thus, to the first order, ||V f]|
provides us with an estimate of how far apart f maps nearby points. When we look for a map
that best preserves locality on average, a natural choice to find f is to minimize [4]:

Dy () = janMfuz - jMAM<f>f 3)

where the integral is taken with respect to the standard measure over the manifold. Thus, the
function f that minimizes @y, (f) has to be an eigenfunction of the Laplace-Beltrami operator
A p, which is a key geometric object associated with a Riemannian manifold [14].

Suppose that the tangent coordinate of xeN (x) is given by u. Then, the rule g(u) = f(x)
= fotb(u) defines a function g : U — R, where U is the neighborhood of u€R?. With the help
of local tangent coordinates, we can reduce the computation of the gradient vector V ,f(x)
on the manifold to the computation of the ordinary gradient vector on the Euclidean
space:

9g(1) ag(u))T W

Vtsz(x) = Vg(”) = < dul ) dud

1

where u = (u!,...,u")€R?, and we keep up tan in the notation to make clear that it counts on the

coordinate system in T,(M). For different local coordinate systems, although the tangent
gradient vector will be different, the norm |[Vy,f(x)|| is inimitably defined such that equa-
tion (3) can be approximated by estimating the following functional:

B (f) = JMIIme(X)IIde 5)

where dx stands for the probability measure on M.

In order to compute the local object ||V f(x)||?, we first use the first-order Taylor series
expansion to approximate the smooth functions /f (x,'],)};‘:]7 f:M =R, and together with

Eq. (4), we have:

£ i) = £6) + (Vaanf () (=) + O(lbi=il*)
= g(u) = §(0) + (Vianf (x:)) "} + O(lluf11?)

(6)

Over U, we develop the operator o = [(0),Vg(0)] = [¢(0),Viumf(x;)] that approximates the

. i . . . . i _ i 1.
function g(u;) by its projection on the basis Uj = {1,u} ,...,u; }:



A Fusion Scheme of Local Manifold Learning Methods
http://dx.doi.org/10.5772/66303

flxy) = g(up) = ()W ()
The least-squares estimation of the operator &' can be computed by:

k . .
argmin %, (f(xy)~(a)TU})? (8)
=

It is easy to show that the least-squares solution of the above object function is a' = (U')'f,
where ' = [ f(x;,),..., f(x;,)J€RF, U' = [UL; Ub; ... UL]eR¥> 1+ and (U')" denotes the pseudo-
inverse of U'. If we define a local gradient operator G'eR**¥ which is constructed by the last d

rows of (Ui)+, we have Vi,f(x;) = Gi)‘i. Furthermore, the local object ||Vm,1f(xi)||2 can be
computed as:

IV sanf G I = Vianf (60) Vi (1) = (f)7(G)' G'f' 9)

An unresolved problem in our reformulation is how to connect the local object ||V ,f (x)||2
with the global functional @y, (f) in (5) and its discrete approximation. In Section4, we will
discuss this issue in detail.

3.2. Reformulation of locally linear embedding

The LLE method was introduced by Roweis and Saul [5]. It is based on simple geometric
intuitions, which can be depicted as follows. Globally, the data points are sampled from a
nonlinear manifold, while each data point and its neighbors are residing on or close to a linear
patch of the manifold locally. Thus, it is possible to describe the local geometric properties of
the neighborhood of each data point in the high-dimensional space by linear coefficients which
reconstruct the data point from its neighbors under suitable conditions. The method of LLE
computes the low-dimensional embedding which is optimized to preserve the local configura-
tions of the data. In each locally linear patch, the reconstruction error in the original LLE can be
written as:

. k
&= ||xi—_zlwi,.xz-,.||2 (10)
]:

where {w;, };‘:1 are the reconstruction weights which encode the geometric information of the

high-dimensional inputs and are constrained to satisfy Y w; = 1.

