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Preface

Sleep disorders are rampantly rising throughout the world and affect people of all ages, gen‐
der, and ethnicity. Inadequate sleep, poor in quantity and quality, and an excessive daytime
sleepiness negatively affect daily activities of life. It’s estimated that in the USA around 60–
70 million people suffer from sleep disorder, and in developing countries sleep disease af‐
fects more than 200 million people. Considering the significant magnitude of sleep disor‐
ders, there is an increasing interest in sleep medicine among physicians, researchers, and the
general public.

Sleep medicine is a relatively new specialty, still developing, although sleep has remained
an important area of curiosity since the human civilization with emphasis on the physiolog‐
ic and psychological basis and significance of sleep by many famous scientists.

Since then and especially in the past few years, sleep medicine is developing rapidly with
more than 100 sleep disorders discovered till now. Despite that, sleep specialty is in neonatal
stage especially in developing and underdeveloped countries. Sleep medicine is still evolv‐
ing with an ongoing worldwide clinical research, training programs, and changes in the in‐
surance policy disseminating more awareness in physicians and patients.

Sleep apnea is one of the most common sleep disorders, found in around 5–7% of the gener‐
al population with high prevalence in the obese, elderly individuals but largely unrecog‐
nized and hence undiagnosed with untreated and life-threatening consequences.

In the last decade, new complex sleep disorders and its pathophysiology have been discov‐
ered, new treatments options (pharmacological and nonpharmacological) are available, and
hence we planned a book on the recent developments on one of the most common sleep
disorders, sleep apnea.

We have incorporated chapters from the eminent clinicians and authors around the globe to
produce a state-of-the-art book with the target audience from internal medicine, pulmonary,
sleep medicine, neurology, ENT, and psychiatry discipline.

With the blessings of the almighty God and my parents, this important task has been com‐
pleted in a successful way.

I would like to convey special thanks to my wife Dr. Deepa Vats, who has special interest in
pediatric sleep medicine, and my daughters Spraha Vats and Aadhya Vats for their constant
and untiring support and encouragement.

Dr. Mayank G. Vats
Senior Specialist,

Pulmonologist, Intensivist, and Sleep Physician
Rashid Hospital and Dubai Hospital, Dubai, UAE
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Sleep Apnea – Recent Updates

Samson Z. Assefa, Montserrat Diaz-Abad 
and Steven M. Scharf
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Abstract

Sleep apnea is highly prevalent and underdiagnosed. It is associated with multiple medi-
cal conditions including cardiac dysrhythmia, stroke, hypertension, diabetes and con-
gestive heart failure. In the last few decades, advances in diagnosis and treatment of 
sleep apnea have been robust. In this review, we will emphasize primarily developments 
in the area of sleep apnea that occurred in the past 5 years. These include changes in 
the nomenclature of sleep apnea in the International Classification in Sleep Disorders 
(ICSD)-3, physiologic approach of treating sleep apnea, eligibility for CPAP (continuous 
positive airway pressure) treatment, home sleep testing (HST), sleep apnea in pregnancy, 
updates in oral device treatment and other emerging concepts on sleep apnea.

Keywords: sleep apnea, sleep apnea updates, obstructive sleep apnea, apnea, recent 
updates of sleep apnea

1. Introduction

Obstructive sleep apnea (OSA) is a prevalent condition associated with increased risk of 
developing hypertension, heart failure, type 2 diabetes, cardiac rhythm disturbances, stroke 
and increased all-cause mortality [1–7]. It is also associated with reduced quality of life and 
sleepiness. In the field of sleep disorders particularly diagnosis and treatment of sleep apnea 
continues to evolve. In this review article, we consider advances in our understanding of 
pathophysiology, diagnosis and treatment sleep apnea with emphasis on recent advances 
over the past 5 years.

Sleep disordered breathing (SDB) events are classified as obstructive, central or mixed. 
Furthermore, events are usually subdivided into apneas (complete or almost complete 
 cessation of airflow), hypopneas (reduction of airflow by 30-90% associated with EEG 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



arousals and/or 3-4 % oxygen desaturation) and respiratory event-related arousals (RERA—
reduction of airflow by <30% associated with flow limitation and arousals on EEG) [8]. 
Obstructive events occur as a result of partial or complete obstruction of the upper airway 
at the level of the oro and/or nasopharynx with continuing respiratory efforts. Central 
events occur as a result of partial or complete cessation of efferent respiratory signals 
from the brainstem. Mixed events start out as central and evolve into obstructive events. 
Disordered breathing events (DBE) may be associated with reductions in oxygen satura-
tion, sympathetic and parasympathetic surges and, in the case of obstructive events, large 
swings in intrathoracic pressure. Treatments for obstructive sleep apnea have classically 
included CPAP, certain types of upper airway surgery, dental orthotic or mandibular 
advancement devices, weight loss and positional therapy [9].

In the ensuing review, we discuss recent advances in the field including means of diagnosis 
and treatment in light of currently available literature.

2. Sleep-related breathing disorders nomenclature in ICSD-3

In the year of 2014, the American Academy of Sleep Medicine (AASM) released the 3rd edi-
tion of International Classification in Sleep Disorders (ICSD) [10]; this was an upgrade to the 
ICSD-2, 2011 edition. This shows progressive evolution of the nosology as knowledge and 
literature related to sleep disorders become more robust. There is a significant content change 
in the new edition, and one of them is within the sleep-related breathing disorders section. 
Treatment-central sleep apnea now appears as an isolated term to be used to describe central 
sleep apnea in the context of positive airway pressure treatment for obstructive sleep apnea. 
Other central sleep apneas like Cheyne-Stokes and substance induced are not classified in 
the same category. The other change in the SDB section is a separate diagnosis called sleep-
related hypoxemia. This was under the same category of hypoventilation in the previous edi-
tion. In the ICSD-2, different categories based on the causes of the hypoxemia/hypoventilation 
that include medical and neurologic were listed separately. In ICSD-3, the cause of the hypox-
emia/hypoventilation has to be diagnosed separately. Sleep-related hypoxemia diagnosis is 
assigned if a sleep study showed a sustained drop in SaO2 but normal or not measured PaCO2. 
In ICSD-3, obesity hypoventilation is also listed as a separate disorder due to its distinct clini-
cal behavior. This requires a documentation of awake PaCO2 >45 mm Hg. Refer to ICSD-3 for 
detailed review of the changes in all other sections [10].

3. Home sleep testing (HST)

OSA is prevalent and carries numerous physiologic and clinical consequences. The most 
recent prevalence estimates are that OSA is found in 33.9% of men and 17.4% of women [11]. 
These estimates are greater than previous ones, possibly due to increased sensitivity of detec-
tion, changes in definitions of types of “events,” and/or increasing rates of obesity [11, 12]. 
Furthermore, as untreated sleep apnea is associated with a range of adverse  consequences 
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[13], it has become clear that diagnostic testing needs to be convenient and available. 
Traditionally, in-laboratory attended polysomnography (PSG), in which sleep staging and 
cardiorespiratory variables are continuously recorded, has been the preferred method for 
diagnosing OSA. However, relatively high cost and growing wait times have provided the 
impetus for simplified portable unattended systems suitable for diagnosis of OSA outside the 
laboratory environment. In 1994 [14], AASM published a classification scheme grading the 
complexity of diagnostic sleep testing (see Table 1). Under this system, level 1 refers to com-
monly used in-laboratory attended PSG, level 2 refers to equally complex attended studies 
at home (rarely done) and levels 3 and 4 refer to unattended studies most commonly done at 
home, or out of the sleep laboratory. Since the original AASM classification system was pub-
lished, technological advances have led to the availability of portable monitoring devices that 
may not neatly fit into the classification scheme. A revised system was presented in 2011 [15] 
similar to the 1994 system, but categorized portable devices according to the type of record-
ing channel and the technology utilized. One of the primary issues is whether or not the 
device can adequately differentiate sleep from wakefulness and even stages of sleep. Many 
portable monitoring systems do not directly measure sleep using an EEG, but rather use 
derivative signals such as movement (actigraphy), pulse wave coupling or other derivative 
signals. For many systems, disease severity is more appropriately expressed as “respiratory 
disturbance index (RDI)” or “respiratory event index (REI)” (number of apneas/hypopneas 
per hour in bed) rather than the traditional apnea hypopnea index (apneas/hypopneas per 
hour of sleep) (AHI).

A complete review of all home testing systems available is beyond the scope of this review. 
However, Table 2 presents examples of several of the available simpler systems that have 
been validated. Both the AASM and the Canadian Sleep Society have published guidelines 
for use of portable monitors, most recently in 2010 [10]. These guidelines generally follow the 
highly selective study criteria outlined in validation studies. Portable monitoring devices are 
appropriate for patients with a high pretest probability of moderate-to-severe OSA (AHI of 15 
or greater), but are not appropriate for routine screening in asymptomatic patients, or patients 
with concomitant medical or sleep disorders, such as central sleep apnea or periodic limb 
movement disorder. The Centers for Medicare and Medicaid Services (CMS) has approved 
coverage for PAP devices for patients diagnosed with OSA using portable monitoring [11].

Level Characteristics

1 Attended full PSG—the “gold standard” (EEG, sleep staging with four or more additional parameters, attended)
CPT code: 95810 (Dx); 95811 (PAP, RAD); 95805 (MSLT/MWT)

2 Full PSG unattended/out of laboratory: as above—minimum 7 channels. HCPCS: G0398

3 Unattended, recording HR, O2 saturation, respiratory airflow, respiratory effort; minimum of four channels, 
CPT: 95806; HCPCS: G0399

4 Unattended, HR, O2 saturation, respiratory analysis; one or two channels, usually O2 saturation or nasal 
airflow; CPT 95800 (includes estimated sleep time); 95801 (no sleep time); HCPCS G0400

Table 1. Levels of sleep testing (4).
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Many third party payers have followed CMS’ lead; and in fact, many have instituted poli-
cies whereby portable sleep testing is required for all covered patients, with certain excep-
tions. Indeed in the highly selected patient populations studied for validation of portable 
testing, the correlation and even clinical outcomes are comparable between using portable 
diagnostic and in-laboratory testing [12–14]. However, as pointed out in an editorial by 
Collop [15], the issue is not the test per se, but how the test is utilized when it is “general-
ized.” Most home sleep testing studies are done with highly selected patients (for the study 
quoted in Ref. [16], 272 patients were highly screened, 102 were randomized, approxi-
mately half to home testing). Furthermore, patients were evaluated by sleep experts, and 
scoring was done by well-trained and motivated technologists. Exclusions for significant 
medical, psychiatric and sleep disorders were rigidly carried out. However, in the “real 
world,” as insurance carriers try to minimize costs, the experience is often that these con-
ditions are not met. The decision to accept and indeed to “push for” home testing is often 
made on the basis of business and finance rather than patient benefit. While home or out 
of center sleep testing offers a number of advantages compared with in-laboratory PSG, 
there is no evidence that using this approach for all or the majority of patients is advanta-
geous, even financially. The initial costs are generally less than those of in-laboratory test-
ing. Furthermore, home testing offers a more rapid method of assessing the many patients 
with undiagnosed OSA who have limited access to, or who are reluctant to undergo, in-
laboratory PSG. However, Chervin et al. [17] performed a careful cost utility analysis, com-
paring in-laboratory PSG, out of center testing and no testing (with treatment based on 
clinical characteristics). Their outcomes were based on costs per quality-adjusted life years 
over 5 years. These authors concluded that standard in-lab PSG provides greater quality-
adjusted life years over 5 years than either out of center testing or no testing. Reuveni et 
al. [18] modeled costs of in-laboratory PSG versus out of center testing, accounting for the 
published technical failure rate of out of center testing, and the published European costs 
for PSG. They demonstrated that there was no long-term cost saving using out of center 
testing versus in-laboratory PSG.

System Level Principles/comments References

Apnea risk evaluation system 
(ARES)R: SleepMed, Inc

3 Directly measures airflow, estimates respiratory effort 
from forehead vein, measures O2 saturation and pulse rate. 
Approximates sleep time using lack of head movement

[6]

WatchPatR device: Itamar 
Medical Ltd

3* Uses proprietary algorithm combined peripheral arterial 
tonometry, oximetry, heart rate, actigraphy to estimate 
sleep time and calculate respiratory disturbance index

[7]

PhotoplethysmographR: 
MorpheusOx; Widemed ltd.

3* Measures O2 saturation, pulse, peripheral arterial tone 
from optical volumetric signals. Proprietary algorithm 
detects sleep, respiration and disordered breathing events

[8]

ApneaStripR: S.L.P. Ltd 3* Simple device records airflow overnight and estimates 
sleep time

[9]

*Level claimed by manufacturer.

Table 2. Examples of portable home testing equipment (validation studies).
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Given that sleep apnea is under-diagnosed, another advantage of HST is diagnosing patients in a 
hospital setting and arranging follow-ups for complete evaluation in out-patient  settings. Kauta 
et al. [19] evaluated 104 cardiac patients with SDB symptoms who are hospitalized for heart fail-
ure, arrhythmia and myocardial infarction. They performed type III portable sleep study, and 
78% had SDB (AHI >5 events/h). Patients diagnosed with SDB were started with PAP treatment. 
At 30 days, adherence to PAP and 30-day readmission rate were assessed. None (0%) of patients 
(0/19) with adequate adherence, 30% of patients with partial adherence (6/20) and 29% of non-
users (5/17) were readmitted or visited emergency room for cardiac issues (p = 0.025).

4. Effects of different definitions of DBEs on CPAP eligibility

Treatment with CPAP is known to significantly reduce the risk of important cardiovascu-
lar events and overall health care utilization [20, 21]. Thus, diagnosis and treatment of OSA 
would be expected to have a considerable beneficial impact on public health. Eligibility for 
CPAP treatment is usually based on disease severity, and this is usually expressed as the 
AHI. Of course, the number of events must perforce be based on the specific definitions of 
apneas, hypopneas and specified comorbid conditions. In 2012, the AASM adopted modi-
fied definitions of DBEs [8]. However, some insurance carriers including CMS continued to 
use the 2007 AASM definitions of DBEs [22]. The definitions of apneas between 2007 and 
2012 have not changed [23], that is, a >90% reduction in airflow with continuing respiratory 
effort (for obstructive events). However, the 2012 AASM definition of hypopneas [8] calls for a 
30–90% reduction in airflow associated with either a 3% reduction in O2 saturation or a termi-
nal arousal. The current CMS definition of hypopneas calls for the same reduction in airflow, 
but associated with a 4% reduction in O2 saturation [23]. Further CMS defines the eligibility 
for CPAP treatment based on the AHI as follows: Patients are eligible for CPAP treatment for 
AHI ≥ 15, or if AHI is 5–14, only if the patient has a specified comorbidity, including hyper-
tension, excessive sleepiness, impaired cognition, mood disorder, insomnia, ischemic heart 
disease, and history of stroke. Since CMS is often used by other insurance carriers as a model 
for designing their own treatment criteria, the differences in hypopnea definitions or in des-
ignation of treatment eligibility could have real significance.

Ho et al. [24] recently reviewed data on 6441 patients from the sleep heart health study and 
found, not surprisingly, that there was a discrepancy in the AHI depending on the defini-
tions used for hypopneas, the discrepancy being greater at low AHIs than at high ones. 
Korotinsky et al. [25] recently compared AHI’s calculated using both AASM (2012) and 
CMS definitions of hypopneas, as well as eligibility for CPAP treatment in a convenience 
sample of 112 consecutive patients studied in their sleep laboratory. Eighty-five patients 
were <65 years old and 27 were >65 years old (eligible for Medicare). They found the larg-
est discrepancies in the younger patients, but a nonstatistically significant difference in the 
older patients. Furthermore, because of the presence of comorbidities in the older patients, 
there were no differences in eligibility for CPAP no matter which set of criteria were used. 
Thus, in younger patients, application of the stricter CMS criteria would have resulted in 
fewer patients being eligible for CPAP treatment, but not in the older patients. Thus, in the 
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younger patients, application of the stricter CMS criteria for eligibility for CPAP treatment 
would have resulted in fewer patients with relatively mild (AHI, 5–14) OSA being treated 
with CPAP. The question as to whether there is a healthcare advantage for treatment of 
younger patients with mild disease is still unsettled with opinions on both sides of the 
question [25].

5. Toward a physiologic approach to treating OSA

Breathing involves a complex neurologic interaction of various types of inspiratory muscles. 
During inspiration, pressures down the airway are slightly negative, since air must move 
from atmospheric pressure ( = 0) to alveoli (pressure slightly negative). Prior to activation 
of the diaphragm, there is the activation of upper airway/pharyngeal dilator muscles that 
prevent collapse of the upper airway during inspiration. Thus, the upper airway performs 
an important function during respiration, and if function is compromised, obstruction could 
result as in OSA [26, 27]. CPAP is one of the preferred treatments for moderate-to-severe 
OSA. However, since upper airway dilator stimulation is thought to be inadequate to main-
tain upper airway patency during sleep, especially during REM sleep when skeletal muscle 
tone is suppressed, the concept developed that electrical stimulation of upper airway dilator 
muscles during inspiration could help maintain airway patency. Thus, a number of systems 
have been developed whereby stimulation of a hypoglossal nerve through an implantable 
device, timed to the patient’s normal inspiration could help to maintain airways patency 
and alleviate sleep apnea. This approach would be particularly useful in patients who can-
not tolerate or refuse to tolerate CPAP or other treatments. Several clinical trials have been 
carried out on devices implanted subcutaneously that are, once activated, triggered by the 
patient’s own inspiratory effort [27–33]. The largest of these [33], a multisite clinical trial of 
patients with moderate-to-severe OSA, surgically implanted a hypoglossal nerve stimulator 
in OSA patients who were CPAP intolerant or refused CPAP treatment. The primary out-
come measures were AHI and the ODI4 (oxygen desaturation index—number of times per 
hour, O2 saturation fell by at least 4%). Secondary outcomes included the Epworth Sleepiness 
Scale (ESS), the Functional Outcomes of Sleep Questionnaire and the percent of sleep time 
with oxygen saturation <90%. This single cohort included 126 patients. At the end of 1 year, 
the median AHI decreased from 29.3 per hour to 9.0 per hour with similar improvements in 
the ODI4. Quality of life (QOL) measures also improved at the end of 1 year. At the end of 
1 year, 46 patients participated in a 1:1 randomized therapy withdrawal trial. In this phase, 
participants who had therapy withdrawn demonstrated return of disease severity compared 
with those in whom therapy was not withdrawn. Table 3 lists appropriate criteria for ther-
apy with a hypoglossal stimulator. Finally, it should be pointed out that implantation of a 
hypoglossal nerve stimulator is part of a comprehensive program that extends well beyond 
the surgical procedure. The complete details are beyond the scope of this review, but involve 
selection based on criteria presented in Table 3, endoscopic evaluation of pharyngeal col-
lapse, training of patients and staff, and various stages of activation and titration of stimula-
tion parameters.
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6. Sleep apnea and telemedicine

As compared to the past few decades, there is a better sleep disorders recognition and under-
standing of the impacts. As a result, a number of patients who need integrated expertise of 
sleep medicine care have increased. However, there is a substantial shortage of sleep medi-
cine specialists across the United States. AASM recognized telemedicine could be used as 
a tool to improve the specialist gap and deliver a cost-effective care while still maintaining 
high-quality care. The The American Telemedicine Association defines telemedicine as the 
use of medical information exchanged from one site to another via electronic communications 
to improve a patient’s clinical health status. This includes e-mail, smart phones, wireless tools, 
two-way video and other forms of telecommunications technology [34].

Telemedicine has been implemented in the majority of the medical disciplines. In the early 
days, telemedicine was used in the field of sleep medicine mainly to promote and rein-
force CPAP therapy adherence and showed mixed results. In other instances, transmission 
of sleep studies by non-specialist to a sleep specialist for review has been used [35]. Taylor 
et al. [36] randomly grouped patients to usual care and telemedicine-based adherence for 
CPAP. Usual care patients visited practitioners in clinics and patients on telemedicine group 
had computer-based monitoring device that did not include video conferencing. Participants 
are contacted either by phone or by computer-based system. The study found no significant 
difference between the two groups. Other limited telemedicine application was doing sleep 
studies and diagnosing sleep disorders. Mendelson et al. [37] in 2014 randomized a total of 
107 hypertensive patients to CPAP care (n = 53) and CPAP care with a telemedicine inter-
vention (n = 54). Patients assigned to telemedicine uploaded blood pressure (BP) measure-
ment, CPAP adherence, sleepiness and quality of life data and in return on regular bases they 
received recommendations. The main outcome was home self-measurement of BP improve-
ment. Telemedicine-supported CPAP users did not improve BP and cardiovascular risk in 
high-risk OSA patients.

In 2008, the Milwaukee Veterans Administration Medical Center evaluated the application of 
telemedicine in sleep medicine [38]. Based on electronic consult eligibility for portable study, 
patients were assessed and sleep study orders were placed by sleep specialists. The need for in-

Eligibility criteria

Age> 22 years

AHI (AASM) 20–65 events per hour sleep

Less than 25% of DBEs are central or mixed events

Body Mass Index (BMI)<32 Kg/m2

Unable or unwilling to use CPAP (including non-compliers)

Based on criteria presented in Ref. [33].

Table 3. Criteria for consideration for hypoglossal nerve implantation.
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person assessment was also evaluated, and appointments were scheduled. CPAP was ordered 
for confirmed sleep apnea. Baig et al. [38] retrospectively assessed the 5-year trend in acces-
sibility to and receipt of care after the program was implemented. They found that, in spite of 
increased volume of services, the interval between sleep consult and PAP prescription decreased 
from >60 days to <7 days. However, there was no change in clinic wait time of >60 days.

In the past decade, the use of tele-sleep medicine has been expanded to include patient’s sleep 
evaluation. Before AASM came up with recommendation on telemedicine for sleep medi-
cine, there were studies that supported telemedicine could be used for complete evaluation 
of sleep medicine patients. A pilot study by Spaulding et al. [39] showed the application of 
 telemedicine that included video conferencing. The group established tele-heath service in 
a rural area of Kansas after training nurses and Registered Polysomnography Technologists 
(RPSGT) on how to use the videoconferencing webcam and intraoral camera for examining 
severity of airway narrowing. There were 18 new patients visits and four follow-ups. They 
reported that telemedicine was effective for physician-patient interaction and visualizing the 
upper airway. The only problem was nurses had to be trained to present patients and use the 
video cam and oral camera.

The AASM published a position paper in 2015 [40] that telemedicine can be used to improve 
access to sleep medicine services provided by board-certified sleep medicine specialist and 
improve communications with other specialties. Telemedicine applications can be broadly 
categorized into two: synchronous and asynchronous interactions. Synchronous is a live, 
real-time, bidirectional, audio-video conferencing provider-patient interaction who are dis-
tant apart. Tele-stethoscope and mobile cameras can be used for physical exam that is done 
in the presence of a presenter who usually is a trained nurse practitioner, physician assistant, 
respiratory therapist, RPSGT or medical office assistant. The patient presenter gives a clinical 
support and assistance with physical exam. Asynchronous evaluation uses multiple models 
and involves the encounters occur at different times and are communicated one direction-
ally between patients and providers electronically. AASM recommended providers to adopt 
technical requirements from the American Telemedicine Guidelines [40]. AASM believes if 
the technical, organizational and healthcare professional requirements are met, synchronous 
encounters could function as live office visits.

In January 2016, the AASM officially launched AASM SleepTM. This is a telemedicine plat-
form designed for the sleep medicine field. Some centers have implemented telemedicine. 
Issues that need further clarification while implementing telemedicine include cost uncertain-
ties, reimbursement structure and licensing rules. Currently, expansion of telemedicine to all 
sleep disorders has its own restrictions and providers should refer to their local standard for 
the technical and organizational requirements.

7. Sleep apnea and pregnancy

7.1. Screening OSA during pregnancy

In general, sleep disturbances are highly prevalent during pregnancy including SDB. Self-
reported snoring is common with a prevalence of 14–41% as compared with 4–17% in non-
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pregnant women [41–46]. Recognition of sleep apnea in pregnant women in particular is 
difficult because pregnancy is dynamic process and multiple studies at different time points  
during pregnancy may not be feasible. In 2015, there were two articles that tried to assess the 
screening tools for sleep apnea in pregnancy. Lockhart et al. [47] assessed 218 third trimester 
pregnancies of which 12% had sleep apnea diagnosed using portable home sleep testing. In 
this study STOP, STOP BANG, Berlin, American Society of Anesthesiologist Checklist and 
ESS were not successful in detecting sleep apnea. However, some of the elements such as 
BMI, neck circumference, diagnosis of hypertension (HTN) and falling asleep while talking 
to  others where more predictive based on univariate and multivariate analysis. Tantrakul et 
al. [48] evaluated Berlin and STOP BANG questionnaires to detect OSA across trimesters of 
high-risk pregnancy. They consisted of n = 72 (first trimester n = 23, second trimester n = 24 
and third trimester n = 25), and with prevalence of OSA by trimester from first to third was 
30.4%, 33.3% and 32.0%, respectively. Overall, predictive values of Berlin and STOP BANG 
were fair (AUC 0.72 for Berlin, P = 0.003, 0.75 for STOP BANG, P = 0.0001). The predictive 
values performed poorer during the first trimester. Multivariant analyses showed pre-preg-
nancy BMI, snore frequently and weight gain/BMI were significantly associated with OSA 
in first, second and third trimesters, respectively. Izci et al. [46] demonstrated third trimester 
pregnant females have smaller mean pharyngeal areas when compared with postpartum in 
supine, lateral and seated positions with a mean difference of 0.20 (95% CI 0.06–0.35), 0.26 
(95% CI 0.12–0.39) and 0.18 (95% CI 0.02–0.32), respectively.

7.2. OSA and perinatal outcomes

Repeated upper airway resistance and/or obstruction during sleep due to DBEs that causes 
chronic intermittent hypoxia, hypercarbia and sleep disruptions is believed to be a culprit 
for higher incidence of negative perinatal outcomes. However, studies have shown conflict-
ing results. Tauman et al. [49] recruited 122 pregnant women with habitual snoring and 39% 
had SDB. In those pregnant women who snored had increased markers of fetal distress, 
which are circulating nucleated RBC, EPO and IL-6. However, there was no difference in 
neonatal outcome. Trudell et al. [50] conducted a study with the aim to develop a tool for 
airway assessment to predict adverse pregnancy outcomes. They hypothesized that higher 
Mallampati score (MS) is associated with adverse perinatal outcomes. Outcomes were com-
pared between low MS and high MS in a total of 1823 term births. No significant difference 
was found in the risk of small for gestational age (SGA) [adjusted odds ratio 0.9 (95% CI 
0.6–1.2), preeclampsia adjusted odds ratio 1.2 (95% CI 0.8–1.9) or neonatal acedemia 0.8 
(95% CI 0.3–2)]. In recent population-based retrospective study (n = 636,227), Bin et al. [51] 
found that OSA was significantly associated with HTN, planned delivery, preterm birth, 
5-min Apgar <7, admission to neonatal ICU/special care nursery and large for gestational 
age infant but was not associated with gestational diabetes, Cesarean section, perinatal 
death or SGA.

