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Preface

Myelomonocytes are the multipotent cells in the stage of blood cell differentiation, which
are capable of generating the so-called innate components of immunity. Mainly comprising
blood monocytes, tissue macrophages and subset of dendritic cells, this lineage actually
serves as the evolutionary primitive arm of immunity. But these cells are those that reach
almost every corner of our body including the restricted brain compartment, reside there as
the guard, engage in constant surveillance in the territories and convey the health bulletin.
Actually, their position and ability of judgement of the health of tissue or organ environ‐
ment are the key initiators of tissue-specific immune response in a local and global fashion.
Interestingly, the morpho-functional aspects of this group of cells vary to a wide range with
their positional diversity. Their differentiation status, dynamics of lineage commitment, re‐
ceptor expression and modulation and morphological and immune responses are now
showing us various critical versatility, diversions or overlaps during differentiation and/or
diseases. Therefore, understanding their biology is becoming crucial to know the tissue-spe‐
cific immune activities and their modulation in normal physiological and patho-physiologi‐
cal situations. Their ability to communicate or represent the tissue microenvironment to the
peripheral immune system and efficiency to engage the system to effector activation, modu‐
lation, support, and control hold the key for a successful immune endeavour. The present
volume shows some glimpses of such an extensive area of current research interest of
present immunology research.

‘Biology’ is a term that possesses the inherent power of inclusion that vortexes into all mor‐
phological, structural and functional aspects of a living entity. When the name of the present
book volume was proposed, it was targeted to include the wide variation in terms of lineage
divergence of the myelomonocytic precursor cells, their residential status in different parts
of our body and their functional versatility as defender and effecter immune cell. As the edi‐
tor of this volume, I expected wider participation and broader magnitude to cover, particu‐
larly, for the differentiated tissue resident myelomonocytic lineage cells. However, this is
qualitatively compensated by the existing articles that precisely and efficiently deal with
some very important, critical and timely aspects of myelomonocytic lineage cell biology and
its challenging facets. The volume contains some articles that address some basic aspects of
lineage differentiation of dendritic cells and few deal with morpho-functional aspects of
these cells in organs and in diseases. The book is divided into two sections. The first section
title is ‘Lineage, Identity and Function’, under which the article of Dr. Marti Luciana and
colleagues deals with the lineage-specific and differentiation markers, their expression pro‐
file and their functional correlation to identify and characterize differentiating myelomono‐
cytic cells, whereas the second one by Dr. Castell Andres and his colleagues discusses about
variable precursors and lineages of dendritic cells, their characters, their functions and other



immunological aspects. The second section of the book ‘Function in Organ and Disease’
comprises four chapters. The first chapter of this section by Prof Li and colleagues discusses
about resident myelomonocytic cell in liver diseases; the second one by Dr. Li and Tu states
the role of monocyte/macrophage in viral hepatitis, whereas the next one by Dr. McCul‐
lough and Sharma establishes the functional importance of dendritic cell endocytosis. Final‐
ly, Prof. Wigdhal and team demonstrate a newer application of myelomonocytic cell lines in
virus-induced immunodeficiency disease modelling.

It was an interesting task that I initiated with the proposal from InTech last year. Though it
is not a huge volume, it took a lengthy tenure partly because of the repeated editorial de‐
mand to the authors for more precision and largely because of several deadlines missed by
me as an editor to complete the steps due to my several preoccupancies. Throughout the
period, the support team of InTech and particularly Publishing Process Manager Ms. Romi‐
na Rovan cooperated with me a lot and managed to maintain all particulars to complete the
book. I am thankful to them. I would also like to acknowledge the support of many who
inspired me as an advisor, a supporter or a colleague and helped me as a student or staff at
any time during this work. Lastly and most importantly, I would like to thank my family,
my wife Malabika and my son Upamanyu for their presence, support and tolerance to my
continuous involvement in the present work and many others throughout the time. This ef‐
fort will be successful if the volume can add something in the understanding and research
on myelomonocytic cells.

Anirban Ghosh
Panihati Mahavidyalaya,

Sodepur, India

XII Preface



immunological aspects. The second section of the book ‘Function in Organ and Disease’
comprises four chapters. The first chapter of this section by Prof Li and colleagues discusses
about resident myelomonocytic cell in liver diseases; the second one by Dr. Li and Tu states
the role of monocyte/macrophage in viral hepatitis, whereas the next one by Dr. McCul‐
lough and Sharma establishes the functional importance of dendritic cell endocytosis. Final‐
ly, Prof. Wigdhal and team demonstrate a newer application of myelomonocytic cell lines in
virus-induced immunodeficiency disease modelling.

It was an interesting task that I initiated with the proposal from InTech last year. Though it
is not a huge volume, it took a lengthy tenure partly because of the repeated editorial de‐
mand to the authors for more precision and largely because of several deadlines missed by
me as an editor to complete the steps due to my several preoccupancies. Throughout the
period, the support team of InTech and particularly Publishing Process Manager Ms. Romi‐
na Rovan cooperated with me a lot and managed to maintain all particulars to complete the
book. I am thankful to them. I would also like to acknowledge the support of many who
inspired me as an advisor, a supporter or a colleague and helped me as a student or staff at
any time during this work. Lastly and most importantly, I would like to thank my family,
my wife Malabika and my son Upamanyu for their presence, support and tolerance to my
continuous involvement in the present work and many others throughout the time. This ef‐
fort will be successful if the volume can add something in the understanding and research
on myelomonocytic cells.

Anirban Ghosh
Panihati Mahavidyalaya,

Sodepur, India

PrefaceVIII

Section 1

Lineage, Identity and Function





Chapter 1

Phenotypic Markers and Functional Regulators of

Myelomonocytic Cells

Luciana Cavalheiro Marti, Nydia Strachman Bacal,

Laiz Camerão Bento and Fernanda Agostini Rocha

Additional information is available at the end of the chapter
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Abstract

In this chapter, there is a description of hematopoietic stem cells, maturation curve and 
their differentiation into myeloid cells, including phenotypes and transcription factors 
involved in this process. Further, we discuss myeloid maturation curve from myeloid 
precursor, monoblast, premonocyte to monocytes, and also monocytes subsets regarding 
their CD14 and CD16 expressions and related functions in health and disease. In addi-
tion, we reason about the differentiation from monocytes either in dendritic cells or in 
macrophages in vitro using differential growth factors; these cells are differentiated from 
those found in vivo being named as monocyte-derived cells. Furthermore, we explore dis-
tinguished phenotype of monocytes, macrophages, and dendritic cells monocyte-derived 
in vitro, using confocal microscopy and flow cytometry, in order to display morphologi-
cal and phenotypic differences among them.

Keywords: myelomonocytic cells, monoblast, promonocytes, dendritic cells, monocytes

1. Introduction

All the cellular elements of blood derive ultimately from the hematopoietic stem cells in the 
bone marrow. Thus, the blood cells are derived from the common lymphoid progenitor and 
the myeloid progenitor, apart from the megakaryocytes and red blood cells that are derived 
from specific progenitors. Particularly, the lymphoid progenitor gives rise to natural killer 
(NK) cells, T and B lineage cells of the human immune system, while the myeloid progenitor 
is the precursor of the granulocytes, monocytes, macrophages, and dendritic cells (Figure 1).

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Myeloid cells represent the major leukocyte population in the peripheral blood. Phylogenically, 
these cells are the oldest ones found in primitive invertebrates and, in vertebrates, sum to lym-
phoid cells to constantly supply to all tissues via peripheral blood circulation [1].

The myeloid precursor gives rise to granulocytes and monocytes. Granulocytes are comprised 
of neutrophils, eosinophils, and basophils. Neutrophils are known as the key effector cells 
in innate immunity against bacteria and are the first cells to be recruited into local sites on 
pathogen invasion, providing an immediate defense against infection in tissues. The main 
role of neutrophils is to isolate, engulf, and kill pathogens using oxidative and nonoxidative 
mechanisms [1, 2].

Myelomonocytic cells give rise to mature monocytes that are present in circulation and were 
believed to mature terminally into macrophages in various tissues, where they may display a 
unique, tissue-dependent morphology and specific functions such as Kupffer cells in the liver or 
microglia in the brain. Monocytes may also differentiate into dendritic cells in lymphoid organs 
and Langerhans cells in skin, where they function as professional antigen presenting cells [2].

Monocytes, dendritic cells, and macrophages are the bridge between innate and adaptive 
immunity, they are a group of cells that are vital for the control of pathogens and for orches-
tration of a complete immune response, as well as for backing up tissue functions. These 

 Figure 1. Hematopoiesis—General representation of hematopoiesis with focus on myelomonocitic differentiation [1, 2].
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properties make them interesting targets for immune therapy, vaccination, and treatment of 
autoimmune and inflammatory diseases [3, 4].

However, exactly how many cell types exist in the mononuclear phagocyte system, or whether 
they establish a family, has been a matter of discussion for many years. Historically, cells of 
the mononuclear phagocyte system have been referred to as erythrophagocytes, adventitia 
cells, histiocytes, and several other terminologies until their current terminology was estab-
lished in 1972 by a bulletin published by the World Health Organization (WHO) [5]. The dis-
covery of a new cell type termed dendritic cells in the 1970s by the Nobel Prize winner Ralph 
Steinman that was distinct from macrophages added more complexity to the mononuclear 
phagocyte system classification [6].

Accordingly, it took a while before dendritic cells were fully accepted as a true member of the 
mononuclear phagocyte system. Over time, there was appreciation that there were not just 
one but multiple dendritic cells subtypes, each with a specialized role [7]. Nowadays, there 
are several discussions about macrophages and dendritic cells nomenclature, subsets, and 
their in vivo origin, and how much they are related to macrophages or monocytes.

Thus in this chapter, the principles of hematopoiesis, phenotype, and transcription factors in 
myelomonocytic lineage will be highlighted, as well as their maturation and differentiation. 
The contribution of different cytokine environments modulating the monocytic lineage dif-
ferentiation into subtypes of macrophages or dendritic cells will also be discussed.

2. Hematopoiesis, phenotype, and lineage transcription factors

Blood development in vertebrates includes two hematopoiesis waves: primitive and defini-
tive ones [8]. The primitive wave involves an erythroid progenitor and gives rise to eryth-
rocytes and macrophages during the early embryonic development [9]. The purpose of the 
primitive wave is to produce red blood cells in order to oxygenate the embryo tissues that 
experience a fast growth [10]. In mammals, these erythroid progenitor cells first appear 
in blood islands in the extra-embryonic yolk sac early in development [11]. The primitive 
wave is transitory, and these erythroid progenitors are not pluripotent and do not have self-
renewal ability.

Instead, definitive hematopoiesis occurs later in development, markedly at different periods 
in different species. Definitive hematopoiesis involves hematopoietic stem cells, which are 
multipotent cells that can generate all blood lineages of an adult organism. In vertebrates, 
hematopoietic stem cells are born in the aorta-gonad-mesonephros region of the developing 
embryo. They migrate to the fetal liver and then to the bone marrow, which is the final site for 
hematopoietic stem cells in adults [12].

Usually, in order to characterize and quantify hematopoietic stem cells, flow cytometry tech-
niques are commonly used. The immunophenotypic markers CD34 and CD38 are used to 
characterize and enumerate hematopoietic stem cell (HSC) and progenitors (HPC) as shown 
in Figures 1 and 2 [13]. Hematopoietic stem cells are a small population characterized by the 
expression of CD34+CD38−, and progenitors are recognized by the expression of CD34+CD38+ 
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(Figure 2A). HSCs are also CD117−, and during differentiation toward common myeloid and 
lymphoid progenitors (CMP and CLP), they acquire CD117 and Human Leukocyte Antigen–
DR (HLA-DR) expression; and later, as per their lineage commitment, they can or not pre-
serve these markers (Figure 2B).

After hematopoiesis initiation, several decision steps are necessary for HSC pluripotency and 
quiescence maintenance or specification of lineage commitment [14]. One important check-
point is the preservation of pluripotency by the combined action of Notch-1, GATA-2, HoxB4, 
and Ikaros transcription factors. Furthermore, the cell cycle inhibitor p21 is essential to keep 
a fraction of stem cells in quiescence [15].

During lineage commitment, transcription factors play critical roles at distinct differentiation 
branches. Concerning the myeloid-lineage commitment, PU.1, an Ets family of transcription 
factor, seems to play a key role [16]. PU.1-deficient mice lack monocytes and B cells with a 
greatly reduced number of granulocytes, while overexpression of PU.1 enhances the develop-
ment of myeloid cells. Consequently, the enhanced expression of PU.1 favors myeloid com-
mitment, while low-to-intermediate expression of PU.1 together with GATA-3 and Ikaros 
transcription factors commit HSC toward lymphoid lineage [17].

Once the myeloid dominance has been established through increased PU.1 or GATA-1 expres-
sion, further transcriptional control determines the commitment along erythroid/megakaryo-
cytic (GATA-1/2 dominance) or myelomonocytic (PU.1 dominance) lineages, while mafB 
together with PU.1 also play an essential role in monocyte/macrophage differentiation [18]. 
MafB, c-Maf, and Egr-1 are suggested to promote monocytic differentiation at the cost of 
granulopoiesis [19].

Figure 2. Hematopoietic stem cells differentiation curve—(A) Hematopoietic progenitors CD34+CD38+, hematopoietic stem 
cells CD34+CD38− (red). (B) Common myeloid and lymphoid progenitors (CMP and CLP) are CD34+CD38+CD117+HLA- 
DR+ (black) (Infinicyt software was used for this analysis, Cytognos).
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In addition, the induction of C/EBPα or C/EBPβ modulates the fate of myeloid-committed 
cells toward granulocytic branches since CCAAT/Enhancer Binding Protein (C/EBP), a 
basic region leucine zipper DNA-binding protein, is responsible for the transactivation of 
Granulocyte-Colony Stimulating Factor  Receptor (G-CSFR) gene and retinoic acid receptors 
(RARs) [14]. It has been shown that C/EBP-deficient mice selectively lacks granulocytes and 
RAR-deficient mice shows a granulocyte differentiation arrested at the myelocyte stage.

Myelomonocytic cells are usually classified based on surface markers and biological responses. 
The common myeloid progenitor (CMP) is characterized by markers such as CD34 and CD117. 
These immature cells are able to differentiate into neutrophils, monocytes, macrophages, den-
dritic cells (DCs), and under pathological conditions or induced by proinflammatory cyto-
kines these cells can also generate a population known as myeloid-derived suppressor cells.

Myeloid-derived suppressor cells are part of the myeloid-cell lineage and a heterogeneous 
population that is comprised by myeloid-progenitors and precursors cells. In healthy individ-
uals, immature myeloid cells rapidly differentiate toward mature granulocytes, macrophages, 
or dendritic cells. However, in pathological conditions such as cancer, infectious diseases, 
trauma, or some autoimmune disorders, a partial impairment in the immature myeloid cells 
differentiation result in the expansion of this population. Importantly, the activation of these 
cells in pathological conditions results in an upregulated expression of immune suppressive 
factors such as arginase, inducible nitric oxide synthase (iNOS), and reactive oxygen species 
(ROS) increased production. Together, these alterations results in the expansion of immature 
myeloid cells that possess suppressive activity [20].

3. Monocytes maturation curve and subsets

Regarding phenotypes, monocyte maturation curve can be performed by flow cytometry and 
can display the differentiation of CD34+/CD117+/CD64−/CD14− myeloid precursor into mono-
blast CD64+ and further into promonocyte by increased expression of CD14lo/int. Additionally, 
these cells will become full mature monocytes by CD14hi expression (Figures 1 and 3A). During 
monocyte maturation, upregulation of CD64 is followed not only by CD14 but also increased 
levels of CD33, CD36, and CD300e expression toward mature monocytes (Figures 1 and 3A).

In addition, the differences in monocytes and granulocytes maturation curve can be seen 
using a combination of CD11b and HLA-DR markers. Granulocytes arise from a precursor 
that do express HLA-DR and downregulated its expression during maturation, while mono-
cytes arise from a precursor with high expression of HLA-DR and preserve the HLA-DR 
expression to maturation, while both cells’ subsets have an increased expression of CD11b 
toward maturation (Figures 1 and 3B).

Monocytes were originally classified by their physical characteristics, but after flow cytometry 
advent, monocytes became also recognized by CD14 and CD16 expressions (Figures 1 and 4A). 
Classical monocytes CD14hi/CD16− (Figures 1 and 4B) are approximately 80% of all monocytes 
and considered to be better at secreting proinflammatory cytokines, phagocytosis, and ROS pro-
duction [21]. The nonclassical CD14+/CD16+ cells resemble “resident” tissue macrophages with 
higher Major Histocompatibility Complex - Class II (MHC-II) expression. CD16+ monocytes 
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Figure 3. Monocyte and granulocyte maturation curve—(A) Monocyte maturation: this dot plot displays a 
combination of previously three-gated population and shows myeloid progenitors CD34+/CD117+/CD64−/CD14− 
(black), monoblast CD64+CD14− and promonocytes CD64+CD14lo/int (light green), mature monocyte CD64+CD14hi 
(dark green). (B) Monocyte and granulocyte maturation: this dot plot displays a combination of previously four-
gated population and shows myeloid progenitors CD34+/CD117+/HLA-DR+ (black), monoblast HLADR+CD14− and 
promonocytes HLA-DRlo/int (light green), mature monocyte HLA-DR+CD14hi (dark green), immature granulocytes 
HLA-DR−/CD11blo, and mature granulocytes HLA-DR−/CD11bhi (red) (Kalusa software was used for this analysis, 
Beckman Coulter).
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are subdivided into CD14hi/CD16+ and CD14lo/CD16+ (Figures 1 and 4B). CD14hi/CD16+ mono-
cytes express highest levels of phagocytosis; MHC-II and accessory molecule expression are also 
higher compared with CD14lo/CD16+ (Figures 1 and 4C) [21]. Functional data and gene arrays 
suggest that CD14hi/CD16+ monocytes share more common pattern with CD14hi/CD16− mono-
cytes than with CD14lo/CD16+ [22].

These monocyte characteristics subsets have recently been reported as a signature diagnos-
tic for chronic myelomonocytic leukemia (CMML). Researchers compared the population of 
monocytes among healthy bone marrow donors, patients with reactive monocytosis, another 
hematologic malignancy, and CMML patients, which demonstrate a characteristic increase in 
the fraction of CD14+/CD16− cells compared with the other samples [23].

In addition, the development and biological significance of monocyte subsets remain a matter 
of active investigation, as well as their respective functions and developmental relationships. 
CD161 is another important marker that also defines monocytes subsets. These CD161 subsets 
seem to be expanded in a variety of clinical situations, including autoimmune diseases, bacte-
rial and viral infections, asthma, stroke, and coronary artery disease [24–29]. In addition, there 
is a new emerging technology known as tissue macrophage scanning (TiMaScan), which is a 
sensitive intra-tissue total body scanning. This new technology promises to accurately detect 
and define monocyte and macrophage subsets in blood and tissues not only in homeostatic or 
traumatic injuries but also in cancer [30, 31].

Monocytes, macrophages, and myeloid DCs are members of the mononuclear phagocyte 
system that exhibit several functions during immune responses. Historically, these cells 
have been grouped together because although monocytes have their unique functions as 
 mononuclear phagocytic cells, they were also considered as precursors of macrophages and 
myeloid DCs [32].

Monocytes and macrophages are critical effectors and regulators of inflammation involved in 
innate immune response, the immune system for immediate support. On the other hand, DCs 

Figure 4. Monocytes (CD14+) sorted from human peripheral blood—(A) SSC vs CD45. (B) Monocytes subpopulations 
(a) CD14lo/CD16+ (b) CD14lo/CD16− (c) CD14hi/CD16+ and (d) CD14hi/CD16−. (C) CD14hi (c+d)/CD16+ are HLA-DRhi 
(FlowJo software was used for this analysis, TreeStar).
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are a bridge between innate and adaptive immunity, because they initiate and regulate the 
highly pathogen-specific adaptive immune responses and play a central role in the develop-
ment of immunological memory and tolerance. These cells can display significant heterogene-
ity in phenotype and function according to the tissue of residence. Dendritic cells are described 
as distinct lineage specialized in antigen presentation, initiation, and control of immunity, con-
tributing to development of the immune response to pathogens, vaccines, and tumors [33].

Human dendritic cells subsets found in vivo are described in the literature as two main groups, 
plasmacytoid DCs (pDCs) and classical or myeloid DCs. Classical or myeloid DCs have been 
further subdivided into two subsets on the basis of their CD141 expression (also known as 
BDCA3) and CD1c (also known as BDCA1) [34, 35]. It has been shown that the gene-expres-
sion profiles and functions of human CD141+ DCs and CD1c+ DCs resemble those of mouse 
cDC1s and cDC2s, respectively [36].

Regarding transcription factors that regulate monocytes and DCs differentiation, there are 
several differences between mice and humans, but also similarities, which should be taken 
into consideration [37]. A straight comparison between human and mouse can be made due to 
the presence of Interferon Regulatory Factor 8 (IRF8) deficiency in both species. While human 
biallelic IRF8 mutation leads to complete loss of blood and skin DCs and monocytes derived 
cells, the autosomal dominant IRF8 mutation results in absence of CD1c expression and pres-
ence of a population CD11c+CD1c− not seen in a healthy control blood [37, 38]. In mice, IRF8 is 
required for the development of CD8+CD103+ DCs and plays a role in monocyte development 
through Interferon Regulatory Factor (IRF) interaction with  Krüppel-like Factor 4 (KLF4) [39].

In contrast, human macrophages are found throughout body tissues [40]. During HSC 
transplantation, dermal macrophages in the recipient show prolonged survival and delayed 
replacement compared with dermal DCs, which is consistent with the impression that mac-
rophages are also self-maintaining in humans. Furthermore, patients carrying a mutation in 
GATA-2 lack blood monocytes and all conventional DCs subsets, yet they have normal num-
bers of Langerhans cells and macrophages in skin and lungs, respectively, suggesting that 
these populations development may also occur independent of monocytes and DCs [41].

Another important characteristic of macrophages, which should be mentioned, is their 
polarization in two phenotypes M1 and M2, inflammatory macrophages are called M1, 
whereas those that decrease inflammation and favor tissue repair are called M2 macro-
phages. Later, findings regarding granulocyte macrophage colony-stimulating factor 
(GM-CSF) and macrophage colony-stimulating factor (M-CSF) effects in macrophages led 
to the independent inclusion of these as M1 and M2 stimuli, respectively. The polarized M2 
phenotype, in a tumor microenvironment, has been named tumor-associated macrophages 
(TAMs) and is associated to tumor progression and to a poor prognosis [42].

4. Cytokines, growth factors, and in vitro models of monocyte 
differentiation into dendritic cells and macrophages

It is possible to differentiate either dendritic cells or macrophages in vitro from monocytes using 
differential growth factors, and these cells are differentiated from those found in vivo by being 
named as monocyte-derived cells. A number of growth factors have been shown to influence 
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monocyte development and differentiation into macrophages, and the best- recognized growth 
factor is the macrophage colony-stimulating factor (M-CSF). Its  significance involves the obser-
vation that circulating monocytes express the M-CSF receptor [43, 44] and administration of 
M-CSF drives monocytosis [45–47].

Moreover, mice deficient either in the production of Macrophage-Colony Stimulating Factor 
(M-CSF) or in the  Macrophage-Colony Stimulating Factor Receptor (M-CSFR) have been 
reported to have decreased numbers of monocytes in the bone marrow and/or in circulation 
[48]. Homeostatic control of monocyte/macrophage development has been proposed to result 
from the modulation of M-CSF levels by differentiated cells of the mononuclear phagocyte 
system, mature mononuclear phagocytes express high levels of the M-CSFR, and M-CSF is 
produced continuously by stromal cells, and the addition of IL-3 to cultured bone marrow 
cells enhances the activity of M-CSF [49].

Additional growth factors, including granulocyte-macrophage colony-stimulating factor 
(GM-CSF) and IL-4, are able to influence monocyte development and differentiation during 
inflammation. In vitro GM-CSF supports monocyte expansion and differentiation [50, 51]. 
Unexpectedly, GM-CSF deficient mice show minimal perturbation of hematopoiesis and no 
decrease in circulating monocyte numbers compared with the control [52]. However, in vivo, 
GM-CSF is not produced at high levels under homeostatic conditions; instead, it is upregu-
lated during inflammation [50, 51]. This suggests that, in contrast to M-CSF, GM-CSF primar-
ily contributes to monopoiesis during inflammatory states. Accordingly, M-CSF and GM-CSF 
drive different differentiation platforms, with M-CSF stimulation leading to a homeostatic 
phenotype, and GM-CSF stimulation leading to monocytes with an inflammatory phenotype. 
In addition, GM-CSF was the first growth factor shown to efficiently promote dendritic cells 
development in vitro and has been used to induce dendritic cell differentiation from human 
monocytes, as well as human and mouse hematopoietic progenitor cells [53, 54].

IL-4 has been argued to drive both tissue-resident macrophage [55, 56] and monocyte [57] 
expansion during type 2 inflammation. IL-4 in combination with GM-CSF drives inflammatory 
dendritic cells in vitro [53]. Studies in both Signal Transducer and Activator of Transcription 
6 (STAT6) [57] and IL-4R [55] deficient mice indicate that IL-4-dependent signaling does not 
contribute to monocyte development during homeostasis.

The two main colony-stimulating factors involved in monopoiesis, M-CSF and GM-CSF, have 
opposing polarizing properties. In vitro, M-CSF supports the development of cells with anti-
inflammatory profile that is characterized by production of IL-10 and CCL2 but not IL-12 or 
IL-23 [58]. On the other hand, culture of either bone marrow or purified monocytes with GM-CSF 
leads to upregulation of MHC class II as well as induction of IL-12 and IL-23, but minimal IL-10 
production [59]. Based on these data, it has been discussed that M-CSF stimulation represents a 
homeostatic/M2 pathway for monocyte development [60]. In vivo, GM-CSF has been shown to 
induce an inflammatory DC/M1-like phenotype in monocytes in a variety of models [61].

Macrophages in vitro monocyte-derived, using M-CSF, are distinguished as larger and vac-
uolar cells, been very effective at apoptotic cells, cellular debris and pathogens clearance, 
and can be differentiated from DCs, monocytes-derived with GM-CSF in combination with 
IL-4 in vitro by the CD14 expression and from monocytes by CD209 (DC-SIGN) expression. 
By contrast, DCs are defined with stellate morphology that can efficiently present antigens 
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Figure 5. Monocytes, dendritic cells, and macrophages morphology and phenotype—To confocal microscopy analysis, all cells 
were stained with pan-actin (green) in order to show differences in morphology and cytoskeleton, and the nucleus were stained with 
DAPI (blue): (A) monocytes CD14+/CD209−, (B) dendritic cells CD14−/CD209hi, (C) macrophages CD14+/CD209int (FlowJo software 
was used for this analysis, TreeStar).
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through MHC molecules and activate naïve T cells. DCs derived from monocytes lack CD14 
and acquire CD209 expression (Figures 1 and 5).

Regarding phagocytosis, monocytes and macrophages are highly phagocytic cells, in con-
trast to DCs that according to maturation status lose their phagocytic ability and become the 
most efficient antigen-presenting cells. Differences in expression related to functional status 

Figure 6. Monocytes, dendritic cells, and macrophages expression of HLA-DR, CD80, and CD86—(A) HLA-DR, (B) 
CD86, (C) CD80 increasing expression in media fluorescence intensity (MFI) (FlowJo software was used for this analysis, 
TreeStar).
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of these cells are shown in Figures 5 and 6. DCs have increased expression in HLA-DR, CD80 
and CD86 (molecules related to antigen presentation efficiency) compared with macrophages 
and monocytes (Figure 6).

5. Concluding remarks

Herein, we have presented the principles of hematopoiesis, transcription factors in myelo-
monocytic lineage phenotype, as well as their maturation and differentiation, and these topics 
have been the target of several studies for over a century using a variety of model systems. 
The human hematopoiesis understanding it is very important; this fundamental knowledge 
allowed scientists and physicians to identify diseases and their causes, leading to the develop-
ment of new therapies.

In addition, we have discussed the contribution of different cytokine/growth factors’ envi-
ronment, modulating the monocytic lineage differentiation into subtypes of macrophages 
or dendritic cells and their development in vitro. Similarities and differences between cells 
found in vivo with the ones generated in vitro are very important for the development 
of new study models. Furthermore, the comprehension about growth factors and how 
to use them to modulate cells can favor their application in developmental hematology 
and immunology. These topics are very important for the continuous development of 
knowledge.
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Abstract

Dendritic cells (DCs) are antigen-presenting cells derived from bone marrow precur-
sors and form a widely distributed cellular system throughout the body. DCs exert 
immune-surveillance for exogenous and endogenous antigens and the later activa-
tion of naive T lymphocytes giving rise to various immunological responses. Different 
growth  factors and cytokines can modulate the differentiation and function of DCs, 
GM-CSF, M-CSF, Flt3, and TGF-β, resulting in a large variety of DCs with different 
functional abilities. Thus, DCs are classified as plasmacytoid DCs (pDCs), conven-
tional DCs (cDCs), and DCs derived from monocytes (mDCs). Functionally, the cDCs 
may be divided into two states: immature and mature. Immature DCs are specialist in 
uptaking and processing antigens; in contrast, mature DCs are professional in antigen 
presentation. It has been observed that immature cDCs can induce immune tolerance 
while mature cDCs may induce Th2 or Th1 immune responses. It is worth noting that 
different subpopulations of DCs have the ability to secrete different cytokine patterns, 
resulting in the induction of different immunological responses. Furthermore DCs are 
involved in the pathophysiology of several diseases such as contact hypersensitivity, 
autoimmune diseases, or cancer, but they can also be used as therapeutic tools in these 
conditions.

Keywords: dendritic cells, immunotherapy, cancer, autoimmune diseases

1. Introduction

Dendritic cells (DCs) are antigen-presenting cells, characterized by a distinctive morphol-
ogy and expression of markers such as CD11c and major histocompatibility complex class II 
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molecules (MHCII). In addition, DCs can recognize pathogens, tissue damage signals, and 
tumor antigens and then migrate to the secondary lymphoid organs where they present anti-
gens and activate T lymphocytes. DCs may induce the development of diverse immunological 
responses, either Th1, Th2, Treg, or Th17. There is a great variety of DCs with different phe-
notypes and localizations that form a cellular system distributed throughout the body and 
that is responsible for immune-surveillance. DCs are classified into conventional DCs (cDCs), 
plasmacytoids (pDCs), and DCs derived from monocytes (mDCs) [1, 2].