Since the geometric structure of the local patch can be approximated by its projection on the
tangent space Ty, (M), we utilize the local tangent coordinates to estimate the local objects over
the manifold in our reformulation framework. We can write the reconstruction error of each
local tangent coordinate as:
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k
. - - .
e = ||Mi—lei,-u,l‘|| = | Xw;, (ui=u;) " = Zk:wi,wikG]l-k (11)
= j j

where we have employed the fact that the weights sum to one, and G' is the local Gram matrix,
Giy = ((w—u), (i) (12)

The optimal weights can be obtained analytically by minimizing the above reconstruction
error. We solve the linear system of equations

YGw;, =1 (13)
k

and then normalize the solution by }w; = 1. Consider the problem of mapping the data
points from the manifold to a line such that each data point on the line can be represented as
a linear combination of its neighbors. Let f(x;),....f(x;) denote the mappings of ul....,ul,
respectively. Motivated by the spirit of LLE, the neighborhood of f(x;) should share the same
geometric information as the neighborhood of u;, so we can define the following local object:

o 50 = ) Sy f ) = (1) (W)W (14)

where W' = [1,-w;] € R™®D £ — [f(x;), f(x;) , ... , f(x;,)]- The optimal mapping f can be
obtained by minimizing the following global functional:

&) = | ot (15)
M
where dx stands for the probability measure on the manifold.

3.3. Reformulation of Hessian eigenmaps

The HLLE method was introduced by Donoho and Grimes [6]. In contrast to LLE that obtains
linear embedding by minimizing the [, error in Eq. (10), the HLLE achieves linear embedding
by minimizing the Hessian functional on the manifold where the data points reside. HLLE
supposes that we can obtain the low-dimensional coordinates from the (d + 1)-dimensional
null-space of the functional % (f) which presents the average curviness of f upon the manifold,

if the manifold is locally isometric to an open connected subset of R?. We can measure the
functional Z(f) by averaging the Frobenius-norm of the Hessians on the manifold M as [6]:

mﬁﬂmwwmw (16)

where H}’m stands for the Hessian of f in tangent coordinates. In order to estimate the local
Hessian matrix, we first perform a second-order Taylor expansion at a fixed x; on the smooth
functions: {f (xi7)};f:uf : M — R that is C* near x;:
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Flo)= () + (V) (x5 = x) 5 o, = )T Hix ~ )

. 1 17)
= g(u}) = 8(0) + (Vg)"u + 5 T Hyui + O(llu]l°)
Here, Vf = Vg is the gradient defined in (4), and H} is the local Hessian matrix defined as:
; 0 0
(Hp)pg(x) = 5 —5—8(u) (18)
firq Ouy Oug

where ¢ : U — R uses the local tangent coordinates and satisfies the rule g(u) = f(x) = fey(u).
In the second identity of Eq. (17), we have exploited the fact that u! = (V' .x;-x;) = 0 [recall the
computation of local tangent coordinates in Eq. (1)].

Over U', we develop the operator 8’ that approximates the function g(u ) by its projection on

_ P2 iy2 i i .
the basis U]-—{ , fl""’u]'d’(uh) 7...,(u]vd) ""’uhX”jz""’”jdflxujd}’ and we have:

Flxy) = gu) = (B)'U; (19)

Let p' = [g(0),Vg W |eR#+4@1/2 then h'eR¥ @ /2 is the vector form of local Hessian matrix
H} over neighborhood N(x;). The least-squares estimation of the operator ' can be obtained
by:
. _piyT 172
argmin X (f(x;)~(8)"U)) (20)
=

B

The least-squares solution is ' = (U')'f|, where f' = [f(x1),....f(xi)]eRF, U' = [U; Ub;...; Uy
R (I+d+d(d1)/2) and (U')* signifies the pseudo-inverse of U'. Notice that /' is the vector form

of local Hessian matrix Hf, while the last d(d 4 1)/2 components of ' correspond to h'.
Meanwhile, we can construct the local Hessian operator H'eRWHD/2%k by the last d(d + 1)/2
rows of (U')", and therefore, we can obtain i’ = H if'. Thus, the local object ||Ht”” (x:)||? can be

estimated with:

