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Preface

Over the past few decades, exciting developments have taken place in the field of near-infra‐
red spectroscopy (NIRS). NIRS has grown from an initial small niche market to become an
indispensable sensor. This has been enabled by the advent of robust Fourier transform inter‐
ferometers and diode array solutions, coupled with complex chemometric methods that can
easily be executed using modern microprocessors. Nowadays, NIRS has proven to be a relia‐
ble and an inexpensive method with a great potential for use in the process industry, for ad‐
vanced control and product quality assurance, as well as for medical applications with
particular focus on diagnostics.

The present edited volume intends to cover recent developments in NIRS and provide a broad
perspective of some of the challenges that characterize the field. The target audience for this
book includes engineers, practitioners, and researchers involved in NIRS system design and
its use for different applications. We believe that they will greatly benefit from the timely and
accurate information provided in this work. The volume comprises six chapters overall.

NIRS possesses unique advantages as a functional imaging method particularly for brain
imaging where the brain-device interface design is very important. There are several obsta‐
cles that still prevent this technology from becoming a prominent medical imaging tool. Dif‐
ferent potential clinical applications of NIRS imaging combined with intravascular
ultrasound also exist. The technology has the potential to become a valuable tool for coro‐
nary plaque characterization and predictor of future coronary events in coronary artery dis‐
ease patients.

Within the agriculture field, NIRS is particularly effective in the measurement of mineral nu‐
trients, organic compounds (including carbohydrates), and other physical and chemical char‐
acteristics for a wide range of different types of samples. This is enabled by advanced
chemometrics based on complex signal filtering as well as linear and nonlinear regression
methods. The detection of trace metals in environmental matrices is another particularly im‐
portant application. This includes metals such as cadmium, copper, lead, chromium, and mer‐
cury, which are major environmental pollutants. Looking into the future, further research
focuses not only on chemometrics and sophisticated interferometers but also on the fine-tun‐
ing of photodiode systems for bespoke system development.

The editor is indebted to all the colleagues from across the world that contributed to this volume
with their latest research, to Jan Skvaril for joining this effort as a coeditor, to several NIRS and
chemometrics experts who volunteered as reviewers, and to InTech for the opportunity to work
on this volume and its members of staff for their constant support during its preparation.

Prof. Konstantinos G. Kyprianidis
Future Energy Center

Department of Energy, Building and Environment
Mälardalen University, Västerås, Sweden
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Abstract

Nowadays, near‐infrared spectroscopy (NIRS) fills a niche in medical imaging due to 
various reasons including non‐invasiveness and portability. The special characteristics 
of NIRS imaging make it suitable to handle topics that were only approachable using 
electroencephalography (EEG) such as imaging infants and children; or studying the 
human brain activity during actions, like walking and drawing that require a certain 
amount of freedom that non‐portable devices such as magnetic resonance imaging (MRI) 
cannot permit. This chapter discusses the unique advantages of NIRS as a functional 
imaging method and the main obstacles that still prevent this technology from becoming 
a  prominent medical imaging tool. In particular, in this chapter we focus on the design 
of the brain‐device interface: the NIRS cap and its important role in the imaging process.

Keywords: NIRS cap design, fNIRS, NIRI, medical imaging accessories, portable brain 
imaging, optode holder

1. Introduction

Near infrared spectroscopy (NIRS) has been gaining momentum due to its unique advantages 
that makes it an indispensable tool in medical research. By successfully resolving certain issues 
of portability and data filtration, NIRS is expected to find a wide application not only in medi-
cine but also in the gaming industry as well as any thought controlled electronic devices due 
to its relatively inexpensive, portable and non‐invasive nature. From a medical standpoint, the 
advantages of NIRS imaging, or functional NIRS (fNIRS), are quite distinct. Much like electroen-
cephalography (EEG), its portability and non‐invasiveness make it a natural choice for imaging 
young children and infants [1]; however, while EEG signals are inherently noisy, non‐linear and 
rely on electrical signal variations on the scalp [2], NIRS offers 1–2 cm depth resolution that is 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



capable of capturing cortical activation [3]. Additionally, NIRS offers higher temporal resolu-
tion than traditional immobile imaging devices such as functional magnetic resonance imaging 
(fMRI) and positron emission tomography (PET), which allows the detection of transient cortical 
events [4]. Undoubtedly, present imaging techniques in general are bound to offer higher tem-
poral and spatial resolution as their design develops over time, but what makes NIRS imaging 
an interesting contender is the combination of the previously mentioned factors which allows 
it to be a suitable device for long‐term cortical activity monitoring. NIRS promises a device that 
can be used anywhere, inside or outside of a lab or hospital setting and that can register cortical 
activation throughout different activities with varying degrees of freedom without particular 
concern towards the subject's age group or physical condition which can have important real‐
life applications today [5–8]. Nevertheless, for NIRS to achieve its full potential the topic of its 
interface is yet to be properly addressed and designed.

The application of NIRS imaging relies on two primary factors: the first factor is the rela-
tive transparency of human tissue to near infra‐red (NIR) light, which penetrates the skin, 
 subcutaneous fat, skull and brain [9]. The second factor is the high attenuation of NIR light 
due to haemoglobin oxygenation levels [3]. More specifically, the term ‘optical window’ is 
used to define the range between 650 and 1350 nm where light absorption coefficients of 
water, melanin in addition to oxy and deoxy haemoglobin, are lowest. This allows a certain 
amount of light to penetrate biological tissue, where it is scattered and eventually diffused 
allowing for a limited amount of tissue penetration to occur. NIR imaging relies on light 
absorption coefficient values of key biological components, such as water, oxy and deoxy 
haemoglobin to measure changes in their concentration over time. For example, as shown 
in Figure 1, the absorption coefficients of oxy and deoxy haemoglobin intersect at around 
805 nm allowing for the use of two distinct NIR wavelengths within the optical window to 
measure the changes in each of these elements [10–12].

Pigmented compounds such as chromophores of skin and hair melanin are also a high source 
of NIR attenuation; however, these factors are easily corrected by adjusting light intensity 
since their value over the period of imaging is constant [13]. The behaviour of NIR light inside 
tissue is also relevant, as the main mechanism of NIR light propagation is scattering, and 
while a part of NIR light is attenuated as it is absorbed by chromophores, the remaining scat-
tered photons resurface back a  certain distance away from the light source allowing the detec-
tion and measurement of light attenuation over time.

Since NIRS allows the measurement of oxy and deoxy haemoglobin changes over time, it 
is considered an indirect method of measuring brain activity based on the neurovascular 
coupling phenomenon that relates neural activation with vascular response. Neurovascular 
coupling refers to the increase in oxy‐haemoglobin (HbO) and simultaneous decrease in 
deoxy‐haemoglobin (HbR) when spatially clustered ‘cortical columns’ that share the same 
functional properties are  stimulated. This cluster formation is what makes brain oxygenation 
levels detectable using optical imaging [14, 15].

NIRS can also provide non‐haemoglobin‐based measurements, by recording data from sev-
eral wavelengths simultaneously, in order to detect tissue chromophores, including cyto-
chrome oxidase the marker of metabolic demands [16]. While some studies suggest the use of 
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NIRS in the detection of cell swelling as a result of neuronal firing in order to directly detect 
neuronal activity; however, these signals are 0.01% smaller than hemodynamic activity mak-
ing it a less reliable method for detection [17–19].

Overall, although the special characteristics of NIR light were first published by Jobsis in 
1977 [9], yet the first 10‐channel NIRS imaging system was only introduced in 1995 and actual 
interest in this technique was only seriously considered with the advent of multi‐channel 
wearable and wireless devices in 2009 [20]; since then NIRS has been used extensively in 
brain imaging research which is reflected in the number of publications that cover its develop-
ment, use and various applications today. Nevertheless, NIRS has low reliability still in single 
 subjects, which makes it unsuitable for clinical applications and restricts its use in large group 
medical research [21–24].

2. fNIRS instrumentation

Any NIRS device can be divided into three major components: (1) a brain device interface that 
includes optodes and the cap stabilizing them, (2) a control module that collects, sorts regis-
tered data and provides the various illumination schemes in addition to data transfer to the 
(3) user interface and main software responsible for analysing data using signal  processing 
algorithms.

Figure 1. Light absorption spectrum of oxy and deoxy‐haemoglobin, the span between 650 and 950 nm is called the 
‘optical window’ due to the relatively low absorption factors in tissue [3].

The NIRS Cap: Key Part of Emerging Wearable Brain-Device Interfaces
http://dx.doi.org/10.5772/67457
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These three branches will be discussed briefly; however, emphasis will be on the interface and 
the essential role it plays on the imaging process.

2.1. The brain‐device interface

The term ‘optode’ refers to both the NIR light emitter and detector that ideally create a fixed 
and predetermined illumination scheme within the cerebral cortex. The source, or light emit-
ter, shines light directly into the scalp, this light is scattered by head tissue causing it to deflect 
in all directions and only a small fraction of this light (approximately one out of 109  photons) 
resurfaces back to the scalp some distance away from the entry position [3]. This NIR light 
distribution was simulated by Okada and Delpy, their study showed the light‐scattering 
pattern within the scalp, skull and cerebrospinal fluid in addition to the sensitivity of each 
source‐detector pair to this scattering, which creates a banana‐like shape within the scalp with 
two narrow ends at the source‐detector locations [25]. Light attenuation can be calculated 
based on the Beer‐Lambert law that links the ratio of incident and reflected intensities to the 
absorption and diffusion phenomenon [9]. On the other hand, the distance where the NIR 
light resurfaces back differs from one subject to another based on age, curvature of the scalp 
and head size and it generally ranges from 3 to 4 cm; therefore, an ideally placed light detector 
at that exit position can capture it. The change in the amount of detected light overtime is used 
as an indicator of the absorption variation of NIR light due to cortical activation.

Based on this light emitter‐detector coupling, also called ‘channel’, it is clear that unlike other 
non‐invasive brain imaging techniques, such as EEG, the integrity of a NIRS signal relies on 
the assumption that the cortical illumination and detection scheme is ideal. This assumption 
entails that the relative position of the detector/emitter couple is constant, and that the detec-
tor, emitter operational conditions are constant throughout the imaging session. However, this 
is often not the case, and so far, it has been a very difficult condition to maintain,  particularly 
for the type of experimental requirements that fNIRS is designed to meet such as  imaging 
freely moving subjects over extended periods of time.

Most successful fNIRS imaging experiments are commonly conducted inside a lab, where the 
subject sits still on a chair and is refrained from talking, smiling or moving their head. With 
the advent of better signal filtration, successful use of fNIRS was also registered in rehabilita-
tion centres with walking patients, or even cycling [5, 26, 27]; however, constrains on facial 
expression and subtle head movements still apply, because while certain movement artefacts 
such walking and running and obvious head movements are easier to isolate and/or filter out, 
facial expressions are far more difficult to detect. Small facial muscular fluctuations or hair 
resistance to NIRS optodes that are unnoticeable to outside observers can cause the entire 
optode holder to slide or cause slight optode inclinations. Such inclinations that fluctuate 
over the imaging period can cause light scattering outside the scalp, poor light detection or 
displacement of surrounding hair in front of optodes resulting in false attenuation values that 
cannot be accounted for using common artefact detection methods. Therefore, subjects with 
dark and voluminous hair are typically the hardest to image as any displacement of hair in 
front of the optodes can jeopardize the integrity of the results while voluminous hair adds 
resistance and counter pressure against the optode holders.
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As mentioned previously, optical penetration is usually 1–2 cm, which is typically half the 
source‐detector distance. Such penetration depth translates to 5–10 mm of outer brain tissue 
penetration after subtracting the thickness of the skin, subcutaneous fat and skull (which vary 
from one person to another and with age), this allows the detection of the outermost cor-
tex activation [3, 10]. Most NIRS devices rely on two light wavelengths simultaneously to 
measure both oxy and deoxy haemoglobin changes [28–30], while three or four wavelengths 
might be used in some cases in order to either extract changes in other species, such as water 
and lipids [31, 32], or to couple with time resolved methods for additional parameters such as 
blood flow and absolute tissue saturation [19].

There are various types of NIR light sources, the two most commonly used emitters today are 
laser diodes and light‐emitting diodes (LEDs). Laser diodes provide a technical advantage 
over LEDs as they have higher light intensity and smaller optode size, which allows for better 
hair penetration and scalp contact. However, they have higher energy consumption and cost, 
thus their use is not suitable for portable devices outside a lab environment. LEDs require 
simpler circuitry; they generate a light spectrum of about 30 nm and are the natural choice so 
far for portable fNIRS systems [19].

As for light detectors, the most common choice is avalanche photodiodes (APDs) that 
translate the amount of detected photons into current and have low power consumption 
with the capacity to increase the detected light intensity. In addition, APDs are fast with 
more than 100 MHz speed and have a high sensitivity with the dynamic range of approxi-
mately 60 dB. Some devices rely on silicon photodiodes, however, these have a medium 
speed and lower sensitivity but a higher dynamic range with approximately 100 dB [19]. 
Modern microfabrication techniques are aiming at the creation of smaller LED and APD 
designs with enhanced capability, which is essential to the development of next generation 
portable fNIRS devices.

Finally, when it comes to optode holders, there are two major types of optode stabilizing 
methods, the cap (a soft headwear) that covers the entire head, with prefixed locations for 
optodes, much like an EEG cap. However, in NIRS caps, the optodes are not prefixed on the 
cap in order to allow for hair manipulation and tossing to take place prior to optodes instal-
lation. The other common types of optode holders are the rigid patches that cover a certain 
cranial zone. The term ‘rigid’ refers to the material used for stabilizing the optodes, since 
although they are made of silicon which allows it to bend slightly to fit the head shape at a 
given location, the distance between the optodes is fixed as the material itself does not stretch, 
unlike the cap, thus the distance between the optodes is fixed throughout the imaging session 
giving the patches a clear advantage over the caps. Both designs are prone for sliding, how-
ever, requiring additional restrains to keep them in place, such as attachments under the chin 
or to a belt that goes under the armpits and over the chest.

2.2. The electronic control module

The electronic control volume is directly connected to the optodes and therefore is the por-
table part of the fNIRS device in addition to the interface. This component is responsible for 
the illumination scheme in addition to data gathering and transmitting (in portable devices). 
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Lighting strategies in fNIRS aim to reduce power consumption and heating of the scalp in 
addition to differentiating between various light emitting sources, which is essential to distin-
guish between the different channels when there are multiple light emitters within the range 
of a single detector. Therefore, the control module employs a certain method for multiplexing 
and/or modulating of light sources.

However, the most significant aspect of the control module is its illumination technique. There 
are three major types of illumination schemes used today which are shown in Figure 2. The 
most common type is continuous wave (CW) which measures simply the backscattered light 
intensity attenuation. The second type is the frequency domain (FD), which uses intensity‐mod-
ulated light in order to measure both attenuation and phase delay of returning light. The third 
technique is the time domain (TD), which relies on short pulses of light as an illumination source 
and detects the shape of the pulse after propagation through the tissue; this technique provides 
information about spatial specificity in addition to tissue absorption and scattering [33].

The CW scheme is relatively simple and cost effective as it relies on establishing a baseline, or 
a zero state, and then compares oxy and deoxy absorption changes to this initial value during 
a certain test or a task. However, only FD and TD methods can provide absolute characteriza-
tion of tissue properties including the distinction between absorption and scattering in the 
tissue [20]. Nevertheless, a more complex scheme is generally associated with lower time 
resolution and is more susceptible to noise and movement artefacts, since determining the 

Figure 2. The three type of fNIRS illumination techniques: (a) continuous wave, (b) frequency domain and (c) time 
domain (TD).

Main characteristics Continuous wave Frequency domain Time domain

Sampling rate (Hz) ≤100 ≤50 ≤10

Discrimination between 
cerebral and extra‐cerebral 
tissue

Not possible Feasible Feasible

Measuring HbR, HbO Only changes Absolute value Absolute value

Measuring scattering, 
absorption coefficient and 
pathlength

No Yes Yes

Measuring tissue HbO 
saturation (%)

No Yes Yes
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time of flight is effected with geometrical and contact changes. The major differences between 
the three techniques are summarized in Table 1.

It is important to keep in mind that as fNIRS fills a special niche for portable imaging systems, 
the most important qualifications in general are those related to power consumption and 
size, which explains why most fNIRS devices adopt the simplest illumination technique. In 
addition, present application of fNIRS does not require tissue characterization as it is more 
concerned with changes in blood oxygenation rather than absolute absorption values [3]. 
However, both of these aspects might change as fNIRS reliability is increased and the technol-
ogy used in FD and TD systems becomes more compact and power efficient.

2.3. Data analysis and user interface

This is where data from each illumination channel are gathered in order to be filtered, quantified 
and presented in a user friendly fashion. It is also where certain controls over the system in general 
are provided from the end user as actions and input variables. The fNIRS software package is usu-
ally provided on a computer or even a tablet with a Bluetooth connection to the control module.

There are many algorithms and software dedicated to optical imaging and signal quantification 
based on how light behaves in tissue. The two most widely used theoretical models are the differ-
ential pathlength factor (DPF) and the diffusion approximation. Both assume that tissue is homo-
geneous, however, the diffusion approximation method assumes that scattering is larger than 
absorption; therefore, each type of tissue has a specific geometry (infinite, semi‐infinite, slab or 
two‐layered) [34, 35]. Still, since the two models rely on quantification over a given path, interper-
sonal differences such as the thickness of scalp, skull and cerebral spinal fluid in addition to hair 
and skin melanin concentrations are bound to create biases in spatial localization of brain activity 
particularly with TD and FD methods, but they are less significant in CW methods [25, 36, 37].

This chapter will not cover all the various aspects related to the proper functionality of this 
component, it will only concentrate on aspects related to noise attenuation and filtration for 
their obvious relation with the signal quality obtained that is provided by the device interface 
and is affected by the cap design.

In general, noise sources can be either instrumental, experimental or physiological. Instrumental 
and experimental artefacts refer to experimental errors including movement artefacts and 
device malfunction and have to be dealt with prior to data analysis. Physiological errors on 
the other hand are due to certain changes in the physiology of the subject that affect but are 
not part of the intended experiment. These are usually treated with filters after the conversion 
of raw signals to haemoglobin units either using algorithms that compensate for pulse‐related 
artefacts or by using additional NIRS channels that measure extra‐cortical hemodynamic varia-
tions [3, 10–12, 38]. Instrumental errors have to be dealt with prior to any testing, since they can 
easily overpower the measured signals. Whereas movement artefacts should be approached by 
carefully controlling the experimental environment whenever possible. However, since abso-
lute control over the entirety of the experiment is not likely, not to mention that the nature of 
the experiment itself might produce movement artefact, such as walking or cycling, special 
algorithms have been developed to filter out these errors using additional data collecting meth-
ods, such as a camera [39] or an accelerometer [38, 40].
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Nevertheless, to date there are no methods that can provide any information regarding 
optode‐scalp contact ‘quality’ to ensure that the received data reflect that of an ideal illumina-
tion condition throughout the imaging session.

3. fNIRS caps: objectives and challenges

Clearly, the primary objective of the NIRS cap is to stabilize the optodes, making sure that 
they are in constant contact with the scalp throughout the imaging period. However, in prac-
tice, there are other concerns that affect the proper functionality of the NIRS cap and its future 
use, namely: the installation process and subject comfort.

The effect of optode stability on fNIRS signal quality was not quantified until recently, when 
the work presented by Yücel et al. was published in 2013 and 2014 [41, 42]. In these stud-
ies, the authors glued fibre optic optodes on the scalp using collodion, which is normally 
employed with EEG electrodes to monitor epilepsy patients. Using this method, the authors 
reported 90% reduction in signal change due to movement artefacts, a signal‐to‐noise (SNR) 
increase by sixfold and threefold at 690 and 830 nm wavelengths, respectively, and a statisti-
cally lower change in both oxy and deoxy haemoglobin during movement artefacts. In spite 
of the fact that their optode stabilizing methodology may not be practical for short‐term and 
off‐hospital settings. Nevertheless, this study provides an objective assessment of the effect of 
interface stability on the fNIRS signal, especially with moving subjects.

Nevertheless, the task of stabilizing the optode using a mechanical device is quite elusive due 
to several reasons:

1. Current optode stabilization techniques rely on pressure; however, pressure is also a major 
source of discomfort. Thus, the more stable the optode, the more discomfort it is bound 
to create for patients. Such conditions might be tolerable for short‐term monitoring peri-
ods of 10–20 minutes; however, as the imaging session becomes longer these stabilizing 
techniques may not be acceptable. Presently, there are no studies identifying the comfort 
pressure threshold on the scalp, although such studies were done for other anatomical 
parts of the body [43]. Additionally, pressure values necessary to stabilize the optode are 
also unspecified yet. Preliminary results indicate that comfort pressure values on the scalp 
are not uniform, as the forehead and the back of the head, particularly the area behind the 
ears tend to be more sensitive than other areas on the scalp. More importantly, the differ-
ence between the pressure needed to provide optode stability (approximately 30–45 Pa) 
versus the comfort pressure margins on the head (50–60 Pa) is very small [44], therefore, 
designing an optode holder that relies solely on pressure is quite a challenging task. It is 
important to mention at this stage that both the comfort pressure as well as the pressure 
values necessary to stabilize the optode are tentative preliminary results and that such 
claims can only be established once a study on a large number of participants is conducted. 
In general, the results obtained from the preliminary study are in accordance with lab 
observations as fNIRS results tend to be better with less comfortable and higher pressure 
inducing headwear.
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2. Since the importance of having a tight headwear at all cranial positions has been well 
clarified, one of the major obstacles in designing an ideal fNIRS cap is presented in head 
shape variations from one subject to another. Such variations can even be present within 
the same subject as differences between the right and left side of the cranium might exist. 
These often cause uncomfortable high pressure areas versus ‘pressure gaps’ where the 
optode fails to provide the necessary force to maintain scalp contact or prevent surround-
ing hair from covering the optode. While imaging companies try to compensate for gen-
eral head shape variations by providing three (or more) headwear sizes (small, medium 
and large); even introducing different designs for certain markets in order to compensate 
for head shape differences between several ethnicities [45]. However, interpersonal head 
shape variations cannot be accounted for and simple caps often cannot meet the basic 
requirement of providing a perfect fit for all subjects. Partial head covering patches may 
present a reasonable solution in cases where imaging the entire head is not required, as 
their size allows for a certain degree of manipulation over the required imaged zone. 
However, such patches are prone to slippage and require extra attachments to keep them 
in place.

3. The third factor in assessing an optimal cap design is the difficulty associated with its in-
stallation. While fNIRS cap installation is considered a cumbersome task that necessitates 
an expert technician, it is important to keep in mind the anticipated goals of a portable 
brain imaging system, including its role as a brain‐device interface with applications span-
ning from gaming to medical devices. Therefore, unassisted single person installation is 
the ultimate goal for future fNIRS applications, albeit it is far from becoming reality with 
present designs.

Today, the installation of the fNIRS cap can be a long process that starts with taking gen-
eral head measurements to identify important reference locations based on the 10/20 sys-
tem. This is followed by the placement of the patch or cap and documenting the distance 
of the optodes from this (these) reference points, then rigorous clearing of hair at various 
optode locations is performed, and finally the optodes are placed. This process may take 
up to one hour based on the cranial area covered and the type as well as the amount of hair 
present. Therefore, attempts at creating easier installation of optode holders invariably 
address easier hair tossing or clearing methods, since this is generally the most time‐con-
suming part of the process. Apart from providing certain clearances around the imaged 
zoned to easily toss the hair (particularly when using the patches) the only solution so far 
seems to be in creating smaller optodes that would infiltrate hair to ensure optimal scalp 
contact in addition to increasing localized optode pressure by an in‐house spring. These 
solutions assume that optode size can eventually decrease to a point where it can become 
comparable to hair strands. However, this is far from the actual optode design available 
presently.

Based on these observations, it is clear that traditional fNIRS caps cannot meet the demand-
ing requirements of portable fNIRS‐based imaging. But before proceeding to possible future 
solutions, the next section will focus on fNIRS cap designs that were developed so far in the 
literature and whether possible solutions can be based on these proposals.
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4. The design of the optode holder: an overview

The design of the fNIRS cap has not received much attention in research or in the literature. 
This was due mostly to the fact that the fNIRS device is purely an electronic one, thus it elic-
ited the focus of electrical and optical engineers and physicians while the optode stabilizing 
method itself, a mechanical device, was mostly dealt with as an accessory. The NIRS cap and 
the installation process were mentioned in 2009 by Huppert et al. for the first time, where 
the author voiced the importance of stabilizing the optodes and its effect on reducing experi-
mental errors. The authors suggested more anchoring methods to attach the head band to the 
body in order to reduce the effect of the weight of the optodes on motion instability. They 
were also the first to mention the important dilemma of subject comfort during imaging due 
to the additional restrains [3].

The design proposed by Huppert et al. is shown in Figure 3, and it portrays the stretchable 
cap that is used to stabilize a polymer patch which acts as an optode holder. Thus, the cap 
provides both a rigid spacing for the optodes and a flexible material to hold the patch in place, 
with additional Velcro attachments to stabilize the optodes and their wiring. The authors 
specify that even more rigorous attachments are needed for moving subjects. The design was 
made for in‐lab fNIRS measurements; therefore, the stability it provided with moving subject 
was not demonstrated.

Apart from this example, other attempts to create a head band for the prefrontal area were 
also introduced in 2009, where no complications due to hair interference can be found and 
the stability of the head band can be controlled by simply increasing the amount of pres-
sure by changing the size of the head band. One such design is presented by Atsumori 
et al. [46]. While similar designs may be useful for gaming applications, in addition to 
few medical and research studies that focus on the prefrontal cortex, however, the bulky 

Figure 3. Stretchable cap design that holds a flexible polymer patch and stabilizes it with Velcro attachments [3].
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design represents additional mass that would contribute to movement artefacts, also the 
fact that it relies solely on pressure to ensure stability makes its use restricted to short‐term 
applications.

Another study for an fNIRS cap was presented by Kiguchi et al. in 2012 [47], using a cap that 
was made of a black rubber. This might be considered the earliest study dedicated to the 
fNIRS cap for ‘haired’ regions including the design of the optodes. The optodes in the helmet 
like cap are fixed on the inside, as an integral part of the helmet that cannot be accessed or 
manipulated by the end user. Instead the authors chose to stabilize the optodes surround-
ing hair by rubber teeth. These teeth aim also to reduce the discomfort presented by optode 
localized pressure that was induced by a spring. Although this study is dedicated for por-
table fNIRS devices, however, it does not mention neither the installation process nor pres-
ent a comparative demonstration of the stability it provided to the optodes versus other cap 
designs. Nevertheless, the bulky design does not present a practical solution against weight‐
induced movement artefacts, additionally, holding the hair in place does not guard against 
slippage or blocking the NIR light by hair in front of the optode.

Regardless of the success of the design proposed by Kiguchi et al. the idea of using a glass 
rod to reduce optode‐scalp contact area which results in less optode resistance by surround-
ing hair has been adopted in the first open‐air fNIRS study published by Piper et al. in 2014. 
This study also provides the first comparative look at the effect of movement artefacts on 
signal integrity. The imaging quality was tested under three different conditions that varied 
between indoor sitting on a stationary bike, indoor pedalling on a stationary bike and out-
door bicycle riding [26]. The fNIRS cap used in this study is the regular EEG‐inspired elastic 
cap that has been available in the market for sometime. However, innovation lies within the 
minimization of optode size that is further reduced by the use of a 3 mm in diameter glass 
rod to guide the light into and from the scalp, in addition to reducing the weight of the con-
necting optode wires. Although this improved design has allowed the implementation of 
fNIRS imaging outdoors, still movement artefacts affected the fNIRS signal visibly as dem-
onstrated by the study. As rejected channels per person were only 5% for someone sitting 
on a stationary bike, but this value increases to 7.5% during indoor pedalling and reaches 
35% for outdoor cycling [26]. Obviously, a different approach for designing optode holders 
is warranted.

A comprehensive study on the design of an optimal fNIRS cap was provided by the work of 
the Imaginc group, in order to explore several design ideas that targets the issue of patient 
comfort and signal stability [11, 12, 44, 48]. Their study showcased several concepts ranging 
from padded fNIRS caps/helmets that were geared towards patient comfort, to Velcro patches 
that provide a none flexible alternative to stretchable caps with an option of adding strands 
or adjusting for size based on the subject's head shape; in addition to stretchable elastic bands 
that provide extra space for hair tossing and ventilation, as shown in Figure 4. The study 
concluded that designs that focused on patient comfort as a primary goal failed completely in 
providing the necessary grip for optode stability. While designs that focused on optode sta-
bilizing based on applied pressure were relatively successful and their success was a function 
of the amount of pressure it provided on the participant's scalp.
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The direct correlation between pressure and signal stability regardless of cap design was 
clearly demonstrated in a comparative experiment between different cap models that were 
developed by the Imaginc group. The most successful models that were tested included the 
Velcro cap, the elastic band cap and the neoprene cap. Movement artefacts were recorded 
while the subject was sitting motionless, as a baseline, then while moving the head back-
wards, forwards and sideways followed by a period of walking. The results obtained are 

Figure 4. Different headwear designs for optode holders, comfortable versus stable cap designs.
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shown in Figure 5, that also note the number of rejected channels in each case. Surprisingly, 
in spite of previous results that have restrained the use of the neoprene cap to stationary in‐
lab testing, while the Velcro and elastic band caps were more successful with freely moving 
subjects, the neoprene cap presented surprising noise artefact reduction, even while moving 
the head. This was due to the fact that the cap was too tight and visibly uncomfortable for the 
user, which is a clear indication of the inverse relation between optode stability and comfort. 
On the other hand, the effect of head movement on motion artefacts was much larger than 
walking, even without using motion filtration methods.

This led the team to explore other methods to stabilize the optodes that do not rely entirely on 
localized pressure. These proposals will be reviewed in the following section.

Figure 5. Comparative look at the various cap designs and motion artefacts under different conditions: sitting, head 
movements and walking.
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5. Gripping the head: the future of fNIRS caps

Previous studies conducted in the field of fNIRS cap design lead to an obvious conclusion, 
relying on pressure alone as a means of stabilizing the optode is not a good strategy when 
it comes to imaging applications. Conversely, the science of providing a perfect grip for any 
object is not a new one particularly in the field of robotics. Indeed, robotic arms that are 
being developed for several applications ranging from the industrial to the medical have 
already crossed several milestones in achieving gripping capabilities against slippage in addi-
tion to handling sensitive objects with speed and accuracy. In reviewing the vast literature 
 published in this field, it is possible to find a couple of comparable solutions that can provide 
the required amount of grip, mould‐ability with individual head shapes and ensuring patient 
comfort at the same time [48].

While handling sensitive objects, a firm grip is often associated with engulfing the gripped item 
in order to create a distributed pressure force instead of localized ones; additionally, engulf-
ing the gripped object creates friction, which is the horizontal force that prevents  slippage 
[47]. The more surface area of the object is covered the better hold the gripper provides with 
improved protection against slippage. Technologies such as the ‘universal  gripper’, for exam-
ple, can firmly hold a raw egg without breaking it. While on the other end, sensor‐equipped 
artificial hands provide a perfect grip using accurate feedback of the amount of force applied 
on each point. The difference between these two technologies is vast, as the universal gripper 
is an extremely simple solution that relies on moulding the gripper to fit around the object, by 
the use of a simple grain‐filled elastic bag and a vacuum pump [49]. On the other hand, the 
sensor‐equipped gripper requires numerous actuators, a processor and sensors to perform 
properly [50].

Since the quality of the grip is as important as the force that is required to provide it. The two 
previous methods can translate into pneumatic solutions that are promising for fNIRS imag-
ing. The sensor‐based system although costly offers an important additional feedback input 
that has been thus far lacking in present fNIRS systems, the quality of contact: or in other 
words, the amount of pressure at each optode location. Thus, defining the optimal optode 
pressure becomes an important factor in such systems and can help filter out signals when 
optode pressure values are below a certain threshold. Such a system can have the inflatable 
cap structure proposed in Figure 6. The two‐layered air tight cap should be made of two dif-
ferent polymer types, with a more elastic one at the interior in order to allow for maximum 
moulding and expansion on the inside of the cap rather than the outside. Additionally, the 
interior of the cap should be lined with pressure sensors that provide feedback to a microcon-
troller. Based on the return signal, the microcontroller changes the state of the valves (either 
open or close) in order to inflate the air pockets. It also controls the air pump that inflates 
the balloons and turns it off once all the valves are closed. Dividing the cap into several air 
pockets is also an important part of the design, since interpersonal variations in certain cranial 
zones are less than in other areas.