Trauman et al. [52] prospectively studied 74 pregnant women (24% with OSA) and full-term 
infants for general movements and neurodevelopment at 48 h, 8–11 weeks, 14–16 weeks and 
at 12 months. Infant developmental inventory and infant brief questioner were administered. 
At 12 months, 64% of infants born to SDB mothers showed low social developmental score as 
compared to 25% of infants born to controls (P = 0.36, odds ratio 16.7). In neonatal and infant 
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neuromotor development, there was no difference between infants born to SBD mother or 
controls. Another study that failed to show negative outcome was by Bassan et al. [53]. The 
group studied 44 women (25% had SDB) with full-term infants showed that there was no 
difference in birthweight, gestational age, 5-min APGAR score and neurological exam score 
between infants born to SDB and non-SDB mothers.

Ravishankar et al. [54] studied the effect of SDB on histopathology and immune-histochem-
ical markers of placental perfusion and hypoxia. The placentas of women with OSA (n = 23), 
habitual snoring (n = 78) and non-snorers (n = 47) were accessed. Fetal normoblastemia was 
prevalent in OSA as compared to snorers and controls (56.5%, 34.6%,  and 6.4% respectively). 
Increased tissue hypoxia marker, carbonic anhydrase IX immunoreactivity, was demon-
strated in OSA pregnant women as compare to non-snorers and controls (81.5%, 91.3% and 
57.5%, respectively). Uteroplacental and reperfusion score were similar in all groups.

Further studies in the future are warranted to assess the effect of SDB on perinatal and neo-
natal outcome.

8. Update on oral appliance therapy

In 2015, the AASM published an update of clinical practice guidelines of treatment for OSA 
and snoring with oral appliance therapy [55]. The new guidelines continued to recommend 
oral appliance therapy and gave increased focus on patient preference. An oral appliance can 
now be considered for all levels of OSA severity (mild, moderate and severe), if the patient 
fails or refuses CPAP, or even if they simply prefer an oral appliance to CPAP.

Subjective adherence with oral appliance therapy is better overall than objective adherence 
with CPAP in adult patients with OSA. CPAP is superior to oral appliance therapy in improv-
ing the AHI and lowering the arousal index and the ODI, but the new guidelines suggest 
that the overall therapeutic effectiveness of oral appliances may be comparable with CPAP 
because of the significant difference in adherence rates.

These new guidelines recommend that sleep physicians prescribe oral appliances for patients 
who request treatment of primary snoring. When prescribed for OSA patient, it suggests that 
a qualified dentist use a custom, titratable appliance. It also recommends that sleep physi-
cians consider prescription of oral appliances for adult patients with OSA who are intolerant 
of CPAP therapy or prefer alternate therapy. Qualified dentists should provide oversight of 
oral appliance therapy in OSA patients, and sleep physicians should conduct follow-up sleep 
testing to improve or confirm treatment efficacy.

Studies have demonstrated efficacy of oral appliance therapy comparable to CPAP in selected 
patients [56, 57]. While oral appliances help to decrease AHI/RDI/REI across all severity lev-
els, there are few reported factors that consistently predict improvement in OSA using oral 
appliances. A number of possible predictors have been examined. Among these are changes 
in pharyngeal geometry under drug-induced sleep endoscopy (DISE) [58] and nasoendos-
copy to assess velopharynx/oro/hypopharyngeal geometry [59]. In the study of Gjerde [57], 
low oxygen levels carried a high predictive value for failure with oral appliance therapy.
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9. Update on PAP devices

Many types of PAP devices are used to treat the whole spectrum of SDB including CPAP, 
autotitrating CPAP (APAP), bilevel PAP, autotitrating bilevel PAP, volume-assured pressure 
support and adaptive servoventilation. CPAP and APAP are most commonly used, whereas 
the other modes are reserved for patients needing respiratory assist. For CPAP and APAP, 
data collection systems can track compliance, pressure, leak and efficacy. Refer to Johnson et al. 
[60] for a comprehensive review of the technological aspects of PAP devices in general with 
its algorithms, including event detection, sampling rates, cycling, targets, rate and pressure 
adjustments as well as suggested settings.

APAP has been shown to be an effective means to determine therapeutic CPAP levels. The 
question remains as to whether APAP is suitable for long-term treatment of patients with OSA. 
In the past 5 years, at least three different meta-analyses [61–63] have been performed compar-
ing the efficacy of CPAP to APAP and demonstrating similar effectiveness. These three studies 
have found that APAP and CPAP produce comparable reductions in AHI, decreased sleepi-
ness, comparable long-term compliance and improvements in sleep architecture. Because the 
treatment effects are similar between APAP and CPAP, the therapy of choice may depend on 
other factors such as patient preference, specific reasons for non-compliance and cost [62].

Although CPAP and APAP appear comparable, other investigators have looked at the use 
of alternative PAP modalities presumed to be more comfortable for therapy in OSA patients 
with the hopes of leading to improved compliance. These have included auto-bi-level pressure 
relief-positive airway pressure (ABPR-PAP). Four studies [64–67] showed similar improve-
ments in symptoms using an auto-bi-level mode and CPAP. Compliance was generally better 
with the auto-bi-level modes than CPAP, even in CPAP patients selected for poor compliance 
[65, 67].

10. Emerging concepts

Over the past 5 years, there continues to be advancement in understanding of all aspects of 
OSA. Major categories have been covered in other areas of this review. Below is a selected 
group of topics with new emerging points of view that deserve increased focus in the future.

10.1. Interventions to improve CPAP compliance

CPAP is not accepted by many users. Educational, supportive and behavioral interventions 
may help people with OSA recognize the need for regular and continued use of CPAP. An 
updated review on the effect of these intervention modalities was performed in 2014. Thirty 
randomized controlled studies (2047 participants) were included [68]. Low-to-moderate qual-
ity evidence showed that all three types of interventions led to increased machine usage in 
CPAP-naive patients with moderate-to-severe OSA. Compared with usual care, supportive 
ongoing interventions increased CPAP use by 50 min per night and increased the number 
of patients who used CPAP for longer than 4 hours per night  from 59% to 75%. Educational 
interventions increased CPAP use by 35 min per night and increased the number of patients 

Sleep Apnea – Recent Updates
http://dx.doi.org/10.5772/66816

11



who used CPAP for longer than 4 h per night from 57% to 70%. Behavioral therapy led to an 
improvement in CPAP use of 1.44 h per night and increased the number of patients who used 
CPAP for longer than four hours per night from 28% to 47%.

10.2. More focus on the relationship between smoking and OSA

It has been suspected for some time that smoking and OSA adversely affect each other, lead-
ing to increased comorbidity; however, this is still a matter of debate. There seems to be a 
synergistic effect between smoking and OSA, which may lead to increase in cardiovascu-
lar morbidity [69]. However, the evidence is less than conclusive. Cigarette smoking may 
increase the severity of OSA through alterations in sleep architecture, upper airway neuro-
muscular function, arousal mechanisms and upper airway inflammation. And untreated OSA 
may be associated with smoking addiction. The effect of smoking cessation on OSA remains 
to be determined. Future studies are needed in order to establish the strength of the associa-
tion of both conditions [70].

11. Patient-specific therapy and customization of therapy

11.1. Focus on pathophysiology

There has been an increased focus on the importance of pathophysiological factor identifica-
tion for customized therapy in OSA patients and more investigation of different group pheno-
types or individual characteristics to personalize OSA therapy. Differentiated OSA phenotypes 
have been proposed: a small pharyngeal airway with a low resistance to collapse (increased 
critical closing pressure), an inadequate response of pharyngeal dilator muscles (wakefulness 
drive to breathe), an unstable ventilator responsiveness to hypercapnia (high loop gain) and 
an increased propensity to wake related to upper airway obstruction (low arousal threshold) 
[71]. If an accurate pathophysiological pattern for each OSA patient can be identified, custom-
ized—and presumably more effective—therapy would potentially be feasible [71].

A large cohort of 1249 patients (age 47 years; AHI 18.9/h; BMI 27.2 ± 3.7 kg/m2) underwent 
PSG and DISE to determine upper airway (UA) collapse patterns [72]. Palatal collapse was the 
most frequent (81%). Multilevel collapse was noted in 68.2% of patients; the most frequent 
multilevel pattern was a combination of palatal and tongue base collapse (25.5%). The preva-
lence of complete collapse, multilevel collapse and hypopharyngeal collapse increased with 
increasing severity of obstructive sleep apnea (OSA). Multilevel and complete collapses were 
more prevalent in obese patients and in those with more severe OSA. Both higher BMI and 
AHI values were associated with a higher probability of complete concentric palatal collapse. 
However, UA collapse patterns during DISE cannot be fully explained by selected baseline 
polysomnographic and anthropometric characteristics.

Age may play a significant role. A study in which 10 young (20–40 year) and old (60 year and 
older) patients with OSA matched by BMI and sex suggested that airway anatomy/collaps-
ibility plays a relatively greater pathogenic role in older adults whereas sensitive ventilatory 
control system is more prominent trait in younger adults [73].
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It has been suspected for some time that smoking and OSA adversely affect each other, lead-
ing to increased comorbidity; however, this is still a matter of debate. There seems to be a 
synergistic effect between smoking and OSA, which may lead to increase in cardiovascu-
lar morbidity [69]. However, the evidence is less than conclusive. Cigarette smoking may 
increase the severity of OSA through alterations in sleep architecture, upper airway neuro-
muscular function, arousal mechanisms and upper airway inflammation. And untreated OSA 
may be associated with smoking addiction. The effect of smoking cessation on OSA remains 
to be determined. Future studies are needed in order to establish the strength of the associa-
tion of both conditions [70].

11. Patient-specific therapy and customization of therapy

11.1. Focus on pathophysiology

There has been an increased focus on the importance of pathophysiological factor identifica-
tion for customized therapy in OSA patients and more investigation of different group pheno-
types or individual characteristics to personalize OSA therapy. Differentiated OSA phenotypes 
have been proposed: a small pharyngeal airway with a low resistance to collapse (increased 
critical closing pressure), an inadequate response of pharyngeal dilator muscles (wakefulness 
drive to breathe), an unstable ventilator responsiveness to hypercapnia (high loop gain) and 
an increased propensity to wake related to upper airway obstruction (low arousal threshold) 
[71]. If an accurate pathophysiological pattern for each OSA patient can be identified, custom-
ized—and presumably more effective—therapy would potentially be feasible [71].

A large cohort of 1249 patients (age 47 years; AHI 18.9/h; BMI 27.2 ± 3.7 kg/m2) underwent 
PSG and DISE to determine upper airway (UA) collapse patterns [72]. Palatal collapse was the 
most frequent (81%). Multilevel collapse was noted in 68.2% of patients; the most frequent 
multilevel pattern was a combination of palatal and tongue base collapse (25.5%). The preva-
lence of complete collapse, multilevel collapse and hypopharyngeal collapse increased with 
increasing severity of obstructive sleep apnea (OSA). Multilevel and complete collapses were 
more prevalent in obese patients and in those with more severe OSA. Both higher BMI and 
AHI values were associated with a higher probability of complete concentric palatal collapse. 
However, UA collapse patterns during DISE cannot be fully explained by selected baseline 
polysomnographic and anthropometric characteristics.

Age may play a significant role. A study in which 10 young (20–40 year) and old (60 year and 
older) patients with OSA matched by BMI and sex suggested that airway anatomy/collaps-
ibility plays a relatively greater pathogenic role in older adults whereas sensitive ventilatory 
control system is more prominent trait in younger adults [73].
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11.2. Focus on mild OSA

There remains to be a debate about how significant is the effect of mild OSA on adverse 
health outcomes, to the point that unless not accompanied by specific medical conditions or 
symptoms, insurers will not cover therapy. The American Thoracic Society in 2016 published 
a research statement hoping to find answers to this lingering question [74]. The specific goals 
of this statement were to appraise the evidence regarding whether long-term adverse neuro-
cognitive and cardiovascular outcomes are attributable to mild OSA and evaluate whether 
or not treatment of mild OSA is effective at preventing or reducing these adverse outcomes.

Unfortunately, studies were incongruent in their definitions of mild OSA, and data were 
inconsistent regarding the relationship between mild OSA and daytime sleepiness. It was 
concluded that treatment of mild OSA may improve sleepiness in patients who are sleepy at 
baseline and improve quality of life. There was limited or inconsistent evidence pertaining to 
the impact of therapy of mild OSA on other adverse outcomes.

11.3. More focus on perioperative care of OSA patients

The Society of Anesthesia and Sleep Medicine published in 2016 guidelines on preopera-
tive screening and assessment of OSA patients [75]. This guideline emphasizes again the 
increased risks of perioperative complications in patients with OSA and recommended that 
practice groups consider making OSA screening a standard part pre-anesthetic evaluation. 
It did not go as far as recommending cancelling or delaying surgery to diagnose OSA unless 
there is evidence of an associated significant or uncontrolled systemic disease or additional 
problems with ventilation or gas exchange. The use of PAP therapy in previously undiag-
nosed, but suspected OSA patients should be considered case by case. Continued use of 
PAP therapy at previously prescribed settings in OSA is recommended during periods of 
sleep while hospitalized, both preoperatively and postoperatively. These guidelines strongly 
recommended for protocols for known or suspected OSA to be developed by individual 
institutions taking into account the patients’ conditions, extent of interventions and available 
resources.

11.4. More focus on commercial motor vehicle OSA screening and treatment

A recommendation overview of commercial motor vehicle OSA screening and treatment was 
published in 2016. This document goes over prior recommendations and details the small 
differences present in other statements regarding this topic. There is a need for federal regula-
tions to clarify the issue. Among the recommendations by the authors are the following [76]:

Out of service evaluation is recommended when admitted sleepiness while driving, motor 
vehicle collision attributable to falling asleep, ESS score >10, and OSA without objective docu-
mentation of sufficient therapy efficacy and/or adherence for OSA testing. PSG is preferred 
diagnostic test; however, HST may be a reasonable alternative in selected patients based on 
the sleep specialist assessment.

AHI, RDI or REI >20/h are recommended to have treatment. PAP therapy is generally the 
most expeditious treatment available. Surgical evaluation may be considered based on com-
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prehensive assessment findings. Weight loss is recommended as adjunct. AHI, RDI or REI 
≥5/h with sleepiness or sleepiness-related accident should be counseled to initiate treatment 
for OSA.

Documentation of efficacy of therapy is recommended. PAP therapy usage below published 
minimum recommendations (≥4 h for ≥70% of nights) could result in removal from service by 
the certified medical examiner. PAP therapy adherence should be objectively monitored by 
a sleep specialist assessing therapy adherence and efficacy. Printed reports of therapy adher-
ence data should be made available to the certified medical examiner.
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Abstract

Obstructive sleep apnea syndrome (OSAS) is a widely diffused disease associated with 
specific genetics, age, gender, craniofacial and upper airways anatomy, obesity, and 
endocrine conditions, but not with ethnicity profiles. The so‐called neurogenic neuro‐
genic theory of OSAS postulates that the collapse of the upper airways that characterize 
this disease is due to peripheral nerve degeneration that leads to muscle atrophy and 
collapse. This review attempts to summarize the structural and functional changes in 
both the sensory and motor innervation of the walls of the upper air ways in patients 
suffering from OSAS.

Keywords: peripheral neuropathy, nerve fibers, mechanoreceptors, skeletal muscles, 
obstructive sleep apnea syndrome

1. Introduction

Obstructive sleep apnea syndrome (OSAS) is a common chronic disease characterized by 
sleep fragmentation due to apnea‐hypoapnea and repeated arousal [1]. OSAS afflicts 2–4% of 
the population and has a strong genetic component [2]. Moreover, age, gender, craniofacial 
structure and the anatomy of the upper airways (UA), endocrine conditions, and obesity, but 
not ethnicity, are associated with OSAS [3].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Figure 1. Schematic representation of the afferent and efferent innervation of the upper air ways. The mucosa of the 
nasopharynx, oropharynx, and laryngopharynx are primarily supplied by the trigeminus (maxillary division, V2), 
glossopharyngeal (IX), and vagus (X) cranial nerves, respectively, with a minimal contribution of the facial nerve (VII). 
The sensory neurons of these nerves are placed in the parent sensory ganglia and their central processes synapse within 
the trigeminal and tractus solitarius nuclei of the brain stem. These nuclei send the inputs to nuclei whose motoneurons 
are located in the pons trigeminal, facial, ambiguous, and hypoglossal nuclei, and in the anterior horn of the cervical 
spinal cord (C1‐2). Axons from these motor neurons travel through cranial nerves V, VII, IX to XII, and the ansa cervicalis 
and form motor endplates that use acetylcholine for neurotransmission via nicotinic receptors to innervate innervating 
UA muscles (for a more detailed description of these muscles and nerves, see Massey [68]).

The collapse of UA during sleep is the major characteristic of OSAS [4]. Two primary theories 
have been proposed to explain the pathophysiology of OSAS: the obstructive theory, in which 
muscle hypertrophy leads to airway narrowing, and the neurogenic theory, which postulates 
that peripheral nerve degeneration due to vibratory stretch trauma, or systemic diseases, lead 
to muscle atrophy and collapse [5–7]. A progressive local neurogenic lesion caused by repeated 
microtrauma of snoring might be a potential contribution factor for UA collapsibility [8].

The UA size and resistance are tightly regulated by neural mechanisms that control muscles 
and reflexes. The sensory nerve endings in the mucosa and mechanoreceptors of UA walls 
respond to changes in different sensory modalities (light touch, temperature, pressure, pain, 
muscle stretch and proprioception, water and chemical stimuli). Sensory inputs from these 
structures continually streams toward the central nervous system, including respiratory 
centers, which control UA muscles via efferent motor neural outputs [9], thus adjusting the 
contraction of the UA muscles during sucking, swallowing, respiration, speech, and mastica‐
tion, as well as gagging, vomiting, coughing, and snoring reflexes (Figure 1). The structural 
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 support of these reflexes consists of sensory receptors connected with sensory nerve fibers, 
the central synaptic connections that almost always use interneurons, and the efferent path‐
way composed of the motoneurons, innervating the effector organ. The effector organ in a 
somatic reflex is the striated muscle innervated by the α‐motoneurons [10].

2. The neurological theory of OSAS and the upper airways remodeling

In the last decade of twentieth century, Woodson et al. [11] hypothesized that the pathophysi‐
ologic events that lead to the development of airway instability may be secondary to modifica‐
tions in neurologic control, airway morphology, or both. Changes in sensation, muscle structure, 
and physiological properties of UA have been reported in patients with OSAS; these changes 
are referred to as airway remodeling. But whereas the structural and functional properties of 
muscles of OSAS patients have been extensively analyzed [5, 12–14], the motor nerve fibers and 
motor endplates as well as the potential role of sensory nerve impairment in OSAS have not 
been sufficiently investigated [15, 16]. Furthermore, the available data are heterogeneous and 
sometimes contradictory, because of the heterogeneity of the UA muscles, the different nerves 
innervating these muscles and the UA mucosae, and the differences in the methods used.

The nerve and muscle characteristics of OSAS patients may result from complex interactions of 
vibratory stretch trauma, inflammation, and hypoxia [8, 15–20]. It has been proposed that the 
repeated mechanical trauma and/or hypoxemia associated with OSA may lead to sensory and 
motor impairment of upper airway structures [8, 21], or that local nerve lesions due to long‐stand‐
ing snoring vibrations could be the basis of OSAS or its progression [17, 22, 23]. But is the neu‐
ropathy of OSAS, the cause or a consequence of the disease? It is unknown to what extent chronic 
intermittent hypoxemia in OSAS causes damage to the motor and sensory peripheral nerve, but 
muscle action potential and sensory nerve action potential amplitudes are significantly reduced in 
the nerves outside UA in patients with OSAS suggesting that axonal damage exists in patients with 
OSAS to a greater extent than previously thought [24]. On the other hand, association between 
OSAS and sensory neuropathy, and nerve damage outside the UA [18, 25–27], type 2 or type  1A 
diabetic neuropathy, and axonal subtypes of Charcot‐Marie‐Tooth disease [28–31] has been also 
demonstrated. Of particular interest is the epidemiological association between OSAS and ante‐
rior ischemic optic neuropathy [32] although a concluding rapport cannot be established [33].

Thus, there is a large body of evidence that UA neuromuscular abnormalities are frequent 
in OSAS patients, and these altogether support the neurogenic theory of OSAS [5–7, 34]. 
In recent years, multiple studies have demonstrated altered UA sensory input and abnormal 
UA motor function in patients with OSAS using a variety of neurophysiological and histo‐
logical approaches [5, 7, 35–37], and impaired neural function is at least partly reversible with 
treatment for sleep apnea [27].

3. Nerve changes in OSAS

Consistent with the above data, studies on the innervation of the palate‐pharyngeal region in 
OSAS patients have revealed both increased and decreased number of nerves in the mucosa 
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and muscles [8, 13, 38, 39], as well as degenerative changes in myelinated and unmyelinated 
nerve fibers [40], and the degree of sensory neuropathy in UA correlates with the degree of 
OSAS (Figure 2) [41].

3.1. The afferent system: functional and structural data

If the anatomically deeper motor axons are affected by UA vibration, sensory afferents closer 
to the airway surface should also be impaired thus impairing normal inputs for reflex mecha‐
nisms which contribute to the upper airway function. Nevertheless, the evidence supporting 
sensory nerve impairment in OSA is less convincing than that for motor nerves.

The mucosal sensory function is impaired at multiple UA sites in OSAS [16]. Focal degenera‐
tion of myelinated and nonmyelinated nerve fibers, affecting Schwann cells and axons in the 
soft palate and uvula have been demonstrated in OSAS patients [11, 40]. In these UA zones, 
increase in the density of epithelial afferent nerve endings (based on the expression of sub‐
stance P and calcitonin gene‐related peptide) was also observed which is indicative of nerve 
lesion [38]. On the other hand, the afferent information from UA muscles is important in regu‐
lating the masticatory force and oromotor behaviors, but also in the response of important 
reflexes related to speech, swallowing, cough, vomit, or normal breathing [10, 42]. Patients 
with OSAS show a significant reduction in the density of nerve fibers in the submucosa as 
well as morphological abnormalities in mechanosensory corpuscles. Importantly, the muscle 
innervation of nerve fibers expressing ASIC2 and TRPV4 (regarded as two putative mechano‐
proteins) is also reduced in these subjects [43].

Figure 2. Main changes in nerves and muscles in OSAS patients in comparison with non‐OSAS subjects. Data are based 
on the text and the figures are a courtesy of J.A. Vega.
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In addition, and consistently with the above‐mentioned pathological findings, UA sensory 
function has been shown to be impaired in OSAS during wakefulness [13, 15, 16, 44], specially 
patients with OSAS have altered vibration and cold detection thresholds [45, 46]. The respira‐
tory‐related evoked potentials (RREPs) during wakefulness in OSA revealed a reduction in 
the amplitude but not the latency of the early RREP components [44, 47] reflecting sensory 
processing is reduced in the OSA patients [48]. Other studies revealed no changes [49–51].

3.2. The efferent system: functional and structural data

Data regarding the changes in motor nerves during OSAS are scarce. Motor neuron lesions 
and/or direct damage in the muscles [17, 41] as well a decrease [39, 43] or increase [13] in 
the number of nerve fibers have been reported. But most studies have focused directly on 
muscles.

4. Muscle changes in OSAS

Structural changes in skeletal muscles have been studied primarily in the uvula muscles and 
the palatopharyngeal muscle, and the reported changes are very heterogeneous. They include 
focal muscle atrophy and muscle bundle disruption [11, 52], prevalence of angulated mus‐
cle fibers, increased and/or reduction of muscle fibers diameter and variation in fiber type 
grouping [14, 23, 53–57], atrophic and hypertrophic muscle fibers [8, 52, 58], changes in mito‐
chondria content [14], enzymatic changes [56], and increased neural cell adhesion molecule 
expression by muscle cells [13].

Another characteristic of the UA muscles is the high percentage disproportion of glycolytic 
fast twitch of type II muscle fibers compared with non‐OSA control subjects [12, 14, 55, 59–62], 
a difference that may represent an adaptive response to mechanical strain and/or neuronal 
activity. In this way, the over expression of N‐CAM is suggestive of collateral nerve sprout‐
ing, reflected in the hyperinnervation that present these muscles [13]. Vascular enlargement, 
fibrosis, edema, inflammatory cells, and infiltration have also been reported. There is also 
increased fat in and around the muscles of the UA in patients with OSA [63].

However, all these changes in muscle fibers are not a major contributing factor to OSAS 
pathogenesis in most patients [20].

In addition to the structural changes, the UA muscles also show electrophysiological changes 
in OSAS. Patients with OSA have higher levels of multiunit electromyographic activity (EMG) 
recorded in the UA muscles compared to healthy control subjects presumably secondary to 
neurogenic remodeling. This is characterized by chronic partial denervation of muscle fibers, 
with reinnervation of the orphaned muscle fibers by collateral sprouting of surviving motor 
axons [13, 60, 64–66]. The apparent increase in drive was ascribed to a neural compensation 
for a narrow UA.

Recent investigations using single motor unit techniques have shown that the motor unit 
potentials of upper airway muscles in OSA patients are larger in area, longer in duration, and 
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more complex [7, 23, 37]. These changes could contribute to the increased multiunit EMG in 
OSAS. However, the presence of denervation and subsequent axonal sprouting may lead to 
changes in fine motor control such as speech [67].

5. Concluding remarks and future perspectives

The involvement of the peripheral nervous system and muscles in the pathogenesis of OSAS 
is now accepted. Nevertheless, large have been reported presumably due to the method‐
ological differences used to evaluate both the pathological and functional changes in UA of 
patients suffering from OSAS. So, whereas some researchers found decrease in the density 
of nerve fibers [39, 40, 43] some others have found increased numbers of nerve fibers in 
the mucosa and muscles [13, 38]. These discrepancies can be related to the zones of the UA 
sampled or the muscles analyzed. And more importantly, no specific markers for sensory 
or motor nerve fibers were used in these studies. Another important aspect is the studies 
about the state of motor end‐plates in OSAS. Thus, further studies are required to elucidate 
the role of upper airway sensory and motor impairment in modulating disease progression 
or severity.
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Abstract

Sleep apnea-hypopnea syndrome (SAHS) is a chronic and highly prevalent disease con-
sidered a major health problem in industrialized countries. The gold standard diagnos-
tic methodology is in-laboratory nocturnal polysomnography (PSG), which is complex, 
costly, and time consuming. In order to overcome these limitations, novel and simplified 
diagnostic alternatives are demanded. Sleep scientists carried out an exhaustive research 
during the last decades focused on the design of automated expert systems derived from 
artificial intelligence able to help sleep specialists in their daily practice. Among auto-
mated pattern recognition techniques, artificial neural networks (ANNs) have demon-
strated to be efficient and accurate algorithms in order to implement computer-aided 
diagnosis systems aimed at assisting physicians in the management of SAHS. In this 
regard, several applications of ANNs have been developed, such as classification of 
patients suspected of suffering from SAHS, apnea-hypopnea index (AHI) prediction, 
detection and quantification of respiratory events, apneic events classification, auto-
mated sleep staging and arousal detection, alertness monitoring systems, and airflow 
pressure optimization in positive airway pressure (PAP) devices to fit patients’ needs. In 
the present research, current applications of ANNs in the framework of SAHS manage-
ment are thoroughly reviewed.

