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Preface

This volume is a collection of papers on the subject of manifolds. Manifolds are an impor‐
tant and crucial structure in modern mathematics. They have been intensively investigated
over the last 60 years and provide a foundation over which much of modern differential
geometry has developed. The contributions represented here investigate manifolds of par‐
ticular types, such as symplectic manifolds and submanifolds. They discuss what can be
learned about manifolds by defining and studying various structures on them. In particular,
there is a paper covering operator actions on manifolds and their spectral properties. There
is a paper on Bonnet surfaces which emphasizes the important role played by differential
equations in the study of manifolds and surfaces in particular. A paper on bifurcations and
manifolds and two papers on the application of manifolds to some areas of applied mathe‐
matics are presented as well. Finally, there is a paper on symplectic affine actions on mani‐
folds.

This book has been put together by an international group of invited authors, and it is a
pleasure to thank them for their hard work and significant contributions to this volume. I
gratefully acknowledge with great thanks the assistance and help provided by Ms. Iva Lip‐
ovic who was the publishing manager throughout this process as well as the InTech pub‐
lishing group for the opportunity to edit this volume on the subject of manifolds.

Paul Bracken
Department of Mathematics,

University of Texas,
Edinburg, TX, USA
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Chapter 1

Mutiple Hopf Bifurcation on Center Manifold

Qinlong Wang, Bo Sang and Wentao Huang

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/65674

Provisional chapter

Mutiple Hopf Bifurcation on Center Manifold

Qinlong Wang, Bo Sang and Wentao Huang

Additional information is available at the end of the chapter

Abstract

In this chapter, by researching the algorithm of the formal series, and deducing the
recursion formula of computing the nondegenerate and degenerate singular point quan-
tities on center manifold, we investigate the Hopf bifurcation of high-dimensional
nonlinear dynamic systems. And more as applications, the singular point quantities for
two classes of typical three- or four-dimensional polynomial systems are obtained, the
corresponding multiple limit cycles or Hopf cyclicity restricted to the center manifold
are discussed.

Keywords: high-dimensional system, center manifold, Hopf bifurcation, singular point
quantities

1. Introduction

This chapter is concerned with Hopf bifurcation restricted to the center manifold from the
equilibrium for three-, four-, and more higher-dimensional nonlinear dynamical systems.

Let us first consider the generic real systems which take the form

_x ¼ Axþ fðxÞ (1)

where x ¼ ðx1; x2; ⋯; xnÞ ∈ Rn, A ∈ Rn ·n; n ∈ N, and fðxÞ is sufficiently smooth with fð0Þ ¼ 0,
Dfð0Þ ¼ 0. Then the origin is an equilibrium. For dynamical analysis of systems (1), it is very
important to discuss the asymptotic behavior and the existence of periodic orbits at the origin.
When the Jacobi matrix A has an eigenvalue with zero real part, the phase portraits in the
vicinity of the origin is not easy to be determined. In particular, a system (1) has the following
form

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



_x1 ¼ A1x1 þ f1ðx1,x2Þ
_x2 ¼ A2x2 þ f2ðx1,x2Þ

�
(2)

where x1 ¼ ðx1; x2; …; xncÞT ∈ Rnc ; x2 ¼ ðxncþ1;…; xnÞT∈ Rns with nc þ ns ¼ n; A1 and A2 are
constant matrices, and f1ðx1, x2Þ, f2ðx1, x2Þ are functions with

f1ð0; 0Þ ¼ 0; f2ð0; 0Þ ¼ 0; Df1ð0; 0Þ ¼ 0; Df2ð0; 0Þ ¼ 0

Suppose that A1 has nc critical eigenvalues (i.e., eigenvalues with Re λ = 0) and all ns eigen-
values of A2 satisfy Re λ < 0. According to the Center Manifold Theorem (see, e.g., [1, 2]), there
exists a (local) center manifold x2 ¼ hðx1Þ with hð0Þ ¼ 0; Dhð0Þ ¼ 0; and system (2) is topolog-
ically equivalent near ð0, 0Þ to the system

_x1 ¼ A1x1 þ f1ðx1,hðx1ÞÞ
_x2 ¼ A2x2:

�
(3)

The first equation in Eq. (3) is called the restriction of system (2) to its center manifold at the
origin. The local center manifold, which is tangent to the ðx1; x2;…; xncÞ-plane (hyperplane) at
the origin and which contains all the recurrent behavior of system (2) in a neighborhood of the
origin, since the second equation in (3) is linear and has exponentially decaying solutions (see,
e.g., [3]). Thus, the dynamics of Eq. (2) near a nonhyperbolic equilibrium are determined by
this restriction. Generally, the local center manifold is not necessarily unique, but if the origin is
a center restricted to a local center manifold for system (2), then the center manifold is unique
and analytic, which is presented by the Lyapunov Center Theorem proved in Ref. [4].

If A has a simple pair of purely imaginary eigenvalues �ωi (ω > 0), system (1) undergoes a
Hopf bifurcation or multiple Hopf bifurcation in a neighborhood of the origin on the local
center manifold under proper perturbations of parameters. The computation of focal values
(Lyapunov coefficients) plays an important role in the study of small-amplitude limit cycles
appearing in these bifurcations (see [5–14] and references therein). The projection method was
used for computing the first and the second focal values (see [2]), and a perturbation technique
based on multiple time scales was used for computing focal values (see [15]). For a class of
three-dimensional systems, the formal series method was presented with a recursive formula
for computing singular point quantities (see [16]), here the theory and methodology described
in Refs. [16, 17] can be applied to n-dimensional systems, where n ≥ 4.

If A has some zero eigenvalues for system (1), the Hopf bifurcation problem at the origin on the
local center manifold becomes generally more difficult in comparison to the nondegenerate
case. Take the degenerate singular point with a zero linear part in planar system, for example,
the investigation of Hopf bifurcation from the equilibrium has to involve detecting the
monodromy and distinguishing between a center and a focus [18, 19]. For that matter, several
available approaches and corresponding results can be seen in [18–25], and one can easily find
that the results on the bifurcation of limit cycles are very less. Remarkably, the author of
reference [26] in 2001 gave the formal series method of calculating the singular point quantities
of the degenerate critical point, which made it possible to investigate multiple Hopf bifurcation
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of higher degree polynomial systems [27, 28]. Here we extend its application to the local center
manifold of more higher-dimensional system.

2. Case of the nondegenerate singular point

In this section, we consider Hopf bifurcation from the nondegenerate origin of system (1)
restricted to the center manifold, in which the Jacobian matrix A has a pair of pure imaginary
eigenvalues and its other eigenvalues are all negative. As the particular case, for planar
systems there exist some good computer algebra procedure to calculate the focal values (see
survey article [29], monograph [30], and references therein), here the formal series method of
computing singular point quantities on the local center manifold for high-dimensional system
originated from the work of [31–33] in planar systems.

2.1. The formal series method of computing nondegenerate singular point quantities on
center manifold

Considering the Jacobian matrix A at the origin of system (1) has a pair of purely imaginary
eigenvalues and a negative one, then by certain nondegenerate transformation, the system (1)
can be changed into the following system:

dx
dt

¼ −yþ ∑
∞

kþjþl¼2
Akjlxkyjul ¼ Xðx; y; uÞ,

dy
dt

¼ xþ ∑
∞

kþjþl¼2
Bkjlxkyjul ¼ Yðx; y; uÞ,

du
dt

¼ −d0uþ ∑
∞

kþjþl¼2

~dkjlxkyjul ¼ ~Uðx; y; uÞ

8>>>>>>><
>>>>>>>:

(4)

where x; y; u; Akjl; Bkjl; ~dkjl ∈ R ðk;j;l∈NÞ and d0 > 0.

Here, we recall first the calculation method of the singular point quantities on center manifold
for the above real three-dimensional nonlinear dynamical systems. By means of transforma-
tion

z ¼ xþ yi, w ¼ x − yi, u ¼ u, T ¼ it, i ¼
ffiffiffiffiffi
−1

p
(5)

system (4) is also transformed into the following complex system:

dz
dT

¼ zþ ∑
∞

kþjþl¼2
akjlzkwjul ¼ Zðz; w; uÞ,

dw
dT

¼ −w− ∑
∞

kþjþl¼2
bkjlwkzjul ¼ −Wðz; w; uÞ,

du
dT

¼ id0uþ ∑
∞

kþjþl¼2
dkjlzkwjul ¼ Uðz; w; uÞ

8>>>>>>><
>>>>>>>:

(6)

where z; w; T; akjl; bkjl; dkjl∈C ðk; j; l ∈ NÞ, the systems (4) and (6) are called concomitant.
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Theorem 1 (see [16]). For system (6), using the program of term by term calculations, we can
determine a formal power series:

Fðz; w; uÞ ¼ zwþ ∑
∞

αþβþγ¼3
cαβγzαwβuγ (7)

such that

dF
dT

¼ ∂F
∂z

Z−
∂F
∂y

W þ ∂F
∂u

U ¼ ∑
∞

m¼1
μmðzwÞmþ1 (8)

where c110 ¼ 1; c101 ¼ c011 ¼ c200 ¼ c020 ¼ 0; ckk0 ¼ 0, k ¼ 2, 3,⋯.

Definition 1. The μm in the expression (8) is called the mth singular point quantity at the origin
on center manifold of system (6) or (4), m ¼ 1; 2;⋯.

Theorem 2 (see [16, 34]). For the mth singular point quantity and the mth focal value at the origin on
center manifold of system (4), i.e., μm and v2mþ1; m ¼ 1; 2;⋯, we have the following relation:

v2mþ1ð2πÞ ¼ iπμm þ iπ ∑
m−1

k¼1
ξðkÞm μk (9)

where ξðkÞm ðk ¼ 1; 2;⋯;m − 1Þ are polynomial functions of coefficients of system (6). Usually, it is called
algebraic equivalence and written as v2mþ1~iπμm.

Based on the previous work in Ref. [16], we have developed the calculation method of the focal
values on the center manifold for real four-dimensional nonlinear dynamical systems in Ref.
[35]. In fact, here Theorem 1 can be generalized in the n-dimensional real systems as follows

dx
dt

¼ −yþ h:o:t: ¼ Xðx;y;uÞ,
dy
dt

¼ xþ h:o:t: ¼ Yðx;y;uÞ,
dui
dt

¼ −diui þ h:o:t: ¼ ~Uiðx;y;uÞ, i ¼ 1; 2;⋯;n−2

8>>>>><
>>>>>:

(10)

where u ¼ ðu1;u2;⋯;un−2Þ, h.o.t denotes the terms in x;y;u1;u2;⋯;un−2 with orders greater than
or equal to 2, and all di > 0.

By means of transformation of Eq. (5), system (10) can be transformed into the following
complex system

dz
dT

¼ zþ ∑∞
kþjþ1¼2

akj1z
kwju1 ¼ Zðz;w;uÞ,

dw
dT

¼ −w−∑∞
kþjþl¼2

bkj1w
kzju1 ¼ −Wðz;w;uÞ,

dui
dT

¼ idi ui þ ∑∞
kþjþ1¼2

dkj1z
kwju1 ¼ Uiðz;w;uÞ, i ¼ 1; 2;⋯;n−2

8>>>>><
>>>>>:

(11)

where the subscript “kj1” denotes “kjl1⋯ln−2”, u1 ¼ ul11 u
l2
2⋯uln−2n−2, and l ¼ ∑

n−2

i¼1
li, all ui ∈ R,

z;w;T; akj1; bkj1; dkj1 ∈ C ðk; j; li ∈ NÞ, we call that system (10) and system (11) are concomitant.
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Theorem 3. For system (11), using the program of term by term calculations, we can determine a
formal power series:

Fðz;w;uÞ ¼ zwþ ∑
∞

αþβþℓ¼3
cαβ ℓ zαwβuℓ (12)

such that

dF
dT

¼ ∂F
∂z

Z−
∂F
∂y

W þ ∑
n−2

i¼1

∂F
∂ui

Ui ¼ ∑
∞

m¼1
μmðzwÞmþ1 (13)

where the subscript “αβℓ” denotes “αβγ1⋯γn−2”, u
ℓ ¼ uγ11 uγ22 ⋯uγn−2

n−2 , and ℓ ¼ ∑
n−2

i¼1
γi, and more setting

cαβℓ ¼ 0 with 0≤αþ βþ ℓ≤2 except for c110 ¼ 1, and ckk0 ¼ 0 with k≥2.

Proof. It is very similar to the proving course of Theorem 1.3.1 in [16], by computing carefully
and comparing the above power series with the two sides of (13), we can obtain the expression
of μm.

Definition 2. The μm in the expression (13) is called the mth singular point quantity at the
origin on center manifold of system (11) or (10), m ¼ 1; 2;⋯.

Remark 1. Similar to Theorem 2, there exists a equivalence between μm and v2mþ1, namely, if
μ1 ¼ μ2 ¼ ⋯ ¼ μm−1 ¼ 0;μm≠0, then v3 ¼ v5 ¼ ⋯ ¼ v2m−1 ¼ 0; v2mþ1 ¼ iπμm; m ¼ 1; 2;⋯, and
vice versa.

Corollary 1. The origin of system (10) or (11) is a center restricted to the center manifold if and only if
μm ¼ 0 for all m.

Remark 2. From the relation given by Remark 1 and Corollary 1, the center-focus problem and
Hopf bifurcation of equilibrium point restricted to the center manifold can be figured out by
the calculation of singular point quantities for system (10).

2.2. An example of four-dimensional system

Recently, the study of chaos has become a hot research topic, and the attention of many
researchers is turning to 4D systems from 3D dynamical systems, for example, the authors of
Ref. [36] investigated Hopf bifurcation of a 4D-hyoerchaotic system by applying the normal
form theory in 2012, but its multiple Hopf bifurcation on the center manifold have not been
considered. Here, we will investigate the system further by computing the singular point
quantities of its equilibrium point, which takes the following form

_x1 ¼ aðx2−x1Þ
_x2 ¼ cx1−x2 þ x4−x1x3
_x3 ¼ x1x2−bx3 þ ex21
_x4 ¼ −Kx2

8>><
>>:

(14)

where a; b; c; e;K∈R. Obviously, system (14) has only one isolated equilibrium: Oð0; 0; 0; 0Þ
when K≠0. Therefore, we only need to consider O. The Jacobian matrix of system (14) at O is

Mutiple Hopf Bifurcation on Center Manifold
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A ¼

−a a 0 0
c −1 0 1
0 0 −b 0
0 −K 0 0

0
BBB@

1
CCCA

with the characteristic equation:

ðλþ bÞðλ3 þ ðaþ 1Þλ2 þ ða−acþ KÞλþ aK ¼ 0: (15)

To guarantee that A has a pair of purely imaginary eigenvalues �i ωðω > 0Þ and two negative
real eigenvalues λ1;λ2, we let its characteristic equation take the form

ðλ2 þ ω2Þðλ−λ1Þðλ−λ2Þ ¼ 0:

Thus, we obtain the critical condition of Hopf bifurcation at O:

a2ðc−1Þ ¼ ω2; K ¼ aðaþ 1Þðc−1), λ1 ¼ −b; λ2 ¼ −a−1 (16)

where a > −1; b > 0; c > 1, namely, c ¼ a2þω2

a2 ; K ¼ ðaþ1Þω2

a . Under the conditions (16), one can
find a nondegenerate matrix

P ¼

−
ia2

ðaþ 1Þðaþ iωÞω
ia2

ðaþ 1Þða−iωÞω 0 −
a2

ω2

−
ia

ðaþ 1Þω
ia

aωþ ω
0

a
ω2

0 0 1 0
1 1 0 1

0
BBBBBBB@

1
CCCCCCCA

such that

P−1AP ¼
ωi 0 0 0
0 −ωi 0 0
0 0 −b 0
0 0 0 −a−1

0
BB@

1
CCA (17)

Namely, we can use the nondegenerate transformation and the time rescaling: T ¼ itω to make
the system (14) become the following same form as the complex system (11) with n ¼ 4:

dz
dT

¼ zþ ∑2
kþjþlþn¼2

akjln z
kwjulvn ¼ Zðz;w;u;vÞ,

dw
dT

¼ −w−∑2
kþjþlþn¼2

bkjlnw
kzjulvn ¼ −Wðz;w;u;vÞ,
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dT
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ω

uþ ∑2
kþjþlþn¼2

dkjln z
kwjulvn ¼ Uðz;w;u;vÞ,

dv
dT

¼ ðaþ 1Þi
ω

vþ ∑2
kþjþlþn¼2

ekjln z
kwjulvn ¼ Vðz;w;u;vÞ

8>>>>>>>>><
>>>>>>>>>:

(18)

where u∈R, z; w; T∈C, and all akjln ¼ bkjln ¼ dkjln ¼ ekjln ¼ 0 except the following coefficients
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BBB@

1
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>>>>>>>>>:
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a0011 ¼ a3 þ a2ð1þ iωÞ þ iaω
2ω2ðaþ iωþ 1Þ ; a0110 ¼ aðω−iaÞ

2ω
�
a2 þ aþ ωðω−iÞ

� ;

bkjln ¼ akjln ðikjl ¼ 0011; 0110Þ,

d0002 ¼ ia3ð1−aÞe
ω5 ; d0101 ¼ −

a4ð2eþ 1Þ−a3ð1þ iωÞ
ðaþ 1Þω4ða−iωÞ ;

d0200 ¼ a3ωþ ia4ðeþ 1Þ
ðaþ 1Þ2ω3ða−iωÞ2 ; d1001 ¼ a4ð2eþ 1Þ þ a3ðiω−1Þ

ðaþ 1Þω4ðaþ iωÞ ;

d1100 ¼ −
2ia4ðeþ 1Þ

ðaþ 1Þ2ω3ða2 þ ω2Þ ; d2000 ¼ −
a3ω−ia4ðeþ 1Þ

ðaþ 1Þ2ω3ðaþ iωÞ2 ;

e0011 ¼ −
iaðaþ 1Þ

ωða2 þ 2aþ ω2 þ 1Þ ; e0110 ¼ −
a

ða−iωÞða2 þ 2aþ ω2 þ 1Þ ;

e1010 ¼ a
ðaþ iωÞða2 þ 2aþ ω2 þ 1Þ

where akjln denotes the conjugate complex number of akjln.

According to Theorem 3, we obtain the recursive formulas of cαβγ and μm.

Theorem 5. For system (18), setting cαβγλ ¼ 0 with 0≤αþ βþ γþ λ≤2 except for c1100 ¼ 1, and
ckk00 ¼ 0 with k≥2, we can derive successively and uniquely the terms of the following formal series (12)
with n ¼ 4, such that (13) with n ¼ 4 holds and if α≠β or α ¼ β; λ2 þ γ2≠0, cαβγλ is determined by
following recursive formula:

cαβγλ ¼ ω
ωðα−βÞ þ iðb γþ ðaþ 1Þ λÞ

{−d2000ð1þ γÞc½α−2;β;γþ 1;λ�−d1100ðγþ 1Þc½α−1;β−1;γþ 1;λ�−
e1010ðλþ 1Þc½α−1;β;γ−1;λþ 1�−d1001ðγþ 1Þc½α−1;β;γþ 1;λ−1�þ
b0110ðβþ 1Þc½α−1;βþ 1;γ−1;λ�−d0200ðγþ 1Þc½α;β−2;γþ 1;λ�−
e0110ðλþ 1Þc½α;β−1;γ−1;λþ 1�−d0101ðγþ 1Þc½α;β−1;γþ 1;λ−1�−
e0011λc½α;β;γ−1;λ�−d0002ðγþ 1Þc½α;β;γþ 1;λ−2�þ
b0011ðβþ 1Þc½α;βþ 1;γ−1;λ−1�−a0110ðαþ 1Þc½αþ 1;β−1;γ−1;λ�−
a0011ðαþ 1Þc½αþ 1;β;γ−1;λ−1�}

(19)

and for any positive integer m; μm is determined by following recursive formula:

μm ¼ d2000c½−2þm;m; 1; 0�
þ d1100c½−1þm;−1þm; 1; 0� þ d0200c½m;−2þm; 1; 0� (20)

and when α < 0 or β < 0 or γ < 0 or λ < 0 or α ¼ β; γ ¼ λ ¼ 0, we have let cαβγλ ¼ 0, and where
each c½α;β;γ;λ� denotes cαβγλ .
By applying the above formulas in the Mathematica symbolic computation system, we figure
out easily the first two singular point quantities of the origin of system (18):

μ1 ¼ iaf 1 ½jaj b c ðaþ 1Þ2d0�−1;
μ2 ¼ 108ia3b4f 2 f

2
3 f 4 ½jaj c2d0d12d24d3�−1

(21)

where
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f 1 ¼ 8a3ceþ 8a3c−8a3e−8a3−2a2bceþ 2a2beþ 8a2ceþ 8a2c

−8a2e−8a2 þ ab2cþ 3ab2eþ 2ab2 þ 2abc−2abþ 3b2eþ 3b2;
f 2 ¼ ð2aþ bþ 2Þ3ð2aeþ 2a−bÞðeþ 1),
f 3 ¼ 4a2eþ 4a2−3abe−2abþ 4aeþ 4aþ b;

f 4 ¼ 8a5c2−16a5cþ 8a5−2a4bc2 þ 2a4bcþ 8a4c2−16a4cþ 8a4 þ 2a3b2c

−2a3b2−4a3bcþ 4a3b−5a2b3cþ 4a2b3 þ 2a2b2c
−2a2b2−2a2bcþ 2a2b−2ab3−b3;

d0 ¼ ða2cþ 2aþ 1Þð4a2c−4a2 þ b2Þðc−1Þ3=2;
d1 ¼ 8a3c−8a3−2a2bcþ 2a2bþ 8a2c−8a2 þ 3ab2 þ 3b2;
d2 ¼ 8a2eþ 8a2−2abeþ 8aeþ 8aþ b2 þ 2b;
d3 ¼ 9a2c−8a2 þ 2aþ 1;

and the above expression of μ2 is obtained under the condition of μ1 ¼ 0.

From Remark 1 and the singular point quantities (21), we have

Theorem 6. For the flow on center manifold of the system (14), the first 2 focal values of the origin are
as follow

v3 ¼ iπμ1; v5 ¼ iπμ2 (22)

where the expression of v5 is obtained under the condition of v3 ¼ 0.

Remark 3. In contrast to the result and process in [36], one can easily see that our first quantity
is basically consistent with its characteristic exponent of bifurcating periodic solutions, and our
algorithm is easy to realize with computer algebra system due to the linear recursion formulas,
and more convenient to investigate the multiple Hopf bifurcation on center manifold.

Considering its Hopf bifurcation form of Theorem 6, we have the following:

Theorem 7. At least two small limit cycles can be bifurcated from the origin of the 4D-hyoerchaotic
system (14), which lie in the neighborhood of the origin restricted to the center manifold.

The rigorous proof of the above theorem is very similar to the previous ones in [14, 16], namely,
by calculating the Jacobian determinant with respect to the functions v3; v5 and its variables,
which will not be given here.

3. Case of the degenerate singular point

Up till now, study on bifurcation of limit cycles from the degenerate singularity of higher
dimensional nonlinear systems (1) is hardly seen in published references. Here, we will inves-
tigate the Hopf bifurcation problem from the high-order critical point on the center manifold.

3.1. The formal series method of computing degenerate singular point quantities on center
manifold

Let us consider the real n-dimensional systems with two zero eigenvalues and zero linear part
as follows
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dx
dt

¼ ðδx−yÞðx2 þ y2Þq þ ∑
∞

kþjþ1¼2qþ2
Akj1xkyju1 ¼ Xðx;y;uÞ,

dy
dt

¼ ðx−δyÞðx2 þ y2Þq þ ∑
∞

kþjþ1¼2qþ2
Bkj1xkyju1 ¼ Yðx;y;uÞ,

dui
dt

¼ −diui þ ∑
∞

kþjþ1¼2
dkjlzkwju1 ¼ Uiðx;y;uÞ, i ¼ 1; 2;⋯;n−2

8>>>>>>><
>>>>>>>:

(23)

where the subscript “kj1” denotes “kjl1⋯ln−2”, u1 ¼ ul11 u
l2
2⋯uln−2n−2, and l ¼ ∑

n−2

i¼1
li, all di > 0,

x; y; ui; t; δ; Akjl; Bkjl; dkjl∈R, q; k; j; li∈N. Obviously, the origin of system (23) is a high-order
degenerate singular point with two zero eigenvalues and n−2 negative ones.

In order to discuss the calculation method of the focal values on center manifold of the system
(23), from the center manifold theorem [1], we take an approximation to the center manifold:

u ¼ uðx;yÞ ¼ u2ðx;yÞ þ h:o:t: (24)

where u ¼ ðx1;x2;⋯;xn−2ÞT , u2 is a quadratic homogeneous polynomial vector in x and y, and h.
o.t. denotes the terms with orders greater than or equal to 3. Substituting u ¼ uðx;yÞ into the
equations of system (23), we obtain a real planar polynomial differential system as follows

dx
dt

¼ ðδx−yÞðx2 þ y2Þq þ ∑
∞

k¼2qþ2
Xkðx;yÞ ¼ ~Xðx;yÞ,

dy
dt

¼ ðx−δyÞðx2 þ y2Þq þ ∑
∞

k¼2qþ2
Ykðx;yÞ ¼ ~Yðx;yÞ

8>>><
>>>:

(25)

where Xkðx;yÞ,Ykðx;yÞ are homogeneous polynomials of degree k, and the origin is degenerate
with a zero linear part.

For system (25), some significant works have been done in Refs. [26] and [27]. Let us recall the
related notions and results.

By means of transformation (5)

z ¼ xþ yi; w ¼ x−yi; u ¼ u; T ¼ i t; i ¼ ffiffiffiffiffi
−1

p
;

system (25) is transformed into following system:

dz
dT

¼ ð1−iδÞzqþ1wq þ ∑
∞

kþj¼2qþ2
akjzkwj ¼ Zðz;wÞ,

dw
dT

¼ −ð1þ iδÞzqwqþ1− ∑
∞

kþj¼2qþ2
bkjzkwj ¼ −Wðz;wÞ

8>>><
>>>:

(26)

where z; w; T are complex variables and for any positive integer k; j, we have akj ¼ bkj, then
systems (25) and (26) are called concomitant.

For any positive integer k, we denote
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f kðz;wÞ ¼ ∑
αþβ¼k

cαβzαwβ

a homogeneous polynomial of degree k with c00 ¼ 1; ckk ¼ 0; k ¼ 1, 2,⋯.

Theorem 8 ([26, 27]). For system (26) with δ ¼ 0, we can derive successively the terms of the
following formal series:

Fðz;wÞ ¼ zw 1þ ∑
∞

m¼1

f mð2qþ3Þðz;wÞ
ðzwÞmðqþ1Þ

" #
(27)

such that

dF
dT

¼ ∂F
∂z

Z−
∂F
∂w

W ¼ ðzwÞq ∑
∞

m¼1
μmðzwÞmþ1: (28)

Definition 3. If δ ¼ 0 holds, μm in expression (28) is called the mth singular point quantity at
the degenerate singular point for system (26) or (1.3.26) is also called the mth singular point
quantity of the origin on the center manifold of system (23), where m ¼ 1; 2;⋯:

Similar to Theorem 2, there also exists a equivalence between the mth singular point quantity
and the mth focal value v2mþ1ð2πÞ at the origin on center manifold of system (23).

Theorem 9. For system (23) with δ ¼ 0, and any positive integer m, the following assertion holds:

v2mþ1ð2πÞ~iπμm, namely

v2mþ1ð2πÞ ¼ iπ μm þ ∑
m−1

k¼1
ξðkÞm μk

� �
, (29)

where ξðkÞm ðk ¼ 1; 2;⋯;m−1Þ are polynomial functions of coefficients of system (26). Then, the relation
between v2mþ1ð2πÞ and μm is called the algebraic equivalence.

Remark 4. In fact, from Theorem 2, for any positive integerm ¼ 2; 3;⋯, if μ1 ¼ μ2 ¼ ⋯ ¼ μm−1 ¼ 0
and v1ð2πÞ ¼ v3ð2πÞ⋯ ¼ v2m−1ð2πÞ ¼ 0 hold, and vice versa. And more the stability and
bifurcation of the origin of system (23) can be figured out by calculating the singular point
quantities.

Corollary 2. The origin of system (23) is a center restricted to the center manifold if and only if μm ¼ 0
for all m.

3.2. An example of three-dimensional system

Now we consider an example for system (23) with n ¼ 3, it can be put in its concomitant form
as follows
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dz
dT

¼ ð1−iδÞz2wþ uz ða20z2 þ a11zwþ a02w2Þ ¼ Z;

dw
dT

¼ −ð1þ iδÞzw2−uw ðb20w2 þ b11wzþ b02z2Þ ¼ −W;

du
dT

¼ iuþ id1zw ¼ U;

8>>>>><
>>>>>:

(30)

where d1≠0 and

aij ¼ Ai þ iBi; bij ¼ Ai−iBi; Ai;Bi∈R; i;j ¼ 0; 1; 2; (31)

namely, aij ¼ bij. Then for the center manifold of system (30), from the transformation (5), we
can determine the formal expression (24): u ¼ uðx;yÞ ¼ ~uðz;wÞ, thus obtain

dz
dT

¼ ð1−iδÞz2wþ ~uz ða20z2 þ a11zwþ a02w2Þ ¼ ~Z,

dw
dT

¼ −ð1þ iδÞzw2−~uw ðb20w2 þ b11wzþ b02z2Þ ¼ − ~W
:

8><
>:

(32)

Remark 5. For system (32), the corresponding n ¼ 1 in (27) and (28) of Theorem 8, we figure out
that each μm is related to only the coefficients of the first 2mþ 3 order terms of system (32),
m ¼ 1; 2;⋯. Here, we determine the above ~u just to the sixth-order term as follows

~uðz;wÞ ¼ ∑
6

k¼2
~ukðz;wÞ (33)

where ~uk is a homogeneous polynomial in z;w of degree k and

~u2 ¼ −d1zw; ~u4 ¼ 2δd1z2w2; ~u3 ¼ ~u4 ¼ ~u5 ¼ 0;
~u6 ¼ −id1wzðða02−b20Þd1w3zþ ða11d1−b11d1−8iδ2Þw2z2

þða20−b02Þd1wz3Þ: (34)

Hence, ~Z and ~W in system (32) are two polynomials with degree 9.

Theorem 10. For system (32) with δ ¼ 0, we can derive successively the terms of the formal series (27),
such that (28) holds (cαβ, μm in Appendix A).

Applying the powerful symbolic computation function of the Mathematica system and the
recursive formulas in Theorem 10, and from Remark 5, we obtain the first three singular point
quantities as follows

μ1 ¼ −d1ða11−b11Þ,
μ2 ¼ d21ðb20b02−a20a02Þ,
μ3 ¼ −2id21ða02a20 þ b02b20−a02b02−a20b20Þ

(35)

In the above expression of each μk; k ¼ 2; 3, we have already let μ1 ¼ ⋯ ¼ μk−1 ¼ 0.

Thus, from Theorem 9 and Eqs. (35) and (31), we have
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Theorem 11. For the flow on center manifold of system (30),δ¼0, the first three focal values
v2iþ1ð2πÞ ði ¼ 1; 2; 3Þ of the origin are as follows

v3 ¼ 2πd1B1;
v5 ¼ 2πd21 ðA2B0 þ A0B2Þ,
v7 ¼ 2πd21 ½ðA0−A2Þ2 þ ðB0 þ B2Þ2�

(36)

Theorem 12. For the flow on center manifold of (30)δ¼0, the origin is a three-order weak focus, i.e.,
v3 ¼ v5 ¼ 0; v7 ≠ 0 if and only if

B1 ¼ 0; A2B0 þ A0B2 ¼ 0 and ðA0−A2Þ2 þ ðB0 þ B2Þ2 ≠ 0 (37)

Remark 6. For the coefficients of system (30)δ¼0, there exists necessarily a group of critical
values: Ai ¼ A�

i ; Bi ¼ B�
i ði ¼ 0; 1; 2Þ such that the conditions (37) hold, for example:

A�
1 ¼ B�

1 ¼ 0; A�
0 ¼ B�

0 ¼ 1; B�
2 ¼ −A�

2 ¼ 13 (38)

Now we consider Hopf bifurcation of limit cycles from the origin for perturbed system (30).

Theorem 13. At least three limit cycles can be bifurcated from the origin of system (30) restricted to the
center manifold, which lie in the neighborhood of the origin.

Proof. From Theorem 11, one can easily calculate the Jacobian determinant with respect to the
functions v3;v5;v7 and variables B1;B0;A0,

J ¼ ∂ðv3;v5;v7Þ
∂ðB1;B0;A0Þ ¼ −2π3d51½8ðA0A2−A2

2−B0B2−B2
2Þ� (39)

Considering the conditions (37) of Theorem 12 and substituting the group of critical values of
Eq. (38) into Eq. (39), we obtain J ¼ 649π3d51 ≠ 0. Thus, we take some appropriate perturbations
for the coefficients of system (32) to make the following two conditions:

ðv1ð2πÞ−1Þv3 < 0; v3v5 < 0; v5v7 < 0 (40)

and

je2πδ−1j≪jv3j≪jv5j≪jv7j (41)

hold, one must obtain that the succession function on the center manifold has three small real
positive roots, just the system (30) has at least three limit cycles in the neighborhood of the
origin. We can refer to references [16, 26, 27] for more details about the construction of limit
cycles.

Remark 7. In general, in order to find more limit cycles in the neighborhood of the origin of
system (30), we should add more higher order terms of ~uðz;wÞ determined in Eq. (33). Here we
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2 ¼ −A�
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propose a conjecture that system (30) has at most three limit cycles through Hopf bifurcation
restricted to a center manifold from the origin. However, the center conditions or integrability
at the degenerate singularity will need further study.

4. Conclusion and discussion

The two classes of methods for computing the nondegenerate and degenerate singular point
quantities on center manifold of the three-, four-, and more higher dimensional polynomial
systems are discussed here, and more as the applications of them, the multiple limit cycles or
Hopf cyclicity of two typical nonlinear dynamic systems restricted to the corresponding center
manifolds are investigated.

Appendix A

c½α;β� ¼
1

5ðα−βÞ d1{b
2
02ð3β−2αÞ þ a20b02ð20−β−αÞ−a220ð20þ 2β−3αÞÞ

· d1c½α−17;β−13� þ ðða11b02 þ a20b11Þð20−β−αÞ−2b02b11ð5−3βþ 2αÞ−
2a11a20ð15þ 2β−3αÞÞd1c½α−16;β−14� þ ðða02b02 þ a11b11 þ a20b20Þð20−
β−αÞ−ða211 þ 2a02a20Þð10þ 2β−3αÞ−ðb211 þ 2b02b20Þð10−3βþ 2αÞÞd1c½α−
15;β−15� þ ðða02b11 þ a11b20Þð20−β−αÞ−2b11b20ð15−3βþ 2αÞ−2a02a11ð5þ
2β−3αÞÞd1c½α−14;β−16� þ ða02b20ð20−β−αÞ−b220ð20−3βþ 2αÞ−
a202ð2β−3αÞÞd1c½α−13;β−17�−b02ð5þ 3β−2αÞ þ a20ð5þ 2β−3αÞÞic½α−
6;β−4�−ðb11ð3β−2αÞ þ a11ð2β−3αÞÞi c½α−5;β−5�
þðb20ð5−3βþ 2αÞ þ a02ð5−2βþ 3αÞÞic½α−4;β−6�

~μ ½α� ¼ −
d1
5
{ða220ðα−20Þ þ 2a20b02ð10−αÞ þ b202αÞd1c½α−17;α−13�

þð2a11a20ðα−15Þ−2ða11b02 þ a20b11Þðα−10Þ þ 2b02b11ðα−5ÞÞd1c½α−
16;α−14� þ ðða211 þ 2a02a20−2a02b02−2a11b11 þ b211−2a20b20 þ 2b02b20Þðα−
10ÞÞd1c½α−15;α−15� þ 2ðða02b11 þ a11b20Þð10−αÞ−b11b20ð15−αÞ−a02a11ð5−
αÞÞd1c½α−14;α−16� þ ðb220ðα−20Þ−2ða02b20Þðα−10Þ þ a202αÞd1c½α−13;α−
17� þ ða20ðα−5Þ−b02ð5þ αÞÞi c½α−6;α−4� þ ða11−b11Þαii c½α−5;α−
5�−ðb20ðα−5Þ−a02ð5þ αÞÞi c½α−4;α−6�},
μm ¼ ~μ½5m�,

where c½k;j� ¼ ckj.
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Abstract

The structure equations for a two-dimensional manifold are introduced and two results
based on the Codazzi equations pertinent to the study of isometric surfaces are obtained
from them. Important theorems pertaining to isometric surfaces are stated and a theo-
rem due to Bonnet is obtained. A transformation for the connection forms is developed.
It is proved that the angle of deformation must be harmonic, and that the differentials of
many of the important variables generate a closed differential ideal. This implies that a
coordinate system exists in which many of the variables satisfy particular ordinary
differential equations, and these results can be used to characterize Bonnet surfaces.

Keywords: manifold, differential form, closed, isometric, differential equation, Bonnet
surface

1. Introduction

Bonnet surfaces in three-dimensional Euclidean space have been of great interest for a number
of reasons as a type of surface [1, 2] for a long time. Bonnet surfaces are of nonconstant mean
curvature that admits infinitely many nontrivial and geometrically distinct isometries, which
preserve the mean curvature function. Nontrivial isometries are ones that do not extend to

isometries of the whole space E3. Considerable interest has resulted from the fact that the
differential equations that describe the Gauss equations are classified by the type of related
Painlevé equations they correspond to and they are integrated in terms of certain
hypergeometric transcendents [3–5]. Here the approach first given by Chern [6] to Bonnet
surfaces is considered. The development is accessible with many new proofs given. The main
intention is to end by deriving an intrinsic characterization of these surfaces which indicates

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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they are analytic. Moreover, it is shown that a type of Lax pair can be given for these surfaces
and integrated. Several of the more important functions such as the mean curvature are seen to
satisfy nontrivial ordinary differential equations.

Quite a lot is known about these surfaces. With many results the analysis is local and takes
place under the assumptions that the surfaces contain no umbilic points and no critical points
of the mean curvature function. The approach here allows the elimination of many assump-
tions and it is found the results are not too different from the known local ones. The statements
and proofs have been given in great detail in order to help illustrate and display the intercon-
nectedness of the ideas and results involved.