The inflatable pockets can help also provide optode cushioning, which not only increases its 
stability but also allows for overnight use of the fNIRS imaging system.
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However, this solution presents technological challenges, such as the fabrication of sensors, 
micro‐valves, miniaturized pump and controller. In addition to ensuring that the power con-
sumption of the added electronic components is minimal and that the cap's weight is low.

The second pneumatic solution, on the other hand, requires a vacuum pump that is not nec-
essarily integrated in the cap itself, and it can be considerably less challenging from a tech-
nological point of view. One example of a vacuum fNIRS cap that is an adaptation from 
the universal gripper concept is presented in Figure 7. As shown, the cap can be a regular 
fNIRS headwear that is lined with small grain‐filled balloons, or it can be made of an air tight 
polymer that covers the entire head also filled with small grains (the examples shown are 
filled with coffee or small foam grains). No embedded electronic components are necessary or 
required for this solution, instead, the cap can be firmly placed on the participant's head, then 

Figure 6. Inflatable pneumatic cap design: a) a schematic representation of the various inflatable cap components b) a 
top view showing the location of the various components on the head. The cap is divided to several air pockets that are 
lined up with pressure sensors, once the return signal from all pressure sensors at a given air pocket are above a certain 
value, the microcontroller closes the valve of that air pocket, and once all air pockets valves are closed the pump is turned 
off too [44].

Figure 7. Vacuum fNIRS cap design (a) an airtight latex cap covering the entire head and filled with granular foam balls, 
(b) a regular fNIRS cap lined with tube balloons filled with coffee grains [44].
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the vacuum pump is used to ‘mould’ the cap and jam the grainy material in order to create a 
tight grip on the head. Once this is achieved, hair can be tossed securely and the optodes can 
be placed in their designated sockets. The cap firmly holds the head until the imaging session 
is over then air is allowed back into the cap thus loosening its grip.

With such gripping methods, the cap is expected to be worn without the need for additional 
attachments connecting the cap to a belt under the arms or to the chin. However, without 
an actual demonstration of the stability of these designs, such expectations remain specula-
tive. Preliminary results from the vacuum cap design indicate that the complete head wear 
provides a tighter grip than the balloon‐lined design due to the increase in the gripped 
surface area.

So far, the topic of future fNIRS caps focused on user's comfort and optode stability. 
However, cap installation is an important part of anticipated fNIRS imaging applica-
tions, not to mention its present day relevance for medical research considering the time 
and effort it requires from experts in the field of imaging. This has been generally due 
to the assumption that once smaller optodes were designed, the need for hair clearing 
would diminish; therefore, no mechanical methods would be necessary to clear the hair 
and ensure optode/scalp contact. Additionally, as optode holders generally provide a very 
small space (0.7–1.2 mm in diameter) to place the optodes, this complicates the design of 
a mechanical hair tossing device to operate in. Consequently, designing a hair clearing 
optode holder can be a very expensive endeavour. So far, the best caps or optode holders 
from installation point of view were considered the ones that provided a clearing around 
the optode location to help with the hair tossing process. Therefore, small polymer patches 
or the elastic band cap in addition to the adjustable Velcro strips cap in Figure 4 are prefer-
able to other complete head covering models. Still, the installation process even with the 
help of adjustable patches or additional spaces around the optode requires the help of an 
expert technician, as the only advantage they provide thus far is that of reduced installa-
tion time.

Although the topic of the importance of a hair clearing optode holder is debatable given 
its complexity, clearing and holding the hair in place can potentially help in stabilizing the 
optode holder itself. Therefore, the basic concepts for such a device will be mentioned here for 
future references. As shown in Figure 8, hair tossing can be performed using either a double 
hair tossing pins, a single hair tossing pin or multiple pins directing hair from the middle of 
the opening outwards. Such mechanisms can be added to the socket, which is the locking 
mechanism used to place the optode on the cap. Integrating a hair clearing mechanism that 
can be activated by simply placing the optode inside the opening can potentially allow for 
single user installation, without the need for an expert technician.

Applying these clearing techniques on hair is faced with certain complications, such as 
hair directionality; therefore, for a socket that has two pins, parting the hair from the 
middle cannot be helpful at locations where hair direction is not parallel to the pins. This 
is even more complicated with one pin parting designs, therefore ‘adjusting’ methods for 
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pin directionality are necessary, such as designing a pin that can be placed in any of three 
placement  combinations. Ideally, parting the hair from the middle is the best method, as 
it eliminates all difficulties associated with the other two methods. From a practical stand-
point, the size of such pins would be in the millimetre range (maximum a centimetre); 
therefore, any concept needs to be tested on various levels, mechanical design, machining 
and implantation in order for it to be viable. Preliminary results obtained from the study 
presented by Kassab [48] shows that a collet‐based pin concept that parts the hair from 
the middle by a simple twist of the optode holder can provide an interesting solution 

Figure 8. The various components of the optode housing and how it connects to the socket that is attached to the cap, a 
spring located inside the optode housing provides an additional pressure to maintain optode/scale contact. Hair clearing 
can be achieved via the development of socket designs that can play a dual role, by adding a hair clearing mechanism to 
it. Possible hair parting methods are: (a) dual parting pins, (b) single parting pin and (c) multiple parting [48].
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for single user applications. Such a design can be very simple to use, would not require 
knowledge about hair directionality and is not affected by a hair type. More importantly, 
it can potentially lock the hair around the optode holder thus providing additional cap 
stabilizing mechanism.

6. Conclusion

The aim of this chapter is to demonstrate the importance of fNIRS caps or optode holders as 
an interface, and how the imaging signal and ergo the future use of fNIRS can be affected by 
its efficiency and performance. The major challenges of an efficient imaging cap were articu-
lated as well as present available models and possible future solutions. In general, the field 
of fNIRS imaging has not been generous when it comes to studies aimed at the interface 
itself, albeit designing an ideal imaging cap can potentially be a major factor in solidifying the 
 marketability of fNIRS imaging as an inexpensive medical device by increasing its reliability 
and creating a user friendly and practical system.

In preparing this study on fNIRS caps, it was obvious that several areas were in need of proper 
documentation, including basic definitions or guidelines, such as the pressure values for 
optode stability versus pressure values for patient comfort on the head. Such design param-
eters are important for any tight headwear and medical device designs. On the other hand, 
while there are numerous studies on movement artefact algorithms and how to filter out or 
control them, studies on optode inclination and detachment as a movement artefact associ-
ated with facial expressions or head movement, and how it affects the imaged signal is not yet 
approached. With long‐term imaging, issues pertaining to the effect of sweat and heat on the 
imaged signal is also an important one, and when considering freely moving subjects, pres-
sure fluctuation with motion, or the dynamic pressure, on the head and how it correlates with 
motion artefacts can also present an important feedback defining sources of error and isolat-
ing factors that have affected the reliability of fNIRS imaging for the past couple of decades.

Finally, when it comes to testing the efficiency of fNIRS cap designs, there are no protocols or 
standards that define its proper use and limitations. For example, some patches can be very 
practical with motionless subjects for finger tap testing or visual stimulation; however, they 
might fail with freely moving subjects. Therefore, establishing a proper testing mechanism 
for fNIRS caps can also aid workers and end users in understanding the limitations of each 
device and thus avoid possible errors in application.
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Abstract

Acute coronary syndrome (ACS) arising from plaque rupture is the leading cause of 
mortality worldwide. Near-infrared spectroscopy (NIRS) combined with intravascular 
ultrasound (NIRS-IVUS) is a novel catheter-based intravascular imaging modality that 
provides a chemogram of the coronary artery wall, which enables the detection of lipid 
core and specific quantification of lipid accumulation measured as the lipid-core burden 
index (LCBI) in patients undergoing coronary angiography. Recent studies have shown 
that NIRS-IVUS can identify vulnerable plaques and vulnerable patients associated with 
increased risk of adverse cardiovascular events, whereas an increased coronary plaque 
LCBI may predict a higher risk of future cardiovascular events and periprocedural 
events. NIRS is a promising tool for the detection of vulnerable plaques in CAD patients, 
 PCI-guidance procedures, and assessment of lipid-lowering therapies. Previous trials 
have evaluated the impact of statin therapy on coronary NIRS defined lipid cores, whereas 
NIRS could further be used as a surrogate end point of future ACS in phase II clinical tri-
als evaluating novel anti-atheromatous drug therapies. Multiple ongoing studies address 
the different potential clinical applications of NIRS-IVUS imaging as a valuable tool for 
 coronary plaque characterization and predictor of future coronary events in CAD patients.

Keywords: near-infrared spectroscopy (NIRS), intravascular ultrasound (IVUS), thin-
cap fibroatheroma (TCFA), acute coronary syndrome (ACS), vulnerable plaque

1. Introduction

Coronary artery disease (CAD) is the leading cause of global mortality and the rupture of an 
unstable atherosclerotic plaque precedes the majority of acute coronary syndromes (ACS) [1, 2]. 
Autopsy studies have shown that the putative substrate for most ACS and many cases of sudden 
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cardiac death (SCD) is the rupture of a thin-cap fibroatheroma (TCFA), the so-called “vulnerable 
plaque,” which is defined by a large lipid-rich necrotic core (NC) infiltrated with abundant mac-
rophages and separated from the bloodstream by a thin fibrous cap [3, 4]. The ability to accu-
rately detect index lesions using intravascular imaging is a potential attractive strategy, although 
it still remains a challenge in daily practice. Conventional coronary angiography (CCA) has been 
and continues to be an invaluable tool for epicardial coronary stenoses assessment and treat-
ment [5]. Since the coronary angiogram provides a limited “luminogram” view of the coronary 
arteries, it cannot assess the properties of the arterial wall and thus tends to underestimate the 
true magnitude of plaque burden, especially in early stages of the disease in which positive 
vascular remodeling leads to a normal lumen caliber appearance on angiography despite sub-
stantial vascular wall plaque [6, 7]. Moreover, angiography provides no information in regard 
to plaque composition and biological activity, whereas intravascular imaging can potentially 
circumvent those limitations [8]. Several intravascular-imaging modalities, such as angioscopy, 
intravascular ultrasound (IVUS), virtual histology (VH), optical coherence tomography (OCT), 
and near-infrared spectroscopy (NIRS), have been developed throughout the quest of vulnerable 
plaque to characterize plaque composition and progression, to optimize patient risk stratification 
and for guiding therapy [9].

Near-infrared spectroscopy (NIRS) is a novel intravascular-imaging modality that pro-
vides chemical assessment related to the presence of cholesterol esters in lipid cores and 

Figure 1. Timeline regarding important steps toward NIRS-IVUS imaging system development and use in clinical 
applications.
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can generate spectra that distinguishes cholesterol from collagen in coronary plaques 
through their unique spectroscopic fingerprints [10]. NIRS was first used in 1993 for the 
detection of lipid content in an experimental animal model [11], followed by subsequent 
ex vivo validation in human cadavers [12]. In 2001, a device prototype for intracoronary 
imaging was developed, which led to multiple case series and clinical studies in the fol-
lowing decade [13–15]. This technology aims to detect vulnerable lipid-rich plaques (LRPs) 
by NIRS chemogram [16], whereas recent literature has demonstrated the association of 
LRP and culprit lesions in ACS [17, 18], as well as with nonculprit lesions in ACS [19], 
in percutaneous coronary intervention (PCI)-related procedural complications [20, 21], 
in plaque  regression with statins therapy [22] and with the occurrence of cardiovascular 
events [23]. NIRS received US Food and Drug Administration (FDA) approval for clinical 
use in 2008 and for  NIRS-IVUS system in 2010, followed by regulatory approval in Europe 
(CE marked) and Japan in 2011 and 2014, respectively (e.g., Figure 1) [24].

2. Near-infrared spectroscopy system

2.1. Principles of diffuse reflectance NIRS

Spectroscopy is based on the analysis of electromagnetic spectra induced by near-infrared 
light and provides direct evaluation of plaque composition, which could yield information 
on plaque vulnerability [13]. Several spectroscopic methods have been investigated for the 
purpose of identifying atherosclerotic plaque composition, although the commercially avail-
able catheter uses diffuse reflectance NIRS [13, 25]. The principle of NIRS relies on the interac-
tion of light in the form of photons with different functional groups of organic molecules in 
a tissue, which results in reflected light in the NIR region from molecular vibrational energy 
in the form of oscillations of atoms within their chemical bonds. Photons can be absorbed or 
scattered by tissue, which determines the amount of light that is detected by the spectrom-
eter. The wavelengths of light in NIRS are approximately in the 800–2500 nm range. Unique 
combinations of carbon-hydrogen (C-H), nitrogen-hydrogen (N-H), and oxygen-hydrogen 
(O-H) bonds are responsible for the major absorption of NIR light, whereas each functional 
group of large complex molecules yields absorption patterns at specific wavelengths, known 
as the spectroscopic chemical fingerprint, that provides qualitative and quantitative information 
on sample recognition and tissue characterization (e.g., Figure 2) [13, 26, 27].

Diffuse reflectance NIR spectroscopy has many features that enable in vivo lipid-core plaques 
(LCP) analysis in coronary arteries. The term “near” indicates the section of infrared that is 
closer to the visible light region with a longer wavelength and hence a lower energy than vis-
ible light. NIR has the ability to identify organic compounds from light penetration through 
blood and tissue, since hemoglobin and water have relatively low absorbance in the NIR 
wavelength, avoiding the need to be in contact with tissue or to clear the field of view with 
saline or contrast flush or by vessel occlusion [13, 26]. Moreover, it can provide simultaneous 
image acquisition and nondestructive chemical analysis of biologic tissue with rapid acquisi-
tion time (<1 s) from an ultrafast laser source, overcoming cardiac motion artifacts. Diffuse 
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NIR spectroscopy has been used to identify multiple plasma constituents, to monitor systemic 
and cerebral oxygenation and also provides a specific chemical measure of LCP [13, 26, 27]. 
Other spectroscopy techniques are currently under research development for intravascular 
applications, including Raman spectroscopy, fluorescence spectroscopy, and magnetic reso-
nance spectroscopy (e.g., Table 1) [13, 25].

2.2. NIRS-IVUS-combined catheter system

Spectroscopy has a strong fundamental basis for compositional measurement and is a highly 
efficient method for the identification of chemical components of unknown organic mole-
cules. A single NIRS modality catheter system, the LipiscanTM (InfraRedx Inc., Burlington, 
MA, USA), was first developed for invasive detection of LCP [26]. In order to obtain anatomi-
cal information on the vessel and optimal plaque characterization, a hybrid technology (TVC 
Imaging SystemTM, InfraRedx Inc.) combining near-infrared spectroscopy(NIRS) and intra-
vascular imaging (IVUS) was further developed, which allows simultaneous, co-registered 
acquisition of structural and compositional data of coronary artery plaques. Thus, combin-
ing the two complementary technologies enables a complete assessment of patient’s arteries, 
including vessel size and structure, plaque volume, area, and composition [26, 35].

Figure 2. Near-infrared spectra detection and analysis of various components of a lipid-core plaque by NIRS-imaging 
system. NIRS intracoronary imaging is performed by the catheter’s optical tip under automated rotating pullback that 
enables to rapidly scan the arterial vessel wall circumferentially and longitudinally. The catheter tip emits and collects 
light that interacts with different functional groups of molecules of the arterial wall and plots the relative absorbance of 
light across the wavelength range, which generates a spectrum. Thousands of NIR spectra are collected and produces a 
unique chemical “fingerprint” of the lipid-core plaque.
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The commercially available NIRS-IVUS imaging system consists of a 3.2-French (F) rapid-
exchange catheter compatible with 6F-guiding catheters, a pullback and rotation device, and 
a console that houses the scanning NIR laser, the computer that processes the spectral signal 
and two monitors [10, 26, 36]. Within the catheter body is a rotating core of optical fibers that 
deliver near-infrared light and measure the proportion of light reflected back over the range 
of optical wavelength (800–2500 nm) in the form of an imaging spectrum. The catheter-imag-
ing core enables to collect data rapidly by rotating at 960 rpm with synchronized pullback 

Raman NIRS Fluorescence 
spectroscopy

Diffuse reflectance 
NIRS

Nuclear magnetic 
resonance (NMR) 
spectroscopy

Principle Raman shift from the 
scattering of a photon 
upon interaction with 
matter, generating 
a near-infrared 
wavelength forming 
the Raman spectra

Absorbance of 
energy from a tissue 
exposed to ultraviolet 
light, which in turns 
releases energy in the 
form of light

Reflected light from 
a tissue detected by 
the spectrometer 
at a wavelength, 
generating a NIR 
spectrum

Chemical shift 
from chemical 
groups exposed 
to an oscillating 
electromagnetic 
field and frequencies 
decoded by the 
Fourier transform 
to generate NMR 
spectrum

Plaque 
characterization

Cholesterol 
esters, collagen, 
phospholipids, 
triglycerides, calcium

Collagen, elastin 
fibers, lipoproteins, 
calcium, 
macrophages, foam 
cells

Lipid-core plaques Unsaturated and 
polyunsaturated fatty 
acids, cholesterol 
esters, phospholipids, 
triglycerides

Validation studies Ex vivo and in vivo 
animal and human 
studies

In vitro and ex vivo 
animal and human 
studies

Ex vivo and in vivo 
animal and human 
studies

13-Carbon NMR used 
in ex vivo and in vivo 
animal studies

Advantages Evaluates the 
chemical composition 
of living tissues
Signal more specific 
but weaker than 
diffuse reflectance 
NIRS (difficult to 
detect signal in vivo)

Strong fluorescence 
in arterial tissue, 
enabling rapid time 
acquisitions

Evaluates the 
chemical composition 
of living tissues, 
NIR light can 
penetrate blood and 
acquire signals from 
structures several 
millimeters deep 
relative to tissue 
surface

Lack of ionizing 
radiation (less 
radioactivity 
with carbon-13), 
noninvasive 
modality, enables 
to study several 
biological processes 
with metabolic, 
physiologic, and 
anatomic data 
combined to imaging

Availability In development—
fiber optics catheter-
based system for PCI 
applications under 
investigation

No in vivo 
applications due 
to fluorescence 
signal distortion by 
hemoglobin

Catheter-based NIRS-
IVUS system used as 
a clinical application

Costly, preclinical 
research

IVUS: intravascular ultrasound, NIRS: near-infrared spectroscopy; NMR: nuclear magnetic resonance; PCI: percutaneous 
coronary intervention [13, 28–34].

Table 1. Summary of different spectroscopic methods.

Near-Infrared Spectroscopy (NIRS): A Novel Tool for Intravascular Coronary Imaging
http://dx.doi.org/10.5772/67196

29



at an automated speed of 0.5 mm/s. The system acquires >30,000 spectra per 100 mm. IVUS 
images are simultaneously acquired by a transducer at a frequency of 40 MHz and with an 
axial resolution of 100 μm, together with co-registered NIRS measurements, with a maximum 
imaging length of 12 cm and a depth of 1 mm or less. Thus, the NIRS spectra data are mapped 
and paired with corresponding cross-sectional IVUS frames, presented as a ring around the 
IVUS image [26, 27, 35, 36]. An upgrade version of the TVC catheter Imaging SystemTM was 
released by the company in 2015, which uses an extended bandwidth transducer that gener-
ates IVUS images at frequencies between 30 and 70 MHz, thus increasing the resolution and 
depth-to-field of the images [36].

2.3. Interpretation of NIRS data

Upon completion of the automated pullback scan, spectral data are automatically analyzed by 
a computer-based algorithm that transforms NIR spectra into a probability of LCP presence. 
The probability is mapped to a color pixel that will generate a digital two-dimensional color 
map of the artery called the NIRS chemogram, which represents the probability of the pres-
ence of LCP over the scanned segment of a vessel (Figure 3). On the longitudinal chemogram, 
the x-axis denotes the pullback location (in millimeters) and the y-axis represents the cir-
cumferential position (degrees of catheter rotation, from 0 to 360°). For each pixel of 0.1-mm 
length and 1° angle, the lipid-core probability is calculated from the spectral data collected 
and quantitatively coded on a color scale transitioning from red (0 = low probability of LCP) 
to yellow (high probability of LCP), with a probability of 0.60. The threshold required for the 
detection of LCP of interest was defined in the SPECTACL study according to the high preva-
lence of LCP (58%) detected in scanned segments that met both criteria of spectral adequacy 
and similarity from 60 patients undergoing PCI for stable CAD or ACS [10]. Pixels with inter-
mediate data, including those that interfere with the guidewire, appear black. The block che-
mogram is a semi-quantitative summary metric of the probability that an LCP is present in a 
2-mm NIRS chemogram segment that is computed and is displayed as a false color map, thus 
providing a 1:1 direct comparison of the chemogram with histopathology during validation 
of the lipid prediction algorithm. The blocks correspond to one of four colors (red (P < 0.57), 
orange (0.57 ≤ P < 0.84), tan (0.84 ≤ P < 0.98), and yellow (P ≥ 0.98)), which represents the 90th 
percentile probability of lipid within the 2-mm segment of the pullback [26, 27, 35, 36]. The 
2-mm block chemogram measures were used to compare the NIR spectra to histology in each 
2-mm block in a receiver operating characteristic (ROC) curve analysis of diagnostic accuracy, 
from which LCP probabilities were calculated [10].

Chemometrics is the methodology applied by NIRS technology to analyze lipid content in 
atherosclerotic arteries [37]. The NIRS system was used in an extensive ex vivo study using 
human coronary arteries autopsy specimens to develop an algorithm for LCP detection. NIR 
spectra and histological data, used as gold standard, were collected from human autopsy 
hearts to build a calibration model capable of recognizing the NIR spectral shapes unique 
to LCP (see Section 2.4.2) [38]. Mathematical models constructed from a calibration set of 
samples were used to extract and analyze data from NIRS spectra, as reference values for the 
chemical compounds of interest in the tissue samples were obtained from histopathology 
samples. Models constructed from these calibration samples correlate the NIRS signals with 
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the reference values, allowing the prediction of future samples on the basis of their NIRS 
measurements [39, 40]. The algorithm for LCP detection in humans was then prospectively 
validated in the SPECTACL study, in which chemograms obtained in vivo were similar to 
those obtained in histology controls (see Section 2.4.3) [10].

The lipid-core burden index (LCBI) is a measure of the lipid burden within the scanned region, 
calculated by dividing the number of yellow pixels that exceed an LCP probability of 0.6 per 
million by the total number of valid pixels in the segment, then multiplied by a factor of 1000 
(LCBI range: 0–1000). Other measures can be computed on the chemogram image, such as the 
LCBI of a region of interest (ROI) and the maximum LCBI of the 4-mm region within the high-
est lipid burden within the ROI (maxLCBI4mm) [26, 27, 35, 36, 39]. It has been shown that a high 

Figure 3. Example of a near-infrared spectroscopy (NIRS) chemogram. The near-infrared spectroscopy chemogram is 
a digital color-coded map of the arterial wall that is generated from NIR spectra analysis of the arterial wall, which 
indicates the location and intensity of lipid core in the region of interest (ROI). The X-axis represents the pullback 
position (in mm) and the Y-axis indicates the circumferential position of the measurement (in degrees). The block 
chemogram is a vertical summary of the chemogram at 2-mm pullback intervals. IVUS images are simultaneously 
acquired and co-registered with NIRS measurements and displayed as cross-section images superimposed with a 
chemogram.
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LCBI detected in coronary plaques is associated with an increased risk of future cardiovascu-
lar events and periprocedural complications (see Section 2.6), which suggests that LCBI could 
be a useful biomarker for risk assessment and therapeutic efficacy in future clinical trials.

2.4. Validation of the NIRS-imaging system

2.4.1. Preclinical and autopsy studies

Autopsy, animal, and human studies have been carried out to test the utility and safety 
of NIRS for the purpose of eventually bringing this technology to patients in the cathe-
terization laboratory. Cassis and Lodder first demonstrated the ability of NIRS to accu-
rately identify low-density lipoprotein (LDL) ex vivo in the aorta of hypercholesterolemic 
rabbits [11, 41]. Furthermore, Jarros et al. [42] demonstrated that the cholesterol content 
of human aortic samples determined by NIR spectroscopy correlated strongly with that 
measured by reversed-phase, high-pressure liquid chromatography (correlation coeffi-
cient of 0.96). The ability of NIR spectroscopy to detect atherosclerosis in tissue was also 
demonstrated in human carotid and coronary arteries. Dempsey et al. [27] used diffuse 
reflectance NIR spectroscopy for the analysis of human carotid plaques exposed at the time 
of surgery. Transcutaneous NIRS was performed in the operating room during surgical 
endarterectomy and a NIRS algorithm was developed, using gel electrophoresis as a refer-
ence method, to determine lipoprotein composition in carotid specimen from NIR spectra. 
Their results showed significant near-IR correlation between certain lipoproteins present 
in carotid plaques and microscopic findings, including microscopic necrosis and ulcer-
ation, plaque hemorrhage, and thrombosis. Moreover, these proteins were easily detectable 
in patients with a medical history of CAD, coronary artery bypass grafting (CABG), and 
major surgery, and were also correlated with age, sex, and CAD risk factors. Furthermore, 
Wang et al. [12] reported that ex vivo direct measurement of lipid/protein ratios in human 
carotid atherosclerotic specimens from 25 patients correlated with NIRS spectroscopic find-
ings. Thus, the authors concluded that these ratios could further be used to characterize 
advanced lesion types with superficial necrotic cores in vivo with NIR spectroscopy fitted 
with a fiber optic probe.

The first study to test the hypothesis that NIR spectroscopy could identify plaque composition 
and features associated with plaque vulnerability, defined by histology as the presence of lipid 
pool, thin fibrous cap (<65 μm by ocular micrometry), and inflammatory cell infiltration, was 
performed in 199 human aortic samples obtained at the time of autopsy [43]. An algorithm was 
constructed using NIR spectra obtained from 50% of the samples (calibration set) and was then 
tested on unknown samples (validation set) to determine its ability to  identify high-risk  features 
as determined by histology. Spectra associated with each of the three  histological features of 
interest were defined by the results obtained from the calibration set. The main findings of this 
study were that NIRS could identify histology features associated with plaque vulnerability 
in human plaques in vitro, with a sensitivity and specificity of 90% (35 of 39 lesions) and 93% 
(56 of 60 lesions) for lipid pool, 77% (13 of 17 lesions) and 93% (76 of 82 lesions) for thin cap, and 
84% (37 of 44 lesions) and 91% (49 of 55 lesions) for inflammatory cells, respectively. Moreno 
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et al. [44] measured the NIRS spectra of 167 sections of fixed coronary artery samples and vali-
dated an algorithm against histology for the determination of lipid areas > or <0.6 mm2, with a 
sensitivity and a specificity for lipid-rich coronary plaque detection of 83% (5 of 6 lesions) and 
94% (60 of 64 lesions), respectively.

Since the intention of inventers of the NIRS system was to commercialize a catheter-based 
instrument that could assess plaques in coronary arteries in vivo and rapidly perform thou-
sands of measurements through blood, Moreno et al. [45] first demonstrated that NIRS 
could identify lipid-rich plaques in vivo through blood in aorta of rabbits with diet-induced 
atherosclerosis. The catheter NIR spectroscopy was able to identify lipid areas > or <0.75 
mm2 with 78% sensitivity and 75% specificity. Marshik et al. [46] subsequently demon-
strated accurate detection by NIRS spectra of lipid-rich plaques from 26 fresh human aorta 
samples through various amounts of blood up to a depth of 3 mm, with a sensitivity of 88% 
and a specificity of 79%. Moreover, the performance of the system was evaluated against 
histology, with favorable results for the detection of thin-cap fibroatheroma (TCFA) and 
disrupted plaques through blood, thus supporting the development of a NIR catheter for 
in vivo coronary arteries TCFA assessment [47]. To evaluate the performance of the system 
during cardiac motion, a human coronary autopsy specimen was attached at the surface of 
a beating pig’s heart and connected to the porcine circulation [47]. The prototype 3.2-F NIRS 
catheter was positioned inside the coronary segment and was able to correctly identify a 
spectrally distinct target attached to the surface of the graft, despite blood flow and cardiac 
motion [48, 49].

2.4.2. Autopsy calibration and validation studies

The catheter-based system was improved with the addition of an automated pullback 
and rotation device allowing the system to circumferentially scan the length of a vessel. 
Calibration and validation studies of NIRS for the detection of LCP were first performed in 
human autopsy specimens of coronary arteries [16, 35]. The largest ex vivo study, conducted 
by Gardner et al. [38], aimed to evaluate the ability of the NIRS system to detect LCP in 
human coronary arteries from 84 autopsied hearts. Coronary arteries, obtained from a broad 
range of patient characteristics and causes of death, were mounted in a tissue fixture and con-
nected to a blood circulation system with physiologic pressure, temperature, and flow. The 
resulting set of NIRS spectra and corresponding histology data were used to construct and 
validate an LCP detection algorithm. A total of 86 coronary segments from 33 hearts were 
used to calibrate the system algorithm for LCP detection and produced prospectively defined 
end points. The following 51 hearts and 126 segments were used to validate the accuracy of 
NIRS in the detection of LCPs in a double-blind, prospective study. In order to develop and 
validate the algorithm for the identification of LCP in coronary arteries, LCP of interest was 
defined as a fibroatheroma (FA) containing a lipid core of >0.2-mm thick, with a circumferen-
tial span of >60° on cross-section and a mean fibrous cap thickness of <450 μm. Prospective 
validation of the system for the detection of LCP from 51 hearts yielded an area under the 
ROC curve (AUC) of 0.80 (95% confidence interval (CI): 0.76–0.85) for average lumen diam-
eters of up to 3.0 mm. The detection of any-sized fibroatheroma in an artery segment using 
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the LCBI as a measure of lipid burden resulted in an AUC of 0.86 (95% confidence interval 
(CI): 0.81–0.91). However, false-positive scan results were obtained when the NIRS system 
was detecting areas with lipid that did not meet criteria of LCP. Moreover, LCPs with exten-
sive calcifications were not detected by NIRS since the near-infrared light cannot penetrate 
through calcium and other artifacts [22, 38].

2.4.3. Clinical validation studies

The first use of the NIRS system in coronary arteries of living humans was performed in 
six patients undergoing elective PCI for stable angina using an early prototype (2001; Lahey 
Clinic, Burlington, MA) [13, 16, 40]. No device-related adverse events occurred, showing the 
safety and feasibility of the system to distinguish spectra measured through blood. However, 
significant motion artifacts were present due to slow-signal acquisition time (2.5 s). In August 
2005, an improved ultrafast NIR system prototype was developed with a faster scanning laser 
and was later used in a feasibility study of 10 patients in 2006 (Lahey Clinic, Burlington, MA). 
The trial confirmed the safety of the newer improved device and showed its ability to discrim-
inate between signals obtained in the artery and those from blood alone, with no measurable 
artifacts of motion [16, 40].

A subsequent pivotal study, the SPECTACL (SPECTroscopic Assessment of Coronary 
Lipid) clinical study, was performed to validate the accuracy of LCP-detected NIRS signals 
collected in coronary arteries of 106 patients [10]. The study met its primary end point of 
demonstrating that spectral data could be safely acquired in coronary arteries of patients 
with the intravascular NIRS system and that the spectra were equivalent to those gathered 
from autopsy specimens (success rate of 0.83; 95% confidence interval (CI): 0.70–0.93). Thus, 
this study supported the feasibility of LCP detection in living patients. Subsequent studies 
showed intra- and inter-catheter reproducibility of automated interpretation of NIR spectra 
signals [50, 51].

2.5. Comparison with other intravascular imaging modalities for plaque characterization

The most common cause of acute coronary syndromes (ACS) is believed to be coronary artery 
thrombosis due to the rupture of lipid-rich “vulnerable plaques.” Thin-cap fibroatheroma (TCFA) 
plaques, which are characterized by a lipid-laden necrotic core with an overlying thin fibrous 
cap measuring <65 μm, containing few smooth muscle cells but numerous  macrophages, are 
often the substrate for plaque rupture-induced ACS [3, 4]. TCFAs are associated with positive 
remodeling and thus predominantly located in areas of the coronary tree that show mild to 
moderate luminal narrowing [52]. As previously outlined, coronary angiography only detects 
gross stenotic plaques and provides no insight regarding  non-ruptured “vulnerable plaques,” 
which limits plaque burden assessment [6]. Intravascular imaging modalities have been 
developed to fill part of the gap in information provided by coronary angiography and for in 
vivo detection of LCP [35, 53]. In vivo atherosclerotic imaging could enable to detect, predict, 
and prevent plaque rupture, improve PCI treatment of flow limiting target lesions, and could 
identify new therapeutic targets that would prevent future adverse coronary events in CAD 
patients (e.g., Table 2).
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2.5.1. Intravascular ultrasound (IVUS) imaging

Intravascular ultrasound imaging (IVUS) produces cross-sectional images of the lumen and 
the artery wall in vivo, enabling visual assessment of plaque echogenicity from axial resolu-
tion of approximately 100 μm using high-frequency detectors (up to 45 MHz) [9]. IVUS is 
very accurate in identifying calcifications (sensitivity and specificity of approximately 90%), 
plaque burden and, unlike coronary angiography, can detect non-protruding plaques as well 
as positive and negative vascular remodeling [9, 54]. Thus, IVUS is currently the gold stan-
dard for atherosclerotic imaging of the coronary arteries in progression/regression plaque 
trials [9, 55–57]. In addition to its use as a research tool, IVUS has shown to be of clinical value 
for the assessment of ambiguous lesions and facilitates optimal PCI procedures by providing 
reference vessel diameter [9, 58]. A previous study from Lee et al. [59] showed that attenu-
ated lesions on IVUS were more common in ACS patients and were associated with more 
severe and complex plaque morphology, plaque burden, and higher frequency of no-reflow 
phenomenon during PCI procedures. Conventional grayscale IVUS has a high sensitivity for 
detecting lipid deposits (78–95%), visualized as echolucent zones, but a low specificity (30%) 
[54]. Another limitation of IVUS imaging is the low-axial resolution that does not allow to 
precisely define thin-cap fibroatheroma (TFCA), whose thickness is usually less than 65 μm in 
unstable plaques, and thus cannot identify plaques prone to rupture [54].

