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Preface

Pattern recognition continued to be one of the important research fields in computer science
and electrical engineering. Lots of new applications are emerging and hence pattern analysis
and synthesis become significant subfields in pattern recognition. This book is an edited vol‐
ume and has six chapters arranged into two sections, namely, pattern recognition analysis
and pattern recognition applications. These two sections have three chapters each.

Chapter 1 is on motif discovery in protein sequences. This chapter covers basics of motif
representation nicely and provides methods for motif discovery using probabilistic models.
This chapter also provides the details of the tools available for motif discovery.

Chapter 2 is on metaheuristics for classification problems. Authors of this chapter give the
need for metaheuristics and how that can be used for classification problems. This chapter
particularly focuses on hybridizing metaheuristics and suggests various methods for hy‐
bridization.

Chapter 3 is on synthesized phase objects in the optical pattern recognition. This chapter is
highly comprehensive and has the required basics such as definitions and properties. Au‐
thors of this chapter provide a clear note on the required experimental setups and results
with discussions. Methodologies used for the optical pattern recognition are also well ex‐
plained.

Chapter 4 is on face recognition. Authors provide a nice overview for the face recognition
systems. Authors critically study and address several challenges in the face recognition sys‐
tems, namely, pose variations, the presence/absence of structuring elements/occlusions, fa‐
cial expression changes, aging of the face, varying illumination conditions, image resolution,
and modality.

Chapter 5 is on the classification of brain tissues using textures. Authors of this chapter criti‐
cally study texture analysis and statistical methods and apply those for the classification of
CT images using histogram-based features and neural networks. Experimental results and
discussions are also represented neatly.

The last chapter is on structural damage detection using machine learning techniques. Au‐
thors of this chapter examine the role of pattern recognition techniques in structural health
monitoring. They successfully apply PCA and k-NN for the purpose of damage detection
and present the experimental results.

Overall this book is brief and comprehensive and will be a useful resource for the graduate
students, researchers, and practicing engineers in the field of machine vision and computer
science and engineering.
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Abstract

Biology has become a data‐intensive research field. Coping with the flood of data from
the new genome sequencing technologies is a major area of research. The exponential
increase in the size of the datasets produced by “next‐generation sequencing” (NGS)
poses unique computational challenges. In this context, motif discovery tools are widely
used to identify important patterns in the sequences produced. Biological sequence
motifs are defined as short, usually fixed length, sequence patterns that may represent
important structural or functional features in nucleic acid and protein sequences such
as transcription binding sites, splice junctions, active sites, or interaction interfaces. They
can occur in an exact or approximate form within a family or a subfamily of sequences.
Motif  discovery  is  therefore  an  important  field  in  bioinformatics,  and  numerous
methods  have  been  developed  for  the  identification  of  motifs  shared  by  a  set  of
functionally related sequences. This chapter will review the existing motif discovery
methods for  protein sequences and their  ability to discover biologically important
features as well as their limitations for the discovery of new motifs. Finally, we will
propose new horizons for motif discovery in order to address the short comings of the
existent methods.

Keywords: motif discovery, bioinformatics, biological sequences, protein sequences,
bioinspired algorithms

1. Introduction

Biology has been transformed by the availability of numerous complete genome sequences
for a wide variety of organisms, ranging from bacteria and viruses to model plants and animals
to humans. Genome sequencing and analysis is constantly evolving and plays an increasingly

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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important part of biological and biomedical research. This has led to new challenges related
to the development of the most efficient and effective ways to analyze data and to use them
to generate new insights into the function of biological systems. The completion of the genome
sequences is just a first step toward the beginning of efforts to decipher the meaning of the
genetic “instruction book.” Whole‐genome sequencing is commonly associated with sequenc‐
ing human genomes, where the genetic data represent a treasure trove for discovering how
genes contribute to our health and well‐being. However, the scalable, flexible nature of next‐
generation sequencing (NGS) technology makes it equally useful for sequencing any species,
such as agriculturally important livestock, plants, or disease‐related microbes.

The exponential increase in the size of the datasets produced by this new generation of
instruments clearly poses unique computational challenges. A single run of a NGS machine
can produce terabytes of data, and even after image processing, base calling, and assembly,
there will be hundreds of gigabytes of uncompressed primary data that must be stored either
in flat files or in a database. Efficient treatment of all this data will require new computational
approaches in terms of data storage and management, but also new effective algorithms to
analyze the data and extract useful knowledge.

The major challenge today is to understand how the genetic information encoded in the
genome sequence is translated into the complex processes involved in the organism and the
effects of environmental factors on these processes. Bioinformatics plays a crucial role in the
systematic interpretation of genome information, associated with data from other high‐
throughput experimental techniques, such as structural genomics, proteomics, or transcrip‐
tomics.

A widely used tool in all these stages is the comparison (or alignment) of the new genetic
sequences with existing sequences. During genome assembly, short read sequences are often
aligned to a reference genome to form longer contigs. Identification of coding regions then
involves alignment of known genes to the new genomic sequence. Finally, functional signifi‐
cance is most often assigned to the protein coding regions by searching public databases for
similar sequences and by transferring the pertinent information from the known to the
unknown protein. A wide variety of computational algorithms have been applied to the
sequence comparison problem in diverse domains, notably in natural language processing.
Nevertheless, the analysis of biological sequences involves more than abstract string parsing,
for behind the string of bases or amino acids is the whole complexity of molecular and
evolutionary biology.

One major problem is the identification of important features, such as regulatory sites in the
genomes, or functional domains or active sites in proteins, that are conserved within a family
of sequences, without prior alignment of the sequences. In this context, motif recognition and
discovery tools are widely used. The retrieved motifs are often compiled in databases including
DNA regulatory motifs in TRANSFAC [1], JASPAR [2], or RegulonDB [3], and protein motifs
in PRINTS [4], PROSITE [5], or ELM [6]. These well‐characterized motifs can be used as a
starting point for the identification of known motifs in other sequences. This is otherwise
known as the pattern recognition problem. The challenges associated with de novo pattern
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discovery, or the detection of previously unknown motifs [7], is far more difficult due to the
nature of the motifs.

Biological sequence motifs are defined as short, usually fixed length, sequence patterns that
may represent important structural or functional features in nucleic acid and protein sequences
such as transcription binding sites, splice junctions, active sites, or interaction interfaces. They
occur in an exact or approximate form within a family or a subfamily of sequences. Motif
discovery is therefore an important challenge in bioinformatics and numerous methods have
been developed for the identification of motifs shared by a set of functionally related sequences.

Consequently, much effort has been applied to de novo motif discovery, for example, in DNA
sequences, with a large number of specialized methods that were reviewed recently in [8]. One
interesting aspect is the development of nature‐inspired algorithms, for example, particle
swarm optimization has been used to find gapped motifs in DNA sequences [9], while DNA
motifs have been discovered using an artificial immune system (AIS) [10]. Unfortunately, far
fewer tools have been dedicated to the de novo search for protein motifs. This is due to the
combinatorial explosion created by the large alphabet size of protein sequences, as well as the
degeneracy of the motifs, i.e., the large number of wildcard symbols within the motifs. Some
tools, such as Teiresias [11], or the MEME suite [12], can discover motifs in both DNA and
protein sequences. Other work has been dedicated to the discovery of specific types of protein
motifs, such as patterns containing large irregular gaps with “eukaryotic linear motifs” with
SLiMFinder [13] or phosphorylation sites [14]. Many studies have been conducted to compare
these specific motif discovery tools, such as [15].

In most cases, de novo motif discovery algorithms take as input a set of related sequences and
search for patterns that are unlikely to occur by chance and that might represent a biologically
important sequence pattern. Since protein motifs are usually short and can be highly variable,
a challenging problem for motif discovery algorithms is to distinguish functional motifs from
random patterns that are overrepresented. One solution to this challenge is to first construct a
global multiple alignment of the sequences and then search for motifs in the aligned sequences.
This reduces the search space to the aligned regions of the sequences, but also severely limits
the possibilities of finding new motifs.

Furthermore, existing motif discovery methods are able to find motifs that are conserved
within a complete family, but most of them are still unable to find motifs that are conserved
only within a subfamily of the sequences. These subfamily‐specific motifs, which we will call
“rare” motifs, are often conserved within groups of proteins that perform the same function
(specificity groups) and vary between groups with different functions/specificities. These sites
generally determine protein specificity either by binding specific substrates/inhibitors or
through interaction with other protein.

In Section 2, we will provide a brief description of protein sequences and the motifs that
characterize them. Then, in Section 3, the main approaches used for discovery of motifs in
protein sequences will be presented. Section 3 also deals with motif recognition in protein
sequences. In Section 4, the main approaches used for the more difficult problem of de novo
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motif discovery will be presented. Finally, in Section 5, we will propose new horizons for motif
discovery in order to address the short comings of the existent methods.

2. Protein sequences, active sites, and motifs

Some basic concepts in protein biology are necessary for understanding the rest of this chapter.
For many readers, this will be a familiar territory and in this case, they may want to skip this
section and go directly to Section 3.

The genetic information encoded in the genome sequence of any organism contains the
blueprint for its potential development and activity. However, the translation of this informa‐
tion into cellular or organism‐level behavior depends on the gene products, especially proteins.
Proteins perform a wide variety of cellular functions, ranging from catalysis of reactions,
nutrient transport, and signal transmission to structural and mechanical roles. A protein is
composed of a single chain of amino acids (of which there are 20 different kinds), represented
by their single letter codes. This “primary structure” or sequence is none other than a string
of characters that we can read from left to right, i.e., from NH2 part (N‐terminal) to the COOH
part (C‐terminal).

Every protein molecule has a characteristic three‐dimensional (3D) shape or conformation,
known as its native state. The process by which a protein sequence assumes its 3D structure
is known as folding. Protein folding can be considered as a hierarchical process, in which the
primary sequence defines secondary structure, which in turn defines the tertiary structure.
Individual protein molecules can then interact with other proteins to form complex quaternary
structures. The precise 3D structure of a protein molecule is generally required for proper
biological function since a specific conformation is needed that the cell factors can recognize
and interact with.

During evolution, random mutagenesis events take place, which change the genomic sequen‐
ces that encode proteins. There are several different types of mutation that can occur. A single
amino acid can be substituted for another one. Insertions and deletions also occur, involving
a single amino acid up to several hundred amino acids. Some of these evolutionary changes
will adversely affect the function of a protein, e.g., mutations of active sites in an enzyme, or
mutations that disrupt the 3D structure of the protein. If this happens to a protein that takes
part in a crucial process for the cell, it will result in cell death. As a result, amino acids that are
essential for a protein's function, or that are needed for the protein to fold correctly, are
conserved over time. Occasionally, mutations occur that give rise to new functions. This is one
of the ways that new traits and eventually species may come about during evolution.

By comparing related sequences and looking for those amino acids that remain the same in all
of the members in the family, we can predict the sites that might be essential for function. Some
examples of important functional sites include the following:

• Enzyme active sites: to catalyze a reaction, an enzyme will bind to one or more reactant
molecules, known as its substrates. The active site consists of the enzyme's amino acids that

Pattern Recognition - Analysis and Applications6
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form temporary bonds with the substrate, known as the binding site, and the amino acids
that catalyze the reaction of that substrate.

• Ligand‐binding sites: a binding site is a region on a protein molecule where ligands (small
molecules or ions) can form a chemical bond. Ligand binding often plays a structural or
functional role, for example, in stabilization, catalysis, modulation of enzymatic activity, or
signal transmission.

• Cleavage sites: the location on a protein molecule where peptide bonds are broken
down by hydrolysis. For instance, in human digestion, proteins in food are broken
down into smaller peptide chains by digestive enzymes. Many viruses also produce
their proteins initially as a single polypeptide chain which is then cleaved into individual
protein chains.

• Posttranslational modification sites: some amino acids in a protein can undergo chemical
modification, produced in most cases by an enzyme after its synthesis or during its life in
the cell. This change usually results in a change of the protein function, whether in terms of
its action, half‐life, or its cellular localization.

• Targeting sites: within a cell, the localization of a protein is essential for its proper function‐
ing, but the production site of a protein is often different from the place of action. Protein
targeting signals, such as nuclear or mitochondrial localization signals, can be encoded
within the polypeptide chain to allow a protein to be directed to the correct location for its
function.

An example of a simple functional site is the N‐glycosylation site, which is a posttransla‐
tional modification where a carbohydrate is attached to a hydroxyl or other functional
group of a protein molecule. The sequence motif representing this site can be indicated by
N‐X‐S/T. The first amino acid is asparagine (N), the second amino acid can be any of the
20 amino acids (X), and the third amino acid is either serine (S) or threonine (T). This
example introduces the first complication in protein motif discovery: the motifs can con‐
tain both exact and ambiguous elements. Asparagine is a necessary amino acid, since this
is the site that will be glycosylated, and is represented by an exact element. The third
position should be a hydroxyl‐containing amino acid (serine or threonine), while the sec‐
ond position is a “wild card.” Nevertheless, the N‐glycosylation motif shown here is un‐
interrupted, and so it is relatively easy to recognize. The spacing between the elements in
many other sequence motifs can vary considerably, but the presence of such motifs is gen‐
erally detected from the structure rather than sequence and this kind of motif will not be
discussed in detail here. Finally, it should be pointed out that, just because this motif ap‐
pears in a protein sequence, it does not mean that the site is glycosylated. The functional
implications of a motif will depend on the neighboring amino acids and the surrounding
3D context. Therefore, in practice, identifying functional motifs from a protein sequence is
far from straightforward.
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3. Motif recognition in protein sequences

The motif recognition problem takes as input a set of known patterns or features that in some
way define a class of proteins. The goal is then to search in an unsupervised or supervised way
for other instances of the same patterns. As mentioned in the Introduction, the known motifs
in biological sequences are generally compiled databases that are publically available over the
Internet. For example, the PRINTS database (www.bioinf.manchester.ac.uk/dbbrowser/
PRINTS) contains “protein fingerprints,” where a fingerprint is composed of a group of motifs
that characterize a given set of protein sequences with the same molecular function. In contrast,
the PROSITE (prosite.expasy.org) and ELM (elm.eu.org) databases contain single motifs that
correspond to known functionally or structurally important amino acids, such as those
involved in an active site or a ligand binding site. The motifs contained in these resources are
generally manually curated and the entries in the databases include extensive documentation
of the specific biological function associated with the sites.

3.1. Motif representation

Over the years, a variety of motif representation models have been developed to take into
account the complexity of protein motifs. The models are attempts to construct generalizations
based on known functional motifs, and are used to help characterize the functional sites and
to facilitate their identification in unknown protein sequences. They can be divided into two
main categories.

3.1.1. Deterministic models

Consensus sequences are the simplest model for representing protein motifs. They can be
constructed easily by selecting the amino acid found most frequently at each position in the
signal. The number of matches between a consensus and an unknown candidate sequence can
be used to evaluate the significance of a potential functional site. However, consensus sequen‐
ces are limited models, since they do not capture the variability of each position. To support
some degree of ambiguity, regular expressions can be used. Regular expressions are typically
composed of exact symbols, ambiguous symbols, fixed gaps, and/or flexible gaps [16]. For
example, the IQ motif is an extremely basic unit of about 23 amino acids, whose conserved
core can be represented by the regular expression:

[FILV]Qxxx[RK]Gxxx[RK]xx[FILVWY]

where x signifies any amino acid, and the square brackets indicate an alternative.

