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Preface

Today, the fourth-generation (4G) wireless communication systems are being used in many
countries due to their different high-rate services. Due to the increasing consumer demand
for high data rate applications, there are some challenges such as huge mobile data traffic,
explosive growth of connected device with different services, massive demands for systems
with high quality and low latency, etc. that cannot be admitted by 4G.

For this reason, ITU and its partners started a program “IMT for 2020 and beyond” to dem‐
onstrate a view of a time line for future wireless communication capabilities in 2020. The
IMT-2020 has proposed a feature wireless communication systems as 5G with predefined
requirements mainly:

- Network capacity: 10,000 times capacity of current network

- Peak data rate: 10 Gbps

- Cell edge data rate: 100 Mbps

- Latency: < 1 ms

- Spectrum: higher frequencies and flexibility

- Reliability: 99.999% within time budget

- D2D capabilities

Nevertheless, to respond to these abovementioned requirements in 5G, there are several key
areas and important technical challenges that still need to be solved by the research organi‐
zations. These challenging areas include millimeter-wave technologies, future
physical/MAC layer (such as waveforms, multiple access schemes, and modulation), duplex
methods, massive MIMO, and dense networks (such as microcell and picocell). Thus, 5G is a
hot research topic among researchers in academia and industry.

This book intends to provide highlights of the current research topics in the field of 5G and
to offer a snapshot of the recent advances and major issues faced today by the researchers in
the 5G physical layer perspective.

This book is written by specialists working in universities and research centers all over the
world to cover the fundamental principles and main advanced topics in 5G wireless com‐
munications. Moreover, this book has the advantage of providing a collection of main con‐
ceptual topics that are completely independent and self-contained; thus, the interested
reader can choose any chapter and skip to another without losing continuity. Various as‐
pects of 5G system are deeply discussed (in three parts and ten chapters) with emphasis on



its physical layer. Each chapter provides a comprehensive survey of the subject area and
ends with a rich list of references to provide an in-depth coverage of the application at hand.

The three parts of the book are managed as follows:

Part 1: Waveform and Modulation Formats

The first part contains four chapters that investigate the waveforms and modulation formats
that are proposed for 5G. At first, choice of a suitable waveform format as a key factor in the
design of 5G physical layer is discussed with emphasis on candidate waveforms. The au‐
thors investigate and analyze alternative waveforms which are promising candidate solu‐
tions to address the challenges of diverse applications and scenarios in 5G. Then, in Chapter
2, the time-frequency (TF) lattice structure, pulse shaping, and multicarrier schemes are dis‐
cussed in detail. Some candidate waveforms such as filter bank-based multicarrier (FBMC)
and its varieties, generalized frequency division multiplexing (GFDM), and universal fil‐
tered multicarrier (UFMC) are discussed with several performance criteria aspects. Spectral
efficiency analysis FBMC-based 5G networks with estimated channel state information (CSI)
is discussed in Chapter 3. And finally, the concept of nonorthogonal multiple access (NO‐
MA) scheme for the future radio access for 5G is explored in Chapter 4. The spectral efficien‐
cy (SE) of the networks that employ NOMA with its relations with energy efficiency (EE) is
discussed too.

Part 2: 5G Networks

Part 2 focuses on the network configuration aspects of 5G systems. In the first chapter, a
physical layer transmission cooperative strategy for heterogeneous networks is discussed as
the deployment of small cells within the boundaries of a macrocell. To overcome this prob‐
lem, the authors proposed a joint interference alignment (IA) and space-frequency block
code (SFBC) approach to further reduce the information exchange in the network. The ach‐
ievable energy efficiency and spectral efficiency of large-scale distributed antenna systems
are discussed in the second chapter. The authors try to liberate the implementation of LS-
DAS from the acquisition of full CSI and proposed some iterative power allocation strat‐
egies for maximizing EE and also maximizing SE. Finally, energy efficiency for 5G multitier
cellular networks is discussed in the third chapter which provides a stochastic geometry-
based model for studying the BS cooperation in downlink HCNs. To do this, an optimiza‐
tion problem is formulated to maximize the energy efficiency subject to throughput and
outage constraints and solved by the Karush-Kuhn-Tucker (KKT) conditions in terms of
femtotier BS density.

Part 3: Beamforming and Cognitive Radio Networks

This part contains three chapters. The first chapter is about the beamforming approach in
wireless 5G networks, which involves communication between multiple source-destination
pairs with some relays distributed between them. The optimization problem is defined to
find the relay beamforming coefficients that minimize the total relay transmit power by
keeping the SINR of all destinations above a certain threshold value. In the second chapter, a
superallocation scheme is proposed to enhance the sensing detection performance by re‐
scheduling the sensing and reporting time slots in 5G cognitive radio network with cluster-
based cooperative spectrum sensing (CCSS). And finally, one particular form of control
information, namely, selective control information (SCI) with maximum likelihood (ML) de‐
tection techniques, is discussed in the third chapter. The authors use GFDM to evaluate and
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demonstrate the detection performance of a new form of SCI detection that uses a time-do‐
main correlation (TDC) technique with some improved methods.

Finally, the editor would like to thank all the authors for their excellent contributions in the
different areas of 5G systems and hopes that this book will be of valuable help to the readers.

Hossein Khaleghi Bizaki
Malek Ashtar University of Technology,

Tehran, Iran
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Analysis of Candidate Waveforms for 5G Cellular

Systems

Ayesha Ijaz, Lei Zhang, Pei Xiao and Rahim Tafazolli

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66051

Provisional chapter

Analysis of Candidate Waveforms for 5G
Cellular Systems

Ayesha Ijaz, Lei Zhang, Pei Xiao and

Rahim Tafazolli

Additional information is available at the end of the chapter

Abstract

Choice of a suitable waveform is a key factor in the design of 5G physical layer. New
waveform/s must be capable of supporting a greater density of users, higher data
throughput and should provide more efficient utilization of available spectrum to
support 5G vision of “everything everywhere and always connected” with “percep-
tion of infinite capacity”. Although orthogonal frequency division multiplexing
(OFDM) has been adopted as the transmission waveform in wired and wireless
systems for years, it has several limitations that make it unsuitable for use in future
5G air interface. In this chapter, we investigate and analyse alternative waveforms
that are promising candidate solutions to address the challenges of diverse applica-
tions and scenarios in 5G.

Keywords: waveform modulation, 5G requirements, orthogonal frequency division
multiplexing, universal filtered multicarrier, generalized frequency division multiplexing,
filterbank multicarrier, windowed orthogonal frequency division multiplexing, filtered
orthogonal frequency division multiplexing

1. Introduction

Orthogonal frequency division multiplexing (OFDM), which uses a square window in time
domain allowing a very efficient implementation, has been adopted as the air interface in
several wireless communication standards, including third generation partnership (3GPP)
long-term evolution (LTE) and IEEE 802.11 standard families due to the associated advantages
such as:

• “Robustness against multipath fading

• Ease of implementation

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



• Efficient one-tap frequency domain equalization enabled by the use of cyclic prefix (CP)

• Straightforward and simple extension to very large multiple-input multiple-output (MIMO)
and high gain beam forming solutions” [1]

Despite its advantages, OFDM suffers from a number of drawbacks including high peak-to-
average power ratio (PAPR) and high side lobes in frequency. OFDM requires stringent time
synchronization to maintain the orthogonality between different user equipments (UEs).
Therefore, signalling overhead increases with the number of UEs in an OFDM-based system.
Moreover, it has high sensitivity to carrier frequency offset (CFO) mismatch between different
devices. All these drawbacks hinder the adoption of OFDM in the 5G air interface [1] to
achieve the following key characteristics currently envisioned for 5G wireless networks:

• 1000 + higher mobile data volume per geographical area

• 10–100 + more connected devices

• 10–100 + higher typical user data rate

• 10 + lower energy consumption

• End-to-end latency of <1 ms

• Ubiquitous 5G access including in low density areas

These fundamental characteristic are envisioned based on following scenarios specified by the
5G research community [2, 3]:

1. Bitpipe communication: Broadcasting dense content (such as 3D or 4k video) in small-
sized densely deployed cells demands several tens of Mbps to achieve a good quality of
experience (QoE). An increased bandwidth and a physical (PHY) layer with high spec-
trum efficiency is required in this scenario. Therefore, the 5G network must rely on
advanced digital communication techniques including MIMO for diversity and
multiplexing, massive MIMO to improve the system spectrum efficiency, higher order
modulation and efficient coding schemes, adaptive small cell clustering, multicell cooper-
ative transmission, inter-cell interference management and efficient spectrum allocation
with cognitive radios (CR).

2. Internet of things (IoT): This scenario targets sensory and data collecting use cases such
as smart grid, health and environmental measurements and monitoring, transportation,
etc. This scenario is mainly characterized by small data packets and massive connections
of devices with limited power source. It does not require large channel bandwidth, and
duty cycle is generally low while power saving is mandatory. The IoT devices must be
able to achieve reliable communication with a loose synchronization or even asynchro-
nous for higher energy efficiency.

3. Tactile internet: This scenario focuses on special applications and use cases of IoT and
vertical industries with real-time constraints such as internet of vehicles (IoV) and indus-
trial control. These new applications require very low end-to-end latency (ms-level) and
high reliability (nearly 100%). The air interface and network forwarding delays need to be

Towards 5G Wireless Networks - A Physical Layer Perspective4
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reduced significantly to achieve the sub-millisecond latency requirement. Therefore,
shorter frame length with minimal or no overhead, multiple access technologies which
can enable grant-free transmission, and solutions for reducing network forwarding delays
must be adopted. Technologies such as advanced coding and space/time/frequency diver-
sity must be utilized for reliable data transmission.

4. Wireless regional area network (WRAN): This scenario focuses on coverage of low popu-
lated remote areas which suffer from low data rates and unreliable solutions. While wired
technologies have limited coverage, current wireless networks operating in licensed frequen-
cies have relatively small cell sizes which make them economically unfeasible in sparsely
populated areas. The 5G networks must address large coverage areas using dynamic using
dynamic channel allocation based on CRwith low out of band emission (OBE) and efficiently
deal with the multipath effects by reducing the impact of the CP in the overall data rate [2].

The requirements of different scenarios can be impacted by the choice of waveforms. There-
fore, to address the drawbacks of OFDM and enable the aforementioned characteristics,
different physical-layer waveforms are being investigated for 5G networks. The waveforms
currently under consideration include filtered orthogonal frequency division multiplexing
(FOFDM) [4], windowed orthogonal frequency division multiplexing (WOFDM) [5], filterbank
multicarrier (FBMC) [6], generalized frequency division multiplexing (GFDM) [7] and univer-
sal filtered multicarrier (UFMC) [2]. These waveforms are being investigated to analyse their
impacts on the following fundamental requirements of 5G [8]:

• Capabilities for supporting massive capacity and massive connectivity

• Support for an increasingly diverse set of services, application and users—all with
extremely diverse requirements, e.g. efficient support for short-burst transmissions, IoT
and massive machine type communications (mMTC)

• Flexible and efficient use of all available non-contiguous spectrum for wildly different
network deployment scenarios

In this chapter, we analyse performance of alternative waveforms in terms of OBE, bit error
rate (BER), time and frequency efficiency, PAPR, computational complexity and sensitivity to
CFO and time offset (TO). This comparison will help determine the suitability of the candidate
waveforms in different scenarios for 5G networks.

2. Candidate waveforms

2.1. Filtered orthogonal frequency division multiplexing

Large OBE, due to the rectangular shaping of the temporal signal, is one of the main short-
comings of the OFDM used in LTE. Figure 1 shows the power spectral density (PSD) function
of an OFDM waveform with carrier spacing set to 15 kHz, FFT size of 1024 and 72 samples
long CP. We can observe loss of spectral efficiency due to the partial use of available band-
width to fit in an 8 MHz emission spectrum mask (ESM).

Analysis of Candidate Waveforms for 5G Cellular Systems
http://dx.doi.org/10.5772/66051
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The problem of large OBE is alleviated in FOFDM using transmit filter cascaded after the
modulator as shown in Figure 2. At the transmitter, the information bit sequence is encoded
into a coded bit sequence which goes through interleaver (Π) and is mapped into QPSK/QAM
symbols. Then, serial to parallel (S/P) conversion takes place and a set of N symbols are
mapped onto orthogonal subcarriers using inverse fast Fourier transform (IFFT). The output
from IFFT block is converted into serial data followed by CP insertion. In order to provide
robustness against inter-symbol interference (ISI) and inter-carrier interference (ICI), the length
of the CP must be longer than the channel impulse response. The OFDM signal is filtered by a
transmit pulse shaping filter (TX filter) before transmission over the multipath fading channel.
At the receiver, a receive pulse shaping filter (RX filter) is used and the signal is converted back
to the frequency domain using fast Fourier transform (FFT) operation after CP removal. This is
followed by one-tap equalization (the equalizer is labelled as equation in Figure 2) to mitigate
the channel effect. The equalized signal is fed to a soft demapper, and its output is subse-
quently de-interleaved (Π−1) and decoded to recover the information bearing signal [4].

Suitably designed filters can suppress the large side lobes of OFDM making FOFDM more
bandwidth efficient while preserving the orthogonality among subcarriers. In this document,
we have used a square root raised cosine (SRRC) filter, with roll-off factor α = 0.3 truncated to 3
symbol interval (Tr = 3T where T is the symbol duration) on each side of the peak at the
transmitter, and the receiver filter is matched to the transmit filter. Time and frequency domain

Figure 1. Power spectral density of CP-OFDM centred on the active carrier [9].
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characteristics of such a filter are shown in Figure 3 wherein x-axis for time and frequency is
normalized to symbol interval T and symbol rate 1 T= , respectively.

Although FOFDM shows better spectral containment as compared to OFDM, however, when
available spectrum fragments are not contiguous, filtering becomes challenging since a sepa-
rate filter needs to be dynamically designed for each available chunk of spectrum.

2.2. Windowed orthogonal frequency division multiplexing

Windowed OFDM is similar to conventional OFDM, however, it uses a non-rectangular trans-
mit window smoothing the edges of the rectangular pulse to provide better spectral contain-
ment and reduce ACI. Eq. (1) shows such a pulse shape in which roll-off portions are of a
raised cosine shape

Figure 2. Transmitter and receiver structure of FOFDM [4].

Figure 3. SRRC filter characteristics (a) time domain: the x-axis is normalized to the symbol interval T, the pulse is
normalized to a peak value of unity (b) frequency domain: the frequency axis is normalized to the symbol rate 1/T, the
magnitude of the spectra, normalized to peak value of unity, is plotted in dB scale.
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In Eq. (1), 0 ≤ β 1, is the roll-off factor which controls the length of the roll-off portion of the
non-rectangular window, i.e. β(N + NCP), where NCP is the length of CP in samples. Due to
multiplication of CP with a non-unity function, orthogonality will be in general lost in a
multipath channel. In order to preserve orthogonality, an extended CP is used in WOFDM
and the original samples of the CP are kept outside the roll-off part of the windowing function.
Improved PSD side lobe decay in WOFDM can save the guard band overhead of the current
OFDM deployments, e.g. 10% overhead in LTE. However, the use of extended CP in WOFDM
reduces its spectral efficiency as compared to OFDM. Therefore, both frequency and time
domain overheads need to be taken into account to determine overall improvement in spectral
efficiency as compared to OFDM. WOFDM also uses a cyclic suffix (CS) after each data block
in addition to the CP before each data block. The spectral loss due to additional overhead of CS
is partly compensated by overlapping the CP and CS of consecutive symbols.

2.3. Filter bank multicarrier

Filter bank multicarrier applies filtering on a per-subcarrier basis and is considered as an
attractive alternative to OFDM to provide improved out-of-band spectrum characteristics.
Since subcarrier filters are narrow in frequency and thus require long filter lengths (normally
at least 4T to preserve an acceptable ISI and ICI), the symbols are overlapping in time. To
comply with the real orthogonality principle, offset-QAM (OQAM) can be applied and, there-
fore, FBMC is not orthogonal in the complex domain. The most common FBMC technique is
the FBMC/OQAM, which is also known as OFDM with offset quadrature amplitude modula-
tion (OFDM/OQAM ) [10].

In FBMC, the prototype filter needs to be carefully designed to minimize or eliminate ISI and
ICI while keeping the side lobes small. These prototype filters are implemented using an
efficient technique called polyphase implementation, which uses multi-rate signal processing
techniques to reduce the complexity by joint implementation of all synthesis or analysis filters
in the filter bank. The transmitted signal in FBMC is the sum of the outputs of a bank of N
filters, whose length is given by L = N + p, where N is the FFT size and p is the length of each
polyphase filter. We have used an isotropic orthogonal transform algorithm (IOTA) prototype
function with p = 6, for use in FBMC system, which is well-localized in time and frequency
domain as shown in Figure 4.

Since subcarriers can be better localized in FBMC due to more advanced prototype filter
design, therefore the CP can be removed resulting in improved spectral efficiency as compared
to OFDM. This is in addition to the spectral efficiency gain due to reduced guard band in
FBMC. However, FBMC/OQAM incurs an overhead due to transition times (tails) at both ends
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of a transmission burst and an overhead due to the T=2 time offset between the OQAM symbols
[11] (total tail duration is equal to length of the prototype filter). Although solutions have been
proposed to remove signal tails of OFDM/OQAM signals [11], however, the overhead cannot
be removed totally, without increasing its sensitivity to time and frequency misalignments,
and it increases the latency of communication.

2.4. Universal filtered multicarrier

As the name implies, UFMC is also a filtered multicarrier modulation scheme using suitably
designed filters to reduce OBE like FOFDM and FBMC and combines the benefits of the two
schemes. UFMC applies filtering to chunks of contiguous subcarriers instead of single
subcarriers (as in FBMC) or the complete band (as in FOFDM). Figure 5 shows the block
diagram of a UFMC transmitter with total bandwidth divided into B sub-bands where the
time-domain transmit vector x for a particular multicarrier symbol is the superposition of the
sub-band-wise filtered components, with filter length L and FFT length N. The transmit signal
can be mathematically described as follows:

x ¼ ∑
B

i¼1
FiVisi (2)

where Si is the transmit vector containing ni complex QAM symbols for transmission in ith
sub-band. For each of B sub-band, indexed i, Si is transformed to time-domain by the
IDFT-matrix Vi with dimensions [N + ni]. N is the required number of samples per symbol to

Figure 4. Time and frequency response of IOTA prototype function. Time domain pulse is normalized to average power
of unity. The x-axis is normalized to the symbol interval T, the frequency axis for spectra is normalized to the symbol rate
1/T and the frequency domain spectrum is normalized to peak value of unity.
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represent all sub-bands without introducing aliasing (i.e. N depends on the overall covered
bandwidth). “Vi includes the relevant columns of the inverse Fourier matrix according to the
respective sub-band position within the overall available frequency range. Fi is a Toeplitz matrix
with dimensions [(N + L − 1) + N], composed of the filter impulse response, performing linear
convolution” [2]. Unlike OFDM, CP can be dropped in UFMC and its additional symbol
duration overhead is used to introduce sub-band filters. Since filtering is applied to a sub-band,
these filters can be shorter [2] (UFMC filters are in the order of an OFDM CP) than the per-
subcarrier filters of an FBMC system improving the suitability of UFMC for communicating in
short bursts, compared to FBMC. Moreover, orthogonality is still maintained between
subcarriers. Since the same filter can be used for each sub-band, spectral holes can be dynami-
cally utilized without posing a challenge in implementation as compared to FOFDM.

We have used Dolph-Chebyshev filters with side-lobe-attenuation equal to 40 dB and filter
length L equal to one sample larger than the CP length in an LTE system. Figure 6 depicts the
impulse and frequency response for an exemplary setting with L = 73 and N = 1024.

Since UFMC modulates each data symbol at the same time and the same frequency as in
OFDM, its receiver [2] can demodulate legacy OFDM signals and UFMC modulated signal
can be directly demodulated by the legacy OFDM receiver. This feature makes UFMC-based
system backwards compatible with the legacy OFDM systems [12]; a feature missing in FBMC.

2.5. Generalized frequency division multiplexing

GFDM is a block-based, non-orthogonal multicarrier transmission scheme capable to spread
data across a two-dimensional (time and frequency) block structure (multi-symbols per
multicarriers). The block-based transmission in GFDM is enabled by circular pulse shaping of
the individual subcarriers. “The main difference between OFDM and GFDM is that the latter

Figure 5. UFMC transmitter.
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transmits MN data symbols per frame using Mtime slots with Nsubcarriers where each data
symbol is represented by a pulse shape g(t), whereas OFDM transmits N data symbols using
one time slot with N subcarriers, where each symbol is filtered by a rectangular pulse shape”
[2]. GFDM cannot only model the spectrum shape by choosing an appropriate pulse shape to
provide a very low OBE, frequency spacing between subcarriers is also more flexible in GFDM
than in OFDM which allows for a higher flexibility for spectrum fragmentation. GFDM can
achieve higher spectral efficiency since it does not need guard band to avoid adjacent channel
interference (ACI).

The baseband block diagram of a GFDM transceiver system is given in Figure 7. The data
symbols to be transmitted on ith subcarrier, di = di(0),…, di(M − 1)]T, are first up-sampled by the
factor of N to form an impulse train siðnÞ ¼ ΣM−1

m¼0diðmÞδðn−mNÞ,n ¼ 0,…,NM−1. This signal is
then circularly convolved with the prototype filter and up-converted to its corresponding
subcarrier frequency. The resulting signals for all subcarriers are summed up to form the
GFDM symbol x(n) given below:

xðnÞ ¼ ∑
N−1

i¼0
∑
M−1

m¼0
diðmÞgfðn−mNÞmod MNge

j2πinN , n ¼ 0,…,NM−1 (3)

where gl is the lth coefficient of the prototype filter. Circular filtering helps to remove the
latency associated with the prototype filter transient intervals when conventional linear con-
volution is used like in the FBMC schemes. We have used an SRRC filter with roll-off factor
α = 0.3 in the GFDM-based link level simulator. The impulse response and frequency domain
characteristics for the prototype filter are given in Figure 8 for N = 128 and M = 7.

Figure 6. Chebyshev filter characteristics in time and frequency domain. The time domain pulse is normalized to a peak
value of unity. The frequency axis is normalized to the symbol rate 1/T.
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Based on Eq. (3), GFDM signal x = [x(0),…, x(MN − 1)]T can also be formulated as x = Adwhere
A is an MN + MN modulation matrix whose elements can be represented as:

½A�nm ¼ gfðn−mNÞmod MNge
j2πnN

m
M (4)

Lastly, on the transmitter side, a cyclic prefix of NCP samples is added to the GFDM data block
to produce ~x. Since it uses only one CP for M time slots (i.e. one block) rather than a CP for
each slot (i.e. multicarrier symbol) as is the case in OFDM, it has higher spectral efficiency than
the latter. GFDM turns into OFDM when M = 1 and A is an N + N inverse Fourier matrix. In
CP-based GFDM systems, frequency domain equalization (FDE) can be performed after CP
removal to compensate for the multipath channel impairments. The received signal, after
channel equalization, can be demodulated after using linear receivers such as zero forcing

Figure 7. Block diagram of a GFDM transceiver system [7].

Figure 8. Time and frequency domain characteristics of an SRRC filter in GFDM transmitter (a) time domain: the x-axis is
normalized to the symbol interval T, the pulse is normalized to a peak value of unity (b) frequency domain: the frequency
axis is normalized to the symbol rate 1/T, the magnitude of the spectra, normalized to peak value of unity, is plotted in dB
scale.
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(ZF), matched filter (MF) and minimum mean square error (MMSE) receivers. While MF
receiver maximizes signal-to-noise ratio (SNR) per subcarrier, it cannot completely remove
ICI. Self-interference due to non-orthogonality of the neighbouring subcarriers and time slots
can be removed using ZF receiver at the expense of noise enhancement. MMSE receiver can be
used to make a trade-off between self-interference and noise enhancement [2].

3. Comparison of waveforms

Now, we present simulation results and discuss performance of the candidate waveforms.
Based on the characteristics of these waveforms, we discuss their suitability for the scenarios
which are being foreseen for 5G networks. The simulation parameters are given in Table 1.

3.1. Power spectrum

Figure 9 shows power spectral density of different waveforms assuming non-contiguous
fragments of spectrum are available for transmission. In Figure 9, two available spectrum
fragments are separated by an unavailable band while the spectrum at the two edges is also
not used for transmission. It is observed that UFMC and FBMC reduce the OBE by reducing
spectral leakage from the transmission subcarriers to the unused neighbouring band. Hence,
these waveforms are more suitable candidates, as compared to OFDM, for applications that

Parameter Settings

MCM schemes OFDM, WOFDM, FOFDM, FBMC, UFMC, GFDM

Subcarrier spacing (Δf) 15 KHz

Resource block size 12 subcarriers

Sub-band size for UFMC (D) 12 subcarriers

No. of MC symbols per
subframe (M)

7

Bandwidth 5 MHz

FFT size (N) 512

Encoder Turbo coding, rate 1/3, 1

CP length (samples) (NCP) 32 for OFDM, FOFDM and GFDM. 0.25 +FFT size for WOFDM. 0 for FBMC and UFDM

Channel model Extended pedestrian A (EPA) [13], AWGN

Channel estimation Ideal

Equalizer 1-tap MMSE FDE

Sub-frames 10,000

Filters FOFDM FBMC UFMC GFDM

RRC filter
α = 0.3 L = 13

IOTA pulse
p = 6

Dolph-Chebyshevside
lobe attenuation = 40 dB L = 33

RRC filter
α = 0.1

Table 1. Simulation settings.
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have strict ACI requirements such as in cognitive radio (CR). It also implies that these wave-
forms will not need large guard bands to avoid ACI, thereby, improving spectral efficiency and
facilitating carrier aggregation. WOFDM also shows considerably lower OBE as compared to
OFDM. However, OBE of GFDM is not significantly lower than OFDM due to the abrupt
changes of the signal value between GFDM blocks.

Although FOFDM has lower side lobes as compared to OFDM in the two unused bands at the
edges, its OBE to the unavailable band between the available fragments is the same as that of
OFDM. This is due to the use of filter over the whole band in FOFDM using OFDM as the
underlying technology. Therefore, FOFDM cannot efficiently utilize non-contiguous chunks of
spectrum.

3.2. Bit error rate performance

Having analysed the PSD properties of transmitted signal using different MCM schemes, we
now analyse the BER performance of different waveforms assuming only one transmitter and
receiver using the entire bandwidth for data transmission and no interferer in adjacent fre-
quency bands. We first simulate the BER performance in an AWGN only channel using the
QPSK (OQPSK for FBMC) modulation without error correction coding. Then BER perfor-
mance was simulated using a rate 1/3 turbo code in the extended pedestrian A (EPA) channel
[13] assuming perfect channel knowledge to analyse the performance of different waveforms
in frequency selective channel. The results were obtained by averaging BER over 10,000 sub-
frames transmitting 7 MC symbols per subframe. For FBMC, we used hard truncation by
discarding two FFT blocks on both sides of the transmit matrix to reduce the overhead caused
by filter tails. Similarly, hard truncation was employed to completely remove filter tails in
FOFDM. Although CP is not needed for OFDM, GFDM, FOFDM in the AWGN channel, it is

Figure 9. Power spectral density of waveforms with fragmented spectrum around the centre frequency.
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still used here to comply with the standard system configuration. Simulation results presented
in Figure 10 show that all schemes have comparable BER performance in the AWGN channel
in the absence of ACI. Slight discrepancy in the performances of different waveforms as
compared to the theoretical performance is due to the overhead imposed by the CP or filter
tails. WOFDM shows 1 dB degradation due to the largest overhead, i.e. 25% of FFT size. FBMC
shows 0.5 dB degradation as compared to the theoretical performance of QPSK in an AWGN
channel while other waveforms are very close to the theoretical curve.

Figure 10 also shows BER performance using QPSK/OQPSK with code rate = 1/3 in an EPA
channel using parameters specified in Table 1 and assuming perfect knowledge of noise
variance is available for MMSE equalizer. It is observed that all waveforms, except WOFDM
and FBMC, show similar performance as that of OFDM. While loss in WOFDM is due to
greater CP overhead, FBMC also shows similar performance as that of WOFDM in multipath
fading channel under consideration.

3.3. Time-frequency efficiency

Time-frequency efficiency rTF which depends on the characteristics of the underlying wave-
form of an air interface is an important parameter to compare the performance of different
waveforms. It is defined as follows [14]:

rTF ¼ rT :rF ¼ LD
LD þ LT

·
Nu

N′ (5)

where rT is “the efficiency in time domain relating the information carrying body (LD) of the
burst/subframe to its overall length including the tails (LT)” [14]. Hence, length of the cyclic
prefix and the filters are of relevance for rT. rF is the efficiency in frequency domain, and it is the
ratio of number of usable subcarriers Nu (i.e. excluding guard carriers) to the overall number of
subcarriers N′ within the usable band.

Figure 10. BER for QPSK/OQAM in AWGN (code rate = 1) and EPA (code rate = 1/3) channel.
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Here, we present time domain efficiency taking into account basic signal characteristics,i.e.
how many data symbols may be included into a given time-frequency block for a certain CP
and filter length without reflecting on other overheads such as pilot symbols.

3.3.1. Time domain efficiency

As shown in Eq. (5), time domain efficiency is given by rT = LD/(LD + LT). If we assume the burst
to contain M multicarrier symbols (each comprising of N samples), the length of the informa-
tion carrying body of the transmitted signal is LD = MN. The tails of different waveforms, with
design specifications given in Section 2, are given below:

LT,OFDM ¼ MNCP (6)

LT,F−OFDM ¼ MNCP (7)

LT,W−OFDM ¼ MNCP ¼ 0:25 ·MN (8)

LT,FBMC ¼ N (9)

LT,UFMC ¼ MðL−1Þ (10)

LT,GFDM ¼ NCP (11)

Figure 11 shows time domain efficiency of candidate waveforms versus the frame/burst size
ranging from 1 to 20 MC symbols per frame/burst with FFT size (N) equal to 1024 and CP length
equal to 72 samples. The length of UFMC filter, i.e. L = 73. It can be observed from these results
that FOFDM using hard truncation has similar time domain efficiency as OFDM as is also
evident from Eqs. (6) and (7). Time-domain overhead for both schemes is proportional to the
frame size (M) and CP length. Therefore, their time-efficiency is constant for a fixed size of CP.
This is also true for WOFDM, however, it has lower efficiency than OFDM due to longer CP.
GFDM has the highest efficiency due to its block-based nature using one CP per frame. FBMC,
on the other hand, has significantly lower efficiency than OFDM particularly for very short burst
sizes. Its performance approaches that of OFDM for the design used by LTE (indicated by black
vertical line), i.e.14 MC symbols per frame outperforms OFDM for longer bursts.

3.3.2. Frequency domain efficiency

As shown in Eq. (5), frequency domain efficiency is given by rF = Nu/N′. Using LTE as reference
and assuming a transmission bandwidth of 10 MHz with subcarrier spacing 15 kHz, the
number of subcarriers N′ fitting into the given bandwidth is:

N′ ¼ 10 MHz
15 kHz

¼ 666 (12)

According to the LTE standard, number of subcarriers actually carrying data is NU, OFDM

= 600. For FBMC, with very low out-of band radiation as shown in Figure 9, one guard
subcarrier at each side of the band is sufficient and thus NU, FBMC = 664 − (Ng − 1) where
Ng reflects the number of users sharing the band. Since FBMC is not orthogonal with
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respect to the complex plane, an additional guard subcarrier is needed to separate UL
transmissions [if complex precoding is applied (the same holds for DL transmissions)] of
users being allocated adjacent in frequency. “This is necessary as the transmissions of
different users are experiencing different channel gains introducing multi-user interfer-
ence at the allocation edges. Hence, Ng is equal to the number of users sharing the
transmission time interval (assuming continuous user allocations)” [14]. Assuming a
scenario where whole bandwidth is available for single user transmission, NU, FBMC =
664. GFDM, UFMC and WOFDM designed for very low OBE, as shown in Figure 9, also
need one subcarrier guard at each side of the band. Therefore, NU, UFMC = NU, WOFDM =
NU, GFDM = 664.

Since FOFDM, with an SRRC filter design as given in Section 2.1, does not exhibit very low
OBE as compared to OFDM, NU, FOFDM is expected to be quite similar to NU, OFDM and this
value needs to be decided after further careful investigation of the OBE characteristics and
spectral emission mask requirements in different scenarios. For the sake of analysis, we choose
it arbitrarily to be equal to NU, OFDM.

Figure 11. Time domain efficiency versus burst size.
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3.3.3. Overall time-frequency efficiency

Assuming a single user occupying the whole bandwidth, i.e. Ng = 1, Figure 12 shows the
comparison of time-frequency efficiency of different waveforms versus the number of
multicarrier symbols per burst. Since frequency domain efficiency of all the waveforms except
OFDM and FOFDM is nearly unity, their overall efficiencies remain unchanged. However, overall
time-frequency efficiency of OFDM and FOFDM reduces by 10%. Therefore, we observe that
while time-domain efficiency of UFMC design under consideration is similar to that of OFDM, its
overall efficiency is better due to lower guard band required for UFMC. It can also be observed
that the overall time-frequency efficiency of FBMC approaches the efficiency of OFDM when
burst size approaches 5, and it exhibits greater efficiency for burst sizes exceeding 5 multicarrier
symbols. Based on these analytical results, we can conclude that both UFMC and GFDM are
more suitable for short burst transmissions as compared to other MCM schemes. FBMC is more
suitable for long burst transmission and is inefficient for short burst communication.

3.4. Peak-to-average power ratio performance

Peak-to-average power ratio (PAPR) measures the envelope variation of a waveform and is
defined as the peak amplitude of the waveform divided by its root-mean-square value. Large
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PAPR requires power amplifiers to have a very large linear range. Otherwise, the nonlinearity
leads to signal distortion, which causes spectral regrowth and higher BER. It was gathered
from the literature survey [15] that all multicarrier candidate waveforms suffer from large
PAPR. Figure 13 presents the PAPR performance comparison of different waveforms and
confirms the findings from the literature as it is seen that all the candidate waveforms exhibit
large PAPR. Comparing the relative performance, we observe that OFDM and WOFDM have
the lowest PAPR while FOFDM shows the highest PAPR. Other MCM schemes using filter to
limit OBE also show higher PAPR as compared to OFDM. A general observation from these
results is that use of filters in MCM schemes to limit OBE, increases the PAPR due to interfer-
ence/overlapping among the time domain samples of filtered signals.

3.5. Impact of CFO

In this section, we present results of simulations carried out to analyse the impact of carrier
frequency offset on the BER performance of different waveforms. Simulations were performed

Figure 13. PAPR performance of candidate waveforms.
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using parameters as given in Table 1 for QPSK in an AWGN channel only, hence, the channel
does not introduce any impairment.

Figure 14 shows the raw BER of QPSK assuming ∈ = 0.05, 0.1, where ∈ = f′T is the
normalized CFO, i.e. the frequency offset f ′ normalized by the subcarrier spacing 1 T= . Note
that this is the residual CFO and is not compensated for in the channel equalization block. It
is observed from simulation results that all the waveforms show similar level of degrada-
tion, approximately 2 dB, in BER performance for ∈ = 0.05 as compared to the BER perfor-
mance shown in Figure 10 for a perfectly synchronized receiver in an AWGN channel.
However, the degradation in FBMC is comparatively larger, approximately 2.5 dB, as
compared to other waveforms. This is due to the intrinsic interference in the FBMC scheme
and the degradation becomes worse when normalized CFO increases to 0.1 due to increased
level of intrinsic interference in FBMC. Comparing the results of ∈ = 0.05 and ∈ = 0.1, it can
be seen that for larger value of CFO, all waveforms except FBMC show approximately
10.5 dB degradation and also tend to exhibit an error floor for higher values of Eb/No where
inter-carrier interference becomes dominant due to larger CFO. Large degradation in the
BER performance of FBMC indicates the need for intrinsic interference cancellation tech-
niques or re-designing filters with even better localized pulse shapes to make FBMC more
robust to CFO.

3.6. Impact of time offset

In this section, we present BER performance of different waveforms to analyse their sensitivity
to timing offset (TO). We simulated BER performance for two different arbitrary values of TO,
i.e. 80 and 150 samples in AWGN channel only. Hence, it is ensured that the channel itself does
not introduce any time spreading. Simulation results given in this section were obtained by
estimating channel using noise-free samples of received signal. We know from the literature
survey that due to intrinsic interference in FBMC, it requires special pilot design, e.g. auxiliary

Figure 14. BER of QPSK/OQPSK in AWGN for ϵ = 0.05, 0.1.
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pilots [16], for channel estimation. Otherwise, the performance is severely degraded as can be
seen in simulation results presented in Figure 15 for TO = 80 and TO = 150 samples.

3.7. Computational complexity

The final figure of merit to be considered in this chapter is the computational complexity of
different waveforms. In this section, computational complexity is evaluated in terms of num-
ber of real multiplications for each MCM Scheme. It is assumed that Nu(Nu ≤ N) subcarriers are
loaded with transmitted symbols. A pair of N-point FFT and IFFT (via Split Radix FFT) with
complexity μFFT&IFFT ¼ 2ðNlog2N−3N þ 4Þ is used as the component in the efficient
implementations of relevant MCM schemes.

Table 2 shows the computational complexity of the 5G candidate waveforms in terms of total
number of required real multiplications per burst comprising of M multicarrier symbols (each
MC symbol comprising of N subcarriers). While calculating complexity of UFMC and GFDM,
it is assumed that each complex multiplication can be performed using three real multiplica-
tions. Complexity of OFDM comprises of IFFT and FFT complexity at the transmitter and
receiver. FOFDM includes the added complexity due to transmit and receive filters. In
FOFDM, it is assumed that the transmit filtering and adding CP could be combined such that
the filtering is only performed once for the CP samples [12]. WOFDM has added complexity as
compared to OFDM due to windowing that is a point wise multiplication operation. Complex-
ity of UFMC transmitter is calculated based on number of real multiplication required for
direct implementation of the operations given in Figure 5. Receiver complexity is derived
based on the complexity of 2N point FFT operation performed at the UFMC receiver [2].
Complexity of FBMC is based on real multiplications required for filter, frequency shifting
and FFT and IFFT operations in FBMC transceiver [10]. Complexity of GFDM is based on the
low complexity transceiver architecture given in [7] in addition to the MN point FFT and IFFT
operations required at the GFDM receiver to enable 1-tap FDE.

Figure 15. BER of QPSK/OQPSK in AWGN for TO = 80, 150 samples.
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The last column of Table 2 shows the complexity of each MCM scheme normalized to the
OFDM complexity for M = 14, N = 1024, D = 12, p = 6, NCP = 72, N′ = 664, L = 72 (UFMC), and
L = 13 (FOFDM). It is observed that as compared to OFDM, WOFDM has the lowest complex-
ity. FOFDM and FBMC are approximately five and six times more complex than OFDM, while
GFDM is nearly 12 times more complex as compared to OFDM. The highest complexity is
shown by UFMC. The complexity of UFMC is directly proportional to the number of sub-
bands which in turn depends on the sub-band size. It must be noted that more efficient ways of
implementation, e.g. polyphase implementation given in [9], can reduce the complexity of
UFMC by nearly 4.5 times. Using a smaller FFT size per sub-band in UFMC can also attain
significant reduction in complexity

4. Summary

The waveforms for 5G networks should address certain challenges to meet the diverse set of
requirements for future wireless communications. This chapter has described different candi-
date waveforms and some preliminary simulation results are presented to compare their
performance with OFDM and verify the comparisons given in the literature summarized in
Table 3. Based on the simulation results given in this chapter, performance of different wave-
forms as compared to OFDM is summarized in Table 4.

It is observed that while most of the results match the comparison found in the literature, TO
and CFO resiliency of FBMC does not match the results in Table 3 [15]. This is due to the fact
that we have not taken into account any intrinsic interference cancellation techniques or
FBMC-specific pilot design for improved channel estimation.

While 5G candidate waveforms show better spectral containment than OFDM making them
suitable for carrier aggregation, other factors such as spectral efficiency, synchronization
requirements and computational complexity need to be taken into account in order to find
the most suitable techniques and corresponding tradeoffs for different 5G scenarios. However,
this needs further simulations and analysis particularly in multi-user scenarios according to

MCM Number of real multiplications per burst Normalized complexity

OFDM M
�
2ðNlog2N−3N þ 4Þ

�
1

FOFDM M
�
2ðNlog2N−3N þ 4Þ þ 2NLþ 2ðN þNCPÞL

�
4.8427

WOFDM Mð2ðNlog2N−3N þ 4Þ þ 2ðN þ 0:25NÞÞ 1.1785

UFMC M ð2Nlog22N−6N þ 4Þ þ N′

D ðNlog2N−3þ 4þ 2LNÞ
� �

601.89

FBMC M
�
4ðNlog2N−3N þ 4Þ þ 4N þ 8Np

�
5.7122

GFDM 6MN
�
Mþ log2NÞ þ 2ðMN log2 MN − 3MN þ 4

�
11.8231

Table 2. Complexity of MCM schemes.
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the propagation conditions of different 5G use cases and scenarios to understand the suitabil-
ity of each candidate waveform in that specific environment.
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Figure of merit OFDM FOFDM WOFDM FBMC GFDM UFMC

PAPR High High High High Moderate (for SC-FDE) High

OBE High Low Low Low Low Low

SE Low Low Low High High High

Computational complexity Low Moderate Moderate High High High

Short-burst traffic No No No No Yes Yes

Fragmented spectrum No No Yes Yes Yes Yes

TO resiliency Poor Poor Moderate Good Good Good

CFO resiliency Poor Poor Moderate Good Good Good

Table 3. Comparison of different MCM schemes [15].

Figure of merit FOFDM WOFDM FBMC GFDM UFMC

PAPR High Similar High High High

OBE Low (in sidebands only)
Similar (in fragments
between available bands)

Low Low Slightly lowerLow
(using guard symbols
or windowing [2])

Low

Time-
frequency
efficiency

Similar Low High for
longer
bursts

High High

Computational
complexity

Moderate Similar Moderate Moderate High

Short-burst
traffic

No No No Yes Yes

Fragmented
spectrum

No Yes Yes Yes Yes

TO resiliency Similar Better Poor Better Better

CFO resiliency Similar Lower Poor Better Similar

Table 4. Summary of performance of different MCM schemes as compared to OFDM.
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Abstract

In this chapter, we first introduce new requirements of 5G wireless network and its
differences from past generations. The question “Why do we need new waveforms?” is
answered  in  these  respects.  In  the  following  sections,  time‐frequency  (TF)  lattice
structure, pulse shaping, and multicarrier schemes are discussed in detail. TF lattice
structures give information about TF localization of the pulse shape of employed filters.
The  structures  are  examined  for  multicarrier,  single‐carrier,  time‐division,  and
frequency‐division  multiplexing  schemes,  comparatively.  Dispersion  on  time  and
frequency response of these filters may cause interference among symbols and carriers.
Thus, effects of different pulse shapes, their corresponding transceiver structures, and
trade‐offs  are  given.  Finally,  performance  evaluations  of  the  selected  waveform
structures for 5G wireless communication systems are discussed.

Keywords: waveform design, orthogonal frequency division multiplexing (OFDM),
filtered multitone (FMT), time‐frequency lattice, pulse shaping, multicarrier modula‐
tion, generalized frequency division multiplexing (GFDM)

1. Introduction

In communication systems waveforms enable the allocation of data on the joint time‐frequency
(TF) domain by transmitting and receiving proper signals. As the waveform design deals with
the methods to generate transmitted signals at the transmitter, and receive at receiver side
through a channel,  the design criteria depend on demands of users,  channel conditions,
system, and technology criteria. Therefore, the design criteria change with respect to the
advancement of technologies. The waveform techniques in 2G/3G/4G mobile technologies

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



cannot  meet  the  demands  of  next‐generation  wireless  networks.  To  overcome problems
stemming from the new demands, either it is required to design new waveform techniques,
or propose improved versions of the waveform used in 4G, i.e., the orthogonal frequency
division multiplexing (OFDM) [1, 2] at least.

The answer to the question “Why do we need new waveforms?” reveals important issues. The
state‐of‐the‐art radio access technology is summarized in Figure 1. Accordingly, the ambitious
performance goals for 5G networks are 10–100 times higher typical user data rates, 10–100
times more connected devices, 10 times lower network energy consumption, less than 1 ms
end‐to‐end latency, and 10000 times higher mobile data traffic per geographical area [1, 3]. The
5G communication systems that are expected to have a heterogeneous network structure are
planned to design in such a way that they provide service not only for people as real users but
also for various kinds of equipment. While designing the system in this way, we should keep
in mind that, features for each user, such as transmission packet lengths, data rates, data
transmission frequencies, and capacities would be different. These various requests of users,
lead to lots of issues, such as synchronization in time and frequency. To overcome these
problems, it is required to design new techniques capable of utilizing the spectrum more
efficiently, with higher data rates, with lower energy consumption, and latency [4, 5].

Figure 1. The state‐of‐the‐art radio access technology: moving from voice to 5G.