Keywords: sleep apnea-hypopnea syndrome, pattern recognition, automated 
biomedical signal processing, artificial neural networks, multilayer perceptron, feed-
forward back-propagation, Bayes theory
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1. Introduction

In their daily practice, physicians must frequently decide a definitive diagnosis or the most 
suitable treatment using several variables from multiple clinical data sources, which is a 
highly complex task. A huge amount of valuable healthcare-related information is currently 
available, from symptoms reported by the patient and details stored in their clinical history 
to biochemical data and outcomes from biomedical recordings or medical images. In this 
context, machine learning methods are essential to maximize the usefulness of medical data 
in order to expedite decisions and avoid misdiagnosis. In the last decades, the increasing 
development of computers and artificial intelligence has led to the use of decision support 
expert systems in the common clinical practice of several fields of medicine [1, 2]. The huge 
number of studies published in the context of biomedical engineering during the last years 
clearly shows this trend.

Bayesian theory was one of the first mathematical frameworks used to implement decision 
support systems. Regarding the classification of an item, according to the Bayes’ decision 
rule, the predicted class must be the one that maximizes a posteriori probability in order to 
minimize the classification error. A major goal is to model the statistical characteristics of the 
problem under study, leading to expert systems able to assist physicians in decision-making 
processes. Among pattern recognition algorithms, conventional statistical classifiers, such 
as discriminant analysis [3] or logistic regression (LR) [4], and more recently artificial neu-
ral networks (ANNs) [5], have been widely applied. The widely known statistical classifiers 
assume that the class density function of input data is known a priori. Assumptions such as 
normal distribution, homoscedasticity, linearity, independency, or stationarity decrease the 
complexity of the classifier, minimize the classification error, and improve the performance. 
Nevertheless, these assumptions are not always consistent in real-world pattern classification 
problems, especially when working with limited datasets. Conversely, when using ANNs, no 
assumptions are made about the probability density functions of input features and the train-
ing data is used directly to optimize the decision rule [6]. Nevertheless, ANNs are character-
ized by a complex design stage. Both statistical and ANNs approaches have its advantages 
and limitations. However, the ability to model complex nonlinear problems, which are very 
common in biological systems, have made ANNs widely used in medical applications.

The first attempt to model information processing in biological systems by means of ANNs 
was carried out by McCulloch and Pitts in 1943 [7]. Since then, ANN-based algorithms have 
significantly evolved and their use in the field of medicine has increased considerably, par-
ticularly since the late 1990s. Some computer programs in the context of statistical medicine 
already include ANNs among their functionalities, which has contributed to increase their 
use in medical research. Nevertheless, “neural network” remains frequently a confusing term 
for many healthcare-related researchers. The implementation of an ANN has to be carried out 
by means of advanced software and some expertise is required to set up properly the user-
dependent input parameters. However, once designed, they are reliable and easy to use tools, 
even by nontrained personnel. In addition, once optimized, the computational time is small, 
which is a major feature in order to speed up decision making.
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Sleep research and particularly sleep-related breathing disorders (SBD) is a field in which the 
application of automated pattern recognition algorithms has increased exponentially during 
the last years due to the need for automating their complex diagnostic processes. Particularly 
challenging is the management of sleep apnea-hypopnea syndrome (SAHS). The gold stan-
dard technique for SAHS diagnosis is in-lab nocturnal polysomnography (PSG). During PSG, 
several neuromuscular and cardiorespiratory signals (up to 32 biomedical recordings) are 
monitored and stored for subsequent interpretation by trained personnel, which is a highly 
complex and time-consuming task [8]. In addition, accessibility to diagnosis and treatment 
is limited due to insufficient resources, both human (trained specialists) and technical (spe-
cialized sleep units), which have led to large waiting lists [9]. In this context, automated 
computer-aided diagnosis systems have emerged as very useful tools to deal with complex 
rules involving several biomedical recordings simultaneously, in order to expedite diagnosis 
and treatment [10–12]. Among all the machine learning-based tools, ANNs have been widely 
applied in the context of SAHS and merit a thorough analysis.

In order to analyze the usefulness of ANNs in the management of SAHS, an exhaustive review 
of the studies published during the past decade has been carried out. The review is structured 
as follows. First, the most relevant tasks regarding the ANNs learning process are outlined 
in Section 2. In this regard, some user-dependent decisions involving the ANN design and 
major issues concerning the training and testing processes are detailed. Second, in Section 3, 
the most relevant applications of ANNs are analyzed, including automated diagnosis, sleep 
staging, and treatment monitoring.

2. Artificial neural networks

ANNs are mathematical models inspired in the information processing capabilities of the ner-
vous system designed to accomplish a predetermined task specified by the user [13, 14]. They 
were built to implement useful brain functions into a pattern recognition algorithm, such 
as parallel processing, distributed memory/storage, and environmental flexibility. ANNs are 
characterized by a fast and effective processing, learned from a preceding training process. 
During the learning or training stage, a wide set of known representative samples are used in 
order to model the statistical properties of the problem under study and accordingly compose 
the structure of the network. Figure 1 illustrates a common network architecture of intercon-
nected nodes arranged in layers simulating the brain’s neuronal synapses.

The following advantages can be obtained when ANNs are applied for pattern recognition 
problems: (i) no prior assumptions about the data distribution are made as ANNs adjust 
themselves to the particular problem constrains during the learning process [15], (ii) ANNs 
are universal estimators able to match any function with arbitrary accuracy [16], and (iii) they 
are nonlinear algorithms able to model real-world complex relationships [15].

There are two major classes of ANNs: feedforward multilayered networks and radial basis 
function (RBF) networks. Both types of ANNs are capable of approximating any continuous 
functional mapping by means of several units (neurons) arranged in different layers [17]. The 
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main difference is the way hidden units are activated, i.e., how the input data is used to com-
pute the output of each unit. In feedforward ANNs, there is a fixed (usually nonlinear) activa-
tion function, whereas in RBF ANNs, the activation of each unit depends on the radial distance 
(typically Euclidean) between the input vector and a prototype vector (center) [18].

The multilayer perceptron (MLP) is the most widely used feedforward ANN in computer-aided 
medical research. Indeed, feedforward networks, particularly MLP, are the most popular ANN 
in the framework of SAHS management [19–21]. A particular implementation of MLP networks 
involving Bayesian inference during the learning process (BY-MLP), which increase the gen-
eralization ability and allow for relevance analysis of input variables, has demonstrated to be 
useful in this context [22]. Similarly, probabilistic neural networks (PNN), which also integrates 
the Bayes’ theory into the learning process, have been recently applied in the SAHS diagnosis 
problem [23]. In addition, RBF ANNs [24, 25], such as learning vector quantization (LVQ), which 
is a precursor of self-organizing maps using the Hebbian learning-based approach [26, 27]; fuzzy 
neural networks (FNN), which incorporate the fuzzy inference system (FIS) into the learning 
process [26, 28, 29]; self-organizing maps (SOM) and adaptive resonance theory (ART) models, 
which are likely the most common unsupervised ANNs [30, 31]; and recurrent neural networks 
(RNN), which allow for closed-loop connections between units (feedback) [32], have been also 
applied in the framework of automated SAHS management.

Next, an overview of the conventional multilayered network architecture is provided, as well as the 
most important issues regarding the design, training, and validation stages common to all approaches 
in the ANN-based framework. Figure 2 shows a flow diagram summarizing these stages.

2.1. Network design: architecture of a neural network

The so-called neuron is the basic element within an ANN, which comprises its elementary 
mathematical functions [17]. ANNs are composed of multiple interconnected nodes arranged 
in different levels or layers leading to a massive parallel structure. The first level is called the 

Figure 1. Common network architecture of interconnected nodes arranged in three layers (input, hidden, and output) 
simulating the brain’s neuronal synapses.
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Figure 2. Flow diagram summarizing the training, validation, and test stages, as well as the most important issues 
involved in the design of an ANN.
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input layer. Neurons in the input layer process directly the feature vectors or patterns that 
feed the ANN. Similarly, each output from every neuron in a layer feeds neurons composing 
the subsequent layer, leading to a distributed complex structure. The last level of the network, 
whose nodes provide the output of the ANN, is called the output layer. The remaining inter-
nal levels are called hidden layers. Both the number of hidden layers and the number of nodes 
are flexible and are determined during the learning process. The feedforward architecture is 
the most widely used, where each neuron in a layer is connected to every neuron on the next 
layer but neither connections between units in the same level nor closed-loops (feedback) are 
allowed. Therefore, data is always moving forward from one layer to the next, i.e., from the 
input to the output.

There is not a predetermined network architecture known to be a priori the best for any prob-
lem under study in terms of performance. The mathematical operation accomplished by each 
neuron is always the same. Therefore, the functionality of the ANN, i.e., the way in which 
a particular problem is addressed, is determined by the strength of the link between each 
pair of neurons. This strength is characterized by the coefficients of the ANN, the so-called 
weights, which are optimized during the training stage. Similar to the process of memory, 
weights represent the information stored in the network, whereas the optimization procedure 
represents the learning process or statistical inference [18].

As aforementioned, the structure of an ANN depends on the number of hidden layers, the num-
ber of neurons per layer, and the connectivity strength among them. Regarding the number of 
levels, it is common to construct ANNs with a single hidden layer because it has been dem-
onstrated that this architecture is able to achieve universal approximation [33]. This is a user-
dependent decision, whereas the number of neurons and the connectivity degree (weights) 
are both determined automatically during the learning process. Regarding the number of 
nodes in the hidden layer, it is commonly optimized by means of a hold-out or cross-validation 
approach using the data in a training dataset. In this regard, it is supposed that the complex 
the problem, the higher the number of neurons. Notwithstanding, even a small network with 
a reduced number of nodes can model complex problems and reach high prediction ability. In 
addition, the following design issues must be addressed before the learning process [17]: the 
output coding scheme, the error function used in the network training, and the activation func-
tion of neurons in the hidden and output layers. The hyperbolic tangent function is a common 
activation function for neurons in the hidden layer since it has been demonstrated that it pro-
vides fast convergence of training algorithms [13, 17]. Figure 3 shows a common schema of a 
single neuron (perceptron) with a sigmoid activation function. Regarding the learning process, 
the scale conjugate gradient (SCG) is a common method for updating the adjustable parameters 
of the ANN (weights and biases) during the training stage.

2.1.1. Classification and regression approaches

According to the mathematical nature of the output, ANNs can be applied to address two 
main kinds of problems: classification and regression. Regarding the classification approach, 
the goal of the ANN is to estimate the class membership for an input feature pattern among a 
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set of predefined discrete categories. Conversely, in a regression task, the goal of the ANN is 
to estimate a continuous variable.

In the context of binary classification problems, an output layer with just a single neuron is 
needed. Regarding, for instance, a 2-class SAHS diagnosis problem, all input patterns are 
assigned to one of two mutually exclusive classes: SAHS positive (class C0 or positive class) 
or SAHS negative (class C1 or negative class). A possible target coding scheme would be the 
following: t = 0 for the positive class and t = 1 for the negative class. This architecture can be 
used also in regression problems, where the variable to be approximated is unidimensional 
and continuous. In the context of SAHS diagnosis, the goal of a regression ANN could be to 
estimate the apnea-hypopnea index (AHI).

Due to a highly flexible architecture, most of the ANNs can be used to model both classifica-
tion and regression problems by just modifying certain design characteristics [17]. The main 
difference between classification and regression ANNs is linked with the nature of the function 
to be approximated. The output of an ANN is provided in terms of probability in a classifica-
tion task while it is an estimate of a continuous variable in a regression context. Accordingly, 
optimization procedures differ from one approach to another. Regarding a binary classification 
approach, the activation function of the output neuron could be a nonlinear function with out-
put values ranging [0, 1], e.g., sigmoid functions such as the logistic or the hyperbolic tangent. 
In this regard, the network output can be interpreted as the probability that the input feature 

Figure 3. Scheme of a perceptron. A nonlinear activation function φ(∙) is applied to the weighted sum of the input 
features (xn) and the bias term (bj) in order to compute the output (yk).

Usefulness of Artificial Neural Networks in the Diagnosis and Treatment of Sleep Apnea-Hypopnea Syndrome
http://dx.doi.org/10.5772/66570

39



pattern belongs to one class or another according to the Bayes’ theorem. Conversely, addressing 
a regression task, the network output values must be continuous and nonnegative. Therefore, a 
linear activation function ranging [0, ∞) would be suitable.

Regarding the error function governing the learning process, the cross-entropy error function 
is widely used in the context of binary classification, whereas the sum-of-squares error func-
tion is commonly used for regression purposes [17].

2.1.2. Standardization of input patterns

Normalization of input feature values is an important task in nonlinear pattern recognition 
methods [34]. Bounded similar input magnitudes are needed to accomplish suitable weight 
initialization. Input patterns are composed of features parameterizing different properties 
of the problem under study, e.g., the influence of recurrent apnea events typical of SAHS on 
cardiorespiratory signals. Usually, several features of different nature are involved in order 
to obtain as much information as possible, e.g., sociodemographic, anthropometric, clinical, 
and/or variables from automated feature extraction algorithms. Therefore, their values may 
differ significantly and thus they must be normalized. In this regard, simple linear rescaling 
can be used to standardize (zero mean and unit variance) the magnitudes of each input fea-
ture by subtracting its mean and dividing by its standard deviation.

2.2. The training process: learning the problem under study

Training is the most important stage when working with ANNs. The aim of the training process 
is to adapt the ANN to the problem under study by computing some adjustable parameters. 
The training or learning process can be (i) supervised, in which the learning process is guided 
by a static mapping between input patterns and known targets; (ii) reinforced, in which a per-
formance function assesses the accuracy of the current output instead of knowing the actual 
target values; and (iii) unsupervised, in which ANNs adapt themselves to input patterns with 
no kind of feedback [35]. In the context of medical decision support systems, the supervised 
approach is the most widely used. When using supervised learning, it is essential to know the 
target or actual output value for a wide set of input patterns. The dataset of examples used dur-
ing the learning stage is referred to as the training set. According to this training input-output 
pairs, the network weights are tuned to fit the input to its corresponding target. It is important 
that the training set would be large enough to represent fairly the problem under study.

The backpropagation learning is the most commonly used methodology for updating weights 
in feedforward ANNs due to its computational efficiency [17]. Using this approach, all weights 
are updated every time an input pattern is fed from the training dataset in order to minimize an 
error function. First, the network weights are initialized randomly. During a supervised learning 
process, the training samples (input-target pairs) are fed into the network and the error function is 
computed, i.e., the difference between the estimated output value and the desired target accord-
ing to a predefined suitable function. Then, the values of the network weights are modified in 
order to minimize the error. This procedure is repeated throughout several iterations, which are 
set by the user. Once the training process is finished, all network weights already have a fix value, 
i.e., there is a single optimized ANN able to carry out the task for which it was designed.
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2.2.1. Generalization ability and the problem of overfitting

Once optimized, an ANN is able to process new input patterns independent of the training 
dataset. In this regard, it is noteworthy that the goal of the training stage must be to build a 
general statistical model of the problem under study rather than to learn data samples from 
a particular training set. This is an essential characteristic common to all pattern recognition 
techniques and it is required to achieve good generalization ability. Generalization accounts 
for the ability to make good predictions for new unknown inputs [17].

In addition to the user’s capability to accomplish appropriate design and optimization pro-
cedures, the performance or generalization ability of an ANN is influenced by three main 
factors [13, 36]: (i) the size and completeness of the training dataset, i.e., whether the learn-
ing samples account for all the variability of the environment or problem of interest; (ii) the 
number of adjustable parameters in the model; and (iii) the complexity of the problem under 
study. The nature of the problem or model complexity is linked with the number of adjust-
able parameters in the ANN (network weights) and it cannot be controlled. Theoretically, the 
harder the problem, the more complex the ANN. In this regard, it is important to achieve a 
compromise between the generalization ability and complexity. An ANN with a small num-
ber of parameters, i.e., low flexibility, may lead to an underfitted model, insufficient to reach 
high generalization. On the contrary, an ANN with a large number of weights may lead to 
an overfitted model that matches a particular training dataset, resulting in poor generaliza-
tion. Underfitting can be avoided by increasing the flexibility, whereas overfitting requires the 
training set to grow accordingly to the network complexity [13].

In the same way, the optimization of an ANN is closely related to the bias-variance trade-
off. A too simple or inflexible model will have a large bias and may lead to underfitting. 
Conversely, models with a high variance provide high flexibility but could adapt to the noise 
present in the training set, leading to overfitting. Bias and variance are both complementary 
characteristics and thus the best generalization is obtained when a compromise between the 
conflicting requirements of small bias and small variance is achieved [15, 17].

A way to reduce both bias and variance simultaneously is to increase the number of train-
ing samples. As a result, model complexity increases, which minimizes the bias. At the same 
time, constrains imposed by the training data will be more rigorous, thereby also reducing 
variance. As mentioned earlier, to achieve this goal the size of the training set should increase 
in accordance with model complexity [17]. Nevertheless, this requirement cannot always be 
achieved in real-world applications because the size of the training set is usually fixed and 
limited. Therefore, finding the optimum model complexity is a major issue. In order to deal 
with this optimization problem, a new trade-off arises: simpler models are preferred but 
smoothing mapping is needed to prevent from poor generalization [13, 17]. In this regard, 
regularization techniques allow the ANN to control the effective complexity of the model 
by reducing the number of adjustable parameters during the training set. Weight decay and 
early stopping are common approaches of regularization. Weight decay is probably the most 
widely used, consisting on adding a penalty term to the error function in order to penalize 
complex mappings.
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An additional issue regarding the training sample size is called the course of dimensionality 
[17]. This term refers to the relationship between the size of the training set and the dimen-
sion of the feature space, i.e., the number of variables in the input feature vector. The course of 
dimensionality states that the number of training samples needed to characterize the under-
lying problem grows exponentially as the number of input features increases. Therefore, the 
size of the training dataset must also increase according to the input space dimension in order 
to enhance generalization ability and avoid overfitting [18].

As previously stated, the size of the training set in real-world applications is fixed and usu-
ally limited, especially in the field of medicine. In this regard, dimensionality reduction tech-
niques contribute to address the problem of overfitting due to the curse of dimensionality. 
An ANN fed with fewer input features needs to optimize fewer parameters (weights) and 
these are more likely to be properly characterized by a limited training dataset. The aim of 
dimensionality reduction algorithms is to compose a reduced subset of the most significant 
features governing a model. To achieve this goal, a fitness metric (relevancy, redundancy, 
completeness, or accuracy, among others) is used to obtain the optimum feature subset. There 
are several feature selection methodologies but principal component analysis and stepwise 
feature selection are likely the most widely used in medical applications.

2.3. Validation and test processes: model selection and performance assessment

In order to estimate the actual prediction ability of an ANN, the learning, model selection, and 
performance assessment stages must be carried out using independent datasets, i.e., the so-called 
training, validation, and test datasets. The goal of model selection is to obtain the optimum net-
work configuration by comparing the performance of several ANNs with different values of the 
design parameters, i.e., number of neurons in the hidden layer and usually the regularization 
parameter. The hold-out method is commonly used for this purpose because it avoids a biased 
estimation of the results [36]. In the hold-out method, the initial population/dataset is split into 
three independent groups for training, validation, and testing purposes. The network weights 
are adjusted in the training set for different configurations of the adjustable parameters specified 
by the researcher, i.e., multiple ANNs are really trained, whereas the performance of each indi-
vidual ANN is computed in the validation set to determine the optimum ANN for the problem 
under study. Since there is a random initialization of weights, the training process is frequently 
repeated several times to avoid a potential bias linked with this arbitrary decision. Thus, the per-
formance metric for model selection from the validation set is averaged across all the repetitions. 
Nevertheless, this procedure can lead also to some overfitting so the selected optimum ANN has 
to be further assessed in an independent test set composed of unseen data samples [17].

It is worth to notice that, unfortunately, several studies from the literature do not implement 
a suitable validation of their proposed methodology, providing biased overoptimistic results 
[37]. On the other hand, sometimes the initial dataset is not large enough to properly derive 
the three independent subpopulations. In such cases, cross-validation techniques allow for 
training and validating the models in the same training set without biasing the selection of 
the optimum model. Bootstrap, leave-one-out, and k-fold cross-validation are common algo-
rithms to deal with small populations under study.
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An additional issue regarding the training sample size is called the course of dimensionality 
[17]. This term refers to the relationship between the size of the training set and the dimen-
sion of the feature space, i.e., the number of variables in the input feature vector. The course of 
dimensionality states that the number of training samples needed to characterize the under-
lying problem grows exponentially as the number of input features increases. Therefore, the 
size of the training dataset must also increase according to the input space dimension in order 
to enhance generalization ability and avoid overfitting [18].

As previously stated, the size of the training set in real-world applications is fixed and usu-
ally limited, especially in the field of medicine. In this regard, dimensionality reduction tech-
niques contribute to address the problem of overfitting due to the curse of dimensionality. 
An ANN fed with fewer input features needs to optimize fewer parameters (weights) and 
these are more likely to be properly characterized by a limited training dataset. The aim of 
dimensionality reduction algorithms is to compose a reduced subset of the most significant 
features governing a model. To achieve this goal, a fitness metric (relevancy, redundancy, 
completeness, or accuracy, among others) is used to obtain the optimum feature subset. There 
are several feature selection methodologies but principal component analysis and stepwise 
feature selection are likely the most widely used in medical applications.

2.3. Validation and test processes: model selection and performance assessment

In order to estimate the actual prediction ability of an ANN, the learning, model selection, and 
performance assessment stages must be carried out using independent datasets, i.e., the so-called 
training, validation, and test datasets. The goal of model selection is to obtain the optimum net-
work configuration by comparing the performance of several ANNs with different values of the 
design parameters, i.e., number of neurons in the hidden layer and usually the regularization 
parameter. The hold-out method is commonly used for this purpose because it avoids a biased 
estimation of the results [36]. In the hold-out method, the initial population/dataset is split into 
three independent groups for training, validation, and testing purposes. The network weights 
are adjusted in the training set for different configurations of the adjustable parameters specified 
by the researcher, i.e., multiple ANNs are really trained, whereas the performance of each indi-
vidual ANN is computed in the validation set to determine the optimum ANN for the problem 
under study. Since there is a random initialization of weights, the training process is frequently 
repeated several times to avoid a potential bias linked with this arbitrary decision. Thus, the per-
formance metric for model selection from the validation set is averaged across all the repetitions. 
Nevertheless, this procedure can lead also to some overfitting so the selected optimum ANN has 
to be further assessed in an independent test set composed of unseen data samples [17].

It is worth to notice that, unfortunately, several studies from the literature do not implement 
a suitable validation of their proposed methodology, providing biased overoptimistic results 
[37]. On the other hand, sometimes the initial dataset is not large enough to properly derive 
the three independent subpopulations. In such cases, cross-validation techniques allow for 
training and validating the models in the same training set without biasing the selection of 
the optimum model. Bootstrap, leave-one-out, and k-fold cross-validation are common algo-
rithms to deal with small populations under study.
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3. Clinical applications of NNs in the context of sleep apnea-hypopnea 
syndrome

ANNs have been applied to model problems in several fields, such as industrial processes 
optimization, economic and financial modeling, chemistry, physics, biology, or medicine, 
among others [38–42]. In the framework of SAHS management, automated expert systems 
based on ANNs have been mainly applied to classify patients suspected of suffering from 
SAHS (binary classification: no SAHS vs. SAHS), to categorize the severity of the disease 
(multiclass classification: no SAHS, mild, moderate, and severe), to estimate the AHI (regres-
sion of a continuous variable), to detect and quantify respiratory events (normal breathing vs. 
apneic), and to categorize apneic events (central, obstructive, and mixed). ANNs have been 
also used to implement automated sleep staging and arousal detection, which are very useful 
functionalities incorporated in current commercial software applications for sleep analysis. In 
addition, ANNs play an important role in alertness monitoring systems and they are already 
integrated in positive airway pressure (PAP)-based treatment devices to fit user’s airflow 
needs, which are major issues for patients suffering from SBDs.

Most research in the field of SAHS focus on binary classification in order to determine the 
presence or absence of the disease. Similarly, some studies also applied ANNs for multiclass 
classification in order to characterize SAHS severity according to predefined discrete catego-
ries. Conversely, despite of its higher information about the severity of the disease, only a few 
studies have been carried out to estimate the AHI using a regression approach (continuous 
function).

Regarding the nature of the input data, ANNs aimed at assisting in SAHS diagnosis first 
used anthropometric and clinical features to compose input patterns [19, 43]. However, the 
increasing research in the context of biomedical signal processing allows physicians to derive 
essential information directly from signals monitored during the PSG [44]. In this regard, 
blood oxygen saturation (SpO2) from oximetry and heart rate variability (HRV) from electro-
cardiogram (ECG) are the most widely used. In addition, airflow from both thermistor and 
nasal pressure, abdominal and chest movements, snoring sounds, and EEG have been also 
studied. Alternatively, in order to avoid sleep studies, automated signal processing of speech 
recordings and even image analysis for facial recognition have been also assessed as an alter-
native to PSG-derived signals to assist in the detection of SAHS.

The main goal of computer-aided tools for SAHS management is to simplify and speed up the 
diagnostic methodology, in order to alleviate large waiting lists and increase accessibility of 
patients to diagnostic resources. Current research focuses on analyzing a reduced set of bio-
medical recordings, which are preferably obtained at patient’s home using existing commercial 
portable devices. Therefore, powerful tools are needed to obtain as much information as possible 
from this reduced subset of signals. In this regard, ANNs allow researchers to manage several 
features derived from the signals under study and thus they are suitable and reliable tools to 
help physicians in the diagnosis of SAHS. In order to obtain complementary information, differ-
ent automated signal processing methods have been applied, such as common statistics (mean, 
median, variance, skewness, kurtosis), time domain analyses (detection and quantification of 
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respiratory events), frequency domain analyses (Fourier analysis, time-frequency maps, wavelet 
transform, bispectrum), and/or nonlinear methods (entropy measures, Poincaré plots, complex-
ity measures), among others, both individually or jointly.