DCs are involved in many diseases, for example, contact hypersensitivity and autoimmune 
diseases, so intensive research is underway with the purpose of finding alternatives to induce 
the secretion of tolerogenic cytokines to decrease the activity of DCs in this type of pathologies 
[3, 4]. On the other hand, DCs have an important role in cancer. It has been observed that 
tumor cells may inhibit the maturation of DCs and induce the modification of their pheno-
type to provoke a Th17 or Treg response, which favors the proliferation of tumor cells. In 
addition, DCs are used as a promising alternative in cancer immunotherapy. To date, only 
one DC-based vaccine is available clinically; therefore, the study of immunomodulatory 
 molecules that increase the maturation of DCs for their subsequent use in antitumor immu-
notherapy is underway [4, 5].

In the present chapter, the origin, phenotype of DCs precursors, and the description of the 
subpopulations located in the organism will be reviewed. Also, we analyze the different 
 functional states of DCs and their relationship to the secreted cytokine pattern. Finally, we 
consider the role of DCs in some pathologies.

2. Dendritic cells biology

2.1. Origin and differentiation

2.1.1. Cytokines in DCs differentiation

DCs originate from hematopoietic precursor cells located in the bone marrow. Years ago, it 
was thought that DCs could have a lymphoid or a myeloid origin; then, after some experiments 
realized in 2007, it was found that DCs may originate from the common myeloid progenitor 
(CMP) and from the common lymphoid progenitor (CLP), giving rise to classical or conven-
tional CDs, as well as plasmacytoid CDs [6]. It is important to note that key growth factors are 
needed for DC differentiations, such as Flt3L, granulocyte macrophage colony-stimulating 
factor (GM-CSF), and M-CSF [7] (Figure 1).

Among the different growth factors involved in DCs differentiation, the most important is 
Flt3-L, where the receptor is Flt3 (Fms-like tyrosine kinase 3), a receptor of a protein tyrosine 
kinase located especially in DCs precursor in bone marrow, so it has been proposed that Flt3-L 
is involved in the differentiation of cDCs and pDCs (Figure 1). It has also been suggested that 
Flt3-L/Flt3 regulates the maintenance and development of DCs in lymphoid and mucosal 
organs [8], as Flt3-L is sufficient for the differentiation of pDCs and cDCs from precursor 
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cells with various phenotypes in vitro, and when its expression is forced. In addition, Flt3-L 
deficient mice have shown only 10% of the pDCs and cDCs that are normally located in 
wild type, besides the administration of Flt3-L to those mice restored the levels of pDCs 
and cDCs, while the administration of Flt3-L to wild-type mice increased the levels of 
pDCs and cDCs in spleen [7, 9, 10].

Other important cytokine is granulocyte and macrophage colony-stimulating factor (Figure 1). 
It has been observed that it can induce the differentiation of DCs in vitro and in vivo (Figure 2); 
however, GM-CSF-deficient mice show normal levels of resident DCs of lymphoid organs, 
although there were some alterations in the levels of resident mucous or migratory DCs. So, 
it is believed that GM-CSF is not related to the differentiation of DCs in the steady state, but 

Figure 1. Differentiation of DCs in human and mouse. In human, three DCs precursors are recognized: GMDPs, MDPs, 
and CDPs. As the cells differentiate, they acquire different phenotype. It is accepted that under the influence of Flt3-L, 
cDC1, cDC2, and pDCs originate from CDPs. In mouse, it has been shown that there are several precursors: CMPs, 
MDPs, and CDPs. The latter differentiate into pre-cDCs and pre-pDCs. The pre-cDCs differentiate toward pre-cDC1 
and pre-cDC2 giving rise to the cDC1 and cDC2, respectively. The pre-pDCs differentiate into pDCs. In the figure the 
phenotype of each cell and the cytokines involved in the differentiation process such as cell myeloid progenitors (CMPs), 
macrophages and dendritic cells progenitors (MDPs), common myeloid progenitors (CDPs), granulocytes, macrophages 
and DCs progenitors (GMDPs), pre-conventional dendritic cells (pre-cDCs), pre-plasmacytoid dendritic cells (pre-pDCs), 
pre-conventional dendritic cells 1 (pre-cDC1), pre-conventional dendritic cells 2 (pre-cDC2), conventional dendritic cells 
1 (cDC1), conventional dendritic cells 2 (cDC2), plasmacytoid dendritic cells (pDCs) has been placed.
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in the replenishment of DCs in non-lymphoid organs. In spite of the above, GM-CSF has been 
widely used in the differentiation of DCs in vitro that are subsequently used for therapeutic 
purposes [11, 12].

On the other hand, another cytokine involved in DCs differentiation is macrophage colony-
stimulating factor (Figure 1). M-CSF is involved in DCs differentiation from monocytes and 
is very important for the differentiation of pDCs from certain MCSFR + cell populations in 
bone marrow. Nevertheless, knockout mice for M-CSF and its receptor did not show changes 
in DC levels in lymphoid organs, although there were decreased levels of monocytes and 
Langerhans cells (LCs) [13]. After all, now Flt3-L is considered as the most important cytokine 
in DCs development; nonetheless, M-CSF and GM-CSF are also relevant cytokines in DCs 
development and activation in non-lymphoid tissues [4, 13].

2.1.2. DCs precursors

The differentiation of DCs is carried out from various cell progenitor populations located 
in bone marrow (Figure 1). Multiple experiments have been conducted in order to characterize 
the different populations that can give rise to DCs, macrophages, or lymphocytes. These 
experiments include the isolation of cell populations by flow cytometry and the later treatment 
with Flt3-L, M-CSF, and GM-CSF or cultivated with stromal cells producing these cytokines 

Figure 2. Differentiation of DCs from bone marrow precursors. The figure shows the differentiation of DCs from bone 
marrow precursor. (A) Culture of bone marrow cells at 24 h with GM-CSF. (B) and (C) The culture of bone marrow 
precursor cells after 6 days of culture with GM-CSF. The presence of poorly adherent cells with a great number of long 
and thin extensions is observed. (D) An immature DC MHCII positive is shown after 6 days of culture of bone marrow 
precursor cells with GM-CSF. (E) MHCII expression in DCs, after culturing for 2 h in the presence of LPS, a large increase 
in MHCII expression is observed. (F) A large number of extensions are observed in a DC stained with toluidine blue. 
The arrows point to DCs.
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[8]. As a result, the first cell population with potential to differentiate into DCs, macro-
phages, monocytes, and polymorphonuclear cells was described and named cell myeloid 
progenitor (CMP), characterized by localizing in bone marrow and showing a Lin− c-Kit-high 
Sca1− IL-7Ralpha− phenotype. The CMP differentiation potential was evidenced when poly-
morphonuclear cells, macrophages, and DCs were obtained after CMPs were cultured with 
GM-CSF and Flt-3L-producing stromal cells [14]. Later, CMPs lose their potential to differ-
entiate into granulocytes when initiated with the expression of M-CSFR. These progenitor 
cells are called macrophages and dendritic cell progenitors (MDPs), characterized by the 
phenotype Lin− Sca1− M-CSFR+ Flt3+ c Kit int CX3CR1+. The capacity of differentiation of 
the MDPs was evaluated by in vitro assays, where macrophages and DCs were obtained when 
MDPs were cultivated in the presence of M-CSF or GM-CSF. In vivo assays in irradiated mice 
showed that the inoculation of MDPs was directly involved in the differentiation of DCs and 
macrophages especially in lymphoid organs [13, 14].

Then, MDPs begin to decrease the c-Kit expression, which is indicative of differentiation 
into common dendritic cell progenitors (CDPs), characterized by the expression of the 
phenotype Lin− cKitint, Flt3+ M-CSFR+. CDPs have the ability to differentiate into cDCs 
and pDCs with different phenotypes. So, when CDPs are cultivated in the presence of 
Flt3-L, a cell population CD11c+ MHCII+ is obtained; whereas, when CDPs are treated 
with GM-CSF a different cell population is obtained, since it shows the phenotype CD11c+ 
CD11b+ MHCII+. Also, when CDPs are treated with GM-CSF and Flt3-L cDCs and pDCs 
are acquired. In vivo, the potential of CDPs was evident when their inoculation in irradiated 
mice showed that CDPs were directly involved in the differentiation of CD11c+ CD8+ and 
CD11c+ CD8− cDCs and CD11c+B220+ pDCs. In conclusion, CDPs have the potential to 
differentiate just to pDCs and cDCs [13, 15].

CDPs have the potential to differentiate to Pre-pDCs and Pre-cDCs (pre-cDCs1 and 
 pre-cDCs2). Pre-pDCs are characterized by the low expression of M-CSFR low [1], while 
it has been reported that Pre-cDCs is characterized by the expression of CD11c, Siglec-H, 
SIRPa low, and MHCII int. Pre-cDCs can be differentiated into Pre-cDC1s and Pre-cDC2s 
cells. The Pre-DC1s cells are known by decreasing the expression of M-CSFR, Siglec-H, and 
Ly6c. Ly6c is a monocyte marker. In the case of Pre-cDC2s, they maintain the expression 
of M-CSFR and Ly6c, but decrease the expression of Kit and Siglec-H. It is important to 
mention that Pre-DC1s, Pre-DC2s, and pDCs are located in the periphery, such as blood or 
lymphoid organs, whereas Pre-cDCs, Pre-pDCs, DCP, MDP, and CMP cells are located in 
the bone marrow [10, 16].

On the other hand, the DCs differentiation in human is a little different from its counterpart 
in mice (Figure 1). The cell with potential to differentiate into granulocyte, macrophage, and 
DCs is named granulocytes, macrophages, and DCs progenitor (GMDPs). This population 
is located in the bone marrow and may have the following phenotype: Lin− CD34+ CD38+ 
CD10− CD45RA+ Flt3+ CD123+ M-CSFR-. When these cells initiate the expression of M-CSFR, 
the phenotype changes and they are called macrophages and DCs progenitor, population 
with the capacity of differentiation to macrophages and DCs. Consequently, MDPs increase 
the expression of CD123, so they acquire the ability to differentiate just to DCs (pDCs and 
cDCs), so this cell population is called common DC progenitors (CDPs) [10] (Figure 1).
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2.2. Dendritic cells subsets

2.2.1. Location

There is a great variety of DCs with different phenotypes and location. In general, DCs 
have been divided into conventional, plasmacytoid, and monocyte-derived [1]. The cDCs 
can be divided into cDC1s and cDC2s. The cDC1s are characterized by being CD8+ CD103+ 
in mouse and BDCA3+ (CD141+) in human. CDC2s phenotype is CD11b+ CD4+ CD8− in 
mouse and are BDCA1+ (CD1c+) in human. The plasmacytoid pDCs are positive for B220, 
mPDCA1 and Siglec-h in mice, while in humans they are BDCA4+ and BDCA2+ [17]. 
Another group of DCs derived from monocytes (mDCs) appears only when there is an 
inflammation. Langerhans cells, normal residents of the epidermis and epithelia, are not 
considered on the same lineage of the DCs mentioned above, since they originate from 
precursor cells that migrated to the skin before birth and differentiated into LCs during 
the first week of life [18].

In relation to the origin of the DCs, they all differ from bone marrow progenitor cells that 
have, as their common denominator, the expression of Flt3 and sometimes M-CSFR [19]. 
DCs are more numerous in lymphoid organs and epithelia. In addition, DCs can express 
various molecular markers depending on their location. Thus, pDCs, CD1s, and CD2s can be 
observed in different tissues of the organism [20]. Figure 3 shows to which cluster of cDCs 
each cell belongs. It is necessary to consider the phenotype and particular location of DCs 
in relation to their function on that tissue. For example, the degree of maturation of DCs in 
lymphoid organs is different from that of DCs in other tissues, since DCs are sentinel cells 
responsible for the recognition of pathogens and signals of tissue damage, which induces 
their migration to lymphoid organs to carry out the activation of different subsets of T, natural 
killer (NK), NKT, and B lymphocytes. It has also been studied and analyzed for a long time 
that the inflammatory or tolerogenic microenvironment induced by the cytokines present in 
tissues is essential in the determination of the functions that DCs can have [17].

It is important to know the types of DCs located in the organism, as well as the cytokines 
involved in its activation, so the following explains the different types of DCs located in 
 lymphoid organs, skin, gut, and blood (Figure 4).

2.2.1.1. DCs in lymphoid organs

2.2.1.1.1. Lymph nodes

In the lymph nodes, there are several subsets of DCs, one of them are the CD103+ migratory 
cDCs from peripheral tissues and generally exhibit a mature phenotype characterized by an 
increase in MHCII, CD80, CD86, and CD40. There are also two classes of resident DCs: CD8+, 
CD4+, or CD11b+, which possess an immature phenotype, unless there is an inflammatory 
environment in the lymph node. Also, the presence of CD141+ and CD1a+ DCs, reminiscent 
of the population of cells with the same marker in dermis, has been observed; therefore, these 
cells are considered as migratory [1, 20].
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2.2.1.1.2. Spleen

In the spleen, all DCs are CD8+ and are approximately 20% of the total spleen cells. DCs are 
classified into subsets according to CD11b marker expression. A subset is CD11blow/− DCs and 
shows an immature phenotype (MHCIIlow CD80low/− CD86low/− CD40low/−), proliferates in the 
presence of Flt3L, and expresses molecules such as CD205, CD207, and Clec9a. CD11+ DCs 
subsets are divided into DCs expressing high or low levels of the endothelial cell-specific 
adhesion molecule (ESAM). These two classes of DCs also proliferate in the presence of Flt3L 
and are CD4+ (ESAM) [21].

2.2.1.1.3. Thymus

In the thymus, there are at least three subsets of DCs: CD8+ cDCs (50%), Sirpα+ cDCs 
(20%), and pDCs (30%) [20]. CD8+ cDcS is likely to be derived from specific precursor 
cells. In this regard, studies have been investigated using the reporter of IL-7 receptor, 

Figure 3. Dendritic cells location and phenotype. The cDCs (cDC1 and cDC2) may be located in lymphoid organs, blood, 
and mucous membranes. In lymphoid organs, the cDC1 (CD8+ CD4−) and cDC2 (CD8+ CD4+) are located. In mucoses 
such as respiratory tract and digestive tract, cDC1 (CD103+ CD11b−) and cDC2 (CD103+ CD11b+ or CD103− CD11b+) 
are also found. In blood, the cDC1 are BDCA3+ and the cDC2 express BDCA1+. In skin, the cDC1s are characterized by 
the expression of CD207+ CD103+, and the cDC2 for the expression of CD207− CD11b+.
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which is a  characteristic marker of lymphoid lineage, and of CD207, which is charac-
teristic of CD8+ cDCs, and it has been found that only CD207 was expressed in thymic 
cDCs [22]. Using a new strategy named retroviral barcoding, it was determined that cDCs 
have a great similarity to spleen DCs and progenitors of bone marrow DCs [1]. Unlike 
CD8+ DCs, Sirpα+ DCs and pDCs develop extrathymically and are home to the thymus at 
steady state. Thymic homing of Sirpα+ DCs is dependent on a CCR2-mediated chemotaxis 
while pDC homing is dependent on CCR9 [23]. Both DC subsets are home to the thymus 
through blood vessels, but the specific tissues that originated from have not been compre-
hensively determined.

Figure 4. DCs at different locations. (A) and (B) human skin sections showing epidermal LCs positive for Langerin and 
CD1a, respectively. Arrows in (B) point to basal DCs. In (A), a few Langerin-positive cells (asterisks) are observed in 
the dermis. (C) and (D) Epidermal sheets of mouse skin with LCs positive for MHCII and CD205, respectively. In (E), a 
histological section of spleen showing Fascin-positive DCs is depicted. DCs are located in the T-dependent zone of the 
white pulp. In the thymus (F), a large amount of CD205-positive DCs is observed at the corticomedullary border.
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2.2.1.2. Blood

Multiple cell lines can be localized in the blood, such as granulocytes, monocytes, and 
lymphocytes, and to study blood DCs, several lineage markers (Lin), such as CD3, CD19, 
CD14, CD20, and CD56, are used to separate populations of DCs by means of flow cytometry 
assays [24]. Thus, populations of cDCs and pDCs can be identified in blood as they are Lin−. 
pDCs are characterized by expressing MHCII, BDCA2, and BDCA4, while the cDCs express 
MHCII and CD11c. Both types of DCs are negative for Lin markers. The cDCs divide into two 
subtypes, BDCA1 (CD1c) or CD141 (BDCA3) cells [25, 26].

2.2.1.3. Skin

In epidermis and dermis, different types of DCs can be found. In the epidermis, LCs con-
stitute 2–4% and are characterized by expressing high concentrations of Langerin (CD207), 
CD45, and low concentrations of CD11c and MHCII. In humans, the expression of CD1a 
has also been observed, but not in mice. Unlike the other DCs, the differentiation of LCs is 
 independent of Flt3; however, they are dependent for their development of Csf-1R, which 
also induces macrophage differentiation, M-CSF, in addition to chemokines CCL2 and CCL20 
[18]. Langerhans cells were considered to be bone marrow dependent; however, it has been 
observed that LCs may have two distinct embryonic origins: the fetal liver and the yolk sac. 
In the mouse dermis, two populations of DCs, the CD103+ and CD8α+, have been observed, 
whose origin is based on the precursor of DCs positive for CLEC9A. It has been observed that 
when these cells are CD24low, CD11blow, and Sirpα+, they are involved in the development of 
Th2 and Th17 responses [27]. In humans, LCs have a  phenotype very similar to that of mice, 
and they may respond to IL-15. On the other hand, in the dermis are several subsets of DCs: 
CD14+ CD1a− DCs, CD14− CD1a+ DCs, and 6-sulpho LacNAc+ DCs [28]. The CD14+ DCs are 
poor activators of CD8+ T cells in contrast to CD14− DCs. The subset CD141+ DCs is extremely 
successful in the activation of CD4+ T lymphocytes. The population of pDCs located in the 
dermis is very low; however, in inflammatory skin diseases such as psoriasis or lupus erythe-
matosus, an increase of this type of skin cells has been observed [29].

2.2.1.4. Gut

DCs in the intestine are located in the lamina propria of the intestinal mucosa, especially in 
the Peyer’s patches of the small intestine. These cells are usually CD103+, CD8+, and CD207+, 
express low concentrations of MHCII, and have been observed to proliferate when there are 
high concentrations of Flt3. There is a second type of DCs that are also located in the lamina 
propria, but which express the markers CD103 and CD11b, although CD103 is expressed in 
low levels. These types of DCs can also be localized in the muscular layer of the digestive 
tract, so they may be confused with CD11b+ macrophages [30].

2.2.2. Cytokine production

As previously mentioned, the DC differentiation is a process occurring in bone marrow. It 
depends on key cytokines (Flt3-L, GM-CSF, and M-CSF) and different cell precursors such 
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as the common myeloid progenitor and the common lymphoid progenitor resulting in the 
obtaining of classical (cDCs) and plasmacytoid DCs (pDCs [17, 18, 31, 32]. As a result of this 
process, different DC populations not only acquire different phenotypes but also colonize 
different tissues and perform different functions [31]. However, when precursors of den-
dritic cells are differentiated in the presence of different factors such as GM-CSF and tumor 
necrosis factor-α (TNF-α), at least two CDs populations give rise, one characterized by the 
expression of CD1a+/E-cadherin+ and another characterized by the expression of CD14+/
CD68+. Both populations shared some characteristics, such as the secretion of some cyto-
kines (IL-1, IL-1, IL-6, IL-7, IL-12, IL-15, IL-18, TNF-, TGF-, M-CSF, and GM-CSF). However, 
when these cells are treated with CD40 ligands, DCs acquire the ability to produce IL-10 
and IL-13 [31].

The progression in the maturation/activation state of the different CDs populations 
involves not only changes in the expression of the receptors present in the cell membrane 
but also their ability to interact with the extra cellular environment and with other cells. 
In this sense, both immature CDs in lymphoid and mucosal tissue and differentiated CDs 
in vitro are characterized by (1) having a weak antigenic presentation capacity, since DCs 
express low levels of MHC-II molecules, and co-stimulatory molecules (CD40, CD80, and 
CD86), where expression increases when DCs are exposed to maturation stimulus such as 
CD40L or IFN-γ; (2) having a high expression of tissue damage receptors such as CD36 and 
Toll-like receptors [26]; (3) having a high expression of molecules involved in the capture 
of antigens of different chemical origin, such as FcγRI, CD1, CD205, CD207, CD209, and 
CLEC-9 [33–37], receptors involved in antigenic internalization and in the release of intra-
cellular signals, promoting greater expression of adhesion molecules [38, 39]; (4) changes 
in the production of cytokines after undergoing the maturation/activation process. Mature 
CDs produce differentially cytokines related to promote the different immune responses 
(Th1, Th2, Th17, and Treg).

In this section, we describe the patterns of cytokine production, produced by the different 
subsets of DCs.

2.2.2.1. Conventional DCs

Human cDCs differentiated from bone marrow precursors in the presence of GM-CSF and 
IL-4 differentially show not only the expression of mRNA but also the production and release 
of different cytokines depending on their maturation stage.

Immature DCs are characterized by having a phenotype CD11c+, CD86−, MHCIlow, MHCIIlow, 
CD40−, CD80low, CD54low, OX40−, and CD8a−, whereas mature DCs are characterized by a phe-
notype CD11c+, CD83+, CD86+, MHCIlow, MHCIIhigh, CD40+, CD80+, CD54+, OX40+, and CD8a−. 
Both immature and mature DCs have different cytokine pattern secretion (Table 1) [17, 32].

It has been observed that the differential expression of cytokines is regulated not only 
according to the type of DCs but also by the activation pathway. lipopolysaccharide (LPS)-
stimulated DCs have been shown to exhibit a positive regulation of IL-1α, IL-1β, and IL-6 and 
to a lesser degree of IL-15, TNF-α, and MIF. On the other hand, when DCs are stimulated with 
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 anti-CD40 antibodies only discrete changes are observed in the levels of some cytokines, such 
as IL-6, IL-12p40, IL-15, and TNF-α, whereas IL-1α, IL-1β, IL-18, IFN-γ, TGFβ1-3, and MIF 
are not altered. This fact acquires relevance since those DCs that are stimulated via anti-CD40 
may exhibit a phenotype of cDC1s or cDC2s being able to guide the immunological response 
to both TH1 and Th2. By contrast, DCs that are stimulated with LPS show a phenotype of 
cDC1s. This fact is due to a differential signal on the production of IL-23 which strongly inter-
acts with IL-12 [24, 40].

This same pattern of differential activation has been observed in mature murine and canine 
DCs, stimulated with different types of signals, either with endogenous or with exogenous 
stimuli, where regardless of the type of stimulus, mature DCs show a phenotype with an 

Cytokines profile produced by cDCs

Cytokine Immature DCS Mature DCs Activation path of mature DCs

LPS Anti CD40 TNFα

IL1a High Low High Low Low

IL-1β High Low High Low Low

IL-2 Negative Negative Negative – Médium

IL-4 Low Medium Medium – High

IL-6 Low Medium Low Medium Low

IL_d10 Low Medium Medium Medium Medium

IL-12 Low High High High High

IL-12 p35 Negative High High Medium Medium

IL-12 p40 Low High Medium High –

IL-12p70 Low High High High High

IL-13 Low High Low Low High

IL-15 Low High Medium High –

IL-18 Low Medium Low Medium –

IL-23 Low High High Negative –

MIF High High High High –

IFN-γ Low Medium Low – High

TGF-β whole Low Low Negative – Low

TGF-β1 Low Low – – Medium

TGF-β2 Low Low – – –

TGF-β3 Low Low – – –

TNF-α Low High High Medium Medium

Table 1. Cytokines secreted by immature DCs, mature and matured by different pathways.
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increased expression of CD11c, IL-10β, IL-12p40, IL-12β, IL-12β, IL-12β, IL-12β, IL-12β, 
IL-13, and TNF-α, thus contributing to awakening a Th1-type response. In contrast, TNF-α-
stimulated DCs show increased expression of IL-2, IL-4, IL-12p40, IL-13, TNF-α, TGF-β, IFN-
γ, and MCP-2 promoting a Th2 response. This differential production of cytokines appears 
to be due to the involvement of IL-13 that acts similarly to IL-4, thus promoting this response 
Th2 [41, 42] (Table 1).

2.2.2.2. Tolerogenic DCs

Characteristically, some subsets of DCs of myeloid origin that modulate the antigen-specific 
adaptive immune response by presenting auto-peptides to CD4+ T cells in the presence of 
inhibitory signals, anti-inflammatory cytokines, or other molecules that promote regulatory 
T cell populations are also capable of inducing the deletion or clonal anergy of autoreactive 
T cells.

Some mechanisms of the generation of tolerogenic DCs involve stimulation with IL-10, TGF-β, 
IL-6, TNF-α or its combination [43–46], as well as weak stimulation with bacterial products like 
LPS [47], pharmaceutical drugs like dexamethasone [48], and inhibitors of cell signaling such as 
PKCi or CTLA4 [49, 50]. These cells acquire a tolerogenic activity characterized by an immature 
phenotype with weak expression of co-stimulatory molecules, but with a differential production 
of anti- and proinflammatory cytokines.

This production of cytokines by tolerogenic DCs is dependent on the microenvironment in 
which they are found. Thus, the presence of IL-10 promotes a decrease in IL-6, IL-12, and 
IL-23, as well as an increase in the release of TGF-β, PGE2, and IL-10, leading to an increase in 
Treg cell populations. In contrast, in the presence of high concentrations of TGF-β, tolerogenic 
DCs show a high expression of the co-inhibitory molecules ILT4, PDL-1, and PDL-2 [51, 52]. 
The synergism of IL-10 and TGF-β promotes similar cytokine production in DCs, but DCs also 
show a high CCR7-dependent migratory capacity with low antigenic activity.

When there is an early exposure to IFN-γ, DCs are guided to a tolerogenic phenotype with a 
reduced endocytic capacity as well as weak expression of IL-12, IL-23, and TNF-α, an effect 
that is maintained even after receiving a second proinflammatory stimulation [53] (Table 2).

2.2.2.3. Plasmacytoid cells

Since their description, pDCs have produced a great controversy about their origin and func-
tion. Unlike other DCs, pDCs generation is controlled by the expression of the transcription 
factor E2-2 [54]. pDCs express CCR9, CD9, CD19, CD123, CD303, and CD304 molecules. They 
also express the BDCA2 receptor, and the histidine transporter Slc15a4, which facilitate the 
signaling of TLRs and the production of IFN and other cytokines [55]. In mice, the pDCs 
express PDCA1 and Siglec-H [56]. In their immature or inactive state, they have a similar 
appearance to plasmatic cells, lacking dendritic cytoplasmic projections, do not show an 
ability for uptake and present antigens and produce large amounts of IFN types I and III. 
However, when these cells are activated, they rapidly undergo a morphological and func-
tional conversion similar to that of cDCs with a capacity to stimulate T cells [2].
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They are known to share with cDCs not only the same progenitor but also the dependence 
of some factors for their differentiation as the cytokine FMS-related tyrosine kinase 3 ligand 
(Flt3L) and interferon-regulating factor 8 (IRF8) [56]. Like other DCs, pDCs are deficient 
of lymphocytic lineage markers. When pDCs are activated by ligands of TLR7 and TLR9, 
they produce high amounts of IFNs types I and III, other cytokines such as IL-6 and IL-12 as 
well as chemokine ligands CCL3, CCL4, CCL5, CXCL9, CXCL10, and CXCL11 [57, 58]. The 
 regulatory capacity of pDCs involves the expression of the indoleamine 2,3-dioxygenase (IDO) 
enzyme [52], a suboptimal presentation of antigens, and the induction of Treg cells [57, 58].

2.3. Processing and antigen presentation

DCs are capable of capturing and processing antigens very efficiently and for this they 
possess  several molecules that have been identified and are discussed below. In general, 

Phenotype and cytokine production by tolerogenic DCs

Mechanism Phenotype Cytokine Tolerance mechanism

IL-10 Low expression of 
costimulatory molecules 
CD11c+, MHCIIlow, CD80low, 
and CD86low

Weak migratory capacity 
CCR7low

Low secretion of IL-6, 
IL-12, and IL-23
High secretion of IL-10, 
PGE2, and TGF-β

Anergy of CD4+ T cells
Induction of Treg cells

TGF-β Low expression of 
costimulatory molecules 
CD11c+ MHCIIlow, CD80low, 
and CD86low

High expression of 
inhibitory molecules 
ILT4high and PD-LI/2high

Low secretion of lI-β, IL-6, 
and IL-12 e IL-23
High secretion of IL-10

Anergy of CD4+ T cells
Induction of Treg cells
Inhibition of the secretion 
of INFγ by CD4+ T cells

IL10 + TGF-β Low expression of 
costimulatory molecules 
CD11c+ MHCHIIlow, 
CD80low, and CD86low

High migratory capacity 
CCR7high

Weak antigenic 
presentation activity

Low secretion of IL-6, 
IL-12, IL-18, and IL-23
High expression of IL-4, 
IL-5, PGE2, and TGF-β

Anergy of CD4+ T cells
Promotion of stimulated 
T-cells-producing IL2low, 
IFN-γlow IL-10high

Dex Low expression of 
costimulatory molecules 
CD11c+, MHCIIlow, CD80low, 
and CD86low

High migratory capacity 
CCR7high and CXCR4high

Low secretion of IL-12, 
IL-23, and TNF-α
High secretion of IL-10

Anergy of CD4+T cells
Induction of Tr1 cells-
producing IL-10

IFN-γ early exposition Low expression of 
costimulatory molecules 
CDIIc+ MHCIIlow, CD80low, 
and CD86low

Weak endocitic capacity

Low secretion of IL-12 Induction of Treg cells 
CD127−/low, CD25high, and 
FoxP3+
Induction of Treg cells 
IL10+, TGF-β+, and FoxP3+

Table 2. Tolerogenic DCs activation pathways with their cytokine secretion profile and phenotype.
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two antigen-processing pathways have been defined, the endocytic pathway and the cytosolic 
pathway, through which exogenous and endogenous antigens are presented, respectively [59].