3.1.2. Probabilistic models

Although deterministic models provide useful ways to construct human‐readable represen‐
tations of motifs, their main drawback is that they lose some information. For instance, in the
IQ motif discussed above, the first position is usually I and both [RK] are most often R.

Pattern Recognition - Analysis and Applications8
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based on known functional motifs, and are used to help characterize the functional sites and
to facilitate their identification in unknown protein sequences. They can be divided into two
main categories.

3.1.1. Deterministic models

Consensus sequences are the simplest model for representing protein motifs. They can be
constructed easily by selecting the amino acid found most frequently at each position in the
signal. The number of matches between a consensus and an unknown candidate sequence can
be used to evaluate the significance of a potential functional site. However, consensus sequen‐
ces are limited models, since they do not capture the variability of each position. To support
some degree of ambiguity, regular expressions can be used. Regular expressions are typically
composed of exact symbols, ambiguous symbols, fixed gaps, and/or flexible gaps [16]. For
example, the IQ motif is an extremely basic unit of about 23 amino acids, whose conserved
core can be represented by the regular expression:

[FILV]Qxxx[RK]Gxxx[RK]xx[FILVWY]

where x signifies any amino acid, and the square brackets indicate an alternative.

3.1.2. Probabilistic models

Although deterministic models provide useful ways to construct human‐readable represen‐
tations of motifs, their main drawback is that they lose some information. For instance, in the
IQ motif discussed above, the first position is usually I and both [RK] are most often R.
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Probabilistic models can be used to overcome such loss of information. The position‐specific
scoring matrix (PSSM) [17], also known as the probability weight matrix (PWM), is undoubt‐
edly one of the most widely used probabilistic models. This model is represented by a matrix
where each entry (i,a) is the probability of finding an amino acid a at the ith position in the
sequence motif. For example, for a set of motifs:

• WSEW

• WSRW

• CSKW

• CSKW

• YSKY

The corresponding PSSM is shown in Table 1.

Position 1 2 3 4

C 0.4 0.0 0.0 0.0

E 0.0 0.0 0.2 0.0

K 0.0 0.0 0.6 0.0

R 0.0 0.0 0.2 0.0

S 0.0 1.0 0.0 0.0

W 0.4 0.0 0.0 0.8

Y 0.2 0.0 0.0 0.2

Table 1. Example of a position specific scoring matrix (PSSM).

Figure 1. An example of a sequence logo for representing patterns in biological sequences. The logo represents the
Pribnow box, a conserved region found upstream of the some genes in prokaryotic genomes.

Although in this example, PSSM containing entries having a value of 0, in general, pseudo‐
counts are applied, especially when using a small dataset, in order to allow the calculation of
probabilities for new motifs.
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The information summarized in the PSSM can also be represented by a sequence logo [18],
which is a graphical representation of the motif conservation as shown in Figure 1. A logo
consists of a stack of letters at each position in the motif, where the relative sizes of the letters
indicate their frequency in the sequences. The total height of the letters corresponds to the
information content of the position, in bits.

Another widely used probabilistic model is the hidden Markov model (HMM), a statistical
model that is generally applicable to time series or linear sequences. They were first introduced
in bioinformatics for DNA sequences [19]. A HMM can be visualized as a finite state machine
that moves through a series of states and produces some kind of output. The HMM generates
a protein sequence by emitting amino acids as it progresses through a series of states. Each
state has a table of amino acid emission probabilities, and transition probabilities for moving
from state to state.

All of the representations mentioned so far inherently assume that positions within the motif
are independent of each other. However, in some cases, this strong independence assumption
may not be reasonable. Markov models of higher order, permuted Markov models, or Bayesian
networks can be used to capture local dependencies by considering how each position depends
on the other.

3.2. Motif detection

The models described in the previous section can be applied to the task of scanning a user‐
submitted sequence for matches to known motifs, thus providing evidence for the function of
the protein and contributing to its classification in a given protein family. Ideally, a motif model
would recognize all and only the members of the family. Unfortunately, this is seldom the case
in practice.

In the case of deterministic models including consensus sequences and regular expressions,
the models are often either too specific leading to a large number of false negative predictions,
or too degenerate resulting in many false positives. The statistical power of such models can
be estimated using standard measures, such as the positive and negative predictive values
(PPV and NPV, respectively).

In the case of probability matrices or HMM‐based methods, a log‐odds score can be calculated
that is a measure of how probable it is that a sequence is generated by a model rather than by
a random null model, representing the universe of all sequences (also known as the “back‐
ground”). The log‐odds score of a motif is defined as:

( ) ( )
( )

log m
z

P s
score s

P sÆ
=

(1)

where Pm is the probability that the sequence was generated by the motif model m and Pφ is
the probability that the sequence was generated by the null model. The logarithm is usually
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base 2, and the score is given in bits. A log‐odds score greater than zero indicates that the
sequence fits the motif model better.

4. Motif discovery in protein sequences

4.1. Methods for motif discovery

Given a set of functionally related sequences, the main aim of motif discovery algorithms is to
find new and a priori unknown motifs that are frequent, unexpected, or interesting according
to some formal criteria. The methods used to discover such motifs follow the same general
schema, as shown in Figure 2. They can be grouped into two main categories: alignment‐based
methods and methods that search for motifs in unaligned sequences.

Figure 2. General motif discovery process.

4.1.1. Alignment‐based methods

Alignment‐based methods for motif discovery first construct a multiple sequence alignment
of the set of sequences, where each sequence of amino acids is typically represented as a row
within a matrix. Gaps are inserted between the amino acids so that identical or similar
characters are aligned in successive columns. Once the multiple alignments are constructed,
the patterns are extracted from the alignment by combining the substrings common to most
of the sequences.

One of the first automatic methods for the identification of conserved positions in a multiple
alignment was the AMAS program [20], using a set‐based description of amino acid properties.
Since then, a large number of different methods have been proposed. For example, Al2Co [21]
calculates a conservation index at each position in a multiple sequence alignment using
weighted amino acid frequencies at each position. The DIVAA method [22] is based on a
statistical measure of the diversity at a given position. The diversity measures the proportion
of the 20 possible amino acids that are observed.
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The advantage of the alignment‐based approach is that no upper limit has to be imposed on
the length of the motifs. Moreover, these algorithms usually do not need as input a maximum
threshold value for the motif distance from the sequences. In general, this approach works well
if the sequences are sufficiently similar and the patterns occur in the same order in all of the
sequences. Unfortunately, this is not usually the case and therefore most methods for motif
discovery in protein sequences assume that the input sequences are unaligned.

4.1.2. Alignment‐free methods

The vast majority of motif discovery methods in bioinformatics are alignment‐free approaches
that do not rely on the initial construction of a multiple sequence alignment. Instead, they
generally search for patterns that are overrepresented in a given set of sequences. The simplest
solution is to generate all possible motifs up to a maximum length l, and then to search
separately for the approximate occurrences of each motif in the set of sequences. Once a list of
candidate patterns is obtained, the ones with the highest significance scores are selected. This
approach guarantees to find all motifs that satisfy the input constraints. Moreover, the
sequences can be organized in suitable indexing structures, such as suffix trees, etc., so that
the time needed by the algorithm to search for a single motif is linear in the overall length of
the sequences.

This simplistic approach has an evident disadvantage: the number of candidate motifs, and
therefore the time required by the algorithm, grows exponentially with the length of the
sequences. Computing a significance score for each motif further increases the time required
by the algorithm. A number of more efficient tools have been developed to address these issues
and in the next chapter, we will discuss some of the more widely used ones.

4.2. Tools for motif discovery

In this section, we will present of the programs that are specifically designed to search for
motifs in protein sequences that are biologically significant. The search for motifs in a set of
unaligned sequences is a complex problem because many factors come into play, such as the
precise start and end boundaries of the motif, the size variability (presence of gaps or not), or
stronger or weaker motif conservation during evolution.

De novo motif discovery programs are generally based on one of the following three algorithms:

• Enumeration is a method that involves counting all substrings of a certain length (known
as words or k‐mers) and then seeking overrepresentations. Such exhaustive motif finding
approaches are guaranteed to report all instances of motifs in a set of sequences. However,
the exponential complexity of such searches means that the problem quickly becomes
intractable for large alphabets.

• Deterministic optimization is based on the expectation‐maximization (EM) algorithm that
estimates the likelihood of a motif from existing data in two stages repeated iteratively. The
first uses a set of parameters to reconstruct the hidden motif structure. The second uses this
structure to reestimate the parameters. This method allows finding alternate sequences
representing the motif and updating the motif model.

Pattern Recognition - Analysis and Applications12



The advantage of the alignment‐based approach is that no upper limit has to be imposed on
the length of the motifs. Moreover, these algorithms usually do not need as input a maximum
threshold value for the motif distance from the sequences. In general, this approach works well
if the sequences are sufficiently similar and the patterns occur in the same order in all of the
sequences. Unfortunately, this is not usually the case and therefore most methods for motif
discovery in protein sequences assume that the input sequences are unaligned.

4.1.2. Alignment‐free methods

The vast majority of motif discovery methods in bioinformatics are alignment‐free approaches
that do not rely on the initial construction of a multiple sequence alignment. Instead, they
generally search for patterns that are overrepresented in a given set of sequences. The simplest
solution is to generate all possible motifs up to a maximum length l, and then to search
separately for the approximate occurrences of each motif in the set of sequences. Once a list of
candidate patterns is obtained, the ones with the highest significance scores are selected. This
approach guarantees to find all motifs that satisfy the input constraints. Moreover, the
sequences can be organized in suitable indexing structures, such as suffix trees, etc., so that
the time needed by the algorithm to search for a single motif is linear in the overall length of
the sequences.

This simplistic approach has an evident disadvantage: the number of candidate motifs, and
therefore the time required by the algorithm, grows exponentially with the length of the
sequences. Computing a significance score for each motif further increases the time required
by the algorithm. A number of more efficient tools have been developed to address these issues
and in the next chapter, we will discuss some of the more widely used ones.

4.2. Tools for motif discovery

In this section, we will present of the programs that are specifically designed to search for
motifs in protein sequences that are biologically significant. The search for motifs in a set of
unaligned sequences is a complex problem because many factors come into play, such as the
precise start and end boundaries of the motif, the size variability (presence of gaps or not), or
stronger or weaker motif conservation during evolution.

De novo motif discovery programs are generally based on one of the following three algorithms:

• Enumeration is a method that involves counting all substrings of a certain length (known
as words or k‐mers) and then seeking overrepresentations. Such exhaustive motif finding
approaches are guaranteed to report all instances of motifs in a set of sequences. However,
the exponential complexity of such searches means that the problem quickly becomes
intractable for large alphabets.

• Deterministic optimization is based on the expectation‐maximization (EM) algorithm that
estimates the likelihood of a motif from existing data in two stages repeated iteratively. The
first uses a set of parameters to reconstruct the hidden motif structure. The second uses this
structure to reestimate the parameters. This method allows finding alternate sequences
representing the motif and updating the motif model.

Pattern Recognition - Analysis and Applications12

• Probabilistic optimization is an iterative method in which a random subsequence is
extracted from each sequence to build an initial model. In each subsequent iteration, the ith
sequence is removed and the model is recalculated. Then, a new motif is extracted from the
ith sequence. This process is repeated until convergence.

Below, and in Table 2, we present the most used motif discovery programs and discuss their
advantages and limitations.

Teiresias [11] is based on an enumeration algorithm. It operates in two phases: scanning and
convolution. During the scanning phase, elementary motifs with sufficient support are
identified. These elementary motifs constitute the building blocks for the convolution phase.
They are combined into progressively larger motifs until all the existing maximal motifs are
generated.

MEME [12] is an example of a deterministic optimization algorithm. It allows discovery of
motifs in DNA or protein sequences based on expectation maximization (EM). MEME
discovers at least three motifs, each of which may be present in some or all of the input
sequences. MEME chooses the width and number of occurrences of each motif automatically
in order to minimize the “E‐value” of the motif, i.e., the probability of finding a similarly well‐
conserved pattern in random sequences. With default parameters, only motif widths between
6 and 50 are considered, but the user have the possibility to change this as well as several other
parameters (options) of the motif discovery.

Pratt [23] is based on probabilistic optimization. It first searches the space of motifs, as
constrained by the user, and compiles a list of the most significant sequences that matches at
least the user‐defined minimum number of sequences. If the user has not switched off the
refinement, these motifs will be input to one of the motif refinement algorithms. The most
significant motifs resulting from this are then output to a file.

qPMS [24] stands for quorum planted motif search. The program searches for motifs in either
DNA or protein sequences. It uses the (l, d) motif search algorithm known as the planted motif
search. qPMS takes as input a set of sequences and two values, l and d. It returns all sequences
M of length l, which appear in at least q% of the sequences.

SLiMFinder [13] identifies novel short linear motifs (SLiMs) in a set of sequences. SLiMs are
microdomains that have important functions in many diverse biological pathways. SLiM‐
mediated functions include posttranslational modification, subcellular localization, and ligand
binding. SLiMs are generally less than 10 amino acids long, many of which will be “flexible”
in terms of the conserved amino acid. SLiMFinder constructs such motifs by grouping dimers
into longer patterns: motifs with fixed amino acid positions are identified and then grouped
to include amino acid ambiguity and variable‐length wildcards. Finally, motifs that are
overrepresented in a set of unrelated proteins are identified.

Dilimot [25] proceeds as follows: in the first step, a user provided set of protein sequences is
filtered to eliminate repetitive sequences as well as the regions least likely to contain linear
motifs. In the second step, overrepresented motifs are identified in the nonfiltered sequences
and ranked according to scores that take into account the background probability of the motif,
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the number of sequences containing the motif, the size of the sequence set, and the degree to
which the motif is conserved in other orthologous proteins.

Program Description Advantages Disadvantages

Teiresias Finds motifs that are frequent in a set of

related sequences

Does not need background

sequences; Very fast

Too many redundant

motifs discovered

MEME Finds motifs in related sequences

using Gibbs sampling and expectation

maximization

Does not need background

sequences; Fast, Multi‐thread

version available; User

friendly output

User defines the number of

motifs to discover

Pratt Discovers flexible motifs in related

sequences

Does not need background

sequences

Unable to discover

effectively exact motifs

qPMS Finds overrepresented motifs in a set of

sequences based on Quorum Planted Motif

Search

Fast; Low memory

consumption

Limited to 20 protein

sequences

SlimFinder Finds overrepresented motifs in a set of

unrelated sequences relative to background

sequences

Well documented; Can use

filters

Needs background

sequences

MotifHound Exhaustively finds motifs overrepresented

in a set of unrelated sequences relative to

background sequences

Exhaustive exploration of

motifs; Can use filters Fast;

Multi‐thread version available

Needs background

sequences

Dilimot Finds overrepresented motifs in a set of

unrelated sequences relative to a

background sequences

Integrates several types of

sequence information on

motifs

Needs background

sequences; Source code not

available

FirePro Correlates overrepresented motifs in a

set of sequences with specific functions or

behaviors

User friendly output Needs background

sequences

Table 2. Advantages and limitations of the most used motif discovery programs.

