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Emotion, stress, and attention recognition are the most important aspects 
in neuropsychology, cognitive science, neuroscience, and engineering. 

Biological signals and images processing such as galvanic skin response (GSR), 
electrocardiography (ECG), heart rate variability (HRV), electromyography (EMG), 

electroencephalography (EEG), event-related potentials (ERP), eye tracking, 
functional near-infrared spectroscopy (fNIRS), and functional magnetic resonance 

imaging (fMRI) have a great help in understanding the mentioned cognitive processes. 
Emotion, stress, and attention recognition systems based on different soft computing 
approaches have many engineering and medical applications. The book Emotion and 
Attention Recognition Based on Biological Signals and Images attempts to introduce 
the different soft computing approaches and technologies for recognition of emotion, 

stress, and attention, from a historical development, focusing particularly on the 
recent development of the field and its specialization within neuropsychology, 
cognitive science, neuroscience, and engineering. The basic idea is to present a 

common framework for the neuroscientists from diverse backgrounds in the cognitive 
neuroscience to illustrate their theoretical and applied research findings in emotion, 

stress, and attention.
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Preface

After receiving the green lights from the InTech office, the invitations went out to the senior
scholars in the field from January 2016. During this 1 year of intensive efforts, all the chapters
were reviewed and revised accordingly to meet high-quality standards of InTech and my vision
for the whole concept of the chapters. I envision that both neuroscientists and clinical investiga‐
tors will be the primary audience of this book. Moreover, the common interest of these individ‐
uals will be the application of cognitive neuroscience approaches in studies to assess or treat
individuals with the related disorders based on emotion and attention.

The main focus of the book is based on emotion and attention recognition. This book is rela‐
tively brief but provides a comprehensive survey of different approaches for emotion recog‐
nition. Apart from this introductory chapter, this book has four more chapters (Chapters #2–
5). The rest of this introductory chapter is given in providing brief chapters and the impor‐
tance of the other proposed chapters.

Chapter 2: Multimodal Affect Recognition: Current Approaches and Challenges

This chapter provides an overview of emotion recognition, different approaches and chal‐
lenges, public multimodal emotional datasets, and applications of emotion recognition. I
strongly encourage the young researchers to deeply study this chapter to get a bird’s-eye
view of emotion and attention recognition systems.

This chapter explains that numerous studies found multimodal methods to perform as good
as or better than unimodal ones. However, the improvements of multimodal systems over
unimodal ones are modest when affect detection is performed on spontaneous expressions
in natural settings #[15]#. Also, multimodal methods introduce new challenges that have not
fully been resolved. These challenges are discussed in this chapter.

Chapter 3: Human Automotive Interaction: Affect Recognition for Motor Trend Magazine’s
Best Driver Car of the Year

This chapter provides two important parts of the facial emotion recognition pipeline: (1) face
detection and (2) facial appearance features. This chapter proposes a face detector that uni‐
fies state-of-the-art approaches and provides quality control for face detection results, called
Reference-Based Face Detection. This chapter also proposes a method for facial feature ex‐
traction that compactly encodes the spatiotemporal behavior of the face and removes the
background texture, called Local Anisotropic-Inhibited Binary Patterns in Three Orthogonal
Planes (LAIBP-TOP). Real-world results show promise for the automatic observation of
driver inattention and stress.

Chapter 4: Affective Valence Detection from EEG Signals using Wrapper Methods

This chapter provides a valence recognition system based on a wrapper classification algo‐
rithm using EEG signals. The feature extraction in short time intervals is based on measures
of the relative energies computed and certain frequency bands of the EEG signals time-
locked to the stimulus presentation. These measures represent event-related desynchroniza‐
tion/synchronization of underlying brain neural networks. The subsequent feature selection



and classification steps comprise a wrapper technique based on two different classification
approaches: (1) an ensemble classifier and (2) a support vector machine classifier. The fea‐
ture reduction has been used to identify the most relevant features both for intrasubject and
for intersubject settings, using single-trial signals and ensemble-averaged signals, respec‐
tively. The proposed approaches allowed to identify the frontal region and beta band as the
most relevant characteristics, extracted from the electrical brain activity, in order to deter‐
mine the affective valence elicited by visual stimuli.

Chapter 5: Tracking the Sound of Human Affection: EEG Signals Reveal Online Decoding of
Socioemotional Expression in Human Speech and Voice

This chapter provides a perspective from the latest EEG evidence on how the brain signals
enlighten the neurophysiological and neurocognitive mechanisms underlying the recogni‐
tion of socioemotional expression conveyed in human speech and voice, drawing upon ERP
studies. Human sound can encode emotional meanings by different vocal parameters in
words, real- vs. pseudospeeches, and vocalizations. Based on the ERP findings, recent devel‐
opment of the three-stage model in vocal processing has highlighted initial and late-stage
processing of vocal emotional stimuli. These processes, depending on which ERP compo‐
nents they were mapped onto, can be divided into the acoustic analysis, relevance and moti‐
vational processing, fine-grained meaning analysis/integration/access, and higher-level
social inference, as the unfolding of the time scale. ERP studies on vocal socioemotion, such
as happiness, anger, fear, sadness, neutral, sincerity, confidence, and sarcasm in the human
voice and speech, have employed different experimental paradigms such as cross-splicing,
cross-modality priming, oddball, stroop, etc. Moreover, task demand and listener character‐
istics affect the neural responses underlying the decoding processes, revealing the role of
attention deployment and interpersonal sensitivity in the neural decoding of vocal emotion‐
al stimuli. Culture affects our ability to decode emotional meaning in the voice. Neurophy‐
siological patterns were compared between normal and abnormal emotional processing in
the vocal expressions, especially schizophrenia and congenital amusia. Future directions
will merit the study of human vocal expression aligning with other nonverbal cues, such as
facial and body language, and the need to synchronize listener’s brain potentials with other
peripheral measures.

This book will provide the audiences with most recent evidences from different disciplines
in brain studies on the wide range of researches in an integrative way toward Emotion and
Attention Recognition Based on Biological Signals and Images. The hope is that the information
provided in this book will trigger new researches that will help to connect basic cognitive
neuroscience to clinical medicine.

Acknowledgment

Seyyed-Abed would like to thank Ms. Iva Simcic for her valuable comments and sugges‐
tions to improve the quality of this book.

Dr. Seyyed Abed Hosseini
Islamic Azad University,
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Introductory Chapter: Emotion and Attention 
Recognition Based on Biological Signals  
and Images 

Seyyed Abed Hosseini

Additional information is available at the end of the chapter

1. Emotion and attention recognition based on biological signals and 
images

This chapter will attempt to introduce the different approaches for recognition of emotional 
and attentional states, from a historical development, focusing particularly on the recent 
development of the field and its specialization within psychology, cognitive neuroscience, 
and engineering. The basic idea of this book is to present a common framework for the neuro-
scientists from diverse backgrounds in the cognitive neuroscience to illustrate their theoreti-
cal and applied research findings in emotion, stress, and attention.

Biological signal processing and medical image processing have helped greatly in under-
standing the below-mentioned cognitive processes. Up to now, researchers and neuroscien-
tists have studied continuously to improve the performances of the emotion and attention 
recognition systems (e.g., [1–10]). In spite of all of these efforts, there is still an abundance of 
scope for the additional researches in emotion and attention recognition based on biological 
signals and images. In the meantime, interpreting and modeling the notions of the brain activ-
ity, especially emotion and attention, through soft computing approaches is a challenging 
problem.

Emotions and attentions have an important role in our daily lives [11]. They definitely make 
life more challenging and interesting; however, they provide useful actions and functions 
that we seldom think about. Emotion and attention, due to its considerable influence on 
many brain activities, are important topics in the cognitive neurosciences, psychology, and 
biomedical engineering. These cognitive processes are core to human cognition and access-
ing it and being able to act have important applications ranging from basic science to applied 
science.

‘Emotion’ has many medical applications such as voice intonation, rehabilitation, autism, 
music therapy, and many engineering applications such as brain-computer interface (BCI), 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



human-computer interaction (HCI), facial expression, body languages, neurofeedback, market-
ing, law, and robotics. In addition, ‘attention’ has many medical applications such as rehabilita-
tion, autism, attention deficit disorder (ADD), attention deficit hyperactivity  disorder (ADHD), 
attention-seeking personality disorder, and many engineering applications such as BCI, neuro-
feedback, decision-making, learning, and robotics.

Up to now, different definitions have been presented for the emotion and attention. 
According to most researchers, attention phenomenon and emotion phenomenon are not 
well-defined words. Kleinginna and her colleagues collected and analyzed 92 different def-
initions of emotion, then they made a decision that “emotion is a complex set of interactions 
among subjective and objective factors, mediated by neural or hormonal systems [12].” In addition, 
Solso [13] said that attention is “the concentration of mental effort on sensory/mental events.” 
In another definition, the attention function is defined as “a cognitive brain mechanism that 
enables one to process relevant inputs, thoughts, or actions, whilst ignoring irrelevant or distracting 
ones [14].”

In different researches, suitable techniques are usually used according to invasive or noninva-
sive acquisition techniques. Invasive techniques often lead to efficient systems. However, they 
have inherent technical difficulties such as the risks associated with surgical implantation of 
electrodes, stricter ethical requirements, and the fact that in humans, this can only be done in 
patients undergoing surgery. Therefore, noninvasive techniques such as electroencephalogra-
phy (EEG), magnetoencephalography (MEG), event-related potentials (ERPs), and functional 
magnetic resonance imaging (fMRI) are generally preferred.
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Abstract

Observation analysis of vehicle operators has the potential to address the growing trend 
of motor vehicle accidents. Methods are needed to automatically detect heavy cognitive 
load and distraction to warn drivers in poor psychophysiological state. Existing methods 
to monitor a driver have included prediction from steering behavior, smart phone warn‐
ing systems, gaze detection, and electroencephalogram. We build upon these approaches 
by detecting cues that indicate inattention and stress from video. The system is tested 
and developed on data from Motor Trend Magazine's Best Driver Car of the Year 2014 
and 2015. It was found that face detection and facial feature encoding posed the most dif‐
ficult challenges to automatic facial emotion recognition in practice. The chapter focuses 
on two important parts of the facial emotion recognition pipeline: (1) face detection and 
(2) facial appearance features. We propose a face detector that unifies state‐of‐the‐art 
approaches and provides quality control for face detection results, called reference‐based 
face detection. We also propose a novel method for facial feature extraction that com‐
pactly encodes the spatiotemporal behavior of the face and removes background texture, 
called local anisotropic‐inhibited binary patterns in three orthogonal planes. Real‐world 
results show promise for the automatic observation of driver inattention and stress.

Keywords: facial emotion recognition, local appearance features, face detection

1. Introduction

In this chapter, we focus on the development of a system to track cognitive distraction and 
stress from facial expressions. The ultimate goal of our work is to create an early warning sys‐
tem to alert a driver when he/she is stressed or inattentive. This advanced facial emotion rec‐
ognition technology has the potential to evolve into a human automotive interface that grants 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



nonverbal understanding to smart cars. Motor Trend Magazine's The Enthusiast Network has 
collected data of a driver operating a motor vehicle on the Mazda Speedway race track for 
the Best Driver Car of the Year 2014 and 2015 [1]. A GoPro camera was mounted on the wind‐
shield facing the driver so that gestures and expressions could be captured naturalistically 
during operation of the vehicle. Attention and valence were annotated by experts according to 
the Fontaine/PAD model [2]. The initial goal of both tests was to detect the stress and attention 
of the driver as metrics for ranking cars, automatically with computer algorithms. However, 
affective analysis of a driver is a great challenge due to a myriad of intrinsic and extrinsic 
imaging conditions, extreme gaze, pose, and occlusion from gestures. In 2014, two institu‐
tions were invited to apply automatic algorithms to the task but failed. It proved too difficult 
to detect face region of interest (ROI) with standard algorithms [3] and it was difficult to find 
a facial feature‐encoding scheme that gave satisfactory results. Quantification of emotion was 
instead carried out manually by a human expert due to these problems. In this chapter, we 
discuss groundbreaking findings from analysis of the Motor Trend data and share promising, 
novel methods for overcoming the technical challenges posed by the data.

According to the U.S. Centers for Disease Control (CDC), motor vehicle accidents (MVA) 
are a leading cause of injury and death in the U.S. Prevention strategies are being imple‐
mented to prevent deaths, injuries, and save medical costs. Despite this, the U.S. Department 
of Transportation reported that MVA increased in 2012 after 6 years of consecutive years of 
declining fatalities. Video‐based technologies to monitor the emotion and attention of auto‐
mobile drivers have the potential to curb this growing trend. Existing methods to prevent 
MVA include smart phone collision detection from video [4], intelligent cruise control sys‐
tems [5], and gaze detection [6]. The missing link in all these prevention strategies is the 
holistic monitoring of the driver from video—the key participant in MVA, and the detec‐
tion of cues indicating inattention and stress. The introduction of intelligent transportation 
systems and automotive augmented reality will exacerbate the growing problem of MVA. 
While one would expect autonomous/self‐driving cars to decrease MVA from inattention, 
intelligent transportation systems will return control of the vehicle to the driver in emergency 
situations. This handoff can only occur safely if the vehicle operator is sufficiently attentive, 
though his/her attention may be elsewhere from complacency due to the auto piloting system. 
Augmented reality systems seek to enhance the driving experience with heads‐up displays 
and/or head‐mounted displays that can distract the vehicle operator [7]. In short, driver inat‐
tention will continue to be a significant issue with cars into the future.

2. Related work

The field of affect analysis dates back to 1872 when Charles Darwin studied the relationship 
between apparent expression and underlying emotional state in the book, “The Expression 
of the Emotions in Man and Animals [8].” Communication between humans is a complex 
process beyond the delivery of semantic understanding. During conversation, we commu‐
nicate nonverbally with gestures, pose, and expressions. One of the first works in automatic 
affect analysis by computers dates to 1975 [9]. Since this seminal work, emotion recognition 
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to detect face region of interest (ROI) with standard algorithms [3] and it was difficult to find 
a facial feature‐encoding scheme that gave satisfactory results. Quantification of emotion was 
instead carried out manually by a human expert due to these problems. In this chapter, we 
discuss groundbreaking findings from analysis of the Motor Trend data and share promising, 
novel methods for overcoming the technical challenges posed by the data.

According to the U.S. Centers for Disease Control (CDC), motor vehicle accidents (MVA) 
are a leading cause of injury and death in the U.S. Prevention strategies are being imple‐
mented to prevent deaths, injuries, and save medical costs. Despite this, the U.S. Department 
of Transportation reported that MVA increased in 2012 after 6 years of consecutive years of 
declining fatalities. Video‐based technologies to monitor the emotion and attention of auto‐
mobile drivers have the potential to curb this growing trend. Existing methods to prevent 
MVA include smart phone collision detection from video [4], intelligent cruise control sys‐
tems [5], and gaze detection [6]. The missing link in all these prevention strategies is the 
holistic monitoring of the driver from video—the key participant in MVA, and the detec‐
tion of cues indicating inattention and stress. The introduction of intelligent transportation 
systems and automotive augmented reality will exacerbate the growing problem of MVA. 
While one would expect autonomous/self‐driving cars to decrease MVA from inattention, 
intelligent transportation systems will return control of the vehicle to the driver in emergency 
situations. This handoff can only occur safely if the vehicle operator is sufficiently attentive, 
though his/her attention may be elsewhere from complacency due to the auto piloting system. 
Augmented reality systems seek to enhance the driving experience with heads‐up displays 
and/or head‐mounted displays that can distract the vehicle operator [7]. In short, driver inat‐
tention will continue to be a significant issue with cars into the future.

2. Related work

The field of affect analysis dates back to 1872 when Charles Darwin studied the relationship 
between apparent expression and underlying emotional state in the book, “The Expression 
of the Emotions in Man and Animals [8].” Communication between humans is a complex 
process beyond the delivery of semantic understanding. During conversation, we commu‐
nicate nonverbally with gestures, pose, and expressions. One of the first works in automatic 
affect analysis by computers dates to 1975 [9]. Since this seminal work, emotion recognition 
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has found many applications in medicine [10–12], observation analysis (marketing) [13], and 
deception detection [14–16].

Systems to monitor the emotion and attention of vehicle operators date as far back to a 
1962 patent that used steering wheel corrections as a predictor of attention and mental 
state [17]. Currently, there is much interest in the observation analysis of driver cognitive 
load, attention, and/or stress from video or biometric signals. While gaze has become a 
popular method for measuring attention of a driver, there is no consensus on how gaze 
should be monitored. Wang et al. [18] found that a driver's horizontal gaze dispersion was 
the most significant indicator of concentration under heavy cognitive load. Mert et al. [19] 
studied gaze during the handoff between manual vehicle control and autonomous pilot‐
ing systems. It was found that if a driver was out of the loop it took more time to recover 
control of the vehicle, increasing the risk of MVA. However, a drawback to both of these 
methods is that it may not be possible to obtain an accurate measurement of driver gaze 
from video. A collaboration between AUDI AG, Volkswagen, and UC San Diego developed 
a video‐based system for the detection of attention [20, 21]. This system focused on extract‐
ing head position and rotation using an array of cameras. We build upon state‐of‐the‐art 
with an improved system that detects attention from only a single front‐facing camera. In 
the following, we discuss the two most significant challenges to the system: face detection 
and facial feature encoding.

2.1. Related work in face detection

Detection of ROI is the first step of pattern recognition. In face detection, a rectangular 
bounding box must be computed that contains the face of an individual in the video frame. 
Despite significant advances to the state‐of‐the‐art, detection of face in unconstrained facial 
emotion recognition scenarios is a challenging task. Occlusion, pose, and facial dynamics 
reduce the effectiveness of face ROI detectors. Imprecise face detection causes spurious, 
unrepresentative features during classification. This is a major challenge to practical appli‐
cations of facial expression analysis. In Motor Trend Magazine’s Best Driver Car of the Year 
2014 and 2015, emotion was a metric for rating cars. In 2014, two institutions were invited 
to apply automatic algorithms to the task but all algorithms failed to sufficiently detect face 
ROI. Quantification of emotion was carried out manually by a human expert due to this 
problem [22].

Over the past 5 years, face detection has been carried out with the Viola and Jones algorithm 
(VJ) [10, 23–27]. Since the release of VJ, there have been numerous advances to face detection. 
Dollár et al. [28] proposed a nonrigid transformation of a model representing the face that 
is iteratively refined using different regressors at each iteration. Sanchez‐Lozano et al. [29] 
proposed a novel discriminative parameterized appearance model (PAM) with an efficient 
regression algorithm. In discriminative PAMs, a machine‐ learning algorithm detects a face 
by fitting a model representing the object. Cootes et al. [30] proposed fitting a PAM using ran‐
dom forest regression voting. De Torre and Nguyen [23] proposed a novel generative PAM 
with a kernel‐based PCA. A generative PAM models parameters such as pose and expression, 
whereas a discriminative PAM computes the model directly.
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While the field of pattern recognition has historically been about features, ROI extraction is 
arguably the most important part of the entire pipeline. The adage, “garbage‐in garbage‐out” 
applies. In the AV+EC 2015 grand challenge, the Viola and Jones face detector [3] has a 6.5% 
detection rate and Google Picasa has a 0.07% detection rate. How does one infer the missing 
93.95% of face ROIs? Among the “successfully” extracted faces, what is their quality? If one 
were to fill in the missing values with poor ROIs the extracted features would be erroneous 
and lead to a poor decision model. To address this, we propose a system that unifies cur‐
rent approaches and provides quality control of extraction results, called reference‐based face 
detection. The method consists of two phases: (1) In training, a generic face is computed that 
is centered in the image. This image is used as a reference to quantify the quality of detec‐
tion results in the next step. (2) In testing, multiple candidate face ROIs are detected, and the 
candidate ROI that best matches the reference face in the least squared sense is selected for 
further processing. Three different methodologies for finding the face ROIs are considered: 
a boosted cascade of Haar‐like features, discriminative parameterized appearances, and a 
parts‐based deformable models. These three major types of face detectors perform well in 
exclusive situations. Therefore, better performance can be achieved by unifying these three 
methods to generate multiple candidate face ROIs and quantifiably determine which candi‐
date is the best ROI.

2.2. Related work in facial appearance features

Local binary patterns (LBP) are one of the most commonly used facial appearance features. 
They were originally proposed by Ojala et al. [31] as static feature descriptors that capture 
texture features within a single frame. LBP encode microtextures by comparing the current 
pixel to neighboring pixels. Differences are recorded at the bit level, e.g., if the top pixel is 
greater than the middle pixel a specific bit is set. Identical microtextures will take on the same 
integer value. There have been many improvements and variations of LBP over the years as 
the problems within computer vision became more complex. Independent frame‐by‐frame 
analysis is no longer sufficient for analysis of continuous videos.

A variation of LBP that was developed to address the need of a dynamic texture descriptor 
was volume local binary patterns (VLBP) [32]. VLBP are an extension of LBP into the spa‐
tiotemporal domain. VLBP capture dynamic texture by using three parallel frames centered 
on the current pixel. The need for a dynamic texture descriptor with a lower dimensional‐
ity than VLBP inspired the development of local binary patterns in three orthogonal planes 
(LBP‐TOP) [32]. The dimensionality of LBP‐TOP is significantly less than VLBP and is com‐
putationally less costly than VLBP.