”Htan( 1)”12: _ (hl)T(hZ) — (fi)T(Hi)T(Hi)(fi) (21)

3.4. Reformulation of local tangent space alignment

The method LTSA was introduced by Zhang and Zha [7]. LTSA is based on similar geometric
intuitions as LLE. The neighborhoods of each data point remain nearby and similarly
colocated in the low-dimensional space, if the data set is sampled from a smooth manifold.
LLE constructs low-dimensional data so that the local linear relations of the original data are
preserved, while LTSA constructs a locally linear patch to approximate the tangent space at the
point. The coordinates provided by the tangent space give a low-dimensional representation of
the patch. From Eq. (6), we can obtain:
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Flxg) = F(x0) + (Vianf (%) 1t + O(I[11%) (22)

From the above equation, we can discover that there are some relations between the global
coordinate f(x;) in the low-dimensional feature space and the local coordinate u]’: which
represents the local geometry. The LTSA algorithm requires the global coordinates f(x;) that
should respect the local geometry determined by the u;:

F(xi)=f (xi) + L, (23)
where f(x;) is the mean of f(x;), j = 1,....k. Inspired by LTSA, the affine transformation L;

should align the local coordinate with the global coordinate, and we can define the following
local object:

) = ()¢ () e LU, (24)

where ' = [f(x;,),.... f ()], U = [udubs ... u], and e is a k-dimensional column vector of all
ones. Naturally, we should seek to find the optimal mapping f and a local affine transforma-
tion L; to minimize the following global functional:

k) = | b 25)

Obviously, the optimal affine transformation L; that minimizes the local reconstruction error

for a fixed f' is given by:
Li=(fH" <I—%eeT) uh’ (26)
and therefore,
P =17 (1-gee” ) - U, @)
Let W' = (I-(U')"U')" (I-LeeT)", the local object k¢ (x;) can be estimated as:

P = () (1= ) =)' = 7 (W W (8)

4. Fusion of local manifold learning methods

So far we have discussed four basic local objects: || Vaf (x)11%, |of(x)|2, ||Hff’” (xi)[13, and [ (x;)|%

From different perspectives, they depict the geometric information of the manifold. We look
forward to collect these geometric information together to better reflect the geometric structure
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of the underlying manifold. Notice that we can estimate these local objects under the local
tangent coordinate system according to Egs. (9), (14), (21), and (28), respectively. Taking stock
of the structure of these equations, it is not hard to discover that we can fuse these local objects
together under our proposed framework. Assume that there are M different local manifold
learning algorithms, we can define the fused local object as follows:

LOf(x) = ]flchoj(x) (29)

where { C]} ~, are the nonnegative balance parameters, {LO;(x) } 7, are the local objects, such as

1V ianf (0112, |af(x)| |H t"”(x,') I, and |xf (x;)[?, from different algorithms. It is worth to note that

the other local manifold learning algorithms can also be reformulated to incorporate into our
unified framework.

We employ the truncation function from differential manifold to connect the local objects with
their corresponding global functional such that we can obtain a consistent alignment of the
local objects to discover a single global coordinate system of lower dimensionality. The trun-
cation function is a crucial tool in differential geometry to build relationships between global
and local properties of the manifold. Assume that U and V are two nonempty subsets of a
smooth manifold M, where V is compact and VeU ( V is the closure of V). Accordingly, the
truncation function [15] can be defined as a smooth function s : M — R such that:

0)={o e (30)

The truncation function s can be discretely approximated by the 0-1 selection matrix $'eRN*¥,
An entry of S' is defined as:

o _[1 p=Nila
S={a S G1)

where N; = {i1,...,ix} denotes the set of indices for the k-nearest neighborhoods of data point x;.
Let f = [f(x1),...,f(xn)]ERY be a function defined on the whole data set sampled from the
global manifold. Thus, the local mapping f' = [f(x}),...f(x})]€RF can be expressible by

f"=(S")'f. With the help of the selection matrix, we can discretely approximate the global
functional G(f) as follows:

g(f) = LOf(X) dx = % g LOf(x,-)
o " @)
- N L O (o) 7 =1 (Zap)s

where { L;}jAﬁl are the local matrices such as (Gi)TGi (WHTW', (H)"H, and (W')" W' which are
defined in Egs. (9), (14), (21), and (28). P = N YN S Li ( ) is the alignment matrix of the j-th