MotifHound [26] is suitable for the discovery of small and degenerate linear motifs. The
method needs two input datasets: a background set of protein sequences and a subset of this
background set that represents the query sequences. MotifHound first enumerates all possible
motifs present in the query sequences, and then calculates the frequency of each motif in both
the query and the background sets.

FIRE‐pro [27] stands for finding informative regulatory elements in proteins. Its main goal is
to discover protein motifs that correlate with the biological behavior of the corresponding
proteins. FIRE‐pro calculates a mutual information measure between frequent k‐mer motifs
and a “protein behavior profile” containing experimental data about the function of the
proteins.
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Most of these programs need prior knowledge about either the input sequences or the motif
structure. Furthermore, they are generally designed to discover frequent motifs that occur in
all or most of the sequences. The subfamily‐specific motifs, which differentiate a specific subset
of sequences, pose a greater challenge due to the statistical nature of these programs or the
default choice of parameters used. Nevertheless, these “rare” motifs are often characteristic of
important biological functions or context‐specific modifications, including substrate binding
sites, protein‐protein interactions, or posttranslational modification sites.

In the final section of this chapter, we will discuss the use of “intelligent algorithms” that should
be more reliable for the discovery of significant rare motifs in addition to the conserved and
known ones.

5. Intelligent algorithms for protein motif discovery

Intelligent algorithms include optimization and nature inspired algorithms. Among these,
artificial immune systems are especially adapted to pattern discovery, and have been used
recently for motif discovery in DNA sequences. The high complexity and dimensionality of
the problems in bioinformatics are an interesting challenge for testing and validating new
computational intelligence techniques. Similarly, the application of AIS to bioinformatics may
bring important contributions to the biological sciences, providing an alternative form of
analyzing and interpreting the huge volume of data from molecular biology and genomics [28].

Artificial immune systems are a class of computationally intelligent systems inspired by the
principles and processes of the vertebrate immune system. The algorithms typically apply the
structure and function of the immune system to solving hard computational problems. Since
their introduction in the 1990s, a number of common techniques have been developed,
including:

• Clonal selection algorithms model how antibodies of the immune system adaptively learn
the features of the intruding antigen and defend the body from it. The algorithms are most
commonly applied to optimization and pattern recognition domains.

• Negative selection refers to the identification and deletion of self‐reacting cells, i.e., cells that
may attack self‐tissues. The algorithms are typically used for classification and pattern
recognition problems, especially in the anomaly detection domain.

• Immune network algorithms focus on the network graph structures involved where
antibodies represent the nodes and the training algorithm involves growing or pruning
edges between the nodes based on affinity. The algorithms have been used to solve cluster‐
ing, data visualization, control, and optimization problems.

• Dendritic cell algorithms are inspired by the danger theory algorithm of the mammalian
immune system, and particularly the role and function of dendritic cells, from the molecular
networks present within the cell to the behavior exhibited by a population of cells as a whole.
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Although a number of these different AIS can be used for pattern recognition, the clonal
selection algorithm seems to be particularly well suited for protein motif discovery in large
sets of sequences. In particular, the capabilities for self‐organization of huge numbers of
immune cells mean that no prior information is needed. In addition, the system does not
require outside intervention and so it can automatically classify pathogens (motifs) and it can
react to pathogens that the body has never seen before. Another advantage of AIS is the fact
that there are varying types of elements that protect the body from invaders, and there are
different lines of defense, such as innate and adaptive immunity. These features can be
abstracted to model the diverse types of motifs found in protein molecules (see Section 1).
These different mechanisms are organized in multiple layers that act cooperatively to provide
high noise tolerance and high overall security.

The use of such intelligent algorithmic approaches should improve the whole motif discovery
process: from the selection of suitable sets of sequences, via data cleaning and preprocessing,
motif identification and evaluation, to the final presentation and visualization of the results.
Nevertheless, a number of issues remain to be addressed before such systems can be applied
to the very large datasets produced by NGS technologies. In particular, the substantial time
and memory requirements of AIS are a limiting factor, although these can be significantly
reduced thanks to the inherently parallel nature of the algorithms.
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Abstract

High  accuracy  and  short  amount  of  time  are  required  for  the  solutions  of  many
classification problems such as real-world classification problems. Due to the practical
importance of many classification problems (such as crime detection), many algorithms
have  been  developed  to  tackle  them.  For  years,  metaheuristics  (MHs)  have  been
successfully used for solving classification problems. Recently, hybrid metaheuristics
have been successfully used for many real-world optimization problems such as flight
scheduling and load balancing in telecommunication networks. This chapter investi-
gates the use of this new interdisciplinary field for classification problems. Moreover, it
demonstrates the forms of metaheuristics hybridization as well as designing a new
hybrid metaheuristic.

Keywords: metaheuristics, hybrid metaheuristics, classification problems

1. Introduction

Before starting this chapter, let us know the trip that led to the appearance of hybrid meta-
heuristics. Traditionally, rigorous approaches (that are based on hypotheses, characterizations,
deductions, and experiments) were used for solving many optimization problems.

However, in order to find possible good solutions for new complex optimization problems,
researchers went toward the use of heuristics. Heuristics are rules of thumb, trails and error,
common sense, etc. Many of these heuristics strategies are often independent of the undertaken
optimization problems and share common aspects. This introduced the term metaheuristics
which refers to general techniques that are not specific to a particular problem [1]. Metaheur-
istics are approximate algorithms, and each of them has its own historical background [2–4].
A metaheuristic is a set of algorithmic concepts used for defining heuristic methods that can

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



be applied to a variety of optimization problems with relatively few modifications in order to
adapt them to particular optimization problems [5, 6].

Metaheuristics have successfully found high-quality solutions for a wide spectrum of NP hard
optimization problems [1], that is, they are hard to be solved. This means the needed time to
solve an instance of these optimization problems grows exponentially with the instance size
in the worst case. These optimization problems are so complex as there is no known algorithm
that can solve them in polynomial time. They still have to be solved in a huge number of
practical settings. Therefore, a large number of optimization algorithms were proposed to
tackle them [5, 6].

Of great importance for the success of designing a new metaheuristic is considering that this
metaheuristic will have to explore the search space effectively and efficiently. The search
process should be intelligent in order to intensively explore areas of the search space that have
high-quality solutions and to move to unexplored areas. This is called intensification and
diversification, respectively. Intensification is the exploitation of the gathered information by
the metaheuristic at a given time, while diversification is the exploration of the areas imper-
fectly taken into account. The use of these two important characteristics of a metaheuristic can
lead to getting high-quality solutions. Crucial for the success of a metaheuristic is a well-
adjusted balance between these two features. This is to on one side identify quickly search
areas with high-quality solutions and on the other side to avoid spending too much time in
areas consisting of poor-quality solutions or have been well explored [1, 7–11].

There are many classifications for metaheuristics as follows:

• Nature-inspired metaheuristics [such as ant colony optimization (ACO) algorithms, genetic
algorithms (GAs), particle swarm optimization (PSO), and simulated annealing (SA)] vs.
nonnature-inspired metaheuristics [such as iterated local search (ILS), and tabu search (TS)].
This is based on the origins of a metaheuristic.

• Memory-based metaheuristics vs. memory-less metaheuristics. This is based on the use of
the search history, that is, whether they use memory or not. The use of memory is considered
one of the crucial elements of a powerful metaheuristic.

• Population-based metaheuristics vs. single-point metaheuristics. This is based on how many
used solutions at any given time by a metaheuristic. Population metaheuristics manipulate
a set of solutions (at each iteration) from which the population of the next iteration is
produced. Examples are evolutionary algorithms and scatter search, and construction-
oriented techniques such as ant colony optimization and the greedy randomized adaptive
search procedure. The metaheuristics that deal with only one solution at any given time are
called trajectory metaheuristics where the search process describes a trajectory in the search
space [1, 2, 4] as shown in Figure 1 [12].

When they first appeared, pure metaheuristics quickly became state-of-the-art algorithms for
many optimization problems as they found high-quality solutions for these optimization
problems. This was reported in many specific conferences and workshops. This success had
motivated researches toward finding answers to questions such as:

Pattern Recognition - Analysis and Applications20



be applied to a variety of optimization problems with relatively few modifications in order to
adapt them to particular optimization problems [5, 6].

Metaheuristics have successfully found high-quality solutions for a wide spectrum of NP hard
optimization problems [1], that is, they are hard to be solved. This means the needed time to
solve an instance of these optimization problems grows exponentially with the instance size
in the worst case. These optimization problems are so complex as there is no known algorithm
that can solve them in polynomial time. They still have to be solved in a huge number of
practical settings. Therefore, a large number of optimization algorithms were proposed to
tackle them [5, 6].

Of great importance for the success of designing a new metaheuristic is considering that this
metaheuristic will have to explore the search space effectively and efficiently. The search
process should be intelligent in order to intensively explore areas of the search space that have
high-quality solutions and to move to unexplored areas. This is called intensification and
diversification, respectively. Intensification is the exploitation of the gathered information by
the metaheuristic at a given time, while diversification is the exploration of the areas imper-
fectly taken into account. The use of these two important characteristics of a metaheuristic can
lead to getting high-quality solutions. Crucial for the success of a metaheuristic is a well-
adjusted balance between these two features. This is to on one side identify quickly search
areas with high-quality solutions and on the other side to avoid spending too much time in
areas consisting of poor-quality solutions or have been well explored [1, 7–11].

There are many classifications for metaheuristics as follows:

• Nature-inspired metaheuristics [such as ant colony optimization (ACO) algorithms, genetic
algorithms (GAs), particle swarm optimization (PSO), and simulated annealing (SA)] vs.
nonnature-inspired metaheuristics [such as iterated local search (ILS), and tabu search (TS)].
This is based on the origins of a metaheuristic.

• Memory-based metaheuristics vs. memory-less metaheuristics. This is based on the use of
the search history, that is, whether they use memory or not. The use of memory is considered
one of the crucial elements of a powerful metaheuristic.

• Population-based metaheuristics vs. single-point metaheuristics. This is based on how many
used solutions at any given time by a metaheuristic. Population metaheuristics manipulate
a set of solutions (at each iteration) from which the population of the next iteration is
produced. Examples are evolutionary algorithms and scatter search, and construction-
oriented techniques such as ant colony optimization and the greedy randomized adaptive
search procedure. The metaheuristics that deal with only one solution at any given time are
called trajectory metaheuristics where the search process describes a trajectory in the search
space [1, 2, 4] as shown in Figure 1 [12].

When they first appeared, pure metaheuristics quickly became state-of-the-art algorithms for
many optimization problems as they found high-quality solutions for these optimization
problems. This was reported in many specific conferences and workshops. This success had
motivated researches toward finding answers to questions such as:

Pattern Recognition - Analysis and Applications20

• Why a given metaheuristic is successful?

• Which characteristics of a problem instance should be exploited?

• Which metaheuristic is best for a given optimization problem? [1, 2]

Figure 1. Metaheuristics classification [12].

Despite this success, it became recently evident that the focus on pure metaheuristics is
restrictive when tackling particular optimization problems such as real-world and large-scale
optimization problems [2]. A skilled combination of a metaheuristic with components from
other metaheuristics or with other optimization algorithms such as operations research
techniques (mathematical programming), artificial intelligence techniques (constraint pro-
gramming), or complete algorithms (branch and bound) can lead to getting much better
solutions for these optimization problems. This interdisciplinary field is called hybrid meta-
heuristics which goes beyond the scope of a pure metaheuristic [1]. Over the years, many
algorithms that do not purely follow the paradigm of a pure metaheuristic were developed.
They combine various algorithmic components originating from different optimization
algorithms [2]. This is explained in Section 3.

The rest of this chapter is organized as follows. The following section introduced classification
problems. Section 3 explains the main forms of hybridizing metaheuristics. Section 4 demon-
strates designing a hybrid metaheuristic. The fifth section demonstrates hybrid metaheuristics
for classification problems. The discussion is given in Section 6. The last section concludes this
chapter and highlights future work in this area.

2. Classification problems

Classification involves training and testing data which consist of data instances (objects). Each
instance in the training set contains one class label (called target, dependent, response, or
features) and other features (called attributes, inputs, predictors, or independent features) [13–
15]. Classification consists of examining the features of a new object and then assigning it to
one of the predefined set of classes. The objects to be classified are generally represented by
records in a dataset. The classification task is to build a model that will be applied to unclas-
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sified data to classify it, that is, predicting the target values of instances (that are given only
the input features) in the testing set [15, 16]. The classification task (determining which of the
fixed set of classes an example belongs to) is illustrated in Figure 2.

Figure 2. The classification task.

Examples of classification problems are:

• classifying credit applications such as low, medium, or high risky,

• determining whether a customer with a given profile will buy a new computer,

• predicting which of three specific treatments a breast cancer patient should receive,

• determining whether a will was written by the real person or somebody else,

• diagnosing whether a particular illness is present or not,

• choosing particular contents to be displayed on a web page,

• determining which phone numbers correspond to fax machines,

• placing a new student into a particular track based on special needs,

• identifying whether a behavior indicates a possible terrorist threat, and

• spotting fraudulent insurance claims.

In these examples, the classifier is built to predict categorical labels such as “low risky,”
“medium risky,” or “high risky” for the first example; “yes” or “no” for the second example;
“treatment A,” “treatment B,” or “treatment C” for the third example, etc. [16–18].

The accuracy of a classifier refers to how well it can predict the value of the predictor feature
for a previous unseen data and how well it captured the dependencies among the input
features. Classifier accuracy is the main measure for classification and is widely used. The
classifier accuracy goes up when comparing between different classifiers [18–20].

The classifier is considered the basic component of any classification system, and its task is to
partition the feature space into class-labeled decision regions (one for each category). Classi-
fiers’ performance is sensitive to the choice of the features that are used for constructing those
classifiers. This choice affects the accuracy of these classifiers, the time needed for learning,
and the number of examples needed for learning. Feature selection (FS) can be seen as an
optimization problem that involves searching the space of possible solutions (feature subsets)
to identify the optimal one. Many metaheuristics (such as ant colony optimization algorithms,
particle swarm optimization, genetic algorithms, simulated annealing, and tabu search) have
been used for solving the feature selection problem [20, 21].
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Feature selection (deleting a column from a dataset) is one of the main aspects of dimension
reduction besides instance reduction (deleting a row from a dataset). This is illustrated in
Figure 3 [18]. Both of these should keep the characteristics of the original input data after
excluding some of it.

Figure 3. Data reduction [18].

Figure 4 [22] illustrates the revised classification with the use of dimension reduction phase
as an intermediate step. In Figure 4, dimension reduction is performed first to the given data,
and then, the prediction methods are applied to the reduced data.

Figure 4. The role of dimension reduction [22].