2.5.2. Virtual histology (VH) imaging

As compared to conventional invasive ultrasound techniques, radiofrequency (RF) IVUS pro-
vides additional information on plaque composition and morphology by spectral analysis of 
ultrasound backscatter [60]. A color-coded map allows the distinction of different components 
of atherosclerotic plaques, such as calcification (white), lipid/fibrofatty (light-green), fibrous 
(green) tissue, and necrotic core (red) [61]. Virtual histology (VH)-IVUS spectral analysis 
correlates with histopathology studies of plaques and can identify the four plaque compo-
nents with sensitivity, specificity, and predictive accuracy ranging from 80 to 92% [54, 62, 63]. 
VH-IVUS detection of LCPs has been associated with higher incidence of clinical events [64, 
65] and periprocedural complications during PCI [66–68]. Prospective assessment of vulner-
able plaques was performed in the PROSPECT (Providing Regional Observations to Study 
Predictors of Events in the Coronary Tree) trial, a multicenter multimodality study that pro-
spectively analyzed by IVUS and IVUS-VH imaging the coronary arteries of 697 ACS patients 
[64]. Their findings suggested that the presence of TCFA defined by VH-IVUS (hazard ratio 
(HR), 3.35; 95% CI, 1.77–6.36; P < 0.001), a minimal lumen area of ≤4 mm2 (HR, 3.21; 95% CI, 
1.61–6.42; P =0.001), and a large plaque burden of ≥70% (HR, 5.03; 95% CI, 2.51–10.11; P < 0.001) 
were independent predictors of major adverse cardiovascular events (MACEs) in nonculprit 
lesions at 3.4 years follow-up. However, the positive-predictive value was only 18–23%, reflect-
ing MACE’s low prevalence. Although this study validated the concept of vulnerable plaque, 
the lack of specificity and difficulties in image interpretation/measurements prevented these 
results from changing clinical practice. The VIVA study [65], as well as the PREDICTION [69] 
and ATHEROREMO-IVUS [70] studies, subsequently reported similar findings, despite differ-
ences with the PROSPECT study regarding inclusion criteria, follow-up duration, definitions 
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of TCFA and MACE. Although RF-IVUS is a validated and promising tool to identify patients 
and lesions at risk of future ACS, there are limitations regarding axial resolution, accuracy of 
necrotic core determination, and proper data acquisition and analysis [54, 64, 65].

2.5.3. Optical coherence tomography (OCT)

Optical coherence tomography is an invasive catheter-based imaging modality that measures 
the intensity and echo time delay of reflected near-infrared light from internal structures 
in tissues [71]. This technique provides a resolution of 10–20 μm in vivo, which is largely 
 superior to IVUS. The recent technology uses the optical frequency domain imaging (OFDI), 
which enables faster pullback speeds without altering image quality and resolution [9]. 
The use of non-occlusive techniques with flushing of contrast through the guiding catheter 
 during simultaneous image acquisition has partly resolved the issue of light absorption by 
blood components. OCT can discriminate features of high-risk plaques by evaluating the 
lipid  content and macrophages infiltration, as well as the measurement of fibrous cap thick-
ness [72]. This imaging modality is also used during percutaneous coronary intervention 
to assess stent apposition, coronary dissections, neoatherosclerosis and in-stent restenosis, 
 mechanisms of plaque disruption in ACS patients, and more recently to evaluate the scaffold 
of  bioabsorbable stents [73, 74]. The main limitation of OCT is the shallow penetration depth 
(1.0–2.5 mm) into the tissue, which limits proper imaging of biomarkers in atherosclerotic 
plaques [9, 75]. Other limitations include the lack of standardization of fibrous cap thickness 
analysis and the inconsistent accuracy in discriminating lipid-rich plaques from similar opti-
cal properties, such as macrophages accumulation, which can lead to false-positive results 
[72]. Regardless of the limitations, intracoronary FD-OCT remains a promising new clinical 
method for interrogating the microstructural details of the coronary wall [76].

2.5.4. Near-infrared spectroscopy (NIRS)

In contrast to IVUS, RF-IVUS, and OCT, which collect structural information, NIRS is unique for 
its ability to directly identify the chemical composition of the arterial wall and assess the presence 
of the LCP. NIRS detects unequivocal fingerprints from lipid core that is not affected by signal 
loss behind calcium due to acoustic shadowing, as it can occasionally preclude grayscale IVUS 
analysis, and the validation of NIRS included both calcified and non-calcified lipid cores in the 
definition of LCP [38]. NIRS alone does not provide information about structural anatomic param-
eters, such as vessel remodeling, plaque thickness, lumen area, and calcification [77]. However, as 
previously mentioned, the combined NIRS-IVUS-imaging catheter allows co-registration of both 
IVUS and NIRS data, which gives information on both plaque composition and morphology. 
NIRS-IVUS has shown to improve LCP detection, by comparison to IVUS, in calcified plaques as 
well as in lesions with small plaque burden [78]. The combined measures of plaque burden and 
LCBI improved the accuracy of fibroatheroma detection as compared with plaque burden alone 
by grayscale IVUS. Indeed, Puri et al. [79] conducted an ex vivo NIRS and IVUS-imaging study, 
performed in 116 coronary arteries of 51 autopsied hearts, whereas lesion-based analysis demon-
strated that combining plaque burden and LCBI analysis significantly improves fibroatheroma 
detection accuracy (c index 0.77, P = 0.028), by comparison to plaque burden alone.
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Several studies have compared NIRS with other intravascular-imaging modalities for LCP 
detection. It was previously shown that large plaque area measured by grayscale IVUS was 
more often associated with lipid accumulation/LCP detected by NIRS [19, 80]. However, 
Brugaletta et al. [80] found a weak correlation between the VH necrotic core content of the 
plaque and the block chemogram probability values (r =0.149), which did not improve after 
correction for the presence of calcium. In a larger study performed in 131 plaques of 66 ves-
sels, in which 31 plaques (26.7%) were attenuated, the relation between VH-derived per-
centage necrotic core and NIRS-derived LCBI was not significant (r = 0.16, P = 0.110) [81]. 
However, after separation of the plaques according to grayscale IVUS morphology, a positive 
relationship between VH-derived maximum percentage necrotic core and LCBI was found 
in non-calcified plaques, but not in calcified plaques. A study conducted in 17 patients who 
underwent NIRS and OCT imaging showed modest linear correlation between LCBI and 
maximum lipid arc and lipid index measured by OCT (r2 = 0.319, P = 0.003, and r2 = 0.404, P 
= 0.001, respectively) [82]. Furthermore, Roleder et al. [83] conducted a study which aimed 
to evaluate the accuracy of NIRS-IVUS-imaging modality to detect TCFA in 60 patients with 
stable CAD, by comparison to OCT used as the gold-standard reference to define TCFA (cap 
thickness of <65 μm). They showed that OCT-defined TCFA was characterized by positive 
vessel remodeling with higher lipid-core burden, while NIRS revealed greater LCBI per 2-mm 
segment (LCBI2mm) >315 with a remodeling index >1.046 as a combined criterion value.

In summary, there are important differences in LCP detection between different intravascu-
lar-imaging modalities, owing to their different imaging properties and limitations. As previ-
ously mentioned, OCT has the highest resolution but the weakest tissue penetration, limiting 
assessment of plaque burden and overall plaque volume [84]. While IVUS-VH and OCT 
require image interpretation for the detection of LCP, NIRS provides automated LCP detec-
tion without the need for manual imaging processing, facilitating its use in the catheterization 
laboratory and enabling rapid ad hoc clinical decision making during procedures. Moreover, 
OCT and NIRS can image through calcified lesions, whereas IVUS cannot. VH-IVUS can 
incorrectly misclassify intracoronary stents as calcium surrounded by necrotic core, a major 
limitation that is not found with OCT and NIRS imaging [84]. From the strengths and weak-
nesses of each individual imaging modality, it appears that the combination of two or more 
imaging technologies could improve LCP and vulnerable plaque detection [85].

2.6. NIRS-IVUS clinical applications

There is growing evidence from multiple studies of the clinical applications and value of the 
NIRS-IVUS imaging modality, including identifying the culprit lesion in ACS, optimizing PCI 
procedure, identifying plaques at high risk of periprocedural complications, for risk stratifica-
tion, monitoring lipid-lowering therapy, and assessing plaque vulnerability (e.g., Table 3) [86].

2.6.1. In vivo detection of culprit lesions in ACS

Several studies have evaluated NIRS detection of LCP, shown by an increased LCBI, at the 
site of culprit lesions associated with coronary events. Madder et al. [17] performed NIRS 
imaging in culprit vessels of 20 patients with acute ST-segment elevation myocardial infarc-
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tion, monitoring lipid-lowering therapy, and assessing plaque vulnerability (e.g., Table 3) [86].
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tion (STEMI) and compared their findings with spectra analysis in nonculprit segments of 
the artery and with autopsy control segments. The maxLCBI4mm was 5.8-fold higher in STEMI 
culprit segments than in 87 nonculprit segments of the STEMI culprit vessel (median (inter-
quartile range (IQR)): 523 [445 to 821] vs. 90 [6 to 265]; P < 0.001). Moreover, maxLCBI4mm was 
87-fold higher than in 279 coronary autopsy segments free of large LCP by histology (median 
(interquartile range (IQR)): 523 [445 to 821] vs. 6 [0 to 88]; P < 0.001). Thus, a threshold of 
maxLCBI4mm ≥400 distinguished STEMI culprit segments in vivo from coronary artery autopsy 
segments free of LCP with high accuracy (sensitivity: 85%; specificity: 98%) [17]. Among the 
first 85 STEMI cases, two patients showed culprit lesions that did not contain lipid plaque, but 
rather a calcified nodule in one case and a coronary dissection in the other [15].

Similar NIRS findings of lipid burden were observed in culprit lesions of patients in non-
ST segment elevation myocardial infarction (NSTEMI) [18, 77]. LCPs are more common in 
patients with ACS compared to stable angina patients. From the 81 NSTEMI and unstable 
angina (UA) patients who underwent culprit vessel NIRS imaging prior to stenting, non-
STEMI culprit segments had a 3.4-fold greater maxLCBI4mm than nonculprit segments (448 
± 229 vs. 132 ± 154, P < 0.001) and unstable segments had a 2.6-fold higher maxLCBI4mm than 
nonculprit lesions (381 ± 239 vs. 146 ± 175, P < 0.001) [18]. Culprit segments in NSTEMI patients 
were more often characterized by a maxLCBI4mm ≥400 than those with UA, with a sensitivity 
of 63.6% versus 38.5%, respectively. Moreover, a large LCP was identified by NIRS within the 
culprit lesions of five cases of resuscitated out-of-hospital cardiac arrest that subsequently 
underwent coronary angiography [87]. There is a stepwise increase in lipid content, repre-
sented by maxLCBI4mm, from nonculprit lesions (0–130), to unstable angina (≈380), to NSTEMI 
(≈450) and STEMI patients (≈550), supporting the concept of more fibrotic lesions in stable 
angina and more lipid-rich vulnerable plaque in STEMI, NSTEMI, and sudden death [15]. 
NIRS-IVUS evidence of LCP with a large plaque burden suggests that the lesion is a culprit, 
and that such information could be relevant in patients with ambiguous coronary angiogra-
phy for efficient treatment management.

2.6.2. Association with cardiovascular risk factors

A recent clinical study has evaluated the association between clinical risk factors and blood 
characteristics of vascular inflammation and lipid content/LCP visualized by NIRS. de Boer 
et al. [19] reported the use of NIRS in a nonculprit coronary artery in 208 patients under-
going percutaneous coronary intervention or invasive diagnostic coronary exploration for 
various indications. It was found that male gender, hypercholesterolemia, and the presence 
of multivessel CAD were modestly associated with higher LCBI values on NIRS. A history 
of peripheral vascular disease and/or cerebral disease and the use of beta-blockers were 
positively associated with LCBI, while biomarkers such as blood lipids and high-sensitivity 
C-reactive protein were not. All clinical characteristics reflecting patients with high CAD risk 
explained only 23% of the variability in LCBI. Moreover, the LCBI on NIRS and the percent-
age area of plaque burden determined by IVUS were modestly correlated (r =0.29). In the light 
of these results, this study could not address the prognosis value of NIRS-imaging modality. 
Methodological caveats could in part explain the low correlation obtained between NIRS and 
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IVUS imaging, including the use of lower-frequency IVUS catheters (20 MHz), IVUS and 
NIRS acquisitions performed using different catheters, measurement of a single cross section 
on IVUS, and the absence of data regarding the reproducibility of repeated NIRS pullbacks 
and measurements [88].

2.6.3. Assessing plaque vulnerability and risk stratification

Retrospective autopsy studies have revealed specific histological culprit lesion morpholo-
gies in patients suffering from an ACS, which has created an enthusiasm in the use of intra-
vascular coronary artery imaging in search of the “vulnerable plaque” at risk of rupture and 
endoluminal thrombosis. The thin-cap fibroatheroma (TCFA) is believed to be the precur-
sor lesion of plaque rupture, although there is a lack of prospective robust evidence in the 
literature [15, 89]. A prospective animal study conducted in an atherosclerotic and diabetic 
pig model showed that NIRS-IVUS imaging can detect and predict the future development 
of inflamed fibroatheromas with subsequent validation against postmortem histology [90]. 
The features of rupture-prone plaques included thinned fibrous cap, increased plaque and 
necrotic core areas, increased concentration of activated inflammatory cells, and the pres-
ence of apoptotic and proliferating cells within the fibrous cap [90]. An autopsy study of 
103 coronary arteries from 56 autopsied hearts, aiming to assess grayscale IVUS and NIRS 
detection of histological fibroatheroma (FA), with histology validation as the gold standard, 
showed that both superficial IVUS attenuation and NIRS-LCP had a similar high specificity 
of approximately 95% in detecting FAs, however IVUS showed a low sensitivity (36% vs. 
47%; P =001) [91]. The addition of NIRS significantly increased the accuracy of fibroatheroma 
detection at the minimum lumen area from 75% to 89% among all cross-sections (P < 0.05). 
When either IVUS attenuation or lipid-rich plaque was present, the sensitivity for prediction 
of an FA was significantly higher compared with IVUS alone (63% vs. 36%, P < 0.001) and 
NIRS alone (84% vs. 65%, P < 0.001).

The first prospective human study, published in 2014, has evaluated the association of 
high LCP by NIRS and cardiovascular events. The ATHEROREMO-NIRS (The European 
Collaborative Project on Inflammation and Vascular Wall Remodeling in Atherosclerosis—
Near-Infrared Spectroscopy) trial is a prospective, observational study that aimed to evaluate 
the prognostic value of NIRS in a nonculprit coronary artery from 203 patients referred for 
angiography due to stable angina or ACS [92]. The results showed that the 1-year cumulative 
incidence of  all-cause mortality, non-fatal ACS, stroke, and unplanned coronary revascular-
ization was 4-fold increased in patients with an LCBI equal or above to the median value 
of 43.0 compared to those with an LCBI value below the median (adjusted HR: 4.04; 95% 
CI: 1.33–12.29; P = 0.01). The association of the LCBI value with primary end point was similar 
in both stable and ACS patients. Although these results are promising, the number of events 
in this trial was small, and therefore studies with larger number of events will be required 
for the validation of vulnerable patient detection with NIRS-IVUS imaging. A more recent 
NIRS-IVUS  single-center registry study was conducted in 121 consecutive patients undergo-
ing combined NIRS and IVUS imaging to evaluate the association of large lipid-rich plaques 
at non-stented sites in a target vessel and subsequent major adverse cardiovascular and cere-
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brovascular events (MACCE) [93]. The results showed that the presence of large LCP in a 
non-stented segment, defined by NIRS maxLCBI4mm ≥400 at baseline, was associated with a 
significantly increased risk of future MACCE during follow-up (HR 10.2, 95% CI: 3.4–30.6; 
P < 0.001). This study, although single center, underpowered, and with limited follow-up, was 
consistent with the findings of ATHEROREMO-NIRS study, whereas NIRS detection of lipid 
burden was associated with patient-level risk of future MACCE [93].

The detection of fibroatheroma could help to identify culprit lesions in ACS patients, pre-
dict lesions subject to periprocedural complications, could allow optimal stent selection, and 
reduce the rate of stent restenosis. Whether the detection of fibroatheroma using NIRS-IVUS 
will prevent future events is currently being studied in several trials, including the Lipid-
Rich Plaque study (LCP; Clinical Trials.org Identifier: NCT02033694), PROSPECT II ABSORB 
trial (A Multicentre Prospective Natural History Study Using Multimodality Imaging in 
Patients With acute Coronary Syndromes; Clinical Trials.org Identifier: NCT02171065), and 
ORACLE-NIRS trial (Lipid cORe Plaque Association With CLinical Events: a Near-InfraRed 
Spectroscopy Study; Clinical Trials.org Identifier: NCT02265146).

2.6.4. Optimizing percutaneous coronary intervention procedures

Visual estimation of a coronary stenosis on a two-dimensional (2D) angiography or quantitative 
coronary angiography (QCA) of lesion lengths is often misleading from image foreshortening 
and underestimation of plaque burden. IVUS offers accurate length measurement during auto-
mated pullback, proximal and distal reference diameter of a vessel, and enables to evaluate the 
presence and extent of calcifications [26]. The ADAPT-DES (Assessment of Dual Antiplatelet 
Therapy With Drug-Eluting Stents) study, a prospective, multicenter, nonrandomized “all-
comers” registry of 8583 consecutive patients, showed that IVUS-guidance PCI, performed in 
39% of patients, was associated with reduced 1-year rates of MACE (3.1% vs. 4.7%; adjusted 
HR, 0.70; 95% CI: 0.55–0.88; P = 002), as compared to angiography guidance alone [94]. The 
benefits of IVUS were observed in patients with ACS and complex lesions, although significant 
reductions in MACE were present in all patient subgroups, including stable angina and single-
vessel disease. Similar results were observed in subsequent meta-analysis [95, 96].

The use of combined NIRS-IVUS imaging may further optimize stent implantation by accurate 
identification of lipid margins, and thus cover all the segments with high lipid burden. Dixon 
et al. [97] analyzed 75 lesions with NIRS imaging and demonstrated that lipid-core plaque 
extended beyond the angiographic margins of the initial target lesion in 16% of cases. Hanson 
et al. [98] showed that atheroma, defined as plaque burden >40% or LCP, extended beyond 
angiographic margins in 52 of the 58 lesions analyzed with NIRS-IVUS (90% of lesions), with 
a mean lesion length that was significantly longer when assessed by NIRS-IVUS as compared 
with angiography alone (19.8 ± 7.0 vs. 13.4 ± 5.9 mm; P < 0.0001). Those results suggests that 
NIRS-IVUS guidance during PCI procedures, as a “red-to-red” stenting strategy, could opti-
mize complete LCP coverage by a stent with the proper length according to the landing zones 
and thus reduce the risk of edge dissections, stent failure, and subsequent adverse clinical 
outcomes [26, 39, 99–101]. Although it seems rationale to implant the edges of a stent in a 
normal artery segment, the marginal increased risk of stent thrombosis and restenosis with 
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longer stents will require future studies to determine if routine use of NIRS-IVUS for proper 
stent sizing will improve patient outcomes [102].

Detection of lipid core in a lesion has also been used as one of the factors to consider in the 
decision to implant a bare metal stent (BMS) or a drug-eluting stent (DES). Several stud-
ies have demonstrated a greater frequency of stent thrombosis after DES implantation when 
struts were penetrating into a lipid-rich necrotic core plaque rather than in a non-yellow 
(fibrous) plaque [103, 104]. The absence of struts coverage by the formation of a neointima 
layer during vessel’s healing process was seen with both DES and BMS implantation in lipid-
rich plaques, which is likely the underlying mechanism of stent thrombosis seen in those 
patients [105, 106]. Neoatherosclerosis is an important contributor to late-stent thrombosis 
with newer generation DES, as well as late in-stent restenosis. Histologically, neoatheroscle-
rosis is characterized by the accumulation of lipid-laden macrophages within the neointima 
with or without necrotic core formation and/or calcification and can occur months to years 
following stent placement [107]. Originally described in postmortem studies, neoatheroscle-
rosis has more recently been detected by intracoronary imaging. Ali et al. [108] used NIRS and 
OCT to assess the development of neoatherosclerosis in 65 consecutive patients with symp-
tomatic in-stent restenosis. The prevalence of LCP within neointimal hyperplasia segments 
was 89% using NIRS versus 62% using OCT. Neoatherosclerosis was associated with sig-
nificantly reduced minimal cap thickness with plaque rupture occurring exclusively in those 
patients. Moreover, DES had a higher prevalence and earlier occurrence of neoatherosclero-
sis, thinner cap, and more lipid burden and density. However, LCP identified by NIRS alone 
was not associated with periprocedural MI during treatment for in-stent restenosis, which 
reflects the limited ability of NIRS to differentiate lipid located within the neointimal tissue 
from a lipid core located underneath stent struts. Nevertheless, postmortem imaging and 
subsequent histology analysis showed that NIRS could correctly characterize lipid despite the 
presence of metal struts. Similar findings were reported in a study published by Madder et al. 
[109], whereas NIRS was not reliable for neoatherosclerosis detection when used as the sole 
imaging modality for LCP detection. The NIRS lipid signal could not distinguish neoathero-
sclerosis from fibroatheroma underlying the stent. No doubt that NIRS can detect coronary 
LCP, but it seems unlikely suitable as a standalone technique for accurate neoatherosclerosis 
detection and that the adjunction of IVUS or OCT will be required to determine the position 
of NIRS lipid signal relative to the underlying stent struts [110].

It was proposed that the growth of neointima tissue on the top of a vulnerable plaque might 
increase the thickness of the fibrous cap [103, 110, 111]. Brugaletta et al. [112] reported the abil-
ity of bioresorbable vascular scaffold (BVS) implantation to promote the growth of neointimal 
tissue, which acts as a barrier to isolate vulnerable plaques. An ongoing trial, the PROSPECT 
II ABSORB sub-study trial (Clinical Trials.org Identifier: NCT021711065), will randomize 
patients with plaques at high risk of causing future coronary events (plaque burden ≥70%) 
to receive an AbsorbTM BVS (Abbott Vascular, IL, USA) with optimal medical therapy (OMT) 
versus OMT alone. This sub-study aims to evaluate the changes in the plaque at 2 years fol-
low-up. Clinically, large LCPs have been shown to be associated with MACE, especially peri-
procedural myocardial infarction [21]. Whether lipid burden influences long-term outcomes 
following stent implantation remains elusive.
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2.6.5. Prevention of periprocedural complications

Approximately 3–15% of percutaneous coronary interventions are complicated by periproce-
dural myocardial infarction (PPMI) and no-reflow, in part by distal embolization of intralu-
minal thrombus and/or lipid-core plaque content, which is associated with adverse long-term 
outcomes [113, 114]. It was reported that periprocedural MIs are associated with increased 
atherosclerotic burden and large LCPs [115–118]. Indeed, embolization of the lipid core after 
stent implantation in a plaque with high lipid content has been identified as an important 
cause of periprocedural no-reflow and MI with and without the presence of intracoronary 
thrombus [118–120]. A pilot study performed in nine patients using an embolic protection 
device showed that embolized material consisted in fibrin and platelet aggregates, which 
reflects the highly thrombogenic content of necrotic core of large atheroma plaques and LCP 
[98, 120, 121]. In a sub-study of the COLOR (Chemometric Observation of Lipid-Core Plaques 
of Interest in Native Coronary Arteries) registry, a prospective multicenter observational study 
aiming to determine a relationship between NIRS-defined high LCBI and periprocedural MI, 
Goldstein et al. [20] analyzed the cardiac biomarkers of 62 stable patients undergoing PCI. 
The main findings were that periprocedural MI, defined in the study as a postprocedural 
elevation above three times the upper limit of normal (ULN) for either creatine kinase-MB 
(CK-MB) or cTnI measured 4–24 h after PCI, occurred in nine patients (14.5%) and was more 
common among patients with a maxLCBI4mm ≥ 500 (7 of 14 patients, 50%) versus patients with 
a maxLCBI4mm < 500 (2 of 48 patients, 4.2%). The authors concluded that a high LCP, defined 
as a maxLCBI4mm ≥ 500, was associated with periprocedural events. These results are concor-
dant with the registry study conducted by Raghunathan et al. [21], in which the analysis of 30 
patients who underwent pre-procedure NIRS imaging showed a postprocedural increase of 
CK-MB more than three times the UNL in 27% of patients with a ≥1 yellow blocks (n = 11) as 
opposed to none in the 19 patients without a yellow block within the stented lesion.

Distal embolization, as an important mechanism of periprocedural MI, was further supported 
by several studies that have demonstrated a significant decrease in the size of LCP after stent-
ing [122–124]. Stone et al. showed in the CANARY trial that LCP measured as LCBI by NIRS 
in the stented vessels reduces with PCI treatment, with a significant reduction of median LCBI 
from 143.2 before PCI to 17.9 after PCI (P < 0.001) [125]. Moreover, the authors showed that the 
occurrence of periprocedural MI was associated with higher LCBI, results that are concordant 
with previous findings [20, 21].

In order to prevent periprocedural MI during PCI, several strategies were proposed dur-
ing stenting procedures, including aspiration thrombectomy, embolization distal-protection 
devices, vasodilators, intensive anticoagulation, and antiplatelet therapies. The CANARY 
(Coronary Assessment by NIR of Atherosclerotic Rupture-Prone Yellow) trial randomized 
85 stable angina patients undergoing stent implantation of a single native coronary lesion 
and pre-procedure NIRS-defined maxLCBI4mm ≥ 600 to PCI with or without distal-protection 
filter [125]. Among the 31 randomized cases with a maxLCBI4mm≥ 600, there was no differ-
ence in the rates of periprocedural MI with or without the use of distal-protection filter (35.7 
vs. 23.5%, respectively; relative risk 1.52; 95% CI: 0.50–4.60, P =0.69). It should be noted that 
the CANARY trial was ended prematurely due to difficulties in identifying patients suitable 
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for randomization to embolic-protection devices and lack of signs of benefits and thus was 
not adequately powered to detect a difference in MI or other major procedural complica-
tions between the two patient groups. An ongoing study, the CONCERTO (Randomized-
Controlled Trial of a Combined versus Conventional Percutaneous Intervention for 
Near-Infrared Spectroscopy Defined High-Risk Native Coronary Artery Lesions; Clinical 
Trials.org Identifier: NCT02601664) trial, aims to evaluate different strategies for periproce-
dural MI prevention. Patients undergoing PCI with high-risk native coronary lesion, defined 
as ≥2 contiguous yellow blocks on the block chemogram, are randomized to combined pre-
ventive measures versus conventional PCI. The combined preventive measures consist of 
pre-PCI administration of an intracoronary vasodilator and a glycoprotein IIb/IIIa inhibitor, 
in addition to the use of an embolic-protection device if technically feasible and a complete 
coverage of the LCP if technically feasible.

Thrombectomy is often used to aspirate thrombus and restore blood flow in the culprit ves-
sel during primary PCI in STEMI patients. The clinical benefits of routine thrombus aspira-
tion remain a matter of debate, since the TAPAS (Thrombus Aspiration during Percutaneous 
Coronary Intervention in Acute Myocardial Infarction) study demonstrated a reduction of mor-
tality while larger studies such as TASTE (Thrombus Aspiration in ST-Elevation Myocardial 
Infarction in Scandinavia) and TOTAL (Trial of Routine Aspiration Thrombectomy with PCI 
versus PCI Alone in Patients with STEMI) did not show a reduction of cardiovascular mor-
tality, with an increased rate of stroke at a 30-day follow-up in the TOTAL trial [126–128]. 
Erlinge et al. [129] performed NIRS-IVUS imaging in 18 ACS patients to examine if aspiration 
thrombectomy reduced the lipid content of ACS culprit plaques. The culprit lipid content 
was quantified by NIRS-IVUS before and after thrombectomy as the lipid-core burden index 
(LCBI), and aspirates were examined by histological staining for lipids, calcium, and macro-
phages. Culprit lesions were found to have high lipid content prior to thrombectomy, which 
resulted in a 28% reduction in culprit lesion lipid content (pre-aspiration LCBI 466 ± 141 vs. 
post-aspiration 335 ± 117, P = 0.0001).

As aforementioned, the use of intracoronary NIRS-IVUS imaging for accurate identification of 
LCP lesions prone to embolize, as well as different treatment strategies, for periprocedural MI 
prevention are attractive approaches, however their clinical benefits on myocardial  salvage 
and prevention of embolization remains to be demonstrated in future studies.

2.6.6. Monitoring effects of lipid-lowering therapies

It is well known that statin therapy reduces rates of cardiovascular events in secondary 
prevention. The pharmacological effects of specific lipid-reducing agents that reduce free 
and esterified cholesterol could be evaluated with NIRS, as it informs on the lipid content of 
coronary artery plaques over time. The demonstration of markedly reduced LCBI values in 
a patient after 1 year of high-dose rosuvastatin therapy was the first indication that NIRS-
IVUS could be used to evaluate the effect of systemic anti-atherosclerotic medical therapy 
[130]. In the YELLOW (Reduction in Yellow Plaque by Aggressive Lipid-Lowering Therapy) 
trial, Kini et al. [22] prospectively randomized 87 patients with multivessel coronary artery 
disease undergoing PCI with one culprit and one nonculprit hemodynamically significant 

Near-Infrared Spectroscopy (NIRS): A Novel Tool for Intravascular Coronary Imaging
http://dx.doi.org/10.5772/67196

47



lesions, defined by fractional flow reserve (FFR <0.80), to receive intensive statin therapy 
(rosuvastatin of 40 mg daily) or standard lipid-lowering therapy. The nonculprit lesions 
had a baseline assessment by NIRS-IVUS and FFR, prior to randomization. Rosuvastatin 
therapy resulted in a significant reduction in the plaque lipid content/maxLCBI4mm com-
pared to standard therapy. The significant reduction in maxLCBI4mm associated with inten-
sive statin therapy was observed across subgroups of the study population, based on age, 
gender, presence of diabetes, and baseline lipid profile. However, no significant changes 
were observed for the maxLCBI4mm and LCBI measurements at the lesion site in the stan-
dard lipid treatment group at follow-up. Although baseline LCBI was significantly higher 
in patients randomly allocated to intensive versus standard therapy, the YELLOW trial 
highlights that LCP measured by NIRS was associated with CAD and that it could be a 
potential tool to monitor regression of the disease in phase II clinical trials evaluating novel 
anti-atheromatous therapies.

A similar study of the effect of rosuvastatin treatment on the coronary plaque composition 
and necrotic core, the IBIS-3 (Integrated Biomarker and Imaging Study 3) trial, failed to dem-
onstrate a significant reduction of necrotic core volume or LCBI under intensive rosuvastatin 
therapy for 1 year [131]. The effects of high-dose statin therapy are being further investigated 
in the YELLLOW II trial (Clinical Trials.org Identifier: NCT01837823), a phase II clinical study, 
that aims to assess the regression of plaque lipid content and changes in plaque morphology 
from atherosclerotic lesions after 8–12 weeks of high-dose statin therapy by utilizing NIRS, 
IVUS, and OCT imaging modalities in the coronary arteries.

2.7. Limitations of the technology

Near-infrared spectroscopy (NIRS) identifies the chemical signature of the lipid component, 
specifically lipid core-containing coronary plaque (LCP). The main limitations of NIRS tech-
nology are the lack of information regarding the lumen, plaque anatomy, and status of the 
fibrous cap or its attenuation. Although NIRS may be one of the most sensitive modalities 
to detect lipid-core plaques, it cannot provide information on the depth of the lipid core. 
Moreover, the accurate measurement of lipid volume/burden with NIRS has not been vali-
dated [132]. To overcome these pitfalls, a new combined imaging catheter adding intravascu-
lar ultrasound (IVUS) imaging was developed. However, since intravascular ultrasound has a 
low sensitivity to visualize lipid inside a plaque, the additional value of this new system will 
require further evaluation [26].