3.1. SAHS diagnosis by means of ANNs

ANNs were first used in the context of SAHS detection in the late 1990s, when Kirby et al. [43] 
and El-Solh et al. [19] carried out retrospective analyses aimed at designing ANNs based on 
clinical and anthropometric variables from patients showing clinical suspicion of SAHS. Table 
1 summarizes the main characteristics of significant studies carried out during the last decade 
focused on applications of ANNs aimed at assisting in SAHS diagnosis. In the study by Kirby 
et al. [43], 23 clinical variables fed a generalized regression neural network (GRNN), which 
is a kind of RBF network, for binary classification (SAHS vs. no SAHS). The authors reported 
98.9% sensitivity, 80.0% specificity, and 91.3% accuracy (86.8–95.8, CI 95%). Similarly, El-Solh 
et al. [19] used clinical and anthropometric variables in order to estimate the AHI by means of 
a MLP ANN. Using cutoffs of 10, 15, and 20 events per hour (e/h) for a positive diagnosis of 
SAHS, the sensitivity-specificity pairs were 94.9–64.7%, 95.3–60.0%, and 95.5–73.4%, respec-
tively. Both studies achieved significantly high sensitivity but poor to moderate specificity, 
which is a common trend of pattern recognition techniques in the context of SAHS.

Recent studies have built updated predictive models based on anthropometric and clinical data, 
since characteristics of patients referred nowadays to sleep units have changed compared to those 
of patients in the last decade. In this regard, Su et al. [45] proposed the multiclass Mahalanobis-
Taguchi system (MMTS) and used both anthropometric information and questionnaire data 
in order to classify patients into normal subjects or mild, moderate, or severe SAHS patients. 
Additionally, LR, conventional feed-forward backpropagation FFBB and LVQ ANNs, support 
vector machines (SVM), C4.5 decision tree (DT), and rough set (RS) were also applied for com-
parison purposes. The proposed MMTS significantly outperformed the competing classifiers, 
reaching an average accuracy of 84.38% (normal: 87.50%; mild: 66.67%; moderate: 100%; severe: 
83.33%). Particularly, FFBB and LVQ ANNs reached 34.04% (normal: 25.00%; mild: 33.33%; mod-
erate: 11.11%; severe: 66.70%) and 47.22% (normal: 50.00%; mild: 16.67%; moderate: 22.22%; severe: 
100%) overall accuracy, respectively. Similarly, in a recent study carried out by Wang et al. [27] 
several automated classifiers fed with anthropometric and questionnaire-based variables were 
also assessed to predict SAHS. The authors propose a novel classifier based on fuzzy decision trees 
(FDT) to detect SAHS. In addition, LR, ANNs (backpropagation and LVQ), a SVM, and a conven-
tional DT were used as benchmarks for comparison purposes. The proposed FDT achieved the 
highest performance (81.82% accuracy, 0.554 kappa, and 0.673 geometric mean). However, a syn-
thetic oversampling approach (SMOTE) was used to deal with the common imbalance between 
SAHS positive and SAHS negative classes, which was not used in the remaining benchmark 
methods. Without SMOTE, FDTs slightly outperformed the backpropagation ANN (48.22% vs. 
47.53% accuracy, 0.186 vs. 0.175 kappa, and 0.300 vs. 0.288 geometric mean), whereas the highest 
precision was achieved by the conventional LR approach (49.57% accuracy, 0.207 kappa, and 0.320 
geometric mean). Karamanli et al. recently assessed a MLP ANN trained to classify healthy and 
SAHS patients using sex, age, BMI, and snoring status as input variables, reporting 86.6% accu-
racy [21]. Nevertheless, it is important to highlight that input features derived automatically from 
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respiratory events), frequency domain analyses (Fourier analysis, time-frequency maps, wavelet 
transform, bispectrum), and/or nonlinear methods (entropy measures, Poincaré plots, complex-
ity measures), among others, both individually or jointly.

3.1. SAHS diagnosis by means of ANNs

ANNs were first used in the context of SAHS detection in the late 1990s, when Kirby et al. [43] 
and El-Solh et al. [19] carried out retrospective analyses aimed at designing ANNs based on 
clinical and anthropometric variables from patients showing clinical suspicion of SAHS. Table 
1 summarizes the main characteristics of significant studies carried out during the last decade 
focused on applications of ANNs aimed at assisting in SAHS diagnosis. In the study by Kirby 
et al. [43], 23 clinical variables fed a generalized regression neural network (GRNN), which 
is a kind of RBF network, for binary classification (SAHS vs. no SAHS). The authors reported 
98.9% sensitivity, 80.0% specificity, and 91.3% accuracy (86.8–95.8, CI 95%). Similarly, El-Solh 
et al. [19] used clinical and anthropometric variables in order to estimate the AHI by means of 
a MLP ANN. Using cutoffs of 10, 15, and 20 events per hour (e/h) for a positive diagnosis of 
SAHS, the sensitivity-specificity pairs were 94.9–64.7%, 95.3–60.0%, and 95.5–73.4%, respec-
tively. Both studies achieved significantly high sensitivity but poor to moderate specificity, 
which is a common trend of pattern recognition techniques in the context of SAHS.

Recent studies have built updated predictive models based on anthropometric and clinical data, 
since characteristics of patients referred nowadays to sleep units have changed compared to those 
of patients in the last decade. In this regard, Su et al. [45] proposed the multiclass Mahalanobis-
Taguchi system (MMTS) and used both anthropometric information and questionnaire data 
in order to classify patients into normal subjects or mild, moderate, or severe SAHS patients. 
Additionally, LR, conventional feed-forward backpropagation FFBB and LVQ ANNs, support 
vector machines (SVM), C4.5 decision tree (DT), and rough set (RS) were also applied for com-
parison purposes. The proposed MMTS significantly outperformed the competing classifiers, 
reaching an average accuracy of 84.38% (normal: 87.50%; mild: 66.67%; moderate: 100%; severe: 
83.33%). Particularly, FFBB and LVQ ANNs reached 34.04% (normal: 25.00%; mild: 33.33%; mod-
erate: 11.11%; severe: 66.70%) and 47.22% (normal: 50.00%; mild: 16.67%; moderate: 22.22%; severe: 
100%) overall accuracy, respectively. Similarly, in a recent study carried out by Wang et al. [27] 
several automated classifiers fed with anthropometric and questionnaire-based variables were 
also assessed to predict SAHS. The authors propose a novel classifier based on fuzzy decision trees 
(FDT) to detect SAHS. In addition, LR, ANNs (backpropagation and LVQ), a SVM, and a conven-
tional DT were used as benchmarks for comparison purposes. The proposed FDT achieved the 
highest performance (81.82% accuracy, 0.554 kappa, and 0.673 geometric mean). However, a syn-
thetic oversampling approach (SMOTE) was used to deal with the common imbalance between 
SAHS positive and SAHS negative classes, which was not used in the remaining benchmark 
methods. Without SMOTE, FDTs slightly outperformed the backpropagation ANN (48.22% vs. 
47.53% accuracy, 0.186 vs. 0.175 kappa, and 0.300 vs. 0.288 geometric mean), whereas the highest 
precision was achieved by the conventional LR approach (49.57% accuracy, 0.207 kappa, and 0.320 
geometric mean). Karamanli et al. recently assessed a MLP ANN trained to classify healthy and 
SAHS patients using sex, age, BMI, and snoring status as input variables, reporting 86.6% accu-
racy [21]. Nevertheless, it is important to highlight that input features derived automatically from 
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Author (year) [Ref.] ANN model Purpose Target function/
class(es)

Input variables Performance metrics

Kirby et al. (1999) 
[43]

GRNN Classification 
(binary)

No SAHS vs. SAHS 
(AHI ≥10 e/h)

Clinical 98.9% Se
80.0% Sp
91.3% Acc

El-Solh et al. (1999) 
[19]

MLP Regression AHI estimation Clinical and 
anthropometric

CC = 0.852
cutoff 10 e/h
94.9% Se - 64.7% Sp
cutoff 15 e/h
95.3% Se - 60.0% Sp
cutoff 20 e/h
95.5% Se - 73.4% Sp

Su et al. (2012) [45] MMTS
LR
FFBB
LVQ
SVM
DT
RS

Classification
(4-class)

Normal/mild/ 
moderate/severe

Anthropometric and 
questionnaire data

84.38% average Acc
55.33% average Acc
34.04% average Acc
47.22% average Acc
53.82% average Acc
63.54% average Acc
13.20% average Acc

Wang et al. (2016) 
[27]

FFBB

LVQ

Classification
(4-class)

No SAHS/mild/
moderate/severe

Anthropometric and 
questionnaire data

47.5% Acc, 0.145 k, 
0.288 g-mean
43.4% Acc, 0.181 k, 
0.280 g-mean

Karamanli et al. 
(2016) [21]

MLP Classification
(binary)

No SAHS vs. SAHS
(AHI ≥10 e/h)

Sex, age, BMI, 
snoring status

86.6% Acc

Polat et al. (2008) 
[29]

FFBB
ANFIS

Classification
(binary)

No SAHS vs. SAHS
(AHI ≥ 5 e/h)

In-lab PSG-derived 100% Se, 93.5% Sp, 
95.1% Acc, 0.96 AUC

Ghandeharioun et 
al. (2015) [30]

SOM Classification
(4-class)

No SAHS/mild/
moderate/severe

In-lab PSG-derived 
and anthropometric

94.2% Se, 97.8% Sp, 
96.5% Acc

Marcos et al. (2008) 
[20]

MLP Classification
(binary)

No SAHS vs. SAHS
(AHI ≥10 e/h)

Nonlinear features 
from SpO2

89.8% Se, 79.4% Sp, 
85.5% Acc

Marcos et al. (2008) 
[24]

RBF-KM

RBF-FCM

RBF-OLS

Classification
(binary)

No SAHS vs. SAHS
(AHI ≥10 e/h)

Nonlinear features 
from SpO2

89.4% Se, 81.4% Sp, 
86.1% Ac
86.6% Se, 81.9% Sp, 
84.7% Acc
89.8% Se, 79.4% Sp, 
85.5% Acc

Almazaydeh et al. 
(2012) [46]

MLP Classification
(binary)

Healthy vs. SAHS
(AHI ≥5 e/h)
Physionet

ODI3, delta index, 
CTM from SpO2

87.5% Se, 100% Sp, 
93.3% Acc

Marcos et al. (2010) 
[22]

MLP
BY-MLP

Classification
(binary)

No SAHS vs. SAHS
(AHI ≥10 e/h)

Statistical, spectral, 
and nonlinear 
features from SpO2

86.4% Se, 62.8% Sp, 
76.8% Acc
87.8% Se, 82.4% Sp, 
85.6% Acc

Morillo et al. (2012) 
[47]

BY-MLP Classification
(binary)

No SAHS vs. SAHS
(AHI ≥10 e/h)

Time, stochastic, 
spectral, and 
nonlinear features 
from SpO2

92.4% Se, 95.9% Sp, 
93.9% Acc
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Author (year) [Ref.] ANN model Purpose Target function/
class(es)

Input variables Performance metrics

Huang et al. (2015) 
[26]

FFBB

LVQ

ANFIS

Classification
(binary)

No SAHS vs. SAHS
(AHI ≥5 e/h)

ODI4 from SpO2 88.0% Se, 93.3% Sp, 
90.7% Acc
80.7% Se, 79.3% Sp, 
80.0% Acc
90.7% Se, 86.0% Sp, 
88.3% Acc

Khandoker et al. 
(2009) [23]

SVM

LDA

KNN

PNN

Classification
(binary)

Healthy vs. SAHS
(AHI ≥5 e/h)
Physionet

Wavelet 
decomposition of 
HRV and EDR from 
ECG

100% Se, 100% Sp, 
100% Acc
90% Se, 100% Sp, 93% 
Acc
80% Se, 90% Sp,  
83% Acc
80% Se, 50% Sp,  
70% Acc

Khandoker et al. 
(2008) [48]

FFBB Classification
(binary)

Apneic vs. Normal
Hypopnea vs. Apnea
Obstructive vs. Central

ECG 87.6% Se, 95.5% Sp, 
95.1% Acc
86.1% Se, 78.7% Sp, 
83.4% Acc
93.7% Se, 99.2% Sp, 
98.9% Acc

Acharya et al.  
(2011) [49]

FFBB Classification
(3-class)

Normal/apnea/
hypopnea

Nonlinear measures 
from ECG

95.0% Se, 100% Sp, 
99.1% Acc (normal)
88.0% Se, 90.0% Sp, 
96.5% Acc (apnea)
80.0% Se, 89.5% Sp 
87.8% Acc (hypopnea)

Lweesky et al.  
(2011) [50]

FFBB Classification
(binary)

Normal breathing vs. 
apnea epochs

P-wave features  
from ECG

90.0% Se, 94.2% Sp, 
92.0% Acc

Mendez et al.  
(2009) [51]

FFBB Classification
(binary)

Normal breathing vs. 
apnea
(AHI ≥5 e/h)

Time and spectral 
features from RRi 
and QRS area time 
series

89.0% Se, 86.0% Sp, 
88.0% Acc (m-by-m)
100% Acc (record)

Nguyen et al.  
(2014) [52]

ANN 

SVM

Ensemble

Classification
(binary)

Normal sleep vs. sleep 
apnea epochs

HRV complexity by 
means of RQA

85.6% Se, 79.1% Sp, 
83.2% Acc
93.7% Se, 65.9% Sp, 
84.1% Acc
86.4% Se, 83.5% Sp, 
85.3% Acc

Fiz et al. 
 (2010) [53]

MLP Classification
(binary)

No SAHS vs. SAHS
AHI ≥5 e/h
AHI ≥15 e/h

Time and spectral 
features from  
snoring recordings

87.0% Se, 71.0% Sp
80.0% Se, 90.0% Sp

Nguyen and Won 
(2015) [54]

f-MLP
MLP

Classification
(binary)

Normal breathing vs. 
snoring

Spectral content 
snoring recordings

96.0% overall Acc
82.0% overall Acc

Tagluk et al.  
(2011) [55]

MLP Classification
(binary)

Normal vs. SAHS EEG 
epochs

Bispectral analysis 
of EEG

94.1% Se, 98.2% Sp,
96.2% Acc
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Author (year) [Ref.] ANN model Purpose Target function/
class(es)

Input variables Performance metrics

Huang et al. (2015) 
[26]

FFBB

LVQ

ANFIS

Classification
(binary)

No SAHS vs. SAHS
(AHI ≥5 e/h)

ODI4 from SpO2 88.0% Se, 93.3% Sp, 
90.7% Acc
80.7% Se, 79.3% Sp, 
80.0% Acc
90.7% Se, 86.0% Sp, 
88.3% Acc

Khandoker et al. 
(2009) [23]

SVM

LDA

KNN

PNN

Classification
(binary)

Healthy vs. SAHS
(AHI ≥5 e/h)
Physionet

Wavelet 
decomposition of 
HRV and EDR from 
ECG

100% Se, 100% Sp, 
100% Acc
90% Se, 100% Sp, 93% 
Acc
80% Se, 90% Sp,  
83% Acc
80% Se, 50% Sp,  
70% Acc

Khandoker et al. 
(2008) [48]

FFBB Classification
(binary)

Apneic vs. Normal
Hypopnea vs. Apnea
Obstructive vs. Central

ECG 87.6% Se, 95.5% Sp, 
95.1% Acc
86.1% Se, 78.7% Sp, 
83.4% Acc
93.7% Se, 99.2% Sp, 
98.9% Acc

Acharya et al.  
(2011) [49]

FFBB Classification
(3-class)

Normal/apnea/
hypopnea

Nonlinear measures 
from ECG

95.0% Se, 100% Sp, 
99.1% Acc (normal)
88.0% Se, 90.0% Sp, 
96.5% Acc (apnea)
80.0% Se, 89.5% Sp 
87.8% Acc (hypopnea)

Lweesky et al.  
(2011) [50]

FFBB Classification
(binary)

Normal breathing vs. 
apnea epochs

P-wave features  
from ECG

90.0% Se, 94.2% Sp, 
92.0% Acc

Mendez et al.  
(2009) [51]

FFBB Classification
(binary)

Normal breathing vs. 
apnea
(AHI ≥5 e/h)

Time and spectral 
features from RRi 
and QRS area time 
series

89.0% Se, 86.0% Sp, 
88.0% Acc (m-by-m)
100% Acc (record)

Nguyen et al.  
(2014) [52]

ANN 

SVM

Ensemble

Classification
(binary)

Normal sleep vs. sleep 
apnea epochs

HRV complexity by 
means of RQA

85.6% Se, 79.1% Sp, 
83.2% Acc
93.7% Se, 65.9% Sp, 
84.1% Acc
86.4% Se, 83.5% Sp, 
85.3% Acc

Fiz et al. 
 (2010) [53]

MLP Classification
(binary)

No SAHS vs. SAHS
AHI ≥5 e/h
AHI ≥15 e/h

Time and spectral 
features from  
snoring recordings

87.0% Se, 71.0% Sp
80.0% Se, 90.0% Sp

Nguyen and Won 
(2015) [54]

f-MLP
MLP

Classification
(binary)

Normal breathing vs. 
snoring

Spectral content 
snoring recordings

96.0% overall Acc
82.0% overall Acc

Tagluk et al.  
(2011) [55]

MLP Classification
(binary)

Normal vs. SAHS EEG 
epochs

Bispectral analysis 
of EEG

94.1% Se, 98.2% Sp,
96.2% Acc
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Author (year) [Ref.] ANN model Purpose Target function/
class(es)

Input variables Performance metrics

Liu et al.  
(2008) [31]

ART2 Classification
(binary)

Healthy vs. SAHS 
subjects
(AHI ≥5 e/h)

EEG energy in theta 
(Fourier transform) 
and pupil size

91.0% Acc

Lin et al.  
(2006) [28]

FFBB Classification
(binary)

No SAHS vs. SAHS 
epochs

EEG power in delta, 
theta, alpha, and  
beta using DWT

69.64% Se, 44.44% Sp

Akṣahin et al.  
(2012) [56]

FFBB
RBF
DTD

Classification
(3-class)

Obstructive/central/
healthy patients

Coherence and 
mutual information 
of EEG

0.1450 MRAE error
0.3692 MRAE error
0.2282 MRAE error

Fontela et al.  
(2005) [57]

BY-MLP Classification
(3-class)

Obstructive/central/
mixed

Wavelet 
decomposition of 
thoracic effort

83.78% Acc (overall)
80.90% Acc (obstr.)
89.95% Acc (centr.)
80.48% Acc (mixed)

Tagluk et al.  
(2010) [58]

FFBB Classification
(3-class)

Obstructive/central/
mixed

Wavelet 
decomposition of 
abdominal effort

78.50% Acc (overall)
73.42% Acc (obstr.)
94.23% Acc (centr.)
66.16% Acc (mixed)

Berdiñas et al.  
(2012) [59]

Ensemble 
ANNs

Classification
(3-class)

Obstructive/central/
mixed

Wavelet 
decomposition of 
thoracic effort

90.27% Acc (overall)
94.62% Acc (obstr.)
95.47% Acc (centr.)
90.45% Acc (mixed)

Weinreich et al. 
(2008) [60]

FFBB Classification
(4-class)

OA/OH/CSR/normal 
breathing

Spectral entropy of 
airflow

91.5% Acc (overall)
90.2% Se, 90.9% Sp
(OA vs. CSR)
91.3% Se, 94.6% Sp
(OH vs. normal)

Várady et al.  
(2002) [61]

FFBB Classification
(3-class)

Normal/apnea/
hypopnea

IRA and IRI from 
airflow and RIP

93.0% Acc (overall)
98.4% Se, 94.0% Sp 
(normal)
78.7% Se, 91.0% Sp 
(hypopnea)
97.0% Se, 88.7% Sp 
(apnea)

Belal et al.  
(2011) [62]

MLP Classification
(binary)

Non-apneic vs. apneic 
event

Correlation and  
PCA of HR, RR, 
 and SpO2

81.8% Se, 75.8% Sp, 
76.8% Acc

Marcos et al. 
 (2012) [63]

MLP Regression AHI estimation Spectral and 
nonlinear features 
from SpO2

ICC = 0.91
cutoff 5 e/h
91.8% Se–58.8% Sp
cutoff 10 e/h
89.6% Se–81.3% Sp
cutoff 15 e/h
94.9% Se–90.9% Sp
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cardiorespiratory and/or neuromuscular signals have been used predominantly, while anthropo-
metric and clinical variables have been used marginally.

In the study by Polat et al. [29], different expert systems were assessed to classify patients 
with suspicion of SAHS using clinical features derived from in-lab polysomnography, 
including the arousal index and the AHI. A FFBB ANN reached 100% sensitivity, 93.55% 

Author (year) [Ref.] ANN model Purpose Target function/
class(es)

Input variables Performance metrics

Gutiérrez-Tobal et 
al. (2013) [25]

MLP

RBF

Regression AHI Statistical, spectral, 
nonlinear features 
from airflow

ICC = 0.849 ± 0.002
cutoff 10 e/h
92.5% Se, 89.5% Sp, 
91.5% Acc
ICC = 0.748 ± 0.037
cutoff 10 e/h
92.5% Se, 57.9% Sp, 
81.4% Acc

de Silva et al. (2011) 
[64]

FFBB Regression AHI Pitch, formant, and 
structure-based 
features from  
snoring sounds 
and the neck 
circumference

Cutoff 15 e/h
91 ± 6% Se,
89 ± 5% Sp
Cutoff 30 e/h
86 ± 9% Se,
88 ± 5% Sp

de Silva et al. (2012) 
[65]

FFBB Regression AHI Pitch, formant, and 
structure-based 
features from  
snoring sounds 
and the neck 
circumference

Female, AHI ≥ 15 e/h
91 ± 10% Se,
88 ± 5% Sp
Male, AHI ≥ 15 e/h
91 ± 6% Se,
89 ± 5% Sp
Comb., AHI ≥ 15 e/h
84 ± 10% Se,
83 ± 13% Sp

Emoto et al. (2012) 
[66]

MLP Regression Breathing sound signal Preceding samples of 
the breathing signal

89.2% average Se
87.4% average Sp

Notes: Se: sensitivity; Sp: specificity; Acc: accuracy; e/h: events per hour; CC: correlation coefficient; k: kappa coefficient; 
g-mean: geometric-mean; ICC: intra-class correlation coefficient; GRNN: generalized regression neural network; 
SAHS: sleep apnea-hypopnea syndrome; AHI: apnea-hypopnea index; MLP: multilayer perceptron; MMTS: multiclass 
Mahalanobis-Taguchi system; LR: logistic regression; FFBB: feed-forward back-propagation; LVQ: learning vector 
quantization; SVM: support vector machine; DT: decision tree; RS: rough set; ANFIS: adaptive network-based fuzzy 
inference system; SOM: self-organizing maps; BMI; body mass index; RBF: radial basis function; KM: k-means; FCM; 
fuzzy c-means; OLS: orthogonal least squares; SpO2: blood oxygen saturation from nocturnal oximetry; ODI3: oxygen 
desaturation index of 3%; CTM: central tendency measure (nonlinear); BY-MLP: Bayesian training MLP neural network; 
PNN: probabilistic neural network; ODI4: oxygen desaturation index of 4%; HRV: heart rate variability; EDR: ECG-
derived respiration; RRi: R-to-R interval time series; QRS: QRS complex from the ECG; k-NN: k nearest neighbors; RQA: 
recurrence quantification analysis; f-MLP: correlational filter MLP; ART2: modified adaptive resonance theory ANN; 
DWT: discrete wavelet transform; OA: obstructive apnea; OH: obstructive hypopnea; CSR: Cheyne-Stokes respiration; 
DTD: distributed time-delay neural network; MRAE: mean relative absolute error; IRA: instantaneous respiration 
amplitude; IRI: instantaneous respiration interval; RIP: respiratory inductance plethysmography; HR: heart rate; RR: 
respiratory rate.

Table 1. Performance and the most relevant characteristics of the studies using ANNs in the context of SAHS classification, 
event detection, and AHI regression.
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specificity, 95.12% accuracy, and 0.96 AUC, slightly lower and more unbalanced than 
a DT-based classifier (91.67% sensitivity, 96.55% specificity, 95.12% accuracy, and 0.97 
AUC). This work assessed the usefulness of different expert systems in the context of 
SAHS, although using input variables computed from the whole PSG study limits its abil-
ity as screening test for the disease. Similarly, Ghandeharioun et al. [30] trained a 4-class 
SOM to classify patients suspected of suffering from SAHS into healthy, mild, moderate, 
and severe categories using PSG-derived and anthropometric variables. The proposed 
algorithm reached 94.2% sensitivity, 97.8% specificity, and 96.5% accuracy, although nei-
ther validation nor test stages were described.

Regarding SAHS diagnosis by means of ANNs, the SpO2 signal from nocturnal oximetry is 
probably the most widely used biomedical data source. In the study by Marcos et al. [20], 
approximate entropy (ApEn), central tendency measure (CTM), and Lempel-Ziv complexity 
were applied to the SpO2 nocturnal profile to estimate irregularity, variability, and complex-
ity, respectively. These nonlinear measures composed the input feature patterns to feed a 
MLP ANN for SAHS binary classification. A sensitivity of 89.8%, specificity of 79.4%, and 
accuracy of 85.5% were obtained in an independent test set, significantly improving the 
diagnostic performance of conventional oximetric indices. The same authors reached similar 
diagnostic performance using a RBF ANN in the same context [24]: average accuracies of 
86.1 ± 1.1% (89.4 ± 1.6% sensitivity, 81.4 ± 1.7% specificity), 84.7±1.2% (86.6 ± 2.8% sensitivity, 
81.9 ± 2.0% specificity), and 85.5 ± 0.0% (89.8 ± 0.0% sensitivity, 79.4 ± 0.0% specificity) were 
achieved using k-means, fuzzy c-means, and orthogonal least squares kernels, respectively. 
An MLP ANN was also assessed in the study by Almazaydeh et al. [46] to perform binary 
classification. The ANN was fed with the conventional oxygen desaturation index of 3% 
(ODI3), the delta index, and the CTM from overnight oximetry recordings, reaching 87.5% 
sensitivity, 100% specificity, and 93.3% accuracy in a test set from the publicly available 
PhysioNet dataset.

Bayesian training has been applied to deal with overfitting of ANNs. In addition, Bayesian 
inference also allows the user to measure quantitatively the influence of each input feature 
in the output of the model. The effectiveness of this approach was assessed in the study by 
Marcos et al. [22]. A sensitivity of 87.76%, specificity of 82.39%, and accuracy of 85.58% were 
reached, significantly improving the performance achieved using the conventional maximum 
likelihood criterion (86.42% sensitivity, 62.83% specificity, and 76.81% accuracy). Similarly, 
Sánchez-Morillo et al. [47] applied a feedforward probabilistic ANN to classify patients into 
SAHS negative or SAHS positive using time, stochastic, spectral, and nonlinear features from 
nocturnal SpO2 recordings. A sensitivity of 92.42%, specificity of 95.92%, and accuracy of 
93.91% were reached in a single training set using leave-one-out cross-validation. In a recent 
study by Huang et al. [26], the automated analysis of the oxygen desaturation index of 4% 
(ODI4) from oximetry by means of a DT was proposed as an abbreviated method for SAHS 
screening. In this work, the authors assessed several pattern recognition techniques for auto-
mated diagnosis, including some ANNs, such as conventional backpropagation, (LVQ), and 
adaptive network-based fuzzy inference system (ANFIS). The proposed DT reached 98.67% 
sensitivity, 90.67 specificity, and 94.67% accuracy, outperforming backpropagation (88.00% 
sensitivity, 93.33% specificity, 90.67% accuracy), ANFIS (90.67% sensitivity, 86.00% specificity, 
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88.33% accuracy), and LVQ (80.67% sensitivity, 79.33% specificity, 80.00% accuracy) ANNs. In 
this study, conventional LR and k-nearest neighbors (k-NN) combined with genetic algorithms 
(GAs) and particle swarm optimization (PSO) also outperformed ANNs.