3. Hybridization of metaheuristics

Although combining different algorithms together dates back to 1980s, in recent years only
hybrid metaheuristics have been commonly used. Then, the advantage of combining different
algorithms together has been widely recognized [1, 4]. Forms of hybridization can be classified
into two categories (as in Figure 5): (1) combining components from a metaheuristic into
another metaheuristic (examples are: using trajectory methods into population algorithms or
using a specific local search method into a more general trajectory algorithm such as iterated
local search) and (2) combining metaheuristics with other techniques such as artificial intelli-
gence and operations research (examples are: combining metaheuristics with constraint
programming (CP), integer programming (IP), tree-based search methods, data mining
techniques, etc.) [1]. The following two subsections explain these types.
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Figure 5. Forms of hybridization [4].

3.1. Hybridizing metaheuristics with metaheuristics

This category represents the beginning of hybridizing metaheuristics. Later, it got widely used
especially integrating nature-inspired metaheuristics with local search methods. This is well
illustrated in the most common type of this category which is in ant colony optimization
algorithms and evolutionary algorithms that often use local search methods in order to refine
the generated solutions during the search process. The reason for that is these nature-inspired
metaheuristics explore well the search space and identify the regions having high-quality
solutions (since they first capture a global picture of the search space and then they successively
focus the search toward the promising regions). However, these nature-inspired metaheuris-
tics are not effective in exploiting the accumulated search experiences that can be achieved by
adding local search methods into them. Therefore, the resulting hybrid metaheuristic will work
as follows: the nature-inspired metaheuristic will identify the promising search areas from
which the local search method can then determine quickly the best solutions. Based on the
above–mentioned fact, the resulting hybrid metaheuristic combining the strengths of both
metaheuristics is often very successful. Apart from this hybridization, there are other hybrids.
We mentioned it only here as it is considered the standard way of hybridization [1, 2].

3.2. Hybridizing metaheuristics with other algorithms

There are many possible ways of integration between metaheuristics and other algorithms. For
example, metaheuristics and tree search methods can be interleaved or sequentially applied.
This can be achieved by using a tree search method for generating a partial solution that a
metaheuristic can then complete. Alternatively, a metaheuristic improves a solution generated
by a tree search method. Another example is that constraint programming techniques can be
used to reduce the search space (or the neighborhoods) that will be explored by a local search
method [1, 4].

It should be noted that all of the hybrid metaheuristics mentioned above are integrative
combinations in which there is some kind of master algorithm including one or more subor-
dinate components (either embedded or called). Another way of combinations is called either
collaborative or cooperative combinations in which the search is performed by different
algorithms that exchange information about states, models, entire subproblems, solutions, or
search space characteristics. The cooperative search algorithms consist of parallel execution of
search algorithms that can be different or instances of the same algorithm working on different
models or running with different parameter settings. Therefore, the control strategy in hybrid
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metaheuristics can be integrative or collaborative, and the order of executing the combined
parts can be sequential, parallel, or interleaved [1, 4, 12]. These are shown in Figures 6 and 7.

Figure 6. The control strategy in hybrid metaheuristics [4].

Figure 7. The order of executing the combined algorithms in hybrid metaheuristics [4].

4. Designing a hybrid metaheuristic

The main motivation behind combining various algorithmic ideas from different metaheuris-
tics is to get better performing system that exploits and includes advantages of the combined
algorithms [3, 4]. These advantages should be complementary to each other so that the
resulting hybrid metaheuristic can benefit from them [2, 3, 23]. The key to achieving high
performance in the resulting hybrid metaheuristic (especially when tackling hard optimization
problem) is to choose suitable combinations of complementary algorithmic concepts. There-
fore, this task of developing a highly effective hybrid metaheuristic is complicated and not
easy [3]. The reasons for that are as follows:

1. It requires creative thinking and the exploration of new research directions.

2. Designing and implementing a hybrid metaheuristic involves wide knowledge about
algorithms, data structure, programming, and statistics [3].

3. It requires expertise from different optimization areas [2].

4. It should include exploration and intensification capabilities.

According to Blum et al. [2], before starting to develop a hybrid metaheuristic, we should
consider whether it is the appropriate choice for the given optimization problem. This can be
achieved by answering the following questions:

• What is the optimization objective? Do we need a reasonable good solution? And whether
this solution is needed very quickly or not? Or we can sacrifice the computation time in
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order to get a very good solution? (these questions in general guide us toward using
metaheuristics or complete methods) In this case, when very good solution is needed and
it cannot be obtained by the existing complete algorithms in reasonable time, then we need
to know the answer of the next question in order to decide on developing a hybrid meta-
heuristic.

• Is there any existing metaheuristic that can get the required solution for the given optimi-
zation problem? If no, can we enhance any of the existing metaheuristics to better suit this
optimization problem? If no, then the decision is to develop a hybrid metaheuristic and we
will need to know the answer of the following questions.

• Which hybrid metaheuristic will work well for this optimization problem? Unfortunately,
till now, there is no answer to this question as it is difficult to set guidelines for developing
a well-performing hybrid metaheuristic, but the following can help:

◦ Searching the literature carefully for the most successful optimization algorithms for the
given optimization problem or for similar optimization problems, and

◦ Studying different ways of combining the most promising characteristics of the selected
optimization algorithms to be combined [2, 3].

• Identifying special characteristics of the given optimization problem and finding effective
ways in order to exploit them [4].

Besides, in order to set guidelines for developing a new hybrid metaheuristic, it is crucial to
improve the used research methodology that consists of combining different algorithmic
components without identifying the contributions of these components to the performance of
the resulting hybrid metaheuristic. The used methodology should consist of theoretical models
for the characteristics of the hybrid metaheuristics. It can be experimental such as those used
in natural sciences. Moreover, testing and statistical assessment of the obtained results should
be included as well [2].

5. Hybrid metaheuristics for classification problems

The first category of using hybrid metaheuristics for classification problems concerns with
using a metaheuristic for the feature selection problem besides the used classifier. This is
because selecting the most relevant set of input features to use for building the used classifier
plays an important role in classification. The most common metaheuristics for the feature
selection problem are genetic algorithms, ant colony optimization algorithms, and particle
swarm optimization algorithms [24] which are hybridized with the used classifier in each
application. This is explained below.

The feature selection problem is used in many applications from choosing the most important
social-economic parameters in order to identify who can return a bank loan to dealing with a
chemical process and selecting the best set of ingredients. It is used to simplify the datasets by
eliminating irrelevant and redundant features without reducing the classification accuracy.
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Examples of these applications are: face recognition, speaker recognition, face detection,
bioinformatics, web page classification, and text categorization [24, 25].

The idea of using genetic algorithms for solving optimization problems is that they start with
a population of individuals each of which represents a solution to the given optimization
problem. Initially, the population includes all randomly generated solutions (the first genera-
tion of the population). Then, the various genetic operators are applied over the population to
produce a new population. Within a population, the goodness (measured by a fitness function)
of a solution varies from individual to individual [26].

Genetic algorithms are one of the most common approaches for the feature selection problem.
The usual usage is to use them for first selecting the most relevant features (from the given
dataset) that will be used for building the used classifier. Examples are the work of Yang and
Honavar [27] and Tan et al. [28].

There are other directions for using genetic algorithms for the feature selection problem, for
instance, hybridizing the used genetic algorithm with another metaheuristic in order to select
the most appropriate feature subset before building the given predictor (such as Oh et al. [29]
who embedded local search into the used genetic algorithm). Another example is the work of
Salcedo-Sanz et al. [30] who used extra genetic operator in order to fix (in each iteration) the
number of features to be chosen out of the available ones.

Similar to the way of using genetic algorithms for the feature selection problem is the use of
ant colony optimization algorithms that have been widely used for this optimization problem.
Examples are the work of Yang and Honavar [27] and the work of Abd-Alsabour and Randall
[31].

There are other ways for using ant colony optimization algorithms for the feature selection
problem. An example is the work of Vieira et al. [32] who used two cooperative artificial ant
colonies: one for determining the number of features to be selected and the second one for
selecting the features based on the cardinality given by the first colony. Another direction is to
use ensemble (more than one classifier is built and then is combined to produce a better
classification—this is called ensemble techniques [33]) of classifiers to perform the classification
besides the used metaheuristic for the feature selection problem.

Another metaheuristic that has also been used for the feature selection problem is particle
swarm optimization. Researchers developed variants of PSO in order to be suitable for the
feature selection problem such as the work of Chuang et al. [34] who proposed a variant of
PSO called complementary PSO (CPSO) with the use of k-nearest neighbor classifier. Another
example is Zahran and Kanaan [35] who implemented a binary PSO for feature selection. Also,
Jacob and Vishwanath [36] proposed multi-objective PSO that outperformed a multi-objective
GA in the same authors’ experiments. Moreover, Yan et al. [37] proposed a new discrete PSO
algorithm with a multiplicative likeliness enhancement rule for unordered feature selection.
Also, Sivakumar and Chandrasekar [38] developed a modified continuous PSO for the feature
selection problem with k-nearest neighbor classifier that served as a fitness function for the
PSO.
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There are other ways for using particle swarm optimization algorithms for the feature selection
problem. An example is the work of Wahono and Suryana [39] who used a combination of PSO
and a bagging of classifiers (bagging is an ensemble technique where many classifiers are built
and the final classification decision is made based on voting of the committee of the combined
classifiers. It is used in order to improve the classification accuracy [33]). Another example is
the work of Nazir et al. [40] who combined a PSO and a GA to perform together the feature
selection.

The classification task involves other subtasks besides the feature selection problem, and many
metaheuristics have been used for solving these subtasks, for example, the use of ant colony
optimization for designing a classifier ensemble such as the work of Palanisamy and Kanmani
[41] who used the main concepts of the proposed ant algorithm in Abd-Alsabour and Randall
[31] for designing an ensample of classifiers. Another example is the use of particle swarm
optimization algorithms for producing good classification rules such as Kumar [42] who
combined a PSO with a GA to produce them and Holden and Freitas [43] who later proposed
several modifications to their proposed work in Holden and Freitas [44]. Another example is
the work of Revathil and Malathi [45] who proposed a novel simplified swarm optimization
algorithm as a rule-based classifier.

6. Discussion

The previous section closely explored the different ways to use hybrid metaheuristics for
classification problems. In the light of that, we can come up with the following comments:

1. For solving many applications, using hybrid metaheuristics was crucial to get high-quality
solutions especially for real-world applications (such as personnel and machine schedul-
ing, educational timetabling, routing, cutting and packing, and protein alignment). An
example for real-world classification problems is the work of Tantar et al. [46], who
developed a hybrid metaheuristic (GA and SA) for predicting the protein structure.
Examples for other real-world optimization problems are the work of Atkin et al. [47],
who proposed a hybrid metaheuristic for runway scheduling at London Heathrow airport
and the work of Xu and Qu [48], who used a hybrid metaheuristic to solve routing
problems.

2. However, there are other situations where the hybridization was not important for the
prediction accuracy. An example is the use of extra metaheuristic (besides the two
algorithms used: one for performing feature selection and the classifier) to determine the
number of the features to be selected. Similar to this is the use of two instances of a
metaheuristic: one to determine the number of the features to be selected and the second
one to perform the feature selection. These two scenarios can lead to worse results besides
the extra computation cost. The authors should have been avoided using extra metaheur-
istic or an instance of the used metaheuristic. The reason for that is revealed from the work
of Abd-Alsabour et al. [49] who proved that fixing the length of the selected feature subsets
can lead to getting worse classification accuracy than not fixing the length of the selected
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feature subsets (besides its extra computation). We should avoid selecting too few or too
many features than necessary. This is because selecting insufficient features leads to
degrading the information content to keep the concept of data. On the other side, if too
many features are selected, the classification accuracy will decrease because of the
interference of irrelevant features. Subset problems such as the feature selection problem
do not have fixed length [49]. Another example is the use of more than one classifier
(ensemble methods) rather than using one only. This is because of the extra computational
cost, especially that there were already previous similar applications that had been
successfully solved using only one classifier (besides the used metaheuristic for getting
the best feature subset). This has been evidenced by many authors when they compared
their work with the pervious ones and showed that their results were not better than the
others. One more example is the use of two metaheuristics for performing the feature
selection, while it was already solved using only one metaheuristic. These examples
emphasize the fact that sufficient literature search before first hybridizing or adding extra
computational steps can avoid extra computation, useless hybridization, or even moving
toward a misleading research direction as illustrated in Section 4.

Therefore, choosing the suitable hybrid metaheuristic can achieve the top performance for
many optimization problems, but this does not imply that more complex algorithms are always
the best choice. This is because of the following disadvantages of the increased complexity:

• The software becomes more difficult to tune and maintain.

• Adaptations in problem specifications are frequently hard to adhere.

Therefore, an important design aim is to keep the proposed algorithm as simple as possible
and include extensions only if they will really benefit [4].

Despite the difficulties in developing a new hybrid metaheuristic, it is nontrivial to generalize
it, that is, a particular hybrid metaheuristic that works well for a particular optimization
problem might not work well for another problem. This means that research on hybrid
metaheuristics has gone toward being problem-specific rather than algorithm-oriented as was
when promoting a new metaheuristic [1, 2].

7. Conclusions and future work

This chapter addressed the use of hybrid metaheuristics for classification problems. Besides,
it demonstrated hybridizing metaheuristics and designing them as well. Moreover, the most
common used hybrid metaheuristics for classification problems from literature were present-
ed.

As a research direction, more applications of hybrid metaheuristics for different optimization
problems in general and more particularly for real-word classification problems will be
considered. Another research direction is to move more toward setting specific methodologies
and general guidelines for developing a new hybrid metaheuristic. Moreover, comparisons
between hybrid metaheuristics for similar classification problems should be conducted.
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Abstract

To solve the pattern recognition problem, a method of synthesized phase objects (SPO-
method) is suggested. The essence of the suggested method is that synthesized phase
objects are used instead of real amplitude objects. The former is object-dependent phase
distributions calculated using the iterative Fourier transform algorithm. The method is
experimentally studied with an optical-digital Vanderlugt and joint Fourier transform
4F-correlators. The development of the SPO-method for the rotation invariant pattern
recognition is considered as well. We present the comparative analysis of recognition
results with the use of the conventional and proposed methods, estimate the sensitivity
of the latter to distortions of the structure of objects, and determine the applicability
limits. It is demonstrated that the SPO-method allows one: (a) to simplify the procedure
of choice of recognition signs (criteria); (b) to obtain one-type δ-like recognition signals
irrespective of  the type of  objects;  and (c)  to  improve the signal-to-noise  ratio  for
correlation signals by 20–30 dB on the average. To introduce recognition objects in a
correlator, we use SLM LC-R 2500 and SLM HEO 1080 Pluto devices.

Keywords: pattern recognition, method of synthesized phase objects, iterative Fourier
transform algorithm, rotation invariant pattern recognition, optical-digital recognition
systems, spatial light modulators

1. Introduction

The studies in the fields of Fourier optics, holography, and digital and correlation optics aimed
at the solution of the pattern recognition problem remain topical for a long time. This is related
to the fact that the recognition problem is object-dependent, i.e., the change in the conditions
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of recognition or in the type of an object requires, as a rule, the optimization of available
methods of solution or the development of new ones [1, 2]. Among the known methods, it is
worth to note the following ones: the digital synthesis of Fourier filters [3–6], method of
discriminant curve [7, 8], method of stabilizing functional [9], method of projections onto
convex sets [10], etc. We emphasize that the mentioned and other available methods lead to a
significant number of dedicated solutions, for which the choice of characteristic signs of the
object and the subsequent analysis of correlation signals are separate problems. Therefore,
topical is the search for the more general solutions of the pattern recognition problem by means
of the matched filtering [11] or the joint correlation [12], which are directed to a simplification
of  the  analysis  of  input  data  and the  main  signs  of  recognition,  determination  of  their
connection with the parameters of correlation signals, etc.