LBP were not always the most popular local appearance feature. Some of the first, most 
significant works in facial expression analysis by computers used Gabor filters [33]. Gabor 
filters have historical significance, and they continue to be used in many approaches [34]. 
Nascent convolutional neural network approaches eventually learn structures similar to a 
Gabor filter [35]. The Gabor filters are bioinspired and were developed to mimic the V1 
cortex of the human visual system. The V1 cortex responds to the gradient images of differ‐
ent orientation and magnitude. It is essentially an appearance‐based feature descriptor that 
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captures all edge information within an image. However, state‐of‐the‐art feature descriptors 
are known for their compactness and ability to generalize over external and intrinsic factors. 
The original Gabor filter does not have the ability to generalize in unconstrained settings 
because it captures all edges within an image, noise included. Furthermore, the Gabor filter 
is not computationally efficient. The filter produces a response for each filter within its bank. 
The Gabor filter has been developed into the anisotropic inhibited Gabor filter (AIGF) to 
model the human visual system's nonclassical receptive field [36]. AIGF generalizes better 
than the original Gabor filter because of its ability to suppress background noise. A com‐
bined Gabor filter with LBP‐TOP has been shown to improve accuracy in the classification 
of facial expressions [37].

A thorough search of literature found no work, which has combined the anisotropic‐inhibited 
Gabor filter and LBP‐TOP and this is one of the foci of this chapter. This novel method that 
compactly encodes the spatiotemporal behavior of a face also removes background texture. 
It is called local anisotropic‐inhibited binary patterns in three orthogonal planes (LAIBP‐TOP). This 
feature vector works by first removing all background noise that is captured by the Gabor 
filter. Only the important edges of the Gabor filter are retained which are then encoded on 
the X, Y, and T orthogonal planes. The response is succinctly represented as spatiotemporal 
binary patterns. This feature vector provides a better representation for facial expressions as 
it is a dynamic texture descriptor and has a smaller feature vector size.

3. Technical approach

Automatic facial emotion recognition by computers has four steps: (1) region‐of‐interest (ROI) 
extraction, also known as face detection, (2) registration, colloquially known as alignment, 
(3) feature extraction, and (4) classification/regression of emotion. This chapter will focus on 
two important parts of the facial emotion recognition pipeline: face region‐of‐interest extrac‐
tion and facial appearance features.

3.1. Reference‐based face detection

Reference‐based face detection consists of two phases: (1) In the training phase, a reference 
face is computed with avatar reference image. This face represents a well‐extracted face and 
quantifies the quality of detection results in the next step. (2) In testing, multiple candidate 
face ROIs are detected, and the candidate ROI that best matches the reference face in the least 
squared sense is selected for further processing. Three different methodologies for finding 
the face ROI are combined: a boosted cascade of Haar‐like features (Viola and Jones (VJ) 
[3], a discriminative parameterized appearance model (SIFT landmark points matched with 
iterative least squares), and a parts‐based deformable model. VJ was selected because of its 
ubiquitous use in the field of face analysis. Discriminative parameterized appearance models 
were recently deployed in commercial software [38]. Parts‐based deformable models showed 
promise for face ROI extraction in the wild [39]. Despite the success of currently used meth‐
ods, there is still much room for improvement. In the Motor Trend data, there are segments 
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of video where one extractor will succeed when others fail. Therefore, better performance can 
be achieved by unifying these three methods to generate multiple candidate face ROIs and 
quantitatively determine which candidate is the best ROI. Note that Refs. [38, 39] use VJ for 
an initial bounding box so running more than one face detector is not excessive for state‐of‐
the‐art approaches.

3.1.1. Reference‐based face detection in training

The avatar reference image concept generates a reference image of an expressionless face. It 
was previously used for registration [40] and learning [41]. A proof of optimality of the avatar 
image concept is given in the previous work [42]. Let  I  be an image in the training data  D . To 
estimate the avatar reference image   R  ARI    (  x )    , take the mean across all face images:

   R  ARI    (  x, y )    =   1 ___  N  D       ∑  
i∈D

    I  i    (  x, y )     (1)

where   N  
D
    is the number of training images;    (  x, y )     is a pixel location; and   I  

i
    is the  i ‐th image in 

the dataset  D . The process iterates by rewarping  D  to   R  
ARI

    to create a more refined estimate of 
the reference face. The procedure is described as follows: (1) compute reference using Eq. (1) 
from all training ROIs  D , (2) warp all  D  to the reference, and (3) recompute Eq. (1) using the 
warped images from the previous step. Steps (2) and (3) are iterated for three times which 
was empirically selected in Ref. [40]. Results of the reference face at different iterations are 
shown in Figure 1. SIFT‐Flow warps the images in step (2) and the reader is referred to 
[43] for a full description of SIFT‐Flow. In short, a dense, per‐pixel SIFT feature warp is 
computed with loopy belief propagation. After this point, a   R  

ARI
    represents a well‐extracted 

reference face.

3.1.2. Reference‐based face detection in testing

To robustly detect a face, three different pipelines simultaneously extract the ROI. We fuse 
a discriminative parameterized appearance model, a part‐based deformable model, and the 

Figure 1. Iterative refinement of the avatar reference face. It represents a well‐extracted face.

Emotion and Attention Recognition Based on Biological Signals and Images10



of video where one extractor will succeed when others fail. Therefore, better performance can 
be achieved by unifying these three methods to generate multiple candidate face ROIs and 
quantitatively determine which candidate is the best ROI. Note that Refs. [38, 39] use VJ for 
an initial bounding box so running more than one face detector is not excessive for state‐of‐
the‐art approaches.

3.1.1. Reference‐based face detection in training

The avatar reference image concept generates a reference image of an expressionless face. It 
was previously used for registration [40] and learning [41]. A proof of optimality of the avatar 
image concept is given in the previous work [42]. Let  I  be an image in the training data  D . To 
estimate the avatar reference image   R  ARI    (  x )    , take the mean across all face images:

   R  ARI    (  x, y )    =   1 ___  N  D       ∑  
i∈D

    I  i    (  x, y )     (1)

where   N  
D
    is the number of training images;    (  x, y )     is a pixel location; and   I  

i
    is the  i ‐th image in 

the dataset  D . The process iterates by rewarping  D  to   R  
ARI

    to create a more refined estimate of 
the reference face. The procedure is described as follows: (1) compute reference using Eq. (1) 
from all training ROIs  D , (2) warp all  D  to the reference, and (3) recompute Eq. (1) using the 
warped images from the previous step. Steps (2) and (3) are iterated for three times which 
was empirically selected in Ref. [40]. Results of the reference face at different iterations are 
shown in Figure 1. SIFT‐Flow warps the images in step (2) and the reader is referred to 
[43] for a full description of SIFT‐Flow. In short, a dense, per‐pixel SIFT feature warp is 
computed with loopy belief propagation. After this point, a   R  

ARI
    represents a well‐extracted 

reference face.

3.1.2. Reference‐based face detection in testing

To robustly detect a face, three different pipelines simultaneously extract the ROI. We fuse 
a discriminative parameterized appearance model, a part‐based deformable model, and the 

Figure 1. Iterative refinement of the avatar reference face. It represents a well‐extracted face.

Emotion and Attention Recognition Based on Biological Signals and Images10

Viola and Jones framework. In Viola and Jones (VJ), detection of the face is carried out with 
a boosted cascade of Haar‐like features. Because of the near‐standard use of VJ, we omit 
an in‐depth explanation of the method. The reader is referred to [3] for the details of the 
algorithm.

3.1.2.1. Discriminative parameterized appearance model

Consider a sparse appearance model of the face. The face detection problem can be framed as 
an optimization problem that fits the landmark points representing the face. A face is success‐
fully detected when the gradient descent in the fitness space of the optimization problem is 
complete. Traversing the fitness space can be viewed as a supervised learning problem [38], 
rather than carrying out a gradient descent with Gauss‐Newton algorithm [44]. In the training 
phase the following equation is minimized:

     min  w   ‖    
 
    s  (  p + w  (  p )    )    − s  (   p   *  )    ‖       (2)

where  s  is a function that computes SIFT features;  w  is a flow vector to be optimized;   p   *   is 
manually labeled landmark points; and the vector  p  has horizontal and vertical components  
p =   (  x, y )    . Computing the Hessian of the model is computationally undesirable, and super‐
vised learning of the descent from   p   *   avoids computing this directly. In testing, face alignment 
is carried out with linear least squares.

3.1.2.2. Parts‐based deformable models

Parts‐based deformable models represent a face as a collection of landmark points similar to 
PAMs. The difference is that the most likely locations of the parts are calculated with a probabi‐
listic framework. The landmark points are represented as a mixture of trees of landmark points 
on the face [39]. Let  Φ  be the set of landmark points on the face. A facial configuration  L  is 
modeled as  L =   {   p  i   : i ∈ Φ }    . Alignment of the landmark points is achieved by maximizing the 
posterior likelihood of appearance and shape. The objective function is formulated as follows:

  ϵ  (  I, L, j )    =  ∑  
i
     u  ij   s  (   p  i   )    +   ∑  

 (  i,k )  
    (   b  1    (  i, j, k )     x ˜     2  +  b  2    (  i, j, k )    x ˜   +  b  3    (  i, j, k )     y ˜     2  +  b  4    (  i, j, k )    y ˜   )     (3)

where  ϵ  is the objective function to be minimized;  I  is the video frame;  j  is the mixture index;  
k  is the landmark point indexes;   u  

ij
    is the template of mixture  j  at point  i ;  s  is an appearance 

feature;   b  
1
   ,   b  

2
   ,   b  

3
   , and   b  

4
    are the spring rest and rigidity parameters of the model's shape.   x ˜    and   y ˜    

are the displacement in horizontal and vertical directions from  i  and  k :

   x ˜   =  x  i   −  x  k    (4)

   y ˜   =  y  i   −  y  k      (5)

Inference is carried out by maximizing the following:

   maxj  
 
     (   max  

 
    L (  ϵ  (  I, L, j )    )    )     (6)
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which enumerates over all mixtures and configurations. The maximum likelihood of the 
model which best fits the parameters is computed with the Chow‐Liu algorithm [45].

3.1.2.3. Least square selection

We compare the results of all three pipelines to check if a face has been properly detected. 
The problem is posed where we must quantify the accuracy of each extraction pipeline. We 
minimize the candidate face ROI   I  k    to the reference of a face   R  ARI    in the least squared sense:

    min  k    
 
     √ ____________________

   ∑  
 
    p   (   I  k    (  x, y )    −  R  ARI    (  x, y )    )     

2
       (7)

where   I  
k
    is a candidate face ROI from one of the face extraction pipelines  k . It is possible that 

Eq. (7) failed to generate a candidate face. There are two causes for this: (A) there are no 
candidate face ROIs generated, or (B) the selected face is a false alarm, e.g., it is not a face, or 
the bounding box is poorly centered. To prevent (B), the face selected in Eq. (7) must have a 
distance to the reference of no greater than parameter  T , which is empirically selected in train‐
ing. If the detector fails because of (A) or the threshold is less than  T , the last extracted face 
should be used for processing further in the recognition pipeline. Note when comparing this 
proposed method to other detectors in Table 1 we count (A) and (B) as a failure of the method.

3.2. Local anisotropic inhibited binary patterns in three orthogonal planes

3.2.1. Gabor filter

A Gabor filter is a bandpass filter that is used for edge detection at a specific orientation and 
scale. Images are typically filtered by many Gabor filters at different parameters, called a 
bank. It is modulated by a sine and a cosine. When it is modulated by a sine, the Gabor filter 
finds symmetric edges. When it is modulated by a cosine, the Gabor filter finds antisymmetric 
edges. According to Grigorescu et al. [36], a Gabor filter at a specific orientation and magni‐
tude is:

  g  (  x, y; γ, θ, λ, σ, φ )    = exp   (    
 x   '2  +  γ   2   y   '2   

 _ 2  σ   2    )   cos   (    2π  x   '  _ γ   + φ  )     (8)

% Viola and Jones (VJ) Constrained local 
models (CLM)

Supervised descent 
method (SDM)

Proposed face detector

True positive rate  60.27 ± 10.53  68.36 ± 9.80  81.37 ± 17.60  86.29 ± 8.90 

F1‐score  74.52 ± 19.67  80.81 ± 7.17  89.47 ± 11.22  92.43 ± 5.07 

Viola and Jones is the worst performer with the highest variance. Constrained Local Models and Supervised Descent 
Method are acceptable but have a high variance. The proposed method is the best performer. Higher is better for both 
metrics. Bold: Best performer. Underline: Second best performer.

Table 1. Face detection rates for the Motor Trend Magazine's Best Driver Car of the Year.
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where  γ  is the spatial aspect ratio that effects the eccentricity of the filter;  θ  is the angle param‐
eter that tunes the orientation; and  λ  is the wavelength parameter that tunes the filter to a 
specific spatial frequency, or magnitude. In pattern recognition this is also referred to a scale.  
σ  is the variance of the distribution. It determines the size of the filter.  φ  is the phase offset that 
is taken at 0 and  π .    x   '   and   y   '   are defined as follows:

   x   '  = x cos θ + y sin θ  (9)

   y   '  = − x sin θ + y cos θ  (10)

The Gabor filter can be used as local appearance filter by tuning the filter to a local neighbor‐
hood while still varying the orientation:  σ / λ = 0.56  and varying  θ . For the rest of the chapter,  g  
(  x, y; θ, φ )     represents  g  with  γ = 0.5 ,  λ = 7.14,  and  σ = 3 , and with varying  θ  and  φ . Given an image  
I , the Gabor energy filter is given by:

  E  (  x, y; θ )    =  √ 
_______________________________

      (    (  I * g )     (  x, y; θ, 0 )    )     
2
  +   (    (  I * g )     (  x, y; θ, π )    )     

2
     (11)

which corresponds to the magnitude of filtering the image at the phase values of  0  and  π .

3.2.2. Anisotropic‐inhibited Gabor filter

The original formulation of the Gabor energy filter does not generalize well. The Gabor 
energy filter captures all edges and magnitudes within the image, including the edges due to 
noisy background texture. For example, MPEG block encoding artifacts that present as a grid‐
like repeating pattern. In the field of facial expression recognition, face morphology causes 
creases along the face that are not a part of the background texture thus a better contour map 
can be extracted by removing the background texture of the face. In order to eliminate the 
background texture detected by the Gabor filter, we build upon the Anisotropic Gabor energy 
filter. To suppress the background texture, we take a weighted Gabor filter:
   g ˜    (  x, y; θ )    =   (  E * w )     (  x, y )     (12)

where the weighted function  w  is:
  w  (  x, y )    =   1 ________ 

‖DoG  (  x, y )  ‖ 
   h  (  DoG  (  x, y )    )     (13)

where  h  (  x )    = H  (  x )    * x , where  H  (  x )     is the Heaviside step function;  DoG  (   .  )     is the difference of 
Gaussians:

  DoG  (  x, y; θ )    =   1 ______ 2π  K   2   σ   2     e     
 x   2 + y   2 

 _____ 2 K   2  σ   2     −   1 ____ 2π  σ   2     e   −  
 x   2 + y   2 

 _____ 2 σ   2      (14)

 w  resembles a ring. Eq. (12) retrieves the background texture of    (  x, y )     without the texture of    (  x, y )     
itself by weighting  E  by the ring‐like filter  w . The resulting anisotropic‐inhibited Gabor filter is 
described as follows:
   g ^    (  x, y; θ )    = h  (  E  (  x, y; θ )    − α ×  g ˜    (  x, y; θ )    )     (15)

where  α  is a parameter that affects how much of the background texture is removed.  α  ranges 
from 0 to 1, where 0 indicates no background texture removal and 1 indicates complete back‐
ground texture removal. The first term of Eq. (15) defines the original Gabor energy filter 
that captures all edges including background edges. The second term subtracts the weighted 
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Gabor filter with a specified alpha, depending on how much background suppression is 
needed. We follow [46] where a value of  α = 1  was empirically selected.

To obtain an image that contains only the strongest edges and corresponding orientations, we 
take the edges with the strongest magnitude across  N  different orientations:

  AIGF  (  x, y )    =  max  
θ
    g ^    (  x, y; θ )     (16)

The resulting output of Anisotropic Inhibited Gabor Filter is an image that is  M × N . Results are 
given in Figure 2.

We build upon the work in Ref. [46], but the proposed approach is significantly different. The 
anisotropic Gabor energy filter (AIGF) further computes the orientations corresponding to 
the maximum edges as follows:

  Θ  (  x, y )    =  argmax  
θ
    g ˜    (  x, y; θ )     (17)

A soft histogram is computed from  Θ  with votes weighted by the maximal edge response  
AIGF . For the proposed approach, we use  AIGF  and do not compute a soft histogram.

3.2.3. Local binary patterns

Local binary patterns (LBP) encode local appearance as a microtexture code. The code is a func‐
tion of comparison to the intensity values of neighboring pixels. Some formulations are invari‐
ant to rotation and monotonic grayscale transformations [31]. At present LBP and its many 
variations are one of the most widely used feature descriptors for facial expression recognition. 
LBP result in a texture descriptor with dimensionality of   2   n   where  n  is a parameter that controls 
the number of pixel neighbours. The LBP code of a pixel at    (  x, y )     is given as follows:

  LBP(x, y ) =   ∑  
  {  u,v }   ∈ N  x,y  LBP 

   sign  (  I  (  u, v )    − I  (  x, y )    )    ×  2   q   (18)

where    (  u, v )     iterates over points in the neighborhood of   N  
x,y

  LBP  ;  sign(.)  is the sign of the expression;  
q  is a counter starting from 0 that increments on each iteration; and   N  

x,y
  LBP   is the neighborhood of 

Figure 2. (a) Original frame, (b) result of Gabor energy filter (Eq. (15) with  α = 0 ), and (c) result of Anisotropic Gabor 
Energy Filtering.
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points about    (  x, y )     (see Figure 3A).   2   q   encodes the result of the intensity difference in a specific 
bit. A histogram is taken for further compactness and tolerance of registration errors. Each 
pixel in  I  is encoded with an LBP code from Eq. (18) then an  n ‐level histogram is extracted 
from  LBP . Typically, the image is segmented into nonoverlapping regions and a histogram is 
extracted from each region [47]. While powerful and effective for static images, LBP lacks the 
ability to capture temporal changes in continuous video data.

3.2.4. Volumetric local binary patterns

Volume local binary patterns (VLBP) and local binary patterns in three orthogonal planes 
(LBP‐TOP) are variations of LBP that were developed to capture dynamic textures for video 
data. In VLBP, the circle of neighboring points in LBP is scaled up to a cylinder. VLBP com‐
putes code values as a function of three parallel planes centered at    {  x, y, t }    . That is, the middle 
plane contains the center pixel. VLBP coding is obtained by the following equation:
  VLBP(x, y, t ) =   ∑  

k∈  {  −L,0,L }   
  

 
     ∑  

  {  u,v }   ∈ N  x,y,t  VLBP 
   sign  (  I  (  u, v, k )    − I  (  x, y, t )    )    ×  2   q   (19)

where  k  iterates over three time points:  t ,  t − L , and  t + L .   N  
x,y,t

  VLBP   is the set of spatiotemporal neigh‐
bours of    {  x, y, t }     (see Figure 3B). A large set of   N  

x,y,t
  VLBP   results in a large feature vector while a small   

N  
x,y,t

  VLBP   results in a small feature vector. As with LBP, a histogram is taken for further compact‐
ness. The maximum grey‐level from Eq. (19) is   2    (  3n+2 )    , thus VLBP are more computationally 
expensive to calculate and require larger feature vector.

3.2.5. Local binary patterns in three orthogonal planes

LBP‐TOP was developed as an alternative to VLBP. VLBP and LBP‐TOP differ in two ways. 
First, LBP‐TOP uses three orthogonal planes that intersect at the center pixel. Second, VLBP 
considers the cooccurrences of all neighboring points from three parallel frames, which make 
for a larger feature vector. LBP‐TOP only considers features from each separate plane and 
then concatenates them together, making the feature vector much shorter when compared 
to VLBP for large values of  n . LBP‐TOP performs LBP on the three orthogonal planes cor‐
responding to the XY, XT, and YT axes (see Figure 3C). The XY plane contributes the spatial 

Figure 3. (A) In LBP, microtexture is encoded in the XY‐plane. (B) In VLBP, this is extended to the spatiotemporal 
domain by including neighbors in the three planes parallel to the current frame. (C) In LBP‐TOP, local binary patterns 
are separately extracted in three orthogonal planes and the resultant histograms are concatenated. This greatly reduces 
feature vector size over treating the volume as a 3D microtexture.
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information and the XT and YT frames contribute the temporal information. These planes 
intersect at the center pixel. Whereas in Eq. (19), VLBP captures a truly three‐ dimensional 
microtexture, LBP‐TOP computes LBP codes separately on each plane. The resulting feature 
vector dimensionality of LBP‐TOP is  3 ×  2   n  .