ECG recordings have been also widely used to assist in SAHS diagnosis. In the study by 
Khandoker et al. [23], the spectral content of HRV and ECG-derived respiration (EDR) time 
series from single-lead ECG recordings were analyzed by means of the wavelet transform. 
The authors proposed a binary SVM for classification (healthy vs. SAHS) and compared its 
performance with LDA, k-NN, and PNN. The proposed SVM classifier reached 100% accu-
racy in the test set, whereas the PNN showed poor classification performance (80% sensitiv-
ity, 50% specificity, and 70% accuracy) probably due to a suboptimal setting of the spread 
parameter (σ) of the Gaussian function. In a previous study by Khandoker et al. [48], the 
authors analyzed ECG short-term epochs from nocturnal PSG by means of wavelet decompo-
sition to classify segments into normal breathing, obstructive apnea, and central apnea using 
a feedforward ANN. The authors reported accuracies of 95.10% in the classification of apneic 
and normal breathing epochs, 83.40% in the detection of hypopneas, and 98.96% in the classi-
fication of obstructive and central apneas. Similarly, Acharya et al. [49] implemented a FFBB 
ANN using nonlinear measures from the ECG (ApEn, fractal dimension, correlation dimen-
sion, largest Lyapunov exponent, and Hurst exponent) to detect apneas, hypopneas, and 
normal breathing segments. The proposed ANN reached 99.1% accuracy (95.0% sensitivity, 
100% specificity), 96.5% accuracy (88.0% sensitivity, 90.0% specificity), and 87.8% accuracy 
(80.0% sensitivity, 89.5% specificity) in the classification of normal breathing, apneas, and 
hypopneas, respectively. Lweesky et al. [50] focused on the characterization of the P-wave of 
the ECG in order to feed an ANN aimed at discerning between apnea and normal breathing. 
The authors reported 90.0% sensitivity, 94.2% specificity, and 92.0% accuracy. In a previ-
ous study by Méndez et al. [51], both time and spectral features from the R-to-R interval 
(RRi) and QRS area time series were used as inputs to a FFBB ANN aimed at discriminat-
ing between apneic and nonapneic segments. A sensitivity of 89%, specificity of 86%, and 
accuracy of 88% were reached in a minute-by-minute classification, whereas 100% accuracy 
was achieved when the whole recording is classified as normal or apneic. In a recent study, 
Nguyen et al. [52] proposed a binary ANN to differentiate apnea from normal sleep based on 
a hear rate complexity measure by means of the recurrence quantification analysis of HRV 
recordings. In addition, a SVM classifier and an ensemble combining the decisions from both 
binary classifiers by means of a confidence score (the weighted sum of the output scores of 
all binary classifiers) were also assessed. The ensemble reached the highest performance 
(86.37% sensitivity, 83.47% specificity, 85.26% accuracy), whereas single ANN (85.57% sen-
sitivity, 79.09% specificity, 83.23% accuracy) and the SVM (93.72% sensitivity, 65.88% speci-
ficity, 84.14% accuracy) classifiers reached slightly lower accuracy but with an unbalanced 
sensitivity-specificity pair.

ANNs have been also involved in the detection and characterization of snoring and its reli-
ability in SAHS diagnosis. In the study by Fiz et al. [53], a total of 22 features from time and 
frequency domains (number of snore episodes, average intensity, and power spectral density 
parameters) were used as inputs to a MLP ANN. A sensitivity of 87% and a specificity of 71% 
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were achieved using a SAHS cutoff of 5 e/h, whereas 80% sensitivity and 90% specificity were 
reached for a cutoff of 15 e/h. In a recent study, Nguyen and Won [54] proposed a novel cor-
relational filter ANN (f-MLP) to distinguish normal breathing patterns from snoring patterns 
during sleep. This ANN implements a correlational filter operation in the frequency domain 
in a first hidden layer aimed at improving the discriminant power of the spectral content of 
input patterns, followed by a second feedforward hidden layer. In this study, the authors 
reported that the f-MLP classifier reached an average accuracy of 96%, outperforming the 
conventional MLP approach (82% average accuracy).

EEG signals from nocturnal PSG and ANNs have been also used to detect SAHS. Tagluk et 
al. [55] estimated the quadratic phase coupling of EEG (C3-A2) using bispectral analysis and 
trained a MLP ANN to detect patients with SAHS. An overall diagnostic accuracy of 96.15% 
was reached. In the study by Liu et al. [31], both the EEG energy in the theta band and the 
pupil size were used as inputs to an ANN aimed at discriminating between SAHS patients 
and healthy subjects. The authors reported 91% overall accuracy in the classification of both 
groups. Similarly, in the study by Lin et al. [28], the EEG (C3-O1) signal power in the common 
frequency bands delta, theta, alpha, and beta were estimated by means of the discrete wavelet 
transform (DWT) and subsequently used to train a FFBB ANN in order to identify SAHS epi-
sodes. A sensitivity of 69.64% and a specificity of 44.44% were obtained. The EEG signal has 
been also used to classify apnea events into obstructive or central. Akṣahin et al. computed 
the synchronization (coherence and mutual information) between EEG channels (C4-A1 and 
C3-A2) and fed three different ANN-based binary classifiers: conventional FFBB, RBF, and 
distributed time-delay (DTD) ANNs [56]. The conventional FFBB ANN reached the highest 
performance in terms of the mean relative absolute error (MRAE = 0.145).

Features from both thoracic and abdominal effort signals have been also used to classify 
sleep apneas into obstructive, central, and mixed by means of ANNs. In the study by Fontela-
Romero et al. [57], the wavelet coefficients from the DWT of the thoracic effort signal feed 
a Bayesian feedforward ANN, which achieved a mean accuracy of 83.78 ± 1.90%. Similarly, 
Tagluk et al. [58] analyzed the abdominal respiration signal by means of the wavelet transform 
and fed a FFBB ANN aimed at classifying apneic events into obstructive, central, and mixed. 
The proposed methodology achieved an overall accuracy of 78.5% (obstructive: 73.42%; cen-
tral: 94.23%; mixed: 66.16%). In a recent study by Guijarro-Berdiñas et al. [59], the thoracic 
effort signal was used to reach the same goal. The DWT was applied to analyze the frequency 
content of the signal. The wavelet coefficients compose the input patterns of an ensemble 
of ANNs, which achieved an overall accuracy of 90.27 ± 0.79% (obstructive: 94.62%; central: 
95.47%; mixed: 90.45%).

In the study by Weinreich et al. [60], the spectral entropy was used to analyze the frequency 
content of airflow recordings and feed an ANN trained to discern among SAHS, Cheyne-
Stokes respiration, and normal breathing. An overall accuracy of 91.5% was reached in the 
classification of airflow patterns into obstructive apneas, periodic respiration, and normal 
breathing during non-REM sleep. Similarly, Várady et al. [61] trained a feedforward ANN to 
detect apneic events using respiratory signals. Data from both airflow and respiratory induc-
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tance plethysmography were used as inputs to the ANN. Up to 93% of input respiratory pat-
terns were correctly classified into normal, apnea, or hypopnea, although no validation was 
performed.

ANNs have been also used to combine features from different biomedical recordings. In the 
study by Belal et al. [62], the correlation coefficients between the heart rate (HR), respiratory 
rate (RR), and SpO2 signals were computed to detect apnea events in preterm infants in real 
time. Principal component analysis (PCA) was applied to the correlation coefficients and the 
components accounting for the 70% of the total variance of the input data fed the MLP ANN, 
yielding 81.85% sensitivity, 75.83% specificity, and 76.78% accuracy.

It is noteworthy that most studies in the context of SAHS use ANNs for classification pur-
poses, whereas only a few studies apply regression ANNs to estimate the AHI. This is a more 
challenging task but also a more useful approach, since the AHI is currently a standardized 
parameter widely used by physicians to assess SAHS severity and to decide whether the 
CPAP treatment could be effective. In the aforementioned study by El-Solh et al. [19], the 
authors compared the agreement of two automated regression approaches with the actual 
AHI from PSG. Multiple linear regression (MLR) and a regression MLP ANN, both trained 
with anthropometric and clinical variables, were assessed. Significantly higher correlation 
was reached using the MLP ANN (0.852 vs. 0.509). In the same way, Marcos et al. [63] used 
spectral and nonlinear features from nocturnal SpO2 recordings to feed a regression MLP 
ANN. High intraclass correlation coefficient was reported (ICC = 0.91), which outperformed 
the conventional MLR approach (ICC = 0.80). Similarly, in a recent study by Gutiérrez-Tobal 
et al. [25], regression MLP and RBF ANNs were trained to estimate the AHI from PSG using 
statistical, spectral, and nonlinear features derived from the airflow signal (thermistor). The 
estimated AHI from the MLP network reached the highest agreement with the PSG-derived 
AHI (ICC = 0.849 ± 0.002), improving both the RBF and the conventional MLR models.

A snore-based approach has been proposed by de Silva et al. [64] in order to estimate the 
actual AHI from PSG. Features from the automated analysis of snoring recordings (pitch, first 
formant, and the quantified recurrence probability density entropy) and the neck circumfer-
ence were used as inputs to a FFBB ANN to predict the AHI. Averaged 91 ± 6% sensitivity and 
89 ± 5% specificity were obtained using a cutoff of 15 e/h for positive SAHS, whereas for a cut-
off of 30 e/h, 86 ± 9% sensitivity and 88 ± 5% specificity were achieved. In a similar subsequent 
study, de Silva et al. [65] proposed this methodology to characterize differences in snoring 
sounds due to gender and assessed its influence on the performance of a snore-based SAHS 
screening model. Using an output threshold of 15 e/h, the gender-dependent regression ANN 
resulted in increased sensitivity (up to 7% higher) and specificity (up to 6% higher) values 
compared with the gender-neutral model. In the study by Emoto et al. [66], a MLP ANN was 
used to predict the current value of the breathing sound signal using the preceding samples, 
i.e., the target output is the current sample, whereas the d-dimensional input feature pattern 
is composed by the preceding d samples of the breathing signal. In this way, the ANN was 
applied to distinguish snoring events from normal breathing comparing the network output 
with an optimized threshold. The proposed method reached an average sensitivity and speci-
ficity values of 89.2 and 87.4%, respectively.
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3.2. Automated analysis of PSG: sleep staging and sleep/wake automated detection

In order to identify and quantify the number of respiratory events per hour of sleep and 
derive the AHI, several neuromuscular and cardiorespiratory recordings from the overnight 
PSG have to be analyzed. However, the interpretation of a PSG is a complex and laborious 
task even for trained personnel. In this regard, ANNs have demonstrated to be reliable as well 
as accurate tools to analyze both the macrostructure (automated sleep staging) and the micro-
structure (transient pattern detection) of sleep [67]. In the context of sleep staging, nonlin-
ear dynamic measures from EEG in combination with pattern classification algorithms have 
demonstrated to reach clinically significant results in sleep disorders diagnosis, treatment 
monitoring, and drug efficacy assessment [68]. In fact, a number of automated algorithms are 
currently implemented into commercialized software tools for PSG analysis. Nevertheless, 
the performance of automated pattern recognition algorithms varies greatly depending on the 
number of stages involved in the classification task, from 2 (wake vs. sleep) to 5 (wake, REM, 
N1-N3) states (6 classes if the conventional Rechtschaffen and Kales classification is used). In 
addition, the accuracy is also influenced by the number and kind of recordings involved in 
the classification task (EEG, EOG, and/or EMG). Table 2 summarizes the main characteristics 
of significant studies focused on applications of ANNs for automated sleep staging, arousal 
quantification, and drowsiness detection.

In the study by Becq et al. [69], the relative power in the common frequency bands of the 
EEG (C3-A2), as well as the overall variance of EEG and EMG signals, was used to feed a 
6-class MLP ANN. The proposed method reached the same performance as a k-NN classifier, 
achieving 28 ± 2% error rate. Ventouras et al. [70] trained a MLP ANN to detect sleep spindles 
using a bandpass filtered EEG channel (Cz) without feature extraction. The classifier achieved 
80.2% sensitivity and 95.0% specificity in the whole sleep record after a consensus agreement 
among independent scorers. In the study by Caffarel et al. [71], an ANN-based commercial 
software using a single-channel EEG (Cz-A1) was assessed. The overall agreement between 
automated and manual scoring was relatively low in a 4-class classification task (kappa = 0.305) 
and slightly better in a 2-class classification task (kappa = 0.449). In a later study by Ebrahimi 
et al. [72], wavelet decomposition and ANNs were used to perform 4-class sleep staging using 
the EEG signal. An overall sensitivity of 84.2 ± 3.9%, specificity of 94.4 ± 4.5%, and accuracy of 
93.0 ± 4.0% were reported. Wavelet coefficients from the EEG (P3-P4) and a backpropagation 
ANN were also used in the study carried out by Sinha [73]. The author reported accuracies 
of 96.84%, 93.68%, and 95.52% in the detection of sleep spindles, REM sleep, and awake state, 
respectively. More recently, Hsu et al. [32] computed energy-based measures from a single 
EEG channel (Fpz-Cz) to feed a recurrent neural classifier (RNN), which achieved an overall 
accuracy of 87.2% in a 5-class classification task.

Adding features from additional biomedical signals as inputs to the ANN does not seem to 
improve significantly the classification performance. In the study by Shambroom et al. [74], 
a commercial wireless device for automated sleep staging based on the combined activity of 
EEG, EOG, and EMG is assessed. The Zeo device implements an ANN that achieved 81.1% 
agreement for light sleep versus deep sleep classification and 93.6% agreement for sleep ver-
sus wake classification when the gold standard is a consensus between two independent 
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Author (year) [Ref.] ANN model Purpose Target function/
class(es)

Input variables Performance metrics

Becq et al. (2005) [69] MLP 6-class 
classification

Wake/NREM 1-4/
REM

EEG (C3-A2) (overall 
variance, relative 
power)
EMG (overall  
variance)

ER: 28 ± 2%

Ventouras et al.  
(2005) [70]

MLP Binary 
classification

Sleep spindle 
detection

Single channel EEG 
(Cz)

80.2% Se, 95.0% Sp

Caffarel et al. (2006) 
[71]

NS 4-class
2-class

Wake/light sleep/
deep sleep/REM
Wake vs. sleep

EEG (Cz-A1) k = 0.305
k = 0.449

Ebrahimi et al. (2008) 
[72]

NS 4-class 
classification

Wake/
NREM1+REM/
NREM2/SWS

Wavelet 
decomposition of 
single channel EEG

84.2% Se, 94.4% Sp, 
93.0% Acc

Sinha (2008) [73] FFBB 3-class 
classification

Sleep spindles  
(SS)/REM/Awake

Wavelet coefficients 
from EEG

95.35% Acc (overall)
96.84% Acc (SS)
93.68% Acc (REM)
95.52% Acc (Awake)

Hsu et al. (2013) [32] RNN
FFBB
PNN

5-class 
classification

Wake/NREM1/
NREM2/SWS/ 
REM

Energy features from 
single-channel EEG

87.2% overall Acc
81.1% overall Acc
81.8% overall Acc

Shambroom et al. 
(2012) [74]

NS Binary 
classification

Sleep vs. wake
Light vs. deed  
sleep

Combined EEG/EOG/
EMG activity by a 
single lead
(wireless Zeo)

93.6% Acc
81.1% Acc

Griessenberger et al. 
(2013) [75]

NS Classification
(4-class)

Wake/REM/light 
sleep/deep sleep

Combined EEG/ 
EOG/EMG activity by 
a single lead
(wireless Zeo)

72.6% overall Acc

Tagluk et al. (2010) 
[76]

FFBB Classification
(5-class)

NREM 1 to 4/ 
REM

Filtered EOG and 
EMG

74.7% overall Acc
72.6% Acc (NREM1)
73.3% Acc (NREM2)
78.0% Acc (NREM3)
72.3% Acc (NREM4)
77.3% Acc (REM)

Chapotot and Becq 
(2009) [77]

Ensemble 
MLP

Classification
(6-class)

Wake/N1 to N3/
REM/Movement

Statistical, spectral, 
nonlinear features 
from EEG and EMG

36 ± 15% error rate
0.48 ± 0.18 k
34% Acc (Wake)
43% Acc (N1)
51% Acc (N2)
82% Acc (N3)
82% Acc (REM)
13% Acc (Mov.)

Charbonnier et al. 
(2011) [78]

Ensemble 
MLP

Classification
(5-class)

Wake/NREM1/
NREM2/SWS/ 
REM

Time and spectral 
(Fourier analysis) 
features from EEG, 
EMG, and EOG

85.5% overall Acc
78.1% Acc (Wake)
64.8% Acc (NREM1)
86.9% Acc (NREM2)
94.8% Acc (SWS)
79.3% Acc (REM)
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Author (year) [Ref.] ANN model Purpose Target function/
class(es)

Input variables Performance metrics
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Statistical, spectral, 
nonlinear features 
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36 ± 15% error rate
0.48 ± 0.18 k
34% Acc (Wake)
43% Acc (N1)
51% Acc (N2)
82% Acc (N3)
82% Acc (REM)
13% Acc (Mov.)

Charbonnier et al. 
(2011) [78]

Ensemble 
MLP

Classification
(5-class)

Wake/NREM1/
NREM2/SWS/ 
REM

Time and spectral 
(Fourier analysis) 
features from EEG, 
EMG, and EOG

85.5% overall Acc
78.1% Acc (Wake)
64.8% Acc (NREM1)
86.9% Acc (NREM2)
94.8% Acc (SWS)
79.3% Acc (REM)
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expert scorers. In a subsequent similar study [75], the same wireless system achieved an over-
all agreement of 72.6% in a 4-class approach (Wake, REM, light, and deep sleep). Tagluk et 
al. [76] used bandpass filtered EOG and EMG recordings as inputs to a feedforward ANN 
in a 5-class classification task, achieving an overall accuracy of 74.7 ± 1.63%. Similarly, using 
statistical, spectral, and nonlinear features from EEG and EMG signals and an ensemble clas-
sifier based on multiple MLP ANNs, 64% overall performance was achieved for wakefulness, 
movement, and intermediate sleep detection, while 82% accuracy was reached for deep and 
paradoxical sleep detection [77]. In the study carried out by Charbonnier et al. [78], 85.5% 
overall accuracy was reached using EEG-, EOG-, and EMG-derived features as inputs to an 
ensemble of 4 MLP ANN for 5-class automated sleep staging.

In the study by Álvarez-Estevez and Moret-Bonillo [79], two EEG channels (C2-A2 and C4-A1) 
and the submental EMG channel were analyzed to automatically detect arousals in the con-
text of SAHS classification. For these signals, the energy in the conventional frequency bands 
was computed by means of the Fourier transform and four automated expert systems were 
trained: Fisher’s linear and quadratic discriminants, a SVM, and a feedforward ANN. The 
ANN reached the highest performance, achieving 92% accuracy and 0.0921 ± 0.0098 error rate.

Besides ANNs, it is noteworthy that several competing algorithms have been applied for 
automated sleep staging, such as Gaussian mixture models (88.4% overall accuracy, 6-class, 

Author (year) [Ref.] ANN model Purpose Target function/
class(es)

Input variables Performance metrics

Álvarez-Estevez and 
Moret-Bonillo (2009) 
[79]

FLD
QD
SVM
FFBB

Classification
(binary)

Arousal detection Energy in common 
bands of EEG  
(Fourier analysis)

0.196 ± 0.015 ER
0.195 ± 0.015 ER
0.140 ± 0.012 ER
0.092 ± 0.010 ER

Patel et al. (2011) [85] FFBB Classification
(binary)

Alert vs. fatigue Spectral power 
(Fourier analysis) of 
HRV

90% Acc

Lin et al. (2006) [86] FNN Regression Driver’s  
drowsiness level 
estimation

Spectral power of  
EEG and ICA

Pearson correlation:
0.913 ± 0.027

Kurt et al. (2009) [87] MLP Classification
(3-class)

Awake/drowsy/
sleep

Wavelet 
decomposition of  
EEG, EOG and 
chin-EMG

97–98% overall Acc

Garcés et al. (2014) 
[88]

FFBB Classification
(binary)

Alert vs. 
drowsiness

Time, spectral, and 
wavelet  
decomposition of 
single-lead EEG

87.4% Se, 83.6% Sp

Notes: ER: error rate; Se: sensitivity; Sp: specificity; k: kappa coefficient of classification ability; Acc: accuracy; NS: not 
specified; MLP: multilayer perceptron; SWS: slow wave sleep; FFBB: feed-forward back-propagation; SS: sleep spindles; 
RNN: recurrent ANN; PNN: probabilistic neural network; FLD: Fisher’s linear discriminant; QD: quadratic discriminant; 
SVM: support vector machine; FNN: fuzzy ANN; ICA: independent component analysis.

Table 2. Performance and the most relevant characteristics of the studies using ANNs in the context of sleep staging, 
arousal detection, and drowsiness monitoring.

Usefulness of Artificial Neural Networks in the Diagnosis and Treatment of Sleep Apnea-Hypopnea Syndrome
http://dx.doi.org/10.5772/66570

55



EEG-based) [80], discrete hidden Markov models (85.29% overall accuracy, 5-class, EEG/
EOG/EMG-based) [81], linear (73.7% overall accuracy, 4-class, HRV-based), and quadratic 
(63.7% overall accuracy, 4-class, HRV-based) discriminant analysis (81% accuracy, 5-class, 
EEG/EOG/EMG/ECG-based) [82, 83], SVM (89.39% accuracy 5-class, single EEG) [84], DTs 
(72.6% accuracy, 5-class, EEG/EOG single lead). In the same way as ANNs, these approaches 
are characterized by variable performance.

3.2.1. Driver’s drowsiness detection

A relevant application of ANNs in the context of SAHS is the detection of drivers’ fatigue and/
or drowsiness, which is an important issue for patients suffering from SBD. In this regard, differ-
ent physiological signals have been used to monitor alertness, such as spectral analysis of HRV 
(90% accuracy) [85] and EEG (0.913 ± 0.027 correlation between actual and estimated alertness 
levels) [86], wavelet coefficients of EEG combined with features from EOG and EMG (97–98% 
3-class overall accuracy) [87], and time, spectral, and wavelet features from single-lead EEG [88]. 
Neuromuscular (EEG, EOG, EMG) and cardiac (ECG) signals have been analyzed predomi-
nantly in order to detect drowsiness, though additional physiological recordings (oximetry, skin 
conductance), physical measures (eye movement/blinks, face and mouth images), and driver’s 
performance measures (steering wheel movements) have been also proposed as inputs to differ-
ent pattern recognition methods, specially Bayesian networks, SVMs, and ensembles of linear 
classifiers [89–91]. The main limitation of these automated algorithms is that a great amount of 
data is needed to perform an accurate training of the pattern recognition method. Nonetheless, 
alertness monitoring systems are already incorporated in many high-end vehicles.

3.3. Neural networks and continuous positive airway pressure

The incorporation of automated decision support systems in the common clinical practice of 
SAHS diagnosis is still very limited. Conversely, the implementation of artificial intelligence-
based expert systems in treatment devices for sleep-related breathing disorders therapy 
increased significantly during the last decade. In this regard, the exponential technological 
development of continuous positive airway pressure (CPAP) devices relies on the automated 
analysis of breathing patterns by means of expert systems, most of them based on ANNs. 
Currently, CPAP is the primary preferred treatment of mild, moderate, and severe SAHS and 
thus it is considered the standard of care. During CPAP treatment, a continuous pressure 
of air is delivered to the patient’s upper airway to keep patency [92]. Though nonintrusive, 
simple, and effective, the device delivers an unnecessary constant high pressure during the 
whole night whatever the actual patient’s needs, which decreases comfort and in turn treat-
ment compliance. This is the main limitation of CPAP and thus the most relevant improve-
ments during the last years focused on the modulation of the pressure delivered by the device 
in order to fit patient’s needs. In this regard, the major companies operating in the SAHS 
therapy market incorporated to their devices automated algorithms to monitor and modulate 
the breathing gas pressure. Nevertheless, most manufactures provide no technical data about 
the design and implementation of their automated signal processing algorithms and thus 
they are blackboxes hard to interpret and assess.

Sleep Apnea - Recent Updates56



EEG-based) [80], discrete hidden Markov models (85.29% overall accuracy, 5-class, EEG/
EOG/EMG-based) [81], linear (73.7% overall accuracy, 4-class, HRV-based), and quadratic 
(63.7% overall accuracy, 4-class, HRV-based) discriminant analysis (81% accuracy, 5-class, 
EEG/EOG/EMG/ECG-based) [82, 83], SVM (89.39% accuracy 5-class, single EEG) [84], DTs 
(72.6% accuracy, 5-class, EEG/EOG single lead). In the same way as ANNs, these approaches 
are characterized by variable performance.

3.2.1. Driver’s drowsiness detection

A relevant application of ANNs in the context of SAHS is the detection of drivers’ fatigue and/
or drowsiness, which is an important issue for patients suffering from SBD. In this regard, differ-
ent physiological signals have been used to monitor alertness, such as spectral analysis of HRV 
(90% accuracy) [85] and EEG (0.913 ± 0.027 correlation between actual and estimated alertness 
levels) [86], wavelet coefficients of EEG combined with features from EOG and EMG (97–98% 
3-class overall accuracy) [87], and time, spectral, and wavelet features from single-lead EEG [88]. 
Neuromuscular (EEG, EOG, EMG) and cardiac (ECG) signals have been analyzed predomi-
nantly in order to detect drowsiness, though additional physiological recordings (oximetry, skin 
conductance), physical measures (eye movement/blinks, face and mouth images), and driver’s 
performance measures (steering wheel movements) have been also proposed as inputs to differ-
ent pattern recognition methods, specially Bayesian networks, SVMs, and ensembles of linear 
classifiers [89–91]. The main limitation of these automated algorithms is that a great amount of 
data is needed to perform an accurate training of the pattern recognition method. Nonetheless, 
alertness monitoring systems are already incorporated in many high-end vehicles.

3.3. Neural networks and continuous positive airway pressure

The incorporation of automated decision support systems in the common clinical practice of 
SAHS diagnosis is still very limited. Conversely, the implementation of artificial intelligence-
based expert systems in treatment devices for sleep-related breathing disorders therapy 
increased significantly during the last decade. In this regard, the exponential technological 
development of continuous positive airway pressure (CPAP) devices relies on the automated 
analysis of breathing patterns by means of expert systems, most of them based on ANNs. 
Currently, CPAP is the primary preferred treatment of mild, moderate, and severe SAHS and 
thus it is considered the standard of care. During CPAP treatment, a continuous pressure 
of air is delivered to the patient’s upper airway to keep patency [92]. Though nonintrusive, 
simple, and effective, the device delivers an unnecessary constant high pressure during the 
whole night whatever the actual patient’s needs, which decreases comfort and in turn treat-
ment compliance. This is the main limitation of CPAP and thus the most relevant improve-
ments during the last years focused on the modulation of the pressure delivered by the device 
in order to fit patient’s needs. In this regard, the major companies operating in the SAHS 
therapy market incorporated to their devices automated algorithms to monitor and modulate 
the breathing gas pressure. Nevertheless, most manufactures provide no technical data about 
the design and implementation of their automated signal processing algorithms and thus 
they are blackboxes hard to interpret and assess.