An ideal waveform shall fulfill the following requirements (i) low power consumption, (ii)
high data rates, (iii) spectrum efficient, (iv) low latency, (v) easy to implement, and (vi) low
out‐of‐band emission. Additionally, a well‐designed waveform must be robust to disruptive
features of communication channels, and be able to easily extract these effects at the receiver
side. It must be compliant with massive multiple‐input multiple‐output (MIMO) systems, and
adaptive for users with different access requirements on heterogeneous networks. Absolutely,
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it is not possible to find a waveform that supplies to all requirements perfectly. However, the
accurate waveform design procedure meets most of these features at optimum ways.

OFDM is the dominant technology for today's broadband multicarrier communications.
However, it is considered as an undesirable solution for 5G wireless networks due to its
shortcomings on some channel effects [6]. The other shortcomings are the out‐of‐band (OOB)
emission [7] and peak‐to‐average power ratio (PAPR) problems [8]. Rectangular pulse shaping
of OFDM introduces the nonnegligible out‐of‐band emissions, which cause interferences
among adjacent bands, whereas usage of independent phases for subcarriers causes PAPR
problem.

In literature, up to now several candidate waveforms are proposed to achieve 5G communi‐
cation system requirements. The multicarrier waveforms based on filtering operations are
good candidate waveforms to overcome OOB emission problems. Filter bank‐based multicar‐
rier (FBMC) and its varieties, generalized frequency division multiplexing (GFDM), and
universal filtered multicarrier (UFMC) are among these candidate waveforms.

FBMC is one of the multicarrier waveforms using filtering operation. Filtered multitone (FMT),
staggered multitone (SMT), and cosine‐modulated multitone (CMT) modulations are variants
of the FBMC transmission scheme [9]. The main differences of these schemes are their TF
domain allocations. Contrary to FMT, the subcarriers of SMT and CMT are overlapping. So,
FMT is not spectrally efficient.

GFDM can be considered as a type of filter bank‐based multicarrier modulation scheme with
transmission filters that are shifted in time and frequency domains. The novelty of GFDM is
in its flexibility, which can address the different applications. On the other hand, most of the
real‐time applications (i.e., tactile Internet) need lower latency. Low latency can be obtained
with small symbol durations and less complex transceiver structures. It is possible to reduce
signal durations for GFDM by designing appropriate TF structures [10]. The complexity that
is caused by filtering operations can be reduced by using polyphase structures of filters [11].
OOB emission can be reduced via these using filters that have low side lobe levels at their
frequency responses.

UFMC is another waveform with low OOB emission [12, 13]. The distinguishing feature
of UFMC is in filtering the group of subcarriers instead of filtering each subcarrier. The
filters used for UFMC have large bandwidth and short impulse response. It makes short
burst transmission. This scheme is not suitable for applications that need time synchroni‐
zation.

The purpose of this chapter is to present the basics of waveform design for 5G networks. To
achieve this, the rest of the chapter is organized as follows. In Section 2, the fundamentals of
waveform design that includes TF lattice structures and pulse shaping are explained. In Section
3, the concept of multicarrier waveforms and transceiver structures such as OFDM, FBMC,
and FMT with nonuniformly divided bandwidth allocations and GFDM are discussed. In
Section 4, the performance comparisons of the waveforms are evaluated. Conclusion and
future directions remarks are given in Section 5.
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2. Fundamentals of waveform design

Forming TF lattice structures and pulse shaping are the essential steps for waveform design.
Time and frequency allocation of transmitted and also received signals are performed through
TF lattice structures. The pulse shaping is also an important step to avoid interferences among
the symbols in both time and frequency domains.

2.1. TF lattice structures

TF lattice structures contain information about the relationship between time and frequency
support information for all symbols. TF lattice structures depend on transmission schemes,
i.e., single‐carrier, multicarrier, time‐division, and frequency‐division transmission schemes.

Figure 2 shows the TF lattice structures of time and frequency division multiplexing (TDMA
and FDMA, respectively). If frequency spectrum is divided into subbands, the waveform is
called multicarrier waveform. Each carrier in a subband is called a subcarrier. Each grid in TF
lattice structure indicates a subsymbol. The symbols are transmitted at every T seconds.

Figure 2. Frequency division and time division multiplexing as a TF lattice structure.

Data rate depends on the transmission bandwidth, channel capacity, signal‐to‐noise ratio
(SNR), and the receiver capacity. Data rate is related to the frequency resolution that is
expressed by

sff
T N
1

D = = (1)

where  is the sampling frequency and Δ is the difference between two adjacent frequency

bins. In order to resolve frequencies, it needs to make Δ sufficiently small and that is referred
to as increasing the frequency resolution.

A signal () can be represented in the frequency domain by its Fourier transform    as
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(2)

Time‐domain signal () has a finite duration. Finite time duration implies infinite bandwidth.
On the contrary, finite bandwidth implies infinite time duration. In practice, time duration and
bandwidth are limited. A time‐limited signal () can be expressed by multiplying a rectan‐

gular pulse of duration  as

( ) ( ) ( )Ts t s t t T rec / .= (3)

The Fourier transform of the time‐limited signal in Eq. (3) is

( ) ( ) ( )=TS f S f * Tsinc fT (4)

where * is the convolution operation in the frequency domain. Because of the convolution
operation, bandwidth of    becomes unlimited.The time and frequency domain represen‐

tations of the rectangular pulse are given in Figure 3. Time domain is limited, but frequency
response spreads over a large range of bandwidth.

Figure 3. (a) The impulse response and (b) frequency response of a rectangular pulse: The impulse response is limited;
frequency response spreads over the frequency domain and includes high‐level side lobes.

Such infinite bandwidth information is not realistic. For that reason, a bandwidth that contains
most of the signal energy can be used. The extreme frequencies (min, max) can be defined

from the desired signal energies, and the bandwidth is  = max − min.

Time‐bandwidth product is a design parameter of TF lattice structure. Time‐bandwidth
product is expressed by  ×  that measures localization in time and frequency domain. The
aim is to minimize the unit area of TF lattice structures. But there is a lower limit that is obtained
from the uncertainty principle [14, 15]. The time domain representation of a Gaussian pulse
is
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(5)

with time duration  = 1/2 ∝ and bandwidth  = ∝ /2. The time‐bandwidth product of
Gaussian pulse becomes

B T
π
1 .

4
´ = (6)

Time‐bandwidth product of Gaussian pulses in Eq. (6) is the lower limit. For all other signals,

time‐bandwidth product is limited below  ×  > 14  based on the celebrated uncertainty

principle.

The TF lattice structures of several waveforms are shown in Figure 4. These structures give
information about the rules of frequency division and time division of waveforms. TF lattice
structure of OFDM is shown in Figure 4(a) for a transmission bandwidth, . The transmission
bandwidth is divided into  subbands through IFFT operations. On the other hand, according
to the TF lattice structure of GFDM, the time domain is also divided into time slots.

Figure 4. (a) OFDM, (b) single carrier‐FDE, and (c) GFDM.

The transmitted signal with proper time and frequency shifts can be expressed as

(7)

where , is the data symbol with a subcarrier subscript  and subsymbol subscript  where = 0, 1, …, 𑨒𑨒 𑨒𑨒 1 and  = 0, 1, …,𑨒𑨒 𑨒𑨒 1, respectively. () is a time‐shifted version of a

prototype filter (). In OFDM, prototype filter () is replaced with 1 and each subcarrier
contains one subsymbol, which means 𑨒𑨒 = 1. Thus, the OFDM symbol is simply
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In the same approach, single carrier transmission is obtained by replacing  = 1 and () with
Dirichlet pulse [16]. The symbols are transmitted by dividing into time slots and each sub‐
symbol contains all frequency components of the transmission bandwidth.

TF lattice structures of GFDM waveform are the combination of the frequency‐division and
time‐division based waveforms that are defined in Eq. (7). The transmitted signal is obtained
by convolution of data with filter () that is the time‐ shifted and frequency‐shifted version

of prototype filter (). The projection of filters () on time‐frequency domain is not

rectangular as indicated in Figure 3.

Toroidal lattice [17] and hexagonal lattice [18] are other lattice structures proposed in the
literature. Hermite‐Gaussian functions are well‐localized in both time and frequency domains
and the time‐bandwidth product of its zeroth‐order function equals to the lowest time‐
bandwidth product, i.e., 1/4. The time‐ and frequency‐domain representation of the third‐
order Hermite‐Gaussian pulse and a toroidal rectangular TF lattice structure are given in
Figure 5.

Figure 5. Toroidal lattice structure. (a) Third order of Hermite pulse and (b) rectangular lattice with Hermite pulses
[17].

Toroidal rectangular lattice structure provides more data rate as indicated in [17]. On the other
hand, the hexagonal lattice structure is more robust for inferences and channel effects [18, 19].

Briefly, the symbol durations and bandwidths are important parameters of TF lattice struc‐
tures. These parameters are chosen according to the requirements of the users and channel
conditions. The details are given in Section 4. The next step of the waveform design is pulse
shaping. The pulse shaping is the determination of time and frequency limits of a pulse to fill
in each grid in the TF lattice. The methods and constraints of pulse shaping are given in the
following section.
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2.2. Pulse shaping

In a communication system, pulse shaping is important to generate band‐ and time‐limited
transmitted signal. Limiting the signals of symbols in time and frequency domains is important
to avoid interferences.

The definition of pulse shaping is the filtering process that maps modulated signals to the TF
lattice to control the interferences. The main problem of pulse shaping is the reciprocal relation
between time and frequency domains. It means that a narrow pulse in the time domain has
wider spectrum in the frequency domain. If the width of a pulse is increased in the time
domain, the width of the spectrum in the frequency domain will be decreased. Of course, the
pulse cannot be widened to infinity as in the ideal case. This causes out‐of‐band emission in
the frequency domain. Well‐designed filters according to design requirements can prevent or
at least decrease out‐of‐band emission and also interference.

Figure 6. Raised‐cosine filter: (a) time and (b) frequency responses with various roll‐off factors. If roll‐off factor is = 0, the impulse response is similar to the rectangular pulse.

The Fourier transform of the rectangular pulse is a sin function that has very large bandwidth
because of the side lobes. The problems of reducing the level of side lobes and the signal power
out of the transmitted band can be solved by windowing. The windowing operation limits the
out‐of‐band energy by smoothing the time‐domain function. So, in order to mask to spectrum,
pulse shaping, i.e., time‐domain windowing is used. Raised cosine filter and Gaussian filter
are the famous pulse shaping filters. The impulse response of these filters are given by

(9)

and
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respectively. Here  is called the roll‐off factor that is in the range of 0 ≤  ≤ 1. The frequency
responses are

(11)
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The time and frequency responses of the raised‐cosine filter for different  values are given in
Figure 6. The roll‐off factor  is the measure of the excess bandwidth of the filter. If  = 0, the
impulse response approaches to sinc(t/T) function and the frequency response approaches to
rect(fT) rectangular function.

The famous windowing functions and their time‐domain sequences are given in Table 1.

Window  Time domain sequence

h(n) for 0 ≤ n ≤ L – 1 length of filter

1  Blackman
 0.42 − 0.5cos 2𝀵𝀵𝀵𝀵𑨒𑨒 − 1 + 0.08cos 4𝀵𝀵𝀵𝀵𑨒𑨒 − 1

2  Hamming
 0.54 − 0.46cos 2𝀵𝀵𝀵𝀵𑨒𑨒 − 1

3  Hanning
 
12 1 − cos 2𝀵𝀵𝀵𝀵𑨒𑨒 − 1

4  Kaiser

 
0  𑨒𑨒 − 12 2 − 𝀵𝀵 𝀵 𑨒𑨒 − 12 2

0  𑨒𑨒 − 120: zeroth‐order Bessel, : positive real number

Table 1. Common window functions.
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3. Transceiver schemes for 5G wireless networks

Multicarrier transmission is the best way to fix the problems due to frequency‐selective channel
conditions. Contrary to the single‐carrier modulation techniques, that use only one carrier at
all times, multicarrier modulation divides the band into more subcarriers. The ideal equalizer
has a frequency response that is the inverse of the frequency response of the channel. So, the
equalization of multicarrier transmission is easier for the frequency‐selective channel. OFDM
is an orthogonal multicarrier transmission scheme that has subcarriers with sin‐shaped
spectra. The transceiver structure of the OFDM is given in Figure 7.

Figure 7. OFDM transmission scheme implemented using IDFT/DFT.

Accordingly, a sequence of PSK or QAM symbols is converted into  parallel streams before
the ‐point inverse DFT (IDFT) operation. Parallel streams are converted to a serial form after
the IDFT operation. The same operations are done at the receiver sides that include DFT
operations instead of the IDFT operation.

The advantages and disadvantages of OFDM are as follows:

Advantages:

• Resilience to frequency selective fading: by dividing the channel into narrow flat fading
channels.

• Spectrum efficiency: by allowing overlap.

• Resilience to interference: by using acyclic prefix (CP) to avoid intersymbol and interframe
interferences.

• Channel equalization: by using multiple subchannels.

• Computationally efficient: by using fast Fourier transform (FFT) and inverse FFT (IFFT)
operations to implement modulation and demodulation.

Disadvantages:

• High peak‐to‐average power ratio (PAPR): because of using independent phases for the
subcarriers.

Towards 5G Wireless Networks - A Physical Layer Perspective36



3. Transceiver schemes for 5G wireless networks

Multicarrier transmission is the best way to fix the problems due to frequency‐selective channel
conditions. Contrary to the single‐carrier modulation techniques, that use only one carrier at
all times, multicarrier modulation divides the band into more subcarriers. The ideal equalizer
has a frequency response that is the inverse of the frequency response of the channel. So, the
equalization of multicarrier transmission is easier for the frequency‐selective channel. OFDM
is an orthogonal multicarrier transmission scheme that has subcarriers with sin‐shaped
spectra. The transceiver structure of the OFDM is given in Figure 7.

Figure 7. OFDM transmission scheme implemented using IDFT/DFT.

Accordingly, a sequence of PSK or QAM symbols is converted into  parallel streams before
the ‐point inverse DFT (IDFT) operation. Parallel streams are converted to a serial form after
the IDFT operation. The same operations are done at the receiver sides that include DFT
operations instead of the IDFT operation.

The advantages and disadvantages of OFDM are as follows:

Advantages:

• Resilience to frequency selective fading: by dividing the channel into narrow flat fading
channels.

• Spectrum efficiency: by allowing overlap.

• Resilience to interference: by using acyclic prefix (CP) to avoid intersymbol and interframe
interferences.

• Channel equalization: by using multiple subchannels.

• Computationally efficient: by using fast Fourier transform (FFT) and inverse FFT (IFFT)
operations to implement modulation and demodulation.

Disadvantages:

• High peak‐to‐average power ratio (PAPR): because of using independent phases for the
subcarriers.

Towards 5G Wireless Networks - A Physical Layer Perspective36

• Sensitive to carrier frequency offset (CFO): because of small subcarrier spacing and the
necessity of good receiver synchronization.

• Out‐of‐band interference: because of the rectangular pulse shape.

• Loss of efficiency: because of using the cyclic prefix (CP) and guard intervals (GIs).

Therefore, OFDM is a very useful multicarrier modulation scheme because of its advantages.
On the other hand, new modulation schemes are needed to overcome the drawbacks of OFDM.

3.1. Filter bank‐based multicarrier

FBMC is the set of filtering operations that separate the input signal to the subbands with the
frequency‐shifted versions of low‐pass prototype filters. The differences of FBMC from OFDM
are: (i) CP extension is not required, (ii) having low side lobe and low spectral leakage depends
on the filter type, (iii) more complex, and (iv) less sensitive to CFO. The benefits of FBMC are
allowing to pulse shaping of filters that produce well‐localized subbands in both time and
frequency domain. FBMC is a candidate waveform of 5G communication networks to over‐
come some problems. The features such as lower side‐lobes, lower sensitivity to CFO, and
higher bandwidth efficiency—because of the absence of CP—makes FBMC a possible replace‐
ment of OFDM in 5G wireless communications. Furthermore, frequency allocations of
subbands become more flexible with benefits of filtering operations.

FBMC modulation‐based systems are more complex than OFDM due to exchange of FFT/IFFT
operations by the filter banks. The CFO is caused by Doppler shift due to mobility. Orthogon‐
ality between adjacent subcarriers is destroyed by CFO and it introduces intercarrier interfer‐
ence (ICI) and intersymbol interference (ISI). Besides, the sin‐shape frequency response of
each subcarrier causes large ICI in presence of CFO. Using the windows with smooth edges
reduces the sensitivity of CFO, thus FBMC satisfies this condition.

In the conventional FBMC system, the frequency spectrum is divided into equal subbands and
each symbol in subbands is filtered after upsampling operations. The upsampling value ()
and the number of the subbands (M) determine the overlapping of subbands [20] and the
allocations of subbands of FBMC are given in Figure 8. When the  equals to the , the filter
bank is said to be critically sampled; otherwise, it is noncritically sampled.

Figure 8. Frequency allocation of FBMC: the channel is uniformly divided by subbands.
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According to the FMT modulation, each user symbols in subbands are filtered by the frequen‐
cy‐shifted versions of a low‐pass prototype filter after upsampling operations. The transceiver
scheme of FMT is given in Figure 9. Here, symbols with the same data rates share frequency
spectrum equally.

Figure 9. The transceiver structure of FMT: symbols are transmitted with multicarrier modulation by filtering. If the
low‐pass prototype filters ℎ0() are symmetric finite impulse response (FIR) filters, then the transceiver filters are

their complex conjugates.

The transmitted signal of the FMT scheme in Figure 9 is given by

(13)

where 0() is the prototype filter. The transmitted signal    is the sum of the convolutions

of upsampled of data and the frequency‐shifted versions of a low‐pass prototype filter.

Generally, the bandwidth allocations of users need not be equal to each other because of
different data rates. Especially, some users in 5G communication channel may upload their
video streams, while some users are a part of internet‐of‐things/machine‐type communications
(IoT/MTC). The bandwidth requirements of these users are not the same and may change
according to the applications of users. Hence, it is not advantageous to use traditional multi‐
carrier structures for the users that need different transmission bandwidths. In LTE (long‐term
evaluation), the frequency spectrum is shared by users with predefined bandwidths (i.e., 1.4,
3, 5, 10, 15, and 20 MHz), which is not a flexible solution for users having different data rate
demands. Recent studies on FBMC modulation have not provided an effective remedy for such
users. For that reason, FMT modulation can be modified for user demands on different data
rates to allow nonuniformly divided bandwidth allocations as proposed by Çatak and Durak‐
Ata in [21]. The main contributions of [21] are as follows: (i) the classical FBMC modulation
schemes are modified for user demands on data rates. (ii) The assignments of user bandwidths
are done at the physical layer. (iii) The bandwidth allocations become adaptive for user
requirements instead of system orders.
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3.2. FMT with nonuniformly divided bandwidth allocation

The nonuniformly divided bandwidth allocation is important for users with different data rate
demands. Data‐rate demands of users depend on their applications. For instance, video
streaming applications require higher data rates. On the other hand, machine‐type commu‐
nications (MTC), sensors, etc., need lower data rates. FMT with nonuniformly divided
bandwidth allocation structures can serve to such heterogeneous users and applications in the
same transceiver structure and assign users on bandwidth on the physical layer.

Figure 10. The block diagram of the FMT with nonuniformly divided bandwidth allocation.

The transceiver structure of the FMT multicarrier system for nonuniformly divided bandwidth

allocations is given in Figure 10. Each user symbols (  ()) in subbands are filtered by the
frequency‐shifted versions of a low‐pass prototype filter after upsampling operations. The
upsampling values and the filter lengths may be different for all subbands.
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Figure 11. Frequency responses of raised cosine filters for different upsampling rates.

In Figure 10, the upsampling operation  is inserting  𑨒𑨒 1 zeros between consecutive
samples. The frequency responses of the raised cosine filter for different upsampling numbers
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are given in Figure 11. Accordingly, if the sampling rate increases, the frequency resolution
will be increased. Thus, the users need less bandwidth. According to the limit of time‐
bandwidth product, less bandwidth means longer symbol duration and also high latency.

The transmitted signal for FMT with nonuniformly divided bandwidth allocation is given by

(14)

where  is the upsampling rate and  is the symbol length for the th user. The prototype

filter of impulse response   = 0()2𝀵𝀵/ can be expressed as

(15)

And the transmitted signal in Figure 10 becomes
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In the same way, the received signal is obtained by

(17)

where  𝀵𝀵 −  = 0 𝀵𝀵 −  2𝀵𝀵(𝀵𝀵 − )/
. If the transmitter filter ℎ0   is assumed

to be symmetric, the receiver filter 0   equals complex conjugate of ℎ0  . Finally, the

received signal becomes

(18)

3.3. Generalized frequency division multiplexing

GFDM can be considered as type of filter bank‐based multicarrier modulation scheme with
transmission filters that are shifted in time and frequency domains. This scheme offers more
flexible pulse shaping for individual subcarriers [22]. However, GFDM has complicated
receiver designs and needs high‐order filtering and tail biting. To simplify transceiver struc‐
tures, polyphase filters can be employed [10].
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The receiver structure of GFDM is given in Figure 12. Accordingly, the data is transmitted with subcarriers that carry  subsymbols. Data is mapped into the complex valued QAM symbols.
The mapped data are upsampled by the factor , where  =  . The transmitter filter ,  []
with  samples is the time‐ and frequency‐shifted version of () that is expressed by

(19)

where  and  are the subcarrier and subsymbol indices where  = 0, 1, …,  𑨒𑨒 1 and = 0, 1, …, 𑨒𑨒 1, respectively. The transmitted signal is given by
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and Eq. (20) can be expressed with modulation matrix as

=x dA (21)

where  is a vector that contains transmitted samples of    and  is the ×  modulation
matrix that contains samples of transmitter filter ,  [] where

(22)

Figure 12. The transmitter structure of GFDM: the transmission filters are shifted in time and frequency domains.
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The transmitter diagram of GFDM is given in Figure 13. The signal that passes through the
channel must be equalized to clarify from the channel effects. If the number of subcarriers is
high enough, the channel frequency response can be flat for each subcarrier. Thus, subcarrier
bandwidths become smaller than the coherence bandwidth. In such a case, the received signal
can be equalized with a zero‐forcing equalizer. According to the zero‐forcing equalizer, inverse
of the frequency response of the channel is applied to the received signal. The implementation
is simple for flat channels; otherwise, it becomes very hard due to inversing operations. The
signal that passes through the channel is

(23)

where [] is the additive noise and    is the impulse response of channel. The equalized
signal with zero‐forcing equalizer is given by

( )[ ] ,
( )

ì üï ï= í ý
ï ïî þ
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j
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Y en IDFT
C e

w

w (24)

where  𝀵𝀵𝀵𝀵  and  𝀵𝀵𝀵𝀵  are the corresponding frequency responses. After equalization
procees, the received signal can be estimated by a detection process. Zero‐forcing receiver,
matched‐filter receiver, and minimum mean square error (MMSE) receiver structures are
common detection methods.

Figure 13. The receiver structure of GFDM with equalizer and detector.
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Zero‐forcing receiver is based on the inverse of modulation matrix in Eq. (21). Accordingly,
the detected signal is

1
zero forcing equal

ˆ -
- =d rA (25)

where −1 is the inverse matrix of the modulation matrix  and equal is the equalized signal.

The pseudo‐inverse matrix can be used for the nonsquare case of . The pseudo‐inverse of 
can be evaluated by

( )H H 1-+ =A A AA (26)

where  is Hermitan matrix of . Then, the detected signal by zero‐forcing receiver in Eq. (25)
becomes

H
zero forcing equal

ˆ .- =d rA (27)

Matched‐filter receiver maximizes the SNR per subcarrier. The detected signal by the matched‐
filter receiver is given by

H
match filtering equal

ˆ
- =d rA (28)

According to MMSE receiver, the detected signal is given by

. (29)

where 2 and 2 are the variance of the noise and data symbol.

Briefly, zero‐forcing receiver extracts the channel effects from the transmitted signal and
removes all ISI for ideal noiseless channel condition. It amplifies the noise for noisy channels.
The matched‐filter receivers overperform the zero‐forcing receiver in low SNR regime.
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Matched‐filter receiver suffers from self‐interference. On the other hand, MMSE receiver is
successful at high and low SNR similar to zero‐forcing receiver and matched‐filter receiver,
respectively [23].

4. Performance evaluation

The waveform design issues depend on the requirements of users, communication types, and
communication networks. These requirements are changing and evolving every year. Today,
on the verge of 5G communication technology, most important requirements are data rate,
latency, power, efficiency, complexity, and robustness to the channel [24]. Also, there are some
design issues to execute these technology requirements. PAPR, OOB emission, interferences,
and complexity issues are investigated and their importance is verified.

The PAPR is the ratio of peak power to the average power of a transmitted signal. A multicarrier
signal consists of lots of modulated signals in each subcarrier, which can cause large PAPR
value after addition. The comparisons of GFDM and OFDM on PAPR performances are
given in Figure 14. Accordingly, the PAPR values of GFDM are better than OFDM. Low PAPR
is important to reduce hardware cost and power consumption. One advantage of GFDM over
OFDM is obviously in reducing the OOB radiation.

Figure 14. The comparison of PAPR of GFDM and OFDM: the PAPR of GFDM is less than OFDM. If multicarrier sig‐
nals are summed up with same phases, the PAPR values increase [25].

The out‐of‐band (OOB) emission is the emission outside the necessary bandwidths. It causes
waste of spectral resources and serious interference problems to adjacent wireless channels.
These redundant emissions cause interference. Interference between carriers (ICI) and symbols
(ISI) are two issues of waveform design. ICI is caused by channel frequency offsets and it is
one of the major problems of OFDM. It can be avoided by frequency domain equalization, time
domain windowing, and using redundant subcarrier between carriers. ISI is caused by the
dispersion of the channel. It can be avoided by leaving enough space in between the transmitted
symbols.
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In Figure 15, OOB emissions of OFDM symbol and FBMC symbol are given comparatively.
Here, OFDM suffers from high‐level OOB emission. Conversely, filter bank‐based operations
allow lower out‐of‐band emissions.

Figure 15. Power spectrum density of OFDM and FBMC symbols: FBMC scheme allows lower out‐of‐band emissions.

Complexity is defined by the total number of operations in the transmitters and receivers. The
transmitter structures must be adapted to channel conditions and provide easy detection.
Filtering operations make the systems more complex. Polyphase filter structures are used to
overcome these problems. Another issue is channel equalization at the receivers while taking
the inverse of a matrix. The performance evaluations are summarized in Table 2.

Complexity OOB PAPR Spectral efficiency

OFDM Low High High Good

FBMC [6, 9] High Low Low Bad

GFDM [6, 25] High Low Low Good

UFMC [12, 13] High Low High Good

Table 2. Pros and cons summary of waveforms.
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5. Conclusion and future directions

This chapter presents the requirements of 5G communication systems and the fundamentals
of waveform design to cover them for 5G wireless communication networks. According to the
report of 5G PPP Architecture Working Group, the 5G network will “operate in a wide
spectrum range with a diverse range of characteristics” [26]. Accordingly, the 5G communi‐
cation channel will be heterogeneous and will provide users with different demands. The
waveform design part of the physical layer is a critical issue in meeting the new demands and
requirements, such as low latency, low power consumption, high data rates, and spectrum
efficiency. TF lattice structures and pulse shaping must be determined. The transmission
scheme, time and frequency allocation of symbols, resolution in time and frequency, and time‐
bandwidth product are the design criteria of time frequency lattice structures. Also, pulse
shaping is the filtering process that maps the modulated signals to the TF lattice to control the
interferences. Besides, transceiver scheme of some candidate waveforms and performance
evaluations are given. Accordingly, OFDM has an easy implementation, but the high level of
OOB emission and PAPR value. The waveforms that include filtering have lower OOB emission
but high complexity.

In this chapter, the waveform design is assumed to be performed at baseband. On the other
hand, one of the potential of 5G communication technologies under consideration is the use
of millimeter wave frequencies. In this way, signals allocate more bandwidths to faster
transmission, high‐resolution video broadcasting, etc. Massive‐MIMO and advanced beam‐
forming technologies will allow high data rate.
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Abstract

Filter bank multi‐carrier (FBMC) modulation, as a potential candidate for physical data
communication  in  the  fifth  generation  (5G)  wireless  networks,  has  been  widely
investigated. This chapter focuses on the spectral efficiency analysis of FBMC‐based
cognitive radio (CR) systems, and spectral efficiency comparison is conducted with
another  three  types  of  multi‐carrier  modulations:  orthogonal  frequency  division
multiplexing  (OFDM),  generalized  frequency  division  multiplexing  (GFDM),  and
universal‐filtered multi‐carrier (UFMC). In order to well evaluate and compare the
spectral efficiency, we propose two resource allocation (RA) algorithms for single‐cell
and two‐cell CR systems, respectively. In the single‐cell system, the RA algorithm is
divided into two sequential steps, which incorporate subcarrier assignment and power
allocation. In the two‐cell system, a noncooperative game is formulated and the multiple
access channel (MAC) technique assists to solve the RA problem. The channel state
information (CSI) between CR users and licensed users cannot be precisely known in
practice, and thus, an estimated CSI is considered by defining a prescribed outage
probability of licensed systems. Numerical results show that FBMC can achieve the
highest channel capacity compared with another three waveforms.

Keywords: filter bank multi‐carrier, spectral efficiency, resource allocation, cognitive
radio, 5G networks

1. Introduction

With the increasing demand of communication quality, the fifth generation (5G) communi‐
cation networks have shown development needs of high speed, low latency, high spectrum
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efficiency, etc. [1]. As a result, people anticipate that the final outcome for 5G waveforms may
include an adaptive solution,  which means using the optimum waveform for any given
situation. Nowadays, one key element of the cellular communication system is the multiple
access technology that is used. Thus, the multi‐carrier modulation (MCM) has been a research
hotspot  of  the  communication  field  due  to  its  ability  of  suppressing  the  inter‐symbol
interference (ISI)  and inter‐channel  interference (ICI).  The orthogonal  frequency division
multiplexing (OFDM) is a typical style of MCM, which has been used in the fourth generation
(4G) communication systems [2]. Although OFDM has many advantages, it still cannot satisfy
the requirements of 5G networks [1]. With the higher level of processing that will be available,
new 5G waveforms are being considered and evaluated for using with the new system. There
have been some other MCM waveforms studied by the scholars around the world, including
the well‐known modulation schemes: filter bank multi‐carrier (FBMC), generalized frequency
division multiplexing (GFDM), and universal‐filtered multi‐carrier (UFMC) [3]. Each of them
has its own advantages and disadvantages [4]. The modulation schemes used for the future
5G networks should have a significant impact on the whole performance and will play a
major  role  in  determining  the  performance  and  complexity  of  communication  systems;
however, single technique is not likely to meet all the requirements. In order to drive 5G
standardization, academia is engaging in various collaborative projects such as METIS [5]
and 5GNOW [6]. The purpose is to guarantee that the 5G can achieve commercialization in
2020.

In the future 5G networks, there needs more frequency resource for better communication.
This requirement becomes particularly important because we have been facing the problem
of frequency scarcity. However, in traditional spectrum management policy, there are a large
amount of frequency bands which are not sufficiently utilized in most of the time. This results
in a serious conflict between the target for better communication and the fact for spectrum
scarcity. Cognitive radio (CR) [7–9] and FBMC [10–16] techniques, which are capable of
efficiently exploiting the spectrum hole, can be considered to apply in 5G networks. CR
technology is considered to be one of the most important technologies to improve the spectral
efficiency. It can utilize the flexible and complex algorithms to control the interference to
primary users (PUs). By adopting adaptive software, the CR devices are able to reconfigure
their communication functions to the requirements of secondary users (SUs), while FBMC has
a negligible frequency spectrum leakage, which has high robustness to the interference
resulting from frequency offset. Therefore, it does not need to set the guard band in frequency
domain, which greatly improves the spectral efficiency. In addition, FBMC can flexibly control
the interference between adjacent subcarriers, which are unsynchronized. These advantages
make FBMC more and more popular in the academic field. In recent years, the scholars have
studied the FBMC system in terms of the spectral efficiency analysis [17], system complexity
analysis [18], prototype filter design [19–21], frequency offset estimation [22], multiple‐input
multiple‐output (MIMO) [23], and so on.

This chapter mainly analyses the spectral efficiency of FBMC in the context of CR systems. The
results of other MCM waveforms give a better characterization of performance comparison to
FBMC. In order to clarify the desirable property of FBMC, two different network scenarios
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including single cell and two cells are taken into consideration. Specifically, for single‐cell
systems, we solve the uplink resource allocation (RA) problem by two sequential steps:
subcarrier assignment solved by the average capacity metric (AC‐metric) combined with
Hungarian algorithm and power allocation, which equals to a nonlinear programming solved
by the gradient projection method (GPM). As for two‐cell CR systems, we establish a nonco‐
operative game, which performs uplink subcarrier assignment and power allocation among
noncooperative CR cells with multiple CR users per cell. Since the optimization formulation
for rate maximization of multiple users in each CR cell is an integer optimization problem, the
multiple access channel (MAC) technique is applied to transform the integer optimization
problem into a concave optimization problem. In practice, the channel state information (CSI)
between CR users and licensed users cannot be perfectly known, and thus, an estimated CSI
is considered by defining a prescribed outage probability of licensed systems.

The remainder of this chapter is organized as follows. Section 2 provides a systematic intro‐
duction of FBMC technique and makes a brief comparison with OFDM, GFDM, and UFMC.
In Sections 3 and 4, two RA algorithms for single‐cell and two‐cell CR systems are presented
to well evaluate the spectral efficiency of different multi‐carrier modulations, respectively.
Finally, conclusions are made in Section 5.

2. Multi‐carrier modulation (MCM)

MCM is an efficient tool to overcome communication channel challenges by dividing the
frequency spectrum into multiple subcarriers [4]. Compared with single carrier modulation
(SCM), it is easier to tackle the frequency‐selective multipath effect in future communication
networks. In this section, the introductions of FBMC and other three MCM waveforms are
given, in which the description of FBMC is the main concentration. At the end of this section,
the properties of these four waveforms are discussed and some generalizations are summar‐
ized for a clear understanding of these waveforms.

2.1. Filter bank multi‐carrier (FBMC)

The basic concept of FBMC modulation technology was first proposed by Chang and Saltherg
in the middle of 1960s [13], but it was not paid much attention by scholars because of its
complexity. In the 1990s of the last century, we are familiar with the discrete multi‐tone (DMT)
modulation and discrete wavelet multi‐tone (DWMT) modulation, both of which are the
special cases of FBMC modulation. In recent years, along with the increasing demands for high
reliability and high‐rate communication, while signal processing and electronic equipment
have made significant progress, the realization of the principle structure of FBMC is relatively
easy. As a result, it has aroused the interest of researchers once again.

Generally, FBMC mainly has three kinds of modulation modes: cosine modulated multi‐tone
(CMT), filtered multi‐tone (FMT), and offset quadrature amplitude modulation‐based OFDM
(OQAM‐OFDM). CMT uses the cosine modulated filter bank, which is the early FBMC
modulation technology in the field of digital subscriber line (DSL). It has been applied in the
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field of wireless applications recently. CMT not only has a high bandwidth efficiency but also
has a blind detection capability [14]. Due to the reconstruction performance of CMT, the
overlapping adjacent bands can be completely separated when the multiple neighbor fre‐
quency bands are transmitted at the same time. FMT is another form of FBMC modulation.
Compared to CMT, the subcarriers of the FMT are not overlapping between the adjacent
frequency bands. In order to avoid the overlapping of subcarriers, the guard band should be
added between the subcarriers. Due to the use of the guard interval, the FMT system will waste
some bandwidth. Therefore, the main difference between CMT and FMT lies in the use of
special frequency bands. Recent FBMC technique is referred to as OQAM‐OFDM. Compared
to CMT and FMT, OQAM‐OFDM has the highest stop‐band attenuation for a fixed filter length
and number of subcarriers [15].

According to the characteristics of OQAM, the transmission symbols of the OQAM‐OFDM
communication system are the real and imaginary parts of the complex quadrature amplitude
modulation symbols [16], and the transmission time interval is half of the symbol period
between the real and imaginary symbols. In addition, the reasonable design of the prototype
filter can ensure that the frequency response of each subcarrier has a better roll‐off character‐
istic, for reducing the spectrum leakage of subcarriers. Many scholars have been designing
suitable filters for FBMC. The filter using the frequency sampling technique in Ref. [24] has
been considered as the reference prototype filter of the European project PHYDYAS. Le Floch
[25] gives an overview of the main features concerning isotropic orthogonal transform
algorithm (IOTA). The authors in Ref. [20] formulate a direct optimization problem of the filter
impulse response coefficients for the FBMC systems to minimize the stop‐band energy and
constrain the ISI/ICI. In Ref. [26], it is attempted to design the prototype filter by performing
time‐frequency analysis on the ambiguity function of isotropic Hermite pulses.

Besides the research of prototype filter, people have made plenty of contributions to improve
the performance of FBMC structure. In Ref. [27], a novel architecture for MIMO transmission
and reception of FBMC modulated signals under strong frequency selectivity channel is
presented. An improved partial transmit sequence (PTS) scheme by employing multi‐block
joint optimization (MBJO) for the PAPR reduction of FBMC signals is proposed in Ref. [28]. In
Ref. [29], a novel scattered pilot method for channel estimation in FBMC is proposed. In Ref.
[30], the authors propose a low complexity frequency offset compensation method for FBMC
in a context of frequency division multiple access (FDMA). In Ref. [22], a data‐aided joint
maximum likelihood (ML) estimator of carrier frequency offset (CFO) and channel impulse
response for oversampled perfect reconstruction filter banks transceivers are proposed. And
the spectral efficiency of FBMC‐based CR networks is studied in Ref. [17]. In short, FBMC has
made some achievements in various aspects.

To conclude, the above three FBMC techniques could all theoretically offer a significant
bandwidth efficiency advantage over OFDM due to their special filter bank based structure
and the elimination of cyclic prefix (CP). On the other hand, among different FBMC techniques,
OQAM‐OFDM is preferred to be a suitable choice for CR applications since FMT and CMT are
originally introduced for DSL applications and will be impractical and hard to meet the CR
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system requirements. In this chapter, unless otherwise stated, the FBMC refers to OQAM‐
OFDM.

2.2. Other multi‐carrier waveforms

In order to reflect the spectral efficiency performance of FBMC in CR systems, we compare
it with OFDM, GFDM, and UFMC. In the following, we first introduce the other three
modulation waveforms, and then, the differences in the four MCM waveforms are sum‐
marized. Contrast to FBMC, OFDM has a lower computational complexity [31]. It also can
be combined with other technologies easily, such as wavelet orthogonal frequency division
multiplexing (WOFDM) and MIMO. However, it has serious out‐of‐band leakage and high
peak‐to‐average power ratio (PAPR) [32]. Until now, the ways to reduce PAPR are still be‐
ing researched.

In GFDM system, the use of root‐raised cosine (RRC) pulse‐shaping filter can greatly reduce
the impact of radiation and enhance the system flexibility. In addition, GFDM uses less CP,
which improves the spectral efficiency [33, 34]. Similar to FBMC, GFDM can well integrate the
spectrum. According to the requirements of the different types of services and applications,
GFDM can choose different pulse‐shaping filters and insert different types of CP. The subcar‐
riers of GFDM pass through the effective prototype filter to filter and circularly shift both in
time and in frequency domain, which reduces the band leakage. However, to meet the
requirements of the quality of wireless communication transmission, GFDM technology
sacrifices the bit error rate (BER) and the ICI at the cost of eliminating the band radiation [35].
In recent years, the focus of the research on GFDM technology lies in how to improve the BER
performance and reduce the computational complexity.

UFMC has the advantages of the FBMC system, and it can also support different types of
business [36]. Compared to the prototype filters of FBMC, UFMC uses a shorter filter length,
which can support the short burst asynchronous communication [37]. Furthermore, UFMC
system has a low requirement about time‐frequency calibration and non‐orthogonality.
However, similar to OFDM system, UFMC suffers the influence of both the Doppler effect and
the crystal oscillators of transmitter and receiver, which can result in the CFO. A small CFO
will also lead to a sharp decrease in UFMC system performance. Therefore, in order to
effectively reduce the interference in UFMC system so that it can improve the transmission
reliability and ensure the effectiveness of the signal, interference cancelation has become a hot
spot in this field.

In conclusion, according to the previous introductions, we have listed the features about
OFDM, FBMC, GFDM, and UFMC in Table 1 [1–4, 37, 38], including the PAPR, the out of band,
and the spectral efficiency we are concerned about. According to these characteristics, we can
make a rough comparison of these four kinds of waveforms. And the superiority and inferiority
of each waveform are also clearly presented. We can select different waveforms based on
various application scenarios.
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OFDM FBMC GFDM UFMC

PAPR High High Low Medium

Out of band High Low Low Low

Spectral efficiency Medium High Medium High

CP Yes No Yes No

Orthogonality Yes Yes No Yes

Synchronization requirement High Low Medium Low

Ease of integration with MIMO Yes No Yes Yes

Latency Short Long Short Short

Effect of frequency offset Medium Medium Medium Medium

Table 1. Comparison of the features among OFDM, FBMC, GFDM, and UFMC.

It is seen that these four modulation waveforms have their own drawbacks and superiorities.
In addition, we have simulated the BER of these four waveforms, which is an important factor
to measure the modulation waveforms [39]. The BER performance in different signal noise
ratios (SNRs) is shown in Figure 1, where the parameters of these modulation waveforms are
as follows: the number of subcarriers of FBMC is 128, and the prototype filter of FBMC is the
PHYDYAS filter [40]; the number of subcarriers of OFDM is 128, and the prototype filter of

Figure 1. BER vs. SNR levels for FBMC‐, OFDM‐, GFDM‐, and UFMC‐based systems.
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OFDM is the rectangle filter; the number of subcarriers of GFDM is 128, the number of sub‐
symbols of GFDM is 9 in each subcarrier, and the prototype filter of GFDM is the RRC filter
with roll‐off coefficient α = 0.5; the number of sub‐bands of UFMC is 10, the number of
subcarriers of UFMC is 12 in each sub‐band, and the prototype filter of UFMC is the Dolph‐
Chebyshev filter [36].

The prototype filter is a key element in the MCM schemes because all synthesis and analysis
filters are frequency‐shifted versions of the corresponding low‐pass prototype filter frequency
response. The principle how we select the prototype filter is that the most commonly used
prototype filter is chosen in the research of different waveforms. For FBMC, we adopt the
prototype filter used in PHYDYAS project [27–30], which can reduce the side‐lobe of FBMC
effectively. For OFDM, the rectangular filter is chosen as the prototype filter, which is one of
the most popular prototype filters in the OFDM theory model. For GFDM, we use RRC filter
which has a lower spectrum leakage in the frequency domain if the roll‐off coefficient is larger.
Normally, when the GFDM system is studied, the RRC filter [34, 35] is widely used as the
prototype filter. For UFMC, we adopt Dolph‐Chebyshev filter used in Ref. [36], which proposes
the method for designing UFMC. Another important reason for the selection of these prototype
filters is that they play their respective advantages in different modulation structures. For
example, the use of RRC filter makes the GFDM flexible, which might be difficult to realize by
other prototype filters.

It is noted from Figure 1 that the BER of FBMC is the lowest than those of other waveforms in
different SNRs, which means FBMC has the best BER performance than other three modulation
waveforms. The BER performance of GFDM is the worst, while the BER performance of UFMC
is better than that of OFDM.

In this chapter, the interferences of side‐lobe radiation in these MCM modulations are the focus
of consideration. Figure 2 shows the frequency responses of prototype filters for FBMC,
OFDM, GFDM, and UFMC. Although the energy is mainly located in the main lobe, it is
intuitively clear that the four modulations have different side‐lobe radiations. FBMC has the
minimum out‐of‐band leakage, and the out‐of‐band leakage of OFDM is the largest, while the
out‐of‐band leakage of GFDM is larger than that of UFMC, that is, the interference that depends
on the out‐of‐band leakage among subcarriers of different modulations is not the same. The
reason why they have different spectrum leakages, to a large extent, depends on the prototype
filters they use. Hence, if we want to establish an interference model, it can be based on the
side‐lobe radiation, which is determined by the power spectral density (PSD) model of multi‐
carrier signals. According to the PSD‐based approach in Ref. [41], the interference values of
each modulation scheme can constitute an interference vector. This is an important measure
to distinguish different waveforms in the following sections. The interference vectors of FBMC
and OFDM are referred in Refs. [41, 42]. Assuming that a single complex symbol with power
equals to “1,” the element of vectors is the power of out‐of‐band radiation. The interference
vectors of UFMC and GFDM are calculated with the same method in Refs. [41, 42], wherein

interference less than 10−3 is ignored. Thus, the interference vectors are derived as
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Figure 2. Frequency responses of prototype filters for FBMC, OFDM, GFDM, and UFMC.

This section compares the characteristics between FBMC and other three modulation schemes.
The interference vectors are also given to quantify the out‐of‐band radiation, and they will be
applied for the comparison of spectral efficiency among these four modulation waveforms in
Sections 3 and 4.