To establish some information about what is known, consider an oriented, connected, smooth

open surface M in E3 with nonconstant mean curvature function H. Moreover, suppose M
admits infinitely many nontrivial and geometrically distinct isometries preserving H. Suppose
U is the set of umbilic points of M and V the set of critical points of H. Many global facts are
known with regard to U;V and H, and a few will now be mentioned. The set U consists of
isolated points, even if there exists only one nontrivial isometry preserving the mean curva-
ture, moreover,U⊂V [7, 8]. Interestingly, there is no point in V−U at which all order derivatives
of H are zero, and V cannot contain any curve segment. If the function by which a nontrivial
isometry preserving the mean curvature rotates the principal frame is considered, as when
there are infinitely many isometries, this function is a global function on M continuously
defined [9–11]. As first noted by Chern [6], this function is harmonic. The analysis will begin
by formulating the structure equations for two-dimensional manifolds.

2. Structure equations

Over M, there exists a well-defined field of orthonormal frames, which is written as x, e1; e2; e3
such that x∈M, e3 is the unit normal at x, and e1; e2 are along principal directions [12]. The
fundamental equations for M have the form

dx ¼ ω1e1 þ ω2 e2; de1 ¼ ω12e2 þ ω13e3; de2 ¼ −ω12e1 þ ω23e3; de3 ¼ −ω13e1−ω23e2: (1)

Differentiating each of these equations in turn, results in a large system of equations for the
exterior derivatives of the ωi and ωij, as well as a final equation which relates some of the forms
[13]. This choice of frame and Cartan's lemma allows for the introduction of the two principal
curvatures which are denoted by a and c at x by writing

ω12 ¼ hω1 þ kω2; ω13 ¼ aω1; ω23 ¼ cω2: (2)

Suppose that a > c in the following. The mean curvature of M is denoted by H and the
Gaussian curvature by K. They are related to a and c as follows

H ¼ 1
2
ðaþ cÞ; K ¼ a � c: (3)

The forms which appear in Eq. (1) satisfy the fundamental structure equations which are
summarized here [14],
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dω1 ¼ ω12∧ω2; dω2 ¼ ω1∧ω12

dω13 ¼ ω12∧ω23 dω23 ¼ ω13∧ω12;

dω12 ¼ ac ω2∧ω1 ¼ −K ω1∧ω2:

(4)

The second pair of equations of (4) is referred to as the Codazzi equation and the last equation
is the Gauss equation.

Exterior differentiation of the two Codazzi equations yields

ðda−ða−cÞhω2Þ∧ω1 ¼ 0; ðdc−ða−cÞkω1Þ∧ω2 ¼ 0: (5)

Cartan's lemma can be applied to the equations in (5). Thus, there exist two functions u and v
such that

1
a−c

da−hω2 ¼ ðu−kÞω1;
1
a−c

dc−kω1 ¼ ðv−hÞω2: (6)

Subtracting the pair of equations in (6) gives an expression for dlogða−cÞ

dlogða−cÞ ¼ ðu−2kÞ ω1−ðv−2hÞ ω2: (7)

Define the variable J to be

J ¼ 1
2
ða−cÞ > 0: (8)

It will appear frequently in what follows. Equation (7) then takes the form

dlogJ ¼ ðu−2kÞω1−ðv−2hÞω2: (9)

The ωi constitute a linearly independent set. Two related coframes called ϑi and αi can be
defined in terms of the ωi and the functions u and v as follows,

ϑ1 ¼ uω1 þ vω2; ϑ2 ¼ −vω1 þ uω2;

α1 ¼ uω1−vω2; α2 ¼ vω1 þ uω2:
(10)

These relations imply that ϑ1 ¼ 0 is tangent to the level curves specified by H equals constant
and α1 ¼ 0 is its symmetry with respect to the principal directions.

Squaring both sides of the relation 2H ¼ aþ c and subtracting the relation 4K ¼ 4ac yields

4ðH2−KÞ ¼ ða−cÞ2. The Hodge operator, denoted by �, will play an important role throughout.
It produces the following result on the basis forms ωi,
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�ω1 ¼ ω2; �ω2 ¼ −ω1; �2 ¼ −1: (11)

Moreover, adding the expressions for da and dc given in Eq. (6), there results

1
a−c

ðdaþ dcÞ ¼ ðu−kÞω1 þ hω2 þ ðv−kÞω2 þ kω1 ¼ uω1 þ vω2 ¼ ϑ1: (12)

Finally, note that

α1 þ 2 � ω12 ¼ uω1−vω2 þ 2 � ðhω1 þ kω2Þ ¼ ðu−2kÞω1−ðv−2hÞω2 ¼ dlogJ: (13)

Therefore, the Codazzi equations (12) and (13) can be summarized using the definitions of H
and J as

dH ¼ Jϑ1; dlogJ ¼ α1 þ 2 � ω12: (14)

3. A theorem of Bonnet

Suppose that M� is a surface which is isometric to M such that the principal curvatures are
preserved [10–12]. Denote all quantities which pertain to M� with the same symbols but with
asterisks, as for example

a� ¼ a; c� ¼ c:

The same notation will be applied to the variables and forms which pertain to M and M�.
When M and M� are isometric, the forms ωi are related to the ω�

i by the following transforma-
tion

ω�
1 ¼ cos τ ω1− sin τ ω2; ω�

2 ¼ sin τ ω1 þ cos τ ω2: (15)

Theorem 3.1 Under the transformation of coframe given by Eq. (15), the associated connection
forms are related by

ω�
12 ¼ ω12−dτ: (16)

Proof: Exterior differentiation of ω�
1 produces

dω�
1 ¼ − sin τ dτ∧ω1 þ cos τ dω1− cos τ dτ∧ω2− sin τ dω2

¼ dτ∧ð− sin τω1− cos τω2Þ þ cos τ ω12∧ω2− sin τω1∧ω12 ¼ ð−dτþ ω12Þ∧ω�
2:

Similarly, differentiating ω�
2 gives

dω�
2 ¼ cos τ∧ω1 þ sin τ dω1− sin τ dτ∧ω2 þ cos τ dω2

¼ dτ∧ð cos τω1− sin τω2Þ þ sin τω12∧ω2 þ cos τω1∧ω12 ¼ ω�
1∧ð−dτþ ω12Þ:
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There is a very important result that can be developed at this point. In the case that a ¼ a� and
c ¼ c�, the Codazzi equations imply that

α1 þ 2 � ω12 ¼ dlogða−cÞ ¼ dlogða�−c�Þ ¼ α�
1 þ 2 � ω�

12:

Apply the operator � to both sides of this equation, we obtain

α2−2ω12 ¼ α�
2−2ω

�
12:

Substituting for ω�
12 from Theorem 3.1, this is

2dτ ¼ α2−α�
2: (17)

Lemma 3.1

ϑ1 ¼ ϑ�
1:

Proof: This can be shown in two ways. First from Eq. (15), express the ωi in terms of the ω�
i

ω1 ¼ cos τ ω�
1 þ sin τ ω�

2; ω2 ¼ − sin τ ω�
1 þ cos τ ω�

2: (18)

Therefore,

ϑ1 ¼ uω1 þ vω2 ¼ uð cos τ ω�
1 þ sin τω�

2Þ þ vð− sin τω�
1 þ cos τω�

2Þ ¼ u�ω�
1 þ v�ω�

2 ¼ ϑ�
1;

where u� ¼ u cos τ−v sin τ and v� ¼ u sin τþ v cos τ. □

Lemma 3.1 also follows from the fact that dH ¼ dH� and Eq. (8).

Lemma 3.2
α�
2 ¼ sin ð2τÞ α1 þ cos ð2τÞ α2:

Proof:
α�
2 ¼ ðu sin τþ v cos τÞð cos τω1− sin τω2Þ þ ðu cos τ−v sin τÞð sin τω1 þ cos τω2Þ
¼ ðu sin ð2τÞ þ v cos ð2τÞÞω1 þ ð−v sin ð2τÞ þ u cos ð2τÞÞω2
¼ sin ð2τÞα1 þ cos ð2τÞα2:

Substituting α�
2 from Lemma 3.2 into Eq. (13), dτ can be written as

dτ ¼ 1
2
ðα2− sin ð2τÞα1− cos ð2τÞα2Þ ¼ 1

2
ðð1− cos ð2τÞÞα2− sin ð2τÞα1Þ: (19)

Introduce the new variable t ¼ cot ðτÞ so dt ¼ −csc2ðτÞ dτ and sin τ ¼ 1ffiffiffiffiffiffiffi
1þt2

p , cos τ ¼ 1ffiffiffiffiffiffiffi
1þt2

p ,

hence the following lemma.
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Lemma 3.3 dt ¼ tα1−α2:

This is the total differential equation which must be satisfied by the angle τ of rotation of the
principal directions during the deformation. If the deformation is to be nontrivial, it must be
that this equation is completely integrable.

Theorem 3.2 A surface M admits a nontrivial isometric deformation that keeps the principal
curvatures fixed if and only if

dα1 ¼ 0; dα2 ¼ α1∧α2: (20)

Proof: Differentiating both sides of Lemma 3.3 gives

dt∧α1 þ tdα1−dα2 ¼ ðtα1−α2Þ∧α1 þ tdα1−dα2 ¼ 0:

Equating the coefficients of t to zero gives the result (20).

This theorem seems to originate with Chern [6] and is very useful because it gives the exterior
derivatives of the αi. When the mean curvature is constant, dH ¼ 0, hence it follows from
Eq. (14) that ϑ1 ¼ 0. This implies that u ¼ v ¼ 0, and so α1 and α2 must vanish. Hence, dt ¼ 0
which implies that, since the αi is linearly independent, t equals a constant. Thus, we arrive at a
theorem originally due to Bonnet.

Theorem 3.3 A surface of constant mean curvature can be isometrically deformed preserving
the principal curvatures. During the deformation, the principal directions rotate by a fixed
angle.

4. Connection form associated to a coframe and transformation properties

Given the linearly independent one forms ω1;ω2, the first two of the structure equations
uniquely determine the form ω12. The ω1;ω2 is called the orthonormal coframe of the
metric

ds2 ¼ ω2
1 þ ω2

2,

and ω12 is the connection form associated with it.

Theorem 4.1 Suppose that A > 0 is a function on M. Under the change of coframe

ω�
1 ¼ Aω1; ω�

2 ¼ Aω2, (21)

the associated connection forms are related by

ω�
12 ¼ ω12 þ � dlogA: (22)

Proof: The structure equations for the transformed system are given as
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the associated connection forms are related by
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dω�
1 ¼ ω�

12∧ω
�
2; dω�

2 ¼ ω�
1∧ω

�
12:

Using Eq. (21) to replace the ω�
i in these, we obtain

dlog A∧ω1 þ dω1 ¼ ω�
12∧ω2; dlogA∧ω2 þ dω2 ¼ ω1∧ω�

12:

The ωi satisfy a similar system of structure equations, so replacing dωi here yields

ðω�
12−ω12Þ∧ω2 ¼ dlog A∧ω1; ðω�

12−ω12Þ∧ω1 ¼ −dlog A∧ω2:

Since the form ωi satisfies the equations �ω1 ¼ ω2 and �ω2 ¼ −ω1, substituting these
relations into the above equations and using Ωk ∧ ð�ΘkÞ ¼ Θk ∧ ð�ΩkÞ, we obtain that in
the form

ω1∧ � ðω�
12−ω12Þ ¼ −ω1 ∧ d log A; ω2 ∧ � ðω�

12−ω12Þ ¼ −ω2∧ d log A:

Cartan's lemma can be used to conclude from these that there exist functions f and g such
that

�ðω�
12−ω12Þ ¼ −dlog A−fω1; � ðω�

12−ω12Þ ¼ −dlog Aþ gω2:

Finally, apply � to both sides and use �2 ¼ −1 to obtain

ω�
12−ω12 ¼ �dlogAþ fω2; ω�

12−ω12 ¼ �dlogAþ gω1:

The forms ωi are linearly independent, so for these two equations to be compatible, it suffices
to put f ¼ g ¼ 0, and the result follows. □

For the necessity in the Chern criterion, Theorem 3.2, no mention of the set V of critical points
of H is needed. In fact, when H is constant, this criterion is met and the sufficiency also holds
with τ constant. However, when H is not identically constant, we need to take the set V of
critical points into account for the sufficiency. In this case, M−V is also an open, dense, and
connected subset of M. On this subset J > 0 and the function A can be defined in terms of the
functions u and v as

A ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
> 0: (23)

To define more general transformations of the ωi, define the angle ψ as

u ¼ A cos ðψÞ; v ¼ A sin ðψÞ: (24)

This angle, which is defined modulo 2π, is continuous only locally and could be discontinuous
in a nonsimply connected region of M−V. With A and ψ related to u and v by Eq. (24), the
forms ϑi and αi can be written in terms of A and ψ as
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ϑ1 ¼ Að cos ðψÞ ω1 þ sin ðψÞω2Þ; ϑ2 ¼ Að− sin ðψÞ ω1 þ cos ðψÞ ω2Þ;

α1 ¼ Að cos ðψÞ ω1− sin ðψÞ ω2Þ; α2 ¼ Að sin ðψÞ ω1 þ cos ðψÞ ω2Þ: (25)

The forms ωi, ϑi, αi define the same structure on M and we let ω12, ϑ12, α12 be the connection
forms associated to the coframes ω1;ω2; ϑ1;ϑ2; α1;α2. The next theorem is crucial for what
follows.

Theorem 4.2
ϑ12 ¼ dψþ ω12 þ �d log A ¼ 2dψþ α12: (26)

Proof: Each of the transformations which yield the ϑi and αi in the form (25) can be
thought of as a composition of the two transformations which occur in the Theorems 3.1
and 4.1. First apply the transformation ωi ! Aωi and τ ! −ψ with ω�

i ! ϑi in Eq. (15), we
get the ϑi equations in Eq. (25). Invoking Theorems 3.1 and 4.1 in turn, the first result is
obtained

ϑ12 ¼ dψþ ω12 þ � dlog A:

The transformation to the αi is exactly similar except that τ ! ψ, hence

α12 ¼ −dψþ ω12 þ � dlog A:

This implies �dlog A ¼ α12 þ dψ−ω12. When replaced in the first equation of (26), the second
equation appears. Note that from Theorem 3.2, α12 ¼ α2, so the second equation can be given
as ϑ12 ¼ 2dψþ α2.

Differentiating the second equation in Eq. (14) and using dα1 ¼ 0, it follows that

d � ω12 ¼ 0: (27)

Lemma 4.1 The angle ψ is a harmonic function d � dψ ¼ 0 and moreover, d � ϑ12 ¼ 0.

Proof: From Theorem 4.2, it follows by applying � through Eq. (26) that

�ϑ12 ¼ �ω12 þ �dψ−dlogA ¼ 2 � dψ−α1: (28)

Exterior differentiation of this equation using d � ω12 ¼ 0 immediately gives

d � dψ ¼ 0:

This states that ψ is a harmonic function. Equation (28) also implies that d � ϑ12 ¼ 0.
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5. Construction of the closed differential ideal associated with M

Exterior differentiation of the first equation in (14) and using the second equation pro-
duces

dϑ1 þ ðα1 þ 2 � ω12Þ∧ϑ1 ¼ 0: (29)

The structure equation for the ϑi will be needed,

dϑ1 ¼ ϑ12∧ϑ2 ¼ − � ϑ12∧ϑ1: (30)

From the second equation in Eq. (26), we have �ω12−d logAþ α1 ¼ �dψ, and putting this in the
first equation of Eq. (26), we find

− � ϑ12 þ α1 þ 2 � ω12 ¼ 2 d logA: (31)

Using Eq. (31) in Eq. (30),

dϑ1 þ ðα1 þ 2 � ω12Þ∧ϑ1 ¼ 2 d logA∧ϑ1: (32)

Replacing dϑ1 by means of Eq. (29) implies the following important result

d log A∧ϑ1 ¼ 0: (33)

Equation (33) and Cartan's lemma imply that there exists a function B such that

d log A ¼ Bϑ1: (34)

This is the first in a series of results which relates many of the variables in question such as J, B,
and ϑ12 directly to the one-form ϑ1. To show this requires considerable work. The way to
proceed is to use the forms αi in Theorem 3.2 because their exterior derivatives are known.
For an arbitrary function on M, define

df ¼ f 1α1 þ f 2α2: (35)

Differentiating Eq. (35) and extracting the coefficient of α1∧α2, we obtain

f 21−f 12 þ f 2 ¼ 0: (36)

In terms of the αi, �dψ ¼ ψ1α2−ψ2α1, Lemma 4.1 yields

ψ11 þ ψ22 þ ψ1 ¼ 0: (37)

Finally, since �ϑ12 ¼ 2 � dψ−α1, substituting for �dψ, we obtain that
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�ϑ12 ¼ −ð2ψ2 þ 1Þα1 þ 2ψ1 α2: (38)

Differentiating structure equation (30) and using Lemma 4.1,

�ϑ12∧ dϑ1 ¼ 0;

so,

�ϑ12∧ϑ12∧ϑ2 ¼ 0

This equation implies that either ϑ12 or �ϑ12 is a multiple by a function of the form ϑ2. Hence,
for some function p,

ϑ12 ¼ −pϑ2; �ϑ12 ¼ pϑ1;

ϑ12 ¼ pϑ1; �ϑ12 ¼ pϑ2,
(39)

Substituting the first line of Eq. (39) back into the structure equation, we have

dϑ1 ¼ 0: (40)

The second line yields simply dϑ1 ¼ pϑ1∧ϑ2. Only the first case is examined now. Substituting
Eq. (40) into Eq. (29), the following important constraint is obtained

ðα1 þ 2 � ω12Þ∧ϑ1 ¼ 0: (41)

Theorem 5.1 The function ψ satisfies the equation

2ψ1 cos ð2ψÞ þ ð2ψ2 þ 1Þ sin ð2ψÞ ¼ 0: (42)

Proof: By substituting �dψ into Eq. (28) we have

�ϑ12 ¼ 2 � ðψ1α1 þ ψ2α2Þ−α1 ¼ −ð2ψ2 þ 1Þα1 þ 2ψ1α2: (43)

Substituting Eq. (43) into Eq. (26) and solving for �ω12, we obtain that

�ω12 ¼ �ϑ12− � dψþ dlog A ¼ �ϑ12− � dψþ Bϑ1 ¼ �dψ−α1 þ Bϑ1:

This can be put in the equivalent form

2 � ω12 þ α1 ¼ 2 � dψ−α1 þ 2Bϑ1: (44)

Taking the exterior product with ϑ1 and using dψ1, we get
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ðα1 þ 2 � ω12Þ∧ϑ1 ¼ ð2 � dψ−α1Þ∧ϑ1 ¼ ð2ψ1 � α1 þ 2ψ2 � α2−α1Þ∧ϑ1
¼ ð2ψ1 cos ð2ψÞ þ ð2ψ2 þ 1Þ sin ð2ψÞÞϑ2∧ϑ1:

Imposing the constraint (41), the coefficient of ϑ1∧ϑ2 can be equated to zero. This produces the
result (42).

As a consequence of Theorem 5.1, a new function C can be introduced such that

2ψ1 ¼ C sin ð2ψÞ; 2ψ2 þ 1 ¼ −C cos ð2ψÞ: (45)

Differentiation of each of these with respect to the αi basis, we get for i ¼ 1; 2 that

2ψ1i ¼ Ci sin ð2ψÞ þ 2ψi C cos ð2ψÞ; 2ψ2i ¼ −Ci cos ð2ψÞ þ 2ψi C sin ð2ψÞ:

Substituting f ¼ ψ into Eq. (36) and using the fact that ψ satisfies Eq. (37) gives the pair of
equations

−C1 cos ð2ψÞ−C2 sin ð2ψÞ þ 2ψ1C sin ð2ψÞ−ð2ψ2 þ 1ÞC cos ð2ψÞ−1 ¼ 0;
C1 sin ð2ψÞ−C2 cos ð2ψÞ þ 2ψ1C cos ð2ψÞ þ ð2ψ2 þ 1ÞC sin ð2ψÞ ¼ 0:

This linear system can be solved for C1 and C2 to get

C1 þ Cð2ψ2 þ 1Þ þ cos ð2ψÞ ¼ 0; C2−2Cψ1 þ sin ð2ψÞ ¼ 0: (46)

By differentiating each of the equations in (46), it is easy to verify that C satisfies Eq. (36),
namely, C12−C21−C2 ¼ 0. Hence, there exist harmonic functions which satisfy Eq. (42). The
solution depends on two arbitrary constants, the values of ψ and C at an initial point.

Lemma 5.1
dC ¼ ðC2−1Þϑ1; � ϑ12 ¼ Cϑ1: (47)

Proof: It is easy to express the ϑi in terms of the αi,

ϑ1 ¼ cos ð2ψÞα1 þ sin ð2ψÞα2; ϑ2 ¼ − sin ð2ψÞα1 þ cos ð2ψÞα2: (48)

Therefore, using Eqs. (45) and (46), it is easy to see that

dC ¼ C1α1 þ C2α2 ¼ ðC2−1Þð cos ð2ψÞα1 þ sin ð2ψÞα2Þ ¼ ðC2−1Þϑ1:

Using Eq. (45), it follows that

�ϑ12 ¼ −ð2ψ2 þ 1Þα1 þ 2ψ1α2 ¼ C cos ð2ψÞα1 þ C sin ð2ψÞα2

¼ Cð cos ð2ψÞα1 þ sin ð2ψÞα2Þ ¼ Cϑ1:

This implies that ϑ12 ¼ −Cϑ2.

An Intrinsic Characterization of Bonnet Surfaces Based on a Closed Differential Ideal
http://dx.doi.org/10.5772/67008

31



It is possible to obtain formulas for B1;B2. Using Eq. (48) in Eq. (34), the derivatives of logA can
be written down

ðlogAÞ1 ¼ B cos ð2ψÞ; ðlogAÞ2 ¼ B sin ð2ψÞ: (49)

Differentiating each of these in turn, we obtain for i ¼ 1; 2,

ðlogAÞ1i ¼ Bi cos ð2ψÞ−2Bψi sin ð2ψÞ; ðlogAÞ2i ¼ Bi sin ð2ψÞ þ 2Bψi cos ð2ψÞ: (50)

Taking f ¼ logA in Eq. (36) produces a first equation for the Bi,

B1 sin ð2ψÞ þ 2Bψ1 cos ð2ψÞ−B2 cos ð2ψÞ þ 2Bψ2 sin ð2ψÞ þ B sin ð2ψÞ ¼ 0: (51)

If another equation in terms of B1 and B2 can be found, it can be solved simultaneously with
Eq. (51). There exists such an equation and it can be obtained from the Gauss equation in (4)
which we put in the form

dω12 ¼ −ac ω1∧ω2 ¼ −ac A−2 α1∧α2:

Solving Eq. (26) for ω12, we have

ω12 ¼ dψþ α2 þ ðlogAÞ2α1−ðlogAÞ1α2:

The exterior derivative of this takes the form,

dω12 ¼ ½1−ðlogAÞ11−ðlogAÞ22−ðlogAÞ1�α1∧α2:

Putting this in the Gauss equation,

−ðlogAÞ11−ðlogAÞ22 þ {−ðlogAÞ1 þ 1}þ acA−2 ¼ 0:

Replacing the second derivatives from Eq. (50), we have the required second equation

−B1 cos ð2ψÞ−B2 sin ð2ψÞ þ B{2ψ1 sin ð2ψÞ−ð2ψ2 þ 1Þ cos ð2ψÞ}þ 1þ acA−2 ¼ 0: (52)

Solving Eqs. (51) and (52) together, the following expressions for B1 and B2 are obtained

B1 þ Bð2ψ2 þ 1Þ−ð1þ acA−2Þ cos ð2ψÞ ¼ 0; B2−2Bψ1−ð1þ acA−2Þ sin ð2ψÞ ¼ 0: (53)

Given these results for B1 and B2, it is easy to produce the following two Lemmas.

Lemma 5.2
dB ¼ ðBCþ 1þ acA−2Þϑ1; dlogJ ¼ ðCþ 2BÞϑ1: (54)

Proof: Substituting Eq. (53) into dB, we get
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It is possible to obtain formulas for B1;B2. Using Eq. (48) in Eq. (34), the derivatives of logA can
be written down

ðlogAÞ1 ¼ B cos ð2ψÞ; ðlogAÞ2 ¼ B sin ð2ψÞ: (49)

Differentiating each of these in turn, we obtain for i ¼ 1; 2,

ðlogAÞ1i ¼ Bi cos ð2ψÞ−2Bψi sin ð2ψÞ; ðlogAÞ2i ¼ Bi sin ð2ψÞ þ 2Bψi cos ð2ψÞ: (50)

Taking f ¼ logA in Eq. (36) produces a first equation for the Bi,

B1 sin ð2ψÞ þ 2Bψ1 cos ð2ψÞ−B2 cos ð2ψÞ þ 2Bψ2 sin ð2ψÞ þ B sin ð2ψÞ ¼ 0: (51)

If another equation in terms of B1 and B2 can be found, it can be solved simultaneously with
Eq. (51). There exists such an equation and it can be obtained from the Gauss equation in (4)
which we put in the form

dω12 ¼ −ac ω1∧ω2 ¼ −ac A−2 α1∧α2:

Solving Eq. (26) for ω12, we have

ω12 ¼ dψþ α2 þ ðlogAÞ2α1−ðlogAÞ1α2:

The exterior derivative of this takes the form,

dω12 ¼ ½1−ðlogAÞ11−ðlogAÞ22−ðlogAÞ1�α1∧α2:

Putting this in the Gauss equation,

−ðlogAÞ11−ðlogAÞ22 þ {−ðlogAÞ1 þ 1}þ acA−2 ¼ 0:

Replacing the second derivatives from Eq. (50), we have the required second equation

−B1 cos ð2ψÞ−B2 sin ð2ψÞ þ B{2ψ1 sin ð2ψÞ−ð2ψ2 þ 1Þ cos ð2ψÞ}þ 1þ acA−2 ¼ 0: (52)

Solving Eqs. (51) and (52) together, the following expressions for B1 and B2 are obtained

B1 þ Bð2ψ2 þ 1Þ−ð1þ acA−2Þ cos ð2ψÞ ¼ 0; B2−2Bψ1−ð1þ acA−2Þ sin ð2ψÞ ¼ 0: (53)

Given these results for B1 and B2, it is easy to produce the following two Lemmas.

Lemma 5.2
dB ¼ ðBCþ 1þ acA−2Þϑ1; dlogJ ¼ ðCþ 2BÞϑ1: (54)

Proof: Substituting Eq. (53) into dB, we get
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dB ¼ B1α1 þ B2α2 ¼ ðBCþ 1þ acA−2Þð cos ð2ψÞα1 þ sin ð2ψÞα2Þ ¼ ðBCþ 1þ acA−2Þ ϑ1:

Moreover,

dlogJ ¼ α1 þ 2 � ω12 ¼ α1 þ 2ð�ϑ12− � dψþ dlogAÞ ¼ α1 þ 2 � ϑ12−2 � dψþ 2dlogA
¼ �ϑ12 þ 2dlogA ¼ Cϑ1 þ 2Bϑ1:

Lemma 5.3

dψ ¼ −
1
2
sin ð2ψÞϑ1−

1
2
ðCþ cos ð2ψÞÞϑ2: (55)

Proof:
2dψ ¼ 2ψ1α1 þ 2ψ2α2 ¼ C sin ð2ψÞα1−ðC cos ð2ψÞ þ 1Þα2

¼ C sin ð2ψÞð cos ð2ψÞϑ1− sin ð2ψÞϑ2Þ−ðC cos ð2ψÞ þ 1Þð sin ð2ψÞϑ1 þ cos ð2ψÞϑ2Þ
¼ − sin ð2ψÞϑ1−ðCþ cos ð2ψÞÞϑ2:

In the interests of completeness, it is important to verify the following theorem.

Theorem 5.2 The function B satisfies Eq. (36) provided ψ satisfies both Eqs. (37) and (41).

Proof: Differentiating B1 and B2 given by Eq. (53), the left side of Eq. (36) is found to be

B21−B12 þ B2 ¼ 2B1ψ1 þ B2ð2ψ2 þ 1Þ þ 2Bðψ11 þ ψ22 þ ψ1Þ þ A−2ððacÞ1 sin ð2ψÞ−ðacÞ2 sin ð2ψÞÞ
−2acBA−2ð cos ð2ψÞ sin ð2ψÞ− sin ð2ψÞ cos ð2ψÞÞ þ ð1þ acA−2Þð2ψ1 cos ð2ψÞ þ ð2ψ2 þ 1Þ sin ð2ψÞÞ
¼ 2ð1þ acA−2Þð2ψ1 cos ð2ψÞ þ ð2ψ2 þ 1Þ sin ð2ψÞÞ þ A−2ððacÞ1 sin ð2ψÞ−ðacÞ2 cos ð2ψÞÞ:

1010 To simplify this, Eq. (37) has been substituted. Using Eq. (48) and �dðacÞ ¼ ðacÞ1α2−ðacÞ2α1, it
follows that

�dðacÞ∧ϑ2 ¼ ððacÞ1 sin ð2ψÞ−ðacÞ2 cos ð2ψÞÞα1∧α2:

12 Note that the coefficient of α1∧α2 in this appears in the compatibility condition. To express it in

13 another way, begin by finding the exterior derivative of 4ac ¼ ðaþ cÞ2−ða−cÞ2,

4dðacÞ ¼ 2ðaþ cÞða−cÞϑ1−2ða−cÞ2ðα1 þ 2 � ω12Þ:

14 Applying the Hodge operator to both sides of this, gives upon rearranging terms

2 � dðacÞ
a−c

¼ ðaþ cÞϑ2−ða−cÞðα2−2ω12Þ:

15 Consequently, we can write

−
2

ða−cÞ2 � dðacÞ∧ϑ2 ¼ ðα2−2ω12Þ∧ϑ2 ¼ −ð2ψ1 cos ð2ψÞ þ ð2ψ2 þ 1Þ sin ð2ψÞÞα1∧α2:

16 Therefore, it must be that
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−ðacÞ1 sin ð2ψÞ þ ðacÞ2 cos ð2ψÞ ¼ −
1
2
ða−cÞ2ð2ψ1 cos ð2ψÞ þ ð2ψ2 þ 1Þ sin ð2ψÞÞ:

It follows that when f ¼ B, Eq. (36) finally reduces to the form

ð1þH2A−2Þ½2ψ1 cos ð2ψÞ þ ð2ψ2 þ 1Þ sin ð2ψÞ� ¼ 0:

The first factor is clearly nonzero, so the second factor must vanish. This of course is equivalent
to the constraint (41).

6. Intrinsic characterization of M

During the prolongation of the exterior differential system, the additional variables ψ, A, B, and
C have been introduced. The significance of the appearance of the function C, is that the process
terminates and the differentials of all these functions can be computed without the need to
introduce more functions. This means that the exterior differential system has finally closed.

The results of the previous section, in particular, the lemmas, can be collected such that they
justify the following.

Proposition 6.1 The differential system generated in terms of the differentials of the variables
ψ, A, B, and C is closed. The variables H; J;A;B;C remain constant along the ϑ2-curves so
ϑ1 ¼ 0. Hence, an isometry that preserves H must map the ϑ1, ϑ2 curves onto the
corresponding ϑ�

1, ϑ
�
2 curves of the associated surface M� which is isometric to M.

Along the ϑ1, ϑ2 curves, consider the normalized frame,

ζ1 ¼ cos ðψÞe1 þ sin ðψÞe2; ζ2 ¼ − sin ðψÞe1 þ cos ðψÞe2: (56)

The corresponding coframe and connection form are

ξ1 ¼ cos ðψÞω1 þ sin ðψÞω2; ξ2 ¼ − sin ðψÞω1 þ cos ðψÞω2; ξ12 ¼ dψþ ω12: (57)

Then ϑ1 can be expressed as a multiple of ξ1 and ϑ2;ϑ12 in terms of ξ2, and the differential
system can be summarized here:

ϑ1 ¼ Aξ1; ϑ2 ¼ Aξ2; ϑ12 ¼ ξ12 þ �d logA ¼ −CAξ2;
dlogA ¼ ABξ1; dB ¼ AðBCþ 1þ acA−2Þξ1; dC ¼ AðC2−1Þξ1;

dH ¼ AJξ1; dJ ¼ AJð2Bþ CÞξ1:
(58)

The condition dϑ1 ¼ 0 is equivalent to

dA∧ξ1 þ Adξ1 ¼ 0:

This implies that dξ1 ¼ 0 since dA is proportional to ξ1. Also, d � ϑ12 ¼ 0 is equivalent to
d � ξ12 ¼ 0.
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−ðacÞ1 sin ð2ψÞ þ ðacÞ2 cos ð2ψÞ ¼ −
1
2
ða−cÞ2ð2ψ1 cos ð2ψÞ þ ð2ψ2 þ 1Þ sin ð2ψÞÞ:

It follows that when f ¼ B, Eq. (36) finally reduces to the form

ð1þH2A−2Þ½2ψ1 cos ð2ψÞ þ ð2ψ2 þ 1Þ sin ð2ψÞ� ¼ 0:

The first factor is clearly nonzero, so the second factor must vanish. This of course is equivalent
to the constraint (41).

6. Intrinsic characterization of M

During the prolongation of the exterior differential system, the additional variables ψ, A, B, and
C have been introduced. The significance of the appearance of the function C, is that the process
terminates and the differentials of all these functions can be computed without the need to
introduce more functions. This means that the exterior differential system has finally closed.

The results of the previous section, in particular, the lemmas, can be collected such that they
justify the following.

Proposition 6.1 The differential system generated in terms of the differentials of the variables
ψ, A, B, and C is closed. The variables H; J;A;B;C remain constant along the ϑ2-curves so
ϑ1 ¼ 0. Hence, an isometry that preserves H must map the ϑ1, ϑ2 curves onto the
corresponding ϑ�

1, ϑ
�
2 curves of the associated surface M� which is isometric to M.

Along the ϑ1, ϑ2 curves, consider the normalized frame,

ζ1 ¼ cos ðψÞe1 þ sin ðψÞe2; ζ2 ¼ − sin ðψÞe1 þ cos ðψÞe2: (56)

The corresponding coframe and connection form are

ξ1 ¼ cos ðψÞω1 þ sin ðψÞω2; ξ2 ¼ − sin ðψÞω1 þ cos ðψÞω2; ξ12 ¼ dψþ ω12: (57)

Then ϑ1 can be expressed as a multiple of ξ1 and ϑ2;ϑ12 in terms of ξ2, and the differential
system can be summarized here:

ϑ1 ¼ Aξ1; ϑ2 ¼ Aξ2; ϑ12 ¼ ξ12 þ �d logA ¼ −CAξ2;
dlogA ¼ ABξ1; dB ¼ AðBCþ 1þ acA−2Þξ1; dC ¼ AðC2−1Þξ1;

dH ¼ AJξ1; dJ ¼ AJð2Bþ CÞξ1:
(58)

The condition dϑ1 ¼ 0 is equivalent to

dA∧ξ1 þ Adξ1 ¼ 0:

This implies that dξ1 ¼ 0 since dA is proportional to ξ1. Also, d � ϑ12 ¼ 0 is equivalent to
d � ξ12 ¼ 0.
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Moreover, d � ξ12 ¼ 0 is equivalent to the fact that the ξ1;ξ2 curves can be regarded as coordi-
nate curves parameterized by isothermal parameters. Therefore, along the ξ1;ξ2 curves,
orthogonal isothermal coordinates denoted ðs;tÞ can be introduced. The first fundamental form
of M then takes the form,

I ¼ ξ21 þ ξ22 ¼ EðsÞðds2 þ dt2Þ: (59)

Now suppose we set eðsÞ ¼ ffiffiffiffiffiffiffiffiffi
EðsÞp

, then

ξ1 ¼ eðsÞ ds; ξ2 ¼ eðsÞ dt; ξ12 ¼ e′ðsÞ
e2ðsÞ ξ2 ¼

e′ðsÞ
eðsÞ dt: (60)

This means such a surface is isometric to a surface of revolution. Since ψ, d�ξ12 ¼ 0, Eq. (57)
implies that d�ω12 ¼ 0. This can be stated otherwise as the principal coordinates are isothermal
and so M is an isothermic surface.

Since A;B;C;H, and J are functions of only the variable s, this implies that H and J, or H and K,
are constant along the t curves where s is constant. This leads to the following proposition.

Proposition 6.2
dH∧dK ¼ 0; ξ12 ¼ −ðCþ BÞAξ2: (61)

This is equivalent to the statement M is a Weingarten surface.

Proof: The first result follows from the statement about the coordinate system above. Since
ϑ12 ¼ ξ12 þ �dlogA ¼ −CAξ2 and dA ¼ A2Bξ1,

ξ12 ¼ −CAξ2− � dlogA ¼ −CAξ2− � A−1 dA ¼ −CAξ2−AB � ξ1 ¼ −ðCþ BÞAξ2

Consequently, the geodesic curvature of each ξ2 curve, s constant, is

e′ðsÞ
e2ðsÞ ¼ −AðBþ CÞ;

which is constant.

To express the ωi in terms of ds and dt, start by writing ωi in terms of the ξi and then
substituting Eq. (60),

ω1 ¼ cos ðψÞe ds− sin ðψÞe dt; ω2 ¼ sin ðψÞe dsþ cos ðψÞe dt: (62)

Subscripts ðs;tÞ denote differentiation and Hs ¼ H′ is used interchangeably. Beginning with
dH ¼ H′ ds and using Eq. (62), we have

dH ¼ H1ω1 þH2ω2 ¼ ðH1 cos ðψÞ þH2 sin ðψÞÞ e dsþ ð−H1 sin ðψÞ þH2 cos ðψÞÞ e dt ¼ H′ ds:

Equating coefficients of differentials, this implies that
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H1e cos ðψÞ þH2e sin ðψÞ ¼ H′; −H1 sin ðψÞ þH2 cos ðψÞ ¼ 0:

Solving this as a linear system we obtain H1, H2,

H1 ¼ H′

e
cos ðψÞ; H2 ¼ H′

e
sin ðψÞ: (63)

Noting that u ¼ H1=J and v ¼ H2=J, using Eq. (57) the forms αi can be expressed in terms of
ds;dt

α1 ¼ H′

J
ð cos ð2ψÞ ds− sin ð2ψÞ dtÞ; α2 ¼ H′

J
ð sin ð2ψÞ dsþ cos ð2ψÞ dtÞ: (64)

Substituting ξ1 from Eq. (60) into dH ¼ AJξ1,

dH ¼ H′ds ¼ AJξ1 ¼ AJ eðsÞ ds:

Therefore, H′ ¼ AJe > 0 and so HðsÞ is an increasing function of s. Now define the function
QðsÞ to be

Q ¼ H′

J
¼ A � e > 0: (65)

Substituting Eq. (65) into Eq. (64), αi is expressed in terms of Q as well. Equations (20) in
Theorem 3.2 can easily be expressed in terms of ψ and Q.