Here, we develop a new approach to the solution of the recognition problem. The newness of
the proposed approach consists in that we recognize not the object itself, but a certain object-
dependent synthesized phase object (SP-object). The latter (its distribution of phases) is
calculated with the help of the known iterative Fourier transform (IFT) algorithm [13]. In this
case, the problem of recognition of amplitude objects, which belong to arbitrary classes, is
reduced to the problem of recognition of phase objects of only one type [14–16].

We also present a development of the SPO-method for the rotation invariant pattern recogni-
tion [17]. For the conventional method and the SPO-method, the comparison of the parameters
of correlation signals for a number of amplitude objects is executed at the realization of their
rotation in an optical-digital joint Fourier transform (JT) correlator. It is shown that not only
the invariance relative to a rotation at a realization of the joint correlation for SP-objects but
also the main advantage of the SPO-method over the reference one such as the unified δ-like
recognition signal with the largest possible signal-to-noise ratio (SNR) independent of the type
of an object is attained.

The work is organized as follows: in Section 2, a new approach to the pattern recognition on
the basis of SP-objects is presented. The basic results of computational and optical experiments
are given. The behavior of cross-correlation signals is studied under the addition of a controlled
amount of noises to the structure of objects. In Section 3, a development of the SPO-method
for the rotation invariant pattern recognition with an optical-digital JT-correlator is presented.

2. SPO-method: definition, substantiation

We now define an approach, where not the object itself is recognized, but some object-
dependent SP-object which is calculated with the help of the known IFT algorithm [13]. In this
case, as mentioned above, the problem of recognition of amplitude objects of various classes
can be reduced to the problem of recognition of phase objects that belong to the same class.
Below, we present the experimental results of recognition of amplitude objects with the use of
the conventional and proposed methods, estimate the sensitivity of the latter to changes in the
structure of objects, and determine the boundaries of its application. Let us consider the
operation of the algorithm (Figure 1). For the calculation of SP-objects, we apply IFT algorithm
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in its kinoform version [18]. In the process of iterations, the phase structure of a kinoform
ψ(u, υ) is formed in the spectral plane. Simultaneously, one more phase structure, namely
ϕ(x, y), appears in the object plane. The function φ(x, y) = exp(iϕ(x, y)) plays the role of a diffusive
scatterer, which is optimized for the object f(x, y) and is necessary for the leveling of the field
amplitude in the Fourier plane, i.e., in the plane of a kinoform. However, in the context of the
correlation methods of recognition, the phase structures ϕ(x, y) with random distribution of
the phase can also be of independent interest not related to the problem of calculation of the
kinoform. The matter is as follows. Since the form of ϕ(x, y) for the given number of iterations
and the given initial diffuser ϕ0(x, y) is determined uniquely by the form of the function f(x, y),
it is logical to put two questions:

1. While solving the problem of recognition of the object f(x, y), is it possible to replace it by
the corresponding SP-object in the form of φ(x, y) = exp(iϕ(x, y))?

2. Will the solution of the problem with such replacement of the object be more efficient than
that within the known methods?

Figure 1. IFT algorithm (a), illustrative scheme of the IFT algorithm (b).

The computer-based and optical experiments executed by us give a positive answer to both
questions. The method of recognition, where the SP-object φ(x, y) is recognized instead of a
real amplitude object f(x, y), is called the method of synthesized phase objects. We now consider
the advantages and limitations of this method in more details. To study its basic characteristics
in model and optical experiments, we need to determine a collection of recognition objects, to
calculate an SP-object for each of them, and to carry out the recognition.

In view of the circumstance that the iteration method of synthesis of the functions ϕ(x, y) for
f(x, y) gives no possibility to get a solution in the analytic form, we study the SPO-method for
a finite collection of recognition objects. In order to most completely show the potentialities of
the method, we choose objects with essentially different types of Fourier spectra.
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For the comparison of the conventional and SPO methods, we need to compare their sensitiv-
ities to changes in the structure of objects under recognition. As a parameter for the estimation
of the sensitivity, we chose the controlled changes that are introduced in the structure of
recognition objects. These changes are carried out by means of the pairwise rearrangements
of points of the object taken in an arbitrary order. The number of such rearrangements k varied
in the limits from zero to several hundreds.

2.1. SP-objects and their basic properties: model experiments

For model experiments, we chose ten amplitude objects of the binary type 300 × 300 points in
size. In Figure 2, the reference objects fn (n = 1, 2, 3, 4) are presented.

Figure 2. Objects: (a) f1, (b) f2, (c) f3, (d) f4.

For all of them, we calculated the autocorrelation functions fn ⊗ fn. The SP-objects φn were
calculated by the iteration scheme (Figure 1a) with the initial distribution of phases
ϕ0 = const. In order to find the degree of connection of φn with fn, which determines the degree
of suitability of the use of φn instead of fn, we obtained φn for different numbers of iterations
N, by gradually increasing N. At a fixed N, we calculated the correlation functions φn,N ⊗ φn,N

for the entire totality of {φn,N}. In Figure 3, we present object f4 (1(a)), central fragment of its
Fourier spectrum (2(a)), and autocorrelation signal (3(a)). On the right, we show, respectively,
a fragment of the phase distribution ϕ4,1 of the SP-object (1(b)), shape of its spectrum (2(b)),
and a fragment of the autocorrelation signal (3(b)). Analogous results were also obtained for
objects f1 − f3. The presented result is typical and demonstrates the main advantages of SP-
objects such as the uniform distribution of the amplitude in the spectral plane and the δ-like
autocorrelation signal, which are practically independent of the shapes of Fourier spectra and
the type of the autocorrelation signals of real objects, for which they were calculated.

As a result of model experiments, for each fn, we determined the criterion of choice of φn
from the set {φn,N} at varying N. The obtained results are demonstrated by the example of
object f4 (Figure 4a). Curve (A) shows the behavior of the variance σ2 of the amplitude of
the retrieved image of object f4 at the calculation of its SP-object relative to the amplitude of
the reference object, and curve (B) presents the change in the maximum value of modulus
of the Fourier spectrum amplitude of the φ4,N, as N increases. In Figure 4(b–d), we observe
the redistribution of phases of the SP-object in the interval [0 − 2π] for various numbers of
iterations.
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Figure 3. Left (a): distributions for the real object f4; right (b): for the SP-object φ4 = exp(iϕ4): (1) object; (2) Fourier spec-
trum amplitude modulus; (3) autocorrelation signal.

Figure 4. (a) Dependence of σ2 (A) and |ℑ+ 1(φ)|max (B) on the number of iterations N; histograms for: (b) ϕ4,1; (c) ϕ4,13; (d)
ϕ4,45 calculated for 1st, 13th, and 45th iterations.
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On the basis of the results of numerical experiments with the whole collection of objects
(Figures 3 and 4, Table 1), we can conclude the following:

• The binary distribution (0 or π) of a phase in the plane of an SP-object obtained on the first
iteration is transformed into a continuous one in the interval [0 − 2π], as the iteration number
increases.

• The distribution of phases in the plane of an SP-object is random.

• The modulus of the amplitude of the Fourier spectrum of an SP-object has a uniform
distribution in all cases.

Number of an

object no.

Objects SP-objects

Frequencya 2ξmax, rel. un. <SNR>b, dB Frequency 2ξmax, rel. un. <SNR>, dB

1 0.30 5.2 0.50 26.2

2 0.25 16.3 0.50 26.2

3 0.20 7.7 0.50 26.2

4 0.37 6.8 0.50 26.2

a2ξmax, effective band of frequencies.
b<SNR>, ratio of the peak value of amplitude of a correlation signal to the mean noise amplitude.

Table 1. Results of recognition of objects and SP-objects in model experiments.

The autocorrelation functions of SP-objects have the δ-like shape and ensure:

1. Maximally possible value of SNR characteristic as for the binary phase masks with a
random distribution of elements [19].

2. Possibility to apply a simple threshold criterion to the analysis of the results of recognition.

This is true for both ϕ0 = const as well as for arbitrary ϕ0. We have also established that the SP-
objects calculated on the first and all subsequent N-iterations satisfy the following conditions:

1. If there is no correlation between the objects fn and fm (fn ⊗ fm = 0), then the correlation is
also absent for SP-objects (φn,N ⊗ φm,N = 0).

2. If the signal of cross-correlation between the objects fn and fm exists (fn ⊗ fm ≠ 0), then it
exists also for the SP-objects (φn,N ⊗ φm,N ≠ 0).

The first item indicates that the SP-objects obtained for the uncorrelated real objects are
statistically independent of one another. The second shows the possibility to obtain a bijective
interrelation between cross-correlation curves for the real and SP-objects.

Thus, we have established that, for SP-objects, the highest degree of uniformity of the ampli-
tudes of their Fourier spectra is ensured already after the first iteration, conditions (1, 2) are
satisfied, and the properties of real objects f(x, y) (their significant signs) are integrally repre-
sented in the distribution of phase elements in the coordinate plane. Any changes in the
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structure of f(x, y) affect directly the distributions of the phase in a plane of the SP-object. This
allows one to quantitatively evaluate the indicated variation in the object by a change in the
level of a cross-correlation signal from SP-objects calculated for the reference and modified
objects, respectively. The following step is the evaluation of the practical value of the proposed
method. With this purpose, we will analyze the results of the recognition by the conventional
method and the SPO-method executed in a Vanderlugt (VL) correlator.

2.2. Comparison of the SPO and conventional methods of recognition: optical experiment

We studied the matched filtering of amplitude objects. In Figure 5, we present scheme (a) and
photo (b) of an optical-digital VL-correlator. In order to introduce the images in the object plane
of the correlator, we applied spatial light modulator (SLM) LC-R2500. SLM is operated in the
mode of phase modulation of the wave front. The amplitude objects were transformed in phase
ones [20] and supplied to SLM as standard graphic files with regard to the characteristic curve
of SLM. Let us consider the operation of the correlator in the mode of recording of matched
filters and the mode of matched filtering.

Figure 5. Optical-digital VL-correlator: (a) scheme; (b) photo: CCD1, PC1, laser, Fr, k, P1, Bs, SLM, P2, Mr, Sh, A, L1, MF,
Pmf, L2, CCD2, PC2 are, respectively, a camera and a computer in the object plane, He-Cd laser (441.6 nm), Fresnel
rhomb; collimator, polarizer, splitting cube, spatial light modulator LC-R2500, polarizer, mirror, gate, analyzer, Fourier
lens, matched holographic filter, Fourier plane, lens, CCD camera COHU-4800, controlling computer.

Recording of a matched filter. The beam of a He-Cd laser is split into the reference and object
beams, by passing through collimator k and splitter Bs. Fresnel rhomb Fr and analyzer A set
the necessary polarization of the object beam, by ensuring the phase mode of operation of
SLM. Polarizer P1 and gate Sh are not used, and polarizer P2 controls a level of the intensity of
the reference beam. With the help of CCD1 and computer PC1, the graphic file with the image
of the reference object in the grayscale format (1–255) is supplied onto SLM with regard to the
characteristic curve of the device. The object beam and the collimated reference beam form a
matched filter on a photopolymeric composition [15] in the Fourier plane Pmf of the correlator.
We optimized the conditions of recording of matched filters in order to get the maximum
diffraction efficiency at a minimum level of intrinsic noises and at a maximum SNR.

Matched filtering. The operation of the correlator in the mode of matched filtering consists in
the following. At closed gate Sh, the collimated laser beam with the necessary direction of
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polarization is reflected from the mirror of SLM, to which the image of a recognition object is
supplied. After the Fourier transformation executed by lens L1, the beam enters plane Pmf,
where a matched filter MF for the reference object is placed. Then, camera CCD2 in the
correlation plane registers the signal of mutual correlation, which is obtained as a result of the
inverse Fourier transformation of the product of the Fourier transforms of the input and
reference images of objects executed by lens L2.

Define the procedure of recognition by the SPO-method:

• For the reference object fref, the SP-object φref is calculated with the help of the IFT algorithm.
Into the object plane of the correlator, φref is introduced instead of fref, and the recording of
the matched filter is realized. For the comparison object fin, the SP-object φin is calculated in
the same way.

• Into the object plane of the correlator, φin is introduced instead of fin, and the matched filtering
is realized. In the correlation plane, the signal of mutual correlation Icorr = |φref ⊗ φin| is
registered.

To obtain the cross-correlation dependences, the same collection of objects f1 − f4 (Figure 2), as
in computer experiments, was used. For each of the recognition objects, we calculated the
series of fn(k), k ∈ [1 − 800] objects obtained by means of the introduction of changes into their
structure. As indicated above, the changes are the pairwise permutation of points (pixels) of
the object taken in an arbitrary order, k being the number of such rearrangements. In Fig-
ure 6, we present the view of a fragment of the object f1 for various numbers of rearrangements.

Figure 6. Fragments of object f1 for: (a) k = 0; (b) k = 200; (c) k = 400; (d) k = 800.

For all objects fn and series fn(k), we calculated the corresponding φn,1 and series φn,1(k). Then,
we recorded matched filters and carried out the recognition by the conventional and SPO
methods. The cross-correlation signals were registered by camera CCD2, and their SNRs were
calculated. We obtained the dependences of the intensities of correlation signals Icorr on the level
of changes in the structure of compared objects. We also estimated the degree of homogeneity
of the intensities of the Fourier spectra of objects and SP-objects. The registration of the
corresponding spectra was executed by camera CCD2 mounted in the plane Pmf of the correla-
tor (Figure 5a). In Figure 7, we show the typical results by the example of object f1.

Pattern Recognition - Analysis and Applications42



polarization is reflected from the mirror of SLM, to which the image of a recognition object is
supplied. After the Fourier transformation executed by lens L1, the beam enters plane Pmf,
where a matched filter MF for the reference object is placed. Then, camera CCD2 in the
correlation plane registers the signal of mutual correlation, which is obtained as a result of the
inverse Fourier transformation of the product of the Fourier transforms of the input and
reference images of objects executed by lens L2.

Define the procedure of recognition by the SPO-method:

• For the reference object fref, the SP-object φref is calculated with the help of the IFT algorithm.
Into the object plane of the correlator, φref is introduced instead of fref, and the recording of
the matched filter is realized. For the comparison object fin, the SP-object φin is calculated in
the same way.

• Into the object plane of the correlator, φin is introduced instead of fin, and the matched filtering
is realized. In the correlation plane, the signal of mutual correlation Icorr = |φref ⊗ φin| is
registered.

To obtain the cross-correlation dependences, the same collection of objects f1 − f4 (Figure 2), as
in computer experiments, was used. For each of the recognition objects, we calculated the
series of fn(k), k ∈ [1 − 800] objects obtained by means of the introduction of changes into their
structure. As indicated above, the changes are the pairwise permutation of points (pixels) of
the object taken in an arbitrary order, k being the number of such rearrangements. In Fig-
ure 6, we present the view of a fragment of the object f1 for various numbers of rearrangements.