141



142 Manifolds - Current Research Areas

local manifold learning method. The global embedding coordinates Y = [y,.y,,...,y JERT*N
can be obtained by minimizing the functional G(f). Lety = f = [f(x1),....f (xn)] be a row vector
of Y. It is not hard to show that the global embedding coordinates and the nonnegative
weights ¢ = [c1,...,cm] can be obtained by minimizing the following objective function:

M o T M
argmin Y, ¢;Tr(YP'Y") s.t. YY" =1, Y.¢ =1, ¢20. (33)
ve J=1 j=1

where the power parameter r > 1 is set to avoid the phenomenon that the solution to cis ¢; = 1
corresponding to the minimum Tr(YP'Y") over different local methods and c¢; = 0(k#j) other-
wise, since our aim is to utilize the complementary geometric information from different
manifold learning methods.

We propose to solve the objective function [Eq. (33)] by employing the alternating optimization
[16] method, which iteratively updates Y and c in an alternating fashion. First, we fix ¢ to
update Y. The optimization problem in Eq. (33) is equivalent to:

argmin Tr(YPY") s.t. YYT =1 (34)
Y

where P = Zj'\ilc]fpf . When c is fixed, we can solve the optimization problem [Eq. (34)] and

obtain the global optimal solution Y as the second to (d + 1) st smallest eigenvectors of the

matrix P. Second, we fix Y to update c. While Y is fixed, we can minimize the objective function

[Eq. (33)] analytically through utilizing a Lagrange multiplier to enforce the constraint that
in 1¢; = 1. And the global optimal ¢ can be obtained as:

(1/Tr(Ypin))1/(r*1) '
a i )] = 1,...,M 35
J ]‘]\il(l/TT(YP]YT))l/(V‘l) =1 } (35)

5. Experimental results

In this section, we experiment on both synthetic and real-world data sets to evaluate the
performance of our method, named FLM. For LEM, LLE, HLLE, LTSA, and our Fusion of local
manifolds (FLM) algorithms, we experiment on these data sets to obtain both visualization and
quantitative evaluations. We utilize the global smoothness and co-directional consistence
(GSCD) criteria [17] to quantitatively compare the embedding qualities of different algorithms:
the smaller the value of GSCD, the higher the global smoothness, and the better the co-
directional consistence. There are two adjustable parameters in our FLM method, that is, the
tuning parameter r and the number of nearest neighbors k. FLM works well when the values of
r and k are neither too small nor too large. The reason is that only one local method is chosen
when 7 is too small, while the relative weights of different methods tend to be close to each
other when it is too large. As a general recommendation, we suggest to work with r€[2, 6] and

ke[0.7]log(N)1, 2[log(N)]].
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5.1. Synthetic data sets

We first apply our FLM to the synthetic data sets that have been commonly used by other
researchers: S-Curve, Swiss Hole, Punctured Sphere, and Toroidal Helix. The character of these
data sets can be summarized as: general, non-convex, nonuniform, and noise, respectively. In
each data set, we have total 1000 sample points, and the number of nearest neighbors is fixed
to k = 10 for all the algorithms. For the S-Curve and Swiss Hole, we empirically set » = 2, and
for the Punctured Sphere and Toroidal Helix data sets, we set r=3. Figures 2-5 show the
embedding results of the above algorithms on the four synthetic data sets. Each manifold
learning algorithm and the corresponding GSCD result are shown in the title of each subplot.
We can evaluate the performances of these methods by comparing the coloring of the data
points, the smoothness, and the shape of the projection coordinates with their original mani-
folds. Figures 2-5 reveal the following interesting observations.

1. On some particular data sets, the traditional local manifold learning methods perform well.
For example, LEM works well on the Toroidal Helix; LLE works well on the Punctured
Sphere; HLLE works well on the S-Curve and Swiss Hole; and LTSA performs well on the
S-Curve, Swiss Hole, and Punctured Sphere.