2.3.1. Exogenous antigens: endocytic way

Exogenous antigens, such as those derived from bacteria, are captured by immature DCs by 
means of endocytosis, phagocytosis, or both, through different molecules such as Fc receptors 
of IgG or lectins such as CD205, which guides their internalization into endocytic compart-
ments with increasing acidity: slightly acidic early endosomes, moderately acidic endoly-
sosomes, and very acidic late endolysosomes [60]. The late endolysosomes are very rich in 
MHCII and it is in these compartments where the antigens are degraded in polypeptides of 
13–18 residues by some acidic proteases such as thiol and aspartyl cathepsins specific for the 
substrate [61, 62]. In these compartments, cathepsin degrades the invariant chain (li) bound 
to MHCII to a 24 amino acid peptide called the class II invariant chain peptide (CLIP), which 
occupies the cleavage of chains α1 and β1 of MHCII. This degradation is regulated by the 
concentrations of cathepsin S and its inhibitor endogenous cystatin C. After the DCs have 
matured, cystatin C decreases and cathepsin S activity is increased, promoting the degrada-
tion of Ii toward CLIP [62, 63]. The cleavage of MHCII where CLIP is placed is the site that can 
occupy the processed antigens and accommodates peptides up to 30 amino acids in size. As 
the CLIP is occupying this cleft, it needs to be removed so that it can be occupied by degraded 
exogenous antigens [61]. This process is induced by human leukocyte antigen (HLA)-DM 
molecules, which structurally resemble MHCII and are not expressed on the cell surface 
of DCs, but act as a peptide exchanger, facilitating the capture of CLIP, leaving the cleft of 
MHC II free to be occupied by the degraded antigenic peptide, resulting in the stabilization 
of MHCII [64]. Finally, the MHCII/processed peptide complex is carried through transport 
vesicles to the plasma membrane where the peptide can be recognized by CD4+ T lymphocytes 
specific for the peptide antigen presented [65]. The overall process is shown in Figure 5.

2.3.2. Endogenous antigens: cytoplasmic way

Presentation of endogenous antigens by MHCI molecules is performed on all nucleated cells 
and involves the degradation of cytosolic proteins and the loading of the resulting peptides 
into newly synthesized MHCI within the rough endoplasmic reticulum [66]. It is worth noting 
that this antigen-processing route also processes viral proteins from infected cells and proteins 
from bacteria that were initially phagocytosed and processed into endosomes but escaped 
from them into the cytoplasm. All these proteins, located in the cytoplasm, are susceptible to 
be degraded by proteasomes [67]. The processing of cytoplasmic proteins begins when they 
are conjugated with several copies of ubiquitin which is recognized by proteasomes. The pro-
teasomes are formed by four protein cylinders, two peripheral α rings, and two β central rings. 
The β rings have catalytic activity located in the β1, β2, and β3 subunits. Proteasomes have a 
broad specificity of protein substrates and can generate a large variety of peptides capable of 
being presented by MHC class I molecules [66, 67]. DCs are highly efficient in the processing 
and presentation of cytosolic proteins because they possess constitutively di-ubiquitin, which 
has a tandem of key functional protein motifs, and proteasomes with a substrate specificity 
that allows peptides resulting from degradation of proteins have a large amount of hydrophobic 
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or basic amino acids, which gives them a high affinity for MHC class I molecules [59, 68]. In 
particular, INF-γ and TNF-α, two proinflammatory cytokines, can induce a rapid increase of 
proteasomes in DCs, along with an increased expression of MHCI [69].

Peptides resulting from protein degradation are transported by an ATP-dependent process 
into the endoplasmic reticulum by a specific antigen-processing (TAP) transporter, which 
consists of two transmembrane proteins called TAP1 and TAP2 [67]. The transported peptides 
may have different lengths, but the transport is optimum for peptides of 8–16 amino acids 
[61]. Note that MHCIs are associated with TAP by means of a small protein called Tapasin, 
which retains MHCI in the endoplasmic reticulum until the peptide has conjugated to them. 
Inside the reticulum, the transported peptide is cut to a length of nine amino acids by a specific 
aminopeptidase in order to fit into the cleavage of MHCI [66]. When this happens, Tapasin 
releases the class I molecules coupled to the peptide antigen that can then be transported to 
the Golgi apparatus and from there to vesicles of transport to the plasma membrane of the 
cells where the antigenic peptides can be presented specifically to CD8+ T lymphocytes [59].

Figure 5. Exogenous antigens processing: endocytic way. Exogenous antigens are captured by immature DCs by 
endocytosis, phagocytosis, or both. Antigens are internalized into endocytic compartments where cathepsin degrades 
the invariant chain (li) bound to MHCII to a class II-invariant chain peptide (CLIP), which occupies the cleavage of 
MHCII. Then, CLIP is removed by HLA-DM molecules and the processed antigens occupy the space. Finally, the 
MHCII/processed peptide complex is carried through transport vesicles to the plasma membrane where the peptide can 
be recognized by CD4+ T lymphocytes.
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2.3.3. Cross-priming

DCs have the ability to capture and process proteins from virally infected cells or tumor cells 
and that, when processed through the endocytic pathway, can be presented not only to CD4+ T 
lymphocytes but also to CD8+ T virgin lymphocytes [60]. This type of presentation is called 
cross-presentation or cross-priming. This process is determined by the nature of the antigens, 
the way they have been captured, and the subsets of DCs performing the presentation [65]. 
Thus, two approaches have been proposed to carry out this type of antigenic presentation. 
The cytosolic pathway involves the transport of antigens from the lumen of endosomes to the 
cytosol where they can be processed by proteasomes until they are coupled to MHCI in 
the endoplasmic reticulum [69]. The vacuolar pathway involves the coupling in endosomes 
of class I molecules to antigenic peptides derived from the degradation of endocytic compart-
ments by lysosomal proteases [70].

3. Dendritic cells: clinical implications

3.1. Delayed contact hypersensitivity

The pathophysiology of contact hypersensitivity consists of two phases: the induction phase 
and the challenge phase. The induction phase begins when the haptens penetrate the stratum 
corneum of the epidermis and are endocytosed by the LCs. LCs are then activated and migrated 
through the lymphatic vessels to the paracortex of regional lymph nodes, where they present 
the haptens in the context of MHCII to CD4+ T lymphocytes [71]. These activated T lympho-
cytes specific for these haptens are expanded clonally and finally reach the circulatory torrent. 
During this process, they express the cutaneous leukocyte antigen (CLA), with which they have 
the possibility to return preferentially to the skin through the high endothelium postcapillary 
veins [72]. The lymphocytes generated in this process are antigen-specific memory lymphocytes 
[73]. This phase lasts in the human between 10 and 15 days and has no clinical repercussions.

The challenge phase begins when haptens, which have already stimulated the induction phase, 
are brought into second contact with the skin. These haptens are endocytosed and presented by 
LCs, keratinocytes, or dermal DCs [74], which can present them to antigen-specific memory T 
lymphocytes located on the skin. Memory T lymphocytes activate CD8+ cytotoxic T lymphocytes 
which are the main effector cells in contact hypersensitivity. These lymphocytes secrete inflam-
matory cytokines and chemokines and induce apoptosis in keratinocytes [75]. Then, intense che-
motaxis of different leukocytes is produced toward the skin resulting in a large inflammatory 
skin reaction [76]. Among the leukocytes that are also attracted are CD4+ Treg lymphocytes that 
modulate the inflammatory response. In humans, this phase occurs at 72 h and persists for a few 
days, after which it rapidly decreases by mechanisms mediated by CD4+Treg lymphocytes [72].

3.2. Autoimmune diseases

Throughout the development, the maturation of the adaptive immune system and dur-
ing the induction of immune responses, B and T lymphocytes show a high rate of genetic 
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recombination in the variable and hypervariable regions of the antigen receptors, so that the 
adaptive immune system has a wide variety of antigen receptors, being able to respond to 
virtually any type of molecule. Because of this phenomenon, there is a high probability that 
different self-antigens are recognized by the immune system, in addition to nonself antigens 
[1, 77]. To prevent the system from reacting against a self-antigen, autoreactive lymphocytes 
must be removed or trained as tolerant cells. Resident reticuloepithelial cells from cortex and 
 marrow of the thymus perform a negative selection process to eliminate such autoreactive 
clones. In this sense, it has been demonstrated that thymic DCs are also actively involved in 
such negative selection processes, and more recently it has been shown that even peripheral 
DCs may migrate to the thymus and participate in this selection [1, 23]. This is highly sig-
nificant as some populations of DCs are directly related to the development of autoimmune 
diseases, which has recently been shown in a study using transgenic mice transfected with 
diphtheria toxin A (DTA) coupled to a resistance cassette to neomycin which were crossed 
with CD11c-Cre mice.

In the progeny, the Cre complex removes the resistance cassette generating toxicity in CD11c+ 
cells, resulting in depletion of DCs including conventional, plasmacytoid, and LCs, which 
led to an increase in the frequency of CD4+ thymocytes and CD4+ lymphocytes in tissues 
together with the spontaneous development of multiorgan autoimmunity [78, 79]. On the 
other hand, the participation of immature DCs in the induction of Treg cells has been docu-
mented, where CD205 receptor stimulation led to a tolerant antigenic presentation, result-
ing in an increase of CD25+ CTLA-4 T cells, via ligands of co-stimulatory molecules such as 
CD28 and CD154, as well as a decrease in IL-2 production and CD4 [79, 80] T proliferation. 
Thus, immature DCs play a crucial role in the activation of Treg, not only to autoantigens but 
also against alloantigens, since it has been observed that the repeated stimulation of CD4+ 
T cells with immature allogeneic DCs in the absence of antigens leads to a differentiation 
toward Tregs cells [81].

On the other hand, it has been evidenced that in a state of non-inflammation (steady state), 
the tolerant response by the immature DCs depends strongly on the control of TGF-β1 [107]. 
LCs and bmDCs upregulate the expression of Axl, which belongs to the family of tyrosine 
kinase receptors, Tyro3, Axl Mer (TAM), which has the function of inhibiting the inflammatory 
response in DCs, in addition to participating in the elimination of apoptotic cells and the 
blockade of proinflammatory cytokine production, which together is essential for the mainte-
nance of self-tolerance [27].

The participation of DCs in autoimmune processes has been controversial, since in dif-
ferent studies the ability of DCs to break tolerance and to induce autoimmune responses 
has been reported, and others have described the ability of DCs to preserve tolerance and 
avoid an autoimmune response. Thus, much of the controversy is due to the functional 
diversity of the different DCs populations, namely that while mature DCs can induce 
strong self-reactive responses, for example, in the central nervous system an amplification 
of experimental autoimmune encephalitis has been observed; it has also been observed 
that the use of immature DCs has the capacity to offer protection against the development 
of autoimmune reactions [81, 82].
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Immature and tolerogenic DCs produce high levels of IL10, IL-2, and TGF-β, which effectively 
promotes the proliferation and activation of inducible regulatory T cells (iTreg), decreasing 
the autoimmune reaction; however, if the tolerance in different models cannot be restored, 
possibly it is due to the activity of CD220+ B cells that potently modulate Th17 responses, 
maintaining the proinflammatory state [79].

The use of DCs as a therapeutic tool in autoimmune reactions has to do not only with their 
ability to produce tolerance-inducing cytokines such as IL-10 and TGF but also with their 
biological capabilities such as the expression of molecules involved in the antigen presentation. 
For example, two populations of IL-10 modulated DCs (IL10DC) having a CD83High, CCR7+, or 
CD83low CCR7-phenotype were recently compared. Assays suppression effector T cells showed 
that iTreg from the CD83High IL-10DCs induced greater suppression than the population of 
iTreg from the CD83low IL-10DCs, and had a higher migratory capacity to lymph nodes, sug-
gesting that they are a good therapeutic candidate [52].

In addition to tolerogenic DCs, other DCs are involved in the modulation of autoimmune 
responses. Thus, other populations of DCs such as plasmacytoids have been evaluated. 
In a model of arthritis induced by methylated bovine serum albumin (mBSA), it is known 
that IFN-α prevents the inflammatory process, pDCs function was assessed in relation 
to TGF-β and IDO. IFN-α was found to increase the expression of IDO1 and the corre-
sponding TGF-β signaling in the pDCs. Likewise, it was also observed that the depletion of 
the pDCs, either during the sensitization phase or already initiated the arthritic response, 
eliminates the protective effect of IFN-α. In addition, this same abrogating effect of IFN-α 
activity was observed when TGF-β signaling was blocked, but exclusively in the signaling 
phase, implying that this IDO1/TGF-β protection pathway is dependent on anti-inflamma-
tory programs, while responses to restimulation are dependent on the participation of the 
pDCs [83].

As previously mentioned, TLR7 and TLR9 play an important role in the biology of pDCs, 
which also involves them in autoimmune responses. In a murine model deficient mice of 
the Gfi1-transcriptional repressor, which modulates myeloid and lymphoid differentia-
tion, show spontaneous autoimmunity like lupus, including high levels of IgM and IgG2a, 
autoantibodies against RNA and DNA, as well as an increased frequency of plasmoblasts 
and germinal centers. In contrast, Gif1 mice do not show this phenotype, but interestingly 
they show an increase in TLR7-dependent DCs activation, where stimulated DCs produce 
increased amounts of TNF-α, IL-6, and IFN-β as well as an increase in phosphorylation of 
the transcription factors NF-κB and IRF7, suggesting the control of the IFN-I-signaling 
pathway, so that apparently the negative regulation of TLR7 in DCs prevents the spontaneous 
development of lupus [81].

3.3. Cancer

Tumor cells have mechanisms to evade the immune system such as the decreased expression 
of class I molecules, the release of tolerogenic cytokines such as TGF-β and IL-10, as well as 
the induction of lymphocyte death. Generally, in the tumor stroma Treg cells, macrophages 
type 2, mast cells, inhibitory myeloid cells, and neutrophils may secrete cytokines that help 
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the growth of the tumor; also, the formation of free radicals may contribute to increase the 
mutation rate in tumor cells [84]. In the stroma, there are also immature DCs that can induce 
the activation of Tregs tumor antigen-specific antigen lymphocytes, which may be involved 
with increased tumor growth [85]. In addition, DCs have been isolated from patients with 
metastases or with advanced stages of the disease and it has been shown that DCs express 
co-inhibitory molecules such as PD-L1, arginase, and IDO, and produce TGF-β, IL-10, and 
prostaglandins E2, resulting in an inhibition of T lymphocytes. It is worth noting that the use 
of immunostimulators can inhibit this suppression effect induced by DCs [86, 87]. In some 
patients, small foci of extratumoral lymphoid tissue known as tertiary lymphoid tissue may 
be localized and in them it is common to find memory T lymphocytes and naive T lympho-
cytes, in addition to mature DCs. When DCs and T lymphocytes have been isolated from this 
tissue, the development of a Th1 response has been observed in addition to the increased 
 survival of patients with cancer. It is important to emphasize that this lymphoid tissue is 
 usually observed in the early stages of the disease.

3.3.1. Antitumoral immunotherapy

DCs can be used in antitumor immunotherapy to induce the development of effective immuno-
logical responses that decrease the size of the tumor mass and increase survival. CD8+ T lym-
phocytes and NK cells, through the release of perforins and granzymes or through the binding of 
FAS/FASL molecules, can induce the death of tumor cells. These lymphocytes may be activated 
by DCs that have presented antigens from a tumor in the lymph nodes closest to the tumor mass. 
Thus, DCs have been differentiated in vitro to be used as a type of adoptive immunotherapy in 
clinical protocols. There are multiple strategies that have been used with DCs as described below.

DCs derived from bone marrow precursor cells and DCs derived from monocytes have been used 
in clinical protocols, with the latter being the most used in immunotherapy against melanoma 
[4, 88]. Cytokines (IL-4, IL-15, and IFN-γ), TLR agonists such as nucleic acids (CpG), Imiquimod, 
LPS, monophosphoryl lipid A, BCG, as well as transfection of DCs with RNA, encoding cyto-
kines, growth factors, and co-stimulatory molecules, have been used to mature DCs [89].

In relation to the antigens used, DCs treated with nucleic acids, whole tumor antigens, tumor 
lysates, and peptides have been used to carry out a specific antitumor response [8]. The clinical 
results have been variable, so DCs-based immunotherapy has been used in combination with 
the administration of antibodies, cytokines, and even radiotherapy and chemotherapy [90].

Regarding melanoma tumor antigens, several have been used to stimulate DCs to elicit 
a specific antitumor immunological response dependent on T CD8 lymphocytes, capable 
on inducing cell tumor death. In this sense, some of the antigens most used for antitumor 
immunotherapy against melanoma are MAGE proteins [91, 92], gp-100 [93], NY-ESO, and 
tyrosinase, among others. Also, in different clinical assays, DCs have been loaded with one 
or more tumor antigens, for example, DCs loaded with various melanoma-specific antigens 
(gp-100 and tyrosinase) were administered in patients with melanoma and had a regression 
success rate of 11% [94], whereas in another clinical study, in which the same antigens were 
used in conjunction with keyhole hemocyanin, 57% of those receiving the therapy showed 
no tumor growth and only 4% showed complete tumor regression [29].
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The success of DCs loaded with proteins or with tumor peptides has been moderate and is 
generally because antigen-specific T lymphocyte proliferation is not high; however, DC-based 
immunotherapy has been more successful than other strategies (e.g., the use of peptide-based 
vaccines) [95]. It should be noted that the low success observed with DCs-based immuno-
therapy is due to the fact that most DCs are applied to patients in stages III and IV of the 
disease by a late detection of cancerous lesions, which are difficult to produce a successful 
immunological response with immunocompetent T lymphocytes [96, 97].

In relation to the delivery of tumor antigens for activating DCs, dead, apoptotic, or necrotic 
tumor cells have been used [5, 98]. DCs can phagocyte tumor cells by means of specific 
 receptors. Thus, apoptotic cells are recognized by the integrin αVβ5, by the CD36 molecule, or 
by means of the phosphatidylserine receptor [99] and necrotic cells are recognized by CD91, 
TLR-2, and TLR4 [99, 100]. One of the advantages of using dead tumor cells is that DCs can 
present antigens by means of MHCI activating CD8+ T lymphocytes by cross-presentation. In 
addition, the haplotype by which the antigens are presented is independent of the response, 
so this type of vaccine can be applied to any patient [3]. These types of vaccines have been 
shown to induce the activation of tumor-specific CD4+ and CD8+ T cells, as demonstrated 
by a study with 13 melanoma patients, where 3 showed tumor regression and 1 showed 
increased IFN levels [101].

Another strategy is the transfection of DCs with tumor RNA or encoding co-stimulatory 
 molecules, cytokines, or growth factors [102]. DCs that have been transfected with RNA 
encoding tumor antigens can present tumor proteins by means of different HLA molecules, 
so that a large number of CD8+ T lymphocyte clones may be activated [103]. Some of the 
melanoma antigens used in this therapy are MAGE, gp-100, MART-1, and p53. The results 
have been moderately satisfactory since the development of an antitumor immune response 
characterized by the presence of CD8+ T lymphocytes and IFN secretion was observed; 
 nonetheless, tumor regression was observed several times. Despite the moderate response, 
this type of vaccine has been shown to not only stimulate the proliferation and activation of 
NK cells but also induce a decrease in Treg cell levels in melanoma patients [104, 105].

Regarding the cytokines or growth factors used to activate or differentiate DCs in antitumor 
immunotherapy treatments, GM-CSF is one of the most widely used, since it can induce differ-
entiation of DCs and monocytes in vivo [104]. On the other hand, RNA encoding for IFN, IL-7, 
and TNF has been transfected into DCs, resulting in cytokine secretion and DCs maturation. 
In some assays, it has also been attempted to transfect cells with RNA encoding cytokines, 
tumor antigens, and co-stimulatory molecules with the aim that with a single  transfection and 
without the need for incubations of 24–48 h with cytokines or tumor  antigens, the cells can 
present antigens and secrete cytokines [106].

4. Conclusions

Several aspects of the biology of DCs have been clarified, however are still missing some 
issues to be resolved.
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 receptors. Thus, apoptotic cells are recognized by the integrin αVβ5, by the CD36 molecule, or 
by means of the phosphatidylserine receptor [99] and necrotic cells are recognized by CD91, 
TLR-2, and TLR4 [99, 100]. One of the advantages of using dead tumor cells is that DCs can 
present antigens by means of MHCI activating CD8+ T lymphocytes by cross-presentation. In 
addition, the haplotype by which the antigens are presented is independent of the response, 
so this type of vaccine can be applied to any patient [3]. These types of vaccines have been 
shown to induce the activation of tumor-specific CD4+ and CD8+ T cells, as demonstrated 
by a study with 13 melanoma patients, where 3 showed tumor regression and 1 showed 
increased IFN levels [101].

Another strategy is the transfection of DCs with tumor RNA or encoding co-stimulatory 
 molecules, cytokines, or growth factors [102]. DCs that have been transfected with RNA 
encoding tumor antigens can present tumor proteins by means of different HLA molecules, 
so that a large number of CD8+ T lymphocyte clones may be activated [103]. Some of the 
melanoma antigens used in this therapy are MAGE, gp-100, MART-1, and p53. The results 
have been moderately satisfactory since the development of an antitumor immune response 
characterized by the presence of CD8+ T lymphocytes and IFN secretion was observed; 
 nonetheless, tumor regression was observed several times. Despite the moderate response, 
this type of vaccine has been shown to not only stimulate the proliferation and activation of 
NK cells but also induce a decrease in Treg cell levels in melanoma patients [104, 105].

Regarding the cytokines or growth factors used to activate or differentiate DCs in antitumor 
immunotherapy treatments, GM-CSF is one of the most widely used, since it can induce differ-
entiation of DCs and monocytes in vivo [104]. On the other hand, RNA encoding for IFN, IL-7, 
and TNF has been transfected into DCs, resulting in cytokine secretion and DCs maturation. 
In some assays, it has also been attempted to transfect cells with RNA encoding cytokines, 
tumor antigens, and co-stimulatory molecules with the aim that with a single  transfection and 
without the need for incubations of 24–48 h with cytokines or tumor  antigens, the cells can 
present antigens and secrete cytokines [106].

4. Conclusions

Several aspects of the biology of DCs have been clarified, however are still missing some 
issues to be resolved.
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1. Nonetheless in mice some precursors have been established for different subpopulations of 
DCs, in humans it is still necessary to clarify precisely which are the immediate  precursors 
of the different subpopulations, in particular of the cDCs.

2. It is necessary to complete the phenotype of subpopulations of DCs in human. It is clear 
that as more molecules are described, in the future this will be a fulfilled task, but at the 
same time, it will make it more difficult to classify the DCs.

3. Protocols of in vitro differentiation of DCs from their precursors must be better defined. 
According to the latest studies, most of the results attributed to DCs are due to cellular 
 heterogeneity, mixtures of DCs, and macrophages. In addition, it is also necessary to 
 consider that there may be a mixture of DCs subpopulations. This issue is very important, 
especially when clinical trials are conducted against tumors or autoimmune diseases.

4. According to their location, DCs have several functions and this is always necessary to keep 
in mind, and more when it comes to understanding the particular immune responses of an 
organ or a tissue. Not all DCs have the same function; they can vary from organ to organ.
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Abstract

Kupffer cells, which have a characteristic morphology and a kind of phenotype, are the 
resident macrophages in liver, serve as the largest population mononuclear phagocytes 
in the body, and are localized in the periportal zone. They have phagocytosis capacity 
and release all kinds of cytokines, chemokines, and soluble biological mediators. Owing 
to the different functions of Kupffer cells, they play an important role in liver diseases. In 
this chapter, we review the role of Kupffer cells in infectious disease, fatty liver  disease, 
liver fibrosis, liver ischemia-reperfusion injury, liver transplantation immunology, as 
well as liver cancer and metastases.

Keywords: Kupffer cell, infectious disease, fatty liver disease, fibrosis, ischemia-
reperfusion injury, liver transplantation immunology, liver cancer, metastases

1. Introduction

Kupffer cells (KCs), as the largest population mononuclear phagocytes in the body, account for 
80–90% of the total number of natural macrophages and 20% of the liver nonparenchymal cells 
[1]. They form a self-renewing pool of organ-resident macrophages independent of the myeloid 
monocyte compartment and derive from resident stem cells which originate from the fetal yolk 
sac before [2–4]. Other studies also found that KCs derived from embryonic progenitors colonize 
the tissues before birth [5–11], but with the growth of mouse, bone marrow-derived monocytes 
will fill up additional macrophage niches that become available, competing with the resident 
population. This situation occurs in the liver and spleen, but not in the brain and lung [12].

KCs have a characteristic morphology with amoeboid lamellipodia and an irregular surface 
containing many microvilli [13], located at the luminal side of liver sinusoidal endothelium or 
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the lamellipodia extended into the Disse space through the fenestrae. This is an ideal position 
for their main function in the liver. This state can filter the blood that enters the liver from both 
the portal vein and the hepatic artery, which is an important part of the cellular immunity sys-
tem of the mammalia (Figure 1). So, the structure of KCs plays a role in the mutual  coordination 
and influence of liver parenchymal cells and other nonparenchymal cell functions and makes 
up these cells’ important versatile constituents of the liver [14–16]. Now, according to the func-
tion of KCs, they could be distinguished as two groups: the one with higher phagocytosis capac-
ity and the other with preference toward cytokines and  chemokines production [17, 18]. Some 
studies found that there were large KCs in rats. They are localized in the periportal zone and 
have increased phagocytosis and increased production of biological mediators. These large 
KCs can be identified by the expression of CD163, also described as ED2 antigen, which is a 
scavenger receptor [19]. KCs (Table 1) can also be identified by the expression of CD68 (ED-
1); they were called small KCs in rats. The general macrophage marker F4/80 or by ED-1 was 
expressed on the surface of mice KCs, which is present in all KCs regardless of their location 
[20]. In mice, KCs can be distinguished from monocytes among the F4/80+ cells as Ly6C low 
CD11b  low-cell population [21, 22]. Additionally, macrophages are functionally grouped into 
two classes, M1 and M2. M1 (termed classically activated) macrophages are pro-inflammatory 
and could produce pro-inflammatory cytokines and chemokines, while the M2 (termed alterna-
tively activated) macrophages are suppressive and involved in cellular repair [23]. According to 
this situation, KCs as one kind of macrophages also have these functions and play a fundamen-
tal role in homeostasis and diseases [24]. KCs also have a unique KCs gene Clec4f to distinguish 
with other macrophage; Clec4F has been previously described as a KCs-specific marker [25–27].
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In vivo, under steady condition, the KCs are resting situation; they play a role in eliminating 
macromolecules, immune complexes, toxins, and degenerated cells from circulation. Pattern 
recognition receptors (PRRs) on the KCs are the main factor to eliminate the debris, toxins, 
and insoluble macromolecules, such as scavengers receptors (CDl3, CD14, CDl5, and CD68, 
CD163), mannose receptors, Fc receptors (including CD64, CD32, and CDl6), complement 
receptor (including the complement receptor L, complement receptor 3, and complement 
receptor 4), I region-associated antigen, which are able to bind to toxins lipopolysaccharide 
(LPS), immune complexes, or opsonized cells [28]. Since KCs reside in the liver sinusoids in 
large numbers and are adherent to the endothelial cells, they are able to sample the blood 
entering the liver from the gut as well as from the main circulation. KCs also could remove the 
senescent or damaged erythrocytes. In this process, following phagocytosis and hemolysis, 
KCs could express HO (including HO-1, HO-2, and HO-3) to degrade hemoglobin, which is 
part of  erythrocytes  component. HO-1 catalyzes the degradation of heme into iron, biliver-
din, and carbon  monoxide, which are all considered to be hepatoprotective at low quantities 
under steady-state conditions [29, 30]. 

Pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively) 
were two kinds of PRRs to express on the surface of KCs. They included multiple fami-
lies, such as Toll-like, RIG-like, and NOD-like receptors (TLR, RLR, and NLR, respectively), 
and C-type lectin receptors (CLR) [31]. Mouse KCs can express TLR1-TLR9, all of which 
appear to be functional [32]. Human KCs, so far, have only been described to express TLR2, 
TLR3, and TLR4 [33, 34]. Furthermore, in the Listeria monocytogenes (Lm) infection model, 
mouse KCs are shown to express RIG-like receptor I [35]. Hepatocytes and CD68+ liver 
mononuclear cells (presumably KCs) express NLRC2 (NOD2) [36]. When the KCs were 
activated by the emergence of endotoxins and harmful exogenous particles from the portal 
vein and  circulation, their functions were enhanced. They could produce all kinds of cyto-
kines and chemokines significantly. In the presence of TLR ligands, such as LPS and CpG, 

Origin Marker PRR PAMP DAMP Immunogenic Polarization of 
macrophages

Rat Derived from 
the fetal yolk 
sack and 
embryonic 
progenitors 
colonize the 
tissues. Liver-
resident Express 
Clec4F gene

CD68/ED1 
CD163/ED2

Scavengers 
receptors (CDl3, 
CD14, CDl5, CD68, 
CD163) Mannose 
receptors Fc 
receptors (CD64, 
CD32, CDl6) 
Complement 
receptor (CR1, 
CR3, CR4) I region-
associated antigen

TLR1-TLR9 
NLR

MHC-II CD80 
CD86 PDL-1 
(CD274)

M1 Pro-
inflammatory 
antitumoral

Mouse F4/80 CD68 
CD11blow

TLR1-TLR9 
NLR RLR

M2 Anti-
inflammatory 
Immune 
suppressive 
protumoral

Human CD68 CD14 TLR2 TLR3 
TLR4 NLR

Table 1. This table is used for KC identification and major surface receptors and moleculars involved in the function in 
human, mouse, and rat.
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the  CD14-positive KCs were stimulated by TLR4, which activates the intracellular signal 
 pathway via myeloid  differentiation factor 88 (MyD 88), resulting in NF-κB activation to 
produce the pro-inflammation cytokines IL-6, TNF-α, IL-1β, ICAM-1, VCAM-1, and VAP-1 
[37], and the CD14  expression on KCs is increased [31]. CD14-transgenic mice that overex-
press CD14 on monocytes have increased sensitivity to LPS [38]. As a receptor of dsRNA, 
TLR3 on KCs is one of the primary triggers in the defense of viral diseases. TLR3 activation 
induces the strongest IFN-γ response. KCs were activated presumably due to the induction 
of IL-12 in the absence of IL-10 coproduction, which was observed upon TLR2 and TLR4 
ligation [39]. Activation of TLR7 triggers the secretion of type I interferons and activation of 
subsequent genes encoding CXCL10, CXCL11, Mx1 (antiviral G-Protein), CCL2 (also known 
as MCP-1), also secretion of IL-10, leading to enhanced viral clearance [40]. TLR9 activation 
on KCs attenuates inflammation by the secretion of IL-10, suppressing the activation of infil-
trating monocyte-derived macrophages in mice. This finding supports a dual role of TLR9 
engagement, which depends on the target T-cell type [41]. LPS, DNA, SFA, amyloid cho-
lesterol, cathepsin κ, and reactive oxygen species (ROS) and so on have been suggested as 
NLPR3 activators, which comprise the NOD-like receptor NLRP3, the apoptosis-associated 
speck-like protein containing a caspase recruitment domain, and the effector molecule pro-
caspase inflammation [42]. 