3. Spectral efficiency comparison in single‐cell systems

In this section, the RA of single CR cell with multiple CR users is designed to evaluate the
spectral efficiency of FBMC and other three waveforms‐based CR networks. The spectral
efficiency is measured by the average capacity of available frequency bands, which is mainly
determined by the MCM scheme and the RA strategy. Considering the low complexity, the
proposed RA algorithm in the context of single CR cell is split into two sequential steps:
subcarrier assignment and power allocation. In the following, the detailed statements includ‐
ing the system model and the RA algorithm are presented.

3.1. System model

In the context of CR systems, a group of SUs randomly distributed with an accessing point
called secondary base station (SBS) constitutes a CR cell. As depicted in Figure 3, the uplink
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This section compares the characteristics between FBMC and other three modulation schemes.
The interference vectors are also given to quantify the out‐of‐band radiation, and they will be
applied for the comparison of spectral efficiency among these four modulation waveforms in
Sections 3 and 4.

3. Spectral efficiency comparison in single‐cell systems

In this section, the RA of single CR cell with multiple CR users is designed to evaluate the
spectral efficiency of FBMC and other three waveforms‐based CR networks. The spectral
efficiency is measured by the average capacity of available frequency bands, which is mainly
determined by the MCM scheme and the RA strategy. Considering the low complexity, the
proposed RA algorithm in the context of single CR cell is split into two sequential steps:
subcarrier assignment and power allocation. In the following, the detailed statements includ‐
ing the system model and the RA algorithm are presented.

3.1. System model

In the context of CR systems, a group of SUs randomly distributed with an accessing point
called secondary base station (SBS) constitutes a CR cell. As depicted in Figure 3, the uplink
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scenario of CR systems incorporates a primary cell and a secondary cell with multiple PUs and
SUs. Generally, due to the spectral leakage (indicated in Figure 4) and imperfect synchroni‐
zation between SU and PU, the out‐of‐band radiation of a subcarrier will be regarded as
interference. If the spectrum holes adjacent to the PUs are occupied by the SUs, the PUs may

Figure 3. The system model of single CR cell including multiple users, the solid lines with arrow stand for the links
producing the capacity, the dash lines with arrow stand for the interference links.

Figure 4. The neighbor frequency interference resulting from spectral leakage.
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suffer from the intercell interference. For the guarantee of the quality of service (QoS) of PUs,
the interference constraint must be considered to limit the interference from SUs. The distri‐
butions of PUs and the spectral holes are depicted in Figure 5. Assuming that the whole
bandwidth is divided into 48 sub‐bands, each sub‐band includes  = 18 subcarriers. A
spectrum hole may incorporate many sub‐bands. As shown in Figure 5, the busy and idle sub‐
bands are represented by “1” and “0,” respectively: “1” means the occupied frequency bands
by PUs and “0” means the idle frequency bands to be dynamically accessed by SUs. Assuming
that the SBS can perfectly sense the idle bands of the primary system and SUs in the CR cell
are synchronized, the spectrum sensing error is not in consideration; therefore, the concen‐
tration is located in the RA scheme.

Figure 5. The diagram of idle and occupied frequency bands (a sub‐band incorporates 18 subcarriers).

According to the above analysis, the CR cell wants to maximize its sum data rate by allocating
power into the detected spectrum holes for its own users. Considering the information rate
of user  on the  ℎ subcarrier of the ℎ spectrum hole, the signal‐to‐interference‐plus‐noise

ratio (SINR) with transmission power  and transmission gain 𝀵𝀵𝀵𝀵 can be written as

2SINR  
kf mkf
m ss

k
f

p G
Is

=
+

(2)

where  2 is the power of noise, and  is the interference power. Therefore, the information
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Noticed that whether the subcarrier is assigned to the user  or not, this can be represented

through the subcarrier allocation indicator 𝀵𝀵𝀵𝀵. Assumed that there are  SUs, the number of

spectrum holes is , the number of subcarriers in the 𝀵𝀵ℎ spectrum hole is 𝀵𝀵, the problem of
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𝀵𝀵𝀵𝀵 Binary variable  𝀵𝀵𝀵𝀵 ∈ 0, 1 , 𝀵𝀵𝀵𝀵 = 1 implies that the user  uses the 𝀵𝀵ℎ subcarrier in the  𝀵𝀵ℎ hole

and 𝀵𝀵𝀵𝀵 = 0 means the subcarrier is not accessed by the user𝀵𝀵𝀵𝀵 User power on the 𝀵𝀵ℎ subcarrier in the  𝀵𝀵ℎ hole

𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 The channel gain from user  to SBS

2 The noise power of each subcarrier𝀵𝀵𝀵𝀵 Interference from PU on the 𝀵𝀵ℎ subcarrier in the 𝀵𝀵ℎ holeℎ The user's sum power limitation𝀵𝀵𝀵𝀵𝀵𝀵 Each subcarrier power limitation

𝀵𝀵() The user power on the left (right) ℎ subcarrier in the  𝀵𝀵ℎ hole

𝀵𝀵𝀵𝀵() The channel gain from SU to primary base station (PBS) on the left (right) primary subcarrier adjacent to
the 𝀵𝀵ℎ hole The  ℎ element of the interference vectors Interference vector The length of interference vector The number of subcarriers in each sub‐bandℎ Interference threshold protecting the QoS of PUs

Table 2. Parameter definitions of CR system model.
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The parameter definitions are shown in Table 2. While the first constraint 𝀵𝀵𝀵𝀵1 is to limit the
sum maximum power of the SUs, the second constraint 𝀵𝀵𝀵𝀵2 specifies the range of each
subcarrier power. The third constraint 𝀵𝀵𝀵𝀵3 indicates that the interference to PU should not
exceed to the interference threshold 𝀵𝀵ℎ. In Eq. (4), the intercell interference from PU to SU 
can be calculated as follows:
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where () is the transmission power of PU located in the left (right) of the 𝀵𝀵ℎ spectrum hole,

and  𝀵𝀵() is the channel magnitude from PU located in the left (right) of the 𝀵𝀵ℎ spectrum

hole to SBS on the 𝀵𝀵ℎ subcarrier of the 𝀵𝀵ℎ spectrum hole. The  can be measured during

spectrum sensing by SBS without need to know this information.

The standards of CR systems are still being studied; to the best of our knowledge, the inter‐
ference threshold 𝀵𝀵ℎ does not have a common definition in academic field. In order to make

a trade‐off between the QoS of PUs and the capacity of SUs, an appropriate interference
threshold is needed. In this chapter, the interference threshold 𝀵𝀵ℎ is prescribed by the primary

system through the capacity loss coefficient  of PU. If there is no interference from SU, the
capacity of PU in a sub‐band is computed as follows: (Generally, the SNR in wireless commu‐
nication systems is −5 ∼ 30dB; here, we select the SNR = 10 in simulation test.)
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where   and  are the power of PU and the channel gain from PU to primary base station

(PBS), respectively. Considering the interference threshold ℎ, the minimal capacity and the

SINR of PU are
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Comparing Eqs. (7) and (9), we obtain
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Defining the tolerable capacity loss coefficient  of primary system, then we have

( )2 1  .C Cl= - (11)

Substituting Eq. (11) into Eq. (10), ℎ is fully determined by the value of  and the capacity

loss coefficient 
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Defining different values of , there are corresponding different levels of interference thresh‐

old. The larger the value of   is, the more interference the primary system can tolerate.

Besides the interference threshold ℎ, another considered parameter is the channel gain 𝀵𝀵.

In fact, perfect CSI in RA problem [43–45] cannot be obtained because of channel delays and
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hardware limitation in channel estimation. In Section 3.2.3, we will describe the channel

estimation of 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵() in detail.

3.2. Resource allocation

The RA problem in communication systems generally needs to simultaneously solve two kinds
of tasks: the channel assignment and the power allocation. Instead of pursuing an optimal
solution, RA algorithms in many existing works search for a suboptimal solution which
decomposes the RA problem into two steps: first assigning the subcarriers and then allocating
the power [46, 47]. Generally, the solution of the suboptimal algorithm, which has low
computational complexity, can be close to that of the optimal one. Therefore, the suboptimal
idea is inherited, and an efficient suboptimal algorithm solving the optimization problem in
Eq. (2) is presented as follows.

3.2.1. Subcarrier assignment

The first task of subcarrier assignment is the bandwidth allocation. From the view of fairness,
the SU which exhibits the minimum average capacity always increases the number of its
subcarriers until the total number of sub‐bands assigned to SUs equals to the number of free
sub‐bands. This mechanism helps to promise that each SU can achieve the fairness. Assum‐

ing that  is the number of free sub‐bands, the number of SUs is  ( > ), and  stands for
the number of sub‐bands assigned to the ℎ user. Then, the number of sub‐bands can be
determined according to the steps below:

① First, suppose that each SU has the equal number of sub‐bands, given as:  = /,  ∀ 
where  denotes the largest integer not exceeding .

② Second, calculate the average capacity of each SU  = 𝀵𝀵𝀵𝀵2 1 + ℎ2 . Find the SU with

minimal capacity: ' = arg𝀵𝀵𝀵𝀵(). And then add the sub‐band number of SU ', i.e.,' = ' + 1.

③ If all available sub‐bands are allocated (which means ∑= 1  = ), terminate. Else,

repeat the step ②.

Next, the relevant subcarrier assignment is completed. In traditional multi‐carrier systems, a
good channel quality depends on its high SNR. The maximum SNR‐metric is widely applied

to assign the subcarriers to the user by the value of SNR “𝀵𝀵𝀵𝀵/2” ( is the averaged power
by dividing the total power budget on the number of the subcarriers), which only considers
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the channel gain factor. Therefore, the SNR‐metric is not accurate enough to assess the average
capacity in CR systems.

In order to obtain the average capacity precisely, the average capacity metric (AC‐metric) is
applied to take more factors into account. The AC‐metric is decided by the channel gain 𝀵𝀵𝀵𝀵,
the interference threshold ℎ, the user power limitation ℎ, and the channel gain 𝀵𝀵𝀵𝀵. AC‐
metric makes a balance between all these influence factors. Figure 6 shows four different styles
of sub‐bands in idle spectrum holes, and the average capacity of each style can be calculated
by Eq. (12), where C1, C2, C3, and C4 stand for the average capacities of the four different sub‐
bands, respectively.  is the length of interference vectors, 𝀵𝀵𝀵𝀵𝀵𝀵ℎ() is the SINR on the left (right)ℎℎ subcarrier of one spectrum hole, 𝀵𝀵ℎ() represents the power on the left (right) ℎℎ subcarrier
of one spectrum hole, 𝀵𝀵𝀵𝀵()ℎ stands for the channel magnitude of SU to SBS on the left (right) ℎℎ subcarrier.

Assuming that there are  SUs and  idle sub‐bands, a  ×  AC‐matrix can be obtained

using the bandwidth allocation method. Our task is how to optimally assign these  sub‐

bands to the  SUs, which equals to the search of the optimal matching of a bipartite graph,
and the Hungarian algorithm [48] can efficiently solve this assignment problem. Therefore, the
subcarrier assignment is implemented by means of AC‐metric and the Hungarian algorithm.
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Figure 6. Four different types of sub‐bands in available spectrum holes.

3.2.2. Power allocation

The subcarrier assignment has been discussed in Section 3.2.1. In this subsection, the focus is
on the problem of power allocation. At the premise of knowing the result of the subcarrier
assignment, the power allocation of multiuser system can be virtually regarded as a single‐
user system. Hence, the task becomes a nonlinear programming, which can be efficiently
solved by some algorithms, such as the Lagrangian multiplier and the gradient projection
method (GPM) [49]. Considering that the nonlinear programming has the expression as
Eq. (14), the Lagrangian multiplier is computational complex if there are extensive multipliers.
Instead, the GPM can be applied to obtain the optimal power allocation solution in Eq. (14)
with a low computational complexity. The steps of GPM are summarized in Table 3.

 :   max ( )
 ;

. .
 ;

Objective function f x
Ax b
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Ex e

<ì
í =î

(14)

Steps

Step 1: 
Find the projection matrix  = 𑨒𑨒 𑨒𑨒 𑨒𑨒(𑨒𑨒𑨒𑨒)𑨒𑨒1𑨒𑨒. 𑨒𑨒 is the coefficient matrix of active constraints

Step 2: Calculate the next iteration direction  + 1 =  × ∇(),∇() is the gradient of current iteration

point

Step 3: If    ≤  or iteration times equal to the predetermined threshold, quit the iteration. ( is the threshold

of norm)

Step 4:
Calculate the range of step size 𝀵𝀵𝀵𝀵 .   = 𑨒𑨒 𑨒𑨒 𑨒𑨒,  = 𑨒𑨒𑨒 =   if  > 0,  = ∞ if  ≤ 0

Step 5: Find the step size α by line search

Step 6: Compute the next iteration point.  + 1 =  +  and go to step 2

Step 7: Quit the iteration

Table 3. Steps of the GPM algorithm to solve nonlinear programming with linear constraints.
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3.2.3. Estimated channel state information (CSI)

Generally, it is not practical to assume that the perfect CSI in RA problem is available. Due to
the channel delays and the inaccuracy of channel gain estimation, there is always an estimation
error between estimated CSI and ideal CSI. Thus, the estimated CSI has a more practical
significance in communication research than the ideal CSI.

Notice that in 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵1, the channel gains include the gain from SU to SBS 𝀵𝀵𝀵𝀵, the gain from
SU to PBS 𝀵𝀵𝀵𝀵, and the gain from PU to SBS 𝀵𝀵𝀵𝀵. Although there are multiple types of channel
links, there is no need to estimate all kinds of links for channel estimation load. We concentrate
on the capacity of secondary cell and control its interference to primary cell. It is reasonable to
assume that the channel gain 𝀵𝀵𝀵𝀵 from SU to PBS is not obtained and needs to be estimated,
while the other types of links are known by SBS. The interference constraint cannot be tackled
without the necessary information of the channel gain 𝀵𝀵𝀵𝀵 from SU to PBS. Although we do
not know the channel gain 𝀵𝀵𝀵𝀵, the path loss gain 𝀵𝀵𝀵𝀵  of the link from PBS to SU on the
subcarriers used by the primary system can be computed, and through interpolation, the
channel gain 𝀵𝀵𝀵𝀵  on free subcarriers can be acquired. If frequency division duplex is applied,
the downlink channel gain is not equal to the uplink channel gain. In this case, the downlink
channel gain can be used as a rough estimate of the uplink channel gain. In addition, to
guarantee the QoS of primary systems, a channel gain margin 𝀵𝀵  is added on the pathloss
gain 𝀵𝀵𝀵𝀵. Thus, the estimated channel gain 𝀵𝀵𝀵𝀵 can be computed by

( )1 .sp m plG G G= + (15)

The  𝀵𝀵 is associated with the prescribed outage probability 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 tolerated by the primary
sytem. Based on the implicit hypothesis that there is no difference between the downlink and
the uplink path loss, the evaluation of 𝀵𝀵𝀵𝀵  only depends on the Rayleigh fading. When the
actual channel gain 𝀵𝀵𝀵𝀵 is larger than the estimated channel gain 𝀵𝀵𝀵𝀵, we define this case as
the outage of primary system. The outage probability 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 can be represented as

( ) ( )( ) ( )( )2 21 1  out sp sp sp pl m pl sp mP P G G P H G G G P H G= > = > + = > + (16)

where 𝀵𝀵𝀵𝀵 = 𝀵𝀵𝀵𝀵2 𝀵𝀵𝀵𝀵,  𝀵𝀵𝀵𝀵 is the Rayleigh fading frequency response. Since 𝀵𝀵𝀵𝀵 ~ Rayleigh (µ),
the 𝀵𝀵𝀵𝀵2  has a Gamma distribution with shape parameter  = 1 and scale parameter  = 22.
The cumulative distribution function of 𝀵𝀵𝀵𝀵 2  is the regularized Gamma function. Therefore,
Eq. (16) can be further described as
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where  is the lower incomplete gamma function. Then, given a tolerant outage probability𝀵𝀵𝀵𝀵𝀵𝀵 of primary system, the channel gain margin  will be determined by Eq. (17)
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According to the path loss gain 𝀵𝀵𝀵𝀵 and the outage probability 𝀵𝀵𝀵𝀵𝀵𝀵 in Eq. (15), the estimated

channel gain can be obtained.

3.3. Numerical results

The spectral efficiency of FBMC and the other three modulation waveforms are evaluated by
using the abovementioned RA algorithm. We analyze the channel capacity of these waveforms
in single CR cell systems from four aspects: the distance  between SBS and PBS, the maximal
power of SUs 𝀵𝀵ℎ, the capacity loss coefficient  of PU, and the outage probability 𝀵𝀵𝀵𝀵𝀵𝀵  of PU.

The simulation parameters are shown in Table 4, and the simulation results are illustrated in
Figures 7–10.

Parameters Value Unit

Total bandwidth 10 MHz

Center frequency 2.5 GHz

Number of subcarriers 1024 –

Number of subcarriers in each sub‐band 18 –

Power limitation of each subcarrier 5 mW

Noise power of each subcarrier −134.1 dBm

Channel delays 10−9[0, 110, 190, 410] s

Channel powers [0, − 9.7, − 19.2, − 22.8] dB

Table 4. Simulation parameters of single CR cell systems.
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Figure 7. The relationship of capacity and distance between PBS and SBS.

Figure 8. The relationship of capacity and the maximal power of SUs.

Figure 9. The relationship of capacity and interference threshold.
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Figure 10. The relationship of capacity and the outage probability of PU.

The impact of the distance  between SBS and PBS on spectral efficiency is investigated in
Figure 7. It can be seen that accompanied by the increase in the distance, the capacities of all
waveforms arise and the curves tend to merge asymptotically. The increase in  reduces the
mutual interference between the PU and the SU, which is the reason why the average capacity
increases. The effect of the maximal power of SU ℎ is assessed in Figure 8. We can obtain that

the spectral efficiency of all waveforms increases with the augmentation of ℎ. At the premise

of satisfying the constraints, the larger power of SUs means that the more power is allocated
to the spectrum holes, which results in the expansion of channel capacity.

Figures 9 and 10 evaluate the spectral efficiency from the perspective of PUs. Figure 9 depicts
the inherent interaction of average capacity and the capacity loss coefficient λ of PU. When less
capacity loss is prescribed by PUs, which means a lower interference threshold and better
protection for primary system, the achievable capacity degrades due to the more strict access
control. Figure 10 presents the relationship of spectral efficiency and the outage probability𝀵𝀵𝀵𝀵 of PU. Note that the average capacity of OFDM‐based CR system with estimated CSI

collapses when a low outage probability is prescribed, while other MCM‐based CR systems
are much less vulnerable to different outage probabilities.

3.4. Discussion of spectral efficiency in single‐cell systems

From the above simulation results, some distinct conclusions can be drawn:

1. First, the results of Figures 7–10 exhibit that the average capacity of FBMC outperforms
those of other three waveforms. No matter what factor is considered, FBMC always has
the highest spectral efficiency on the basis of capacity due to its slightest spectral leakage,
UFMC comes second, GFDM takes the third place, and OFDM is the last. It implies that
the less spectral leakage leads to the higher spectral efficiency in single CR cell systems.

2. Second, we can see that there is a channel capacity gap between the case of ideal CSI and
the case of estimated CSI for the four MCM‐based systems. It is easily found that the
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spectral leakage property also plays an important role when the estimated CSI is consid‐
ered. For the OFDM‐based CR system, there is a large channel capacity gap between the
case with ideal CSI and the case with an estimated CSI, while there is a slight capacity
difference by applying the GFDM, UFMC, and especially the FBMC‐based CR systems,
which could be explained by the fact that when a low outage probability is required, more
subcarriers adjacent to PU should be deactivated or underutilized for OFDM due to its
significant spectral leakage, which accordingly decreases the channel capacity.

4. Spectral efficiency comparison in two‐cell CR systems

In Section 3, the comparison of spectral efficiency in single CR cell is implemented easily by a
two‐step RA algorithm. However, in case of two CR cells, the situation becomes more com‐
plicated with a higher dimension of variables. Besides, different cells will compete for the
common resource (assuming that the different CR cells will sense the same results of spectral
holes). If the two CR cells use the same frequency bands to communicate, the co‐channel
interference will arise, which makes the RA problem difficult to tackle. In this section, a two‐
cell RA algorithm is proposed to evaluate the spectral efficiency of different MCM modula‐
tions. In the following, the system model is first introduced, and then, the RA optimization
algorithm is elaborated. At last, simulation results will be given.

4.1. System model

In the scenario of two CR cells, as depicted in Figure 11, where the two CR cells with multiple
users per cell are symmetrically distributed with the primary system, each CR cell is respon‐
sible for the allocation strategy of its users, and it introduces interference to primary system
and another CR cell. Assuming that  denotes the number of cells, the number of users per
cell is . The aim is still to achieve the sum capacity of available frequency resource. Similar
to the formulation of single‐cell case, the expression of system model can be presented as
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Figure 11. System model of two CR cells with multiple CR users per cell.

where the parameter definitions are the same with 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵1 in Eq. (4) and  stands for the ℎ
CR cell.

In Eq. (19), the mutual interference and the co‐channel interference are computed as
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To solve 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 2 by centralized constrained optimization algorithms, all the channel gain
information must be known. This causes large computational complexity and a huge amount
of channel estimation overheads. Thus, a distributed RA algorithm is more appropriate than
centralized optimization algorithms. Next, we will show our proposed algorithm for solving𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 2 in a distributed manner by establishing a noncooperative game, where the conver‐
gence is desired.
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of channel estimation overheads. Thus, a distributed RA algorithm is more appropriate than
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4.2. Proposed algorithm for solving Problem 2

Distributed RA through a noncooperative game [50–53] is preferred where CR users in a single
cell can make their own decision based on local information. It can significantly reduce the
complexity and show an easier way in solving competition problem. Before the formulation
of a noncooperative game, some mathematic preliminaries are given.

The structure of a noncooperative game A noncooperative game incorporates three elements:
the players, the strategy space, and the utility function. A noncooperative game can be
denoted by

{ } { }{ }, ,  n nn ng p u
Î Î

= N NN (22)

 is the set of players in a game,  = 1, 2, 3, …,  .   is the strategy space of the ℎ player. 
is the utilization function of the ℎ player. The competitive result of a noncooperative game

is to obtain the Nash equilibrium (NE).

Definition of NE

A strategy profile * is NE if no unilateral deviation in strategy by any single player is profitable
for that player, that is

( ) ( )* * *, ,   ;  n n n n n nu p p u p p n- -³ " (23)

where *  is the strategy of the ℎ player on the NE point and −*  is the strategy profile except

for the ℎ player on the NE point.

Existence of NE

Theorem: For a utility function  (, −) with a support domain which is a nonempty convex

set, and  is continuous and quasiconvex or quasiconcave, at least a pure strategy NE point

exists [50].

4.2.1. Formulation of the noncooperative game

Notice that the formulation in Eq. (19) is a mixed integer optimization problem, and the

existence of the channel indicator 𝀵𝀵𝀵𝀵𝀵𝀵  does not satisfy the condition of converging to the NE.

Therefore, our interest is casted on how to transform the foregoing problem Eq. (19) into a
concave optimization problem. In Refs. [52, 54], the MAC technique [55–56] is advocated for
the formulation of a nonlinear programming, which gives an idea of formulating a concave
optimization problem.
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Simple schemes like time division multiplexing access (TDMA) and FDMA are generally used
in many practical situations. The MAC technique allowing more users to access the same

channel assists to remove the indicator θnmkf . In an MAC‐based system, a channel via which

two (or more) users send information to a common receiver, larger capacity region can be
obtained than that achieved by TDMA or FDMA by using a common decoder for all the users
of this system. Assuming that there are  senders denoted by 1, 2, 3, …,   sending to a

common single receiver with the power 1, 2, 3, …,  , 1, 2, 3,…,   stands for the

channel gains, and 0 is the power of noise. MAC can get a large capacity region for these

senders, and the capacity region can be calculated as
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MAC can realize the channel assignment and eliminate the non‐concave property which
results from the channel indicator 𝀵𝀵𝀵𝀵𝀵𝀵 . Therefore, the task turns into being the power control
on each subcarrier of users. With the help of MAC, the noncooperative game is formulated as
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Notice that the objective function in 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 3 is the summation of logarithmic functions, and
the logarithmic function has the following style

( ) ( )2 1 1 2 2 3 31  m mf x log a x a x a x a x= + + + + +L (26)

with parameters [1, 2, 3, …, ] ≥ 0. The summation of concave functions is still concave;

therefore, if Eq. (26) is proved to be concave, then the objective function in Eq. (25) is also
concave.
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Proof: The Hessian matrix of () at point  is
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where  = 12⋯  . For arbitrary row vector P with  elements, there are
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Therefore, () in Eq. (26) is concave which also indicates that the objective function in𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 3 is concave, which satisfies the existence condition of NE point, and thus, the
convergence of 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 3 is promised.

4.2.2. Determination of each cell's strategy

After the formulation of the noncooperative game, the next work is to determine the specific
power allocation scheme. In the game theory‐based algorithm, the power allocation scheme
of each player is determined sequentially. It is observed that 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 3 is a nonlinear pro‐
gramming with the same constraints as 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 2. It has been shown that GPM is a useful tool
to solve the nonlinear programming in the scenario of single CR cell. In order to solve𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 3, GPM is still applied in the scenario of two CR cells. The steps of GPM have been
presented in Table 3; for the sake of saving space, it is not restated. Readers are encouraged to
review Table 3 again if not familiar with GPM.

4.2.3. Estimated CSI of two CR cells

Based on the same assumption of single CR cell, each SBS has the perfect knowledge of its cell
but does not have the CSI knowledge to PBS. Thus, the CSI in the link from SU to PBS is
estimated. By means of estimating the channel gain 𝀵𝀵𝀵𝀵 in the inverse link from PBS to SU, the

estimated CSI can be obtained with 𝀵𝀵𝀵𝀵 and . It should be noticed that both of the two CR

cells should conduct the CSI estimation. Since the specific process of channel state estimation
has been stated in Section 3.2.3, there is no need for overmuch repeat.
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4.3. Numerical results of two CR cells

With the same simulation parameters, the comparison of spectral efficiency between FBMC
and other modulation waveforms in two CR cells is still assessed from the four aspects.
According to the proposed RA algorithm of two CR cells, the simulation results are shown in
Figures 12–15.

Figure 12. The relationship between distance and average capacity.

Figure 13. The relationship between interference threshold and average capacity.

Figure 14. The relationship between user power and average capacity.
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Figure 15. The relationship between outage probability and average capacity.

Figure 12 gives the impact of distance  between SBS and PBS in the context of two CR cells.
We can find that the average capacity enlarges as the increase in distance similar to the case of
single CR cell. However, compared to single CR cell, there is a clear difference that the span
between the highest channel capacity and the lowest one of two CR cells is larger than that of
single CR cell. This results from the co‐channel interference; when the distance is small, there
is an intense interference between the two CR cells in the common channel, which contributes
to the dropping of capacity. When the distance becomes large gradually, both of the mutual
interference and the co‐channel interference wane with , which explains why the curves
merge. Figure 13 assesses the spectral efficiency of two CR cells in terms of maximal user power.
Although in the two CR cells, the user with larger power always can access by allocating more
power to subcarriers and achieve a higher capacity, this explains the variation tendency of the
capacity curves.

The relationship between capacity and the capacity loss coefficient  of two CR cells is
presented in Figure 14. Similar to the case of single CR cell, there is a slight capacity difference
as the  decreases for FBMC. If the primary system needs a strict protection for QoS, which
means a low capacity loss coefficient , there is no doubt that FBMC is more able to meet the
requirement. Figure 15 shows the influence of average capacity and the outage probability of
PU in the scenario of two CR cells. It is seen that FBMC has the best capacity performance with
the slightest capacity difference between ideal and estimated CSIs if the same outage proba‐
bility is considered. Although the performance curves of FBMC, UFMC, and GFDM are closer
to each other than that in the case of single CR cell, the three waveforms show the dramatic
difference from OFDM.

4.4. Discussions of spectral efficiency in two‐cell systems

Based on the simulation results of single CR cell systems and two CR cells systems, the
following discussions are presented.

1. Considering the case of two CR cells, we can conclude the same result as in single CR cell
that FBMC shows the best spectral efficiency performance from any of the four aspects:
the distance  between SBS and PBS, the interference threshold ℎ, the maximal power
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of SU ℎ, and the outage probability  𝀵𝀵𝀵𝀵 of PU. Moreover, compared to other wave‐

forms, FBMC exhibits the best advantage when estimated CSI is considered.

2. The gaps of waveforms in two‐cell CR system are smaller than those in the case of single
cell. This can be explained as the existence of co‐channel interference, which reduces the
relative difference in total interference that a subcarrier can suffer. Compared to the single
cell, the maximal average capacity of two cells is larger, which results from the application
of the MAC technique that allows a large capacity region.

3. If more CR cells (>2) are considered, the co‐channel interference will become larger and
larger, and further narrow the difference in total interference. Therefore, it can be deduced
that the spectral efficiency curves will be closer to each other.

Based on the above discussions, FBMC not only can achieve the largest channel capacity in
the same constraints but also has the slightest capacity difference gap between perfect CSI
and estimated CSI compared to other three MCM waveforms. As a consequence, FBMC
technology providing the best system performance has been recommended in the future 5G
communication networks.

5. Conclusion

In this chapter, the spectral efficiency comparison is conducted by analyzing the achievable
channel capacity among four different multi‐carrier modulations. Two RA algorithms with
the practical consideration of estimated CSI are designed for evaluating and comparing the
capacity performance. Simulation results show that in our scenarios, FBMC can offer the
highest channel capacity and can achieve much more performance gain if rough estimated
channel state information is considered. As a result, we conclude that the little spectral
leakage of FBMC plays an essential role in achieving high spectral efficiency, and further
verify that FBMC is a competitive candidate for 5G physical layer data communication.
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Abstract

In this chapter, we explore the concept of non-orthogonal multiple access (NOMA)
scheme for the future radio access for 5G. We first provide the fundamentals of the
technique for both downlink and uplink channels and then discuss optimizing the
network  capacity  under  fairness  constraints.  We  further  discuss  the  impacts  of
imperfect receivers on the performance of NOMA networks. Finally, we discuss the
spectral efficiency (SE) of the networks that employ NOMA with its relations with
energy efficiency (EE). We demonstrate that the networks with NOMA outperform
other multiple access schemes in terms of sum capacity, EE and SE.

Keywords: non-orthogonal multiple access (NOMA), energy efficiency, power effi-
ciency

1. Introduction

In this chapter, we explore the concept of non-orthogonal multiple access (NOMA) method
for the upcoming 5G networks. All of the current cellular networks implement orthogonal
multiple access (OMA) techniques such as time division multiple access (TDMA), frequency
division  multiple  access  (FDMA)  or  code  division  multiple  access  (CDMA)  together.
However,  none  of  these  techniques  can  meet  the  high  demands  of  future  radio  access
systems.

The characteristics of the OMA schemes can be summarized as follows. In TDMA, the
information for each user is sent in non-overlapping time slots [1], so that TDMA-based
networks require accurate timing synchronization, which can be challenging, particularly in
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the uplink. In FDMA implementations, such as orthogonal frequency division multiple access
(OFDMA), information for each user is assigned to a subset of subcarriers [1]. CDMA utilizes
codes in order to separate the users over the same channel [1]. NOMA is fundamentally
different than these multiple access schemes which provide orthogonal access to the users
either in time, frequency, code or space. In NOMA, each user operates in the same band and
at the same time where they are distinguished by their power levels. NOMA uses superposition
coding at the transmitter such that the successive interference cancellation (SIC) receiver can
separate the users both in the uplink and in the downlink channels.

NOMA was proposed as a candidate radio access technology for 5G cellular systems [2, 3].
Practical implementation of NOMA in cellular networks requires high computational power
to implement real-time power allocation and successive interference cancellation algorithms.
By 2020, the time that 5G networks are targeted to be deployed, the computational capacity of
both handsets and access points is expected to high enough to run NOMA algorithms.

In this chapter, we present the fundamentals and capacity limits of NOMA as a future radio
access technology. The imperfectness in the SIC receiver and its impact on the overall capacity
is also presented. We further contribute to the literature by demonstrating the improved energy
and spectral efficiencies with NOMA over-conventional OFDMA.

2. Non-orthogonal multiple access (NOMA)

We consider orthogonal frequency division multiplexing (OFDM) as the modulation scheme
and NOMA as the multiple access scheme. In conventional 4G networks, as natural extension
of OFDM, orthogonal frequency division multiple access (OFDMA) is used where information
for each user is assigned to a subset of subcarriers. In NOMA, on the other hand, all of the
subcarriers can be used by each user. Figure 1 illustrates the spectrum sharing for OFDMA
and NOMA for two users. The concept applies both uplink and downlink transmission.

Figure 1. Spectrum sharing for OFDMA and NOMA for two users.
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Superposition coding at the transmitter and successive interference cancellation (SIC) at the
receiver makes it possible to utilize the same spectrum for all users. At the transmitter site, all
the individual information signals are superimposed into a single waveform, while at the
receiver, SIC decodes the signals one by one until it finds the desired signal. Figure 2 illustrates
the concept. In the illustration, the three information signals indicated with different colors are
superimposed at the transmitter. The received signal at the SIC receiver includes all these three
signals. The first signal that SIC decodes is the strongest one while others as interference. The
first decoded signal is then subtracted from the received signal and if the decoding is perfect,
the waveform with the rest of the signals is accurately obtained. SIC iterates the process until
it finds the desired signal.

Figure 2. Successive interference cancellation.

The success of SIC depends on the perfect cancellation of the signals in the iteration steps.
The transmitter should accurately split the power between the user information waveforms
and superimpose them. The methodology for power split differs for uplink and downlink
channels.

2.1. NOMA for downlink

In NOMA downlink, the base station superimposes the information waveforms for its serviced
users. Each user equipment (UE) employs SIC to detect their own signals. Figure 3 shows a BS
and K number of UEs with SIC receivers. In the network, it is assumed that the UE1 is the closest
to the base station (BS), and UEK is the farthest.

The challenge for BS is to decide how to allocate the power among the individual information
waveforms, which is critical for SIC. In NOMA downlink, more power is allocated to UE
located farther from the BS and the least power to the UE closest to the BS. In the network, all
UEs receive the same signal that contains the information for all users. Each UE decodes the
strongest signal first, and then subtracts the decoded signal from the received signal. SIC
receiver iterates the subtraction until it finds its own signal. UE located close to the BS can
cancel the signals of the farther UEs. Since the signal of the farthest UE contributes the most
to the received signal, it will decode its own signal first.
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Figure 3. Downlink NOMA for K users.

The transmitted signal by the BS can be written as
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where () is the individual information conveying OFDM waveform,  is the power
allocation coefficient for the UEk, and  is the total available power at the BS. The power
allocated to each UEk then becomes  = . The power is allocated according to the distance
of UEs to the BS: UE1 is the closest to the BS, so it is allocated the least power, whereas UEK is
the farthest one, therefore it has the highest power.

The received signal at the UEk is

( ) ( ) ( )k k ky t x t g w t= + (2)

where  is the channel attenuation factor for the link between the BS and the UEk, and ()
is the additive white Gaussian noise at the UEk with mean zero and density 0 (W/Hz).

Let us consider the farthest user first. The signal it decodes first will be its own signal since it
is allocated the most power as compared the others. The signals for other users will be seen as
interference. Therefore, the signal-to-noise ratio (SNR) for UEK can be written as [1]
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where  is the transmission bandwidth.

For the closest UE1, the last signal it decodes will be its signal. Assuming perfect cancellation,
the SNR for UE1 becomes

2
1 1

1
0

.P gSNR
N W

= (4)

In general, for the UEk, the SNR becomes
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When NOMA is used, the throughput (bps) for each UE can be written as
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In OFDMA, on the other hand, UEs are assigned to a group of subcarriers in order to receive
their information. When the total bandwidth and power are shared among the UEs equally,
the throughput for each UE for OFDMA becomes

2
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è ø
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where  =   and  = 0.

The sum capacity for both OFDMA and NOMA can be written as
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We further define fairness index as [4]
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which indicates how fair the system capacity is shared among the UEs, that is, when F gets
close to 1, the capacity for each UE gets close to each other.

We can set the objective of the power allocation mechanism as to maximize the sum capacity under a fairness constraint for NOMA systems. The optimization problem is then formu-
lated as

K

k
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2 k1 2
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where ′ is the target fairness index in the network. The power allocation coefficients  for
each UEk can be obtained with exhaustive search.

2.2. NOMA for uplink

Uplink implementation of NOMA is slightly different than the downlink. Figure 4 depicts a
network that multiplexes K UEs in the uplink using NOMA. This time, BS employs SIC in order
to distinguish the user signals.

Figure 4. Uplink NOMA for K users.

In the uplink, the received signal by the BS that includes all the user signals is written as

( ) ( )
1

( )
K

k k
k

y t x t g w t
=

= +å (11)

Towards 5G Wireless Networks - A Physical Layer Perspective88



which indicates how fair the system capacity is shared among the UEs, that is, when F gets
close to 1, the capacity for each UE gets close to each other.

We can set the objective of the power allocation mechanism as to maximize the sum capacity under a fairness constraint for NOMA systems. The optimization problem is then formu-
lated as

K

k
k 12

2 k1 2
1

P

maximize 1 subject to : P 0, 
F F'k

T

k k
k

i ki

P

P gWlog k
N P ga

=

-

=

£
æ ö
ç ÷
+ ³ "ç ÷

ç ÷+ç ÷ =è ø

å

å
(10)

where ′ is the target fairness index in the network. The power allocation coefficients  for
each UEk can be obtained with exhaustive search.

2.2. NOMA for uplink

Uplink implementation of NOMA is slightly different than the downlink. Figure 4 depicts a
network that multiplexes K UEs in the uplink using NOMA. This time, BS employs SIC in order
to distinguish the user signals.

Figure 4. Uplink NOMA for K users.

In the uplink, the received signal by the BS that includes all the user signals is written as

( ) ( )
1

( )
K

k k
k

y t x t g w t
=

= +å (11)

Towards 5G Wireless Networks - A Physical Layer Perspective88

where  is the channel attenuation gain for the link between the BS and the UEk,    is the

information waveform for the kth UE, and () is the additive white Gaussian noise at the BS
with mean zero and density 0 (W/Hz). In the uplink, the UEs may again optimize their

transmit powers according to their locations as in the downlink. However, here we assume
that the users are well distributed in the cell coverage, and the received power levels from
different users are already well separated. This assumption is more natural from practical point
of view, since power optimization requires connection between all the UEs which may be
difficult to implement.

At the receiver, the BS implements SIC. The first signal it decodes will be the signal from the
nearest user. The SNR for the signal for the UE1 can be written as, including others as inter-
ference,

2
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where P is the transmission power of UEs and  = 0.

The last signal that the BS decodes is the signal for the farthest user UEK. Assuming perfect
cancellation, the SNR for UEK can be written as
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Generally, for the kth UE, the SNR becomes,
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The throughput (bps) for each UE can be written as
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In OFDMA, on the other hand, UEs are allocated orthogonal carriers in order to receive their
information. When the total bandwidth and power are shared among the UEs equally, the
throughput for each UE for OFDMA becomes

Non-Orthogonal Multiple Access (NOMA) for 5G Networks
http://dx.doi.org/10.5772/66048

89



2

2 1 k k
k k

k

P gR W log
N

æ ö
= +ç ÷ç ÷

è ø
(16)

where  =   and  = 0.

The sum capacity for both OFDMA and NOMA can be written as
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3. Imperfectness in NOMA

Our discussions so far in the previous sections assume perfect cancellation in the SIC receiver.
In actual SIC, it is quite difficult to subtract the decoded signal from the received signal without
any error. In this section, we revisit the NOMA concept with cancellation error in the SIC
receiver.

Here, we consider the downlink only; however, the discussions can easily be extended for the
uplink. Recall that SIC receiver decodes the information signals one by one iteratively to obtain
the desired signal. In SIC, after decoding the signal, one should regenerate the original
individual waveform in order to subtract it from the received signal. Although it is theoretically
possible to complete this process without any error, in practice, it is expected to experience
some cancellation error.

In downlink, the SNR for the kth user with cancellation error is written as [5]
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where  is cancellation error term that represents the remaining portion of the cancelled
message signal. In the previous section, the third term in the denominator is not included since
perfect cancellation is assumed there.

4. Spectral efficiency and energy efficiency

Most analysis so far included the throughput performance of the network. In addition to
spectral efficiency (SE) of NOMA, in this section, we analyze the energy efficiency (EE) of
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NOMA systems. In our analysis, we incorporate the static power consumption of the network
due to the power amplifiers in addition to the power consumed for the information waveform.

The total power consumption at the transmitter can be represented as the sum of the infor-
mation signal power and the power consumed by the circuits (mainly by power amplifiers).
Considering the downlink, the total power consumed by the BS can then be written as

total T staticP P P= + (19)

where  is the total signal power as mentioned earlier and 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 is the power consumed by

the circuitry.

Energy efficiency (EE) is defined as the sum rate over the total consumed power of the base-
station [6]

 (bits/joule)T

total total

R WEE SE
P P

= = (20)

where SE is the spectral efficiency (/) in terms of bps/Hz.

The energy efficiency and spectral efficiency relationship (EE-SE) in Shannon theory does not
consider the power consumption of the circuit and consequently is monotonic where a higher
SE always results in a lower EE. When the circuit power is considered, the EE increases in the
low SE region and decreases in the high SE region. The peak of the curve (or the corresponding
derivative of the EE-SE relationship) is where the system has the maximum energy efficiency.
This point is called “green point” [6–8]. For a fixed 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵, the EE-SE relationship is linear with

a positive slope of /𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 where an increase in SE simultaneously results in an increase in

EE. As we demonstrate in the next section, NOMA provides higher energy efficiency than
OFDMA.

5. Results

5.1. Rate pairs

We assume that there are two users in the network for the sake of discussion and analyze
the boundaries of the achievable rate regions for these two users. We consider a symmetric
downlink channel so that the users are at equal distance to the BS. 𝀵𝀵𝀵𝀵1 = 𝀵𝀵𝀵𝀵2 = 10𝀵𝀵𝀵𝀵.

Figure 5 shows the boundaries of the achievable rate regions 1 and 1 for NOMA and

OFDMA. As illustrated in Figure 5, NOMA achieves higher rate pairs than the OFDMA ex-
cept at the corners points (where the rates are equal to the single user capacities). When the
fairness is high, both users experience 1.6 bps/Hz throughputs with both NOMA and OFD-
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MA. However, when the fairness is lower, both sum capacity and individual throughputs
are higher with NOMA. Figure 6 shows rate pairs when the channel is asymmetric, that is,𝀵𝀵𝀵𝀵𝀵𝀵1 = 20𝀵𝀵𝀵𝀵 and 𝀵𝀵𝀵𝀵𝀵𝀵2 = 0𝀵𝀵𝀵𝀵 . NOMA achieves much higher rate pairs than OFDMA, par-

ticularly for the farther user, UE2.

Figure 5. Rate pairs with OFDMA and NOMA for downlink NOMA, 𝀵𝀵𝀵𝀵𝀵𝀵1 = 𝀵𝀵𝀵𝀵𝀵𝀵2 = 10𝀵𝀵𝀵𝀵.

Figure 6. Rate pairs with OFDMA and NOMA for downlink NOMA, 𝀵𝀵𝀵𝀵𝀵𝀵1 = 20𝀵𝀵𝀵𝀵 and 𝀵𝀵𝀵𝀵𝀵𝀵2 = 0𝀵𝀵𝀵𝀵.
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5.2. Impact of imperfect cancellation

In Figure 7, we repeat the same conditions for the asymmetric downlink channel in the
previous section with imperfectness in SIC. The case for perfect cancellation is given as
reference which is the same as the results in Figure 6. We then analyze the impact of imperfect
cancellation by setting the cancellation error term () at 1, 5 and 10%. For instance, when = 1%, UE1 cannot perfectly cancel the signal for UE2 in the first iteration, and 1% of the power
of the second user’s signal still remains as interference. When  = 1%, the individual rate pairs
and accordingly overall capacity slightly reduce. When  = 10%, on the other hand, the
reduction is more distinct.

Figure 7. Impact of imperfect cancellation in SIC.

5.3. SE-EE trade-off with NOMA

Here, we compare the EE and SE of NOMA with OFDMA. We again consider the downlink.
The system bandwidth is taken as  = 5 MHz. The channel gains for UE1 and UE2 are,

respectively, taken as 12 = − 120𝀵𝀵𝀵𝀵 and 22 = − 140𝀵𝀵𝀵𝀵. Noise density0 is taken as −150 dBW/

Hz. We assume that the static power consumption at the BS is 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 = 100 . Figure 8 shows

the obtained EE-SE curves for this setup. It is seen that NOMA achieves higher EE and SE than
OFDMA system. The green-points occur for NOMA and OFDMA when  is at 17 W and 18

W, respectively. At these points, both systems achieve their maximum EE. NOMA clearly
outperforms OFDMA at green point and beyond for both EE and SE.
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Figure 8. EE-SE trade-off curves for NOMA an OFDMA.