3.2.6. Local anisotropic inhibited Gabor patterns in three orthogonal planes

In the proposed method, the computational efficiency of LBP‐TOP is applied to images filtered 
with the anisotropic‐inhibited Gabor filter. The suppression of background texture provides 
an image that only contains the edges separate from the background texture. These edges are 
the significant boundaries of facial features that are useful when determining expression and 
emotion. Local anisotropic binary patterns’ (LAIBP) code values are computed as follows:

  LAIBP(x, y ) =   ∑  
  {  u,v }   ∈ N  x,y  LBP 

   sign  (  AIGF  (  u, v )    − AIGF  (  x, y )    )    ×  2   q   (20)

where  g  (  u, v )     is the maximal edge magnitude from Eq. (16). LAIBP‐TOP features are extracted 
in a similar fashion to LBP‐TOP: Compute  LAIBP  codes from Eq. (20) in XY, XT, and YT planes 
and concatenate the resultant histograms. A comparison of AIGF, LBP, and the proposed 
method, LAIBP, are given in Figure 4. The proposed method (LAIBP‐TOP) is significantly 
different from LBP‐TOP because we introduce background texture removal from Eq. (16).

4. Experimental results

4.1. Datasets

Data in this work have been provided by Motor Trend Magazine from their Best Driver Car 
of the Year 2014 and 2015. They consist of frontal face video of a test driver as he drives one 
of 10 automobiles around a racetrack. Parts of the video will be released publicly on YouTube 
at a later date. The videos are 1080p HD quality captured with a Go Pro Hero 4 and range 
from 231 to 720 seconds in length. The camera is mounted on the windshield of the car facing 
the driver's face. The dataset was labeled with the Fontaine emotional model [2] rather than 
facial action units or emotional categories to quantize emotion. Emotions such as happiness, 

Figure 4. From left to right: The original frame, anisotropic inhibited Gabor filter (AIGF), local binary patterns (LBP), 
and the proposed method local anisotropic inhibited binary patterns (LAIBP). Note that the proposed method has more 
continuous lines compared to AIGF. LBP is susceptible to JPEG compression artifacts.
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sadness, etc. occupy a space in a two‐dimensional Euclidean space defined by valence and 
arousal. The objective of the dataset is to detect the valence and arousal of an individual on a 
per‐frame basis. Valence, also known as evaluation‐pleasantness, describes positivity or nega‐
tivity of the person's feelings or feelings of situation, e.g., happiness versus sadness. Arousal, 
also known as activation‐arousal, describes a person's interest in the situation, e.g., eagerness 
versus anxiety.

4.2. Metrics

For face detection results, we use true positive rate and   F  1    score.   F  1    score is given by:

  2 ×     (  Precision )     (  Recall )     _______________    (  Precision )    +   (  Recall )       (21)

For both metrics, higher is better. For full recognition results, we use root mean squared 
(RMS) error and correlation. The correlation coefficient is given by:

    
E  [    (   y  d   −  μ   y  d  

   )     (  y −  μ  y   )    ]   
  _____________  σ   y  d  

    σ  y      (22)

where  E  [   .  ]     is the expected operation;   y  
d
    is the vector of ground‐truth labels for a video;  y  is 

the vector of predicted labels for a video;   μ   y  
d
      and   μ  

y
    are the mean of ground‐truth and predic‐

tion, respectively; and   σ   y  
d
      and   σ  

y
    are the standard deviation of ground‐truth and prediction, 

respectively.

4.3. Results comparing different face detectors

Face detection results are given in Table 1. In general, VJ is the worst performer with the 
highest variance. Though CLM and SDM have acceptable detection rates, they too have a high 
variance and some videos are a total failure with no face extraction. The proposed algorithm 
improves detection rates on both datasets and reduces variance.

4.4. Results comparing different facial appearance features

For the full recognition pipeline: The landmarks for the inner corner of the eyes and the tip of 
the nose are used as control points for a course registration. These points are the least effected 
by face morphology. An  ϵ ‐SVR is used for prediction of valence and arousal values [48].

Full regression results and a comparison to other state‐of‐the‐art facial appearance features 
are given in Table 2. Experiments employed a 9‐fold, leave‐one‐video‐out cross‐validation. 
For correlation, higher is better; for RMS lower is better. In Table 2, the correlation and RMS 
values for valence and arousal labels by the proposed method performed the best for valence 
and second best for arousal. Removal of background noise and then implementing LBP‐TOP 
provided better results. RMS values for the proposed method are also the best for arousal and 
second best for valence. The proposed method has the best average correlation and the lowest 
average RMS value. Graphs comparing the ground‐truth and predicted labels are given in 
Figure 5. It was found that frames with extreme head rotation tended to have lower correla‐
tion and higher error due to the difficulty of registering the dataset.
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5. Conclusions

In this chapter, we proposed a system to perform facial expression recognition on a brand 
new dataset. This dataset is unconstrained and unique. We proposed a new feature vector that 
is robust to background noise and capable of capturing dynamic textures. We also proposed a 
novel method for fusing the output of many face detectors. Both approaches provided better 
results than other state‐of‐the‐art methods. In the future work, the face detection scheme will 
be scaled up to a 3D model to better detect the extreme out of plane head rotations.

Features Valence Arousal Average

Correlation RMS Correlation RMS Correlation RMS

LBP 0.0066 0.5025 0.1032 0.2526 0.0549 0.3776

VLBP 0.3060 0.1292 0.3810 0.2428 0.3435 0.1860

LBP‐TOP 0.3705 0.2134 0.0819 0.1624 0.2262 0.1879

Gaborenergy 
filter

0.1296 0.3937 0.0569 0.1935 0.0933 0.2936

LGBP‐TOP 0.2805 1.1207 0.0787 1.2559 0.1796 1.1883

Proposed 0.4446 0.2054 0.2801 0.1547 0.3624 0.1801

Note: The proposed method has better average correlation for valence and arousal. Bold indicates best performing feature.

Table 2. Correlation and RMS for prediction of valence and arousal emotion categories on the Motor Trend Magazine 
Best Driver's Car of the Year.

Figure 5. The predicted values are graphed with the values for valence and arousal.
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Abstract

In this work, a novel valence recognition system applied to EEG signals is presented. It 
consists of a feature extraction block followed by a wrapper classification algorithm. The 
proposed feature extraction method is based on measures of relative energies computed 
in short‐time intervals and certain frequency bands of EEG signal segments time‐locked 
to the stimuli presentation. These measures represent event‐related desynchronization/
synchronization of underlying brain neural networks. The subsequent feature selection 
and classification steps comprise a wrapper technique based on two different classifica‐
tion approaches: an ensemble classifier, i.e., a random forest of classification trees and a 
support vector machine algorithm. Applying a proper importance measure from the clas‐
sifiers, the feature elimination has been used to identify the most relevant features of the 
decision making both for intrasubject and intersubject settings, using single trial signals 
and ensemble averaged signals, respectively. The proposed methodologies allowed us to 
identify a frontal region and a beta band as the most relevant characteristics, extracted 
from the electrical brain activity, in order to determine the affective valence elicited by 
visual stimuli.

Keywords: EEG, random forest, SVM, wrapper method

1. Introduction

During the last decade, information about the emotional state of users has become more and 
more important in computer‐based technologies. Several emotion recognition methods and 
their applications have been addressed, including facial expression and microexpression rec‐
ognition, vocal feature recognition and electrophysiology‐based systems [1]. More recently, 
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the integration of emotion forecasting systems in ambient‐assistant living paradigms has been 
considered [2]. Concerning the origin of the signal sources, the used signals can be divided 
into two categories: those originating from the peripheral nervous system (e.g., heart rate, 
electromyogram, galvanic skin resistance, etc.) and those originating from the central ner‐
vous system (e.g., electroencephalogram (EEG)). Traditionally, EEG‐based technology has 
been used in medical applications but nowadays it is spreading to other areas such as enter‐
tainment [3] and brain‐computer interfaces (BCI) [4]. With the emergence of wearable and 
portable devices, a vast amount of digital data are produced and there is an increasing inter‐
est in the development of machine‐learning software applications using EEG signals. For the 
efficient manipulation of this high‐dimensional data, various soft computing paradigms have 
been introduced either for feature extraction or pattern recognition tasks. Nevertheless, up 
to now, as far as authors are aware, few research works have focused on the criteria to select 
the most relevant features linked to emotions, relying most of the studies on basic statistics.

It is not easy to compare different emotion recognition systems, since they differ in the way 
emotions are elicited and in the underlying model of emotions (e.g., discrete or dimensional 
model of emotions) [5]. According to the dimensional model of emotions, psychologists rep‐
resent emotions in a 2D valence/arousal space [6]. While valence refers to the pleasure or 
displeasure that a stimulus causes, arousal refers to the alertness level which is elicited by 
the stimulus (see Figure 1). Sometimes an additional category assigned as neutral is included, 
which is represented in the region close to the origin of the 2D valence/arousal space. Some 
studies concentrate on one of the dimensions of the space such as identifying the arousal 
intensity or the valence (low/negative versus high/positive) and eventually a third class neu‐
tral state. Recently, it was pointed out that data analysis competitions, similar to the brain‐
computer interfaces community, could encourage the researchers to disseminate and compare 
their methodologies [7].

Normally, emotions can be elicited by different procedures, for instance by presenting an 
external stimulus (picture, sound, word, or video), by facing a concrete interaction or situ‐
ation [8] or by simply asking subjects to imagine different kinds of emotions. Concerning 
external visual stimuli, one may resort to standard databases such as the international affec‐
tive picture system (IAPS) collection which is widely used [7, 9] or the DEAP database [10] 
that also includes some physiological signals recorded during multimedia stimuli presenta‐
tion. Similar to any other classification system, in physiology‐based recognition systems, it is 
needed to establish which signals will be used to extract relevant features from these input 
signals and finally to use them for training a classifier. However, as often it occurs in many 
biomedical data applications, the initial feature vector dimension can be very large in com‐
parison to the number of examples to train (and evaluate) the classifier.

In this work, we prove the suitability of incorporating a wrapper strategy for feature elimi‐
nation to improve the classification accuracy and to identify the most relevant EEG features 
(according to the standard 10/20 system). We propose it by using the spectral features related 
to EEG synchronization, which has never been applied before for similar purposes. Two learn‐
ing algorithms integrating the classification block are compared: random forest and support 
vector machine (SVM). In addition, our automatic valence recognition system has been tested 
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both in intra and intersubject modalities, whose input signals are single trials (segments of 
signal after the stimulus presentation) of only one participant and ensemble averaged signals 
computed for each stimulus category and every participant, respectively.

2. Related work

The following subsections review some examples of machine learning approaches to affec‐
tive computing and brain cognitive works where time‐domain and frequency‐domain signal 
features are related to the processing of emotions.

2.1. Classification systems and emotion

The pioneering work of Picard [11] on affective computing reports a recognition rate of 81%, 
achieved by collecting blood pressure, skin conductance and respiration information from 
one person during several weeks. The subject, an experienced actor, tried to express eight 
affective states with the aid of a computer‐controlled prompting system. In Ref. [12], using the 
IAPS data set as stimulus repertoire, peripheral biological signals were collected from a single 
person during several days and at different times of the day. By using a neural network clas‐
sifier, they considered that the estimation of the valence value (63.8%) is a much harder task 
than the estimation of arousal (89.3%). In Ref. [13], a study with 50 participants, aged from 7 to 

Figure 1. Ratings of the pictures selected from international affective picture system for carrying out the experiment. L: 
low rating; H: high rating.
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8 years old, is presented. The visual stimulation with the IAPS data set was considered insuf‐
ficient, hence they proposed a sophisticated scenario to elicit emotions and only peripheral 
biological signals were recorded and the measured features were the input of a classification 
scheme based on an SVM. The results showed accuracies of 78.4% and 61% for three and four 
different categories of emotions, respectively.

In Ref. [14], also by means of the IAPS repository, three emotional states were induced in five 
male participants: pleasant, neutral and unpleasant. They obtained, using SVMs, an accuracy of 
66.7% for these three classes of emotion, solely based on features extracted from EEG signals. A 
similar strategy was followed by Macas [15], where the EEG data were collected from 23 subjects 
during an affective picture stimulus presentation to induce four emotional states in arousal/
valence space. The automatic recognition of the individual emotional states was performed with 
a Bayes classifier. The mean accuracy of the individual classification was about 75%.

In Ref. [16], four emotional categories of the arousal/valence space were considered and the 
EEG was recorded from 28 participants. The ensemble average signals were computed for 
each stimulus category and person. Several characteristics (peaks and latencies) as well as fre‐
quency‐related features (event‐related synchronization) were measured on a signal ensemble 
encompassing three channels located along the anterior‐posterior line. Then, a classifier (a 
decision tree, C4.5 algorithm) was applied to the set of features to identify the affective state. 
An average accuracy of 77.7% was reported.

In Ref. [17], through a series of projections of facial expression images, emotions were elicited. 
EEG signals were collected from 16 healthy subjects using only three frontal EEG channels. 
In Ref. [18], four different classifiers (quadratic discriminant analysis (QDA), k‐nearest neigh‐
bor (KNN), Mahalanobis distance and SVMs) were implemented in order to accomplish the 
emotion recognition. For the single channel case, the best results were obtained by the QDA 
(62.3% mean classification rate), whereas for the combined channel case, the best results were 
obtained using SVM (83.33% mean classification rate), for the hardest case of differentiating 
six basic discrete emotions.

In Ref. [19], IF‐THEN rules of a neurofuzzy system detecting positive and negative emotions 
are discussed. The study presents the individual performance (ranging from 60 to 82%) of the 
system for the recognition of emotions (two or four categories) of 11 participants. The deci‐
sion process is organized into levels where fuzzy membership functions are calculated and 
combined to achieve decisions about emotional states. The inputs of the system are not only 
EEG‐based features, but also visual features computed on the presented stimulus image.

2.2. Event‐related potentials and emotion

Studies of event‐related potentials (ERPs) deal with signals that can be tackled at different 
levels of analysis: signals from single‐trials, ensemble averaged signals where the ensemble 
encompasses several single‐trials and signals resulting from a grand‐average over different 
trials as well as subjects. The segments of the time series containing the single‐trial response 
signals are time‐locked with the stimulus: ti (negative value) before and tf (positive value) after 
stimulus onset. The ensemble average, over trials of one subject, eliminates the  spontaneous 
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activity of brain and the spurious noisy contributions, maintaining only the activity that is 
phase‐locked with the stimulus onset. The grand‐average is the average, over participants, of 
ensemble averages and it is used mostly for visualization purposes to illustrate the outcomes 
of the study. Usually, a large number of epochs linked to the same stimulus type need to 
be averaged in order to enhance the signal‐to‐noise ratio (SNR) and to keep the mentioned 
phase‐locked contribution of the ERP. Experimental psychology studies on emotions show 
that the ERPs have characteristics (amplitude and latency) of the early waves which change 
according to the nature of the stimuli [20, 21]. In Ref. [16], the characteristics of ensemble‐
average are the features of the classifier. However, this model can only roughly approximate 
reality, since it cannot deal with robust dynamical changes that occur in the human brain [22].

Due to the mentioned limitation, frequency analysis is more appropriate, as long as it is 
assumed that certain events affect specific bands of the ongoing EEG activity. Therefore, 
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meant to automatically recognize emotions. Interestingly, a recent review about affective 
computing systems [7] emphasizes the advantages of using frequency‐based features instead 
of the ERP components.

3. Materials and methods

In our valence detection system, we have addressed the problem of selecting the most rel‐
evant features to define the scalp region of interest by including a wrapper‐based classifica‐
tion block. Feature extraction is based on ERD/ERS measures computed in short intervals 
and is performed either on signals averaged over an ensemble of trials or on single‐trial 
response signals, in order to carry out inter and intrasubject analysis, respectively. The 
subsequent wrapper classification stage is implemented using two different classifiers: an 
ensemble classifier, i.e., a random forest and an SVM. The feature selection of algorithm is 
wrapped around the classification of algorithm recursively identifying the features which 
do not contribute to the decision. These features are eliminated from the feature vector. This 
goal is achieved by applying an importance measure, which depends on the parameters 
of the classifier. The two variants of the system were implemented in MATLAB also using 
some facilities of open source software tools like EEGLAB [32], as well as random forest and 
SVM packages [33].

3.1. Data set

A total of 26 female volunteers participated in the study (age 18‐62 years; mean  =   24.19; 
SD  =  10.46). Only adult women were chosen in this experiment to avoid gender differences 
[21, 34, 35]. All participants had normal or corrected to normal vision and none of them 
had a history of severe medical treatment, neither psychological nor neurological disorders. 
This study was carried out in compliance with the Helsinki Declaration and its protocol was 
approved by the Department of Education from the University of Aveiro. All participants 
signed informed consents before their inclusion.

Each one of the selected participants was comfortably seated at 70 cm from a computer screen 
(43.2 cm), alone in an enclosed room. The volunteer was instructed verbally to watch some 
pictures, which appeared on the center of the screen and to stay quiet. No responses were 
required. The pictures were chosen from the IAPS repository. A total of 24 images with high 
arousal ratings (>6) were selected, 12 of them with positive affective valence (7.29 ± 0.65) and 
the other 12 with negative affective valence (1.47 ± 0.24). In order to match as closely as pos‐
sible the levels of arousal between positive and negative valence stimuli, only high arousal 
pictures were shown, avoiding neutral pictures. Figure 1 shows the representation of the 
stimuli in arousal/valence space.

Three blocks with the same 24 images were presented consecutively and pictures belonging 
to each block were presented in a pseudorandom order. In each trial, a fixation single cross 
was presented on the center of the screen during 750 ms, after which an image was presented 
during 500 ms and finally, a black screen during 2250 ms (total duration  =   3500 ms). Figure 2 
shows a scheme of the experimental protocol.
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EEG activity on the scalp was recorded from 21 Ag/AgCl sintered electrodes (Fp1, Fpz, Fp2, 
F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, Oz, O2) mounted on an electrode 
cap from EasyCap according to the international 10/20 system, internally referenced to an 
electrode on the tip of the nose. The impedances of all electrodes were kept below 5 kΩ. EEG 
signals were recorded, sampled at 1 kHz and preprocessed using software Scan 4.3. First, a 
notch filter centered in 50 Hz was applied to eliminate AC contribution. EEG signals were then 
filtered using high‐pass and low‐pass Butterworth filters with cutoff frequencies of 0.1 Hz and 
30 Hz, respectively. The signal was baseline corrected and segmented into time‐locked epochs 
using the stimulus onset (picture presentation) as reference. The length of the time windows 
was 950 ms: from 150 ms before picture onset to 800 ms after it (baseline = 1150 ms).

3.2. Feature extraction

The signals (either single trials or average segments) are filtered by four 4th‐order bandpass 
Butterworth filters. K   =   4 filters are applied following a zero‐phase forward and reverse digi‐
tal filter methodology not including any transient (see filtfilt MATLAB function [36]). The four 
frequency bands have been defined as: δ   =  Z[0.5, 4] Hz, θ   =  Z[4, 7] Hz, α  =  Z[8, 12] Hz and β  
=  Z[13, 30] Hz. From a technical point of view, ERD/ERS computation reduces significantly 
the initial sample size per trial (800 features corresponding to the time instants) to a much 
smaller number, optimizing the design of the classifier. For each filtered signal, the ERD/ERS 
is estimated in I   =   9 intervals following the stimulus onset and with a duration of 150 ms and 
50% of overlap between consecutive intervals. The reference interval corresponds to the 150 
ms pre‐stimulus period. For each interval, the ERD/ERS is defined as

Figure 2. Experimental protocol: series of the stimuli presentation for a complete trial.
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where   E  
rk
    represents the energy within the reference interval and   E  

ik
    is the energy in the ith 

interval after stimulus in the kth band, for i   =   1,2,…, 9 and k   =   1,…,4. Note that when   E  
rk
   >  E  

ik
   ,  

then   f  
ik
    is positive, otherwise it is negative. And furthermore notice that the measure has an 

upper bound   f  
ik
    ≤ 1 because energy is always a positive value. Energies   E  

ik
    are computed by 

adding up instantaneous energies within each of the I   =   9 intervals of 150 ms duration. The 
energy   E  

rk
    is estimated in an interval of 150 ms duration defined in the pre‐stimulus period. 

Generally, early poststimulus components are related to an increase of power in all bands 
due to the evoked potential contribution and this increase is followed by a general decrease 
(ERD), especially in the alpha band, which can be modulated by a perceptual enhancement as 
a reaction to relevant contents by the presence of high arousal images [31].

In summary, each valence condition can be characterized by   f  
ikc

   , where i is the time inter‐
val, k is the characteristic frequency band and c refers to the channel. A total of M   =   I × 
K × C  =   9 × 4 × 21  =   756 features is computed for the multichannel segments related to one 
condition. Following, the features   f  

ikc
    will be concatenated into a feature vector with com‐

ponents   f  
m
   , m   =   1,…,M, with M   =   756.