The clinical relevance of imaging specific features of the vulnerable plaque for risk stratifi-
cation and clinical decision making remains unclear. Higher-resolution imaging modalities, 
such as OCT, better assessed determinants of vulnerable plaques than NIRS; however, there 
is currently no commercialized system combining OCT and NIRS modalities. The prognostic 
utility and incremental value of NIRS when associated with biomarkers of plaque vulnerability 
assessed by IVUS (plaque burden, MLA, and remodeling) remains to be investigated [26, 133]. 
Many studies have brought evidence that IVUS-guided PCI achieves superior outcomes com-
pared to angiography guidance alone [134]. The potential value of adding NIRS for lipid-rich 
plaques at risk of embolization and for a complete coverage of LCPs remains to be investigated. 
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NIRS-IVUS-imaging modality is an invasive diagnostic modality that targets patients in the 
setting of secondary prevention, thus precluding its utilization for primary prevention, along 
with other invasive imaging technologies.

2.8. Future trials and perspective

NIRS-IVUS-imaging technology is improving and should become a sensitive modality for 
coronary plaque characterization. A new algorithm for collagen detection has been developed 
using the same spectroscopy signal, which enables to detect the amount of fibrous tissue over 
the LCP (thin or thick fibrous cap) [15]. This technology will be further optimized by adding 
a recently developed, but not yet available, high-resolution IVUS, which will allow to accu-
rately differentiate between thin and thick fibrous caps. Co-registration of NIRS with other 
imaging modalities is also being developed. The use of combined OCT-NIRS catheters has 
been recently demonstrated as a proof of concept [15].

NIRS-IVUS has also been used in the carotid arteries to detect LCP, which could represent a 
suitable imaging modality to determine the risk of stroke or the risk of complications during 
carotid stent placement or endarterectomy. However, this new clinical application remains to 
be validated in future studies [15].

Multiple prospective outcome studies are currently ongoing to evaluate the ability of NIRS-
IVUS imaging to detect vulnerable plaques that are likely to cause future adverse events. 
Among those studies are the LRP trial (Lipid-rich Plaque Study; Clinical Trial.org Identifier: 
NCT02033694), the PROSPECT II ABSORB trial (Providing Regional Observations to Study 
Predictors of Events in the Coronary Tree II; Clinical Trial.org Identifier: NCT02171065), and 
the ORACLE-NIRS trial (Lipid-core plaque association with clinical events: a near-infra-
red spectroscopy study; Clinical Trial.org Identifier: NCT02265146). The YELLOW II trial 
(NCT01837823), which aims to evaluate the effects of rosuvastatin treatment on lipid content 
after 8–10 weeks of treatment regimen, has completed patient enrolment but results are still 
pending. Another trial has been completed and awaiting for results publication, the NIRS-
TICAGRELOR trial (Clinical Trial.org Identifier: NCT02282332), which aims to evaluate the 
effect of the P2Y12 inhibitor ticagrelor (AstraZeneca, Cambridge, England) on plaque stabili-
zation and reduction of inflammation by NIRS-defined reduction of LCBI in patients on long-
term statin therapy undergoing non-urgent PCI.

3. Conclusion

NIRS is a promising tool for the detection of vulnerable plaques in CAD patients, PCI-guidance 
procedures, and assessment of lipid-lowering therapies. NIRS-IVUS has been shown to be 
a reliable and reproducible modality for the detection of intracoronary LCPs, with valida-
tion using the current gold-standard, histology. It has already been shown that this imaging 
modality is highly specific for identifying NSTEMI and STEMI culprit plaques, that it can be 
used to follow the progression of vulnerable plaques over time, and to evaluate the effect of 
lipid-lowering therapies and intracoronary devices. Moreover, preliminary data have shown 
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that NIRS-IVUS-imaging technology can identify vulnerable patients. Multiple ongoing clini-
cal trials will hopefully validate this tool for vulnerable plaque and patient detection, as well 
as for treatment management and follow-up of patients with CAD.
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that NIRS-IVUS-imaging technology can identify vulnerable patients. Multiple ongoing clini-
cal trials will hopefully validate this tool for vulnerable plaque and patient detection, as well 
as for treatment management and follow-up of patients with CAD.
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Abstract

The spectrum of 1O2 was measured by the InGaAs photodiode for an optical communica-
tion system with charge integration amplifier (InGaAs-CIA). The photo-excited current is 
charged in photodiode junction capacitance itself. The current is changed to the voltage 
about 1012 times without feedback resistance. The minimum detectable power of InGaAs 
CIA system with liquid nitrogen was achieved 0.1 fW of 10 sec integration time at the 
wavelength of 1.28 μm. The optical band pass filter-based system for ultra–low-level light 
detection was succeeded in spectrum measurement of 1O2 by 13-LOOH with cytochrome 
c. The 8 channel InGaAs-CIA array system enables to achieve optical multichannel detec-
tion for ultra-low level light at 10−13 W from 10−15 W level in the near-infrared region. The 
optical resolution was about 200 nm by 1 channel. The spectrum of 1O2 by mixing NaOCl 
and H2O2 was demonstrated. The shape of spectrum by 1O2 was matched to that of mea-
sured by the spectrometer. The system was succeeded in instantaneous 1O2 spectrum 
measurement without moving the wavelength dispersion device. The generation of 1O2 
by photo-excited Rose Bengal was fabricated to develop food antioxidant chemistry or 
source reagent of cosmetic product. The system uses super luminosity LED for excitation 
light source and InGaAs CIA. The 1O2 generation will be controlled by the InGaAs-CIA 
monitoring system. The system will be used in the chemical plant of primary material 
production.

Keywords: InGaAs PIN photodiode, low-level light, singlet oxygen, charge integrating 
amplifier, spectroscopic system, multichannel, filter based, Rose Bengal
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1. Introduction

Low-level light is emitted from various kinds of faint sources in the visible region. It is dif-
ficult to specify the emitting source chemically because the spectra overlap each other. In the 
near infrared (NIR), existence of the substance of biological material for emitting is not scarce,. 
Also the thermal back ground noise is exceedingly released compared with the middle-infra-
red region or the far-infrared region. The problem of measuring exceedingly low levels light 
from various kinds of faint sources is of considerable interest and importance. Especially, 1O2 
is emitted with low-level light at the 1.27 μm of NIR optical band. 1O2 is one of active oxygen 
species from the biological material. The chemiluminescent substance is scarce at the NIR 
region, the use of spectroscopic 1O2 emission will be available as a chemical and physical 
analytical tool in. There are many biochemists, pathologists, and agricultural chemists who 
focus on such a weak optical signal in the NIR [1]. Since silicon photodiode have no optical 
sensitivity in the NIR, Ge PIN photodiodes with phase sensitive amplifier are used in NIR [1]. 
Johnson noise is given by the equation, Eq. (1),

   I  j   =  √ 
______

   
4  k  D    T  n   _____  R  sh  

      (1)

where Ij is thermal noise current, kD is Boltzmann constant, Tn is temperature in kelvin, Rsh is 
shunt resistance in photodiode. Rsh is in inverse proportion to dark current. The shot noise 
(dark) is given by the next equation, Eq. (2),

   I  sD   =  √ 
_____

 2e  I  dn      (2)

where IsD is shot noise in darkness, e is the electron charge, Idn is the dark current. At the 
operating temperature of 77 K, the device thermal noise and shot noise are not dominant 
[2, 3, 4]. The optical sensitivity is mainly decided by the dark current. The principal noise 
current of such a detector with a transimpedance amplifier (TIA) is given by the equation, 
Eq. (3),

   I  n   =  √ 
______

  I  dn   eΔf    (3)

where In is noise current, Idn is dark current, e is the electron charge, and Δf is the bandwidth. 
Figure 1 shows the temperature dependence of the dark current InGaAs photodiode (Fujitsu 
FID13Y23WY) and Ge PIN photodiode (Fujitsu FID13R53WZ) for the optical communication 
system. The dark current of an InGaAs photodiode at 77 K is three orders of magnitude less 
than of a Ge PIN photodiode.

Figure 2 shows temperature dependence of quantum efficiency the InGaAs photodiode and 
the Ge PIN photodiode. The quantum efficiency of the Ge PIN photodiode decreases from 
the temperature of liquid nitrogen. That of the InGaAs maintains to the temperature of liq-
uid helium. The dark current and quantum efficiency of the Ge PIN photodiode decrease in 
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proportion to the device temperature. The device temperature of the InGaAs PIN photodiode 
has little influence to the quantum efficiency. Therefore, the InGaAs PIN photodiode is more 
suitable than the Ge PIN photodiode for detecting low-level light in the NIR region.

2. Circuit of detection system

The impedance of an InGaAs PIN photodiode cooled to 77 K is so high (100 TΩ). It can be 
operated with a charge integrating amplifier (CIA) [2, 4, 5]. The amount accumulated charge 

Figure 1. Temperature dependence of dark current InGaAs photodiode and Ge pin photodiode (identical to the one 
published in authors’ previous work [5]).

Figure 2. Temperature dependence of quantum efficiency InGaAs photodiode and Ge pin photodiode.
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in this configuration is directly measured as voltage. The photocurrent or carrier in the CIA 
is converted to voltage through the capacitance of a photodiode. Figure 3 shows the diode 
equivalent circuit with a simplified signal source. Rsh is so high and Idn is very small at the 
temperature 77 K.

The CIA output voltage is given by the next equation, Eq. (4).

   V  ds   =   
 ∫  0  τ   I  ph   dt

 _____  C  d  
    (4)

Where Vds is the voltage of the signal output. Iph is the photocurrent, τ is integration time, Cd is 
the capacitance of the detector. The InGaAs-CIA enables photocurrent to the voltage without 
a feedback register. The minimum detectable incident power is given by

   P  min   =   hν ___ η    [    
 e  am √ 

_
 Δf     _ eτ    C  d   +  √ 

_

   
 I  dn   _ 2eτ      ]     (5)

Where Pmin is the minimum detectable power, Idn is the dark current, e is the electron charge 
η is the quantum efficiency of the photodiode, Δf is the bandwidth, eam is the noise voltage of 
the amplifier, τ is the integration time, and Cd is the capacitance [5]. At the condition Idn = 5 × 
10−15 A, η = 0.7, Cd = 30 pF, eam = 100 nVHz−1/2, τ = 10 sec, Δf = 100 Hz, the calculated Pmin value 
is 6 × 10−17 W.

Figure 4 shows the InGaAs-CIA detailed circuit diagram. The InGaAs PIN photodiode 
(Fujitsu FID13Y23WY) was used for CIA. The output voltage measured an amount of pho-
tocurrent. A dual n-channel J. FET (2N6483) differential amplifier minimized current drift 
error from fluctuation of the temperature. The FET source follower circuit reduces the output 
impedance for reduction of inductive noise. The timer IC (NE555) with p-channel MOSFET 
(3SJ11A) controls the time of charge accumulating.

Figure 5 shows the chart records of the InGaAs-CIA. The integration time of 10 sec yields 
differential voltage of 130 mV between on-emission light of 10−15 W and off light. The voltage 
fluctuation in 10 sec was 10 mV. The minimum detectable power was measured by the LED 
optical source (ADVANTEST TQ-28 at 1.28 μm with FWHM 30 nm) and attenuates NIR ND 
filters. The system obtained minimum detectable optical power 10-−16 W at 1.28 μm with 10 
sec. The result corresponded to the predicted value of equation.

Figure 3. Diode equivalent circuit (identical to the one published in authors’ previous work [5]).
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a feedback register. The minimum detectable incident power is given by
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Where Pmin is the minimum detectable power, Idn is the dark current, e is the electron charge 
η is the quantum efficiency of the photodiode, Δf is the bandwidth, eam is the noise voltage of 
the amplifier, τ is the integration time, and Cd is the capacitance [5]. At the condition Idn = 5 × 
10−15 A, η = 0.7, Cd = 30 pF, eam = 100 nVHz−1/2, τ = 10 sec, Δf = 100 Hz, the calculated Pmin value 
is 6 × 10−17 W.

Figure 4 shows the InGaAs-CIA detailed circuit diagram. The InGaAs PIN photodiode 
(Fujitsu FID13Y23WY) was used for CIA. The output voltage measured an amount of pho-
tocurrent. A dual n-channel J. FET (2N6483) differential amplifier minimized current drift 
error from fluctuation of the temperature. The FET source follower circuit reduces the output 
impedance for reduction of inductive noise. The timer IC (NE555) with p-channel MOSFET 
(3SJ11A) controls the time of charge accumulating.

Figure 5 shows the chart records of the InGaAs-CIA. The integration time of 10 sec yields 
differential voltage of 130 mV between on-emission light of 10−15 W and off light. The voltage 
fluctuation in 10 sec was 10 mV. The minimum detectable power was measured by the LED 
optical source (ADVANTEST TQ-28 at 1.28 μm with FWHM 30 nm) and attenuates NIR ND 
filters. The system obtained minimum detectable optical power 10-−16 W at 1.28 μm with 10 
sec. The result corresponded to the predicted value of equation.

Figure 3. Diode equivalent circuit (identical to the one published in authors’ previous work [5]).
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Figure 6 shows the theoretical and experimental results of the minimum detectable power. 
The solid and dashed lines show the experimental and theoretical results, respectively. The 
minimum detectable power of 10−16 W was achieved at 1.28 μm wavelength.

At the theoretical line above 10 sec, the measured minimum detectable power was saturated. 
The influence of electrical FET device noise, 1/f low frequency noise, the saturation capacity 
of the dark current, and leak photocurrent are considered.

Figure 5. Chart records of the InGaAs-CIA (identical to the one published in authors’ previous work [5]).

Figure 4. Circuit diagram of the InGaAs-CIA (almost identical to the one published in authors’ previous work [5, 6]).
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3. Application system of spectroscopic measurements in NIR

3.1. Filter-based high efficiency spectroscopic system

In the NIR region, low-level light has important information of biological, biochemistry, agri-
cultural chemistry, and photochemistry. The emission phenomenon or spectrum is expected 
to explain the emission mechanisms. The biophoton or biological emission has extremely low-
level light. The spectrum of the emission has broadly wavelength. The change of emission 
intensity is at a slow speed. An InGaAs-CIA is effective to accumulate excited photocurrent of 
the emission. It is difficult to focus for the spectrometer by lenses as the solid angle of biophoton 
or chemiluminescence from the living organism substance has a great angle of radiation and 
incoherent characteristic. Normally, the transmission of the spectrometer is less than 10%. A 
great solid angle as possible and short distance between optical source and dispersive element 
is important for the effective measurement. From these points of view, a high-efficiency filter- 
based InGaAs-CIA spectroscopic system was fabricated [6]. Figure 7 shows a schematic dia-
gram of the system. Fifteen interference filters (vacuum optics corporation of Japan) was used 
of the spectroscopic system. The measurement spectra range of the system has 1.0– 1.6 μm with 
30–35 nm optical resolution. The interference filters have the average transmission of 82 ± 6%.

We measured the emission spectrum of 1O2 at 1.27 μm to test the performance for our filter-
based spectrometer. The emission with 1O2 is very weak because it derives from a forbidden 
transition. The spectrum of 1O2 produced by 13-LOOH (2 mM) with cytochrome c (10 μM), 
NH3-NH4Cl (0.04 M), D2O is shown in Figure 8. We have observed a derivation biochemistry 
emission spectrum of 1O2 produced by this reaction. It means that 1O2 generated by oxidized 
13-LOOH with cytochrome c of protein material of human body. The reaction is known as 
Russell’s mechanism [7, 8].

Figure 9 shows Russell’s mechanism. The chemical equation is shown in Eq. (6).

Figure 6. Minimum detectable power dependence of integration time (InGaAs pin photodiode at 77 K) (Identical to the 
one published in authors previous work [5]).
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Figure 7. Interference filter based spectroscopic system (identical to the one published in authors’ previous work [6]).

Figure 8. 1O2 spectral of 13-LOOH with cytochrome c, D2O (identical to the one published in authors’ previous work [6]).

Figure 9. The Russell’s mechanism [7].
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  ROO ⋅ + ROO ⋅ →  R = O + ROH +    1   O  2    (6)

The photo-generation in the visible region has been derived from 1O2 in the past because 
the lipid peroxidation product is proportion to the emission intensity in the visible region. 
However, the emission by excited carbonyl involves in Russell’s mechanism. Tyrosine and 
tryptophan emits at the wavelength of 500– 600 nm [7, 8]. A traditional method to detect 
1O2-involved chemical technique has no specificity for 1O2 detection. The sensitivity of 1O2 
detection in near infrared enables to detect 1O2 specificity because there is no emission mate-
rial excepted. The heme compounds in the living organism include hemoglobin (blood), myo-
globin (muscle), and cytochrome c (mitochondria). These heme compounds play important 
role in living body. In the case of inflammation in biological membranes, 1O2 is generated by 
Russell’s mechanism. The heme compounds perform catalysis on this occasion. We titrate the 
generation of 1O2 by adding NaOCl after the excess H2O2 was put in the reaction chamber. The 
optical intensity of 1O2 by 13-LOOH with cytochrome c, in D2O in near infrared was compared 
with that of a typical 1O2 generating method by mixed NaOCl and H2O2. The optical yield of 
1O2 by 13-LOOH with cytochrome c, in D2O was decided using a calibration curve. Figure 10 
shows the calibration curve of the 1O2 optical yield at the wavelength of 1.27 μm using the 
NaOCl-H2O2 system.

These results show the degree of risk in case of 1O2 generated from the heme compound. The 
InGaAs-CIA filter based spectroscopic system will be expected as an analysis equipment of 
oxidant stress by 1O2.

3.2. Multichannel spectroscopic system

The multichannel spectroscopic system is available for measurement of fast emitting phenom-
ena because the optical dispersion device of spectroscopic cannot be avoided to moving for 

Figure 10. Calibration curve of the 1O2 optical yield at the wavelength of 1.27 μm using NaOCl-H2O2 system.
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wavelength shifting. In the visible region, silicon CCD camera with photoelectron multiplication 
function for detecting low-level light is commercially available. A silicon multichannel photo 
device at the wavelength of 1 μm has no photosensitivity. The light detecting materials for the 
NIR is easily influenced dark current. The commercially available InGaAs CCD or NIR photo-
multiplier of InGaAs photocathode material is very expensive. Additionally, this system is short 
of optical sensitivity for 1O2 measurement in the NIR. A highly sensitive 8 channel InGAs-CIA 
spectroscopic system was developed for 1O2 measurement. A commercially available InGaAs 
PIN photodiode for an optical communication device was used to stabilize parts supply. In 
case of employing the high sensitivity multichannel array, each photodiode or Avalanche photo 
diode device needs a lock-in amplifier with TIA circuits or photon counting equipment. Such 
a system is difficult to fabricate in reality because it needs many lock-in amplifier or photon 
counter in proportion to the number of channels. The InGaAs-CIA multichannel system has 
respectively signal transduction system to voltage from current. The system was allowed simple 
circuit, signal processing, and signal acquiring system with a low bit AD converter. The out-
line of InGaAs photodiode array is shown in Figure 11. The commercially available photodiode 
Fujitsu FID13Y13TX has a diameter of 1 mmϕ. The 8  photodiodes was fabricated without spac-
ing. The wide size is about 8 mm. Hamamatsu Photonics Co. assembled wire bonding during 
photodiodes device and packaging.

The block diagram of 8 channel multichannel InGaAs-CIA system is shown Figure 12. The fun-
damental circuit is as same as the monocyclic InGaAs-CIA system. The output signal of CIA 
array was connected to the AD converter for data acquisition after transmitted low impedance 
by J-FET source follower circuits. The system achieved minimum detectable optical power of 
5 × 10−15~10 × 10−15. The deviation of sensitivity in each channel was inner single digit.

Figure 13 shows the block diagram of 8 array InGaAs-CIA multichannel spectroscopic sys-
tem. The near-infrared light of the optical source was guided to dispersive element after col-
limator lens for parallel beam through an optical fiber of 100 μm core diameter. The NIR 
light was dispersed by the grating (Shimazu co. blaze wavelength of 1.2 μm, 300 line/1 mm, 
efficiency about 60%). The spectroscopic resolution of 1 channel was allowed about 75 nm 

Figure 11. Outline of InGaAs photodiode array.
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from 1000 to 1600 nm. The dispersion light was condensed on the photodiode array by a focal 
lens. The calibration of center wavelength on 8 photodiode was achieved using light from the 
monochromator as an optical band pass filter. The FWHM (full width at half maximum) 1O2 
spectrum was broadened about 100 nm at the center of 1265 nm. It needs no detailed resolu-
tion for spectrum measurement. In the NIR region, the chemical fluorescence of a biological 
material has no scarcely existence except 1O2. The low-level light at the center wavelength of 
1.27 μm enables to eliminate the thermal background noise.

A proof of any channel of photodiode array was carried out with the wavelength shift by a spec-
tral apparatus of resolution 30 nm of the monochromator from 1000 to 1600 nm. Figure 14 shows 
1O2 spectral of chemiluminescence with NaOCl mixed H2O2. The spectral of center wavelength 
was 1.28 μm with 50 nm of full width at half maximum. Figure 14 shows the spectral of 1O2.  

Figure 13. 8 array InGaAs-CIA spectroscopic system.

Figure 12. 8 multichannel InGaAs-CIA.
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The 8 multichannel spectroscopic system succeeded in measurement of 1O2 spectral as same as 
measurement by the monochromatic spectrometer [9]. The system succeeded in simultaneous 
multiwavelength of 1O2 spectrum measurement.

This measurement system will be useful for fast optical phenomenon, periodic emission, non-
destructive measurement for melon, watermelon, and meat with extremely optical intensity 
damped in the NIR spectroscopy. The absorption band of protein, sugar, and lipid has a 
broad spectrum in the NIR. The detection sensitivity and measurement speed are needed. 
Our multichannel detection system is suitable for such a measurement condition.

3.3. 1O2 monitoring system for antioxidant chemical test

In development of antioxidant of food chemistry, found metal material of beauty product, 
color, the super oxidation power allows the experiments of acid resistance and reaction pro-
motion. In case of acid resistance test, the generation of 1O2 from chemical reaction may influ-
ence the chemical generation reaction itself. The generation 1O2 by photoexcited Rose Bengal 
has almost no influence of chemical reaction. The Rose Bengal 1O2 generation system was 
fabricated with super luminescence green LED used for the traffic signal. The 1O2 generation 
intensity was controlled by monitoring NIR chemiluminescence using the InGaAs-CIA sys-
tem without liquid nitrogen. Figure 15 shows a block diagram of the 1O2 generation system.

The Rose Bengal solution was photoexcited by the 5W LED of best match absorption band. 
The new optical excited system achieved the very small compact size in comparison of using 
argon ion laser. The system is suitable for chemical plants of mass production because the 
electric power supply circuits for the LED are simple and easy current control. The generated 

Figure 14. 1O2 spectral of chemiluminescence.
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Figure 15. Block diagram of 1O2 generation system by use of Rose Bengal.

Figure 16. Absorption band of Rose Bengal aqueous.

Figure 17. Rose Bengal excitation light source.
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1O2 was optically monitored by InGaAs-CIA at the device temperature of about 150 K degree 
without liquid nitrogen. The chemical plants should avoid using liquid nitrogen because of 
choking hazard and troublesome chores. The minimum detectable power of 10−13 W at the 
device temperature 150 K was achieved for monitoring 1O2.

The absorption band of Rose Bengal is shown in Figure 16. The absorption band covers from 
500–600 nm. The absorption peak spectrum yields at the wavelength of 550 nm. The emis-
sion spectrum of an excitation light source is shown in Figure 17. A water-cooled multi-
mode argon ion laser or green-laser was used for the traditional optical excitation source. 
The multimode spectrum of argon ion laser is oscillated at the wavelength of 488 and 
515 nm. The intensity of spectrum at 488 nm wavelength is stronger than that of 515 nm.  
The main spectrum stands at the outside of Rose Bengal absorption band. The spectrum of 
green LED and super luminosity green LED has the center position of the absorption band. 
The oscillation power of green super luminosity LED for traffic signal has very strong power 
in comparison with green LD except for metallic processing green LED. The green super 
luminosity LED permits increasing of absorbance, and achieved downsizing the system spec-
tacularly, and realized cost cuts. Figure 18 shows photograph of excitation by green LED.

Figure 18. Photograph of excitation by green LED.
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Figure 19 shows the spectrum 1O2 of Rose Bengal excited by green LED. The spectrum has a 
peak at the wavelength of 1.27 μm. A red line in Figure 19 indicates the wavelength of optical 
band pass filters. There are four optical band pass filters (1200, 1250, 1300, and 1350 nm) for 
the spectroscopic system.

The 1O2 emission spectrum of Rose Bengal is shown in Figure 20. The intensity of 1O2 emission 
in methanol is stronger than water solvent. The lifetime of 1O2 in methanol is longer than in 
water. The generation intensity of 1O2 is monitored through an optical fiber combined with 
InGaAs-CIA. Many 1O2 monitoring equipment and generation optical sources are necessary 
in the construction of a microreactor chemical plant. The conventional system employs the 
Ge-TIA photo detection system with lock-in amplifier and water-cooled argon ion laser. Such 
a system is not suitable for chemical plant because the system needs occupied large space and 
high cost. The combination of InGaAs-CIA monitoring and the super luminescence green 
LED 1O2 generating system enables the construction of a compact and reasonable chemical 
plant. The system expects to contribute to the development of new medicines.

Figure 19. 1O2 spectrum of Rose Bengal excited by green LED.

Figure 20. 1O2 spectrum of Rose Bengal by measurement with InGaAs-CIA at 150 K.

Developments in Near-Infrared Spectroscopy78



Figure 19 shows the spectrum 1O2 of Rose Bengal excited by green LED. The spectrum has a 
peak at the wavelength of 1.27 μm. A red line in Figure 19 indicates the wavelength of optical 
band pass filters. There are four optical band pass filters (1200, 1250, 1300, and 1350 nm) for 
the spectroscopic system.

The 1O2 emission spectrum of Rose Bengal is shown in Figure 20. The intensity of 1O2 emission 
in methanol is stronger than water solvent. The lifetime of 1O2 in methanol is longer than in 
water. The generation intensity of 1O2 is monitored through an optical fiber combined with 
InGaAs-CIA. Many 1O2 monitoring equipment and generation optical sources are necessary 
in the construction of a microreactor chemical plant. The conventional system employs the 
Ge-TIA photo detection system with lock-in amplifier and water-cooled argon ion laser. Such 
a system is not suitable for chemical plant because the system needs occupied large space and 
high cost. The combination of InGaAs-CIA monitoring and the super luminescence green 
LED 1O2 generating system enables the construction of a compact and reasonable chemical 
plant. The system expects to contribute to the development of new medicines.

Figure 19. 1O2 spectrum of Rose Bengal excited by green LED.

Figure 20. 1O2 spectrum of Rose Bengal by measurement with InGaAs-CIA at 150 K.

Developments in Near-Infrared Spectroscopy78

4. Summary

We developed a highly sensitive InGaAs-CIA in the near-infrared region by use of commer-
cially available photodiode. The system performed low-level light detection measurement 
in the NIR region. The optical emission of 1O2 was detected specifically in the NIR region. 
The measurement method of 1O2 was changed from the chemical technique to the physical 
method. We have achieved detection 1O2 of the heme compound in the living organism includ-
ing hemoglobin (blood), myoglobin (muscle), and cytochrome c (mitochondria) successfully. 
These heme compounds play an important role in living body, and also generated 1O2 as a 
catalyst. The InGaAs-CIA system and multichannel detection system for the low-level light 
was introduced in the NIR region. The system is available for detection of 1O2 from chemical 
reaction. The electron refrigeration system without liquid nitrogen will be expected to become 
popular and realize compact size. Especially, we want to make contribution by means of our 
system to develop the noninvasive photo-sensitive substance for the photodynamic therapy 
that produces 1O2 caused oxidative damage to the cancer cells.
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Abstract

Near-infrared spectroscopy (NIRS) is a high-throughput, low-cost, solvent-free, and 
nondestructive analytical tool. Chemometrics is the science that employs statistical and 
mathematical methods to explain near-infrared spectra; it has been proven that when 
they are coupled, their effectiveness highly improved in-depth carbohydrate charac-
terization. This chapter focuses on the fundamentals of near-infrared spectroscopy in 
the study of carbohydrates, as well as the application of partial least squares regression 
(PLSR) and principal component analysis (PCA), as the most useful chemometric tech-
niques involved in carbohydrate analysis. The theoretical aspects and practical applica-
tions starting from simple to complex carbohydrates mixtures are covered. Indeed, the 
contributions from different fields extend the implementation of near-infrared spectros-
copy from industrial quality control to scientific research.

Keywords: near-infrared spectroscopy, chemometrics, carbohydrates, polysaccharides, 
partial least squares regression, principal component analysis

1. Introduction

In a vibrational spectroscopy, near-infrared spectroscopy (NIRS) covers the transition from 
the visible spectral range to the mid-infrared region. The NIR spectral region ranges from 
800 to 2500 nm (12,500–4000 cm−1) with absorptions representing overtones and combina-
tions mainly associated with –CH, –OH, –NH, and –SH functional groups [1]. NIR spectros-
copy in combination with chemometric analyses can provide unique information in a wide 
field of applications from life sciences to environmental issues. It is more frequently used in 
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the agricultural field [2–5], in particular, on the elucidation of nonstructural carbohydrates 
(NSCs) of plants. NSCs are products of the photosynthesis, providing substrates for growth 
and metabolism and can be stored by the plant playing a central role in the plant response to 
the environment [6, 7]. This type of carbohydrates is classified into monosaccharides (glucose 
and fructose), disaccharides (sucrose), polysaccharides (starch and fructans), oligosaccha-
rides (raffinose), and sugar alcohols (inositol, sorbitol, and mannitol) [8, 9].

NIR spectroscopy is widely used to follow the chemical, physical, technological, or physi-
ological processes that affect the structure and composition of carbohydrates found in many 
different organisms [10]. The success of this technique relies on the rapid and nondestructive 
analysis of the sample without the use of chemicals [11]. In addition, the data can be analyzed 
with chemometric methods. In this regard, partial least squares regression (PLSR) and princi-
pal component analysis (PCA) are two of the most recognized statistical methods that can be 
used to build NIR-chemometric models. PLSR is a well-established method for multivariate 
modeling and calibration [12]. Meanwhile, PCA analyzes data tables representing observa-
tions described by several dependent variables, which are, in general, intercorrelated [13].

The objective of this chapter is to give a comprehensive overview of NIR spectroscopy for 
analyzing carbohydrates, such as glucose, fructose, sucrose, and fructans. In addition, we 
describe NIR spectroscopy and multivariate methods used to identify, classify, and quan-
tify carbohydrates in plant tissues. Furthermore, we present the main applications of NIR-
chemometrics on carbohydrate analyses.

2. NIR spectra: characteristic bands of oligosaccharide and polysaccharide

The term “near” in NIR relies on the position of the electromagnetic energy lying next to or 
near the visible energy range. Molecular vibrations in the middle infrared (MIR) range cover 
absorptions bands between 2500 and 25,000 nm (4000 and 400 cm−1) representing the most 
intense and simplest bands in the whole infrared range, whereas NIR bands arise in the inter-
val between 800 and 2500 nm (12,500 and 4000 cm−1) covering absorptions corresponding to 
overtones and combinations of fundamental vibrations [14]. NIR spectroscopy is concerned 
with both  electronic and vibrational transitions [1]. Bands due to electronic transitions are 
observed in the NIR region and in general are presented as weak bands. Moreover, bands 
arising from overtones and combination modes are so-called forbidden transitions. Starting 
from the diatomic molecule as the simplest vibrating system, described by the harmonic and 
anharmonic oscillator, the study of more complex substances is referred to as polyatomic 
molecules [14].

The NIR region can be divided into three regions. Region I spans from 800 to 1200 nm (12,500–
8500 cm−1), also known as the “the short-wave NIR region (SWNIR),” “near-NIR region 
(NNIR),” or “the Herschel region,” represents bands resulting from electronic transitions, 
overtones, and combinations modes. Region II ranges from 1200 to 1800 nm (8500–5500 cm−1) 
and covers first overtones of XH (X = C, O, N), stretching vibrations and various types of com-
bination modes. Finally, Region III (1800–2500 nm or 5500–4000 cm−1) is a combination mode 
region. Many applications utilize Regions II and III [1].
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Absorptions due to different functional groups, especially –CH, –OH, and –NH, are displayed 
as molecular overtones and combination vibrations at specific wavebands [15, 16]. NIR spectral 
data are influenced by a particle size (e.g., ground or powder) and need to be properly cali-
brated [17]. In Table 1, the characteristic bands of oligosaccharide and polysaccharide are listed.