Figure 6. Fragments of object f1 for: (a) k = 0; (b) k = 200; (c) k = 400; (d) k = 800.

For all objects fn and series fn(k), we calculated the corresponding φn,1 and series φn,1(k). Then,
we recorded matched filters and carried out the recognition by the conventional and SPO
methods. The cross-correlation signals were registered by camera CCD2, and their SNRs were
calculated. We obtained the dependences of the intensities of correlation signals Icorr on the level
of changes in the structure of compared objects. We also estimated the degree of homogeneity
of the intensities of the Fourier spectra of objects and SP-objects. The registration of the
corresponding spectra was executed by camera CCD2 mounted in the plane Pmf of the correla-
tor (Figure 5a). In Figure 7, we show the typical results by the example of object f1.

Pattern Recognition - Analysis and Applications42

Figure 7. Experimental results for object f1 (left) and the SP-object φ1,1 (right): (a) dependence of the intensity of a cross-
correlation signal on k; (b and c) form of correlation signals at points A, B, respectively; (d and e) the shapes of Fourier
spectra.

In Figure 7a, curves (A, B), we show changes in the correlation signal Icorr for f1 and ϕ1,1,
respectively, as the parameter k increases. The autocorrelation signals for f1(x, y) with SNR of
2.1 dB and φ1,1(x, y) with SNR of 24.8 dB are shown in Figure 7b and c, respectively. Fourier
spectra of the object and the SP-object are presented in Figure 7d and e. In the photo of the SP-
object Fourier spectrum, we indicate the zero and ± 1 orders of SLM. In the Fourier spectrum
of object f1, the zero order of SLM distorts the real view of the object Fourier spectrum in the
zero frequency region. The character of cross-correlation dependences (A, B) (Figure 7a) is
conserved for the whole collection of objects, which allows us to conclude that the SPO-method
has a higher sensitivity to changes in the structure of an object. This can play both positive and
negative roles, depending on the character of the recognition problem. On the basis of the
results of matched filtering obtained for the whole collection of objects f1 − f10, we can conclude
that the characteristic peculiarities and distinctions of the compared methods observed in
model experiments are conserved also in optical experiments.
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We have established that, in the applied scheme of a VL-correlator (it is true for the schemes
with SLM) in the process of recording of matched filters, a part of light that does not diffract
on SLM falls in the domain of zero frequencies of the Fourier spectrum of the object. These
intense peaks are well noticeable in Figure 7d and e. The presence of such peaks is the reason
for the appearance of a superfluous component in the recognition signals, which masks the
real course of a curve in the domain of strong changes in the structure of an object. For example,
it is seen in Figure 7a (curve A) that, for k > 400 where the structure of the object changes quite
strongly, the intensity of the correlation signal is practically constant. This effect is observed
for both the conventional and SPO methods.

Off-axis matched filtering. We have realized a means to remove a drawback of a VL-correlator
with SLM related to the presence of a masking peak of the intensity on zero frequencies, by
introducing a phase grating into the structures of input and reference objects. This allows us
to spatially separate the Fourier spectra of objects and the zero-order SLM. For functions of
the type φ(x, y) = exp(iϕ(x, y)) that are introduced in the objective plane of a correlator with the
help of SLM, such grating is formed by means of the adding of a linear phase 2π(xu0 + yϑ0) to
the phase ϕ(x, y). The spatial separation of the recognition signal and noise components in the
correlation plane by the covering of a synthesized filter in the Fourier plane by a phase grating
was demonstrated in [16], but the increase in SNR of the recognition signal by means of the
covering of the recognition objects in the objective plane of a VL-correlator by a phase grating
is made for the first time by us.

Figure 8. (a and b) Fragment of the phase encoded objects [20] f2, f4 with added gratings; (c and d) on-axis Fourier spec-
tra; (e and f) off-axis Fourier spectra.

Pattern Recognition - Analysis and Applications44



We have established that, in the applied scheme of a VL-correlator (it is true for the schemes
with SLM) in the process of recording of matched filters, a part of light that does not diffract
on SLM falls in the domain of zero frequencies of the Fourier spectrum of the object. These
intense peaks are well noticeable in Figure 7d and e. The presence of such peaks is the reason
for the appearance of a superfluous component in the recognition signals, which masks the
real course of a curve in the domain of strong changes in the structure of an object. For example,
it is seen in Figure 7a (curve A) that, for k > 400 where the structure of the object changes quite
strongly, the intensity of the correlation signal is practically constant. This effect is observed
for both the conventional and SPO methods.

Off-axis matched filtering. We have realized a means to remove a drawback of a VL-correlator
with SLM related to the presence of a masking peak of the intensity on zero frequencies, by
introducing a phase grating into the structures of input and reference objects. This allows us
to spatially separate the Fourier spectra of objects and the zero-order SLM. For functions of
the type φ(x, y) = exp(iϕ(x, y)) that are introduced in the objective plane of a correlator with the
help of SLM, such grating is formed by means of the adding of a linear phase 2π(xu0 + yϑ0) to
the phase ϕ(x, y). The spatial separation of the recognition signal and noise components in the
correlation plane by the covering of a synthesized filter in the Fourier plane by a phase grating
was demonstrated in [16], but the increase in SNR of the recognition signal by means of the
covering of the recognition objects in the objective plane of a VL-correlator by a phase grating
is made for the first time by us.

Figure 8. (a and b) Fragment of the phase encoded objects [20] f2, f4 with added gratings; (c and d) on-axis Fourier spec-
tra; (e and f) off-axis Fourier spectra.

Pattern Recognition - Analysis and Applications44

Figure 9. Intensities of cross-correlation signals versus the parameter k for object f1 (a) and SP-object φ1,1 (b) for the on-
axis (1) and off-axis (2) matched filtering.

Number of an

object no.

Objects SNRa, dB SP-objects SNR, dB

On-axis Off-axis On-axis Off-axis

1 2.1 9.32 24.8 29.0

2 10.4 18.1 29.1 39.5

3 9.2 19.7 30.0 39.8

4 10.5 20.7 33.9 39.6

aSNR, correlation peak intensity relative to the maximal intensity of the correlation noise.

Table 2. Results of matched filtering of objects and SP-objects.

The axis, relative to which the spectrum is shifted, passes through the centers of the objective
and Fourier planes. We consider the recording of a filter for the reference object with the added
phase grating and the subsequent matched filtering of recognition objects with the added
phase grating as an off-axis matched filtering relative to the indicated axis (Figure 8). As
distinct from the on-axis matched filtering, the implementation of such filtering within the
conventional and SPO methods for all objects fn and series fn(k), as well as for φn,1 and series
φn,1(k), gives the proper behavior of cross-correlation curves for the whole range of variation
in the parameter k, including k > 400. In Figure 9a and b, we present the correlation curves for
the on-axis (1) and off-axis (2) matched filtering for the object f1 and SP-object φ1,1, respectively.
It is seen that curves (2) are more suitable for the proper comparison of the sensitivities of
methods in a wide range of k. Hence, the results of model and optical experiments aimed at
the study of the SPO-method of recognition of amplitude objects show that the method gives
the following possibilities: to simplify the procedure of choice of the criteria (signs) of recog-
nition; to obtain the one-type δ-like signals irrespective of the class, to which the recognition
object belongs; and to increase the signal/noise ratio for correlation signals by 2–3 orders. The
off-axis matched filtering realized in the experiment increases additionally SNR of correlation
signals by one order (Figures 8 and 9, Table 2).
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3. SPO-method for pattern recognition with rotation invariance

As is known, one of the basic problems hampering the application of optical methods of
recognition in practice is a fast degradation of the correlation signal under a variation in the
scale of the object and its rotation around the coordinate origin. This problem is solved by
means of the use of the integral Fourier-Mellin transformation instead of the pure Fourier
transformation for the recognition. For the first time, the possibility of a realization of the
Fourier-Mellin transformation in a hybrid electron-optical or optical-digital Fourier system
was indicated by Kuzmenko [21]. Casasent used successfully this idea for the recognition of
objects, which is invariant to the scaling, rotation, and shift, in a hybrid optical-digital 4F-
system [22, 23]. In the subsequent years, a lot of works [24–35] were devoted to the invariant
methods of recognition. In what follows, we will demonstrate a possibility to use the SPO-
method for the pattern recognition with rotation invariance.

3.1. Computational experiment

Consider the rotation invariant recognition of objects realized by the conventional method and
the SPO-method. Of interest is the comparison of the cross-correlation curves obtained with
the help of both methods to recognition objects for various angles of its rotation.

Figure 10. Reference objects: f1(x, y) (a); g1(exp(ρ), θ) (b); φ1(x, y) (c); χ1(exp(ρ), θ) (d).

As the reference objects for numerical experiments, we took a set of objects of the amplitude
and half-tone types fi(x, y), i = 1, 2, …, 10. For each of them, we define the sets of comparison
objects ,  ,  , j = 1, 2, …, 41, which are obtained by the rotation of corresponding refer-

ence objects around the optical axis by an angle α with the step Δα = 0.5° in the limits [0°–
20°]. In addition, for all reference objects and comparison objects, we define the sets gi,
(exp(ρ), θ), i = 1, 2, …, 10, of reference objects and ,  𝀵𝀵𝀵𝀵  ,  , j = 1, 2, …, 41, of compari-

son objects after a logarithmic polar transformation of coordinates [26]. For the comparison
of cross-correlation dependences, we define the correlation functions for the SPO conven-

tional recognition:   =  ⊗ ,  𝑚𝑚𝑚𝑚; by Fourier–Mellin rotation invariant recogni-
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tion:   =  ⊗ ,  𝑚𝑚𝑚𝑚𝑚𝑚. For the SPO-method for the above-defined sets by the

iteration scheme (Figure 1) at the initial ϕ0 = 0 we calculate the SP-objects φi, i = 1, 2, …, 10
for each reference object and for each comparison object ,  𝑚𝑚,  , j = 1, 2, …, 41. All SP-

objects were taken on the first iteration. Analogously, we define the correlation functions for

the SPO conventional recognition:   =  ⊗ ,  𝑚𝑚𝑚𝑚𝑚𝑚; by SPO Fourier–Mellin rotation

invariant recognition:   =  ⊗ ,  𝑚𝑚𝑚𝑚𝑚𝑚.

Below in Figure 10, we present an amplitude reference object of the binary type f1(x, y) (a), the
object obtained for it after the logarithmic polar transformation of coordinates g1(exp(ρ), θ) (b),
and the SP-objects φ1,0(x, y) (c) and χ1,0(exp(ρ), θ) (d) calculated for them.

To increase the peak values of correlation signal for recognition objects and the SNR, all
amplitude objects fi, gi were transformed in phase ones by the Kallman method [20]. The results
were obtained for ten objects with a dimension of 512 × 512 elements by the conventional and
SPO methods. We analyzed the parameters of correlation signals and compared the correlation
curves defined above. By the examples of Figures 11–13, we show the typical results of
numerical experiments.

In Figure 11a, we show the dependence of the SNR of a recognition signal on the rotation angle
of the object 1,  at the subsequent calculation of the correlation of this object with the

reference one f1 (Figure 10a)— the curve formed by white squares.

Figure 11. Dependence of the SNR for cross-correlation signals Icorr on the rotation angle α for: 1⊗ 1,   (a),

1⊗1,   (b) the conventional recognition; 1⊗ 1,   (c), 1⊗ 1,   (d) the recognition with the use

of the Fourier-Mellin transformation.
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Figure 12. Autocorrelation signal: |f1 ⊗ f1| (a), |φ1 ⊗ φ1| (b) the conventional recognition; |g1 ⊗ g1| (c), |χ1 ⊗ χ1| (d) the
recognition with the use of the Fourier-Mellin transformation; α = 00.

The curve demonstrates the typical behavior [22, 23], namely the strong degradation of the
correlation function under a rotation of the comparison object around the optical axis, while
comparing it with the reference object. The correlation signal with SNR = 3.4 dB (Figure 12a)
from the reference object under a rotation of the comparison object already at angles α > 5° is
transformed into noise components of the cross-correlation signal, which change insignifi-
cantly their shapes at a subsequent rotation (Figure 13a). Curves (Figure 11a) demonstrate the
above-written method for both conventional and SPO methods. As shown in [16], the SPO-
method demonstrates a faster diminution of the curve with increase in distortions (in the given
case, with increase in the rotation angle), δ-like shape of a recognition signal, and higher values
of SNR about 20.2 dB for the autocorrelation (Figure 12b); for the angle α = 5°, the signal is
absent (Figure 13b). The curves in Figure 11b show variations in SNRs of the correlation
functions with increase in the rotation angle for comparison objects for the conventional (light
circles) and SPO (dark circles) methods at the Fourier-Mellin rotation invariant recognition.
For g-objects, SNR of the signal is about 5 dB in the whole interval of change of the angles. For
the SPO-method, we observe a change in SNR of the δ-like signal from 20 dB (Figure 12d) for
autocorrelation to 11 dB; further, SNR of the cross-correlation signal is also independent of the
angle of rotation of objects of the recognition (Figure 12d).
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Figure 13. Cross-correlation signal: |f1 ⊗ f1,α| (a), |φ1 ⊗ φ1,α| (b) the conventional recognition; |g1 ⊗ g1,α| (c), |χ1 ⊗ χ1,α|
(d) the recognition with the use of the Fourier-Mellin transformation; α = 200.

Figure 14. (a) Scheme and (b) photo of a digital-optical JT-correlator: Laser beam, P, D1, RD, Bs, SLM, PC1, L, A, CCD1,
CCD2, PC2—He-Ne (543 nm) laser beam, polarizer, circle and rectangle diaphragms, beam splitter, spatial light modu-
lator HEO 1080 Pluto, Fourier lens, analyzer, a 12-bit SPU620 CCD with the BeamGage software and PC.

In view of the similar results obtained for the whole set of objects, we may say that the SPO-
method is applicable for the rotation invariant recognition and conserves the same own
advantages, as in the conventional recognition.
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3.2. Optical experiment

For the corroboration of the results obtained in numerical experiments, we carried out
experiments with an optical-digital system of recognition (see Figure 14a and b) on the basis
of a JT-correlator. For this purpose, we got the autocorrelation signals for the objects f1(x, y),
g1,0(exp(ρ), θ), φ1(x, y), and χ1,0(x, y). The cross-correlation signals were obtained at the rotation
of the indicated objects by α = 5°.

Figure 15. Pattern recognition results with Fourier-Mellin transformation: object’s plane—reference g1 (a) and recogni-
tion 1, 5° (b) objects; calculation—autocorrelation (c) and cross-correlation (d) signals; experimental peaks—autocor-

relation (e) and cross-correlation (f) in the correlation plane of the JT-correlator. The size of objects and JF-spectra is
64 × 64 and 512 × 512 elements, respectively.