Sleep Apnea - Recent Updates56

As aforementioned, determining the optimal therapeutic pressure has been a major goal of 
research regarding CPAP treatment. Different respiratory-related signals have been assessed 
for automated regulation of the pressure. Airflow, SpO2 from oximetry, HRV, pharyngeal wall 
vibration, and snoring sounds have been involved in automated algorithms aimed at detect-
ing airflow limitation and respiratory events. Among them, the analysis of the airflow profile 
is the most widely used method [93, 94]. In this regard, several algorithms have been patented 
during the last years, which reflect the increasing interest of leading companies in this field. 
In the patent by Norman et al. [93], a pretrained ANN fed with shape-based features from the 
airflow signal is used to detect the presence of airflow limitation in each individual patient’s 
breath. Eklund et al. [95] granted a patent for automatically adjusting the flow pressure when 
respiratory events are detected. To achieve this goal, an ANN is fed with respiration-related 
variables. In a recent granted patent, Waxman et al. [96] proposed a Large Memory Storage 
and Retrieval (LAMSTAR) neural network to process patient’s physiological data in order 
to predict breathing events and control the airway pressure level supplied to the user. This 
algorithm reached high prediction ability within the 30 s preceding the respiratory event [96]. 
Similarly, in the patent by Hedner et al. [97], the authors describe a pattern recognition system 
based on a plurality of ANNs aimed at controlling the therapy breathing support in order to 
increase its effectiveness. Leading companies, such as Philips Respironics, ResMed, or Fisher 
& Paykel, incorporated these algorithms into their CPAP devices. Nevertheless, additional 
research is still needed to further assess whether these technological advances can effectively 
improve CPAP adherence.

Automatic detection of wake and sleep states is a novel approach for enhancing patient’s com-
fort [98, 99]. In the study carried out by Ayappa et al. [98], the authors proposed an ANN to 
detect irregular respiration characteristics of sleep/wake transitions. In this study, the CPAP 
flow signal is parameterized by means of breath timing and amplitude measures, which sub-
sequently feed the ANN in order to detect irregular breathing. This algorithm is used in the 
commercial system SensAwakeTM (Fisher & Paykel, Auckland, NZ) in order to automatically 
decrease the therapeutic pressure when the patient is awake [99]. This ANN has demonstrated 
to be effective for sleep onset and awakening detection, though there is still little if any evi-
dence supporting its actual long-term influence on patient’s comfort and CPAP compliance.

In order to obtain the optimal CPAP pressure level for a patient, an individual titration proce-
dure is needed. This technique is aimed at estimating the continuous pressure that normalizes 
the patient’s sleep and breathing during in-lab PSG, which contributes to increase the large 
waiting lists. Therefore, alternative methods are demanded. In this regard, El-Solh et al. [100] 
designed and trained a GRNN aimed at estimating the most effective continuous pressure using 
demographic and anthropometric variables (those from the Hoffstein formula, i.e., age, gender, 
BMI, neck circumference, and AHI). The authors reported high agreement between the optimal 
pressure determined by standard titration during overnight PSG and the pressure predicted by 
the ANN. In a later randomized study, El-Solh et al. [101] reported that this ANN can be effec-
tively used to guide CPAP titration. The authors showed that automated titration procedures 
using this methodology reached the optimal CPAP pressure at a shorter time interval compared 
to conventional PSG-based titration, as well as lower titration failure.
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4. Conclusion

Researchers carried out an exhaustive study during the last decades focused on the design 
of automated expert systems derived from artificial intelligence able to help physicians in 
their daily practice. Accordingly, several computer-aided decision support systems have 
been proposed to overcome limitations of the standard diagnostic methodology for SAHS. 
Among all the automated prediction methods, ANNs are probably the most widely used 
pattern recognition algorithm in the context of SAHS management. Their flexibility to model 
complex nonlinear problems and their higher generalization ability allow ANNs to reach 
higher performance rates both in classification and regression problems. In this regard, 
several applications of ANNs have been developed, such as classification of patients sus-
pected of suffering from SAHS, AHI estimation, detection and quantification of respiratory 
events, apneic events classification, automated sleep staging and arousal detection, alertness 
monitoring systems, and airflow pressure optimization in PAP-based devices. On the other 
hand, the most common limitation of ANNs relates to the interpretation of the results in 
terms of the significance of the variables involved in the model. In this way, ANNs are most 
times viewed as blackboxes that are not able to generate understandable rules, which is the 
main weakness of neural-based classifiers. Conversely, both decision trees and probabilistic 
networks also reach high performance by providing interpretable rules and relationships 
between input variables.

Regarding input features, ANNs are able to deal with high-dimensional spaces composed 
of several features. This is especially useful when working with a lot of data sources provid-
ing information about the problem under study, such as symptoms reported by the patient, 
physical examination, sleep questionnaires, or PSG, among others. However, it is important 
to highlight that, sometimes, researchers try to compose a wide initial feature set in order to 
gather as much information as possible, including features from signal processing algorithms 
regardless of their relevance or clinical meaning. In this way, feature selection strategies are 
very useful to distinguish the more significant ones. In addition, dimensionality reduction 
algorithms allow ANNs to deal with the curse of dimensionality problem and to control over-
fitting. Nevertheless, just a few studies apply feature selection techniques before the classifica-
tion stage.

ANNs have yielded reliable and accurate applications in the context of SAHS detection. 
Nevertheless, it is noteworthy that, in the last years, there is a trend to use different pattern 
recognition algorithms, particularly SVMs and ensemble classifiers. SVMs have emerged as 
powerful tools able to achieve significantly high performance both in classification and regres-
sion problems. They are kernel-based maximum margin classifiers, i.e., the decision boundary 
is determined by a subset of the training data samples in a transformed space in which the 
margin (the distance between the boundary and the closest samples) is maximized. In this 
way, the optimization problem is relatively straightforward [18]. Several recent studies have 
demonstrated the usefulness of SVMs in the framework of SAHS management [102–105]. 
Moreover, in the present research, some studies were reviewed reporting that SVM-based 
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classifiers reached higher accuracy than ANNs [23, 45, 52]. Unlike ANNs, SVMs are capable 
to minimize both structural and empirical risk, leading to higher generalization ability even 
when working with limited training datasets [103]. On the other hand, they are also character-
ized as blackboxes and usually higher computational time is needed to optimize the classifier 
[27]. Unfortunately, there are few studies assessing the performance of different classification 
approaches in the same conditions (population under study and equal optimization of input 
parameters), leading to biased results and poor generalization. Open access databases, such as 
the Physionet or the Sleep Heart Health Study (SHHS), provide a common benchmark to properly 
assess the performance of different methodologies using the same data. Nevertheless, these 
databases are limited and most studies are carried out using no publicly available datasets, 
which restricts comparisons.

In addition, it is also noteworthy that ensemble classifiers, from the simplest majority vote to 
the more complex bagging, boosting, and stacking algorithms, have been recently introduced 
in the context of SAHS in order to improve classification performance [106, 107]. It is obvious 
that misclassified samples are not always the same when using different classification algo-
rithms. Accordingly, improved performance may be reached when working with several clas-
sifiers at the same time. In this way, ensemble algorithms take advantage of the information 
provided by all the classifiers involved in the classification or regression task. The studies by 
Guijarro-Berdiñas et al. [59] and Nguyen et al. [52] demonstrated the reliability and efficacy of 
ANN-based ensembles. Nevertheless, further research is still need in order to exploit the full 
potential of this approach in the context of SAHS diagnosis.
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Abstract

Sleep disorders are of growing concern and are a major public health problem. The obstruc-
tive sleep apnea (OSA) is the most common among different sleep-related breathing dis-
orders (SRBDs). Obesity is a known associated risk factor for the OSA but is not limited 
to them. OSA is also recognized in nonobese population. The description of OSA in non 
obese patients in the literature is sparse. The clinical presentation is similar as in obese 
but has few differences as far as pathophysiology and polysomnographic features are con-
cerned. The severity of OSA in nonobese has less severe manifestations thus requires early 
recognition and  different treatment strategy to prevent mismanagement of these patients.

Keywords: OSA, UARS, nonobese

1. Introduction

Sleep disorders are of growing concern and has become a major public health  problem. 
Sleep disorders involve difficulty in breathing during sleep and are grouped under 
 sleep-related breathing disorders (SRBDs). SRBDs are commonly classified as central sleep 
apnea  syndrome, obstructive sleep apnea syndrome, hypoventilation/hypoxia syndrome, 
 nonspecific/ undefined sleep disorder [1]. Among SRBDs, obstructive sleep apnea (OSA) 
is the most common. OSA has characteristically been associated with obesity and lack of 
awareness and ignorance has contributed more to its increasing prevalence. OSA escaped the 
thought of many doctors till it was first described by Gastaut in a Neurology journal in 1965. 
Although it was first observed and mentioned in a book of Charles Dickens, an English book 
writer, in 1936 about a character of a person by name Joe (fat boy) in his book, The Pickwick 
Papers [2]. According to Dacal Quintas et al. [3], frequency and severity of OSA in normal 
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weight patients was lower than overweight and obese patients. They reported frequency 
of 70.52 and 22% OSA in obese and normal weight patients, respectively. Normal weight 
group patients were mainly women, snorers, nonsmokers, nondrinkers and were signifi-
cantly younger and with a smaller neck and waist circumference. The exact and recent data 
regarding prevalence of OSA in nonobese are not available. However, the recent studies have 
shown a wide scope for the evaluation of the OSA among nonobese patients globally and in 
India. Physicians noticed that the clinical presentations of OSA are not only limited in obese 
but also found in nonobese [4]. The common clinical presentation in obese and nonobese is 
the outcome of the basic  underlying pathophysiological change that is airway narrowing or 
collapse during the sleep which may have different determinants that are being addressed 
in this chapter.

2. Pathophysiology of airway obstruction

OSA is a major public health problem affecting sizeable population. The  patho physiologi-
cal mechanism of OSA is not thoroughly understood and it appears to be of  multifactorial  
origin which majorly involves interaction between anatomical (static),  functional (dynamic), 
and systemic factors. Although these factors form the basis of OSA in nonobese and obese  
persons, their contribution may differ in the two groups of people.

3. Mechanism of airway obstruction during sleep

Pharynx is the only collapsible segment of the respiratory tract (except nares and small 
 airways), and it is also the site for upper airway closure or narrowing during sleep. The 
patency of the pharynx is maintained by two counteracting forces, i.e. upper airway  muscles 
(dilates and stiffens the pharynx) and negative intraluminal pressure (tends to narrow the 
pharynx). The imbalance between these two is the basis for OSA. Retropalatal and retro-
glossal areas of oropharynx are the commonly involved site in the narrowing of airways in 
OSA [5, 6].

The reasons for narrowing in OSA are different in nonobese and obese patients in comparison 
with normal individual [7]. In OSA, upper airway soft tissue enlargement may play a more 
important role in obese patients, whereas bony structure discrepancies may be the dominant 
contributing factors among nonobese patients. The various factors responsible for OSA in 
nonobese are mentioned below (Figure 1).

3.1. Anatomical (Static) factors in upper airway structure

(1) Edema: Negative pressure due to airway closure and repeated apnea may lead to edema 
of soft tissues particularly uvula and genioglossus [8–10].
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(2) Muscle injury: Repeated fatigue of upper airway muscles in sleep apnea leads to myopa-
thy which in turn results in remodeling of muscles [11, 12].

(3) Gender: Upper airway size and neck size are smaller in women than in men, thus the 
size of soft tissue structures is also smaller in women than in men. Fat deposition in men 
is  primarily seen in upper body and trunk, whereas in women fat is deposited more 
 commonly in lower body and extremities [13–15].

The above factors contribute to the development of OSA in both obese and nonobese. Obesity 
is a major risk factor for OSA, where there is decrease in pharyngeal airway size and increases 
airway collapsibility. Increase in neck size associated with an increase in BMI, seen in OSA 
patients, is a good predictor of sleep apnea. Weight gain is associated with generalized fat 
deposition, which contributes to the increase in the oropharyngeal  muscle mass  responsible 
for its malfunctioning and thus airway collapsibility [16–18].

3.2. Physiological (dynamic) factors in upper airway structure

The data indicate that the upper airway collapsibility during apneic events occurs at the end 
of expiration in addition to collapse during inspiration [19, 20]. During wakefulness, the 

Figure 1. Factors responsible for OSA in nonobese.
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 balance between the upper airway dilator muscles and negative intraluminal pressure leads 
to a constant upper airway caliber [21, 22]. During sleep (in normal subject), it is associated 
with narrowing of pharyngeal luminal area due to decrease in upper airway muscle activity 
and a persistence of subatmospheric luminal pressure during inspiration. When the severity 
of this narrowing increases along with the anatomical impairment, this may lead to the devel-
opment of OSA during sleep.

3.3. Systemic factors affecting upper airway structure

Accumulated fluid in the leg has a tendency to suffer overnight rostral displacement to the 
parapharyngeal region. Additionally, this rostral fluid displacement further interacts with 
the displacement of subcutaneous tissue, thus compromising the pharyngeal airway lumen. 
Few published articles, all in nonobese subjects, confirmed overnight increase in neck 
 circumference resulting from shift of fluid from the legs [23–25]. This has further been proved 
by  experimental studies using medical antishock trousers (MAST) [26, 27]. Organ failures 
such as heart failure [28], renal failure [29], and other disease conditions such as  hypertension 
[30–32], stroke [33, 34], pulmonary arterial hypertension [35], and other conditions with 
potential for fluid retention are associated with OSA.

3.4. Other factors

Upper airway resistance syndrome (UARS) can be considered as the other factor, though 
the debate has been in existence since Guilleminault et al. first described UARS in 1993 [36]. 
The UARS has clinical presentations similar to OSA but certain differences are found in OSA 
and UARS. Many authors have tried to differentiate these two entities but only could reach 
to a very thin line of demarcation [37, 38]. The fact remains that UARS is commonly seen in 
 nonobese, with body mass index (BMI) ≤25 kg/m2 [39, 40]. Patients are frequently younger 
than patients with OSAS. UARS is more common in males but the female to male ratio seems 
to be highest in UARS group compared to OSA [41]. Frequent arousals due to increased 
respiratory effort also known as respiratory effort-related arousals (RERAs) in UARS are 
associated with daytime sleepiness, functional symptoms, cardiovascular, and cognitive 
disturbances. These RERAs are the classical features of UARS [42]. Unfortunately, many 
UARS patients are still under diagnosed as these patients are not subjected to polysomno-
graphic studies as belief that patients must be obese or at least overweight with a large neck 
and these patients are usually labeled as fibromyalgia, chronic fatigue syndrome, or as psy-
chiatric disorders, such as attention deficit disorder/attention deficit hyperactivity disorder 
(ADD/ADHD) [43].

The pathophysiology of UARS appears to be similar to OSA despite subtle differences in 
them. In UARS, pharyngeal reflexes are preserved compared to impaired reflexes in OSA 
[44]. Nocturnal polysomnography in UARS does not show apneas or hypopneas, which are 
the main features of obstructive sleep apnea syndrome (OSAS). Even though UARS does not 
have apneas/hypopneas, RERAs are associated with significant disturbances in sleep leading 
to impairment of daily routine of individuals. So ICSD II recommends that UARS should be 
considered as a part of OSA and not as a separate entity [45].
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them. In UARS, pharyngeal reflexes are preserved compared to impaired reflexes in OSA 
[44]. Nocturnal polysomnography in UARS does not show apneas or hypopneas, which are 
the main features of obstructive sleep apnea syndrome (OSAS). Even though UARS does not 
have apneas/hypopneas, RERAs are associated with significant disturbances in sleep leading 
to impairment of daily routine of individuals. So ICSD II recommends that UARS should be 
considered as a part of OSA and not as a separate entity [45].
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4. Causes for OSA in nonobese patients

Along with UARS and organ failure, causes for OSA in nonobese patients are mainly limited 
to several cephalometric defects compared with their BMI matched normal controls [7].

Nonobese OSA patients tend to present the following anatomical craniofacial characteristics, 
such as caudal hyoid, increased soft palate dimensions, and consequent anterior-posterior 
reductions of the airways at the soft palate level, reduction of anterior-posterior region of 
nasopharynx and oropharynx [7].

It has been suggested that the discrepancy in these cephalometric measurements may also 
depend on sex, age, and race [46–49]. OSA in Asian men has been found more frequently in 
the nonobese patients, despite the presence of severe illness, when compared with white male 
patients with OSAS [50].

Garg et al. [4] reported that nonobese subjects were more likely in habit of taking sedatives for 
sleeping when compared to obese counterpart, which was in concordance with other study 
conducted by Ghanem and Mahmood on 102 patients with OSA [51].

5. Clinical manifestations

There is no much difference between the clinical features of OSA in obese and nonobese as the 
pathophysiology of OSA is same in both obese and nonobese patients. Point of differentiation 
comes at severity of symptoms and management. Frequency and severity of OSA in nonobese 
is comparatively less than OSA in obese [3].

According to the study conducted by the author, the obese group had a significance with 
regard to lower minimal oxygen saturation (68.47 ± 13.00 vs. 80.25 ± 7.40, P < 0.001), higher 
average desaturation index (48.32 ± 13.08 vs. 30.63 ± 15.63, P < 0.001), and higher arousal index 
(28.42 ± 4.99 mm vs. 17.84 ± 5.07 mm, P < 0.001). Although there were a large number of obese 
patients than nonobese in the study (25/45 vs. 14/36) having minimum oxygen saturation 
<90%, the percentage of nonobese patients showing similar findings was not less (55.6 vs. 38.9, 
P = 0.37). The rest of the polysomnographic parameters were comparable [4].

6. Diagnosis

Diagnosis of OSA should be made after a comprehensive work up on the basis of history, 
examination, polysomnography, limited channel testing, split-night testing, and oximetry.

Since in most of these patients anatomical factors contribute to their problem, thus the empha-
sis should be to assess the airway thoroughly.

Airway may be assessed with the help of a number of imaging modalities such as  acoustic 
reflexion, fluoroscopy, nasopharyngoscopy, and cephalometry (Figures 2 and 3; Table 1), 
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Figure 2. Cephalometric landmarks A.

Figure 3. Cephalometric landmarks B.
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S Center of sella turcica

N Nasion, the deepest point concavity of nasofrontal suture

ANS Anterior nasal spine

PNS Posterior nasal spine

Point A The deepest point in the concavity of the anterior maxilla between the anterior nasal spine and 
the alveolar crest

Point B The deepest point in the concavity of the anterior mandible between the alveolar crest and pogonion

Go Gonion, the most posteroinferior point on angle of mandible

Me The most inferior point on bony chin

U The tip of uvula

OV Intersection point between line on maximal diameter of velum in oronasal direction and oral 
surface of velum

NV Intersection point between line of maximal diameter of velum in oronasal direction and nasal 
surface of velum

T Intersection point between dorsal surface of tongue and line perpendicular to maxillary plane at 
PNS

H The most superior and anterior point on the body of hyoid bone

aC3 Anteroinferior point on corpus of third cervical vertebrae (C3)

pC3 Posteroinferior point on corpus of third cervical vertebrae (C3)

aC4 Anteroinferior point on corpus of fourth cervical vertebrae (C4)

aPu Intersection point between anterior pharyngeal wall and line passing through point ‘U’ parallel to 
maxillary plane

pPu Intersection point between posterior pharyngeal wall and line passing through point ‘U’ parallel 
to maxillary plane

pPo Intersection point between nasal line and posterior pharyngeal wall

pP3 Intersection point between line connecting points, PC3 and aC3 and posterior pharyngeal wall

ANS-PNS Maxillary plane

Go-Me Mandibular plane (MP); line tangent to lower border of body of mandible through gnathion

H-MP Distance between H and mandibular plane

S-H Distance between S and H

aC4-H Distance between H and aC4

PNS-U Soft palate length

NV-OV Soft palate thickness

ANS-PNS-U Soft palate (SP) angle, angle between maxillary plane and soft palate

R Radius of curvature of nasal surface of soft palate  r =    (  NV to OV distance )    ________________ 2   +     
(  PNS to U distance )     2 

  _________________  
8  (  NV to OV distance )   

   

aPu – pPu Anteroposterior dimension of oropharynx at U

PNS-pP0-pP3-aP3-L Total pharyngeal area

Table 1.  Cephalometric landmarks and reference lines used.
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MR imaging, and both conventional and electron-beam CT scanning. MR imaging is  probably 
the best imaging modality, although still not ideal [52].

7. Treatment

Possible treatment options for adult patients with OSA should be based on the severity of 
the sleep disorder, preference of the patient, the patient’s general health, and the preference 
and experience of the team members. Treatment approach for OSA should be holistic and 
 multimodality. Positive airway pressure (PAP) is universally accepted as the treatment of 
choice for mild, moderate, and severe OSA and thus should be offered to all patients as the first 
option. Side effects and adverse events are mainly minor and reversible with CPAP and BPAP 
therapy [53]. It may be delivered in continuous (CPAP), bilevel (BPAP), or  autotitrating (APAP) 
modes. CPAP is indicated for the treatment of moderate-to-severe OSA [53]. Treatment of mild 
OSA could be optional other than PAP therapy. The American Academy of Sleep Medicine 
(AAOSM) has recommended the use of oral appliances (OAs) in patients with primary  snoring 
and mild-to-moderate OSA [52]. Oral appliances are not as efficacious as CPAP. They are 
 indicated for use in patients with mild-to-moderate OSA who prefer OAs to CPAP, or who 
do not respond to CPAP, are not appropriate candidates for CPAP, or who fail CPAP and are 
not fit candidate for surgery [54]. Oral appliances can also achieve satisfactory outcomes in 
UARS [55]. If surgical measures are predicted (severe obstructing anatomy that is surgically 
 correctible) to be highly effective in treating sleep apnea, upper airway surgery (including ton-
sillectomy and adenoidectomy, craniofacial operations, and tracheostomy) may also  supersede 
use of OAs. Surgical procedures may also be considered as a secondary treatment for OSA 
when the patient is intolerant of PAP, or PAP therapy is unable to eliminate OSA [56]. There 
are no widely effective pharmacotherapies for OSA. Topical nasal corticosteroids may improve 
the AHI in patients with OSA and concurrent rhinitis, and thus may be a useful adjunct to 
primary therapies for OSA. However, short-acting nasal decongestants are not recommended 
for treatment of OSA [56]. Oxygen supplementation has no role as a primary treatment for 
OSA [57]. Modafinil is recommended for the treatment as an add-on therapy of residual exces-
sive daytime sleepiness in OSA patients who have sleepiness despite effective PAP treatment 
and who are lacking any other identifiable and correctable cause for their sleepiness [57]. We 
 suggest that CPAP and Bi level is not the only modality of treatment. Any patient with systemic 
disorder requires treatment of primary disorder before application of these devices.

8. Conclusion

The severity of OSA in nonobese has less severe manifestation and requires different 
 treatment strategy according to the contributory factor playing in its causation. Patients also 
require thorough clinical evaluation and confirmation by means of polysomnographic  studies 
as many patients showing features of daytime sleepiness and fatigue may be erroneously 
managed as psychological symptoms.
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and who are lacking any other identifiable and correctable cause for their sleepiness [57]. We 
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require thorough clinical evaluation and confirmation by means of polysomnographic  studies 
as many patients showing features of daytime sleepiness and fatigue may be erroneously 
managed as psychological symptoms.

Sleep Apnea - Recent Updates76

The OSA in nonobese can be missed in elderly patients who have comorbidities like cardio-
vascular and neurological disease along with weak oropharyngeal muscles leading to easy 
collapsibility of airway along with obstruction. Correction of OSA in nonobese person is a 
multimodality approach. Assessment of upper airway anatomical variation from normalcy 
is a crucial step of management. Besides maintenance of sleep hygiene, patient could be 
 subjected to many different modality of  treatment as a holistic approach.

Acknowledgements

Special thanks to Dr. Deeksha Arya, Associate Professor, Department of Prosthodontics, 
King George’s Medical University, Lucknow, for giving her valuable inputs and relevant 
contents.

Author details

Rajiv Garg*, Anand Srivastava and Jagadeesha N. Halekote

*Address all correspondence to: rajivkgmc@gmail.com

Department of Respiratory Medicine, King George’s Medical University, Lucknow, India

References

[1] Tsara V, Amfilochiou A, Papagrigorakis MJ, et al. Guidelines for diagnosing and treating 
sleep related breathing disorders in adults and children. Hippokratia. 2009;13(4):247–252.

[2] Farokh EU, Zarir FU, Anirudh FK. Sleep related breathing disorders, In: Principles of 
Respiratory Medicine. Oxford, England:Oxford University Press; 2010. pp. 775–784.

[3] Dacal Quintas R, Tumbeiro Novoa M, Alves Perez MT, Santalla Martinez ML, Acuria 
Fernandez A, Marcos Velazquez P. Obstructive sleep apnea in normal weight patients: 
characteristics and comparison with overweight and obese patients. Arch Bronconeumol. 
2013 Dec;49(12):5137.

[4] Garg R, Singh A, Prasad R, Saheer S, Jabeed P, Verma R. A comparative study on the 
clinical and polysomnographic pattern of obstructive sleep apnea among obese and non-
obese subjects. Ann Thorac Med. 2012 Jan;7(1):26–30.

[5] Horner RL, Shea SA, McIvor J, Guz A. Pharyngeal size and shape during wakefulness 
and sleep in patients with obstructive sleep apnoea. Q J Med. 1989 Aug;72:719–735.

[6] Schwab RJ, Goldberg AN. Upper airway assessment: radiographic and other imaging 
techniques. Otolaryngol Clin North Am. 1998 Dec;31:931–968.

Obstructive Sleep Apnea: Beyond Obesity
http://dx.doi.org/10.5772/67587

77



[7] Sakakibara H, Tong M, Matsushita K, Hirata M, Konishi Y, Suetsugu S. Cephalometric 
abnormalities in non-obese and obese patients with obstructive sleep apnoea. Eur Respir 
J. 1999 Feb;13(2):403–410.

[8] Ryan CF, Lowe AA, Li D, Fleetham JA. Three-dimensional upper airway computed 
tomography in obstructive sleep apnea. A prospective study in patients treated by uvu-
lopalatopharyngoplasty. Am Rev Respir Dis. 1991 Aug;144:428–432.

[9] Schwab RJ. Upper airway imaging. Clin Chest Med. 1998 Mar;19:33–54.