KCs likely derived from infiltrating monocytes express MHC-II antigens and costimula-
tory molecules (CD80 and CD86), which can present foreign antigens to the reactive  
T cells, induced T cell responses, and thus conferred tolerance to induce regulatory T cells in 
immune response [28]. IL-10 and PDL-1 (also known as CD274) participated in the immune 
tolerance, which reduce the antigen-presenting capacity of KCs by downregulating the 
expression of MHC molecules and costimulators, but without strongly affecting the scaven-
ger function of KCs. 

KCs not only can interact with T cells but can also interact with many cellular components 
in the liver. For instance, KCs can initiate the recruitment of other monocytes to the liver 
in case of injuries, which is important for liver regeneration, and they also interact with 
hepatic stellate cells (HSCs) to play a role in liver diseases and repair [43, 44]. TLR4 signal on 
KCs indirectly silences patrolling NK cells by MYD88-dependent IL-10 secretion, whereas 
TLR2 or TLR3 induces IL-18 and IL-1β, leading to NK-cell activation in liver inflammation 
[45]. Traditionally, M1 macrophage phenotype is marked by the release of pro-inflamma-
tory cytokines like TNF-κ, IL-1, and IL-12. Alternative activation of M2 phenotype is more 
heterogeneous, as different stimuli are main to release anti-inflammation cytokines (such 
as IL-10). Typically, the increased expression of arginase 1, the secretion of immune-mod-
ulatory cytokines (such as IL-10 and TGF-κ), and the involvement in tissue repair phase 
are considered as indicators of M2 macrophage differentiation. Different origin of the cells 
together with the functional plasticity of macrophages can explain the phenotypic and func-
tional heterogeneity of KCs observed upon different triggers of liver pathology [46, 47]. On 
the basis of these concepts, in the next sections, we summarize the role of KCs to various 
diseases involving the liver, in particular infectious disease, fatty liver disease, liver fibrosis 
and cirrhosis, ischemia and reperfusion (I/R) injury, liver cancer as well as liver transplanta-
tion immunology (Figure 2).
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2. Kupffer cells in infectious disease

KCs and the sinusoidal endothelial cells are the first barriers for pathogens to enter the liver 
via the portal vein [48]. Their endocytic capacity, the expression of different PRRs, MHC, 
and costimulatory molecules, and the ability to produce a variety of physiologically active 
substances (mediators of the inflammatory process) when they were stimulated make them 
as the potent immune cells that aim to either pathogen clearance or persistence. The liver is 
constantly exposed to non–self-protein which is derived from nutrients or microbiota, and 
bacterial endotoxins would trigger immune response to induce inflammation. These patho-
gens may activate KCs that lead to produce anti-inflammation cytokines and chemokines 
for the inhibition of pathogen replication, or recruit and activate other immune cells to liver 
to participate in the inflammation reaction. So the inflammation process is a multifactor and 
multicell interaction to participate in. In this process, KCs can recruit other immune cells 
such as  monocytes into the liver, which are then polarized into regulatory IL-10+IL-12−DCs by 
hepatocyte growth factor [49], macrophage colony-stimulating factor (M-CSF) [50], through 
inducing activation of the signal of STAT3 and SMAD, then blocking NF-κB [51], and then 
producing anti-inflammation cytokines. At the same time, stimulation of the body-wide 
DCs response by the administration of Fms-related tyrosine kinase 3 ligand (Flt3L), granu-
locyte colony-stimulating factor (G-CSF), or granulocyte-macrophage colony-stimulating 
factor (GM-CSF) reverses endotoxin-related immunoparalysis that probably over produces 
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unprimed myeloid cells, which in turn are capable of developing into TNF-IL-12-DCs after 
stimulation with LPS and other pathogens [52]. This approach may effect on patients with 
acute-on-chronic liver failure to overcome immunoparalysis [53]. 

NK cells are important during liver inflammation, TLR2 or TLR3 signal on KCs are activated 
to induce cytokines IL-18 and IL-1β production, then lead to NK cells activation to immune 
responses [54]. The chemokine CXCL16 secretion from KCs could guide the CXCR6+  NKT-cell 
trafficking in the liver to regulate immune responses during microbial infection, and KCs 
might interact with patrolling NKT cells via glycolipid receptors such as CD1d to produce 
pro-inflammation cytokines IL-4, IFN-γ, and then provide cytotoxic activity [55–57]. When 
KCs were activated, they become immunogenic to induce CD8 T cells activation, and the 
generation of efficient CLT response [58, 59]. Thus, during liver infection, KCs support the 
development of antimicrobial T cell responses. Besides CD8 T cells responses, recent studies 
describe that naive CD4 T cells also could be activated in the murine liver disease [60]. 

The interaction of KCs with membrane-bound as well as soluble mediators expressed by 
infiltrating immune cells probably leads to further regulation of KCs function. Several stud-
ies have reported the involvement of adhesion molecule vascular endothelial growth factor-1 
(VEGF-1), which is expressed by KCs, in liver inflammation. In common with endothelial 
cells which express both VCAM-1 and VEGF-Rs, KCs also could express several antigens 
that functionally regulate the bioactivities of KCs, including cytokine activation and produc-
tion, cytoskeleton rearrangement, survival, and chemotaxis in liver inflammation [61–68]. 
The infiltration of neutrophils is commonly seen in all types of liver disease, especially in 
liver inflammation [69]. Neutrophils also could activate KCs and endothelial cells, leading to 
upregulation of cellular adhesion molecules such as ICAM-1, VCAM-1, or VAP-1 to induce 
neutrophils infiltration and endocytose the microbe [70]. Furthermore, KCs might play a dual 
effect in liver inflammation, and pathogens may exploit the tolerogenic capacities of KCs to 
evade immunity and may have evolved to inhibit the immunogenic functions of KCs. Then, 
we provide examples of the various roles of KCs in bacterial, viral, and parasitic infection.

2.1. Liver infection by bacteria

Kupffer cells act as sentinels capturing antigens and pathogens and are key contributors 
of host defense against enteroinvasive bacteria [5]. L. monocytogenes (Lm) is a very well-
characterized facultative intracellular model microorganism [71]. Lm, which could be cap-
tured by KCs, triggers a massive recruitment of monocytes leading to the formation of liver 
Lm-containing microabscesses 2–3 days post inoculation [72]. These microabscesses contain 
M1 macrophages, TNF/iNOS-producing dendritic cells (Tip-DCs), and neutrophils to play a 
critical role in the rapid control of the infection [73, 74]. Infected KCs secrete inflammation 
mediators such as IL-1β and IL-4 to inhibit proliferation of the microorganism [75]. At the 
same time, infected KCs could secret chemokines such as MIP-1α (CCL3), MIP-1β (CCL4), 
MCP-1 (CCL2), and MIP-2 (CXCL2/-3), leading to “pro-inflammatory” M1 macrophages that 
express the chemokine receptor CCR2 recruitment to the liver, which egress from the bone 
marrow, then control the infection [76, 77]. But some studies indicate that KCs undergo a 
rapid necroptotic death upon the first hours of their infection by Lm. KCs necroptosis triggers 
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hepatocytes to release the alarmin interleukin-33 (IL-33), which triggers basophil IL-4 pro-
duction [78], then in turn causes recruited monocyte-derived macrophages to proliferate and 
shift from an M1 to M2 phenotype. This allows ultimately the replacement of dead KCs by 
M2 macrophages after Lm infection. During infection with Lm, tissue-resident KCs are quan-
titatively replaced by monocytes, which develop into tissue-resident macrophages. The lethal 
irradiation also led to the replacement of embryo-derived KCs by bone-marrow-derived 
macrophages, which acquired a highly similar cell identity as indicated by the adoption of 
a KCs characteristic global enhancer landscape. Initially, these cells contribute to antibacte-
rial immunity in a typical IFN-γ-driven inflammatory response. In the second phase, KCs 
necroptosis also initiates a cascade of IL-4-driven events inducing proliferative expansion 
and phenotypic changes of monocyte-derived macrophages that promote restoration of tis-
sue integrity after bacterial clearance. Similar results were obtained with the enteroinvasive 
bacterium of Salmonella enterica [79]. This is a new field of investigations for infection control 
and tissue return to homeostasis. 

When liver infection with Francisella tularensis occurs, it is able to infect and replicate within 
Kupffer cells which release pro-inflammatory cytokines TNFα, IL-1β, and IL-6, leading to 
sepsis [80]. But hepatocytes as well as dendritic cells may support the intracellular replication 
of F. tularensis without undergoing proptosis or apoptosis, because the hepatocytes could 
release chemokines FKN to reverse this process [81, 82]. So, KCs inactivation or depletion 
results in impaired bacterial clearance. Although KCs play a critical role in infection, various 
studies indicate that the actual elimination of the bacteria taken up by the liver depends on a 
complex interaction of KC and other inflammation cells.

2.2. Liver infection by viruses

Both hepatitis B virus (HBV) and hepatitis C virus (HCV) are blood-borne viruses, when 
infected by them can result in chronic liver disease with an increased risk for liver fibro-
sis/cirrhosis, hepatic failure, and liver cancer [83, 84]. Studies suggested that hepatic macro-
phages played an important role in viral hepatitis. KCs have a beneficial antiviral effect on 
the early phase after infection. During systemic viral infection, liver resident KCs are essen-
tial for the efficient capture of the virus and preventing viral replication. The next involves 
fast induction of an antiviral status in KCs by producing IFN-γ and prevents viral spread to 
neighboring hepatocytes [85, 86]. Activated KCs express high levels of immunogenic MHC 
II and can thereby activate virus-specific CD4+ T cells in liver; CD4+ T cells also can produce 
IFN-γ in response to antigen exposure. At the same time, under an antiviral status, this might 
enhance the phagocytic capacity of KCs, which might additionally contribute to control 
virus  replication [87, 88]. Some studies make use of a short-term LCMV-Cl13 infection in 
mice to  examine phenotypic and functional changes in inflammatory monocytes and F4/80-
high-Kupffer cells instead of virus infection animal models; these cells are the first innate 
immune cells to encounter a viral pathogen in liver. They observed F4/80-high-Kupffer cells, 
which maintain their endocytic activity and increase the expression of several pro- and anti-
inflammatory cytokines and chemokines after LCMV infection. KCs from LCMV-infected 
mice clearly show the induction of pro- and anti-inflammatory cytokines and chemokines, 

The Biological Function of Kupffer Cells in Liver Disease
http://dx.doi.org/10.5772/67673

59



including TNF, IL-6, IL-10, MCP, CXCL-10, and others. The active uptake of LCMV by KCs 
limits viral spread and immunopathology [89, 90].

In human body, when they are infected by HBV particles and HBs, the virus induces IL-1β, 
IL-6, IL-18, CXCL8, and TNF production by human CD68+ KCs via NF-кB activation leading 
to NK cell activity and then NK cells produce IFN-γ, which plays an important role in anti-
viral immunity. 

KCs have two functional AIM2 and NLRP3 inflammasomes, and that AIM2 production of 
IL-1β and IL-18 is essential for IL-8 transcription as well as activating liver and peripheral 
blood NK cells, respectively [91, 92]. Some studies demonstrated that rat ED1+-adherent 
KCs exposed to HBV virus hardly expressed IL-1β, IL-6, or TNF, but produced the immuno-
regulatory cytokine TGF-β, because hepatitis B surface Ag blocks IRF7 binding to the AIM2 
promoter. Targeting AIM2 prevents the recognition of dsDNA expressed by the HBV, and 
that the limited innate response observed upon HBV infection may be due to viral-mediated 
immune evasion [93, 94]. Another link between hepatic inflammation and disease in patients 
with chronic HCV was attributed to IL-1β secretion following the activation of the NLRP3 
inflammasome in liver macrophages (CD68+/CD14+) [95]. 

Chronic infection associated with hepatitis B virus (HBV) is a major cause of liver fibrosis and 
cirrhosis. The activation of NADPH oxidase during the phagocytosis of HBV particles, and 
signal transducers and activators of transcription-3 (STAT-3) binding to elements in the TGF-β 
promoter may also be involved to increase TGF-β production. So KCs could produce the pro-
fibrogenic/anti-inflammatory cytokine TGF-β rather than the pro-inflammatory cytokines 
IL-6, IL-1, and TNF-α. This may partly explain why overt liver fibrosis is still present when 
chronic hepatitis B virus infection occurs with minimal (or no) necroinflammation [93, 96, 97]. 
KCs in the HBs-Tg mice expressed higher level of CD205 and produced greater amounts of 
interleukin (IL)-12 than did those in the WT mice. Depletion of KCs, neutralization of IL-12, 
or specific silencing of CD205 on KCs significantly inhibited CpG-oligodeoxynucleotides 
 (CpG-ODN)-induced liver injury and NKT cells activation in the HBs-Tg mice. These data 
CD205-expressing KCs respond to CpG-ODNs and subsequently release IL-12 to promote 
NKT cell activation. Activated NKT cells induce liver damage through the Fas-signaling 
 pathway in HBs-Tg mice [98]. 

HCV infection also could make KCs and liver-infiltrating lymphocytes the major sources of 
TGF-protein, leading to liver fibrosis [99]. The cellular protein, glucose-regulated protein 94 
(GRP94), which is directly mediated by NF-κB activation to interact with HCV E2, plays an 
important role in TGF-protein induction, suggesting that GRP94 is a potential target for the 
development of drugs that prevent hepatic fibrosis caused by HCV infection. Moreover, TGF 
plays a pivotal role in the generation of Treg cells from precursor cells, such that a GRP94-
inhibiting drug would also likely boost immunity against HCV infection by blocking the 
induction of Treg cells, which direct the immune tolerance against HCV [100, 101]. 

KCs with heme are metabolized and detoxified by heme oxygenase-1 (HMOX1) to carbon 
monoxide (CO), biliverdin, and free iron (which induces ferritin). The HMOX1 and metab-
olites of heme besides possessing anti-inflammatory and antioxidant properties have been 
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noted to have antiviral effects in hepatitis C-infected cell lines. Additionally, these substances 
have been shown to enhance the response to IFN-α by restoring interferon-stimulated genes 
(ISGs) [102]. 

Only few studies on HEV-infected animals and humans have been published. But through 
immunohistochemistry, HEV antigens were detected mainly in KCs and liver sinusoidal 
endothelial cells, partially associated with hepatic lesions and infiltrates of CD3-positive cells. 
Since KCs and liver sinusoidal endothelial cells have antigen-presenting functions, they may 
also play a role in the host defense mechanisms and immunopathogenesis [103, 104].

In contrast to HBV and HCV, infection of HAV is self-limiting and does not induce chronic 
infectious disease. HAV reaches hepatocytes via KCs that bind complexes of HAV- and 
 HAV-specific IgA antibodies via the Fcα receptor [105], and subsequently transfer the virus 
to hepatocytes. Different from HBV and HCV, HAV requires the disruption of host cell mem-
branes to release its progeny. These dying hepatocytes may provide DAMP, which can be 
recognized by KCs and other intrahepatic immune cells, leading to the activation of these 
cells that can overcome viral immune escape and liver-intrinsic tolerogenic mechanisms [106]. 

2.3. Liver infection by parasites

Infection by the Echinococcus larval stages (larval echinococcoses) can affect humans [107], 
which are thus accidental to be intermediate hosts. Intermediate host infection occurs after 
the ingestion of eggs (passed out with the definitive host feces), which hatch releasing 
 oncospheres that penetrate the intestinal wall, and then are carried by blood or lymph to 
organs. Lectins are central players in innate immune to pathogens. A screen among lectins 
known to be expressed in mammalian macrophages identified only the mouse Kupffer cells 
receptor (KCR; CLEC4F) as a lectin able to bind the Echinococcus granulosus LL [108]. KCs in 
particular are known to be tolerogenic, as opposed to conventional priming in the lymph 
nodes draining the organ [52]. Thus, the new data are consistent with the hypothesis that the 
LL carbohydrates are evolutionarily optimized for ensuring the clearance of shed LL particles 
by KCs. This hypothesis includes the possibility that KCR engagement favors the KCs release 
of anti-inflammatory mediators to participate in the infectious process to alleviate the liver 
injury [109–111]. 

Infection by the protozoan parasite Entamoeba histolytica causes hepatocyte damage in focal 
areas leading to amebic liver abscess (ALA). Selective depletion of KCs using liposome-
entrapped clodronate or the inhibition of monocytes infiltration using CCR22/2 mice revealed 
that KCs and inflammatory Ly-6Chi monocytes, through producing TNF-α, are the main 
effector cells responsible for liver destruction during ALA [112]. 

KCs also represent the port of liver entry for Plasmodium and Leishmania, which parasit-
ize KCs and then infect other liver cells [113]. Parasites enter into the skin after a mosquito 
bite, and the rapid migration of sporozoites allows them to escape clearance by local tissue 
 phagocytic cells and to enter lymphatics and blood vessels. Via the blood, sporozoites  rapidly 
reach the liver and, after gliding on HSPG in liver sinusoids, they use circumsporozoite 
 protein (CSP) and thrombospondin-related anonymous protein (TRAP) to bind to KCs. 
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KCs are the potent target of Leishmania donovani amastigotes; early studies identified this on 
the basis of KCs characteristic morphology and anatomical position within the sinusoids 
[114, 115]. In these processes, hepatocytes infection is through KCs [116], indicating that these 
parasites use KCs to overcome the sinusoidal barrier and, ultimately, to infect hepatocytes. 
TREM2 expression by KCs appears to be an important determinant in resistance to  liver-stage 
infection against Plasmodium parasites [117]. Once invading a hepatocyte, the parasites 
develop into merozoites, which will be released from the liver to infect erythrocytes [118]. 
Taken together, these data show that sporozoites not only use their migratory capacity to 
escape elimination by phagocytic and immune cells but also interact with and use KCs to 
increase their efficiency at infecting hepatocytes. 

3. Kupffer cells in fatty liver disease

KCs have been implicated in various liver diseases with different etiologies that are associ-
ated with metabolic complications, such as over-nutrition, and may lead to fatty liver disease. 
Nonalcoholic fatty liver diseases (NAFLDs) are a series of disorders that include nonalcoholic 
fatty liver (NAFL), steatosis with inflammation, and nonalcoholic steatohepatitis. NAFLD 
could cause insulin resistance and is known to increase morbidity and mortality, particularly 
due to an increased cardiovascular risk [119–121]. KCs, liver-resident macrophages, display 
a critical mediator in the development of NAFLD. PAMPs and DAMPs are well known to 
be able to activate various Toll-like receptors (TLR) such as TLR2, 4, and 9 present on KCs, 
by recruiting MyD88 and engaging MAP kinases and activating NF-κB signaling, and could 
be responsible for the inflammatory reaction at different disease stages. Obese and steatotic 
patients corroborate the observation highlighting an increased CD68 mRNA of KCs with 
obesity, and upregulation of many other genes such as chemoattractant protein-1 (MCP-1), 
which is also named chemokine ligand 2 (CCL2). So CCR2-deficient animals show decreased 
steatosis. Soluble CD163 would also correlate with nonalcoholic fatty liver disease activity 
and fibrosis. Deletion of ED2-positive KCs by GdCl3 or clodronate attenuates pro-inflamma-
tory and profibrogenic cytokines release, thereby protecting fatty livers from progression to 
NAFLD [122–125]. 

More recently, it was shown that over-expression of CD14, a coreceptor of TLR4, in KCs of 
mice with high-fat diet (HFD)-induced steatosis increased the hypersensitivity to low-dose 
LPS [126]. TLR4 in KCs mediates the progression of simple steatosis to NAFLD, by induc-
ing ROS-dependent activation of X-box–binding protein-1 [127]. When KCs are activated by 
LPS through TLR4, they display an M1 TNF-expressing pro-inflammatory phenotype and 
increase triglyceride accumulation, decrease fatty acid oxidation and insulin responsiveness 
of hepatocytes. KC-derived TNF production seems to be central in NAFLD development, 
when silencing liver TNF or using TNFR1/2-deficient mice attenuating liver steatosis com-
pared with wild-type mice [128, 129]. 

NOD-like receptors of KCs (NLRs) are intracellular PRRs that are part of the inflammasomes 
briefly mentioned above. Inflammasomes are multiprotein complexes that through NLRs 
sense intracellular danger signals and initiate an activation cascade of events that culminate 
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with autoactivation of caspase 1 and cleavage of promoting IL-1κ and IL-18 production. By 
controlling the release of these important inflammatory cytokines, inflammasomes play an 
important role in the inflammatory process underlying NAFLD [130]. 

Interestingly, it was recently shown that IL-10 released by activated KCs stimulated apoptotic 
death of pro-inflammatory cells [131]. This mechanism mediated resistance to  hepatocyte 
steatosis and subsequently death. Fatty liver disease mechanism caused by excessive alco-
hol consumption is similar as NAFLD. In the same way, the depletion of KCs in mice also 
attenuates alcohol-induced diseases. Then it demonstrated a central role of KCs in fatty liver 
diseases [132].

4. Kupffer cells in liver fibrosis

Fibrogenesis development has many pathological factors, such as inflammation derived from 
Kupffer cells, angiogenesis, and hepatic stellate cell (HSC) activation, and interacts with each 
other, leading to collagen deposition. Cirrhosis is the most advanced stage of fibrosis, with 
septa and nodule formation being the most notable features [133]. KCs or resident hepatic 
macrophages carry out an important role in modulating inflammation in liver fibrosis 
 development. KCs produce reactive oxygen species, a variety of pro-inflammatory cytokines, 
such as TNF-α, IL-1β, and macrophage inflammatory protein (MIP)-1, which could provoke 
HSC activation to produce pro-fibrotic cytokines TGF-β and platelet-derived growth factor 
(PDGF) and subsequently contribute to hepatic injury [134, 135]. 

The accumulation of circulating Ly6Chi monocytes within the liver is greatly dependent on 
CCR2/CCL2 and CCL1/CCR8 axis, in the pathogenesis process, KCs also express multiple 
chemokines and matrix metalloproteinases (MMP-9, -12, and -13) that recruit immune cells 
and promote extracellular matrix degradation, thus favoring the resolution of fibrosis [136]. 
Then, senescent hepatocytes and NF-κB-inducing kinase (NIK) activation in hepatocytes lead 
to the release of numerous chemokines. These chemokines can influence the migration or 
 activation state of macrophages that in turn induce hepatocyte apoptosis. Accordingly, the 
NIK in vivo triggers massive liver inflammation and hepatocyte apoptosis leading to liver 
fibrosis. The fact that on the basis of above experiments KCs depletion using clodronate 
reversed NIK-induced damage [137, 138]. 

Some studies indicate that activating CX3CR1 on KCs increases their IL-10 expression and 
reduces their TNF and TGF-β [139], IL-10 is a potent anti-inflammatory mediator that has 
been shown to inhibit the production of TNF-α and IL-1 and to suppress the activation of 
NF-κB . IL-10 reduces macrophage production of nitric oxide (NO) and reactive oxygen inter-
mediates, and also reduces the expression of adhesion molecules and chemokines [140, 141]. 
Thus, fractalkine (the ligand of CX3CR1) represents a negative feedback on the extension of 
liver inflammation through affecting KCs. 

An antifibrotic effect of liver macrophages was also demonstrated when macrophage infiltra-
tion was blocked during the induction of fibrogenesis in rats. Delta-like ligand 4 (Dll4) is a kind 
of antifibrotic factor. It was expressed in patients’ KCs and liver sinusoidal endothelial cells. 
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In vitro, rDll4 significantly decreased lipopolysaccharide-dependent chemokine expression 
in both KCs and HSCs. Then the inflammatory cell infiltration and their chemokine ligand 2 
(CCL2) expression were significantly reduced in rDll4-receiving bile duct ligation mice. Dll4 
expression was inversely associated with CCL2 abundance. Mechanistically, Dll4 regulated 
CCL2 expression via NF-κB. Taken together, Dll4 modulates liver inflammatory response by 
downregulating chemokine expression and then participates in the role of antifibrosis of liver 
[142, 143]. With regard to recovery from fibrosis, KCs and macrophages secrete proteinases 
that promote the degradation of scarring extracellular matrix proteins. 

5. Kupffer cells in liver ischemia-reperfusion injury

Liver ischemia reperfusion (I/R) injury refers to the paradoxic aggravation of ischemic liver 
resulting from the return of blood flow and oxygen delivery, which is encountered frequently 
in a variety of clinical situations, including liver transplantation, trauma, hepatic resection, or 
hypovolemic shock. If hepatic I/R injury progresses out of control, it can lead to liver failure, 
systemic inflammatory response syndrome, and multiple organ failure, and lastly leading to 
death [144, 145]. Oxidative stress is the major contributor for I/R-induced injury, so the thera-
peutic strategies to antioxidants have gained interest. In I/R injury, KC activation is presumed 
to occur first, resulting in generation of reactive oxygen species (ROS) and preinflammatory 
cytokines such as TNF-α, IL-1β, nitric oxide, and chemokines, which contribute to hepatocyte 
death, endothelial damage and recruitment, and activation of leukocytes [146]. 

KCs secrete CCL2 to promote CCR2-expressing neutrophil recruitment from the bone  marrow 
and subsequent infiltration into the liver during I/R [147], and secrete matrix metalloprotein-
ases (MMPs) to increase graft dysfunction [148]. In this process, platelets could be adherent 
to the KCs, which reflect the activation of KCs and lead to leukocyte accumulation affecting 
sinusoidal perfusion, causing liver failure [149].

Large amounts of endotoxin contact KCs through the portal circulation following IR after 
liver transplantation. The LPS first binds to CD14, triggering KCs activation, then integrates 
with TLR4, and further increases the expression of CD14, the activation signals are trans-
duced into cytoplasm, resulting in NF-κB nuclear translocation and cytokines such as TNF-α 
and IL-6 release, harming the liver graft. TLR4 knockout mice are protected from endothelial 
overactivation in the absence of KCs after IR injury [150]. At the same time, endoplasmic 
reticulum (ER) stress of KCs in evoking liver inflammation following reperfusion contributed 
to the conversion of natural Tregs to Th17 cells due to IL-6 release, resulting in liver injury 
[151]. Whereas the inhibition of high-mobility group box 1 production by KCs after I/R in 
rats could prevent liver injury [152], suppression of TNF-α–mediated apoptotic signaling by 
glutathione (GSH) pretreatment can attenuate hepatic I/R injury in young and aged rats [153]. 

In IR injury, activated KCs could produce pro-inflammation cytokine IL-18, blocking of IL-18 
by IL-18-binding protein may inhibit KCs activation, resulting in a reduction of KC-derived 
harmful stimuli, then ameliorates I/R injury [154]. KCs also could protect liver grafts against 
liver-transplant–induced I/R injury. The protection appears to be mediated by the release 
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of anti-inflammatory IL-10 and the production of antioxidant heme oxygenase by KCs [41, 
155]. The IL-10 secreted by KCs controls pro-inflammatory mediators released from LSEC in 
response to LPS challenge, KCs depletion has also been shown to impair hepatic IL-10 produc-
tion after partial hepatectomy. Pretreatment with IL-10 protects steatotic livers undergoing 
I/R, and that active KCs retain a hepatoprotective role in the steatotic environment [156, 157].

Heme oxygenase-1 (HO-1) is a rate-limiting enzyme of heme degradation, exerts antioxida-
tive, antiapoptotic, anti-inflammatory, and vasoactive effects through its byproducts or itself. 
HO-1 and its byproducts (CO, biliverdin, and iron ion) induction could protect the graft from 
IR injury after liver transplantation in several experimental studies [158]. Our study also has 
the same results. Our results of immunofluorescence also demonstrated that preconditioning 
with Nodosin perfusion induced HO-1 expression mainly in KCs at 24 h after transplantation 
[159] (Figure 3). HO-1 upregulation in KCs plays a protective role in modulating immune 
responses of I/R-injured tissues, or reducing apoptosis induced directly by TNF-α [160]. 
Preincubation of KCs with CO upregulated heat-shock protein 70 (HSP70) and inhibited 
ROS generation. CO-pretreated liver grafts showed less upregulation of TNF-α and induc-
ible nitric oxide synthase messenger RNA (mRNA), reduced expression of pro-apoptotic B 
cell lymphoma 2-associated X protein mRNA, cleaved caspase-3, and poly(adenosine diphos-
phate ribose) polymerase. So, pretreatment of donors with CO ameliorates LT-associated I/R 
injury with increased hepatic HSP70 expression, particularly in the KCs population [161].

6. Kupffer cells in liver transplantation immunology

Liver transplantation is an effective treatment for advanced liver diseases, but immune rejec-
tion is a major obstacle after transplantation. KCs not only can engulf and kill pathogenic 
microorganisms, rid of endotoxin, but also have effects of antigen presentation, secretion of 
cytokines, and immune regulation. They can express high levels of MHC and costimulatory 
molecules and are capable of activating naive T cells [17]. At the same time, they could be 

Figure 3. Immunofluorescence double staining for cellular localization of heme oxygenase 1 (HO-1) expression in the 
rat liver after nodosin perfusion. Liver sections are stained for HO-1 (green) and the Kupffer cell marker ED2 (red). 
Colocalization of these two colors can be recognized by the yellow color. (a) Control group; (b) Nodosin group; (x40) [165].
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activated by antigen to produce T1 cytokines IL-2, IL-1, IL-6, TNF-α, and IFN-γ. They interact 
with the recipient T cells that migrate into the graft and play an important role in immune 
response [162]. Furthermore, the replacement of KCs by recipient bone marrow-derived cells 
(BMDCs) was observed in the liver graft, and functional inhibition of KCs by GdCl3 abrogated 
prolonged survival. Analysis of mRNA expression levels in liver grafts showed a shift of the 
Th1/Th2 balance toward reducing rejection in the BMC groups. So replacement of KCs by 
recipient BMDCs may play an important role in this mechanism of inhibiting rejection [163]. 

After liver transplantation, the reduction of B7 expression in donor KCs could suppress the 
activation of recipient T lymphocytes and secretion of IL-2 via the CD28/B7 costimulatory 
pathway and may induce immune tolerance [164]. The cytokines TNF-α expression in KCs is 
a marker of activated KCs after transplantation and it may be a good target for reversing acute 
rejection post transplantation [165]. GdCl3 depletion of KCs also plays a protective role in liver 
transplantation through suppressing bile duct cell apoptosis, including decreasing expression 
of ALT, ALP, TBIL, and TNF-α, and suppressing Fas-FasL-Caspase signal transduction [166].