Theorem 6.1 Equation (20) is equivalent to the following system of coupled equations in ψ andQ:

sin ð2ψÞðlogðQÞÞs þ 2 cos ð2ψÞψs−2 sin ð2ψÞψt ¼ 0;
cos ð2ψÞðlogðQÞÞs−2 sin ð2ψÞψs−2 cos ð2ψÞψt ¼ Q:

(66)

Moreover, Eq. (66) is equivalent to the following first-order system

ψs ¼ −
1
2
Q sin ð2ψÞ; ψt ¼

1
2
ðlogðQÞÞs−

1
2
Q cos ð2ψÞ: (67)

System (67) can be thought of as a type of Lax pair. Moreover, Eq. (67) implies that ψ is
harmonic as well. Differentiating ψs with respect to s and ψt with respect to t, it is clear that ψ
satisfies Laplace's equation in the ðs;tÞ variables ψss þ ψtt ¼ 0. This is another proof that ψ is
harmonic.

Theorem 6.2 The function QðsÞ satisfies the following second-order nonlinear differential
equation
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H1e cos ðψÞ þH2e sin ðψÞ ¼ H′; −H1 sin ðψÞ þH2 cos ðψÞ ¼ 0:

Solving this as a linear system we obtain H1, H2,

H1 ¼ H′

e
cos ðψÞ; H2 ¼ H′

e
sin ðψÞ: (63)

Noting that u ¼ H1=J and v ¼ H2=J, using Eq. (57) the forms αi can be expressed in terms of
ds;dt

α1 ¼ H′

J
ð cos ð2ψÞ ds− sin ð2ψÞ dtÞ; α2 ¼ H′

J
ð sin ð2ψÞ dsþ cos ð2ψÞ dtÞ: (64)

Substituting ξ1 from Eq. (60) into dH ¼ AJξ1,

dH ¼ H′ds ¼ AJξ1 ¼ AJ eðsÞ ds:

Therefore, H′ ¼ AJe > 0 and so HðsÞ is an increasing function of s. Now define the function
QðsÞ to be

Q ¼ H′

J
¼ A � e > 0: (65)

Substituting Eq. (65) into Eq. (64), αi is expressed in terms of Q as well. Equations (20) in
Theorem 3.2 can easily be expressed in terms of ψ and Q.

Theorem 6.1 Equation (20) is equivalent to the following system of coupled equations in ψ andQ:

sin ð2ψÞðlogðQÞÞs þ 2 cos ð2ψÞψs−2 sin ð2ψÞψt ¼ 0;
cos ð2ψÞðlogðQÞÞs−2 sin ð2ψÞψs−2 cos ð2ψÞψt ¼ Q:

(66)

Moreover, Eq. (66) is equivalent to the following first-order system

ψs ¼ −
1
2
Q sin ð2ψÞ; ψt ¼

1
2
ðlogðQÞÞs−

1
2
Q cos ð2ψÞ: (67)

System (67) can be thought of as a type of Lax pair. Moreover, Eq. (67) implies that ψ is
harmonic as well. Differentiating ψs with respect to s and ψt with respect to t, it is clear that ψ
satisfies Laplace's equation in the ðs;tÞ variables ψss þ ψtt ¼ 0. This is another proof that ψ is
harmonic.

Theorem 6.2 The function QðsÞ satisfies the following second-order nonlinear differential
equation
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Q″ðsÞQðsÞ−ðQ′ðsÞÞ2 ¼ Q4ðsÞ: (68)

There exists a first integral for this equation of the following form

Q′ðsÞ2 ¼ QðsÞ4 þ κQðsÞ2; κ∈R: (69)

Proof: Equation (68) is just the compatibility condition for the first-order system (67). The
required derivatives are

ψst ¼ −
Q
2
cos ð2ψÞððlogQÞs−Q cos ð2ψÞÞ; ψts ¼

1
2
ðlogQÞss−

1
2
Qs cos ð2ψÞ þQ sin ð2ψÞψs:

Equating derivatives ψst ¼ ψts, the required (68) follows.

Differentiating both sides of Eq. (69) we get

Q″ðsÞ ¼ 2QðsÞ3 þ κQðsÞ: (70)

Isolating κQðsÞ from Eq. (69) and substituting it into Eq. (70), Eq. (68) appears.

It is important to note that the function C which appears when the differential ideal closes can
be related to the function Q.

Corollary 6.1

C ¼ 1
Q

� �′

: (71)

Proof: Using ϑi from Eq. (58) in Lemma 5.3, in the s;t coordinates

2dψ ¼ − sin ð2ψÞ Ae ds−ðCþ cos ð2ψÞÞ Ae dt ¼ ψsdsþ ψt dt

Hence using Eq. (67), this implies that 2ψs ¼ − sin ð2ψÞ Ae ¼ −Q sin ð2ψÞ, hence Q ¼ Ae. The

second equation in Eq. (67) for ψt implies that ðCþ cos ð2ψÞÞ Ae ¼ Q cos ð2ψÞ−ðlogQÞ′.
Replacing Ae ¼ Q, this simplifies to the form (71).

7. Integrating the Lax pair system

It is clear that the first-order equation in (67) for QðsÞ is separable and can be integrated. The
integral depends on whether K is zero or nonzero:

QðsÞ ¼ 1
εsþ γ

; K ¼ 0; log
2ðK þ ffiffiffiffi

K
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ K
p

Þ
Q

 !
¼ ε

ffiffiffiffi
K

p
sþ γ; K≠0: (72)
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Here ε ¼ �1 and γ is the last constant of integration. Taking specific choices for the constants,

for example, eγ ¼ 2
ffiffiffiffi
K

p
when K≠0 and a ¼ ffiffiffiffi

K
p

, the set of solutions (72) for QðsÞ can be summa-
rized below.

DomðsÞ QðsÞ DomðsÞ QðsÞ
s > 0

1
s

s < 0 −
1
s

0 < s <
π
a

a
sin ðasÞ −

π
a
< s < 0 −

a
sin ðasÞ

s > 0
a

sinhðasÞ s < 0 −
a

sinhðasÞ

(73)

It is presumed that other choices of the constants can be geometrically eliminated in favor of
Eq. (73). The solutions (73) are then substituted back into linear system (67). The first equation
in (67) implies that either

ψ≡0; mod
π
2
;

2ψs

sin ð2ψÞ ¼ −Q: (74)

Substitute ψ≡0 into the second equation in (67). It implies that ðlogQÞs ¼ Q and ψ ¼ π=2 gives
ðlogQÞs ¼ −Q. In both cases QðsÞ is a solution which already appears in Eq. (73).

For the second case in Eq. (74), the equation can be put in the form

ðlogj tan ðψÞjÞs ¼ −Q:

Integrating we have for some function yðtÞ to be determined,

tan ðψÞ ¼ e
−

ð
QðsÞds

� yðtÞ: (75)

Therefore, tan ðψÞ can be obtained by substituting for QðsÞ for each of the three cases in
Eq. (73). The upper sign holds for s > 0 and the lower sign holds if s < 0.

i. QðsÞ ¼ �s−1, −
ð
QðsÞds ¼ logjsj∓ and

tan ðψÞ ¼ s∓ � yðtÞ: (76)

ii. QðsÞ ¼ � a
sin ðasÞ, −

ð
QðsÞds ¼ logjcscðasÞ− cot ðasÞj∓ and

tan ðψÞ ¼ tan
as
2

� �� �∓
� yðtÞ: (77)

iii. QðsÞ ¼ � a
sinhðasÞ, −

ð
QðsÞds ¼ ∓arctanhðeasÞ, and
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Therefore, tan ðψÞ can be obtained by substituting for QðsÞ for each of the three cases in
Eq. (73). The upper sign holds for s > 0 and the lower sign holds if s < 0.

i. QðsÞ ¼ �s−1, −
ð
QðsÞds ¼ logjsj∓ and

tan ðψÞ ¼ s∓ � yðtÞ: (76)

ii. QðsÞ ¼ � a
sin ðasÞ, −

ð
QðsÞds ¼ logjcscðasÞ− cot ðasÞj∓ and

tan ðψÞ ¼ tan
as
2

� �� �∓
� yðtÞ: (77)

iii. QðsÞ ¼ � a
sinhðasÞ, −

ð
QðsÞds ¼ ∓arctanhðeasÞ, and
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tan ðψÞ ¼ ðtanhðas
2
ÞÞ∓ � yðtÞ: (78)

In case ðiiÞ, if s > 0 and yðtÞ ¼ �1 then ψ ¼ �1
2ðasþ πÞ, modπ, and if s < 0 and yðtÞ ¼ �1, then

ψ ¼ � 1
2 as, modπ.

It remains to integrate the second equation of the Lax pair (67) using solutions for both QðsÞ
and tan ðψÞ. The first case ðiÞ is not hard and will be shown explicitly here. The others can be
done, and more complicated cases are considered in the Appendix.

ðiÞ Consider QðsÞ ¼ s−1 and tan ðψÞ ¼ s−1 � yðtÞ. The second equation in (67) simplifies consid-
erably to yt ¼ −1, therefore,

yðtÞ ¼ −ðtþ σÞ; tan ðψÞ ¼ −
ðtþ σÞ

s
: (79)

For QðsÞ ¼ −s−1 and tan ðψÞ ¼ s � yðtÞ, the second equation of (67) becomes yt ¼ −y2, there-
fore,

yðtÞ ¼ 1
tþ σ

; tan ðψÞ ¼ s
tþ σ:

(80)

8. A third-order equation for H and fundamental forms

Since ξ12 ¼ ðlogeðsÞÞ′dt, using Eq. (60) ω12 can be written as

ω12 ¼ ξ12−dψ ¼ ðlog eðsÞÞ′ dt−dψ: (81)

Using Eqs. (14) and (64) for α1, it follows that

dlogðJÞ ¼ Qð cos ð2ψÞ ds− sin ð2ψÞ dtÞ−2 � ðψt dtþ ψs dsÞ þ 2 � ðlogðeðsÞÞÞ′ dt:

when ωi are put in the s;t coordinates, using �ω1 ¼ ω2, it can be stated that �ds ¼ dt and
�dt ¼ −ds. Consequently, dlogðJÞ simplifies to

dlogðJÞ ¼ ðQ cos ð2ψÞ þ 2ψt−2ðlogðeðsÞÞÞ′Þ dsþ ð−Q sin ð2ψÞ−2ψsÞ dt: (82)

First-order system (67) permits this to be written using eðsÞ ¼ ffiffiffiffiffiffiffiffiffi
EðsÞp

as

ðlogðJÞÞ′ þ ðlogðEÞÞ′ ¼ ðlogðQÞÞ′: (83)

Hence, there exists a constant τ independent of s such that E � J ¼ τQ or
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E ¼ τ
Q
J
¼ τ

Q2

H′ : (84)

This result (84) for E is substituted into the Gauss equation −((log(E))ss+(log(E))tt)=2E(H
2−J2)

giving

ðlogðEÞÞ″ ¼ 2ðlogðQÞÞ″−ðlogðHsÞÞ″ ¼ 2Q2−
H″

H′

� �′

: (85)

Therefore, the Gauss equation transforms into a third-order differential equation in the s
variable,

H″

H′

� �′

þ 2τH ¼ 2Q2 1þ τ
H2

H′

� �
: (86)

Thus, a characterization of Bonnet surfaces is reached by means of the solutions to these
equations. This equation determines the function HðsÞ and after that the functions JðsÞ and
EðsÞ. Therefore, Bonnet surfaces have as first fundamental form the expression

I ¼ EðsÞðds2 þ dt2Þ; EðsÞ ¼ τ
Q2ðsÞ
H′ðsÞ : (87)

Since ψ is the angle from the principal axis e1 to the s curve with t equals constant, the second
fundamental form is given by

II ¼ L ds2 þ 2M ds dtþN dt2: (88)

where the coefficients L;M;N are given by

L ¼ EðH þ J cos ð2ψÞÞ ¼ EH þ τQ cos ð2ψÞ;
M ¼ −EJ sin ð2ψÞ ¼ −τQ sin ð2ψÞ;

N ¼ EðH−J cos ð2ψÞÞ:
(89)

Appendix

It is worth seeing how the second equation in (67) can be integrated for cases (ii) and (iii). Only
the case s > 0 will be done with QðsÞ taken from Eq. (73).

ðaÞ Differentiating tan ðψÞ given in Eq. (77), we obtain that

ψt ¼
tan ðas2Þ

tan 2ðas2Þ þ y2
ytðtÞ:

The following identities are required to simplify the result,
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tan ðasÞ ¼ 2 tan ðas2Þ
1− tan 2ðas2Þ

; cos ð2ψÞ ¼ tan 2ðas2Þ−y2
tan 2ðas2Þ þ y2:

Substituting ψt into Eq. (67), we obtain

2 tan ðas2Þ
tan 2ðas2Þ þ y2

yt ¼ −a cot ðasÞ− a
sin ðasÞ

tan 2ðas2Þ−y2
tan 2ðas2Þ þ y2

:

Simplifying this, we get

4
a
yt ¼ −

1
2

1− tan 2 as
2

� �� �
−
1
2

cot 2
as
2

� �
−1

� �
y2− sec 2 as

2

� �
þ csc2

as
2

� �
y2:

This simplifies to the elementary equation,

yt ¼
a
2
ðy2−1Þ; yðtÞ ¼ −tanh

at
2
þ η

� �
:

Here η is an integration constant. To summarize then,

tan ðψÞ ¼ tanh
at
2
þ η

� �
� tan asþ π

2

� �
:

ðbÞ Consider now s > 0 and take QðsÞ from the last line of Eq. (73). Differentiating tan ðψÞ from
(78), we get

ψt ¼
coth ðas2 Þ

1þ coth2ðas2Þy2
ytðtÞ:

In this case, the following identities are needed,

tanhðasÞ ¼ 2tanhðas2Þ
1þ tanh2ðas2Þ

; cos ð2ψÞ ¼ 1−coth2ðas2Þy2
1þ coth2ðas2Þy2

:

Therefore, Eq. (67) becomes

2
cothðas2Þ

1þ coth2ðas2Þy2
yt ¼ −acoth ðasÞ− a

sinhðasÞ
tanh2ðas2Þ−y2
tanh2ðas2Þ þ y2

:

This reduces to

−
4
a
yt ¼ 1þ tanh2 as

2

� �
þ sech2 as

2

� �� �
þ coth2 as

2

� �
þ 1−csch2 as

2

� �� �
y2:

Simplifying and integrating, it has been found that
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yt ¼ −
a
2
ð1þ y2Þ; yðtÞ ¼ − tan

at
2
þ η

� �
:

To summarize then, it has been shown that,

tan ðψÞ ¼ cot
at
2
þ η

� �
� coth as

2

� �
:

These results apply to the case s > 0 and similar results can be found for the case s < 0 as well.
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Sub-Manifolds of a Riemannian Manifold

Mehmet Atçeken, Ümit Yıldırım and

Süleyman Dirik

Additional information is available at the end of the chapter

Abstract

In this chapter, we introduce the theory of sub-manifolds of a Riemannian manifold. The
fundamental notations are given. The theory of sub-manifolds of an almost Riemannian
product manifold is one of the most interesting topics in differential geometry.
According to the behaviour of the tangent bundle of a sub-manifold, with respect to
the action of almost Riemannian product structure of the ambient manifolds, we have
three typical classes of sub-manifolds such as invariant sub-manifolds, anti-invariant
sub-manifolds and semi-invariant sub-manifolds. In addition, slant, semi-slant and
pseudo-slant sub-manifolds are introduced by many geometers.

Keywords: Riemannian product manifold, Riemannian product structure, integral
manifold, a distribution on a manifold, real product space forms, a slant distribution

1. Introduction

Let i : M ! ~M be an immersion of an n-dimensional manifold M into an m-dimensional
Riemannian manifold ð ~M, ~gÞ. Denote by g ¼ i�~g the induced Riemannian metric on M. Thus, i
become an isometric immersion and M is also a Riemannian manifold with the Riemannian
metric gðX,YÞ ¼ ~gðX,YÞ for any vector fields X,Y in M. The Riemannian metric g on M is

called the induced metric on M. In local components, gij ¼ gABB
B
j B

A
i with g ¼ gjidx

jdxj and

~g ¼ gBAdU
BdUA.

If a vector field ξp of ~M at a point p∈M satisfies

~gðXp,ξpÞ ¼ 0 (1)

for any vector Xp of M at p, then ξp is called a normal vector of M in ~M at p. A unit normal

vector field of M in ~M is called a normal section on M [3].
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By T⊥M, we denote the vector bundle of all normal vectors of M in ~M. Then, the tangent
bundle of ~M is the direct sum of the tangent bundle TM of M and the normal bundle T⊥M of
M in ~M, i:e:,

T ~M ¼ TM⊕T⊥M: (2)

We note that if the sub-manifold M is of codimension one in ~M and they are both orientiable,
we can always choose a normal section ξ on M, i:e:,

gðX, ξÞ ¼ 0, gðξ, ξÞ ¼ 1, (3)

where X is any arbitrary vector field on M.

By ~∇, denote the Riemannian connection on ~M and we put

~∇XY ¼ ∇XY þ hðX,YÞ (4)

for any vector fields X,Y tangent to M, where ∇XY and hðX,YÞ are tangential and the normal
components of ~∇XY, respectively. Formula ð4Þ is called the Gauss formula for the sub-manifold
M of a Riemannian manifold ð ~M, ~gÞ.
Proposition 1.1. ∇ is the Riemannian connection of the induced metric g ¼ i�~g on M and
hðX,YÞ is a normal vector field over M, which is symmetric and bilinear in X and Y.

Proof: Let α and β be differentiable functions on M. Then, we have

~∇αXðβYÞ ¼ αfXðβÞY þ β~∇XYg
¼ αfXðβÞY þ β∇XY þ βhðX,YÞg

∇αXβY þ hðαX, βYÞ ¼ αβ∇XY þ αXðβÞY þ αβhðX,YÞ (5)

This implies that

∇αXðβYÞ ¼ αXðβÞY þ αβ∇XY (6)

and

hðαX, βYÞ ¼ αβhðX,YÞ: (7)

Eq. (6) shows that ∇ defines an affine connection on M and Eq. (4) shows that h is bilinear in X
and Y since additivity is trivial [1].

Since the Riemannian connection ~∇ has no torsion, we have

0 ¼ ~∇XY−~∇YX−½X,Y� ¼ ∇XY þ hðX,YÞ−∇XY−hðY,XÞ−½X,Y�: (8)

By comparing the tangential and normal parts of the last equality, we obtain
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∇XY−∇YX ¼ ½X,Y� (9)

and

hðX,YÞ ¼ hðY,XÞ: (10)

These equations show that ∇ has no torsion and h is a symmetric bilinear map. Since the metric
~g is parallel, we can easily see that

ð∇XgÞðY,ZÞ ¼ ð~∇X~gÞðY,ZÞ
¼ ~gð~∇XY,ZÞ þ ~gðY, ~∇XZÞ
¼ ~g

�
∇XY þ hðX,YÞ,Z

�
þ ~gðY,∇XZþ hðX,ZÞÞ

¼ ~gð∇XY,ZÞ þ ~gðY,∇XZÞ
¼ gð∇XY,ZÞ þ gðY,∇XZÞ (11)

for any vector fields X,Y,Z tangent to M, that is, ∇ is also the Riemannian connection of the
induced metric g on M.

We recall h the second fundamental form of the sub-manifold M (or immersion i), which is
defined by

h : ΓðTMÞ ·ΓðTMÞ ! ΓðT⊥MÞ: (12)

If h ¼ 0 identically, then sub-manifoldM is said to be totally geodesic, where ΓðT⊥MÞ is the set
of the differentiable vector fields on normal bundle of M.

Totally geodesic sub-manifolds are simplest sub-manifolds.

Definition 1.1. Let M be an n-dimensional sub-manifold of an m-dimensional Riemannian

manifold ð ~M, ~gÞ. By h, we denote the second fundamental form of M in ~M.

H ¼ 1
n traceðhÞ is called the mean curvature vector of M in ~M. If H ¼ 0, the sub-manifold is

called minimal.

On the other hand, M is called pseudo-umbilical if there exists a function λ on M, such that

~g
�
hðX,YÞ,H

�
¼ λgðX,YÞ (13)

for any vector fields X,Y on M and M is called totally umbilical sub-manifold if

hðX,YÞ ¼ gðX,YÞH: (14)

It is clear that every minimal sub-manifold is pseudo-umbilical with λ ¼ 0. On the other hand,
by a direct calculation, we can find λ ¼ ~gðH,HÞ for a pseudo-umbilical sub-manifold. So, every
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totally umbilical sub-manifold is a pseudo-umbilical and a totally umbilical sub-manifold is
totally geodesic if and only if it is minimal [2].

Now, let M be a sub-manifold of a Riemannian manifold ð ~M, ~gÞ and V be a normal vector field
on M, X be a vector field on M. Then, we decompose

~∇XV ¼ −AVXþ ∇⊥
XV, (15)

where AVX and ∇⊥
XV denote the tangential and the normal components of ∇⊥

XV, respectively.
We can easily see that AVX and ∇⊥

XV are both differentiable vector fields on M and normal
bundle of M, respectively. Moreover, Eq. ð15Þ is also called Weingarten formula.

Proposition 1.2. Let M be a sub-manifold of a Riemannian manifold ð ~M, ~gÞ. Then
(a) AVX is bilinear in vector fields V and X. Hence, AVX at point p∈M depends only on vector
fields Vp and Xp.

(b) For any normal vector field V on M, we have

gðAVX,YÞ ¼ g
�
hðX,YÞ,V

�
: (16)

Proof: Let α and β be any two functions on M. Then, we have

~∇αXðβVÞ ¼ α~∇XðβVÞ
¼ αfXðβÞV þ β~∇XVg

−AβVαXþ ∇⊥
αXβV ¼ αXðβÞV−αβAVXþ αβ∇⊥

XV: (17)

This implies that

AβVαX ¼ αβAVX (18)

and

∇⊥
αXβV ¼ αXðβÞV þ αβ∇⊥

XV: (19)

Thus, AVX is bilinear in V and X. Additivity is trivial. On the other hand, since gis a Riemann-
ian metric,

X~gðY,VÞ ¼ 0, (20)

for any X,Y∈ΓðTMÞ and V∈ΓðT⊥MÞ.
Eq. (12) implies that

~gð~∇XY,VÞ þ ~gðY, ~∇XVÞ ¼ 0: (21)

By means of Eqs. (4) and (15), we obtain
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¼ αfXðβÞV þ β~∇XVg

−AβVαXþ ∇⊥
αXβV ¼ αXðβÞV−αβAVXþ αβ∇⊥

XV: (17)

This implies that

AβVαX ¼ αβAVX (18)

and

∇⊥
αXβV ¼ αXðβÞV þ αβ∇⊥

XV: (19)

Thus, AVX is bilinear in V and X. Additivity is trivial. On the other hand, since gis a Riemann-
ian metric,

X~gðY,VÞ ¼ 0, (20)

for any X,Y∈ΓðTMÞ and V∈ΓðT⊥MÞ.
Eq. (12) implies that

~gð~∇XY,VÞ þ ~gðY, ~∇XVÞ ¼ 0: (21)

By means of Eqs. (4) and (15), we obtain
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~g
�
hðX,YÞ,V

�
−gðAVX,YÞ ¼ 0: (22)

The proof is completed [3].

Let M be a sub-manifold of a Riemannian manifold ð ~M, ~gÞ, and h and AV denote the second
fundamental form and shape operator of M, respectively.

The covariant derivative of h and AV is, respectively, defined by

ð~∇XhÞðY,ZÞ ¼ ∇⊥
XhðY,ZÞ−hð∇XY,ZÞ−hðY,∇XZÞ (23)

and

ð∇XAÞVY ¼ ∇XðAVYÞ−A∇⊥
XV
Y−AV∇XY (24)

for any vector fields X,Y tangent toM and any vector field V normal toM. If ∇Xh ¼ 0 for all X,
then the second fundamental form of M is said to be parallel, which is equivalent to ∇XA ¼ 0.
By direct calculations, we get the relation

g
�
ð∇XhÞðY,ZÞ,V

�
¼ g
�
ð∇XAÞVY,Z

�
: (25)

Example 1.1. We consider the isometric immersion

φ : R2 ! R4, (26)

φðx1, x2Þ ¼ ðx1,
ffiffiffiffiffiffiffiffiffiffi
x21−1

q
, x2,

ffiffiffiffiffiffiffiffiffiffi
x22−1

q
Þ (27)

we note that M ¼ φðR2Þ⊂R4 is a two-dimensional sub-manifold of R4 and the tangent bundle
is spanned by the vectors

TM ¼ Sp e1 ¼
ffiffiffiffiffiffiffiffiffiffi
x21−1

q
, x1, 0, 0

� �
, e2 ¼ 0, 0,

ffiffiffiffiffiffiffiffiffiffi
x22−1

p
, x2

� �n o
and the normal vector fields

T⊥M ¼ sp w1 ¼ −x1,
ffiffiffiffiffiffiffiffiffiffi
x21−1

q
, 0, 0Þ,w2 ¼ ð0, 0, −x1,

ffiffiffiffiffiffiffiffiffiffi
x22−1

q� �� �
: (28)

By ~∇, we denote the Levi-Civita connection of R4, the coefficients of connection, are given by

~∇e1e1 ¼
2x1

ffiffiffiffiffiffiffiffiffiffi
x21−1

q

2x21−1
e1−

1
2x21−1

w1, (29)

~∇e2e2 ¼
2x2

ffiffiffiffiffiffiffiffiffiffi
x22−1

p

2x22−1
e2−

1
2x22−1

w2 (30)
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and

∇e2e1 ¼ 0: (31)

Thus, we have hðe1, e1Þ ¼ − 1
2x21−1

w1, hðe2, e2Þ ¼ − 1
2x22−1

w2 and hðe2, e1Þ ¼ 0: The mean curvature

vector of M ¼ φðR2Þ is given by

H ¼ −
1
2
ðw1 þ w2Þ: (32)

Furthermore, by using Eq. (16), we obtain

gðAw1e1, e1Þ ¼ g
�
hðe1, e1Þ,w1

�
¼ −

1
2x21−1

ðx21 þ x21−1Þ ¼ −1,

gðAw1e2, e2Þ ¼ g
�
hðe2, e2Þ,w1

�
¼ −

1
2x22−1

gðw1,w2Þ ¼ 0,

gðAw1e1, e2Þ ¼ 0,

(33)

and

gðAw2 e1, e1Þ ¼ g
�
hðe1, e1Þ,w2

�
¼ 0,

gðAw2e1, e2Þ ¼ 0, gðAw2e2, e2Þ ¼ 1:
(34)

Thus, we have

Aw1 ¼
�
−1 0
0 0

�
and Aw2 ¼

�
0 0
0 −1

�
: (35)

Now, let M be a sub-manifold of a Riemannian manifold ð ~M, gÞ, ~R and R be the Riemannian

curvature tensors of ~M andM, respectively. From then the Gauss andWeingarten formulas, we
have

~RðX,YÞZ ¼ ~∇X ~∇YZ−~∇Y ~∇XZ−~∇½X,Y�Z

¼ ~∇X

�
∇YZþ hðY,ZÞ

�
−~∇Y

�
∇XZþ hðX,ZÞ

�
−∇½X,Y�Z−hð½X,Y�,ZÞ

¼ ~∇X∇YZþ ~∇XhðY,ZÞ−~∇Y∇XZ−~∇YhðX,ZÞ−∇½X,Y�Z−hð∇XY,ZÞ þ hð∇YX,ZÞ
¼ ∇X∇YZ−∇Y∇XZþ hðX,∇YZÞ−hð∇XZ,YÞ þ ∇⊥

XhðY,ZÞ
−AhðY,ZÞX−∇⊥

YhðX,ZÞ þ AhðX,ZÞY−∇½X,Y�Z−hð∇XY,ZÞ þ hð∇YX,ZÞ
¼ ∇X∇YZ−∇Y∇XZ−∇½X,Y�Zþ ∇⊥

XhðY,ZÞ−hð∇XY,ZÞ
−hðY,∇XZÞ−∇⊥

YhðX,ZÞ þ hð∇YX,ZÞ þ hð∇YZ,XÞ
þAhðX,ZÞY−AhðY,ZÞX

¼ RðX,YÞZþ ð∇XhÞðY,ZÞ−ð∇YhÞðX,ZÞ þ AhðX,ZÞY−AhðY,ZÞX (36)
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YhðX,ZÞ þ hð∇YX,ZÞ þ hð∇YZ,XÞ
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from which

~RðX,YÞZ ¼ RðX,YÞZþ AhðX,ZÞY−AhðY,ZÞXþ ð∇XhÞðY,ZÞ−ð∇YhÞðX,ZÞ, (37)

for any vector fields X,Y and Z tangent to M. For any vector field W tangent to M, Eq. (37)
gives the Gauss equation

g
�
~RðX,YÞZ,W

�
¼ g
�
RðX,YÞZ,W

�
þ g
�
hðY,WÞ, hðX,ZÞ

�
−g
�
hðY,ZÞ, hðX,WÞ

�
: (38)

On the other hand, the normal component of Eq. (37) is called equation of Codazzi, which is
given by

�
~RðX,YÞZ

�⊥
¼ ð∇XhÞðY,ZÞ−ð∇YhÞðX,ZÞ: (39)

If the Codazzi equation vanishes identically, then sub-manifold M is said to be curvature-
invariant sub-manifold [4].

In particular, if ~M is of constant curvature, ~RðX,YÞZ is tangent to M, that is, sub-manifold is
curvature-invariant. Whereas, in Kenmotsu space forms, and Sasakian space forms, this not
true.

Next, we will define the curvature tensor R⊥ of the normal bundle of the sub-manifold M by

R⊥ðX,YÞV ¼ ∇⊥
X∇

⊥
YV−∇

⊥
Y∇

⊥
XV−∇

⊥
½X,Y�V (40)

for any vector fields X,Y tangent to sub-manifoldM, and any vector field V normal toM. From
the Gauss and Weingarten formulas, we have

~RðX,YÞV ¼ ~∇X ~∇YV−~∇Y ~∇XV−~∇½X,Y�V

¼ ~∇Xð−AVY þ ∇⊥
YVÞ−~∇Yð−AVXþ ∇⊥

XVÞ þ AV ½X,Y�−∇⊥
½X,Y�V

¼ −~∇XAVY þ ~∇YAVXþ ~∇X∇⊥
YV−~∇Y∇⊥

XV þ AV ½X,Y�−∇⊥
½X,Y�V

¼ −∇XAVY−hðX,AVYÞ þ ∇YAVXþ hðY,AVXÞ
þ∇⊥

X∇
⊥
YV−∇

⊥
Y∇

⊥
XV−A∇⊥

YV
Xþ A∇⊥

XV
Y þ AV ½X,Y�−∇⊥

½X,Y�V

¼ ∇⊥
X∇

⊥
YV−∇

⊥
Y∇

⊥
XV−∇

⊥
½X,Y�V−A∇⊥

YV
Xþ A∇⊥

XV
Y þ AV ½X,Y�

−∇XAVY þ ∇YAVX−hðX,AVYÞ þ hðY,AVXÞ
¼ R⊥ðX,YÞV þ hðAVX,YÞ−hðX,AVYÞ−ð∇XAÞVY þ ð∇YAÞVX: (41)

For any normal vector U to M, we obtain

Sub-Manifolds of a Riemannian Manifold
http://dx.doi.org/10.5772/65948

53



g
�
~R ðX,YÞV ,U

�
¼ g
�
R⊥ðX,YÞV,U

�
þ g
�
hðAVX,YÞ,U

�
−g
�
hðX,AVYÞ,U

�

¼ g
�
R⊥ðX,YÞV,U

�
þ gðAUY,AVXÞ−gðAVY,AUXÞ

¼ g
�
R⊥ðX,YÞV,U

�
þ gðAVAUY,XÞ−gðAUAVY,XÞ (42)

Since ½AU ,AV � ¼ AUAV−AVAU , Eq. (42) implies

g
�
~RðX,YÞV,U

�
¼ g
�
R⊥ðX,YÞV ,U

�
þ gð½AU,AV �Y,XÞ: (43)

Eq. (43) is also called the Ricci equation.

If R⊥ ¼ 0, then the normal connection of M is said to be flat [2].

When
�
~RðX,YÞV

�⊥
¼ 0, the normal connection of the sub-manifold M is flat if and only if the

second fundamental formM is commutative, i.e. ½AU ,AV � ¼ 0 for all U,V. If the ambient space

~M is real space form, then
�
~RðX,YÞV

�⊥
¼ 0 and hence the normal connection ofM is flat if and

only if the second fundamental form is commutative. If ~RðX,YÞZ tangent to M, then equation
of codazzi Eq. (37) reduces to

ð∇XhÞðY,ZÞ ¼ ð∇YhÞðX,ZÞ (44)

which is equivalent to

ð∇XAÞVY ¼ ð∇YAÞVX: (45)

On the other hand, if the ambient space ~M is a space of constant curvature c, then we have

~RðX,YÞZ ¼ cfgðY,ZÞX−gðX,ZÞYg (46)

for any vector fields X,Y and Z on ~M.

Since ~RðX,YÞZ is tangent to M, the equation of Gauss and the equation of Ricci reduce to

g
�
RðX,YÞZ,W

�
¼ cfgðY,ZÞgðX,WÞ−gðX,ZÞgðY,WÞg

þg
�
hðY,ZÞ, hðX,WÞ

�
−g
�
hðY,WÞ, hðX,ZÞ

�
(47)

and

g
�
R⊥ðX,YÞV,U

�
¼ gð½AU,AV �X,YÞ, (48)

respectively.
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g
�
RðX,YÞZ,W

�
¼ cfgðY,ZÞgðX,WÞ−gðX,ZÞgðY,WÞg

þg
�
hðY,ZÞ, hðX,WÞ

�
−g
�
hðY,WÞ, hðX,ZÞ

�
(47)

and

g
�
R⊥ðX,YÞV,U

�
¼ gð½AU,AV �X,YÞ, (48)

respectively.
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Proposition 1.3. A totally umbilical sub-manifold M in a real space form ~M of constant
curvature c is also of constant curvature.

Proof: Since M is a totally umbilical sub-manifold of ~M of constant curvature c, by using
Eqs. (14) and (46), we have

g
�
RðX,YÞZ,W

�
¼ cfgðY,ZÞgðX,WÞ−gðX,ZÞgðY,WÞg
þgðH,HÞfgðY,ZÞgðX,WÞ−gðX,ZÞgðY,WÞg

¼ fcþ gðH,HÞgfgðY,ZÞgðX,WÞ−gðX,ZÞgðY,WÞg: (49)

This shows that the sub-manifold M is of constant curvature cþ ‖H2‖ for n > 2. If n ¼ 2,
‖H‖ ¼ constant follows from the equation of Codazzi [3].

This proves the proposition.

On the other hand, for any orthonormal basis feag of normal space, we have

gðY,ZÞgðX,WÞ−gðX,ZÞgðY,WÞ ¼∑
a

g
�
hðY,ZÞ, ea

�
g
�
hðX,WÞ, ea

�h

−g
�
hðX,ZÞ, ea

�
g
�
hðY,WÞ, ea

��
¼∑

a
gðAeaY,ZÞgðAeaX,WÞ−gðAeaX,ZÞgðAeaY,WÞ (50)

Thus, Eq. (45) can be rewritten as

g
�
RðX,YÞZ,W

�
¼ cfgðY,ZÞgðX,WÞ−gðX,ZÞgðY,WÞg

þ∑
a
½gðAeaY,ZÞgðAeaX,WÞ−gðAeaX,ZÞgðAeaY,WÞ� (51)

By using Aea , we can construct a similar equation to Eq. (47) for Eq. (23).

Now, let S- be the Ricci tensor of M. Then, Eq. (47) gives us

SðX,YÞ ¼ cfngðX,YÞ−gðei,XÞgðei,YÞg (52)

þ∑
ea
½gðAeaei, eiÞgðAeaX,YÞ−gðAeaX, eiÞgðAeaei,YÞ�

¼ cðn−1ÞgðX,YÞ þ∑
ea
½TrðAeaÞgðAeaX,YÞ−gðAeaX,AeaYÞ�; (53)

where fe1, e2,…, eng are orthonormal basis of M.

Therefore, the scalar curvature r of sub-manifold M is given by
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r ¼ cnðn−1Þ∑
ea
Tr2ðAeaÞ−∑

ea
TrðAea Þ2 (54)

∑
ea
TrðAeaÞ2 is the square of the length of the second fundamental form of M, which is denoted

by jAea j2. Thus, we also have

‖h2‖ ¼ ∑
n

i, j¼1
g
�
hðei, ejÞ, hðei, ejÞ

�
¼ ‖A2‖: (55)

2. Distribution on a manifold

An m-dimensional distribution on a manifold ~M is a mapping D defined on ~M, which assignes
to each point p of ~M an m-dimensional linear subspace Dp of T ~MðpÞ. A vector field X on ~M

belongs to D if we have Xp∈Dp for each p∈ ~M. When this happens, we write X∈ΓðDÞ. The
distribution D is said to be differentiable if for any p∈ ~M, there exist m-differentiable linearly
independent vector fields Xj∈ΓðDÞ in a neighbordhood of p.

The distribution D is said to be involutive if for all vector fields X,Y∈ΓðDÞ we have
½X,Y�∈ΓðDÞ. A sub-manifold M of ~M is said to be an integral manifold of D if for every point
p∈M, Dp coincides with the tangent space to M at p. If there exists no integral manifold of D
which contains M, then M is called a maximal integral manifold or a leaf of D. The distribu-
tion D is said to be integrable if for every p∈ ~M, there exists an integral manifold of D
containing p [2].

Let ~∇ and distribution be a linear connection on ~M, respectively. The distribution D is said to

be parallel with respect to ~M, if we have

~∇XY∈ΓðDÞ for all X∈ΓðT ~MÞ and Y∈ΓðDÞ (56)

Now, let ð ~M, ~gÞ be Riemannian manifold and D be a distribution on ~M. We suppose ~M is

endowed with two complementary distribution D and D⊥, i:e:, we have T ~M ¼ D⊕D⊥.
Denoted by P and Q the projections of T ~M to D and D⊥, respectively.