[10] Schotland HM, Insko EK, Schwab RJ. Quantitative magnetic resonance imaging dem-
onstrates alterations of the lingual musculature in obstructive sleep apnea. Sleep. 
1999;22:605–613.

[11] Schwab, Richard J. Imaging for the snoring and sleep apnea patient. Dent Clin N Am. 
2001;45:759–796.

[12] Carrera M, Barbe F, Sauleda J, Tomas M, Gomez C, Agusti AG. Patients with obstructive 
sleep apnea exhibit genioglossus dysfunction that is normalised after treatment with 
continuous positive airway pressure. Am J Respir Crit Care Med. 1999 Jun;159:1960–1966.

[13] Brooks LJ, Strohl KP. Size and mechanical properties of the pharynx in healthy men and 
women. Am Rev Respir Dis. 1992 Dec;146:1394–1397.

[14] Legato MJ. Gender specific aspects of obesity. Int J Fertil Womens Med. 1997 May–Jun; 
42:184–197.

[15] Millman RP, Carlisle CC, McGarvey ST, Eveloff SE, Levinson PD. Body fat distribution 
and sleep apnea severity in women. Chest. 1995 Feb;107:362–366.

[16] Bliwise DL, Feldman DE, Bliwise NG, et al. Risk Factors for sleep disordered breathing 
in heterogenous geriatric populations. J Am Geriatric Soc. 1987;35:132–141.

[17] Hill JO, Sparling PB, Shields TW, Heller PA. Effects of exercise and food restric-
tion on body composition and metabolic rate in obese women. Am J Clin Nutr. 1987 
Oct;46:622–630.

[18] Wadden TA, Foster GD, Letizia KA, Mullen JL. Long term effects of dieting on resting 
metabolic rate in obese outpatients. JAMA. 1990 Aug;264:707–711.

[19] Schwab RJ, Gupta KB, Gefter WB, Metzger LJ, Hoffman EA, Pack AI. Upper airway and 
soft tissue anatomy in normal subjects and patients with sleep-disordered breathing. 
Significance of the lateral pharyngeal walls. Am J Respir Crit Care Med. 1995 Nov;152(5 
Pt 1):1673–1689.

[20] Badr MS, Toiber F, Skatrud JB, Dempsey J. Pharyngeal narrowing/occlusion during cen-
tral sleep apnea. J Appl Physiol 1995 May;78:1806–1815.

[21] Schwab RJ, Gefter WB, Pack AI, Hoffman EA. Dynamic imaging of the upper airway 
during respiration in normal subjects. J Appl Physiol 1993 Apr;74:1504–1514.

Sleep Apnea - Recent Updates78



[7] Sakakibara H, Tong M, Matsushita K, Hirata M, Konishi Y, Suetsugu S. Cephalometric 
abnormalities in non-obese and obese patients with obstructive sleep apnoea. Eur Respir 
J. 1999 Feb;13(2):403–410.

[8] Ryan CF, Lowe AA, Li D, Fleetham JA. Three-dimensional upper airway computed 
tomography in obstructive sleep apnea. A prospective study in patients treated by uvu-
lopalatopharyngoplasty. Am Rev Respir Dis. 1991 Aug;144:428–432.

[9] Schwab RJ. Upper airway imaging. Clin Chest Med. 1998 Mar;19:33–54.

[10] Schotland HM, Insko EK, Schwab RJ. Quantitative magnetic resonance imaging dem-
onstrates alterations of the lingual musculature in obstructive sleep apnea. Sleep. 
1999;22:605–613.

[11] Schwab, Richard J. Imaging for the snoring and sleep apnea patient. Dent Clin N Am. 
2001;45:759–796.

[12] Carrera M, Barbe F, Sauleda J, Tomas M, Gomez C, Agusti AG. Patients with obstructive 
sleep apnea exhibit genioglossus dysfunction that is normalised after treatment with 
continuous positive airway pressure. Am J Respir Crit Care Med. 1999 Jun;159:1960–1966.

[13] Brooks LJ, Strohl KP. Size and mechanical properties of the pharynx in healthy men and 
women. Am Rev Respir Dis. 1992 Dec;146:1394–1397.

[14] Legato MJ. Gender specific aspects of obesity. Int J Fertil Womens Med. 1997 May–Jun; 
42:184–197.

[15] Millman RP, Carlisle CC, McGarvey ST, Eveloff SE, Levinson PD. Body fat distribution 
and sleep apnea severity in women. Chest. 1995 Feb;107:362–366.

[16] Bliwise DL, Feldman DE, Bliwise NG, et al. Risk Factors for sleep disordered breathing 
in heterogenous geriatric populations. J Am Geriatric Soc. 1987;35:132–141.

[17] Hill JO, Sparling PB, Shields TW, Heller PA. Effects of exercise and food restric-
tion on body composition and metabolic rate in obese women. Am J Clin Nutr. 1987 
Oct;46:622–630.

[18] Wadden TA, Foster GD, Letizia KA, Mullen JL. Long term effects of dieting on resting 
metabolic rate in obese outpatients. JAMA. 1990 Aug;264:707–711.

[19] Schwab RJ, Gupta KB, Gefter WB, Metzger LJ, Hoffman EA, Pack AI. Upper airway and 
soft tissue anatomy in normal subjects and patients with sleep-disordered breathing. 
Significance of the lateral pharyngeal walls. Am J Respir Crit Care Med. 1995 Nov;152(5 
Pt 1):1673–1689.

[20] Badr MS, Toiber F, Skatrud JB, Dempsey J. Pharyngeal narrowing/occlusion during cen-
tral sleep apnea. J Appl Physiol 1995 May;78:1806–1815.

[21] Schwab RJ, Gefter WB, Pack AI, Hoffman EA. Dynamic imaging of the upper airway 
during respiration in normal subjects. J Appl Physiol 1993 Apr;74:1504–1514.

Sleep Apnea - Recent Updates78

[22] Schwab RJ, Gefter WB, Hoffman EA, Gupta KB, Pack AI. Dynamic upper airway imag-
ing during awake respiration in normal subjects and patients with sleep disordered 
breathing. Am Rev Respir Dis. 1993 Nov;148:1385–1400.

[23] Redolfi S, Yumino D, Ruttanaumpawan P, Yau B, Su MC, Lam J, Bradley TD. Relationship 
between overnight rostral fluid shift and Obstructive Sleep Apnea in nonobese men. Am 
J Respir Crit Care Med. 2009 Feb;179:241–246.

[24] Yumino D, Redolfi S, Ruttanaumpawan P, Su MC, Smith S, Newton GE, Mak S, Bradley 
TD. Nocturnal rostral fluid shift;a unifying concept for the pathogenesis of obstructive and 
central sleep apnea in men with heart failure. Circulation. 2010 Apr;121(14):1598–1605.

[25] Redolfi S, Arnulf I, Pottier M, Bradley TD, Similowski T. Effects of venous compression 
of the legs on overnight rostral fluid shift and obstructive sleep apnea. Respir Physiol 
Neurobiol. 2011 Mar;175(3):390–393.

[26] Chiu KL, Ryan CM, Shiota S, Ruttanaumpawan P, Arzt M, Haight JS, Chan CT, Floras JS, 
Bradley TD. Fluid shift by lower body positive pressure increases pharyngeal resistance 
in healthy subjects. Am J Respir Crit Care Med. 2006 Dec; 174:1378–1383.

[27] Su MC, Chiu KL, Ruttanaumpawan P, Shiota S, Yumino D, Redolfi S, Haight JS, Bradley 
TD. Lower body positive pressure increases upper airway collapsibility in healthy sub-
jects. Respir Physiol Neurobiol. 2008 May;161:306–312.

[28] Sin DD, Fitzgerald F, Parker JD, Newton G, Floras JS, Bradley TD. Risk factors for central 
and obstructive sleep apnea in 450 men and women with congestive heart failure. Am J 
Respir Crit Care Med. 1991 Oct;160(4):1101–1106.

[29] Beecroft JM, Pierratos A, Hanly PJ. Clinical presentation of obstructive sleep apnea in 
patients with End Stage Renal Disease. J Clin Sleep Med. 2009;5(2):115–121.

[30] Haas DC, Foster GL, Nieto FJ, Redline S, Resnick HE, Robbins JA, Young T, Pickering 
TG. Age-dependent associations between sleep-disordered breathing and hypertension; 
importance of discriminating between systolic/diastolic hypertension and isolated sys-
tolic hypertension in the Sleep Heart Health Study. Circulation. 2005 Feb;111(5):614–621.

[31] Goncalves SC, Martinez D, Gus M, de Abreu-silva EO, Bertoluci C, Dutra I, Branchi T, 
Moreira LB, Fuchs SC, de Oliveira AC, Fuchs FD. Obstructive sleep apnea and resistant 
hypertension: a case control study. Chest. 2007;132(6):1858–1862. 

[32] Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between 
sleep-disordered breathing and hypertension. N Engl J Med. 2000 May;342(19):1378–1384.

[33] Yaggi HK, Concato J, Kernan WN, Lichtman JH, Brass LM, Mohsenin V. Obstructive sleep 
apnea as a risk factor for stroke and death. N Engl J Med. 2005 Nov;353(19):2034–2041.

[34] Redline S, Yenokyan G, Gottlieb DJ, Shahar E, O‘Connor GT, Resnick HE, Diener -West 
M, Sanders MH, Wolf PA, Geraghty EM, Ali T, Lebowitz M, Punjabi NM. Obstructive 
sleep apnea-hypopnea and incident stroke: the sleep heart health study. Am J Respir Crit 
Care Med. 2010 July;182(2):269–277.

Obstructive Sleep Apnea: Beyond Obesity
http://dx.doi.org/10.5772/67587

79



[35] Yamakawa H, Shiomi T, Sasanabe R, Hasegawa R, Ootake K, Banno K, et al. Pulmonary 
hypertension in patients with severe obstructive sleep apnea. Psychiatry Clin Neurosci. 
2002;56(3):311–312.

[36] Palombini L, Lopes M-C, Tufik S, Christian G, Bittencourt LRA. Upper airway resistance 
syndrome: still not recognized and not treated. Sleep Sci. 2011;4(2):72–78.

[37] De Godoy LBM, Palombini LO, Guilleminault C, Poyares D, Tufik S, Togeiro SM. Treatment of 
upper airway resistance syndrome in adults: where do we stand?. Sleep Sci. 2015;8(1):42–48.

[38] De Godoy LBM, Luz GP, Palombini LO, et al. Upper airway resistance syndrome 
patients have worse sleep quality compared to mild obstructive sleep apnea. PLoS ONE. 
2016;11(5):e0156244.

[39] Guilleminault C, Stoohs R, Clerk A, Cetel M, Maistros P. A cause of excessive daytime 
sleepiness . The upper airway resistance syndrome. Chest. 1993 Sep;104(3):781–7.

[40] Guilleminault C, Stoohs R, Duncan S. Snoring(I).Daytime sleepiness in regular heavy 
snorers. Chest . 1991 Jan;99(1):40–48. 

[41] Stoohs RA, Knaack L, Blum HC, Janicki J, Hohenhorst W. Differences in clinical features 
of upper airway resistance syndrome, primary snoring, and obstructive sleep apnea /
hypopnea syndrome. Sleep Med. 2008 Jan;9:121–128.

[42] Guilleminault C, Light D. The syndrome of the upper airway: clinical and pathophysi-
ological relevance. Rev Respir Dis. 2005 Feb;22:27–30.

[43] Lewin DS, Di Pinto M. Sleep disorders and ADHD:shared and common phenotypes. 
Sleep. 2004 Mar;27(2):188–189.

[44] Pepin JL, Guillot M, Tamsier R, Levy P. The upper airway resistance syndrome. Respiration. 
2012.83(6):559–566.

[45] Thorpy MJ. Classification of sleep disorders. Neurotherapeutics. 2012;9(4):687–701.

[46] Guilleminault C, Quera-Salva MA, Partinem M, Jamieson A. Women and the obstructive 
sleep apnea syndrome. Chest. 1988 Jan;93:104–109.

[47] Maltais F, Carrier G, Cormier Y, Series F. Cephalometric measurements in snorers, non-
snorers, and patients with sleep apnea. Thorax. 1991;46:419–423.

[48] Li KK, Powell NB, Kushida C, Riley RW, Adornato B, Guilleminault C. A comparison 
of asian and white patients with obstructive sleep apnea syndrome. Laryngoscope. 1999 
Dec;109:1937–1940.

[49] Li KK, Kushida C, Powell NB, Riley RW, Guilleminault C. Obstructive sleep apnea 
syndrome : a comparison between Far-East Asian and white men. Laryngoscope. 2000 
Oct;110:1689–1693.

[50] Ong KC, Clerk AA. Comparison of the severityof sleep -disordered breathing in Asian 
and Caucasian patients seen at a sleep disorders center. Respir Med. 1998;92:843–848.

Sleep Apnea - Recent Updates80



[35] Yamakawa H, Shiomi T, Sasanabe R, Hasegawa R, Ootake K, Banno K, et al. Pulmonary 
hypertension in patients with severe obstructive sleep apnea. Psychiatry Clin Neurosci. 
2002;56(3):311–312.

[36] Palombini L, Lopes M-C, Tufik S, Christian G, Bittencourt LRA. Upper airway resistance 
syndrome: still not recognized and not treated. Sleep Sci. 2011;4(2):72–78.

[37] De Godoy LBM, Palombini LO, Guilleminault C, Poyares D, Tufik S, Togeiro SM. Treatment of 
upper airway resistance syndrome in adults: where do we stand?. Sleep Sci. 2015;8(1):42–48.

[38] De Godoy LBM, Luz GP, Palombini LO, et al. Upper airway resistance syndrome 
patients have worse sleep quality compared to mild obstructive sleep apnea. PLoS ONE. 
2016;11(5):e0156244.

[39] Guilleminault C, Stoohs R, Clerk A, Cetel M, Maistros P. A cause of excessive daytime 
sleepiness . The upper airway resistance syndrome. Chest. 1993 Sep;104(3):781–7.

[40] Guilleminault C, Stoohs R, Duncan S. Snoring(I).Daytime sleepiness in regular heavy 
snorers. Chest . 1991 Jan;99(1):40–48. 

[41] Stoohs RA, Knaack L, Blum HC, Janicki J, Hohenhorst W. Differences in clinical features 
of upper airway resistance syndrome, primary snoring, and obstructive sleep apnea /
hypopnea syndrome. Sleep Med. 2008 Jan;9:121–128.

[42] Guilleminault C, Light D. The syndrome of the upper airway: clinical and pathophysi-
ological relevance. Rev Respir Dis. 2005 Feb;22:27–30.

[43] Lewin DS, Di Pinto M. Sleep disorders and ADHD:shared and common phenotypes. 
Sleep. 2004 Mar;27(2):188–189.

[44] Pepin JL, Guillot M, Tamsier R, Levy P. The upper airway resistance syndrome. Respiration. 
2012.83(6):559–566.

[45] Thorpy MJ. Classification of sleep disorders. Neurotherapeutics. 2012;9(4):687–701.

[46] Guilleminault C, Quera-Salva MA, Partinem M, Jamieson A. Women and the obstructive 
sleep apnea syndrome. Chest. 1988 Jan;93:104–109.

[47] Maltais F, Carrier G, Cormier Y, Series F. Cephalometric measurements in snorers, non-
snorers, and patients with sleep apnea. Thorax. 1991;46:419–423.

[48] Li KK, Powell NB, Kushida C, Riley RW, Adornato B, Guilleminault C. A comparison 
of asian and white patients with obstructive sleep apnea syndrome. Laryngoscope. 1999 
Dec;109:1937–1940.

[49] Li KK, Kushida C, Powell NB, Riley RW, Guilleminault C. Obstructive sleep apnea 
syndrome : a comparison between Far-East Asian and white men. Laryngoscope. 2000 
Oct;110:1689–1693.

[50] Ong KC, Clerk AA. Comparison of the severityof sleep -disordered breathing in Asian 
and Caucasian patients seen at a sleep disorders center. Respir Med. 1998;92:843–848.

Sleep Apnea - Recent Updates80

[51] Ghanem A, Mahmood S. Is obstructive sleep apnoea in non-obese patients a less serious 
disease than in obese patients?. Chest. 2005;128:231s-a.

[52] Padma A, Ramakrishnan N, Narayan V. Management of obstructive sleep apnea: a den-
tal perspective. Indian J Dent Res. 2007 Oct–Dec;18(4):201–209.

[53] Kushida CA, Littner MR, Hirshkowitz M, Morgenthaler TI, Alessi CA, Bailey D, 
Boehlecke B, Brown TM, Coleman J Jr, Friedman L, Kapen S, Kapur VK, Kramer M, 
Lee-Chiong T, Owens J, Pancer JP, Swick TJ, Wise MS. Practice parameters for the use 
of continuous and bilevel positive airway pressure devices to treat adult patients with 
sleep related breathing disorders. Sleep. 2006 Mar;29:375–380.

[54] Ramar K, Dort LC, Katz SG, Lettieri CJ, Harrod CG, Thomas SM, Chervin RD. Clinical 
practice guideline for the treatment of Obstructive Sleep Apnea and Snoring with Oral 
Appliance Therapy: an update for 2015. J Clin Sleep Med. 2015 July;11(7):773–827.

[55] Yoshida K. Oral device therapy for the upper airway resistance syndrome patient. J 
Prosthet Dent. 2002.87(4):427–430.

[56] Kushida CA, Morgenthaler TI, Littner MR, Alessi CA, Bailey D, Coleman J Jr, Friedman 
L, Hirschkowitz M, Kapen S, Kramer M, Lee-chiong T, Owens J, Pancer JP. American 
academy of sleep. Practise parameters for the treatment of snoring and obstructive sleep 
apnea with oral appliances:an update for 2005. Sleep. 2006;29:240–243.

[57] Morgenthaler T, Kapen S, Lee-Chiong T, Alessi C, Boehlecke B, Brown T, Coleman J, 
Friedman L, Kapur V, Owens J, Pancer J, Swick T. Practice parameters for the medical 
therapy of obstructive sleep apnea. Sleep. 2006 Aug;29:1031–1035.

Obstructive Sleep Apnea: Beyond Obesity
http://dx.doi.org/10.5772/67587

81





Chapter 5

Management of Obstructive Sleep Apnea by

Maxillomandibular Advancement Surgery

Gurkan Rasit Bayar and Tamer Zerener

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/65437

Provisional chapter

Management of Obstructive Sleep Apnea by

Maxillomandibular Advancement Surgery

Gurkan Rasit Bayar and Tamer Zerener

Additional information is available at the end of the chapter

Provisional chapter

Management of Obstructive Sleep Apnea by

Maxillomandibular Advancement Surgery

Gurkan Rasit Bayar and Tamer Zerener

Additional information is available at the end of the chapter

Abstract

Obstructive  sleep  apnea  (OSA)  is  a  common  disorder  characterized  by  recurrent
episodes of partial or complete collapsibility of upper airway during sleep. The use of
nocturnal positive airway pressure that pneumatically stents open the upper airway
has been considered the first-line treatment of OSA. However, in the last two decades,
maxillomandibular  advancement  (MMA)  has  been  widely  suggested  as  the  most
effective craniofacial surgical technique for the treatment of OSA in adults. It has been
shown that the pharyngeal and hypopharyngeal airway could be enlarged with MMA
surgery by physically expanding the facial skeletal framework. Tissue tension could
be  increased  by  forward  movement  of  the  maxillomandibular  complex.  Thus,
collapsibility of the velopharyngeal and suprahyoid musculature could be decreased,
and lateral pharyngeal wall collapse could be improved. Recent systematic reviews
and meta-analyses showed that most of the subjects reported satisfaction after MMA
with improvements in quality of life (QOL) measures and most of OSA symptomatol-
ogy. According to the recent updates, MMA appears to be the most successful surgical
option for the treatment of OSA, and it could be an excellent alternative procedure for
nonresponders, or deniers of ventilation therapy.

Keywords: obstructive sleep apnea, maxillomandibular, advancement, surgery, or-
thognathic surgery
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1. Introduction

Obstructive sleep apnea (OSA) is a common disorder characterized by recurrent episodes of
partial or complete collapsibility of upper airway during sleep. Disturbed sleep pattern and less
restorative sleep owing to the recurrent hypoxia events and sleep fragmentation can lead to the
symptoms of excessive daytime sleepiness, fatigue, and neurocognitive deficits. The increased
risk of accidents, cardiovascular and cerebrovascular morbidity and mortality such as myocar-
dial  infarction  and stroke  are  life-threatening  sequelae.  Additionally,  patients  may have
depression, physical and intellectual impairment, erectile dysfunction, and headache [1–10].
The mortality rate for severe OSA was reported as approximately 30% at 15 years, if it is left
untreated [3].

Several treatment options have been recommended to OSA patients. The use of nocturnal
positive airway pressure (either continuous [CPAP] or bilevel) that pneumatically stents open
the upper airway has been suggested as the reference standard treatment for the management
of OSA [2–5]. However, it was reported that more than 50% of patients showed poor adherence
rates, within the first few months after initiation [2, 3]. Therefore, patients’ compliance problem
to CPAP leads them seek surgical treatment. Surgery has been shown to be another valid option
for patients who are intolerant to positive pressure therapy. The posterior airspace of OSA
patients, who is intolerant to CPAP, could be successfully increased by some soft tissue surgical
procedures available. Despite that, the reported surgical success rate for these procedures is
approximately 40–60% [3].

Figure 1. An illustration showing maxillomandibular advancement (MMA) surgery. Arrows show the upper and lower
jaws move forward surgically and enlargement of the airway.

Another surgical treatment option for treating the patients with OSA is maxillomandibular
advancement (MMA) surgery. It was suggested that MMA is currently the most effective
craniofacial surgical technique for the treatment of OSA in adults [2, 7, 11]. By expanding the
skeletal framework, MMA enlarges the pharyngeal space and enhances the tension of the soft
tissues, reducing the collapsibility and obstruction of the pharynx (Figure 1) [3, 7]. This

Sleep Apnea - Recent Updates84



1. Introduction

Obstructive sleep apnea (OSA) is a common disorder characterized by recurrent episodes of
partial or complete collapsibility of upper airway during sleep. Disturbed sleep pattern and less
restorative sleep owing to the recurrent hypoxia events and sleep fragmentation can lead to the
symptoms of excessive daytime sleepiness, fatigue, and neurocognitive deficits. The increased
risk of accidents, cardiovascular and cerebrovascular morbidity and mortality such as myocar-
dial  infarction  and stroke  are  life-threatening  sequelae.  Additionally,  patients  may have
depression, physical and intellectual impairment, erectile dysfunction, and headache [1–10].
The mortality rate for severe OSA was reported as approximately 30% at 15 years, if it is left
untreated [3].

Several treatment options have been recommended to OSA patients. The use of nocturnal
positive airway pressure (either continuous [CPAP] or bilevel) that pneumatically stents open
the upper airway has been suggested as the reference standard treatment for the management
of OSA [2–5]. However, it was reported that more than 50% of patients showed poor adherence
rates, within the first few months after initiation [2, 3]. Therefore, patients’ compliance problem
to CPAP leads them seek surgical treatment. Surgery has been shown to be another valid option
for patients who are intolerant to positive pressure therapy. The posterior airspace of OSA
patients, who is intolerant to CPAP, could be successfully increased by some soft tissue surgical
procedures available. Despite that, the reported surgical success rate for these procedures is
approximately 40–60% [3].

Figure 1. An illustration showing maxillomandibular advancement (MMA) surgery. Arrows show the upper and lower
jaws move forward surgically and enlargement of the airway.

Another surgical treatment option for treating the patients with OSA is maxillomandibular
advancement (MMA) surgery. It was suggested that MMA is currently the most effective
craniofacial surgical technique for the treatment of OSA in adults [2, 7, 11]. By expanding the
skeletal framework, MMA enlarges the pharyngeal space and enhances the tension of the soft
tissues, reducing the collapsibility and obstruction of the pharynx (Figure 1) [3, 7]. This

Sleep Apnea - Recent Updates84

procedure is routinely performed to correct dysgnathia [7]. In the previous studies, the surgical
technique and pre- and postoperative care in the treatment of OSA have been extensively
described [12, 13].

In this chapter, we firstly present some basic information about MMA surgery, and then, we
review the published data concerning the recent updates related to the evaluations of
effectiveness of MMA surgery performed for the treatment of OSA syndrome.

2. Preoperative examination

2.1. General workup

An exact medical and sleep history should be taken regardless of patients’ age. Epworth
Sleepiness Scale can be used for adults [14], but it is not excellent and does not every time
establish a connection with OSA violence. Head, neck, and nasopharynx examination are
recommended with a lateral cephalometric head film and fiberoptic nasopharyngoscopy. Also,
nasal airway obstruction, lateral pharyngeal walls, the palatal region, tonsils, malocclusions
and skeletal abnormalities, tongue and tongue base should be examined. Especially, polysom-
nography (PSG) is very important for a diagnosis or treatment plan [15].

2.2. Polysomnography

Preoperative and postoperative polysomnography is very sensitive method which is to
evaluate of surgery success rate. On the other hand, this method also indicates the success rate
of the surgeon. Some of the parameters such as; age, body mass index (BMI), total sleep time,
sleep stages, apnea index, hypopnea index, awake SaO2, lowest SaO2, heart rate fluctuations,
and periodic leg movements should be evaluated [15, 16]. These results are expressed as the
respiratory disturbance index (RDI) or the apnea-hypopnea index (AHI). An AHI of 5 or less
is evaluated normal for an adult [15].

2.3. Cephalometric head film

Cephalometric head films are used in orthodontics, which evaluates soft tissue and bony
anatomy. Cephalometric radiographs can also be used to understand the hard tissue and soft
tissue growth rate. For this purpose, specific points, planes, and angles on the head such as
sella-nasion subspinale angle (SNA), sella-nasion-supramentale angle (SNB), distance from
the superior nasal spine to the tip of the soft palate (PNS-P), posterior airway space (PAS), and
distance from the mandibular plane to the hyoid bone (MP-H) are used [15, 17].

2.4. Fiberoptic examination

Nasopharyngolaryngoscopy is used to determine the obstruction at the nose, retropalatal, and
tongue base area. It is also used to identify upper airway obstruction causes such as tumors,
cysts, and laryngeal pathology [12].
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2.5. Preoperative management

A detailed history should be taken from the patient and should be determined whether there
is a systemic disease. Patients who undergo bimaxillary advancement have increased risks of
medical, surgical, and regarding anesthesia. For that reason, these patients regardless of age
should have an exact check-up. It should be explained to the patients what they will need to
do on the day before surgery. In addition, arch bars should be applied to both jaws [15].