KCs not only play a role in immune response directly but also activate the immature DCs or 
recruit immature DCs to liver to mature DCs to take part in immune response, by producing 
pro-inflammation cytokines and chemokines .Then, mDCs could express costimulatory mol-
ecules highly and present antigen to T cells [167, 168].

Recently, it has found that KCs can induce T lymphocyte apoptosis and play an important role 
in the regulation of liver transplantation tolerance. They also could produce high levels of Th2 
cytokines IL-10 and TGF-β and low levels of IL-12 to protect the graft [169]. Although KCs can 
promote immature DCs to mature DCs as immunogenic APCs, they are frequently accompa-
nied by an upregulation of PD-L1 [170], release of IL-10 and TGF-β [171], prostaglandin E2 
(PGE2) [172], IDO [173, 174] and/or arginase [175], which inhibit DC-mediated T cell activa-
tion within the sinusoids, and the presentation of high-affinity peptide by KCs results in the 
deletion of CD8+ T cell tolerance. Furthermore, they promote the suppressive capacity of Tregs 
(CD4+CD25+FoxP3+ T cells) toward hepatic antigens to induce tolerance [176]. KCs could also 
recruit TH17 cells and also γδ T cells are facilitated by CCR6 and possibly also CCR4 via CCL17, 
CCL22, and CCL20. A broad variety of chemokine receptors have been linked to Treg cell migra-
tion (e.g., CCR1, CCR4, CCR5, and CCR6) showing a functional tolerance [28]. KCs mediate 
CD8+ T cells apoptosis by expressing Fas ligand (FasL), which can ligate Fas on CD8+ T cells 
[177]. V-set and Ig domain-containing 4 (VSIG4, CRIg, or Z39Ig), a newly identified B7-related 
cosignaling molecule, exclusive expression on liver KCs is a complement receptor for C3b and 
iC3b and a coinhibitory ligand that negatively regulates T-cell immunity, VSIG4+ KCs play a 
critical role in the induction and maintenance of liver T- and NKT-cell tolerance [178]. So, KCs 
have a dual effect after liver transplantation immunology

7. Kupffer cells in liver cancer and metastases

Persistent hepatic inflammation resulting from hepatitis B or C virus infections (HBV or 
HCV, respectively), NAFLD, or alcohol abuse is a hallmark feature of chronic liver  diseases 
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nied by an upregulation of PD-L1 [170], release of IL-10 and TGF-β [171], prostaglandin E2 
(PGE2) [172], IDO [173, 174] and/or arginase [175], which inhibit DC-mediated T cell activa-
tion within the sinusoids, and the presentation of high-affinity peptide by KCs results in the 
deletion of CD8+ T cell tolerance. Furthermore, they promote the suppressive capacity of Tregs 
(CD4+CD25+FoxP3+ T cells) toward hepatic antigens to induce tolerance [176]. KCs could also 
recruit TH17 cells and also γδ T cells are facilitated by CCR6 and possibly also CCR4 via CCL17, 
CCL22, and CCL20. A broad variety of chemokine receptors have been linked to Treg cell migra-
tion (e.g., CCR1, CCR4, CCR5, and CCR6) showing a functional tolerance [28]. KCs mediate 
CD8+ T cells apoptosis by expressing Fas ligand (FasL), which can ligate Fas on CD8+ T cells 
[177]. V-set and Ig domain-containing 4 (VSIG4, CRIg, or Z39Ig), a newly identified B7-related 
cosignaling molecule, exclusive expression on liver KCs is a complement receptor for C3b and 
iC3b and a coinhibitory ligand that negatively regulates T-cell immunity, VSIG4+ KCs play a 
critical role in the induction and maintenance of liver T- and NKT-cell tolerance [178]. So, KCs 
have a dual effect after liver transplantation immunology

7. Kupffer cells in liver cancer and metastases

Persistent hepatic inflammation resulting from hepatitis B or C virus infections (HBV or 
HCV, respectively), NAFLD, or alcohol abuse is a hallmark feature of chronic liver  diseases 
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and appears to be an essential prerequisite of hepatocarcinogenesis. The results of this 
activation involve the production of multiple inflammatory cytokines, ROS, growth con-
trol mediators, various chemokines, which orchestrate the interaction between paren-
chymal and nonparenchymal liver cells, especially KCs to be activated in the process of 
hepatic carcinogenesis. They are also involved in the enhancement of clonal expansion of 
preneoplastic cells, then leading to neoplasia [179]. In diethylnitrosamine-induced HCC 
in mice, pro-inflammatory activation of KCs during the early stages of chemical-induced 
carcinogenesis is important in tumor development. Then, the antitumor effects of KCs are 
widely studied, such as to release TNF-α and iNO to recruit cytotoxic T cells and NK cells, 
to induce apoptosis of cancer cells and phagocytose cancer cells [180]. And some studies 
demonstrated that the expression of TREM-1 by mouse KCs plays a crucial role in their 
activation upon the recognition of necrotic hepatocytes and tumor cells [181]. Activated 
KCs suppress tumor cells through the ADCC pathway via FcγRIII (CD16) and directly 
or indirectly by cytokines. The existence of CD16a in KCs and that the activation of KCs, 
which mainly resulted in CD16a expression, then via NK cells, mediated ADCC reactions 
to induce NK cell cytotoxicity to tumor cells. 

The activated KCs kill target cells directly by swallowing and releasing lysosomal enzyme, 
NO, and peroxidase; they also cooperate to resist tumor cells by secreting cytokines including 
TNF-α, IL-1, IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF) [182, 183]. 
IL-6 is highly produced by KCs, it has been related with tumor progression and angiogen-
esis in several tumors, and it is overproduced in HCC. So decreasing the IL-6 production by 
KCs inhibits hepatocellular carcinoma growths [184]. KCs derived from male but not female 
SART1+/− mice produced increased levels of the hypoxia inducible factor (HIF-1)-dependent 
chemokine (RANTES) and cytokine promoting oxidative damage and inflammation, driving 
progression to hepatocellular carcinoma. Reventing inappropriate HIF-1 activation in male 
mice, as a novel therapeutic target for hepatocellular carcinoma [185, 186].

KCs play an essential function in the host tumoral surveillance system. Their strategic posi-
tion in liver allows them to discriminate and remove neoplastic cells that develop in liver. 
Besides primary liver cancer, liver metastases are frequently observed, especially in gastro-
intestinal malignancies. The metastatic cells migrate via the bloodstream into the portal cir-
culation, and they are entrapped in the liver sinusoids [187]. KCs play an important role in 
tumor growth, angiogenesis, and metastasis through the production of a number of growth 
factors (PDGF-β, vascular endothelial growth factor (VEGF), TGF-β, and EGFR ligands), 
cytokines (IL-6, TNFα, and IL-10), chemokines (CCL17, CCL22, CCL24, CXCL12, and IL-8), 
as well as other soluble factors (MMPs, osteopontin, and cyclooxyganse-2). In the liver, CEA 
binds with heterogeneous nuclear RNA-binding protein M (hnRNP M) receptor on KCs 
and causes activation and production of pro- and anti-inflammatory cytokines including 
IL-1, IL-10, IL-6, and TNF-α. These cytokines affect the upregulation of adhesion molecules 
on the hepatic sinusoidal endothelium and protect the tumor cells against cytotoxicity by 
nitric oxide (NO) and other reactive oxygen radicals. This activation is the key to the role of 
CEA in liver metastasis. A large number of clinical studies have shown correlations between 
serum CEA levels and advanced colorectal cancer, in particular, in the presence of liver 
metastasis [188]. 
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KCs were found to have promoted tumor invasion and exacerbated the metastasis and they 
are responsible for the accumulation of liposomes. In the metastatic hepatic cancer, KCs tak-
ing up liposomes were significantly increased, and PEGylated can reverse this result through 
a reduction in tumor-supportive KCs [189]. Primary pancreatic tumor cells release exosomes 
that contain migration inhibitory factor (MIF) into the blood circulation. These PDAC-derived 
exosomes are selectively taken up by liver KCs, leading to the MIF-dependent production 
of fibrotic cytokines by KCs. These fibrotic cytokines, particularly TGF-β, activate liver 
HSCs to produce fibronectin. Deposition of fibronectin in the liver leads to the formation of 
a fibrotic microenvironment that promotes the recruitment of bone marrow-derived cells. 
These sequential events establish a premetastatic niche, which permits the survival and pro-
liferation of disseminated PDAC cells and the formation of metastases in the liver [190]. Some 
studies demonstrated that KCs could help metastatic cancer cells extravasate from vessel via 
CXCL12/CXCR4 pathway. 

KCs in liver can interact with myeloid-derived suppressor cells (MDSCs) and cause their upreg-
ulation of PD-L1, a negative T cell costimulatory molecule, and ultimately lead to tumor immu-
nosuppression in accordance with further tumor progression and metastasis. They can suppress 
CD8+ T cells function via B7-H1/programmed death-1 interactions, which diminishes antitumor 
effect of CD8+ T cells. The metastatic tumor cells entering the liver from portal vein triggered 
KCs and mediated also upregulation of vascular endothelial cell adhesion receptors, such as 
E-selectin to help metastatic tumor cells arrest and extravasate [191–193]. KCs themselves are 
controversial, in metastatic colon tumors, the cytokines produced by KCs (IL-12 and IFN-α) are 
indeed important for the activation of NK cells and NKT cells and for preventing tumor liver 
metastases, depletion of KCs by gadolinium chloride or clodronate liposomes increased the 
number of liver metastasis in some reports [194]. Other studies have demonstrated that KCs 
induce Fas expression in colon cancer cells and malignant glioma cells leading to Fas-mediated 
apoptosis and death in the presence of tumor-infiltrating lymphocytes or TNF-α [195]. 

8. Conclusion

Kupffer cells have various functions in liver injury and repair. KCs, as liver-resident macro-
phages, localize within the lumen of the liver sinusoids and are adherent to the endothelial 
cells that compose the blood vessel walls. They are the first immune cells in the liver that come 
in contact with the gut bacteria, gut bacterial endotoxins, and microbial debris derived from 
the gastrointestinal tract that have been transported to the liver via the portal vein. They also 
interact with other hepatic cells to play an essential role in the host defense. They are responsi-
ble for the development of liver diseases including infectious disease, fatty liver disease, liver 
fibrosis and cirrhosis, ischemia and reperfusion injury, liver transplantation immunology as 
well as liver cancer. But KCs express various phenotypes to have various functions. Because 
of the highly overlapping characteristics of these cells, their functions are controversial. The 
complex roles of KCs in both protective and harmful responses make the liver diseases treat-
ment interesting but difficult. So, further efforts should therefore focus on regulatory mecha-
nisms in specific subpopulations of KCs differentiation and function. 
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Abstract

Monocytes/macrophages constitute the first line of defence for external intrusion or 
infection. Circulatory monocytes represent about 10% of leukocytes in human blood and 
resident macrophages are distributed in a variety of tissues and organs to maintain body 
homeostasis. But relatively little is known about the consequences of chronic viral infec-
tions on monocytes. Hepatitis B virus (HBV) and Hepatitis C virus (HCV) infections are 
the most important causes of chronic liver diseases, which may develop to serious and 
fatal liver pathology, including liver cirrhosis and hepatocellular carcinoma. Whether 
HBV and HCV infections are cleared or persist is determined by host immune responses. 
Viral replication takes place inside hepatocytes as soon as infection begins. The secre-
tion of infectious virions or virus proteins can persist for decades at high rates. Chronic 
infections with HBV and HCV are the result of ineffective anti-viral immune response 
towards the virus. Interacting with virions or virus proteins, monocytes/macrophages 
play an important function in the disease process. The role of monocytes/macrophages in 
HBV and HCV infections or co-infections is discussed in this chapter.

Keywords: monocytes, macrophages, hepatitis B virus, hepatitis C virus

1. Introduction

The significance of the innate immune response as a defence against microbial infections and 
its link to the adaptive immune responses have become increasingly recognized during the 
past few years. The activation of the innate immune response generally leads to the produc-
tion of type I IFNs. Monocytes/macrophages constitute the first line of defence for external 
intrusion or infection. Circulatory monocytes represent about 10% of leukocytes in human 
blood and resident macrophages are distributed in a variety of tissues and organs to maintain 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



body homeostasis. But relatively little is known about the consequences of chronic viral infec-
tions on monocytes.

Hepatitis B virus (HBV) infection is a major health problem that affects around 350 million 
people worldwide, despite the availability of a prophylactic vaccine [1]. The number of the 
chronic HBV infection has already beyond 240 million because a great fraction of patients is 
unable to clear the virus spontaneously, although there remain a lot of patients clearing the 
HBV virus at the early stage [2]. Up to date, chronically infected patients are at high risk of 
developing HBV-related diseases such as liver cirrhosis and hepatocellular carcinoma, which 
account for 600,000 deaths annually [3]. The interaction between the HBV and an affective 
inadequate immune response could lead a chronicity of HBV infection [4–6]. Viral replication 
takes place inside hepatocytes as soon as infection begins. The secretion of infectious virions 
or virus proteins can persist for decades at high rates. HBV DNA, HBeAg and HBsAg can 
be easily detected in serum consequently. The levels of these clinical marker means HBV 
DNA,HBsAg for clinical diagnosis levels could fluctuate for a long time and keep sistency, 
are a reflection of virus duplicate activity and used to define the patients disease stage [5, 6].

Hepatitis C virus infection is considered as the most serious cause of chronic liver disease and 
hepatocellular carcinoma worldwide in the past 50 years [7, 8]. The mechanisms by which 
host immune system lose the supervision and clear the virus are poorly understood. When 
the HCV invades the body, under the stimulation of the viral proteins, the immune system 
is accurately activated and regulates the balance between inflammatory injury and immune 
tolerance. The standard treatment with pegylated interferon and ribavirin has limited effec-
tiveness for the most prevalent viral genotypes (1a/1b) in the U.S in the past years, but the 
direct-acting anti-viral (DAA) treatment could enhance the effectiveness greatly [9]. While the 
unaffordable cost and the drug resistance also restrict its widespread use. Unlike HBV infec-
tion, no vaccine is currently available to prevent the HCV infection, which is a serious prob-
lem we must confront. To understand the HCV-host interactions that lead to viral persistence 
will help vaccine development and new drug design. The exact mechanism by which HBV 
escapes immunity is still not known. Interacting with virions or virus proteins, monocytes/
macrophages play an important function in the disease process. The role of monocytes/mac-
rophages in HBV and HCV infections is discussed in this chapter.

2. Monocytes/macrophages in HBV infection

Monocytes originated in the bone marrow mainly consist of a part of the innate immune sys-
tem. Being the first immune barrier, monocytes play multiple roles in the immune system 
[10]. Such roles include: (1) act as a pool of precursor cell, which replenish to resident mac-
rophages and dendritic cells as soon as needed, and (2) in response to signals of cytokines or 
chemokines, monocytes can be recruited and migrated to the sites of infected tissues quickly 
and divided/differentiated into local inflammatory macrophages and dendritic cells to trigger 
an immune response [11]. Whether HBV infection is cleared or persists is determined by host 
immune responses [7]. Viral replication takes place inside hepatocytes as soon as infection 
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begins. The secretion of infectious virions or virus proteins can persist for decades at high 
rates. Hepatitis B virus (HBV) DNA, HBeAg and HBsAg can be easily detected in serum con-
sequently. The levels of these clinical marker means HBV DNA, HBsAg for clinical diagnosis 
could fluctuate for a long time and keep sistency, are a reflection of virus duplicate activity and 
used to define the patients disease stage [9].

Circulating monocytes represent about 10% of mononuclear cells in human peripheral blood. 
Although involving in acute inflammation and wound, relatively little is known about the 
chronic viral infections on monocytes [12]. One research found that the function of monocytes 
were impaired in HIV and HCV infection, because of the responsiveness of TLRs [13–15], and 
Toll-like receptor responsiveness of monocytes in chronic HCV infections [14, 15]. Based on 
the surface of CD14 and CD16 expression, researches divided monocytes into two distinct sub-
populations. CD14+ CD16+ monocytes, which occupy 10–20% of total blood monocytes and 
produces much more pro-inflammatory cytokines by the stimulation of TLRs ligands, such as 
TNF and IL-1β. The majority of CD14(high)CD16– (80–90%) monocytes have been reported to 
produce relatively high IL-10 and weak TNF [16, 17]. Hepatitis B surface Ag (HBsAg), as a main 
HBV protein, has been reported to suppress the activity of monocytes through binding to the 
monocytes. The binding to monocytes was enhanced by a heat-labile serum protein that was 
inhibited by Ca2M/Mg2M, low pH and an HBsAg-specific monoclonal antibody [18]. Hepatitis 
B surface Ag (HBsAg) inhibits monocytes inflammatory response by means of COX-2 depen-
dence and may regulate natural killer (NK) cell function interfering IFN-γ production by inhib-
iting IL-18 and IL-12 production [19]. Hepatitis B surface Ag (HBsAg) is the most abundant 
HBV protein in the liver and in the peripheral blood of chronic hepatitis B (CHB) patients, which 
can accumulate up to 100 mg/mL in the peripheral blood, and typically outnumbers infectious 
virions by 1000:1 to 10,000:1 [20]. The high concentration of HBsAg in the blood stream of CHB 
patients could theoretically contribute to the hampered immune response. Several studies have 
shown that HBsAg can suppress the release of LPS-induced cytokines in human monocytes 
by interfering with the TLR signal pathway [21]. These results suggest that HBsAg could be 
consumed in the macrophages or Kupffer cells (KCs) (shown in Figure 1) and alter the innate 
immune response, which may contribute to the establishment of chronic infections.

Monocyte subset frequencies are altered depending on the clinical phase of the chronic 
HBV infection [23]. Moreover, HBeAg also plays a regulating action in the HBV  infection. 

Figure 1. KCs uptake of HBsAg (green) in vitro imaged by confocal microscopy [22].

The Role of Monocytes/Macrophages in HBV and HCV Infection
http://dx.doi.org/10.5772/intechopen.68353

87



Expression of TLR2 correlates with HBeAg concentration negatively in CHB patients. 
Stimulation with TLR2 agonists in vitro peripheral blood mononuclear cell (PBMC) from 
HBeAg-positive patients produced less TNF and IL-6 compared to HBeAg-negative patients 
[24, 25]. Furthermore, exposure of monocytes to HBsAg suppressed LPS-induced TNF and 
IL-1β production in vivo and in vitro [26, 27]. Hepatitis B surface Ag (HBsAg) was related 
to decreased cytokine production induced by the TLR2 ligand (Pam3csk4) in PBMCs from 
chronic hepatitis B patients in vivo [28]. The later research demonstrates that HBsAg selec-
tively inhibits Pam3csk4-stimulated IL-12 production. The mechanism study shows that 
HBsAg could inhibit JNK-MAPK pathway and provides a mechanism by which HBV evades 
immunity and maintains its persistence [21].

Kupffer cells (KCs) are the most important innate immune cells in the liver and constitute 
more than 80% of tissue resident macrophages in the body. Kupffer cells (KCs) account for 
about 15% of total liver cells, which are more than T cells and liver NK cells. Acting as scaven-
ger cells, KCs remove particulate material from the portal circulation, which has been studied 
for a long time [29]. Viral infections have been implicated with the KCs in the pathogenesis of 
inflammatory liver diseases recently [30]. The KCs play an important role in liver injury when 
the liver is infected by HBV [31].

The liver is continuously exposed to non-pathogenic antigens (from food) and to gut derived 
lipopolysaccharide (LPS). The LPS is a powerful stimulus for innate immunity through TLR 
ligation and similarly activates professional antigen-presenting cells (APCs). Kupffer cells 
modulate the host immune response by the elaboration of IL-10. However, the pro-inflamma-
tory cytokines (IL-12, IL-15 and IL-18) secreted by the Kupffer cells could stimulate NK cell 
function for secreting IFN-γ [32]. Kupffer cells (KCs) are intravascular macrophages that are 
continuously exposed to, and tolerant of, bacterial TLR ligands, which are delivered via the 
portal circulation.

In HBV infection, Kupffer cells participate in many immune responses, including immune 
cell activation, anti-viral immunity and tissue damage repair [33]. The immune cells cross 
talk occurs in the infected liver. Kupffer cells regulate T-cell responses by means of the co-
stimulatory molecules CD80 and CD86, which are expressed on the cell surface [34]. The 
ligands of the two molecules on the T cells are CD28 and CTLA-4, respectively. CD86 on 
APCs stimulates T cells by binding CD28, which occurs before CD80 up expression. CD80 
has a higher ability to initiate inhibitory signals through its interaction with CTLA-4 [35–37]. 
On the other hand, CD80 and CD86 regulate T helper cell differentiation and control adaptive 
immunity. CD80 mainly drives T-cell differentiation towards a Th1 profile and CD86 leads 
the differentiation towards a Th2 profile [38–42]. T-cell response in HBV infection mainly ini-
tiates Th2 immune response rather than Th1. The production of IL-10 was reported in many 
researches but the Th1 responses and cytokine production are weak when compared with 
resolver [43, 44].

Kupffer cells (KCs) and infiltrating monocytes/macrophages are main APCs to regulate 
adoptive immune response but must avoid hyper-activation of the immune system through 
expressing inhibitory molecules PD-L1 and PD-L2. The levels of PD-L1 and CD80/CD86 sig-
nals on APCs control the magnitude of T-cell activation [45–47]. One study has investigated 
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the expression of CD80 and CD86 on KCs in HBV infection. This study found that only few 
KCs express these molecules [48]. The different expressions of CD80, CD86 and PD-L1 in KCs 
in the portal areas of the liver were explored together with the correlation of their expressions 
with the fibrosis score and grade of inflammation during HBV infection. The HBV virus and 
the protein function on monocytes/macrophages are listed in Table 1.

3. Monocytes/macrophages in HCV infection

Hepatitis C virus (HCV) is also a cause of serious liver diseases as well as other extra hepatic 
pathologies especially in the developed countries. A classical combination of the drugs 
pegylated interferon and ribavirin used as standard treatment for decades. Recently, some 
other drugs have been approved that may enhance the effectiveness to a great extent. These 
drugs are designed to block the virus duplication by interfering with specific viral proteins. 
Rational therapies and effective vaccine can be designed if HCV replication is understood 
totally. Monocytes appeared to contain the core protein of HCV by flow cytometry in vitro 
infected experiment, suggesting that HCV was inside the monocytes [49]. Different types of 
monocytic cell lineages have been investigated, with CD14+, CD16++ and CD14++, CD16++ but 
not with CD14+, CD16– cells being found infected [50]. These studies suggest that different cell 
types allow replication of slightly different versions of HCV.

Monocytes are not only infected by HCV virions, but also influenced by virus proteins. 
Chronic activation of monocytes and macrophages is seen in HCV and correlates with liver 
damage [51, 30]. Monocytes had the highest gal-9 levels in chronically infected HCV patients 
suggests that they may be a source of T cell inhibitory gal-9 in HCV infection. Toll-like recep-
tors (TLR) have a critical role in innate immunity against pathogens. During chronic HCV 
infection, interleukin-12 (IL-12) produced by monocytes/macrophages is significantly sup-
pressed. Programmed death-1 (PD-1), an inhibitory receptor on immune cells, plays a piv-
otal role in suppressing T-cell responses during chronic viral infection. IL-12 production 
decreased on monocytes/macrophages in HCV infection correlates the up-regulation of PD-1 
on cell surface. IL-12 production resumed when PD-1/PD-L1 antibody or IFN/RBV treatment 
was carried out. The possible mechanism is that the STAT-1 phosphorylation is enhanced 
during the treatment [52]. Tim-3, acting as a negative regulator, inhibits monocytes’/macro-
phages’ function in HCV infection in some researches [53].

Virus/protein Cell receptor Cell signal Cytokines

HBsAg TLR2 MAPK/JNK IL-12

TLR4 PI3K TNF-a, IL-1b

HBeAg TLR2 C-Jun/JNK TNF-a, IL-6

HBVcore TLR2/4 PI3K/JNK TNF-a, IL-6,IL-12

HBV DNA TLR7/9 RGI IL-12, IL-18

Table 1. Monocytes’/macrophages’ function in HBV infection.
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Myeloid-derived suppressor cell (MDSC) is a kind of inhibitory cell that originated in the 
bone marrow and was first identified as natural suppressor cell in tumour-bearing mice in the 
mid-1960s [54]. Myeloid-derived suppressor cell (MDSC) originated in the bone marrow and 
later differentiated/divided into granulocytes, macrophages or mature dendritic cells [55, 56]. 
Myeloid-derived suppressor cell (MDSC) migrates or accumulates in the tumours, spleen, 
bone marrow and blood under different pathological conditions. Based on the different cell 
surface markers and cell origin, the MDSC can be divided into monocyte (Mo), granulocyte 
and endothelial-committed subsets. Myeloid-derived suppressor cell (MDSC) represents a 
cell type that suppresses the function of other immune cells and creates a suppressive envi-
ronment. Studies revealed that MDSC numbers correlate with T-cell frequency inversely in 
the peripheral blood [57]. T-cell responses can be suppressed by MDSCs through numerous 
mechanisms [58–60]. In patients with HCV infection, T-cell function is impaired according 
to the clinical observation. Hepatitis C virus (HCV) core protein and polyI:C induce TNF-α 
(pro-inflammatory cytokine), IL-10 (immunomodulatory cytokine) and IFN-γ (anti-viral cyto-
kine) secretions from monocytes. Then, monocytes are reprogrammed to acquire or lose the 
immunosuppressive (MDSC) phenotype through these cytokines. Hepatitis C virus–induced 
Mo-MDSC production was attributed to the PI3K pathway via induction of IL-10 and TNF-α 
secretion [61]. The HBV virus and the protein function on monocytes/macrophages are listed 
in Table 2.

4. Monocytes/macrophages in HBV/HCV co-infection

Despite their different replication strategies and life cycles, HBV and HCV have similar 
modes of transmission through bodily fluid, and both have developed highly successful 
ways to establish chronic hepatitis [62]. Liver injury and disease progression are thought to 
be driven by the interaction between viruses and host immune responses in both infections 
[63–66]. Given their similar modes of transmission, HBV/HCV co-infection occurs frequently 
in endemic areas although its prevalence is exactly unknown [67]. Between 2 and 10% of anti–
HCV-positive patients also test positive for HBsAg, while 5–20% of patients with chronic HBV 
infection test positive for anti-HCV antibodies [68]. It has been reported that HBV/HCV co-
infection leads to more severe liver disease and a higher prevalence of liver cancer than non-
infection [69], but an inverse relationship between the replication of each virus within some 
co-infected patients has been noted [70–74]. Hepatitis B virus-Hepatitis C virus  co-infection 

Virus/protein Cell receptor Cell signal Cytokines

HCVcore TLR2 MYD88 IL-6, IL-10

HCV RNA TLR7/8 CD81 IL-1b, IL-12

HCV dsRNA TLR3 ISG15/56 IFNα/β

NS3 TLR2 RGI IL-1b, IL-6, TNF-α

Table 2. Monocytes’/macrophages’ function in HCV infection.
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the peripheral blood [57]. T-cell responses can be suppressed by MDSCs through numerous 
mechanisms [58–60]. In patients with HCV infection, T-cell function is impaired according 
to the clinical observation. Hepatitis C virus (HCV) core protein and polyI:C induce TNF-α 
(pro-inflammatory cytokine), IL-10 (immunomodulatory cytokine) and IFN-γ (anti-viral cyto-
kine) secretions from monocytes. Then, monocytes are reprogrammed to acquire or lose the 
immunosuppressive (MDSC) phenotype through these cytokines. Hepatitis C virus–induced 
Mo-MDSC production was attributed to the PI3K pathway via induction of IL-10 and TNF-α 
secretion [61]. The HBV virus and the protein function on monocytes/macrophages are listed 
in Table 2.

4. Monocytes/macrophages in HBV/HCV co-infection

Despite their different replication strategies and life cycles, HBV and HCV have similar 
modes of transmission through bodily fluid, and both have developed highly successful 
ways to establish chronic hepatitis [62]. Liver injury and disease progression are thought to 
be driven by the interaction between viruses and host immune responses in both infections 
[63–66]. Given their similar modes of transmission, HBV/HCV co-infection occurs frequently 
in endemic areas although its prevalence is exactly unknown [67]. Between 2 and 10% of anti–
HCV-positive patients also test positive for HBsAg, while 5–20% of patients with chronic HBV 
infection test positive for anti-HCV antibodies [68]. It has been reported that HBV/HCV co-
infection leads to more severe liver disease and a higher prevalence of liver cancer than non-
infection [69], but an inverse relationship between the replication of each virus within some 
co-infected patients has been noted [70–74]. Hepatitis B virus-Hepatitis C virus  co-infection 

Virus/protein Cell receptor Cell signal Cytokines

HCVcore TLR2 MYD88 IL-6, IL-10

HCV RNA TLR7/8 CD81 IL-1b, IL-12

HCV dsRNA TLR3 ISG15/56 IFNα/β

NS3 TLR2 RGI IL-1b, IL-6, TNF-α

Table 2. Monocytes’/macrophages’ function in HCV infection.
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involves complex viral interaction; HBV and HCV can replicate in the same cells in vitro with 
no evidence of interference between them [75, 76]. Therefore, the viral interference observed 
in HBV/HCV co-infected patients in vivo is probably due to indirect mechanisms mediated by 
innate and/or adaptive host immune responses.

Hepatitis B virus-Hepatitis C virus co-infection is a blank field because of lack of robust cell 
and animal experimental model. Our research group attempts to do some basic experiments 
in HBV-HCV co-infection. Human primary peripheral blood monocytes were cultured for 2 
days in increasing concentrations of infectious HCV, infectious HBV or both viruses together. 
As expected, the HCV, HBV and the two viruses together suppressed the expression of 
HLA-DR and TRAIL on monocytes, and increased the expression of PD-L1 and the secretion 
of IL-10, similar to the effects of recombinant HCV. In addition, we also uncovered previously 
unknown immune suppressive effects in both HCV and HBV, and the two viruses together 
strongly suppressed the expression of genes encoding stat1 and stat2, thereby disabling IFN 
signalling. These findings help to explain the well-known propensity of both HCV and HBV 
to induce T-cell immune suppression and clonal exhaustion, but they do not explain the anti-
HCV effect of HBV infection in vivo. Other cell types, or cytokines, or both, may be playing a 
role in association with HBV mediated suppression of HCV.