6. Conclusion

In this chapter, we have presented the fundamentals of NOMA and demonstrated its superi-
or performance over conventional OFDMA in terms of sum capacity, energy efficiency and
spectral efficiency. We have further mentioned the impact of imperfectness at the SIC receiv-
er on the system performance. With its distinct features, NOMA stays as the strongest candi-
date for the future 5G networks. There are, however, still some challenges for successful
implementation of NOMA. First of all, it requires high computational power to run SIC al-
gorithms particularly for high number of users at high data rates. Second, power allocation
optimization remains as a challenging problem, particularly when the UEs are moving fast
in the network. Finally, SIC receiver is sensitive to cancellation errors which can easily occur
in fading channels. It can be implemented with some other diversity techniques like multi-
ple-input-multiple-output (MIMO) or with coding schemes in order to increase the reliabili-
ty and accordingly reduce the decoding errors. There are recent works that implement
MIMO for NOMA [9, 10]; the impact of channel state information (CSI) is studied in [11],
capacity maximization problem is discussed in [11], and outage probability expressions are
derived in [12]. The current state of the art for NOMA, however, is still far from its potential
and requires further investigation.

Appendix

MATLAB code for Figure 5.

clear all;

clc;
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date for the future 5G networks. There are, however, still some challenges for successful
implementation of NOMA. First of all, it requires high computational power to run SIC al-
gorithms particularly for high number of users at high data rates. Second, power allocation
optimization remains as a challenging problem, particularly when the UEs are moving fast
in the network. Finally, SIC receiver is sensitive to cancellation errors which can easily occur
in fading channels. It can be implemented with some other diversity techniques like multi-
ple-input-multiple-output (MIMO) or with coding schemes in order to increase the reliabili-
ty and accordingly reduce the decoding errors. There are recent works that implement
MIMO for NOMA [9, 10]; the impact of channel state information (CSI) is studied in [11],
capacity maximization problem is discussed in [11], and outage probability expressions are
derived in [12]. The current state of the art for NOMA, however, is still far from its potential
and requires further investigation.

Appendix

MATLAB code for Figure 5.

clear all;

clc;
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%%% NOMA parameters

P = 1;

G1 = 10;

G2 = 10;

count = 1;

for alpha = 0:0.01:1 %power splitting factor

P1 = P*alpha;

P2 = P - P1;

R1(count) = log2(1 + P1*G1);

R2(count) = log2(1 + P2*G2/(P1*G2 + 1));

count = count + 1;

end

hold on;

plot (R1,R2,'r');

grid on;

count = 1;

for alpha = 0:0.01:1 %bandwidth splitting factor

P1 = P/2;

P2 = P/2;

R1(count) = alpha*log2(1 + P1*G1/alpha);

R2(count) = (1-alpha)*log2(1 + P2*G2/(1-alpha));

count = count + 1;

end

hold on;

plot(R1,R2,'k');

xlabel('Rate of user 1 (bps/Hz)');

ylabel('Rate of user 2 (bps/Hz)');

grid on;

box on;

legend('NOMA','OFDMA')
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MATLAB code for Figure 8.

clear all;

clc;

B = 5*10^6; %bandwidth Hz

N0 = 10^-21; %-150 dBw/Hz

N = N0*B; % dBW

G1 = 10^-12; %-120 dB

G2 = 10^-14; %-140 dB

Pcircuit = 100; %watt

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% NOMA

count = 1;

for p = 1:1:100 %W

P1 = p*0.1; %allocate less power to UE1

P2 = p - P1;

R1 = B*log2(1 + P1*G1/N);

R2 = B*log2(1 + P2*G2/(P1*G2 + N));

R = R1 + R2;

SE(count) = R/B; % bit/sec/Hz

EE(count) = (R/(Pcircuit + p)); % bit/watt.sec

count = count + 1;

end

hold on;

plot(SE,EE,'k');

xlabel('SE (bit/sec/Hz)');

ylabel('EE (bit/joule)');

grid on;

% OFDMA

count = 1;

Towards 5G Wireless Networks - A Physical Layer Perspective96



MATLAB code for Figure 8.

clear all;

clc;

B = 5*10^6; %bandwidth Hz

N0 = 10^-21; %-150 dBw/Hz

N = N0*B; % dBW

G1 = 10^-12; %-120 dB

G2 = 10^-14; %-140 dB
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% NOMA

count = 1;

for p = 1:1:100 %W

P1 = p*0.1; %allocate less power to UE1

P2 = p - P1;

R1 = B*log2(1 + P1*G1/N);

R2 = B*log2(1 + P2*G2/(P1*G2 + N));

R = R1 + R2;

SE(count) = R/B; % bit/sec/Hz

EE(count) = (R/(Pcircuit + p)); % bit/watt.sec

count = count + 1;

end

hold on;

plot(SE,EE,'k');

xlabel('SE (bit/sec/Hz)');

ylabel('EE (bit/joule)');

grid on;

% OFDMA

count = 1;
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greenpoint = 0;

maxEE = -1000;

for p = 1:1:100 %Watt

P1 = p/2;

P2 = p/2;

R1 = (B/2)*log2(1 + P1*G1/(N0*B/2));

R2 = (B/2)*log2(1 + P2*G2/(N0*B/2));

R = R1 + R2;

SE_line(count) = R/B; % bit/sec/Hz

EE_line(count) = (R/(Pcircuit + p)); % bit/watt.sec = Mbit/joule

count = count + 1;

end

hold on;

plot(SE_line,EE_line,'g-');

xlabel('SE (bit/sec/Hz)');

ylabel('EE (bit/joule)');

grid on;
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Abstract

The deployment of small cells within the boundaries of a macro-cell is considered to be
an effective solution to cope with the current trend of higher data rates and improved
system capacity. In the current heterogeneous configuration with the mass deployment
of small cells, it is preferred that these two cell types coexist over the same spectrum,
because acquiring additional spectrum licenses for small cells is difficult and expensive.
However, the coexistence leads to cross-tier/inter-system interference. In this context,
this contribution investigates interference alignment (IA) methods in order to mitigate
the interference of macro-cell base station towards the small cell user terminals. More
specifically, we design a diversity-oriented interference alignment scheme with space-
frequency block codes (SFBC). The main motivation for joint interference alignment
with SFBC is to allow the coexistence of two systems under minor inter-system informa-
tion exchange. The small cells just need to know what space-frequency block code is
used by the macro-cell system and no inter-system channels need to be exchanged,
contrarily to other schemes recently proposed. Numerical results show that the pro-
posed method achieves a performance close to the case where full-cooperation between
the tiers is allowed.

Keywords: interference alignment (IA), space-frequency block codes (SFBC), downlink
(DL), heterogeneous networks (HetNets), small-cell system, macro-cell system

1. Introduction

Due to new generation of wireless user equipment and the proliferation of bandwidth-inten-
sive applications (such as video, mobile broadband modems, tablets and mobile data applica-
tions) and the corresponding network load are increasing in exponential manner, where most
of this new data traffic is generated indoors. To improve the coverage and provide boost in
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network capacity, cellular operators are urged to explore different methods, where massive
multiple input multiple output (MIMO) [1] and heterogeneous network [2] concepts are two
promising technologies to cope with the increased demand for higher data rates as demanded
by 5G [3]. Massive MIMO is a large-scale multiuser MIMO strategy that has the capability of
communicating with dozens of users at the same time and frequency band. Moreover, the
concept of massive MIMO-aided HetNets recently attracted the attention of research commu-
nity [4]. In this chapter, we focus on the heterogeneous network scenario, where the small cells
(SCs) coexist with macro-cells which allow more users to be served. Apart from the capability
to provide higher data rates, SCs offer other advantages, such as they are low-power wireless
access points (APs) and have low deployment cost, they operate inside the coverage area of a
macro-cell, creating a heterogeneous network [5, 6] and they offer great benefits for both
operators and users, who get higher data rates, get better coverage and avail new services [7].

Inspired by the features and potential advantages of the small-cell networks, their develop-
ment and deployment have gained considerable interest in the wireless industry and research
communities. On the other hand, these networks also come up with their own challenges.
There are significant technical issues related to self-organization, backhauling and interference
management that still need to be addressed for their successful rollout and operation [8].
Furthermore, due to huge deployment of SCs within the boundaries of a macro-cell and the
cost involved in acquiring additional frequency licenses for small-cells, it is preferred that the
macro- and small cells coexist over the same spectrum. However, the coexistence of two
systems will result in a number of challenges, namely related to interference management [9],
i.e. the cross-tier/inter-system interference. In a coexistence scenario, being the owner of the
spectrum, the macro-cell system has the access priority to the available radio spectrum and in
the literature of cognitive radio (CR) [10, 11], the macro-cell terminals are denominated as
primary users/system; however, the small-cell terminals can only opportunistically access the
free space resources of the macro-cell system without generating any interference to it and are
denominated secondary. In this context, heterogeneous networks require more dynamic plan-
ning and if the system is not carefully designed then it will cause significant interference that
affects the performance of both macro-cell and small-cell systems.

In order to cancel interference in heterogeneous networks, different interference mitigation
techniques have been proposed [12, 13]. One of the recent and effective approaches to deal
with interference issues in heterogeneous networks is the interference alignment (IA) tech-
nique [14]. The concept of IA has emerged as an essential approach to align an arbitrary large
number of interferers and achieve the maximum degree of freedom (DoF) in interference
channels [15, 16]. The problem of limited inter-system information exchange in heteroge-
neous-based systems using IA has been addressed in some publications [17, 18]. In Ref. [19],
it was shown that only 1 bit of information exchange is required between the macro- and
small cells to achieve full diversity order at the macro-cell. This work assumed the knowl-
edge of the cross-tier channel at the small cells. Furthermore, the concept of IA has been
jointly used with CR in order to mitigate interference in heterogeneous networks. In Ref. [20],
authors proposed a practical joint IA and cognitive communication technique in order to
deal with the interference of small-cell user terminals (UTs) towards the macro-base station.
In this work, three IA methods with different levels of inter-system information exchange
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were proposed, namely: the coordinated, static and uncoordinated approaches. The first
method achieves the best performance with very high feedback requirements while the
uncoordinated and static methods require no feedback but at the expense of performance
degradation. Therefore, to overcome the limitations of coordinated and uncoordinated-static
methods, the authors in Ref. [21] investigated a coordinated one-bit method for the uplink of
heterogeneous networks.

One of the key aspects in coordinated-based systems is the amount of feedback that needs to
be exchanged between the cooperating identities [22], in order to define the overhead require-
ments needed by the network to avail the benefits from cooperation. When full-coordination is
allowed between the two systems, it achieves the best performance and maximum diversity
order. On the other hand, when no information is exchanged, the diversity is reduced to
minimum as demonstrated in Refs. [20, 21]. In this context, the design of practical schemes
that can provide close to optimal performance with limited information exchange is of para-
mount importance. Therefore, in Ref. [23] we proposed IA-based schemes for the downlink of
heterogeneous systems under limited inter-system information exchange. In Ref. [23], we
design a new IA-based scheme for the considered heterogeneous systems. Namely, the coordi-
nated 2n-bit approach, which is an extension of the 2-bit method proposed in Ref. [24].
Moreover, to demonstrate the further reduction of information exchange between the two
systems, we proposed a joint IA and space-frequency block code (SFBC) approach [25]. In this
chapter, we present the schemes mentioned in Refs. [23, 25] for a general number of antennas
at each terminals and for the case where OFDM modulation is considered. Furthermore, for
our SFBC-based schemes, we consider a general formulation of the diversity-oriented joint IA
and SFBC method that can be applied for any SFBC. For this new method, the small cells just
need to sense what SFBC is used by the macro-cell system and no inter-system channels need
to be exchanged, contrarily to the previously proposed approaches.

The rest of the chapter is structured as follows: Section 2 introduces the system and signal
models for macro-cell and small-cell systems with and without SFBC. In Section 3, we start by
summarizing the related work and then the joint IA and SFBC schemes are derived in detail. In
Section 4, we discuss the performance ad information exchange requirements for all the
methods. In Section 5, we present the numerical results and performance comparison of the
proposed methods with others from the literature. Finally, conclusions are provided in Section 6.

2. System model

Let us consider the downlink of a heterogeneous network, where a set of K small-cells are
overlaid within the boundaries of a macro-cell, both sharing the same spectrum as depicted in
Figure 1. The K small-cell base stations (SBSs) are able to cooperate through a backhaul
network (e.g. radio over fibre) to a central unit (CU) that allows joint processing of transmitted
signals. In this work, we consider the downlink case, i.e. the base stations (BSs) are sending
information to the corresponding user equipment (UE). We consider OFDM-based terminals
withNc available subcarriers, but the proposed methods also work with generalized frequency
division multiplexing (GFDM), since similarly to OFDM the transmit signals are a linear
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combination of the data symbols [26]. The transmit power per subcarrier for macro-base
station (MBS) and SBSs is constraint to Pm and Ps, respectively. We consider that the MBS
serves only one user equipment, macro UE (MUE), per subcarrier,1 and the SBS k serves only
the small-cell user equipment k (SUEk) k = {1,…K}.

2.1. Signal model without SFBC

First, we describe the signal model for the macro- and small-cell systems for the case where no
SFBC is employed at the MBS [23]. The block diagram of the considered systems is presented
in Figure 2. At the macro-cell system, we assume that the MBS and MUE have Mm and Nm

antennas, respectively. The transmitted signal (xf nm ) at the MBS on subcarrier fn is given by

xf nm ¼ γmðV
f n
m df n

m Þ, (1)

where γ2
m ¼ Pm=trðVf n

m
HVf n

m Þ, Vf n
m∈CMmNm and df n

m∈CNm denote a normalizing constant, the
precoder and the transmitted symbols at the MBS, respectively. The received signal in the

frequency domain at the MUE (yf nm∈CNm ) can be mathematically expressed as

yf nm ¼ Gf n
1 xf nm|fflfflffl{zfflfflffl}

Desiredsignal

þ Gf n
2 xf ns|fflfflffl{zfflfflffl}

Interference

þ nf n
m : (2)

where xf ns ∈CMsK , Gf n
1 ∈CNmMm ,Gf n

2 ∈CNmMsK and nf n
m∈CNm denote the overall transmitted signal

Figure 1. System model: N small cells within the coverage area of macro-cell.

1
Considering an OFDM/A-based system, the total number of macro-cell users can be significantly larger than one, since
different set of resources can be allocated to different users.
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1
Considering an OFDM/A-based system, the total number of macro-cell users can be significantly larger than one, since
different set of resources can be allocated to different users.
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at the small-cell system, the channel between MBS and MUE, the overall channel between CU
andMUE (i.e. the channels between the SBSs and the MUE) and the zero-mean white Gaussian

noise with variance σ2, respectively [23]. We assume that at the MBS only Gf n
1 is known and it

has no knowledge about the existence of a small-cell system. Furthermore, we assume that the

MUE is a high mobility equipment and then Gf n
1 and the precoder Vf n

m (function of macro-cell

channel Gf n
1 ) change on every transmission time interval (TTI).

In the small-cell system, each SBS has Ms transmit and the SUEk k = {1,…K} has Ns receive

antennas. The transmitted signal (x
f n
s ) at the CU on subcarrier fn is expressed as

xf ns ¼ γsðV
f n
s df n

s Þ, (3)

whereVf n
s ∈CMsKðNs−NmÞK, df n

s ¼ ½df n
sk �1≤k≤K∈CðNs−NmÞK, df n

sk∈C
Ns−Nm and γ2

s ¼ Ps=trðVf n
s
HVf n

s Þdenote
the overall precoder computed at the CU, the concatenation of the K SBSs transmit symbols,
the SBS k transmit symbols and a normalizing constant. The received signal after the filter

matrix (Wfn
k ) at the SUEk is

zf nsk ¼ Wfn
k ðFf nk xf nm|fflffl{zfflffl}

Interference

þ Hf n
k xf ns|fflfflffl{zfflfflffl}

Desiredsignal

þ nf n
sk Þ, (4)

where Ff nk ∈C
NsMm , Hf n

k ∈C
NsMsK and nf n

sk∈C
Ns denote the channel between the MBS and SUEk,

the overall channel between the SBSs and SUEk and the zero-mean white Gaussian noise with
variance σ2 at SUEk, respectively. We consider that the SUEs are low mobility terminals2 and

then the channel Ff nk can be considered as quasi-static which reduces the overhead required for
their estimation [23].

Figure 2. Block diagram of the considered system.

2
Since the terminals associated with the small cells are mainly indoor/pedestrian users.

Physical-Layer Transmission Cooperative Strategies for Heterogeneous Networks
http://dx.doi.org/10.5772/66818

105



2.2. Signal model with SFBC

Now, we consider the signal model with space-frequency coding at the MBS. We consider a

block fading MIMO channel, i.e. Gf n
1 ¼ G1forf n ¼ 1,…, F and the channel is independent

between different blocks of F subcarriers. Thus, the system equation mentioned in Eq. (2), over
one block is [27]

Ym ¼ G1Xm þ Is þNm , (5)

whereYm ¼ ½y1m,…, yFm� is the received signal matrix, Xm ¼ ½x1m,…,xFm� is the transmitted signal,

Is ¼ ½G1
2x

1
s ,…,GF

2x
F
s � is the inter-tier interference and Nm ¼ ½n1

m,…,nF
m� is the zero-mean white

Gaussian noise with variance σ2. The macro-cell system employs an SFBC to encode Sm
complex symbols d1m,…, dSmm chosen from an r-QAM constellation [25]. We consider linear
dispersion codes (LD) of the form Ref. [28]

Xm ¼ ∑
Sm

s¼1
ðAs

mRfdsmg þ Bs
mIfdsmgÞ, (6)

where dsm ¼ Rfdsmg þ jIfdsmg,m ¼ 1,…, Sm, As
m and Bs

m are the codeword matrices. The rate of
the LD code is

R ¼ Sm
F

log2ðrÞ,bits=subcarrier (7)

Therefore, by rewriting Eq. (5) in column-stacked form we obtain [25]

ym ¼ ðIF⊗G1Þxm þ is þ nm ¼ G1Vmdm þ is þ nm: (8)

where G1 ¼ IF⊗G1, x ¼ vecðXÞ is NmF dimensional, is ¼ vecðIsÞ is MmF dimensional,

xm ¼ vecðXmÞ ¼ Vmdm is MmF dimensional, dm ¼ ½Rfd1mf,…,RfdSmm g,Ifd1mg,…,IfdSmm g�T ,
Vm ¼ ½vecðA1Þ,…,vecðASmÞ,vecðB1Þ,…,vecðBSmÞ� is an NmF2Sm code generator matrix that is
an equivalent representation of the LD code.

At the small-cell system, the signal model for the methods with SFBC is similar to one
presented previously. Using a similar procedure as in the previous section for the received
signal at SUEs, we obtain [27]

ysk ¼ F kVmdm þHkxs þ nm , (9)

where ysk ¼ ½ðy1skÞT ,…, ðyFskÞT �T , F k ¼ diagðF1k ,…, FFk Þ, Hk ¼ diagðH1
k ,…,HF

k Þ,
xs ¼ ½ðx1s ÞT ,…, ðxFs ÞT �T and nsk ¼ ½ðn1

skÞT ,…, ðnF
skÞT �T . To compute the CU transmit signal, a linear

precoder is considered, that is the CU transmits

xs ¼ Vsds , (10)

where Vs∈CMsKFSsKF, ds ¼ ½df n
sk �1 ≤ k ≤ K,1 ≤ f n ≤ F∈CSsKF and df n

sk∈C
Ss denote the overall precoder

computed at the CU, the concatenation of the K SBSs transmit symbols, df n
sk is the SBS k
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transmit symbols, respectively. The transmit power at the CU is constrained to Ps, per
subcarrier

trðVf Hn
s Vf n

s Þ≤Ps , (11)

The received signal after the filter matrix (Wk) at the SUEk by taking into account Eqs. (9) and
(10) is

zsk ¼ WkðF kVmdm þHkVsds þ nskÞ: (12)

3. Proposed approaches for precoder and filter matrix design

In this section, we present the design of precoder and filter matrices of the macro-cell and
small-cell systems, in order to allow efficient coexistence of the two systems over the same
radio spectrum. To design our proposed methods, we consider different levels of cooperation
between the two systems. All the methods presented in this chapter are derived for a generic
antenna configuration and therefore they are applicable for massive MIMO systems. On the
other hand, the complexity will scale depending on the number of transmit antennas. Since the
proposed methods involve matrix multiplications and inversions, thus the complexity will be
similar to ZF-based precoding in massive MIMO. Moreover, for the sake of simplicity, we just
consider one user per MBS but adding more macro-cell user will not impact the performance
of both the systems, since interference can be completely removed. First, we summarize the
methods presented in Ref. [23] for the case without SFBC. Then, we present in detail the
proposed methods in Ref. [25], for the case where IA and SFBC are jointly used.

3.1. Methods without SFBC

In this section, we summarized the schemes presented in Ref. [23] for a general number of
antennas at each terminal and for the case where OFDMmodulation is considered. In Ref. [23],
we design a new IA-based scheme for the considered heterogeneous systems. Namely, the
coordinated 2n-bit approach, which is an extension of the 2-bit method proposed in Ref. [24].

3.1.1. Full-coordinated scheme

For the full-coordinated method, we assume the knowledge of theGf n
1 channel at the MBS. For

the case where the MUE is equipped with single antenna, a maximal ratio transmission (MRT)-
based precoder can be employed as in Ref. [24]. When an antenna array is used at the MUE, a
ZF or MMSE-based precoders can be used. In this work, we consider the MRT-based precoder
at the MBS given by

Vf n
m ¼ γmG

f n
H

1 , (13)

Furthermore, we assumed that the macro-cell system is not aware of the existence of small-cell

system within its coverage area and the MBS precoderVf n
m is fixed and it will not change due to

the presence of SUEs. However, the SUEs can be severely affected by the macro-cell
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transmission. From Eqs. (1) and (4), we can see that to enforce the zero-interference condition
and mitigate the interference coming from MBS, the filter matrix at SUEk must satisfy

Wf n
k Ff nk Vf n

m ¼ 0, (14)

From Eq. (14) it follows that to satisfy the zero-interference condition the filter matrix (Wf n
k ) at

SUEs is

Wf n
k ¼ nullðFf nk Vf n

m Þ, (15)

Af n ¼ nullðVf n
m Þ: (16)

Where Af n is the alignment direction that specifies completely the received macro-cell interfer-
ing signal towards the SUEs. Using this information, the small cells can align their transmis-
sion accordingly without experiencing any interference from the macro-cell system. It can be
verified from the zero-interference condition mentioned in Eq. (14) that the DoF available for
the small-cell system is (Ns – Nm)K.

3.1.2. Uncoordinated-static scheme

Once again for this scheme, we follow the same procedure (as for the previous method) to
remove the interference from MBS at SUEs, but the precoder at MBS is static at the beginning
of interaction between the two systems and it will remain constant, i.e. its value do not change
every TTI and its value is also known at the small-cell terminals. Therefore, this method
requires no inter-system cooperation. For example, we assume the precoder at MBS is the all-

ones matrix, i.e. Vf n
m ¼ 1 [23].

3.1.3. Coordinated 2n-bit scheme

To achieve a trade-off between performance and feedback requirements of the full-coordinated
and uncoordinated-static methods, we propose a coordinated 2n-bit method. To design the
alignment direction, we consider the same precoder used for the full-coordinated scheme.
Only a quantized version of the alignment vector is exchanged between the two systems [23].
Therefore, we quantize the alignment direction with 2n bits (n bits for the real and n bits for the
complex part, where n ¼ 1, 2, 3, ::). The quantized alignment direction is

Af n
q ¼ f QðRefðAf n ÞgÞ þ jf QðImfðAf n ÞgÞ (17)

where f Qð:Þ denotes a quantization function, the Ref:g and Imf:g are the real and imaginary parts

of alignment direction Af n . In this chapter, for the sake of simplicity, we consider only uniform
quantizers. Notice that for this case, the MBS precoder is also quantized, by taking into account

the zero-interference condition (Af n
q ¼ nullðVf n

m,qÞ), Vf n
m,q is a quantized version of Vf n

m [23].

3.2. Methods with SFBC

In this section, we design new joint IA and SFBC schemes without any information exchange
between two systems as compared to the full-coordinated and coordinated 2n-bit methods,
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where we need the channel information Gf
1 in order to design the precoder at the MBS and

filter matrix at the SUEs. The main motivation behind the use of SFBC at the macro-cell system
is that it allows the design of filter matrix at SUEs without having any coordination between
the two systems. More specifically, the small-cells just need to sense that the macro-cell system
is using an SFBC scheme [23].

3.2.1. IA-filter matrix design for methods with SFBC

Now, we present the design of IA-filter matrix at the SUEs for the proposed joint IA and SFBC
scheme. We consider that the macro-cell system has no information about the existence of
small-cells within its coverage area. In the coexistence scenario, the MBS interferes with the
SUEs. From Eq. (12) we can find that to enforce the zero-interference condition and mitigate
the interference coming from MBS, the IA-filter matrix at SUEk must satisfy

WkF kVm ¼ 0, (18)

In order to cancel the interference coming fromMBS towards the SUEk, we need to compute an
appropriate filter matrix at the SUEk. From Eq. (18) it follows that to satisfy the zero-interfer-
ence condition the IA-filter matrix at SUEk is

Wk ¼ nullðF kVmÞ, (19)

As mentioned in Section 2.2, the precoderVm for SFBCs does not depend on the macro-channel
and thus there is no need to exchange any information from the macro-cell to the small-cell
system to design the IA-filter matrix, contrarily to the full-coordinated and coordinated 2n-bit
methods [23]. For these two cases, the precoder is computed for each channel instance and as
the macro-cell terminal is a mobile terminal the equalizer matrix Wk must be computed on
every TTI. This means that the IA-filter matrix must be exchanged between the two systems

every TTI. Another possible strategy consists of estimating the equivalent channel Ff nk V
f n
m , by

listening to the pilot signals, but it will also require a high pilot density [29].

After applying the IA-filter matrix mentioned in Eq. (19) to Eq. (12), we obtain

zsk ¼ WkðF kVmdm þHkVsds þ nskÞ ¼ WkHkVsds þWknsk : (20)

From Eqs. (18) and (20) we verify that the interference from MBS is completely removed at
SUEs. This is made possible due to the redundancy present in the MBS transmitted data
symbols. Once again, for the joint IA and SFBC case due to the zero-interference condition
mentioned in Eq. (18), the DoF available at the small-cells is ðNs−NmÞK.

3.2.1.1. Interference from small cells to macro-cell

In the previous section, we described how to tackle the interference from the macro- to the
small cells. In this section, we describe how to cancel the interference from the small cells to the
macro-cells (for all the methods presented in this chapter). Being a small-cell system it should
not interfere with the macro-cell system (i.e. the macro-cell has priority to access the available
resources). On the other hand, the SUEs should not interfere with each other. We consider that
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the SBSs are connected via the backhaul network (optical fibre) to a CU in order to perform
joint processing of transmitted signals [25]. The CU has enough DoF (i.e. KMs) to cancel both
the interference that the SBSs cause in the MUE and the interference between SUEs. The
precoding matrix at the CU is based on the ZF criteria, in order to zero force the macro-cell

and small-cell channels together. In this context, the ZF precoder V
f n
s , computed at the CU, is

given by Ref. [25]

Vf n
s ¼ Af Hn ðAf nAf Hn Þ−1 , f n ¼ 1,…, F (21)

where Af n ¼ Wf nHf n
eq , H

f n
eq ¼ ½ðGf n

2 ÞH , ðHf n
1 ÞH ,…, ðHf n

K ÞH�H and Wf n ¼ diagðI,Wf n
1 , :::W

f n
k , :::W

f n
K Þ.

The filter matrix Wf n
k is known at the CU since the channels Ff nk are quasi-static, the SUEs may

feedback them to the CU without much overhead requirements.

3.2.2. Examples for specific SFBC codes

In the following, we consider few examples of diversity-oriented SFBC schemes used at the
macro-cell system in order to design the IA-filter matrix of our joint schemes. We considered
three SFBC schemes: Alamouti codes [30], quasi-orthogonal codes [31] and Tarokh codes [32]
with the data symbols coded in space and frequency as shown in Figure 3. Furthermore, from
the context of space-time/space-frequency coding literature, the channel between adjacent

carriers is assumed to be approximately constant,3 i.e. Gf m
1 ≈Gf n

1 ,m≠n∈N [25].

• Alamouti codes: For the first case, we employ the standard Alamouti SFBC [30] based
scheme at the MBS, with two (Mm ¼ 2) antennas at the transmitter and single antenna
(Nm ¼ 1) at the receiver. For this well-known method, the encoder takes a block of two
data symbols, i.e. d1 and d2. For a given subcarrier, two symbols are simultaneously

3
OFDM-based systems are usually designed so that channels between some adjacent carriers are approximately flat.

Figure 3. SFBC schemes at MBS.
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transmitted from the two antennas, as shown in Figure 3. For the first subcarrier f1, the
symbol transmitted from the first antenna is denoted by d1 and from the second one by d2
and over subcarrier f2, ð−d2Þ� and ðd1Þ� are transmitted from the first and second antennas,

respectively [23]. The transmitted signal at the MBS on subcarriers f1 (xf 1m ) and f2 (xf 2m ) is
given by

xf 1m ¼ d1
d2

� �
, xðf 2 Þ

�
m ¼ −d2

d1

� �
(22)

For this case, as mentioned previously, the MBS precoder is applied jointly for F = 2
consecutive subcarriers as,

Vm
T ¼

1 0 0 −1
0 1 1 0
j 0 0 j
0 j −j 0

2
664

3
775 (23)

As it can be verified from Eq. (23) the macro-cell precoder does not depend on the macro-
channel, this means there is no need to exchange any channel information from the macro-
cell to the small-cell system to design the IA-filter matrix.

• Quasi-orthogonal codes: As verified in Ref. [30], the Alamouti-based scheme is restricted
to two antennas at the transmitter side. Therefore, we consider the quasi-orthogonal-
based scheme that can be able to use more than two antennas at the transmitter and
increase the multiplexing gain. For this case, the transmitter has four (Mm = 4) and the
receiver has a single antenna (Nm = 1), as shown in Figure 3. In this method, four pairs of
four data symbols are transmitted in parallel. The four data symbols are transmitted over
four antennas on four subcarriers, F = 4 according to the following encoding [25]

xf 1m ¼
d1
d2
d3
d4

2
664

3
775, x

ðf 2Þ�
m ¼

d2
−d1
d4
−d3

2
664

3
775, x

f 3
m ¼

d3
d4
d1
d2

2
664

3
775, x

ðf 4 Þ�
m ¼

d4
−d3
d2
−d1

2
664

3
775 (24)

For this case, as mentioned previously, the MBS precoder is applied jointly for F = 4
consecutive subcarriers.

Vm
T ¼

1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 −1
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 −1 1 0 0 0 0 −1 0 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
j 0 0 0 0 j 0 0 0 0 j 0 0 0 0 j
0 j 0 0 −j 0 0 0 0 0 0 j 0 0 −j 0
0 0 j 0 0 0 0 j j 0 0 0 0 j 0 0
0 0 0 j 0 0 −j 0 0 j 0 0 −j 0 0 0

2
66666666664

3
77777777775

(25)

As seen in the Alamouti code, the macro-cell precoder for this case also does not depend
on the macro-channel as verified from Eq. (25); this means there is no need to exchange
any channel information from the macro-cell to the small-cell system to design the IA-
filter matrix.
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• Tarokh codes: Once again, for Tarokh codes we assume four antennas (Mm = 4) at the
transmitter and a single antenna (Nm = 1) at the receiver side, as presented in Figure 3. The
only difference is the number of subcarriers used to transmit the data symbols, for this
case eight subcarriers are used, i.e. the Tarokh code that provides the code rate of 1/2. The
four data symbols are transmitted over four antennas on eight subcarriers F = 8 according
to the following encoding [25]

xf 1m ¼

d1
d2
d3
d4

2
6664

3
7775, x

f 2
m ¼

−d2
d1
−d4
d3

2
6664

3
7775, x

f 3
m ¼

−d3
d4
d1
−d2

2
6664

3
7775, x

f 4
m ¼

−d4
−d3
d2
d1

2
6664

3
7775, x

ðf 5 Þ�
m ¼

d1
d2
d3
d4

2
6664

3
7775, x

ðf 6Þ�
m ¼

−d2
d1
−d4
d3

2
6664

3
7775,

xðf 7 Þ
�

m ¼

−d3
d4
d1
−d2

2
6664

3
7775, x

ðf 8 Þ�
m ¼

−d4
−d3
d2
d1

2
6664

3
7775

(26)

For the Tarokh codes, the MBS precoder is applied jointly for F = 8 consecutive subcarriers
as

Vm
T ¼

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 −1 0 0 0 0 0 0 −1 0 0 1 0
0 0 1 0 0 0 0 1 −1 0 0 0 0 −1 0 0
0 0 0 1 0 0 −1 0 0 1 0 0 −1 0 0 0
j 0 0 0 0 j 0 0 0 0 j 0 0 0 0 j
0 j 0 0 −j 0 0 0 0 0 0 −j 0 0 −j 0
0 0 j 0 0 0 0 j −j 0 0 0 0 −j 0 0
0 0 0 j 0 0 −j 0 0 j 0 0 −j 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 −1 0 0 0 0 0 0 −1 0 0 1 0
0 0 1 0 0 0 0 1 −1 0 0 0 0 −1 0 0
0 0 0 1 0 0 −1 0 0 1 0 0 −1 0 0 0
−j 0 0 0 0 −j 0 0 0 0 −j 0 0 0 0 −j
0 −j 0 0 j 0 0 0 0 0 0 j 0 0 −j 0
0 0 −j 0 0 0 0 −j j 0 0 0 0 j 0 0
0 0 0 −j 0 0 j 0 0 −j 0 0 j 0 0 0

2
66666666664

3
77777777775

(27)

As seen for the quasi-orthogonal codes, the precoder is also constant and not dependent
on the macro-cell channel as verified in Eq. (27), where this condition enables the design of
the IA filter at SUEs without any information exchange between the two systems.

4. Performance versus information exchange comparison

As discussed in Section 3.1, the system achieves the best performance when full coordination is
allowed between the two systems, i.e. the case with the full-coordinated scheme, where it
requires the highest amount of information exchange, since the macro-cell system must share
2MmNm real numbers with small-cell terminals on every TTI. Considering an OFDM-based
system, 2MmNmNc real number increases the feedback constraints. No information exchange is
required for the uncoordinated-static method but this scheme results in worst performance for
the macro-cell system. To overcome the limitations of full-coordinated and uncoordinated-
static schemes and to achieve a good balance between performance and information exchange,
we designed a coordinated 2n-bit approach [23] that results in reduced information exchange
requirements and achieves quite close to the optimal performance. Furthermore, the proposed
joint IA and SFBC scheme [25] that has the same information exchange requirement as
uncoordinated-static scheme provides much better performance as compared to the
uncoordinated-static method. Table 1 summarizes the information exchange requirements
and performance of the proposed methods.
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• Tarokh codes: Once again, for Tarokh codes we assume four antennas (Mm = 4) at the
transmitter and a single antenna (Nm = 1) at the receiver side, as presented in Figure 3. The
only difference is the number of subcarriers used to transmit the data symbols, for this
case eight subcarriers are used, i.e. the Tarokh code that provides the code rate of 1/2. The
four data symbols are transmitted over four antennas on eight subcarriers F = 8 according
to the following encoding [25]
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For the Tarokh codes, the MBS precoder is applied jointly for F = 8 consecutive subcarriers
as

Vm
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As seen for the quasi-orthogonal codes, the precoder is also constant and not dependent
on the macro-cell channel as verified in Eq. (27), where this condition enables the design of
the IA filter at SUEs without any information exchange between the two systems.

4. Performance versus information exchange comparison

As discussed in Section 3.1, the system achieves the best performance when full coordination is
allowed between the two systems, i.e. the case with the full-coordinated scheme, where it
requires the highest amount of information exchange, since the macro-cell system must share
2MmNm real numbers with small-cell terminals on every TTI. Considering an OFDM-based
system, 2MmNmNc real number increases the feedback constraints. No information exchange is
required for the uncoordinated-static method but this scheme results in worst performance for
the macro-cell system. To overcome the limitations of full-coordinated and uncoordinated-
static schemes and to achieve a good balance between performance and information exchange,
we designed a coordinated 2n-bit approach [23] that results in reduced information exchange
requirements and achieves quite close to the optimal performance. Furthermore, the proposed
joint IA and SFBC scheme [25] that has the same information exchange requirement as
uncoordinated-static scheme provides much better performance as compared to the
uncoordinated-static method. Table 1 summarizes the information exchange requirements
and performance of the proposed methods.
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5. Numerical results and discussion

This section provides the performance assessment of all the methods presented in this chapter.
We compare the joint IA and SFBC methods to the full-coordinated, uncoordinated-static and
coordinated 2n-bit schemes with the help of numerical simulations. Furthermore, for the
coordinated 2n-bit scheme, we just consider n = 1 to compare the results for macro- and
small-cell systems. As it will be seen from the numerical results, the coordinated 2-bit scheme
almost provides close to the optimal performance for both the macro-cell and the small-cell
systems, which means that by using n > 1 the additional performance improvement will be
marginal. To perform our simulations, we consider two small-cells (i.e. K = 2) sharing the
spectrum with macro-cell, since we can completely mitigate the interference irrespective the
number of small cells, adding more small cells will not impact the performance of the macro-
cell system. Furthermore, the SBSs are able to cooperate through a backhaul network to a CU
to perform joint processing of signals. We consider two scenarios:

• Scenario 1: The number of antennas at the MBS, SBSs and SUEs is 2 and single antenna at
the MUE, i.e. Mm ¼ Ms ¼ Ns ¼ 2, Nm = 1.

• Scenario 2: The number of antennas at the MBS, SBSs and SUEs is 4 and 1 at the MUE,
i.e. Mm ¼ Ms ¼ Ns ¼ 4, Nm = 1.

We consider the ITU pedestrian channel model B, with modified tap delays according to the
sampling frequency specified in LTE standards. The SNR at the cell edge is defined as ðPt=σ2Þ,
where Pt is the transmit power. For the macro-cell, the transmit power is equal to Pm = 1 and for
the small cells it is equal to Ps = 1. We used the following OFDM parameters used for
simulating both the macro-cell and small-cell systems: FFT size = 1024 (where only 128
subcarriers are used for both the systems); sampling frequency f s ¼ 15:36MHz; cyclic prefix
length cp ¼ 5:21μs and subcarrier separation is 15 kHz [23]. We present results for full-coordi-
nated, coordinated 2-bit, uncoordinated-static and three joint IA and SFBCs: IA with a stan-
dard Alamouti code [30], IA with a quasi-orthogonal code [31] and IA with a half-rate
orthogonal Tarokh code [32]. In order to allow an appropriate comparison, all the considered
methods are evaluated for the same spectral efficiency. Therefore, we used QPSK modulation
for joint IA and Alamouti code, joint IA and quasi-orthogonal code, coordinated 2-bit, full-
coordinated and uncoordinated-static schemes and 16-QAM for the joint IA and Tarokh codes.

Let us start by considering the first scenario, where IA is jointly used with Alamouti code. For
this case, we compare the performance of full-coordinated (for both the case of macro-cell/

Methods Information-exchange requirements Performance

Full-coordinated 2MmNmNc Real number Optimal performance

Uncoordinated-static 0 Worst performance

Coordinated 2n-bit 2nMmNmNc bits Close to optimal

Joint IA and SFBC scheme 0 Much better than uncoordinated-static method

Table 1. Comparison of inter-system information exchange and performance.
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small-cell coexistence and the case where small-cell system is switched off), coordinated 2-bit,
uncoordinated-static and joint IA and Alamouti code schemes. As it can be seen from Figure 4,
the performance of the coordinated 2-bit approach is quite close to the optimal performance.
The BER performance of the joint IA and Alamouti code approach has a gap of around 3 dB as
compared to the full-coordinated case, since the SFBC scheme can provide an array gain of 1
[23]. On the other hand, the joint IA and Alamouti scheme provides much better performance
(a gap of around 10 dB for a target BER of 10−3) as compared to the uncoordinated-static
method while the information-exchange requirements for both schemes are identical.

In Figure 5, we present the BER curve of the first scenario for the small-cell system. In Figure 5,
we just consider the curves for the full-coordinated (as the performance of full-coordinated,
coordinated 2-bit and uncoordinated-static methods is identical) and the joint IA and Alamouti

Figure 4. BER performance for the macro-cell system (scenario 1).

Figure 5. BER performance for the small-cell system (scenario 1).
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code scheme. This is true, since the design of filter matrix is not dependent on the small-cell

channels ½Hf
k�1≤k≤K. Therefore, the equivalent channel preserves the original channel distribu-

tion. As seen from Figure 5, the joint IA and Alamouti code provides 3 dB which is a better
performance as compared to the full-coordinated approach. This is due to the fact that for the
SFBC scheme every symbol is transmitted over two subcarriers, contrarily to the full-coordi-
nated method where each symbol only spans one subcarrier [23].

Let us now consider the second scenario where IA is combined with the quasi-orthogonal and
Tarokh codes. For this case, we compare the performance of the full-coordinated (for both the
case of macro-cell/small-cell coexistence and the case where small-cell system is switched off),
coordinated 2-bit, uncoordinated-static, joint IA and quasi-orthogonal code and joint IA and
Tarokh code methods. Figures 6 and 7 present the BER performance for the macro-cell and
small-cell system, respectively (using QPSK modulation for full-coordinated, coordinated 2-bit
uncoordinated-static and joint IA and quasi-orthogonal code curves and 16-QAM modulation
for the joint IA and Tarokh code curve). As seen in Figure 6, we can notice that the coordinated
2-bit approach provides close to optimal performance. On the other hand, the performance of
joint IA and quasi-orthogonal code, joint IA and Tarokh code methods has a gap of around 5
and 3 dB, respectively, as compared to the full-coordinated method and achieves much better
performance (a gap of around 14 and 18 dB for a target BER of 10−3) as compared to the
uncoordinated-static scheme, even if the information-exchange requirements of these schemes
are identical.

In Figure 7, we compare the BER performance of the proposed joint IA and quasi-orthogonal
code and joint IA and Tarokh code with the full-coordinated method for the small-cell system.
The proposed joint IA and quasi-orthogonal code scheme provides around 3 dB better perfor-
mance as compared to the case where full coordination is allowed between the two tiers. The
performance of the proposed joint IA and Tarokh code scheme is around 1 dB which is better
as compared to the full-coordinated case.

Figure 6. BER performance for the macro-cell system (scenario 2).
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In Figures 8 and 9, we compare the performance of SFBC schemes at the macro-cell and
small-cell systems, respectively. As it can be seen from Figure 8, the joint IA and Tarokh
code provides the best performance as compared to the joint IA and Alamouti code/quasi-
orthogonal code (i.e. a gap of around 3 and 6dB, respectively). At the small-cell system, the
performance of joint IA and Alamouti code/joint IA and quasi-orthogonal code is identical
and the performance of joint IA and Tarokh code is around 2 dB which is worse as
compared to the other two schemes, as shown in Figure 9. This is due to the fact that the
high order modulation (16-QAM) is used for the joint IA and Tarokh code and therefore it is
more prone to errors than the other two SFBC schemes that use QPSK modulation.

Figure 7. BER performance for the small-cell system (scenario 2).

Figure 8. BER performance at the macro-cell system for joint IA and Alamouti code/joint IA and quasi-orthogonal code/
joint IA and Tarokh code.
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6. Conclusions

In this chapter, we presented a general framework of our previously proposed methods for the
downlink of heterogeneous-based systems. The system achieves the best performance with
full-coordinated scheme, but with very high feedback requirements. For the uncoordinated-
static approach, it requires no information exchange between the two systems, but the perfor-
mance of the macro-cell system is degraded. To overcome the limitations of full-coordinated
and the uncoordinated-static methods, we designed the coordinated 2n-bit scheme and the
joint IA and SFBC method that can be applied to any SFBC.

The proposed joint IA and SFBC scheme allows the small-cell system to opportunistically
access the free space resources of the macro-cell system without any performance degradation.
The proposed joint IA and SFBC method also provides much improved performance with
comparable information-exchange requirements to the uncoordinated-static approach. We can
say that the proposed method allows the network to achieve the benefits of full-coordinated
and uncoordinated-static methods without their main drawbacks. As one of the requirements
of 5G is to increase spectral efficiency by a factor about 10, the proposed method will contrib-
ute to this goal and thus it can be very useful for the future 5G-based networks.
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Abstract

In the large-scale distributed antenna system (LS-DAS), a large number of antenna
elements are densely deployed in a distributed way over the coverage area, and all the
signals are gathered at the cloud processor (CP) via dedicated fiber links for globally
joint processing. Intuitively, the LS-DAS can inherit the advantage of both large-scale
multiple-input-multiple-output (MIMO) and network densification; thus, it offers enor-
mous gains in terms of both energy efficiency (EE) and spectral efficiency (SE). However,
as the number of distributed antenna elements (DAEs) increases, the overhead for
acquiring the channel state information (CSI) will increase accordingly. Without perfect
CSI at the CP, which is the majority situation in practical applications due to limited
overhead, the claimed gain of LS-DAS cannot be achieved. To solve this problem, this
chapter considers a more practical case with only the long-term CSI including the path
loss and shadowing known at the CP. As the long-term channel fading usually varies
much more slowly than the short-term part, the system overhead can be easily con-
trolled under this framework. Then, the EE-oriented and SE-oriented power allocation
problems are formulated and solved by fractional programming (FP) and geometric
programming (GP) theories, respectively. It is observed that the performance gain with
only long-term CSI is still noticeable and, more importantly, it can be achieved with a
practical system cost.