Theorem 2.1. All the linear connections with respect to which both distributions D and D⊥ are
parallel, are given by

∇XY ¼ P∇
0
XPY þQ∇

0
XQY þ PSðX,PYÞ þQSðX,QYÞ (57)

for any X,Y∈ΓðT ~MÞ, where ∇0
and S are, respectively, an arbitrary linear connection and

arbitrary tensor field of type ð1, 2Þ on ~M.

Proof: Suppose ∇0
is an arbitrary linear connection on ~M. Then, any linear connection ∇ on ~M

is given by
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is given by
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∇XY ¼ ∇
0
XY þ SðX,YÞ (58)

for any X,Y∈ΓðT ~MÞ. We can put

X ¼ PXþQX (59)

for any X∈ΓðT ~MÞ. Then, we have

∇XY ¼ ∇XðPY þQYÞ ¼ ∇XPY þ ∇XQY ¼ ∇
0
XPY þ SðX,PYÞ

þ∇
0
XQY þ SðX,QYÞ ¼ P∇

0
XPY þQ∇

0
XPY þ PSðX,PYÞ þQSðX,PYÞ

þP∇
0
XQY þQ∇

0
XQY þ PSðX,QYÞ þQSðX,QYÞ (60)

for any X,Y∈ΓðT ~MÞ.
The distributions D and D are both parallel with respect to ∇ if and only if we have

φð∇XPYÞ ¼ 0andPð∇XQYÞ ¼ 0: (61)

From Eqs. (58) and (61), it follows that D and D⊥ are parallel with respect to ∇ if and only if

Q∇
0
XPY þQSðX,PYÞ ¼ 0 and P∇

0
XQY þ PSðX,QYÞ ¼ 0: (62)

Thus, Eqs. (58) and (62) give us Eq. (57).

Next, by means of the projections P and Q, we define a tensor field F of type ð1, 1Þ on ~M by

FX ¼ PX−QX (63)

for any X∈ΓðT ~MÞ. By a direct calculation, it follows that F2 ¼ I. Thus, we say that F defines an
almost product structure on ~M. The covariant derivative of F is defined by

ð∇XFÞY ¼ ∇XFY−F∇XY (64)

for all X,Y∈ΓðT ~MÞ. We say that the almost product structure F is parallel with respect to the
connection ∇, if we have∇XF ¼ 0. In this case, F is called the Riemannian product structure [2].

Theorem 2.2. Let ð ~M, ~gÞ be a Riemannian manifold and D, D⊥ be orthogonal distributions on
~M such that T ~M ¼ D⊕D⊥: Both distributions D and D⊥ are parallel with respect to ∇ if and
only if F is a Riemannian product structure.

Proof: For any X,Y∈ΓðT ~MÞ, we can write

~∇YPX ¼ ~∇PYPXþ ~∇QYPX (65)

and

Sub-Manifolds of a Riemannian Manifold
http://dx.doi.org/10.5772/65948

57



~∇YX ¼ ~∇PYPXþ ~∇PYQXþ ~∇QYPXþ ~∇QYQX, (66)

from which

gð~∇QYPX,QZÞ ¼ QYgðPX,QZÞ−gð∇QYQZ,PXÞ ¼ 0−gð~∇QYQZ,PXÞ ¼ 0, (67)

that is, ∇QYPX∈ΓðDÞ and so P~∇QYPX ¼ ~∇QYPX,

Q~∇QYPX ¼ 0: (68)

In the same way, we obtain

gð~∇PYQX,PZÞ ¼ PYgðQX,PZÞ−gðQX, ~∇PYPZÞ ¼ 0, (69)

which implies that

P~∇PYQX ¼ 0 and Q~∇PYQX ¼ ~∇PYQX: (70)

From Eqs. (66), (68) and (70), it follows that

P~∇YX ¼ ~∇PYPXþ ~∇QYPX: (71)

By using Eqs. (64) and (71), we obtain

ð~∇YPÞX ¼ ~∇YPX−P~∇YX ¼ ~∇PYPXþ ~∇QYPX−~∇PYPX−~∇QYPX ¼ 0: (72)

In the same way, we can find ~∇Q ¼ 0. Thus, we obtain

~∇F ¼ ~∇ðP−QÞ ¼ 0: (73)

This proves our assertion [2].

Theorem 2.3. Both distributions D andD⊥ are parallel with respect to Levi-Civita connection ∇
if and only if they are integrable and their leaves are totally geodesic in ~M.

Proof: Let us assume both distributions D and D⊥ are parallel. Since ∇ is a torsion free linear
connection, we have

½X,Y� ¼ ∇XY−∇YX∈ΓðDÞ, for any X,Y∈ΓðDÞ (74)

and

½U,V� ¼ ∇UV−∇VU∈ΓðD⊥Þ, for any U,V∈ΓðD⊥Þ (75)

Thus, D and D⊥ are integrable distributions. Now, let M be a leaf of D and denote by h the
second fundamental form of the immersion of M in ~M. Then by the Gauss formula, we have
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and

½U,V� ¼ ∇UV−∇VU∈ΓðD⊥Þ, for any U,V∈ΓðD⊥Þ (75)

Thus, D and D⊥ are integrable distributions. Now, let M be a leaf of D and denote by h the
second fundamental form of the immersion of M in ~M. Then by the Gauss formula, we have
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∇XY ¼ ∇
0
XY þ hðX,YÞ (76)

for any X,Y∈ΓðDÞ, where ∇0
denote the Levi-Civita connection on M. Since D is parallel from

Eq. (76) we conclude h ¼ 0, that is, M is totally in ~M. In the same way, it follows that each leaf
of D⊥ is totally geodesic in ~M.

Conversely, suppose D and D⊥ be integrable and their leaves are totally geodesic in ~M. Then
by using Eq. (4), we have

∇XY∈ΓðDÞ for any X,Y∈ΓðDÞ (77)

and

∇UV∈ΓðD⊥Þ for any U,V∈ΓðD⊥Þ: (78)

Since g is a Riemannian metric tensor, we obtain

gð∇UY,VÞ ¼ −gðY,∇UVÞ ¼ 0 (79)

and

gð∇XV,YÞ ¼ −gðV,∇XYÞ ¼ 0 (80)

for any X,Y∈ΓðDÞ and U,V∈ΓðD⊥Þ: Thus, both distributions D and D⊥ are parallel on ~M.

3. Locally decomposable Riemannian manifolds

Let ð ~M, ~gÞ be n−dimensional Riemannian manifold and F be a tensor ð1, 1Þ−type on ~M such
that F2 ¼ I, F≠∓I.

If the Riemannian metric tensor ~g satisfying

~gðX,YÞ ¼ ~gðFX, FYÞ (81)

for any X,Y∈ΓðT ~MÞ then ~M is called almost Riemannian product manifold and F is said to be
almost Riemannian product structure. If F is parallel, that is, ð~∇XFÞY ¼ 0, then ~M is said to be
locally decomposable Riemannian manifold.

Now, let ~M be an almost Riemannian product manifold. We put

P ¼ 1
2
ðI þ FÞ, Q ¼ 1

2
ðI−FÞ: (82)

Then, we have
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PþQ ¼ I, P2 ¼ P, Q2 ¼ Q, PQ ¼ QP ¼ 0 and F ¼ P−Q: (83)

Thus, P and Q define two complementary distributions P and Q globally. Since F2 ¼ I, we
easily see that the eigenvalues of F are 1 and −1. An eigenvector corresponding to the eigen-
value 1 is in P and an eigenvector corresponding to −1 is in Q. If F has eigenvalue 1 of
multiplicity P and eigenvalue −1 of multiplicity q, then the dimension of P is p and that of Q is

q. Conversely, if there exist in ~M two globally complementary distributions P and Q of
dimension p and q, respectively. Then, we can define an almost Riemannian product structure

F on ~M by ~M by F ¼ P−Q [7].

Let ð ~M, ~g, FÞ be a locally decomposable Riemannian manifold and we denote the integral
manifolds of the distributions P and Q by Mp and Mq, respectively. Then we can write
~M ¼ MpXMq, ðp, q > 2Þ. Also, we denote the components of the Riemannian curvature R of ~M
by Rdcba, 1≤a, b, c, d≤n ¼ pþ q.

Now, we suppose that the two components are both of constant curvature λ and μ. Then, we have

Rdcba ¼ λfgdagcb−gcagdbg (84)

and

Rzyxw ¼ μfgzwgyx−gywgzxg: (85)

Then, the above equations may also be written in the form

Rkjih ¼ 1
4
ðλþ μÞfðgkhgji−gjhgkiÞ þ ðFkhFji−FjhFkiÞg

þ 1
4
ðλ−μÞfðFkhgji−FjhgkiÞ þ ðgkhFji−gjhFkiÞg:

(86)

Conversely, suppose that the curvature tensor of a locally decomposable Riemannian manifold
has the form

Rkjih ¼ afðgkhgji−gjhgkiÞ þ ðFkhFji−FjhFkiÞg
þbfðFkhgji−FjhgkiÞ þ ðgkhFji−gjhFkiÞg:

(87)

Then, we have

Rcdba ¼ 2ðaþ bÞfgdagcb−gcagdbg (88)

and

Rzyxw ¼ 2ða−bÞfgzwgyx−gywgzxg: (89)

Let ~M be anm−dimensional almost Riemannian product manifold with the Riemannian structure
ðF, ~gÞ andM be an n−dimensional sub-manifold of ~M. For any vector fieldX tangent toM, we put
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Then, we have
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and
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Let ~M be anm−dimensional almost Riemannian product manifold with the Riemannian structure
ðF, ~gÞ andM be an n−dimensional sub-manifold of ~M. For any vector fieldX tangent toM, we put
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FX ¼ f Xþ wX, (90)

where f X and wX denote the tangential and normal components of FX, with respect to M,
respectively. In the same way, for V∈ΓðT⊥MÞ, we also put

FV ¼ BV þ CV, (91)

where BV and CV denote the tangential and normal components of FV, respectively.

Then, we have

f 2 þ Bw ¼ I,Cwþ wf ¼ 0 (92)

and

f Bþ BC ¼ 0,wBþ C2 ¼ I: (93)

On the other hand, we can easily see that

gðX, f YÞ ¼ gð f X,YÞ (94)

and

gðX,YÞ ¼ gð f X, f YÞ þ gðwX,wYÞ (95)

for any X,Y∈ΓðTMÞ [6].

If wX ¼ 0 for all X∈ΓðTMÞ, then M is said to be invariant sub-manifold in ~M,

i:e:, FðTMðpÞÞ⊂TMðpÞ for each p∈M. In this case, f 2 ¼ I and gðf X, f YÞ ¼ gðX,YÞ: Thus, ðf , gÞ
defines an almost product Riemannian on M.

Conversely, ðf , gÞ is an almost product Riemannian structure on M, the w ¼ 0 and hence M is

an invariant sub-manifold in ~M.

Consequently, we can give the following theorem [7].

Theorem 3.1. Let M be a sub-manifold of an almost Riemannian product manifold ~M with
almost Riemannian product structure ðF, ~gÞ. The induced structure ðf , gÞ on M is an almost

Riemannian product structure if and only if M is an invariant sub-manifold of ~M.

Definition 3.1. Let M be a sub-manifold of an almost Riemannian product ~M with almost
product Riemannian structure ðF, ~gÞ. For each non-zero vector Xp∈TMðpÞ at p∈M, we denote
the slant angle between FXp and TMðpÞ by θðpÞ. Then M said to be slant sub-manifold if the
angle θðpÞ is constant, i:e:, it is independent of the choice of p∈M and Xp∈TMðpÞ [5].
Thus, invariant and anti-invariant immersions are slant immersions with slant angle θ ¼ 0 and
θ ¼ π

2, respectively. A proper slant immersion is neither invariant nor anti-invariant.
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Theorem 3.2. Let M be a sub-manifold of an almost Riemannian product manifold ~M with
almost product Riemannian structure ðF, ~gÞ.M is a slant sub-manifold if and only if there exists
a constant λ∈ð0, 1Þ, such tha

f 2 ¼ λI: (96)

Furthermore, if the slant angle is θ, then it satisfies λ ¼ cos2θ [9].

Definition 3.2. Let M be a sub-manifold of an almost Riemannian product manifold ~M with
almost Riemannian product structure ðF, ~gÞ. M is said to be semi-slant sub-manifold if there
exist distributions Dθ and DT on M such that

(i) TM has the orthogonal direct decomposition TM ¼ D⊕DT :

(ii) The distribution Dθ is a slant distribution with slant angle θ:

(iii) The distribution DT is an invariant distribution, :e:, FðDTÞ⊆DT .

In a semi-slant sub-manifold, if θ ¼ π
2, then semi-slant sub-manifold is called semi-invariant

sub-manifold [8].

Example 3.1. Now, let us consider an immersed sub-manifold M in R7 given by the equations

x21 þ x22 ¼ x25 þ x26, x3 þ x4 ¼ 0: (97)

By direct calculations, it is easy to check that the tangent bundle of M is spanned by the
vectors

z1 ¼ cosθ
∂
∂x1

þ sinθ
∂
∂x2

þ cosβ
∂
∂x5

þ sinβ
∂
∂x6

z2 ¼ −usinθ
∂
∂x1

þ ucosθ
∂
∂x2

, z3 ¼ ∂
∂x3

−
∂
∂x4

,

z4 ¼ −usinβ
∂
∂x5

þ ucosβ
∂
∂x6

, z5 ¼ ∂
∂x7

,

(98)

where θ, β and u denote arbitrary parameters.

For the coordinate system of R7 ¼ fðx1, x2, x3, x4, x5, x6, x7Þjxi∈R, 1 ≤ i ≤ 7g, we define the
almost product Riemannian structure F as follows:

F
∂
∂xi

� �
¼ ∂

∂xi
, F

∂
∂xj

� �
¼ ∂

∂xj
, 1 ≤ i ≤ 3 and 4 ≤ j ≤ 7: (99)

Since Fz1 and Fz3 are orthogonal to M and Fz2,Fz4,Fz5 are tangent to M, we can choose a
D ¼ Spfz2, z4, z5g and D⊥ ¼ Spfz1, z3g. Thus, M is a 5−dimensional semi-invariant sub-mani-

fold of R7 with usual almost Riemannian product structure ðF, < , >Þ:
Example 3.2. Let M be sub-manifold of R8 by given

ðuþ v, u−v, ucosα, usinα, uþ v, u−v, ucosβ, usinβÞ (100)
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D ¼ Spfz2, z4, z5g and D⊥ ¼ Spfz1, z3g. Thus, M is a 5−dimensional semi-invariant sub-mani-
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where u, v and β are the arbitrary parameters. By direct calculations, we can easily see that the
tangent bundle of M is spanned by

e1 ¼ ∂
∂x1

þ ∂
∂x2

þ cosα
∂
∂x3

þ sinα
∂
∂x4

þ ∂
∂x5

−
∂
∂x6

þ cosβ
∂
∂x7

þ sinβ
∂
∂x8

e2 ¼ ∂
∂x1

−
∂
∂x2

þ ∂
∂x5

þ ∂
∂x6

, e3 ¼ −usin
∂
∂x3

þ ucosα
∂
∂x4

,

e4 ¼ −usinβ
∂
∂x7

þ ucosβ
∂
∂x8

:

(101)

For the almost Riemannian product structure F of R8 ¼ R4xR4, FðTMÞ is spanned by vectors

Fe1 ¼ ∂
∂x1

þ ∂
∂x2

þ cosα
∂
∂x3

þ sinα
∂
∂x4

−
∂
∂x5

þ ∂
∂x6

−cosβ
∂
∂x7

−sinβ
∂
∂x8

,

Fe2 ¼ ∂
∂x1

−
∂
∂x2

−
∂
∂x5

−
∂
∂x6

, Fe3 ¼ e3 and Fe4 ¼ −e4:
(102)

Since Fe1 and Fe2 are orthogonal to M and Fe3 and Fe4 are tangent to M, we can choose
DT ¼ Spfe3, e4g and D⊥ ¼ Spfe1, e2g. Thus, M is a four-dimensional semi-invariant sub-mani-
fold of R8 ¼ R4xR4 with usual Riemannian product structure F.

Definition 3.3. Let M be a sub-manifold of an almost Riemannian product manifold ~M with
almost Riemannian product structure ðF, ~gÞ. M is said to be pseudo-slant sub-manifold if there
exist distributions Dθ and D⊥ on M such that

i. The tangent bundle TM ¼ Dθ⊕D⊥.

ii. The distribution Dθ is a slant distribution with slant angle θ.

iii. The distribution D⊥ is an anti-invariant distribution, i:e:, FðD⊥Þ⊆T⊥M.

As a special case, if θ ¼ 0 and θ ¼ π
2, then pseudo-slant sub-manifold becomes semi-invariant

and anti-invariant sub-manifolds, respectively.

Example 3.3. Let M be a sub-manifold of R6 by the given equation

ð
ffiffiffi
3

p
u, v, vsinθ, vcosθ, scost, −scostÞ (103)

where u, v, s and t arbitrary parameters and θ is a constant.

We can check that the tangent bundle of M is spanned by the tangent vectors

e1 ¼
ffiffiffi
3

p ∂
∂x1

, e2 ¼ ∂
∂y1

þ sinθ
∂
∂x2

þ cosθ
∂
∂y2

,

e3 ¼ cost
∂
∂x3

−cost
∂
∂y3

, e4 ¼ −ssint
∂
∂x3

þ ssint
∂
∂y3

:
(104)

For the almost product Riemannian structure F of R6 whose coordinate systems
ðx1, y1, x2, y2, x3, y3Þ choosing
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F
∂
∂xi

� �
¼ ∂

∂yi
, 1 ≤ i ≤ 3,

F
∂
∂yj

 !
¼ ∂

∂xj
, 1 ≤ j ≤ 3,

(105)

Then, we have

Fe1 ¼
ffiffiffi
3

p ∂
∂y1

, Fe2 ¼ −
∂
∂x1

þ sinθ
∂
∂y2

−cosθ
∂
∂x2

Fe3 ¼ cost
∂
∂y3

þ cost
∂
∂x3

, Fe4 ¼ −ssint
∂
∂y3

−ssint
∂
∂x3

:
(106)

Thus, Dθ ¼ Spfe1, e2g is a slant distribution with slant angle α ¼ π
4. Since Fe3 and Fe4 are

orthogonal to M, D⊥ ¼ Spfe3, e4g is an anti-invariant distribution, that is, M is a 4-dimensional

proper pseudo-slant sub-manifold of R6 with its almost Riemannian product structure
ðF, < , >Þ:
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F
∂
∂xi

� �
¼ ∂

∂yi
, 1 ≤ i ≤ 3,

F
∂
∂yj

 !
¼ ∂

∂xj
, 1 ≤ j ≤ 3,

(105)

Then, we have

Fe1 ¼
ffiffiffi
3

p ∂
∂y1

, Fe2 ¼ −
∂
∂x1

þ sinθ
∂
∂y2

−cosθ
∂
∂x2

Fe3 ¼ cost
∂
∂y3

þ cost
∂
∂x3

, Fe4 ¼ −ssint
∂
∂y3

−ssint
∂
∂x3

:
(106)

Thus, Dθ ¼ Spfe1, e2g is a slant distribution with slant angle α ¼ π
4. Since Fe3 and Fe4 are

orthogonal to M, D⊥ ¼ Spfe3, e4g is an anti-invariant distribution, that is, M is a 4-dimensional

proper pseudo-slant sub-manifold of R6 with its almost Riemannian product structure
ðF, < , >Þ:
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Abstract

Differential operators that are defined on a differentiable manifold can be used to study
various properties of manifolds. The spectrum and eigenfunctions play a very signifi-
cant role in this process. The objective of this chapter is to develop the heat equation
method and to describe how it can be used to prove the Hodge Theorem. The Minakshi-
sundaram-Pleijel parametrix and asymptotic expansion are then derived. The heat equa-
tion asymptotics can be used to give a development of the Gauss-Bonnet theorem for
two-dimensional manifolds.

Keywords: manifold, operator, differential form, Hodge theory, eigenvalue, partial
differential operator, Gauss-Bonnet

1. Introduction

Topological and geometric properties of a manifold can be characterized and further studied
by means of differential operators, which can be introduced on the manifold. The only natural
differential operator on a manifold is the exterior derivative operator which takes k-forms to
kþ 1 forms. This operation is defined purely in terms of the smooth structure of the manifold,
used to define de Rham cohomology groups. These groups can be related to other topological
quantities such as the Euler characteristic. When a Riemannian metric is defined on the
manifold, a set of differential operators can be introduced. The Laplacian on k-forms is perhaps
the most well known, as well as other elliptic operators.

On a compact manifold, the spectrum of the Laplacian on k-forms contains topological as well
as geometric information about the manifold. The Hodge theorem relates the dimension of the
kernel of the Laplacian to the k-th Betti number requiring them to be equal. The Laplacian
determines the Euler characteristic of the manifold. A sophisticated approach to obtaining
information related to the manifold is to consider the heat equation on k-forms with its solution
given by the heat semigroup [1–3].
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The heat kernel is one of the more important objects in such diverse areas as global analysis,
spectral geometry, differential geometry, as well as in mathematical physics in general. As an
example from physics, the main objects that are investigated in quantum field theory are
described by Green functions of self-adjoint, elliptic partial differential operators on manifolds
as well as their spectral invariants, such as functional determinants. In spectral geometry, there
is interest in the relation of the spectrum of natural elliptic partial differential operators with
respect to the geometry of the manifold [4–6].

Currently, there is great interest in the study of nontrivial links between the spectral invariants
and nonlinear, completely integrable evolutionary systems, such as the Korteweg-de Vries
hierarchy. In many interesting situations, these systems are actually infinite-dimensional Ham-
iltonian systems. The spectral invariants of a linear elliptic partial differential operator are
nothing but the integrals of motion of the system. There are many other applications to physics
such as to gauge theories and gravity [7].

In general, the existence of nonisometric isospectral manifolds implies that the spectrum alone
does not determine the geometry entirely. It is also important to study more general invariants
of partial differential operators that are not spectral invariants. This means that they depend
not only on the eigenvalues but also on the eigenfunctions of the operator. Therefore, they
contain much more information with respect to the underlying geometry of the manifold.

The spectrum of a differential operator is not only studied directly, but the related spectral
functions such as the spectral traces of functions of the operator, such as the zeta function and
the heat trace, are relevant as well [8, 9]. Often the spectrum is not known exactly, which is why
different asymptotic regimes are investigated [10, 11]. The small parameter asymptotic expan-
sion of the heat trace yields information concerning the asymptotic properties of the spectrum.
The trace of the heat semigroup as the parameter approaches zero is controlled by an infinite
sequence of geometric quantities, such as the volume of the manifold and the integral of the
scalar curvature of the manifold. The large parameter behavior of the traces of the heat kernels
is parameter independent and in fact equals the Euler characteristic of the manifold. The small
parameter behavior is given by an integral of a complicated curvature-dependent expression.
It is quite remarkable that when the dimension of the manifold equals two, the equality of the
short- and long-term behaviors of the heat flow implies the classic Gauss-Bonnet theorem. The
main objectives of the chapter are to develop the heat equation approach with Schrödinger
operator on a vector bundle and outline how it leads to the Hodge theorem [12, 13]. The heat
equation asymptotics will be developed [14, 15] andit is seen that the Gauss-Bonnet theorem
can be proved for a two-dimensional manifold based on it. Moreover, this kind of approach
implies that there is a generalization of the Gauss-Bonnet theorem as well in higher dimensions
greater than two [16, 17].

2. Geometrical preliminaries

For an n-dimensional Riemannian manifoldM, an orthonormal moving frame {e1;…;en} can be
chosen with {ω1;…;ωn} the accompanying dual coframe which satisfy
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ωiðejÞ ¼ δij; i; j ¼ 1;…;n (1)

It is then possible to define a system of one-forms ωij and two-formsΩij by solving the equations,

∇Xei ¼ ∑
j
ωjiðXÞ ej; RðX;YÞei ¼ ∑

j
ΩjiðX;YÞej (2)

It then follows that the Christoffel coefficients and components of the Riemann tensor forM are

ωjiðekÞ ¼ ∑
a
〈ωajðekÞea;ei〉g ¼ 〈∇ek ej;ei〉g ¼ Γi

kj (3)

Ωijðek;esÞ ¼ ∑
a
〈Ωajðek;esÞea;ei〉g ¼ 〈 Rðek;esÞej;ei〉g ¼ Rksji (4)

The inner product induced by the Riemannian metric on M is denoted here by 〈 � ; � 〉 : ΓðTMÞ
· ΓðTMÞ ! F ðMÞ and it induces a metric on ΛkðMÞ as well. Using the Riemannian metric and
the measure on M, an inner product denoted 〈〈 � ; � 〉〉 : ΛkðMÞ·ΛkðMÞ ! R can be defined on
ΛkðMÞ so that for α; β∈ΛkðMÞ,

〈〈α;β〉〉 ¼
ð

M
〈α;β〉g dvM (5)

where if ðx1;…;xmÞ is a system of local coordinates,

dvM ¼ detðgijÞ dx1∧…∧ dxm

is the Riemannian measure on M. Clearly, 〈〈α;β〉〉 is linear with respect to α, β and〈〈α;α〉〉 ≥ 0

with equality if and only if α ¼ 0. Hodge introduced a star homomorphism * : ΛkðMÞ !
Λn−kðMÞ, which is defined next.

Definition 2.1. (i) For ω ¼ ∑i1<⋯<ik f i1⋯ik ωi1∧⋯ωik , define

�ω ¼ ∑
i1 < ⋯ < ik
j1 < ⋯ < jn−k

f i1⋯ikEði1;…; ik; j1;…; jn−kÞωj1∧⋯∧ ωjn−k ;

where E is 1, −1, or 0 depending on whether ði1;…;ik;j1;…;jn−kÞ is an even or odd permutation of
ð1;…;nÞ, respectively.
(ii) If M is an oriented Riemannian manifold with dimension n, define the operator

δ ¼ ð−1Þnkþnþ1�d� : ΛkðMÞ ! Λk−1ðMÞ (6)

In terms of the two operators d and δ, the Laplacian acting on k-forms can be defined on the
two subspaces
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ΛevenðMÞ ¼ ⊕even ΛkðMÞ; ΛoddðMÞ ¼ ⊕odd ΛkðMÞ (7)

The operator dþ δ can be regarded as the operators on these subspaces,

D0 ¼ dþ δ : ΛevenðMÞ ! ΛoddðMÞ; D1 ¼ dþ δ : ΛoddðMÞ ! ΛevenðMÞ (8)

Definition 2.2. Let M be a Riemannian manifold, then the operator

D0 ¼ dþ δ : ΛevenðMÞ ! ΛoddðMÞ (9)

is called the Hodge-de Rham operator. It has the property that it is a self-conjugate operator,
D�

0 ¼ D1 and D�
1 ¼ D0. It is useful in studying the Laplacian to have a formula for the operator

Δ ¼ ðdþ δÞ2 and hence for D�
0D0 and D�

1D1 as well.

Let {e1;…;en} be an orthonormal moving frame defined on an open set U. Define as well the
pair of operators

Eþ
j ¼ ωj ∧ � þiðejÞ : Λ�ðUÞ ! Λ�ðUÞ; E−

j ¼ ωj ∧ � −iðejÞ : Λ�ðUÞ ! Λ�ðUÞ (10)

Lemma 2.1. The operators E�
j satisfy the following relations

Eþ
i E

þ
j þ Eþ

j E
þ
i ¼ 2δij; Eþ

i E
−
j þ E−

j E
þ
i ¼ 0; E−

i E
−
j þ E−

j E
−
i ¼ −2δij (11)

If M is a Riemannian manifold and ∇ : ΓðTMÞ · ΓðTMÞ ! ΓðTMÞ is a Levi-Civita connection,
then a connection on the space Λ�ðMÞ, namely ðX;ωÞ ! ∇Xω, can also be defined such that

ð∇XωÞðYÞ ¼ XðωðYÞÞ−ωð∇XYÞ; Y∈ ΓðTMÞ

The connection may be regarded as a first-order derivative operator ðX;Y;ωÞ ! DðX;YÞω.
Definition 2.3. The second-order derivative operator ðX;Y;ωÞ ! DðX;YÞω is defined to be

DðX;YÞω ¼ ∇X∇Yω−∇∇XYω (12)

In terms of the operator (Eq. (12)), define a second-order differential operator Δ0 : Λ�ðMÞ !
Λ�ðMÞ by

Δ0 ¼ ∑
i
Dðei;eiÞ; (13)

where {ei}n1 is an orthonormal moving frame. The operator Δ0 in Eq. (13) is referred to as the
Laplace-Beltrami operator.

Theorem 2.1. (Weitzenböck) Let M be a Riemannian manifold M with an associated orthonor-
mal moving frame {ei}n1 . The Laplace operator can be expressed as
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Δ ¼ ðdþ δÞ2 ¼ −Δ0−
1
8

∑
i;j;k;s

Rijks Eþ
i E

þ
j E

−
kE

−
s þ

1
4
R (14)

In Eq. (14), R is the scalar curvature, R ¼ −∑i;jRijij and Δ0 is the Laplace-Beltrami operator (13).

The operator defined by Eq. (14) does not contain first-order covariant derivatives and is of a
type called a Schrödinger operator. Thus, Weitzenböck formula (14) implies the that Laplacian
can be expressed in the form Δ ¼ −Δ0−F and is an elliptic operator. The Schrödinger operator
(14) can be used to define an operator that plays an important role in mathematical physics.
The heat operator is defined to be

H ¼ ∂
∂t

þ Δ (15)

The crucial point for the theory of the heat operator is the existence of a fundamental solution.
In fact, the Hodge theorem can be proved by making use of the fundamental solution.

Definition 2.4. Let M be a Riemannian manifold, π : E ! M is a vector bundle with connec-
tion. Let Δ0 : ΓðEÞ ! ΓðEÞ be the Laplace-Beltrami operator, which is defined by means of the
Levi-Civita connection onM and the connection on the vector bundle E. Let F : ΓðEÞ ! ΓðEÞ be
a F ðMÞ-linear map. Then, Δ ¼ −Δ0−F is a Schrödinger operator. If a family of R-linear maps

Gðt;q;pÞ : Ep ! Eq

with parameter t > 0 and q;p∈M satisfies the following three conditions, the family is called a
fundamental solution of the heat operator (15) where Ep ¼ π−1ðpÞ. First, Gðt;q;pÞ : Ep ! Eq is an
R-linear map of vector spaces and continuous in all variables t;q;p. Second, for a fixed w∈Ep,
let θðt;qÞ ¼ Gðt;q;pÞw, for all t > 0, then θ has first and second continuous derivatives in t and q,
respectively andsatisfies the heat equation, which for t > 0 is given by Hθðt;qÞ ¼ 0, which can
be written as

∂
∂t

þ Δq

� �
Gðt;q;pÞ ¼ 0 (16)

where Δq acts on the variable q. Finally, if ϕ is a continuous section of the vector bundle E, then

lim
t!0þ

ð

M
Gðt;q;pÞϕðpÞ dvp ¼ ϕðqÞ

for all ϕ, where dvp is the volume measure with respect to the coordinates of p given in terms of
the Riemannian metric.

Definition 2.5. Suppose a G0ðt;q;pÞ is given. The following procedure taking G0ðt;q;pÞ to
Gðt;q;pÞ is called the Levi algorithm:
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K0ðt; q; pÞ ¼ ∂
∂t

þ Δq

� �
Gðt; q; pÞ;

Kmþ1ðt; q; pÞ ¼
ðt
0
dτ
ð

M
K0ðt − τ; q; zÞKmðτ; z; pÞ dvz

Kðt; q; pÞ ¼ ∑
∞

m¼0
ð−1Þmþ1Kmðt; q; pÞ;

Gðt; q; pÞ ¼ G0ðt; q; pÞ þ
ðt
0
dτ
ð

M
G0ðt − τ; q; zÞKðτ; z; pÞ dvz

(17)

The Cauchy problem can be formulated for the heat equation such that existence, regularity
and uniqueness of solution can be established. The Hilbert-Schmidt theorem can be invoked to
develop a Fourier expansion theorem applicable to this Schrödinger operator.

Suppose Δ : ΓðEÞ ! ΓðEÞ is a self-adjoint nonnegative Schrödinger operator, then there exists a
set of C∞ sections {ψi}⊂ ΓðEÞ such that

〈〈ψi;ψj〉〉 ¼
ð

M
〈ψiðxÞ;ψjðxÞ〉 dvx ¼ δij

Moreover, denoting the completion of the inner product space ΓðEÞ by ΓðEÞ, the set {ψi} is a

complete set in ΓðEÞ, so for any ψ∈ ΓðEÞ,

ψ ¼ ∑
∞

i¼1
〈〈ψ;ψi〉〉 ψi

Finally, the set {ψi} satisfies the equation

Δψi ¼ λiψi; Ttψi ¼ e−tλiψi

where λi are the eigenvalues of Δ andform an increasing sequence: 0 ≤λ1 ≤λ2 ≤⋯ where
limk!∞ λk ¼ ∞.

DenoteUðt;qÞ by ðTtψÞðqÞwhenUð0;qÞ ¼ ψðqÞ and Tt satisfies the semigroup property andTt is
a self-adjoint, compact operator.

Theorem 2.2. Let Gðt; q; pÞ be the fundamental solution of the heat operator (15), then

Gðt;q;pÞw ¼ ∑
∞

i¼1
eλi t〈 ψiðpÞ;w〉ψiðqÞ (18)

with w∈Ep holds in ΓðEÞ.
Proof: For fixed t > 0 and w∈Ep, expand Gðt; q; pÞw in terms of eigenfunctions ψiðqÞ,
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Gðt;q;pÞw ¼ ∑
∞

i¼1
σiðt;p;wÞψiðqÞ; σiðt;p;wÞ ¼

ð

M
〈ψiðqÞ;Gðt;q;pÞw〉 dvq

Differentiating with respect to t and using Δψi ¼ λiψi, we get

∂
∂t
σiðt;p;wÞ ¼

ð

M
〈ψiðqÞ;

∂
∂t
Gðt;q;pÞw〉 dvq ¼

ð

M
〈ψiðqÞ;−ΔqGðt;q;pÞw〉dvq

¼ −
ð

M
〈ΔqψiðqÞ;Gðt;q;pÞw〉 dvq ¼ −λi

ð

M
〈ψiðqÞ;Gðt;q;pÞw〉 dvq

¼ −λiσiðt;p;wÞ

It follows from this that

σiðt;p;wÞ ¼ ciðp;wÞe−λi t

and since σi depend linearly on w, so ciðp;wÞ ¼ ciðpÞw, where ciðpÞ : Ep ! R is a linear function.
There exists ~ciðpÞ independent of w such that ciðpÞw ¼ 〈~ciðpÞ;w〉 so that

Gðt;q;pÞw ¼ ∑
∞

i¼1
eλi t ψiðqÞ〈~ciðpÞ;w〉

Consequently, for any β ∈ ΓðEÞ, we have

βðqÞ ¼ lim
t!0

ð

M
Gðt;q;pÞβðpÞ dvp ¼ ∑

∞

k¼1
ψkðqÞ

ð

M
〈~ckðpÞ;βðpÞ〉 dvp

Moreover, βðqÞ can also be expanded in terms of the ψk basis set,

βðqÞ ¼ ∑
∞

k¼1
ψkðqÞ

ð

M
〈ψkðpÞ;βðpÞ〉 dvp

Upon comparing these last two expressions, it is clear that ~ckðpÞ ¼ ψkðpÞ for all k andwe are
done.

One application of the heat equation method developed so far is to develop and give a proof of
the Hodge theorem.

Theorem 2.3. Let M; E; Δ be defined as done already, then

1. H ¼ {ϕ ∈ ΓðEÞjΔϕ ¼ 0} is a finite-dimensional vector space.

2. For any ψ ∈ ΓðEÞ, there is a unique decomposition of ψ as ψ ¼ ψ1⊕ψ2, where ψ1∈ H and
ψ2∈ ΔðΓðEÞÞ.

The first part is a direct consequence of the expansion theorem and due to the fact H⊥ΔðΓðEÞÞ,
the decomposition is unique.
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The Hodge theorem has many applications, but one in particular fits here. It is used in
conjunction with the de Rham cohomology group H�

dRðMÞ. Define

ZkðMÞ ¼ ker{d : ΛkðMÞ ! Λkþ1ðMÞ} ≡ {α ∈ ΛkðMÞj dα ¼ 0} (19)

BkðMÞ ¼ Im {d : Λk−1ðMÞ ! ΛkðMÞ}≡dðΛk−1ðMÞÞ (20)

Since d2 ¼ 0, it follows that BkðMÞ ⊂ ZkðMÞ andthe k-th de Rham cohomology group of M is
defined to be

Hk
dRðMÞ ¼ ZkðMÞ=BkðMÞ (21)

From Eq. (21), construct

H�
dRðMÞ ¼ ⊕k Hk

dRðMÞ (22)

In 1935, Hodge claimed a theorem, which stated every element in Hk
dRðMÞ can be represented

by a unique harmonic form α, one which satisfies both dα ¼ 0 and δα ¼ 0. Denote the set of
harmonic forms as HkðMÞ.
Theorem 2.4. Let M be a Riemannian manifold of dimension n, then

HkðMÞ ¼ ker {dþ δ : ΛkðMÞ ! Λ�ðMÞ} ¼ ker {Δ : ΛkðMÞ ! ΛkðMÞ} (23)

where Δ ¼ ðdþ δÞ2.