3.3. Classification using wrapper approaches

The target of any feature selection method is the selection of the most pertinent feature subset 
which provides the most discriminant information from a complete feature set. In the wrapper 
approach, the feature selection algorithm acts as a wrapper around the classification algorithm. 
In this case, the feature selection consists of searching a relevant subset of features from high‐
dimensional data sets using the induction algorithm itself as part of the function‐evaluating 
features [37]. Hence, the parameters of the classifier serve as scores to select (or to eliminate) 
features and the corresponding classification performance is the guide to an iterative proce‐
dure. The recursive feature elimination strategy using a linear SVM‐based classifier is a wrap‐
per method usually called support vector machine recursive feature elimination (SVM‐RFE) 
[38]. This strategy was introduced when the data sets had a large number of features com‐
pared to the number of training examples [38], but it was recently applied for class‐imbalanced 
data sets [39]. A similar strategy can be applied with other learning algorithms, for instance 
random‐forest that has an embedded method of feature selection. The random forest is an 
ensemble of binary decision trees where the training is achieved by randomly selecting subsets 
of features. Therefore, computing a variable using parameters of the classifier, which somehow 
reflect the importance of each input (feature) of the classifier, an iterative procedure can be 
developed. Assuming that this variable importance is   r  m   , the steps of the wrapper method are:

1. Initialize: create a set of indices M   =   {1,2,…,M} relative to the available features and set F = M.

2. Organize data set X by forming the feature vectors with the feature values whose index is 
in set M, labeling each feature vector according to the class it belongs (negative or positive 
valence).

3. Compute the accuracy of the classifier using the leave‐one‐out (LOO) cross‐validation 
strategy.

4. Compute the global model of the classifier using the complete data set X.
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5. Compute   r  m    of the feature set and eliminate from set M the indices relative to the twenty 
least relevant features.

6. Update the number of features accordingly, i.e. F ←F ‐20.

7. Repeat steps 2–6 while the number of features in set M is larger than Mmin   =   36.

Accuracy is the proportion of true results (either positive or negative valence) in the test set. 
The leave‐one‐out strategy assumes that only one example of the data set forms the test set 
while all the remaining belong to the training set. This training and test procedure is repeated 
so that all the elements of the data set are used once as test set (step 3 of the wrapper method). 
Then, after computing the model of the classifier with the complete data, the importance of 
each feature is estimated (steps 4 and 5).

As mentioned before, random forest and linear SVM are classifiers that can be applied in a 
wrapper method approach and used to estimate rm. For convenience, the next two subsections 
review the relevant parameters of both classifiers and their relation to the variable importance 
mechanism.

3.3.1. Random forest

The random forest algorithm, developed by Breiman [40], is a set of binary decision trees, 
each performing a classification, being the final decision taken by majority voting. Each tree is 
grown using a bootstrap sample from the original data set and each node of the tree randomly 
selects a small subset of features for a split. An optimal split separates the set of samples of the 
node into two more homogeneous (pure) subgroups with respect to the class of its elements. 
A measure for the impurity level is the Gini index. By considering that   ω  c   , c   =   1…C are the 
labels given to the classes, the Gini index of node i is defined as

  G  (  i )    = 1 −   ∑  
c=1

  
C
     (  P  (   ω  c   )    )     

2
   (2)

where  P  (   ω  
c
   )     is the probability of class   ω  

c
    in the set of examples that belong to node i. Note 

that  G  (  i )    = 0  when node i is pure, e.g., if its data set contains only examples of one class. To 
perform a split, one feature   f  

m
    is tested   f  

m
   >  f  

0
    on the set of samples with n elements which is 

then divided into two groups (left and right) with   n  
l
    and   n  

r
    elements. The change in impurity 

is computed as

  ΔG  (  i )    = G  (  i )    −   (    
 n  l   _ n   G  (   i  l   )    −   

 n  r   _ n   G  (   i  r   )    )     (3)

The feature and value that results in the largest decrease of the Gini index is chosen to per‐
form the split at node i. Each tree is grown independently using random feature selection to 
decide the splitting test of the node and no pruning is done on the grown trees. The main steps 
of this algorithm are

1. Given a data set T with N examples, each with F features, select the number T of trees, the 
dimension of the subset L < F of features and the parameter that controls the size of the 
tree (it can be the maximum depth of the tree, the minimum size of the subset in a node to 
perform a split).
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2. Construct the t = 1…T trees.

a. Create a training set T t with N examples by sampling with replacement the original 
data set. The out‐of‐bag data set Ot is formed with the remaining examples of T not 
belonging to T t.

b. Perform the split of node i by testing one of the  L =  √ 
__

 F    randomly selected features.

c. Repeat step 2b until the tree t is complete. All nodes are terminal nodes (leafs) if the 
number   n  

s
    of examples is   n  

s
   ≤ 0.1N .

3. Repeat step 2 to grow next tree if  t ≠ T. In this work T   =   500 decision trees were employed.

After training, the importance   r  m    of each feature   f  m    in the ensemble of trees can be computed 
by adding the values of  ΔG  (  i )     of all nodes i where the feature   f  m    is used to perform a split. 
Sorting the values  r  by decreasing order, it is possible to identify the relative importance of the 
features. The F   =   20 least relevant features are eliminated from the feature vector  f .

3.3.2. Linear SVM

Linear SVM parameters define decision hyperplanes or hypersurfaces in the multidimen‐
sional feature space [41, 42], that is:

  g  (  w )    =  w   T  x + b = 0  (4)

where  x ≡ f  denotes the vector of features,  w  is known as the weight vector and b is the threshold.

The optimization task consists of finding the unknown parameters   w  
m
   , m  =  1,…,F and b [43]. 

The position of the decision hyperplane is determined by vector  w  and b: the vector is orthogo‐
nal to the decision plane and b determines its distance to the origin. For the Linear SVM the 
vector  w  can be explicitly computed and this constitutes an advantage as it decreases the com‐
plexity during the test phase. With the optimization algorithm the Lagrangian values, 0  ≤  λ  

i
     ≤ 

C are estimated [43]. The training examples, known as support vectors, are related with the 
nonzero Lagrangian coefficients. The weight vector then can be computed

  w =  ∑  
i
  

 N  s  
    y  i    λ  i    x  i    (5)

where   N  
s
    is the number of the support vectors and (  x  

i
   ,    y  

i
   ) is the support vector and correspond‐

ing label {‐1,1}. The threshold b is estimated as an average of the projected supported vectors   
w   T   x  

i
    corresponding to C   ≠   0. The value of C needs to be assigned to run the training optimiza‐

tion algorithm and controls the number of errors allowed versus the margin width. During 
the optimization process, C represents the weight of the penalty term of the optimization 
function that is related to the misclassification error in the training set. There is no optimal 
procedure to assign this parameter but it has to be expected that:

– If C is large, the misclassification errors are relevant during optimization. A narrow margin 
has to be expected.

– If C is small, the misclassification errors are not relevant during optimization. A large mar‐
gin has to be expected.
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Note that this is important because in a real application linearly separable problems are not to be 
expected and it is more realistic to perform an optimization where misclassifications are allowed. 
In the following simulations, the parameter C   =   1 and the software MATLAB is used [44].

The relevance of the mth entry of the feature vector is then determined by the correspond‐
ing value   w  

m
    in the weight vector. In particular if    |   w  

m
   |    ≠ 0 , the corresponding feature do not 

contribute to the value of  g  (  w )     [38]. Then, setting   r  
m
   ≡  w  

m
    for the SVM classifier and sorting the 

absolute values, the importance of the features is found out.

4. Results and discussion

To ease interpreting the following results, it is possible to link wrapper methods to some 
statistical contrasts (e.g. t‐test) used by psychologists to test which EEG features change 
depending on the experimental condition. Note that in the two cases the goal is to perform a 
dimension reduction before the classification step. For instance, another alternative method‐
ology would consist of transforming the initial vector of features to low‐dimensional space 
by performing a singular value decomposition [45]. Both approaches can be considered as 
filter techniques to reduce the dimension of an initial feature vector. In the former, statistical 
analysis, the dimension reduction is achieved according to a parameter from a classifier and 
each feature is taken individually to check how its value influences the classification outcome. 
In the latter, machine learning approach, the significant features, selected from the initial vec‐
tor, are obtained after comparing two sets of features belonging to two different conditions 
and checking a statistical value. Classification techniques have the advantage of dealing with 
the set of features as a whole without needing a complementary observation (belonging to 
another condition). Therefore, the results obtained by wrapper methods can complement the 
conclusions drawn by applying other statistical tests, indicating the most relevant features 
related to specific processes, e.g., affective valence processing.

Considering feature elimination and the concomitant number of relevant features, as can be 
seen from Figures 3–6, the accuracy of the wrapper classifiers improves with a decreasing 
number of relevant features in both, inter or intrasubject classification strategies. In all cases, 
the system achieves 80% accuracy rate using random forest whereas the system reaches values 
close to 100% by means of SVM when the classifier has less than 100 relevant features as input.

4.1. Intersubject classification

Figures 3 and 4 show the accuracy versus the number of removed features obtained by apply‐
ing the two methods: random forest and SVM, respectively. The accuracy was computed with 
a LOO cross‐validation strategy and a total of 52 feature vectors were involved, which rep‐
resent the ensemble averages referring to positive and negative affective valence responses 
of all volunteers investigated (26 for each class). Each feature vector is composed of M = 756 
elements (see section 3.2). A global accuracy of 79% is achieved by the system if roughly 500 
irrelevant features are removed from the input feature set with random forest, whereas the 
system yields an accuracy peak value of 100% using SVM‐RFE after removing 680 features, 
remaining less than 100 features as relevant ones.

Affective Valence Detection from EEG Signals Using Wrapper Methods
http://dx.doi.org/10.5772/66667

33



Figure 3. Intersubject accuracy obtained by the implemented random forest. Features extracted from ensemble‐average 
signals are computed at least over 30 single trials.

Figure 4. Intersubject accuracy obtained by the implemented SVM‐RFE. Features extracted from ensemble‐average 
signals are computed at least over 30 single trials.
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Figure 6. Intrasubject percentiles of accuracy values versus the number of features removed using SVM‐RFE. The last 
point corresponds to 36 selected features.

Figure 5. Intrasubject percentiles of accuracy values versus the number of features removed using random forest. The 
last point corresponds to 36 selected features.
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Tables 1 and 2 describe the spatial and temporal locations of the relevant features when 
the input of the classifiers is the data set formed by these 52 feature vectors. Concerning 
spatial locations, both random forest and the SVM algorithm allocate the relevant features 
 consistently in frontal regions of the brain, although SVM also keeps a significant number 
from centroparietal regions. This corroborates other research works where, during affec‐
tive processing, the particular contribution of frontal regions has also been pointed out 
[46, 47]. Concerning location in time, with a random forest most of the features display 
medium and long latencies while with an SVM the most relevant time interval corresponds 
to medium latencies. Hence, in contrast to a random forest, the SVM selects a larger number 
of features from early poststimulus time intervals. These results also match previous brain 
studies reported in literature, in which ensembles of averaged signals were used as well 
[20, 48]. Note that although the two methods hardly agree to the time intervals where fea‐
tures show up, both highlight frontal areas as relevant spatial locations for affective valence 
processing.

4.2. Intrasubject classification

Figures 5 and 6 show the global accuracy, computed by averaging the particular accuracy 
values of all participants, when the classifiers were trained on only one subject's data. For 
an intrasubject classification purpose, features were extracted from single‐trial signals as 
described above (Section 3). The training set for each subject is made up by a total of 65‐72 
single trials for both classes of emotions and LOO cross‐validation strategy is applied as well.

Similar to intersubject analysis, SVM‐RFE yielded better results in terms of accuracy rates 
than random forest when features are extracted from single‐trials. SVM‐RFE reaches mean 
values close to the maximal accuracy and up to 100% for some subjects. Nevertheless, random 
forest keeps an 80% accuracy as the upper limit.

Scalp region Beta Alpha Theta Delta Total

Frontal 7 2 4 5 18

Central‐temporal 6 0 3 0 9

Parietooccipital 5 2 0 2 9

Time interval Beta Alpha Theta Delta Total

Short 0 1 0 0 1

Medium 6 1 0 2 9

Long I 12 0 1 3 16

Long II 0 2 6 2 10

Upper table: Space location (EEG channels): frontal (FP1, FPz, FP2, F7, F3, Fz, F4, F8), central‐temporal (T7, C3, Cz, C4, 
T8) and parietal‐occipital (P7, P3, Pz, P4, P8, O1, Oz, O2). Lower table: Time location (time intervals): short (i = {1,2}), 
medium (i = {3.4}), long l (i = {5,6}) and long II (i = {7,8,9}).

Table 1. Distribution of the 36 selected features within each band by random forest (intersubject classification).
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A comparison of the outcomes of individual training sessions, with respect to the 36 features 
that remain, reveals a large interindividual. All training sessions encompassed an equal num‐
ber of iterations. For each feature, it was then counted how often it occurred in any subject. 
Figure 7 displays this comparison. It shows that, for example, 220 features never survived 

Scalp region Beta Alpha Theta Delta Total

Frontal 5 6 0 5 16

Central‐temporal 6 0 2 5 13

Parietooccipital 3 3 1 0 7

Time interval Beta Alpha Theta Delta Total

Short 2 3 3 1 9

Medium 6 2 0 3 11

Long I 4 0 0 3 7

Long II 2 4 0 3 9

Upper table: Space location (EEG channels): frontal (Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8), central‐temporal (T7, C3, Cz, C4, 
T8) and parietal‐occipital (P7, P3, Pz, P4, P8, O1, Oz, O2). Lower table: Time location (time intervals): short (i = {1,2}), 
medium (i = {3.4}), long l (i = {5,6}) and long II (i = {7,8,9}).

Table 2. Distribution of the 36 selected features within each band by SVM‐RFE (intersubject classification).

Figure 7. Within the 36 features selected from each individual training, the histogram counts the number of times a 
feature was selected using both wrapper methods.
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in any individual thus may be considered completely irrelevant. Remarkably, few features 
appear consistently as relevant features in at least six out of 26 subjects confirming the high 
interindividual heterogeneity, independently on the applied method for selecting features. 
A similar conclusion was drawn in Ref. [15], in this case by using a feature selection block 
before performing classification. However, note that a comparable accuracy value is achieved 
whether decision making is based on a set of 52 feature vectors (ensemble averages over trials 
and subjects) or on training classifiers individually with 65–72 feature vectors for each subject.

Figure 8. Spatial location of feature relevance in each frequency band obtained from counting the contribution from all 
subjects within intrasubject classifications (left column: random forest, right column: SVM). The relevance is represented 
by a color map, where blue represents the least relevant features (nonselected features) and red represents the most 
relevant ones (selected as relevant by all subjects).
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Figure 9. Relevance of the features selected for different latencies and spatial locations (left column: random forest, right 
column: SVM) following from counting the contribution of all subjects within an intrasubject classification. Feature 
importance is visualized by a normalized color map, where blue represents the least relevant features (nonselected 
features) and red represents the most relevant ones (selected as relevant by all subjects).
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Figures 8 and 9 show the relevance of the features chosen by the two methods in topographi‐
cal maps. As can be seen from Figure 8, on average, both algorithms allocate the most relevant 
features in the frontal region in agreement with intersubject applications. Similarly, both also 
identify relevant features mostly in the beta bands. According to Figure 9, both algorithms 
allocate important features showing up with short latencies in the frontal areas of the brain. 
Concerning medium and long latencies both algorithms again identify important features in 
frontal areas though their importance is more pronounced with the random forest.

Although intersubject and intrasubject methodologies show a similar performance, they have 
different application scenarios. The intersubject classification is mostly suitable for offline appli‐
cations as well as for brain studies in order to complement the statistical methods. For instance, 
in Ref. [49], an SVM‐RFE scheme was exclusively applied to identify scalp spectral dynamics 
linked with the affective valence processing and to compare with standard statistical results 
(t‐test). In that work, a different technique for feature extraction was developed, whose goals 
consisted of creating a particular volume of features by means of a wavelet filtering. In this 
way, a high‐dimensional data set was represented by means of three dimensions: frequency 
(resolution: 1 Hz), time (resolution: 1 ms) and topographical location (21 EEG channels).

Due to the biological variability observed, intrasubject studies cannot generalize easily across 
a cohort of subjects. Thus, intrasubject approaches might be interesting for personalized stud‐
ies where subjects need to be followed up for a couple of sessions, such as in a rehabilita‐
tion therapy, or for neurofeedback‐based applications. An example of an intrasubject study 
is reported in Ref. [50], where the neuroticism trait is analyzed using EEG to check the influ‐
ence of individual differences in the emotional processing and the susceptibility of each brain 
region. In that work SVM was used as well, although from a different standpoint, since it was 
performed in subject identification tasks from single trials.

5. Conclusions

A novel valence recognition system has been presented and applied to EEG signals, which 
were recorded from volunteers subjected to emotional states elicited by pictures drawn from 
IAPS repository. A cohort of 26 female participants has been investigated. The recognition 
system encompasses a feature extraction stage and a classification module including feature 
elimination. The complete system focused on both an intersubject and an intrasubject situa‐
tion. Both studies show a similar performance with regard to the classification accuracy. The 
recursive feature elimination (selection) was designed based on a random forest classifier or 
support vector machine and increased the initial classification accuracy in a range from 20% 
to 45%. The importance measures from both algorithms point to frontal areas although no 
consistent set of features and related latencies could be identified.

This fact points toward a large biological variability of the set of relevant features corresponding 
to the valence of the emotional states involved. In any case, the classification accuracy achieved 
compares well with or is even superior to competing systems reported in the literature.
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Comparing both classifiers, the SVM achieves better classification accuracy, yielding up to 
100% accuracy rate for several subjects by using the selected features for intrasubject clas‐
sification task, outperforming random forest that reached an 81% maximum peak accuracy. 
Furthermore, the presented wrapper methods are a good option to greatly reduce the dimen‐
sion of the input space and deserve to be considered as an alternative for discriminating rel‐
evant scalp regions, frequency bands and time intervals from EEG recordings.

Author details

Antonio R. Hidalgo‐Muñoz1*, Míriam M. López1, Isabel M. Santos2, Manuel Vázquez‐Marrufo3, 
Elmar W. Lang4 and Ana M. Tomé1

*Address all correspondence to: arhidalgom@gmail.com

1 IEETA, University of Aveiro, Aveiro, Portugal

2 CITENSIS, Department of Education and Psychology, University of Aveiro, Aveiro, Portugal

3 University of Seville, Seville, Spain

4 Biophysics CIML Group, University of Regensburg, Regensburg, Germany

References

[1] S. A. Calvo, S. D'Mello. Affect detection: an interdisciplinary review of models, methods 
and their applications. IEEE Transactions on Affective Computing. 2010;1(1):18–37.

[2] J. L. Salmerón. Fuzzy cognitive maps for artificial emotions forecasting. Applied Soft 
Computing. 2012;12:3704–3710.

[3] M. Krauledat, K. Grzeska, M. Sagebaum, B. Blankertz, C. Vidaurre, K. R. Mïller, M. 
Schrïder. Playing pinball with non‐invasive BCI. In: Advances in Neural Information 
Processing Systems 21; 2009. pp. 1641–1648. Edited by D. Koller and D. Schuurmans and 
Y. Bengio and L. Bottou Publisher: Curran Associates, Inc. New York (USA).

[4] D. Huang, K. Qian, D. Fei, W. Jia, X. Chen, O. Bai. Electroencephalography (EEG)‐based 
brain‐computer interface (BCI): A 2‐D virtual wheelchair control based on event‐related 
desynchronization/synchronization and state control. IEEE transactions on Neural 
Systems and Rehabilitation engineering. 2012;20(3):379–388.

[5] J. A. Russell. A circumplex model of affect. Journal of Personality and Social Psychology. 
1980;39(6):1161–1178.

[6] M. M. Bradley, P. J. Lang. The international affective picture system (IAPS) in the study 
of emotion and attention. In: M. M. Bradley, P. J. Lang, editors. Handbook of Emotion 
Elicitation and Assessment. Oxford University Press; Oxford. 2007. pp. 29–46.

Affective Valence Detection from EEG Signals Using Wrapper Methods
http://dx.doi.org/10.5772/66667

41



[7] C. Mühl, B. Allison, A. Nijholt, G. Chanel. A survey of affective brain computer interfaces: 
principles, state‐of‐the‐art and challenges. Brain‐Computer Interfaces. 2014;1(2):62–84.

[8] J. Klein, Y. Moon, R. W. Picard. This computer responds to user frustration: theory, 
design and results. Interacting with Computers. 2002;14(2):119–140.

[9] P. Lang, M. Bradley, B. Cuthbert. International affective picture system (IAPS): Affective 
ratings of pictures and instruction manual. Technical Report. 2008.

[10] S. Koelstra, C. Muhl, M. Soleymani, J.‐S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, 
I. Patras. DEAP: a database for emotion analysis; using physiological signals. IEEE 
Transactions on Affective Computing. 2012;3(1):18–31.

[11] R. W. Picard, E. Vyzas, J. Healey. Toward machine emotional intelligence: analysis 
of affective physiological state. IEEE Transactions on Pattern Analysis and Machine 
Intelligence. 2001;23(10):1175–1191.

[12] A. Haag, S. Goronzy, P. Schaich, J. Williams. Emotion recognition using bio‐sensors: 
First steps towards an automatic system. In: E. André, L. Dybkjær, W. Minker, P. 
Heisterkamp, editors. Affective Dialogue Systems. 6th ed. Springer Berlin Heidelberg; 
Berlin. 2004. pp. 36–48.

[13] K. H. Kim, S. W. Bang, S. R. Kim. Emotion recognition system using short‐term moni‐
toring of physiological signals. Medical & Biological Engineering & Computing. 
2004;42(3):419–427.