Keywords: large-scale distributed antenna system (LS-DAS), energy efficiency (EE),
spectral efficiency (SE), long-term channel state information (CSI), fractional program-
ming (FP), geometric programming (GP)

1. Introduction

The large-scale distributed antenna system (LS-DAS) is a promising candidate technol-
ogy for the future 5G wireless network. In a LS-DAS, as shown in Figure 1, a large
number of distributed antenna elements (DAEs) are densely scattered over the coverage
area, and the signals from/to all the DAEs are gathered via dedicated fiber links, at the
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cloud processor (CP), where the globally joint processing is performed [1, 2]. On one
hand, the LS-DAS can be regarded as a special large-scale multiple-input-multiple-out-
put (MIMO) system, as shown in Figure 2, with distributed deployment of antenna ele-
ments. On the other hand, it can be regarded as a special heterogeneous small-cell
network, as shown in Figure 3, with global inter-cell coordination. As a consequence, the

Figure 1. Illustration of a large-scale distributed antenna system.

Figure 2. Illustration of a traditional large-scale MIMO system.

Towards 5G Wireless Networks - A Physical Layer Perspective122



cloud processor (CP), where the globally joint processing is performed [1, 2]. On one
hand, the LS-DAS can be regarded as a special large-scale multiple-input-multiple-out-
put (MIMO) system, as shown in Figure 2, with distributed deployment of antenna ele-
ments. On the other hand, it can be regarded as a special heterogeneous small-cell
network, as shown in Figure 3, with global inter-cell coordination. As a consequence, the

Figure 1. Illustration of a large-scale distributed antenna system.

Figure 2. Illustration of a traditional large-scale MIMO system.

Towards 5G Wireless Networks - A Physical Layer Perspective122

LS-DAS can inherit the advantage of both large-scale MIMO and network densification.
Notably, existing studies have already shown that it can offer enormous gains in terms
of both energy efficiency (EE) [3, 4] and spectral efficiency (SE) [5, 6].

Due to the distributed deployment of antenna elements, the average access distance of all the
mobile terminals (MTs) is reduced. Moreover, due to the global coordination among all the
DAEs, the multiplexing gain and diversity gain offered by multiple antenna elements can be
obtained [7–9]. These are the main reasons for high EE and SE offered by a LS-DAS. However,
to exploit the benefit of LS-DASs, the channel state information (CSI) is crucially required at
the CP [10, 11]. Without perfect CSI, the interference among different DAEs will become
intractable, and accordingly the system performance will be severely degraded.

In practical applications, the acquisition of full CSI would require an overwhelming amount of
system overhead, including the training symbols for channel estimation, the system backhaul
for CSI exchanging, and so on. Due to this point, in the literature, some researchers have
shown that the system cost of CSI is quite an important issue for evaluating and designing
multi-antenna systems. For example, in [12], it has been proved that the optimal number of
transmit antennas is equal to the channel coherence interval (CCI). Thus, it will become useless
to utilize more antennas than CCI under given channel dynamics. The authors of [13] particu-
larly focused on the cost of CSI for network MIMO systems; they have shown that the optimal
number of base stations that can be coordinated exists, which is mainly determined by the CCI
in both time and frequency domains. Particularly, for the massive MIMO in frequency division
duplex (FDD) mode, it is also very challenging to acquire full CSI at the base station side. In
[14], a one-bit feedback scheme was proposed by using a set of predefined precoding vectors.
The scheme only performs well in some specific cases, e.g., the multi-antenna channel follow-
ing one-ring model.

Figure 3. Illustration of a traditional heterogeneous small-cell network.
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In this chapter, we try to liberate the implementation of LS-DAS from the acquisition of full
CSI. We note that the channel of a LS-DAS usually consists of path loss, shadowing, and
Rayleigh fading [7–9]. Compared with Rayleigh fading, path loss and shadowing vary much
more slowly and can be estimated in a much longer interval than CCI. Thus, it requires a
controllable system overhead. In some of the existing studies, path loss and shadowing are
classified as large-scale CSI [4, 6]. To distinguish from the large-scale in LS-DAS, for clarity, we
here use long-term CSI to identify path loss and shadowing. With the knowledge of long-term
CSI, the achievable EE and SE will be particularly investigated in the sequel. Different from the
reported EE and SE with perfect CSI assumption, which actually cannot be achieved in most
practice, our results can be approached with a limited system cost; thus, it is of great signifi-
cance for the realistic implementation of LS-DASs.

In order to control the computational complexity at the CP, we first divide the whole system
into a number of virtual cells (VCs) [5, 15]. As shown in Figure 4, the VC is established in a
user-centric manner, i.e., each MT chooses only a subset of the surround DAEs for its data
transmission. Then, each MT is served by its own VC under the interference from other VCs.
To control the interference, the signals of all the VCs are designed in a coordinated fashion at
the CP while maximizing the EE or SE of the system. Given VCs, the EE-oriented and the SE-
oriented power allocation problems are formulated based on long-term CSI only, both of
which are non-convex problems, and thus are difficult to solve. By adopting the fractional
programming (FP) theory and the geometric programming (GP) theory, we propose two
iterative power allocation algorithms. These algorithms can derive the locally optimal EE and
SE of the system, respectively. It is further observed from the simulation results that the

Figure 4. Illustration of VCs.
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performance gain with only long-term CSI is still remarkable, while it can be achieved with a
practical system cost.

The rest of this chapter is organized as follows. The system model of a multiuser LS-DAS is
described in Section 2. In the subsequent Sections 3 and 4, the achievable EE and SE are
discussed, respectively. Then, we show the simulation results to verify the superiority of the
proposed schemes in Section 5. Finally, the conclusion of this chapter is drawn in Section 6.

Notations: In denotes an identity matrix with a dimension of n, and O is a zero matrix. ð:ÞH
represents the conjugate transpose operation. ℂM·N denotes the set of complexM ·Nmatrices,
and CN represents a complex Gaussian distribution. Eð:Þ represents the expectation operator,
and trð�Þ represents the trace operator.

2. System Model

We consider a LS-DAS with K MTs. Without loss of generality, all the VCs consist of N DAEs,
and the number of antenna elements equipped at each MT is M.

For MT k, the received signal is

yðkÞ ¼ HðkÞxðkÞ þ ∑
K

i¼1;i≠k
Hðk;iÞxðiÞ þ nðkÞ; (1)

where HðkÞ∈ℂM ·N; k ¼ 1; 2; :::;K; represents the channel between the DAEs in VC k and MT k,

Hðk;iÞ∈ℂM·N; k ¼ 1; 2; :::;K; i ¼ 1; 2; :::;K; denotes the channel between the DAEs in VC i and
MT k, xðiÞ∈ℂN · 1; i ¼ 1; 2; :::;K, is the transmitted signal vector for MT i, and
nðkÞ∈ℂM· 1; k ¼ 1; 2; :::;K, denotes the additive white Gaussian noise with distribution
CN ð0;σ2IMÞ.

E xðkÞxðkÞ
H

h i
¼ PðkÞ ¼

pðkÞ1
⋱

pðkÞN

2
4

3
5; k ¼ 1; :::;K: (2)

Assuming a total transmit power constraint PðkÞ
max for MT k, we set

∑
N

n¼1
pðkÞn ≤PðkÞ

max: (3)

The channel matrix can be modeled as

Hðk;iÞ ¼ Sðk;iÞLðk;iÞ; (4)

where Sðk;iÞ and Lðk;iÞ reflect the short-term fading and the long-term fading, respectively.

Particularly, the entries of Sðk;iÞ are all independent and identically distributed (i.i.d.) circular
symmetric complex Gaussian variables following CN ð0; 1Þ distribution.
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Lðk;iÞ ¼
lðk;iÞ1

⋱
lðk;iÞN

2
4

3
5; (5)

with

lðk;iÞn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Dðk;iÞ

n

�−γ
Sðk;iÞn

r
; n ¼ 1; 2; :::;N; (6)

where Dðk;iÞ
n is the transmission distance between the DAE n in VC i and MT k, and γ is the path

loss exponent, and Sðk;iÞn represents the shadow fading caused by large objects such as tall
buildings or walls.

3. Achievable Ee

Given perfect CSI, the authors of [16] have proposed an energy-efficient power allocation
scheme for traditional DASs. In [17], further taking the inter-VC interference into consider-
ation, an iterative power allocation scheme was presented to improve the EE of a LS-DAS, via
applying the successive Taylor expansion method. In contrast, we investigate the achievable
EE with the long-term CSI only in this section.

First of all, the sum rate of the system can be derived according to Eq. (1) as

R ¼ ∑
K

k¼1
log2 det IM þHðkÞPðkÞHðkÞH

σ2k

 !
; (7)

where

σ2k ¼ ∑
i¼1; i≠k K

∑
N

n¼1
½lðk;iÞn �2pðiÞn þ σ2; (8)

is the total interference-plus-noise power at MT k.

When only the long-term CSI is known, the average sum rate can be calculated via taking

expectation over the short-term channel fading Ω ¼ fSðkÞjk ¼ 1;…;Kg as

R ¼ ∑
K

k¼1
EΩ log2 det IM þHðkÞPðkÞHðkÞH

σ2k

 !" #
: (9)

Then, the EE of the system, denoted as η, can be derived as
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η ¼ R

ρ ∑
K

k¼1
∑
N

n¼1
pðkÞn þ Pc

; (10)

where

ρ ¼ ε
γ
; (11)

with ε and γ denoting the peak-to-average power ratio and the power amplifier efficiency,
respectively, and Pc denotes the circuit power consumption [4].

In order to investigate the achievable EE under this framework, we formulate the following
optimization problem:

max η (12a)

s:t: ∑
N

n¼1
pðkÞn ≤ PðkÞ

max; (12b)

pðkÞn ≥ 0; k ¼ 1;…; K; n ¼ 1,…; N: (12c)

Because of the non-convexity of R, the problem shown in Eq. (12) is a complicated non-convex
problem [18]. To simplify it, we introduce an upper bound to the objective function as

η̂ ¼

∑
K

k¼1
log2 det IN þ

MPðkÞ
�
LðkÞ
�2

σ2k

0
B@

1
CA

ρ ∑
K

k¼1
∑
N

n¼1
pðkÞn þ Pc

; (13)

the numerator of which is an upper bound to R [10]. Accordingly, the problem in Eq. (12) can
be reformulated as

max η̂ (14a)

s:t: ∑
N

n¼1
pðkÞn ≤ PðkÞ

max; (14b)

pðkÞn ≥ 0; k ¼ 1;…; K; n ¼ 1,…; N: (14c)

which is simpler than Eq. (12). However, it is still non-convex [18]. To further solve the
problem in Eq. (14), we express
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η̂ ¼ f 1−f 2

ρ ∑
K

k¼1
∑
N

n¼1
pðkÞn þ Pc

; (15)

where

f 1 ¼ ∑
K

k¼1
log2 det

�
σ2kIN þMPðkÞLðkÞ2

�
; (16a)

f 2 ¼ ∑
K

k¼1
Nlog2ðσ2kÞ; (16b)

both of which are clearly concave functions.

We find that if the numerator of η̂, i.e., f 1−f 2, can be transformed into a concave form, the
problem in Eq. (14) can be recast as a quasi-concave fractional programming problem, further
considering the linearity of its denominator [19]. Toward this end, we linearize f 2 by applying
the first-order Taylor expansion at a given point P as

~f 2ðPjPÞ ¼ ∑
K

k¼1
Nlog2

�
σ2kðPÞ

�
þ log2ðeÞ ∑

K

k¼1

N
σ2kðPÞ

trðGk½P−P�Þ; (17)

where P ¼ fPð1Þ;…;PðkÞg and

Gk ¼ diagfGðk;1Þ;…;Gðk;KÞg; (18a)

Gðk;iÞ ¼
�
Lðk;iÞ

�2
; k≠i; k; i ¼ 1;…;K; (18b)

Gðk;kÞ ¼ O: (18c)

By substituting ~f 2ðPjPÞ for f 2ðPÞ, the problem in Eq. (14) can be approximated as

max η ¼ f 1ðPÞ−~f 2ðPjPÞ
ρ ∑

K

k¼1
∑
N

n¼1
pðkÞn þ Pc

(19a)

s:t: ∑
N

n¼1
pðkÞn ≤ PðkÞ

max; (19b)

pðkÞn ≥ 0; k ¼ 1; …; K; n ¼ 1,…; N; (19c)

whose objective function is fortunately fractional with concave numerator and convex denomi-
nator [18]. Adopting the FP theory, the problem in Eq. (19) can be optimally solved in an iterative
way. In our previous paper [4], we have shown in detail how to solve the problem in Eq. (19). In
the following, for brevity, we just present the basic idea and procedure of the iterative algorithm.
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We use t≥1 and s≥1 to denote the successive Taylor expansion iteration step and the FP iteration
step, respectively. After introducing a positive variable ω, the following concave optimization
problem can be formulated

max vðPjPt−1;s−1;ωÞ (20a)

s:t: ∑
N

n¼1
pðkÞn ≤ PðkÞ

max; (20b)

pðkÞn ≥0; k ¼ 1; …; K; n ¼ 1,…; N; (20c)

where

vðPjPt−1;s−1;ωÞ ¼ f 1ðPÞ−~f 2ðPjPt−1;s−1Þ−ωρ ∑
K

k¼1
∑
N

n¼1
pðkÞn −ωPc: (21)

Further define

VðωÞ ¼ max vðPjPt−1;s−1;ωÞ; (22)

Algorithm 1 Iterative power allocation for maximizing EE.

1. Initialization: P0 ¼ diagfPð1Þ
0 ;⋯;PðKÞ

0 g with PðkÞ
0 ¼ PðkÞ

max
N IN , k ¼ 1; :::;K, PðkÞ

0;0 ¼ PðkÞ
0 , k ¼ 1; :::;K,

ω ¼ 0, and ξ ¼ 1· 10−3, δ ¼ 1 · 10−3, t ¼ 1;s ¼ 1;

2. Solve Eq. (20), and denote the obtained power matrix by PðkÞ
0;1, k ¼ 1; :::;K, set PðkÞ

1 ¼ PðkÞ
0;1,

k ¼ 1; :::;K, and P1 ¼ diagfPð1Þ
1 ;⋯;PðKÞ

1 g;
3. while jη̂ðPtÞ−η̂ðPt−1Þj=η̂ðPt−1Þ > ξ do

4. t ¼ tþ 1, s ¼ 1, and ω ¼ 0;

5. PðkÞ
t−1;0 ¼ PðkÞ

t−1, k ¼ 1; :::;K;

6. Solve Eq. (20), derived VðωÞ and denote the obtained power matrix by PðkÞ
t−1;1, k ¼ 1; :::;K;

7. while VðωÞ > δ do

8. ω ¼ η
�
PðkÞ
t−1;sjPðkÞ

t−1

�
;

9. s ¼ sþ 1;

10. Solve Eq. (20), derived VðωÞ and denote the obtained power matrix by PðkÞ
t−1;s, k ¼ 1; :::;K;

11. end while
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12. PðkÞ
t ¼ PðkÞ

t−1;s, k ¼ 1; :::;K, and Pt ¼ diagfPð1Þ
t ;⋯;PðKÞ

t g;

13. end while

14. Output: Pt.

we can propose an iterative power allocation algorithm for maximizing EE, as described in
Algorithm 1. By adopting Algorithm 1, the achievable EE with long-term CSI only can be
derived with low computational complexity [4].

4. Achievable Se

For traditional single-cell DASs, the achievable SE was studied in [20, 21], which by consid-
ering the general DAS with random antenna layout has identified that DAS outperforms
colocated multi-antenna systems. In [22], the authors have taken the inter-cell interference
into consideration, and they have presented a close-form expression for the achievable EE in
a multi-cell environment. However, this work has not considered interference coordination.
The authors of [23] took a step further; they have put forward a coordinated power alloca-
tion scheme for dealing with the inter-cell interference. Nevertheless, the result was derived
by approximately treating the inter-cell interference as Gaussian noise, and thus it is only
applicable to the low signal-to-noise-ratio (SNR) situation. In a recent work, the SE of single-
cell multiuser LS-DAS was studied [24]. It however also has not considered interference
coordination, which is in general inevitable in most practical applications. Different from all
the above existing studies, in this section, we investigate the achievable SE of a LS-DAS with
long-term CSI only.

With the target of average system sum rate maximization, the problem of SE-oriented power
allocation can be formulated as

max R (23a)

s:t: ∑
N

n¼1
pðkÞn ≤PðkÞ

max; (23b)

pðkÞn ≥0; k ¼ 1; :::; K; n ¼ 1; :::;N: (23c)

As R is non-convex, this problem is complicatedly non-convex [18]. Besides, the objective
function is actually in an integral form as a result of the expectation operator in R, and it
cannot be directly expressed in a compact closed form, which renders it even more challenging
to obtain the optimal solution of Eq. (23).

We try to simplify the formulated problem. To this end, a closed-form approximation for the
average system sum rate R is leveraged as
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derived with low computational complexity [4].

4. Achievable Se

For traditional single-cell DASs, the achievable SE was studied in [20, 21], which by consid-
ering the general DAS with random antenna layout has identified that DAS outperforms
colocated multi-antenna systems. In [22], the authors have taken the inter-cell interference
into consideration, and they have presented a close-form expression for the achievable EE in
a multi-cell environment. However, this work has not considered interference coordination.
The authors of [23] took a step further; they have put forward a coordinated power alloca-
tion scheme for dealing with the inter-cell interference. Nevertheless, the result was derived
by approximately treating the inter-cell interference as Gaussian noise, and thus it is only
applicable to the low signal-to-noise-ratio (SNR) situation. In a recent work, the SE of single-
cell multiuser LS-DAS was studied [24]. It however also has not considered interference
coordination, which is in general inevitable in most practical applications. Different from all
the above existing studies, in this section, we investigate the achievable SE of a LS-DAS with
long-term CSI only.

With the target of average system sum rate maximization, the problem of SE-oriented power
allocation can be formulated as

max R (23a)

s:t: ∑
N

n¼1
pðkÞn ≤PðkÞ

max; (23b)

pðkÞn ≥0; k ¼ 1; :::; K; n ¼ 1; :::;N: (23c)

As R is non-convex, this problem is complicatedly non-convex [18]. Besides, the objective
function is actually in an integral form as a result of the expectation operator in R, and it
cannot be directly expressed in a compact closed form, which renders it even more challenging
to obtain the optimal solution of Eq. (23).

We try to simplify the formulated problem. To this end, a closed-form approximation for the
average system sum rate R is leveraged as
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Rap ¼ ∑
K

k¼1
∑
N

n¼1
log2 1þ ½lðkÞn �2pðkÞn ϒ−1

k M
σ2k

 !

þM ∑
K

k¼1
log2ðϒ kÞ−M ∑

K

k¼1
log2eð1−ϒ−1

k Þ;
(24)

where ϒ k satisfies

ϒ k ¼ 1þ ∑
N

n¼1

½lðkÞn �2pðkÞn

σ2k þ ½lðkÞn �2pðkÞn ϒ −1
k M

; k ¼ 1; ::;K: (25)

This approximation can be derived through using the random matrix theory [10], and the
introduced parameter ϒ k can be calculated in an iterative way as shown in the following
Algorithm 2.

According to the existing studies [10], Rap is quite a precise approximation for R. Therefore,
we directly use it as the objective function, and the joint power allocation problem can be
recast as

max Rap (26a)

s:t: ∑
N

n¼1
pðkÞn ≤PðkÞ

max; (26b)

pðkÞn ≥0; k ¼ 1; :::;K; n ¼ 1; :::;N; (26c)

which is much simplified. However, due to the non-convexity of Rap [18], the new problem in
Eq. (26) is still non-convex. In the following, we explore the achievable SE of the system by
contriving an iterative algorithm, which can find a locally optimal solution of Eq. (26) effi-
ciently.

To eliminate the effect of the introduced parameters ϒ1, ϒ2, :::, ϒK, we first fix ϒ1, ϒ 2, :::, ϒK as
constants. Then we can equivalently simplify the objective function in Eq. (26) as

R
0

ap ¼ ∑
K

k¼1
∑
N

n¼1
log2 1þ ½lðkÞn �2pðkÞn ϒ−1

k M
σ2k

 !
: (27)

As log2ð�Þ is monotonically increasing, the problem shown in Eq. (26) can be equivalently
transformed into

min ∏
K

k¼1
∏
N

n¼1

σ2k
σ2k þ ½lðkÞn �2pðkÞn ϒ−1

k M
(28a)

s:t: ∑
N

n¼1
pðkÞn ≤PðkÞ

max; (28b)

Achievable Energy Efficiency and Spectral Efficiency of Large‐Scale Distributed Antenna Systems
http://dx.doi.org/10.5772/66049

131



pðkÞn ≥0; k ¼ 1; :::;K; n ¼ 1; :::;N: (28c)

Define

f n;kðPÞ ¼ σ2kðPÞ þ ½lðkÞn �2pðkÞn ϒ −1
k M ¼ ∑

K

i¼1;i≠k
∑
N

j¼1
gðk;iÞj ðPÞ þ gðkÞn ðPÞ þ σ2;

n ¼ 1; :::;N;k ¼ 1; :::;K;
(29)

where

gðk;iÞj ðPÞ ¼ ½lðk;iÞj �2pðiÞj ; k≠i; (30)

gðkÞn ðPÞ ¼ ½lðkÞn �2pðkÞn ϒ −1
k M; (31)

and then, given a feasible point P, an approximation of f n;kðPÞ can be obtained as

~f n;kðPjPÞ ¼ ∏
K

i¼1;i≠k
∏
N

j¼1

gðk;iÞj ðPÞ
αðk;iÞ
n;j

0
@

1
A

αðk;iÞ
n;j

0
B@

1
CA·

gðkÞn ðPÞ
αðkÞ
n;n

 !αðkÞ
n;n

·
σ2

α0
n;k

 !α0
n;k

; (32)

where

αðk;iÞ
n;j ¼ gðk;iÞj ðPÞ=f n;kðPÞ; (33)

αðkÞ
n;n ¼ gðkÞn ðPÞ=f n;kðPÞ; (34)

α0
n;k ¼ σ2=f n;kðPÞ: (35)

By using the inequality of arithmetic and geometric means, it is easy to obtain that

f n;kðPÞ≥~f n;kðPjPÞ: (36)

The equality holds if and only if

P ¼ P: (37)

By replacing f n;kðPÞ with ~f n;kðPjPÞ, the problem in Eq. (28) can be recast as

min ∏
K

k¼1
∏
N

n¼1

σ2k
~f n;k

ðPÞ (38a)

s:t: ∑
N

n¼1
pðkÞn ≤PðkÞ

max; (38b)

pðkÞn ≥0; k ¼ 1; :::;K; n ¼ 1; :::;N; (38c)
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0
@

1
A
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n;j

0
B@

1
CA·
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·
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min ∏
K

k¼1
∏
N

n¼1

σ2k
~f n;k

ðPÞ (38a)

s:t: ∑
N

n¼1
pðkÞn ≤PðkÞ

max; (38b)

pðkÞn ≥0; k ¼ 1; :::;K; n ¼ 1; :::;N; (38c)
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which is a good approximation for the original problem in the neighborhood of P. More
importantly, it is a standard GP problem [25]; thus, it can be efficiently solved via convex
optimization tools, e.g., the interior point algorithm [18].

We use t≥1 and s≥1 to denote the updating iteration step of ϒ k and the arithmetic-to-geometric
approximation iteration step, respectively. Then the following convex optimization problem is
derived

min ∏
K

k¼1
∏
N

n¼1

σ2k
~f n;k

ðPjPs−1;ϒ t
kÞ (39a)

s:t: ∑
N

n¼1
pðkÞn ≤PðkÞ

max; (39b)

pðkÞn ≥0;k ¼ 1; :::;K;n ¼ 1; :::;N: (39c)

Accordingly, we propose an iterative power allocation algorithm for maximizing SE as
described in Algorithm 2. In the algorithm, ϒ k;k ¼ 1; :::;K and P are updated in an alternate
way. By adopting the algorithm, the achievable SE with long-term CSI only can be derived
with low computational complexity [6].

5. Simulation Results

In this section, we illustrate the EE and SE performance of the proposed schemes by simula-
tions. To be general, we consider a circular coverage area with a radius of 500 m. There are 20
DAEs randomly deployed in the coverage area with a two-dimension uniform distribution.
The number of MTs is set as K ¼ 3. The number of antenna elements equipped at each MT is
set as M ¼ 3. In order to fully exploit the spatial degree of freedom of each MT and, in the
meantime, well control the system complexity, we set the size of each VC as N ¼ M ¼ 3. As for
the channel parameters, we set γ ¼ 4 (path loss exponent), σ2 ¼ −107 dBm (noise power), and
the shadowing standard deviation is 8 dB. Without loss of generality, we consider the same

transmit power constraint for all MTs, i.e., Pð1Þ
max ¼ Pð2Þ

max ¼ Pð3Þ
max. Particularly, 100 randomly

selected system topologies are considered in the simulation, and the averaged results are
shown in the following.

First, the achievable EE of different schemes is compared in Figure 5. Both the scheme
presented in reference [16] and the simplest equal power allocation scheme are considered. It
can be seen from Figure 5 that the proposed scheme outperforms the other ones, especially
when the transmit power constraint goes larger. The scheme proposed in [16] has not consid-
ered interference coordination; thus, in a multi-VC setting, its performance is worse than the
proposed scheme, although it has assumed the perfect CSI as the CP. In contrast, although
using the long-term CSI only, the proposed scheme can still offer the highest EE performance.
We can also observe from Figure 5 that the key point for high EE is to set proper transmit
power, i.e., when the transmit power has reached a corresponding point, it should no longer be
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increased even though the power consumption constraint goes larger. Intuitively, this observa-
tion can be explained by the fact that when the transmit power goes larger, the sum rate gain
will become smaller and smaller due to the impact of interference; thus, the EE of the scheme
will fall instead of rising.

Algorithm 2 Iterative power allocation for maximizing SE.

1. Initialization: Set P0 ¼ f½pð1Þ1 �0;½pð1Þ2 �0; :::;½pðKÞN �0g, where ½pðkÞn �0 ¼ PðkÞ
max
N , k ¼ 1; :::;K, n ¼ 1; :::;N,

and ε ¼ 1· 10−4, δ ¼ 1 · 10−3, s ¼ 1;

2. for k ¼ 1 to K do

3. t ¼ 1;

4. ϒ 0
k ¼ 1;

5. ϒ 1
k ¼ 1þ ∑N

n¼1
½lðkÞn �2½pðkÞn �0

σ2k ðP0Þþ½lðkÞn �2½pðkÞn �0½ϒ0
k �−1M

;

6. while jϒ t
k−ϒ

t−1
k j > ε do

7. t ¼ tþ 1;

8. ϒ t
k ¼ 1þ ∑N

n¼1
½lðkÞn �2 ½pðkÞn �0

σ2k ðP0Þþ½lðkÞn �2½pðkÞn �0½ϒ t−1
k �−1M;

9. end while

10. Output ϒ
0
k ¼ ϒ t

k;k ¼ 1; :::;K:

11. end for

Figure 5. Comparison of achievable EE by different schemes.
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12. Solve Eq. (39) with ϒ k ¼ ϒ
0
k;k ¼ 1; :::;K, and denote the obtained power matrix by P1;

13. while jRapðPsÞ−RapðPs−1Þj=RapðPs−1Þ > δ do

14. for k ¼ 1 to K do

15. t ¼ 1;

16. ϒ 0
k ¼ 1;

17. ϒ 1
k ¼ 1þ ∑N

n¼1
½lðkÞn �2 ½pðkÞn �s

σ2k ðPsÞþ½lðkÞn �2½pðkÞn �s½ϒ0
k �−1M

;

18. while jϒ t
k−ϒ

t−1
k j > do

19. t ¼ tþ 1;

20. ϒ t
k ¼ 1þ ∑N

n¼1
½lðkÞn �2½pðkÞn �s

σ2k ðPsÞþ½lðkÞn �2½pðkÞn �s½ϒ t−1
k �−1M;

21. end while

22. Output ϒ
0
k ¼ ϒ t

k;k ¼ 1; :::;K:

23. end for

24. s ¼ sþ 1;

25. Solve Eq. (39) with ϒ k ¼ ϒ
0
k;k ¼ 1; :::;K, and denote the obtained power matrix by26: Ps;

26. end while

27. Output: Ps.

Figure 6. Comparison of achievable SE by different schemes.

Achievable Energy Efficiency and Spectral Efficiency of Large‐Scale Distributed Antenna Systems
http://dx.doi.org/10.5772/66049

135



Then, we evaluate the performance of the proposed scheme in terms of achievable SE. The
scheme presented in reference [23] and equal power allocation scheme are taken into compar-
ison. The results are shown in Figure 6. We can find that the proposed scheme performs the
best among the three schemes. The scheme presented in [23] is only applicable to the low SNR
condition; thus, the performance gas between it and the proposed scheme goes larger when
the transmit power constraint increases, which implies that the impact of inter-VC interference
becomes bigger. The results identify that it is still effective for enhancing the SE of the system
when only the long-term CSI is available.

Figure 7. Histogram of the number of iteration steps for Algorithm 1.

Figure 8. Histogram of the number of iteration steps for Algorithm 2.
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According to the discussion in [4, 6], the proposed Algorithms 1 and 2 are assured to converge
to a local optimum. The histogram of the number of iteration steps is illustrated in Figures 7
and 8, for Algorithms 1 and 2, respectively. We can observe from the figures that 15 iteration
steps are enough for the convergence of Algorithm 1 and that for Algorithm 2 is 11.

6. Conclusions

The LS-DAS is a promising candidate technology for the future 5G wireless network, due to its
remarkable gains in terms of both EE and SE. In this chapter, we try to liberate the implemen-
tation of LS-DAS from the acquisition of full CSI. With the knowledge of long-term CSI,
including the path loss and shadow fading, the achievable EE and SE have been investigated.
Different from the reported EE and SE with perfect CSI condition, which actually cannot be
achieved in most practice, our results can be achieved with a limited system cost; thus, it is of
great significance for the realistic implementation of LS-DASs. We also use the concept of VC
to control the computational complexity at the CP. Accordingly, we design the transmit power
of all the VCs in a coordinated fashion, to control the interference and finally maximize EE or
SE of the system. Particularly, the EE-oriented and the SE-oriented power allocation problems
are formulated based on long-term CSI only, both of which are non-convex problems, and thus
are difficult to solve. By adopting the FP theory and the GP theory, we propose two iterative
power allocation algorithms. These algorithms can derive the locally optimal EE and SE of the
system, respectively. It is further observed from the simulation results that the performance
gain with only long-term CSI is still remarkable, while it can be achieved with a practical
system overhead.
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Abstract

The heterogeneous cellular network (HCN) is most significant as a key technology for
future fifth-generation (5G) wireless networks. The heterogeneous network consists of
randomly macrocell base stations (MBSs) overlaid with femtocell base stations (FBSs).
Stochastic geometry has been shown to be a very powerful tool to model, analyze, and
design networks with random topologies such as wireless ad hoc, sensor networks, and
multi-tier cellular networks. HCNs can be energy-efficiently designed by deploying
various BSs belonging to different networks, which has drawn significant attention to
one of the technologies for future 5G wireless networks. In this chapter, we propose
switching off/on systems enabling the BSs in the cellular networks to efficiently consume
the power by introducing active/sleep modes, which is able to reduce the interference
and power consumption in the MBSs and FBSs on an individual basis as well as improve
the energy efficiency of the cellular networks. We formulate the minimization of the
power consumption for the MBSs and FBSs as well as an optimization problem to
maximize the energy efficiency subject to throughput outage constraints, which can be
solved by the Karush-Kuhn-Tucker (KKT) conditions according to the femto tier BS
density. We also formulate and compare the coverage probability and the energy effi-
ciency in HCN scenarios with and without coordinated multi-point (CoMP) to avoid
coverage holes.

Keywords: heterogeneous cellular networks, stochastic geometry, poisson point pro-
cess (PPP), different sleeping policy, CoMP, energy efficiency, power consumption

1. Introduction

Looking ahead to the year 2020 and beyond, there will be explosive growth in mobile data
traffic. The existing cellular networks are experiencing some basic challenges such as higher
data rates, excellent end-to-end performance, user coverage in hot-spots and crowded areas
with lower latency energy consumption and amount of expenditure per information transfer.
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The fifth-generation (5G) cellular networks are envisioned to overcome these challenges. It is
expected that 5G systems will have the ability to adopt a multi-tier architecture consisting of
macrocells, different types of licensed small cells, relays, and device-to-device (D2D) networks
to serve users with different quality-to-service (QoS) requirements in an energy efficient man-
ner [1]. It is expected that 5G wireless communication technologies will attain 1000 times
higher mobile data volume per unit area, 10–100 times number of connecting devices and
longevity of battery 10 times, user data rate, and 5 times reduced latency [2]. A key attribute
of 5G networks is that the expected cell data rate will be of the order of 10 Gb/s, whereas
average data rate for single 4G networks is 1 Gb/s. Therefore, such a heterogeneous cellular
network (HCN) architecture has drawn significant research attention and been recognized as a
key technology for future 5G wireless networks. An HCN consisting of K tiers [3] is consid-
ered, in which each tier models base stations (BSs) of a particular class such as femtocells,
picocells, microcells, or macrocells as shown in Figure 1a. The energy efficiency (EE) of small
cell networks is of great concern as the BS density will be significantly increased. We study that

Figure 1. (a) Heterogeneous cellular networks [11] and (b) switching system for BSs power consumption.
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the optimal energy efficiency of a two-tier heterogeneous network consists of a macrocell and
many small cells under coverage performance constraints for different deployments. The other
more important challenge is the greater energy consumption in HCNs because of the dense
and randomly deployment of femto BSs (FBSs). In order to realize the aspect of green wireless
networks, energy efficiency is an important tool. Because of the increasing share of wireless
systems, the total energy expended in communications and networking systems are deemed
important. Report shows that total amount of global carbon dioxide emission is originated
from information and communication technologies (ICT), more than 9% of emits from wireless
and mobile communication [4]. However, within the sleep mode, some key issues must be
considered. When BSs are switched off, radio coverage and QoS must be still guaranteed. As
BSs are densely deployed, users in sleeping BS coverage can be served by neighboring active
BSs by slightly increasing BS transmit power [5]. For sleep mode operation, small cells can
always be managed by operators. Nowadays, efforts have been made related to power saving
in cellular networks with the introduction of sleep modes [6–8] for BSs. Power consumption is
reduced by using sleep mode in low traffic [9] as a case study for saving the energy of macro
BSs (MBSs). In a wireless network where multiple links share the same radio spectrum, the
signal-to-interference-plus-noise ratio (SINR) at any receiver is a function of the locations of the
transmitting nodes and the transmit powers of the transmitters using the same channel.
Therefore, the network topology has a fundamental impact on the performance of wireless
networks. By assuming that the network operators have some information of the traffic usage
patterns, they can employ a coordinated sleeping mode [9], where certain MBSs will be shut
off, while others increase their coverage areas to avoid coverage hole [10].

Thus, we provide a stochastic geometry-based model for studying the BSs cooperation in
downlink HCNs, which consists of two tiers of located BSs where each tier is characterized by
different density and power and develops the performance of coverage probability. We investi-
gate the energy saving problem through switching off/on for MBS and FBS in HCNs. We also
derive two-tier HCNs under different sleeping policies and formulate the power consumption
minimization for MBS and FBS. An optimization problem is formulated to maximize the energy
efficiency subject to throughput outage constraints and solved by the Karush-Kuhn-Tucker
(KKT) conditions in terms of femto tier BS density. BSs in sleeping mode might cause coverage
holes, which have a negative impact on the connectivity of the network, combined coordinated
multi-point (CoMP) and BS sleeping scheme in HCNs for energy efficiency. We introduce the
energy efficiency performance based on two-state Markovian wireless channel model.

2. System model

We consider a HCN composed by K independent network tiers of BSs with different deploy-
ment densities and transmit powers in Figure 1a. We assume that the BSs in the ith tier are
spatially distributed as a Poisson point process (PPP) ϕ of density λ, transmit at a power Pi,
and have a SINR target of threshold T. The locations of the BSs in the two tiers are distributed
as two spatial PPPs in the R2 Euclidian space denoted by φM and φF, with densities λM and λF,
respectively. The probability density function (pdf) is given by f ðrÞ ¼ 2πλr exp ð−λπr2Þ.
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We focus on a typical user located and assume that a subset of the total ensemble of BSs
cooperates by jointly transmitting a message to this tagged receiver, if we consider a nearest
BS connectivity model, where a mobile tried to connect with its closest BS. This results in a
Voronoi tessellation of the plane corresponding to the BS locations. In this case, the service area
of a BS is the Voronoi cell associated with it (in Figure 2). When femtocells operate in closed
access mode, only registered femtocells user can be allowed to contact to FBSs. On other hand,
in open access mode, both macrocell user and unregistered femtocells user can be allowed to
contact to FBSs, and then, the coverage region of FBS includes femtocells user and macrocell
user connecting to femtocell as shown in Figure 3. We can see that rM and rF are the distances
of MBS and FBS from user. From our proposed scheme, when the FBS is in sleeping mode, the

Figure 2. Poisson distributed BSs and mobiles, with each mobile associated with the nearest BS. The cell boundaries are
shown and form a Voronoi tessellation [12].

Figure 3. The activity level of BSs and location of users.
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user communicates with the active MBS. On the contrary, the user communicates with the
active FBS as shown in Figure 3.

2.1. Signal-to-interference-plus-noise ratio

We denote a BS by its location, while the user is at the origin 0. For downlink transmission of a
MBS to the typical user 0, the SINR experienced by a macrocell user is given by:

SINR ¼ Pihir−α

∑
i¼1, i ≠j

Pjhjjrij−α þ σ2
, (1)

where h is channel, the background noise is assumed to be additive white Gaussian with
variance σ2 and α being the path loss exponent.

2.2. Power consumption

Without employing any sleeping mode at each base station in the ith tier, the average power
consumption of the ith tier heterogeneous networks is given by

PHet, i ¼ λiðPio þ ΔiβPiÞ: (2)

In a two-tier cellular network, the total power consumption comes from macrocell tier and
femtocell tier, which are expressed as:

Ptotal ¼ λMðPM0 þ ΔMβPMBSÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
macro�tier

þ πr2MλFðPF0 þ ΔFβPFBSÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
femto�tier

, (3)

where PM0 and PF0 are the static power expenditure of the MBS and FBS, and ΔM, and ΔF are
the slope of the load-dependent power consumption in MBS and FBS, respectively. β is the
power control coefficient of MBS and FBS. PMBS and PFBS are the transmit powers of MBSs and
femto BSs, respectively.

2.3. Network energy efficiency

The throughput outage probability defined as the probability that a user in the macro (femto)
tier is unable to achieve a certain minimum target throughput as follows:

εMðλFÞ ¼ 1−P
�
BMlnð1þ SINRMÞ > TM

�

εFðλFÞ ¼ 1−P
�
BFlnð1þ SINRFÞ > TF

�
:

(4)

Network energy efficiency can be defined as the ratio of the total amount of throughput and
total power consumption in the network. The energy efficiency (EE) function can be written as:
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EE ¼ λMCM þ λFπr2MCF

PM þ πr2MPF

¼ λMð1−εMÞlog2ð1þ SINRMÞ þ λFπr2Mð1−εFÞlog2ð1þ SINRFÞ
λMðPM0 þ ΔMPMÞ þ λFπr2MðPF0 þ ΔFPFÞ ,

(5)

where C is the throughput and ε is coverage probability of macro and femto users, respec-
tively.

3. Coverage probability

In this section, we use stochastic geometry theory to analyze the coverage performance of
MBS and FBS system under different allocation strategies. Under orthogonal deployment,
the spectrum allocation for MBS and FBS is orthogonal, which avoids the cross-tier interfer-
ence [4]. The received SINR of macro-mobile station (MS) located at the cell boundary is
given by:

SINRM ¼ PM, trhMr−αM
σ2

: (6)

To guarantee the coverage performance of macrocell, the received SINR of the MS at the
macrocell edge should satisfy the following equation:

P½SINRM≥TM� ¼ P PM, trhMr−αM
σ2

≥TM

� �
: (7)

There is no interference coordination in femtocell. So, inter-tier interference will provide
in femtocell. The received SINR of MS at femtocell edge is written as:

SINRF ¼ PF, trhFr−αF
IF þ σ2

: (8)

Similar way, the received SINR of the MS at the femtocell edge should satisfy the following
equation:

P½SINRF≥TF� ¼ P PF, trhFr−αF
IF þ σ2

≥TF

� �
¼ P hF≥

TFrαF
PF, tr

ðIF þ σ2Þ
� �

: (9)

Conditioning on the nearest BS being at a distance r from the typical user, the probability of
coverage averaged over the plane is written as:
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pcðT,λ,αÞ ¼ Er½P½SINR > Tjr�� ¼ ∫
r>0

P½SINR > Tjr�f rðrÞdr

¼ ∫
r>0

P hFr−α

σ2 þ IF þ IM
> Tjr

� �
e−λπr

2
2πλrdr

¼ ∫
r>0

e−λπr
2P½hr−α > TFðσ2 þ IF þ IMÞjr�2πλrdr:

¼ ∫
r>0

e−λπr
2P½h > Trαðσ2 þ IF þ IMÞjr�2πλrdr

(10)

Using the fact that h≈ exp ðμÞ, the coverage probability can be expressed as:

P½h > Trαðσ2 þ IF þ IMÞjr� ¼ EIψ ½P½h > Trαðσ2 þ IF þ IMÞjr, Ir��
¼ EIr ½ exp

�
−μTrαðσ2 þ IF þ IMÞ

�
jr� ¼ e−μTr

ασ2LIFðμTrαÞLIMðμTrαÞ,
(11)

where LIFðsÞ and LIMðsÞ are the Laplace transform of random variable Iϕ evaluated at the
distance to the closest BS from the origin. This gives a coverage expression:

pcðT,λ,αÞ ¼ ∫
r>0

e−λπr
2
e−μTr

ασ2LIFðμTrαÞLIMðμTrαÞ2πλrdr: (12)

The definition of Laplace transform yields [13]

LIrðsÞ ¼ EIϕ ½e−sIϕ � ¼ EIϕ ½ exp ð−s∑
i
giR

−α
i Þ�

¼ EIϕ ½∏
i
exp ð−sgiR−α

i Þ� ¼ EIr ½∏
i
Eg½ exp ð−sgiR−α

i Þ��

¼ exp
�
−2πλ∫

∞

r

�
1−Eg½ exp ð−sgiR−α

i Þ�
�
vdv
�
:

(13)

Now, we have

LIϕðsÞ ¼ Eφ,fgig½∏
i∈φ

Egi ½ exp ð−sgiR−α
i Þ�� ¼ EΦ ∏

i∈φ

μ
μþ sR−α

i

" #
¼ exp −2πλ∫

∞

r
1−

μ
μþ sv−α

� �
vdv

� �
:

(14)

Let gi≈ exp ðμÞ and s ¼ μTrα.

LIϕðμTrαÞ ¼ exp −2πλ∫
∞

r

T
T þ ðr=vÞα vdv

� �
, (15)

Again, u ¼ ðv=rT1=αÞ2, then we get

LIϕðμTrαÞ ¼ exp −2πλT2=α ∫
∞

T−2=α

1
1þ uα=2

du

 !
¼ exp

�
−2πλρðT,αÞ

�
, (16)

where ρðT,αÞ ¼ T2=α ∫
∞

T−2=α

1
1þ uα=2

du.
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Putting (16) into (12) with gives the desired result.

4. Propose base stations sleep mode strategies

We know that the coverage probability is independent of the sleeping mode. However, we
need to maintain the coverage of the cellular networks when we implement sleeping mode in
MBSs through power control small cells as shown in Figures 1b and 3. In Ref. [9], authors
introduced active/sleep (on/off) modes in MBSs and improved the energy efficiency in cellular
networks. In this chapter, we consider the HCNs comprised of macrocell and femtocell tiers.
We propose switching off/on systems for the efficient power consumption at the BSs in the
cellular networks, which introduce active/sleep modes in the MBSs and FBSs. The active/sleep
modes reduce the interference and power consumption as well as improve the energy effi-

10 ciency of the cellular networks. We derive the two-tier HCNs under different sleeping policies
as well as formulate power consumption minimization for the MBSs and FBSs. An optimiza-

12 tion problem is formulated to maximize the energy efficiency subject to throughput outage
13 constraints as well as solved by the KKT conditions in terms of the femto tier BS density. Thus,
14 the total power consumed by each BS in the macro and femto tiers is modeled as follows:

PM ¼
(
PM0 þ ΔMβPMBS, for active mode
0M, for sleeping mode :

PF ¼
(
PF0 þ ΔFβPFBS, for active mode
0F, for sleeping mode

(17)

15 From Eq. (17), we can see that the MBS and FBS are active modes, and the maximum power is
16 consumed by BSs. Otherwise, power consumption is zero when it is in sleeping mode.