NIRS has been used as a fingerprint technique for all kinds of samples (liquids, solids, and 
semisolids), independently of their nature, relatively simple substances or pure compounds, 
most times they show broad and overlapping bands, it is impossible to correctly assign the 
specifically vibrations, and cannot be used for structural determination of a sample [18].

3. Multivariate data analysis by NIRS

NIR spectra are characterized for their complexity and difficulty to be interpreted. For these 
reasons, multivariate methods from chemometrics are required to understand NIR spectra.

Chemometrics comprise the development and use of mathematical and statistical methods 
for applications in chemistry. As a discipline, the aim of chemometrics is to provide methods 
to extract relevant chemical information out of measured chemical data in order to represent 
and display this information.

Carbohydrate type Waveband Wavenumber Reference

nm cm−1

Glucose OH stretch 1st overtone 2340, 2255, 2150, 2085, 
1902, 1730, 1590, 1520, 
1385, 1195

4274, 4435, 4651, 4796, 
5258, 5780, 6289, 6579, 
7220, 8368

[19]

Glucose OH stretch/OH bend 1688 5924 [20]

Sucrose OH stretch 1st overtone 1433 6978 [20]

Sucrose/glucose/fructose OH combination 1928 5186 [21]

Sucrose/glucose/fructose OH stretch/CO stretch 
combination

2123–2200 4710–4717 [22]

Crystalline sucrose OH stretch 1st overtone 1443–1440 6930–6944 [23, 24]

Polysaccharides CH stretch/CH 
deformation combination

2328 4295 [25]

Polysaccharides OH stretch/CO stretch 
combination

2274, 2271–2270 4398, 4403–4405 [22, 25]

Polysaccharides OH combination 2090 4785 [25]

Polysaccharides OH stretch/OH bend 1920 5208 [25]

Polysaccharides CH combination/CH 1st 
overtone

2328, 2270, 2078, 1920, 
1587–1583

4295, 4405, 4813, 5208, 
6300–6317

[19, 22]

Polysaccharides OH stretch 1st overtone 1437–1389 6960–7200 [26–29]

Table 1. Characteristic bands of oligosaccharide and polysaccharide.
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Figure 1 shows a general scheme for multivariate techniques, including the two different 
chemometric groups that are frequently employed in the NIR spectra analysis: the qualita-
tive (classification) methods and the quantitative (regression) methods. As a first step, before 
choosing any method, usually NIR spectra are preprocessed with mathematical treatments, 
such as baseline correction, normalizations, derivatives, and smoothing, in order to enhance 
the relevant information and reduce the influence of side information contained in the spectra. 
The classification methods are used to group or separate the samples according to their spec-
tra. The regression methods correlate the spectrum to quantifiable properties of the samples.

3.1. Quantitative analysis

The basic principles used for quantitative analysis are fundamentally invariable for all optical 
and spectral measurement methods. The principle behind any quantitative analysis is that 
the desired quantity, property, parameter, or compound can be determined from the sig-
nal obtained by an instrument, and this signal differs in a predictable manner for a given 
experimental system. The magnitude of the signal obtained can be correlated, directly or 
by mathematical algorithms, to the target characteristic properties of a sample. A common 
implementation of quantitative analysis is the determination of the concentration of a given 
analyte. For most applications, an attempt is made to linearize the relationship between the 
analyte and the instrument response, although this is not essential if a well-defined math-
ematical relationship can be established. This leads to the generation of a calibration from a 
characterized standard set (references) with the objective to construct a prediction model for 
a group of samples (Figure 2) [30].

Many successful NIRS analysis have been performed using PLSR as a quantitative chemomet-
ric technique. Its usefulness derives from its potential to analyze data with numerous, noisy, 
collinear, and even incomplete variables. By establishing a linear relationship between two 

Figure 1. General scheme showing the commonly multivariate techniques employed by NIR spectroscopy.
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data matrices, the spectral data X and the reference values Y, through a linear multivariate 
model, the PLSR technique finds out the variables in the X matrix that will best define the Y 
matrix. In other words, it represents the NIR spectra in the space of wavelengths in order to 
display directions that will be linear combinations of wavelengths called factors that describe 
the studied property [31, 32].

3.2. Qualitative analysis

Qualitative analyses are used for the classification of samples in accordance with their NIR 
spectra. Two general approaches can be used for qualitative classification: the unsupervised 
and the supervised methods. In the first approach, samples are classified lacking preceding 
knowledge, except the spectra. On the other hand, supervised methods require a prior knowl-
edge of the sample, for instance, a category membership, generating a classification model 
with a training set of samples with well-established categories. The obtained model perfor-
mance is evaluated by relating the classification predictions to the well-known categories of 
the validation samples [33].

Principal component analysis (PCA) is one of the most popular classification methods utilized 
in life sciences. PCA is used to visualize the most important information from a given data. 
One of the most significant advantages of PCA application is the reduction of the number of 
variables (scores), allowing the representation of a multivariate data table in a small dimen-
sional area. Its purpose is to obtain significant information from the NIR spectra to express 
it as a set of new orthogonal variables called principal components (PC). The first principal 
component (PC1) defines the maximum variability scattered within the samples. A second 
principal component (PC2), uncorrelated and orthogonal to the first principal component, 

Figure 2. Scheme for the construction of a quantitative model.
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explains the maximum variability not described by the first component, this behavior con-
tinues with the next principal component (PC3), and so on [12]. Thereby, a display pattern of 
similarity of the variables as points in maps is created.

4. Applications of carbohydrates analysis by NIRS

The near-infrared spectroscopy (NIRS) is a technique that allows the measurement of car-
bohydrates in a wide variety of samples. Nowadays, NIRS-chemometrics have proven their 
effectiveness for both qualitative and quantitative carbohydrate analysis. NIRS has several 
advantages such as allowing the sample remains intact after analysis and giving access to 
multiple chemical as well as physical properties at the same time [34].

NIR spectroscopy is generally chosen for its high-throughput screening, reduced sample prep-
aration, low cost, and the nondestructive nature toward the analyzed sample [14]. However, 
establishing a suitable calibration demands a big effort and requires reference values for each 
sample, which makes it time-consuming and costly at the beginning [35].

In the agrifood sector, the potential of NIRS have been widely investigated, this is a very 
powerful tool that provides meaningful information about internal and external properties of 
fruits, such as sugar content, total acidity, pH, soluble solid content, dry matter, firmness, and 
bruises, to mention some [36]. Moreover, NIRS can be applied to a wide variety of problems 
such as determination of particle size [38], determination of the best harvesting time [37], and 
investigation of geographical origin of foods such as apples, meat, and cheese [39].

However, and particularly to specific sugar content, NIRS in combination with PLSR models 
has been used in sorghum stalks [40] and sweet sorghum (cellulose, lignin, and hemicellu-
lose) [41], fruit juices [42, 43], rice (amylose) [44], whey (lactose) [45], grasses (fructans) [46, 
47], maize (nonstructural and water soluble carbohydrates) [48], intact apple fruit to determi-
nate fructose, glucose, and sucrose [49], orange [50], apricot [51], sugar beet [52], cherries [53], 
and other fruits (Table 2). All these studies accorded that the performance of NIR spectros-
copy is comparable to the reference chromatographic method, but the former is much faster 
and easier to carry out.

On the other hand, NIRS has been applied on food quality evaluation; it is often used to check 
if fruits or vegetables are green or rotten to detect surface defects. NIRS is also employed 
to check sugar concentrations, for instance, not only in apples [64], oranges [55, 56], mango 
[65], kiwifruits [57], sugar beet [54], peaches [66], jujube [67], onion [68], potato tubers [58], 
Nules Clementine [62], passion fruit [69], but also in fruit juices [43], wine [59], or cakes [60] 
(Table 2). Additionally, it has been used in breadstuff, dairy products, meat, vegetables, and 
fish products and in processed food to provide information about overtones and their combi-
nations [70]. Moreover, studies have been performed to demonstrate that NIRS-chemometric 
analyses are of greater predictive value than mid-infrared data. In Chinese yams, Zhuang 
et al. [63] analyzed with NIR and MIR spectroscopy, the authors concluded that reasonable 
results were obtained using both spectral data sets and methods, but that NIR-chemometric 
data derived better prediction models.
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In respect to specific absorption peaks, sugar analyses have been carried out in fruit juices 
establishing that NIRS can deal with the distortions due to water clusters [20–22, 42].

NIR techniques have also been applied to measure biomass composition, especially on the 
presence of structural carbohydrates. The National Renewable Energy Laboratory (NREL) 
reported sorghum composition prediction models for glycan, xylan, lignin, starch, extrac-
tives, and ash [71].

NIR spectroscopy is not only useful in laboratory measurements sites but also applicable to 
online and field studies. The study of 116 syrup samples to compare a portable spectrometer 
and a benchtop device showed that the reduced wavelength range and reduced resolution 
of the portable device is sufficient to receive calibrations with R2 ≥ 0.96 for standard syrups 
with comparable standard error of prediction (SEP) values of 1.30 g/100 g versus 1.19 g/100 
g, 0.94 g/100 g versus 0.99 g/100 g, and 2.04 g/100 g versus 2.46 g/100 g for glucose, fructose, 
and sucrose, respectively, to the handheld device [61]. The developed method is suitable to be 
implemented for quality control in the producing industry as well as in grocery stores.

A relevant novel application of the predictive models, particularly of the direct NIR predic-
tion on diverse parameters on fruit quality was demonstrated. In Ref. [50], the authors com-

Sample Carbohydrate Analysis Reference

Grain sorghum stalks Sucrose, glucose PLSR [41]

Fruit juices Glucose, fructose, sucrose PLSR, PCA [43, 44]

Rice Amylose mPLSs [45]

Whey Lactose PLS [46]

Grasses Fructan PLSR [47, 48]

Apple fruit Glucose, fructose, sucrose PLS [50]

Sugar beet Sucrose SEPs [53, 55]

Cherries Total carbohydrates PLSR [54]

Oranges Glucose, fructose, sucrose PLSR [56, 57]

Kiwifruit Glucose, fructose, sucrose PLS [58]

Potato Glucose, fructose PLSR [59]

Wine Glucose PLSR, PCR [60]

Cakes Sucrose MLR [61]

Syrup Glucose, fructose, sucrose PLSR [62]

Nules Clementine Glucose, fructose, sucrose 
total carbohydrates

PLS, PCR [63]

Chinese yams Total carbohydrates PLS, PCA, LS-SVM [64]

mPLSs, various modified partial least square; PLS, partial least square; SEPs, standard errors of prediction; MLR, 
multiple linear regressions; and LS-SVM, least squares-support vector machine.

Table 2. Samples analyzed by NIR in a carbohydrate study.
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pared two commercial portable spectrometers (Vis/NIR spectrometer versus OTF-NIR) for 
four orange varieties quality: soluble solids content, acidity, titratable acidity, maturity index, 
flesh firmness, juice volume, fruit weight, rind weight, juice volume to fruit weight ratio, 
fruit color index, and juice color index, and they found relevant the prediction of maturity 
index. The Lab spec spectrometer showed better predictive performance than the laminar 
instrument.

In another study, a Lab spec Pro portable spectrophotometer to conduct an online classifica-
tion of beef tenderness was also successful [72].

In sugar-flour mixtures, NIR spectroscopy displayed proper results on the characteristic 
absorption bands of sugars, which are 1200 nm (8333 cm−1), 1437 nm (6959 cm−1), 2074 nm 
(4822 cm−1), and 2320 nm (4310 cm−1). However, it was not possible to distinguish various sorts 
of sugars, for instance, make a difference between the sucrose of the powdered sugar and the 
numerous carbohydrates present in the flour. Nevertheless, the identification of specific sig-
natures of sugars can be very useful for rapid detection in the industrial sector [73].

Honey represents another class of samples that have proven the effectiveness of a NIR analysis 
[74]. In a study on Galicia honeys with protected geographical indication (PGI), the samples 
were processed by different chemometric methods to develop an authentication system spe-
cific to this type of honey. In this work, fifteen Galicia certificated PGI honeys were differenti-
ated from other fifteen commercial available honeys by PCA, demonstrating that a single and 
fast chemometric method could be used to indicate the genuineness of Galicia PGI samples. 
Figure 3A shows the NIR spectra of all the analyzed samples and Figure 3B, illustrates the 
discrimination of Galicia PGI honeys from the other samples by the PCA plot.

Similarity, the potential use of NIR-PCA analysis to monitor sugar adulteration in onion 
powders was assessed through a detailed examination of the feasibility of quantification 
of cornstarch as an adulterating ingredient in onion powders [75]. Spectral analysis of 18 
concentrations of starch in 180 onion powders, ranging from 0 to 35%, was conducted. The 
NIR spectra of the pure and adulterated onion powders (Figure 4A) reveal differences in 

Figure 3. (A) NIR spectra of honey samples. (B) Score plot of the honey samples in the space defined by the first two 
principal components. Adapted from Ref. [74].
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the absorption intensities between 1920 (5208 cm−1) and 1980 nm (5051 cm−1). The absorp-
tion bands in these regions correspond to the O–H stretch and O–H band combination and 
the H–O–H deformation combination, which represents the starch content. The spectral fluc-
tuations from 1400 (7143 cm−1) to 1600 nm (6250 cm−1) correspond to the first overtone of the 
hydroxyl group. The precise position of these bands is very sensitive to hydrogen bonding 
in the starch molecule, causing a difference between genuine and adulterated samples. The 
application of PCA (Figure 4B) resulted in a data grouping of each of the different concentra-
tions used, working as a discriminative screening tool of authentic and adulated samples.

Applications of NIRS have been developed also in the nutrition and health fields. NIR and 
MIR spectroscopy measurements and multivariate calibration methods based on partial least 
square regression have been used in a determination of fat, proteins, carbohydrates, and 
energy values in baby food, infant fast food, and canteen menus, with a simple, fast, and good 
predictive capabilities [70]. Another great diagnostic application is the measurement of blood 
glucose [1].

Finally, another notable capacity of NIRS was the prediction of carbohydrates concentrations, 
and distribution, leading to high ratio of performance to deviation (RPD) values, reducing 
the use of chemicals and working time, confirming that this makes a suitable technique of 
industry applications [61].

5. Conclusions

The potential of NIR spectroscopy in combination with chemometrics on carbohydrate analy-
sis has been fully demonstrated. NIR is a powerful technique to study carbohydrates com-
position, type, and levels. This method can be used qualitatively and quantitative to detect, 
identify, and qualify carbohydrates. These unique capabilities enable the employment of NIR-
chemometric in numerous applications: from state-of-the-art scientific experiments to on-line 
industrial processing control.

Figure 4. (A) Original NIR spectra of pure onion and starch onion mixtures at different concentrations. (B) Principal 
component score plot for the first three PCs for discrimination among different adulteration concentrations in onion 
powder. Adapted from Ref. [75].

Carbohydrate Analysis by NIRS-Chemometrics
http://dx.doi.org/10.5772/67208

89



Author details

Mercedes G. López1*, Ana Sarahí García-González1 and Elena Franco-Robles2

*Address all correspondence to: mlopez@ira.cinvestav.mx

1 Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato, 
Mexico

2 University of Guanajuato, Irapuato, Mexico

References

[1] Ozaki Y. Near-infrared spectroscopy—its versatility in analytical chemistry. Analytical 
Sciences: the International Journal of the Japan Society for Analytical Chemistry. 
2012;28:545–563. DOI: 10.2116/analsci.28.545.

[2] Kelley SS, Rials TG, Snell R, Groom LH, Sluiter A. Use of near infrared spectroscopy 
to measure the chemical and mechanical properties of solid wood. Wood Science and 
Technology. 2004;38:257–276. DOI: 10.1007/s00226-003-0213-5.

[3] Ono K, Hiraide M, Amari M. Determination of lignin, holocellulose, and organic solvent 
extractives in fresh leaf, litter fall, and organic material on forest floor using near-infra-
red reflectance spectroscopy. Journal of Forest Research. 2003;8:191–198. DOI: 10.1007/
s10310-003-0026-2.

[4] Philip YX, Liu L, Hayes D, Womac A, Hong K, Sokhansanj S. Fast classification and com-
positional analysis of corns over fractions using Fourier transform near-infrared tech-
niques. Bioresource Technology. 2008;99:7323–7332. DOI: 10.1016/j.biortech.2007.12.063.

[5] Jin S, Chen H. Near-infrared analysis of the chemical composition of rice straw. Industrial 
Crops and Products. 2007;26:207–211. DOI: 10.1016/j.indcrop.2007.03.004.

[6] Chapin I, Schulze A, Mooney HA. The ecology and economics of storage in plants. 
Annual Review of Ecology and Systematics. 1990;21:423–447. DOI: 10.1146/annurev.
es.21.110190.002231.

[7] Kozlowski TT. Carbohydrate sources and sinks in woody plants. The Botanical Review. 
1992;58:107–222. DOI: 10.1007/BF02858600.

[8] Rastall RA. Methods in Plant Biochemistry. Vol. 2. Academic Press. London. 1990. DOI: 
10.1016/0968-0004(91)90104-4.

[9] Stick R, Williams S. Carbohydrates: The Essential Molecules of Life. 2nd ed. Oxford: 
Elsevier. 2009. DOI: 10.1016/j.carbpol.2010.04.058.

[10] Cassells J, Reuss R, Osborne B, Wesley I. Near infrared spectroscopic studies of changes in 
stored grain. Journal of Near Infrared Spectroscopy. 2007;15:161–167. DOI: 10.1255/jnirs.727.

Developments in Near-Infrared Spectroscopy90



Author details

Mercedes G. López1*, Ana Sarahí García-González1 and Elena Franco-Robles2

*Address all correspondence to: mlopez@ira.cinvestav.mx

1 Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato, 
Mexico

2 University of Guanajuato, Irapuato, Mexico

References

[1] Ozaki Y. Near-infrared spectroscopy—its versatility in analytical chemistry. Analytical 
Sciences: the International Journal of the Japan Society for Analytical Chemistry. 
2012;28:545–563. DOI: 10.2116/analsci.28.545.

[2] Kelley SS, Rials TG, Snell R, Groom LH, Sluiter A. Use of near infrared spectroscopy 
to measure the chemical and mechanical properties of solid wood. Wood Science and 
Technology. 2004;38:257–276. DOI: 10.1007/s00226-003-0213-5.

[3] Ono K, Hiraide M, Amari M. Determination of lignin, holocellulose, and organic solvent 
extractives in fresh leaf, litter fall, and organic material on forest floor using near-infra-
red reflectance spectroscopy. Journal of Forest Research. 2003;8:191–198. DOI: 10.1007/
s10310-003-0026-2.

[4] Philip YX, Liu L, Hayes D, Womac A, Hong K, Sokhansanj S. Fast classification and com-
positional analysis of corns over fractions using Fourier transform near-infrared tech-
niques. Bioresource Technology. 2008;99:7323–7332. DOI: 10.1016/j.biortech.2007.12.063.

[5] Jin S, Chen H. Near-infrared analysis of the chemical composition of rice straw. Industrial 
Crops and Products. 2007;26:207–211. DOI: 10.1016/j.indcrop.2007.03.004.

[6] Chapin I, Schulze A, Mooney HA. The ecology and economics of storage in plants. 
Annual Review of Ecology and Systematics. 1990;21:423–447. DOI: 10.1146/annurev.
es.21.110190.002231.

[7] Kozlowski TT. Carbohydrate sources and sinks in woody plants. The Botanical Review. 
1992;58:107–222. DOI: 10.1007/BF02858600.

[8] Rastall RA. Methods in Plant Biochemistry. Vol. 2. Academic Press. London. 1990. DOI: 
10.1016/0968-0004(91)90104-4.

[9] Stick R, Williams S. Carbohydrates: The Essential Molecules of Life. 2nd ed. Oxford: 
Elsevier. 2009. DOI: 10.1016/j.carbpol.2010.04.058.

[10] Cassells J, Reuss R, Osborne B, Wesley I. Near infrared spectroscopic studies of changes in 
stored grain. Journal of Near Infrared Spectroscopy. 2007;15:161–167. DOI: 10.1255/jnirs.727.

Developments in Near-Infrared Spectroscopy90

[11] Jiang W, Han G, Zhang Y, Wang M. Fast compositional analysis of ramie using near-
infrared spectroscopy. Carbohydrate Polymers. 2010;81:937–941. DOI: 10.1016/j.carbpol. 
2010.04.009.

[12] Abdi H, Williams LJ. Principal component analysis. Wiley Interdisciplinary Reviews: 
Computational Statistics. 2010;2:433–459. DOI: 10.1002/wics.101. 

[13] Geladi P, Kowalski BR. Partial least-squares regression: a tutorial. Analytica Chimica 
Acta. 1986;185:1–17. DOI: 10.1002/wics.101.

[14] Siesler HW, Ozaki Y, Kawata S, Heise HM. Near-Infrared Spectroscopy: Principles, 
Instruments, and Applications. Wiley: Weinheim. 2008:361 p. DOI: 10.1002/9783527612666.

[15] Reich G Near-infrared spectroscopy and imaging: basic principles and pharmaceuti-
cal applications. Advanced Drug Delivery Reviews. 2005;57:1109–1143. DOI: 10.1016/j.
addr.2005.01.020.

[16] Osborne BG. Near-infrared spectroscopy in food analysis. Encyclopedia of Analytical 
Chemistry. Meyers RA: Wiley, Chichester. 2006. pp. 1–14. DOI: 10.1002/9780470027318.
a1018.

[17] Pasikatan MC, Steele JL, Spillman CK, Haque E. Near infrared reflectance spectros-
copy for online particle size analysis of powders and ground materials. Journal of Near 
Infrared Spectroscopy. 2001;9:153–164. DOI: 10.1255/jnirs.303.

[18] Huck CH. Advances of vibrational spectroscopic methods in phytomics and bioanaly-
sis. Journal of Pharmaceutical and Biomedical Analysis. 2014;87:26–35. DOI: 10.1016/j.
jpba.2013.05.010.

[19] Ghosh S, Roy RB. Quantitative near-infra-red analysis of reducing sugar from the surface 
of cotton. The Journal of Textile Institute. 1998;79:504–510. DOI: 10.1155/2013/649407.

[20] Giangiacomo R, Magee JB, Birth GS, Dull GG. Predicting concentrations of individual 
sugars in dry mixtures by near-infrared reflectance spectroscopy. Journal of Food and 
Science. 1981;46:531–534. DOI: 10.1111/j.1365-2621.1981.tb04903.x.

[21] Giangiacomo R.. Study of water–sugar interactions at increasing sugar concentration by 
NIR spectroscopy. Food Chemistry. 2006;96:371–379. DOI: 10.1016/j.foodchem.2005.02.051.

[22] Rambla FJ, Garrigues S, de la Guardia M. PLS-NIR determination of total sugar, glu-
cose, fructose and sucrose in aqueous solutions of fruit juices. Analytica Chimica Acta. 
1997;344:41–53. DOI: 10.1016/S0003-2670(97)00032-9.

[23] Davies AMC, Miller CE. Tentative assignment of the 1440-nm absorption band in the 
near-infrared spectrum of crystalline sucrose. Applied Spectroscopy. 1998;42:703–704. 
DOI: 10.1366/0003702884429364.

[24] Workman Jr J, Weyer L. Practical Guide to Interpretive Near-Infrared Spectroscopy. 
New York, NY: CRC Press. 2007:344 p. DOI: 10.1002/anie.200885575.

Carbohydrate Analysis by NIRS-Chemometrics
http://dx.doi.org/10.5772/67208

91



[25] Shenk JS, Workman JJ, Westerhaus MO. Application of NIR spectroscopy to agricultural 
products. In: Handbook of Near-Infrared Analysis. 2nd ed. CRC Press. New York. Basel. 
2001. pp. 419–470. DOI: 10.1201/9781420002577.pt4a.

[26] Tsuchikawa S, Siesler HW. Near-infrared spectroscopic monitoring of the diffusion pro-
cess of deuterium-labeled molecules in wood. Part I: softwood. Applied Spectroscopy. 
2003;57:667–674.

[27] Tsuchikawa S, Siesler HW. Near-infrared spectroscopic monitoring of the diffusion pro-
cess of deuterium-labeled molecules in wood. Part II: hardwood. Applied Spectroscopy. 
2003;57:675–681.

[28] Krongtaew C, Messner K, Ters T, Fackler K. Characterization of key parameters for 
biotechnological lignocellulose conversion assessed by FT-NIR spectroscopy. Part I. 
Qualitative analysis of pretreated straw. BioResources. 2010;5:2063–2080.

[29] Krongtaew C, Messner K, Ters T, Fackler K. Characterization of key parameters 
for biotechnological lignocellulose conversion assessed by FT-NIR spectroscopy. 
Part II. Quantitative analysis by partial least squares regression. BioResources. 
2010;5:2081–2096.

[30] Coates J. Classical methods of quantitative analysis. In: Chalmers JM, Griffiths PR, 
editors. Handbook of Vibrational Spectroscopy. 1st ed. Wiley. New Jersey. 2006. pp. 
2235–2237. DOI:10.1002/0470027320.s4602.

[31] Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. 
Chemometrics and Intelligent Laboratory Systems. 2001;58:109–130. DOI: 10.1016/
S0169-7439(01)00155-1.

[32] Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N. A review of near 
infrared spectroscopy and chemometrics in pharmaceutical technologies. Journal of 
Pharmaceutical and Biomedical Analysis. 2007;44:683–700. DOI: 10.1016/j.jpba.2007.03.023.

[33] Lavine BK. Chemometrics. Analytical Chemistry. 2000;72:91R–97R. DOI: 10.1021/a1000016x.

[34] Tsuchikawa S. A review of recent near infrared research for wood and paper. Applied 
Spectroscopy Reviews. 2007;42:43–71. DOI: 10.1080/05704920601036707

[35] Bakeev KA. Process Analytical Technology: Spectroscopic Tools and Implementation 
Strategies for the Chemical and Pharmaceutical Industries. 2nd ed. John Wiley & Sons, 
Ltd. New Jersey. 2010. 543 p. DOI: 10.1002/9780470689592.

[36] Lin H and Ying Y. Theory and application of near infrared spectroscopy in assessment 
of fruit quality: a review. Sensing and Instrumentation for Food Quality and Safety. 
2009;3:130–141. DOI: 10.1007/s11694-009-9079-z.

[37] Bittner LK, Heigl N, Petter CH, Noisternig MF, Griesser UJ, Bonn GK, Huck CW. Near-
infrared reflection spectroscopy (NIRS) as a successful tool for simultaneous identifica-
tion and particle size determination of amoxicillin trihydrate. Journal of Pharmaceutical 
and Biomedical Analyses. 2011;54:1059–1064. DOI: 10.1016/j.jpba.2010.12.019.

Developments in Near-Infrared Spectroscopy92



[25] Shenk JS, Workman JJ, Westerhaus MO. Application of NIR spectroscopy to agricultural 
products. In: Handbook of Near-Infrared Analysis. 2nd ed. CRC Press. New York. Basel. 
2001. pp. 419–470. DOI: 10.1201/9781420002577.pt4a.

[26] Tsuchikawa S, Siesler HW. Near-infrared spectroscopic monitoring of the diffusion pro-
cess of deuterium-labeled molecules in wood. Part I: softwood. Applied Spectroscopy. 
2003;57:667–674.

[27] Tsuchikawa S, Siesler HW. Near-infrared spectroscopic monitoring of the diffusion pro-
cess of deuterium-labeled molecules in wood. Part II: hardwood. Applied Spectroscopy. 
2003;57:675–681.

[28] Krongtaew C, Messner K, Ters T, Fackler K. Characterization of key parameters for 
biotechnological lignocellulose conversion assessed by FT-NIR spectroscopy. Part I. 
Qualitative analysis of pretreated straw. BioResources. 2010;5:2063–2080.

[29] Krongtaew C, Messner K, Ters T, Fackler K. Characterization of key parameters 
for biotechnological lignocellulose conversion assessed by FT-NIR spectroscopy. 
Part II. Quantitative analysis by partial least squares regression. BioResources. 
2010;5:2081–2096.

[30] Coates J. Classical methods of quantitative analysis. In: Chalmers JM, Griffiths PR, 
editors. Handbook of Vibrational Spectroscopy. 1st ed. Wiley. New Jersey. 2006. pp. 
2235–2237. DOI:10.1002/0470027320.s4602.

[31] Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. 
Chemometrics and Intelligent Laboratory Systems. 2001;58:109–130. DOI: 10.1016/
S0169-7439(01)00155-1.

[32] Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N. A review of near 
infrared spectroscopy and chemometrics in pharmaceutical technologies. Journal of 
Pharmaceutical and Biomedical Analysis. 2007;44:683–700. DOI: 10.1016/j.jpba.2007.03.023.

[33] Lavine BK. Chemometrics. Analytical Chemistry. 2000;72:91R–97R. DOI: 10.1021/a1000016x.

[34] Tsuchikawa S. A review of recent near infrared research for wood and paper. Applied 
Spectroscopy Reviews. 2007;42:43–71. DOI: 10.1080/05704920601036707

[35] Bakeev KA. Process Analytical Technology: Spectroscopic Tools and Implementation 
Strategies for the Chemical and Pharmaceutical Industries. 2nd ed. John Wiley & Sons, 
Ltd. New Jersey. 2010. 543 p. DOI: 10.1002/9780470689592.

[36] Lin H and Ying Y. Theory and application of near infrared spectroscopy in assessment 
of fruit quality: a review. Sensing and Instrumentation for Food Quality and Safety. 
2009;3:130–141. DOI: 10.1007/s11694-009-9079-z.

[37] Bittner LK, Heigl N, Petter CH, Noisternig MF, Griesser UJ, Bonn GK, Huck CW. Near-
infrared reflection spectroscopy (NIRS) as a successful tool for simultaneous identifica-
tion and particle size determination of amoxicillin trihydrate. Journal of Pharmaceutical 
and Biomedical Analyses. 2011;54:1059–1064. DOI: 10.1016/j.jpba.2010.12.019.

Developments in Near-Infrared Spectroscopy92

[38] Huck CW. Advances of infrared spectroscopy in natural product research. Phytochemistry 
Letters. 2015;11:384–393. DOI: 10.1016/j.phytol.2014.10.026.

[39] Huck-Pezzei V. Alps food authentication, typicality and intrinsic quality by near infrared spec-
troscopy. Food Research International. 2014;62:984–990. DOI: 10.1016/j.foodres.2014.05.021.

[40] Chen SF, Danao MGC, Singh V, Brown PJ. Determining sucrose and glucose levels in 
dual-purpose sorghum stalks by Fourier transform near infrared (FT-NIR) spectroscopy. 
Journal of the Science and Food Agriculture. 2014;94:2569–2576. DOI: 10.1002/jsfa.6606.

[41] Wu L, Li M, Huang J, Zou W, Hu S, Li Y, Fan C, Zhang R, Jing H, Peng L, Feng S. A near 
infrared spectroscopic assay for stalks soluble sugars, bagasse enzymatic saccharifica-
tion and wall polymers in sweet sorghum. Bioresource Technology. 2015;177:118–124. 
DOI: 10.1016/j.biortech.2014.11.073.

[42] Rodriguez-Saona LE, Fry FS, McLaughlin MA, Calvey EM. Rapid analysis of sugars 
in fruit juices by FT-NIR spectroscopy. Carbohydrate Research. 2001;336:63–74. DOI: 
10.1016/S0008-6215(01)00244-0.

[43] Jha SN, Gunasekaran S. Authentication of sweetness of mango juice using Fourier trans-
forms infrared-attenuated total reflection spectroscopy. Journal of Food Engineering. 
2010;101:337–342. DOI: 10.1016/j.jfoodeng.2010.07.019.

[44] Bagchi TB, Sharma S, Chattopadhyay K. Development of NIRS models to predict pro-
tein and amylose content of brown rice and proximate compositions of rice bran. Food 
Chemistry. 2016;191:21–27. DOI: 10.1016/j.foodchem.2015.05.038.

[45] Kucheryavskiy S, Lomborg CJ. Monitoring of whey quality with NIR spectroscopy—a fea-
sibility study. Food Chemistry. 2015;176:271–277. DOI: 10.1016/j.foodchem.2014.12.086.

[46] Shetty N, Gislum R. Quantification of fructan concentration in grasses using NIR spec-
troscopy and PLSR. Field Crops Research. 2011;120:31–37. DOI: 10.1016/j.fcr.2010.08.008.

[47] Shetty N, Gislum R, Jensenb AMB, Boelta B. Development of NIR calibration models 
to assess year-to-year variation in total non-structural carbohydrates in grasses using 
PLSR. Chemometrics and Intelligent Laboratory Systems. 2012;111:34–38. DOI: 10.1016/j.
chemolab.2011.11.004.