[14] K. Schaaff, T. Schultz. Towards emotion recognition from electroencephalographic 
signals. In: IEEE, editor. 3rd International Conference on Affective Computing and 
Intelligent Interaction and Workshops (ACII), 2009; 2009. pp. 1–6. (sede física de IEEE: 
New York).

[15] M. Macas, M. Vavrecka, V. Gerla, L. Lhotska. Classification of the emotional states 
based on the EEG signal processing. In: IEEE, editor. 9th International Conference 
on Information Technology and Applications in Biomedicine; November 2009; 2009.  
pp. 1–4. New York.

[16] C. A. Frantzidis, C. Bratsas, M. A. Klados, E. Konstantinidis, C. D. Lithari, A. B. Vivas,  
C. L. Papadelis, E. Kaldoudi, C. Pappas, P. D. Bamidis. On the classification of emotional 
biosignals evoked while viewing affective pictures: An integrated data‐mining‐based 
approach for healthcare applications. IEEE Transactions on Information Technology in 
Biomedicine. 2010;14(2):309–318.

[17] P. Petrantonakis, L. Hadjileontiadis. Emotion recognition from brain signals using 
hybrid adaptive filtering and higher order crossings analysis. IEEE Transactions on 
Affective Computing. 2010;1(2):81–97.

[18] P. C. Petrantonakis, L. J. Hadjileontiadis. Emotion recognition from EEG using higher order 
crossings. IEEE Transactions on Information Technology in Biomedicine. 2010;14(2):186–197.

Emotion and Attention Recognition Based on Biological Signals and Images42



[7] C. Mühl, B. Allison, A. Nijholt, G. Chanel. A survey of affective brain computer interfaces: 
principles, state‐of‐the‐art and challenges. Brain‐Computer Interfaces. 2014;1(2):62–84.

[8] J. Klein, Y. Moon, R. W. Picard. This computer responds to user frustration: theory, 
design and results. Interacting with Computers. 2002;14(2):119–140.

[9] P. Lang, M. Bradley, B. Cuthbert. International affective picture system (IAPS): Affective 
ratings of pictures and instruction manual. Technical Report. 2008.

[10] S. Koelstra, C. Muhl, M. Soleymani, J.‐S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, 
I. Patras. DEAP: a database for emotion analysis; using physiological signals. IEEE 
Transactions on Affective Computing. 2012;3(1):18–31.

[11] R. W. Picard, E. Vyzas, J. Healey. Toward machine emotional intelligence: analysis 
of affective physiological state. IEEE Transactions on Pattern Analysis and Machine 
Intelligence. 2001;23(10):1175–1191.

[12] A. Haag, S. Goronzy, P. Schaich, J. Williams. Emotion recognition using bio‐sensors: 
First steps towards an automatic system. In: E. André, L. Dybkjær, W. Minker, P. 
Heisterkamp, editors. Affective Dialogue Systems. 6th ed. Springer Berlin Heidelberg; 
Berlin. 2004. pp. 36–48.

[13] K. H. Kim, S. W. Bang, S. R. Kim. Emotion recognition system using short‐term moni‐
toring of physiological signals. Medical & Biological Engineering & Computing. 
2004;42(3):419–427.

[14] K. Schaaff, T. Schultz. Towards emotion recognition from electroencephalographic 
signals. In: IEEE, editor. 3rd International Conference on Affective Computing and 
Intelligent Interaction and Workshops (ACII), 2009; 2009. pp. 1–6. (sede física de IEEE: 
New York).

[15] M. Macas, M. Vavrecka, V. Gerla, L. Lhotska. Classification of the emotional states 
based on the EEG signal processing. In: IEEE, editor. 9th International Conference 
on Information Technology and Applications in Biomedicine; November 2009; 2009.  
pp. 1–4. New York.

[16] C. A. Frantzidis, C. Bratsas, M. A. Klados, E. Konstantinidis, C. D. Lithari, A. B. Vivas,  
C. L. Papadelis, E. Kaldoudi, C. Pappas, P. D. Bamidis. On the classification of emotional 
biosignals evoked while viewing affective pictures: An integrated data‐mining‐based 
approach for healthcare applications. IEEE Transactions on Information Technology in 
Biomedicine. 2010;14(2):309–318.

[17] P. Petrantonakis, L. Hadjileontiadis. Emotion recognition from brain signals using 
hybrid adaptive filtering and higher order crossings analysis. IEEE Transactions on 
Affective Computing. 2010;1(2):81–97.

[18] P. C. Petrantonakis, L. J. Hadjileontiadis. Emotion recognition from EEG using higher order 
crossings. IEEE Transactions on Information Technology in Biomedicine. 2010;14(2):186–197.

Emotion and Attention Recognition Based on Biological Signals and Images42

[19] Q. Zhang, M. Lee. Emotion development system by interacting with human EEG and 
natural scene understanding. Cognitive Systems Research. 2012;14(1):37–49.

[20] J. K. Olofsson, S. Nordin, H. Sequeira, J. Polich. Affective picture processing: an integra‐
tive review of ERP findings. Biological Psychology. 2008;77(3):247–265.

[21] C. Lithari, C. Frantzidis, C. Papadelis, A. B. Vivas, M. Klados, C. Kourtidou‐Papadeli,  
C. Pappas, A. Ioannides, P. Bamidis. Are females more responsive to emotional stimuli? 
A neurophysiological study across arousal and valence dimensions. Brain Topography. 
2010;23(1):27–40.

[22] X. J. Wang. Neurophysiological and computational principles of cortical rhythms in cog‐
nition. Physiological Reviews. 2010;90(3):1195–1268.

[23] W. J. Ray, H. W. Cole. EEG alpha activity reflects attentional demands and beta activity 
reflects emotional and cognitive processes. Science. 1985;228(4700):750–752.

[24] E. Beraha, J. Eggers, C. H. Attar, S. Gutwinski, F. Schlagenhauf, M. Stoy, P. Sterzer,  
T. Kienast, A. Heinz, F. Bermpohl. Hemispheric asymmetry for affective stimulus pro‐
cessing in healthy subjects – a fMRI study. PLoS One. 2012;7(10):e46931.

[25] H. J. Yoon, S. Y. Chung. EEG spectral analysis in valence and arousal dimensions of emo‐
tion. In: 11th International Conference on Control, Automation and Systems (ICCAS); 
October 2011. pp. 1319–1322 IEEE.

[26] G. Pfurtscheller, F. H. Lopes da Silva. Event‐related EEG/MEG synchroniza‐
tion and desynchronization: basic principles. Clinical Neurophysiology. 1999;110 
(11):1842–1857.

[27] L. Aftanas, A. Varlamow, S. Pavlov, V. Makhnev, N. Reva. Affective picture processing: 
event‐related synchronization within individually defined human theta band is modu‐
lated by valence dimension. Neuroscience Letters. 2001;303(2):115–118.

[28] L. I. Aftanas, N. V. Reva, A. A. Varlamov, S. V. Pavlov, V. P. Makhnev. Analysis of 
evoked EEG synchronization and desynchronization in conditions of emotional 
activation in humans: temporal and topographic characteristics. Neuroscience and 
Behavioral Physiology. 2004;34(8):859–867.

[29] G. Knyazev, J. Slobodskoj‐Plusnin, A. Bocharov. Event‐related delta and theta 
synchronization during explicit and implicit emotion processing. Neuroscience. 
2009;164(4):1588–1600.

[30] M. A. Klados, C. Frantzidis, A. B. Vivas, C. Papadelis, C. Lithari, C. Pappas, P. D. Bamidis. 
A framework combining delta event‐related oscillations (EROs) and synchronisation 
effects (ERD/ERS) to study emotional processing. In: Computational Intelligence and 
Neuroscience; The ACM Digital Library. January; 2009. p. 12.

[31] A. De Cesarei, M. Codispoti. Affective modulation of the LPP and alpha‐ERD during 
picture viewing. Psychophysiology. 2011;48(10):1397–1404.

Affective Valence Detection from EEG Signals Using Wrapper Methods
http://dx.doi.org/10.5772/66667

43



[32] A. Delorme, S. Makeig. EEGLAB: an open source toolbox for analysis of single‐trial 
EEG dynamics including independent component analysis. Journal of Neuroscience 
Methods. 2004;134(1):9–21.

[33] A. Jaiantilal, http://code.google.com/p/randomforest‐matlab/, 2010.

[34] A. H. Kemp, R. B. Silberstein, S. M. Armstrong, P. J. Nathan. Gender differences in the 
cortical electrophysiological processing of visual emotional stimuli. Neuroimage. 2004; 
21(2):632–646.

[35] K. Schaaff. Challenges on emotion induction with the international affective picture sys‐
tem. 2008. [Online]. Available: http://csl.ira. uka.de/fileadmin/media/publication files/
SA‐Schaaff.pdf

[36] Mathworks, 2012. [Online]. Available: http://www.mathworks.com/help/signal/ref/filt‐
filt.html

[37] R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence. 
1997;97(1–2):273–324.

[38] I. Guyon, J. Weston, S. Barnhill, V. Vapnik. Gene selection for cancer classification using 
support vector machines. Machine Learning. 2002;46(1–3):389–422.

[39] S. Maldonado, R. Weber, F. Famili. Feature selection for high‐dimensional class‐
imbalanced data sets using support vector machines. Information Sciences. 
2014;286(0):228–246. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0020025514007154

[40] L. Breiman. Random forests. Machine Learning. 2001;45(2): 5–32.

[41] C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data 
Mining and Knowledge Discovery. 1998;2(2):121–167.

[42] I. A. Illan, J. M. Gorriz, M. M. Lopez, J. Ramirez, D. Salas‐Gonzalez, F. Segovia,  
R. Chaves, C. G. Puntonet. Computer aided diagnosis of Alzheimer's disease using com‐
ponent based SVM. Applied Soft Computing. 2011;11(2):2376–2382.

[43] A. Ben‐Hur, C. Ong, S. Sonnenburg, B. Schölkopf, G. Rätsch. Support vector machines and 
kernels for computational biology. PLoS Computational Biology. 2008;10(4):e1000173.

[44] Bioinformatics‐Toolbox, 2012. [Online]. Available: http://www. mathworks.com

[45] S. N. Daimi, G. Saha. Classification of emotions induced by music videos and correla‐
tion with participants rating. Expert Systems with Applications. 2014;41(13):6057–6065. 
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0957417414001882

[46] R. J. Davidson, W. Irwin. The functional neuroanatomy of emotion and affective style. 
Trends in Cognitive Sciences. 1999;3(1):11–21.

[47] S. K. Sutton, R. J. Davidson. Prefrontal brain electrical asymmetry predicts the evalua‐
tion of affective stimuli. Neuropsychologia. 2000;38(13):1723–1733.

Emotion and Attention Recognition Based on Biological Signals and Images44



[32] A. Delorme, S. Makeig. EEGLAB: an open source toolbox for analysis of single‐trial 
EEG dynamics including independent component analysis. Journal of Neuroscience 
Methods. 2004;134(1):9–21.

[33] A. Jaiantilal, http://code.google.com/p/randomforest‐matlab/, 2010.

[34] A. H. Kemp, R. B. Silberstein, S. M. Armstrong, P. J. Nathan. Gender differences in the 
cortical electrophysiological processing of visual emotional stimuli. Neuroimage. 2004; 
21(2):632–646.

[35] K. Schaaff. Challenges on emotion induction with the international affective picture sys‐
tem. 2008. [Online]. Available: http://csl.ira. uka.de/fileadmin/media/publication files/
SA‐Schaaff.pdf

[36] Mathworks, 2012. [Online]. Available: http://www.mathworks.com/help/signal/ref/filt‐
filt.html

[37] R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence. 
1997;97(1–2):273–324.

[38] I. Guyon, J. Weston, S. Barnhill, V. Vapnik. Gene selection for cancer classification using 
support vector machines. Machine Learning. 2002;46(1–3):389–422.

[39] S. Maldonado, R. Weber, F. Famili. Feature selection for high‐dimensional class‐
imbalanced data sets using support vector machines. Information Sciences. 
2014;286(0):228–246. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0020025514007154

[40] L. Breiman. Random forests. Machine Learning. 2001;45(2): 5–32.

[41] C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data 
Mining and Knowledge Discovery. 1998;2(2):121–167.

[42] I. A. Illan, J. M. Gorriz, M. M. Lopez, J. Ramirez, D. Salas‐Gonzalez, F. Segovia,  
R. Chaves, C. G. Puntonet. Computer aided diagnosis of Alzheimer's disease using com‐
ponent based SVM. Applied Soft Computing. 2011;11(2):2376–2382.

[43] A. Ben‐Hur, C. Ong, S. Sonnenburg, B. Schölkopf, G. Rätsch. Support vector machines and 
kernels for computational biology. PLoS Computational Biology. 2008;10(4):e1000173.

[44] Bioinformatics‐Toolbox, 2012. [Online]. Available: http://www. mathworks.com

[45] S. N. Daimi, G. Saha. Classification of emotions induced by music videos and correla‐
tion with participants rating. Expert Systems with Applications. 2014;41(13):6057–6065. 
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0957417414001882

[46] R. J. Davidson, W. Irwin. The functional neuroanatomy of emotion and affective style. 
Trends in Cognitive Sciences. 1999;3(1):11–21.

[47] S. K. Sutton, R. J. Davidson. Prefrontal brain electrical asymmetry predicts the evalua‐
tion of affective stimuli. Neuropsychologia. 2000;38(13):1723–1733.

Emotion and Attention Recognition Based on Biological Signals and Images44

[48] L. R. R. Gianotti, P. L. Faber, M. Schuler, R. D. Pascual‐Marqui, K. Kochi, D. Lehmann. 
First valence, then arousal: the temporal dynamics of brain electric activity evoked by 
emotional stimuli. Brain Topography. 2008;20(3):143–156.

[49] A. R. Hidalgo‐Muñoz, M. M. Lopez, I. M. Santos, A. T. Pereira, M. Vazquez‐Marrufo,  
A. Galvao‐Carmona, A. M. Tome. Application of SVM‐RFE on EEG signals for detecting 
the most relevant scalp regions linked to affective valence processing. Expert Systems 
with Applications. 2013;40(6):2102–2108.

[50] A. R. Hidalgo‐Muñoz, A. T. Pereira, M. M. Lopez, A. Galvao‐Carmona, A. M. Tome, 
M. Vazquez‐Marrufo, I. M. Santos. Individual EEG differences in affective valence 
processing in women with low and high neuroticism. Clinical Neurophysiology. 
2013;124(9):1798–1806.

Affective Valence Detection from EEG Signals Using Wrapper Methods
http://dx.doi.org/10.5772/66667

45





Chapter 4

Tracking the Sound of Human Affection: EEG Signals

Reveal Online Decoding of Socio-Emotional Expression

in Human Speech and Voice

Xiaoming Jiang

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66418

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Tracking the Sound of Human Affection: EEG Signals 
Reveal Online Decoding of Socio-Emotional Expression 
in Human Speech and Voice

Xiaoming Jiang

Additional information is available at the end of the chapter

Abstract

This chapter provides a perspective from the latest EEG evidence in how brain signals 
enlighten the neurophysiological and neurocognitive mechanisms underlying the recog‐
nition of socioemotional expression conveyed in human speech and voice, drawing upon 
event‐related potentials’ studies (ERPs). Human sound can encode emotional mean‐
ings by different vocal parameters in words, real‐ vs. pseudo‐speeches, and vocaliza‐
tions. Based on the ERP findings, recent development of the three‐stage model in vocal 
processing has highlighted initial‐ and late‐stage processing of vocal emotional stimuli. 
These processes, depending on which ERP components they were mapped onto, can be 
divided into the acoustic analysis, relevance and motivational processing, fine‐grained 
meaning analysis/integration/access, and higher‐level social inference, as the unfolding 
of the time scale. ERP studies on vocal socioemotions, such as happiness, anger, fear, 
sadness, neutral, sincerity, confidence, and sarcasm in the human voice and speech 
have employed different experimental paradigms such as crosssplicing, crossmodality 
priming, oddball, stroop, etc. Moreover, task demand and listener characteristics affect 
the neural responses underlying the decoding processes, revealing the role of attention 
deployment and interpersonal sensitivity in the neural decoding of vocal emotional 
stimuli. Cultural orientation affects our ability to decode emotional meaning in the voice. 
Neurophysiological patterns were compared between normal and abnormal emotional 
processing in the vocal expressions, especially in schizophrenia and in congenital amu‐
sia. Future directions highlight the study on human vocal expression aligning with other 
nonverbal cues, such as facial and body language, and the need to synchronize listener's 
brain potentials with other peripheral measures.

Keywords: affective voice, social communication, nonverbal cues, pragmatics, 
 EEG/ERPs, empathy, anxiety, person perception
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1. Introduction

Theoretical models based on electrophysiological studies have indicated early and late neu‐
rophysiological markers that index online perception of vocal emotion expressions in speech 
as well as other higher‐order socioemotive expressions (e.g., confidence, sarcasm, sincerity, 
etc.), which roughly correspond to each hypothesized processing stage [1, 2]. Studies with 
event‐related potentials (ERPs), which focused on the analysis of averaged electrophysi‐
ological response to a certain vocal or speech event, have enlightened neurocognitive pro‐
cesses at a fine‐grained temporal scale. The early fronto‐central auditory N1 is known to be 
associated with a wide range of auditory stimulus types as a measure of sensory‐perceptual 
processing. In vocal emotion processing, N1 has been linked to the extraction of acoustic 
cues that differentiate different types of vocal signals, frequency, and intensity parameters 
[3, 4], and is unaffected by differences in emotional meaning. The fronto‐central P200 has 
been associated with the early attentional allocation or relevance evaluation of vocal signals 
[2, 5], ensuring preferential processing of emotional stimuli. Differentiation of P200 ampli‐
tude can be found between basic emotions [6] or between emotional vs. neutral speech [3, 
7], suggesting that this component may reflect an early function of “tagging” emotional or 
motivational relevant stimuli. The P200 tended to be associated with higher mean and range 
of f0, larger mean and range of amplitude of speech, and slower speech rate [6], implicating 
that the early P200 modulation is partially explained by early meaning encoding as well as 
continued sensory processing [8]. A late centro‐parietal positivity (also named LPC) evoked 
by vocal emotion expressions has been defined as a positive‐going wave starting about 
500 ms post‐onset of the vocal stimuli and perhaps sustaining until 1200 ms depending on 
stimulus features. The LPC is considered as reflecting continued or second‐pass evaluative 
process of the meaning of vocal emotional signals [2, 5]. The LPC was larger in emotional 
vocal stimuli, leading to larger differences in the LPC amplitude among basic emotion types 
[6], suggesting a more elaborative processing vocal information at this stage. In addition 
to these ERP effects, a more delayed sustained positivity may reflect a listener's attempt to 
infer the goal of a speaker, especially when an expected way of speaking is mismatched in 
an utterance context [9]. These event‐related potential components have provided a useful 
tool to examine the temporal neural dynamics of emotional decoding in voice and speech.

2. Neurophysiological studies on basic vocal emotion in speech and voice

Vocal emotion has been investigated mainly in vocalization and speech. A study compared 
the ERP responses toward the perception of three basic emotions (happiness, sadness, and 
anger) in vocalization vs. pseudo‐speech (same as real‐speech except the lexical‐semantic 
contents were replaced by meaningless syllables [10, 11]) in a task when listeners were pre‐
sented with emotional vocal expressions followed by emotional and neutral faces and were 
asked to judge the emotionality of the face. Pell et al. [11] showed that the vocalization and 
speech can be differentiated very early at about 100 ms. Vocalization elicited a larger, earlier, 
and more differentiated P200 between emotions, and a stronger and earlier late‐positivity 
effect. These findings support a preferential decoding in the neurophysiological system of 
vocalization over speech‐embedded emotions in the human voice. They also demonstrated 
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angry voice elicited the strongest P200 than the other expressions. In another study in which 
anger, happiness, and neutral vocalizations were compared, anger elicited a stronger positiv‐
ity in the 50 ms while both anger and happiness elicited a reduced N100 and an increased 
P200 as compared with neutral vocalization [7]. These findings, taken together, suggest an 
early sensory registration of emotional information which is assigned increased relevance or 
motivational significance in decoding human vocalization.

Earlier ERP works have focused on how the brain responded to emotional transitions in the 
voice and to the transition in both voice and lexico‐semantics simultaneously [13]. Using 
a crosssplicing technique, a leading phrase of a sentence was crossspliced with the main 
stem of a sentence either congruent or incongruent in prosody with the leading phrase. The 
onset of the crosssplicing point of the vocal expression in the main sentence elicited a larger 
negativity (350–550 ms) for a mismatch in both voice and lexico‐semantics and a larger more 
right‐hemispheric distributed positivity (600–950 ms) for a mismatch in voice only (pseudo‐
utterances: [3]; utterances with no emotional lexical items: [1]). The negativity suggested an 
effort of integrating the emotional information in both vocal and semantic channel with the 
context. The late positivity suggests a detection of acoustic variation in the vocal expression.