3. Surgical stage

3.1. LeFort 1 osteotomies

Firstly, a nasal intubation is requested from the anesthetist for the MMA surgery. Following a
nasotracheal intubation, hypotensive tension could be wanted from anesthetist, in order to
reduce bleeding of the patient. After that, local anesthesia could be also made to reduce
bleeding and gain an additional anesthesia. Surgical operation is started by a maxillary
gingivobuccal incision, which is made from the first molar on one side to the first molar on the
opposite side. In order to expose the anterior face of the maxilla from the piriform rims
anteriorly and back to the pterygoid processes, subperiosteal dissection is performed. For the
avoidance of infraorbital nerve damage, mucosa retractor has to be used safely around
infraorbital nerve area. After the piriform aperture is detected, the dissection is carried out
medially to the nasal spine. Then, a round bur or saw is used to make horizontal osteotomies
from the nasal apertures to the pterygomaxillary fissures bilaterally. Tooth apexes should be
watched out during horizontal osteotomies. After that, osteotome is used to separate the nasal
septum from the maxillary crest. Finally, using a curved osteotome the pterygoid plates are
separated from the tuberosities of the maxilla. While doing this osteotome, one finger should
be placed in the oropharynx at the level of the hamulus, in order to obtain a bimanual tactile
feedback. To refrain injuring of the pterygoid plexus, osteotome must be put correct position
on the pterygoid plate’s areas. Then, downfracture is made and maxilla mobilized. The
descending palatine arteries are checked out and preserved. If necessary, medial wall of the
maxilla and other anatomical bone structures are shaved and removed according to the
maxillary advancement and impaction planned. Adequate mobility must be acquired to
advance the jaw passively into the requested position, which in many patients with OSA is
around 10 mm. Rigid fixation of the maxilla is done with four titanium L-shaped four-holes
miniplates (two per side) using 2.0 × 5 mm mono-cortical screws. An intermediate guide splint
is frequently useful here to adjust the maxillary position and prevent midline disagreements
and vertical faults of the jaw [17].

3.2. Bilateral sagittal split osteotomies

After local anesthesia, an incision is made throughout the external oblique ridge from
midramus height to the mandibular first molar. Subperiosteal flap is raised to expose the lateral
border of the mandible and anterior aspect of the ramus. Muscle on the medial part of the ramus
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is stripped high enough on the coronoid process to access to the mandibular foramen and
lingual process. The Hunsack modification of the Obwegeser and DalPont bilateral split sagittal
osteotomy technique is applied [17]. Using lingula recractor, 4–5 mm horizontal osteotomy is
made with a saw or burr until to just behind and above of the lingula. Osteotomy is made half
way through the thickness of the bone, and parallel to the occlusal plane. Continuing osteotomy
is made inferiorly with a sagittal saw blade along the anterior border of the ascending ramus
till to the level of the first molar (remaining 5 mm lateral to the teeth). Then, the vertical
osteotomy is performed on the buccal cortex, in a vertical direction near to the first molar, and
is extended down to the inferior border. At the inferior border, the osteotomy must be
completed to include both inner and outer cortices. The osteotomy should be extended
superiorly at least 5 mm or more at the inner cortice of the mandible; otherwise, the bad split
might be occurred. Osteotomes are used to track the osteotomy site throughout the entire length
of the cuts, after that spreader is used to complete the splits on both sides of the mandible. Then,
the inferior alveolar nerve must be detected, and if it is in the lateral segment, inferior alveolar
nerve must be entrenched into the medial segment of the mandible. Surgical sites are abun-
dantly irrigated and the throat pack is removed. The same surgical protocols applied for the
opposite side. The correct position of the jaw is achieved by using the final splint. Maxillo-
mandibular fixation is made by intermaxillary wires. Medial and lateral fragments of the
mandible are fixed with three bi-cortical screws through intraoral and percutaneous ap-
proaches. Titanium plate/plates could be also placed and secured with mono-cortical screws.
After that, intermaxillary fixation is solved by cutting the wires and the final splint is removed
from the mouth. The mandibular movements and occlusion is checked. Bleeding is controlled,
and then, soft tissues are sutured with 3-0 silk or chromic sutures. Finally, to avoid relapse, six
or eight ounce elastic bands are placed and a head dressing is applied [17].

4. Postoperative evaluations

Patients with OSA who underwent MMA surgery stay mostly overnight in the intensive care
unit (ICU). The use of CPAP could be useful, particularly when the patients are sleeping, to
maintain the opening of airway, control of edema, and lessen the use of narcotics [15, 17].
Antibiotics, analgesics, steroids, and mouth rinse are prescribed. Higher lying position (around
30–45°) is set, and intravenous fluids are given. Application of ice is recommended in the first
48 h. Rigid fixation is not recommended because of the possibility of vomiting and airway
obstruction. Advancement of the patients’ diet consist of intravenous fluids for the first 24 h,
then a full liquid diet is launched for a week, and followed by a no chew diet for 5–6 weeks.
Discharge of the patient from the hospital is evaluated according to the absence of some
parameters such as; fewer, pain, oral intake, surgeon, and patient’s opinions. Generally,
hospitalization time is 2–3 days for an adult OSA patient, who is underwent a bimaxillary
procedure. Using of CPAP could be advised to the patients while sleeping until the follow-up
plysomnography. The follow-up plysomnography is generally performed between the 4th and
6th months postoperatively [17]. If everything goes well, periodic controls are made at every
6 months for the first year, and then yearly.
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5. Recent updates in management of obstructive sleep apnea by
maxillomandibular advancement surgery

To date, MMA has been suggested as the most effective surgical treatment option available for
OSA by sufficient number of published data [1–8]. Also, it was reported that MMA could
possibly be the definitive primary single-stage option for the treatment of OSA in selected
patients [2].

In 2010, Holty and Guilleminault at the end of their meta-analysis including 22 studies of 627
adult OSA subjects treated by MMA reported four key findings [3]. Firstly, they suggested that
MMA is highly effective at treating OSA. They found that the mean AHI decreased from 63.9/
h to 9.5/h with a pooled surgical success rate of 86.0%. Moreover, they specified that long-term
surgical success was maintained at a mean follow-up of 44 months. Secondly, it was stated that
the surgical success with univariate or multivariate analysis would not be predicted by the
degree of mandibular advancement. Thirdly, it was concluded that MMA was generally safe
procedure for treating OSA with a reported major surgical complication rate of 1.0% and minor
complication rate of 3.1% and no reported deaths. Malocclusion (up to 44%) and persistent
facial paresthesias (14.2% at one year) were also reported. Fourthly, satisfaction with the
surgical outcome with few noting aesthetic complaints were reported by the most of subjects.
After MMA, improvements in quality of life measures, OSA symptomatology (i.e., excessive
daytime sleepiness), and blood pressure control were statistically significant [3].

Li [2] reported more than 600 MMAs for the treatment of OSA, with a success rate of 89% till
2011. This report was consistent with the published data and the results from the meta-analysis
by Holty and Guilleminault [3]. Li [2] asserted that younger age and a lower BMI would be
predictors for greater surgical success, as long as sufficient advancement could be performed.
On the other hand, negative predictors were reported as older age (upper than 60 years),
greater BMI (upper than 33 kg/m2), and limited advancement. Probable poor candidates for
surgery were specified as obese patients with white fat accumulation and abnormal adipocyte
activity, or those with a long disease duration with a greater risk of permanent neurologic
deficits in the pharyngeal airway. However, it was also reported that patients with negative
predictors could experience significant improvement. Thus, a dramatic resolution on the
symptoms could be obtained in the most of patients with some residual OSA on polysom-
nography. In spite of that, a few patients with minimal improvement despite a very successful
operation with 15-mm advancement were reported [2].

Thus, though good outcomes could be obtained, successful outcomes might not be achieved
in all patients. Therefore, the complexity of OSA should be accepted. As a result, it must be
recognized that a 100% success rate should not be claimed by any surgeon. Moreover, the major
concern of MMA surgery should be the associated risks, as with any surgical intervention.
Conclusively, followings are essential to achieve an ideal and successful outcome; performing
of proper surgical methods with adequate advancement and fixation techniques, management
of the soft tissue changes without compromising the esthetic results, and precautionary in
airway management [2].
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In order to achieve greater advancement with minimal adverse esthetic effects, certain
reserachers have also tried to modify surgical techniques. For example, Bruno-Carlo et al. [18]
described monocortical genioplasty, and segmentectomy after premolar extraction in both jaws
was performed by Goh et al. [19].

In another systematic review of 39 studies conducted by Pirklbauer et al. [7], maxillomandib-
ular advancement was reported as the most successful surgical therapy. Also, the postoperative
polysomnography results were comparable to those under ventilation therapy. According to
their results, recently MMA was preferred as a primary intervention by more investigators
than had been done in the past. Thus, they concluded that OSAS patients with skeletal
deficiency could benefit from MMA as a primary surgical intervention and do not need be
subjected to less successful surgical procedures [7].

Because sleep endoscopy during spontaneous sleep does not seem applicable in routine clinical
practice, airway endoscopy with pharmacologic sedation, or druginduced sleep endoscopy
(DISE) was described [20]. Dynamic evaluation of the airway during drug-induced sleep using
endoscopy has increased in popularity and also proved to be an important tool in predicting
the outcome of upper airway surgery for patients with OSA [21, 22]. It is still inconclusive
whether drug-induced sleep could be generalized to natural sleep. On the other hand, it is
obvious that DISE can allow to observe the dynamic airway activity in real time.

It was reported that MMA expands the skeletal frame attached with the pharyngeal structures
and tongue. Thus, it results in an increased upper airway space by reducing airway collapsi-
bility during negative-pressure inspiration [3, 23, 24].

Before, the intrapharyngeal changes after MMA had only been studied using static imaging
and endoscopy of subjects who were awake. In 2015, Liu et al. [23] aimed to characterize the
patterns of dynamic airway collapse during sleep endoscopy for subjects before and after
MMA. At the end of their study, their results showed that the tension in the lateral pharyngeal
wall increased significantly after MMA and the change correlated highly with surgical success.
They reported that the tension in the lateral pharyngeal wall would contribute more to success
than did the changes at the palate or tongue base. As a result, they concluded that the subjects
without a history of intrapharyngeal soft tissue surgery (palatal or tongue) had greater
improvement in the AHI [23].

In 2016, Faria et al. [25] also compared the dynamic differences occurring in the pharynx during
sleep after MMA surgery for the treatment of patients with OSA. This was a prospective, cross-
sectional study. Twenty patients (fifteen men and five women) were submitted to magnetic
resonance (MR) during propofol-induced sleep before and six months after surgery. Then, their
variability before and after MMA were compared. During induced sleep after MMA, 66% mean
linear anteroposterior increase of the pharynx was reported in the retrolingual region. It was
specified that the coefficient of variation of the linear measurements was reduced from 117.5
to 51 % after surgery. At the end of the study, it was concluded that MMA promoted an
important increase in the pharynx during induced sleep. Also, the diameter of the organ was
with a lower variation during the respiratory movements. Thus, there was greater airway
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stability and a consequent maintenance of the pharyngeal lumen that reduces or even prevents
pharyngeal collapse [25].

In another meta-analysis conducted in 2015, comparison of the patients with OSA who
undergo MMA with counterclockwise (CCW) rotation and those who undergo MMA
without CCW rotation was investigated by Knudsen et al. [26]. Consequently, they reported
that CCW-MMA or MMA in patients with OSA resulted in a statistically meaningful decrease
in postoperative AHI and a statistically meaningful increase in postoperative lowest oxygen
saturation (LSAT) [26].

Another important issue is that the comprehensive examination of the long-term effectiveness
and safety of MMA as an alternative therapy to CPAP. In 2015, Boyd et al. [5] conducted a
study to determine if MMA is a clinically effective and safe long-term treatment for OSA
patients by measuring the changes in the AHI, blood pressure, sleepiness, and QOL. Their
results showed that MMA produces substantial and sustained reductions in the diastolic blood
pressure, and subjective sleepiness, AHI with accompanying improvements in QOL. It was
important that MMA had a good risk-benefit ratio, as these successful outcomes had been
achieved in the context of minimal long-term treatment-related adverse outcomes. They
concluded that the results of their study provided compelling evidence to suggest that MMA
should be the alternative treatment of choice for patients with severe OSA who cannot fully
adhere to CPAP [5].

Beside many studies regarding long-term effectiveness and safety of MMA surgery for the
management of obstructive sleep apnea (OSA), the subjective effect of this treatment modality
was also investigated by Butterfield et al. [4] in 2016. In this study, quantification of the
subjective change in QOL in patients who had undergone MMA for the management of OSA;
assessment of the effect of the treatment-related side effects of MMA on patient QOL; and
evaluation the relationship between objective changes in OSA severity with the subjective
changes in QOL were studied. Their study showed that although some patients might
experience few MMA-related postoperative side effects during recovery, MMA for OSA
significantly improved patient’s subjective overall QOL [4].

In addition to many studies in the literature showing MMA as a safe treatment modality,
there is another study dealing with detailed comparison of outcomes in OSA and dentofacial
deformity (DFD) patients undergoing the same procedures. Passeri et al. [11] compared
morbidity and mortality rates in OSA versus DFD patients undergoing equivalent maxillo-
facial surgical procedures. Their study indicated that even though the patients in the OSA
group were older, had more comorbidities, and ultimately had a greater number of early,
late, minor, and major complications than those in the DFD group, MMA seemed to be a
safe procedure [11].

As well as many adult OSA patients, Ahn et al. [27] reported that a 11.1 years old female patient
with refractory OSA (AHI score of 8.2, and RDI score of 11.6) and serious medical history
(pneumonia, asthma attacks, hyperventilation-related dyspnea or tachypnea, psychosocial
problems, etc.) could be treated by modified MMA surgery, accompanied by upper and lower
anterior segmental osteotomies (ASOs). As a conclusion, they proposed that modified MMA
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As well as many adult OSA patients, Ahn et al. [27] reported that a 11.1 years old female patient
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surgery, combined with ASOs, could be a successful treatment alternative for a preadolescent
patient with refractory OSA. They specified that postoperative improvement occurred in the
affected functions and esthetics, and the improvements were stable throughout the growth
period of their patient [27].

6. Conclusions

In our opinion, the recent evidences in the published data support the recommendation of
MMA to treat patients with severe OSA who cannot fully adhere to CPAP.

According to the recent updates, MMA appears to be the most successful surgical option for
the treatment of OSA, and it could be an excellent alternative procedure for non-responders,
or deniers of ventilation therapy. However, more randomized controlled trials on larger sample
sizes, and long-term investigations are needed to attain this recommendation.
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Abstract

The main aim of this chapter is to describe the role of upper cervical spine morphology
and head and neck posture in the etiology, diagnosis, and treatment in patients with
obstructive sleep apnea (OSA). Previously it has been documented that the posture of
the head and neck was related to the morphology of the facial profile, dysfunction of
the jaws, and obstruction of the upper airway. It has been shown that head posture in
relation to the upper cervical spine was extended in OSA patients. New findings have
been added concerning the occurrence and pattern of deviations of the upper cervical
spine morphology in OSA. Furthermore, associations between upper cervical spine
morphology and the morphology of the facial profile, including the cranial base in OSA
patients  have  been  reported.  In  addition,  the  occurrence  of  upper  cervical  spine
morphological deviations in OSA patients seems to affect the outcome of the treatment
with a mandibular advancement devise (MAD). Accordingly, it is suggested that upper
cervical spine morphology and posture of the head and neck are important factors in
the etiology, diagnosis, and treatment considerations in OSA patients.

Keywords: head posture, cervical spine morphology, sleep apnea

1. Introduction

Obstructive sleep apnea (OSA) is by far the most common sleep‐related breathing disorder,
affecting 2–4% of the adult population, particularly males aged 60 years and older where the
prevalence is 30–60% [1, 2]. OSA is defined as cessation of airflow with persistent respiratory
effort, due to repeated anatomical obstruction or partial collapse of the oropharyngeal region,
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involving the soft palate, dorsum of the tongue, and the posterior pharyngeal wall [1, 3]. The
majority of the patients have symptoms such as loud snoring and excessive daytime sleepiness
[4, 5]. Nightly choking or gasping, morning headache, memory loss, decreased concentration,
increased irritability, and nocturia are also reported [4, 6]. Thus, OSA has consequences for
the quality of life, working ability, and traffic safety as well as comorbidities as hypertension
[4–7]. OSA is multifactorial with age, gender, and body mass index (BMI) as predisposing
factors  [1,  3].  The  authors  agree  that  there  are  craniofacial  morphological  and  postural
characteristics in OSA patients such as reduced posterior airway space, abnormally long soft
palate, low position of the hyoid bone, and an extended head posture [8, 9]. The primary
treatments of OSA are based on physical effects and consist of continuous positive airway
pressure (CPAP), mandibular advancement device (MAD), and upper airway surgery [6, 7].

This chapter focuses on the role of head posture and the morphology of the upper cervical
spine in the etiology, diagnosis, and treatment in patients with OSA.

2. Head posture in relation to OSA

Associations between head posture and pharyngeal airway dimensions have been document‐
ed on lateral cephalograms [9–12]. It was found that an extension of the head in relation to the
upper cervical spine resulted in an increase of the anterior‐posterior dimension of the pharynx.
Furthermore, studies have shown the influence of airway obstruction on head posture [9, 13,
14] where airway obstruction resulted in an extension of the head in relation to the upper
cervical spine. Due to the head posture's close associations with the pharyngeal airway, it seems
relevant to focus on the relationship between the head posture and OSA.

2.1. Definition of head posture

Natural head position is a standardized and reproducible position of the head in an upright
position determined by the subjects’ own postural control system [14–16]. Accordingly, the
posture of the head and neck can be defined in two ways: with or without external reference.
The “self‐balance position” is without external reference (the subjects’ proprioceptive system)
and the “mirror position”, with external reference (the subjects’ proprioceptive and visual
system) [13, 14]. In this chapter, the head posture refers to the OSA patients’ “self‐balance
position” or the “mirror position” evaluated on lateral cephalograms and defined as the
following angels [17–19] (Figure 1).

1. Posture of the head related to an environmentally determined vertical or horizontal line,
that is, the cranio‐vertical angles (NSL/VER, NL/VER).

2. Posture of the head related to a line representing the upper spine, that is, the cranio‐
cervical angles (NSL/OPT, NL/OPT, NSL/CVT, NL/CVT).

3. The upper spine inclination expressed in relation to the environmentally determined true
horizontal, that is, the cervico‐horizontal angles (OPT/HOR, CVT/HOR).
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Figure 1. Angles describing the head posture.

Extension of the head means a raised position of the head in relation to the upper spine or true
vertical, that is, large cranio‐cervical angle (NSL/OPT, NL/OPT, NSL/CVT, NL/CVT) and
cranio‐vertical angle (NSL/VER, NL/VER), respectively. Forward inclination of the upper spine
means a small cervico‐horizontal angle (OPT/HOR, CVT/HOR).

2.2. Head posture in OSA patients

In OSA patients, an extended posture of the head in relation to the upper cervical spine in the
upright awake position was found to be associated with larger pharyngeal airway dimensions
[9, 20–25]. It was especially the lower part of the pharyngeal airway that was increased in
relation to an extended head posture. Furthermore, an extended posture of the head has also
been demonstrated in men with OSA compared to healthy controls [9, 24] (Figure 2).

Figure 2. Extended head posture in an OSA patient compared to a healthy control illustrated on lateral cephalograms.

The severity of OSA was also associated with head posture. The more severe OSA, the more
extended and forward head posture was observed [20–23]. The extended head posture in OSA
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patients may be a compensatory physiological postural mechanism that serves to maintain
airway adequacy in OSA patients [9, 20–25]. It is suggested that airway obstruction via
neuromuscular control triggers an increase in the cranio‐cervical angle in order to relieve the
obstruction by facilitating oral breathing due to enlargement of the naso‐and oropharyngeal
airway space [9, 13, 24, 26]. The hypothesis is supported by a study in OSA patients showing
that the airway resistance significantly influences the head posture [21]. A decreased airway
resistance (less obstructive) was seen in OSA patients with an extended head posture. Thus,
an extended head posture in the upright awake position was found in OSA patients. The results
were considered to reflect a compensatory physiological postural mechanism that serves to
maintain airway adequacy in OSA patients in the awake upright posture.

3. Upper spine morphology in relation to OSA

Until recently, deviations of the upper cervical spine have only been described in relation to
craniofacial syndromes and cleft lip and palate. Craniosynostosis syndromes, for example,
Pfeiffer's, Crouzon's, and Apert's syndromes, showed deviations such as fusion anomalies
[27–31]. Furthermore, deviations of the upper cervical spine morphology were seen in
Saethre‐Chotzen, Klippel‐Feil, Turner, Down syndromes, and patients with hypophosphate‐
mic rickets [32–38]. Also, upper spine morphological deviations have been closely investi‐
gated in patients with cleft lip and/or palate [39–44]. Recently, upper spine morphological
deviations are also found to be associated with severe malocclusion traits and the craniofa‐
cial profile [45–49]. In addition, upper spine morphological deviations are associated with
head posture [50–52]. As an association between head posture and OSA and between head
posture and upper cervical spine morphology is documented, it seems relevant to focus on
the relationship between the morphology of the upper cervical spine and OSA.

3.1. Definition of upper spine morphology

The upper cervical spine morphology can be obtained from conventional two‐dimensional
(2D) lateral cephalograms or from three‐dimensional (3D) cone beam computed tomography
(CBCT). One method to describe the upper cervical spine morphology on either lateral
cephalograms or on CBCT is by visual assessment of the first five cervical vertebral units as
referred to in this chapter. The morphological deviations are divided into two categories
“Posterior arch deficiency” and “fusion anomalies” [14, 40, 45] (Figure 3):

1. Posterior arch deficiency consisted of partial cleft: failure of the posterior part of the neural
arch to fuse and dehiscence: failure of part of a vertebral unit to develop (Figure 3).

2. Fusion anomalies consisted of fusion: fusion of one unit with another at the articulation
facets, neural arch or transverse processes, block fusion: fusion of more than two units at
the vertebral bodies, articulation facets, neural arch or transverse processes and occipital‐
ization: assimilation either partial or complete of the atlas (C1) with the occipital bone
(Figure 3).
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Figure 3. Upper spine morphological deviations and normal upper spine morphology illustrated on lateral cephalo‐
grams. P: partial cleft, D: dehiscence, F: fusion, B: block fusion, O: occipitalization.

3.2. Upper spine morphology in OSA patients

Previous studies have shown that morphological deviations in the upper cervical spine eval‐
uated on 2D lateral cephalograms and 3D CBCT occurred significantly more often in OSA
patients compared to healthy controls [53, 54]. The morphological deviations occurred in
32–46% as fusion anomalies: fusions either between the second and third vertebrae, between
the third and fourth vertebrae, or between the fourth and fifth cervical vertebrae; block fu‐
sions: fusions either between the second, third, or fourth vertebrae, between the second,
third, fourth, and fifth vertebrae, or between the third, fourth, and fifth vertebrae; occipitali‐

Figure 4. Upper spine morphological deviations in patients with OSA illustrated on lateral cephalograms. O: occipitali‐
zation, B: block fusion, D: dehiscence.
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zation in combination with fusions, block fusions or as a single deviation. Posterior arch de‐
ficiency: partial cleft of the first cervical vertebra or dehiscence of the third cervical vertebra
and the fourth cervical vertebra [53, 54] (Figure 4). The pattern of morphological deviations
in the upper spine seen in OSA patients is more severe and occurred more caudally than
seen in healthy subjects and in orthodontic patients with severe malocclusion [45–49]. Occi‐
pitalization, block fusion, and dehiscence were the phenotypes, which were characteristic of
sleep apnea (Figure 4).

It is presumed that the pattern and location of upper cervical spine morphological deviations
is connected to different locations of neural crest cell migration along the body axis [55].
Accordingly, it is hypothesized that the level of pharyngeal obstruction in sleep apnea is
associated with the caudally/cranially positioned cervical spine deviation. Furthermore, the
craniofacial profile of OSA patients with upper spine morphological deviations was signifi‐
cantly different from the craniofacial profile in OSA patients without deviations in the upper
spine [56] (Figure 5). A long and retrognathic facial profile together with an extended head
posture was characteristic of OSA patients with upper spine morphological deviations.

Figure 5. Mean diagrams of OSA patient's craniofacial profile with (dotted line) and without (bold line) upper spine
morphological deviations.

The background for the interrelationship between the cervical spine and the craniofacial profile
can be traced back to early embryological development of these structures [57]. It has been
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documented that the development of the body axis is regulated by the notochord [58, 59]. It is
also well known that the notochord runs in its full extent from the sacral region to the sella
turcica in the posterior part of the cranial base to which the jaws are attached [55]. Different
genes act in different segments along the path [60]. A deviation in the development of the
notochord may influence the surrounding bone tissue in the spine as well as in the posterior
part of the cranial base. On lateral cephalograms and CBCTs, it can be observed that the bone
tissues formed around the notochord are the vertebral bodies and the basilar part of the
occipital bone (Figure 6). The shared origin of the spine and posterior part of the cranial base
is the basis for the hypothesis of associations between the spine and the cranial base to which
the jaws are attached [60, 61].

Figure 6. The red line illustrates the extension of the notochord. Note that the notochord disappears in the early em‐
bryogenesis before the ossification of the bone tissue.

The findings indicated that morphological deviations of the upper cervical spine may play a
role in the phenotypical subdivision and diagnosis of OSA. In addition, OSA patients with
morphological deviations in the upper spine may respond poorer to MAD treatment compared
to OSA patients without morphological deviations in the upper spine [62]. This finding further
supports the role of upper spine morphological deviations in OSA patients. So far, the complex
aetiology of OSA is not fully understood and the explanation for the association between upper
spine morphological deviations and OSA is still unknown. Thus, the findings indicated that
the aetiology in OSA patients with morphological deviations in the upper spine is character‐
ized by other factors or combinations of different factors than in OSA patients without upper
spine morphological deviations and that upper spine morphological deviations therefore may
influence the MAD treatment outcome in OSA patient [53, 54, 56, 62].

Head Posture and Upper Cervical Spine Morphology in Patients with Obstructive Sleep Apnea
http://dx.doi.org/10.5772/65436

101



4. Conclusion

When head position and upper cervical spine morphological deviations are evaluated on 2D
lateral cephalograms and 3D CBCTs taken in the standardized upright position of the head
determined by the subjects’ own postural control system, the following is concluded: on
average, an extended posture of the head and a significantly larger occurrence of upper
spine morphological deviations were seen in patients with OSA. The craniofacial profile of
OSA patients with upper cervical spine morphological deviations differed significantly from
the craniofacial profile of other OSA patients without morphological deviations in the upper
spine. OSA patients with morphological deviations in the upper spine may respond poorer
to MAD treatment compared to OSA patients without morphological deviations in the up‐
per spine. The findings indicated that head posture and morphological deviations of the up‐
per cervical spine play a role in the phenotypical subdivision and diagnosis of OSA and
thereby for the treatment outcome.
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Sleep medicine is developing rapidly with more than 100 sleep disorders discovered 
till now. Despite that, sleep specialty is in neonatal stage especially in developing and 
underdeveloped countries. Sleep medicine is still evolving with ongoing worldwide 
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more awareness in physicians and patients. Sleep apnea is one of the most common 

sleep disorders,  found in around 5-7 % of the general population with high prevalence 
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untreated and life-threatening consequences. In the last decade, new complex sleep 
disorders and their pathophysiology have been discovered, new treatment options 
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