[48] Campo L, Monteagudo AB, Salleres B, Castro P, Moreno-Gonzalez J. NIRS determi-
nation of non-structural carbohydrates, water-soluble carbohydrates and other nutri-
tive quality traits in whole plant maize with wide range variability. Spanish Journal of 
Agriculture Research. 2013;11:463–471. DOI: 10.5424/sjar/2013112-3316.

[49] Liu Y, Ying Y, Yu H, and Fu X. Comparison of the HPLC method and FT-NIR analy-
sis for quantification of glucose, fructose, and sucrose in intact apple fruits. Journal of 
Agricultural and Food Chemistry. 2006;54:2810–2815. DOI: 10.1021/jf052889e.

[50] Cayuela JA, Weiland C. Intact orange quality prediction with two portable NIR spectrom-
eters. Postharvest Biology and Technology. 2010;58:113–120. DOI: 10.1016/j.postharvbio. 
2010.06.001.

Carbohydrate Analysis by NIRS-Chemometrics
http://dx.doi.org/10.5772/67208

93



[51] Camps C, Christen D. Non-destructive assessment of apricot fruit quality by portable 
visible-near infrared spectroscopy. LWT - Food Science and Technology. 2009;42:1125–
1131. DOI: 10.1016/j.lwt.2009.01.015.

[52] Pan L, Zhu Q, Lu R, McGrath JM. Determination of sucrose content in sugar beet by por-
table visible and near-infrared spectroscopy. Food Chemistry. 2015;167:264–271. DOI: 
10.1016/j.foodchem.2014.06.117.

[53] Lu R Predicting firmness and sugar content of sweet cherries using near–infrared diffuse reflec-
tance spectroscopy. Transactions of the ASAE. 2001;44:1265–1271. DOI: 10.13031/2013.6421.

[54] Roggo Y, Duponchel L, Huvenne J. Quality evaluation of sugar beet (beta vulgaris) by 
near-infrared spectroscopy. Journal of Agricultural and Food Chemistry. 2004;52:1055–
1061. DOI: 10.1021/jf0347214.

[55] Li W, Goovaerts P, Meurens M. Quantitative analysis of individual sugars and acids in 
orange juices by NIR spec. of dry extract. Journal of Agricultural and Food Chemistry. 
1996;44:2252–2259. DOI: 10.1021/jf9500750.

[56] Luo C, Long X, Liu M, Li J, Wang X. Nondestructive measurement of sugar content in navel 
orange based on Vis-NIR spectroscopy. In: IFIP international federation for information 
processing, 4th IFIP TC 12 conference, CCTA; Computer and Computing Technologies in 
Agriculture IV, vol. Part 1, no. Springer; 2011. pp. 467–473. DOI: 10.1007/978-3-642-18369-0_55.

[57] Slaughter DC, Crisosto CH. Nondestructive internal quality assessment of kiwifruit 
using near-infrared spectroscopy. Seminars in Food Analysis. 1998;3:131–140.

[58] Chen JY, Zhang H, Miao Y, Asakura M. Nondestructive determination of sugar content 
in potato tubers using visible and near infrared spectroscopy. Japan Journal of Food 
Engineering. 2010;11:56–64. DOI: 10.11301/jsfe.11.59.

[59] Martelo-Vidal MJ, Vazquez M. Evaluation of ultraviolet, visible, and near infrared spectros-
copy for the analysis of wine compounds. Czech Journal of Food Sciences. 2014;32:37–47.

[60] Osborne BG, Fearn T, Randall PG. Measurement of fat and sucrose in dry cake mixes 
by near infrared reflectance spectroscopy. Journal of Food Technology. 1983;18:651–656. 
DOI: 10.1111/j.1365-2621.1983.tb00304.x.

[61] Hen R, Schwab A, Huck CW. Evaluation of benchtop versus portable near-infrared spec-
troscopic method combined with multivariate approaches for the fast and simultaneous 
quantitative analysis of main sugars in syrup formulations. Food Control. 2016;68:97–
104. DOI: 10.1016/j.foodcont.2016.03.037.

[62] Magwasa LS, Landahl S, Cronje PJR, Nieuwoudt HH, Mouazen AM, Nicolai BM, Terry 
LA, Opara UL. The use of Vis/NIRS and chemometric analysis to predict fruit defects 
and postharvest behavior of “Nules Clementine” mandarin fruit. Food Chemistry. 
2014;163:267–274. DOI: 10.1016/j.foodchem.2014.04.085.

[63] Zhuang H, Ni Y, Kokot S. A comparison of near- and mid-infrared spectroscopic 
methods for the analysis of several nutritionally important chemical substances in the 
Chinese Yam (Dioscorea opposita): total sugar, polysaccharides, and flavonoids. Applied 
Spectroscopy. 2015;69:488–495. DOI: 10.1366/14-07655.

Developments in Near-Infrared Spectroscopy94



[51] Camps C, Christen D. Non-destructive assessment of apricot fruit quality by portable 
visible-near infrared spectroscopy. LWT - Food Science and Technology. 2009;42:1125–
1131. DOI: 10.1016/j.lwt.2009.01.015.

[52] Pan L, Zhu Q, Lu R, McGrath JM. Determination of sucrose content in sugar beet by por-
table visible and near-infrared spectroscopy. Food Chemistry. 2015;167:264–271. DOI: 
10.1016/j.foodchem.2014.06.117.

[53] Lu R Predicting firmness and sugar content of sweet cherries using near–infrared diffuse reflec-
tance spectroscopy. Transactions of the ASAE. 2001;44:1265–1271. DOI: 10.13031/2013.6421.

[54] Roggo Y, Duponchel L, Huvenne J. Quality evaluation of sugar beet (beta vulgaris) by 
near-infrared spectroscopy. Journal of Agricultural and Food Chemistry. 2004;52:1055–
1061. DOI: 10.1021/jf0347214.

[55] Li W, Goovaerts P, Meurens M. Quantitative analysis of individual sugars and acids in 
orange juices by NIR spec. of dry extract. Journal of Agricultural and Food Chemistry. 
1996;44:2252–2259. DOI: 10.1021/jf9500750.

[56] Luo C, Long X, Liu M, Li J, Wang X. Nondestructive measurement of sugar content in navel 
orange based on Vis-NIR spectroscopy. In: IFIP international federation for information 
processing, 4th IFIP TC 12 conference, CCTA; Computer and Computing Technologies in 
Agriculture IV, vol. Part 1, no. Springer; 2011. pp. 467–473. DOI: 10.1007/978-3-642-18369-0_55.

[57] Slaughter DC, Crisosto CH. Nondestructive internal quality assessment of kiwifruit 
using near-infrared spectroscopy. Seminars in Food Analysis. 1998;3:131–140.

[58] Chen JY, Zhang H, Miao Y, Asakura M. Nondestructive determination of sugar content 
in potato tubers using visible and near infrared spectroscopy. Japan Journal of Food 
Engineering. 2010;11:56–64. DOI: 10.11301/jsfe.11.59.

[59] Martelo-Vidal MJ, Vazquez M. Evaluation of ultraviolet, visible, and near infrared spectros-
copy for the analysis of wine compounds. Czech Journal of Food Sciences. 2014;32:37–47.

[60] Osborne BG, Fearn T, Randall PG. Measurement of fat and sucrose in dry cake mixes 
by near infrared reflectance spectroscopy. Journal of Food Technology. 1983;18:651–656. 
DOI: 10.1111/j.1365-2621.1983.tb00304.x.

[61] Hen R, Schwab A, Huck CW. Evaluation of benchtop versus portable near-infrared spec-
troscopic method combined with multivariate approaches for the fast and simultaneous 
quantitative analysis of main sugars in syrup formulations. Food Control. 2016;68:97–
104. DOI: 10.1016/j.foodcont.2016.03.037.

[62] Magwasa LS, Landahl S, Cronje PJR, Nieuwoudt HH, Mouazen AM, Nicolai BM, Terry 
LA, Opara UL. The use of Vis/NIRS and chemometric analysis to predict fruit defects 
and postharvest behavior of “Nules Clementine” mandarin fruit. Food Chemistry. 
2014;163:267–274. DOI: 10.1016/j.foodchem.2014.04.085.

[63] Zhuang H, Ni Y, Kokot S. A comparison of near- and mid-infrared spectroscopic 
methods for the analysis of several nutritionally important chemical substances in the 
Chinese Yam (Dioscorea opposita): total sugar, polysaccharides, and flavonoids. Applied 
Spectroscopy. 2015;69:488–495. DOI: 10.1366/14-07655.

Developments in Near-Infrared Spectroscopy94

[64] Bobelyn E, Serban AS, Nicu M, Lammertyn J, Nicola¨ı BM, Saeys W. Postharvest quality 
of apple predicted by NIR-spectroscopy: study of the effect of biological variability on 
spectra and model performance. Postharvest Biology and Technology. 2010;55(3):133–
143. DOI: 10.1016/j.postharvbio.2009.09.006.

[65] Munawar AA, Budiastra IW. Non-destructive inner quality prediction in intact mango 
with NIR spectroscopy. In: Beyerer J, Puente León F, Laengle T, editors. Optical 
Characterization of Materials—conference proceedings. 2015.

[66] Carlomagno G, Capozzo L, Attolico G, Distante A. Non-destructive grading of peaches 
by near-infrared spectrometry. Infrared Physics & Technology. 2004;46:23–29. DOI: 
10.1016/j.infrared.2004.03.004.

[67] Zhang S Robust model of fresh jujube soluble solids content with near infrared (NIR) spec-
troscopy. African Journal of Biotechnology. 2012;11:8133–8140. DOI: 10.5897/AJB12.049.

[68] Vincke D, Baeten V, Sinnaeve G, Dardenne P, Fernández-Pierna JA. Determination of 
outer skin in dry onions by hyperspectral imaging spectroscopy and chemometrics. NIR 
News. 2014;25:9–12. DOI: 10.1255/nirn.1425.

[69] Maniwara P, Nakano K, Boonyakiat D, Ohashi S, Hiroi M, Tohyama T. The use of visible 
and near infrared spectroscopy for evaluating passion fruit postharvest quality. Journal 
of Food Engineering. 2014;143:33–43. DOI: 10.1016/j.jfoodeng.2014.06.028.

[70] Cascant MM, Garrigues S, de la Guardia M. Direct determination of major components 
in human diets and baby foods. Analytical and Bioanalytical Chemistry. 2015;407:1961–
1972. DOI: 10.1007/s00216-015-8461-4.

[71] Wolfrum E, Payne C, Stefaniak T, Rooney W, Dighe N, Bean B, Dahlberg J. Multivariate 
calibration models for sorghum composition using near-infrared spectroscopy. Technical 
Report NREL/TP-5100-56838. 2013:1–7. DOI: 10.1007/s00216-015-8461-4.

[72] Shackelford SD, Wheeler TL, Koohmaraie M. On-line classification of US Select beef 
carcasses for longissimus tenderness using visible and near-infrared reflectance spec-
troscopy. Meat Science. 2005;69:409–415. DOI: 10.1016/j.meatsci.2004.08.011.

[73] Boulley L, Henning S, Pierson JF. Near-infrared optical spectroscopy of sugar-based 
mixtures—a snapshot to identify issues of influence. In: OCM 2015, 2nd International 
Conference on Optical Characterization of Materials; March 18th–19th, 2015; Karlsruhe, 
Germany. 2015. pp. 27–37. DOI: 10.5445/KSP/1000044906.

[74] Herrero-Latorre C, Pena-Crecente RM, Garcia-Martin S, Barciela- Garcia J. A fast 
chemometric procedure based on NIR data for authentication of honey with pro-
tected geographical indication. Food Chemistry. 2013;141:3559–3565. DOI: 10.1016/j.
foodchem.2013.06.022.

[75] Lohumi S, Lee S, Lee WH, Kim MS, Mo C, Bae H, Cho BK. Detection of starch adultera-
tion in onion powder by FT-NIR and FT-IR spectroscopy. Journal of Agricultural and 
Food Chemistry. 2014;62:9246–9251. DOI: 10.1021/jf500574m.

Carbohydrate Analysis by NIRS-Chemometrics
http://dx.doi.org/10.5772/67208

95





Chapter 5

Using Near-Infrared Spectroscopy in Agricultural

Systems

Francisco García-Sánchez, Luis Galvez-Sola,

Juan J. Martínez-Nicolás,

Raquel Muelas-Domingo and Manuel Nieves

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/67236

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Using Near-Infrared Spectroscopy in Agricultural 
Systems

Francisco García-Sánchez, Luis Galvez-Sola, 
Juan J. Martínez-Nicolás, Raquel Muelas-
Domingo and Manuel Nieves

Additional information is available at the end of the chapter

Abstract

This chapter provides a review on the state of art of the use of the visible near-infrared 
(vis-NIR) spectroscopy technique to determine mineral nutrients, organic compounds, 
and other physical and chemical characteristics in samples from agricultural systems—
such as plant tissues, soils, fruits, cocomposted sewage sludge and wastes, cereals, and 
forage and silage. Currently, all this information is needed to be able to carry out the 
appropriate fertilization of crops, to handle agricultural soils, determine the organoleptic 
characteristics of fruit and vegetable products, discover the characteristics of the vari-
ous substrates obtained in composting processes, and characterize byproducts from the 
industrial sector. All this needs a large number of samples that must be analyzed; this is a 
time-consuming work, leading to high economic costs and, obviously, having a negative 
environmental impact owing to the production of noxious chemicals during the analy-
ses. Therefore, the development of a fast, environmentally friendly, and cheaper method 
of analysis like vis-NIR is highly desirable. Our intention here is to introduce the main 
fundamentals of infrared reflectance spectroscopy, and to show that procedures like cali-
bration and validation of data from vis-NIR spectra must be performed, and describe the 
parameters most commonly measured in the agricultural sector.

Keywords: vis-NIR spectroscopy, calibration and validation methods, plant mineral 
analysis, fruit analysis, soil analysis, fruit organoleptic characteristics
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1. Introduction

One of the challenges of the twenty-first century is to achieve a more productive agriculture, 
while improving the safety and quality of food. The food industry has to feed a population 
that is in continuous increase, bearing in mind that these systems have to respect the environ-
ment, should optimize natural resources in each area, and anticipate changes in temperature 
and rainfall that will occur in the future as a result of climate change. Proper soil manage-
ment and fertilization of crops will be crucial to increasing the capacity of agriculture, to 
the provision of products of high added value, and to the protection of crops against pests 
and diseases. To do this, in each of the steps ranging from the production of fruits and veg-
etables in the field to the development of industrial products, it is necessary to determine a 
great number of physical and chemical parameters in the soil, plants, fruits, compost, and 
byproducts from food processing industries. Currently, the traditional techniques of analy-
sis of such samples are being replaced by spectroscopic techniques—one of which is visible 
near-infrared spectroscopy (vis-NIRS). This technique has a number of advantages over the 
traditional methods, as it (i) is a method of nondestructive analysis, (ii) does not pollute the 
environment, because it does not use chemical reagents, (iii) is cheap and fast, (iv) measures 
many parameters in a single analysis, and (v) can perform analyses in situ and online for a 
large number of samples per minute.

The aim of this chapter is to provide an updated review of the current state of vis-NIRS as a 
technique for the estimation of physical and chemical parameters in samples derived from 
agricultural systems, such as soils, plants, fruit, compost, and products derived from food 
processing industries. The chapter starts by describing the basic principles of this technique 
and the different ways in which the equipment can be calibrated, detailing the statistical tools 
that are useful to establish that the calibration and the estimation of the desired parameters 
are valid. We will describe the parameters that can be measured by vis-NIRS in samples, with 
the emphasis on soil, plants, fruit, compost, and byproducts from the industrial sector that 
processes the output of agricultural systems. A basic explanation of the parameters measured 
in these samples will be given, together with a description of how they are measured and the 
mathematical tools used, focusing on the most novel issues.

2. Fundamentals of infrared diffuse reflectance spectroscopy

Spectroscopy in the near infrared or NIRS (near-infrared reflectance spectroscopy) is a tool that 
has been used widely for the rapid determination of organic components. For example, NIRS 
readout for nutrient level estimation on citrus leaves, using FT-NIR spectrometer and 64 scans 
per sample, takes 1–2 min. The only pretreatments of the sample required prior to analysis are 
drying, crushing, and mixing, in the case of solid matrices. Samples can also be scanned when 
fresh, as in the work of Huang et al. [28]. All this bestows on this technique several advantages 
over other, more sophisticated spectroscopic or analytical methods. The operating principle of 
the NIRS technique requires that the energy absorbed in the near-infrared region by a sample 
causes covalent bonds of C-H, O-H, and N-H, important components of organic substances, to 
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vibrate in different forms [1]. Within the field of NIRS, two main types of fundamental vibra-
tions are considered: stretching, which involves a change in the length of a bond, and bending, 
which involves a change in the angle between two bonds. Overtones appear when a vibra-
tional mode is excited at a frequency higher than that of the fundamental vibration.

This infrared fraction comprises wavelengths between 780 and 2500 nm (12,500–4000 cm−1, 
expressed as a wavenumber, Table 1).

There is a relationship, both quantitative and qualitative, between the chemical composition 
and the spectrum recorded in the near-infrared. Hence, samples having different organic 
compositions have different infrared spectra. But, interpretation of the spectra is tremen-
dously complex, although the spectral characteristics of each compound are unique, as their 
amplitudes sometimes overlap.

Before the NIR spectrum of a sample can be used for the determination of a compound or 
specific element, a calibration for this compound or element must be developed. In an NIRS 
spectrum, the various constituents of the sample have some overlapping peaks; thus, the mea-
surements made with NIRS must be calibrated with samples of known chemical composition 
in order to extract the desired information using NIRS [2].

3. Calibration and validations of data from NIRS

Chemometrics includes all methods of multivariate calibration in the field of analytical chem-
istry. Unlike univariate calibration, where a spectral peak (height or area) is correlated with 
the reference concentration, multivariate calibration uses the entire spectrum structure with a 
large amount of spectral information to correlate with the reference concentration.

The establishment of a model for the use of NIRS data in the analysis of samples consists of 
the following steps: (1) introduction of the spectral and concentration data; (2) preprocessing 

Group Aliphatic 
hydrocarbons

Aromatic 
hydrocarbons

Carboxylic acid Amines Water

Frequency 
range (cm−1)

9100–7800 
(overtone of 
CH-stretching)

ca. 9000 (overtone  
of CH-stretching)

ca. 6900 (overtone  
of CH-stretching)

7000–6500 
(overtone of 
NH-stretching)

7500–6400 
(overtone of 
OH-stretching)

7700–6900 
(combination)

7300–6900 
(combination)

ca. 5250 (overtone  
of CO-stretching)

5200–4500 
(combination)

5400–4900 
(combination)

6300–5500 
(overtone of 
CH-stretching)

ca. 6000 (overtone  
of CH-stretching)

4900–4600 
(combination)

5000–4100 
(combination)

4700–4000 
(combination)

Table 1. Absorbance signals in the near infrared for the major chemical groups present in organic matter.
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of the spectral data; (3) definition of the appropriate frequency range; (4) validation and opti-
mization of the method; (5) definitive calibration; and (6) routine analysis.

(1) Introduction of the spectral and concentration data. This process begins with the selection 
of the group of samples for calibration, which must be well defined statistically, and pretreat-
ment of the samples to assess measurement errors. The dispersion of incident radiation, also 
known as the scatter effect, produces a low selectivity (quality of being able to tune in to one 
particular frequency while blocking out other unwanted frequencies) of the NIR spectral infor-
mation [3]. This is due to physical phenomena—such as the texture, size, and geometry of the 
particles that make up the sample [4, 5]—and to changes in the refractive index of the material 
which interacts with the radiation, causing numerous unwanted variations in the NIR spec-
tral data [6–9]. Depending on the complexity of the samples, between 20 and 200 samples are 
necessary to develop a multivariate calibration method. The greater the number of samples, 
the more representative is the calibrations achieved. The samples should have a normal distri-
bution, cover the entire range of concentrations of the parameters that are to be estimated by 
NIRS, and should not have areas where uncertainty is high and errors can be significant. For 
instance, the NIR spectrum of water (transmission measurement, optical path length: 2 mm) 
shows a total absorption between 5200 and 4000 cm−1 and below 4000 cm−1 a strong contribu-
tion of spectral noise. Finally, for each sample a classical analysis of the desired components is 
carried out, to obtain the so-called reference values, and its NIR spectrum is obtained.

(2) Preprocessing of the spectral data. The spectral pretreatment that improves the signal/noise 
ratio must be chosen. For example, the problems of baseline displacement need to be eliminated. 
The procedures for preprocessing of the NIRS spectrum, to obtain a good correlation between 
the spectral data and the concentration, include: no data preprocessing (NDP), first derivate 
(FD), application: it is used to emphasize pronounced, but small features compared to enormous 
broad-banded structures or on the evaluation of broad bands that get a steeper shape, so it can be 
evaluated more easily; second derivate (SED), application: similar to first derivative, where even 
extremely flat structures can be evaluated, but the spectral noise is enhanced as well, the most 
widely used methods here are the Savitzky-Golay [10] and Norris [11] methods; standard normal 
variate (SNV [6]; multiplicative scatter correction (MSC [3, 12]), application: it is used for mea-
surements in diffuse reflection; detrending (DT), which is usually applied in conjunction with 
SNV; spectral smoothing (SS), for which the most used are the Savitzky-Golay [10] and Fourier 
transformation [13] or vector normalization (VN), application: in a measurement in diffuse reflec-
tion, the interfering influences of different material densities or particles sizes can often be mini-
mized; maximum-minimum normalization (MMN), application: similar to vector normalization; 
subtraction of a straight line (SSL), application: a linear tilt of the baseline shift is eliminated; linear 
offset subtraction (LOS), application: linear baseline shifts are eliminated. The optimum method 
depends on the system to be analyzed. Generally, SSL, VN, or FD leads to better calibration.

(3) Definition of the appropriate frequency range. Once the calibration samples have been 
selected and then analyzed by the reference method and NIRS, a correlation between the 
spectral and analytical data is searched for [14]. For this purpose different statistical treat-
ments are used, such as multiple linear regression (MLR [15]), principal components  
regression (PCR), and partial least squares regression (PLSR) as linear methods and use of 
artificial neural networks (ANN) as a nonlinear method. PLSR is the one most commonly used 
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[16, 17]. The best correlated frequency ranges are assessed and then selected based on the coef-
ficient of determination, R2, and a corresponding low error of analysis (root mean square error 
of cross validation/root mean square error of prediction (RMSECV/RMSEP), see equations (4) and 
(5)). Typically, an R2 value of 0.75–1.0 indicates an acceptable correlation and it depends on the 
type of sample. Good values for R2 are larger than 0.90 for solids and larger than 0.99 liquid 
measurements. The total absorption of water (frequency range 5200–4000 cm−1) yields rela-
tive absorbance values (A) greater than 2.5. The use of dried samples prevents interference of 
water in the aforementioned frequency range. Spectral noise is usually found below 4000 cm−1 
and gives relative absorbance values lower than 0.7. Thus, this region should not be included 
to establish a calibration. Values of A between 0.7 and 1.0 generally give better results. Besides, 
modern FT-spectrometers allow the use of absorbance values of up to 2.5 for the calibration.

(4) Validation and optimization of the method. To choose the best calibration for the regression 
equation with linear models (PLS algorithm, for instance), the instrumental software combines 
different methods of data pretreatment and frequency ranges. Then, it provides as output the 
corresponding mean error of prediction and R2 for a given number of factors. The quality of the 
calibration is evaluated by the validation, which consists of comparing the concentrations pre-
dicted by the calibration with the reference values of samples not used in this calibration [18]. 
There are two types of validation: internal or cross validation and external validation. In internal 
validation, a sample, or group of samples, is taken from the set of samples. With the calibration 
obtained using the remaining samples, the concentrations in the previously separated samples 
are predicted. The samples are interchanged until all have been used once for the validation. In 
external validation, all samples are used for calibration and prediction is performed for addi-
tional samples [19]. Since optimal frequency windows and pretreatments of signals cannot be 
anticipated, they are generally determined empirically by trial and error. These values are cal-
culated for a growing number of factors. The concentration and spectral data are encoded in 
matrix form and reduced to a small number of factors called “rank.” To some extent, the factors 
or principal components are “information units,” as may be the case for the concentration of a 
sample component. In many cases, there are several combinations of frequency window and 
pretreatment of spectral data of comparable quality for the prediction of analytical results. In 
these cases the combination that has fewer factors is recommended, as it generally will be more 
stable (Table 2). The optimum method is number 2 (mean error of prediction 0.07% and opti-
mum rank 6). However, it is possible to manually set a lower rank in order to get a better result.

Number Data preprocessing Frequency ranges  
(cm−1)

Optimum rank Coefficient of  
determination (R2)

Mean error of 
prediction (%)

1 NDP 9000–5200 9 0.998 0.16

2 SSL 9000–5200 6 >0.999 0.07

3 VN 9000–5200 8 0.996 0.42

4 SSL 7000–5200 8 >0.999 0.07

No data preprocessing (NDP), subtraction of a straight line (SSL), and vector normalization (VN).

Table 2. Method optimization using the PLS algorithm for NIRS analysis of CH3OH concentration in a mixture of CH3OH, 
C2H5OH, and C3H7OH.
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There will be anomalous samples and spectra, called “outliers,” which affect the predictive 
ability of the NIRS equations obtained [20]. It is important not to remove them until one has 
a clear explanation; to make this decision one has to take into account the t-test (“Student's 
t-test” Eq. 1) and H (Mahalanobis distance, Eqs. 2 and 3) values, among others.

t-Test applied to each wavelength gives an idea about the weight of each wavelength in the 
calibration. The higher the value in the t-test, the more important it is. If it is higher than 10, it 
is considered essential to take part in the calibration equation.

  t =   
 Y  pred   −  Y  ref   _________ 

SEC *  √ 
____

 1 − H    
    (1)

SEC is the standard error of the calibration, and H is the spectral error. In NIRS, t > 2.5 are 
considered significative and kept in the calibration.

Chemical outliers can be recognized after applying a t-test since they present significative dif-
ferences between the composition value provided by the reference method and the regression 
model.

To detect spectral outliers, the Mahalanobis distance is particularly useful. For MLR models 
it is calculated as follows:

  H =   K __ n    (2)

For the models PLSR and PCR, it is expressed with the following equation:

  H =   K + 1 ____ n    (3)

n is the number of spectra in the dataset and K is the number of selected wavelengths. H < 3 
means that the samples belong to the population.

The statistics used in the evaluation, selection, and validation of the calibration equations are 
as follows:

- Determination coefficient of the calibration (R2
c)/Determination coefficient of the cross validation 

(R2
v). This establishes a correlation between the analytical data obtained in the laboratory 

and those predicted by the calibration equations for each of the components analyzed. As 
mentioned above, an R2 value of 0.75–1.0 indicates an acceptable correlation. Some calibra-
tions with an R2 value <0.75 may be useful for monitoring purposes. Thus, an R2 value of 0.50–
0.69 distinguishes between low, medium, and high values; an R2 of 0.30–0.049 distinguishes 
between low and high values; and with R2 < 0.29, it is better not to analyze [21, 22].

- Root mean square error of estimation (RMSEE). This is the error associated with the differences 
between the analyses performed in the laboratory using the reference methods and the results 
of the analysis by NIRS technology, for each of the parameters determined in the samples 
used in the calibration. This value of this statistical parameter should be as low as possible. It 
is calculated using the formula:

  RMSEE =  √ 
__________

    1 ______ M − R − 1   SSE    (4)
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where M is the number of samples in the calibration set, R is the number of principal com-
ponents (factors), and SSE is the squared sum of the differences between the actual and esti-
mated values. It is preferable to compare this type of error with the error that can occur with 
traditional methods of analysis and decide whether the error is acceptable for routine use. The 
prediction error (P) is the accumulation of the errors of the reference concentrations (R), of the 
NIRS data, and of the calibration. The lower the ratio of the errors (P/R), the greater the accu-
racy of the NIRS model obtained: P/R = 1–1.5, excellent; P/R = 2–3, good; P/R = 4, moderate; and 
P/R = 5, poor [23].

- Root mean square error of cross validation/Root mean square error of prediction (RMSECV/RMSEP). 
Following calibration the cross validation error is obtained. This error is the one that should 
be taken into account most closely when evaluating the calibration. To calculate it, consider-
ing the number of samples in the set and the differences between the estimated values and 
those obtained by standard methods of analysis, the following formula is used:

  RMSECV =  √ 
______________

    1 __ M   ·  ∑ 
i=1

  
M

    (Diffe r  i   )   2     (5)

- Residual prediction deviation (RPD). This is defined as the ratio between the standard devia-
tion of the reference data and the RMSEE/RMSECV. One researcher [24] provided a guide to 
evaluate calibrations performed with environmental samples, based on the R2 and the RPD, 
as follows: excellent, R2 > 0.95 and RPD > 4; good, R2 = 0.9–0.95 and RPD = 3–4; quite good, 
R2 = 0.8–0.9 and RPD = 2.25–3; quite useful, R2 = 0.7–0.8 and RPD = 1.75–2.25. RPD is of the 
same significance as R2 explained variance. The R2 also allows a qualitative evaluation of the 
error of prediction during the validation process.

- Bias. This is the difference between the mean value predicted by FT-NIRS and the mean 
value of the reference predictive model and the residual prediction deviation (RPD, [20, 25, 
26]): M is the number of samples used in the calibration, xi is the result obtained by NIRS, and 
yi is the result obtained by the reference method for sample i:

  Bias =   1 __ M    ∑ i=1  i=M    (xi − yi )  (6)

In the presence of laborious and troublesome datasets, it is possible to ask for high-perfor-
mance external NIR calibration services such as those provided by private companies to opti-
mize and validate the method.

(5) Definitive calibration. After all the “outliers” have been eliminated and the optimal param-
eters determined (for example, R2, RMSEE, and RPD for the calibration and R2, RMSEP, RPD, 
and bias for the validation), the final calibration model is evaluated for the analysis of new 
samples.

(6) Routine analysis. Here the optimum chemometric model is used to analyze quickly 
unknown samples. The Mahalanobis distance can alert one to samples (“outliers”) that are 
outside the calibration range or do not fit the model well.
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4. Mineral nutrients and organic compounds in different samples from 
agricultural systems

4.1. Plants

Fruit and vegetable crops, in order to achieve good vegetative growth and maximum pro-
duction with good quality fruit, require a good nutritional status, maintaining a proper 
balance of nitrogen, potassium, phosphorus, and trace elements such as manganese, 
boron, copper, and magnesium. The guide to the nutritional status of crops is based on 
the method known as “sufficiency range” (SR), which establishes—for each nutrient—the 
ranges of values considered to be normal and to represent deficiency or toxicity [27]; or 
it can be based on the establishment of indices of dependent nutrients, in which each 
index includes two or more nutrients, the so-called “Integrated System of Diagnosis and 
Recommendation (DRIS).” But, a good fertilization program also should pay attention 
to the changes that occur in the mineral status of plants in their different phenological 
stages so that the application of fertilizers can be adapted to the requirements of the plants 
at all times. To obtain this information, it is necessary to perform mineral analyses of 
leaves by ICP-OES or AA after acid digestion of the samples, as well as analysis of the 
C/N ratio, which involves the analysis of a large number of samples with all that this 
entails. Currently, the available knowledge of reflectance spectroscopy in the near-infrared 
(NIR) part of the spectrum can be used to determine the nutritional status of crops quickly 
and cheaply. The mineral composition of an organic matrix can be estimated by NIRS, 
from the spectra in the range 700–2500 nm, due to the association between the minerals 
and the organic functional groups or the organic matrix itself [28]. There are no infrared 
absorption bonds in the mineral species of macro- and micronutrients, but NIRS deter-
mines bonds within organic compounds that are negatively related to inorganic materials. 
If mineral matter is bound to organic compounds, the distortion of the spectrum is detect-
able at certain wavelengths, suggesting that NIRS can quantify inorganic materials using 
their ratio to the organic matter [29].

Numerous studies show that the NIRS technique, together with multivariate analysis and 
partial least squares regression (PLSR), provides a powerful tool for the interpretation 
and analysis of spectra. For example, NIRS technology has been used successfully to pre-
dict the nutritional status of leaves of apple [30], alfalfa [31], sugar cane [32], root crops 
[33], yerba mate [34], and citrus [35, 36]. It has been observed in citrus leaves of different 
varieties including lemon, mandarin, orange, and grapefruit—high accuracy regarding the 
estimation of N (R = 0.99) and Ca (R = 0.98) as well as acceptable estimates for K, Mg, Fe, 
and Zn [37]. However, good calibrations for the estimation of P, B, Cu, and Mn were not 
obtained. Furthermore, the concentrations of nutrients could be estimated with a single 
calibration model, regardless of the variety of citrus analyzed. In yerba mate plants, the 
prediction was good for P and Cu but not for K, Ca, Na, Mn, or Zn [34]. These data show 
that the NIR spectral response depends on the species studied, so for each species it is 
necessary to make the appropriate calibrations—but these are valid for different cultivars 
of the same species.