Some evidence further delineated the role of a specific acoustic feature in the ERP responses 
toward the vocal emotion decoding. For example, one EEG study compared the ERPs for 
the mismatching emotional prosody (a statement with neutral voice which was disrupted 
by an anger voice) and that for the matching prosody revealed an increased N2/P3 as com‐
pared with the matching prosody ([12]). The amplitude of the N2/P3 complex was reduced 
and the latency of such complex was more delayed when the intensity for that prosody was 
weakened. This finding suggests that emotional significance in the voice can be promoted by 
increased sound intensity. The role of a specific acoustic profile such as loudness of sound 
needs to be specified in vocal‐emotion studies.

3. Neurophysiological studies on vocal sarcasm, sincerity and confidence

In order to evaluate whether and how basic emotional and higher‐level social information 
(e.g., attitudinal) are manifested in the brain in a different manner, Wickens and Perry [13] 
compared the ERP responses to neutral, angry, and sarcastic expressions. These expres‐
sions began with a leading phrase (e.g., He has) in a neutral voice and were followed by an 
expression (e.g., a serious face) intoned with different voices. As compared with the neutral 
expression, both angry and sarcastic expression elicited an increased P200 and a late positiv‐
ity effect (450–700 ms) with no amplitude difference between the two emotions. The angry 
voice also elicited an early N100 as compared with the other two expressions when listeners 
performed a probe‐verification task. These findings revealed similar neurocognitive pro‐
cesses between basic emotion and interpersonal attitudes conveyed in the voice while the 
basic emotion seems to be registered earlier under certain conditions. Other studies revealed 
that the decoding of sarcasm involved similar neurocognitive processes to social intention 
perception. Rigoulot et al. [14] compared compliments with sincere vs. insincere tone of 
voice (What do you think of my presentation? I think it is very interesting) and found that 
the sincere compliment to the question elicited a larger P600 effect as compared with the 
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insincere one. This ERP effect was localized in the left insula which is associated with the 
action of lying and concealment.

Recent growing evidence has been accumulated in the field of decoding of speaker's feeling 
of (un)knowing using event‐related potentials. In Jiang and Pell [15], vocal expression of con‐
fidence was manipulated such that statements which sounded very confident, somewhat con‐
fident, and unconfident and those which sounded neutral were presented to native English 
speakers. At the onset of the vocal expression, the confident expression elicited an increased 
positive response than the other two types of expressions. The unconfident expression elicited 
an increased P300 as compared with the confident and the neutral expression. The neutral voice 
produced a more‐delayed positivity as compared with all confidence‐intending expressions.

Two follow‐up experiments further evaluated how the decoding of vocal confidence expres‐
sion is impacted by the presence of additional linguistic cues which either congruent [16] 
or incongruent [17] with the tone of voice in statements which followed the linguistic cues. 
Different from the statements with no lexical cues, statements with congruent cues (e.g., I'm 
sure; Maybe) elicited an increased N1 and P2 for confident than for unconfident and close‐to‐
confident expressions, and an enhanced delayed positivity in unconfident and close‐to‐con‐
fident expression than confident one. Moreover, the direct comparison between statements 
with and without a preceding lexical phrase elicited a reduced N1, P2, and N400 in those 
without a phrase [16]. The incongruent cues elicited different ERP effects at the onset of the 
main statement of confident and unconfident tones. The unconfident statement elicited an 
increased N400 or late positivity (depending on the listener's gender). The confident state‐
ment elicited a more delayed, sustained positivity effect. Source localization of these ERP 
effects revealed pre‐SMA for N400, suggesting a difficulty in accessing the speaker mean‐
ing, and SFG, STG and insula underlying the late positivity effect, suggesting an increased 
demand of executive control to implement the attentional resources and socioevaluative pro‐
cesses [17]. These studies extended the neurocognitive model for basic vocal emotion and 
argued for a perspective of studying the neurophysiological mechanisms underlying decod‐
ing interpersonal and sociointeractive affective voice.

4. Modulation of brain responses toward vocal expression by other 
nonverbal expressions

One of the key questions in emotional communication is how decoding vocal information is 
aided by other nonverbal cues. The neurophysiological studies have focused on emotional 
processing when voice is paired with other nonverbal social cues (such as face). In a task 
when participants were asked to evaluate the actor's identity (e.g., monkey or not) rather than 
the emotion, the simultaneous presentation of vocal and facial expressions revealed some 
similar ERP correlates of emotional information as the vocal expression did [18]. The bimodal 
emotional cues elicited a larger P200 and P300 for happy and angry expressions and a larger 
N250 for neutral expression, suggesting that an implicit affective processing of audiovisual 
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information emerges as early as 200 ms. Using a priming paradigm in which a face was fol‐
lowed by a vocal expression of words either congruent or incongruent with the emotion of the 
facial expression (happiness vs. anger), Diamond and Zhang [19] revealed that the mismatch 
elicited an increased N400 followed by a late positivity. Further, source localization of these 
two effects revealed activations in the superior temporal gyrus and inferior parietal gyrus 
dominated in the right hemisphere.

The interaction between vocal and other nonverbal emotional information was also exam‐
ined in detection of emotional change. In a study in which participants were presented with 
simultaneously presented vocal and facial expressions while being asked to detect the change 
of emotion from neutral to anger or happiness conveyed in voice or in face [20]. The P3 associ‐
ated with the detection of the emotional categorical change in both voice and face was larger 
than the sum of the change in single channel (see also [21]). The N1 associated with the detec‐
tion of early acoustic change was dependent on whether their attention was guided to the 
voice or the face, with the attention to the voice yielding to a N1 in bimodal change larger than 
the sum of the two single modal change conditions. These findings suggest the modulation 
of selection attention on voice‐face integration during emotional change perception in early 
sensory processing.

5. Effects of task demand, listener characteristics, and speaker 
characteristics on brain responses toward vocal expression decoding

Decoding emotion from voice has suffered from many variations, one noticeable factor 
is the communication context. The task relevance modulates the level of explicitness of 
emotional processing of vocal expression. One study presented mismatching and match‐
ing emotional prosody to listeners and asked them to judge the emotional congruency 
(where the emotional information is task relevant), or to verify the consistency between a 
visually presented lexical item and the statement [22]. Three ERP effects were elicited: an 
early negativity effect from 150 to 250 ms regardless of task relevance and the pattern of 
mismatch, an early positivity from 250 to 450 ms only on angry voice which was preceded 
by a neutral voice but regardless task relevance, and a late positivity effect after 450 ms for 
the task that directed listener's attention to the emotional aspects of the vocal expression. 
Explicit task relevant processing emotionality enhanced vigilance in perceiving emotional 
change in the voice.

Vocal emotion decoding is also characterized according to the listener's characteristics. 
Developmental studies revealed neurophysiological correlates of emotional voice process‐
ing (especially negative emotion) were similar in children and adults [23]. Using emotional 
interjections (“ah”), Chronaki et al. [23] compared angry, happy, and neutral voices in 6‐ to 
11‐year‐old typically developing children. The N400 was attenuated by angry than by other 
expression types over parietal and occipital regions. Comparing neurocognitive processes 
along stages of early human development merits further examinations [24].
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Another topic is how listener's linguistic and cultural background affect their perception 
of vocal expressions. In a recent EEG study, native North‐American English and Chinese 
speakers were asked to detect the emotion of the vocal or facial expression in a voice‐face 
pair [25]. The emotional information between the voice and face was either congruent or 
incongruent. Both groups were sensitive to the emotional differences between voice and 
face, revealing lower accuracy and higher N400 amplitude for the incongruent voice‐
face pairs. However, English speakers showed more pronounced N400 enlargement and 
more reduced accuracy when vocal information was attended, suggesting that those from 
a Western culture suffered from a larger interference effect from irrelevant face informa‐
tion. Another study using a passive odd‐ball paradigm in which the two groups of listen‐
ers were presented with deviant or standard facial expressions which were paired with a 
vocal expression or not [26]. Chinese speakers showed a larger mismatch negativity when 
vocal expression was presented together with a facial expression, suggesting that individu‐
als from an eastern culture were more sensitive to an interference from task‐irrelevant vocal 
cues. These findings implicate a role of cultural learning and different cultural practices 
in communication shape neurocognitive processes associated with the early perception of 
voice‐face emotional cues.

Listener's biological sex has been central in modulating the integration of emotional informa‐
tion in vocal and verbal channels [27, 28]. Recent evidence extended this idea beyond the 
basic emotion. Jiang and Pell [15] examined the sex difference in evaluating confidence in both 
confidence‐ and neutral‐intending vocal expressions and the associated neural responses. 
They revealed that the delayed positivity effect elicited by neutral‐intending expression was 
only observed in female listeners, suggesting an inferential process aimed at deriving speaker 
meaning from nonexpression‐intending vocal expressions. Their further analysis revealed 
that, when vocal statements were led by lexical phrases of some level of certainty (LEX + 
VOC), females elicited more pronounced N1 in confident expression and larger late positivity 
(550–1200 ms) in unconfident and close‐to‐confident expressions. When these statements were 
compared with those with only vocal cues signifying confidence (VOC only), reduced N1, P2 
as well as N400 were observed in females [16]. These findings suggest the enhanced sensitivity 
to socioemotional information for females in vocal communication. Females and males also 
engage different strategies in resolving conflicting information in vocal expressions. Jiang 
and Pell [17] demonstrated that the conflicting message of vocal confidence expressions elic‐
ited different ERP effects in female vs. male listeners. The confident statement following an 
unconfident phrase elicited a larger delayed positivity only in a female participant; while the 
unconfident statement following a confident phrase elicited an N400 in a male participant and 
a P600 effect in male participants. These findings provided a picture of how mixed messages 
are dealt with in female vs. male brain: in face of a mismatch in vocal expressions, the female 
attempted to unify separate information to establish an integrated representation while the 
male updated the initially built representation by switching an alternative interpretation (for 
example, by saying “She has access to the building” in the unconfident voice following “I'm 
certain,” the speaker reveals some level of hesitation).

Given its sociointeractive nature, inferring a speaker meaning from interactive emotive 
expression is susceptible to listener's traits and personality characteristics. One factor which 

Emotion and Attention Recognition Based on Biological Signals and Images52



Another topic is how listener's linguistic and cultural background affect their perception 
of vocal expressions. In a recent EEG study, native North‐American English and Chinese 
speakers were asked to detect the emotion of the vocal or facial expression in a voice‐face 
pair [25]. The emotional information between the voice and face was either congruent or 
incongruent. Both groups were sensitive to the emotional differences between voice and 
face, revealing lower accuracy and higher N400 amplitude for the incongruent voice‐
face pairs. However, English speakers showed more pronounced N400 enlargement and 
more reduced accuracy when vocal information was attended, suggesting that those from 
a Western culture suffered from a larger interference effect from irrelevant face informa‐
tion. Another study using a passive odd‐ball paradigm in which the two groups of listen‐
ers were presented with deviant or standard facial expressions which were paired with a 
vocal expression or not [26]. Chinese speakers showed a larger mismatch negativity when 
vocal expression was presented together with a facial expression, suggesting that individu‐
als from an eastern culture were more sensitive to an interference from task‐irrelevant vocal 
cues. These findings implicate a role of cultural learning and different cultural practices 
in communication shape neurocognitive processes associated with the early perception of 
voice‐face emotional cues.

Listener's biological sex has been central in modulating the integration of emotional informa‐
tion in vocal and verbal channels [27, 28]. Recent evidence extended this idea beyond the 
basic emotion. Jiang and Pell [15] examined the sex difference in evaluating confidence in both 
confidence‐ and neutral‐intending vocal expressions and the associated neural responses. 
They revealed that the delayed positivity effect elicited by neutral‐intending expression was 
only observed in female listeners, suggesting an inferential process aimed at deriving speaker 
meaning from nonexpression‐intending vocal expressions. Their further analysis revealed 
that, when vocal statements were led by lexical phrases of some level of certainty (LEX + 
VOC), females elicited more pronounced N1 in confident expression and larger late positivity 
(550–1200 ms) in unconfident and close‐to‐confident expressions. When these statements were 
compared with those with only vocal cues signifying confidence (VOC only), reduced N1, P2 
as well as N400 were observed in females [16]. These findings suggest the enhanced sensitivity 
to socioemotional information for females in vocal communication. Females and males also 
engage different strategies in resolving conflicting information in vocal expressions. Jiang 
and Pell [17] demonstrated that the conflicting message of vocal confidence expressions elic‐
ited different ERP effects in female vs. male listeners. The confident statement following an 
unconfident phrase elicited a larger delayed positivity only in a female participant; while the 
unconfident statement following a confident phrase elicited an N400 in a male participant and 
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has been ignored but should be evaluated is the individual's interpersonal sensitivity. Jiang 
and Pell [16, 17] measured individual's interpersonal sensitivity using interpersonal reactiv‐
ity index (IRI) [29] and regressed the early and late ERP responses toward perceiving a cer‐
tain level of confidence to the interpersonal sensitivity. They found that those who displayed 
higher IRI score revealed more pronounced delayed positivity effects in close‐to‐confident 
and unconfident congruent expressions [16] and in incongruent confident expressions pre‐
ceded by an unconfident phrase [17]. A further examination of such individual difference 
revealed that a larger positivity for a female listener fully mediated their perceptual adjust‐
ment toward that incongruent expression (e.g., judging the incongruent confident expression 
to be less confident than the congruent one).

Listener's level of anxiety also places an important role in modulating their neural 
responses toward decoding vocal emotions. In Jiang and Pell [15], both early (N100) and 
late ERP responses (P200, late positivity) were associated with the one's trait anxiety with 
those exhibiting higher trait anxiety revealed a reduced N100 and late positive effect in 
both vocalization and speech but an enhanced P200 effect in vocalization. Jiang and Pell 
[17] further found that the P200 in response to the confident vs. unconfident vocal expres‐
sion was larger in those who displayed a lower level of trait anxiety and such modulation 
mediated the reduced P200 in male listeners who showed reduced anxiety as compared 
with female listeners.

6. Brain responses toward vocal expression in clinical populations

The study on vocal emotion decoding in normal populations has provided a wide range of 
neurophysiological markers and experimental paradigms to examine how such process is 
impaired in a clinical context. Studies have been focusing on psychiatric‐risk populations and 
neurodevelopment disorders.

A study used an oddball paradigm in which a group of healthy listeners with anxious and 
depressive tendencies and a group of controls detected the target of emotional stimuli from 
a sequence of neutral expressions [30]. The emotional expressions were presented in voice, 
in face, or in voice‐face pair with congruent expressions. The amplitude of P3b in response 
to the deviant expression was reduced in the clinical group than the control group, only in 
voice‐face presentation. This finding suggests the crossmodal design as an effective approach 
to increase the sensitivity of the P300 amplitude difference between healthy populations and 
those with clinical symptoms.

Another study used an auditory oddball paradigm in which anger or happy deviant vocal 
or nonvocal synthesized syllables (data) were presented in a sequence of neutral syllables 
to listeners with symptoms in schizophrenia and normal listeners [31]. A larger mismatch 
of negativity was elicited following the deviant angry voice and anger‐bearing nonvocal 
sounds and such enlargement was decreased in those with schizophrenia. The weaker the 
MMN amplitudes, the more positive symptoms of schizophrenia. Using MMN responses 
to anger voice, anger‐derived nonvocal sound could predict whether someone received a 
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 clinical diagnosis of schizophrenia. These findings implicate that the emotional salience 
detection of voices differentiate the negative and positive symptoms in neuropsychiatric 
disorders at the preattentive level.

The emotional prosody was also examined in those with congenital amusia (a specific neu‐
rodevelopmental disorder featured as tone‐deafness, [32]). Lu et al. [32] presented emotional 
words spoken with declarative or the question voice to the amusics and their healthy control. 
The N1 was reduced and the N2 was increased in incongruent voice. The modulation of N1 
was intact whereas the change in N2 was reduced in amusics, suggesting an impaired conflict 
processing in amusia. The authors argued that the impaired discrimination of speech intona‐
tion among amusic individuals may arise from an inability to access information extracted at 
early processing stages.

7. Applications and future directions

One application of these studies is to build an artificial intelligence to decode brain signals 
which contribute to socioemotion understanding. Most of the studies use the acted (posted) 
vocal expression as testing materials, which were produced by professional actors, public 
speakers, or amateurs to portray an intended emotion. In real‐life communication, the com‐
municators may use such emotional pose to achieve certain communicative goals. Some 
research purpose, for example, the cultural display in vocal expression communication, may 
be specifically favored by using posed stimuli. However, a call for research on naturalistic, 
ecological, and observation‐based stimuli is highly recommended. Therefore, a future study 
is to examine how the brain differentiates “real” vs. “fake” vocal expression by looking at the 
neurophysiological responses.

Another implication of using EEG signals to study vocal emotion decoding is to test the 
effectiveness of speech‐coding strategies used in hearing aids for deaf listeners when they 
distinguish the emotions via prosody‐specific features of language [33, 34]. In Agrawal et al. 
[33], statements simulated with different speech‐encoding strategies differentiated the P200 
in the happy expression and an early (0–400 ms) and late (600–1200 ms) gamma band power 
increase in vocal expressions of happiness, anger, and neutral. In Agrawal et al. [34], the 
P200 was differentiated by different simulation strategies in all types of emotions, and was 
larger in happiness than in other emotion types across speech‐encoding strategies. These 
studies emphasized the importance of vocoded simulation to better understand the prosodic 
cues which cochlear impairment users may be utilizing to decode emotion in the voice. 
Further studies will also draw upon the merits of multimodal recording and synchroniza‐
tion of neurophysiological and peripheral physiological responses to decoding vocal expres‐
sions, including eye movement, pupil dilation, heart rate tracking, etc., to understand how 
different systems support the understanding of social and emotional information in speech 
and vocalizations.
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Abstract

Many factors render multimodal affect recognition approaches appealing. First, 
humans employ a multimodal approach in emotion recognition. It is only fitting that 
machines, which attempt to reproduce elements of the human emotional intelligence, 
employ the same approach. Second, the combination of multiple-affective signals not 
only provides a richer collection of data but also helps alleviate the effects of uncer-
tainty in the raw signals. Lastly, they potentially afford us the flexibility to classify emo-
tions even when one or more source signals are not possible to retrieve. However, the 
multimodal approach presents challenges pertaining to the fusion of individual signals, 
dimensionality of the feature space, and incompatibility of collected signals in terms of 
time resolution and format. In this chapter, we explore the aforementioned challenges 
while presenting the latest scholarship on the topic. Hence, we first discuss the various 
modalities used in affect classification. Second, we explore the fusion of modalities. 
Third, we present publicly accessible multimodal datasets designed to expedite work 
on the topic by eliminating the laborious task of dataset collection. Fourth, we analyze 
representative works on the topic. Finally, we summarize the current challenges in the 
field and provide ideas for future research directions.

Keywords: affect recognition, multimodal, machine learning, sensor fusion

1. Introduction

Humans employ rich emotional communication channels during social interaction by mod-
ulating their speech utterances, facial expressions, and body gestures. They also rely on 
emotional cues to resolve the semantics of received messages. Interestingly, humans also 
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communicate emotional information when interacting with machines. They express affects 
and respond emotionally during human-machine interaction. However, machines, from 
the simplest to the most intelligent ones devised by humans, have conventionally been 
 completely oblivious to emotional information. This reality is changing with the advent of 
affective computing.

Affective computing advocates the idea of emotionally intelligent machines. Hence, these 
machines can recognize and simulate emotions. In fact, over the last decade, we have 
witnessed a steadily increasing interest in the development of automated methods for 
human-affect estimation. The applications of such technologies are varied and span several 
domains. Rosalind Picard, in her 1997 book Affective Computing, describes various appli-
cations, such as a computer tutor that personalizes learning based on the user’s affective 
response, affective agent that assists autistic individuals navigate difficult social situations, 
and a classroom barometer that informs the teacher of the level of engagement of the stu-
dents [1]. Numerous other applications have been proposed over the years. For instance, 
many researchers suggest the creation of emotionally intelligent computers to improve the 
quality of the human-computer interaction (HCI) [2–4]. Other affective computing applica-
tions abound in the literature. For example, Gilleade et al. [5] propose the use of affective 
methods in video gaming. Al Osman et al. [6] present a mobile application for stress man-
agement. However, regardless of the application, all researchers in the field are faced with 
the following questions: How can a machine classify human emotions? What should the 
machine do in response to the recognized emotions? In this chapter, we are solely concerned 
with the first question.

Various strategies of affect classification have been successfully employed under restricted 
circumstances. The primary modalities that have been thoroughly explored pertain to facial-
expression estimation, speech-prosody (tone) analysis, physiological signal interpretation, 
and body-gesture examination. In this chapter, we explore affect-recognition techniques that 
integrate multiple modalities of affect expression. These techniques are known in the litera-
ture as multimodal methods.

Although, today, most of the affective computing applications are unimodal, the multimodal 
approach has been advocated by numerous researchers [4, 7–14]. There are many reasons that 
render the multimodal approach appealing. First, humans employ a multimodal approach 
in emotion recognition. It is only fitting that machines, which attempt to reproduce elements 
of human emotional intelligence, employ the same approach. Second, the combination of 
multiple-affective signals not only provides a richer collection of data but also helps alle-
viate the effects of uncertainty in the raw signals. After all, these signals are collected by 
imperfect sensors with numerous possible sources of error between the signal producer and 
processor. Lastly, it potentially gives us the flexibility to classify emotions even when one 
or more source signals are not possible to retrieve. This can happen in situations where the 
face or body is partially or fully occluded, which disqualifies the visual modality, or when 
the user is not speaking which eliminates the vocal modality from consideration. However, 
the multimodal approach presents challenges pertaining to the fusion of individual signals, 
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dimensionality of the feature space, and incompatibility of collected signals in terms of time 
resolution and format.