To identify cytokines that were secreted in response to HBV, but not HCV, we performed 
experiments in which viruses were titrated either alone, or against a fixed concentration of the 
other virus, and observed that HBV induced IL-1β and IL-12 secretion, while HCV did not. 
Furthermore, the presence of HCV did not suppress the induction of either IL-1β or IL-12 by 
HBV. Since cytokine expression is regulated by a number of genes, we next measured the expres-
sion level of the associated genes. We observed novel emergent properties when the two viruses 
were combined. That is, Nfkb1 was not induced by HBV alone. It was induced by low concen-
trations of HCV, but then suppressed by higher concentrations. However, with HCV and HBV 
combined, the expression of this gene was sustained across a wide range of viral titers. Similarly, 
the Ifr1 gene was not affected by HBV alone but was modestly elevated by HCV, but drastically 
elevated with HCV and HBV combined. The secretion of TNF-α was strongly induced by HBV, 
but not by HCV, and modestly suppressed in the presence of both viruses together. Based on 
experiments in which human blood monocytes were exposed to intact HBV, intact HCV, or both 
viruses together, our results showed that both viruses exert strong immunosuppressive effects.

5. Perspectives

Our understanding of the role of monocytes/macrophages in HBV or HCV is far from com-
pletion. Nevertheless, the anti-viral roles of monocytes/macrophages will be appreciated 
by binding and/or uptake of virus leading to immune recognition and the production of 
pro-inflammatory or anti-inflammatory mediators resulting in (1) activation of neighbour-
ing cells, such as NK cells and CD8+ T cells, (2) blockage in viral replication in hepatocytes 
and (3) attraction, activation and interaction with other immune cells, including ILCs, pDCs 
and Tregs, which will further increase the anti-viral and inflammatory response. In the early 
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phases after infection, the immune activating roles of monocytes/macrophages are beneficial 
to help the body cause anti-virus response and clear virus and dead cell. But the situation 
will turn to the other side if the infection develops into chronic. The strong immune activity 
may also contribute to tissue damage and the development of fibrosis, cirrhosis and HCC. 
Furthermore, immune regulatory functions of monocytes/macrophages have been described, 
which may counteract the development of effective anti-viral immunity and support viral 
persistence and related disease pathogenesis.

Intrahepatic macrophages become an interesting and complex cellular target for treatment 
options and hot point in viral hepatitis with the growing appreciation of the roles of intrahe-
patic macrophages in both protective and harmful responses. With the development of flow 
and cell sorting technology, identifying phenotypical and/or functional characteristics discrim-
inating KC from infiltrating macrophages will become easy day after day. Despite the existence 
of a HBV, vaccine is used widely but the already HBV infected population also be at high risk of 
developing to liver fibrosis and liver cancer. The standard treatment with pegylated interferon 
and ribavirin has limited effectiveness for the most prevalent viral genotypes (1a/1b) in the 
U.S in the past years, but the DAA treatment could enhance the effectiveness greatly. Also, the 
unaffordable price and the drug resistance also restrict its widespread use. Unlike HBV infec-
tion, no vaccine is currently available to prevent HCV, which is a serious problem we must con-
front. To understand the HCV-host interactions that lead to viral persistence will help vaccine 
development and new drug design. The exact mechanism of monocytes/macrophages in HBV 
and HCV infection will provide us new insight into and confidence to overcome the virus.
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Abstract

Protective immune defences are dependent upon critical roles played by dendritic cells 
(DCs), rendering them important targets for both vaccine delivery and virus infec-
tion. Studies in these areas led to successful development of targeted vaccine delivery, 
including synthetic virus-like particle (SVLP) and nanoparticulate RNA vaccines. A 
major consideration is DC endocytosis, whereby the different endocytic routes influ-
encing the outcome. Rapid clathrin-mediated endocytosis likely favours degradative 
pathways. Slower processes such as macropinocytosis, caveolar endocytosis and retro-
grade transport to endoplasmic reticulum relate more to the processing rates leading 
to antigen presentation by DCs. These pathways are also influential in promoting the 
initiation of virus replication following infection. DC endocytosis of RNA viruses and 
RNA vaccines must lead to cytosolic translocation of the RNA for translation, relating 
to the process of antigen cross-presentation. One can learn from observations on both 
virus infections and cross-presentation for delivering RNA vaccines. Accordingly, 
recent advances in nanoparticulate delivery have been applied with self-amplifying 
replicon RNA (RepRNA), providing efficient delivery to DCs and promoting replicon-
encoded antigen translation. Through realising the important relationships between 
DC endocytic pathways and induction of immune responses, delivery of SVLP and 
RepRNA vaccines to DCs offers high value for the development of future synthetic 
vaccine platforms.

Keywords: dendritic cells, endocytosis, virus infection, vaccines, SVLPs, self-amplifying 
RNA
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1. Introduction

While protective immune defences are reliant upon robust antibody-mediated (B-lymphocyte) 
and concomitant T-lymphocyte response, their development is dependent on antigen deliv-
ery leading to processing and presentation by dendritic cells (DCs), a critical player for 
robust immune defence development, and therefore efficacious vaccination [1–9]. Induction 
of  antibody (humoral) and cell-mediated immune (CMI) defences requires virus or vaccine 
interaction with the conventional DC (cDC) subsets, the ‘professional antigen presenting 
cells’ [3, 6–12] (Figure 1). The manner by which these cDCs handle the antigen derived from 
an infection or vaccination defines the characteristics of adaptive immune defence develop-
ment (Figure 2). Considering that many pathogen infections induce both humoral and CMI 
defences, vaccines inducing both arms of immune defence increase the potential for inducing 
robust immune defences. Accordingly, live attenuated vaccines should more closely mimic 
pathogen infection and therefore induce immune defence characteristics more related to 
 convalescent immunity.

Understanding the cell biological elements providing DCs with their functionality has 
been  possible from studies on both effective convalescent immunity and that induced by 
efficacious vaccination. Whether the studies focussed on virus infection or efficacious vac-
cine delivery, particular routes of endocytosis were observed to dominate. Through this, the 
power of DCs as the ‘professional antigen-presenting cell’ was determined [1, 3, 4, 6–8]. Yet, 
most current vaccines are inactivated or subunit/split vaccines. Being non-replicative, only a 
limited amount of antigen can be provided, namely that within the vaccine dose, in contrast 
to the much greater antigen levels produced during infection and from a live vaccine. Such 
non-replicative vaccines induce more restricted immune defence characteristics, in terms 
of humoral versus CMI immunity and the robustness (longevity) of that immunity, than 
observed with convalescent immunity or that induced by a replicating vaccine.

Of course, pathogen infection can induce undesirable clinical symptoms influencing the 
 development of convalescent immune defence, which can be avoided by employing non-
pathogenic replicating vaccines. Unfortunately, safe and efficacious live vaccines are not 
available for the majority of pathogens. Nonetheless, lessons can be learnt from convalescent 
immunity [9, 13]. A major consideration is the capacity of replicating vaccines to mimic the 
pathogen infection such as producing several rounds of antigen production, increasing the 
effective antigen dose, involving different antigen-presentation pathways, promoting different 
arms of immune responses and thus increasing the efficacy of immune defence induction [9].

Resolution of this situation is showing promise from the more recent application of synthetic 
biology to create both synthetic virus-like particles (SVLPs) [14–16] and self-amplifying/rep-
licating RNA (replicon or RepRNA) vaccines [9, 13, 17–20], but also from advances in studies 
on virus infections. It has been observed that the majority of endocytosed material may well 
traverse rapid clathrin-mediated pathways, which is more likely favouring degradation of 
the internalised material [9, 21–25] (Figure 3, pathway (a)). Slower kinetics of endocytosis 
would favour the processing required for a particular vaccine to prove efficacious or a virus to 
 initiate its replication. Such outcomes are seen with macropinocytosis and caveolar endocytosis 
(Figure 1; Figure 3 pathway (b)), as well as endocytosis into sorting endosomes for retrograde 
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Figure 1. Generalised overview of the two main cDC subsets—cDC1 and cDC2—following endocytosis of virus or 
vaccine; processing pathways of endocytosed material leading into MHC Class I and MHC Class II presentation of 
the antigenic peptides to T-lymphocytes; delivery of antigen to B-lymphocytes; resultant initiation of antigen-specific 
immune defences and antibody production.
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transport though the Golgi complex into the endoplasmic reticulum (ER) (Figure 1; Figure 3 
pathway (c)) [9, 26–29].

Further insight into the versatility of DC endocytic process has come from studies on initiation of 
RNA virus replication [25]. These have identified certain points of convergence with cross-pre-
sentation of protein-based vaccines, and thus initiation of RNA vaccine translation of encoded 
antigens [9]. Importantly, both cross-presentation of antigen and initiation of  endocytosed 

Figure 2. DC subset interaction with different T-lymphocyte subsets. Following processing and presentation of the 
derived antigen peptides to antigen-specific Th- or Treg-lymphocytes, the patterns of cytokine communications are shown. 
These are important for defining the characteristics of the developing immune response. The endocytic processes involved 
are likely to be clathrin-independent endocytosis such as macropinocytosis, caveolar endocytosis or phagocytosis.
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RNA translation require DC endocytosis leading into cytosolic  translocation. Endocytosis for 
cross-presentation delivers exogenous antigen via cytosolic translocation into pathways of 
polyubiquitination; this directs processing by the immunoproteosome  (cross-presentation) for 
presentation via major histocompatibility complex (MHC) Class I (Figure 1, Figure 3 pathways 

Figure 3. A schematic representation of the main endocytic processes functional within DCs in terms of processing 
internalised material for (a) degradation, (b) MHC Class II presentation, (c) MHC Class I presentation and (d) cytosolic 
release for cross-presentation via the immunoproteasome or translation of RepRNA vaccines. The lower portion of the 
image highlights certain aspects of endosomal release from endocytic vesicles during the early stages after acidification 
by interaction with early endosomes.
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(c) and (d)) [9, 30–32]. Similarly, endocytosed vaccine RNA would be delivered by cytosolic 
translocation into the ribosomal translation sites within the cell for translation of the encoded 
vaccine antigens [9, 25].

Cationic entities, particularly in a vaccine formulation, have been characterized for their 
capacity to promote endocytic vesicle perturbation towards cytosolic translocation [9, 13]. Yet, 
there are other considerations. Initiation of a virus infectious process may involve the viral 
membrane (with enveloped viruses) or virus surface proteins; thus, cytosolic translocation 
can be facilitated by membrane fusion and ‘flipping’, or through formation of ion  channels 
and elaborating membrane pores for delivery of the RNA genome [25]. Application of this 
knowledge has recently been employed with synthetic biodegradable nanoparticulate vehi-
cles for enhancing delivery of self-amplifying/replicating RepRNA vaccines to DCs [9, 13, 
17–20, 33–35] (Figure 3 pathway (d)). Whilst success with this approach has been forthcoming 
with mRNA vaccine delivery to DCs [9, 36, 37], delivery of the larger replicon RepRNA mol-
ecules has required additional considerations. This may be due to the likely increased com-
paction of these larger RNA molecules by the delivery vehicle, but other events important 
to the virus genome from which RepRNA is derived must be considered, including the role 
of cellular micro-RNAs (miRNA) and divalent cations. Nonetheless, nanoparticulate delivery 
technology has been adapted to deliver RepRNA to DCs (see below), leading to promotion 
of the replicon-encoded antigen translation in vitro and in vivo [13, 17–20, 33, 34]. The work 
identified important relationships between the DC endocytic pathways and ultimate induc-
tion of immune responses by the nanoparticle-delivered RepRNA, relating to characteristics 
observed following virus infection.

2. Dendritic cells: sentinels of immune defence

Dendritic cell (DC) subsets are found in many sites of the body, which determines their 
roles in developing and regulating immune defences (Figure 4) [1–12]. Together with MΦ, 
tissue and mucosal DCs are in the front line for encounter with and response to a virus or 
vaccine. These ‘local’ DCs and MΦ initiate the inflammatory response recruiting additional 
DCs together with monocytes, differentiating into DCs and MΦ, to augment local cell activ-
ity (Figure 4). Both the receptor repertoire and the endocytic processes employed by DCs 
and MΦ are closely related. Nonetheless, major distinctions exist, notably the recruitment of 
 lysosomal proteases to the acidifying endocytic pathways is observed earlier and at higher 
levels in MΦ compared with DCs [38].

Dendritic cells are the central players for effective convalescent immunity, efficacious 
 vaccination and maintenance of tolerance (Figure 2; Figure 4) [1, 3, 4, 6–8]. They are capable 
of both MHC Class II presentation (Figure 1; Figure 2), MHC Class I presentation, cross-
presentation (Figure 1) [30, 32, 39–43] and antigen delivery to B lymphocytes (Figure 1) [44, 45], 
as well as regulating immune responsiveness and immune tolerance (Figure 2; Figure 4) [6, 
46–53]. Therein lie two important aspects of DC biology—their high capacity for endocytosis 
together with the diverse network of routes employed (Figure 3) and different subsets tend 
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to dominate particular processes [3–5, 9, 12, 21–23, 54–56]. Although particular endocytic 
routes may dominate under certain interactions between DCs and virus or vaccine, more than 
one endocytic route will often be involved [9, 22, 56]. Indeed, using SVLP vaccines [14, 15], 
multiple endocytic routes have been identified. While macropinocytosis played a major role, 
additional endocytic routes were operative, as observed with mature DCs no longer employing 
macropinocytic activity [14].

Figure 4. Dendritic cell subsets can be defined with respect to their sites of ‘residence’ in the body, wherein they act as 
sentinels for sampling the environment, to maintain tolerance and respond to ‘foreign’ material posing a ‘danger’ to the 
host. This is particularly notable at mucosal surfaces for controlling local tolerance through anti-inflammatory processes, 
while ensuring responsiveness against pathogenic entities and mucosal vaccines.
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3. Application of multiple endocytic pathways

Combining studies on both virus infection of and vaccine delivery to DCs have led to the creation 
of new vaccine formulations, such as SVLP vaccines [14, 15] and the self- amplifying RepRNA 
vaccines [9, 17–19, 33]. While clathrin-mediated endocytosis has often been  implicated with 
both virus infection and vaccine delivery [9, 22, 25, 55–57], the rapidity of the process and 
levels of enzymatic activity therein would favour a more degradative pathway, rather than one 
promoting antigen processing or RNA-release for translation. Certainly, rapid clathrin-medi-
ated endocytosis would create a detrimental environment to the survival of both RNA viruses 
and RNA vaccines (Figure 3, pathway (a)).

Accordingly, antigen must be processed to reach either the MHC Class I or MHC Class II 
assembly sites for appropriate antigen presentation (Figure 3, pathways (b), to (d)); RNA 
must be processed to reach the ribosomal translation machinery. Both exogenous antigen 
and RNA must avoid the degradative capacities of the late endosomes and, in particular, the 
lysosomes. Antigen being processed through the maturing endosomal system has to target 
the MHC Class II compartment (MIIC), for MHC Class II presentation, providing processing 
rather than degradation by lysosomes. With MHC Class I presentation, endocytosed exog-
enous antigen has to transfer from the endocytic pathway to the cytosol—cytosolic translo-
cation. This facilitates the cross-presentation processing pathway via immunoproteasomes. 
An important characteristic is that the cytosolic translocation must be effected at a relatively 
early stage of endosome-mediated acidification of endocytic vesicles (see below). As for 
RNA, from viruses or vaccines, the cytosolic transfer for translation has to occur before the 
maturing endosomal system becomes too degradative; that is viral RNA genomes and 
RNA vaccines must escape the maturing endosomal system while still capable of translating 
[9, 38, 40, 43, 58].

While these differential processing pathways of DCs are important for ensuring efficient 
 provision of antigen in the correct form for immune defence development, an additional pro-
cess is essential, namely, endocytosis leading into ‘danger’ signalling. From within the endo-
somal system, this involves toll-like receptor (TLR)-containing endosome-like  structures, 
which in turn are unlikely to provide antigen presentation and certainly detrimental to RNA 
release for translation. Following cytosolic translocation of RNA, danger signalling can be 
effected through cytosolic detectors such as the retinoic acid-inducible gene-I (RIG-I) fam-
ily of helicases (see below). Accordingly, DCs employ different endocytic mechanisms and 
pathways to ensure correct processing of antigen, appropriate cytosolic translocation for cross-
presentation, cytosolic translocation of RNA for translation, and appropriate delivery of anti-
gen-based or RNA-based entities to the ‘danger’ signalling pathways.

4. Dendritic cell sensing

With DCs being an important sentinel of the immune system, the receptors on these cells play 
critical roles in different aspects of host environment surveillance (Figure 5). On the one side, 
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particular DC receptors are more involved in pathogen or vaccine uptake. In addition to this, 
DC handling of material ‘foreign’ to the host can lead to ‘danger’ recognition, which effec-
tively determines immune activation as opposed to tolerance induction. Dendritic cell pattern 
recognition receptors (PRRs) recognise pathogen-associated or danger-associated molecular 
patterns (PAMPs and DAMPs), playing major roles in this recognition and ultimate signalling 
of the DCs.

Dendritic cell receptor ligation determines the manner by which DCs endocytose and the out-
come of the DC activity. One important consequence of ligating certain receptors is the 
 induction of inflammatory reactions (see Figure 2 and Figure 4), the characteristics of which 
relate to the receptors involved [5, 59, 60]. While PRRs such as toll-like receptors (TLRs), 
complement receptors and mannose-binding receptors (Figure 5) are important for inflam-
matory responses, both these and other receptors including other C-type lectins, integrins and 
CD44 can enhance ‘foreign’ material binding to and internalisation by the cells into endocytic 
processing pathways [5, 9, 61–63]. For example, ligation of TLRs, siglecs, galectins and CD14 
can promote antigen uptake as well as activating innate defence processes, either alone or 
in co-operation with C-type lectins or integrins [9, 64, 65]. Moreover, different DC receptors 
can promote uptake into different endocytic pathways. For example, cholera toxin may be 
targeted to caveolar endocytic pathways and the ER, whereas autocrine mobility factor associ-
ates more with the ER [66]. While simian virus 40 (SV40) also targets to the ER, both this and 
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Figure 5. Examples of known DC receptors, demonstrating their wide range of capacities for sampling the host environment. 
These receptors also offer the potential for targeting vaccines to DC, particularly with the new synthetic vaccines employing 
nanoparticulate delivery vehicles.
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buried deep within bacterial cell walls following endosomal degradation of the latter to 
expose the lipopeptides. This was proven using SVLPs carrying TLR2 ligands within their 
hydrophobic cores [15]. By employing such SVLPs, there was no influence of interaction with 
cell surface TLR2 heterodimers, as is the case with bacteria and yeast particles through the 
lipoteichoic acid and peptidoglycan moieties in their cell walls.

Additional intracellular PRRs are also involved in detecting ‘foreign’ RNA—vesicular TLR3 
and TLR7, and cytosolic sensors including helicases [67–69]. RNA sensing is an important 
issue for RNA virus infection and RNA vaccine delivery. Pathogen-associated molecular 
patterns (PAMPs) associated with ‘foreign’ RNA are generally formed through RNA modi-
fications or secondary structures not normally found within the cells. TLR3 and TLR7 can 
respond to dsRNA and ssRNA structures on the ‘foreign’ RNA, respectively, such PRR activity 
being linked with processing via the endosomal system. Yet the RNA associated with RNA 
virus infections as well as with delivery of RNA vaccine can be translocated to the cytosol 
through action of the virus or vaccine particles (see below). Under these conditions, cytosolic 
sensors become important for detecting RNA-associated PAMPs.

5. Cytosolic PRR activity

Cytosolic helicases can detect RNA translocated to the cytosol from vesicular structures. 
The cytosolic helicases of the RIG-I-like receptors (RLRs) family recognise RNA-associated 
PAMPs through their helicase domain and C-terminal repressor domain (RD); the conse-
quential triggering of intracellular signalling cascades is effected via the caspase-recruitment 
(CARD) domains [70]. As with the RNA-sensing TLRs, RLRs can recognise PAMPs associated 
with either ssRNA or dsRNA. The latter come from the dsRNA intermediates derived from 
replicating viral genomic RNA or RepRNA; single-stranded RNA molecules can also form 
double-stranded sequences during the hairpin-folding for their secondary structures, the 
length of which will determine their detection as PAMPs [71]. In addition to such structures, 
RNA bearing a 5’-triphosphate will also be sensed by helicases.

Within the RLR family, RIG-I responds to both short dsRNA sequences and ssRNA bearing 
a 5’-triphosphate; MDA-5 responds more to long dsRNA [70]. 5’-triphosphate structures 
are often required by positive-strand RNA viruses (termed ‘positive strand’ due to the capac-
ity of the viral genome to function as an mRNA) to ensure ribosomal entry for translation. 
During the replication of RNA viruses and RepRNA, dsRNA ‘replicative intermediates’ are 
formed to generate progeny ssRNA (hence the ‘self-amplifying term associated with RepRNA 
vaccines). Thus, DCs endocytosing RNA viruses or vaccines capable of self-amplification 
would respond to dsRNA replicative intermediates, in addition to the double stranded 
secondary structures in the endocytosed RNA, and 5’-triphosphate if present.

This ‘danger’ sensing of RNA structures provides a good example of the divergence displayed 
by different DC subsets, and the influence on the cytokine profiles induced. Plasmacytoid DCs 
(pDCs) tend more to use TLR3 and TLR7 sensing; other cells will employ the cytosolic sensors 
of RLRs and oligomerization domain (NOD)-like receptors (NLRs), which also respond to 
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dsRNA structures [70]. While RLR- and TLR-mediated activation leads to type I interferon 
and pro-inflammatory cytokine production, dependent on the DC type, NLR-mediated 
activation favours IL-1β induction; it is also important to note that dsRNA sensing by NLRs 
is involved in the regulation of the induced responses [70].

Thus, ‘danger’ recognition can lead to particular cytokine profiles dependent on the sensing 
receptor and DC subset involved. The pDC sensing of RNA by TLR3 and TLR7 (and DNA 
by TLR8/9) leads to the production of notably high levels of IFN-α and TNF, particularly in 
response to infection. In addition to their anti-viral properties, these cytokines provide the 
necessary signals to promote appropriate cDC maturation, essential for ensuring that anti-
gen presentation to lymphocytes promotes the development of an antigen-specific adaptive 
immune response. However, induction of cytokine production by DCs, cDCs and pDCs, will 
not always prove beneficial in promoting effective immune defence. For example, viruses 
such as influenza virus and haemorrhagic disease viruses can induce excessive levels of IFN-α 
and other inflammatory cytokines, leading to the so-called cytokine storm and subsequent 
immunopathological problems [72–75]. Even viruses not renowned for inducing such events 
can be prove troublesome. For example, foot-and mouth disease virus infection in pigs can 
increase IL-10 production by DCs, with a consequential negative influence on antigen pre-
sentation and T-lymphocyte activation; in contrast, immune complexes with foot and mouth 
disease virus are potent inducers of IFN-α by pDCs [76, 77].

Such studies on virus infection of DCs have helped to define conditions beneficial for 
the host, and therefore what is required for efficacious vaccination. Dendritic cell cytokine 
induction is certainly critical for inducing maturation of cDCs, an essential requirement for 
both migration into lymph nodes and efficient presentation of antigen leading to activation 
of T-lymphocyte responses [2, 7, 10, 62]. Overall, one should consider that targeting slower 
endocytic processing pathways rather than targeting the more rapid and degradative path-
ways would prove crucial.

6. Comparative endocytic processes within DCs

The aforementioned differences between MΦ and DCs give an important insight into the 
characteristics of endocytic processing. Dendritic cells degrade endocytosed material at 
slower rates, with an overall less acidic phagosomal/endosomal pH than MΦ [38]. These 
 characteristics relate to the different biological roles of the two cell types. On the one 
hand, DCs are more important for processing and delivering antigen to activate lymphocyte 
responses. Conversely, MΦ play a more significant role in innate immune cell defence, notably 
pertinent in the removal and destruction of infectious pathogens, as well as entities present-
ing a danger to the host, such as damaged or dying cells. Nonetheless, these roles are neither 
absolute nor mutually exclusive; DCs and MΦ interact during inflammatory responses and 
the recruitment of cells, including additional DCs, MΦ, T-lymphocytes and NK cells.

The slower endocytic processes noted with DCs would certainly be favourable for efficient anti-
gen processing leading to presentation, as well as cytosolic translocation for cross-presentation 
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or facilitating RNA translation (see Figure 3). Yet, despite the difference in the cellular compo-
nents and the rate of endocytic processing, both clathrin-dependent and clathrin-independent 
pathways show a major relationship. Although some employ dynamin while other pathways 
are dynamin-independent [21–23, 78–80], both processing pathways can lead to interaction 
with early endosomes (Figure 3). This provides acidification by vacuolar H+-ATPase activity 
and enzyme-mediated degradation within the endocytic vesicle. The important difference 
between the rapid clathrin-dependent endocytosis and slower clathrin-independent routes is 
the rate at which endosomal interaction and acidification occur [21–23, 55–57]. The clathrin-
independent endocytic processes, such as macropinocytosis, lipid raft-dependent and caveo-
lae-mediated endocytosis, are notably active with DCs, facilitating processing of antigen for 
presentation via MHC Class II [9, 23, 54, 56, 57]. Moreover, slower processes support reten-
tion of endocytosed material at the earlier stages of endosomal maturation in DCs for longer 
periods, increasing the potential for cytosolic translocation. Nonetheless, clathrin-dependent 
endocytic processes have been employed by viruses to promote initiation of their infectious 
cycle. Ebola virus, coronaviruses and certain mammalian reoviruses employ clathrin-dependent 
endocytosis for their infections [81]. Other viruses, such as influenza virus, employ both 
clathrin-dependent [82] and clathrin-independent pathways, the latter proving also caveo-
lin-independent. Certain bacterial toxins are also endocytosed by clathrin-dependent and 
clathrin-independent pathways [26–28, 83–85].

6.1. Macropinocytosis in dendritic cells

The clathrin-independent macropinocytosis relates to clathrin-dependent endocytosis in 
 concentrating receptors upon internalisation, although macropinosomes are more heteroge-
neous in size—up to 5 μm diameter. The function of macropinocytosis also impacts strongly 
on DCs in their role of antigen processing for presentation to the adaptive immune system. 
Both DCs and MΦ employ macropinocytosis more efficiently than other cells [86], through 
their application of aquaporin channels to sample the environment [87], exhibiting fluid 
phase uptake up to 40% of their cell volume [88]. Macropinocytic activity is also important 
with respect to the aforementioned maturation of DCs which is essential for efficient antigen 
presentation to T-lymphocytes. Aquaporins are down-regulated in mature DCs, relating to 
the observed reduction in macropinocytosis [87]. In contrast, maturation of DCs does not 
affect other receptor-mediated endocytosis processes.

The fate of macropinosomes is also particular to DCs and MΦ, wherein macropinosomes 
fuse with early endosomes soon after formation (Figure 3). Macropinosomes acquire Rab7, 
exchanging their membrane content with late endosomes as they are transported to a more 
perinuclear area [89]. This contrasts with non-immune cells, such as epithelial and fibroblas-
tic cells, wherein macropinosomes tend to remain more isolated from endosomes and lyso-
somes, fusing back with the plasma membrane to release their content into the extracellular 
space [90, 91].

Clearly, macropinocytosis is an important component for facilitating antigen capture by 
DCs and MΦ. In the context of antigen processing and presentation, the macropinocy-
tosed antigens are observed in endocytic vesicles and macropinosome-like structures rich 
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in MHC Class II  molecules (Figure 3, pathway (b)) [88, 92]. Antigens endocytosed via 
 macropinocytosis can also be presented on MHC Class I molecules—the cross-presentation 
pathway following  antigen translocation to the cytosol for processing via the immuno-
proteosome (Figure 3, pathway (c)) [93]. Yet, DCs employ other endocytic pathways in 
addition to macropinocytosis (Figure 3). Caveolin-dependent endocytosis is important, 
as is lipid raft-mediated endocytosis, although the latter can be associated with both mac-
ropinocytosis and caveolar endocytosis. Clathrin-independent endocytosis routes in the 
absence of caveolin may become solely dependent on lipid rafts for intracellular trafficking.

6.2. Processing macropinosomes and other endocytic processes

Following the endocytosis, early endosomes associating with endocytic vesicles are considered 
key players for cargo sorting (see Figure 3). An important bifurcation of endocytic pathways 
occurs at this stage, channelling into Rab11+ recycling endosomes or into intra-luminal vesi-
cles of multi-vesicular endosomes (MVEs; or MVBs for multi-vesicular bodies). Via these lat-
ter structures, processing will ultimately lead into late endosomes and lysosomes. Many late 
endosomes are involved in the degradative pathway resulting in association of lysosomes and 
degradation of the cargo, but a late endosome-related structure is essential for MHC Class II 
presentation—the MHC Class II compartment (MIIC). Late endosomes may also be associated 
with transfer into vesicular structures carrying the internal TLRs. Moreover, the channelling 
of endocytosed antigen in a relatively intact form for delivery to B-lymphocytes employs late 
endosome-like structures [44, 45]. Not only macropinocytosis, but also caveolin-dependent 
endocytosis crosstalk with classical endosomal components [94], including fusion with Rab11+ 
recycling endosomes—caveolin+ caveosomes are also seen to be sorted from endosomal com-
partments [95].

Caveolar endocytosis has been noted with particular entities interacting with cells, includ-
ing albumin [96], tetanus toxin [97], cholera toxin [98] and both polyomavirus and SV40 
[99]. The uptake of cholera toxin [100] is particularly noteworthy, considering the involve-
ment of the recycling endosomes with caveolar endocytosis. The B subunit of the toxin 
is responsible for cell entry following binding to the monosialotetrahexosylganglioside 
(GM1) found in lipid rafts and caveolae. Although the CTB subunit can associate with 
clathrin-dependent endocytic vesicles and clathrin-coated pits [101], and inhibition of 
 clathrin-mediated endocytosis reduces cholera toxin internalisation [98, 102], the toxin 
activity it is not dependent on clathrin-dependent endocytosis [102]. For this, the cholera 
toxin must be delivered into Golgi complex, which requires retrograde transport from the 
recycling endosomes (Figure 3) [26–28]. In fact cholera toxin can be endocytosed by differ-
ent routes, but is ultimately delivered from recycling endosomes to Golgi complex via a 
clathrin-independent pathway [100, 103], as is shiga toxin [104]. It is also likely that viruses 
such as polyomavirus and SV40 may require similar routes of entry [105]. Overall, the 
important lesson from these studies is the capacity of DCs to employ different endocytic 
routes, some particular to certain antigenic materials, and others being employed in com-
bination. Whether the DCs employ a particular endocytic pathway or a number of different 
routes, the outcome is dependent on the pathway employed and therefore influences how 
the DCs handle the endocytosed cargo.
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7. Cytosolic translocation in dendritic cells

As mentioned above, retrograde transport from recycling endosomes into the Golgi and 
ER (see Figure 3) is an important pathway for the B subunit of cholera and shiga toxins to 
 promote cytosolic translocation of the A subunit [26–28]. Polyomavirus and SV40 also translo-
cate from the ER for initiation of their replicative cycle [105]. These pathways can be employed 
by DCs for the cytosolic translocation leading to cross-presentation of exogenous antigen.