17 4.1. Random sleeping

18 In random sleeping strategy, we take it as a Bernoulli trial, that is, each BS actives with
19 probability q and sleeps with probability 1 − q independently for macro and femto BSs [9, 14].
20 Then, the sleep modes of other BSs are determined according to the distances between a BS

and user. Power consumption of random sleeping problem is formulated as follows:

PRSðMBSÞ ¼ λMqMðPMO þ ΔMβPMBSÞ þ λMð1−qMÞPsleep, (18)

22 and

PRSðFBSÞ ¼ λFqFðPFO þ ΔFβPFBSÞ þ λFð1−qFÞPsleep: (19)

23 The power is consumed in the macro tier and femto tier BS when operating in the active and
24 sleep mode, and then the total average power is given by:
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Ptotal ¼ λMqMðPM0 þ ΔMβPMÞ þ λMð1−qMÞPsleep|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
macro�tier

þ πr2M:

λFðPF0 þ ΔFβPFÞ þ λFð1−qFÞPsleep|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
femto�tier

(20)

Thus, the energy efficiency of the network for random sleeping is given by:

EE ¼ λMð1−εMÞlog2ð1þ SINRMÞ þ πr2MλFð1−εFÞlog2ð1þ SINRFÞ
λMqMðPM0 þ ΔMβPMÞ þ λMð1−qMÞPsleep þ πr2MλFðPF0 þ ΔFβPFÞ þ λFð1−qFÞPsleep

: (21)

The network energy efficiency is expressed in the units of nats/Joule. The numerator in Eq. (21)
is the total average throughput achieved by all the users in the two-tier network, and the
denominator is the total power consumption use of Eqs. (18), (19) and (20).

4.2. Strategic sleeping

The sleep mode strategy can be considered as a load-aware policy and can incorporate traffic
profile in the optimization problem. By applying strategic sleeping, the average power con-
sumption can be expressed as:

PSSðMBSÞ ¼ λM

�
EfsgðPMO þ ΔMβMPMBSÞ þ λMð1−EfsgÞPsleep

�
, (22)

and

PSSðFBSÞ ¼ λF

�
EfsgðPFO þ ΔFPMBSÞ þ λFð1−EfsgÞPsleep

�
: (23)

10 In case of random sleeping mode, a network is developed that is adaptive to the fluctuating
activity levels during the day. The strategic sleeping mode can go one step further. It can model

12 a network that is adaptive to fluctuating activity levels within the location [9]. In addition, the
13 strategic sleeping model can measure the impact of cooperation among MBSs. The energy
14 efficiency of the network for strategic sleeping is given by:

EE ¼ λMð1−εMÞlog2ð1þ SINRMÞ þ λFπr2Mð1−εFÞlog2ð1þ SINRFÞ
λM

�
EfsgðPMO þ ΔMβPMBSÞ þ λMð1−EfsgÞPsleep

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

macro�tier

þπr2M
�
λF

�
EfsgðPFO þ ΔFβPMBSÞ þ λFð1−EfsgÞPsleep

��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

femto�tier

:

(24)

15 Similar way, the network energy efficiency is expressed as the numerator in Eq. (24) of the total
16 average throughput achieved by all the users in the two-tier network and the denominator of
17 the total power consumption use of Eqs. (22) and (23).
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4.3. Optimization problem

To solve the following multi-objective optimization problem [14]:

max
λF

EEðλFÞ

s:t: 1−P
�
BMlnð1þ SINRMÞ > TM

�
≤εM,

1−P
�
BFlnð1þ SINRFÞ > TF

�
≤εF

(25)

where εM and εF denote the outage objectives guaranteeing a minimum target throughput for
each user in the macro and femto tier, respectively. The optimal femto tier BS density λ∗

F that
maximizes the energy efficiency of network subject to the downlink outage constraints is given
by λ∗

F

λ∗
F ¼

½λEE,F� for μ∗
M ¼ 0, μ∗

F ¼ 0 ðboth inactiveÞ
λMð1−qÞζ−1 for μ∗

M > 0, μ∗
F ¼ 0 ðmacro active & femto inactiveÞ

λF−λMqζ−1 for μ∗
M ¼ 0, μ∗

F > 0 ðmacro inactive & femto activeÞ
λFð1−qÞ for μ∗

M > 0, μ∗
F > 0 ðboth activeÞ

,

8>><
>>:

(26)

where μ∗
M and μ∗

F are the Lagrange multipliers and ζ ¼ ðPF=PMÞ2=α is power ratio of BSs.
The optimization problem in Eq. (25) is determined by satisfying the KKT conditions as

10 follows:

LðλEE,μM,μF,λFÞ ¼ EEðλFÞ−μM½1−P
�
BMlnð1þ SINRMÞ > TM

�
−εM�:

−μF½1−P
�
BFlnð1þ SINRFÞ > TF

�
−εF�

(27)

The KKT conditions are then listed as follows:

∂Lðλ∗
FÞ

∂λF
¼ 0,

1−P
�
BMlnð1þ SINRMÞ > TM

�
≤εM

1−P
�
BFlnð1þ SINRFÞ > TF

�
≤εF

(28)

μ∗
M½1−P

�
BMlnð1þ SINRMÞ > TM

�
−εM� ¼ 0:

μ∗
F½1−P

�
BFlnð1þ SINRFÞ > TF

�
−εF� ¼ 0

μ∗
M > 0, μ∗

F > 0

(29)

12 Based on the listed KKT conditions, evaluating each possible scenario for which μ∗
M and μ∗

F are
13 either active or inactive gives the optimal femto tier BS density λ∗

F.
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5. Combined coordinated multi-point (CoMP) transmission and BS
sleeping scheme

In this section, we also evaluate the performance of the combined CoMP and BS sleeping
scheme in a two-tier HCNs. The first tier is deployed as MBSs with a density of λM, and the
second tier is deployed as FBSs with a density of λF.

5.1. BS cooperation

BS sleeping has been proved to be an effective technique for saving energy consumption in
cellular networks. However, BSs in sleeping mode might cause coverage holes, which have a
negative impact on the connectivity of the network. We conduct a stochastic geometry analysis

10 to evaluate the performance of the proposed combined CoMP and BS sleeping scheme in
HCNs for energy efficiency [10]. We apply CoMP to avoid coverage holes when the target

12 SINR cannot be reached. Applying stochastic geometry tools, we formulate and compare the
13 coverage probability and the energy efficiency in HCN scenarios with and without CoMP.

14 The cooperative set is composed of the closest BSs in each network tier to the user. The density
15 of CoMP is the same as the tier contains BSs with the lowest density. The probability of CoMP
16 happens is equal to the probability of awake MBSs q, and its density is qλM. We assume that
17 the awake MBSs can always cooperate with FBSs to transmit, so that n = K = 2. Here, n is the
18 number of cell cooperatives. The following lemma gives the coverage probability of the com-
19 bined CoMP and BSs sleeping control.

20 Theorem [10]: In two-tier HCNs with CoMP and BSs sleeping, the coverage probability of a
randomly located user is given by:

pc_CoMP ¼ 4π2q2λMλF∫ exp
�
−2πqλMs

2=α
1 Fðr1s−1=α1 Þ

�
·

exp
�
−2πqλFs

2=α
2 Fðr2s−1=α2 Þ

�
· exp

�
−πqðλMr21 þ λFr22Þ

�
r1r2dr1r2,

(30)

22
where si ¼ TPi

P1r−α1 þP2r−α2
for ri≥0, i ¼ f1, 2g and FðxÞ ¼ ∫

∞

x

r
1þ rα

dr.

23 The energy efficiency of the networks for BS cooperation

EE ¼ λMpc_CoMPlog2ð1þ SINRMÞ þ πr2MλFpc_CoMPlog2ð1þ SINRFÞ
λMqMðPM0 þ ΔMβPMÞ þ λMð1−qMÞPsleep|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

macro �tier

:

þπr2M
�
λFðPF0 þ ΔFβPFÞ þ λFð1−qFÞPsleep

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

femto�tier

(31)

24 From Eq. (31), we can see that the energy efficiency is related to the coverage probability and
25 the power consumption of whole networks.
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5.2. BS non-cooperation

The typical user only connects to the nearest BS, which belongs to first tier in a non-CoMP
scenario [10]. Then, the coverage probability in the case of BS non-cooperation is given by:

pc_Non�CoMP ¼ 1

1þ T2=α2FðT−1=αÞ þ T2=α

sincð2=αÞ
qλF
qλM

P2=α
2

P2=α
1

: (32)

Thus, the energy efficiency of the networks for BS non-cooperation is given by:

EE ¼ λMpc_Non−CoMPlog2ð1þ SINRMÞ þ πr2MλFpc_Non−CoMPlog2ð1þ SINRFÞ
λMqMðPM0 þ ΔMβPMÞ þ λMð1−qMÞPsleep|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

macro �tier

þ πr2M
�
λFðPF0 þ ΔFβPFÞ þ λFð1−qFÞPsleep

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

femto�tier

:

(33)

From Eqs. (30) and (32), we can see that the coverage probability depends on both the sleep
strategy and BSs density ratio.

6. Markovian wireless networks

The BS can be in either of the two operational states: ON or OFF. If BS is ON, the energy
increases with the energy harvesting rate and decreases according to the number of users
served by that BS. However, if the BS is OFF, it does not serve any users.

6.1. Uncoordinated

In this class of strategies, the decision to toggle the operational state, that is, turn a BS ON or
OFF, is taken by the BS independently of the operational states of the other BSs.

6.2. Coordinated

In this class of strategies, the decision to toggle the state of a particular BS is dependent upon
the states of the other BSs.

6.3. Energy efficiency of two-cell cellular networks

To investigate the basic energy efficiency performance of two-cell cellular network, in this case,
a user’s channel of two-cell cellular network is modeled into good and bad states due to
channel conditions [15]. Moreover, a transition from one state to the next state only depends
on the current state with the state space f0, 1g, where ‘0’ corresponds to a good state and ‘1’
corresponds to a bad state in Figure 4. Based on properties of Markovian processes, a channel
transition probability matrix is given by:
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qðnÞ ¼
"
qðnÞ00 qðnÞ01

qðnÞ10 qðnÞ11

#
¼
"
q00 q01
q10 q11

#ðnÞ
, (34)

where qi, j, i and j∈f0, 1g, is a one-step transition probability from the state i into the state j, and

qðnÞi, j , i and j∈f0, 1g, is a probability from the initial state i into the state j after n steps transition.

The energy efficiency for multicell cellular networks is given by:

EEmulticell ¼ ∑
K

i¼1
log2 1þ Pi‖hi‖2

F

σ2i þ ∑
j¼1, i≠j

Pj‖hi, j‖2
F

0
BB@

1
CCA=∑

K

i¼1
Pi: (35)

The wireless channels of multicell cellular network are assumed as two-state Markovian
wireless channels, due to the memory-less property of two-state Markovian wireless channel
model [15]. Furthermore, after an n steps state transition in two-state Markovian wireless
channels, a model of energy efficiency of multicell cellular network is given by:

EEmulticell ¼

∑
K

i¼1
log2 1þ Pi‖h

good
i ‖2

F

σ2i þ ∑
j¼1, i≠j

Pj‖h
good
i, j ‖2

F

0
BB@

1
CCAqðnÞ00 þ log2 1þ Pi‖hbadi ‖2

F

σ2i þ ∑
j¼1, i≠j

Pj‖hbadi, j ‖2
F

0
BB@

1
CCAqðnÞ01

8>><
>>:

9>>=
>>;

∑
K

i¼1
Pi

:

(36)

To analyse the impact of cell number on the energy efficiency of multicell cellular networks; for

a good state channel, hgoodi ¼ 0:9 and hgoodi, j ¼ 0:1; for a bad state channel, hbadi ¼ 0:6 and

hbadi, j ¼ 0:4; n steps transition probabilities of two-state Markovian channels are fixed as

PðnÞ
00 ¼ 0:8 and PðnÞ

01 ¼ 0:2; and the noise is σ2i ¼ 0:1. Moreover, an initial state transition proba-
bility matrix of two-state Markovian chain channels is shown as:

Figure 4. State transition diagram of two-state Markovian wireless channel.
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q ¼
�
q00 q01
q10 q11

�
¼
�
0:8 0:2
0:6 0:4

�
¼
�
4=5 1=5
3=5 2=5

�
: (37)

7. Numerical results

In this section, we present numerical evaluations of the integral expressions for the coverage
probability and energy efficiency performance. We focus on the two network tiers consisting of
a macro tier overlaid with a femto tier. The assumed parameter values for two-tier HCNs are
based on the values used in Table 1. We assume that α ¼ 4 and that the first tier has spatial

intensity λ1 ¼ ð5002πÞ−1 and available power P1 ¼ 25, while the second tier has spatial inten-
sity λ2 ¼ 5λ1 and available power P2 ¼ P1=25.

Figure 5 illustrates the effect of the SINR threshold T on the coverage probability. By compar-
ing the performance of the cooperative scheme to the baseline of no cooperation scheme, we
observe that around 0 dB cooperation yields relative gains in coverage probability of up to
about 30% compared to non-cooperative. The coverage probability can be directly related to
the ergodic rate of communication from the cooperating BSs to the typical receiver.

Figure 6 plots the coverage probability versus noise σ2 for different sleeping strategies. The
sleeping strategy is modeled as 0 and 1, respectively. As shown in Figure 6, in strategic

Symbol Description Value

B Bandwidth 180 kHz

α Path loss exponent 4

TM SINR threshold for macro 8 dB

TF SINR threshold for femto 5 dB

PMBS Macro BS transmit power 20 W

PFBS Femto BS transmit power 2 W

rM Macro range 300 m

rF Femto range 15 m

PMO Static power MBS 130 W

PFO Static power FBS 4.8 W

ΔM Slope of MBS 4.7

ΔF Slope of FBS 8

PM�sleep Sleeping power MBS 75 W

PF�sleep Sleeping power FBS 5 W

λM Density of MBS 1 · 10−4 m−2

λF Density of FBS 1 · 10−2 m−2

Table 1. Network parameter values.
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sleeping mode, the coverage probability is marginally better than no sleeping mode. It can also
be said that strategic sleeping has a bigger margin of improvement over no sleeping when
σ2 ! 0. Finally, it can be seen that strategic sleeping is always better than random sleeping for
the same fraction of sleeping MBSs and FBSs.

Figure 5. Comparison of the coverage probabilities for BS cooperation and no cooperation against the threshold in dB.

Figure 6. Coverage probabilities for different sleeping strategies.
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Figure 7 shows the maximum two-tier achieved energy efficiency versus density. The assumed
parameter values for the two-tier HCNs are based on the values used in Table 1. In general, the
maximum two-tier energy efficiency decreases with increasing density. Note that, we show the

Figure 8. Energy efficiency versus density for the CoMP and non-CoMP.

Figure 7. Two-tier network energy efficiency versus density.
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energy efficiency curves close to the points for PFBS=PMBS ¼ 0:1, 0:2, 0:3 and 0:4. The observa-
tions made from Figure 7 underscore the impact of the femto-to-macro BS power consumption
factor on the ability to maximize the two-tier energy efficiency while satisfying the outage
objectives.

Figure 8 shows the energy efficiency of the CoMP and non-CoMP schemes versus density. It is
observed that the energy efficiency improves according to the density. The proposed scheme of
combined CoMP and BSs sleeping mode is increased by 2% of energy efficiency from non-
CoMP schemes. Numerical results confirm that the combined CoMP and BS sleeping can
improve the energy efficiency as well as increase the coverage probability compared with
implementing BS sleeping only. Moreover, the performance of non-CoMP is almost same as
the macro BS sleeping only [9].

8. Conclusion

In this chapter, we provide energy efficiency of two-tier network through deploying sleeping
strategy in MBSs and FBSs. The MBS and FBS are switching off/on systems, that is, it reduces
power consumption and interference and improves the energy efficiency of HCNs. Power
consumption is formed into optimization problems, which is determined by the optimal
density of femto tier BS. BSs in sleeping mode might cause coverage holes, which have a
negative impact on the connectivity of the network. Thus, we proposed combined CoMP and
BS sleeping scheme in HCNs for energy efficiency to avoid coverage holes. Numerical results
show that the proposed sleeping strategy can effectively increase energy efficiency. We also
analyze the energy efficiency performance of cellular network based on two-state Markovian
wireless channels.
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Abstract

This chapter is about the beamforming approach in wireless 5G networks, which involves
communication between multiple source-destination pairs. The relays can be multiple-
input multiple-output (MIMO) and/or distributed single-input single-output (SISO), and
full channel state information of source-relays and relay-destinations are assumed to be
available. Our design consists of a two-step amplify-and-forward (AF) protocol. The first
step includes signal transmission from the sources to the relays, and the second step
contains transmitting a version of the linear precoded signal to the destinations.
Beamforming is investigated only in relay nodes to reduce end user’s hardware complex-
ity. Accordingly, the optimization problem is defined to find the relay beamforming
coefficients that minimize the total relay transmit power by keeping the signal-to-interfer-
ence-plus-noise ratio (SINR) of all destinations above a certain threshold value. It is shown
that this optimization problem is a non-convex, and can be solved efficiently.

Keywords: beamforming, 5G wireless networks, MIMO, optimization

1. Introduction

Recently, cooperative communication has become one of the appealing techniques that can be
used in 5G wireless relay networks to achieve spatial diversity and multiplexing, which over-
comes the channel impairments caused by several fading effects and destructive interference.
Though various cooperative communication schemes exist [1, 2], the AF scheme is more
attractive due to its simplicity since the relays simply forward the amplitude phase-adjusted
version of received signals to destinations. In Ref. [2], a distributed beamforming relay system
with a single transmitter-receiver pair, and several relaying nodes have been proposed. The
authors assumed that perfect channel state information (CSI) is available at all relay nodes.
Although the same scenario is investigated in Ref. [3], the second-order statistics of all channel
coefficients are assumed to be available at the relays. Furthermore, the beamforming weights
are obtained in order to maximize the signal-to-noise ratio (SNR) at destination subject to
holding the relay power above a certain threshold value.
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In the past three decades, code-division-multiple-access (CDMA) systems have been exten-
sively investigated as the one of the important candidates for transmitting data over single
channels while sharing a fixed bandwidth among a large number of users [4]. The design of
receivers to increase the number of supported users, in these systems, has been explored in Ref.
[5, 6]. In Ref. [6], joint channel estimation and data detection based on an expectation-maximi-
zation (EM) algorithm [7] is proposed. The authors have shown that the proposed receiver
achieves a near-optimum performance with modest complexity. Furthermore, the authors in
Ref. [5] designed a double stage linear-detection receiver to increase the number of supported
users on the system. This design requires complex processing at the receiver’s side instead of
using a precoding scheme at the transmitter where more hardware complexity is tolerable.
Therefore, the authors in Ref. [8] studied a MIMO CDMA system implementing zero-forcing
beamforming (ZFBF) as an efficient precoding technique.

Though various complex multiuser detection techniques that can be used in CDMA systems
[9], the unconventional matched filter receiver is chosen at destination nodes due to the
intractability of the precoding design when other forms of detectors are used. In this article,
we have focused on the optimization of the beamforming weights applied to the outputs of
matched filter banks to minimize the total relay transmit power subject to a target SINR of
all destinations. Our proposed distributed CDMA-relay network can easily overcome the
other multiplexing schemes such as space division-multiple access (SDMA), time division-
multiple access (TDMA) or frequency division-multiple access (FDMA). The SDMA
schemes [10] in which sources, destinations and relays are distributed in the space, have
two disadvantages. First, these schemes should have a significant number of relays in
proportion to their users to be able to overcome channel impairments at destinations.
Although the SDMA scheme with the limited number of relays cannot compensate the
interference power, our CDMA schemes can easily satisfy the network QoS due to their
ability to decrease the interference effect at destinations. So, the second disadvantage of
SDMA is the inefficient use of hardware communication resources. In the SDMA scheme, if
the number of users increases, the network data rate can significantly decrease. Therefore,
the number of relays should be considerably increased to be able to satisfy the QoS con-
straints, which is costly for the network operator.

Notation: We denote the complex conjugate, transpose, Hermitian (conjugate transpose) and
inner product operators by (�)*, (�)T, (�)H and 〈 � 〉, respectively. We use E{�} to denote statistical
expectation. trace{�} and Rank{�} represent the trace and rank of the matrix, respectively. Vec(�)
is the vectorization operator stacking all columns of a matrix on top of each other; ⊗ represent
the Kronecker product of two matrices and A�0 stands for semi-definite conic inequality that
means A is a non-negative semi-definite matrix.

2. 5G wireless system and equations

Consider a wireless relay network with d pairs of source-destination (peers) communicating
without a direct link through R MIMO or SISO relay antennas. In this chapter, a two-step AF
protocol is used. In the first step, each source user broadcasts its spread symbol toward the
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relays. A matched filter is applied in each relay in order to retrieve the source’s signals. In the
second step, the adjusted and spread signals by the relays are transmitted to destinations.

3. MIMO relay networks

In this section, a peer-to-peer MIMO-relay network with d pairs of source-destination nodes is
considered, as shown in Figure 1. It is assumed that all source and destination nodes are
equipped with one SISO antenna and each source attempts to maintain communication with
its corresponding destination. It is assumed that there is no direct link between source and
destination pairs due to path loss and deep shadowing and all nodes are working in a half-
duplex mode. We use a two-step AF protocol. During the first step, each source broadcasts its
signals to MIMO-relay. Then, after applying the beamforming weights at MIMO-relay, the
adjusted signals transmit to all destinations.

Let sk stands for the k
th source symbol that is assumed to be independent of the other sources,

that is, E sks�l
� � ¼ Pkδkl. Denote the channel coefficient from the kth source to the rth relay as frk

and the channel coefficient from rth relay to kth destination as grk. Then, the received signal at
the rth relay is given by:

χr ¼ ∑
d

l¼1
f rlsl þ ωr, r∈ 1;…;Rf g; (1)

where ωr is the noise at the r
th relay. For simplicity, Eq. (1) can be rewritten as:

χ ¼ ∑
d

l¼1
flsl þω ; (2)

where χ ≜ [χ1,χ2, … ,χR]
T, ω ≜ [ω1, ω2, … ,ωR]

T
, fl ≜ [f1l,f2l ,… , fRl]

T.

Figure 1. A MIMO-relay network (from M.H. Golbon et al. [11]).
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The received signal in MIMO relay has been processed by the beamforming weights, that is,
W ∈ ℂR + R, which should be designed appropriately. Finally, each MIMO-relay antenna
transmits the following signal to destinations:

γ¼Wχ∈ℂR · 1 (3)

The rth entry of γ is the signal transmitted by rth MIMO antennas. Finally, the received signal at
the kth destination is given by

yk ¼ gk
Tγ þ ζk (4)

where ζk(t) is the noise at the k
th receiver. We can easily rewrite Eq. (4) as:

yk ¼ gk
TWχþ ζk ¼ gk

TW ∑
d

l¼1
flsl þω

� �
þ ζk

¼ gk
TW∑

d

l¼1
flsl þ gk

TWωþ ζk

¼ gk
TWfksk|fflfflfflfflfflffl{zfflfflfflfflfflffl}

desired received signal

þ gk
TW ∑

d

l¼1, l≠k
flsl

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
interference part

þ gk
TWωþ ζk|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
noise part

(5)

The three last terms of Eq. (5) are the desired received signal, interference and noise at the kth

destination, respectively. The object of the network beamforming is to minimize the total relay
transmit power subject to maintaining every destination SINR above a pre-defined threshold
value γth (as a QoS parameter of the network). In this case, the instantaneous SINR for kth

destination simply becomes the desired signal power of the desired signal to the power of
interference plus noise. So, the optimization problem can now be written as

Minimize
w

PR

Subject to SINRk≥γk
th k∈ 1; 2;…; df g (6)

where PR is the total relay transmit power, w stands for beamforming weights, SINRk and γk
denote the received SINR and the target SINR (threshold value) at the kth destination node,
respectively.

First, using Eq. (3), the total relay transmit power can be calculated as

PR ¼ E γHγ
� �

¼ E χHWWHχ
� � ¼ trace WHRxW

� � (7)

where Rx ≜ E{χχH} and it can be calculated as:

Rx ¼ ∑
d

l¼1
PlE flfl

H
n o

þ σ2ωIR ·R (8)

For any conforming matrices M, N and Z, the following equation holds
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trace MZHNZ
� � ¼ vec Zð ÞH MT⊗N

� �
vec Zð Þ (9)

Therefore, Eq. (7) can be rewritten as the following quadratic form:

PR ¼ vec Wð ÞH IR·R⊗Rxð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
T

vec Wð Þ

¼ wHTw

(10)

where w ≜ vec(W) and T ≜ (IR + R ⊗ Rx).

Using Eq. (5), the desired signal power at the kth destination can be obtained as:

PSk ¼ Pk E fHk W
H g�k gk

TWfk
� �

¼ Pk vec Wð ÞH Rfk
T⊗Rgk

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Rk

vec Wð Þ

¼ wHRkw

(11)

where Rfk≜E fkf
H
k

� �
, Rgk≜E g�kg

T
k

� �
and Rk≜Pk Rfk

T⊗Rgk

� �
.

Also, using Eq. (5), the received noise power at kth destination can be calculated as:

PNk ¼ E ωHWHgk
�gk

TWω
� �þ σ2ςk

¼ σ2ω trace WHRgkW
� �þ σ2ςk

¼ vec Wð ÞH I⊗Rgk

� �
|fflfflfflfflffl{zfflfflfflfflffl}

Νk

vec Wð Þ

¼ wHΝkwþ σ2ςk

(12)

where Νk≜ I⊗Rgk

� �
.

Finally, the power of the received interference at the kth destination can be computed as

PIk ¼ E ∑
d

l¼1, l≠k
flsl

 !H

WHgk
�gk

TW ∑
d

l¼1, l≠k
flsl

 !0
@

1
A

¼ trace Pk E ∑ l,m ¼ 1

l,m≠k

d
flfm

H
n o� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fk

WHRgkW

8>><
>>:

9>>=
>>;

¼ vec Wð ÞH FkT⊗Rgk

� �
vec Wð Þ

¼ wHIkw

(13)

where Fk≜Pk E ∑ l,m ¼ 1
l,m≠k

dflfm
H

n o
and Ik≜ FkT⊗Rgk

� �
.
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In this case, the instantaneous SINR for kth destination simply becomes the desired signal
power of the desired signal to the power of interference plus noise. So, the optimization
problem can now be written as

Minimize
w

wHTw

Subject to SINRk ¼ wHRkw
wH Νk þ Ikð Þwþ σ2ςk

≥γk
th

k∈ 1; 2;…; df g

(14)

Since wH Νk þ Ikð Þwþ σ2ςk≥0, the constraints of the optimization problem can be formulated as

wH Rk−γk
th Νk þ Ikð Þ� �

w≥γk
thσ

2
ςk (15)

In this problem, if all the matrices Rk−γk
th Νk þ Ikð Þ are negative semi-definite for all k, the

problem is convex and can be solved uniquely. However, the feasible set of our optimization
problem is empty since wH Rk−γk

th Νk þ Ikð Þ� �
w≤0 for all k and w. Therefore, Rk−γk

th Νk þ Ikð Þ is
non-negative definite matrix which results in non-convex inequality constraints, hence the qua-
dratically constrained quadratic programming (QCQP) problem is non-convex and NP-hard in
general. However, we will show that a simple near optimal solution can be found in our
problem. First, we replaced our QCQP problem with a semi-definite programming (SDP) prob-
lem. Let us define Dk≜Rk−γk

th Νk þ Ikð Þ , X≜wwH and using the fact that trace(AB) = trace(BA)
(when A is an m + n and B is an n +mmatrix), the optimization problem Eq. (14), can recast to

Minimize
X

trace TXð Þ
Subject to trace DkXð Þ≥γk

thσ
2
ςk , k∈ 1;…; df g

Rank Xð Þ ¼ 1 ,X≥0

(16)

This optimization problem is non-convex, because the Rank(X) = 1 constraint is non-convex.
We relax the problem by ignoring this non-convex constraint and convert it to a convex SDP
problem. The following semi definite representation (SDR) form is the relaxed version of the
problem Eq. (16).

Minimize
X

trace TXð Þ
Subject to trace DkXð Þ≥γk

thσ
2
ςk , k∈ 1;…; df g

X≥0

(17)

The optimal value of the relaxed problem is a lower bound of the optimal value of SDP
problem (Eq. 16).Well-known semi-definite problem solvers such as SeDuMi or CVX can solve
the above problem in polynomial time using interior point methods. If the optimal value of
Eq. (17), that is, Xopt, is rank one, then its principal eigenvector is exactly the optimal solution
of the original optimization problem. Since the solution of Eq. (17) is not always rank one, one
can use randomization techniques [10] to obtain an approximate solution of the original
problem from the solution of the relaxed problem. The randomization technique is finding
the best solution from the candidate sets of beamforming vectors generated from Xopt [12]. Luo
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th Νk þ Ikð Þ� �
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thσ

2
ςk (15)
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et al. [13] and Chang et al. [14] analyzed the accuracy of these techniques for different
semidefinite problems, and it has been found that the randomization technique has acceptable
performance in practical scenarios [15]. Therefore, the eigenvalue decomposition of Xopt can be
calculated as Xopt = VDVH. Then the candidate sets of beamforming vectors is generating as
xc = VD(1/2)pc, where pc is a circularly symmetric complex, and zero mean, unit variance white
Gaussian vector, that is, pc ∈ ℂ

R + 1 ∼ ℂΝ(0, 1). Hence, it can be easily recognized that the
vector xc satisfies E{xcxc

H} = Xopt. This candidate vector generation should perform several
times and in each iteration, any vector (or scaled version) that satisfies SINR constraints of
problem Eq. (17) is saved as a candidate vector (x′c) along with corresponding objective values.
The vector generation should be repeated for a predefined number of times. The final mini-
mum solution can be achieved by a simple minimization over the obtained objective values as
an approximate solution of the problem.

Then, solving problem Eq. (16) from xc becomes finding a proper scaling factor of
ffiffiffi
β

p
≥ 0.

Applying β to Eq. (17), the following problem will be attained

Figure 2. MinimumMIMO-relay transmit power Pmin
T versus destination SINR threshold value γth, for different values of

σ2f and σ2g ¼ 10dB.
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Minimize
X β trace TXð Þ

Subject to β trace DkXð Þ ≥ γk
thσ

2
ςk , k∈ 1;…; df g

Rank Xð Þ ¼ 1 , X ≥ 0

(18)

In the above algorithm, the acceptable scaling factors are those that satisfy β trace(TkX) ≥ 0.
Thus, the maximum scaling factor should be selected as

β ¼ max
k¼1,…, d

γk
thσ

2
ςk

trace DkXð Þ

( )
(19)

Consequently, the approximate solution of problem (Eq. 16) is
ffiffiffi
β

p
xc. In our case, after an

acceptable number of iterations (around 100 iterations), the solution of the randomization
problem approached to its lower bound (the optimal value of relaxed problem). Therefore,
Xopt is an acceptable and a near optimal solution to the original non-convex problem. Another
optimal solution of Eq. (16) can be found using a penalty function in the objective part of the
problem and converting the objective function into the difference of two convex functions

Figure 3. MinimumMIMO-relay transmit power Pmin
T versus destination SINR threshold value γth, for different values of

σ2g and σ2f ¼ 10dB.
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subject to current convex constraints [16], and applying an effective non-smooth optimization
algorithm based on the sub-gradient of rank one constraint.

For examination, we assumed that channel state information is known at a processing center
and the beamforming weights are optimized and spreaded to the nodes from this processing
Center [17]. In each simulation snapshot, the channel coefficients frk, grk are generated as i.i.d
circularly symmetric complex Gaussian random variables with variances of σ2f ¼ σ2g ¼ 10dB.

Also, it is assumed that we have the same output power at sources, that is, Pkf gdk¼1 ¼ 10dB and

we set γk
th

� �d
k¼1 ¼ γth, σ2ωi

n oR

i¼1
¼ σ2ςk

n od

k¼1
¼ 0dB.

Figures 2 and 3 show the minimumMIMO-relay transmit power Pmin
T versus destination SINR

threshold value γth , for different values of σ2f , σ
2
g. It can be seen from Figures 2 and 3 that the

better quality of uplink and/or downlink channels can decrease the minimum MIMO-relay
transmit power for a certain threshold value.

Figure 4. Minimum MIMO relay transmit power Pmin
T versus destination SINR threshold value γth, for different number

of antennas.
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In Figures 4 and 5, we examine the network performance by changing the number of MIMO-relay
antennas and number of source-destination pairs. As expected, more power saving will be obtained
by increasing the number of MIMO antennas and/or decreasing the number of user nodes.

4. MIMO-CDMA relay networks

In the last section, we obtained the optimal beamforming weights for a MIMO relay network.
Here, in addition to the multiple antenna technique, CDMA is applied to the network to
increase the order of multiuser multiplexing. CDMA systems can share a fixed bandwidth
among a large number of users without the need of frequency division or time division
between nodes. CDMA introduces a diverse range of trade-off between receiver complexity
and system performance.

As shown in Figure 6, a two-step AF protocol is used for this MIMO-relay network. In the first
step, each source user broadcasts its precoded signal (i.e. slul(t)) at its maximum power Pl

toward the MIMO-relay. At the MIMO-relay, a matched filter is applied to retrieve the source’s

Figure 5. Minimum MIMO relay transmit power Pmin
T versus destination SINR threshold value γth, for different number

of source-destination pairs.
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signals. In the second step, the adjusted and spreaded signals are transmitted from MIMO-
relay to all destinations. Another matched filter is used at each destination to extract its
corresponding symbols.

Let uk(t) denotes a signature waveform that is assigned to the kth source. Then, the received
signal at the rth antennas of MIMO-relay is given by

χr tð Þ ¼ ∑
d

l¼1
f rlslul tð Þ þ ωr tð Þ (20)

The vector form of Eq. (20) can be written as:

χ tð Þ ¼ ∑
d

l¼1
flslul tð Þ þω tð Þ∈ℂR· 1 (21)

where

χ tð Þ≜ χ1 tð Þ, χ2 tð Þ , … ,χR tð Þ½ �T ,

v tð Þ≜ v1 tð Þ, v2 tð Þ , … ,vR tð Þ½ �T ,

fl≜ f 1l , f 2l , … , f Rl
� �T

(22)

By denoting the cross correlation between kth user’s codeword to the lth user’s codeword as
rk, l ¼ uk tð Þ∗ul T0−tð Þ t¼T0j , the output signal of the matched filter at the MIMO-relay can be
expressed as

Figure 6. MIMO-relay multiuser network (from M.H. Golbon et al. [18]).
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γn ¼ χ tð Þ∗un� T0−tð Þjt¼T0

¼ ∑
d

l¼1
flslul tð Þ∗un� T0−tð Þjt¼T0

þω tð Þ∗un� T0−tð Þjt¼T0

¼ ∑
d

l¼1
flslrl,n þ ςn ¼ γn,−k þ γn,k þ εn

(23)

where rl,n is the cross correlation between lth user’s code-word and nth user’s code-word
[19]:

rl,n ¼ ul tð Þ∗un� T0−tð Þ t¼T0 ¼ ul tð Þ, un tð Þh ij (24)

where γn,k, γn,− k, and εn are defined as

γn,−k≜ ∑
d

l¼1, l≠k
flslrl,n

γn,k≜fkskrk,n

εn≜ω tð Þ∗un� T0−tð Þjt¼T0

(25)

The output of the matched filter in each relay has been processed by the beamforming weights
Wl ∈ ℂR +Rd, which should be designed appropriately. We define the output of the matched
filter bank as Γ = [γ1

T, γ2
T, … , γd

T]T ∈ ℂRd + 1, the adjusted MIMO-relay signals can be written
as

ξl¼WlΓ∈ℂR· 1, l∈ 1;…; df g (26)

Another filter bank is applied to the output of each MIMO antenna, which generates R + d
filtered data. This data are processed in a processing center in the MIMO relay to achieve the
proper symbol vector, which can be transmitted in each user’s subspace. After beamforming
by the above linear operation, the MIMO-relay transmits the following modulated and
precoded signal to destination nodes:

ψ tð Þ ¼ ∑
d

l¼1
ξlul tð Þ∈ℂR· 1 (27)

The rth entry of ψ(t) is the signal transmitted by rth relay antenna. Then, the received signal
at the kth destination is given by

yk tð Þ ¼ gk
Tψ tð Þ þ ζk tð Þ (28)
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where ζk(t) is the noise at the kth receiver, which is also assumed to be ℂN(0, 1). Finally,
each destination node convolves the received signals by its code-word to retrieve its
corresponding data. So, the retrieved signal will be

λk ¼ yk tð Þ∗uk� T0−tð Þ��t¼T0

¼ gk
T ∑

d

l¼1
ξl ul tð Þ∗u�k T0−tð Þ��t¼T0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rl, k

þ ζk tð Þ∗u�k T0−tð Þ��t¼T0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ςk

¼ gk
T ∑

d

l¼1
ξlrl,k þ ςk ¼ gk

T ∑
d

l¼1
WlΓrl,k þ ςk

¼ gk
T ∑

d

l¼1
rl,kIR·RWl

� �
Γþ ςk ¼ gk

T rkWð ÞΓþ ςk

¼ gk
TrkW Γ−k þ Γk þ Γεnð Þ þ ςk

¼ gk
TrkWΓk|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

desired received signal

þ gk
TrkWΓ−k|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

interference part

þ gk
TrkWΓεn þ ςk|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

noise part

(29)

where ςk is the noise at the kth receiver, and the following notations are defined for simplic-
ity:

rk≜ r1, k r2, k…rd, k
� �

1 · d

rk≜rk⊗IR·R∈ℂR·Rd

W≜ W1
T ; ;W2

T ;…; ;Wd
T� �T∈ℂRd ·Rd

Γ−k≜ γ1,−k
T ; ;γ2,−k

T ;…; ;γd,−k
T

h iT

Γk≜ γ1,k
T ; ;γ2,k

T ;…; ;γd,k
T

h iT

Γεn≜ ε1T ; ; ε2T ;…; ; εdT
� �T

Γ¼Γ−kþΓkþΓεn∈ℂ
Rd · 1

(30)

The object of the network beamforming is to minimize the total relay transmit power subject to
maintaining every destination SINR above a pre-defined threshold value γth (as a QoS param-
eter of the network).

First, using Eq. (27), the total MIMO-relay transmit power can be obtained as:
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PR ¼ E ψ tð Þ,ψ tð Þh ið Þ ¼ E ∑
d

l¼1
ξlul T0−tð Þ

� �H

� ∑
d

n¼1
ξnun tð Þ

� ������
t¼T0

0
@

1
A

¼ E ∑
d

l¼1
Wlul T0−tð ÞΓ

� �H

� ∑
d

n¼1
Wnun tð ÞΓ

� ������
t¼T0

0
@

1
A

¼ E ΓH ∑
d

l¼1
Wl

Hul T0−tð Þ � ∑
d

n¼1
Wnun tð ÞΓ

����
t¼T0

 !

¼ E ΓH ∑
d

l¼1
∑
d

n¼1
Wl

Hul T0−tð Þ � un tð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
rl,n

�������
t¼T0

Wn

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q

Γ

0
BBBBBB@

1
CCCCCCA

¼ E ΓHQΓ
� �

(31)

where Q≜∑
d

l¼1
∑
d

j¼1
Wl

Hrl, jWj and the inner product of vectors x(t), y(t) is defined as

x tð Þ, y tð Þh i≜ ∫
∞

−∞
xH tð Þy tð Þdt ¼ xH T0−tð Þ � y tð Þ��t¼T0

(32)

For simplicity, Q can be represented by the following quadratic form:

Q ¼
W1
W2
⋮
Wd

2
664

3
775

H r1,1IR ·R r1,2IR·R ⋯ r1,dIR·R
r2,1IR ·R

⋮ ⋱ rd−1,dIR·R
rd,1IR ·R rd,d−1IR·R rd,dIR·R

2
664

3
775

W1
W2
⋮
Wd

2
664

3
775 (33)

The kernel of the above form can be expressed as a Kronecker products as follows:

Q ¼ WH ϒ⊗IR·Rð ÞRd ·RdW (34)

where ϒ≜

r1,1 r1,2 ⋯ r1,d
r2,1 ⋱ ⋮
⋮

rd,1 ⋯ rd,d

2
664

3
775. Thus, Eq. (31) can be rewritten as:

PR ¼ E ΓH WH ϒ⊗IR ·Rð ÞW� �
Γ

� �
,

¼ trace WH ϒ⊗IR ·Rð ÞWE ΓΓH� �� �
,

¼ vec Wð ÞH E ΓΓH� �T⊗ ϒ⊗IR·Rð Þ
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T

vec Wð Þ,

¼ wHTw

(35)

where w ≜ vec(W) and T ≜ E(ΓΓH)T ⊗ (ϒ ⊗ IR + R).

Also, the instantaneous desired signal power at the kth destination is calculated as:
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Also, the instantaneous desired signal power at the kth destination is calculated as:
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Psk ¼ E gk
TrkWΓkΓH

kW
Hrk

Tgk
�� �

(36)

By defining Γk ≜ μkSk and μk ≜ rTk⊗fk, Eq. (36) can be rewritten as

Psk ¼ PkE gk
TrkWμkμ

H
kW

Hrk
Tgk

�� �

¼ Pk trace WHrk
TE gk

�gk
T� �

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Rgk

rkWE μkμ
H
k

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Rμk

0
BB@

1
CCA

¼ vec Wð ÞH Rμk

T⊗Pk rk
TRgkrk

� �� �
vec Wð Þ

¼ vec Wð ÞH Rμk

T⊗ Pkτkð Þ� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Rk

vec Wð Þ ¼ wHRkw

(37)

where Rμk
, Rgk , τk and Rk are defined as

Rμk
≜E μkμ

H
k

� �
, Rgk≜E g�kg

T
k

� �
, τk≜rTkRgkrk and Rk≜Rμk

T⊗Pkτk

Figure 7. Minimum MIMO-relay transmit power Pmin
T versus γth, for R=4, u=2.
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Also, the received noise power at kth destination is given by:

PNk ¼ E gk
TrkWΓεnΓ

H
εnW

Hrk
Tgk

�
h i

þ σ2ςk

¼ trace WHrk
TRgkrkWE ΓεnΓ

H
εn

� �� �
þ σ2ςkPNk

¼ vec Wð ÞH E ΓεnΓ
H
εn

� �� �T
⊗τk

� �
vec Wð Þ þ σ2ςk

¼ wHΝkwþ σ2ςk

(38)

where Νk≜ E ΓεnΓ
H
εn

� �� �T
⊗τk. Also, it can be easily proved that:

E ΓεnΓ
H
εn

� �
¼ ∫

∞

−∞
u� tð ÞuT tð Þ� �

dt
� �

⊗σ2ωIR·R∈ℂRd ·Rd (39)

Finally, the power of the received interference at the kth destination can be computed as

Figure 8. Minimum relay transmit power Pmin
T versus γth, for R=2 and rl,m = 0.75.
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T versus γth, for R=2 and rl,m = 0.75.
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PIk ¼ E gk
TrkWΓ−kΓH

−kW
Hrk

Tgk
�� �

¼ trace WHrk
TE gk

�gk
T

� �
rkWE Γ−kΓH

−k

� �� �

¼ trace WHrk
TRgkrkWE Γ−kΓH

−k

� �� �

¼ vec Wð ÞH E Γ−kΓH
−k

� �� �T⊗τk
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ik

vec Wð Þ

¼ wHIkw

(40)

The instantaneous SINR for kth destination simply becomes the desired signal power of the
desired signal to the power of interference plus noise. So, the optimization problem can now be
written as

Figure 9. Minimum relay transmit power Pmin
T versus γth, for u=2 and rl,m = 0.75.
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Minimize
w

wHTw

Subject to SINRk ¼ wHRkw
wH Νk þ Ikð Þwþ σ2ςk

≥γk
th

k∈ 1; 2;…; df g

(41)

By defining Dk≜Rk−γk
th Νk þ Ikð Þ , X≜wwH, the optimization problem can recast to

Minimize
X

trace TXð Þ
Subject to trace DkXð Þ≥γk

thσ
2
ςk , k∈ 1;…; df g

Rank Xð Þ ¼ 1 ,X≥0

(42)

We solve this optimization problem in a same way as the previous section. The first simulation
scenario was carried out to consider the total MIMO-relay transmit power versus destination
SINR threshold value, for different values of users’ correlation factors. The averaged results are
shown in Figure 7. The network consists of two source-destination pairs and four MIMO-relay
antennas. Figure 7 shows that the total MIMO-relay transmit power in all cases increases by
raising γth. Furthermore, Figure 7 indicates that when the signature sequence correlation rk,l
increases, more total transmit power is needed to ensure SINR constraints at destination
nodes.

When rk,l approaching one, the problem downgrades to the SDMA network and the system
loses the benefits of CDMA technique. Also, increasing the signal dependency by increasing
the correlation factor results in the more infeasibility rate of the constraints. Therefore, when
the correlation factor increases from 0 to 0.75, there is little difference between the curves, but
when rk,l increases beyond 0.75, it can be seen that the difference becomes considerably
larger. As a result, a large power gain can be achieved when moving from rk,l = 1, by a small
reduction of rk,l. To study the effect of the number of relay nodes and the number of source-
destination pairs in terms of quality of matched filter output, we have examined a network
with rk,l = 0.75.