Before we proceed, we clarify a potential source of confusion. The terms affect and emotion 
can have different meanings in various fields. For instance, according to Shouse, a researcher 
in communication, an emotion refers to the display of a feeling, whether it is genuine or 
feigned [15]. However, an “affect is a non-conscious experience of intensity” [15]. Some 
 psychologists consider affect as the experience of emotion [16]. In this chapter, we consider 
the terms emotion and affect to be synonymous since a sizable amount of works in affective 
 computing use them interchangeably.

The remainder of this chapter is organized as follows: Section 2 summarizes the modalities 
of affect recognition, Section 3 describes pertinent modality-fusion techniques, Section 4 pres-
ents publicly available multimodal emotional databases, Section 5 surveys representative 
multimodal affect-recognition methods, and Section 6 discusses the challenges in the field 
and future research directions.

2. Modalities of affect recognition

In this section, we explore the various modalities of emotional channels that can be used 
for the automated resolution of human affect. The fundamental question that this section 
addresses is the following: What measurable information the machine needs to retrieve and 
interpret to estimate human affect?

When it comes to judging expressive behaviors, humans rely in general on verbal and nonver-
bal channels [17]. The verbal channels correspond to speech, while nonverbal channels include 
the eye gaze and blink, facial and body expression, and speech prosody. Note that speech cor-
responds to the semantics of the communicated message while speech prosody is concerned 
with the tonal content of voice regardless of the meaning of spoken phrases. Facial expression 
and speech prosody are believed to be the most relied upon by humans for emotions’ interpre-
tation [18]. Hence, these channels are likely rich in informational cues about the affective state. 
Social psychologists have interestingly remarked that expressive behaviors can be consciously 
regulated to convey a calculated self-presentation. However, nonverbal channels tend to be less 
vulnerable to deliberate manipulation. Moreover, when verbal behavior conflicts with nonver-
bal comportment, nonverbal expressions may be more reflective of the true affective status [17]. 
In fact, researchers have found speech prosody to be the least consciously controllable modality 
[19]. The latter finding can inform the development of affective applications for lie detection. In 
the following subsections, we detail the commonly used modalities of affect recognition.

2.1. Visual modalities

The visual modality is rich in relevant informational content and includes the facial expres-
sion, eye gaze, pupil diameter, and blinking behavior, and body expression. We explore these 
affective sources in this section.
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2.1.1. Facial expression

The most studied nonverbal affect-recognition method is facial-expression analysis [20]. 
Perhaps, that is because facial expressions are the most intuitive indicators of affect. Even as 
children, we draw simplistic faces that convey various emotions by manipulating the fore-
head creases, eyebrows, and mouth. We also find it instinctive to use emoticons in digital 
textual communications that convey emotions through simple facial-expression depictions.

2.1.1.1. Facial muscle movement coding

Facial expressions result from the contraction of facial muscles resulting in the temporary 
deformation of the neutral expression. These deformations are typically brief and last mostly 
between 250 ms and 5 s [21]. Darwin [22] is one of the early researchers to explore the evo-
lutionary foundation of facial-expressions display. He argues that facial expressions are uni-
versal across humans. He contends that they are habitual movements associated with certain 
states of the mind. These habits have been favored through natural selection and inherited 
across generations. Ekman and Fiesen [23] built on the idea of facial-expression universal-
ity to conceive the facial action coding system (FACS) that describes all possible perceivable 
facial muscle movements in terms of predefined action units (AUs). All AUs are numerically 
coded and facial expressions correspond to one or more AUs. Although FACS is primarily 
employed to detect emotions, it can be used to describe facial muscle activation regardless 
of the underlying cause. Inspired by FACS, other facial expression coding systems have been 
proposed, such as the emotional facial action coding system (EMFACS) [24], the maximally 
descriptive facial movement coding system (MAX) [25], and the system for identifying affect 
expressions by holistic judgment AFFEX [26]. The latter systems are solely directed at emo-
tion recognition.

The Moving Pictures Experts Group (MPEG) defined the facial animation parameters (FAPs) 
in the MPEG-4 standard to enable the animation of face models. MPEG-4 describes facial 
feature points (FPs) that are controlled by FAPs. The value of the FAP corresponds to the 
magnitude of deformation of the facial model in comparison to the neutral state. Though the 
standard was not originally intended for automated emotion detection, it has been employed 
for that goal in various works [27, 28]. These coding systems inspired researchers to develop 
automated image or video-processing methods that track the movement of facial features to 
resolve the affective state [29].

2.1.1.2. Facial-expression detection

Facial-expression detection algorithms involve the following three steps: (1) face detection (or 
face tracking across video frames), (2) feature extraction, and (3) affect classification. We will 
not discuss face detection or tracking in this chapter, the reader can refer to the plethora of 
existing literature on the topic (e.g., [30–32]).

Feature extraction is an essential aspect of expression recognition. Jiang et al. [33] divide the 
feature extraction methods into two types: geometric-based and appearance-based meth-
ods. Geometric features typically correspond to the distances between key facial points or 
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the velocity vectors of these points as the facial expression develops. However, appearance 
features reflect the changes in image texture resulting from the deformation of the neutral 
expression (e.g., facial bulges and creases) [33]. We detail few feature extraction schemes 
employed across many works. Each technique listed represents a set of methods that apply 
the same basic idea in feature extraction:

• Motion estimators: They are geometric-based feature extraction methods. They estimate 
the motion between two images. The most commonly used algorithm is optical flow [34]. 
When the latter is used for facial feature extraction, the camera is usually assumed to be 
stationary and the nonrigid motion resulting from facial deformation is tracked across 
video frames. The output is a series of vectors that represent motion. This technique has 
been used in numerous works, either alone [35–37], or in combination with other feature 
extraction techniques [38].

• Point trackers: They are geometric-based feature extraction methods. They track feature 
points across an image sequence. A typical algorithm, known as the Kanade-Lucas-Tomasi 
(KLT) tracker [39, 40], computes the spatial translation or affine transformation of features 
between consecutive video frames. Spatiotemporal vectors can be obtained from the move-
ment of tracked features.

• Gabor wavelets: They are appearance-based feature extraction methods. They typically 
use a set of Gabor filters at different scales and orientation for feature extraction. Gabor 
filters are a type of band-pass filters that act in a similar manner to the human cortical cells 
by mostly resolving edges of objects present in an image. This technique usually involves 
training a machine-learning model using Gabor features extracted from a database of facial 
expression and running the model to classify emotions from images.

For classification, numerous techniques have been proposed such as support vector machine 
(SVM), neural network (NN), and hidden Markov models (HMMs) [29, 35, 41–45].

In addition to facial-expression analysis, eye-based features such as pupil diameter, gaze dis-
tance, and gaze coordinates, and blinking behavior have been used in multimodal systems 
[10, 12]. In fact, Panning et al. [10] found that in their multimodal system, the speech para-
linguistic features and eye-blinking frequency were the most contributing modalities to the 
classification process.

2.1.2. Body expression

The importance of body expressions for affect recognition has been debated in the literature, 
with conflicting opinions. McNeill [46] maintains that two-handed gestures are closely associ-
ated with the spoken verbs. Hence, they arguably do not present new affective information; 
they simply accompany the speech modality. Consequently, some researchers argue that ges-
tures may play a secondary role in the human recognition of emotions [4, 13]. This suggests 
that they might be less reliable than other modalities in delivering affective cues that can be 
automatically analyzed. However, increasingly, there is more evidence toward the viability 
of this method in affect recognition, at least for a subset of affective expressions [20, 47–51]. 
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In fact, Lhommet and Marsella [52] contend that body expressions are harder to control con-
sciously than facial expressions, and therefore might reflect more genuine emotions.

Affect recognition using body expression involves tracking the motion of body features in 
space. Many works rely on the use of three-dimensional (3D) measurement systems that 
require markers to be attached to the subject’s body [11, 53–56]. However, some markerless 
solutions involving video cameras [57, 58] and wearable sensors [59] have been proposed. 
Once the motion is captured, a variety of features are extracted from body movement. In 
particular, the following features have been reliably used: velocity of the body or body part 
[11, 53, 55, 60–64], acceleration of the body or body part [11, 55, 60, 61, 64], amount of move-
ment [11, 64], joint positions [62], nature of movement (e.g., contraction, expansion, and 
upward movement) [11], orientation of body parts (e.g., head and shoulder) [54, 56, 63, 64], 
and angle or distance between body parts (e.g., distance from hand to shoulder and angle 
between shoulder-shoulder vectors) [54, 56, 61, 63]. Using these features, a variety of classifi-
cation models have been suggested, such as decision tree [11], multilayered perceptron (MLP) 
[53, 59], SVM [55, 61, 63], naïve Bayes [63], and HMM [62].

2.2. Audio modality

Speech carries two interrelated informational channels: linguistic information that express the 
semantics of the message and implicit paralinguistic information conveyed through prosody. 
Both of these channels carry affective information. Hence, in this section, we briefly describe 
the general mechanisms of extracting affect from these channels.

2.2.1. Linguistic speech channel

Humans often explain how they feel during social interaction. Hence, building an understand-
ing of the spoken message provides a straightforward way of assessing affect. This technique 
of affect recognition falls under the wider topic of sentiment analysis and opinion mining 
using natural language processing. Typically, an automatic speech recognition algorithm is 
used to convert speech into a textual message. Then, a sentiment analysis method interprets 
the polarity or emotional content of the message. However, this approach for affect recogni-
tion has its pitfalls. First, it is not universal, and therefore a natural language speech processor 
has to be developed for each dialect; second, it is vulnerable to masking since humans are not 
always forthcoming about their emotional status [17].

In this section, we only discuss sentiment analysis. We will not cover automatic speech rec-
ognition. The readers can consult the survey of Benzeghiba et al. [65] for a thorough treat-
ment of this topic. Sentiment analysis methods can broadly be divided into two categories: 
lexicon-based techniques and statistical-learning approaches. Lexicon-based techniques clas-
sify affect based on the presence of unambiguous affect words or phrases in the text. Numeric 
values are tied to these words or phrases. Hence, overall sentiment can be extracted through a 
scoring system that results from the aggregation of these values. Statistical-learning methods, 
in turn, generate a bag of words whose elements are used as features in machine-learning 
algorithms. Hybrid approaches that propose a combination of these techniques have also 
been studied [66, 67].
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2.2.2. Paralinguistic speech-prosody channel

Sometimes, it is not about what we say, but how we say it. Therefore, speech-prosody analyz-
ers ignore the meaning of messages and focus on acoustic cues that reflect emotions. Before 
the extraction of tonal features from speech, preprocessing is often necessary to enhance, 
denoise, and dereverberate the source signal [68]. Then, using windowing functions, low-
level descriptor (LLDs) features are extracted at usually 100 frames per second with segment 
sizes between 10 and 30 ms. Windowing functions are usually rectangular for time-domain 
features and smooth for frequency or time-frequency features. Numerous LLDs can be 
extracted, and we list a few: pitch (fundamental frequency F0), energy (e.g., maximum, mini-
mum, and root mean square), linear prediction cepstral (LPC) coefficients, perceptual linear 
prediction coefficients, cepstral coefficients (e.g., mel-frequency cepstral coefficients, MFCCs), 
formants (e.g., amplitude, position, and width), and spectrum (mel-frequency and FFT bands) 
[68–72]. Linguistic LLDs can also be retrieved, such as word and phoneme sequences [68, 69]. 
Recently, speech-modulation spectral features were also shown to contain complementary 
information to prosodic and cepstral features [73].

For classification, global statistics features are classified using static classifier such as SVM 
[69, 74–76]. Short-term features are processed though dynamic classifiers, such as HMM 
[68, 76]. Due to the large number of possible features, researchers have proposed the use 
of dimension-reduction schemes such as principal component analysis (PCA) [69] or linear 
discriminant analysis (LDA) [68]. More recently, with the burgeoning of deep-learning prin-
ciples, deep neural networks have also been explored for speech emotion recognition, with 
very promising results (e.g., [77–79]).

2.3. Physiological modality

Physiological signals can be used for affect recognition through the detection of biological 
patterns that are reflective of emotional expressions. These signals are collected through typi-
cally noninvasive sensors that are affixed to the body of the subject. However, brain imaging 
[80] and remote physiological monitoring schemes [81, 82] have been proposed.

There are a multitude of physiological signals that can be analyzed for affect detection. 
Typical physiological signals used for the assessment of affect are electrocardiography (ECG), 
electromyography (EMG), electroencephalograph (EEG), skin conductance (also known as 
galvanic skin response, and electrodermal activity), respiration rate, and skin temperature. 
ECG records the electrical activity of the heart. Conventionally, 12 electrodes are connected 
to various parts of the body to conduct this measurement. However, in affective computing, 
most systems use the Lead I configuration that requires only two electrodes [6]. From the ECG 
signal, the heart rate (HR) and heart rate variability (HRV) can be extracted. HRV is used in 
numerous studies that assess mental stress [6, 83–85]. EMG measures muscle activity and is 
known to reflect negatively valenced emotions [86]. EEG is the electrical activity of the brain 
measured through electrodes connected to the scalp and possibly forehead. There is little 
agreement on the number of electrodes to use or features to extract from EEG. EEG features 
are often used to classify emotional dimensions of arousal [87–90], valence [88–90], and domi-
nance [90, 91]. Skin conductance measures the resistance of the skin by passing a negligible 
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current through the body. The resulting signal is reflective of arousal [86] as it corresponds 
to the activity of the sweat glands. The latter are controlled by the autonomous nervous sys-
tem (ANS) that regulates the flight or fight response. Finally, respiration rate tends to reflect 
arousal [92], while skin temperature carries valence cues [93].

3. Multimodal fusion techniques

With multimodal affect-recognition approaches, information extracted from each modality must 
be reconciled to obtain a single-affect classification result. This is known as multimodal fusion. 
The literature on this topic is rich and generally describes three types of fusion mechanisms: 
feature-level fusion, decision-level fusion, and hybrid approaches. In this section, we present the 
general principles behind these techniques and describe key ideas related to each type.

3.1. Feature-level fusion

A common method to perform modality fusion is to create a single set from all collected fea-
tures. A single classifier is then trained on the feature set. This method is advocated by Pantic 
et al. [4, 13] as it mimics the human mechanism of tightly integrating information collected 
through various sensory channels. However, feature-level fusion is plagued by several chal-
lenges. First, the larger multimodal feature set contains more information than the unimodal 
one. This can present difficulties if the training dataset is limited. Hughes [94] has proven that 
the increase in the feature set may decrease classification accuracy if the training set is not 
large enough. Second, features from various modalities are collected at different time scales 
[13]. For example, frequency domain HRV features typically summarize seconds or minutes’ 
worth of data [6], while speech features can be in the order of milliseconds [13]. Third, a large 
feature set undoubtedly increases the computational load of the classification algorithm [95]. 
Finally, one of the advantages of multimodal affect recognition is the ability to produce an 
emotion classification result in the presence of missing or corrupted data. However, feature-
level fusion is more vulnerable to the latter issues than decision-level fusion techniques [96].

3.2. Decision-level fusion

Typically, a classifier makes errors in some area of the feature space [97]. Hence, combining 
the results of multiple classifiers can alleviate this shortcoming. This is especially true when 
each classifier is operating on a different modality that corresponds to a separate feature space.

Using decision-level fusion, modalities can be independently classified using separate models 
and the results are joined using a multitude of possible methods. Therefore, this approach is 
said to employ an ensemble of classifiers. Ensemble members can belong to the same family 
or different families of statistical classifiers. In fact, static and dynamic classifiers can both be 
employed in such a multimodal system.

3.2.1. Combination strategies based on voting

The simplest and one of the oldest methods to achieve decision-level fusion is to use a voting 
mechanism [98]. Hence, the classification reached by the majority of the ensemble members is 
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[13]. For example, frequency domain HRV features typically summarize seconds or minutes’ 
worth of data [6], while speech features can be in the order of milliseconds [13]. Third, a large 
feature set undoubtedly increases the computational load of the classification algorithm [95]. 
Finally, one of the advantages of multimodal affect recognition is the ability to produce an 
emotion classification result in the presence of missing or corrupted data. However, feature-
level fusion is more vulnerable to the latter issues than decision-level fusion techniques [96].

3.2. Decision-level fusion

Typically, a classifier makes errors in some area of the feature space [97]. Hence, combining 
the results of multiple classifiers can alleviate this shortcoming. This is especially true when 
each classifier is operating on a different modality that corresponds to a separate feature space.

Using decision-level fusion, modalities can be independently classified using separate models 
and the results are joined using a multitude of possible methods. Therefore, this approach is 
said to employ an ensemble of classifiers. Ensemble members can belong to the same family 
or different families of statistical classifiers. In fact, static and dynamic classifiers can both be 
employed in such a multimodal system.

3.2.1. Combination strategies based on voting

The simplest and one of the oldest methods to achieve decision-level fusion is to use a voting 
mechanism [98]. Hence, the classification reached by the majority of the ensemble members is 
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adopted as the outcome. However, a tie in the votes can be reached if the number of classifiers 
is odd. This disqualifies bimodal affect-recognition systems. Furthermore, even for an odd 
number of classifiers, a definite decision cannot be guaranteed if more than two classes are 
being considered [95] (e.g., the six prototypical emotions). The classification of a single affect 
is a typical binary problem that can be solved using this approach. A system that monitors a 
single affect such as stress or frustration can use this approach as long as an odd number of 
modalities are supported.

3.2.2. Combination strategies based on prior knowledge

In many cases, it is crucial to assess the performance of each classifier to inform decision mak-
ing during the combination process. For instance, using the training dataset, we can calculate 
the confusion matrix for each classifier. Given an ensemble of C classifiers, the confusion 
matrix of classifier ci, where i = 1..C, is described by
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where njki corresponds to the number of times ci classified an observed sample x as belonging 
to class rj while in reality it belongs to class rk, and M is the total number of classes. The diago-
nal of the confusion matrix where j = k represents the times where the classifier was correct.

To overcome the limitations of the voting approach, a weighted majority voting scheme 
can be used. In this approach, classifiers are not treated as equal peers and their votes are 
weighted to reduce the probability of a tie. The weights can be calculated based on the per-
formance of the classifier in terms of recognition and error rates retrieved from the confusion 
matrix during training or using a test dataset after training [95, 98, 99]. Lam and Suen [99] 
propose an optimization process that uses a genetic algorithm to compute the voting weights. 
They observe that there is often a trade-off between recognition, rejection, and error rates. 
Therefore, they attempt to maximize objective function (1):

 recognition errorF β= − ×  (2)

where β is a constant that can take on different values depending on the accuracy and reliabil-
ity desired [99]. Hence, in the genetic algorithm, F is used as the fitness value.

Beyond the use of voting schemes, Huang and Suen [100] use a lookup table during training 
to keep track of the combinations of classifier outputs along with the correct class and number 
of occurrence of this combination. The number of occurrence reflects the confidence level that 
the corresponding combination produces the recorded correct class. When the latter combi-
nation is observed, the outcome with the highest confidence level, as recorded in the lookup 
table, is chosen. Gupta et al., in turn, proposed a quality-aware decision fusion scheme, where 
classifiers were developed for several physiological modalities (i.e., EEG, ECG, GSR, and facial 
features) and their individual decisions were weighted by the measured quality of each raw 
signal [101]. Experimental results showed that system failure rates due to noisy segments were 
drastically reduced, and improved affect-recognition performance could be achieved [101].
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Kim and Lingenfelser [102] introduce an ensemble combination strategy that accounts for the 
capability of some ensemble members to classify certain classes better than others. Therefore, 
they rank the classes according to the accuracy of their classification across all ensemble mem-
bers using the confusion matrices produced from the training data. To reach an ensemble 
decision for an observed sample, the classifier corresponding to the highest-ranked class 
performs the classification. We refer to that class as the test class. If the classification result 
matches the test class, then that result is taken to be the ensemble decision. If not, then the 
next class in the ranked list becomes the test class and the procedure is repeated. If we do not 
obtain a match for any of the classes, then the classifier with the best overall performance on 
the training data is tasked with the classification on behalf of the ensemble.

Lastly, Gupta, Laghari, and Falk have made use of a variant of the SVM called relevance vec-
tor machines (RVMs) for affect recognition. RVMs have the same functional form of SVMs but 
are embedded into a Bayesian framework [103]. Therefore, for classification, RVMs compute 
the probabilities of class membership rather than the point estimates. These class membership 
probabilities can be seen as a measure of classifier "confidence" and were used as weights for 
decision-level fusion [90]. While the work in [90] focuses only on a single modality, EEG, it 
fused the decisions of classifiers trained on different classes of EEG features (power spectral, 
asymmetry, and graph theoretic), and thus the observed advantages could also be seen for 
multimodal setups.