The recognition in the JT-correlator includes two steps:

Formation of the joint Fourier spectrum (JF) of compared objects. With the help of a camera (is not
shown in the scheme), the object of recognition is introduced in computer PC1. We calculate
the JT-spectrum moduli of a given object and the reference object. Then, JF-spectrum moduli
is supplied to an SLM.
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Production of a correlation signal. The collimated light beam of a He-Ne laser (543 nm) after
masking by a working aperture is reflected from the SLM. In the correlation plane, a CCD
camera registers the correlation signal obtained as a result of the inverse Fourier transform,
which is performed by the lens L, of an optical signal reflected with the help of a splitting cube
Bs from the SLM. The result is supplied to and is processed by computer PC2.

Figure 16. Pattern recognition results with the SPO-method and the Fourier-Mellin transformation: object’s plane—ref-
erence χ1 (a) and recognition 1, 5° (b) SP-objects; calculation results—autocorrelation (c) and cross-correlation (d) sig-

nals; experimental peaks—autocorrelation (e) and cross-correlation (f) in the correlation plane of the JT-correlator. The
size of objects and JF-spectra is 64 × 64 and 512 × 512 elements, respectively.
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3.3. Results and discussion

The results of optical experiments and their comparison with the results of numerical experi-
ments (at least the qualitative one) allow us to evaluate a degree of applicability of the SPO-
method for the rotation invariant recognition. Figure 15 demonstrates objects Figure 15a and
b, calculated autocorrelation Figure 15c and cross-correlation signals Figure 15d, and the
autocorrelation Figure 15e and cross-correlation signals Figure 15f registered by a camera
(Figure 14a).

The similar experimental result was obtained also within the SPO-method. The presence of
cross-correlation signals is clearly seen for the conventional and studied methods (Figures 15
(e, f) and 16 (e, f)) in the case of the rotation invariant recognition by Fourier-Mellin.

The SNR for recognition signals is in the limit 23–25 dB. Thus, the results (the presence of a
recognition signal at a rotation of the recognition object) confirm qualitatively the applicability
of the SPO-method to the rotation invariant correlation.

Thus, the numerical and optical experiments show the applicability of the SPO-method to
the rotation Fourier-Mellin invariant recognition for amplitude and half-tone objects of the
binary type. The estimate of correlation signals and the obtained dependences of SNR(α)
indicate that the SPO-method gives signals of the δ-like shape irrespective of the type of
objects that gives a constant value of SNR exceeding SNR for the conventional method in
the whole interval of the angles of rotation of comparison objects by 6 dB higher on the
average for the rotation invariant recognition. These results are typical of the whole set of
reference objects.

4. Conclusion

The hypothesis about the possibility to solve the problem of optical recognition by means of
the change of the recognized objects by the corresponding object-dependent SP-objects in
model and optical experiments is verified. The advantages and the drawbacks of such
approach are determined. The conditions of recording of matched filters on original photo-
polymeric compositions, which ensure the optimum parameters of correlation signals at the
recognition of amplitude objects, are determined. Auto- and cross-correlation signals for
amplitude objects of various classes and for the corresponding SP-objects are obtained by
computer simulation experimentally and compared at the recognition with a hybrid optical-
digital VL-correlator. The influence of controlled changes in the structure of objects on
correlation signals in the conventional and proposed approaches is experimentally studied in
the optical-digital systems of recognition on the basis of the VL and JT correlators. The
development of the SPO-method for the rotation invariant pattern recognition with an optical-
digital JT-correlator is presented.
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Abstract

Automated face recognition (AFR) aims to identify people in images or videos using
pattern recognition techniques. Automated face recognition is widely used in applica‐
tions ranging from social media to advanced authentication systems. Whilst techniques
for face recognition are well established, the automatic recognition of faces captured by
digital cameras in unconstrained, real‐world environment is still very challenging, since
it  involves  important  variations  in  both acquisition conditions  as  well  as  in  facial
expressions and in pose changes. Thus, this chapter introduces the topic of computer
automated face recognition in light of the main challenges in that research field and the
developed  solutions  and  applications  based  on  image  processing  and  artificial
intelligence methods.

Keywords: face recognition, face identification, face verification, face authentication,
face labelling in the wild, computational face

1. Introduction

Automated face recognition (AFR) has received a lot of attention from both research and
industry  communities  since  three  decades  [1]  due  to  its  fascinating  range  of  scientific
challenges as well as rich possibilities of commercial applications [2], particularly in the context
of biometrics/forensics/security [3] and, more recently, in the areas of multimedia and social
media [4, 5].

Face recognition is the field trying to bring an answer to the question: ‘Whose face it is?’ For this
purpose, people have natural abilities through their human perceptive and cognitive systems
[6], whereas machines need complex systems involving multiple, advanced algorithms
and/or large, adequate face databases. Studying, designing and developing such methods and
technologies are the domain of automated face recognition (AFR).
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AFR could be distinguished further into the computer automated face identification and the
computer automated face verification. Hence, on the one hand, automated face identification
consists in a one‐to‐many (1:N) search of a face image among a database containing many
different face images in order to answer questions such as ‘Is it a known face?’ [7]. On the other
hand, automated face verification is a one‐to‐one (1:1) search to solve the matter of ‘Is it the face
of …?’ search [8].

Moreover, AFR could be the basis to the solution of the ‘Who is in the picture?’ problem, leading
to the computer automated face labelling/face naming [9].

The general AFR process is illustrated in Figure 1. Usually, it first applies techniques address‐
ing questions such as ‘Is there a face in the image?’ (face detection) and ‘Where is the face in the
image?’ (face location) and next, it handles the computer‐automated recognition mechanism
itself [10].

Figure 1. Overview of the face detection and recognition processes.

In particular, this chapter is dedicated to the ‘why’ and ‘how’ of the computer‐automated face
recognition in constrained and unconstrained environments. The remaining parts of this
chapter are structured as follows: in Section 2, we describe AFR's today challenges, while
corresponding scientific solutions and industrial applications are presented in Sections 3 and
4, respectively. Section 5 draws up new trends and future directions for automated face
recognition performance improvements and evolution.

2. Challenges

The study and analysis of faces captured by digital cameras address a wide range of challenges,
as detailed in Sections 2.1–2.7, which all have a direct impact on the computer automated face
detection and recognition.

2.1. Pose variations

Head's movements, which can be described by the egocentric rotation angles, i.e. pitch, roll
and yaw [11], or camera changing point of views [12] could lead to substantial changes in face
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appearance and/or shape and generate intra‐subject face's variations as illustrated in Fig‐
ure 2, making automated face recognition across pose a difficult task [13].

Figure 2. Illustration of pose variations around egocentric rotation angles, namely (a) pitch, (b) roll and (c) yaw.

Since AFR is highly sensitive to pose variations, pose correction is essential and could be
achieved by means of efficient techniques aiming to rotate the face and/or to align it to the
image's axis as detailed in reference [13].

2.2. Presence/absence of structuring elements/occlusions

The diversity in the intra‐subject face's images could also be due to the absence of structuring
elements (see Figure 3a) or the presence of components such as beard and/or moustache (see
Figure 3b), cap (see Figure 3c), sunglasses (see Figure 3d), etc. or occlusions of the face (see
Figure 3e) by background or foreground objects [14].

Figure 3. Illustration of (a) absence or (b‐d) presence of structuring elements, i.e. (b) beard and moustache, (c) cap,
(d) sunglasses or (e) partial occlusion.

Thus, face's images taken in an unconstrained environment often require effective recognition
of faces with disguise or faces altered by accessories and/or by occlusions, as dealt by appro‐
priate approaches such as texture‐based algorithms [15].

2.3. Facial expression changes

Some more variability in face appearance could be caused by changes of facial expressions
induced by varying person's emotional states [16] which are displayed in Figure 4.

Hence, efficiently and automatically recognizing the different facial expressions is important
for both the evaluation of emotional states and the automated face recognition. In particular,
human expressions are composed of macro‐expressions, which could express, e.g., anger,
disgust, fear, happiness, sadness or surprise, and other involuntary, rapid facial patterns, i.e.
micro‐expressions; all these expressions generating non‐rigid motion of the face. Such facial
dynamics can be computed, e.g., by means of the dense optical flow field [17].
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Figure 4. Illustration of varying facial expressions that reflect emotions such as (a) anger, (b) disgust, (c) sadness or
(d) happiness.

2.4. Ageing of the face

Another reason of face appearance's changes could be engendered by the ageing of the human
face, and could impact on the entire AFR process if the time between each image capture is
significant [18], as illustrated in Figure 5.

Figure 5. Illustration of the human ageing process, where the same person has been photographed (a) at a younger age
and (b) at an older age, respectively.

To overcome face ageing issue in AFR, methods need to take properly into account facial ageing
patterns [18]. Indeed, over time, not only face characteristics such as its shape or lines are
modified [19], but other aspects are changing as well, e.g. hairstyle [20].

2.5. Varying illumination conditions

Large variations of illuminations could degrade the performance of AFR systems. Indeed, for
low levels of lighting of the background or foreground, face detection and recognition are
much harder to perform [21], since shadows could appear on the face and/or facial patterns
could be (partially) indiscernible. On the other hand, too high levels of lights could lead to
over‐exposure of the face and (partially) indiscernible facial patterns (see Figure 6).

Robust automated face detection and recognition in the case of (close‐to‐) extreme or largely
varying levels of lighting apply to image‐processing techniques such as illumination normal‐
ization, e.g. through histogram equalization [22]; or machine‐learning methods involving the
actual image global image intensity average value [21].
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Figure 6. Illustration of camera lighting variations, leading to (a) over‐exposure of the face, (b) deep shadows on the
face or (c) partial backlight.

2.6. Image resolution and modality

Other usual factors influencing AFR performance are related to the quality and resolution of
the face image and/or to the set‐up and modalities of the digital equipment capturing the face
[23]. For this purpose, ISO/IEC 19794‐5 standard [24] has been developed to specify scene and
photographic requirements as well as face image format for AFR, especially in the context of
biometrics. However, real‐world situations of face image acquisition imply the use of different
photographic hardware, including one or several cameras which could be omnidirectional or
pan‐tilt‐zoom [25], and which could include, e.g. wide‐field sensors [25], photometric stereo
[26], etc. Cameras could work in the range of the visible light or use infra‐red sensors, leading
to multiple modalities for AFR [6]. Hence, faces acquired in real‐world conditions lead to
further AFR challenges.

Figure 7. Illustration of variations of the image scale and resolution, with (a) a large‐scale picture, (b) a small‐scale pic‐
ture and (c) a low‐resolution picture.

For example, as shown in Figure 7, in some situations, a face could be captured at distance
resulting in a smaller face region image compared to the one in a large‐scale picture. On the
other hand, some digital camera could have a low resolution [27] or even very low resolution
[28], if the resolution is below 10 × 10, leading to poor quality face images, from which AFR is
very difficult to perform. To deal with this limitation, solutions have been proposed to
reconstruct a high‐resolution image based on the low‐resolution one [28] using the super‐
resolution method [29, 30].

2.7. Availability and quality of face datasets

Each AFR technology requires an available, reliable and realistic face database in order to
perform the 1:N or 1:1 face search within it (see Figure 1). Hence, the quality such as com‐
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pleteness (e.g. including variations in facial expressions, in facial details, in illuminations, etc.)
as well as accuracy (e.g. containing ageing patterns, etc.) and the characteristics (e.g. varying
image file format and colour/grey level, face resolution, constrained/unconstrained environ‐
ment, etc.) of a face dataset are crucial to the AFR process [31]. Moreover, when dealing with
face data, people's consent and privacy should be respected as AFR systems should comply
with the Data Protection Act 2010 [32].

For research purpose, several face databases have been developed and are publicly available.
Well‐established, online face databases are as follows:

• ORL [33] is a 400‐picture dataset of 40 distinct subjects, in portable grey map (pgm) format
and with a 92 × 112 pixel resolution, 8‐bit grey level. Men and women's faces are taken against
a dark homogeneous background, under varying illumination conditions. The subjects are
in up‐right, frontal position, with variations in face expressions, facial details and poses
within ±20% in yaw and roll.

• Caltech Faces [34] dataset consists of 450 jpeg images with a resolution of 896 × 592 pixels.
Each image shows the frontal view of a face (single pose) of one out of 27 unique persons,
under different lighting, expressions and backgrounds.

• The Face Recognition Technology (FERET) [35] database has been built with 14,126 face
images from 1199 individuals, defining sets of 5–11 greyscale images per person. Each set
contains mugshots with different facial expressions and facial details, acquired using
various cameras and varying lighting.

• BioID Face database [36] has 1521 frontal face images of 23 people. Images of 384 × 286 pixel
resolution are in pgm format and have been captured in real‐world conditions, i.e. with a
large variety of illumination, background and face size.

• Yale face database [37] has 165 greyscale, gif images of 15 individuals. There are 11 images
per subject, one per different facial expression or configuration, i.e. left/centre/right‐light,
with or without glasses and with different expressions.

• Caltech 10,000 web faces [38] have collected 10,524 human faces of various resolutions and
in different settings (e.g. portrait images, group of people, etc.) from Google Image. Coordi‐
nates of eyes, nose and the centre of the mouth for each frontal face are provided in order
to be used as ground truth for face detection algorithms, or to align and/or crop the human
faces for AFR.

Some databases contain both 2D and 3D face data, e.g. Face Recognition Grand Challenge
(FRGC) dataset [39] recorded such 50,000 un‐/controlled images from 4003 subject sessions.

Other datasets have multiple modalities such as XM2VTSDB multi‐modal face database [40]
which is the Extended M2VTS database. It is a large, multi‐modal database captured onto high‐
quality, digital video. It contains four recordings, each with a speaking head shot and a rotating
head shot, of 295 subjects taken over a period of 4 months. This database includes high‐quality
colour images, 32 kHz 16‐bit sound files, video sequences and also a 3D model.
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Another multi‐modal database is the Surveillance Cameras Face (SCFace) [41] dataset. It has
recorded 4160 static human faces of 130 subjects, in the visible and infrared spectrum, in an
unconstrained indoor environment, using a multi‐camera set‐up consisting of five video‐
surveillance cameras which various qualities mimic real‐world conditions.

Recent developments of face databases focus on capturing faces in the wild, i.e. in uncon‐
strained environments. For example, Face Detection Data Set and Benchmark (FDDB) [42] is
a dataset of 2845 images, both greyscale and colour ones, with 5171 faces in the wild, which
could include occlusions, poses variations, low resolution and out‐of‐focus faces.

Labelled Faces in the Wild (LFW) [43] database is a popular dataset for studying multi‐view
faces in an unconstrained environment. It has recorded 13,233 foreground face images; other
faces in the images being assimilated to the background. It has targeted 5749 different
individuals, which could have one or more images in the database, and presents variations in
pose, lighting, expression, background, race, ethnicity, age, gender, clothing, hairstyles, camera
quality, colour saturation, focus, etc. Images have a 250 × 250 pixels resolution and are in jpeg
format; they are mostly in colour, although few are greyscale only.

Some other available face datasets have been designed for specific purposes. Hence, Sponta‐
neous MICro‐expression database (SMIC) [44] is used for facial micro‐expressions recognition,
while the Acted Facial Expression in the Wild (AFEW) database [45], which has semi‐auto‐
matically collected face images with acted emotions from movies, is dedicated to macro‐
expression recognition in close‐to‐real conditions. On the other hand, FG‐NET Ageing
database (FG‐NET) [46] could be applied for age estimation, age‐invariant face recognition and
age progression.