Proof: Since Δ ¼ dδþ δd, this implies that ΔðΛkðMÞÞ ⊂ ΛkðMÞ andit is clear that

HkðMÞ ⊂ ker{dþ δ : ΛkðMÞ ! Λ�ðMÞ} ⊂ ker{Δ : ΛkðMÞ ! Λ�ðMÞ} ¼ ker {Δ : ΛkðMÞ ! ΛkðMÞ}:
To finish the proof, it suffices to show that ker{Δ : ΛkðMÞ ! ΛkðMÞ} ⊂ HkðMÞ. If
α∈ker{Δ : ΛkðMÞ ! ΛkðMÞ}, that is Δα ¼ 0, then

〈〈Δα;α;〉〉 ¼ 〈〈ðdþ δÞ2α;α〉〉 ¼ 〈〈ðdþ δÞα;ðdþ δÞα〉〉 ¼ 〈〈dα;dα〉〉þ 〈〈δα;δα〉〉þ 2〈〈dα;δα〉〉
¼ 〈〈dα;dα〉〉þ 〈〈δα;δα〉〉 ¼ 0

This implies that dα ¼ 0 and δα ¼ 0, hence α ∈ HkðMÞ.
Theorem 2.5. Let M be a Riemannian manifold of dimension n, then

1. HkðMÞ is a finite dimensional vector space for k ¼ 0; 1; 2;…; n.

2. There is an orthogonal decomposition of ΛkðMÞ as

ΛkðMÞ ¼ HkðMÞ þ dðΛk−1ðMÞÞ þ δðΛkþ1ðMÞÞ (24)
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Proof: By Theorem 2.1, Δ : ΛkðMÞ ! ΛkðMÞ is a Schrödinger operator, so the Hodge theorem
applies. Thus HkðMÞ is of finite dimension, so the first holds. The second part of the Hodge
theorem is ΛkðMÞ ¼ HkðMÞ þ ΔðΛkðMÞÞ. Since ΔðΛkðMÞÞ⊂dðΛk−1ðMÞÞ þ δðΛkþ1ðMÞÞ, we have
ΛkðMÞ ¼ HkðMÞ þ dðΛk−1ðMÞÞ þ δðΛkþ1ðMÞÞ. The three spaces in this decomposition are
orthogonal to each other, so (ii) holds as well.

Theorem 2.6. (Duality theorem) For an oriented Riemannian manifold M of dimension n, the
star isomorphism � : HkðMÞ ! Hn−kðMÞ induces an isomorphism

Hk
dRðMÞ ≃ Hn−k

dR ðMÞ (25)

The k-th Betti number defined as bkðMÞ ¼ dimHkðM; RÞ also satisfies bkðMÞ ¼ bn−kðMÞ for
0 ≤ k ≤ n.

3. The Minakshisundaran-Pleijel paramatrix

Let M be a Riemannian manifold with dimension n and E a vector bundle over M with an
inner product and a metric connection. Here, the following formal power series is consid-

ered with a special transcendental multiplier e−ρ
2=4t and parameters ðt;p;qÞ∈ð0;∞Þ·M·M,

defined by

H∞ðt;q;pÞ ¼ 1

ð4πtÞn=2
e−ρ

2=4t ∑
∞

k¼0
tk ukðp;qÞ : Ep ! Eq (26)

In Eq. (26), the function ρ ¼ ρðp;qÞ is the metric distance between p and q in M, Ep ¼ π−1ðpÞ is
the fiber of E over p and ukðp;qÞ : Ep ! Eq are R-linear map.

It is the objective to find conditions for which Eq. (26) satisfies the heat equation or the
following equality:

∂
∂t

þ Δq

� �
H∞ðt;q;pÞw ¼ 0 (27)

To carry out this, a normal coordinate system denoted by {x1;…;xn} is chosen in a neighbor-
hood of point p and is centered at p. This means that if q is in this neighborhood about p, which
has coordinates ðx1;…;xnÞ, then the function ρðp;qÞ is

ρðp; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ⋯þ x2n

q
(28)

In terms of these coordinates, we calculate the components of g,
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gij ¼
∂
∂xi

;
∂
∂xj

� �
; G ¼ detðgijÞ (29)

and define the differential operator

∂
^

¼ ∑
n

k¼1
xk

∂
∂xk

The notion of the heat operator (15) on Eq. (26) is worked out one term at a time. First, the
derivative with respect to t is calculated

∂
∂t
H∞ðt;p;qÞw ¼ 1

ð4πtÞn=2
e−ρ

2=4t ρ2

4t2
−
n
2t

� �
∑
∞

k¼0
tk ukðp; qÞwþ ∑

∞

k¼0
ktk−1ukðp;qÞw

� �

¼ 1

ð4πtÞn=2
e−ρ

2=4t ∑
∞

k¼0

ρ2

4t2
−
n
2t

þ k
t

� �
tkukðp;qÞw

(30)

It is very convenient to abbreviate the function appearing in front of the sum in Eq. (30) as
follows:

ΦðρÞ ¼ e−ρ
2=4t

ð4πtÞn=2
(31)

Let {e1;…;en} be a frame that is parallel along geodesics passing through p and satisfies

eiðpÞ ¼ ∂
∂xi

jp

In terms of the function in Eq. (31), the operator Δ0 acting on Eq. (26) is given as

Δ0H∞ðt;p;qÞw ¼ ðΔ0 ΦÞ �
�
∑
∞

k¼0
tkukðp;qÞw

�

þ2 ∑
n

a¼1
ðeaΦÞ � ∇ea

�
∑
∞

k¼0
tkukðp;qÞw

�
þΦ � Δ0

�
∑
∞

k¼0
tkukðp;qÞw

� (32)

The individual components of (32) can be calculated as follows; since Φ is a function
∇ea Φ ¼ eaΦ and so

eaΦðρÞ ¼ Φ′ðρÞeaðρÞ;
Δ0Φ ¼ ∑

a
{ea eaΦðρÞ−ð∇ea eaÞΦðρÞ} ¼ Φ″ðρÞ � ∑

a
ðeaρÞ2 þΦ′ðρÞ � Δ0ρ;

Φ′ðρÞ ¼ −
ρ
2t
ΦðρÞ;

Φ″ðρÞ ¼ ρ2

4t2
−
1
2t

� �
ΦðρÞ

(33)

Consequently,
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{ea eaΦðρÞ−ð∇ea eaÞΦðρÞ} ¼ Φ″ðρÞ � ∑
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ðeaρÞ2 þΦ′ðρÞ � Δ0ρ;

Φ′ðρÞ ¼ −
ρ
2t
ΦðρÞ;

Φ″ðρÞ ¼ ρ2

4t2
−
1
2t

� �
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Consequently,
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eaρ ¼ xa
ρ
; ∑

a
ðeaρÞ2 ¼ 1; Δ0ρ ¼ n−1

ρ
þ 1
ρ
∂
^

log
ffiffiffiffi
G

p

and the Laplace-Beltrami operator on the function Φ is given by

Δ0 Φ ¼ ΦðρÞ ρ2

4t2
−
1
2t

� �
−
1
2t
ðn−1− ∂

^

log
ffiffiffiffi
G

p
Þ

� �
(34)

Expression (34) goes into the first term on the right side of Eq. (32). The second term on the
right-hand side of (32) takes the form,

2 ∑
n

a¼1
ðeaΦÞ � ∇ea

�
∑
∞

k¼0
tkukðp;qÞw

�
¼ 2Φ′ðρÞ ∑

n

a¼1

xa
ρ
� ∇ea

�
∑
∞

k¼0
tkukðp;qÞw

�

¼ −
ρ
t
ΦðρÞ∇

∂
^
=ρ

�
∑
∞

k¼0
tkukðp;qÞw

� (35)

Substituting these results into (32), it follows that

Δ0 H∞ðt;q;pÞ ¼ ΦðρÞ ρ2

4t2
−
1
2t
−
1
2t
ðn−1− ∂

^

log
ffiffiffiffi
G

p
Þ− ρ

t
∇∂^ =ρ þ Δ0

� �
∑
∞

m¼0
tmumðp;qÞw (36)

Combining Eq. (36) with the derivative of H∞ with respect to t in Eq. (35), the following version
of the heat equation results:

∂
∂t
−Δ0−F

� �
H∞ t;q;pð Þw ¼ Φ ∇

∂
^ þ 1

4G
∂
^

G
� �

� 1
t
u0ðp;qÞwþ ∑

∞

k¼1
∇^

∂ þ kþ 1
4G

∂
^

G
� �

uk p;qð Þw
��

−ðΔ0 þ FÞuk−1ðp;qÞw
�
tk−1
�

(37)

This is summarized in the following Lemma.

Lemma 3.1. Heat equation (27) for H∞ðt;p;qÞ is equivalent to

∇
∂
^ þ kþ 1

4G
∂
^

G
� �

ukðp;qÞw ¼ ðΔ0 þ FÞ uk−1ðp;qÞw (38)

for all k ¼ 0; 1; 2;… and Eq. (38) is initialized with u−1ðp;qÞ ¼ 0.

In fact, for fixed p ∈ M and w ∈ Ep, there always exists a unique solution to problem (Eq. (38))
over a small coordinate neighborhood about p.

Definition 3.1. Denote the solution of Eq. (38) by uðp;qÞw, which depends linearly on w. Then,
umðp;qÞ : Ep ! Eq and the Minakshisundaram-Pleijel parametrix for heat operator (Eq. 15) is
defined by
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H∞ðt;p;qÞ ¼ 1

ð4πtÞn=2
e−ρ

2=4t ∑
∞

m¼0
tmumðp;qÞ : Ep ! Eq (39)

Based on Eq. (39), the N-truncated parametrix is defined based on Eq. (39) to be

HNðt;q;pÞ ¼ 1

ð4πtÞn=2
e−ρ

2=4t ∑
N

m¼0
tmumðp;qÞ : Ep ! Eq (40)

Theorem 3.1. Choose a smooth function φ : M·M ! M and let G0ðt;q;pÞ ¼ φðq;pÞHNðt;q;pÞ.
Then G0ðt;q;pÞ is a k-th initial solution of the heat operator (15), where k ¼ ⌊ N

2 −
n
4 ⌋ and⌊z⌋ is the

greatest integer less than or equal to z.

Proof: Clearly, G0 is a linear map of vector spaces andis continuous and C∞ in all parameters.
From the previous calculation, it holds that

∂
∂t
−Δ0−F

� �
HNðt;q;pÞw ¼ −

1

ð4πtÞn=2
e−ρ

2=4ttN − n
2ðΔ0 þ FÞuNðp;qÞw (41)

and uNðp;qÞ is C∞ with respect to p and q. Since tN−n2e−ρ
2=4t is Ckð½0;∞Þ·M·MÞ, hence

Hðϕðp;qÞHNðt;q;pÞÞ∈Ckð½0;∞Þ·M·MÞ. Consider integrating G0 against ψðs;βÞ,
ð

M
G0ðt;q;sÞψðs;βÞ dvs ¼ ∑

N

m¼0
tm
ð

M

1

ð4πtÞn=2
e−ρ

2=4tψðq;sÞumðs;qÞψðs;βÞ dvs (42)

The integral of Eq. (42) over M can be broken up into an integral over QqðE2Þ ¼ fs ∈ Mjρðq;sÞ
< E=2g anda second integral over the set M−MqðE2Þ. On the latter set, the limit converges
uniformly hence

lim
t!∞

e−ρ
2=4t

ð4πtÞn=2
¼ 0

To estimate the remaining integral, choose a normal coordinate system at q and denote the
integration coordinates as ðs1;…;snÞ, then the integrand of Eq. (42) is given as

1

ð4πtÞn=2
e−jsj

2=4t ϕðq;sÞumðs;qÞψðs;βÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det〈

∂
∂si

;
∂
∂sj

〉

s
ds1⋯dsn

Therefore, in the limit using Definition 2.4,

lim
t!0

ð

MðE=2Þ

1

ð4πtÞn=2
e−ρ

2=4t ϕðq;sÞumðs;qÞψðs;βÞ dvs ¼ umðq;qÞψðq;βÞ

This result implies that
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lim
t!0

ð

M
G0ðt;q;sÞψðs;βÞ dvs ¼ ∑

N

m¼0
lim
t!0

tmumðq;qÞψðq;βÞ ¼ ψðq;βÞu0ðq;qÞ ¼ ψðq;βÞ (43)

The convergence here is uniform.

There exists an asymptotic expansion for the heat kernel which is extremely useful and has
several applications. It is one of the main intentions here to present this. An application of its
use appears later.

Theorem 3.2. (Asymptotic expansion) Let M be a Riemannian manifold with dimension n
andE a vector bundle over M with inner product and metric Riemannian connection. Let
Gðt;q;pÞ be the heat kernel or fundamental solution for heat operator (Eq. (15)) and (Eq. (39))
the MP parametrix. Then as t ! 0, Gðt;p;pÞ has the asymptotic expansion Gðt;p;pÞeH∞ðt;p;pÞ,

that is, for any N > 0, it is the case that

Gðt;p;pÞ− 1

ð4πtÞn=2
∑
N

m¼0
tmumðp;pÞ ¼ O tN−n2

� �
(44)

and the symbol on the right-hand side of Eq. (44) signifies a quantity ξ with the property that

lim
t!0

ξ
tN−n2

¼ 0

Proof: It suffices to prove the theorem for any large N. Let G0ðt;q;pÞ ¼ ϕðq;pÞHNðt;q;pÞ as in
Theorem 3.2. The conclusion of the theorem is equivalent to the statement

Gðt;p;pÞ−G0ðt;p;pÞ ¼ O tN−n2
� �

From the previous theorem and existence and regularity of the fundamental solution, the
result G of Levi iteration initialized by G0 is exactly the fundamental solution. Equality
(Eq. (41)) means that there exists a constant A such that for any t∈ð0;TÞ,

jK0ðt;q;pÞj ¼ j ∂
∂t

þ Δ
� �

G0ðt;q;pÞj ≤ AtN− n
2

Let vðMÞ be the volume of the manifold M. Using this result, the following upper bound is
obtained

jK1ðt;q;pÞj ≤
ðt
0
dτ
ð

M
jK0ðt−τ;q;sÞK0ðτ;s;pÞj dvs

≤
ðt
0
½A2ðt−τÞN−n2τN−n2vðMÞ� dτ ≤

ðt
0
A2TN−n2τN−n2vðMÞ dτ ≤ AB

tN−n2þ1

N−
n
2
þ 1

We have set B ¼ A � TN−n2vðMÞ. Exactly the same procedure applies to jK2ðt;q;pÞj. Based on the
pattern established this way, induction implies that the following bound results
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jKmðt;q;pÞj ≤ A � Bm tN−n2þm

N− n
2 þ 1

� �
N− n

2 þ 2
� �

⋯ N− n
2 þm

� � ≤ A � Bm tm

m!
tN−n2

The formula for Levi iteration yields upon summing this over m the following upper bound

j~Kðt;q;pÞj ≤ ∑
∞

m¼0
jKmðt;q;pÞj ≤ A � eBttN−n2

Using this bound, the required estimate is obtained,

jGðt;q;pÞ−G0ðt;q;pÞj ≤ j
ðt
0
dτ
ð

M
dvzG0ðt−τ;q;zÞ~K ðτ;z;pÞj

≤
ðt
0
dτ
ð

M

e−ρ
2=4ðt−τÞ

ð4πðt−τÞÞn=2
A � eBτ � τN−n2 dvs

≤ MnAeBt
ðt
0
τN−n2 dτ vðMÞ ¼ 1

N−
n
2
þ 1

MnA � eBtvðMÞtN−n2þ1

This finishes the proof.

Now if all the Hodge theorem is used, formal expressions for the index can be obtained.
Suppose D : ΓðEÞ ! ΓðFÞ is an operator such that D�D and DD� are Schrödinger operators
andD� is the adjoint of D. Suppose the operators D�D : ΓðEÞ ! ΓðEÞ and DD� : ΓðFÞ ! ΓðEÞ
are defined, so they are self-adjoint and have nonnegative real eigenvalues. Then the spaces
ΓμðEÞ and ΓμðFÞ can be defined this way

ΓμðEÞ ¼ {ϕ ∈ ΓðEÞjD�Dϕ ¼ μϕ}; ΓμðFÞ ¼ {ϕ∈ΓðFÞjDD�ϕ ¼ μϕ} (45)

For any m > 0, the dimensions of the spaces in (44) are finite and moreover,

Γ0ðEÞ ¼ ker{D : ΓðEÞ ! ΓðFÞ}; Γ0ðFÞ ¼ ker{D� : ΓðFÞ ! ΓðEÞ}

Consequently, an expression for the index Ind ðDÞ can be obtained from Eq. (45) as follows

Ind D ¼ dim ker D−dim ker D� ¼ dim Γ0ðEÞ−dim Γ0ðFÞ

Definition 3.2. For the Schrödinger operator Δ, let e−tΔ : ΓðEÞ ! ΓðEÞ, for t > 0 be defined as

ðe−tΔϕÞðqÞ ¼
ð

M
Gðt;q;pÞϕðpÞdvp (46)

where Gðt;q;pÞ is the fundamental solution of heat operator (Eq. (15)).

Let 0 ≤ λ1 ≤ λ2 ≤ ⋯ ! ∞ be the eigenvalues of the operator Δ and {ψ1;ψ2;…} the corresponding
eigenfunctions. Intuitively, the trace of e−tΔ is defined as
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tr e−tΔ ¼ ∑
∞

k¼1
〈〈e−tΔ ψk;ψk〉〉 (47)

This is clearly ∑ke−λkt or ∑μ e−tμ dim ΓμðEÞ, so the definition of tr is well-defined if and only if

∑
k
e−λkt < ∞ (48)

Theorem 3.3. For any p;q∈M, let {e1ðpÞ;…;eNðpÞ} and {f 1ðqÞ;…;f NðqÞ} be orthonormal bases on
Ep and Eq, respectively, then the following two results hold for t > 0,

ðaÞ
ð

M

ð
∑
N

a;b¼1
〈Gðt;q;pÞeaðpÞ;f bðqÞ〉2 dvqdvp < ∞;

ðbÞ ∑
∞

k¼1
e2λkt <

ð

M

ð
∑
N

a;b¼1
〈Gðt;q;pÞeaðpÞ;f bðqÞ〉2 dvqdvp < ∞

(49)

Proof: When t > 0, Gðt;q;pÞ is continuous and hence satisfies (a). For and w ∈ ΓðEÞ, Theorem
2.5 yields the following expansion for Gðt;q;pÞ ∈ ΓðEÞ, hence the Parseval equality yields

ð

M
jGðt;q;pÞwj2 dvq ¼ ∑

∞

k¼1
e−2λkt〈ψkðpÞ;w〉2

Replacing w by the basis element eaðpÞ, this implies that

∑
N

a¼1

ð

M
jGðt;q;pÞeaðpÞj2 dvq

¼ ∑
N

a¼1
∑
∞

k¼1
e−2λkt〈ψkðpÞ;eaðpÞ〉2 ¼ ∑

∞

k¼1
∑
N

a¼1
e−2λkt 〈ψkðpÞ;eaðpÞ〉2 ¼ ∑

∞

k¼1
e−2λkt〈ψkðpÞ;ψkðpÞ〉

Then for any m, it follows that

∑
m

k¼1
e−2λkt ¼ ∑

m

k¼1

ð

M
e−2λkt〈ψkðpÞ;ψkðpÞ〉 dvp ≤

ð

M
∑
∞

k¼1
e−2λkt〈ψkðpÞ;ψkðpÞ〉 dvp

¼
ð

M
dvp

ð

M
∑
N

a¼1
jGðt;q;pÞeaðpÞj2 dvq ¼

ð

M

ð

M
∑
N

a;b¼1
〈Gðt;q;pÞeaðpÞ;f bðqÞ〉2 dvqdvp < ∞

Theorem 3.4. For any t > 0,

tr ðe−tΔÞ ¼
ð

M
tr Gðt;p;pÞ dvp (50)

Proof: From Theorem 2.2, it follows that
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tr Gðt;p;pÞ ¼ ∑
N

a¼1
〈Gðt;p;pÞeaðpÞ;eaðpÞ〉 ¼ ∑

N

a¼1
∑
∞

k¼1
e−tλk〈ψkðpÞeaðpÞ〉ψkðpÞ;eaðpÞ

� �

¼ ∑
N

a¼1
∑
∞

k¼1
e−tλk〈ψkðpÞ;eaðpÞ〉2 ¼ ∑

∞

k¼1
e−tλk〈ψkðpÞ;ψkðpÞ〉2

Integrating this on both sides, it is found that

ð

M
tr Gðt;p;pÞ dvp ¼

ð

M
∑
∞

k¼1
e−tλk〈ψkðpÞ;ψkðpÞ〉2 dvp ¼ ∑

∞

k¼1
e−tλk ¼ tr ðe−tΔÞ

Note that Eq. (48) is a series with positive terms which converges uniformly as t ! ∞. There-
fore,

lim
t!∞

tr e−tΔ ¼ ∑
∞

k¼1
lim
t!∞

e−tλk ¼ dim Γ0ðEÞ (51)

In fact, as t ! 0, the equality

Gðt;p;pÞ ¼ 1

ð4πtÞn=2
þO

1
tn=2

� �

and the previous theorem imply that limt!0 tr e−tΔ ¼ ∞.

4. An application of the expansions: the Gauss Bonnet theorem

As far as Ind ðDÞ is concerned, it is the case for all t > 0 that,

Ind ðDÞ ¼ tr e−tD
�D− tr e−tDD� ¼

ð

M
tr Gþðt;p;pÞ dvp−

ð

M
tr G−ðt;p;pÞ dvp

by Theorem 3.5, where G�ðt;p;pÞ are the fundamental solutions of ∂t þD�D and ∂t þDD�. As
t ! 0, Theorem 3.2 assumes the form

G�ðt;p;pÞeH�
∞ðt;p;pÞ ¼

1

ð4πtÞn=2
∑
∞

m¼0
tmu�mðp;pÞ

Lemma 4.1. Let {λi} be the spectrum of the Laplacian on zero-forms, or functions, on M. Then,

∑
k
e−λkt ¼ 1

ð4πtÞn=2
∑
∞

k¼0

ð

M
ukðx;xÞ dvx (52)
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N
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N
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k¼1
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� �
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N

a¼1
∑
∞
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M
tr Gðt;p;pÞ dvp ¼

ð

M
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k¼1
e−tλk〈ψkðpÞ;ψkðpÞ〉2 dvp ¼ ∑

∞
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e−tλk ¼ tr ðe−tΔÞ
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k¼1
lim
t!∞
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þO
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tn=2

� �
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Ind ðDÞ ¼ tr e−tD
�D− tr e−tDD� ¼

ð

M
tr Gþðt;p;pÞ dvp−

ð

M
tr G−ðt;p;pÞ dvp

by Theorem 3.5, where G�ðt;p;pÞ are the fundamental solutions of ∂t þD�D and ∂t þDD�. As
t ! 0, Theorem 3.2 assumes the form

G�ðt;p;pÞeH�
∞ðt;p;pÞ ¼

1

ð4πtÞn=2
∑
∞

m¼0
tmu�mðp;pÞ

Lemma 4.1. Let {λi} be the spectrum of the Laplacian on zero-forms, or functions, on M. Then,

∑
k
e−λkt ¼ 1

ð4πtÞn=2
∑
∞

k¼0

ð

M
ukðx;xÞ dvx (52)
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Proof:

∑
k
e−λkt ¼

ð

M
tr Gðt;x;xÞ dvx ¼ 1

ð4πtÞn=2
∑
k

�ð

M
ukðx;xÞ dvx

�
tk

The spectrum of the Laplacian on functions characterizes a lot of interesting geometric infor-
mation. Note that Eq. (52) can be written as

∑
i
eλi te

1

ð4πtÞn=2
∑
∞

k¼0
ak tk; ak ¼

ð

M
ukðx;xÞ dvx

and the trace does not appear in the case of functions. The superscript on the Laplacian Δp

denotes the form degree acted upon andsimilarly on other objects throughout this section.

Two Riemannian manifolds are said to be isospectral if the eigenvalues of their Laplacians on
functions counted with multiplicities coincide.

Corollary 4.1. LetM andN be compact isospectral Riemannian manifolds. ThenM and N have
the same dimension and the same volume.

Proof: Let {λi} denote the spectrum of both M and N with dimM ¼ m and dimN ¼ n. Then it
follows that

1

ð4πtÞm=2
∑
∞

k¼0

�ð

M
uMk ðp;pÞ dvp

�
tk ¼ ∑

∞

i¼0
e−λi t ¼ 1

ð4πtÞn=2
∑
∞

k¼0

�ð

N
uNk ðq;qÞ dvq

�
tk

This implies that m ¼ n, which in turn implies that

1

ð4πtÞm=2

ð

M
uM0 ðp;pÞ dvp−

ð

N
uNðq;qÞ dvq

� �
¼ 1

ð4πtÞm=2
∑
∞

k¼1

�ð

M
uMk ðp;pÞ dvp−

ð

N
uNðq;qÞ dvq

�
tk

Since the right-hand side of the equation depends on t, but the left-hand side does not, this
result implies that

ð

M
uM0 ðp; pÞ dvp ¼

ð

N
uN0 ðq; qÞ dvq (53)

Iterating this argument leads to the set of equations

ð

M
uMk ðp; pÞ dvp ¼

ð

N
uNk ðq; qÞ dvq (54)

for all k > 0. In particular, since u0 ¼ 1, Eq. (53) leads to the conclusion vol ðMÞ ¼ vol ðNÞ.
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The proof illustrates that in fact there exist an infinite sequence of obstructions to claiming that

two manifolds are isospectral, namely the set of integrals
ð

M
uk dvp. The first integral contains

basic geometric information. It is then natural to investigate the other integrals in sequence as
well. Recall that Rp;∇Rp;⋯ denote the covariant derivatives of the curvature tensor at p. A
polynomial P in the curvature and its covariant derivatives is called universal if its coefficients
depend only on the dimension of M. The notation PðRp;∇Rp;…;∇kRpÞ is used to denote a
polynomial in the components of the curvature tensor and its covariant derivatives calculated
in a normal Riemannian coordinate chart at p. The following theorem will not be proved, but it
will be used shortly.

Theorem 4.2. On a manifold of dimension n,

u1ðp; pÞ ¼ Pn
1ðRpÞ; ukðp;pÞ ¼ Pn

k ðRp;∇Rp;…;∇2k−2RpÞ; k ≥ 2 (55)

for some universal polynomials Pn
k .

Thus, Pn
1 is a linear function with no constant term and u1ðp;pÞ is a linear function of the

components of the curvature tensor at p, with no covariant derivative terms. The only linear
combination of curvature components that produces a well-defined function u1ðp;pÞ on a

manifold is the scalar curvature RðpÞ ¼ Rij
ij andso there exists a constant C such that

u1ðp;pÞ ¼ C � RðpÞ.
Theorem 4.3.

u1ðp;pÞ ¼ 1
6
RðpÞ (56)

Proof: The proof amounts to noticing that Pn
1 is a universal polynomial, so it suffices to

compute C over one kind of manifold. A good choice is to integrate over Sn with the standard
metric and work it out explicitly in normal coordinates. It is found that u1ðp;pÞ ¼ nðn−1Þ=6
andit is known that RðpÞ ¼ nðn−1Þ for all p∈Sn andthis implies Eq. (56).

The large t or long-time behavior of the heat operator for the Laplacian on differential forms is
then controlled by the topology of the manifold through the means of the de Rham cohomol-
ogy. The small t or short-time behavior is controlled by the geometry of the asymptotic
expansion. The combination of topological information has a geometric interpretation. This is
made explicit by means of the Chern-Gauss-Bonnet theorem. The two-dimensional version of
this theorem will be developed here.

These results can be summarized by the elegant formula

∑
∞

k¼0
e−λkt ¼ 1

ð4πtÞn=2
vðMÞ þ 1

6

ð

M
RðxÞ dvx � tþOðt2Þ

� �

where vðMÞ is the volume of M.
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Suppose that λ is positive and here we let Ep
λ denote the possibly trivial eigenspace of Δ on p-

forms. If ω ∈ Ep
λ then it follows that Δpþ1dω ¼ dΔpω ¼ λ dω, hence dω ∈ Epþ1

λ . Thus, a well-
defined sequential ordering of the spaces can be established. If ω∈Ep

λ has the property that
dω ¼ 0, then λω ¼ Δpω ¼ ðδdþ dδÞω ¼ d δω. Therefore, since λ≠0, it is found that ω ¼ d 1

λ δω
� �

.

Thus, the sequence 0 ! E0
λ !d ⋯!d En

λ ! 0 is exact. Since the operator dþ δ is an isomor-

phism on ⊕k E2k
λ , it follows that

∑
s
ð−1Þsdim Es

λ ¼ 0 (57)

Theorem 4.4. Let {λs
i } be the spectrum of the operator Δ, then

∑
s
ð−1Þs ∑

i
e−λ

s
i t ¼ ∑

s
ð−1Þsdim ker Δs: (58)

Proof: By (57),

∑
s
ð−1Þs∑

k
e−λ

s
kt ¼ ∑

s
ð−1Þs∑′e−λi t

The sum on the right ∑′ is only over eigenvalues such that λp
i ¼ 0 and so

∑
′
e−λ

p
i t ¼ dim kerΔp:

This has the consequence that

∑
p
ð−1Þp tr e−tΔ ¼ ∑

p
ð−1Þp∑

k
e−λ

p
k t (59)

is independent of the parameter t. This means that its large or long t behavior is the same as its
short or small t behavior. To put it another way, the long-time behavior of tr e−tΔ is given by the
de Rham cohomology, while the short-time behavior is dictated by the geometry of the
manifold. Using the definition of the Euler characteristic, it follows that

χðMÞ ¼ ∑pð−1Þpdim Hp
dHðMÞ ¼∑pð−1Þpdim ker Δp ¼ ∑pð−1Þp tr e−tΔ

p

¼ ∑pð−1Þp
ð

M
tr Gðt;x;xÞ dvx (60)

From the asymptotic expansion theorem, the following expression for χðMÞ results

χðMÞ ¼ 1

ð4πtÞn=2
∑
∞

k¼0

�ð

M
∑
n

s¼0
tr uskðx;xÞ dvx

�
tk (61)

The usk in Eq. (61) are the coefficients in the asymptotic expansion for tr ðe−tΔsÞ. Since χðMÞ is
independent of t, only the constant or t-independent term on the right-hand side of Eq. (61) can
be nonzero. This implies the following important theorem.
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Theorem 4.5. If the dimension of M is even, then

1

ð4πÞn=2
ð

M
∑
n

s¼0
ð−1Þs tr uskðx;xÞ dvx ¼

0; k≠
n
2
;

χðMÞ; k ¼ n
2
:

8<
: (62)

Theorem 4.6. (Gauss-Bonnet) Let M be a closed oriented manifold with Gaussian curvature K
and area measure daM, then

χðMÞ ¼ 1
2π

ð

M
K daM (63)

Proof: By the last theorem and the fact that tr upkðx;xÞ ¼ tr up−1k ðx;xÞ, it follows that

χðMÞ ¼ 1
4π

ð

M
∑
2

p¼0
ð−1Þp tr up1 daM ¼ 1

4π

ð

M
ð tr u01− tr u11 þ tr u21Þ daM

¼ 1
4π

ð

M
ð2 tr u01− tr u11Þ daM ¼ 1

4π

ð

M
ð2
3
K− tr u11Þ daM

(64)

since the scalar curvature is two times the Gaussian. Now it must be that tr u11ðx;xÞ ¼
CRðxÞ ¼ 2CKðxÞ, for some constant C. The standard sphere S2 has Gaussian curvature one
andso C can be calculated from Eq. (64),

2 ¼ 1
2π

ð

S2
ð1
3
−CÞ daM ¼ 1

2π
ð1
3
−CÞ � ð4πÞ

Therefore, C ¼ −2=3 and putting all of these results into Eq. (64), Eq. (62) results.

As an application of this theorem, note that the calculation of u1 gives another topological
obstruction to manifolds having the same spectrum.

Theorem 4.7. Let ðM;gÞ and ðN;hÞ be compact isospectral surfaces, then M and N are
diffeomorphic.

Proof: As noted in Corollary 4.1,

ð

M
uM1 ðx;xÞ dvx ¼

ð

N
uN1 ðy;yÞ dvy

On a surface, the scalar curvature is twice the Gaussian curvature, so by the Gauss-Bonnet
theorem,

6πχðMÞ ¼
ð

M
uM1 ðx;xÞ dvx ¼

ð

N
uN1 ðy;yÞ dvy ¼ 6πχðNÞ (65)

However, oriented surfaces with the same Euler characteristic are diffeomorphic.
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5. Summary and outlook

The heat equation approach has been seen to be quite deep, leading both to theHodge theorem and
also to a proof of the Gauss-Bonnet theorem.Moreover, it is clear from the asymptotic development
that there is a generalization of this theorem to higher dimensions. The four-dimensional Chern-

Gauss-Bonnet integrand is given by the invariant 1
32π2 {K2−4jρrj2 þ jRj2},whereK is the scalar curva-

ture, jρrj2 is thenormof theRicci tensor, jRj2 is thenormof the total curvature tensorandthesignature
is Riemannian. This comes up in physics especially in the study of Einstein-Gauss-Bonnet gravity
where this invariant isused toget theassociatedEuler-Lagrangeequations.

Let Rijkl be the components of the Riemann curvature tensor relative to an arbitrary local frame
field {ei} for the tangent bundle TM and adopt the Einstein summation convention. Let m ¼ 2s
be even, then the Pfaffian EmðgÞ is defined to be

EmðgÞ ¼ 1
ð8πÞss! Ri1 i2j2j1⋯Ri2s−1 i2sj2sj2s−1 gðei1∧⋯∧ei2s ;ej1∧⋯∧ej2sÞ (66)

The Euler characteristic χðMÞ of any compact manifold of odd dimension without boundary
vanishes. Only the even dimensional case is of interest.

Theorem 5.1. Let ðM;gÞ be a compact Riemannian manifold without boundary of even dimen-
sion m. Then

χðMÞ ¼
ð

M
EmðgÞ dvM (67)

This was proved first by Chern, but of greater significance here, this can be deduced from the
heat equation approach that has been introduced here. There is a proof by Patodi [18], but
there is no room for it now. It should be hoped that more interesting results will come out in
this area as well in the future.

Author details

Paul Bracken

Address all correspondence to: paul.bracken@utrgv.edu

Department of Mathematics, University of Texas, Edinburg, TX, USA

References

[1] Jost J. Riemannian Geometry and Geometric Analysis, Springer-Verlag, Berlin-Heidel-
berg; 2011.

Spectral Theory of Operators on Manifolds
http://dx.doi.org/10.5772/64611

87



[2] Yu Y. The Index Theorem and the Heat Equation Method, World-Scientific Publishing,
Singapore; 2001.

[3] Berline N, Getzler E, Vergne M. Heat Kernel and Dirac Operators, Springer-Verlag,
Berlin-Heidelberg, 1992.

[4] Rosenberg S. The Laplacian on a Riemannian Manifold, London Mathematical Society,
31, Cambridge University Press, New York, NY, USA; 1997.

[5] Gilkey P B. The Index Theorem and Heat Equation, Mathematics Lecture Series, No. 4,
Publish or Perish Inc, Boston, MA; 1974.

[6] Goldberg S I. Curvature and Homology, Dover, New York, 1970.

[7] Cavicchidi A, Hegenbarth F. On the effective Yang-Mills Lagrangian and its equation of
motion, J. Geom. Phys. 1998; 25, 69–90.

[8] McKean, H Singer I. Curvature and eigenvalues of the Laplacian, J. Diff. Geom. 1967; 1,
43–69.

[9] Atiyah M F, Patodi V K, Singer I. Spectral asymmetry and Riemannian geometry I, Math.
Proc. Camb. Phil. Soc. 1975; 77, 43–69.

[10] Gilkey P B. Curvature and eigenvalues of Laplacian for elliptic complexes. Adv. Math.
1973; 11, 311–325.

[11] Bracken P. Some eigenvalue bounds for the Laplacian on Riemannian manifolds. Int. J.
Math Sciences. 2013; 8, 221–226.

[12] Bracken P. The Hodge-de Rham decomposition theorem and an application to a partial
differential equation. Acta Mathematica Hungarica, 2011; 133, 332–341.

[13] Bracken P. A result concerning the Laplacian of the shape operator on a Riemannian
manifold and an application. Tensor N S. 2013; 74, 43–47.

[14] Minakshisundaram S, Pleijel A. Some properties of the eigenfunctions of the Laplace
operator on Riemannian manifolds, Can J. Math. 1949; 1, 242–256.

[15] Bracken P. A note on the fundamental solution of the heat operator on forms, Missouri J.
Math Sciences. 2013; 25, 186–194.

[16] Chern S S. A simple proof of the Gauss-Bonnet formula for closed Riemannian manifolds.
Ann. Math. 1944; 45, 747–752.

[17] Gilkey P B, Park J H. Analytic continuation, the Chern-Gauss-Bonnet theorem andthe
Euler-Lagrange equations in Lovelock theory for indefinite signature metrics, J. Geom.
Phys. 2015; 88, 88–93.

[18] Patodi V K. Curvature and the eigenforms of the Laplace operator. J. Differen. Geom..
1971; 5 233–249.

Manifolds - Current Research Areas88



[2] Yu Y. The Index Theorem and the Heat Equation Method, World-Scientific Publishing,
Singapore; 2001.

[3] Berline N, Getzler E, Vergne M. Heat Kernel and Dirac Operators, Springer-Verlag,
Berlin-Heidelberg, 1992.

[4] Rosenberg S. The Laplacian on a Riemannian Manifold, London Mathematical Society,
31, Cambridge University Press, New York, NY, USA; 1997.

[5] Gilkey P B. The Index Theorem and Heat Equation, Mathematics Lecture Series, No. 4,
Publish or Perish Inc, Boston, MA; 1974.

[6] Goldberg S I. Curvature and Homology, Dover, New York, 1970.

[7] Cavicchidi A, Hegenbarth F. On the effective Yang-Mills Lagrangian and its equation of
motion, J. Geom. Phys. 1998; 25, 69–90.

[8] McKean, H Singer I. Curvature and eigenvalues of the Laplacian, J. Diff. Geom. 1967; 1,
43–69.

[9] Atiyah M F, Patodi V K, Singer I. Spectral asymmetry and Riemannian geometry I, Math.
Proc. Camb. Phil. Soc. 1975; 77, 43–69.

[10] Gilkey P B. Curvature and eigenvalues of Laplacian for elliptic complexes. Adv. Math.
1973; 11, 311–325.

[11] Bracken P. Some eigenvalue bounds for the Laplacian on Riemannian manifolds. Int. J.
Math Sciences. 2013; 8, 221–226.

[12] Bracken P. The Hodge-de Rham decomposition theorem and an application to a partial
differential equation. Acta Mathematica Hungarica, 2011; 133, 332–341.

[13] Bracken P. A result concerning the Laplacian of the shape operator on a Riemannian
manifold and an application. Tensor N S. 2013; 74, 43–47.

[14] Minakshisundaram S, Pleijel A. Some properties of the eigenfunctions of the Laplace
operator on Riemannian manifolds, Can J. Math. 1949; 1, 242–256.