3.2.3. Combination strategies for continuous output classifiers

For the ensemble decision of continuous output problems, the probabilities for each class over 
all classifiers can be used for fusion. Lingenfelser et al. [95] refer to this probability as support 
and we adopt this terminology. Using these probabilities, several decision-level combination 
rules are conceived. We detail only a subset of these rules. The maximum rule stipulates that 
the ensemble decision for an observed feature vector corresponds to the class with the largest 
support. The sum rule sums the total support for each class chosen by any of the classifiers. 
Then, the class with the largest support is chosen as the ensemble decision. Similarly, the 
mean rule calculates the mean support for each chosen class as opposed to the sum. Instead 
of calculating the mean, a weighted average of total support for each chosen class can also be 
calculated. Finally, the product rule is similar to the sum rule, except for the use of the multi-
plication operation instead of the addition for the calculation of the total support.

3.3. Hybrid fusion

When a fusion technique combines feature and decision-level fusion, it is referred to as a 
hybrid-fusion scheme. For instance, we can achieve fusion in two stages. In the first stage, 
a classifier can perform feature-level fusion. For example, a single classifier can handle fea-
tures from audio and video signals. In the second stage, decision-level fusion can be used to 
combine the results of that classifier with another one operating on physiological (e.g., HRV) 
features.

Ref. [104] proposes a simple hybrid-fusion approach where the result from the feature-level 
fusion is fed as an additional input to the decision-level fusion stage. Lingenfelser et al. [95] 
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propose two variants of one method called the one versus rest. This approach creates an 
ensemble composed of classifiers trained on each feature set (i.e., features from a modality). 
However, these classifiers model a two-class problem. That is, each one of them is special-
ized in classifying a single class. One last multiclass classifier is added to the ensemble and is 
trained on the merged feature set (i.e., features from all modalities). For the first variant, dur-
ing classification, for an observed sample, the support for a class obtained from its two-class 
classifiers is multiplied with the support of the multiclass classifier to obtain an accumulated 
support. The class with the highest accumulated support is chosen as the ensemble decision. 
The second variant is similar, except that it chooses the best two-class classifier for each class 
and uses it to calculate accumulated support.

3.4. Dimensionality problem

Affective information tends to be highly dimensional. It is not unusual for a feature set to con-
tain thousands of variables. Valstar and Pantic [105] model the facial action temporal dynam-
ics by extracting 2520 features from each facial video frame. The problem can be further 
exasperated when multiple modalities are considered. Feature-level fusion techniques are 
especially vulnerable to this problem. For instance, Kim and Lingenfelser [102] extract 1280 
speech and 26 physiological features to classify affect. Two strategies are generally adopted 
to reduce the feature space dimension. First, feature-selection techniques that choose a subset 
of the feature set for model construction are widely used [7, 12, 28, 104]. Second, dimension-
reduction methods such as principal component analysis and linear discriminant analysis are 
commonly employed [7, 10, 106].

4. Multimodal datasets

One of the challenges in developing multimodal affect-recognition methods is the need to 
collect multisensory data from a large number of subjects. Also, it is difficult to compare the 
obtained results with other studies given that the experimental setup varies. Therefore, it is 
essential to use databases to streamline research efforts on the topic and produce repeatable 
and easy-to-compare results. Very few multimodal affect databases are publicly available. We 
divide these databases into three types: posed, induced, and natural-emotional databases. 
For the posed databases, the subjects are asked to act out a specific emotion while the result is 
captured. Typically, facial and body expression and speech information are captured in posed 
databases. However, posed databases have their limitations, as they cannot incorporate bio-
signals; it cannot be guaranteed that posed emotions trigger the same physiological response 
as spontaneous ones [107]. For the induced databases, the subjects are exposed to a stimulus 
(e.g., watching a video) in a controlled setting, such as laboratory. The stimulus is designed 
to evoke certain emotions. In some cases, following the stimulus, the subjects are explicitly 
asked to act out an emotional expression. The eNTERFACE’05 [108] is an example of such 
database. These databases combine aspects of induced and posed emotions. For the natural 
databases, the subjects are exposed to a real-life stimulus such as interaction with human or 
machine. Data collection mostly occurs in a noncontrolled environment. The AFEW database 
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[109] presents annotated video clips from movies. Therefore, although the emotional expres-
sions are acted out by professional actors, they take place in real-world environments (or at 
least simulated ones). Since these expressions are likely to be as subtle as naturally occurring 
ones, as actors strive to mimic realistic behavior, we categorize this database as a natural one. 
We concede that it does not perfectly fit in any of the three presented types.

For the induced and natural databases, the measured sensory information is labeled with 
the emotional information. The label is usually obtained through subject self-assessment, 
observer/listener judgment, or FACS coding (manually coded facial expressions). Self-
assessment is performed using tools such as self-assessment Manikin (SAM) [110] or feel-
trace [111]. Table 1 shows a list of publicly accessible multimodal emotional databases. Most 
of the databases address the visual and audio modalities, while few recent ones introduce 
 physiological channels.

Reference DB type # Subjects Modalities Affects Labeling

GEMEP (2012) [112] Posed 10 Visual and audio Amusement, pride, joy, 
relief, interest, pleasure, 
hot anger, panic fear, 
despair, irritation, anxiety, 
sadness, admiration, 
tenderness, disgust, 
contempt, and surprise

N/A

SAL (2008) [113] Induced 24 Visual and audio Dimensional and 
categorical labeling

Feeltrace

Belfast (2000) [114] Natural 24 Visual and audio Dimensional and 
categorical labeling

Feeltrace

MIT (2005) [83] Natural 17 Physiological (ECG, 
EMG, skin conductance, 
and respiration)

Low, medium, and high 
stress

Observers’ 
judgment

HUMAINE 
(2007) [115]

Induced and 
natural

Multiple 
databases

Visual, audio, and 
physiological (ECG, 
skin conductance 
and temperature, and 
respiration)

Varies across databases Observers’ 
judgment 
+ self-
assessment

VAM (2008) [116] Natural 19 Visual and audio Dimensional labeling SAM

SEMAINE 
(2010) [117]

Induced 20 Visual and audio Dimensional labeling and 
six basic emotions

Observers’ 
judgment

DEAP (2012) [118] Induced 32 Visual for (22 subjects) 
and physiological (EEG, 
ECG, EMG, and skin 
conductance)

Dimensional labeling SAM

MAHNOB-HCI 
(2012) [12]

Induced 27 Visual (face + eye 
gaze), audio, and 
physiological (EEG, 
ECG, skin conductance 
and temperature, and 
respiration)

Dimensional and 
categorical labeling

Self-
assessment 
(SAM for 
arousal and 
valence)
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5. Multimodal affect detection

Humans display emotions through a variety of behaviors that are difficult for a machine to 
fully appreciate. They modulate their facial muscles, eye gaze, body gestures, gait, and speech 
tone among other channels of expression to convey emotions. Therefore, the understanding 
of these emotional cues requires a multisensory system that is able to track several or all of 
these channels.

Many multimodal affect-recognition schemes have been proposed. They generally differ in 
terms of the modalities, classification method, and fusion mechanism used, and emotions rec-
ognized. In Table 2, we survey several representative multimodal affect-recognition studies. 
Facial-expression analysis features prominently in these studies, followed by speech prosody. 
However, there seems to be little agreement on the nature and number of the features to be 
extracted for each modality.

All of the reviewed works consider a subset of possible features that can be extracted from the 
dataset. Therefore, effective feature selection is required to simplify the classification models, 
and reduce training time and overfitting. Hence, diverse automated techniques are employed 
for that purpose, such as the wrapper method [28], analysis of variance (ANOVA)-based 
approach [12], sequential backward selection [7], minimum redundancy maximum relevance 
[121], and correlation-based feature selection [104]. Some works rely on expert knowledge [27, 
106] as an effective feature-selection scheme. Furthermore, several works elect to reduce the 
dimensionality of the feature space using PCA [7, 10, 106].

Table 1. Summary of the characteristics of publicly accessible multimodal emotional databases.

Reference DB type # Subjects Modalities Affects Labeling

eNTERFACE’05  
(2006) [108]

Posed + 
induced

42 Visual and audio Six basic emotions Observers’ 
verification

RECOLA  
(2013) [119]

Natural 46 Visual, audio, and 
physiological (ECG and 
skin conductance)

Dimensional labeling Observers’ 
judgment

PhySyQX  
(2015) [120]

Natural 21 Audio and 
physiological (EEG 
and near-infrared 
spectroscopy, NIRS)

Dimensional labeling SAM (valence, 
arousal, 
dominance) 
plus nine 
other quality 
metrics (e.g., 
naturalness, 
acceptance)

AFEW (2012) [109] Natural N/A(1426 
video clips)

Visual and audio Six basic emotions + 
neutral

Expressive 
keywords 
from movie 
subtitles + 
observers’ 
verification
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Reference Modalities Classifier** Features Affects DB type Overall 
recognition rate*

Castellano 
et al. [28]

Visual (face, 
body) and  
audio

BN Face: statistical values 
from FAPs and their 
derivatives

Body: quantity of motion 
and contraction index of the 
body, velocity, acceleration, 
and fluidity of the hand’s 
barycenter 

Speech: intensity, pitch, 
MFCC, Bark spectral 
bands, voiced segment 
characteristics, and pause 
length (377 features in total)

Anger, despair, 
interest, 
pleasure, 
sadness, 
irritation, joy 
and pride

Posed FLF: 78.3%

DLF: 74.6%

Panning 
et al. [10]

Visual (face 
and body) 
and audio

PCA+MLP Face: eye blink per minute, 
mouth deformations, 
eyebrow actions

Body: touch hand to face 
(binary)

Speech: 36 features 
(12 MFCCs, their deltas and 
accelerations, and the zero-
mean coefficient)

Frustration Natural FLF: 40–90%

Busso 
et al. [7]

Visual (face) 
and audio

SVM Face: Four-dimensional 
feature vectors

Speech: mean, standard 
deviation, range, maximum, 
minimum, and median of 
pitch and intensity

Anger, sadness, 
happiness, 
neutral

Posed FLF: 89.1%

DLF: 89.0%

Kapoor 
et al. [123]

Visual (face, 
posture) and 
physiological

GP Face: nod and shakes, 
eye blinks, mouth 
activities, shape of eyes and 
eyebrows

Posture: pressure matrices 
(on chair while seated)

Physiological: skin 
conductance

Behavioral: pressure on 
mouse

Frustration Natural FLF: 79%

Soleymani 
et al. [12]

Physiological + 
eye gaze

SVM (RBF 
Kernel)

Physiological: 20 GSR, 63 
ECG, 14 respiration, 4 skin 
temperature, and 216 EEG 
features

Eye gaze: pupil diameter, 
gaze distance, gaze 
coordinates

Arousal and 
valence

Induced DLF: 72%
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Reference Modalities Classifier** Features Affects DB type Overall 
recognition rate*

Kapoor and 
Picard [9]

Visual (face, 
and posture) 
and context

MGP Face: Five features from 
upper face and two features 
from lower face

Posture: current posture and 
level of activity

Context: level of difficulty, 
state of the game

Student interest 
level

Natural FLF: 86%

Paleari 
et al. [14]

Visual (face) 
and audio

NN Face: 24 features 
corresponding to 12 pairs of 
feature points + 14 distance 
features

Speech: 26 features, F0, 
formants (F1–F3), energy, 
harmonicity, LPC1 to LPC9, 
MFCC1 to MFCC10)

Six basic 
emotions

Induced + 
posed

DLF: 75%

Kim 
et al. [104]

Audio and 
physiological

LDF Physiological: EMG at the 
nape of the neck, ECG, skin 
conductance, and respiration 
(26 features in total)

Speech: pitch, utterance, 
energy, and 12 MFCC features

Positive/high, 
positive/low, 
negative/high, 
and negative/
low

Induced DLF: 57%
FLF: 66%
HF: 60%

Lin  
et al. [27]

Visual (face) 
and audio

C– HMM, 
SC-HMM, 
and EWSC- 
HMM

Face: FAPs calculated from 68 
feature points on eyebrows, 
eyes, nose, mouth, and facial 
contour

Speech: pitch, energy, and 
formants (F1–F5)

Joy, anger, 
sadness, and 
neutral

Posed FLF: 75%
DLF: 80%
HF: 83–91%

Valence 
and arousal 
quadrants

Induced FLF: 64%
DLF:69%
HF: 66–78%

Ringeval 
et al. [106]

Visual (face), 
audio, and 
physiological

SVR + NN Face: 84 appearance based 
features (after PCA based 
reduction) obtained from 
local Gabor binary patterns 
from three orthogonal planes 
+ 196 geometric features based 
on 49 tracked facial landmarks

Speech: One energy, 25 
spectral (e.g., MFCC, spectral 
flux), and 16 voicing (e.g., F0, 
formants, and jitter) features

Physiological: ECG (HR + 
HRV) and skin conductance

Valence and 
arousal

Natural DLF: average 
correlation with 
self-assessment 
of 42%

Gupta  
et al. [101]

Visual (face/
head-pose) and 
physiological

SVM, NB Face/Head-pose: lips  
thickness, spatial ratios (e.g., 
upper to lower lip thickness, 
eye brows to lips width)

Physiological: ECG (power 
spectral features over ECG 
and HRV), skin conductance 
(power spectral, zero-crossing 
rate, rise time, fall time), 
EEG (band powers for δ-, 
θ-, α-, β-, and γ-bands)

Valence, 
arousal, and 
liking of 
multimedia 
content

Natural DLF: F1-score of 
59% (SVM) and 
57% (NB)
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Three modality-fusion techniques are commonly employed. There seems to be somewhat 
conflicting results concerning the most effective class of modality-fusion methods. For 
instance, Kapoor and Picard [9] obtain better results using feature-level fusion. Conversely, 
Busso et al. [7] fail to realize a discernible difference between the two methods. Beyond 
the latter two approaches, Lin et al. [27] propose three hybrid approaches that use coupled 
HMM, semi-coupled HMM, and error-weighted semi-coupled HMM based on a Bayesian 
classifier-weighing method. Their results show improvements over feature-and decision-level 
fusion for posed and induced-emotional databases. However, Kim et al. [104] were not able 
to improve over decision-level fusion with their proposed hybrid approach. The presence of 
confounding variables such as modalities, emotions, classification technique, feature selec-
tion and reduction approaches, and datasets used limits the value of comparing fusion results 
across studies. Consequently, Lingenfelser et al. [95] conducted a systematic study of several 
feature-level, decision-level, and hybrid-fusion techniques for multimodal affect detection. 
They were not able to find clear advantages for one technique over another.

Various affect classification methods are employed. For dynamic classification where the 
evolving nature of an observed phenomenon is classified, HMM is the prevalent choice of 
classifier [27]. For static classification, researchers use a variety of classifiers and we were 
not able to discern any clear advantages of one over another. However, an empirical study 
of unimodal affect recognition through physiological features found an advantage for SVM 
over k-nearest neighbor, regression tree, and Bayesian network [122]. Yet, a systematic inves-
tigation of the effectiveness of classifiers for multimodal affect recognition is needed to 
address the issue.

The database type seems to have an effect on the overall affect-recognition rate. We notice that 
studies that use posed databases generally achieve higher levels of accuracy compared to ones 
that use other types (e.g., [7, 27]). In fact, Lin et al. [27] perform an analysis of recognition rates 
using the same methods on two database types: posed and induced. They achieve significantly 
better results with the posed database. Natural databases result in typically lower recognition 
rates (e.g., [10, 101, 106, 121]) with the exception of studies [9, 123] that classify a single affect.

Reference Modalities Classifier** Features Affects DB type Overall 
recognition rate*

Kaya and 
Salah [121]

Visual (face) 
and audio

ELM Face: image is divided into 
16 regions. 177 dimensional 
descriptors are extracted 
from each region using a local 
binary pattern histogram

Audio: 1582 features such as 
F0, MFCC (0–14), and line 
spectral frequencies (0–7)

Six basic 
emotions + 
neutral

Natural DLF: 44.23%

*FLF: Feature-Level Fusion, DLF: Decision-Level Fusion, HF: Hybrid Fusion.
**HMM: Hidden Markov Mode, C-HMM: Coupled HMM, SC-HMM: Semi-Coupled HMM, EWSC-HMM: Error 
Weighted SC-HMM, SVR: Support Vector Regression, LDF: Linear Discrimination Function, NN: Neural Networks, GP: 
Gaussian Process, MGP: Mixture of Gaussian Processes, MLP: Multilayer Perceptron, BN: Bayesian Network, NB: Naïve 
Bayes. ELM: Extreme Learning Machine.

Table 2. Representative multimodal affect-recognition studies.
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6. Discussion and conclusion

In this chapter, we have reviewed and presented the various affect-detection modalities, 
multimodal affect-recognition schemes, modality-fusion methods, and public multimodal-
emotional databases. Although the work on multimodal human-affect classification has been 
ongoing for years, there are still many challenges to overcome. In this section, we detail these 
challenges and describe future research directions.

6.1. Current challenges

Numerous studies found multimodal methods to perform as good as or better than unimodal 
ones [9, 14, 27, 28, 104, 106]. However, the improvements of multimodal systems over uni-
modal ones are modest when affect detection is performed on spontaneous expressions in 
natural settings [124]. Also, multimodal methods introduce new challenges that have not been 
fully resolved. We summarize these challenges as follows:

• Multimodal affect-recognition methods require multisensory systems to collect the rel-
evant data. These systems are more complex than unimodal ones in terms of the number 
and diversity of sensors involved and the computational complexity of the data-interpret-
ing algorithms. This challenge is more evident when data are collected in a natural setting 
where user movement is not constrained to a controlled environment. Most physiological 
sensors are wearable and sensitive to movement. Therefore, additional signal filtering and 
preparation are required. Audio and visual data quality depends heavily on the distance 
between the subject and sensors and the presence of occluding objects between them.

• Multimodal affect-recognition methods necessitate the fusion of the modal features 
extracted from the raw signals. It is still unclear which fusion techniques outperform the 
others [95]. It seems that the performance of the fusion technique depends on the number 
of modalities, features extracted, types of classifiers, and the dataset used in the analysis 
[95]. While the first steps toward a quality-aware fusion system have been proposed [101], 
more research is still needed in order to gauge the true benefit of such an approach.

• It is still not understood what type and number of modalities are needed to achieve the 
highest level of accuracy in affect classification. Also, it is unclear how each modality con-
tributes to the effectiveness of the system. Very few studies attempt to test the effect of 
single modalities on the overall performance [10] and a systematic study of the issue is still 
required.

• It is well established that context affects how humans express emotions [125, 126]. 
Nonetheless, context is disregarded by most work on affect recognition [127]. Therefore, we 
still need to address the challenge of incorporating contextual information into the affect 
classification process. Some attempts have been done in this regard [9, 123, 128–131]. For 
instance, Kim [128] suggests a two-stage procedure, where in the first stage, the affective 
dimensions of valence and arousal are classified, and in the second stage, the uncertain-
ties between adjacent emotions in the two dimensional-affective space are resolved using 
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contextual information. However, more work is needed to validate this method and pro-
pose other similar methods that incorporate a rich set of contextual features.

• Although we have had major improvements in terms of the availability of public multi-
modal affect datasets over the past few years, many of the works in the area still use private 
datasets [127]. The use of nonpublic datasets makes results across studies challenging to 
compare and progress in the field difficult to trace.

• Multimodal-affective systems collect potentially private information such as video and 
physiological data. Special care needs to be afforded to the protection of such sensitive 
data. To the best of our knowledge, no work has specifically addressed this issue yet in the 
context of affective computing.

• In addition to the abundant technical challenges, the ethical implications of designing 
emotionally intelligent machines and how this can affect the human perception of these 
machines must be queried.

Despite these challenges, the results achieved in the last decade are very encouraging and the 
community of researchers on the topic is growing [124].

6.2. Future research directions

Several streams of research are still worth pursuing in the domain. For instance, more inves-
tigation is required on the usefulness and applicability of fusion techniques to different 
modalities and feature sets. Existing studies did not find consistent improvement in the accu-
racy of affect recognition between feature- and decision-level fusion. However, decision-level 
fusion schemes are advantageous when it comes to dealing with missing data [96]. After all, 
multisensory signal collection systems are prone to lost or corrupted segments of data. The 
introduction of effective hybrid-fusion techniques can further improve accuracy of classi-
fication. An empirical and exhaustive study of classifiers in multimodal emotion detection 
systems is still needed to gain a better understanding about their effectiveness. Although we 
have seen a flurry of new multimodal emotional databases in the last few years, there is still 
a need to create richer databases with larger amounts of data and support for more modali-
ties. Moreover, new sensors and wearable technologies are emerging continuously, which 
may open doors for new affect-recognition modalities. For example, functional near-infrared 
spectroscopy (fNIRS) has been recently explored within this context [132]. fNIRS, much like 
functional magnetic resonance imagining (fMRI), measures cerebral blood flow and hemo-
globin concentrations in the cortex, but at a fraction of the cost, without the interference of 
MRI acoustic noise, and with the advantage of being portable. Moreover, recent studies have 
explored the extraction of physiological information (e.g., heart rate and breathing) from 
face videos [81, 82], and thus may open doors for multimodal systems, which, in essence, 
would require only one modality (i.e., video). Notwithstanding, the biggest research chal-
lenge that remains is the detection of natural emotions. We have seen in this chapter that the 
accuracy of detection method decreases when natural emotions are classified. This is mainly 
due to the subtlety of the natural emotions (compared to exaggerated posed ones) and their 
dependence on the context [126]. Therefore, we expect that a considerable amount of future 
research will be dedicated for this effort.
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