Developments in Near-Infrared Spectroscopy104



4. Mineral nutrients and organic compounds in different samples from 
agricultural systems

4.1. Plants

Fruit and vegetable crops, in order to achieve good vegetative growth and maximum pro-
duction with good quality fruit, require a good nutritional status, maintaining a proper 
balance of nitrogen, potassium, phosphorus, and trace elements such as manganese, 
boron, copper, and magnesium. The guide to the nutritional status of crops is based on 
the method known as “sufficiency range” (SR), which establishes—for each nutrient—the 
ranges of values considered to be normal and to represent deficiency or toxicity [27]; or 
it can be based on the establishment of indices of dependent nutrients, in which each 
index includes two or more nutrients, the so-called “Integrated System of Diagnosis and 
Recommendation (DRIS).” But, a good fertilization program also should pay attention 
to the changes that occur in the mineral status of plants in their different phenological 
stages so that the application of fertilizers can be adapted to the requirements of the plants 
at all times. To obtain this information, it is necessary to perform mineral analyses of 
leaves by ICP-OES or AA after acid digestion of the samples, as well as analysis of the 
C/N ratio, which involves the analysis of a large number of samples with all that this 
entails. Currently, the available knowledge of reflectance spectroscopy in the near-infrared 
(NIR) part of the spectrum can be used to determine the nutritional status of crops quickly 
and cheaply. The mineral composition of an organic matrix can be estimated by NIRS, 
from the spectra in the range 700–2500 nm, due to the association between the minerals 
and the organic functional groups or the organic matrix itself [28]. There are no infrared 
absorption bonds in the mineral species of macro- and micronutrients, but NIRS deter-
mines bonds within organic compounds that are negatively related to inorganic materials. 
If mineral matter is bound to organic compounds, the distortion of the spectrum is detect-
able at certain wavelengths, suggesting that NIRS can quantify inorganic materials using 
their ratio to the organic matter [29].

Numerous studies show that the NIRS technique, together with multivariate analysis and 
partial least squares regression (PLSR), provides a powerful tool for the interpretation 
and analysis of spectra. For example, NIRS technology has been used successfully to pre-
dict the nutritional status of leaves of apple [30], alfalfa [31], sugar cane [32], root crops 
[33], yerba mate [34], and citrus [35, 36]. It has been observed in citrus leaves of different 
varieties including lemon, mandarin, orange, and grapefruit—high accuracy regarding the 
estimation of N (R = 0.99) and Ca (R = 0.98) as well as acceptable estimates for K, Mg, Fe, 
and Zn [37]. However, good calibrations for the estimation of P, B, Cu, and Mn were not 
obtained. Furthermore, the concentrations of nutrients could be estimated with a single 
calibration model, regardless of the variety of citrus analyzed. In yerba mate plants, the 
prediction was good for P and Cu but not for K, Ca, Na, Mn, or Zn [34]. These data show 
that the NIR spectral response depends on the species studied, so for each species it is 
necessary to make the appropriate calibrations—but these are valid for different cultivars 
of the same species.

Developments in Near-Infrared Spectroscopy104

4.2. Soils

Soil is a natural resource that is vital in agriculture for the production of food, fiber, and 
energy; but it serves also as a platform for human activities, constitutes an element of the 
landscape, is an archive of cultural heritage, and plays a central role as a habitat and gene 
pool. It stores, filters, and transforms many substances, including water, nutrients, and carbon 
(C). In fact, it is the largest C “store” in the world (1500 gigatonnes). All these functions must 
be protected because of their socioeconomic and environmental importance.

Fundamentally, the soil is a complex matrix of organic matter, minerals, water, air, and 
microorganisms. The soil organic matter is only a small part, but it plays a big role in both 
the physical and chemical properties of soil as well as in the development of crops. This soil 
fraction comprises humus (material that is decomposed, dark, and colloidal in nature) and 
materials such as the roots and aerial parts of plants and the bodies of insects and other ani-
mals that are deposited on the ground. The content of organic matter normally found in the 
soil is small, only about 1–5% by weight, of which 85–90% is humus and only a small part 
is the nonhumified remains. The mineral phase is a mixture of materials that differ in their 
composition and properties. Typically, this fraction is characterized by particle size. Stones, 
gravel, and sand represent the coarse fraction, while smaller particles like silt and clay con-
stitute the fine fraction of the soil. The clays also can be classified according to the negative 
charges on their surfaces—some minerals are more negative than others—and this property 
also influences the chemical characteristics of the soil. There is a parameter that is very use-
ful for measuring these chemical properties, namely, the cation exchange capacity (CEC)—
defined as the maximum amount of cations that a soil can fix. Water is another significant 
fraction of the soil, and its content depends on the amount and size of the pores in the soil. In 
plants, water is the major constituent of protoplasm (85–95%) and is essential for physiologi-
cal processes such as photosynthesis, nutrient transport, and maintenance of turgor. The air 
is another important fraction of the soil. Its oxygen is essential for the respiration of roots 
and microorganisms. When aeration is poor, organic matter is oxidized slowly, the activity 
of aerobic microorganisms is paralyzed, and only anaerobes are active, giving rise to reduced 
forms of elements that are usually toxic to plants. The most common microorganisms in soils 
are nematodes, protozoa, and rotifers—whose activities also determine the physiochemical 
soil characteristics, as they have the ability to degrade highly resistant organic compounds 
such as cellulose and lignin, and can even degrade minerals, thus releasing plant nutrients.

The study of soil should take into account the different phases of the soil and must be directed 
toward two main objectives: (i) consideration of its various properties, with special empha-
sis on plant productivity (that is, practical or applied aspects); and (ii) scientific, especially 
chemical, study—to determine the variation of productivity and find ways for soil conserva-
tion and improvement. In recent years, it has been observed that NIRS (using visible-near 
infrared) can be very useful for characterization of soils. This technique has many advantages: 
sample preparation is easy as it only requires the drying and grinding of the soil, reagents 
nontoxic to the environment are used, measurements are made in a few seconds, a single scan 
can show multiple properties, and the technique can be used both in the laboratory and in 
situ. The parameters that can be measured in the soil using NIRS are described below.
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4.2.1. Soil organic matter (SOM)

In the laboratory, it is difficult to separate the organic and inorganic material of a soil, 
so an estimate of the content of organic matter is obtained indirectly through the analysis 
of an element that is a constituent of all organic substances, namely C. Once the amount 
of organic C present in a soil sample is known, the percentage of organic matter with 
respect to the total weight of the soil can be estimated indirectly. Classically, it has been 
determined by various methods—such as calcination of the soil sample, oxidation with 
potassium dichromate, or oxidation with hydrogen peroxide. With regard to NIRS, a large 
number of studies have shown that this analytical technique is very useful for estimat-
ing SOM. For this, absorption bands in the NIR region which result from the stretching 
and bending of NH, CO, and CH groups, that form part of the organic material, are used 
[38].

The 1990s saw the identification of the absorption bands of wavelength (nm) 1100, 1600, 
1700–1800, 2000, and 2200–2400 as the most useful for measuring organic C. Since 2000, 
the technique of NIRS has been perfected and adapted to the soil and climatic conditions 
of each area. Thus, in Australian soil, it has been also observed that if the absorption spec-
trum was made in the vis-NIR region—that is, including the visible region—better results 
were obtained than with NIR alone [39]. Another problem that researchers have faced in 
achieving good calibrations has been that the spectral response can change depending on 
the mineral fraction of the soil, composition of organic matter, texture, and soil moisture con-
tent [40–42]. All these problems have been solved by optimizing the way of taking samples 
(local and regional scales) [43, 44], choosing the most appropriate mathematical models for 
the calibration [45–48], establishing covariance models, or eliminating certain factors that 
make the model weak [49, 50]. For example, in saline soils of El-Tina Plain (Egypt), it has 
been compared several regression techniques to estimate the organic matter content of soils 
[51]. Specifically, they used PLSR, support vector regression (SVR), and multivariate adap-
tive regression splines (MARS) and found that the best calibration was obtained with MARS 
with continuum removed reflectance preprocessing (R2 and RMSE were 0.89 and 0.19, respec-
tively). The calibration model to estimate the organic matter in an area of the Grand-Duchy of 
Luxembourg have been improved, taking into account the amount of water in the soil [52]; it 
was also considered by NIRS, using the reflectance values at 1800 and 2119 nm and calculat-
ing the normalized soil moisture index (NMSI).

4.2.2. Soil mineralogy

The mineral fraction of the soil occupies almost half of the soil volume. Its composition and 
concentration as well as the proportion of different minerals determine important properties 
such as texture, structure, and CEC. These properties also determine other soil characteristics 
such as the availability of nutrients to agricultural crops. Classical methods for the determina-
tion of clay minerals are qualitative and are based on XRD (XTR). However, some researchers 
[53, 54] made the first tests to see if NIRS could be used to estimate soil minerals; later, these 
same authors [55] compared the NIRS results with XRD analysis, concluding that NIRS is 
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an effective method to determine the mineralogy of the soil. This is because soil minerals 
absorb light in the UV, visible, vis-NIR, and mid-NIR parts of the electromagnetic spectrum. 
For example, Fe oxides absorb UV radiation while phyllosilicates (clay minerals) have varied 
spectra in the vis-NIR. Overall, this technique has been used to estimate the Fe oxides goe-
thite (α-FeOOH) and hematite (α-Fe2O3), clays of the kaolinite, illite, and smectite types, and 
carbonates [56, 57].

4.2.3. Soil texture and CEC

The water dynamics and aeration of a soil depend on its structure and texture, and these 
parameters are important for the development of both plants and microorganisms, so they 
need to be evaluated. These parameters also determine the leaching of fertilizers and pes-
ticides in agricultural soils. Generally, soil texture is defined as the ratio (in percentage by 
weight) of particles smaller than 2 mm in diameter and classified as sand (2–0.02 µm), silt 
(0.02–0.002 µm), or clay (0.002 µm). Ben-Dor and Banin [58] found that the clay content may 
be estimated by analyzing the absorption bands of O-H in water, and those of Mg-, Al-, and 
Fe-OH in the mineral fraction of the soil. Curcio [59] used visible and near-infrared (VNIR, 
400–1200 nm) and shortwave infrared (SWIR, 1200–2500 nm) reflectance domains to estimate 
soil texture in three agricultural areas of Italy (Bompensiere, Dirillo, and Pietranera), and 
obtained a good calibration by using the PLSR method, the accuracy being good for the clay 
fraction (RMSE = 5.8%, R2=0.87) and satisfactory for sand (RMSE = 7.7%, R2=0.80) and silt 
(RMSE = 7.2%, R2=0.60).

The CEC is traditionally measured by the method of Chapman [60], based on saturating the 
soil with sodium. However, the vis-NIR technique can also estimate this parameter in soils 
accurately, if methods of multivariate regression are used instead of simple bivariate relation-
ships, and it is suitable for measurements of peak intensities in the mid-IR range. Recently, 
Ulusoy et al. [61] obtained a good prediction of CEC using an analysis of PLSR, both in the 
laboratory and for online measurements in the field—although the calibration was much bet-
ter for the data obtained in the laboratory.

4.2.4. Plant nutrients

Due to the importance of the mineral nutrition of plants in the yield and quality of fruit and 
vegetables, one of the most common practices in agriculture is the analysis of the soil con-
tent of N, P, K, Fe, Ca, and Mg. This information is particularly important when optimizing 
fertilization programs. In most farming systems N is the element most commonly applied, 
followed by K, P, Ca, and micronutrients. These nutrients do not have a specific absorption 
spectrum in the vis-NIR region. Generally, the correlations between the “real” concentrations 
of these nutrients and those estimated by NIR are highly variable, the variability coefficients 
(R2) being in the following range: N (0.11–0.55), available potassium (0.56–0.83), exchange-
able potassium (0.11–0.55), Ca (0.75–0.89), Fe (0.64–0.91), Na (0.09–0.44), Mg (0.53–0.82), and 
P (0.23–0.92) [40]. This variability may depend on many factors, so local-scale calibrations are 
recommended to achieve greater accuracy.
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4.2.5. pH

Soil pH is an important regulator of fertilization. The solubility of the nutrients is pH-
dependent, and plants may decrease nutrient uptake if the soil pH is not suitable. Other 
pH-dependent factors include the biological activity, decomposition of organic matter, and 
mineralization. Generally, the ideal soil pH for plants is between 5.5 and 6.5. Soil pH, or more 
specifically the H+ ions, has no direct response to NIR but its value can be estimated well 
with this technique if the appropriate covariations are applied to components that do exhibit 
activity in the NIR, such as organic matter and clays [62]. In different experiments it has been 
found that pH calibration gives R2 values between 0.55 and 0.77 and an RMSE of 0.3–0.5 pH 
units. These parameters could be further improved if specific calibrations were made at the 
local scale, while studying in detail which covariance parameters have a direct influence on 
the NIR and thus should be used.

4.2.6. Heavy metals and other soil contaminants

Heavy metals are potential pollutants of air, water, and soil and of plants when taken up 
in sufficiently high amounts; this pollution will also affect other links in the food chain. In 
most agricultural soils, there are small amounts of As, B, Cd, Co, Cr, Cu, Mo, Mn, Ni, Se, and 
Zn, but when normal values are exceeded this can cause soil pollution and phytotoxicity, 
negatively impacting the agronomic performance. Usually, heavy metals are measured by 
atomic absorption or ICP. In the vis-NIR region these metals do not absorb energy, but their 
concentrations can be estimated if used as covariates with other components that do possess 
absorption spectra [40]. For example, they can be related to the organic matter, hydroxides, 
sulfides, carbonates, oxides, clay minerals, or soil texture (Stenberg et al. [40]). Todorova et al. 
[63] investigated the use of NIRS to estimate the concentration of heavy metals (Zn, Cu, Pb, 
Cr, and Ni) in various soils of Stara (Zagora Region, Bulgaria), using the PLS type of calibra-
tion. The best validation of the method was observed with Cu, while it allowed estimation of 
whether the concentrations of Zn, Pb, and Ni were low or high; however, Cr gave the weakest 
validation. These authors also noted that as the number of samples in the validation process 
increased, the RMESP values decreased.

In soils, hydrocarbons can also be measured with the vis-NIR technique, to establish the 
degree of contamination of soils that have suffered spills of petroleum products. Okparanma 
[64] used this technique to make soil maps in which the concentration of polycyclic aromatic 
hydrocarbons and their equivalent toxic concentrations in soil from Niger (Nigeria) were 
indicated. The data of this study revealed that the elaboration of soil spectra between 300 
and 2500 nm, together with a PLS calibration, permitted the estimation of the concentration 
of hydrocarbons without significant differences from the results obtained by the conventional 
method of gas chromatography-mass spectrometry.

4.2.7. Soil moisture

There are a multitude of reasons to measure the water content in agricultural soils because 
water is fundamental to the development of plants and for soil biology, besides regulating 
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important processes in the soil such as nitrification/denitrification, leaching, and erosion. 
In the laboratory, although there are many methods of measurement, the traditional one is 
based on weighing the sample fresh and then after drying, calculating the percentage of water 
relative to the dry weight of soil. Water produces an absorption spectrum in the NIR due 
to expansions and stresses of O-H bonds. Water incorporated into the soil in clay minerals 
absorbs at wavelengths around 1400 and 1900 nm. The main problem researchers have had in 
the calibration of this parameter is due to the fact that the water found on the surface of the 
minerals in thin layers and in the pores tends to decrease the albedo (the percentage of radia-
tion that the soil reflects), changing the refractive index. As the porosity and refractive index 
of soil particles vary between soil types, a relationship between the albedo and water content 
cannot be given. However, some authors have successfully used a multivariate calibration 
with data from the NIR spectral bands to estimate the water content. For example, Bullock et 
al. [65] found a good correlation using a PLSR of the regions of 1100–2500 nm, and Ben-Dor 
and Banin [58] produced a good regression for samples having a water content of 0.2–11.6% 
using an MLR (multiple linear regression) calibration. The problem with all these calibrations 
appears when one wants to have a single calibration for soils of very different geological ori-
gins; thus, calibrations at the local scale are recommended [62, 66].

4.3. Fruits

Fruits and vegetables from agricultural plantations must maintain their optimum quality, 
whether they are destined for fresh consumption or for processing. As quality rises so do 
prices, so it is necessary to determine the intrinsic characteristics and external appearance of 
the fruits and vegetables. This information can be used to exclude fruits of poor quality, and 
can be provided to the consumer/industry to inform them of the added value of the product 
that is being offered. External defects—such as bruises, injuries from cold and wind, cracks 
in the skin, and contamination by pathogens—cause significant economic losses. Parameters 
such as total soluble solids content (TSS), acidity, and water content, which are related to the 
flavor and aroma of fruit and vegetables, serve to define their organoleptic quality. Therefore, 
currently, analytical methods are being developed that allow accurate, fast, and noninvasive 
determination of the qualities of agricultural products. In the case of the appearance of the 
fruits, computer vision technology—which integrates data acquisition, processing, and analy-
sis—has great potential for the automatic inspection of the appearance of the products. The 
internal quality of the fruits can be estimated accurately by spectroscopy in the visible and 
infrared (vis-NIR), because most of the organoleptic characteristics are related to functional 
groups of the type C-H, N-H, and O-H. What follows is a brief summary of the most signifi-
cant parameters that can be measured with these spectrometric techniques.

4.3.1. Total soluble solids

This parameter is used to measure the approximate amount of sugars in fruit juices, wine, or 
liquids processed in the agri-food industry, and is used to track in situ the evolution of ripening 
of the fruits and their optimal harvest time. The determination is made by refractometry and 
expressed in Brix, equivalent to grams of sugar per 100 ml of juice. Using the vis-NIR technique 
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with a calibration model based on PLS, many researchers have obtained high correlation coeffi-
cients (R) (0.80–0.95) for fruits of mango, strawberry, apple, table grape, banana, blueberry, and 
bell pepper [67]. Recently, it has been shown that this technique can measure online the TSS of 
pear fruits (five fruits per second) as they pass along a transport chain [68]. The authors noted 
that the relationship between the wavelengths of 681 and 822 nm and a PLS calibration model 
allowed estimation of both the TSS and the healthy pears that had no apparent surface damage; 
therefore, they suggested that this technique could be integrated into industrial processes to 
select good quality fruit quickly, thereby reducing the labor required for both processing and 
laboratory analysis. Also, with portable vis-NIR equipment, the state of maturation of the grape 
variety Sangiovese could be determined in situ, by calculating the index of absorbance differ-
ence (IAD) from the values at wavelengths of 560 and 640 nm. These values correlate with TSS as 
well as with parameters such as titratable acidity (TA), firmness (DI), and anthocyanins—which 
allows one to know quickly and accurately the date on which the fruit should be harvested [69].

4.3.2. Total titratable acidity

This parameter describes the total concentration of acids in food, vegetables, or fruit. It is deter-
mined by an acid-base titration (soluble acids determined as citric, malic, lactic, oxaloacetic, 
succinic, glyceric, phosphoric, hydrochloric, fumaric, galacturonic, glyceric, tartaric acids, etc.). 
Acidity influences the taste of food (roughness), the color, the microbial stability, and the quality 
of conservation, and is determined by an acid-base titration using 0.1 N NaOH as the base and 
phenolphthalein as the indicator. Estimations by NIRS of this parameter and the pH of the fruit 
are as good as those found for the TSS. Thus, with the corresponding calibration data obtained 
by NIR, values of R between 0.80 and 0.82 have been observed in Chinese bayberry, apple, straw-
berry, table grape, and grape using wavelengths between 320 and 1650 nm [67]. In Spain, acidity 
has been studied using online NIRS combined with chemometric techniques (PCA, LDA, and 
PLSR) in fruits of different olive varieties; this gave good estimates of the free acidity (R2 = 0.83), 
water content (R2 = 0.76), and fatty acid content (R2 = 0.83). For the calibration, a reflectance spec-
trum of intact olive fruits in the wavelength range 1000–2300 nm was produced and then samples 
of a paste prepared from these fruits were analyzed in the traditional manner. The estimation of 
these parameters improved when the calibration was performed for each stage of ripeness [70].

4.3.3. Contents of water and dry matter

For the food industry, the moisture content is an important quality factor of fruit and vegeta-
bles, whether fresh or processed, and influences their conservation and deterioration. The dry 
matter content is obviously very important when calculating the contents of other constitu-
ents of fruit and vegetables on the basis of the dry matter, which is uniform and less variable 
than the fresh weight. Water is the major component of all fruit and vegetables, representing 
between 60 and 96% by weight. The methods used most commonly for its determination are 
drying methods; the percentage water content is calculated as the loss in weight due to elimi-
nation by heating under standard conditions. Pu et al. [67] stressed that the vis-NIR technique 
is useful for measuring the water content in fruits of mango, strawberry, mushroom, banana, 
and soybean using spectra in the range of 400–1000 nm.
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4.4. Grains and seeds of cereals, grasses species, and legumes

Cereals are important in animal feed not only because they provide energy but also since 
they contribute 70% of the protein in the diet and are especially important for pig nutrition. 
Similarly, soya is a major source of vegetable protein in animal feed formulations. It is impor-
tant that the animal diets have a proper balance regarding the contents of amino acids.

The main nutritional parameters in the grains and seeds of these crop plants determined by the 
NIRS technique with regard to animal feed are the moisture and protein contents, representing 
the biological value. Other parameters analyzed are the contents of lipids, carbohydrates, and ash.

4.4.1. Amino acids

In 1978, Rubenthaler and Bruinsma [71] developed the first calibration equations for the 
determination of lysine in wheat and barley. Subsequently, Fontaine et al. [72] determined 
the total contents of methionine (Met), cysteine (Cys), lysine (Lys), threonine (Thr), trypto-
phan (Trp), and other essential amino acids in a population of cereal and sorghum samples. 
The spectra were first treated with SNV (recommended for samples with <15% moisture) 
and trend to reduce differences in the spectra that are caused by particle size effects only and 
not by changes in the constituents. In this way, the validation of the calibration equations 
showed that 70–98% of the variance of the amino acids in the samples could be explained 
using the NIRS technique, especially for Lys and Met—the amino acids most limiting to ani-
mal nutrition. Also, Kovalenko et al. [73], in the analysis of soybean samples, applied the MSC 
mathematical treatment (let to remove background spectroscopy) to the spectral data together 
with the PLSR regression model and obtained a determination coefficient (r2) of 0.91 for Lys. 
However, the concentrations of Cys and Trp did not exhibit a good correlation with the spec-
tral information, the r2 value for Trp being 0.04.

4.4.2. Other organic matter

With respect to dry matter, lipids, total protein, carbohydrate, and ash, Ferreira et al. [74] 
and Wang et al. [75] established models to determine the protein and lipid contents in both 
soya and fava beans. These authors obtained high R2 values for protein (0.81 vs. 0.94); how-
ever, for lipids the values were slightly lower (0.71 vs. 0.66). Both groups used as a math-
ematical treatments: standard normal variate transformation (SNV; let to correct scattering 
effects caused by physical differences between samples) and first derivate. For the rest of 
the components, Ferreira et al. [74] obtained calibrations giving high predictability for dry 
matter, ash, and carbohydrates (RMSEP of 0.38–3.71%), the prediction being poorest for 
carbohydrates (R2

c = 0.50 and RPDc = 0.83). Wang et al. [75] found RPD values of 2.95 and 
2.50 for starch and total polyphenol content, respectively.

4.4.3. Toxic substances

Some seeds may contain substances that are antinutritional or toxic in nature, such as 
L-canavanine in seeds of one-flowered vetch. This is a toxic nonprotein amino acid that can 
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cause a reduction in food intake, particularly in nonruminant animals [76]. These authors deter-
mined the content of L-canavanine in one-flowered vetch seeds by NIRS: the calibration equa-
tion obtained showed a correlation (r2) of 0.72, which, according to these authors, only served 
to separate the samples into groups of low, medium, and high L-canavanine content. However, 
the equation obtained for the total protein was able to predict with an accuracy similar to 
that of the reference method, showing a correlation (r2) of 0.95. Berardo et al. [77] studied the 
rapid detection of mycotoxins, mainly produced by the fungus Fusarium verticillioides, in maize 
samples. The best predictive ability for the overall rate of infection and F. verticillioides was 
obtained using MPLSR in samples consisting of grains of maize (r2 = 0.75 and SECV = 7.43) and 
in samples of maize flour (r2 = 0.79 and SECV = 10.95). These authors before the development 
of the calibration equations applied MSC (multiplicative scatter correction) to remove additive 
multiplicative effects in spectroscopic data to prevent them from dominating the information 
signal in the data.

4.5. Forage and silage

The production systems of ruminants are based on forage resources. These forages and—
more particularly—maize, wheat, and alfalfa can be conserved as silage. Therefore, quick 
and reliable knowledge of the quality of forage and silage is very important for technicians 
and producers. The quality of silage depends—on the one hand—on its nutritional value, 
which is directly linked to its chemical composition (fiber fractions, nitrogenous materi-
als, minerals, carbohydrates), and—on the other hand—on the quality of its conservation, 
which is defined by the end-products (lactic, acetic, and butyric acids, ammoniacal nitro-
gen, soluble nitrogen, etc.) of the fermentation processes. Currently, the main constituents 
determined by the NIRS technique in forage and silage, and which are important in the 
feeding of ruminants, are the total protein and protein fractions, soluble and structural car-
bohydrates, and digestibility of the forage, the latter depending on the content of structural 
carbohydrates.

Thus, Volkers et al. [78] established calibration equations for samples from different parts of 
a forage maize crop to predict the crude protein content, obtaining coefficients of determina-
tion (R2) of 0.86–0.96, except for samples of the cobs—which had an R2 of 0.56. For net energy, 
the prediction was good—with an R2 of 0.93 and 0.84 for the entire plant without the cobs and 
stalks, respectively.

With respect to the nitrogenous fractions, the nonprotein nitrogen/total nitrogen (NPN/TN) 
ratio in silage is very important for animal nutrition, since it indicates whether the silage 
has overheated; if the value is greater than 12%, it is considered to have occurred [79]. The 
acid detergent insoluble nitrogen (ADIN) is the fraction of the total nitrogen that is bound 
to the cell wall lignin of the plant. This component has low bioavailability but indicates the 
quality of the silage, as its abundance increases with overheating. Normally, it is not rou-
tinely analyzed due to the slowness of the official methods. Consequently, Hermida et al. [79] 
developed calibration equations by MPLS using first and second derivatives with smoothing 
average, which led to the removal of spectral noise that makes it difficult to extract relevant 
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information, for determining the TN, soluble nitrogen (SN), NPN, and ADIN in different 
samples of grass silage. The R2 values obtained in samples belonging to the validation set 
were 0.94, 0.92, 0.90, and 0.48 for TN, SN, NPN, and ADIN, respectively. The latter value 
indicates that NIRS is an acceptable method for the semiquantitative determination of the 
ADIN fraction.

Nie et al. [80] established calibration equations to predict the total crude protein (CP), true 
protein (TCP), neutral detergent insoluble protein (NDFCP), and acid detergent insolu-
ble protein (ADFCP) contents in samples of alfalfa. For CP the statistical parameters were  
R2

p = 0.96 and RPDp = 5.07; for TCP they were R2
p = 0.91 and RPDp = 3.31. However, for NDFCP 

(R2
p = 0.75, RPDp = 1.98) and ADFCP (R2

p = 0.83, RPDp = 2.42), the prediction was less precise. 
With these results, the NIRS technique was able to simplify the long and tedious process that 
determination in the laboratory entails, and predict quickly and empirically the degradability 
of the alfalfa protein in the rumen; also, these results could be extrapolated to proteins from 
other forage.

With respect to carbohydrates, Nousiainen et al. [81] established calibration equations to pre-
dict neutral detergent fiber (NDF), indigestible neutral detergent fiber (INDF), and digest-
ible neutral detergent fiber (DNDF). For the development of the equations the authors used 
the MPLSR model and the mathematical treatments: standard normal variate transformation, 
detrending (SNV-D), and first-order derivatization. The SNV transformation removed scat-
ter effects from spectral data, and corrected scattering effects caused by physical differences 
between samples. In these parameters, a scatter correction with the standard normal variate 
transformation combined with detrend eliminated background spectroscopy. The statistics 
obtained in the cross validation were R2

cv ranging from 0.82 to 0.91 and an RPDcv between 
2.39 and 3.33. These authors concluded that the NIRS technique has great potential to predict 
INDF in grass silage.

Cozzolino et al. [82] developed equations to predict the organic matter, dry matter (DM), acid 
detergent fiber (ADF), NDF, CP, pH, and in vitro organic matter digestibility (DOM) in sam-
ples of ensiled whole plants of maize, using second derivative with SNV-D and MSC, which 
eliminated background spectroscopy. The best statistics obtained in the cross validation were 
for DM, CP, and ADF, with R2 values of 0.85, 0.91, and 0.86, respectively. However, for DOM, 
NDF, and pH the R2 values showed poor predictive ability, being 0.53, 0.60, and 0.51, respec-
tively. A study by Fassio et al. [83] of samples of ensiled maize kernels found similar values 
of R2 for DM, CP, and ADF; however, the R2 values for DMO and pH were higher (0.84 and 
0.90, respectively). These authors also obtained an R2 of 0.90 for the prediction of the content 
of ammonia nitrogen (NH3-N). In this work, the use of the jack-knifing method improved 
the calibration models obtained. It is used to evaluate the stability of the calibrations and to 
eliminate nonsignificant wavebands in the calibration.

For biological parameters such as the in vitro digestibility (IVD) and metabolizable energy 
(ME) in pastures, Lobos et al. [84] established prediction equations with RMSEP values of 
3.06 and 0.06 and R2

p values of 0.90 and 0.94, respectively. The reliability of prediction of these 
NIRS parameters may be affected by the particle size, the effect of drying the sample prior to 
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analysis, and the residual moisture in the samples after drying. Lovett et al. [85] studied such 
effects for samples of maize silage, with regard to the prediction of these parameters, conclud-
ing that the particle size was the most important factor, followed by the drying process and 
finally the presence of residual moisture. These authors used three statistical treatments—
PLS, MPLS, and PCR—with two standard data preprocessing methods: standard normal vari-
ate (SNV) followed by detrending and first derivative. These authors used three statistical 
treatments—PLS, MPLS, and PCR—with two standard data preprocessing methods: stan-
dard normal variate (SNV) followed by detrending and first derivative.

Other authors have developed equations using NIRS to determine quality parameters that 
indicate whether the silage fermentation has been correct, and for quantification of fatty acids 
in forages. Thus, Sorensen et al. [86] developed prediction models (using PLS on full scan 
mean spectra after scatter correction with the standard normal variate (SNV) transformation 
combined with detrend and applying a second derivative) for the determination of lactic acid 
(Lac), acetic acid (HAc), pH, and NH3-N in maize silage. The RMSECV values were 4.7, 1.9, 
2.4, and 2.9, respectively, and 4.0 for ethanol (EtOH). These authors showed that the NIRS 
technique is less accurate for HAc, but provides an estimate of its concentration. With regard 
to the quantification of fatty acids in fodders, Foster et al. [87] obtained high coefficients of 
determination for calibration (0.93–0.99) and cross-validation (0.89–0.98). The SEC and SECV 
were 20% lower compared to the mean. The RPDCV was greater than 3 for all fatty acids except 
C12:0 (2.6) and C14:0 (2.9). The reliability of the prediction was lower, but acceptable for C12:0, 
C14:0, C18:0, C16:1, and C18:1. In this study, two limits were used for the validation of the 
prediction equations: GH (global spectral distance) and NH (neighborhood spectral distance) 
to determine if significant bias occurs and if there is a significant increase in unexplained error.

Finally, undesirable substances of a toxic nature can be found in animal forages. Fox et al. [88] 
established calibration equations for the estimation of hydrogen cyanide in forage sorghum. 
The equations developed by MLR gave a coefficient of determination (R2) of 0.847 and an SEC 
value of 0.050%, with R2 and SEP values for the validation of 0.829 and 0.057%, respectively. 
These authors found two important wavelengths for the prediction: 2034 and 2458 nm, associ-
ated with the former C=O carbonyl stretch and the latter associated with C-N-C stretching.

4.6. Organic residues and compost

The addition of value to wastes that are organic in nature is required to help reduce the 
increasing pollution, to optimize the use of available resources, and to offset the increasing 
energetic and economic costs of synthetic fertilizers. For this it is essential to know in detail 
the nature and type of such wastes, which can be used both fresh and stabilized. In this section 
we focus on fresh organic waste and stabilized materials—compost—resulting from the com-
posting process. The origin of these organic wastes can be varied, but generally they originate 
from urban solid waste, sewage sludge generated in waste water treatment plants, and the 
agro-industrial sector.