[15] Bracken P. A note on the fundamental solution of the heat operator on forms, Missouri J.
Math Sciences. 2013; 25, 186–194.

[16] Chern S S. A simple proof of the Gauss-Bonnet formula for closed Riemannian manifolds.
Ann. Math. 1944; 45, 747–752.

[17] Gilkey P B, Park J H. Analytic continuation, the Chern-Gauss-Bonnet theorem andthe
Euler-Lagrange equations in Lovelock theory for indefinite signature metrics, J. Geom.
Phys. 2015; 88, 88–93.

[18] Patodi V K. Curvature and the eigenforms of the Laplace operator. J. Differen. Geom..
1971; 5 233–249.

Manifolds - Current Research Areas88

Chapter 5

Symplectic Manifolds: Gromov-Witten Invariants on
Symplectic and Almost Contact Metric Manifolds

Yong Seung Cho

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/65663

Provisional chapter

Symplectic Manifolds: Gromov-Witten Invariants on
Symplectic and Almost Contact Metric Manifolds

Yong Seung Cho

Additional information is available at the end of the chapter

Abstract

In this chapter, we introduce Gromov-Witten invariant, quantum cohomology, Gromov-
Witten potential, and Floer cohomology on symplectic manifolds, and in connection
with these, we describe Gromov-Witten type invariant, quantum type cohomology,
Gromov-Witten type potential and Floer type cohomology on almost contact metric
manifolds. On the product of a symplectic manifold and an almost contact metric
manifold, we induce some relations between Gromov-Witten type invariant and quan-
tum cohomology and quantum type invariant. We show that the quantum type coho-
mology is isomorphic to the Floer type cohomology.

Keywords: symplectic manifold, Gromov-Witten invariant, quantum cohomology,
Gromov-Witten potential, Floer cohomology, almost contact metric manifold, Gromov-
Witten type invariant, quantum type cohomology, Gromov-Witten type potential, Floer
type cohomology

1. Introduction

The symplectic structures of symplectic manifolds ðM,ω, JÞ are, by Darboux’s theorem 2.1,
locally equivalent to the standard symplectic structure on Euclidean space.

In Section 2, we introduce basic definitions on symplectic manifolds [1–5, 10–13] and flux
homomorphism. In Section 2.1, we recall J-holomorphic curve, moduli space of J-holomorphic
curves, Gromov-Witten invariant and Gromov-Witten potential, quantum product and quan-
tum cohomology, and in Section 2.2, symplectic action functional and its gradient flow line,
Maslov type index of critical loop, Floer cochain complex and Floer cohomology, and theorem
of Arnold conjecture.

In Section 3, we introduce almost contact metric manifolds ðM, g,ϕ, η, ξ,φÞ with a closed
fundamental 2-form φ and their product [4, 7, 8]. In Section 3.1, we study ϕ-coholomorphic
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map, moduli space of ϕ-coholomorphic maps which represent a homology class of dimension
two, Gromov-Witten type cohomology, quantum type product and quantum type cohomol-
ogy, Gromov-Witten type potentials on the product of a symplectic manifold, and an almost
contact metric manifold [5, 6, 13]. In Section 3.2, we investigate the symplectic type action
functional on the universal covering space of the contractible loops, its gradient flow line, the
moduli space of the connecting flow orbits between critical loops, Floer type cochain complex,
and Floer type cohomology with coefficients in a Novikov ring [7, 9, 13].

In Section 4, as conclusions we show that the Floer type cohomology and the quantum type
cohomology of an almost contact metric manifold with a closed fundamental 2-form are
isomorphic [7, 13], and present some examples of almost contact metric manifolds with a
closed fundamental 2-form.

2. Symplectic manifolds

By a symplectic manifold, we mean an even dimensional smooth manifoldM2n together with a
global 2-form ω which is closed and nondegenerate, that is, the exterior derivative dω ¼ 0 and
the n-fold wedge product ωn never vanishes.

Examples: (1) The 2n-dimensional Euclidean space R2n with coordinates ðx1,…, xn, y1,…, ynÞ

admits symplectic form ω0 ¼ ∑
n

i¼1
dxi∧dyi.

(2) Let M be a smooth manifold. Then its cotangent bundle T�M has a natural symplectic form
as follows. Let π : T�M ! M be the projection map and x1,…, xn are local coordinates of M.
Then qi ¼ xi∘π,i ¼ 1, 2,…,n together with fiber coordinates p1,…, pn give local coordinates of
T�M. The natural symplectic form on T�M is given by

ω ¼ ∑
n

i¼1
dqi∧dqj: (1)

(3) Every Kähler manifold is symplectic.

Darboux’s Theorem 2.1 ([6]). Every symplectic form ω on M is locally diffeomorphic to the standard
form ω0 on R2n.

A symplectomorphism of ðM,ωÞ is a diffeomorphism φ∈Dif f ðMÞ which preserves the
symplectic form φ�ω ¼ ω. Denote by SymðMÞ the group of symplectomorphims of M. Since
ω is nondegenerate, there is a bijection between the vector fields X∈ΓðTMÞ and 1-forms
ωðX, �Þ∈Ω1ðMÞ. A vector field X∈ΓðTMÞ is called symplectic if ωðX, �Þ is closed.
Let M be closed, i.e., compact and without boundary. Let φ : R ! DiffðMÞ, t↦φt be a smooth
family of diffeomorphisms generated by a family of vector fields Xt∈ΓðTMÞ via,
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d
dt
φt ¼ Xt∘φt,φ0 ¼ id: (2)

Then φt∈SympðMÞ if and only if Xt∈ΓðTM,ωÞ the space of symplectic vector fields on M.
Moreover, if X,Y∈ΓðTM,ωÞ, then ½X,Y�∈ΓðTM,ωÞ and ωð½X,Y�, �Þ ¼ dH, where
H ¼ ωðX,YÞ : M ! R. Let H : M ! R be a smooth function. Then the vector field XH on M
determined by ωðXH , �Þ ¼ dH is called the Hamiltonian vector field associated with H. If M is
closed, then XH generates a smooth 1-parameter group of diffeomorphisms φt

H∈DiffðMÞ such
that

d
dt
φt
H ¼ XH∘φt

H,φ
0
H ¼ id: (3)

This {φt
H} is called the Hamiltonian flow associated with H. The flux homomorphism Flux is

defined by

Fluxfφt
Hg ¼ ∫

1

0
ωðXt, �Þdt: (4)

Theorem 2.2 ([6]). φ∈SymðMÞ is a Hamiltonian symplectomorphism if and only if there is a homotopy
½0, 1� ! SymðMÞ, t↦φt such that φ0 ¼ id, φ1 ¼ φ, and FluxðfφtgÞ ¼ 0.

2.1. Quantum cohomology

Let ðM,ωÞ be a compact symplectic manifold. An almost complex structure is an automor-
phism of TM such that J2 ¼ −I. The form ω is said to tame J if ωðv, JvÞ > 0 for every v≠0. The set
IτðM,ωÞ of almost complex structures tamed by ω is nonempty and contractible. Thus the
Chern classes of TM are independent of the choice J∈IτðM,ωÞ. A smooth map
φ : ðM1, J1Þ ! ðM2, J2Þ from M1 to M2 is ðJ1, J2Þ-holomorphic if and only if

dφx∘J1 ¼ J2∘dφx (5)

Hereafter, we denote by H2ðMÞ the image of Hurewicz homomorphism π2M ! H2ðM,ZÞ. A
ði, JÞ-holomorphic map u : ðΣ, z1,…, zkÞ ! M from a reduced Riemann surface ðΣ, jÞ of genus g
with k marked points to ðM, JÞ is said to be stable if every component of Σ of genus 0 (resp. 1),
which is contracted by u, has at least 3 (resp. 1) marked or singular points on its component,
and the k marked points are distinct and nonsingular on Σ. For a two-dimensional homology
class A∈H2ðMÞ let Mg,kðM,A; JÞ be the moduli space of ðj, JÞ-holomorphic stable maps which
represent A.

Let B :¼ C∞ðΣ,M;AÞ be the space of smooth maps

u : Σ ! M (6)

which represent A∈H2ðMÞ.
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Let us consider infinite dimensional vector bundle E ! B whose fiber at u is the space
Eu ¼ Ω0,1ðΣ, u�TMÞ of smooth J-antilinear 1-forms on Σ with values in u�TM. The map
∂J : B ! E given by

∂JðuÞ ¼ 1
2
ðduþ J∘du∘jÞ (7)

is a section of the bundle. The zero set of the section ∂I is the moduli space Mg,kðM,A; JÞ.
For an element u∈Mg,kðM,A; JÞ we denote by

Du : Ω0ðΣ, u�TMÞ ¼ TuB ! Ω0,1ðΣ, u�TMÞ (8)

the composition of the derivative

dð∂JÞu : TuB ! Tðu,0ÞE (9)

with the projection to fiber Tðu,0ÞE ! Ω0,1ðΣ, u�TMÞ. Then the virtual dimension of
Mg,kðM,A; JÞ is

dimMg,kðM,A; JÞ ¼ indexDu : Ω0ðΣ, u�TMÞ ! Ω0,1ðΣ, u�TMÞ
¼ 2c1ðTMÞAþ nð2−2gÞ þ ð6g−6Þ þ 2k:

(10)

Theorem 2.1.1. For a generic almost complex structure J∈IτðM,ωÞ the moduli spaceMg,kðM,A; JÞ is
a compact stratified manifold of virtual dimension,

dimMg,kðM,A; JÞ ¼ 2c1ðTMÞAþ nð2−2gÞ þ ð6g−gÞ þ 2k: (11)

For some technical reasons, we assume that c1ðAÞ≥0 if ωðAÞ > 0 and A is represented by some
J-holomorphic curves. In this case, we call the symplectic manifold M semipositive. We define
the evaluation map by

ev :Mg,kðM,A; JÞ ! Mk, evð½u; z1,…, zk�Þ ¼ ðuðz1Þ,…, uðzkÞÞ: (12)

Then the image ImðevÞ is well defined, up to cobordism on J, as a dimMg,kðM,A; JÞ : ≡m-

dimensional homology class in Mk.

Definition. The Gromov-Witten invariant ΦM,A
g,k is defined by

ΦM,A
g,k : HmðMkÞ ! Q,ΦM,A

g,k ðaÞ ¼ ∫
Mg,kðM,A; JÞ

ev�•α (13)

where α ¼ PDðaÞ∈H2nk−mðMkÞ and • is the intersection number of ev and α in Mk.

The minimal Chern number N of ðM,ωÞ is the integer N :¼ min }7Bλjc1ðAÞ ¼ λ≥0,A∈H2ðMÞ}.
We define the quantum product a � b of a∈HkðMÞ and b∈H ðMÞ as the formal sum
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We define the quantum product a � b of a∈HkðMÞ and b∈H ðMÞ as the formal sum
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a � b ¼ ∑
A∈H2ðMÞ

ða � bÞAqc1ðAÞ=N (14)

where q is an auxiliary variable of degree 2N and ða � bÞA∈Hkþl−2c1ðAÞðMÞ is defined by

∫
C
ða � bÞA ¼ ΦM,A

0,3 ða⊗b⊗rÞ (15)

for C∈Hkþl−2c1ðAÞðMÞ, r ¼ PDðCÞ. Hereafter, we use the Gromov-Witten invariants of g ¼ 0 and
k ¼ 3. Then the quantum product a � b is an element of

QH� :¼ H�ðMÞ⊗Q½q� (16)

where Q½q� is the ring of Laureut polynomials of the auxiliary variable q.

Extending � by linearity, we get a product called quantum product

� : QH�ðMÞ⊗QH�ðMÞ ! QH�ðMÞ: (17)

It turns out that � is distributive over addition, skew-commutative, and associative.

Theorem 2.1.2. Let ðM,ωÞ be a compact semipositive symplectic manifold. Then the quantum coho-
mology ðQH�ðMÞ, þ , �Þ is a ring.
Remark. For A ¼ 0∈H2ðMÞ, the all J-holomorphic maps in the class A are constant. Thus

ða � bÞ0 ¼ a∪ b. The constant term of a � b is the usual cup product a∪ b.

We defined the Novikov ring Λω by the set of functions λ : H2ðMÞ ! Q that satisfy the
finiteness condition

# {A∈H2ðMÞjλðAÞ≠0,ωðAÞ < c} < ∞ (18)

for every c∈R. The grading is given by degðAÞ ¼ 2c1ðAÞ.

Examples ([5]). (1) Let p∈H2ðCPnÞ and A∈H2ðCPnÞ be the standard generators. There is a
unique complex line through two distinct points in CPn and so p � pn ¼ q. The quantum
cohomology of CPn is

QH�ðCPn;Q½q�Þ ¼ Q½p, q�
< pnþ1 ¼ q >

: (19)

(2) Let Gðk, nÞ be the Grassmannian of complex k-planes in Cn. There are two natural complex
vector bundles Ck ! E ! Gðk, nÞ and Cn−k ! F ! Gðk, nÞ. Let xi ¼ ciðE�Þ and yi ¼ ciðF�Þ be
Chern classes of the dual bundles E� and F�, respectively. Since E⊕F is trivial,

∑j
i¼0xiyj−i ¼ 0, j ¼ 1,…, n. By computation xk � yn−k ¼ ð−1Þn−kq. The quantum cohomology of

Gðk, nÞ is
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QH�
�
Gðk, nÞ;Q½q�

�
¼ Q½x1,…, xk, q�

< yn−kþ1,…, yn−1, yn þ ð−1Þn−kq >
: (20)

Let {e0,…, en} be an integral basis of H�ðMÞ such that e0 ¼ 1∈H0ðMÞ and each ei has pure
degree. We introduce nþ 1 formal variables t0,…, tn and the linear polynomial at in t0,…, tn
with coefficients in H�ðMÞ by at ¼ t0e0 þ⋯þ tnen. The Gromov-Witten potential of ðM,ωÞ is a
formal power series in variables t0,…, tn with coefficients in the Novikov ring Λω

ΦMðtÞ ¼∑
k≥3
∑
A

1
k!
ΦM,A

0,k ðat,…, atÞq
c1 ðAÞ
N

¼ ∑
k0þ⋯þkn≥3

∑
A

εðk0,…, knÞ
k0!…kn!

ΦM,A
0,k ðek00 ⊗⋯⊗eknn Þ � ðt0Þk0…ðtnÞkn qc1ðAÞ=N:

(21)

Examples ([4]). (1) ΦCP1ðtÞ ¼ 1
2 t0

2t1 þ et1−1−t1− t12
2

� �
:

(2) ΦCPnðtÞ ¼ 1
6 ∑
iþjþk¼n

titjtk þ ∑
d>0

∑
k2…kn

Ndðk2…knÞ � t
k2
2 …tknn
k2!…kn!

edt1qd,

where Ndðk2…knÞ ¼ ΦCPn, ,dA
0,k ðp2…p2,…, pn…pnÞ.

We define a nonsingular matrix ðgijÞ by gij ¼ ∫
M
ei∪ ej and denote by ðgijÞ its inverse matrix.

Theorem 2.1.3 ([4, 5]). The Gromov-Witten potential ΦM of ðM,ωÞ satisfies the WDVV-equations:

∑
υ,μ

∂ti∂tj∂tυΦ
MðtÞgυμ∂tμ∂tk∂t ΦMðtÞ ¼ εijk � ∑

υ,μ
∂tj∂tk∂tυΦ

MðtÞgυμ∂tμ∂ti∂t ΦMðtÞ, (22)

where εijk ¼ ð−1Þdegðe1ÞðdegðejÞþdegðekÞÞ.

2.2. Floer cohomology

Let a compact symplectic manifold ðM,ωÞ be semipositive. Let Htþ1 : M ! R be a smooth 1-
periodic family of Hamiltonian functions. The Hamiltonian vector field Xt is defined by
ωðXt, �Þ ¼ dHt. The solutions of the Hamiltonian differential equation _xðtÞ ¼ XtðxðtÞÞ generate
a family of Hamiltonian symplectomorphisms φt : M ! M satisfying d

dtφt ¼ Xt∘φt and φ0 ¼ id.
For every contractible loop x : R=Z ! M, there is a smooth map u : D :¼ }7Bz∈Cjjzj≤1} ! M
such that uðe2πitÞ ¼ xðtÞ. Two such maps u1 and u2 are called equivalent if their boundary
sumðu1Þ#ð−u2Þ is homologus to zero in H2ðMÞ. Denote by ðx, ½u1�Þ ¼ ðx, ½u2�Þ for equivalent
pairs, LM the space of contractible loops and ~LM the space of equivalence classes. Then
gLM ! LM is a covering space whose covering transformation group is H2ðMÞ via,

Aðx, ½u�Þ ¼ ðx, ½A#u�Þ for each A∈H2ðMÞ and ðx, ½u�Þ∈gLM.

Definition. The symplectic action functional aH is defined by
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such that uðe2πitÞ ¼ xðtÞ. Two such maps u1 and u2 are called equivalent if their boundary
sumðu1Þ#ð−u2Þ is homologus to zero in H2ðMÞ. Denote by ðx, ½u1�Þ ¼ ðx, ½u2�Þ for equivalent
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aH :gLM ! R, aHðx, ½u�Þ ¼ −∫
D
u�ω−∫

1

0
Ht

�
xðtÞ

�
dt: (23)

For each element ~x :¼ ðx, ½u�Þ∈gLM and ξ∈T~xgLM, we have

daHðx, ½u�ÞðξÞ ¼ ∫
1

0
ω
�
_xðtÞ−Xt

�
xðtÞ

�
, ξ
�
dt: (24)

Thus the critical points of aH are one-to-one correspondence with the periodic solutions of

_xðtÞ−Xt

�
xðtÞ

�
¼ 0. Denote by ~PH⊂ ~LM the critical points of aH and by PH⊂LM the set of

periodic solutions.

The gradient flow lines of aH are the solutions u : R2 ! M of the partial differential equation

∂u þ JðuÞ
�
∂tu−XtðuÞ

�
¼ 0

with conditions uðs, tþ 1Þ ¼ uðs, tÞ,
lim
s!±∞

uðs, tÞ ¼ x±ðtÞ (25)

for some x–∈PH.

Let Mð~x−, ~xþÞ be the space of such solutions u with ~xþ ¼ ~x−#u. This space is invariant under
the shift uðs, tÞ↦uðsþ s0, tÞ for each s0∈R. For a generic Hamiltonian function, the space
Mð~x−, ~xþÞ is a manifold of dimension

dimMð~x−, ~xþÞ ¼ μð~x−Þ−μð~xþÞ: (26)

Here μ : ~PH ! Z is a version of Maslov index defined by the path of symplectic matrices
generated by the linearized Hamiltonian flow along xðtÞ.
Let μð~xÞ−μð~yÞ ¼ 1. Then Mð~x, ~yÞ is a one-dimensional manifold and the quotient by shift

Mð~x, ~yÞ=R is finite. In this case, we denote by nð~x, ~yÞ ¼ #
�

Mð~x,~yÞ
R

�
the number of connecting

orbits from ~x to ~y counted with appropriate signs.

We define the Floer cochain group FC�ðM,HÞ as the set of all functions ξ : ~PH ! Q that satisfy
the finiteness condition,

#{~x∈fPH jξð~xÞ≠0, aHð~xÞ≤c} < ∞ (27)

for every c∈R. The complex FC�ðM,HÞ is a Λω-module with action

ðλ � ξÞð~xÞ :¼∑
A
λðAÞξðA#~xÞ: (28)

The degree k part FC�ðM,HÞ consists of all ξ∈FC�ðM,HÞ that are nonzero only on elements

~x∈fPH with μð~xÞ ¼ k. Thus the dimension of FC�ðM,HÞ as a Λω-module is the number #ðPHÞ.
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We define a coboundary operator δ : FC�ðM,HÞ ! FCkþ1ðM,HÞ by
δðξÞð~xÞ ¼ ∑

μð~yÞ¼k

nð~x, ~yÞξð~yÞ: (29)

The coefficients of δðδðξÞð~xÞÞ are given by counting the numbers of pairs of connecting orbits
from ~x to ~y where μð~xÞ−μð~yÞ ¼ 2 ¼ dimMð~x, ~yÞ. The quotient Mð~x, ~yÞ=R is a one-dimensional
oriented manifold that consists of pairs counted by δðδðξÞð~xÞÞ. Thus the numbers cancel out in

pairs, so that δ
�
δðξÞ

�
¼ 0.

Definition. The cochain complex ðFC�ðM,HÞ, δÞ induces its cohomology groups

FHkðM,HÞ :¼ Kerδ : FCkðM,HÞ ! FCkþ1ðM,HÞ
Imδ : FCk−1ðM,HÞ ! FCkðM,HÞ (30)

which are called the Floer cohomology groups of ðM,ω,H, JÞ.
Remark. By the usual cobordism argument, the Floer cohomology groups FH�ðM,HÞ are
independent to the generic choices of H and J. Let f : M ! R be a Morse function such that
the negative gradient flow of f with respect to the metric gð�, �Þ ¼ ωð�, J�Þ is Morse-Smale. Let
H ¼ −εf : M ! R be the time-independent Hamiltonian. If ε is small, then the 1-periodic

solutions of _xðtÞ−XH

�
xðtÞ

�
¼ 0 are one-to-one correspondence with the critical points of f .

Thus we have PH ¼ Critð f Þ and the Maslov type index can be normalized as

μðx, ½u�Þ ¼ indf ðxÞ−n (31)

where u : D ! M is the constant map uðDÞ ¼ x.

We define a cochain complex MC�ðM;ΛωÞ as the graded Λω-module of all functions

ξ : Critð f ÞH2ðMÞ ! Q (32)

that satisfy the finiteness condition

#{ðx,AÞjξðx,AÞ≠0,ωðAÞ≥c} < ∞ (33)

for every c∈R. The Λω-module structure is given by ðλ � ξÞðx,AÞ ¼∑ λðBÞξðx,Aþ BÞ and the
grading degðx,AÞ ¼ indf ðxÞ−2c1ðAÞ. The gradient flow lines u : R ! M of f are the solutions of
_uðsÞ ¼ −∇f ðuðsÞÞ. These solutions determine coboundary operator

δ : MCkðM;ΛωÞ ! MCkþ1ðM;ΛωÞ (34)

δðξÞðx,AÞ ¼∑
y
nf ðx, yÞξðy,AÞ (35)

where nf ðx, yÞ is the number of connecting orbits u from x to y satisfying lim
s!−∞

uðsÞ ¼ x,

lim
s!þ∞

uðsÞ ¼ y, counted with appropriate signs and indf ðxÞ−indf ðyÞ ¼ 1 .
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Definition–Theorem 2.2.1. (1) The cochain complex ðMC�ðM;ΛωÞ, δÞ defines a cohomology group

MH�ðM;ΛωÞ :¼ Kerδ : MC�ðM;ΛωÞ ! MC�þ1ðM;ΛωÞ
Imδ : MC�−1ðM;ΛωÞ ! MC�ðM;ΛωÞ

(36)

which is called the Morse-Witten cohomology of M.

(2) MH�ðM;ΛωÞ is naturally isomorphic to the quantum cohomology QH�ðM;ΛωÞ.
Theorem 2.2.2 ([5]). Let a compact symplectic manifold ðM,ωÞ be semipositive. There is an isomor-
phism

Φ : FH�ðM,HÞ ! QH�ðM;ΛωÞ (37)

which is linear over the Novikov ring Λω.

Let H : M ! R be a generic Hamiltonian function and φ : M ! M the Hamiltonian symplecto-
morphism of H. By Theorems 2.2.1 and 2.2.2

FH�ðM,HÞ≃QH�ðM;ΛωÞ≃H�ðMÞ⊗Λω (38)

The rank of FC�ðM,HÞ as a Λω-module must be at least equal to the dimension of H�ðMÞ. The
rank is the number #ðPHÞ which is the number of the fixed points of φ.

Theorem 2.2.3 (Arnold conjecture). Let a compact symplectic manifold ðM,ωÞ be semipositive. If a
Hamiltonian symplectomorphism φ : M ! M has only nondegenerate fixed points, then

#ðFixðφÞÞ≥∑
2n

j¼0
bjðMÞ (39)

where bjðMÞ is the jth Betti number of M.

3. Almost contact metric manifolds

Let be a real ð2nþ 1Þ-dimensional smooth manifold. An almost cocomplex structure on M is
defined by a smooth ð1, 1Þ type tensor ϕ, a smooth vector field ξ, and a smooth 1-form η on M
such that for each point x∈M,

ϕ2
x ¼ −I þ ηx⊗ξx, ηxðξxÞ ¼ 1, (40)

where I : TxM ! TxM is the identity map of the tangent space TxM.

A Riemannian manifold M with a metric tensor g and with an almost co-complex structure
ðϕ, ξ, ηÞ such that

gðX,YÞ ¼ gðϕX,ϕYÞ þ ηðXÞηðYÞ,X,Y∈ΓðTMÞ, (41)

is called an almost contact metric manifold.
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The fundamental 2-form φ of an almost contact metric manifold ðM, g,ϕ, ξ, ηÞ is defined by

φðX,YÞ ¼ gðX,ϕYÞ (42)

for all X,Y∈ΓðTMÞ. The ð2nþ 1Þ-form φn∧η does not vanish on M, and so M is orientable. The
Nijehuis tensor [8, 11] of the (1,1) type tensor ϕ is the (1,2) type tensor field Nϕ defined by

NϕðX,YÞ ¼ ½ϕX,ϕY�−½X,Y�−ϕ½ϕX,Y�−ϕ½X,ϕY� (43)

for all X,Y∈ΓðTMÞ, where ½X,Y� is the Lie bracket of X and Y. An almost cocomplex structure
ðϕ, ξ, ηÞ on M is said to be integrable if the tensor field Nϕ ¼ 0, and is normal if
Nϕ þ 2dη⊗ξ ¼ 0.

Definition. An almost contact metric manifold ðM, g,ϕ, η, ξ,φÞ is said to be

1. almost cosymplectic (or almost co-Kähler) if dφ ¼ 0 and dη ¼ 0,

2. contact (or almost Sasakian) if φ ¼ dη,

3. an almost C-manifold if dφ ¼ 0, dη≠0, and dη≠φ,

4. cosymplectic (co-Kähler) if M is an integrable almost cosymplectic manifold,

5. Sasakian if M is a normal almost Sasakian manifold,

6. a C-manifold if M is a normal almost C-manifold.

An example of compact Sasakian manifolds is an odd-dimensional unit sphere S2nþ1, and the
one of the co-Kähler (almost cosymplectic) manifolds is a product MS1 where M is a compact
Kähler (symplectic) manifold, respectively.

Let ðM2n1þ1
1 , g1,ϕ1, η1, ξ1Þ and ðM2n2þ1

2 , g2,ϕ2, η2, ξ2Þ be almost contact metric manifolds. For the
product M :¼ M1M2, Riemannian metric on M is defined by

g
�
ðX1,Y1Þ, ðX2,Y2Þ

�
¼ g1ðX1,X2Þ þ g2ðY1,Y2Þ: (44)

An almost complex structure on M is defined by

JðX,YÞ ¼
�
ϕ1ðXÞ þ η2ðYÞξ1,ϕ2ðYÞ−η1ðXÞξ2

�
: (45)

Then J2 ¼ −I and the fundamental 2-form φ on M is φ ¼ φ1 þ φ2 þ η1∧η2. If φ1, φ2 and η1 and
η2 are closed, then φ is closed. Thus we have

Theorem 3.1. Let ðM2n1þ1
1 , g1,ϕ1, η1, ξ1Þ be almost contact metric manifolds, j ¼ 1, 2, and ðM, g,φ, JÞ

be the product constructed as above.

1. If φi and ηi, i = 1,2, are closed, then φ is closed.

2. J is an almost complex structure on M.
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6. a C-manifold if M is a normal almost C-manifold.
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one of the co-Kähler (almost cosymplectic) manifolds is a product MS1 where M is a compact
Kähler (symplectic) manifold, respectively.

Let ðM2n1þ1
1 , g1,ϕ1, η1, ξ1Þ and ðM2n2þ1

2 , g2,ϕ2, η2, ξ2Þ be almost contact metric manifolds. For the
product M :¼ M1M2, Riemannian metric on M is defined by

g
�
ðX1,Y1Þ, ðX2,Y2Þ

�
¼ g1ðX1,X2Þ þ g2ðY1,Y2Þ: (44)

An almost complex structure on M is defined by

JðX,YÞ ¼
�
ϕ1ðXÞ þ η2ðYÞξ1,ϕ2ðYÞ−η1ðXÞξ2

�
: (45)

Then J2 ¼ −I and the fundamental 2-form φ on M is φ ¼ φ1 þ φ2 þ η1∧η2. If φ1, φ2 and η1 and
η2 are closed, then φ is closed. Thus we have

Theorem 3.1. Let ðM2n1þ1
1 , g1,ϕ1, η1, ξ1Þ be almost contact metric manifolds, j ¼ 1, 2, and ðM, g,φ, JÞ

be the product constructed as above.

1. If φi and ηi, i = 1,2, are closed, then φ is closed.

2. J is an almost complex structure on M.
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3. If Mi, i ¼ 1, 2, are cosymplectic, then M is Kähler.

Let ðM2n1
1 , g1, J1Þ be a symplectic manifold, and ðM2n2þ1

2 , g2,ϕ2, η2,ξ2Þ be an almost contact
metric manifold. Then ξ1 ¼ η1 ¼ 0, and ω1 ¼ φ1 on M1.

Theorem 3.2. Let ðM, g,ϕ, η, ξÞ be the product constructed as above.

1. If M2 is contact, then M is an almost C-manifold.

2. If M2 is a C-manifold, then M is an almost C-manifold.

3. If M2 is almost cosymplectic, then M is almost cosymplectic.

3.1. Quantum type cohomology

In [10, 11] we have studied the quantum type cohomology on contact manifolds. In this
section, we want to introduce the quantum type cohomologies on almost cosymplectic, con-
tact, and C-manifolds.

Let ðM2nþ1, g,ϕ, η, ξÞ be an almost contact metric manifold. Then the distribution
H ¼ {X∈TMjηðXÞ ¼ 0} is an n-dimensional complex vector bundle on M.

Now fix the vector bundle H! M. As the symplectic manifolds, a (1,1) type tensor field
ϕ : H ! H with ϕ2 ¼ −I is said to be tamed by φ if φðX,ϕXÞ > 0 for X∈H\{0} is said to be
compatible if φðϕX,ϕYÞ ¼ φðX,YÞ.
Assume that the almost contact metric manifold M has a closed fundamental 2-form φ, i.e.,
dφ ¼ 0. An almost contact metric manifold M with the φ is called semipositive if for every
A∈π2ðMÞ, φðAÞ > 0, c1ðHÞðAÞ≥3−n, then c1ðHÞðAÞ > 0 [13]. A smooth map u : ðΣ, jÞ ! ðM,ϕÞ
from a Riemann surface ðΣ, jÞ into ðM,ϕÞ is said to be ϕ-coholomorphic if du∘j ¼ ϕ∘du.

Let A∈H2ðM;ZÞ be a two-dimensional integral homology class in M. Let M0,3ðM;A,ϕÞ be the
moduli space of stable rational ϕ-coholomorphic maps with three marked points, which
represent class A.

Lemma 3.1.1. For a generic almost complex structure ϕ on the distribution, Cn ! H ! M, the
moduli space M0,3ðM;A,ϕÞ is a compact stratified manifold with virtual dimension 2c1ðHÞ½A� þ 2n.

Consider the evaluation map given by

ev : M0,3ðM;A,ϕÞ ! M3, (46)

evðΣ; z1, z2, z3, uÞ ¼
�
uðz1Þ, uðz2Þ, uðz3Þ

�
: (47)

We have a Gromov-Witten type invariant given by

ΦM,A,ϕ
0,3 : H�ðM3Þ ! Q (48)

ΦM,A,ϕ
0,3 ðαÞ ¼ ∫

M0,3ðM;A,ϕÞ
ev�ðαÞ ¼ ev�½M0,3ðM;A,ϕÞ� � PDðαÞ (49)

Symplectic Manifolds: Gromov-Witten Invariants on Symplectic and Almost Contact Metric Manifolds
http://dx.doi.org/10.5772/65663

99



which is the number of these intersection points counted with signs according to their orienta-
tions.

We define a quantum type product � on H�ðMÞ, for α∈HkðMÞ and β∈H ðMÞ,

α � β ¼ ∑
A∈H2ðMÞ

ðα � βÞAqc1ðHÞ½A�=N , (50)

where N is called the minimal Chern number defined by

< c1ðHÞ,H2ðMÞ >¼ NZ (51)

The ðα � βÞA∈Hkþl−2c1ðHÞ½A�ðMÞ is defined for each C∈Hkþl−2c1ðHÞ½A�ðMÞ,

∫
C
ðα � βÞA ¼ ΦM,A,ϕ

0,3 ðα⊗β⊗γÞ,γ ¼ PDðCÞ: (52)

We denote a quantum type cohomology [11, 13] of M by

QH�ðMÞ :¼ H�ðMÞ⊗Q½q� (53)

where Q½q� is the ring of Laurent polynomials in q of degree 2N with coefficients in the rational
numbers Q. By linearly extending the product � on QH�ðMÞ, we have

Theorem 3.1.2. The quantum type cohomology QH�ðMÞ of the manifold M is an associative ring
under the product �.

Let ðM2n1
1 , g1, J1,ω1Þ be a symplectic manifold and ðM2n2þ1

2 , g2,ϕ2, η2, ξ2, ,φ2Þ be an either almost
cosymplectic or contact or C-manifold.

Let the product ðM2nþ1, g,ϕ, η, ξ,φÞ be construct as Theorem 3.2 where n ¼ n1 þ n2. Now we
will only consider the free parts of the cohomologies. By the Künneth formula,

H�ðMÞ≃H�ðM1Þ⊗H�ðM2Þ in particular, H2ðMÞ≃H2ðM1⊕
�
H1ðM1Þ⊗H1ðM2Þ

�
⊕H2ðM2ÞÞ.

Assume that a two-dimensional classA ¼ A1 þ A2∈H2ðM1Þ⊕H2ð2Þ⊂H2ðMÞ.
Lemma 3.1.3. Let ðM, g,ϕ, η, ξ,φÞ be the product M ¼ M1M2 constructed as above. For a generic
almost cocomplex structure ϕ on M

(1) the moduli space M0,3ðM;A,ϕÞ is homeomorphic to the product

M0,3ðM1,A1, J1ÞM0,3ðM2,A2,ϕÞ, (54)

dimM0,3ðM,A,ϕÞ ¼ 2½c1ðTM1ÞðA1Þ þ c1ðH2ÞðA2Þ� þ 2ðn1 þ n2Þ: (55)

Theorem 3.1.4. For the product ðM, g,ϕ, η, ξ,φÞ ¼ ðM1, g1, J1,ω1ÞðM2, g2,ϕ2, η2, ξ2,φ2Þ, if
A ¼ A1 þ A2∈H2ðM1Þ⊕H2ðM2Þ⊂H2ðMÞ, then the Gromov-Witten type invariants satisfy the follow-
ing equality
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ΦM,A,ϕ
0,3 ¼ ΦM1,A1 , J1

0,3 � ΦM2 ,A2,ϕ2
0,3 : (56)

The complex ðn1 þ n2Þ-dimensional vector bundle

TM1⊕H2 ! M ¼ M1M2 (57)

has the first Chern class c1ðTM1⊕H2Þ ¼ c1ðTM1Þ þ c1ðH2Þ.
The minimal Chern numbers N1 and N2 are given by N1Z ¼< c1ðTM1Þ,H2ðM1Þ > and

N2Z ¼< c1ðH2Þ,H2ðM2Þ > : (58)

For cohomology classes

α ¼ α1⊗α2∈Hk1 ðM1Þ⊗Hk2ðM2Þ⊂HkðMÞ, (59)

β ¼ β1⊗β2∈H
l1ðM1Þ⊗Hl2ðM2Þ⊂HlðMÞ, (60)

k1 þ k2 ¼ k, the quantum type product α � β is defined by

α � β ¼ ∑
A1∈H2ðM1Þ
A2∈H2ðM2Þ

ðα1 � β1ÞA1
qc1ðA1Þ=N1⊗ðα2 � β2ÞA2

qc1ðA2Þ=N2 (61)

where qi is a degree 2Ni auxiliary variable, i ¼ 1, 2, and the cohomology class
ðαi � βiÞAi

∈Hkiþli−2c1ðAiÞðMiÞ is defined by the Gromov-Witten type invariants as follows:

∫
Ci

ðαi � βiÞAi
¼ Φ

Mi,Ai,ϕi
0,3 ðαi⊗βi⊗γiÞ (62)

where Ci∈Hkiþli−2c1ðAiÞðMiÞ, γi ¼ PDðCiÞ and ϕ1 :¼ J1,i ¼ 1, 2, respectively.

The quantum type cohomology of M is defined by the tensor product

QH�ðMÞ ¼ H�ðMÞ⊗Q½q1, q2�, (63)

where Q½q1, q2� is the ring of Laurent polynomials of variables q1 and q2 with coefficients in Q.
Extend the product � linearly on the quantum cohomology QH�ðMÞ; similarly, we define the
quantum cohomology rings

QH�ðM1Þ ¼ H�ðM1Þ⊗Q½q1�,

QH�ðM2Þ ¼ H�ðM2Þ⊗Q½q2�:

8<
: (64)

Theorem 3.1.5. There is a natural ring isomorphism between quantum type cohomology rings
constructed as above,

QH�ðMÞ ¼ QH�ðM1Þ⊗QH�ðM2Þ: (65)

Let ðM, g,ϕ,φÞ be the product of a compact symplectic manifold ðM2n1
1 , g1, J1,ω1Þ and an either

almost cosymplectic or contact or C-manifold ðM2n2þ1
2 , g2,ϕ2, η2, ξ2,φ2Þ. We choose integral
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bases, e0, e1,…, ek1 of H�ðM1Þ and f 0, f 1,…, f k2 of H�ðM2Þ such that e0 ¼ 1∈H0ðM1Þ,
f 0 ¼ 1∈H0ðM2Þ and each basis element has a pure degree. We introduce a linear polynomial
of k1 þ 1 variables t0, t1,…, tk1 , with coefficients in H�ðM1Þ

at :¼ t0e0 þ t1e1 þ⋯þ tk1ek1 , (66)

and a linear polynomial of k2 þ 1 variables s0, s1,⋯, sk2 with coefficients in H�ðM2Þ

as :¼ s0f 0 þ s1f 1 þ⋯þ sk2 f k2 : (67)

By choosing the coefficients in Q, the cohomology of M is

H�ðMÞ≅H�ðM1Þ⊗H�ðM2Þ: (68)

Then, H�ðMÞ has an integral basis {ei⊗f iji ¼ 0,…, k1, j ¼ 0,…, k2}. The rational Gromov-Witten
type potential of the product ðM,ωÞ is a formal power series in the variables
{ti, sjji ¼ 0,…, k1, j ¼ 0,…, k2} with coefficients in the Novikov ring Λω as follows:

ΨM
0 ðt, sÞ ¼∑

A
∑
m

1
m!