Following the retrograde pathway, cytosolic translocation is likely dependent on protein-
protein interactions facilitating entry into the cytosol, as observed with the mechanisms 
employed by cholera and shiga toxins and members of the polyomaviridae. Association of 
ER membranes with endocytic vesicles can insert the ER dislocon, leading to antigen associated 
with ER-like structures and subsequent entry into cross-presentation pathways [39, 43].

Yet, DCs can also employ non-retrograde pathways–relatively slow clathrin-dependent endo-
cytosis or the clathrin-independent macropinocytosis–for cytosolic translocation leading into 
the cross-presentation pathways. This cytosolic translocation displays distinctive characteristics 
dependent on which of the endocytic routes is employed, but requires interaction with early 
endosomes. The neutral pH environment of the ER and proteolytic activity therein is clearly 
distinctive from the events associated with clathrin-dependent and clathrin-independent endo-
cytosis involving endosomal interactions. With the latter, the early endosomes provide mem-
brane vacuolar H+-ATPases promoting acidification of the endocytic vesicles, an essential event 
for facilitating cytosolic translocation from these arms of the endocytic processing pathways.

An important influence on the outcome of endocytic vesicles interacting with early endosomes 
is the role of cationic elements within virus particles or vaccine delivery vehicles. Cationic 
entities, associated with peptide, lipid or saccharide structures can provide what has been 
referred to as the ‘proton sponge’ or ‘pH-buffering’ effect (Figure 3, pathway (d)) [106, 107]. 
The vacuolar H+-ATPase activity from early endosomes pumps protons into the  endocytic 
vesicle leading to this proton sponge effect. For example, protonable amines behave as buff-
ering agents by readily accepting protonation [108]. Histidine- and  arginine-rich molecules, 
as well as histidine residues, can also initiate the proton sponge effect through protonation 
of imidazole rings [106, 107]. By increasing ion and water uptake into the endocytic vesicles, 
the protonation events increase osmotic pressure leading to vesicular swelling and membrane 
destabilisation, allowing cytosolic release of the vesicle contents. However, disruption of the 
endocytic vesicles would prove a relatively destructive process, and are not ideal for the intra-
cellular environment. A more physiologically appropriate  process can be seen when analysing 
histidine- and arginine-rich peptides and polymers, with which cytosolic translocation can be 
promoted through interaction with the anionic vesicular membrane [107]. This is particularly 
notable with amphiphilic peptides. Binding at the edge of membrane pores can reduce inter-
nal membrane tension, while insertion into the vesicular membrane can reduce chain length 
to create internal membrane tension [106, 109]. Cationic lipids will also influence cytosolic 
translocation by ionic paring with phosphatidylserine in endocytic vesicle membrane [110]. 
This promotes electrostatic interactions and decreases membrane curvature, potentially with 
conversion from a lamellar to a non-lamellar phase.
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Regardless of which endocytosis pathway is employed by the DC to process internalised 
cargo, the outcome will be either destruction or processing. For the latter, this can lead 
through the maturing endosomal system for MHC Class II presentation, or can involve one 
of the pathways of cytosolic translocation for MHC Class I presentation. With RNA viruses 
and RNA vaccines, the latter pathways would be more favourable, promoting delivery of the 
RNA to the ribosomal translation machinery. In the case of RNA vaccines, this translation 
would provide the antigens for direction into the immunoproteosome from the ER, or prob-
ably via autophagy into the endosomal system for delivery to the MIIC.

8. Dendritic cell endocytosis leading to MHC Class I or MHC Class II 
presentation

As mentioned above, MΦ with DCs employ common endocytic processes for ultimately 
distinctive outcomes [38]. While MΦ rapidly recruit and activate lysosomal proteases, 
leading to rapid degradation of endocytic cargo, the lower acidic endosomal pH and slower 
acidifying process within DCs favour slower degradation of internalized cargoes. DCs 
also generate reactive oxygen species in endocytic compartments through the activated 
NOX2 subunit of NADPH-oxidase, which in turn consume protons and modulate the pH. 
This rate of endosomal acidification is important for the consequences of the processing 
pathway, and therefore both directing into the MIIC and cytosolic translocation. Although 
acidification of the endosomal structures is a characteristic of the so-called endosomal 
maturation leading into the more destructive late endosomes and lysosomes, the early 
stages of the endosomal acidification play particularly essential roles for cytosolic translo-
cation from the endosomal compartment. Therefore, a more ‘regulated’ (in terms of rate) 
endosomal acidification would facilitate the processing events leading to MHC Class I 
and MHC Class II presentation. Importantly however, once the acidification falls below a 
certain pH, the potential for translocation to the cytosol becomes less likely, and the endo-
somal structures become ‘cross-presentation incompetent’ [38]. This situation relates to the 
concomitant decrease of pH and ER-derived proteins, with increased proteolytic activity.

It is now clear that exogenous antigen can be processed into the MHC Class I pathway 
via ‘cross-presentation’ pathways [40, 43, 57, 58, 111] which is important for activating 
the Tc lymphocytes of cytotoxic CMI (see Figure 1). Consideration of these characteristics 
has also proven valuable for understanding the requirement of endocytosed RNA and 
RNA viruses for cytosolic translocation (see Figure 3, pathway (d)). Moreover, the division 
of labour associated with different DC subsets is an important consideration when cytosolic 
translocation is required. Participation of different DC receptors leading to endocytosis is 
influential, defining the form of endocytosis and relative role played by retrograde transport 
into the ER [43].

When the receptor and endocytic targeting deliver into early compartments such as recy-
cling endosomes, both MHC Class I and Class II presentation can ensue; delivery into and 
interaction with later endosomal compartments lead to a domination of MHC Class II pre-
sentation [38, 112]. Yet, transport of the endocytosed material down a particular pathway 
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favouring MHC Class I or MHC Class II processing is not absolute. For example, material 
being  transported towards an MHC Class I presentation pathway can be transferred into 
autophagic vesicles for delivery into the MHC Class II presentation pathway.

Overall, it can be considered that processing antigen for association with MHC Class I molecules 
is a less acidic process compared with the pathway leading to MHC Class II presentation. 
A good example of this is the aforementioned relative neutral pH of the retrograde pathway 
though the ER. Another example is seen with cytosolic translocation from early endosomal 
structures. The initial lowering of endocytic vesicle pH is important, but as mentioned above 
this is limited by the ‘point of no return’ within the acidifying endosomal compartment, 
beyond which the conditions render translocation less likely [38, 43, 113]. Therefore, cytosolic 
translocation must arise before the more degradative processes of the late endosomes have 
taken charge.

As mentioned above, not only antigen, but also viruses employ different endocytic pathways 
to initiate their replicative cycles. While polyomaviruses and SV40 translocate from the ER 
for this purpose, numerous other viruses require the acidifying endosomal system to initi-
ate their replication. The endosomes provide pH-dependent modifications of viral surface 
proteins. By such means, endosomal membrane modulation is promoted leading to cytosolic 
release of the viral genome; in the case of positive strand RNA viruses, the genome func-
tions as a mRNA by interacting directly with the cellular translation machinery; in the case 
of negative strand viruses, the viral genome is associated with the nucleocapsid carrying 
the polymerase, the polymerase generating the ‘positive strand’ to function as an mRNA. 
Endosomal membrane modulation can result from fusion between the endosomal and viral 
membranes, as with influenza virus, or re-arrangement of viral proteins to form ion channels 
and pores in the endosomal membrane, as with picornaviruses and flaviviruses [25]. Related 
to the former (endosomal membrane fusion), is the work with fusogenic peptides, leading to 
vesicular membrane destabilisation as the internal pH decreases below 6.0 [107, 109].

These studies on the processes employed by viruses to promote cytosolic translocation have 
proven useful in the development of processes for the successful delivery of RNA vaccines. 
In this context, the delivery of self-amplifying replicon RNA is of particular interest, due 
to its high potential for vaccine development in the future [9, 13, 17–19, 35, 114]. However, 
these large RNA molecules have particular requirements, which are more stringent or more 
 obligatory than with smaller RNA molecules such as the oligonucleotides of siRNA and 
mRNA vaccines.

9. Self-amplifying RNA interaction with dendritic cells

Interest in the development of replicating RNA vaccines has increased during the past two 
decades, notably in the field of self-amplifying RepRNA technology [9, 13, 18, 114–118]. 
RepRNA are basically viral genomes lacking at least one gene encoding structural proteins, 
but retaining the genes encoding the viral polymerase (self-amplification/replication) complex 
(Figure 6), hence termed as ‘replicon’. This type of construct permits replication of RNA 
 without the risk of progeny virus production and therefore disease; the vaccine element is 
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introduced by inserting genes encoding vaccine antigens of interest (‘genes of interest’ or 
GOI) into the constructs (Figure 6) [9, 13, 18, 20, 114–121]. Development of this technology 
during the past two decades focussed on packaging the RNA in a virus-like particle or the 
virus replicon particle (VRP) [9, 115–117]. However, this approach can encounter particu-
lar problems such as host immunity against the viral proteins composing the VRP surface 
structure; production difficulties/expense may also prove an encumbrance due to the require-
ment for complementing cell lines providing the gene products missing from the replicon so 
that VRPs will be generated [9]. Replacement of the VRP by biodegradable delivery vehicles 
would facilitate vaccine production (obviating the need for complementing cells lines), avoid 
problems of the host immune system neutralising the VRP antigens, and permit more con-
trollable targeting of DCs [9]. This approach was first reported in 2008 (Figure 7) [20], with 

Figure 6. Generation of self-amplifying RepRNA vaccines derived from the CSFV genome, for application with 
biodegradable nanoparticulate delivery vehicles to target DCs by nanoparticulate vehicles. Two examples are shown: 
∆Erns replicon lacking a single (Erns) gene, and C-Igκss-p7 replicon lacking all three structural glycoproteins. NotI 
endonuclease restriction sites, introduced to facilitate insertion of genes encoding vaccine antigen, are shown at the 
3’ end of the Npro leader autoprotease as N*. The site for insertion of the gene of interest (GOI) encoding the vaccine 
antigen is shown as the hashed box. An additional insertion, an EMCV IRES, is employed to restart the translation which 
terminates after the GOI.
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Figure 7. Nanoparticulate delivery of self-amplifying RNA vaccines derived from the CSFV RepRNA. The nanoparticulate 
delivery vehicle is designed to promote efficient uptake into endocytic vesicles, in which the RepRNA is seen to 
accumulate. Thereafter, a gradual cytosolic translocation of the RepRNA is observed—essential for RNA delivery to the 
intracellular site for translation. Thereby, the RepRNA efficiently translates the encoded vaccine antigen of interest, as 
well as the polymerase complex for replication of the RNA. Insertion of an internal ribosomal entry site (IRES) from EMC 
virus ensures that translation of the polymerase complex resumes after translation of the vaccine antigen.
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increasing evidence of the potential for this methodology forthcoming in more recent years 
[9, 13, 17–19, 33–35, 114, 122].

RepRNA show the characteristics of the parent virus genome, providing several rounds of 
replication to increase the number of RNA templates available for translation. By such means, 
the antigen dosages available for activating humoral immunity and cytotoxic cell-mediated 
immunity (CMI), as well as the duration of that availability, are enhanced beyond that pos-
sible with a more conventional inactivated vaccine approach (Figure 8) [9, 13, 17, 18, 20, 114]. 
Moreover, being replicative in nature enhances their capacity to induce CMI as well as humoral 
immunity, a characteristic often lacking with inactivated vaccines. Live, attenuated vaccines 
offer the same advantage due to their replicative nature. A major benefit of RepRNA vaccines 
is that they do not suffer from the potential risk of reversion to virulence posed by attenuated 
vaccines, due to their defective nature being unable to produce progeny viruses (Figure 6).

Many studies, primarily using VRPs, have employed alphaviruses [115–117]. However, these 
viruses and the derived RepRNA are cytopathogenic, killing their host cells. The slow pro-
cessing and retention of antigen typical of DC functionality with respect to inducing robust 
immune defences would not be favoured by cell death from a cytopathogenic RepRNA, 
despite their rapid production of antigen. Although delivery of such replicons to epithelial 
cells would provide antigen indirectly for the DCs, targeting DCs with cytopathogenic repli-
cons is probably not the most effective of approaches. On the other hand, non-cytopathogenic 
RepRNA vaccines, such as those derived from classical swine fever virus (CSFV) (Figure 6) 
[20, 118], would have higher potential for targeting DCs with the aim of prolonged presence 
of antigen in these cells (Figure 7). While non-cytopathogenic RepRNA should translate anti-
gen slower than cytopathogenic replicons, lower antigen production levels fit well to the DC 
requirements for prolonged antigen presentation to the adaptive immune system (Figure 8).

One major drawback with RepRNA vaccines in general is their high RNase sensitivity. This 
can be avoided by employing either VRP for delivery or biodegradable nanoparticulate deliv-
ery vehicles (Figure 7) [9, 13, 18, 20, 114, 123]. From initial efforts in 2003, the concept of 
RepRNA delivery by biodegradable nanoparticles was developed [20], showing high poten-
tial for delivery to DCs (Figure 7; Figure 8) [9, 13, 18, 114, 17]. Nonetheless, it is now evident 
that nanoparticulate technology can lead to compaction of RepRNA (Figure 7). This was not 
so apparent with delivery of smaller RNA molecules, such as siRNA and mRNA, only coming 
to light with the much larger RepRNA molecules. While compaction with the delivery vehicle 
could interfere with cytosolic translocation, even after the translocation a lack of decompaction 
would interfere with ribosomal entry and thus translation. Studies turned to the aforemen-
tioned importance of protonation within the endocytic vesicle for cytosolic translocation, 
which could also influence the degree of RNA compaction by the delivery vehicle.

Application of cationic components in the delivery vehicles for RepRNA, such as chitosan 
cores, cationic lipids and cationic polyplexes (Figure 7), has proven successful for enhancing 
RepRNA delivery [9, 17–19, 33, 35]. Their cationic nature facilitates interaction with RNA 
and protection from RNases. In addition, they may favour events leading to cytosolic trans-
location from the endocytic vesicles during the initial phases of early endosome-mediated 
acidification. Application of additional cationic entities, such as lipids or peptides, may further 
favour cytosolic delivery and decompaction for translation, potentially by reducing the levels 
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of compaction obtained by a single cationic entity. Certainly, the presence of cationic lipids 
in a chitosan-based nanoparticulate delivery vehicle with RepRNA enhanced both the in vitro 
translation of the delivered RNA, and the induction of humoral and CMI immune defences in 
vivo (Figure 7; Figure 8) [18].

10. Conclusion: dendritic cell endocytosis promoting cross-presentation 
and RNA translation

Dendritic cells, in particular the cDC1 subset, display the capacity for cross-presentation 
of exogenous antigenic material (Figure 1). Using SVLPs, DCs primarily endocytose these 
vaccines via macropinocytosis, but an underlying additional endocytic process is also active 
[14]. While a dominant processing towards MHC Class II presentation is evident, cross-
presentation pathways also exist, directing the processing towards MHC Class I presenta-
tion [15]. Importantly, these SVLPs do not activate the DC family to promote DC maturation 
which is essential for efficient induction of adaptive immunity. By modifying the lipopeptide 

Figure 8. Overview of the procedures for association of RepRNA vaccines with biodegradable nanoparticulate delivery 
vehicles, targeting DCs to promote induction of both humoral and cytotoxic immune defences.
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monomers of the SVLPs to carry TLR2 ligands, certain SVLPs are directed into internal TLR2-
containing sites for induction of cytokines that are important for DC maturation [15].

The endocytic processes involved in the cytosolic translocation of endocytosed antigen also 
relate to the delivery of RNA required for translation. RNA vaccines and the genomes of RNA 
viruses must translocate from the endosomal system or ER (retrograde transport) following 
endocytosis, to facilitate delivery into cytosolic sites of ribosomal translation (Figure 3). With 
viruses, this can be promoted by the interaction of viral surface proteins with the endosomal 
membrane, becoming modified upon acidification by early endosome to create ion channels 
and/or pores in the membrane for cytosolic transfer of the RNA genomes. RNA vaccines can 
employ similar strategies, when the RNA is packaged within virus-like particles, which can 
be seen with self-amplifying replicon RNA vaccine delivery as VRPs. With synthetic RNA 
vaccines, delivered by synthetic nanoparticulate delivery vehicles rather than VRPs or other 
virus-like particles (Figure 7), translocation must occur as the interaction of the RNA with its 
delivery vehicle becomes weakened to the point of promoting decompaction. There is a criti-
cal point of no return, with cytosolic translocation being vital before late endosomal activity 
dominates. Therefore, the delivery vehicle formulation must facilitate endosomal membrane 
modification to permit this cytosolic translocation at the appropriate stage of endosomal 
maturation.

An important issue pertinent to nanoparticle delivery is the size of the delivery vehicle being 
endocytosed. Size and ionic potential of particles interacting with cells, particularly DCs and 
MΦ, influence both the endocytic route and how the cell handles internalised material [43, 
58]. The smaller the entity the greater the role played by retrograde transport from endocytic 
vesicles into the ER [58]. Macropinocytosis and caveolar endocytic delivery to the ER may 
occur without interaction with early endosomes, or shortly after acidification begins (Figure 3). 
Nonetheless, if the delivery vehicle is designed to promote cytosolic translocation and even 
decompaction when present in an acidifying environment, then RNA delivery should be 
directed into macropinosomes and caveolar vesicles interacting with early endosomes.

Overall, self-amplifying RepRNA delivery to DCs has high potential for future vaccine 
development and application, providing controlled and efficacious vaccine delivery, and 
thus promoting robust immune defence induction (Figure 8). Of particular importance is 
the appropriate application of nanoparticulate delivery vehicle formulations to enhance 
cytosolic translocation of RNA vaccines in DC, while reducing compaction to ensure 
 ribosomal entry for translation of the encoded vaccine antigens and self-amplification of 
the replicon RNA.
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Abstract

Human immunodeficiency virus type 1 (HIV-1), the etiologic agent of acquired immunode-
ficiency syndrome (AIDS), primarily infects T cells and cells of the monocyte-macrophage 
lineage. This is due to the presence of the cell surface receptor CD4 and the coreceptors, 
CXCR4, and CCR5. While the T-cell has classically been the cell type associated with HIV-1 
disease progression, cells of the monocyte-macrophage lineage have also been shown to 
play a major role in this viral pathologic process. Classically, this has involved monocytic 
cells in the peripheral blood and tissue macrophages, however, over the course of HIV 
disease, the promyelomonocytic cells of the bone marrow (BM) have also been shown to 
play a role in pathogenesis retroviral disease in that they play an integral role in the reseed-
ing of the periphery and end-organ tissues. This has involved an initial infection of the 
bone marrow hematopoietic progenitor cells. Given this observation, over the years there 
have been a number of cell lines that have been developed and provided valuable insights 
into research questions surrounding HIV-1 infection of the monocyte-macrophage cell lin-
eage. In this regard, we will examine the biological and immunological properties of these 
BM-derived cell lines with respect to their utility in exploring the pathogenesis of HIV-1 
in humans.

Keywords: HIV-1, HL-60, TF-1, myelomonocytic cells, latency

1. Introduction

Human immunodeficiency virus type 1 (HIV-1) has been shown to primarily infect cells of 
the lymphoid and myeloid lineages in the peripheral blood and bone marrow (BM). One of 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



the roles of the bone marrow serves to repopulate the peripheral blood with fresh circulating 
cells in response to stimuli. During HIV-1 disease, the BM has been shown to be dysfunctional 
leading to the pathology commonly observed in the acquired immunodeficiency syndrome 
(AIDS), with thrombocytopenia, anemia, monocytopenia, and neutrocytopenia [1, 2]. HIV-1 
infection of bone marrow stromal cells, changes in the cytokine milieu of the bone marrow, 
and cytotoxic effects of HIV-1 proteins are pathogenic mechanisms involved in the impair-
ment of the differentiation and growth of hematopoietic progenitor cells (HPCs), ultimately 
leading to hematopoietic defects [3–5] during the course of HIV disease. Interestingly, HIV-1 
DNA was not detected in bone marrow–derived CD34+ HPCs in HIV-1–infected patients on 
combination antiretroviral [6]. However, other investigators have detected HIV-1 DNA in 
CD34+ HPCs in patients who are on antiretroviral therapy [7]. Numerous coinfections, as well 
as some lymphomas commonly observed in AIDS patients [8], have been shown to further 
impact hematopoiesis in HIV-1–infected individuals. Direct HIV-1 infection of hematopoi-
etic progenitor cells may contribute to hematopoietic abnormalities; however, the extent of 
infection in the bone marrow compartment remains controversial [9]. Numerous studies have 
demonstrated the susceptibility of CD34+ bone marrow–derived cell populations to HIV-1 
both in vivo and in vitro [10–13]. In general, the permittivity of CD34+ HPCs has been shown 
to depend on the state of differentiation, with the committed progenitor cells being the most 
susceptible and the quiescent stem cells being the most refractile to HIV-1 infection [14, 15]. 
In this regard, it has been shown that macrophage colony stimulating factor (M-CSF) [11] 
induces HIV-1 infection of HPCs and subsequent virus production involving increased CD4 
expression and enhanced viral replicative processes, respectively, emphasizing the crucial 
role that physiological changes in the bone marrow environment have on the HIV-1 suscepti-
bility replicative capabilities of this cellular compartment.

During the course of chronic HIV-1 infection, there is a characteristic loss of CD4+ T cells 
over time in the absence of effective therapy. However, with the era of highly active antiret-
roviral therapy (HAART), this trend has been reversed. Interestingly, over the course of this 
time, cells of the myeloid lineage, even though CD4+, have been shown to less susceptible 
to virus-induced cytopathic effect and cell death with a drop in cell numbers much less evi-
dent during disease progression [16]. In addition, this cell lineage has been shown to be able 
to traverse various endothelial cell barriers, including the blood-brain barrier, allowing the 
infected circulating cell of the monocytic lineage to transport HIV into tissues as perivascular 
macrophages [17, 18]. Once in tissues, the emerging infectious HIV-1 particle can then go on 
to infect other resident cells of that tissue. As these cells migrate to other tissues and as the 
immune response causes a general state of inflammation, the bone marrow is involving in 
replacing cells lost to infection and to facilitate the immunologic response to HIV infection. 
Given that there are reports of HPCs becoming infected in the bone marrow, one intriguing 
possibility is that mature progenitor cells or cells that are committed to the monocyte lineage 
but still capable of a limited number of cell divisions, may be infected by HIV-1 while still in 
the bone marrow and subsequently migrate to the blood and subsequently into peripheral 
tissues thereby contributing to the continued viral dissemination [19].

Given these observations, we will briefly review hematopoiesis to define how myeloid cells 
differentiate from hematopoietic stem cells (HSCs). We will then review the literature that 
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demonstrates the bone marrow as a site of HIV-1 infection. This approach will provide a 
framework to review and assess the literature concerning a number of cell lines that are 
currently available to be used to model virus-host interactions, as well as experimental para-
digms that have utilized these cell lines to understand basic virologic and immunologic 
concepts relevant to HIV infection. Finally, it will conclude by discussing the next most 
important pressing experiments to be performed and what questions these experiments will 
answer to understand HIV-1 infection of the bone marrow compartment and myeloid lin-
eage of cells.

2. CD34+ hematopoietic stem and progenitor cells

All cells of the hematopoietic system are derived from a common precursor cell, the hematopoi-
etic stem cell (Figure 1) [20]. Stem cells are defined as single cells that are clonal precursors of 
more stem cells of the same type, as well as a defined set of differentiated progeny cells [20, 21]. 
Stem cells normally represent only about 0.05% of cells in the bone marrow, and their popula-
tion is maintained at a constant level through self-renewal [22]. CD34+ progenitor cell popula-
tions, which are heterogeneous cell population containing true pluripotent stem cells and other 
more mature cells, are often used for hematopoietic stem cell transplantation [23]. The ability 
of the hematopoietic stem cells to home to the bone marrow following intravenous injection is 
mediated by the interactions of selectins on bone marrow endothelial cells with integrins on the 

Figure 1. Differentiation of CD34+ stem cells. CD34+ stem cells can be differentiated into all of the cell types that are 
found in the blood. Cells have to go through a number of differentiated stages of progenitor and immature cells to 
finally become a mature blood cell. As a cell differentiates it commits to numerous cell lineages. Adapted from Ref. [31].
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hematopoietic cells [24]. The CD34 sialomucin receptor is one of the several adhesions involved 
in the intra and extramedullary homing of progenitor cells into distinct microenvironments 
[25, 26]. The CD34 antigen is expressed on primitive human hematopoietic cells capable of both 
self-renewal and differentiation into diverse blood cell lineages [27]. HPCs normally reside in 
the bone marrow in close contact with the cells of stroma that provide cytokines, extracellular 
matrix proteins, and adhesion molecules [28]. Progenitor cells are compartmentalized in dif-
ferent areas of the bone marrow based on their degree of commitment and lineage differentia-
tion [29]. Bone marrow–derived CD34+ cells isolated from HIV-1–infected individuals have a 
diminished colony potential [30]. Studying infection of CD34+ progenitor cells is important in 
understanding the cytopenias and impaired colony growth in advanced stage HIV-1–infected 
patients [8].

CD34+ cells are a heterogeneous population of multipotent hematopoietic progenitors at differ-
ent stages of differentiation, residing in the adult bone marrow [32]. The CD34+CD38− immu-
nophenotype defines a rare, quiescent (when a cell is neither dividing nor preparing to divide, 
remaining in the G0 cell phase) subpopulation of primitive progenitor cells than can be function-
ally distinguished from committed CD34+/CD38+ progenitor cells by sustained clonogenicity in a 
long-term culture [33]. The more primitive CD34+CD38− cells are resistant to infection while the 
more committed CD34+CD38+ cells are more susceptible to HIV-1 infection [14]. Primitive hema-
topoietic cells are not directly infected though their function is markedly disturbed by the pres-
ence of virus [34]. HIV-1–infected individuals have been shown to have a decrease in the fraction 
of CD34+/CD38− stem cells in the bone marrow, compared to the healthy individuals [35]. No 
CD4 expression was detectable on the more primitive CD34+CD38− cells and no evidence for 
infection of these cells was demonstrated [14].

Hematopoietic stem cells are characterized by an extensive capacity for proliferation and dif-
ferentiation, as well as the ability to self-renew. Stem cells give rise to daughter cells, which 
undergo irreversible differentiation along a number of different hematopoietic cell lineages [36]. 
Hematopoiesis consists of a cascade of finely regulated events by which totipotent stem cells 
differentiate to all cells present in the blood [37]. Lineage commitment, differentiation, matu-
ration, and release of cells into the blood are under the control of a number of hematopoietic 
growth factors. Differentiation of hematopoietic stem and progenitor cells involves a series of 
molecular changes that result in progressive loss of self-renewal ability and pluripotency, and 
in parallel acquisition of specialized functions characteristic of mature blood cells [38]. Stem 
cells undergo two sequential differentiating processes; the first is commitment, by which stem 
cells lose their self-renewing capability and differentiate to other cells with a more limited dif-
ferentiating potential. The second process is maturation, which allows the terminal differentia-
tion of those cells committed to a specific terminal lineage [39]. Both the commitment and the 
maturation of hematopoietic cells arise from the gradual expression of lineage-specific genes. 
Commitment is defined as the decision a cell makes to enter, or generate progeny that enters, a 
particular maturation lineage at some future time [36]. This decision does not necessarily have 
to be accompanied by any immediate change in morphology or expression of novel membrane 
proteins or regulator receptors. Hematopoietic commitment is likely to be extrinsically regu-
lated, but there is only limited evidence, and probably only a limited opportunity, for hemato-
poietic regulators to be involved in the commitment events [36]. Once established, maturation 
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programs do not seem to be qualitatively altered by the particular growth factors that activate 
mature cell production [36]. Most of the cell differentiation pathway takes place in the bone mar-
row. As CD34+ cells differentiate, they can commit to a specific lineage at specifically defined 
branch points (Figure 1). A number of cytokines influence and promote the cell differentiation 
process. Once the cells have differentiated to monocytes, they can travel through the blood and 
migrate into tissues where they can become tissue macrophages or dendritic cells (Figure 2).

3. Cells of the monocyte-macrophage lineage

Monocytes belong to the mononuclear phagocytic system and constitute 3–8% of the periph-
eral blood leukocytes. Monocytic nuclei are eccentric, either oval or kidney shaped and  contain 
small vacuoles in the cytoplasm that are lysosomes filled with degradative enzymes. Monocytes 
originate from promonocytes, which are rapidly dividing precursors in the bone marrow. 
When the mature cells enter the peripheral blood, they are termed monocytes (Figure 2). The 
monocytes often leave the blood and infiltrate tissues, undergoing additional changes and 
are then referred to as macrophages [40]. Macrophages act as effector cells,  attacking micro-
organisms and neoplastic cells and removing foreign material, as well as presenting antigen 

Figure 2. Differentiation of monocytes-macrophages from CD34+ stem cells. The monocytic differentiation pathway and 
growth factors are involved, as well as the sites where the differentiation takes place is depicted. The majority of the cell 
differentiation stages occur within the bone marrow. As the CD34+ cell differentiates, it commits to the myeloid lineage 
at various branch points for other lineages, such as the lymphoid, erythroid, and granulocytic lineages. A number of 
cytokines that influence and promote cell differentiation are also shown. Certain cell lines and the point at which they 
are located in the cell differentiation pathway are also indicated. Once the cells have differentiated into monocytes, they 
can travel through the blood and migrate into tissues where they can become tissue macrophages or dendritic cells and 
also be activated.
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to  lymphocytes [41]. Macrophages contain receptors for antibody and complement, which 
enhance their ability to phagocytose organisms. Macrophages produce an enormous number of 
soluble factors that are important in the immune response and in the process of inflammation.