2. In general, our FLM performs the best on all the four data sets.

The above consequence is because only partial geometric information of the underlying man-
ifold is learned by each traditional local manifold learning method, while the complementary
geometric information learned from different manifold learning algorithms is respected by our
FLM method.

5.2. Real-world data set

We next conduct experiments on the isometric feature mapping face (ISOFACE) data set [1],
which contains 698 images of a 3-D human head. The ISOFACE data set is collected under
different poses and lighting directions. The resolution of each image is 64 x64. The intrinsic
degrees of freedom are the horizontal rotation, vertical rotation, and lighting direction. The 2-
D embedding results of different algorithms and the corresponding GSCD results are shown in
Figure 6. In the embedding, we randomly mark about 8% points with red circles and attach
their corresponding training images. In the experiment, we fix the number of nearest neighbors
to k = 12 for all the algorithms. We empirically set 7 in FLM as 4. Figure 6 reveals the following
interesting observations.

1. As we can observe from Figure 6b and ¢, the embedding results of LEM and LLE show that
the orientations of the faces change smoothly from left to right along the horizontal direc-
tion, and the orientations of the faces change from down to up along the vertical direction.
However, as we can see at the right-hand side of Figure 6b and ¢, the embedding results of
both LEM and LLE come out to be severely compressed, and it is not obvious to survey the
changes along the vertical direction.

2. As we can observe from Figure 6d and e, the horizontal rotation and variations in the
brightness of the faces can be well revealed by the embedding result of HLLE and LTSA.
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Figure 2. Embeddings of the synthetic manifold S-curve. The title of each subplot indicates the abbreviation of the
manifold learning algorithm and the GSCD result. (a) Sample data. The title of subplots (b)-(f) indicates the abbreviation
of the the manifold learning algorithm and the GSCD result.
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Figure 3. Embeddings of the synthetic manifolds Swiss Hole. The title of each subplot indicates the abbreviation of the
manifold learning algorithm and the GSCD result. (a) Sample data. The title of subplots (b)-(f) indicates the abbreviation

of the the manifold learning algorithm and the GSCD result.
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Figure 4. Embeddings of the synthetic manifolds Punctured Sphere. The title of each subplot indicates the abbreviation of
the manifold learning algorithm and the GSCD result. (a) Sample data. The title of subplots (b)-(f) indicates the abbrevi-
ation of the the manifold learning algorithm and the GSCD result.
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Figure 5. Embeddings of the synthetic manifolds Toroidal Helix. The title of each subplot indicates the abbreviation of the
manifold learning algorithm and the GSCD result. (a) Sample data. The title of subplots (b)-(f) indicates the abbreviation
of the the manifold learning algorithm and the GSCD result.
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Figure 6. Embeddings of the ISOFACE data set. Subfigure (a) shows nine sample images, and subfigure (b) to subfigure
(f) are the embedding results of different manifold learning algorithms. The title of each subplot indicates the abbreviation
of the manifold learning algorithm and the GSCD result.
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3. As we can observe from Figure 6f, orientations of the faces change smoothly from left to
right along the horizontal direction, while the orientations of the faces change from down
to up, and the light of the faces varies from bright to dark simultaneously along the vertical
direction. These results illustrate that our FLM method successfully discovers the underly-
ing manifold structure of the data set.

Our FLM performs the best on the ISOFACE data set, since our method makes full use of the
complementary geometric information learned from different manifold learning methods. The
corresponding GSCD results further verify the above visualization results in a quantitative way.

6. Conclusions

In this chapter, we introduce an interesting method, named FLM, which assumes a systematic
framework to estimate the local objects and align them to reveal a single global low-dimen-
sional coordinate space. Within the framework, we can fuse together the geometric informa-
tion learned from different local methods easily and effectively to better discover the
underlying manifold structure. Experimental results on both the synthetic and real-world data
sets show that the proposed method leads to satisfactory results.
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