ΦM,A,ϕ
0,m ðat⊗as,…, at⊗asÞe

−∫
A
φ

¼∑
A1

∑
m1

1
m1!

ΦM1,A1 , J1
0,m1

ðat,…, atÞe
− ∫
A1

ω1

�∑
A2

∑
m2

1
m2!

ΦM2,A2 , J2
0,m2

ðas,…, asÞe
− ∫
A2

φ2

¼ ΨM1
0 ðtÞ �ΨM2

0 ðsÞ:

(69)

Theorem 3.1.6. The rational Gromov-Witten type potential of ðM,ϕÞ is the product of the rational
Gromov-Witten potentials of M1 and M2, that is,

ΨM
0 ðt, sÞ ¼ ΨM1

0 ðtÞ �ΨM2
0 ðsÞ: (70)

3.2. Floer type cohomology

In this subsection, we assume that our manifold ðM2nþ1, g,ϕ, η, ξ,φÞ is either a almost
cosymplectic, contact, or C-manifold.

Let Ht ¼ Htþ1 : M ! R be a smooth 1-periodic family of Hamiltonian functions. Denoted by
Xt : M ! TM the Hamiltonian vector field of Ht.

The vector fields Xt generate a family of Hamiltonian contactomorphisms ψt : M ! M satisfy-
ing d

dtψt ¼ Xt∘ψt and ψ0 ¼ id.

Let a : R=Z ! M be a contractible loop, then there is a smooth map u : D ! M, defined on the
unit disk D ¼ {z∈Cjjzj≤1}, which satisfies uðe2πitÞ ¼ aðtÞ. Two such maps u1, u2 : D ! M are
called equivalent if their boundary sum u1#ð−u2Þ : S2 ! M is homologus to zero in H2ðMÞ.
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Let ~a :¼ ða, ½u�Þ be an equivalence class and denoted by gLM the space of equivalence classes.

The spacegLM is the universal covering space of the space LM of contractible loops inMwhose
group of deck transformation is H2ðMÞ.

The symplectic type action functional aH :gLM ! R is defined by

aHða, ½u�Þ ¼ −∫
D
u�φ−∫

1

0
Ht

�
aðtÞ
�
dt, (71)

then satisfies aHðA#~aÞ ¼ aHð~aÞ−φðAÞ:
Lemma 3.2.1. Let ðM,φÞ the manifold with a closed fundamental 2-form φ and fix a Hamiltonian
function H∈C∞ðR=ZMÞ . Let ða, ½u�Þ∈LM and V∈TaLM ¼ C∞ðR=Z, a�TMÞ. Then

ðdaHÞða, ½u�ÞðVÞ ¼ ∫
1

0
φ
�
_a−XHtðaÞ,V

�
dt: (72)

We denote by ~PðHÞ⊂gLM the set of critical points of aH and by PðHÞ⊂LM the corresponding set
of periodic solutions.

Consider the downward gradient flow lines of aH with respect to an L2-norm on LM. The
solutions are

u : R2 ! M, ðs, tÞ↦uðs, tÞ (73)

of the partial differential equation

∂sðuÞ þ ϕðuÞ
�
∂tu−XtðuÞ

�
¼ 0 (74)

with periodicity condition

uðs, tþ 1Þ ¼ uðs, tÞ (75)

and limit condition

lim
s!−∞

uðs, tÞ ¼ aðtÞ, lim
s!þ∞

uðs, tÞ ¼ bðtÞ, (76)

where a, b∈PðHÞ.

Let Mð~a,~bÞ :¼ Mð~a,~b,H,ϕÞ be the space of all solutions uðs, tÞ satisfying (74)–(76) with

~a#u ¼ ~b: (77)

The solutions are invariant under the action uðs, tÞ↦uðsþ r, tÞ of the time shift r∈R. Equivalent
classes of solutions are called Floer connecting orbits.
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For a generic Hamiltonian function H, the space Mð~a,~bÞ is a finite dimensional manifold of
dimension

dimMð~a,~bÞ ¼ μð~aÞ−μð~bÞ, (78)

where the function μ : ~PðHÞ ! Z is a version of the Maslov index defined by the path of
unitary matrices generated by the linealized Hamiltonian flow along aðtÞ on D .

If Ht≡H is a C2-small Morse function, then a critical point ða, ½u�Þ of Ht is a constant map
uðDÞ ¼ a with index indHðaÞ.

If μð~aÞ−μð~bÞ ¼ 1, then the space Mð~a,~bÞ is a one-dimensional manifold with R action by time

shift and the quotient Mð~a,~bÞ=R is a finite set. In fact, μð~aÞ∈π1ðUðnÞÞ≃Z.

If μð~aÞ−μð~bÞ ¼ 1, ~a,~b∈ ~PðHÞ, then we denote

ηð~a,~bÞ :¼ #
Mð~a,~bÞ

R

 !
, (79)

where the connection orbits are to be counted with signs determined by a system of coherent

orientation s of the moduli space Mð~a,~bÞ. These numbers give us a Floer type cochain com-
plex.

Let FC�ðM,HÞ be the set of functions

ξ : ~PðHÞ ! R (80)

that satisfy the finiteness condition

#{~x∈ ~PðHÞjξð~xÞ≠0, aHð~xÞ≤c} < ∞ (81)

for all c∈R.

Now we define a coboundary operator

δk : FCkðM,HÞ ! FCkþ1ðM,HÞ, (82)

ðδkξÞð~aÞ ¼ ∑
μð~aÞ¼μð~bÞþ1

ηð~a,~bÞξð~bÞ (83)

where ξ∈FCkðM,HÞ, μð~aÞ ¼ kþ 1 and μð~bÞ ¼ k.

Lemma 3.2.2. Let ðM,ϕÞ be a semipositive almost contact metric manifold with a closed functional 2-

forms. The coboundary operators satisfy δkþ1∘δk ¼ 0, for all k.

Definition - Theorem 3.2.3. (1) For a generic pair ðH,ϕÞ on M, the cochain complex ðFC�, δÞ defines
cohomology groups
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ξ : ~PðHÞ ! R (80)

that satisfy the finiteness condition

#{~x∈ ~PðHÞjξð~xÞ≠0, aHð~xÞ≤c} < ∞ (81)

for all c∈R.

Now we define a coboundary operator

δk : FCkðM,HÞ ! FCkþ1ðM,HÞ, (82)

ðδkξÞð~aÞ ¼ ∑
μð~aÞ¼μð~bÞþ1

ηð~a,~bÞξð~bÞ (83)

where ξ∈FCkðM,HÞ, μð~aÞ ¼ kþ 1 and μð~bÞ ¼ k.

Lemma 3.2.2. Let ðM,ϕÞ be a semipositive almost contact metric manifold with a closed functional 2-

forms. The coboundary operators satisfy δkþ1∘δk ¼ 0, for all k.

Definition - Theorem 3.2.3. (1) For a generic pair ðH,ϕÞ on M, the cochain complex ðFC�, δÞ defines
cohomology groups
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FH�ðM,φ,H,ϕÞ :¼ Kerδ
Imδ

(84)

which are called the Floer type cohomology groups of the ðM,φ,H,ϕÞ.
(2) The Floer type cohomology group FH�ðM,φ,H,ϕÞ is a module over Novikov ring Λφ and is
independent of the generic choices of H and ϕ.

4. Quantum and Floer type cohomologies

In this section, we assume that our manifold M is a compact either almost cosymplectic or
contact or C-manifold. In Section 3.1, we study quantum type cohomology ofM and in Section
3.2 Floer type cohomology of M. Consequently, we have:

Theorem 4.1. Let ðM, g,ϕ, η,ξ,φÞ be a compact semipositive almost contact metric manifold with a
closed fundamental 2-form φ. Then, for every regular pair ðH,ϕÞ, there is an isomorphism between
Floer type cohomology and quantum type cohomology

Φ : FH�ðM,φ,H,ϕÞ!∼ QH�ðM,ΛφÞ: (85)

Proof. Let h : M ! R be aMorse function such that the negative gradient flow of hwith respect to

the metric φ
�
� ,ϕð�Þ

�
þ η⊗η is Morse-Smale and consider the time-independent Hamiltonian

Ht :¼ −εh, t∈R: (86)

If ε is sufficiently small, then the 1-periodic solutions of

_aðtÞ ¼ XtðaðtÞÞ (87)

are precisely the critical point of h. The index is

μða, uaÞ ¼ n−indhðaÞ ¼ ind−hðaÞ−n (88)

where ua : D ! M is the constant map uaðzÞ ¼ a.

The downward gradient flow lines u : R ! M of h are solutions of the ordinary differential
equation

_uðsÞ ¼ JðuÞXtðuÞ: (89)

These solutions determine a coboundary operator

δ : C�ðM, h,ΛφÞ ! C�ðM, h,ΛφÞ: (90)

This coboundary operator is defined on the same cochain complex as the Floer coboundary δ,
and the cochain complex has the same grading for both complex C�ðM, h,ΛφÞ, which can be
identified with the graded Λφ module of all functions

Symplectic Manifolds: Gromov-Witten Invariants on Symplectic and Almost Contact Metric Manifolds
http://dx.doi.org/10.5772/65663

105



ξ : CritðhÞH2ðMÞ ! R (91)

that satisfy the finiteness condition

#{ða,AÞjξða,AÞ≠0,φðAÞ≥c} < ∞ (92)

for all c∈R. The Λφ-module structure is given by

ðν � ξÞða,AÞ ¼∑
B
νðBÞξða,Aþ BÞ, (93)

the grading is degða,AÞ ¼ indhðaÞ−2c1ðAÞ, and the coboundary operator δ is defined by

ðδξÞða,AÞ ¼∑
b
nhða, bÞξðb,AÞ, ða,AÞ∈CritðhÞH2ðMÞ, (94)

where nhða, bÞ is the number of connecting orbits from a to b of shift equivalence classes of
solutions of

f _uðsÞ þ ∇uðsÞ ¼ 0, lim
s!−∞

uðsÞ ¼ a, lim
s!þ∞

uðsÞ ¼ b, (95)

counted with appropriate signs.

Here we assume that the gradient flow of h is Morse-Smale and so the number of connecting
orbits is finite when indhðaÞ−indhðbÞ ¼ 1. Then the coboundary operator δ is a Λφ-module
homomorphism of degree one and satisfies δ∘δ ¼ 0. Its cohomology is canonically isomorphic
to the quantum type cohomology of M with coefficients in Λφ.

For each element ~a∈ ~PðHÞ we denote Mð~a,H,ϕÞ by the space of perturbed ϕ-cohomomorphic
maps u : C ! M such that uðre2πitÞ converges to a periodic solution aðtÞ of the Hamiltonian
system Ht as r ! ∞. The space Mð~a,H,ϕÞ has dimension n−μð~aÞ. Now fix a Morse function
h : M ! R such that the downward gradient flow u : R ! M satisfying (95) is Morse-Smale.
For a critical point b∈CritðhÞ the unstable manifold Wuðb, hÞ of b has dimension indhðbÞ and
codimension 2n−indhðbÞ in the distribution D.

The submanifold Mðb,~aÞ of all u∈Mð~a,H,ϕÞ with uð0Þ∈WuðbÞ has dimension

dimMðb,~aÞ ¼ indhðbÞ−μð~aÞ−n: (96)

If indhðbÞ ¼ μð~aÞ þ n, then Mðb,~aÞ is 0zero-dimensional and hence the numbers nðb,~aÞ of its
elements can be used to construct the chain map defined by

Φ : FC�ðM,HÞ ! C�ðM, h,ΛφÞ (97)

ðΦξÞðb,AÞΛ ∑
indhðbÞ¼μð~aÞþn

nðb,~aÞξðA#~aÞ (98)

which is a Λφ-module homomorphism and raises the degree by n. The chain map Φ induces a
homomorphism on cohomology
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Φ : FH�ðM,ΛφÞ ! H�ðM, h,ΛφÞ ¼ Kerδ
Imδ

≃QH�ðM,ΛφÞ: (99)

Similarly, we can construct a chain map,

Ψ : C�ðM, h,ΛφÞ ! FC�ðM,HÞ (100)

ðΨξÞð~aÞ :¼ ∑
μð~aÞþn¼indhðbÞ−2c1ðAÞ

nðð−AÞ#~a, bÞξðb,AÞ: (101)

Then Φ∘Ψ and Ψ∘Φ are chain homotopic to the identity. Thus we have an isomorphism Φ.

We have studied the Gromov-Witten invariants on symplectic manifolds ðM,ω, JÞ using the
theory of J-holomorphic curves, and the Gromov-Witten type invariants on almost contact
metric manifolds ðN, g,ϕ, η, ξ,φÞ with a closed fundamental 2-form φ using the theory of ϕ-
coholomorphic curves. We also have some relations between them. We can apply the theories
to many cases.

Examples 4.2.

1. The product of a symplectic manifold and a unit circle.

2. The circle bundles over symplectic manifolds.

3. The almost cosymplectic fibrations over symplectic manifolds.

4. The preimage of a regular value of a Morse function on a Kähler manifold.

5. The product of two cosymplectic manifolds is Kähler.

6. The symplectic fibrations over almost cosymplectic manifolds.

7. The number of a contactomorphism is greater than or equal to the sum of the Betti
numbers of an almost contact metric manifold with a closed fundamental 2-form.

Examples 4.3. Let N be a quintic hypersurface in CP4 which is called a Calabi-Yau threefold.
Then N is symply connected, c1ðTNÞ ¼ 0 and its Betti numbers b0 ¼ b6 ¼ 1, b1 ¼ b5 ¼ 0,
b2 ¼ b4 ¼ 1 and b3 ¼ 204.

Let A be the standard generator in H2ðNÞ and h∈H2ðNÞ such that hðAÞ ¼ 1. The moduli space

M0,3ðN,AÞ has the dimension zero. The Gromov-Witten invariant ΦN,A
0,3 ða1, a2, a3Þ is nonzero

only when degðaiÞ ¼ 2, i ¼ 1, 2, 3. In fact, ΦN,A
0,3 ðh, h, hÞ ¼ 5 [4, 5]. The quantum cohomology of

N is QH�ðNÞ ¼ H�ðNÞ⊗Λ where Λ is the universal Novikov ring [5].

Let ðN, g1,ω1, J1Þ be the standard Kähler structure on N and S1, g2,ϕ2 ¼ 0, η2 ¼ dθ,
�

ξ2 ¼ d
dθ ,φ2 ¼ 0Þ the standard contact structure on S1. Then the product M ¼ NS1 has a canon-

ical cosymplectic structure ðM, g,ϕ, η, ξ,φÞ as in Section 3. The quantum type cohomology of
M is
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QH�ðMÞ ¼ QH�ðNÞ⊗QH�ðS1Þ (102)

Let ψ1 : N ! N be a Hamiltonian symplectomorphism with nondegenerate critical points.

Then #Fixðψ1Þ≥∑
6

i¼0
biðNÞ ¼ 208.

Let ψ2 : M ! M be a Hamiltonian contactomorphism with nondegenerate critical points. Then

#Fixðψ2Þ≥∑
7

i¼0
biðMÞ ¼ 416.
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Abstract

For the last decades, manifold learning has shown its advantage of efficient non-linear
dimensionality reduction in data analysis. Based on the assumption that informative and
discriminative representation of the data lies on a low-dimensional smooth manifold
which implicitly embedded in the original high-dimensional space, manifold learning
aims to learn the low-dimensional representation following some geometrical protocols,
such as preserving piecewise local structure of the original data. Manifold learning also
plays an important role in the applications of computer vision, i.e., face image analysis.
According to the observations that many face-related research is benefitted by the head
pose estimation, and the continuous variation of head pose can be modelled and
interpreted as a low-dimensional smooth manifold, we will focus on the head pose
estimation via manifold learning in this chapter. Generally, head pose is hard to directly
explore from the high-dimensional space interpreted as face images, which is, however,
can be efficiently represented in low-dimensional manifold. Therefore, in this chapter,
classical manifold learning algorithms are introduced and the corresponding application
on head pose estimation are elaborated. Several extensions of manifold learning algo-
rithms which are developed especially for head pose estimation are also discussed and
compared.

Keywords: manifold learning, head pose estimation, nonlinear feature reduction,
supervised manifold learning, local linearity, global geometry

1. Introduction

Manifold learning becomes well known due to its property to learn the representative geom-
etry in low-dimensional embedding, with which data analysis and visualization are signifi-
cantly benefitted. From the observation of some nonlinear data, a low-dimensional smooth
manifold (differentiable manifold) is embedded in the original high-dimensional space, which
is implicit if we only consider the metrics of the original space. Manifold learning algorithm
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purpose is to learn such embedding according to some protocols, e.g., local linearity and global
structure preserving. For the remainder of this chapter, the termmanifold is used to refer as the
smooth manifolds (differentiable manifolds) for convenience. As a complex high-dimensional
data, face image analysis is a difficult topic in the field of computer vision due to the compli-
cated facial appearance variations, among which the head pose challenges many face-related
applications. Accurate head pose estimation is advantageous to face alignment and recogni-
tion, because frontal- or near-frontal faces are easier to handle compared with other poses. It
has been found that facial appearance is lying on a manifold embedded form in the original
high-dimensional space represented as face images. Correspondingly, the head pose can also
be represented as a low-dimensional embedding, which is more representative and discrimi-
native to model the variation. Therefore, the head pose estimation can be implemented by the
manifold learning.

In principle, head pose refers to the view of the face to the imaging system, i.e., the camera
center. 3D head transformation involves 6 degrees of freedom (DOF), which can be interpreted

as the 3D translations ðtx, ty, tzÞT and rotations ðα,θ,γÞT from the head to the camera center.
Among the six variables, the 3D rotations that are formally represented by pitch, roll, and yaw
are taken as the head pose [1]. A schematic demonstration taken from reference [1] is shown in
Figure 1. This definition reduces the head pose to 3 DOF which are sufficient to model most of
the in- and out-plane rotation of the head. It can be found that the pitch and yaw generate
more self-occlusions and roll can be easily corrected by the position of eyes. So, in this chapter,
the 2 DOF including yaw and pitch are considered. Usually, the head poses of yaw and pitch
lead to the problem of self-occlusion, which subsequently results in the loss of informative
features, e.g., facial texture and shapes. By comparing, frontal- or near-frontal faces are rela-
tively easier to deal with. Examples of various head poses [2] are given in Figure 2. The task of
the head pose estimation is actually to determine the yaw and pitch of an unknown face image
or search the frontal face in a database. Once the head pose is obtained, further applications
such as face alignment and recognition will be benefitted in efficiency and accuracy. Therefore,
modern development of face-related research prefers to estimate the head pose and correct the
head orientation by positioning the face to near frontal or warping the faces in various poses to
a frontal face template [3].

Basically, head pose estimation methods broadly fall into several categories. Template-based
methods treat the head pose estimation as a verification (or classification) problem. The testing
face is projected to the data set labeled with known poses, the one from which the most
significant similarity measured by various metrics is retrieved for the testing pose [4, 5].
Furthermore, pose detectors can be learned to simultaneously localize the face and recognize
the pose [6]. Regression-based methods estimate a linear or nonlinear function with the origi-
nal faces or extracted facial features as input variables and discrete or continuous poses as
output [2]. Deformable models learn flexible facial modes [7–9]. By manipulating a set of
parameters which specifies the pose, specific face example can be generated, which will be
used to match the testing face. With the development of manifold learning [10–13], more
promising results of head pose estimation are achieved. The essence of such methods is based
on the assumption that the discriminative modes for head pose lie on low-dimensional mani-
folds embedded in high-dimensional space, i.e., the original color space or other low level
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feature space [14]. The low-dimensional representation of the head pose images can be learned
by unsupervised or supervised manifold learning.

Figure 2. Examples of various head poses. The images are cropped, centered, and resized to 64 + 64 pixels from the
originals. One individual is selected and shown in different yaw and pitch. From left to right represents the variation in
yaw: −90, −60, −30, 0, 30, 60, and 90°. From top to bottom represents the variation in pitch: 30, 0, and −30°. One can find that
the effects of self-occlusion occur with an increasing yaw and pitch. The frontal faces (center image) show a full overview
of the face.

Figure 1. The 3 DOF of head pose proposed in reference [1]. The roll does not introduce any self-occlusion of the face,
which can be easily corrected. Compared with the pitch, the yaw produces more serious self-occlusion problem.
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In contrast, the template-based methods have the problem of serious dependence on training
data. If similar poses to the query pose do not exist in the training set, the estimated result
would be biased. The regression-based methods often require to use complicated regression
models, for example, a high-order polynomial. However, complicated nonlinear function
would cause the problem of overfitting, which will result in poor generalization of the model.
The deformable models require the localization of dense facial features, such as landmarks of
facial components, which are seriously influenced by the head pose. The manifold learning-
based methods are somehow limited by some problems, such as identity and noise sensitivity;
however, simple efforts can be made to efficiently improve the performance [15]. More impor-
tantly, the manifold learning-based methods show promising performance of generalization.
And the head pose can be easily modeled and better visualized with low-dimensional features.
More details will be given in following sections.

According to the previous analysis, the main focus of this chapter will be on the manifold
learning based on head pose estimation. The main notations used in this chapter are listed and
interrupted in Section 2. In Section 3, classical manifold learning algorithms will be elaborated.
In Section 4, adaptions and extensions of manifold learning algorithms, which are more
suitable for head pose estimation, are discussed. Section 4 summaries the work, and some
available resources of manifold learning are given.

2. Notations

xi ¼ ðxi1 ,xi2,…,xiDÞT represents the ith data point in the original D-dimensional space. x with-
out subscript is used to represent an arbitrary data point.

X ¼ ðx1, x2,…, xMÞ represents the M-data points collection.

N(i) represents the set of K-nearest neighbor of the ith data point.

yi ¼ ðyi1,yi2 ,…,yidÞT represents the d-dimensional representation of the ith data point after
dimensionality reduction. Similarly, y without subscript is used to represent an arbitrary data
point.

Y ¼ ðy1, y2,…, yMÞ denotes the data collection in the low-dimensional space.

C ¼ XXT is the covariance matrix for the centered data, where 1
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V ¼ ðv1, v2,…, vd,…, vD−dþ1,…, vDÞ is the projection matrix, which is consisted of the eigen-
vectors corresponding to the ranked eigenvalues. ðv1, v2,…,vdÞ are the top d eigenvectors, and
ðvD−dþ1,…, vDÞ are the bottom d eigenvectors.

I denotes the identity matrix.

3. Characteristics of manifold learning algorithms

Given a set of data points, for example, face images, it is difficult to directly estimate or extract
the most significant modes from such high-dimensional representation of the data. If the
distribution of data in the original feature space can be linearly structured, the classical
principal component analysis (PCA) will be able to estimate the discriminative modes and
then reduce the feature dimensions. An example of such a type of data is shown in Figure 3.
However, if the data distribution of the original data is nonlinear, for example, the famous
“swiss roll” shown in Figure 4(a), which is a smooth, continuous but nonlinear surface embed-
ded in the 3D space, the structure interpreted as Euclidean distance is less preferable to
represent the distribution of the data. Taking the two circled points sampled from the manifold
shown in Figure 4(b), for instance, their Euclidean distance is close, while this is not
guaranteed if the 3D structure is considered. The embedded structure can be explored with
the help of nonlinear dimensionality reduction, such as manifold learning algorithms. The
learned low-dimensional representation can approximately model the real distance of the
sampled data points as shown in Figure 4(c).

Figure 3. A data set sampled from a multivariate Gaussian distribution. The most significant modes indicated by the red
orthogonal axis can be learned by PCA, which preserve the largest variations in the original data.

Head Pose Estimation via Manifold Learning
http://dx.doi.org/10.5772/65903

117



In this section, in order to reveal the essence of manifold learning, the PCA is initially detailed.
Other classical manifold learning algorithms will be elaborated in the following.

3.1. Principal component analysis (PCA)

PCA is one of the most popular unsupervised linear dimensionality reduction algorithms. The
intrinsic feature of PCA is to estimate a linear space whose basis will be able to preserve the
maximum variations in the original data. Mathematically, the low-dimensional data can be
obtained by a linear transformation from the original data as denoted in Eq. (1).

y ¼ VTx (1)

where x is the centered data point. The entry of the projection matrix V is the column vector
that represents the principal components in the projection space. Let us take one of the
principal components for instance. The objective is to preserve the maximum variations in the
transformed data.

max
‖v‖¼1

VarðvTXÞ ¼ max
v

1
M−1

‖vTX‖2 ¼ max
v

1
M−1

ðvTXÞðXTvÞ ¼ max
v

ðvTCvÞ (2)

1
M−1 makes Eq. (2) an unbiased estimation, which can be replaced byM if it is sufficiently large.
Eq. (2) is a form of Rayleigh’s quotient, which can be maximized by eigenvector decomposition
of covariance matrix C. The d eigenvectors corresponding to the top d positive eigenvalues are
taken to construct the low-dimensional space VD + d to which the original data are projected.
Actually, Eq. (2) can be converted to

x ¼ Vy (3)

which means that the original data can be linearly represented as a combination of the
principal components.

Figure 4. An example of the data set including a potential “swiss roll” structure. The figures are produced based on the
code from [16]. (a) The original 3D surface. (b) The data points sampled from (a). The Euclidean distance indicated by
dash line between the circled points cannot represent the distance lying on the potential structure. (c) The distance
measured in the learned low-dimensional can more accurately model the data.
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Taking the head pose images of one identity shown in Figure 2, for example, the PCA is
applied on the vectorized images. Figure 5 visualizes the low-dimensional representation of
the face images in the first 3D dimensions. One can find obvious transitions for pitch and yaw
along a 3D shape of valley. The three principal components are visualized in Figure 6, from
which one face image is decomposed into a weighted accumulation of variations in the mean
face. The first and third eigenfaces (principal component) clearly show the variation in yaw.
Therefore, PCA can model the head poses as some of the discriminative principal components.

3.2. Locally linear embedding (LLE)

From the observation of the data shown in Figure 4, the smooth manifold is globally nonlinear
but can be seen as linear from a local neighborhood. On the basis of this observation, the LLE
attempts to represent each of the data by a weighted linear combination of a number of
neighbors [11]. The weight matrix W can be obtained by the following objective function.

min
‖wi‖¼1

∑
M

i¼1

���
���xi− ∑

j∈NðiÞ
wijxj

���
���
2

(4)

where wi denotes the ith row vector of matrix W. Eq. (4) shows that the LLE aims to minimize
the total reconstruction error for the data from the corresponding nearest neighbors. Specifi-
cally, W is a sparse matrix which assigns optimal weights for neighboring data points and

Figure 5. Visualization of the low-dimensional features obtained by PCA. A surface of valley can be found. Blue dots
show the face images sampled from the surface. Some face images are selected and shown. (a) The variation in pitch is
shown with the yaw of −90° in a specific view of the surface. (b) The variation in yaw is shown with the pitch of 0° in
another view of the surface.

Figure 6. Representation of one face image by the mean face and first three eigenfaces obtained from PCA.
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zeros for nonneighboring data points. As a result, both the global nonlinearity and local
linearity are included in one identical form. A close form of the weights matrix W ¼ fwijg can
be efficiently computed.

wij ¼
∑K

n¼1c
−1
jn

∑K
m¼1∑

K
n¼1c

−1
mn

(5)

where K is the number of nearest neighbors tuned for specific problem; C ¼ fcmng is the

neighborhood correlation matrix that is specified for each data: cmn ¼ ξTmξn where ξm and ξn
are the mth and nth neighbors of the ith data point.

Moreover, the weight matrix W is locally invariant to linear transformation, i.e., translation,
rotation, and scaling. Therefore, it is reasonable to propose that low-dimensional representa-
tion of the data can also preserve the local geometry as featured in the original space with the
same weight matrix W. The next step is then to estimate such low-dimensional (d-dimension)
representation Y by the following equation.

min
Y
∑
M

i¼1

���
���yi− ∑

j∈NðiÞ
wijyj

���
���
2

(6)

Eq. (6) can be rewritten as

min
Y
YMYT (7)

where M ¼ ðI−WÞðI−WÞT . Two constraints are made to center the data and avoid degenerate

solutions: ∑M
i¼1yi ¼ 0 and 1

M∑
M
i¼1yiyi

T ¼ Id · d. Then Y can be obtained, of which the columns
correspond to the bottom d eigenvectors of M.

The same data set used in the last experiment is processed with LLE and shown with the first
three dimensions in Figure 7. The variation of the head pose in yaw with different pitch is
obviously shown. The transition from a pose to another pose tends to be continuous and easy
to locate. The learned manifold is smoother and more discriminative than PCA.

3.3. Isomap

Isomap [10] is an abbreviation of isometric feature mapping [17], which is an extension of the
classical algorithm of multidimensional scaling (MDS) [18]. From the previous section, one can
learn that the LLE represents the nonlinearity of the original data by preserving the local
geometrical linearity. In contrast, the algorithm of Isomap proposed a global solution by
constructing a graph for all pairwise data. This idea ensures the global optimum.

Specifically, Isomap firstly constructs a graph that can be represented as G =(V,E) with V as the
vertices (the data points) and E as the edges (the adjacent connections). The adjacent vertices
will be connected with edges according to particular metrics. Taking the ith and jth data points
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for instance, an edge will be added between them if ‖xi−xj‖ ≤ ϵ (ϵ-neighbor) or xi is the K-
nearest neighbor of xj and vice versa (K-nearest neighbor). The graph is then assigned with
distances among all pairwise vertices according to the edges. The distance between the vertices
associated with edges will be dij ¼ ‖xi−xj‖ (Euclidean distance). For the other pairwise vertices,
the geodesic distances are considered, which can be simply computed as the shortest path
(Floyd’s algorithm). This weighted graph is capable of modeling the isometric distances, which
can preserve the global geometry in the learned manifold.

From the distance matrix D ¼ fdijg, an objective function is defined as

minY
����τðDXÞ−τðDYÞ

����2 (8)

where τðDXÞ and τðDYÞ denote the distances conversion to inner products for the original data
and the low-dimensional data, respectively. The operator τ is defined as τðDÞ ¼ −HSH=2;
S ¼ D2 is the squared distance matrix; H ¼ I− 1

M 11T is the centering matrix. This design of the
objective function aims to preserve the global structure represented as a graph associated with
geodesic distance. The low-dimensional embedding should be featured with similar global
geometry with the original data. The optimization of the objective function can be solved by
MDS. The d-dimensional representation Y is obtained by decomposing the matrix of τðDXÞ and
preserving the top d eigenvectors.

Figure 7. Visualization of the low-dimensional features obtained by LLE. A surface of “wings” is observed. (a) The
variation in yaw with the pitch of -30° is found along the edge of one “wing” of the 3D surface. (b) Another variation in
yaw with pitch of 0° is found along the ridge of the 3D surface.
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Figure 8 shows the results of the low-dimensional head poses obtained from Isomap. An
interesting shape of “bowl” of the embedding surface obtained for the head pose images.

3.4. Laplacian eigenmaps (LE)

Compared to Isomap, the idea of graph representation of the data is also taken by the algo-
rithm of LE. However, the difference is the later attempts to construct a weighted graph (other
than distance graph) for the data, which is then represented as a Laplacian [12].

The first step of LE is to construct an adjacent graph whose vertices are the data points and
edges are the adjacent connections for neighbors. A pair of points xi and xj are ϵ-neighbors and
will be connected with edge if ||xi − xj|| ≤ ε. The other criterion to connect or disconnect the
pair of points is to find if they are K-nearest neighbors for each other. The second step is to
choose appropriate weights for the graph. There are two options: the heat kernel defines the

weight as wij ¼ e−
‖xi−xj‖

2

t if the two points of xi and xj are connected and zero otherwise. The
other option is straightforwardly setting wij =1 for connected edges and zero otherwise.

The third step is to minimize an objective function

min
y:yAyT¼1

∑
i, j

ðyi−yjÞ2wij (9)

where the diagonal matrix of A ¼ diagfaiig is computed by column sums of W: aii ¼∑j wji.

From the definition of the objective function, the goal of LE is to preserve the weights for the
mapped data from the original data. If the pair of data is close or apart from each other in the
original space, they should be also kept close or apart in the embedding. The weight matrix
strongly punishes the “connection” for apart data points. Next, the objective function can be
derived to

Figure 8. Visualization of the low-dimensional features obtained by Isomap. (a) The variation in yaw with the pitch of -
30° is found along the edge of the shape. (b) Another variation in yaw with pitch of 0° is found along the geodesic path in
the middle of the shape. The interesting thing is the frontal face locates approximated at the center.
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Ly ¼ λAy (10)

where L = A − W is the Laplacian matrix for the weighted graph. Such form is a generalized
eigenvector decomposition. And the matrix Y whose columns are the bottom d eigenvectors
decomposed from Eq. (10) is the d-dimensional representation of the data. To be compared, the
LE is less sensitive to outlier and noise due to its property of local preservation. The weights for
nonedges are set to be zeros, which diminish the problem of short circuiting.

As shown in Figure 9, the embedding surface with the shape of parabolais generated by LE,
which is similar to the results obtained by LLE. But the latter produces smoother and more
symmetric shape of the surface. The variation in yaw from left to right is shown symmetrically,
and the frontal face approximately locates on the vertex of bottom.

Figure 9. Visualization of the low-dimensional features obtained by LE.
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3.5. Laplacian preserving projections (LPP)

The previously introduced algorithms do not clarify how an unseen data is projected to the
low-dimensional space. To solve this problem, LPP reformulates the LE by representing the
dimensionality reduction as a linear projection from the original to the low-dimensional data.
The first two steps of LPP are exactly the same as LE, which construct the adjacent graph and
compute the weights for each connection. The most significant difference is the LPP
representing the dimensionality reduction from the original to the low-dimensional space as a
projection y = VTx. The problem is converted to the one which aims to find a projection space
instead of directly compute the low-dimensional features. The generalized eigenvector decom-
position defined in Eq. (10) is then reformulated as follows:

XLXTv ¼ λXAXTv (11)

The bottom d eigenvectors decomposed from Eq. (11) construct the projection matrix
VD · d ¼ fvig. Any data from the original space can be dimensionally reduced through y = VTx.

More improved nonlinear manifold learning algorithms are developed [13, 19], but in this
section, the main idea of how to derive the low-dimensional representation of the head poses
is the core. Details of the advanced versions of the manifold learning algorithms can be
explored in the original references.

4. Head pose estimation via manifold learning

The manifold learning methods can successfully model the head pose variations in both yaw
and pitch as discussed in the previous sections. However, there are still several difficulties to
state. The introduction of noise, for example, identity, and illumination variations will affect
the performance of those methods on the head pose estimation. Another point is that they do
not infer how the low-dimensional representation of an unseen head pose image is obtained
(except LPP) and how the pose is estimated. In this section, more sophisticated methods are
introduced to solve these problems based on the original or extended manifold learning
algorithms.

4.1. PCA-based head pose estimation

In Ref. [20], the PCA has been turned to be robust to invariance of identity. Another important
conclusion is that the angle of 10° is found to be the lower bound to be discriminative. For the
data set constructed following this finding, the PCAwould produce promising results for head
pose estimation.

A kernel machine-based method is proposed using the kernel PCA (KPCA) and kernel support
vector classifier (KSVC) [21]. The KPCA is an extension of the classical PCA. Let

φðxÞ : RD ! RD′

be a kernel that maps the original dimensional into a higher dimensional,
which makes the nonlinearly separable data linearly separable in the higher dimensional
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space. Correspondingly, the covariance matrix C is replaced by C ¼ ΦΦT, of which the bold Φ

is the kernel represented data points set. The projection matrix V can be similarly obtained
through eigenvector decomposition of matrix C. After the feature dimensionality reduction, a
multiclass KSVC is trained which can estimate the view of head. Given a testing image xts, it is
first mapped by the kernel and then the low-dimensional features can be obtained by the

projection matrix learned from KPCA yts ¼ V
T
φðxtsÞ which will be fed into the KSVC to

predict the head pose estimation. This method is proved to be outperformed its linear coun-
terpart, i.e., PCA + SVC.

4.2. View representation by Isomap

The derivation of how the Isomap reduces the dimensionality of the original data to a low-
dimension has been introduced in the previous section. Now the problem is how to connect
the head pose to the features. A pose parameter map F is proposed in Ref. [22] to build such
connections.

Θ ¼ FY (12)

whereΘ ¼ ðθ1,θ2,…,θMÞ denotes the angles of the head poses from the training data and Y is
the low-dimensional representation of the data obtained from Isomap. Actually, the matrix of F
can be seen as a set of linear transformations that map the features to corresponding pose
angles. During training time, the head poses Θ are given as annotations, and the low-dimen-
sional features Y can be learned by manifold learning, then, F can be obtained using the
singular value decomposition (SVD) of YT.

FT ¼ PYW−1
Y UT

YΘ
T (13)

where PY, WY, and UY are the SVD of YT.

Given a testing image xts, the goal now is to obtain the low-dimensional feature according to
the embedding Y. The first step is to construct a geodesic distance vector for the testing image

to all the training images dts,M ¼ ðd2ts,1,d2ts,2,…,d2ts,M , ÞT . Then, dts ¼ diagðYTYÞ−dts,M. Next, the
low-dimensional representation of the testing image is obtained by

yts ¼
1
2

�
ðYTYÞ−1YT

�T
dts (14)

Finally, the estimated pose of the testing image is computed from

θts ¼ Fyts (15)

The insight of this method focuses on the conversion from testing data to the subspace learned
by nonlinear manifold learning. The algorithms of LLE and LE can also be generalized by the
proposed idea.
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4.3. The biased manifold embedding (BME)

The head pose estimation is subjected to the identity variation. The ideal case is to eliminate
such negative effects, which means the face images with close pose angles should maintain
nearer and the ones with quite different poses should stay farther in the low-dimensional
manifold, even the poses are from the same identity. Based on this statement, the BME is
proposed to modify the distance matrix according to the pose angles, which can be extended
with almost all the classical algorithms [23].