Monocytic cells are generated in the bone marrow from pluripotent stem cells that can differ-
entiate into multiple hematologic cell types. Within the bone marrow, cytokines induce stem 
cells to divide and to produce lineages committed to differentiating into monocytic, granulo-
cytic, erythroid, or megakaryocytic cell types (Figure 2) [42, 43]. The pluripotent progenitor cell, 
called the granulocyte-erythroid-megakaryocyte-macrophage colony forming unit (GEMM-
CFU), becomes further committed toward either the granulocytic or monocytic phenotype in 
the presence of IL-1 and/or IL-3, becoming the granulocyte-macrophage colony forming unit 
(GM-CFU) (Figure 2) [39, 42, 43]. The granulocytic and monocytic lineages are closely bound 
together throughout hematopoiesis and are commonly referred to as the myelomonocytic lin-
eage [42, 43]. Repopulation of the myelomonocytic GM-CFU occurs in the presence of IL-3 or 
granulocyte-macrophage colony stimulating factor (GM-CSF) [37]. Commitment toward the 
macrophage lineage requires the presence of macrophage colony stimulating factor (M-CSF), 
along with IL-3 or GM-CSF [44, 45]. The committed promonocytic cells mature into smaller 
monocytic cells that can enter the blood. Monocytes circulate within the blood for 8–72 hours 
before migrating into a number of different tissues where they complete their development, 
becoming mature tissue macrophages (Figure 2) [46–48]. Macrophages are larger in diam-
eter than monocytes and possess increased lysosomal content and hydrolytic enzymes [49]. 
Macrophages are capable of division and can be a self-sustaining population.

The phenotype and function of the macrophage is dependent on the tissue in which it resides. 
Therefore, resident macrophages are often defined by the tissue-specific environment in 
which they ultimately reside. Specific types of macrophages include: the microglial cells of the 
brain, the Kupffer cells in the liver, the Langerhans cells of the skin, the alveolar macrophages 
of the lung, the mesangial cells of the kidney, and the sinus macrophages of the spleen [50–52].

4. Bone marrow hematopoiesis disorders associated with HIV-1 infection

Hematologic abnormalities are very common in HIV-1–infected individuals and they occur at 
all stages of disease, but the mechanisms by which HIV-1 contributes to these abnormalities 
are poorly understood [53, 54]. HIV-1 affects the hematopoietic system, causing a number of 
peripheral blood cytopenias [55, 56]. HIV-1–infected patients suffer from many hematologic 
disorders and exhibit uni or multilineage suppression of bone marrow hematopoiesis including 
anemia, lymphocytopenia, thrombocytopenia, granulocytopenia, monocytopenia, and neutro-
penia that can be attributed to malfunction or premature death of the specific hematopoietic 
cells [8, 57–59]. The hematopoietic disorders are frequently associated with impaired HPC 
growth, BM dysplasia, plasmacytosis, and lymphoid infiltrates [57, 60], and they suggest virus-
induced abnormalities in the bone marrow microenvironment [61–63]. T cell depletion in AIDS 
is thought to be, at least in part, due to the failure of T cell development from lymphohemato-
poietic stem cells [14].
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A large number of studies have been conducted to identify and characterize the pathophysi-
ologic mechanisms leading to bone marrow dysfunction in patients with AIDS. HIV-1 may 
affect hematopoietic stem cells (HSCs) by both direct and indirect mechanisms leading to 
defects in maturation of CD34+ cells and the numerous cytopenias. A number of indirect 
mechanisms for HIV-1–induced suppression of hematopoiesis have been proposed, such as: 
the stimulation of abnormal cytokine production by HIV-1 infection [30, 64], the suppressive 
effects of viral gene products [65, 66], and the activation of apoptosis by gp120-mediated 
cross-linking of CD4 [67]. Hematologic abnormalities in the majority of infected individuals 
could result from indirect effects of HIV-1, such as cytokine dysregulation, rather than HIV-1 
expression in the bone marrow itself [53]. HIV-1 Tat has been shown to decrease differen-
tiation in an HPC line [68]. In addition, the viral accessory protein Nef has been shown to 
decrease hematopoiesis in vitro [69]. Studies have also demonstrated that HIV-1 may induce 
apoptosis in hematopoietic cell lines [70, 71]. Modification of the behavior of hematopoi-
etic accessory cells by HIV-1 infection may indirectly alter the growth and differentiation of 
adjacent uninfected lymphoid, myeloid, and primitive hematopoietic cell populations and 
account for HIV-1–mediated suppression of hematopoiesis [72]. Infection of auxiliary cells, 
particular macrophages, and microvascular endothelial cells, induces a substantial alteration 
in the supportive function of the hematopoietic stromal tissues, indirectly influencing the 
survival and growth of hematopoietic progenitors [8].
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GM-CSF for granulocytes and macrophages, G-CSF for granulocytes, thrombopoietin for 
platelets, and M-CSF or CSF-1 for monocyte-macrophage production and function. Cytokines 
may be stimulatory or inhibitory and may show additive or synergistic effects on the renewal, 
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the early phases of differentiation, the regulatory roles of the growth factors overlap [36]. 
Later in development, some growth factors are lineage-specific, and govern the maturation 
of single lineages. Hematopoietic cells have distinctive patterns of growth factor receptor 
expression that evolve as the cells differentiate [36]. Binding of the growth factors to their 
receptors leads to activation of intracellular kinases and triggers cell proliferation [73, 74]. 
Hematopoietic growth factors not only stimulate cell proliferation, but also prolong cell sur-
vival by exhibiting antiapoptotic effects. Growth factors, such as G-CSF and GM-CSF, can 
stimulate early hematopoietic cell proliferation, increase the number of cells produced by 
the bone marrow, prolong the life span of cells, and augment cell function [75]. In the mar-
row, blood cells develop in two phases: the proliferative and the maturational phases. During 
cell proliferation, the precursors of blood cells normally undergo cell division at intervals of 
about 18–24 hours. In the maturational phase, cell division ceases, but additional modifica-
tions occur before the cell enters the blood. Progenitor cells exhibit a higher proliferative rate 
and more lineage restriction than stem cells. They are also responsive to a smaller subset of 
cytokines. The production of all cell types is controlled by a negative feedback mechanism. 
When demand for specific cell types increases, or peripheral levels of the cells fall, then stimu-
latory cytokines are released to generate new cells within a few days.

6. Organization of bone marrow and its role as a viral reservoir

Hematopoietic cells develop within the medullary space, which has a rich vascular supply and 
is populated by many cell types including: adipocytes, vascular endothelial cells, fibroblasts, 
and stromal cells (Figure 3). The frequency of HSCs in the bone marrow is relatively constant 
[76, 77]. Vascular endothelial cells, marrow fibroblasts, and stromal cells produce hematopoietic 
growth factors and chemokines that regulate blood cell production [78]. Vascular endothelial 
cells form a barrier that keeps immature cells in the marrow and permits mature cells to enter 
the blood. Macrophages in the bone marrow remove dead or apoptotic cells and clear the blood 
of foreign materials that enter the marrow (Figure 3). Stem cells and primitive cells bind tightly 
to the stroma, while maturing precursors and terminally differentiated cells are nonadherent.

The bone marrow may serve as an important reservoir of HIV-1 in the body. Previous results 
have suggested that the bone marrow macrophages may act as a reservoir for HIV, and infection 
of this cell population may affect hematopoiesis, either by transmission of HIV infection to devel-
oping progenitor cells or by altering the ability of the stroma to support normal development 
[80]. The circulating CD34+ progenitor cell population may be infected in vivo and may serve as a 
reservoir for HIV-1 that is capable of trafficking the virus to diverse anatomic compartments [13]. 
Peripheral blood–derived CD34+ progenitor cells may also be infected and disseminate HIV-1 to 
sites throughout the body. Integration of proviral DNA into stem cell genomes could lead to the 
spread of HIV-1 infection through the expansion of infected clones or interference with normal 
stem cell maturation and proliferation, resulting in the interruption of normal hematopoiesis 
[14]. Studies have shown that primary CD34+ progenitor cells are susceptible to infection by 
diverse strains of HIV-1, particularly as they begin to differentiate, and infection can be sustained 
for prolonged periods in vitro [13, 32]. This may contribute to a chronically infected pool of func-
tionally altered cells containing viruses of different tropism across different cell lineages [32].
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7. Direct infection of CD34+ hematopoietic progenitor cells by HIV-1

Direct involvement of HIV-1 infection may be important in leading to HSC failure and bone 
marrow dysfunction [59]. Direct infection and destruction of hematopoietic stem or progeni-
tor cells may explain the defective hematopoiesis in HIV-1–infected individuals [81]. Attempts 
to understand HIV-1–mediated bone marrow dysfunction have yielded inconsistent results 
regarding the susceptibility of bone marrow progenitors to viral infection [14]. Conflicting 
studies have been reported regarding the susceptibility of human CD34+ cells to HIV-1 infec-
tion both in vivo and in vitro, and there has been a significant controversy regarding whether 
HIV-1 can infect HSCs directly, leading to bone marrow dysfunction and the cytopenias. 
A number of studies of HIV-1–infected individuals have failed to detect productively infected 
CD34+ progenitor cells from the bone marrow [54, 82, 83], while other studies have shown 
that rare infection of CD34+ progenitor cells can occur [84, 85] and may be more prevalent in 
patients with advanced disease [86].

Direct infection of the primitive progenitor cells, which represent 0.01% of bone marrow cells, 
is difficult to detect [13]. Several reports have described that bone marrow CD34+ stem and/
or progenitor cells are infected with HIV-1 at low frequencies in some patients [84]. Purified 
CD34+ HPCs from adult peripheral blood were reported to be susceptible to HIV-1 infection, 
as shown by PCR analysis for the presence of proviral sequences in the ensuing myeloid and 
erythroid colonies or by virus production in culture [13, 81, 87]. Several studies have shown 
successful in vitro infection of the CD34+ population [11, 88], although studies in this area 

Figure 3. Hematopoiesis within the bone marrow. Hematopoiesis occurs within the bone marrow and begins with stem cells 
associated with stromal cells that nourish them and supply growth factors. Stem cells differentiate through various stages 
of progenitor cells and commit to various cell lineages eventually entering the blood circulation. Adapted from Ref. [79].
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have focused on hematological consequences of HIV-1 infection and its effects on progenitor 
cells [10, 81, 88]. HIV-1 infection in vitro has been reported in highly purified bone marrow–
derived CD34+ cells [89] and in CD34+ progenitor cells that coexpress CD4 [70]. Based on a 
number of reports, it was found that a low fraction of progenitor cells is able to be infected 
ex vivo by HIV-1 under certain conditions, the growth of the few cells infected by HIV-1 may 
not be impaired as a result of the infection, while in vivo infection of progenitor cells occurs 
rarely, if ever [8].

The number of HIV-positive HPCs may sharply increase in advanced AIDS because of wide-
spread HIV-1 infection, thus explaining the reports on in vivo HIV-positive CD34+ cells in the 
advanced disease [85, 86]. Studies suggest that HIV-1-expressing cells are present in the bone 
marrow during late stages of disease [53]. In individuals with advanced HIV-1 infection, about 1 
in 500 CD34+ cells were shown to be infected with HIV-1 [86]. The CFU capacity of the bone mar-
row stem cells was impaired especially in patients with advanced disease, even if HIV-1 does 
not directly infect these cells [90]. Depletion of primitive progenitors observed in later stages of 
HIV-1 disease may represent a virus-induced alteration in progenitor cell differentiation [91–93].

Multiple and potentially synergistic mechanisms may be responsible for the resistance of CD34+ 
cells to HIV-1 infection [28]. Most studies indicate that bone marrow–derived HSCs cannot be 
infected by HIV-1 until they undergo modest differentiation in order to express the appropri-
ate receptors to enable virus entry and subsequent replication [59]. Studies have demonstrated 
the presence of both CD4 [94] and the chemokine receptors CXCR4 and CCR5 [95] on CD34+ 
cells. The most primitive bone marrow HPCs lack the surface molecules CD4, CXCR4, and 
CCR5, which are required for HIV-1 infection, so they cannot be infected with HIV-1 [14]. CD4+ 
cells were found only within the more mature CD34+CD38+ cell population, explaining their 
susceptibility to infection [14]. Cell surface expression of CXCR4 and CCR5 has been found on 
peripheral blood–derived CD34+ progenitor cells [13]. When CD4 expression is low, infection 
becomes dependent on coreceptor expression levels. High chemokine receptor levels can com-
pensate for low surface expression of CD4 in mediating HIV-1 infection [13]. T-tropic strains of 
HIV-1 have been shown to infect cultures of purified CD34+ progenitor cells in vitro, suggesting 
the presence of the CXCR4 coreceptor on the cells [62, 81]. The natural chemokine ligands for 
the major HIV-1 coreceptors are able to readily block entry of HIV-1 [96]. The CC-chemokines 
RANTES, MIP-1α, and MIP-1β are the natural ligands for CCR5 and block the entry of R5 
viruses, whereas SDF-1, the natural ligand for CXCR4, blocks the entry of X4 viruses, thus 
inhibiting the infection and spread of the virus. The mechanisms relevant to inhibition of HIV-1 
infection involve the blocking of binding of the virus to its coreceptor, thus blocking viral entry.

8. Specific viral populations within the CNS suggest bone marrow 
origination

Because the CNS has been shown to be more “immunologically privileged” than many other 
organs, it has been suggested that virus enters the CNS early after primary infection and 
then replicates there beyond the control of the peripheral immune system to a great degree. 
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In addition, some antiretroviral drugs such as protease inhibitors have trouble crossing the 
blood-brain barrier [97, 98]. Inefficient drug delivery combined with an “immunologically 
privileged” site leads to viral reservoirs remaining in the CNS throughout the duration of 
infection. Viral genome sequence analysis supports the notion that CNS-specific or neurotropic 
forms of virus exist [99–103]. Recent studies demonstrate that viral sequences within specific 
CNS regions match, phylogenetically, with sequences found in the bone marrow [104, 105]. 
This supports the hypothesis that virus could be transported into the CNS in hematogenous-
derived cells.

HIV-1 gp160 sequences from postmortem tissues collected from a patient with HIV-1 dementia 
were isolated and analyzed for sequence similarity [105]. Gartner and colleagues found that 
the gp160 sequences from patients with dementia demonstrate remarkable sequence similar-
ity between isolates from subcortical regions of the brain (particularly in deep white matter 
(DWM)) and those of the bone marrow [104]. Phylogenetic analysis showed that the sequences 
from DWM were more closely related to those from bone marrow and peripheral blood mono-
cytes. Sequences from DWM and monocytes clustered together, indicating greater homology 
between the HIV-1 species in these groups, as well as a more recent evolutionary divergence 
between them, relative to the species in other tissues. The phylogenetic tree showed that the 
bone marrow sequences were clustered with the DWM and monocyte group, although the bone 
marrow species diverged at an earlier time. Viral species from the DWM were more closely 
related to those in bone marrow than those in other tissues, with the DWM, monocyte, and bone 
marrow sequences clustering together as a group. These observations suggest that of bone mar-
row–derived monocytes traffic into the DWM of the brain during late stage infection. Bone mar-
row–derived monocytes within the circulation may enter the DWM and become perivascular 
macrophages, potentially transmitting HIV-1 to neighboring cells [106]. A critical step toward 
the development of HIV-associate dementia may be an increase in monocyte trafficking into the 
brain [107]. This process may be either initiated and/or accelerated during late-stage infection, 
which could explain why dementia occurs at this time. These observations point to the bone 
marrow as the likely source of virus entering the CNS in terminal stages. The frequency and 
extent of infection and the kinetics of virus replication in bone marrow are not well classified.

9. Cell lines to model HIV infection of bone marrow

A number of different monocytic progenitor cell lines have been derived that can be used as 
experimental tools (Figure 2). These cell lines will be discussed from the least differentiated 
to the most differentiated cellular phenotype.

9.1. KG-1

The KG-1 cell line is a CD34+/CD38+ myelomonocytic progenitor cell line that was derived 
from the bone marrow of a patient with acute myelogenous leukemia [108]. A variant CD34+/
CD38– cell line, called the KG-1a subline, morphologically and histochemically resembles 
undifferentiated blast cells. The KG-1 cell line is composed predominantly of myeloblasts and 
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promyelocytes [109]. KG-1 cells can be induced to differentiate into dendritic-like cells by the 
addition of GM-CSF and TNF-α, or phorbol 12-myristate 13-acetate (PMA) with ionomycin or 
TNF-α [110]. KG-1 cells can be induced to differentiate into macrophage-like cells in response 
to phorbol esters such as 12-O-tetradecanoylphorbol-13-acetate (TPA), while the KG-1a cells 
are resistant to the effects of TPA [111, 112]. With respect to studies of HIV-1 pathogenesis 
and disease, this cell line has not been as widely used as you will see for HL-60 and TF-1 cell 
lines due to a very low to no expression of CD4 on the cell surface [113, 114]. However, many 
researchers who examine regulation of CD4, CCR5, and CXCR4 on the myeloid cell lineage 
use this cell line in combination with HL-60, TF-1, and others. Interestingly, a number of stud-
ies have examined coinfection of human herpesvirus type 6 (HHV6) and HIV-1 and demon-
strated that if KG-1 cells were first infected with HHV6, this would induce CD4 expression 
thereby facilitating subsequent HIV-1 infection by viruses that use either CCR5 or CXCR4 as 
the coreceptor [113–115]. They have also been used for studies surrounding toxicity of drugs 
[116] or for alteration of normal cell function [117] for bone marrow myeloid lineage of cells 
potentially to be used for HIV treatments.

9.2. TF-1

The TF-1 cell line was established by Kitamura and colleagues in 1987 from a bone marrow 
aspiration sample of a 35 year old Japanese male with erythroleukemia and severe pancy-
topenia [118]. TF-1 cells, which have been shown to express several erythroid and myeloid 
markers, are CD34+/CD38+ erythro-myeloid HPCs blocked at an early stage of hematopoietic 
differentiation [118, 119]. The cells have also been shown to be completely dependent on IL-3 or 
GM-CSF for long-term growth [118]. Erythropoietin (EPO) also sustains the short-term growth 
of TF-1 cells but does not induce erythroid differentiation [119]. TF-1 cells can be induced to 
differentiate into two different pathways, and, depending on the type of inducer, are capable 
of differentiating into either mature erythroid cells or macrophage-like cells [118]. Hemin and 
δ-aminolevulinic acid can induce erythroid differentiation with hemoglobin synthesis in TF-1 
cells, while PMA induces dramatic differentiation into macrophage-like cells [118]. TF-1 cells 
consist of a relatively homogenous population of medium-sized cells with the appearance of 
blasts [120]. They contain moderate amounts of dark basophilic, agranular cytoplasm with fre-
quent small cytoplasmic vacuoles, and have a smooth cytoplasmic border. The nuclei are oval 
with fine chromatin and 1–3 macronucleoli. Many binucleated and occasional multinucleated 
forms are present [120].

The TF-1 cell line has provided a useful tool and in vitro model system to examine HIV-1 
infection of a progenitor cell population during differentiation into monocytic cells. Previous 
studies have demonstrated that TF-1 cells can be productively infected by the R5-dependent 
BAL and YU-2 strains of HIV-1, but not by the X4-dependent LAI HIV-1 strain [121]. 
Differentiation of TF-1 cells down the myeloid pathway or the presence of higher levels of 
the CCR5 coreceptor as compared to the CXCR4 coreceptor could explain why a produc-
tive HIV-1 infection only occurred in cells infected with HIV-1 R5-dependent strains. PMA-
induced macrophage-like differentiation of TF-1 cells, characterized by a decrease in nuclear 
size, an increase in the amount of nuclear chromatin condensation, absence of nucleoli, and 
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increased cytoplasm [120]. The majority of the cells have moderately abundant light basophilic, 
agranular to finely granular cytoplasm with irregular cytoplasmic borders [120].

TF-1 cells have been used extensively to understand host pathogen interactions between the 
HIV-1 protein Nef and numerous cellular pathways [122, 123]. These studies have led to a fur-
ther understanding of how replication is differed between cell types. Specifically, these studies 
helped identify factors such as STAT3 that are affected by Nef and allow for the survival of TF-1 
cells [124]. Like with KG-1 cells, TF-1 cells were also used to confirm that human herpesvirus 
6 coinfection with HIV can lead to susceptibility of TF-1 cells to HIV-1 infection [113, 114]. In 
addition, it was shown in TF-1 cells that lymphocyte function-associated antigen 1 (LFA-1) was 
needed to confer susceptibility to HIV-1 infection [125]. TF-1 cells have also been used to assess 
transcriptional activation of the HIV-1 LTR in a number of activation and differentiation states 
of these cells. This demonstrated the importance of the C/EBP transcription factor in CD34+ 
progenitor cells for driving LTR activation [126]. In addition, the transcription factors NF-κB 
and Sp were shown to be important when TF-1 cells were activated by phorbol 12-myristate 
13-acetate (PMA), conditioned medium from PMA-treated TF-1 cells, or IL-1² [127, 128].

9.3. HL-60

The HL-60 cell line, obtained by leukapheresis from the peripheral blood of a patient with 
acute promyelocytic leukemia, is a promyelocytic cell line [129]. In culture, the cells can be 
stained as promyelocytes or myeloblasts, although only about 10% of the cell population can 
progress to more mature cells [130]. Differentiation can be induced by a number of agents 
such as dimethyl sulfoxide (DMSO), butyrate, hypoxanthine, PMA, actinomycin D, and reti-
noic acid. The cells have the ability to differentiate into either granulocytic or monocytic cells, 
depending on whether they are treated with either DMSO or PMA, respectively [131–133]. 
Monocytic differentiation can also be induced by treatment with 1-25 dihydroxyvitamin D3 
or lymphokine [134, 135]. HL-60 cells exhibit increased adherence following differentiation 
toward either the monocytic or granulocytic pathways [131]. When HL-60 cells have been 
treated with PMA, they have been shown to exhibit morphologic changes that are charac-
teristic of monocytic cells, including the appearance of pseudopodia, cerebriform nuclei, 
and the disappearance of azurophilic granules. However, they fail to produce secondary 
granules that are typical of mature cells indicating incomplete maturation [136]. Following 
chemically induced monocytic differentiation, increased production of acid phosphatase, 
β-glucuronidase, and myeloperoxidase has been observed [137]. Thus, the HL-60 cell line 
exhibits characteristics of an undifferentiated myeloid progenitor. Because of its ability to 
differentiate toward both granulocytic and monocytic cell types, HL-60 cells are considered a 
model for cells of the myelomonocytic lineage.

These cells have been widely used in studies on HIV-1 infection. This is because of their 
ability to be infected in an unactivated state as well as because of the development of the 
OM-10.1 cell, a clonally derived cell line from HIV-1–infected HL-60 promyelocytes which 
harbor a single integrated provirus that is silent until activated [138]. In the beginning of 
the epidemic, a number of studies were conducted with the HL-60 and OM-10.1 cells to 
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determine and characterize the viral infection and replication dynamics within cells of this 
lineage [138–143]. These cells have been shown to retain CD4, CXCR4, and CCR5 expres-
sion and retain CD4 expression unless viral replication is active [138]. Given this observa-
tion, the HL-60 and OM-10.1 cell lines have been used in several studies that simply aim 
at examining the levels of CD4, CXCR4, and CCR5 or other surface markers under various 
cellular physiological conditions and drug treatments [138, 144–159]. These cells have also 
been used to screen methodologies or drugs that may inhibit HIV-1 infection or reduce tran-
scriptional activation of the virus [117, 160–173]. These cell lines have also been used in stud-
ies of drug toxicity, permeability, and/or effects on cellular activation and differentiation to 
gain an understanding of what specific drugs might do to cells in the bone marrow [144, 154, 
174–183], as well as determining what signaling pathways may play a role or become dys-
regulated [184–189]. Additionally, other studies have been completed that utilize these cells 
to examine the role that distinct viral determinants as well as specific host factors have on 
cellular tropism, cellular differentiation, and cytopathology [190–193]. They have also been 
used in examining the role of CDK9 and characterizing its function based on known inter-
actions with Tat [166] as well as how Nef manipulates intracellular Ca(2+) stores through 
SH3-mediated interactions in myelomonocytic cells [194].

Because of the more recent interest in HIV-1 latency, the OM-10.1 cell line has been used to 
understand drugs that may activate latent viral reservoirs for shock and kill or kick and kill type 
therapeutics. Some specific examples include a small molecule activator of protein phosphatase-1 
(SMAPP-1) [195], NCH-51 [196], hybrid liposomes (HL) composed of dimyristoylphosphatidyl-
choline (DMPC) and polyoxyethylene alkyl [197], or contact with T cells [198]. Additionally, these 
cells have been used to characterize the mechanisms involved in maintaining HIV-1 latency [199].  
The integrated provirus in these cells seems to be latent due to a transcriptional control mecha-
nism and can be induced by TNF-α, suggesting a potential NF-κB-mediated control [200].

9.4. U-937 and THP-1

U-937 cells are an immature monocytic cell line derived from the pleural effusion of a patient 
with histiocytic lymphoma [201]. U-937 cells exhibit the morphologic and histochemical char-
acteristics of monoblastic cells, including the expression of ²-glucuronidase and the release of 
lysozyme into the culture [201, 202]. Only a small percentage of undifferentiated U-937 cells 
are phagocytic. Furthermore, U-937 cells lack the ability to kill cells expressing foreign anti-
gen presented by MHC class I [203, 204]. U-937 cell lines exhibit characteristics of monoblastic 
cells in their undifferentiated state, and can be induced to differentiate toward a more mature 
macrophagic cellular phenotype by a number of chemical agents. PMA can induce differen-
tiation of U-937 cells toward a more mature monocytic phenotype [205, 206]. Differentiated 
U-937 cells have increased adherence and ramification, along with greater phagocytic activity 
and the induction of lysozyme and nonspecific esterase activity [206, 207]. Other chemical 
agents can also be used to induce macrophage differentiation of U-937 cells. Treatment with 
retinoic acid or 1-25 dihydroxyvitamin D3 can induce the differentiation of U-937 cells. Like 
the HL-60 cell line, a U-937 cell line carrying integrated HIV-1 proviral DNA has been con-
structed with the integrated viral genome in a quiescent configuration that has been shown 
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to be capable of being activated into a transcriptionally active state capable of driving the 
production of infectious virus. This cell line was termed U1 [208]. Like with HL-60, the U-937 
cell line has been used in several types of experiments including experiments to examine what 
is needed to reactivate the integrated virus [209–214] and most recently in using CRISPR/cas9 
technology to excise HIV out of cells as a potential “cure” strategy [215].

THP-1 cells are a monocytic cell line derived from the peripheral blood of a 1-year old male 
patient who had acute monocytic leukemia [216]. The difference between THP-1 cells and 
U-937 cells is the origin and maturation stage of both cell lines. U-937 cells are of tissue ori-
gin and are therefore at a more mature stage. THP-1 cells are derived from a blood leuke-
mia which represents a less mature stage. There is extensive literature describing the use of 
vitamin D3 or PMA to differentiate THP-1 cells into macrophages [216]. Recent literature 
has determined a protocol for PMA that seems to be the most effective to allow differentia-
tion of THP-1 monocytes into macrophages [217]. Interestingly, comparing peripheral blood 
mononuclear cells (PBMC) monocytes and THP-1 cells has uncovered slight variations in 
their response to various stimuli. Upon stimulation with Lipopolysaccharide (LPS), PBMC 
monocytes produce a greater amount of proinflammatory cytokines such as, TNF-α, IL-6, and 
IL-8 compared to THP-1 cells [218]. These variations in response become much more similar 
when PBMC and THP-1 monocytes are differentiated into macrophages [219]. Interestingand 
important for several lines of experimentation, THP-1 cells can be polarized to the M1 or M2 
phenotype depending on the stimuli provided.

Due to the differentiation state of U-937 and THP-1 cells, they have been used very widely to 
mimic HIV-1 infection of peripheral blood monocytes. Due to this, we will not review their 
use in HIV-1 research in depth as this review focused on promyelomonocytic cell systems. 
However, there have been some recent reviews that have focused more specifically on the 
peripheral blood monocytes as well as their utility in studies of HIV-1 latency [220–223].

10. Conclusion

Although HIV-1 may not be able to infect CD34+ stem cells, the research described above 
shows that they are able to infect the more differentiated progenitor cells. As the cells differ-
entiate from the CD34+ stem cell, the HIV-1 receptor and coreceptor profiles become altered 
and enhance HIV-1 infection. Thus, the virus infects progenitor cells as they differentiate 
down the myeloid lineage in the BM and in the blood. Research surrounding this line of 
investigation has come from examining cells from patients as well as through development of 
derivative cell lines. As described here the KG-1, TF-1, and HL-60 cell lines have all been used 
to understand at which stage of the myeloid cell lineage HIV-1 may be able to infect. This 
has resulted in understanding this is restricted primarily by the levels of CD4 and CXCR4 or 
CCR5 on the cells. Given this it appears that HIV-1 can infect cells as early as the  pluripotent 
myeloid precursor (Figure 2). Because of these models there has been  extensive work to 
examine drug toxicities, regulation of HIV-1 infection, and understanding of how HIV-1 
may affect hematopoiesis. However, due to ART making HIV-1 infection a more chronic 
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 condition and the theory that one of the main reservoirs may involve the myeloid lineage of 
cells, including the promyelomonocytic cells of the bone marrow. Hence, this cellular com-
partment has now taken on a renewed interest. This is evident in the use of the OM-10.1 cell 
line model for mechanistic studies concerning HIV-1 latency as well as testing of latency reac-
tivators on the various cell lines derived from this lineage of cells. It is the role of the myeloid 
precursor cells during the course of chronic infection that will be one of the major focal points 
of future research studies. The use of the TF-1 and HL-60 cells especially, will be very useful 
with respect to answering questions focused on determining when do these cells transverse 
the vascular endothelium at an increased rate. Do these infected bone marrow–derived cells 
traffic to end organs? Do they contribute to the increase in activated monocytes observed 
in the blood that link to HIV-1-associated neurocognitive impairment? Are these promyelo-
monocytic cells in the bone marrow infected by cell-free HIV-1 or through cell-to-cell contact 
with other cells? Are the viruses that infect these cells more dependent on CXCR4 or CCR5 
and is there genetic variability more related to a reservoir virus that was generated early in 
infection and has remained or has continually developed over time in infected patients? These 
are a few questions that these cell lines will help to answer as research in this field advances.
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