Figures 8 and 9 display the minimum relay transmit power versus γth, for different number of
MIMO-relay antenna and different number of user pairs. As normally expected, more power
saving can be achieved by increasing the number of relays or decreasing the number of users.
Comparing Figures 8 and 9 with Figure 7 reveals that decreasing the correlation factor will be
much more efficient for saving network power than increasing the number of relays.

5. Distributed relay networks

In this section, we considered a distributed relays network, instead of MIMO-relay. The
optimization problem is defined to find the relay beamforming coefficients that minimize the
total relay transmit power by keeping the SINR of all destinations above a certain threshold
value.
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saving can be achieved by increasing the number of relays or decreasing the number of users.
Comparing Figures 8 and 9 with Figure 7 reveals that decreasing the correlation factor will be
much more efficient for saving network power than increasing the number of relays.
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In this section, we considered a distributed relays network, instead of MIMO-relay. The
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Consider a wireless relay network with d pairs of source-destination (peers) communicating
without a direct link through R single relay antennas, as shown in Figure 10. A two-step AF
protocol is used. In the first step, each source user broadcasts its spread symbol toward the
relays. A matched filter is applied in each relay in order to retrieve the source’s signals. In the
second step, the adjusted and spread signals by the relays are transmitted to destinations.
Another matched filter is used at each destination to extract its corresponding symbols. Let sk
stands for the kth source symbol that is assumed to be independent of the other sources, that is,
E sks�l
� � ¼ Pkδkl and uk(t) denotes a signature waveform that is assigned to the kth source. Then,

the received signal at the rth relay is given by:

χr tð Þ ¼ ∑
d

l¼1
f rlslul tð Þ þ ωr tð Þ , r∈ 1;…;Rf g (43)

where ωr(t) is the noise at the rth relay. By denoting the cross correlation between kth user’s
codeword to the lth user’s codeword as rk, l ¼ uk tð Þ∗ul T0−tð Þ t¼T0j , the output signal of the
matched filter at the rth relay can be expressed as

νr ¼ χr tð Þ∗u T0−tð Þjt¼T0

¼ ∑
d

k¼1
f rkskrk þ ςr ¼ νr,k þ νr,−k þ nr , r∈ 1;…;Rf g

(44)

where the following definitions have been used:

Figure 10. Distributed relay network.
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u tð Þ≜ u1 tð Þ,…,ud tð Þ½ �T

nr≜ωr tð Þ∗u T0−tð Þjt¼T0

rk≜uk tð Þ∗u T0−tð Þ t¼T0 ¼ rk,1;…; rk,d
� �T

,
���

νr,k≜f rkskrk , νr,−k≜ ∑
d

l¼1, l≠k
f rlslrl (45)

The output of the matched filter in each relay has been processed by the beamforming weights
Wr ∈ ℂ

d + d, which should be designed appropriately. So, it can be expressed as

γr¼Wrνr∈ℂd · 1, r∈ 1;…;Rf g (46)

Another filter bank is applied to the output of each relay, which generates d filtered data.
These data are processed in the relay in order to achieve the proper symbol vector, which can
be transmitted in each user’s signal subspace. After beamforming by the above linear oper-
ation, the rth relay transmits the following modulated and precoded signal by a CDMA
technique

ψr tð Þ ¼ γr
Tu tð Þ , r∈ 1;…;Rf g (47)

The vector forms of Eq. (47) can be written as

ψ tð Þ ¼ ψ1 tð Þ,ψ2 tð Þ,…,ψR tð Þ� �T

¼ γ1;…;γR

� �Tu tð Þ

¼ W1ν1,…,WRνR½ �Tu tð Þ

¼ WHð ÞTu tð Þ

(48)

The rth entry of ψ(t) is the signal transmitted by rth relay and W ≜ [W1, …, WR] ∈ ℂd + Rd,
H ≜ BD(ν1,…, νR) ∈ ℂRd + R

, where BD(�) denotes the block diagonalization of matrices. Thus,
the total received signal at the kth destination is given by

yk tð Þ ¼ gk
Tψ tð Þ þ ζk tð Þ (49)

where ζk(t) is the noise at the kth receiver and gk ≜ [g1kg2k… gRk]
T is the vector of downlink

channel coefficients. Finally, each destination node convolves the received signals by its code-
word to retrieve its corresponding data. So, the retrieved signal will be
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channel coefficients. Finally, each destination node convolves the received signals by its code-
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ηk ¼ yk tð Þ∗uk T0−tð Þ��t¼T0

¼ gk
T WHð ÞTu tð Þ∗uk T0−tð Þ

���
t¼T0

þ ζk tð Þ∗uk T0−tð Þjt¼T0

¼ gk
THTWTrk þ ςk

¼ gk
THk

TWTrk|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
desired signal

þ gk
TH−k

TWTrk|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
interference part

þ gk
THnk

TWTrk þ ςk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
noise part

(50)

where:

ςk≜ζk tð Þ∗uk T0−tð Þjt¼T0

Hk≜BD ν1,k;…;νR,kð Þ

H−k≜BD ν1,−k;…; νR,−kð Þ

Hςn≜BD ς1, ς2,… , ςRð Þ

H ¼ H−k þHk þHςn

(51)

The three last terms of Eq. (50) are the desired received signal, interference and noise at the kth

destination, respectively.

The object of the network beamforming is to minimize the total relay transmit power subject
to maintaining every destination SINR above a pre-defined threshold value γth (as a QoS
parameter of the network). First, using Eq. (48) the total relay transmit power can be
obtained as

PR ¼ E ψ tð Þ,ψ tð Þh i ¼ E WHð ÞTu T0−tð Þ
� �T

� WHð ÞTu tð Þ
����
t¼T0

" #

¼ E ∫
∞

−∞
u tð ÞTW�H�
� �

HTWTu tð Þ� �
dt

� �

¼ E Tr W�H�HTWT ∫
∞

−∞
u tð Þu tð ÞTdt

� �� �

¼ trace E H�HT� �
WTμW�� �

¼ vec Wð ÞT E H�HT� �T⊗μ
� �

vec W�ð Þ

¼ wTTw�

(52)

where
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T≜E H�HT� �T⊗μ ,

μ≜u tð Þ � u T0−tð ÞT
���
t¼T0

¼ ∫
∞

−∞
u tð ÞuT tð Þdt ¼

r1,1 ⋯ r1,d
⋮ ⋱ ⋮

rd,1 ⋯ rd,d

2
4

3
5 (53)

Note that using Eqs. (48) and (44), E(H*HT) can be obtained as

E H�HT� � ¼ BD E ν1
�ν1

T
� �

,…,E νR
�νR

T
� �� �

,

E νr
�νr

T
� � ¼ E ∑

d

k¼1
f rk

�sk�rk
� þ nr

�
� �

∑
d

k¼1
f rkskrk

T þ nr
T

� �� �

¼ PkE ∑
d

k¼1
f rk

�f rkrk
�rk

T
� �

E nr
�nr

T
� �

,

E nr
�nr

T
� � ¼ E ∫

∞

−∞
ωr

� tð Þu tð Þdt
� �

∫
∞

−∞
ωr

� tð ÞuT tð Þdt
� �� �

¼ E ωr
� tð Þωr tð Þ½ � ∫

∞

−∞
u tð ÞuT tð Þdt

� �
,

E ωr
� tð Þωr tð Þ½ � ¼ σ2ω,

∫
∞

−∞
u tð ÞuT tð Þdt

� �
¼ μ

(54)

Using Eq. (50), the desired signal power at the kth destination can be obtained as

PSk ¼ E rk
TW�H�

k g
�
k gk

T HT
kW

Trk
� �

¼ trace E H�
k g

�
k gk

THT
k

� �
WTrkrk

TW�� �

¼ vec Wð ÞT τkT⊗rkrk
T

� �
vec W�ð Þ ¼ wTRkw�

(55)

where τk ≜ E H�
k g

�
k gk

THT
k

� � ¼ Pk Fk⊙Gkð Þ⊗rkr
T
k , Fk ≜ f�kf

T
k , Gk ≜ g�kg

T
k and fk ≜ [f1k…fRk]

T,
Rk ≜ τk

T ⊗ rkrk
T. Also, the received noise power at kth destination is given by

PNk ¼ E rk
TW�Hnk

�gk
�gk

THnk
TWTrk

� �þ σ2ςk

¼ trace E Hnk
�gk

�gk
THnk

T� �
WTrk rk

TW�� �þ σ2ςk

¼ wTΝkw� þ σ2ςk

(56)

where

Νk≜ϒ k
T⊗rkrk

T ,

ϒ k≜E Hnk
�gk

�gk
THnk

T� � ¼ E Hnk
�GkHnk

T� � ¼ σ2ωGk⊗μ
(57)

The relay noises are assumed to be zero-mean and independent with the equal noise power.
So, we have
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T≜E H�HT� �T⊗μ ,

μ≜u tð Þ � u T0−tð ÞT
���
t¼T0

¼ ∫
∞

−∞
u tð ÞuT tð Þdt ¼

r1,1 ⋯ r1,d
⋮ ⋱ ⋮

rd,1 ⋯ rd,d

2
4

3
5 (53)

Note that using Eqs. (48) and (44), E(H*HT) can be obtained as

E H�HT� � ¼ BD E ν1
�ν1

T
� �

,…,E νR
�νR

T
� �� �

,

E νr
�νr

T
� � ¼ E ∑

d

k¼1
f rk

�sk�rk
� þ nr

�
� �

∑
d

k¼1
f rkskrk

T þ nr
T

� �� �

¼ PkE ∑
d

k¼1
f rk

�f rkrk
�rk

T
� �

E nr
�nr

T
� �

,

E nr
�nr

T
� � ¼ E ∫

∞

−∞
ωr

� tð Þu tð Þdt
� �

∫
∞

−∞
ωr

� tð ÞuT tð Þdt
� �� �

¼ E ωr
� tð Þωr tð Þ½ � ∫

∞

−∞
u tð ÞuT tð Þdt

� �
,

E ωr
� tð Þωr tð Þ½ � ¼ σ2ω,

∫
∞

−∞
u tð ÞuT tð Þdt

� �
¼ μ

(54)

Using Eq. (50), the desired signal power at the kth destination can be obtained as

PSk ¼ E rk
TW�H�

k g
�
k gk

T HT
kW

Trk
� �

¼ trace E H�
k g

�
k gk

THT
k

� �
WTrkrk

TW�� �

¼ vec Wð ÞT τkT⊗rkrk
T

� �
vec W�ð Þ ¼ wTRkw�

(55)

where τk ≜ E H�
k g

�
k gk

THT
k

� � ¼ Pk Fk⊙Gkð Þ⊗rkr
T
k , Fk ≜ f�kf

T
k , Gk ≜ g�kg

T
k and fk ≜ [f1k…fRk]

T,
Rk ≜ τk

T ⊗ rkrk
T. Also, the received noise power at kth destination is given by

PNk ¼ E rk
TW�Hnk

�gk
�gk

THnk
TWTrk

� �þ σ2ςk

¼ trace E Hnk
�gk

�gk
THnk

T� �
WTrk rk

TW�� �þ σ2ςk

¼ wTΝkw� þ σ2ςk

(56)

where

Νk≜ϒ k
T⊗rkrk

T ,

ϒ k≜E Hnk
�gk

�gk
THnk

T� � ¼ E Hnk
�GkHnk

T� � ¼ σ2ωGk⊗μ
(57)

The relay noises are assumed to be zero-mean and independent with the equal noise power.
So, we have
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∫
∞

−∞
E ω tð ÞωH tð Þ� �

dt ¼ σ2ωIR·R,

ω tð Þ≜ ω1 tð Þ, … ,ωR tð Þ½ �T
(58)

Finally, the power of the received interference at the kth destination can be computed as

PIk ¼ E rk
TW�H−k

�gk
�gk

T H−k
TWTrk

� �

¼ trace E H−k
�gk

�gk
T H−k

T� �
WTrkrk

TW�� �

¼ vec Wð ÞT θk
T⊗rkrk

T
� �

vec W�ð Þ ¼ wTIkw�

(59)

where Ik ≜ θk
T ⊗ rkrk

T and

θk≜E H−k
�gk

�gk
T H−k

T� � ¼ ∑
d

l¼1, l≠k
Fl⊙Glð Þ⊗ rl rl

T� �� �
Pl (60)

Figure 11. Minimum relay transmit power Pmin
T versus γth, for R=4, u=2.
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In this case, the instantaneous SINR for kth destination simply becomes the desired signal
power of the desired signal to the power of interference plus noise. So, the optimization
problem can now be written as

Minimize
w

wTTw�

Subject to SINRk ¼ wTRkw�

wT Νk þ Ikð Þw� þ σ2ςk
≥γk

th

k∈ 1; 2;…; df g

(61)

SincewT Νk þ Ikð Þw� þ σ2ςk≥0, the constraints of the optimization problem can be formulated as

wT Rk−γk
th Νk þ Ikð Þ� �

w�≥γk
thσ

2
ςk (62)

In this problem, if all the matrices Rk−γk
th Νk þ Ikð Þ are negative semi-definite for all k, the

problem is convex and can be solved uniquely. However, the feasible set of our optimization
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problem is empty sincewT Rk−γk
th Νk þ Ikð Þ� �

w�≤0 for all K andW. Therefore, Rk−γk
th Νk þ Ikð Þ is

non-negative definite matrix which results in non-convex inequality constraints, hence the
QCQP problem is non-convex and NP-hard in general. However, we will show that a simple
near optimal solution can be found in our problem. First, we replaced our QCQP problem with
a semi-definite programming (SDP) problem. Let us defineDk≜Rk−γk

th Νk þ Ikð Þ , X≜w�wT , the
optimization problem can recast to

Minimize
X

trace TXð Þ

Subject to trace DkXð Þ ≥ γk
thσ

2
ςk , k∈ 1;…; df g

Rank Xð Þ ¼ 1 ,X≥0:

(63)

The problem is non-convex, because the Rank(X) = 1 constraint is non-convex. We relax the
problem by ignoring this non-convex constraint and convert it to a convex SDP problem. The
following semi definite representation (SDR) form is the relaxed version of the problem
(Eq. 63).

Figure 13. Minimum relay transmits power versus D, for R=4, u=4.
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Minimize
X

trace TXð Þ
Subject to trace DkXð Þ ≥ γk

thσ
2
ςk , k∈ 1;…; df g

X≥0

(64)

This optimization problem has been solved in a same way as the previous sections. Figure 11
shows the total relay transmit power versus destination SINR threshold value, for different
values of users’ correlation factors. The network consists of two source-destination pairs and
four relays. Figure 11 shows that the total relay transmit power in all cases increases by
raising γth. Furthermore, Figure 11 indicates that when the signature sequence correlation rk,

l increases, more total transmit power is needed to ensure SINR constraints at destination
nodes. When rk,l approaching one, the problem downgrades to the SDMA network and the
system loses the benefits of CDMA technique. Also, increasing the signal dependency by
increasing the correlation factor, results in the more infeasibility rate of the constraints.

Figure 12 displays the minimum relay transmit power versus γth for different number of relays
and users. As normally expected, more power saving can be achieved by increasing the
number of relays or decreasing the number of users. Comparing Figure 2with Figure 3 reveals
that decreasing the correlation factor will be much more efficient for saving network power
than increasing the number of relays.

Figure 13 shows the minimum relay transmit power versus the network data rate (D) for
distributed CDMA, SDMA and TDMA schemes. In Figure 13, we consider a network with
four relays and four source-destination pairs. For the sake of comparison fairness, we need to
ensure that different schemes are compared with the same average source powers. So, we
assume that the source power of CDMA and SDMA are one fourth of those in TDMA
scheme. For Figure 13, the network data rate has the following relation to the SINR threshold
value, D = w log2(1 + SINRth). Signature sequences of the user are randomly generated for 100
trials and the best code in term of least maximum correlation is chosen for performance
comparison.

Also, it can be seen from Figure 13 that the minimum relay transmitted power increases with
the increase of D. For the SDMA scheme, the problem quickly becomes infeasible due to the
power of interference at destinations. So, for establishing connections between four users,
SDMA-based networks should use at least 40 relays to overcome the TDMA scheme. Since
the QoS constraints are less stringent in CDMA scheme, the network can establish the
communication between source-destination pairs for a larger range of D. Consequently, it
can be observed from Figure 13 that the CDMA-based network can establish the source-
destination connections with a significantly lower relay transmit power as compared to
other schemes.

6. Computational complexity

Since the CDMA relay systems have a heavy computational complexity, the aim of this section
is to analyze the computational form of related algorithms used in practice [20]. Here, the
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computational complexity of a standard SDP is introduced and extended to our case. The
standard SDP problem with equality constraint is given as:

Minimize
X

trace CXð Þ
Subject to trace AiXð Þ ¼ bi i∈ 1;…; df g
X≥0

(65)

where C and Ai are symmetric n + n matrices, and b ∈ ℜd.So for such a problem the
complexity with large-update (or long-step) algorithm [21] based on the primal dual SDP
algorithm is

Ο
ffiffiffi
n

p
lognlog n=εð Þ� �

(66)

where ε denotes the accuracy parameter of the algorithm, while this algorithm with small-
update (or short-step) still has Ο

ffiffiffi
n

p
log n=εð Þð Þ iterations bound [22].

It is shown in Ref. [22] that small update interior point methods (IPMs) are restricted to
unacceptably slow progress, while large-update IPMs are more efficient for faster. Also, large
update IPMs perform much more efficiently in practice, however, they often have somewhat
worse complexity bounds. The complexity order of solving standard SDP problem is polyno-
mial time.

For evaluating the complexity of our SDP problem with inequality constraints, we have to
calculate the dimension parameter n. Therefore, we should determine the dimensions of the
matrices used in the objective and constraints of the problem Eq. (63). In the Kronecker
product of two matrices, if A ∈ ℂn + n and B ∈ ℂm + m, then A⊗ Bwill be a nm + nmmatrix.
According to the new vectors definite in Eq. (65) and sizes ofμ∈ℂd + d and E(H*HT)∈ℂRd + Rd,

dimension of Twill be T∈ℂRd2 ·Rd2 .

Similarly, we can obtain the above conclusion for Dk and X, that is, T, Dk,X∈ℂRd2 ·Rd2 . It is
notable that the constraints of our problem are not the same as the standard SDP form.
Therefore, we have to equalize them so that they alter to a type similar to the standard format.
In order to achieve this goal, first we have to eliminate the inequality constraints of Eq. (64) by
defining yi as:

trace DiXð Þ ¼ γiσ
2
ςk þ yi ,X≥0 , yi≥0 for i ¼ 1,…, d (67)

Next, a new variable bX should be defined in order to standardize the problem:

bX≜
X 0R2d2 · d

0d ·R2d2

y1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ yd

2
4

3
5

2
664

3
775 (68)

As a result, the following standard form will be attained.
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Minimize
X

trace bTbX
� �

Subject to trace bDibX
� �

¼ bi , bX≥0 for i ¼ 1,…, d
(69)

where

bD≜ D 0Rd2 · d
0d ·Rd2 0d· d

� �
, bTi≜

Ti 0Rd2 · d
0d ·Rd2 0d · d

� �
(70)

As a result of the above representation form, n for Eq. (63) would be:

nDistributed _Relay ¼ Rd2 þ d≃Rd2 (71)

Also, we can use the same procedure to calculate n for Eqs. (16) and (42):

nMIMO ¼ R2 þ d≃R2

nMIMO_CDMA ¼ R2d2 þ d≃R2d2
(72)

Therefore, the complexity for problems (16), (42) and (63) for MIMO, MIMO-CDMA, and
distributed-relay networks are as follows:

Ο Rlog R2� �
log R2=ε
� �� �

,

Ο Rdlog R2d2
� �

log R2d2=
ffiffiffi
ε

p� �� �
,

Ο
ffiffiffiffiffiffiffiffi
Rd2

p
log Rd2
� �

log Rd2=ε
� �� � (73)

while a SDMA relay network has the complexity order of Ο
ffiffiffiffi
R

p
log Rð Þlog R=εð Þ� �

.
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Abstract

Consequently, the research and development for the 5G systems have already been
started. This chapter presents an overview of potential system network architecture
and highlights a superallocation technique that could be employed in the 5G cognitive
radio network (CRN). A superallocation scheme is proposed to enhance the sensing
detection performance by rescheduling the sensing and reporting time slots in the 5G
cognitive radio network with a cluster-based cooperative spectrum sensing (CCSS). In
the 4G CCSS scheme, first, all secondary users (SUs) detect the primary user (PU)
signal during a rigid sensing time slot to check the availability of the spectrum band.
Second, during the SU reporting time slot, the sensing results from the SUs are reported
to the corresponding cluster heads (CHs). Finally, during CH reporting time slots, the
CHs forward their hard decision to a fusion center (FC) through the common control
channels for the global decision. However, the reporting time slots for the SUs and CHs
do not contribute to the detection performance. In this chapter, a superallocation
scheme that merges the reporting time slots of SUs and CHs by rescheduling the
reporting time slots as a nonfixed sensing time slot for SUs to detect the PU signal
promptly and more accurately is proposed. In this regard, SUs in each cluster can
obtain a nonfixed sensing time slot depending on their reporting time slot order. The
effectiveness of the proposed chapter that can achieve better detection performance
under –28 to –10 dB environments and thus reduce reporting overhead is shown
through simulations.

Keywords: 5G, software-defined network, cognitive radio, superallocation technique,
cluster head, fusion center

1. Introduction

Around 2020, the promising 5G technology in cognitive radio networks is expected to be
developed 5G networks that will have to support advanced services and multimedia
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applications with a wide variety of requirements, including higher peak and user data rates,
reduced latency, enhanced indoor and outdoor coverage, improved energy efficiency, capacity
and throughput, network densification, autonomous applications and network management,
and Internet of things [1, 2].

The primary technologies and approaches to address the requirements for the 5G systems can
be classified as follows [1, 2]:

• Network densification of existing mobile cellular networks (e.g., peer-to-peer [P2P],
machine-to-machine [M2M], device-to-device [D2D], and heterogeneous networks);

• Full-duplex (FD) communication (e.g., simultaneous transmission and reception);

• Improvement of capacity and throughput (e.g., massive multiple-input multiple-output
[massive MIMO]);

• Improvement of energy efficiency by wireless charging and energy harvesting;

• Advanced services and applications by a cloud-based radio access network (C-RAN) (e.g.,
smart city and service-oriented communication);

• Multiple network operators to share common resources by cooperation and network
virtualization (e.g., network infrastructure, backhaul, licensed spectrum, core and radio
access network, energy/power, etc.).

In this chapter, the main objectives of the beyond 2020 5G cognitive radio network by provid-
ing the technical support that needed to address the very challenging requirements foreseen
for this time frame are proposed. A 5G system (i) has to be significantly more efficient in terms
of energy, cost, and resource utilization (e.g., licensed spectrum utilization) than today's sys-
tem (e.g., 4G); (ii) has to be significantly more versatile to support a significant diversity of
requirements; and (iii) should provide better scalability in terms of the number of connected
devices, densely deployed access points, spectrum usage, energy, and cost. In CRN, both
higher data volume and higher data rates are required to access more spectrum band. As
mentioned before, in 4G, it is clearly expected that more spectrum will be released for licensed
wireless mobile communications. This new spectrum lies in the frequency range between 300
MHz and 6 GHz. However, for the future 5G system, these new spectrum opportunities will
not be sufficient. Moreover, wireless local area networks operating in the unlicensed bands,
such as the ISM and U-NII bands at 2.4 and 5 GHz, as well as the 60 GHz band, can be more
tightly integrated. The present chapter discusses the superallocation and cluster-based cooper-
ative spectrum sensing in the 5G CRN (e.g., highlights the number (i)) to provide more efficient
spectrum utilization.

Cognitive radio (CR) is a new promising technology in the wireless communication era that
has changed the policy of spectrum allocation from a static to a more flexible paradigm [3].
Recently, CRs that enable opportunistic access to underutilized licensed bands have been
proposed as a promising technology for the improvement of spectrum operations. In an
overlay cognitive radio network, an overlay waveform is used to exploit idle spectra and
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overlay cognitive radio network, an overlay waveform is used to exploit idle spectra and
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transmit information data within these unused regions. On the other hand, in an underlay
cognitive radio network an underlay waveform with low transmit power is used to transmit
data without harmful effects on the primary network [4]. In this chapter, we focus on overlay
networks where secondary users find the idle channel with spectrum sensing. A precondi-
tion of secondary access is that there shall be no interference with the primary system [5].
This means spectrum sensing plays a vital role in the 5G CRN.

There are a number of spectrum sensing techniques, including matched filter detection,
cyclostationary detection, and energy detection [6–8]. Matched filter detection is known as
the optimum method for detection of the primary users when the transmitted signal is known.
The main advantage of matched filtering is that it takes a short time to achieve spectrum
sensing below a certain value for the probability of false alarm or the probability of detection
compared to the other methods. However, it requires complete knowledge of the primary
user's signaling features, such as bandwidth, operating frequency, modulation type and order,
pulse shaping, and packet format. Cyclostationary detection is especially appealing because it
is capable of differentiating the primary signal from the interference and noise. Due to noise
rejection property, it works even in a very low signal-to-noise ratio (SNR) region, where the
traditional signal detection method such as the energy detection is used. It offers good perfor-
mance but requires knowledge of the PU cyclic frequencies and also requires a long time to
complete sensing. On the other hand, the energy detection senses spectrum holes by determin-
ing whether the primary signal is absent or present in a given frequency slot. It operates
without the knowledge of the primary signal parameters. Its key parameters, including detec-
tion threshold, number of samples, and estimated noise power, determine the detection per-
formance. Also, it is an attractive and suitable method due to its easy implementation and low
computation complexity. However, it is vulnerable to the uncertainty of noise power and
cannot distinguish between noise and signal. Conversely, its major limitation is that the
received signal strength can be dangerously weakened at a particular geographic location
due to multipath fading and the shadow effect [9].

In order to improve the reliability of spectrum sensing, cooperative spectrum sensing was
proposed [10–13]. Each SU performs local spectrum sensing independently and then forward
the sensing results to the fusion center (FC) through the noise-free reporting channels between
the SUs and the FC. In Zarrin and Lim [13], basic methods including AND, OR, and k-out-of-N
logic are used to take hard decisions for a final decision at the FC. However, the reporting
channels are always subject to fading effects in real environments [14]. When reporting chan-
nels become very noisy, cooperative sensing offers no advantages [15–16]. To overcome this
problem, Sun et al. [17] and Xia et al. [18] proposed a cluster-based cooperative sensing scheme
by dividing all the SUs into a number of clusters and selecting the most favorable SU in each
cluster as a CH to report the sensing results, which can dramatically reduce the performance
deterioration caused by fading of the wireless channels. In these schemes, the SU selected as
the CH has to fuse sensing data from all cluster members (the SUs in this cluster). However, in
these schemes, each SU's reporting time slot and the CH reporting time slot offer no contribu-
tion to spectrum sensing, while SU sensing and reporting times and CH reporting time are in
different time slots.
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Jin et al. [19] proposed a superposition-based cooperative spectrum-sensing scheme that
increases the sensing duration by super positing the SUs’ reporting duration into the sensing
duration. However, this scheme adopts various individual reporting durations. In this case,
synchronization problems occur at the FC. Moreover, the data processing burden at the FC
increases for a large CR network.

In this chapter, we propose a superallocation and cluster-based cooperative spectrum sensing
5G scheme to provide more efficient spectrum sensing. In this scheme, each SU achieves a
nonfixed and longer sensing time for sensing the PU signal bandwidth because both the SUs
and the CHs are superallocated to different reporting time slots. On the other hand, both the
SU and the CH reporting time slots are of fixed length because the synchronization problem
for the FC is relieved. In addition, this proposed scheme decreases the data processing burden
of the FC while all the SUs in the CRN are divided into fewer clusters such that each SU reports
its local decision to the corresponding CH, which then reports to the FC. Simulation results
show that the proposed 5G scheme can improve sensing performance in a low signal-to-noise
ratio environment (i.e., –28 dB) and also greatly reduces reporting overhead in comparison
with cluster-based cooperative spectrum sensing in 4G CRNs.

The remainder of this chapter is organized as follows. Section 2 describes the system model.
Section 3 offers an overview of energy detection. Section 4 describes the cluster-based cooper-
ative spectrum sensing in the 4G CRN. The proposed superallocation and cluster-based coop-
erative spectrum sensing in the 5G CRN is presented in Section 5 that addresses the spectrum
utilization goal of this chapter for the 5G CRN. Some simulations and comparisons are
presented in Section 6. We finally present the main conclusion of this chapter in Section 7.

2. Cognitive radio network system model

In CRN, the detection performance of the PU signal might be degraded when the sensing
decisions are forwarded to an FC through fading channels. Figure 1 shows the CRN deploy-
ment where SUs are grouped into a cluster governed by a CH based on low-energy adaptive
clustering hierarchy-centralized (LEACH-C) protocol [20] and the CHs of the clusters report
their decisions to an FC through a common control channel. Here, HDF will be applied to
obtain a final decision on the presence of the PU activities. The process of the LEACH-C
protocol is made up of several rounds, and each round consists of two phases: a setup phase
when the CHs and clusters are organized and a steady-state phase when the cluster members
begin to send their measurements to CH and CHs send their decision to the FC. In the setup
phase, each SU sends information about its current location and SNR of reporting channel to
the FC. Based on this information, the FC determines CHs among all CRUs, while the
remaining CRUs will act as cluster members. After the CHs are determined, the FC broadcasts
a message that contains not only the CH ID for each SU but also the information of time
synchronization. If an SU's CH ID matches its own ID, the SU is a CH; otherwise, the SU is a
cluster member and goes to sleep. In the steady-state phase, the SUs start to forward the
measurement of the received PU's signal to the CH, and then the CH collects the measure-
ments from the cluster members and makes the cluster decision about the presence of the PU
and sends it to the FC during their allocated reporting time slots. Afterward, the FC combines
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the received clustering decision to make the final decision, then broadcasts it back to all CHs
and the CHs send it to their cluster members.

Spectrum sensing can be formulated as a binary hypothesis-testing problem as follows:

H1 : PU signal is present,
H0 : PU signal is absent:

�
(1)

Each SU implements a spectrum sensing process that is called local spectrum sensing to detect
the PU's signal. According to the status of the PU, the received signal of an SU can be
formulated as follows:

yjðtÞ ¼
ηjðtÞ, H0

hjðtÞxðtÞ þ ηjðtÞ, H1

�
(2)

where yjðtÞ represents the received signal at the jth SU, hjðtÞ denotes the gain of the channel

between the jth SU and the PU, xðtÞwith variance of σ2x represents the signal transmitted by the

Figure 1. Cluster-based cooperative spectrum sensing in the 5G cognitive radio network.

Superallocation and Cluster‐Based Cooperative Spectrum Sensing in 5G Cognitive Radio Network
http://dx.doi.org/10.5772/66047

197



PU, and ηjðtÞ is a circularly symmetric complex Gaussian (CSCG) with variance of σ2η, j at the jth

SU.

In addition, we make the following assumptions [21]:

• xðtÞ is a binary phase shift keying (BPSK) modulated signal.

• xðtÞ and ηjðtÞ are mutually independent random variables.

• The SU has complete knowledge of noise and signal power.

Cluster-based cooperative spectrum sensing in a 5G CRN is shown in Figure 1, which contains
N SUs, K clusters, and one FC. In this network, all the SUs are separated into K clusters, in
which each cluster contains Nc SUs; and the cluster head CHk, k = 1,2, …, K, is selected to
process the collected sensing results from all SUs in the same cluster.

For sensing duration, first, each SU calculates the energy of its received signal in the frequency
band of interest. Local decisions are then transmitted to the corresponding CH through a
control channel, which will combine local decisions to make a cluster decision. Second, all
cluster decisions will be forwarded to the FC through a control channel. At the FC, all cluster
decisions from the CHs will be combined to make a global decision about the presence or the
absence of the PU signal.

3. Overview of energy detection

The energy detection method has been demonstrated to be simple, quick, and able to detect
primary signals, even if prior knowledge of the signal is unknown [22–25]. A block diagram of
the energy detection method in the time domain is shown in Figure 2. To measure the energy
of the signal in the frequency band of interest, a band-pass filter is first applied to the received
signal, which is then converted into discrete samples with an analog-to-digital (A/D) converter.

An estimation of the received signal power is given by each SU with the following equation:

Ej ¼ 1
L
∑
L

t¼1
jyjðtÞj2 (3)

where yjðtÞ is the tth sample of a received signal at the jth SU and L is the total number of

samples. L ¼ TsFs, where Ts and Fs are the sensing time and signal bandwidth in hertz,
respectively. According to the central limit theorem, for a large number of samples, e.g.,
L > 250, the probability distribution function (PDF) of Ej, which is a chi-square distribution

Figure 2. Block diagram of the energy detection scheme.
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under both hypothesis H0 and hypothesis H1, can be well approximated as a Gaussian random
variable such that

Ej ¼
Nðμ0, j, σ20, jÞ
Nðμ1, j, σ21, jÞ

(
(4)

whereNðμ, σ2Þ denotes a Gaussian distribution with mean of μ and variance of σ2, μ0, j and σ20, j
represent the mean and variance, respectively, for hypothesisH0, and μ1, j and σ21, j represent the

mean and variance for hypothesis H1.

Lemma 1. When the primary signal is a BPSK-modulated signal and noise is a CSCG, the
decision rule in Eq. (4) is modified as follows:

Ej ¼
N σ2η,

1
L
σ4η

� �

N σ2ηð1þ γÞ, 1
L
ð1þ 2γÞσ4η

� �

8>><
>>:

(5)

where γ ¼ σ2x
σ2η
that is the SNR of the primary signal at the jth SU. The SNR is a constant in the

nonfading additive white Gaussian noise environment [25]. Here, we omit the subscript of j in
σ2η, j, which denotes that index of SU, to simplify the notation.

Proof. For hypothesis H1, the mean μ1, j is expressed as

μ1, j ¼ σ2x þ σ2η ¼ σ2η 1þ σ2x
σ2η

 !

¼ ð1þ γÞσ2η
(6)

From Boyed and Vandenberghe [26], variance σ21, j is

σ21, j ¼
1
L
½EjxðtÞj4 þ EjηðtÞj4−ðσ2x−σ2ηÞ2� (7)

For a complex M-array quadrature amplitude modulation signal [27], EjxðtÞj4 is given as

EjxðtÞj4 ¼ 3−
2
5
ð4M−1Þ
ðM−1Þ

� �
σ4x (8)

For the BPSK signal [27], then we set M ¼ 4. By substituting the value M ¼ 4 into Eq. (8), we
obtain

EjxðtÞj4 ¼ σ4x (9)

For the CSCG noise signal [26], EjηðtÞj4 is given as
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EjηðtÞj4 ¼ 2σ4η (10)

Substituting the values EjxðtÞj4 and EjηðtÞj4 into Eq. (7), we obtain

σ21, j ¼
1
L
½σ4x þ 2σ4η−ðσ4x−2σ2xσ2η þ σ4ηÞ�

¼ 1
L
½σ4η þ 2σ2xσ

2
η� ¼

1
L

1þ 2
σ2x
σ2η

" #
σ4η

¼ 1
L
½1þ 2γ�σ4η:

(11)

For hypothesis H0, substituting the value σ2x ¼ 0 into Eq. (6), mean μ0, j is expressed as

μ0, j ¼ σ2η (12)

Again, substituting the value σ2x ¼ 0 into Eq. (7), variance σ20, j is expressed as

σ20, j ¼
1
L
½EjηðtÞj4−ðσ2ηÞ2�

¼ 1
L
½2σ4η−σ4η�

¼ 1
L
σ4η

(13)

Then, we can have distributions of a decision statistic under null and alternative hypotheses as
in Eq. (5).

By the definition of a false alarm probability in a hypothesis testing with a decision statistic of
Ej depending on Ts, and a decision threshold of λj, the probability of false alarm for the jth SU
is given by

Pj
f ðTs, λjÞ ¼ Pr½Ej≥λjjH0�

¼ Q
λj−μ0, jffiffiffiffiffiffiffi

σ20, j
q

0
B@

1
CA (14)

where QðxÞ is the Gaussian tail function given by QðxÞ ¼ 1ffiffiffiffi
2π

p ∫ exp −
t2

2

� �
dt. Form Lemma 1,

the probability of false alarm under a CSCG noise is given by

Pj
f ðTs, λjÞ ¼ Q

λj

σ2η
−1

 ! ffiffiffiffiffiffiffiffiffi
TsFs

p !
(15)

By the definition of a probability of detection in hypothesis testing and Lemma 1, the detection
probability for the BPSK-modulated primary signal under a CSCG noise for the jth SU is given by
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Pj
dðTs, λjÞ ¼ Pr½Ej ≥ λjjH1�

¼ Q
λj−μ1, jffiffiffiffiffiffiffi

σ21, j
q

0
B@

1
CA

¼ Q
λj

σ2η
−γ−1

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TsFs

ð1þ 2γÞ

s !
(16)

The last equality is obtained by using Eq. (5).

With Eqs. (15) and (16), the probabilities of false alarm and the detection of the PU signal can
be calculated when the duration of sensing time Ts is given.

4. Cluster-based cooperative spectrum sensing in the 4G CRN

A general frame structure for the cluster-based cooperative spectrum sensing in the 4G CRN is
shown in Figure 3. With this frame structure, all local decisions are forwarded to the CHs in
the scheduled SU reporting time slots and are then forwarded to the FC in the scheduled CH
reporting time slots.

Lemma 2. In the cluster-based cooperative spectrum sensing in the 4G CRN, the N SUs in the
network adopted fixed sensing time slot Tcon

s are given by

Tcon
s ¼ 1

Fsγ2

�
Q−1ðPj

f Þ−Q−1ðPj
dÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2γÞ

q �2
(17)

to sense the PU's signal with false alarm and detection probabilities of Pj
f and Pj

d, respectively.

Here, the superscript “con” means the conventional or 4G CRN.

Figure 3. A cluster-based cooperative spectrum sensing in a 4G CRN [18].
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Proof: We focus on the BPSK signal and CSCG noise. The probability of detection can be
obtained with Eq. (18) by using Eq. (17):

λj

σ2η
−γ−1

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TsFs

ð1þ 2γÞ

s
¼ Q−1ðPj

dÞ (18)

From Eq. (15), the probability of false alarm can be obtained by

λj

σ2η
−1

 ! ffiffiffiffiffiffiffiffiffi
TsFs

p
¼ Q−1ðPj

f Þ : (19)

By substituting Eq. (19) into Eq. (18) and rewriting this equation, we have

Q−1ðPj
f Þffiffiffiffiffiffiffiffiffi

TsFs
p −γ

 !
ffiffiffiffiffiffiffiffiffi
TsFs

p ¼ Q−1ðPj
dÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 2γÞp

Q−1ðPj
f Þ−γ

ffiffiffiffiffiffiffiffiffi
TsFs

p ¼ Q−1ðPj
dÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 2γÞp
ffiffiffiffiffiffiffiffiffi
TsFs

p ¼ 1
γ

�
Q−1ðPj

f Þ−Q−1ðPj
dÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2γÞ

q �

Ts ¼
1

Fsγ2

�
Q−1ðPj

f Þ−Q−1ðPj
dÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2γÞ

q �2

(20)

Defining the sensing time with the last equation in Eq. (20), i.e., Tcon
s ¼ Ts, we can meet the

requirement on false alarm and detection probabilities.

Because all SUs in k clusters have the same fixed sensing time slot, Tcon
s , the sensing perfor-

mances, i.e., false alarm and detection probabilities, depend on the SNR of an SU. Therefore,
sensing performance is not improved with a fixed sensing time slot. In addition, the reporting
time slots for the SU and the CH are not utilized by the 4G CRN.

5. Proposed superallocation and cluster-based cooperative spectrum
sensing in the 5G CRN

In the 4G CRN approach, sensing time slots, reporting time slots of SUs, and reporting time
slots of CHs are strictly divided as shown in Figure 3. Due to this rigid structure in the 4G
CRN approach, the reporting time slots of other SUs and CHs are not used for spectrum
sensing. However, these reporting time slots can be used in sensing the spectrum by other
SUs by scheduling sensing and reporting time slots effectively. To this end, a superallocation
and cluster-based cooperative spectrum sensing in the 5G CRN is proposed by increasing the
sensing time slot. In the proposed 5G CRN, each SU can obtain longer sensing time slot
because the other SU reporting times and the CH reporting times are merged to the SU sensing
time. Therefore, the sensing time slots for SUs in the proposed 5G CRN can be longer than
those in the 4G CRN.
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CRN approach, the reporting time slots of other SUs and CHs are not used for spectrum
sensing. However, these reporting time slots can be used in sensing the spectrum by other
SUs by scheduling sensing and reporting time slots effectively. To this end, a superallocation
and cluster-based cooperative spectrum sensing in the 5G CRN is proposed by increasing the
sensing time slot. In the proposed 5G CRN, each SU can obtain longer sensing time slot
because the other SU reporting times and the CH reporting times are merged to the SU sensing
time. Therefore, the sensing time slots for SUs in the proposed 5G CRN can be longer than
those in the 4G CRN.
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Figure 4 shows the proposed scheduling method of sensing and reporting time slots in the
superallocation for cluster-based cooperative spectrum sensing in the 5G CRN. In the figure,
SUnk means the kth SU in the nth cluster in the network. To explain the duration of sensing time
slot for SUnk, we can define the durations of the sensing and reporting time for SUnk with Tnk

s

and Tnk
r , respectively.

In this proposed scheme, the sensing time slot for the first SU in the first cluster, i.e., SU11, is
equal to the sensing time slot in the 4G CRN, i.e., T11

s ¼ Tcon
s ¼ Ts. Except for SU11, other SUs

can obtain longer sensing time slots by scheduling SU reporting slots followed by the reporting
slot for the CH of that cluster. With such a scheduling method, SUs can sense the spectrum
during the reporting time slots of other SUs and CHs. For example, the sensing time slot of
SU12, T12

s is equal to the total duration of sensing time slot and the reporting time slot of the

SU11, i.e., T12
s ¼ Ts þ T11

r . Similarly, T13
s becomes the sum of the sensing duration of SU12 and

the reporting duration of SU12, i.e., T13
s ¼ T12

s þ T12
r ¼ Ts þ ∑

2

i¼1
T1i
r . Obviously, the relationship

of the sensing time slot T1ðjþ1Þ
s of the SU1 (j+1) with the sensing time slot and the reporting time

slot of the previous SUs can be given by

Figure 4. A superallocation and cluster-based cooperative spectrum sensing in the 5G CRN.
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T1ðjþ1Þ
s ¼ T1j

s þ T1j
r ¼ Ts þ ∑

j

i¼1
T1i
r (21)

for j ¼ 1, 2, 3, … Nc.

When Tprop
r ¼ T1j

r for j ¼ 1, 2, 3, …, Nc, the sensing time slot of the jth SU in the first cluster is
written as

T1j
s ¼ Ts þ ðj−1ÞTprop

r (22)

Therefore, T1j
s in the first cluster is greater than or equal to Tcon

s .

For SU in the other clusters, the reporting time slots of SUs in the previous clusters and that of
the previous CH can be used for a sensing time slot of SUs in the current cluster. Thus, Tnj

s is
given by

Tnj
s ¼ ∑

n−1

i¼1
TiNc
s þ ∑

k

i¼1
Tni
r

¼ ðn−1ÞðTs þNcTprop
r þ Tprop

r,CHÞ þ Ts þ ðj−1ÞTprop
r

(23)

Here, Tprop
r,CH is the duration of the reporting time slot of a CH. Therefore, we can obtain longer

sensing time as the index of CH increases.

5.1. Local sensing

As shown in Eq. (16), the detection probability Pj
d is a function of parameters λj, γ, and TsFs.

For fixed Fs, γ and λj, P
j
d is a function of Ts, which can be represented as Pj

dðTsÞ.
Lemma 3. In the proposed cluster-based cooperative spectrum sensing in the 5G CRN, the N
SUs in the network adopts nonfixed sensing time slot Tnk

s (≥Tcon
s ) in Eq. (23) to sense the PU's

signal. Therefore, the sensing performance in the 5G CRN is improved over the 4G CRN.

Proof: Let Pj
dðconÞ and P1j

dðpropÞ denote the probability of detection for the conventional and

proposed schemes, respectively. When SU belongs to the first cluster, the CH reporting time
slot is not included in its sensing time. Here, the subscript “prop” means the proposed scheme
in the 5G CRN.

Substituting the values of Ts and T1j
s into Eq. (16), we have

Pj
dðconÞðTs, λjÞ ¼ Q

λj

σ2η
−γ−1

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TsFs

ð1þ 2γÞ

s !
(24)

P1j
dðpropÞðT1j

s , λjÞ ¼ Q
λj

σ2η
−γ−1

 !
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Ts þ ðj−1Þ ·Tprop

r

�
· Fs

ð1þ 2γÞ

vuut
0
B@

1
CA (25)
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vuut
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B@

1
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When the sensing time T1j
s becomes longer, then obviously the detection probability Pj

dðpropÞ
increases. Hence, we show that

P1j
dðpropÞ≥P

j
dðconÞ (26)

Because
�
Ts þ ðj−1Þ ·Tprop

r

�
≥Tcon

s for j ¼ 1, 2, 3, …, Nc. When j ¼ 1, then we obtain P1j
dðpropÞ

¼ Pj
dðconÞ.