The modified distance between a pair of data points xi and xj is given by:

d̃ij ¼
β � pði, jÞ

maxm,n
�
pðm, nÞ

�
−pði, jÞ

� dij, pði, jÞ≠0

0, pði, jÞ ¼ 0

8><
>:

(16)

where p(i,j) = |pi - pj| is simply defined as the absolute difference of the angles of two poses.
From the modified distance matrix, one can find that the distance between images with close
poses is biased to be proportionally small. The images with the same poses are defined to be
zero-distance.

In fact, the BME can be seen as a naÏve version of the supervised manifold learning. The head
pose information is used as the supervision to enhance the construction of the graph. For the
head pose estimation stage, the generalized regression neural network (GRNN) [24] is applied
to learn the nonlinear mapping for the unseen data points, and linear multivariate regression is
applied to estimate the head pose angle. This idea can be easily extended to the classical
algorithms, e.g., Isomap, LLE, and LE, among which the biased LE achieves the lowest error
rate on the data set of FacePix [25].

4.4. Head pose estimation as frontal view search

The two remarkable head poses, i.e., yaw and pitch, cause the problem self-occlusion. Com-
pared with pitch, the yaw makes the problem more serious. An extended manifold learning
(EML) method is proposed to specify the head pose estimation only considering the variation
in the yaw [15]. This work resorts to the frontal view search instead of directly estimating the
head pose, which is more efficient and robust. The idea is based on the observation that the
frontal face locates nearly at the vertex in the symmetrical shape of the embedding. However, if
the pose distribution of the data is asymmetric, the location of the frontal face in the manifold
will shift from the vertex. Therefore, the first trial of the EML method is data enhancement. All
the images are horizontally flipped and both the original and flipped images are used for
manifold learning. In order to make the method more robust to variations in environment, for
example, illumination, the localized edge orientation histogram (LEOH) is presented to repre-
sent the original color mappings as more representative features. The idea is inspired by the
classical HoG feature [14]. The first step of LEOH is to apply a Canny edge detector on the
original images. Then, the whole image is divided into M + N cells. The gradient orientation
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is quantized into NB bins. Next, histograms of the gradient orientation of the cells locating in a
block consisted of P + Q cells are accumulated and normalized. Finally, the LEOH feature is
obtained by the block features concatenation. The proposed ideas can be easily incorporated in
various manifold learning methods that improve the performance of the frontal view
searching.

4.5. Head pose estimation by supervised manifold learning

A taxonomy of methods, which structures the general framework of manifold learning into
several stages, is proposed to incorporate the head pose angles in one or some of the stages to
enable the supervised manifold learning [26]. A straightforward solution could be the adap-
tion of the distance and weight matrix according to the angle difference between pairwise face
images. The head pose estimation problem is then interrupted as a regression problem, which
was usually solved as a classification problem. As a result, continuous head poses can be
generalized by the model.

The general framework of manifold learning can be represented as follows: Stage 1, neighbor-
hood searching; Stage 2, graph weighting; Stage 3, low-dimensional manifold computation;
and Stage 4, projection from unseen data to the manifold and pose estimation.

In Stage 1, the distance matrix of D = {dij} can be adapted as follows:

d̃ij ¼ f ðjθi−θjjÞ � dij (17)

where θi and θj are the angles of two poses, which keep the same denotation as previous
sections. The f is some reciprocal increasing positive function, for example, f ðuÞ ¼ α � u=ðβ−uÞ.
The introduction of f encourages the distance decreasing of the nearer poses and increasing of
farther poses. The farther the poses are, the more penalties the distance will gain.

In Stage 2, the weight matrix of W = {wij} can be adapted by similar idea of supervision
information incorporation.

w̃ij ¼ wij � gðjθi−θjjÞ (18)

where g is defined as some positive decreasing function, which is similar to the f applied in
Stage 1.

In Stage 3, let us take the LLE for an instance. The original objective function of LLE shown in
Eq. (6) can be adapted as follows:

min
Y
∑
M

i¼1

���
���yi− ∑

j∈NðiÞ
wijyj

���
���
2
þ λ

1
2
∑
i, j

ðyi−yjÞ2Λij (19)

where the Λ = {Λi,j} measures the similarity between the angles of pairwise poses. A possible
form of Λ is the heat kernel.
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Λij ¼ e−
����θi−θj

����2
2σ2

, if the ith and jthdata points are neighbours

0, otherwise

8<
: (20)

The adaption of the objective function can preserve the local linearity of the original data and
enhance the similarity for neighborhoods, which are facilitated with similar poses. This is
implemented by the second term of Eq. (19) that introduces the supervision information.
Following the derivation from Eq. (6) to Eq. (7), Eq. (19) can be simplified as:

min
Y
YMYT þ λYL̃YT ¼ min

Y
YðMþ λL̃ÞYT (21)

where ~L is the Laplacian matrix of Λ. For the low-dimensional embedding, eigenvectors
decomposition of M + λL can be performed. By the supervision information incorporation,
the method is much capable of imposing discriminative projection to the learned embedding.

In Stage 4, the GRNN algorithm is applied to produce the mapping from unseen data to the
low-dimensional embedding. During testing time, the support vector regression (SVR) with
RBF kernel and smoothing cubic splines are taken.

A novel method of supervised manifold learning for head pose estimation [27, 28] is proposed
based on the framework from the former method. Similarly, angles of poses are incorporated
in all three stages of the general manifold learning structure.

In Stage 1, an improved version of f is proposed as:

d ̃ij ¼ f ðjθi−θjjÞp � dijðp > 0Þ (22)

where f is defined as a rectified reciprocal form f ðjθi−θjjÞ ¼ α jθi−θjj
maxm;nfjθm−θnjg−jθi−θj jþε. α is a

positive constant and ε is an arbitrary small positive constant that avoids the denominator of
f being zero. This adaption for the distance matrix further enhances the effects of the supervi-
sion information during the procedure of neighbors search.

In Stage 2, taking LLE (NPE [29]), for an example, the local distance matrix shown in Eq. (4) is
modified as

c̃mn ¼ gmn � cmn (23)

where gmn ¼ jθi−θm jjθi−θn j
ðmaxm,nfjθm−θn jg−jθm−θn jþεÞ2. θi is the angle of the reference face image xi.This opera-

tion enhances the supervision during the computation of local correlated matrix.

In Stage 3, a supervised neighborhood-based fisher discriminant analysis (SNFDA) is pro-
posed. The basic idea is to make the neighboring data points as close as possible and the
nonneighboring data points as far as possible in the low-dimensional embedding. The SNFDA
can be seen as a postprocessing procedure in this stage. Based on the low-dimensional
represented data Y obtained from the original LLE or the modified LLE in Stages 1 and 2, the
within- and between-neighborhood scatter matrices are defined as:
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Sw ¼ K
2
∑
M

i, j¼1
Aw

ij ðyi − yjÞðyi − yjÞT (24)

SB ¼ K
2
∑
M

i, j¼1
AB

ijðyi − yjÞðyi − yjÞT (25)

where

Aw
ij ¼

Aij

K
, yj ∈ NðiÞ

0, otherwise

(
(26)

Aw
ij ¼

Aij
1
M

−
1
K

� �
, yj ∈ NðiÞ

Aij

n
, otherwise

8>><
>>:

(27)

Aij is the affinity between yi and yj, which is defined as the form of heat function:

Aij ¼ e−
‖yi−yj‖

2

2σ2 (28)

Details about the inference of the scatter matrices can be found in the original reference. The
transformed matrix TSNFDA of SNFDA is computed from the generalized eigenvector decom-
position problem

SBe ¼ λSwe (29)

The top d eigenvectors span to the TSNFDA and the transformed feature is obtained by
z = TSNFDAy. This supervised learning manner successfully introduces the supervision infor-
mation in a framework to provide a “good” projection from the original data to the low-
dimensional. Due to the supervised learning, when the projection is applied on original data,
more discriminative features can be obtained for head pose estimation.

In Stage 4, during testing time, the GRNN is applied to map the unseen data point to the low-
dimensional embedding and the relevance vector machine (RVM) [30] is adopted to accom-
plish the pose estimation. Experimental results obtained by the proposed method performing
on the database of FacePix [25] and MIT-CBCL [31] show big improvements compared with
other state-of-the-art algorithms [23, 26] in Stage 3 and Stages 1 + 2 + 3. This means that this
method is more robust for identity and illumination variations.

5. Summary

In this chapter, the head pose estimation, one of the most challenging tasks in the area of
computer vision, is introduced, and the main types of methods are demonstrated and
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compared. Particularly, the manifold learning-based methods are attracted more attention. In
reality, data distribution is usually nonlinear in high-dimensional represented space, e.g., the
head pose images. Some potential structures are lying on nonlinear but smooth manifolds
which are embedded in the original space. The manifold learning algorithms are able to
discover and visualize such embedding. Almost all the algorithms are formalized based on
the assumption of the local linearity of the nonlinear data. Those algorithms highly benefit the
application of head pose estimation, because the face orientations (yaw and pitch) are found to
be distributed along some specific manifolds. Promising performance is achieved by the
classical manifold learning methods, which, however, are highly improved by the supervised
manifold learning. It proves that the supervised information represented as angles of head
poses is helpful in head pose estimation. However, there are still hurdles to take. Most of the
methods are tested in different settings, e.g., different database is used in different method. A
common framework could help to offer fair justifications. Other feature instead of the simple
color space can be considered to better represent the face images. Some useful tools are
available online to help better understand the work [16, 32, 33].
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Abstract

Spectral analysis-based dimensionality reduction algorithms, especially the local mani-
fold learning methods, have become popular recently because their optimizations do
not involve local minima and scale well to large, high-dimensional data sets. Despite
their attractive properties, these algorithms are developed based on different geometric
intuitions, and only partial information from the true geometric structure of the under-
lying manifold is learned by each method. In order to discover the underlying manifold
structure more faithfully, we introduce a novel method to fuse the geometric informa-
tion learned from different local manifold learning algorithms in this chapter. First, we
employ local tangent coordinates to compute the local objects from different local
algorithms. Then, we utilize the truncation function from differential manifold to con-
nect the local objects with a global functional and finally develop an alternating optimi-
zation-based algorithm to discover the low-dimensional embedding. Experiments on
synthetic as well as real data sets demonstrate the effectiveness of our proposed method.

Keywords: dimensionality reduction, manifold learning

1. Introduction

Nonlinear dimensionality reduction (NLDR) plays an important role in the modern data
analysis system, since many objects in our world can only be electronically represented with
high-dimensional data such as images, videos, speech signals, and text documents. We usually
need to analyze a large amount of data and process them, and however, it is very complicated
or even infeasible to process these high-dimensional data directly, due to their high computa-
tional complexity on both time and space. Over the past decade, numerous manifold learning
methods have been proposed for nonlinear dimensionality reduction. From methodology,
these methods can be divided into two categories: global algorithms and local algorithms.
Representative global algorithms contain isometric mapping [1], maximum variance unfolding
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[2], and local coordinates alignment with global preservation [3]. Local methods mainly
include Laplacian eigenmaps (LEM) [4], locally linear embedding (LLE) [5], Hessian
eigenmaps (HLLE) [6], local tangent space alignment (LTSA) [7], local linear transformation
embedding [8], stable local approaches [9], and maximal linear embedding [10].

Different local approaches try to learn different geometric information of the underlying
manifold, since they are developed based on the knowledge and experience of experts for their
own purposes [11]. Therefore, only partial information from the true underlying manifold is
learned by each existing local manifold learning method. Thus, to better discover the underly-
ing manifold structure, it is more informative and essential to provide a common framework
for synthesizing the geometric information extracted from different local methods. In this
chapter, we propose an interesting method to unify the local manifold learning algorithms (e.
g., LEM, LLE, HLLE, and LTSA). Inspired by HLLE which employs local tangent coordinates
to compute the local Hessian, we propose to utilize local tangent coordinates to estimate the
local objects defined in different local methods. Then, we employ the truncation function from
differential manifold to connect the local objects with a global functional. Finally, we develop
an alternating optimization-based algorithm to discover the global coordinate system of lower
dimensionality.

2. Local tangent coordinates system

A manifold is a topological space that locally resembles Euclidean space near every point. For
example, around each point, there is a neighborhood that is topologically the same as the open
unit ball in ℝD. The simplest manifold is a linear manifold, usually called a hyperplane. There
exists a tangent space at each point of a nonlinear manifold. The tangent space is a linear
manifold which locally approximates the manifold. Suppose there are N points {x1;…;xN} in
ℝD residing on a smooth manifold M⊂ℝD, which is the image of a coordinate space Y⊂ℝd

under a smooth mapping ψ : Y ! ℝD, where d≪D. The mapping ψ is assumed as a locally
isometric embedding. The aim of a NLDR algorithm is to acquire the corresponding low-
dimensional representation yi∈Y of each xi∈M and preserve certain intrinsic structures of data
at the same time. Suppose M is smooth such that the tangent space TxðMÞ is well defined at
every point x∈M. We can regard the local tangent space as a d-dimensional affine subspace of
ℝD which is tangent to M at x. Thus, the tangent space has the natural inner product induced
by the embedding M⊂ℝD. Within some neighborhood of x, each point x∈M has a sole closest
point in TxðMÞ, and therefore, an orthonormal coordinate system from the corresponding
local coordinates on M can be associated with the tangent space.

A manifold can be represented by its coordinates. While the current research of differential
geometry focuses on the characterization of the global properties of manifolds, NLDR algo-
rithms, which try to find the coordinate representations of data, only need the local properties
of manifolds. In this chapter, we use local coordinates associated with the tangent space to
estimate the local objects over the manifold. To acquire the local tangent coordinates, we first
perform Principal Component Analysis (PCA) [12] on the points in N ðxiÞ ¼ {xi; xi1 ;…; xik } that
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is the local patch built by the point xi and its k nearest neighborhoods, and get d leading PCA
eigenvectors Vi ¼ {vi1;v

i
2;…;vid}which correspond to an orthogonal basis of TxiðMÞ (the orthog-

onal basis can be seen as a d-dimensional affine subspace of ℝD which is tangent to M at xi).
For high-dimensional data, we employ the trick presented by Turk and Pentland for
EigenFaces [13]. Then, we obtain the local tangent coordinates U i ¼ {0;ui1;…;uik} of the neigh-
borhood N ðxiÞ by projecting the local neighborhoods to this tangent subspace:

uij ¼ ðViÞTðxij−xiÞ (1)

An illustration of the local tangent space at xi and the corresponding tangent coordinates
system (i.e., the point xij 's local tangent coordinate is u

i
j) is shown in Figure 1.

3. Reformulations of LEM, LLE, HLLE and LTSA using local tangent
coordinates

3.1. Reformulation of Laplacian eigenmaps

The method LEMwas introduced by Belkin and Niyogi [4]. We can summarize the geometrical
motivation of LEM as follows. Assume that we are searching for a smooth one-dimensional
embedding f : M ! ℝ from the manifold to the real line so that data points near each together

Figure 1. Local tangent space and tangent coordinates system.
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on the manifold are also mapped close together on the line. Think about two adjacent points,
x;z∈M, which are mapped to f ðxÞ and f ðzÞ, respectively, we can obtain that

j f ðzÞ−f ðxÞj≤∥∇Mf ðxÞ∥∥z−x∥þOð∥z−x∥2Þ (2)

where ∇Mf is the gradient vector field along the manifold. Thus, to the first order, ∥∇Mf ∥
provides us with an estimate of how far apart f maps nearby points. When we look for a map
that best preserves locality on average, a natural choice to find f is to minimize [4]:

Φlapð f Þ ¼
ð

M
∥∇Mf∥2 ¼

ð

M
ΔMð f Þf (3)

where the integral is taken with respect to the standard measure over the manifold. Thus, the
function f that minimizes Φlapð f Þ has to be an eigenfunction of the Laplace-Beltrami operator
ΔM, which is a key geometric object associated with a Riemannian manifold [14].

Suppose that the tangent coordinate of x∈N ðxÞ is given by u. Then, the rule gðuÞ ¼ f ðxÞ
¼ f ∘ψðuÞ defines a function g : U ! ℝ, where U is the neighborhood of u∈ℝd. With the help
of local tangent coordinates, we can reduce the computation of the gradient vector ∇Mf ðxÞ
on the manifold to the computation of the ordinary gradient vector on the Euclidean
space:

∇tanf ðxÞ ¼ ∇gðuÞ ¼
�
∂gðuÞ
∂u1

;⋯;
∂gðuÞ
∂ud

�T

(4)

where u ¼ ðu1;…;udÞ∈ℝd, and we keep up tan in the notation to make clear that it counts on the
coordinate system in TxðMÞ. For different local coordinate systems, although the tangent
gradient vector will be different, the norm ∥∇tanf ðxÞ∥ is inimitably defined such that equa-
tion (3) can be approximated by estimating the following functional:

~Φ lapðf Þ ¼
ð

M
∥∇tanf ðxÞ∥2dx (5)

where dx stands for the probability measure on M.

In order to compute the local object ∥∇tanf ðxÞ∥2, we first use the first-order Taylor series

expansion to approximate the smooth functions {f ðxijÞ}kj¼1; f : M ! ℝ, and together with

Eq. (4), we have:

f ðxijÞ ¼ f ðxiÞ þ ð∇tanf ðxiÞÞTðxij−xiÞ þOð∥xij−xi∥2Þ
¼ gðuijÞ ¼ gð0Þ þ ð∇tanf ðxiÞÞTuij þOð∥uij∥2Þ

(6)

Over U i, we develop the operator αi ¼ ½gð0Þ;∇gð0Þ� ¼ ½gð0Þ;∇tanf ðxiÞ� that approximates the

function gðuijÞ by its projection on the basis Ui
j ¼ {1;uij1 ;…;uijd }:
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f ðxijÞ ¼ gðuijÞ ¼ ðαiÞTUi
j (7)

The least-squares estimation of the operator αi can be computed by:

argmin
αi

∑
k

j¼1
ð f ðxijÞ−ðαiÞTUi

jÞ2 (8)

It is easy to show that the least-squares solution of the above object function is αi ¼ ðUiÞ†f i,
where f i ¼ ½ f ðxi1Þ;…; f ðxik Þ�∈ℝk, Ui ¼ ½Ui

1;U
i
2;…;Ui

k�∈ℝk · ð1þdÞ, and ðUiÞ† denotes the pseudo-
inverse of Ui. If we define a local gradient operator Gi∈ℝd · k which is constructed by the last d

rows of ðUiÞ†, we have ∇tanf ðxiÞ ¼ Gif i. Furthermore, the local object ∥∇tanf ðxiÞ∥2 can be
computed as:

∥∇tanf ðxiÞ∥2 ¼ ∇tanf ðxiÞT∇tanf ðxiÞ ¼ ð f iÞTðGiÞTGif i (9)

An unresolved problem in our reformulation is how to connect the local object ∥∇tanf ðxÞ∥2
with the global functional ~Φ lapðf Þ in (5) and its discrete approximation. In Section4, we will
discuss this issue in detail.

3.2. Reformulation of locally linear embedding

The LLE method was introduced by Roweis and Saul [5]. It is based on simple geometric
intuitions, which can be depicted as follows. Globally, the data points are sampled from a
nonlinear manifold, while each data point and its neighbors are residing on or close to a linear
patch of the manifold locally. Thus, it is possible to describe the local geometric properties of
the neighborhood of each data point in the high-dimensional space by linear coefficients which
reconstruct the data point from its neighbors under suitable conditions. The method of LLE
computes the low-dimensional embedding which is optimized to preserve the local configura-
tions of the data. In each locally linear patch, the reconstruction error in the original LLE can be
written as:

ε̂i ¼ ∥xi− ∑
k

j¼1
wijxij∥

2 (10)

where {wij}
k
j¼1 are the reconstruction weights which encode the geometric information of the

high-dimensional inputs and are constrained to satisfy ∑jwij ¼ 1.

Since the geometric structure of the local patch can be approximated by its projection on the
tangent space TxiðMÞ, we utilize the local tangent coordinates to estimate the local objects over
the manifold in our reformulation framework. We can write the reconstruction error of each
local tangent coordinate as:
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εi ¼ ∥ui− ∑
k

j¼1
wiju

i
j∥

2 ¼ ∥∑
j
wijðui−uijÞ∥2 ¼ ∑

jk
wijwikG

i
jk (11)

where we have employed the fact that the weights sum to one, and Gi is the local Grammatrix,

Gi
jk ¼ 〈ðui−uijÞ;ðui−uikÞ〉 (12)

The optimal weights can be obtained analytically by minimizing the above reconstruction
error. We solve the linear system of equations

∑
k
Gi

jkwik ¼ 1 (13)

and then normalize the solution by ∑kwik ¼ 1. Consider the problem of mapping the data
points from the manifold to a line such that each data point on the line can be represented as
a linear combination of its neighbors. Let f ðxi1Þ;…;f ðxikÞ denote the mappings of ui1;…;uik,
respectively. Motivated by the spirit of LLE, the neighborhood of f ðxiÞ should share the same
geometric information as the neighborhood of ui, so we can define the following local object:

jσf ðxiÞj2 ¼ jf ðxiÞ−∑
k

j¼1
wij f ðxijÞj2 ¼ ðf iÞTðWiÞTWif i (14)

where Wi ¼ ½1;−wi� ∈ ℝ1 · ðkþ1Þ; f i ¼ ½ f ðxiÞ ; f ðxi1Þ ; … ; f ðxikÞ�. The optimal mapping f can be
obtained by minimizing the following global functional:

Eðf Þ ¼
ð

M
jσf ðxÞj2dx (15)

where dx stands for the probability measure on the manifold.

3.3. Reformulation of Hessian eigenmaps

The HLLE method was introduced by Donoho and Grimes [6]. In contrast to LLE that obtains
linear embedding by minimizing the l2 error in Eq. (10), the HLLE achieves linear embedding
by minimizing the Hessian functional on the manifold where the data points reside. HLLE
supposes that we can obtain the low-dimensional coordinates from the ðdþ 1Þ-dimensional
null-space of the functionalℋðf Þwhich presents the average curviness of f upon the manifold,
if the manifold is locally isometric to an open connected subset of ℝd. We can measure the
functional ℋðf Þ by averaging the Frobenius-norm of the Hessians on the manifold M as [6]:

ℋð f Þ ¼
ð

M
∥Htan

f ðxÞ∥2Fdx (16)

where Htan
f stands for the Hessian of f in tangent coordinates. In order to estimate the local

Hessian matrix, we first perform a second-order Taylor expansion at a fixed xi on the smooth

functions: { f ðxijÞ}kj¼1;f : M ! ℝ that is C2 near xi:
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f ðxijÞ≈ f ðxiÞ þ ð∇f ÞTðxij − xiÞ þ
1
2
ðxij − xiÞTHi

f ðxij − xiÞ
¼ gðuijÞ ¼ gð0Þ þ ð∇gÞTuij þ

1
2
uij

THi
f u

i
j þOð∥uij∥3Þ

(17)

Here, ∇f ¼ ∇g is the gradient defined in (4), and Hi
f is the local Hessian matrix defined as:

ðHi
f Þp;qðxÞ ¼

∂
∂up

∂
∂uq

gðuÞ (18)

where g : U ! ℝ uses the local tangent coordinates and satisfies the rule gðuÞ ¼ f ðxÞ ¼ f ∘ψðuÞ.
In the second identity of Eq. (17), we have exploited the fact that uii ¼ 〈Vi;xi−xi〉 ¼ 0 [recall the
computation of local tangent coordinates in Eq. (1)].

Over U i, we develop the operator βi that approximates the function gðuijÞ by its projection on

the basis Ui
j ¼ {1;uij1 ;…;uijd ;ðu

i
j1
Þ2;…;ðuijdÞ

2;…;uij1 ·u
i
j2
;…;uijd−1 · u

i
jd
}, and we have:

f ðxijÞ ¼ gðuijÞ ¼ ðβiÞTUi
j (19)

Let βi ¼ ½gð0Þ;∇g;hi�∈ℝ1þdþdðdþ1Þ=2, then hi∈ℝdðdþ1Þ=2 is the vector form of local Hessian matrix

Hi
f over neighborhood NðxiÞ. The least-squares estimation of the operator βi can be obtained

by:

argmin
βi

∑
k

j¼1
ðf ðxijÞ−ðβiÞTUi

jÞ2 (20)

The least-squares solution is βi ¼ ðUiÞ†f i, where f i ¼ ½f ðx1Þ;…;f ðxkÞ�∈ℝk, Ui ¼ ½Ui
1;U

i
2;…;Ui

k�
∈ℝk · ð1þdþdðdþ1Þ=2Þ, and ðUiÞ† signifies the pseudo-inverse of Ui. Notice that hi is the vector form

of local Hessian matrix Hi
f , while the last dðdþ 1Þ=2 components of βi correspond to hi.

Meanwhile, we can construct the local Hessian operator Hi∈ℝðdðdþ1Þ=2Þ · k by the last dðdþ 1Þ=2
rows of ðUiÞ†, and therefore, we can obtain hi ¼ Hif i. Thus, the local object ∥Htan

f ðxiÞ∥2F can be

estimated with:

∥Htan
f ðxiÞ∥2F ¼ ðhiÞTðhiÞ ¼ ðf iÞTðHiÞTðHiÞðf iÞ (21)

3.4. Reformulation of local tangent space alignment

The method LTSAwas introduced by Zhang and Zha [7]. LTSA is based on similar geometric
intuitions as LLE. The neighborhoods of each data point remain nearby and similarly
colocated in the low-dimensional space, if the data set is sampled from a smooth manifold.
LLE constructs low-dimensional data so that the local linear relations of the original data are
preserved, while LTSA constructs a locally linear patch to approximate the tangent space at the
point. The coordinates provided by the tangent space give a low-dimensional representation of
the patch. From Eq. (6), we can obtain:
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f ðxijÞ ¼ f ðxiÞ þ ð∇tanf ðxiÞÞTuij þOð∥uij∥2Þ (22)

From the above equation, we can discover that there are some relations between the global
coordinate f ðxijÞ in the low-dimensional feature space and the local coordinate uij which

represents the local geometry. The LTSA algorithm requires the global coordinates f ðxijÞ that
should respect the local geometry determined by the uij:

f ðxijÞ≈f ðxiÞ þ Liuij; (23)

where f ðxiÞ is the mean of f ðxijÞ, j ¼ 1;…;k. Inspired by LTSA, the affine transformation Li
should align the local coordinate with the global coordinate, and we can define the following
local object:

jκf ðxiÞj2 ¼ jð f iÞT− 1
k
ð f iÞTeeT−LiUij2; (24)

where f i ¼ ½ f ðxi1Þ;…; f ðxikÞ�T , Ui ¼ ½ui1; ui2;…; uik�, and e is a k-dimensional column vector of all
ones. Naturally, we should seek to find the optimal mapping f and a local affine transforma-
tion Li to minimize the following global functional:

Kðf Þ ¼
ð

M
jκf ðxÞj2dx (25)

Obviously, the optimal affine transformation Li that minimizes the local reconstruction error

for a fixed f i is given by:

Li ¼ ð f iÞT
�
I−

1
k
eeT

�
ðUiÞ† (26)

and therefore,

jκf ðxiÞj2 ¼ jðf iÞT
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�
ðI−ðUiÞ†UiÞj2; (27)
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k ee
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4. Fusion of local manifold learning methods

So far we have discussed four basic local objects: ∥∇tanf ðxÞ∥2, jσf ðxÞj2, ∥Htan
f ðxiÞ∥2F, and jκf ðxiÞj2.

From different perspectives, they depict the geometric information of the manifold. We look
forward to collect these geometric information together to better reflect the geometric structure
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of the underlying manifold. Notice that we can estimate these local objects under the local
tangent coordinate system according to Eqs. (9), (14), (21), and (28), respectively. Taking stock
of the structure of these equations, it is not hard to discover that we can fuse these local objects
together under our proposed framework. Assume that there are M different local manifold
learning algorithms, we can define the fused local object as follows:

LOf ðxÞ ¼ ∑
M

j¼1
cjLOjðxÞ (29)

where {cj}Mj¼1 are the nonnegative balance parameters, {LOjðxÞ}Mj¼1 are the local objects, such as

∥∇tanf ðxÞ∥2, jσf ðxÞj2, ∥Htan
f ðxiÞ∥2F, and jκf ðxiÞj2, from different algorithms. It is worth to note that

the other local manifold learning algorithms can also be reformulated to incorporate into our
unified framework.

We employ the truncation function from differential manifold to connect the local objects with
their corresponding global functional such that we can obtain a consistent alignment of the
local objects to discover a single global coordinate system of lower dimensionality. The trun-
cation function is a crucial tool in differential geometry to build relationships between global
and local properties of the manifold. Assume that U and V are two nonempty subsets of a
smooth manifold M, where V is compact and V∈U ( V is the closure of V ). Accordingly, the
truncation function [15] can be defined as a smooth function s : M ! ℝ such that:

sðpÞ ¼ 1; p∈V
0; p∉U:

�
(30)

The truncation function s can be discretely approximated by the 0-1 selection matrix Si∈ℝN · k.
An entry of Si is defined as:

ðSiÞpq ¼
1; p ¼ Ni{q}
0; p≠Ni{q}:

�
(31)

where Ni ¼ {i1;…;ik} denotes the set of indices for the k-nearest neighborhoods of data point xi.
Let f ¼ ½f ðx1Þ;…;f ðxNÞ�∈ℝN be a function defined on the whole data set sampled from the

global manifold. Thus, the local mapping f i ¼ ½f ðxi1Þ;…;f ðxikÞ�∈ℝk can be expressible by

f i ¼ ðSiÞTf . With the help of the selection matrix, we can discretely approximate the global
functional Gðf Þ as follows:

Gðf Þ ¼
ð

M
LOf ðxÞ dx ¼ 1

N
∑
N

i¼1
LOf ðxiÞ

¼ 1
N

∑
N

i¼1
ðf iÞT

�
∑
M

j¼1
cjLij

�
f i ¼ f T

�
∑
M

j¼1
cjPj

�
f

(32)

where {Lij}
M
j¼1 are the local matrices such as ðGiÞTGi, ðWiÞTWi, ðHiÞTHi, and ðWiÞTWi which are

defined in Eqs. (9), (14), (21), and (28). Pj ¼ 1
N ∑N

i¼1S
iLijðSiÞT is the alignment matrix of the j-th
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local manifold learning method. The global embedding coordinates Y ¼ ½y1;y2;…;yN�∈ℝd ·N

can be obtained by minimizing the functional Gð f Þ. Let y ¼ f ¼ ½f ðx1Þ;…;f ðxNÞ� be a row vector
of Y. It is not hard to show that the global embedding coordinates and the nonnegative
weights c ¼ ½c1;…;cM� can be obtained by minimizing the following objective function:

argmin
Y;c

∑
M

j¼1
crj TrðYPjYTÞ s:t:YYT ¼ I; ∑

M

j¼1
cj ¼ 1; cj≥0: (33)

where the power parameter r > 1 is set to avoid the phenomenon that the solution to c is cj ¼ 1

corresponding to the minimum TrðYPjYTÞ over different local methods and ck ¼ 0ðk≠jÞ other-
wise, since our aim is to utilize the complementary geometric information from different
manifold learning methods.

We propose to solve the objective function [Eq. (33)] by employing the alternating optimization
[16] method, which iteratively updates Y and c in an alternating fashion. First, we fix c to
update Y. The optimization problem in Eq. (33) is equivalent to:

argmin
Y

TrðYPYTÞ s:t: YYT ¼ I (34)

where P ¼ ∑M
j¼1c

r
j P

j. When c is fixed, we can solve the optimization problem [Eq. (34)] and

obtain the global optimal solution Y as the second to ðdþ 1Þ st smallest eigenvectors of the
matrix P. Second, we fix Y to update c. While Y is fixed, we can minimize the objective function
[Eq. (33)] analytically through utilizing a Lagrange multiplier to enforce the constraint that
∑M

j¼1cj ¼ 1. And the global optimal c can be obtained as:

cj ¼ ð1=TrðYPjYTÞÞ1=ðr−1Þ
∑M

j¼1ð1=TrðYPjYTÞÞ1=ðr−1Þ
; j ¼ {1;…;M} (35)

5. Experimental results

In this section, we experiment on both synthetic and real-world data sets to evaluate the
performance of our method, named FLM. For LEM, LLE, HLLE, LTSA, and our Fusion of local
manifolds (FLM) algorithms, we experiment on these data sets to obtain both visualization and
quantitative evaluations. We utilize the global smoothness and co-directional consistence
(GSCD) criteria [17] to quantitatively compare the embedding qualities of different algorithms:
the smaller the value of GSCD, the higher the global smoothness, and the better the co-
directional consistence. There are two adjustable parameters in our FLM method, that is, the
tuning parameter r and the number of nearest neighbors k. FLMworks well when the values of
r and k are neither too small nor too large. The reason is that only one local method is chosen
when r is too small, while the relative weights of different methods tend to be close to each
other when it is too large. As a general recommendation, we suggest to work with r∈½2; 6� and
k∈½0:7⌈logðNÞ⌉, 2⌈logðNÞ⌉�.
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5.1. Synthetic data sets

We first apply our FLM to the synthetic data sets that have been commonly used by other
researchers: S-Curve, Swiss Hole, Punctured Sphere, and Toroidal Helix. The character of these
data sets can be summarized as: general, non-convex, nonuniform, and noise, respectively. In
each data set, we have total 1000 sample points, and the number of nearest neighbors is fixed
to k ¼ 10 for all the algorithms. For the S-Curve and Swiss Hole, we empirically set r ¼ 2, and
for the Punctured Sphere and Toroidal Helix data sets, we set r=3. Figures 2–5 show the
embedding results of the above algorithms on the four synthetic data sets. Each manifold
learning algorithm and the corresponding GSCD result are shown in the title of each subplot.
We can evaluate the performances of these methods by comparing the coloring of the data
points, the smoothness, and the shape of the projection coordinates with their original mani-
folds. Figures 2–5 reveal the following interesting observations.

1. On some particular data sets, the traditional local manifold learning methods perform well.
For example, LEM works well on the Toroidal Helix; LLE works well on the Punctured
Sphere; HLLE works well on the S-Curve and Swiss Hole; and LTSA performs well on the
S-Curve, Swiss Hole, and Punctured Sphere.

2. In general, our FLM performs the best on all the four data sets.

The above consequence is because only partial geometric information of the underlying man-
ifold is learned by each traditional local manifold learning method, while the complementary
geometric information learned from different manifold learning algorithms is respected by our
FLM method.

5.2. Real-world data set

We next conduct experiments on the isometric feature mapping face (ISOFACE) data set [1],
which contains 698 images of a 3-D human head. The ISOFACE data set is collected under
different poses and lighting directions. The resolution of each image is 64· 64. The intrinsic
degrees of freedom are the horizontal rotation, vertical rotation, and lighting direction. The 2-
D embedding results of different algorithms and the corresponding GSCD results are shown in
Figure 6. In the embedding, we randomly mark about 8% points with red circles and attach
their corresponding training images. In the experiment, we fix the number of nearest neighbors
to k ¼ 12 for all the algorithms. We empirically set r in FLM as 4. Figure 6 reveals the following
interesting observations.

1. As we can observe from Figure 6b and c, the embedding results of LEM and LLE show that
the orientations of the faces change smoothly from left to right along the horizontal direc-
tion, and the orientations of the faces change from down to up along the vertical direction.
However, as we can see at the right-hand side of Figure 6b and c, the embedding results of
both LEM and LLE come out to be severely compressed, and it is not obvious to survey the
changes along the vertical direction.

2. As we can observe from Figure 6d and e, the horizontal rotation and variations in the
brightness of the faces can be well revealed by the embedding result of HLLE and LTSA.
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Figure 2. Embeddings of the synthetic manifold S-curve. The title of each subplot indicates the abbreviation of the
manifold learning algorithm and the GSCD result. (a) Sample data. The title of subplots (b)-(f) indicates the abbreviation
of the the manifold learning algorithm and the GSCD result.
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Manifolds - Current Research Areas144

Figure 3. Embeddings of the synthetic manifolds Swiss Hole. The title of each subplot indicates the abbreviation of the
manifold learning algorithm and the GSCD result. (a) Sample data. The title of subplots (b)-(f) indicates the abbreviation
of the the manifold learning algorithm and the GSCD result.
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Figure 4. Embeddings of the synthetic manifolds Punctured Sphere. The title of each subplot indicates the abbreviation of
the manifold learning algorithm and the GSCD result. (a) Sample data. The title of subplots (b)-(f) indicates the abbrevi-
ation of the the manifold learning algorithm and the GSCD result.
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Figure 4. Embeddings of the synthetic manifolds Punctured Sphere. The title of each subplot indicates the abbreviation of
the manifold learning algorithm and the GSCD result. (a) Sample data. The title of subplots (b)-(f) indicates the abbrevi-
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Figure 5. Embeddings of the synthetic manifolds Toroidal Helix. The title of each subplot indicates the abbreviation of the
manifold learning algorithm and the GSCD result. (a) Sample data. The title of subplots (b)-(f) indicates the abbreviation
of the the manifold learning algorithm and the GSCD result.
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Figure 6. Embeddings of the ISOFACE data set. Subfigure (a) shows nine sample images, and subfigure (b) to subfigure
(f) are the embedding results of different manifold learning algorithms. The title of each subplot indicates the abbreviation
of the manifold learning algorithm and the GSCD result.
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Figure 6. Embeddings of the ISOFACE data set. Subfigure (a) shows nine sample images, and subfigure (b) to subfigure
(f) are the embedding results of different manifold learning algorithms. The title of each subplot indicates the abbreviation
of the manifold learning algorithm and the GSCD result.
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3. As we can observe from Figure 6f, orientations of the faces change smoothly from left to
right along the horizontal direction, while the orientations of the faces change from down
to up, and the light of the faces varies from bright to dark simultaneously along the vertical
direction. These results illustrate that our FLM method successfully discovers the underly-
ing manifold structure of the data set.

Our FLM performs the best on the ISOFACE data set, since our method makes full use of the
complementary geometric information learned from different manifold learning methods. The
corresponding GSCD results further verify the above visualization results in a quantitative way.

6. Conclusions

In this chapter, we introduce an interesting method, named FLM, which assumes a systematic
framework to estimate the local objects and align them to reveal a single global low-dimen-
sional coordinate space. Within the framework, we can fuse together the geometric informa-
tion learned from different local methods easily and effectively to better discover the
underlying manifold structure. Experimental results on both the synthetic and real-world data
sets show that the proposed method leads to satisfactory results.
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