The agri-food industry is one of the most important sectors in Europe and therefore the wastes 
it generates pose a serious environmental problem. Most of these organic wastes are considered 
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biodegradable and derive from plants and animals. They include fruit and vegetable remains and 
crop pruning waste. Since these materials are organic or have a high organic matter content, usu-
ally with significant amounts of macronutrients as well, it is convenient to use them as organo-
mineral fertilizers. This represents a double energy saving: first, waste is eliminated and, second, 
the need for synthetic fertilizers, whose cost has increased in recent years, is diminished [88].

In the treatment of organic wastes their possible uses must be taken into account, as the treat-
ment determines the characteristics of the final product obtained. The fate of these organic 
wastes has been and is still very varied, depending on geographical location, activities taking 
place in a region, the population, facilities for reuse, and current regulations governing their 
handling and use. They can be used as soil conditioners, allowing long-term improvement of 
the physical properties of soils, reducing erosion, and helping the recovery of unproductive 
marginal areas. Another possibility is their use as substrates for the production of ornamen-
tal and horticultural plants. This requires improvement of the physical characteristics of the 
sludge or residue in question, which is achieved by composting [89].

Fresh organic wastes can be recycled by composting, a controlled bio-oxidative process 
involving numerous and varied microorganisms and requiring adequate moisture and 
heterogeneous organic substrates in the solid state. It involves a thermophilic stage and a 
temporary production of phytotoxins, giving—as the end-products of the degradation pro-
cesses—carbon dioxide, water, minerals, and stabilized organic matter, free of phytotoxins 
and ready for use in agriculture without the risk of adverse phenomena. Finally, the compost, 
that can be defined as the product resulting from the composting process and maturation and 
that consists of stabilized organic matter like humus, is obtained. It has little resemblance to 
the original organic material as it will have been degraded, resulting in finer and dark par-
ticles. It is a product that is safe and free of phytotoxic substances, whose application to the 
soil will not cause damage to plants and which can be stored without further treatment or 
alterations [90, 91].

Thus, NIRS is used to predict different parameters and/or mineral elements in different organic 
residues and compost. The NIRS calibration results used successfully by different authors work-
ing with different types of organic matrices (industrial compost, compost of various animal 
manures, compost based on sludge and vegetable waste, compost based on winery and agro-
industrial waste, compost derived from tofu waste and sewage sludge) show the great interest 
and the extent of use of this technique in the study of different variables in this type of organic 
material. In this regard there are several studies of compost or organic waste which highlight 
that the information generated with NIRS can increase the effectiveness of composting as a 
management method, due to the advantages that this technique presents as we have already 
discussed throughout this chapter. Thus, NIRs has been used to determine the next parameters.

4.6.1. Contents of mineral nutrients in compost

Mineral analysis of the materials at the start, during, and at the end in the composting pro-
cess is desirable to ensure that the input materials are within acceptable ranges. To deter-
mine the mineral nutrient content it is necessary to make a mineral analysis of the compost 
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material by ICP-OES and AA. In addition, nitrogen is one of the most important nutrients 
in the compost. When we analyze its total content, we refer to the sum of inorganic forms 
(ammonium, nitrate, and nitrite; NH4

+, NO3
-, NO2

-, respectively) and organic (amino acids, 
proteins, nucleic acids, and other organic compounds having nitrogen in their structure). 
The usual methods for its analysis have been the Kjeldahl method (wet digestion) and the 
Dumas method (dry digestion). Although these conventional methods have been optimized, 
the digestion of the sample is still carried out with sulfuric acid and a series of catalysts 
which causes problems such as the emission of acid gases into the environment. Currently, 
near-infrared reflectance spectrometry technique (NIR) is available today and can be used 
to determine mineral nutrient content in organic residues and compost [91, 92]. Malley et 
al. [91] used a field-portable Corona 45 VIS NIR (visible/near-infrared) spectrometer (Carl 
Zeiss, Germany) from 360 to 1690 nm to measure total N, ammonium-N, organic N, P, K, 
Ca, Mg, S, Mn, Zn, and Cu in manure coming from beef cattle manure, stockpiled manure, 
and compost. The calibrations were developed for each constituent separately by using PCA/
PLS1 in The Unscrambler. The calibrations were successfully developed for all parameter 
measurements (except available P, nitrate + nitrite, or Na). Therefore, field-portable NIRS 
offers a considerable advance over existing field and laboratory methods by providing rapid, 
comprehensive compositional analysis when and where the information is required to assist 
with management of the nutrients of cattle manure.

Usually, heavy metals are also measured in the composts as they can cause toxicities in the 
plants (Cu, Hg, Cd, Ni). In several publications, it has been observed that NIR technique can 
be successful to measure these metals in compost coming from raw material rich in these 
metals [88, 93]. An interesting study was carried out by Shen et al. [94], who investigated 
the use of NIR to detect copper (Cu) in animal manure. A total of 118 pig manure samples 
were collected from four provinces in China, and spectra were acquired in the range of 
10,000–4000 cm-1. Results showed that the prediction of Cu concentration in pig manure 
was feasible (r2 = 0.84, RMSE = 198 mg/kg; SE/SD = 2.4). Although the heavy metals in the 
vis-NIR region do not absorb energy, Cu in pig manure can be detected by NIR spectros-
copy because a high percentage of the Cu is complexed with CONH2 or CONHR functional 
groups of organic ligands such as protein, urea, amino acids, and other amide compounds.

4.6.2. Organic matter and total organic carbon

Compost maturity has often been associated with the degree of compost humification. 
Compost stability refers to the degree to which composts have been decomposed to more 
stable organic materials. Various global parameters have been currently used to assess both 
maturation process and quality of the final product, including physicochemical properties, 
such as C:N ratio, humified organic and water-soluble carbon, and cation exchange capac-
ity. Methods for measuring total C in soils, such as wet combustion or dry combustion, are 
generally very accurate, but too slow or costly for everyday analysis. It has been measured 
by NIR the contents of carbon and nitrogen in sewage sludge and green waste compost [95], 
and sewage sludge [96] with successful results. So, Albrecht et al. [95] analyzed changes in 
composts of sewage sludges and green wastes by NIRS technique of six stages of compost-
ing: 8, 20, 35, 75, 135, and 180 days. Maturity of compost was assessed through changes in 
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maturation process and quality of the final product, including physicochemical properties, 
such as C:N ratio, humified organic and water-soluble carbon, and cation exchange capac-
ity. Methods for measuring total C in soils, such as wet combustion or dry combustion, are 
generally very accurate, but too slow or costly for everyday analysis. It has been measured 
by NIR the contents of carbon and nitrogen in sewage sludge and green waste compost [95], 
and sewage sludge [96] with successful results. So, Albrecht et al. [95] analyzed changes in 
composts of sewage sludges and green wastes by NIRS technique of six stages of compost-
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C:N ratio. Results of spectroscopic properties (200 wavelengths) were studied with several 
multivariate analyses showing a precise calibration models between spectral data, the C, N, 
C:N values, and composting time were build using partial least square regression (r2 > 0.95). 
Together, these results show the efficiency of NIRS to predict chemical changes and the stage 
of transformation of organic matter during the composting process.

Humic acids from sewage sludge. Humic acids are part of the stable organic matter fraction 
in soils and composts. Due to their favorable properties for soils and plants, and their role 
in carbon sequestration, they are considered a quality criterion of composts. The traditional 
methodology for determining the content of humic acids is based on the solubility of the 
humic substances in aqueous media of different pH, i.e., humins are insoluble in any pH 
range, humic acids are insoluble in acid medium, and fulvic acids are soluble throughout the 
pH range. In the determination of humic acids by NIR in compost, a correlation coefficient of 
0.94 and a standard error of estimation of 0.28 were obtained, values that can be considered 
very acceptable [97]. Other publications in mushroom compost [98], manure [99], and fat-
tening pig manure [100] have given excellent results to characterize the humic acids in this 
material.

In summary, numerous studies of compost or organic wastes using NIRS have demonstrated 
the efficacy of this methodology. For all the above reasons, this spectroscopic tool is an emerg-
ing technique in the analysis of environmental parameters. It offers several advantages over 
traditional analytical techniques, such as rapidity, ease of preparation and handling of sam-
ples (no reagents are required), and low cost.

Nomenclature

ANN Artificial Neural Networks

HAc Acetic acid

ADF Acid detergent fiber

ADIN Acid detergent insoluble nitrogen

ADFCP Acid detergent insoluble protein

CEC Cation exchange capacity

R2/r2 Coefficient of determination

R2c/R2p/R2cv  Coefficient of determination of the calibration/prediction/
cross-validation

CP Crude protein

Cys Cystine

DT Detrending
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DM Dry matter

DDM Digestible dry matter

DNDF Digestible neutral detergent fiber

DOM Digestible organic matter

EtOH Ethanol

FD First derivate

GH Global spectral distance

INDF Indigestible neutral detergent fiber

IVD In vitro digestibility

IAD Index of Absorbance Difference

DRIS Integrated System of Diagnosis and Recommendation

Lac Lactic acid

LOS Linear offset subtraction

Lys Lysine

H Mahalanobis distance values

MMN Maximum-minimum normalization

ME Metabolizable energy

Met Methionine

MPLSR/MPLS Modified partial least-squares regression

MLR Multiple linear regression

MSC Multiplicative scatter correction

MARS Multivariate adaptive regression splines

NIRS Near infrared reflectance spectroscopy

NH Neighborhood spectral distance

NDF Neutral detergent fiber

NDFCP Neutral detergent insoluble protein

NDSC Neutral detergent-soluble carbohydrates

NDSF Neutral detergent-soluble fiber

NDP No data preprocessing

NPN Nonprotein nitrogen
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NMSI Normalized soil moisture index

PLSR/PLS Partial least squares regression

PCR Principal components regression

A Relative absorbance values

RPD Residual prediction deviation

RPDc/RPDp/RPDcv  Residual prediction deviation of the calibration/prediction/
cross-validation

RMSECV Root mean square error of cross validation

RMSEE Root mean square error of estimation

RMSEP Root mean square error of prediction

SED Second derivate

SWIR Shortwave infrared

SN Soluble nitrogen

TSS Soluble solids content

SOM Soil organic matter

SS Spectral smoothing

SEC Standard error of calibration

SECV Standard error of cross-validation

SEP Standard error of prediction

SNV/SNV-D Standard normal variate, detrending

SR Sufficiency range

SSE Squared sum estimation

t-test Student's t-test

SSL Subtraction of a straight line

Thr Threonine

TA Titratable acidity

TN Total nitrogen

TCP True protein

Trp Tryptophan

VN Vector normalization
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Abstract

Environmental contamination by trace elements is becoming increasingly important 
problem worldwide. Trace metals such as cadmium, copper, lead, chromium, and mer-
cury are major environmental pollutants that are predominantly found in areas with high 
anthropogenic activities. Therefore, there is a need for rapid and reliable tools to assess 
and monitor the concentration of heavy metal in environmental matrices. A nondestruc-
tive, cost-effective, and environmentally friendly procedure based on near-infrared reflec-
tance spectroscopy (NIRS) and chemometric tools has been used as alternative technique 
for the simultaneous estimation of various heavy metal concentrations in environmen-
tal sample. The metal content is estimated by assigning the absorption features of met-
als associated with molecular vibrations of organic and inorganic functional groups in 
organic matter, silicates, carbonates, and water at 780–2500 nm in the near-infrared region. 
This chapter, reviewed the application of NIRS combined with chemometric tools such as 
multiple linear regression (MLR), principal component regression (PCR), and partial least 
squares (PLS) regression. The disadvantages and advantages of each chemometric tool 
are discussed briefly.

Keywords: near-infrared spectroscopy, principal component regression, partial least 
squares, multiple linear regression, trace metals

1. Introduction

Due to fast industrial development and growth that have happened in most areas of the world 
during the recent years, water and soil are getting a large amount of pollutants such as trace 
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elements from different sources [1]. This can, however, lead to environmental contamination, 
thus affecting the ecosystem. Contamination refers to the condition of the land or water where 
any chemical substance or waste has been added at the above background level. The signifies 
of water, air, and land pollution include an adverse health or environmental impact [2–4] run-
off, aerial deposition of chemicals used for agriculture or industry, materials stored or dumped 
on the site, and contaminants in imported fill, and building demolition can also result in con-
tamination of the soil and water that are close to residential communities [5]. Contaminants 
such as trace metals may be introduced into drinking water via the aforementioned activities 
or leached from the soil into groundwater [6]. Additionally, trace metals occur naturally in 
the earth’s crust [7]. For this reason, they can be present in soils at a background level. Trace 
metals persist for a long time in the environment because they are not degradable. In addition, 
they are translocated to different components, thus affecting the biota [2–4]. The persistence of 
trace metals can result in bioaccumulation and biomagnifications causing heavier exposure for 
some living organisms that are present in the environment [8].

Trace metal contaminations threaten agriculture and other food sources for human popu-
lation as well as poor vegetation growth and that lower plant resistance against pests [9]. 
This situation poses different kinds of challenges for remediation. Furthermore, people can 
be exposed to contaminants in the soil through different ways. These include dermal expo-
sure or inhalation and penetration via the skin or eyes (includes exposure to dust) [5]. Trace 
metal exposure is normally chronic (exposure over a longer period of time), due to food chain 
transfer [2]. But the case of acute (immediate) poisoning is rare through ingestion or dermal 
contact but is possible [2]. The toxicity of trace metals is one of the major environmental health 
concerns and potentially dangerous due to bioaccumulation through the food chain [4].

In view of the abovementioned challenges, the development of sensitive and selective ana-
lytical procedure for the determination of trace metals is of great importance. Flame atomic 
absorption spectrometry (FAAS) [10], graphite furnace atomic absorption spectrometry 
(GFAAS) [11], cathodic and anodic stripping voltammetry [12, 13], inductively coupled 
plasma optical emission spectrometry (ICP-OES) [14], and inductively coupled plasma mass 
spectrometry (ICP-MS) [14] are the most widely used analytical techniques for determina-
tion of trace metals in different matrices. However, these techniques are expensive, tedious, 
complex, and highly time-consuming [15–17]. In addition, investigation of trace metal 
concentration distributions in environmental matrices is based on numerous samples and 
laboratory analysis. Therefore, a rapid, reliable, and environmentally friendly method is 
required to detect and survey the distribution of trace metals in environmental matrices. 
This is done in order to diagnose suspected contaminated areas as well as control the reha-
bilitation processes [18]. Reflectance spectroscopy is the study of the absorption and emis-
sion of light and other radiations by matter as related to the dependence of these processes 
on the wavelength of the radiation [19]. It is based on the distinct vibrations and electronic 
processes of chemical bonds in molecules [20]. These vibrations can be observed in three 
regions, namely, far IR (25 × 103 nm–1 × 106 nm), mid-IR (25 × 102 nm–25 × 103 nm), and near 
IR (8 × 102 nm–25 × 102 nm), with mid-IR and near IR being the most useful for qualitative 
and quantitative analysis [21]. The MIRS is known to have a greater predictive ability for 
soil geochemistry compared with the visible-near infrared (vis-NIR) [22, 23]. However, more 
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interest is on NIRs because it is generally cheaper [23]. In NIR, many trace elements are 
spectrally featureless and only exhibit characteristic spectral features at high concentrations 
(>4000 mg kg−1) [23, 24]. Therefore, due to high detection, low levels of heavy metals can be 
indirectly determined from spectra due to their association with Fe oxides, clays, and organic 
matter [24]. For this reason, cost-effective and nondestructive analytical techniques based on 
near-infrared (NIR) spectroscopy coupled with chemometrics have been developed to overcome 
the problems encounter when using traditional methods [17, 25].

The aim of this chapter is to review the application of near-infrared spectroscopy (NIRS) com-
bined with chemometrics for the estimation of the concentration and distribution of trace 
elements in environmental matrices. The disadvantages of NIRS without chemometrics for 
analysis of trace elements are discussed. In addition, this chapter aims at promoting the appli-
cation of simpler and greener methods such as the combination of NIRS and multivariate tools 
for monitoring of trace metal contaminations in different matrices.

2. Application of near-infrared spectroscopy (NIRS) for analysis of trace 
metals

Near-infrared spectroscopy (NIRS) is a fast and nondestructive analytical technique that is 
used to provide multi-constituent analysis of almost all types of sample matrices [15–17, 25]. 
This technique covers wavelength range closer to the mid-infrared and broadens up to the vis-
ible region [26, 27]. Typically, NIRS is primarily based on absorbance characteristics caused 
by vibrations of covalent bonds between H, C, O, S, and N, which are the main components 
of the organic matter [28]. Pure metals do not absorb in the NIR region [29]. However, their 
indirect detection is possible via their complexion with organic molecules containing C–H, 
N–H, and O–H bonds, which are detectable [30]. This concept was termed “aquaphotomics” 
which is based on fact that the characteristic absorbance pattern of water (O–H overtones) 
can change as a consequence of the binding reaction with the metal [31, 32]. This effect is 
described and demonstrated in the study carried out by Putra et al.; although some complexes 
might be similar in different samples, slight differences in spectral features such as shifts in 
peak wavelength may still be seen depending on the nature of the cation [30]. In addition, 
the electromagnetic radiation spectrum in the near-infrared region contains useful informa-
tion about environmental sample constituents such as soil that can be used for prediction of 
metal concentrations [25, 28, 33]. For instance, the absorption features associated with elec-
tronic transitions of Fe3+ and Fe2+ ions in Fe-bearing minerals can be found in the near-infrared 
region at 780–1200 nm [33–35]. In addition, the absorption features of metals associated with 
molecular vibrations of organic and inorganic functional groups in organic matter, silicates, 
carbonates, and water can be found in near infrared at 780–2500 nm region [24, 33, 34, 36].

Wu et al. [24, 36] reported the feasibility of using NIRS for monitoring and predicting trace 
metals in suspended solids, sediment, and soil. This was achieved by quantitative evaluations 
of the spectral activity of sediment and soil properties [23–37]. However, due to challenges 
such as the collinearity, band overlaps, and interactions for some soil properties, the spectra 
of soil, sediment, or suspended solids are often broad and nonspecific [25]. To overcome these 
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challenges, some chemometric tools have been used to be applied to the quantitative analy-
sis of the spectroscopic data [38]. These chemometric tools include multiple linear regres-
sion (MLR) [39], principal component regression (PCR) [40, 41], and partial least squares 
(PLS) regression [42]. These chemometric tools have been used to characterize soil spectra 
and build models for estimating the trace metal concentrations in soil or sediments and other 
matrices [25].

2.1. Applications of NIRS-multi-linear regression determination trace metals in 
environmental samples

Multiple linear regression (MLR) is a conventional chemometric method that commonly cor-
relates a linear combination of several selected spectral bands/indices which have high cor-
relations with the heavy metal concentrations [18]. The disadvantage of using MLR is that it 
does not perform well with hyperspectral measurements. This is because the NIR spectral 
data usually exhibit high collinearity [18, 39]. This challenge has been solved by applying the 
enter and stepwise MLR approaches [18, 39]. In enter-MLR approach, a procedure for vari-
able selection is adopted, and the selected variables are then used to calibrate the MLR model 
[18]. In stepwise-MLR approach, on the other hand, a forward or backward method is applied 
to progressively select the independent variables according to a tolerance significance level, 
which is generally set to 0.05 [18, 39]. Due to the challenges associated with MLS, there are 
very few reports on its application together with NIRS for determination of trace elements in 
environmental samples.

Kemper and Sommer [39] explored the possibility to adapt chemometrics approaches for 
the quantitative estimation of As, Cd, Cu, Fe, Hg, Pb, S, Sb, and Zn in polluted soils using 
stepwise multiple linear regression (MLR) analysis and an artificial neural network (ANN) 
approach. The authors reported that the models predicted six out of nine elements with high 
accuracy. In addition, it was discovered that most wavelengths important for prediction were 
attributed to absorption features of iron and iron oxides. Furthermore, their results revealed 
the feasibility to predict heavy metals in contaminated soils using the rapid and cost-effective 
NIRS. Other applications are reported by Malley et al. [40] and Choe et al. [41].

2.2. Applications of NIRS-PCR for determination trace metals in environmental samples

Principal component regression (PCR) is a chemometric tool that combines principal com-
ponent analysis and MLR [18, 42]. In this method, the independent variables are first decom-
posed into orthogonal principal components using the nonlinear iterative partial least squares 
algorithm and full cross validation of the calibration set [18]. The maximum number of prin-
cipal components is then defined according to the minimum value of the root-mean-square 
error of the cross validation [18]. In the final step, the chosen principal components are used 
to calibrate the MLR models [43]. The advantage of PCR over the normal MLR is that the prin-
cipal components are uncorrelated and the noise is filtered [18]. There is very limited infor-
mation on the application of NIRS-PCR on the analysis of trace metals in different matrices. 
However, some of the reports are available in the literature [42, 43].

Developments in Near-Infrared Spectroscopy132



challenges, some chemometric tools have been used to be applied to the quantitative analy-
sis of the spectroscopic data [38]. These chemometric tools include multiple linear regres-
sion (MLR) [39], principal component regression (PCR) [40, 41], and partial least squares 
(PLS) regression [42]. These chemometric tools have been used to characterize soil spectra 
and build models for estimating the trace metal concentrations in soil or sediments and other 
matrices [25].

2.1. Applications of NIRS-multi-linear regression determination trace metals in 
environmental samples

Multiple linear regression (MLR) is a conventional chemometric method that commonly cor-
relates a linear combination of several selected spectral bands/indices which have high cor-
relations with the heavy metal concentrations [18]. The disadvantage of using MLR is that it 
does not perform well with hyperspectral measurements. This is because the NIR spectral 
data usually exhibit high collinearity [18, 39]. This challenge has been solved by applying the 
enter and stepwise MLR approaches [18, 39]. In enter-MLR approach, a procedure for vari-
able selection is adopted, and the selected variables are then used to calibrate the MLR model 
[18]. In stepwise-MLR approach, on the other hand, a forward or backward method is applied 
to progressively select the independent variables according to a tolerance significance level, 
which is generally set to 0.05 [18, 39]. Due to the challenges associated with MLS, there are 
very few reports on its application together with NIRS for determination of trace elements in 
environmental samples.

Kemper and Sommer [39] explored the possibility to adapt chemometrics approaches for 
the quantitative estimation of As, Cd, Cu, Fe, Hg, Pb, S, Sb, and Zn in polluted soils using 
stepwise multiple linear regression (MLR) analysis and an artificial neural network (ANN) 
approach. The authors reported that the models predicted six out of nine elements with high 
accuracy. In addition, it was discovered that most wavelengths important for prediction were 
attributed to absorption features of iron and iron oxides. Furthermore, their results revealed 
the feasibility to predict heavy metals in contaminated soils using the rapid and cost-effective 
NIRS. Other applications are reported by Malley et al. [40] and Choe et al. [41].

2.2. Applications of NIRS-PCR for determination trace metals in environmental samples

Principal component regression (PCR) is a chemometric tool that combines principal com-
ponent analysis and MLR [18, 42]. In this method, the independent variables are first decom-
posed into orthogonal principal components using the nonlinear iterative partial least squares 
algorithm and full cross validation of the calibration set [18]. The maximum number of prin-
cipal components is then defined according to the minimum value of the root-mean-square 
error of the cross validation [18]. In the final step, the chosen principal components are used 
to calibrate the MLR models [43]. The advantage of PCR over the normal MLR is that the prin-
cipal components are uncorrelated and the noise is filtered [18]. There is very limited infor-
mation on the application of NIRS-PCR on the analysis of trace metals in different matrices. 
However, some of the reports are available in the literature [42, 43].

Developments in Near-Infrared Spectroscopy132

Wu et al. [36] reported the practicality of using NIRS for the determination of Hg concentration 
agricultural soil samples. The accuracy of the prediction models was optimized by applying 
several spectral pretreatments to the reflectance spectra. The univariate regression and prin-
cipal component regression were used for the prediction of Hg concentration. According to 
their results, the optimal model was achieved using the PCR combined with Kubelka-Munk 
transformation. In addition, the results obtained from the correlation analysis revealed that Hg 
concentration correlated negatively with soil reflectance, while positively with the absorption 
depths of goethite at 0.496 μm and clay minerals at 2.21 μm [36]. The findings suggest that the 
adsorption of Hg by clay-size mineral accumulations in soils was the mechanism that can be 
used to predict the spectral absorption band of Hg.

2.3. Applications of NIRS-partial least squares regression environmental samples

Partial least squares regression (PLSR) is a chemometric method that is widely used to quan-
titatively derive information from NIR spectra [18, 44]. The PLSR allows a refined statistical 
approach using the full spectral region rather than unique and isolated analytical bands [44]. 
The principle of PLSR is based on incorporation of the dependent variables in the calculation 
of the principal components [45, 46]. For this reason, the PLSR is able to handle data with 
strong collinearity and noise [18, 44]. In addition, PLSR provides the possibility of handling 
cases where the number of variables significantly exceeds the number of available samples 
[47]. The applications of NIRS combined PLSR for the determination of metals in different 
environmental matrices have been widely reported in the literature (see Table 1).

Moros et al. [15] evaluated the potential of near-infrared (NIR) diffuse reflectance infrared 
Fourier transform spectroscopy (DRIFTS) combined with PLSR for nondestructive determi-
nations of trace elements in foods. This analysis was achieved without physical or chemical 
sample pretreatment. The authors compared two spectral pretreatments that are multiplica-
tive signal correction (MSC) and standard normal variate (SNV). Their results revealed that 
the PLS models built after using SNV provided the best prediction results for the determina-
tion of arsenic and lead in powdered red paprika samples. The concluded results showed 
that NIR diffuse reflectance spectroscopy combined with the PLS could be used to estimate 
the concentration of As and Pb at 100 μg kg−1 level with a standard error of prediction of 
39 and 50 μg kg−1 for As and Pb, respectively. Furthermore, the estimated percentage errors 
were lower than 25% without the need of using sophisticated and high-cost instrumentation 
(such As ICP-MS and GFAAS) together with tedious and expensive digestion procedures for 
sample preparation. Moreover, the suggested NIRS-PLSR methodology was found to be an 
important tool for screening of trace elements in foods in the laboratories [15].

In another study, Li et al. [48] reported a method for simultaneous determination of mercury, 
lead, and cadmium ions in water samples using solid-phase extraction and near-infrared 
diffuse reflectance spectroscopy (NIRDRS). In order to analyze trace metal content in water 
samples using NIRS, thiol-functionalized magnesium phyllosilicate (Mg-MTMS) was used 
as an adsorbent for extraction of target analytes from aqueous solution. The adsorbed metals 
were measured using NIRDRS combined with PLS models. This combination resulted in fast 
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and simultaneous quantitative prediction. The metal ions interacted with a functional group 
of the adsorbent and their absorption bands were observed in the spectra, thus leading to an 
efficient and precise prediction models. The concentration of the three metals that can be cor-
rectly determined was found to range between 4 and 6 mg L−1. This proved that the adsorbent 
used (thiol-functionalized magnesium phyllosilicate) had a high efficiency for the enrichment 
of Hg, Pb, and Cd in dilute solution. Furthermore, the results obtained revealed the feasibility 
of NIRDRS-PLSR for quantitative analysis metal ions in river water. Other applications of 
NIRS combined with PLSR are presented in Table 1.

2.4. Nonlinear calibration models for near-infrared spectroscopy

The abovementioned linear calibration models (especially PLS and PCR) have been exten-
sively due to their ease of use, fast computation, good predictive performance, and easy 
interpretable representations [49]. However, the linearity assumption is not always valid, and 
when the spectra exhibit nonlinearities, they tend to give nonoptimal results [49]. Therefore, 
in such cases, it is of greater significance to develop the robust model system based on differ-
ent nonlinear calibrations [49, 50]. These models include kernel PLS (KPLS), support vector 
machines (SVM), least squares SVM (LS-SVM), and among other artificial neural networks 
(ANN). Brief descriptions of these models are given in the subsequent paragraphs.

Kernel PLS is a nonlinear extension of linear PLS in which input data are transformed into a 
high-dimensional feature space via nonlinear mapping [51]. Briefly, the KPLS includes two 
steps. The first step includes embedding data in an input space via nonlinear mapping. The 
second step is that a linear algorithm is designed to discover the linear relationship [52]. The 
ANN on the other hand is a flexible mathematical structure capable of identifying complex 

 

Analytes Matrix Concentra ions Ref.

Cr, Co, Ni, Cu, Zn, As, Se, Cd, and Tl Soil 0.32–110 μg g−1 [16]

Zn, Pb, and Cd Soil 0.17–6530 mg kg−1 [41]

Pb2+, Zn2+, Cu2+, Cd2+, and Cr3+ Water [42]

Cd and Zn Soil 2.25–51.48 mg L−1 [43]

K, Ca, Mg, Fe, and Zn Manure compost 0.676–80.97 mg kg−1 [44]

Cd, Cu, Zn, Pb, Ni, Mn, and Fe Freshwater sediments 7.63–198.20 g kg−1 [45]

Zn and Pb Soil 2–425 mg g−1 [46]

Al, Ag, As, Ba, Be, Bi, Ca, Cd, Ce, Cs, Co, Cr, 
Cu, Fe, Ga, In, K, La, Li, Mg, Mn, Mo, Na, Nb, 
Ni, P, Pb, Rb, S, Sb, Sc, Sn, Sr, Te, Th, Ti, Tl, U, 
V, W, Y, and Zn

Soil 1672–4601 mg kg−1 [47]

Fe, Zn, Mn, and Cu Agricultural soils 50–100 mg kg−1 [48]

Cu, Mn, Zn, and Fe Water and HNO3 – [49]

1–10,000 μg L−1

Table 1. Applications of NIRS-PLS regression for determination of trace metals in environmental samples.
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nonlinear interactions between input and output data sets. This method is reported to be use-
ful and efficient, especially in problems for which the characteristics are difficult to describe 
using physical equations [53]. The ANN model has been shown to perform better than linear 
models [54].

Support vector machines are the models that involve a solution of a quadratic programming 
problem leading to global models that are often unique [55]. The application of this type of 
model is further discussed and investigated by the authors in Refs. [56–59]. Finally, LS-VSM 
model is a simplification of the computational calculations of SVM by implementation of a 
least squares version for SVM [51]. Least squares SVM is capable of dealing with both lin-
ear and nonlinear multivariate calibration problems relatively fast [60]. In LS-VSM, a linear 
estimation is done in a kernel-induced feature space; the use of LS-SVM and NIR has been 
investigated by Borin et al. [55].

There are few studies on application of the nonlinear multivariate calibration in NIR spec-
troscopy that have been reported for analysis of trace metals. For instance, Shao and He [61] 
investigated the two sensitive wavelength (SW) selection methods combined with visible-
near-infrared (vis/NIR) spectroscopy to determine the levels of some trace elements (Fe, Zn) 
in rice leaf. Calibration models using SWs selected by latent variables analysis (LVA) and inde-
pendent component analysis (ICA) and nonlinear regression of a least squares support vector 
machine (LS-SVM) were developed. In the nonlinear models, six SWs selected by ICA provide 
the optimal ICA-LS-SVM model when compared with LV-LS-SVM. The coefficients of deter-
mination (R2), root-mean-square error of prediction (RMSEP), and bias by ICA-LS-SVM were 
0.6189, 20.6510, and −12.1549 ppm, respectively, for Fe, and 0.6731, 5.5919, and 1.5232 ppm, 
respectively, for Zn [62]. The overall results indicated vis-NIR spectroscopy combined with 
ICA-LS-SVM provided accurate determination of trace elements in rice leaf. Other methods 
are reported by Xu et al. [62] and Barbosa et al. [63], among others.

3. Conclusions

This chapter revealed that NIRS combined with multivariate tools has a great potential tool 
to improve the understanding of trace metal concentration in environmental matrices. It was 
also concluded that the use of chemometrics offered a rapid and cost-effective alternative to 
measure multielement particularly in soils and sediments. However, according to literature 
chemometric models such as MLS and PCR used in the NIRS are not reliable as compared 
to PLSR. Therefore, it is important for researchers to select proper chemometrics for their 
application. Due to the limitations encountered when using some of the chemometric tools, 
it is necessary to develop new chemometric methods or modify the conventional ones so as 
to improve their reliability and accuracy. It is reported in the literature that the limitation of 
NIRS is that some trace metals and other mineral compounds such as phosphorus do not 
absorb radiation in the NIR region. However, in most cases, this problem is solved by using 
the absorption features of metals associated with molecular vibrations of organic and inor-
ganic functional groups in organic matter, silicates, carbonates, and water in near infrared 
(780–2500 nm region). Alternatively, some researchers combine different detection techniques 
such as UV-visible with NIRS [17, 64].
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