If SU is not included in the first cluster, Pnj
dðpropÞ denotes the probability of detection for the

proposed scheme. In this case, the sensing time slot includes the CH reporting time slots.
Substituting the value of Tnj

s into Eq. (16), we obtain

Pnj
dðpropÞðTnj

s , λjÞ ¼ Q
λj

σ2η
−γ−1

 !
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ðn−1ÞðTs þNcTprop

r þ Tprop
r,CHÞ þ Ts þ ðk−1ÞTprop

r

�
·Fs

ð1þ 2γÞ

vuut
0
B@

1
CA

(27)

Therefore, Pnj
dðpropÞðTnj

s , λjÞ > Pðn−1ÞNcþj
dðconÞ ðTs, λjÞ.

Each SU makes a local hard decision dhdj as follows.

dhdnj ¼ 1, if Pnj
dðpropÞ > Pnj

f ðpropÞ
0, Otherwise

(
(28)

5.2. Cluster decision

At the nth CH, all local decisions dhdnj received from the SUs will be combined to make a cluster

decision Qprop
d,n as follows:

Qprop
d,n ¼ 1, ∑

Nc

j¼1
dhdnj > ξ

0, Otherwise

8<
: (29)

where ξ is the threshold for the cluster decision.

5.3. Global decision

At the FC, all cluster decisions ðQprop
d,n Þ received will be combined to make a global decision ðGÞ

about the presence or the absence of the PU signal by using a τ-out-of-K rule as follows:

G ¼ 1, if ∑
K

n¼1
Qprop

d,n ≥τ : H1

0, Otherwise : H0

8<
: (30)
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where τ is the threshold for the global decision.

6. Simulation and result analysis

To evaluate the performance of the proposed cluster-based cooperative spectrum sensing in
the 5G CRN, Monte Carlo simulations were carried out under following conditions:

The number of SUs is 12.

The number of clusters is 3.

The number of SUs in each cluster is 4.

The durations of sensing, SU reporting, and CH reporting time slots are 1 ms.

Average SNR of each SU in a cluster is –17 dB.

The PU signal is a BPSK signal.

The noise in SUs is CSCG.

The number of samples is 300.

Figure 5. ROC curves of the proposed 5G scheme without cluster reporting time where C1#, C2#, and C3# mean the first,
second, and third clusters, respectively.
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First, the sensing performance of the proposed 5G and 4G cluster-based schemes, in terms of
receiver operating characteristic (ROC), was evaluated under a CSCG channel. In this simula-
tion, each SU conducts local sensing using equal gain combining (EGC).

Figures 5 and 6 show ROC curves for the proposed 5G cluster-based schemes without and
with cluster reporting time (RT), respectively. The proposed 5G scheme outperforms in the
detection of the PU compared with the 4G scheme because the proposed superallocation
technique can have longer sensing time than the 4G one. Test statistics (Eq. (25)) was consid-
ered for the proposed 5G scheme without reporting time for the cluster decision. In addition,
test statistics (Eq. (27)) was considered for the proposed 5G scheme with reporting time for the
cluster decision. When the index of the cluster increases from one to three, the detection
probability increases (Figures 7 and 8).

From the detection efficiency of cooperative spectrum sensing, the probability of detection is
0.8 and the probability of false alarm is 0.2. However, in the worst environment, we need the
probability of detection to be more than 0.9 and the probability of false alarm to be less than
0.1. In the 4G scheme, we can achieve these sensing performances with a longer sensing time
slot but the throughput of the 4G cognitive radio network decreases. In the proposed 5G CRN,
we can easily achieve more than 0.9 and less than 0.1 for the probabilities of detection and false
alarm, respectively, because SU reporting time and CH reporting time merge to sense the PU
signal without decreasing system throughput.

Figure 6. ROC curves of the proposed 5G scheme with cluster reporting time.
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Figure 7. ROC curves of the proposed 5G scheme without cluster reporting time and the 4G scheme.

Figure 8. ROC curves of the proposed 5G scheme with cluster reporting time and the 4G scheme.
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Figure 7. ROC curves of the proposed 5G scheme without cluster reporting time and the 4G scheme.

Figure 8. ROC curves of the proposed 5G scheme with cluster reporting time and the 4G scheme.
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Second, the simulation was carried out under conditions whereby the SNRs of the PU's signal
at the nodes are from –28 to –10 dB. The ROC curves of the proposed 5G scheme without

Figure 9. ROC curves of the proposed 5G scheme without cluster reporting time and the 4G scheme where SNRs of the
PU's signal at the nodes are from –28 to –10 dB.

Figure 10. ROC curves of the proposed 5G scheme with cluster reporting time and the 4G scheme where SNRs of the PU's
signal at the nodes are from –28 dB to –10 dB.
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cluster reporting time and the 4G CRN are illustrated in Figure 9. For our proposed 5G CRN
scheme, it can be seen that the probability of detection increases as sensing time, Tnj

s , increases.

The ROC curves of the proposed 5G CRN scheme with cluster reporting time versus the 4G
scheme are shown in Figure 10. Figures 9 and 10 show that the probability of detection in the
proposed 5G scheme with cluster reporting time is better than the proposed 5G scheme
without cluster reporting time.

In Tables 1 and 2, the exact values of detection probabilities in the proposed 5G and 4G CRNs
are shown. The gain of sensing performance can be verified with the results. For example, the
proposed method with a cluster reporting time can detect the spectrum with nearly 100%
detection probability whereas the 4G one detects the PU's signal with 78% of detection prob-
ability in –10 dB SNR.

7. Conclusion

In this chapter, we propose the superallocation and cluster-based cooperative spectrum sens-
ing in a 5G CRN. The proposed 5G scheme can achieve better sensing performance in compar-
ison with the cluster-based cooperative spectrum sensing 4G cognitive radio network. By
rescheduling the reporting time slots of SUs and CHs, longer sensing durations are guaranteed
for SUs depending on the order of reporting times of SU and CH. With simulations, the gain of
performance is verified (Tables 1 and 2).

SNR –28 –26 –24 –22 –20 –18 –16 –14 –12 –10

4G scheme 0.516 0.5042 0.5119 0.5248 0.5295 0.5487 0.5933 0.6286 0.6994 0.7825

Proposed 5G
Scheme

Cluster 1 0.5073 0.5122 0.5209 0.5421 0.5473 0.5775 0.6290 0.6944 0.7810 0.8776

Cluster 2 0.5154 0.5208 0.5378 0.5533 0.5860 0.6408 0.7055 0.7973 0.9006 0.9747

Cluster 3 0.5149 0.5232 0.5453 0.5737 0.6061 0.6727 0.7507 0.8605 0.9528 0.9949

Global 0.5160 0.5324 0.5682 0.5968 0.6264 0.6957 0.7733 0.8896 0.9734 0.9965

Table 1. Probability of detection (PD) without cluster reporting time under SNR versus number of clusters.

SNR –28 –26 –24 –22 –20 –18 –16 –14 –12 –10

4G scheme 0.516 0.5042 0.5119 0.5248 0.5295 0.5487 0.5933 0.6286 0.6994 0.7825

Proposed 5G scheme Cluster 1 0.5112 0.5170 0.5207 0.5316 0.5517 0.5743 0.6342 0.6993 0.7883 0.8835

Cluster 2 0.5135 0.5236 0.5407 0.5628 0.5882 0.6445 0.7153 0.8217 0.9206 0.9844

Cluster 3 0.5205 0.5346 0.5474 0.5684 0.6191 0.6845 0.7728 0.8849 0.9625 0.9972

Global 0.5261 0.5460 0.5495 0.5790 0.6327 0.6963 0.7949 0.9093 0.9722 0.9995

Table 2. Probability of detection (PD) with cluster reporting time under SNR versus number of clusters.
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Abstract

Control signalling information within wireless communication systems facilitates efficient
management of limited wireless resources, plays a key role in improving system perfor-
mance of 5G systems. This chapter focuses detection of one particular form of control
information, namely, selective control information (SCI). Maximum-likelihood (ML) is
one of the conventional SCI detection techniques. Unfortunately, it requires channel esti-
mation, which introduces some implementation constraints and practical challenges. This
chapter uses generalized frequency division multiplexing (GFDM) to evaluate and dem-
onstrate the detection performance of a new form of SCI detection that uses a time-domain
correlation (TDC) technique. Unlike the ML scheme, the TDC technique is a form of blind
detection that has the capability to improve detection performance with no need for
channel estimation. In comparison with the ML based receiver, results show that the TDC
technique achieves improved detection performance. In addition, the detection perfor-
mance of the TDC technique is improved with GFDM receivers that use the minimum
mean square error (MMSE) scheme compared with the zero-forcing (ZF) technique. It is
also shown that the use of a raised cosine (RC) shaped GFDM transmit filter improves
detection performance comparison with filters that employ root raised cosine (RRC) pulse
shape.

Keywords: 5G frame, blind detection, generalised frequency division multiplexing
(GFDM), minimum mean square error (MMSE), physical control channel

1. Introduction

New physical layer architecture developments are under consideration for future 5G wireless
systems to meet growing demands for even higher data rates and increasing data traffic. In
comparison with the classical orthogonal frequency division multiplexing (OFDM) used in 4G,
5G physical layer architectures adopt a new type of frequency division multiplexing based on
filtered OFDM in an attempt to improve spectral efficiency, increase data throughput and
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reduce latency [1]. In addition, 5G systems are designed to enable flexible resource allocation
and configurable system architecture based on various communication scenarios, varied traffic
and user needs [2]. To meet these challenges, various forms of system-critical control informa-
tion are required to be transmitted through the use of both shared and dedicated physical
control channels to facilitate efficient management of 5G system resources and to achieve
optimum system performance. This chapter discusses and describes the use of a time-domain
blind detection technique that uses time-domain correlation (TDC) between the transmitted
control information and the received control information as a means of detection.

Control signals are important in wireless systems as they carry essential signalling information
between the user equipment (UE) and the base station to facilitate successful detection of
payload user data. Hence, successful detection of these control signals is a key to achieving
the required system performance in 5G systems. In general, 5G control signals carry both user-
specific and network-level information such as scheduling grant, user allocation, adaptive
modulation and coding schemes (AMC), 5G frame configuration and power control. In practi-
cal wireless systems, an erroneous detection of control signals triggers re-transmission and
causes transmission delays, which will ultimately degrade system performance. As a conse-
quence, control signals are normally encoded using a large number of subcarriers to ensure
robust and error-free detection [3].

The focus of this chapter is to address detection challenges of a specific category of wireless
control signals called selective control information (SCI). An example of SCI encountered in 4G
and implemented in 5G is the control format indicator (CFI) carried by the physical control
format indicator channel (PCFICH). The CFI is used to inform the receiver about the signal
format of the physical downlink control channel (PDCCH) and is a form of SCI because the
actual CFI value ranges between 1 and 4 [3]. Hence, the encoded CFI information can be
chosen (i.e. selected) from a small number of candidate CFI information values, which are
known at both transmitting and receiving ends of the system [4]. The PDCCH carries major
downlink control information (DCI) that represents various types of network configuration
and system variables including power control, resource allocations and scheduling grants. A
more detailed discussion on CFI can be found in [3]. Another example of SCI is the control
information used to encode the type of modulation scheme of payload user data. In summary,
SCI is a type of control information that is selective from a deterministic set of candidate
information sequences known at both the transmitter and the receiver [5].

In the literature, the maximum likelihood (ML) detection scheme is considered as the standard
detection technique for decoding SCI because it is more computationally efficient solution, in
terms of hardware implementation, compared with methods such as the K-best list sphere
detector (K-LSD) and successive interference cancellation (SIC) [6]. An example of a practical
hardware implementation of the ML estimation method for the decoding of the PCFICH is
described in [7]. Unfortunately, the ML detection scheme imposes a practical constraint in that
it requires channel estimation at the receiver. In theory, the detection performance of the ML
estimation technique can be enhanced through the use of an advanced channel estimation
technique such as linear minimum mean square error (LMMSE). However, the need for
channel estimation requires additional transmission overhead in the form of pilot signals to
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facilitate pilot-assisted channel estimation and also increases computational complexity at the
receiver. Therefore, the need for channel estimation makes the ML scheme an unattractive and
unsuitable solution in practical systems and in the occurrence of severe fading channel [6].

Unlike the ML detection method, the TDC solution discussed in this chapter is a form of blind
detection technique in that it requires neither channel estimation nor channel equalisation at
the receiver. The TDC technique is designed to address the practical challenges of the ML
estimation method and to improve detection performance of essential control signalling infor-
mation adopted in 5G systems. To demonstrate the potential use of the TDC detection tech-
nique in 5G systems and its advantage over the ML detection method, this chapter
investigates, through MATLAB simulations, the detection performance of the TDC detection
technique using the well-known generalised frequency division multiplexing (GFDM) archi-
tecture being considered for 5G. In this study, the detection performance is evaluated using the
block error rate (BLER) metric. The effects of GFDM demodulation techniques and transmit
filter pulse shapes are studied and investigated to further understand and demonstrate the
potential use of the TDC technique in a practical GFDM system. In comparison with the
classical OFDM technique, GFDM performs subcarrier-level filtering to minimise or manage
out-of-band (OOB) radiation and improve spectral efficiency in 5G. The roll-off factor α of the
transmit filter plays a key role towards controlling the OOB. Therefore, the pulse shape and the
roll-off factor of the transmit filter will impact detection performance. Using filters with root-
raised-cosine (RRC) and raised-cosine (RC) responses, one aspect of this chapter will investi-
gate the dependency between shape of the transmit filter and detection performance of the
TDC technique. Another aspect of this chapter will also investigate the influence of the roll-off
factor of each chosen filter type on the detection performance.

In practice, GFDM demodulation can be implemented using techniques such as zero-forcing
(ZF), minimum mean square error (MMSE) and matched filtering (MF) [2]. In this chapter,
only the ZF and MMSE are considered because of the self interference caused by the use of the
MF technique. The impact of these two GFDM demodulation methods on the detection per-
formance of the TDC technique is studied so as to further understand and highlight the
limitations and/or robustness of the TDC detection technique for 5G systems.

2. SCI Transmission and Reception

This section briefly describes the basic transmitter/receiver architecture used to encode and
decode the SCI.

2.1. SCI Transmission

A detailed description of the GFDM transmitter is presented in [2]. Figure 1 describes a block
diagram representation of the considered GFDM transmitter architecture.

Let d be the transmitted source data of length N, which may consist of control signalling
formation, payload user data and some preambles. In GFDM, modulated subcarrier symbols
in d are formatted into a 2D time-frequency GFDM block of dimension K byMwhere K andM,
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respectively, represent the number of subcarriers (in the frequency-domain) and the number of
subsymbols (in the time-domain) [8]. For 0 ≤ k ≤ K − 1 and 0 ≤ m ≤ M − 1, where k and m are
arbitrary indices of the subcarrier and subsymbol, respectively, each subcarrier symbol in d can
be denoted by dk;m, and d can be represented as

d ¼ ½d0;0 d1;0 … dK−1;0 d0;1 … dK−1;1 dk;m … dK−1;M−1�: (1)

2.1.1. Subcarrier mapping

Figure 2 shows a diagrammatic representation of the considered subcarrier mapping scheme.
For simplicity, in this chapter, it is assumed that d consists of (1) a pilot sequence, dp of size Np;
(2) an SCI sequence vector, dc of size Nc; and (3) other forms of control/payload information, dr
of size Nd. Thus, N ¼ Np þNc þNd.

Figure 1. GFDM transmitter.

Figure 2. Subcarrier mapping.
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2.1.1.1. Subcarrier mapping: pilots

In an attempt to mimic practical 5G frame structures, some preambles in the form of reference
signals or pilots are embedded with the transmitted signal. In practical systems, reference
signals are often adopted to facilitate channel estimation and synchronisation so as to improve
data recovery performance of payload user data. Within the considered subcarrier mapping,
some pilots are embedded within d at regular intervals. As an example, a pilot spacing of six is
considered in this study because currently, there is no standard specification for pilot spacing
in 5G.

2.1.1.2. Subcarrier mapping: SCI

After pilot subcarrier allocation, SCI subcarriers are allocated as indicated in Figure 2. In the
considered mapping, it is assumed that the size of the SCI sequence dc is a multiple of 4 so that
elements of dc are mapped in groups of 4 in a similar manner to a form of resource element
mapping in 4G. The four subcarriers in each group are mapped to un-allocated subcarriers in-
between two consecutive pilot positions.

Let C represent a set of candidate information, which consists of U different SCI sequences,
that is,

C ¼ {C1; C2; Cu … CU} (2)

where each Cu is of the same size as dc and each element of Cu is a complex-valued QPSK-
modulated symbol of unity magnitude. For 0 ≤ c ≤ Nc − 1, where c is an arbitrary index, each
element of Cu is denoted by Cu½c�. The complex conjugate Cu½c�� is mathematically equivalent
to 1=Cu½c�.
As an example, assume that the encoded SCI is used to carry information about the modula-
tion scheme of payload user data. In the case of 4G and also 5G, there is a finite number of
known modulation types and each type can be encoded into an SCI sequence Cu where
1 ≤ u ≤ U. Table 1 shows an example of the mapping of Cu to a modulation type. Thus, the
transmitted SCI sequence is uniquely identified by the index u given that C is deterministic and
known. Hence, a block-level detection is performed at the receiver in order to determine an
estimate of u, from which the type of modulation or any other form of control information is
automatically determined [9]. It is important to note that a block-level detection procedure

SCI index, u/ u SCI, dc Modulation

1 C1 4−QAM

2 C2 16−QAM

3 C3 64−QAM

4 C4 256−QAM

Table 1. An example of SCI encoding scheme.
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used for the recovery of control information is entirely different from the usual subcarrier-level
or one-tap equalisation associated with the recovery of payload user data [5].

Given that the transmitted SCI sequence dc is chosen from a finite set C, let u define the index of
the selected and transmitted SCI sequence vector, such that:

dc ¼ Cu where Cu∈C: (3)

After SCI mapping, all other remaining un-allocated subcarriers are assigned to other forms of
data dr. It is important to note that the main focus of this chapter is on the detection of the SCI
index u that corresponds to dc.

2.1.2. Transmitted signal

Let x be the time-domain GFDM signal of length N. For 0 ≤ n ≤ N − 1, each element x½n� is
derived from Ref. [2]

x½n� ¼ ∑
K−1

k¼0
∑
M−1

m¼0
gk;m½n� dk;m (4)

where gk;m½n� represents a time and frequency shifted form of a transmit filter g½n�. Each gk;m½n�
is given as [2]

gk;m½n� ¼ g½ðn−mKÞmod N� exp −j2π
k
K
n

� �
(5)

where mod is the modulo function.

Let A be the transmit filter matrix where

A ¼ ½g0;0 g1;0 … gK−1;0 g0;1 … gK−1;1 gk;m… gK−1;M−1�: (6)

Then, the GFDM signal can also be expressed by Michailow et al. [2]

x ¼ Ad: (7)

Finally, the GFDM signal x is further extended by a cyclic prefix (CP) to mitigate channel
fading and reduce inter-symbol interference (ISI).

2.2. SCI Detection

In this chapter, SCI decoding is implemented using the ML and the TDC detection techniques.
Figure 3 shows the block diagram representation of the conventional ML-based SCI detection
scheme. It is important to note that the considered receiver architecture for decoding SCI is
slightly different from typical GFDM receiver for decoding payload user data. For instance, in
a typical GFDM receiver, QAM demodulation is required to determine an estimate of
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transmitted bitstream. However, in the considered receiver, a form of SCI decoding is
implemented instead of QAM demodulation. Unlike QAM demodulation, SCI decoding pro-
duces a scalar value that represents an estimate of the SCI index u.

After CP removal at the receiver, let y be the received signal after the transmission over a
transmission channel medium with channel matrix H, corrupted with additive white Gaussian
noise v with variance σ2v, as expressed by Michailow et al. [2], thus

y ¼ H Adþ v: (8)

The next stage involves GFDM demodulation, which serves to mitigate the inter-carrier inter-

ference (ICI) cause by the filtering process at the transmitter. Let B̂ be a N ·N receiver matrix,
which is used for GFDM demodulation.

In the ZF-based GFDM receiver, B̂ is computed using

B̂ ¼ ðAHAÞAH (9)

where AH denotes an Hermitian or conjugate transpose of A. In the MMSE-based receiver, the

receiver matrix B̂ is, however, determined from

B̂ ¼ σ2v
σ2d

I þ AHA
� �−1

AH: (10)

From the expression in Eq. (10), I is the identity matrix, and σ2d is the variance of d. Using B̂, the
output of the GFDM demodulation block is computed from

d̂ ¼ B̂y: (11)

Hence, the received SCI subcarriers d̂c are represented as a subset of d̂. The next stage involves
the SCI decoding where an estimate of the index u is determined given that the set C is also

Figure 3. ML-based receiver architecture.

Selective Control Information Detection in 5G Frame Transmissions
http://dx.doi.org/10.5772/66256

221



known at the receiver. In this case, the decoded SCI can be directly determined through an
estimate of the SCI index û.

2.2.1. ML scheme

The ML detection technique uses a form of Euclidean distance minimisation function. Let Hc

represent the frequency-domain representation of sub-channel coefficients that correspond to
the SCI subcarrier locations.

Let û denote an estimate of u. Then, using the ML decision criterion, û is determined through

û ¼ arg min
u;Cu∈ C

jd̂c−HcCuj2: (12)

The expression in Eq. (12) suggests that detection performance of the ML estimation method
depends on the channel coefficients Hc. In this chapter, the ML decision is implemented using
perfect channel estimation. However, in practical systems, channel estimation is implemented
as described in [10]. Unfortunately, the need for channel estimation increases both design and
computational complexities, and erroneous channel estimation is expected to produce errone-
ous estimation of û. This is the main practical challenge associated with the use of the ML
estimation method in 5G wireless systems.

3. TDC Detection Technique

The TDC technique uses a form of signal correlation as a means of detection. A time-domain
detection approach is considered because studies from, for example, [11] and [12] have
shown that it offers robust decoding even in the presence of ISI [13]. With regard to SCI

specifically, the TDC technique uses a correlation that exists between d̂c and each possible
candidate SCI Cu within C is used to determine an estimate of the transmitted SCI [5].
Figure 4 shows the block diagram representation of the GFDM receiver that uses the TDC-
based SCI detection scheme.

3.1. Discrete Correlation Theorem

The applied correlation within the TDC detection technique can be explained using the well-
known discrete correlation theorem (DCT). Based on the DCT, a correlation of two arbitrary
time-domain signals q1 and q2 (of the same size) is obtained from [14]

CORRfq1; q2g ¼ IFFTfQ1 ·Q
�
2g (13)

where � represents the complex conjugation, and Q1 and Q2 are, respectively, the frequency-
domain representations of q1 and q2, that is,

Q1 ¼ FFT{q1} and Q2 ¼ FFT{q2} (14)

where FFT { � } denotes the fast Fourier transform (FFT) function.
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In a TDC-based receiver, a complex-valued term Zu is first computed in a similar manner to the
DCT definition in Eq. (13). Thus, Zu is given by

Zu ¼ d̂c ·C�
u

¼ ðHcd̂c þ VcÞÞ ·C�
u

¼ ðHcd̂cC�
uÞ þ ðVcC�

uÞ
¼ ðHcd̂cC�

uÞ þ
�
V ′

cðuÞ
�

(15)

where Vc is the frequency-domain representation of AWGN components of the SCI subcarriers
and V ′

cðuÞ ¼ VcC�
u. For 0 ≤ c ≤ Nc − 1, Zu is a vector of size Nc and may be represented as

Zu ¼ ½Zu½0], Zu½1], Zu½c� … Zu½Nc−1��: (16)

When there is a strong correlation between d̂c and Cu, then the expression in Eq. (15) can be
approximated to

Zu ≈
Hc þ V ′

cðuÞ; u ¼ u

Hcd̂cC�
u þ V ′

cðuÞ; otherwise:

8<
: (17)

By omitting the noise terms in Eq. (17) for simplicity, the expression in Eq. (17) is reduced to

Zu ≈
Hc; u ¼ u

Hcd̂cC�
u; otherwise:

8<
: (18)

From the expression in Eq. (17), it can be seen that the same channel term Hc and identical
noise term V ′

cðuÞ are present in both Zu ¼ u and Zu ≠ u terms when u ¼ u and u ≠ u, respectively.
Thus, without loss of generality, a simplified representation of the main difference between
each value of Zu ¼ u and Zu ≠ u is further reduced to

Zu½c� ≈
1; u ¼ u

d̂cC�
u; otherwise:

8<
: (19)

In a similar manner to the expression in Eq. (13), let zu be the time-domain equivalent Zu

obtained from

Figure 4. TDC-based receiver architecture.
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zu ¼ IFFT
Nc−point

{Zu}: (20)

In this chapter, zu will be referred to as the TDC function. For 0 ≤ w ≤ Nc −1, zu is written as

zu ¼ ½zu½0], zu½1], zu½w�…zu½Nc−1��: (21)

It should be noted that the IFFT operation in Eq. (20) requires no zero padding if the value of
Nc is a power of 2. However, in cases (not shown in this chapter) where Nc is not a power of 2,
zero padding can be applied as required in FFT algorithms with no degradation in perfor-
mance.

3.2. TDC Decision Criterion

From the approximation of Zu in Eq. (19), the magnitudes of Zu result in an impulse function in
a similar manner to an auto-correlation function. Hence, the magnitude zu½w� (derived from
Zu) can be approximated to

jzu½w�j ¼
1; w ¼ 0

0; 1 ≤ w ≤ Nc − 1

8<
: (22)

where j � j is the magnitude of a complex-valued variable. Otherwise, jzu½w�j > 0 when u ≠ u.

Using the approximation in Eq. (22), the mean value of jzuj is

E{jzu j} ¼
1
Nc

∑
Nc−1

w¼0
jzu½w�j

≈1=Nc (23)

where E is the expectation function. Similarly, from the definition in Eq. (22), E{jzu ≠ uj} is
expected to be larger than E{jzuj} because the corresponding magnitudes of zu ≠ u½w� are non-
zero. Therefore,

E{jzuj} ≪ E{jzu≠uj}: (24)

Thus, in the presence of the channel fading term Hc, the expression in Eq. (24) is still valid since
the resulting time-domain functions zu and zu ≠ u are both affected by the same channel com-
ponent.

The expression in Eq. (24) therefore implies that an estimate of u corresponds to the u-index of
the time-domain function with the minimum mean value amongst all U time-domain func-
tions. Therefore, the TDC detection criterion is defined by Saheed et al. [5]

û ¼ arg min
u

E{jzuj}: (25)

From the expressions in Eqs. (15)–(25), it can be noted that the TDC detection technique
requires no channel estimation. The main potential drawback of the TDC technique is the need
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for multiple IFFTs, which may increase computational complexity of the TDC-based receiver,
particularly in limited practical cases, where the number of candidate SCI U is large. However,
this may not be a critical problem due to increased use of high-speed digital signal processors
(DSPs) with efficient implementation of FFT.

3.3. Rayleigh Distribution

The hypothesis in Eq. (25) suggests that the distribution of jzuj may follow a Rayleigh distri-
bution. Let x be a continuous random variable. By letting x ¼ jzu½w�j, the Rayleigh probability
distribution function (PDF) of x can be described by Walck [15]

PðxÞ ¼ x
λ2 exp ð−x2=2λ2), x > 0 (26)

where λ is the Rayleigh scale parameter, which indicates the point (the value of x) at which the
PDF PðxÞ is maximum [15]. As a function of λ, the mean of x, EðxÞ, is expressed by Walck [15]

EðxÞ ¼ λ

ffiffiffiffi
π
2

r
: (27)

Figure 5. Distribution of jzuj.
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The expression for EðxÞ indicates a linear relationship between λ and EðxÞ. Hence, in relation to
the TDC decision criterion in Eq. (25), the value of λ is expected to be smaller for a correct
decision compared with the case of an incorrect decision. As an example, Figure 5 shows the
Rayleigh PDF of jzuj in the presence of a multipath channel fading and transmit signal-to-noise
ratio (SNR) of 6 dB. Results in Figure 5 indicate that the value of λ is smaller when u ¼ u
compared with when u ≠ u. Therefore, amongst all the U correlation functions, the TDC-based
decision criterion minimises the mean of jzuj.

4. Detection Performance

This section presents the numerical detection performance of the TDC detection technique in
comparison with the ML scheme. MATLAB simulations demonstrate the effect of the GFDM
demodulation technique and the filter pulse shape characteristics on the detection perfor-
mance of the TDC technique.

4.1. Simulation Set-up

Simulations consider that a GFDM system with K ¼ 64, M ¼ 9, Nc ¼ 32, U ¼ 4 and the size of
CP is set to 16. Simulation is based on transmission over a frequency-selective Rayleigh fading
channel known as the extended pedestrian type A (EPA), with a root mean square (RMS) delay
spread, τrms of 45ns [16]. Table 2 shows the power-delay profile of the EPA channel [17].

4.1.1. Block error rate

For user data, bit error rate (BER) is often used as the detection performance metric. However,
in the case of control information, the BLER is the customary detection performance metric [5].
To compute the BLER, an error count between the actual value u that corresponds to the
selected sequence dc and its estimate û obtained at the receiver is evaluated. An erroneous
block exists when u ≠ û. Otherwise, the detection is considered error-free.

For each SNR level, the BLER is computed as [5]

BLER ¼ 1
NBLK

∑
NBLK

i¼1
Fi (28)

where NBLK is the number of OFDM symbol blocks (for a given SNR level). For 1≤i≤NBLK, Fi is
computed from

Channel parameters 1 2 3 4 5 6 7

Path delay, ns 0 30 70 90 110 190 410

Power, dB 0.0 −1.0 −2.0 −3.0 −8.0 −17.2 −20.8

Table 2. EPA fading channel.
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Fi ¼ 1 if u≠û
0 otherwise:

�
(29)

The BLER produced by each SCI decoding technique is evaluated as a function of the GFDM
demodulation technique, filter type and filter roll-off factor parameter. The frequency-domain
response of the considered RC filter with a roll-off factor α is given by Michailow et al. [2]

GRC½f � ¼ 1
2

1− cos πlinα
f
M

� �� �� �
: (30)

Thus, the frequency-domain response of the RRC filter response is derived as

GRRC½f � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GRC½f �

q
: (31)

4.2. Numerical Results

4.2.1. Detection performance with ZF-based GFDM receiver

Using the ZF-based GFDM demodulation technique, Figure 6 shows the BLER performance of
the TDC technique based on an RRC shaped filter with roll-off factor of 0.1, 0.5 and 0.9.

Figure 6. BLER comparison of the ML/TDC techniques with ZF, RRC shaped filter and roll-off factor α ¼[0.1, 0.5 and 0.9].
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Figure 7. BLER comparison of the ML/TDC techniques with ZF, RC shaped filter and roll-off factor α ¼[0.1, 0.5 and 0.9].

Figure 8. BLER comparison of the ML/TDC techniques with MMSE, RRC shaped filter and roll-off factor α ¼[0.1, 0.5 and
0.9].
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Figure 7 shows similar results for an RC shaped filter. Results in Figures 6 and 7 show that the
detection performance of both the ML and TD techniques is greatly influenced by the choice of
the roll-off factor of each form of transmit filter. Results in Figures 6 and 7 also show that the
TDC techniques improve detection performance compared with the ML method.

In Figures 6 and 7, it can be seen that detection performance is degraded as the roll-off value is
increased from 0.1 to 0.9. This can be attributed to the increasing level of the inherent noise
enhancement factor of the ZF scheme as the roll-off factor is increased, as suggested within a
major 5G research study highlighted in [2]. The RC shaped filter produces a slightly improved
detection performance compared with the RRC shaped filter due to less inherent ICI in the RC
shaped filter compared with the RRC filter, as suggested in [18].

4.2.2. Detection performance with MMSE-based GFDM receiver

Similarly, using the MMSE-based GFDM demodulation, Figure 8 shows the BLER comparison
with the use of an RRC shaped filter. Figure 9 shows the same results using the RC shaped
filter. Results in Figures 8 and 9 show that the TDC technique improves detection performance
in comparison with the ML method. Results in Figures 8 and 9 also show that the detection
performance is not significantly influenced by the value of the roll-off parameter of RC/RRC

Figure 9. BLER comparison of the ML/TDC techniques with MMSE, RC shaped filter and roll-off factor α ¼[0.1, 0.5
and 0.9].

Selective Control Information Detection in 5G Frame Transmissions
http://dx.doi.org/10.5772/66256

229



shaped filter types. This is because the MMSE scheme produces no inherent noise enhance-
ment. It is important to note that similar observations were also highlighted within a recent
study found in [19].

4.2.3. Estimated SNR at target BLER of 1 and 0.1%

Table 3 shows the approximate SNR (in dB) required to achieve, for example, target BLER
levels of 1 and 0.1%.

In summary, presented results in Figures 6–9 support existing observations on the effects of
filter shapes and the type of GFDM demodulation technique on the detection performance of
the GFDM system. These results also show that the TDC technique has a robust detection
performance capability and is potentially applicable in 5G systems.

5. Conclusions

This chapter introduced a TDC detection technique for SCI decoding and presented its detec-
tion performance using the GFDM architecture for 5G systems. Unlike the ML method of SCI
detection, the TDC scheme requires no channel estimation and has no extra system overhead
associated with channel estimation. It is shown that the TDC technique improves detection
performance when compared with the conventional ML method.

Target BLER GFDM receiver Roll-off, α Estimated SNR (dB)

RC RRC

ML TDC ML TDC

1% ZF 0.1 6.4 4.6 6.5 4.6

0.5 8.1 5.8 9.3 6.5

0.9 >10.0 6.9 ≫10.0 8.3

MMSE 0.1 6.3 4.7 6.5 4.7

0.5 6.7 4.8 6.9 4.9

0.9 6.9 5.0 7.6 5.2

0.1% ZF 0.1 9.4 6.2 8.8 6.0

0.5 ≫10.0 7.4 ≫10.0 7.9

0.9 ≫10.0 8.6 ≫10.0 10.0

MMSE 0.1 8.9 5.9 9.1 6.3

0.5 9.6 6.4 9.9 6.7

0.9 >10.0 6.7 >10.0 6.9

Table 3. Estimated SNR (dB) at BLER levels of 1 and 0.1%.
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With the ZF-based receiver, the BLER performance of the TDC technique is degraded as the
roll-off value of the RC and RRC shaped filter is increased from 0.1 to 0.9. However, with the
MMSE receiver, the detection performance of the TDC technique is relatively similar for
different filter roll-off values. Hence, with the ZF-based receiver, the detection performance of
the TDC technique is largely influenced by the choice of the roll-off value of the transmit filter.
Furthermore, with the ZF-based receiver, the RC shaped transmit filter improved the BLER
performance of the TDC technique compared with the RRC shaped filter of the same roll-off
factor. Therefore, the TDC technique is a viable and an attractive SCI decoding solution for 5G
systems.

Acknowledgements

We would like to thank Dr. Funmilayo Ogunkoya of the Electrical and Electronics Engineering
department of Obafemi Awolowo University (OAU), Nigeria, for her support and insight
towards producing some of the presented simulation results.

Author details

Saheed A. Adegbite1* and Brian G. Stewart2

*Address all correspondence to: sa.adegbite@gmail.com

1 School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow, UK

2 Department of Electronics and Electrical Engineering, University of Strathclyde, Glasgow, UK

References

[1] 3GPP TSG-RAN R1-162248. Waveform for the next generation radio interface, 2016.

[2] N. Michailow, M. Matthé, I. S. Gaspar, A. N. Caldevilla, L. L. Mendes, A. Festag, and G.
Fettweis. Generalized frequency division multiplexing for 5th generation cellular net-
works. IEEE Transactions on Communications, 62(9):3045–3061, 2014.

[3] 3GPP Technical Specification (TS) 36.211 v12.0.0. Evolved universal terrestrial radio
access (E-UTRA); Physical Channels and Modulation, 2013.

[4] S. A. Adegbite, S. G. McMeekin, and B. G. Stewart. Improved PCFICH decoding in LTE
systems. In The 21st IEEE International Workshop on Local and Metropolitan Area Networks,
IEEE, Beijing, China, pages 1–6, 2015.

[5] S. A. Adegbite, S. G. McMeekin, and B. G. Stewart. A time-domain control signal detec-
tion technique for OFDM. EURASIP Journal on Wireless Communications and Networking,
2016(1):1–10, 2016.

Selective Control Information Detection in 5G Frame Transmissions
http://dx.doi.org/10.5772/66256

231



[6] S. J. Thiruvengadam and L. M. A. Jalloul. Performance analysis of the 3GPP-LTE physical
control channels. EURASIP Journal on Wireless Communications and Networking, 2010(1):1–
10, 2010.

[7] S. Abbas, S. J. Thiruvengadam, and S. Susithra. Novel receiver architecture for LTE-A
downlink physical control format indicator channel with diversity. VLSI Design, 2014:1–7,
2014.

[8] I. S. Gaspar, L. L. Mendes, N. Michailow, and G. Fettweis. A synchronization technique
for generalized frequency division multiplexing. EURASIP Journal on Advances in Signal
Processing, 2014(1):1–10, 2014.

[9] S. A. Adegbite, S. G. McMeekin, and B. G. Stewart. A selective control information
detection scheme for OFDM receivers. Telecommunication Systems, 1–11, 2016. DOI: 10.
1007/s11235-016-0154-6

[10] S. Ehsanfar, M. Matthe, D. Zhang and G. Fettweis, "A Study of Pilot-Aided Channel
Estimation in MIMO-GFDM Systems," WSA 2016; 20th International ITG Workshop on
Smart Antennas, Munich, Germany, 2016, pp. 1–8.

[11] H. Zamiri-Jafarian, H. Khoshbin, and S. Pasupathy. Time-domain equalizer for OFDM
systems based on SINR maximization. Communications, IEEE Transactions on, 53(6):924–
929, 2005.

[12] J. Balakrishnan, R. K. Martin, and C. R. Johnson. Blind, adaptive channel shortening by
sum-squared auto-correlation minimization (SAM). IEEE Transactions on Signal
Processing, 51(12):3086–3093, 2003.

[13] H. Minn and V. K. Bhargava. An investigation into time-domain approach for OFDM
channel estimation. IEEE Transactions on Broadcasting, 46(4):240–248, 2000.

[14] S. D. Stearns and D. R. Hush. Digital Signal Processing with Examples in MATLAB®, Second
Edition. Taylor & Francis, Florida, USA, 2002.

[15] Christian Walck. Handbook on statistical distributions for experimentalists. Internal
Report (SUF-PFY/96-01), University of Stockholm, Sweden, pages 138–139, 2007.

[16] 3GPP Technical Specification (TS) 36.101 v12.0.0. Evolved universal terrestrial radio
access (E-UTRA); User Equipment (UE) Radio Transmission and Reception, 2013.

[17] S. Adegbite, B. G. Stewart, and S. G. McMeekin. Least squares interpolation methods for
LTE system channel estimation over extended ITU channels. International Journal of Infor-
mation and Electronics Engineering, 3(4):414–418, 2013.

[18] B. M. Alves, L. L. Mendes, D. A. Guimaraes, and I. S. Gaspar. Performance of GFDM over
frequency-selective channels-invited paper. In Proceedings of International Workshop on
Telecommunications, Santa Rita do Sapucai, Brazil, 2013.

[19] N. Michailow, S. Krone, M. Lentmaier, and G. Fettweis. Bit error rate performance of
generalized frequency division multiplexing. In 76th Vehicular Technology Conference (VTC
Fall), 2012 IEEE, IEEE, Quebec City, Canada, pages 1–5, 2012.

Towards 5G Wireless Networks - A Physical Layer Perspective232



[6] S. J. Thiruvengadam and L. M. A. Jalloul. Performance analysis of the 3GPP-LTE physical
control channels. EURASIP Journal on Wireless Communications and Networking, 2010(1):1–
10, 2010.

[7] S. Abbas, S. J. Thiruvengadam, and S. Susithra. Novel receiver architecture for LTE-A
downlink physical control format indicator channel with diversity. VLSI Design, 2014:1–7,
2014.

[8] I. S. Gaspar, L. L. Mendes, N. Michailow, and G. Fettweis. A synchronization technique
for generalized frequency division multiplexing. EURASIP Journal on Advances in Signal
Processing, 2014(1):1–10, 2014.

[9] S. A. Adegbite, S. G. McMeekin, and B. G. Stewart. A selective control information
detection scheme for OFDM receivers. Telecommunication Systems, 1–11, 2016. DOI: 10.
1007/s11235-016-0154-6

[10] S. Ehsanfar, M. Matthe, D. Zhang and G. Fettweis, "A Study of Pilot-Aided Channel
Estimation in MIMO-GFDM Systems," WSA 2016; 20th International ITG Workshop on
Smart Antennas, Munich, Germany, 2016, pp. 1–8.

[11] H. Zamiri-Jafarian, H. Khoshbin, and S. Pasupathy. Time-domain equalizer for OFDM
systems based on SINR maximization. Communications, IEEE Transactions on, 53(6):924–
929, 2005.

[12] J. Balakrishnan, R. K. Martin, and C. R. Johnson. Blind, adaptive channel shortening by
sum-squared auto-correlation minimization (SAM). IEEE Transactions on Signal
Processing, 51(12):3086–3093, 2003.

[13] H. Minn and V. K. Bhargava. An investigation into time-domain approach for OFDM
channel estimation. IEEE Transactions on Broadcasting, 46(4):240–248, 2000.

[14] S. D. Stearns and D. R. Hush. Digital Signal Processing with Examples in MATLAB®, Second
Edition. Taylor & Francis, Florida, USA, 2002.

[15] Christian Walck. Handbook on statistical distributions for experimentalists. Internal
Report (SUF-PFY/96-01), University of Stockholm, Sweden, pages 138–139, 2007.

[16] 3GPP Technical Specification (TS) 36.101 v12.0.0. Evolved universal terrestrial radio
access (E-UTRA); User Equipment (UE) Radio Transmission and Reception, 2013.

[17] S. Adegbite, B. G. Stewart, and S. G. McMeekin. Least squares interpolation methods for
LTE system channel estimation over extended ITU channels. International Journal of Infor-
mation and Electronics Engineering, 3(4):414–418, 2013.

[18] B. M. Alves, L. L. Mendes, D. A. Guimaraes, and I. S. Gaspar. Performance of GFDM over
frequency-selective channels-invited paper. In Proceedings of International Workshop on
Telecommunications, Santa Rita do Sapucai, Brazil, 2013.

[19] N. Michailow, S. Krone, M. Lentmaier, and G. Fettweis. Bit error rate performance of
generalized frequency division multiplexing. In 76th Vehicular Technology Conference (VTC
Fall), 2012 IEEE, IEEE, Quebec City, Canada, pages 1–5, 2012.

Towards 5G Wireless Networks - A Physical Layer Perspective232



Towards 5G Wireless 
Networks 

A Physical Layer Perspective

Edited by Hossein Khaleghi Bizaki

Edited by Hossein Khaleghi Bizaki

Photo by Tevarak / iStock

This book intends to provide highlights of the current research topics in the field of 
5G and to offer a snapshot of the recent advances and major issues faced today by the 

researchers in the 5G physical layer perspective. Various aspects of 5G system is deeply 
discussed (in three parts and ten chapters) with emphasis on its physical layer. Each 

chapter provides a comprehensive survey of the subject area and ends with a rich list of 
references to provide an in-depth coverage of the application at hand.

ISBN 978-953-51-2833-5

Tow
ards 5G

 W
ireless N

etw
orks - A

 Physical Layer Perspective

 

ISBN 978-953-51-4139-6


	Towards 5G Wireless Networks - A Physical Layer Perspective
	Contents
	Preface
	Section 1
Waveform and Modulation Formats
	Chapter 1
Analysis of Candidate Waveforms for 5G Cellular Systems
	Chapter 2
Waveform Design Considerations for 5G Wireless Networks
	Chapter 3
Spectral Efficiency Analysis of Filter Bank Multi‐Carrier (FBMC)‐ Based 5G Networks with Estimated Channel State Information (CSI)
	Chapter 4
Non-Orthogonal Multiple Access (NOMA) for 5G Networks

	Section 2
5G Networks
	Chapter 5
Physical-Layer Transmission Cooperative Strategies for Heterogeneous Networks
	Chapter 6
Achievable Energy Efficiency and Spectral Efficiency of Large‐ Scale Distributed Antenna Systems
	Chapter 7
Energy Efficiency for 5G Multi-Tier Cellular Networks

	Section 3
Beamforming and Cognitive Radio Networks
	Chapter 8
Beamforming in Wireless Networks
	Chapter 9
Superallocation and Cluster‐Based Cooperative Spectrum Sensing in 5G Cognitive Radio Network
	Chapter 10
Selective Control Information Detection in 5G Frame Transmissions