3. Solutions

Major pattern recognition techniques as well as main machine‐learning methods used for AFR
systems are presented in Section 3.1, while classic approaches for AFR in still images or video
databases/live video streams are mentioned in Section 3.2.

3.1. Face recognition systems

Most of the AFR systems consist in a two‐step process (see Figure 8) based firstly on facial
feature extraction, as explained in Section 3.1.1, and second, on facial feature classification/
matching against an available face database, as mentioned in Section 3.1.2.

3.1.1. Feature extraction

Facial features are representing the face in a codified way which is computationally efficient
for further processes such as matching, classification or other machine‐learning techniques, in
order to perform AFR. On the other hand, computing facial features in an image could serve
to detect a face and to locate it within the image, as illustrated in Figure 9.
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Figure 8. Schematic representation of the automated face recognition system.

Figure 9. Face location via (a) a bounding box and (b) an ellipse.

Facial feature representations could be of different nature from sparse to dense ones, and could
be focused on face appearance, face texture or face geometry [15].

Figure 10. Results of facial feature modelling using different approaches, e.g. (a‐b) Haar‐like features; (c) Linear Binary
Patterns (LBP); (d) Edge map; (e) Active shape; (f) SIFT points.

Commonly computed facial features are Haar‐like features [47] (Figure 10(a, b)); linear binary
patterns (LBP) [48] (Figure 10(c)), which have been extended to local directional pattern (LDP)
[49] for micro‐expressions recognition in particular; edge maps (Figure 10(d)) and their
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Commonly computed facial features are Haar‐like features [47] (Figure 10(a, b)); linear binary
patterns (LBP) [48] (Figure 10(c)), which have been extended to local directional pattern (LDP)
[49] for micro‐expressions recognition in particular; edge maps (Figure 10(d)) and their
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extension to line edge maps (LEM) [50]; active shape or active contours [51] (Figure 10(e)); SIFT
points [52] (Figure 10(f)), etc.

The detected facial features, e.g. with SIFT points usually correspond to some or all elements
of the set of facial anthropometric landmarks, i.e., facial fiducial points (FPs) (see Figure 11),
which are defined as follows: FP1—top of the head, FP2—right eyebrow right corner, FP3—
right eyebrow left corner, FP4—left eyebrow right corner, FP5—left eyebrow left corner, FP6
—right eye right corner, FP7—right eye centre of pupil, FP8—right eye left corner, FP9—left
eye right corner, FP10—left eye centre of pupil, FP11—left eye left corner, FP12—nose right
corner, FP13—nose centre bottom, FP14—nose left corner, FP15—mouth right corner, FP16—
mouth left corner, FP17—chin corner, FP18—right ear top corner, FP19—right ear bottom
corner, FP20—left ear top corner and FP21—left ear bottom corner [53].

Figure 11. Illustration of the 21 facial landmarks.

Computer automated face recognition relies on facial features, in the same way forensic
examiners focus their attention not only on the overall similarity of two faces regarding their
shape, size, etc. [54], but also on morphological comparisons region by region, e.g. nose, mouth,
eyebrows, etc. [53]. Some AFR methods evaluate also discriminative characteristics such as the
distance from people’s mouth to the nose, nose to eyes, mouth to eyes, etc. [55]. This adds
robustness into AFR systems in the case of modification of some facial patterns over the course
of time or occlusions.

Once the face is detected/located and the facial features are extracted, actions to crop the face,
to correct its alignment by rotating it, etc., could be performed to address the challenges
mentioned in Section 2, before passing the facial features into the next stage described in
Section 3.1.2.
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3.1.2. Feature classification/matching

For the recognition stage itself of the face recognition process, classification is often used as
shown in Figure 12. Indeed, it is a machine‐learning technique [56] that has the task of first
learning and then applying a function that maps the facial features of an individual to one of
the predefined class labels, i.e. class 1 (face of the individual) or class 2 (not the face of the
individual), leading in this case to a binary classifier. Classifiers could be applied to the entire
set of the extracted facial features or to some specific face attributes, e.g. gender, age, race, etc.
[57]. More recently, methods like neural networks are used as classifiers [58].

Figure 12. Overview of the model computation.

On the other hand, some AFR systems use the matching technique that could be applied on
facial geometric features or templates [59]. This approach is also useful for multimodal face
data [60].

3.2. Examples of methods

Among hundreds of techniques developed in this field [1–10], Sections 3.2.1–3.2.4 explain
briefly some well‐established methods for automated face recognition.

3.2.1. Eigenfaces

The eigenface approach [61] is a very successful AFR method. It involves pixel intensity
features and uses the principal component analysis (PCA) of the distribution of faces, or
eigenvectors, which are a kind of set of features characterizing faces’ variations where each face
image contributes more or less to each eigenvector. Thus, an eigenvector can be seen as a
ghostly face, or eigenface. Recognition of a test face is determined by applying the nearest‐
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neighbour technique to the probe face projection in the face space [13]. Fisherfaces extend the
eigenface approach by using linear discriminant analysis (LDA) instead of PCA [62, 63].

3.2.2. Active appearance models

The active appearance model (AAM) [64] combines shape and texture features; thus it is slower
but more robust for AFR than active shape models (ASM). AAM is built as a multi‐resolution
model based on a Gaussian‐image pyramid. For each level of the pyramid, a separate texture
model is computed using 400 face images. Each face is labelled with 68 points around the main
features, and the facial region is sampled by c. 10,000 intensity values. AFR is performed by
matching the test face with the AAM, following a multi‐resolution approach that improves
speed and robustness of this method [64].

3.2.3. Local binary patterns

In reference [48], local binary patterns (LBP), which are texture features, have been introduced
for AFR. In particular, the face image is divided into independent regions where the LBP
operator is applied to codify every pixel of each region by thresholding the 3 × 3‐neighbour‐
hood of each pixel with the centre pixel value and by binarizing it, and then, creating a local
texture descriptor with the histogram of the codes for each face region. A global description
of the face is formed by concatenating the local descriptors. Next, the nearest‐neighbour
classifier is used [48]. LBP approach has been widely adopted for AFR, and several enhance‐
ments have been proposed, e.g. the local directional patterns (LDP) [49].

3.2.4. SIFT

The discriminative deep metric‐learning (DDML) [52] approach for AFR in unconstrained
environment uses facial features such as SIFT descriptors and trains a deep neural network as
a classifier to learn a Mahalanobis distance metric in order to maximize face's inter‐class
variations and minimize face's intra‐class variations, simultaneously [52].

4. Applications

Nowadays, industry integrates cutting‐edge, face recognition research into the development
of the latest technologies for commercial applications such as mentioned in Sections 4.1–4.2.

4.1. Security

Face recognition is one of the most powerful processes in biometric systems [8] and is exten‐
sively used for security purpose in tracking and surveillance [65, 66], attendance monitoring,
passenger management at airports, passport de‐duplication, border control and high security
access control as developed by companies like Aurora [67].

AFR is applied in forensics for face identification [68], face retrieval in still image databases or
CCTV sequences [69], or for facial sketch recognition [70]. It could also help law enforcement
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through behaviour and facial expression observation [71], lie detection [72], lip tracking and
reading [73].

Moreover, AFR is now used in the context of ‘Biometrics as a Service’ [74], within cloud‐based,
online technologies requiring face authentication for trustworthy transactions. For example,
MasterCard developed an app which uses selfies to secure payments via mobile phones [75].
In this MasterCard’s app, AFR is enhanced by facial expression recognition as the application
requires the consumer blinks to prove that s/he is human.

4.2. Multimedia

In our today's life, AFR engines are embedded in a number of multi‐modal applications such
as aids for buying glasses or for digital make‐up and other face sculpting or skin smoothing
technologies, e.g. designed by Anthropics [76].

In social media, many collaborative applications within Facebook [77], Google [78] or Yahoo! [79]
are calling upon AFR. Applications such as Snapchat require AFR on mobile [80]. With 200
million users of which half of those engage on daily basis [81], Snapchat is a popular image
messaging and multimedia mobile application, where ‘snaps’, i.e. a photo or a short video, can
be edited to include filters and effects, text caption and drawings. Snapchat has features such
as the ‘Lens’, which allows users to add real‐time effects into their snaps by using AFR
technologies, and ‘Memories’ which searches content by date or using local recognition
systems [82].

Other multimedia applications are using AFR, e.g. in face naming to generate automated
headlines in Video Google [83], in face expression tracking for animations and human‐computer
interfaces (HCI) [84], or in face animation for socially aware robotics [85]. Companies such as
Double Negative Visual Effects [86] or Disney Research [87] propose also AFR solutions for face
synthesis and face morphing for films and games visual effects.

5. Conclusions

Since constraints shape the path for innovative solutions, we focused this chapter on scientific
and technical challenges brought by computer automated face recognition, and we explained
current solutions as well as potential applications. Moreover, there are a number of challenges
ahead and plenty of room for innovations in this field of automated face recognition. In
particular, three emerging directions are discussed in Sections 5.1–5.3.

5.1. Deep face

On the one hand, the proliferation of mobile devices such as smartphones and tablets, which
are world‐widely available for consumers and which allow users to easily record digital
pictures, and on the other hand, the outbreak of mobile and web applications, which manip‐
ulate and store thousands of pictures, have paved the way to the Big Data, and, among others,
to the necessity to analysis large‐scale, face databases. This phenomenon has given rise to
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questions such as AFR technology scalability and computational power, and it has led to the
development of a new AFR approach called deep face recognition [88], which involves deep‐
learning techniques using convolutional neural networks [89], well fitted for big datasets [90].
Indeed, deep face methods are using large databases for training their models, as by biomi‐
metics, they rely on the familiarity concept [91], which is based on the fact that more people
are familiar with a person's face, more easily they recognized his/her face, even in complex
situations like occlusions or low resolution. Moreover, the recent development of the deep face
approach has benefited from progress in parallel computing tools for acceleration and
enhancement of distributed computing techniques for scalability. In particular, for deep face
recognition, graphics processing units (GPUs), which are specialized processors for real‐time,
high‐resolution 3D graphics, are used as highly parallel multi‐core systems for big data [92],
together with the Compute Unified Device Architecture (CUDA), which provides a simple
and powerful platform [93], making easier for specialists in parallel programming to utilize
GPU resources without advanced skills in graphics programming. Since the above‐mentioned,
iterative computation consists of local parallel processing, CUDA implementation is employed
for reducing the computation time of the AFR system [93]. However, deep face‐based methods
generate themselves further challenges, e.g. face frontalization [94] that is the process of
synthesizing frontal facing views of faces appearing in single unconstrained photos, in order
to boost AFR performance within intelligent systems.

5.2. Wild face

Another challenge that has appeared with the generation of a large amount of visual data
captured ‘in the wild’, i.e. in an unconstrained environment, by commercial cameras is the
automated recognition of faces in the wild. It involves the enhancement of AFR methods [95]
in order they efficiently deal with complex, real‐world backgrounds [96], multiple‐face scenes
[51], skin‐colour variations [97], gender variety [98] and with inherent challenges such as image
quality, resolution, illumination or facial pose correction [23, 27, 99].

5.3. Dynamic face

In the recent years, handling facial dynamics efficiently is crucial for AFR systems, because
people have recorded a large amount of faces as still digital images, e.g. selfies or as video
streams, e.g. CCTV sequences or online movies. Indeed, on the one hand, the different
variations in facial micro/macro expressions [100], which generate fast, facial dynamics and
the different processes such as ageing, which is an extremely slow, dynamic problem since the
face evolves over large periods of time [18], have all an impact on AFR techniques. On the other
hand, face acquisition in videos intrinsically creates facial dynamics due to camera motion,
change of point of view, as well as head's movements or pose variations. Such situations require
AFR engines perform in real time [84], apply image/frames pre‐processing such as face
alignment [101], cope with intra‐class variations/inter‐class similarities [102] and are able to
process single/multiple camera views [41] or synthesize a 3D face model from a single camera
[103], leading to the wider study of the computational face.
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Abstract

This chapter describes histogram-based texture characterization and classification of
brain tissue in CT images of stroke patients using a case study. It explored texture
analysis in medical imaging. In the case study, two radiologists independently inspected
non-contrast CT images of 164 stroke to identify and categorize brain tissue into normal,
ischaemic and haemorrhagic strokes. Four regions of interest (ROIs) in each CT slice
with lesion were selected for analysis; two each represented the lesion and normal tissue.
Histogram texture parameters were calculated for them. Raw data analysis identified
parameters that discriminated between normal brain tissue, ischaemic and haemor-
rhagic stroke lesions. The artificial neural network (ANN) and k-nearest neighbour (k-
NN) algorithms were used to  classify  the  ROIs  into normal  tissue,  ischaemic and
haemorrhagic lesions using the radiologists’ categorization as the gold standard, and
further analysed using the ROC curve. Three parameters namely mean, 90 and 99
percentiles discriminated between normal brain tissue, ischaemic and haemorrhagic
stroke lesions. With ANN and k-NN, the weighted sensitivity and specificity were above
0.9 while the false positive and false negative rates were negligible. The characterization
and classification of brain tissue using histogram parameters were satisfactory and may
be suitable for automated diagnosis of stroke.

Keywords: histogram texture parameters, texture analysis, characterization, classifica-
tion, brain tissues, stroke, computed tomography
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1. Introduction

Medical imaging is a rapidly developing branch of modern medicine. It has in the past few
decades evolved into a highly sophisticated diagnostic tool. It has improved the study of
human internal anatomy and to an extent physiology and detection of pathologies which were
previously  impossible.  At  this  stage  of  its  development,  detection  of  lesions  and  their
interpretation is becoming an automated computer-aided process. It can safely be said now
that machine vision has become an emerging part of radiology and imaging in medicine. This
is as a result of advances in medical imaging technology and computer science [1] which have
greatly enhanced the interpretation of medical images and contributed to early diagnosis. The
bases for computer-aided diagnosis (CAD) in radiology are medical image processing and
artificial intelligence.

Stroke accounts for a significant proportion of neurological disorders seen in Nigerian
hospitals [2]. It carries a high morbidity and mortality statistics in industrialized countries [3–
6], and in Africa, it is reported to be the leading neurological cause of death [7]. The World
Health Organization (WHO) defined stroke a rapidly developing clinical syndrome of focal or
global disturbance of cerebral function presumably of vascular origin, lasting longer than 24
hours unless interrupted by surgery or death [8]. A stroke occurs when the blood supply to
the brain is disturbed which results in brain cells being starved of oxygen and consequently,
some cells die while others are left damaged. Brain cells being permanent in nature achieve
only very limited recovery, and thus, the patient may be left with a permanent disability.
Clinical diagnosis of stroke and its subtyping is sometimes inaccurate [9–12]. Neuroimaging
is, therefore, essential for accurate diagnosis. Stroke remains one of the most important clinical
diagnoses for which patients are referred to the radiology department for emergency imaging
because a timely and accurate diagnosis would help in the management of the patients [13].
Previous studies have highlighted the time-critical nature of ischaemic stroke diagnosis.
Ischaemic stroke has a narrow therapeutic window in the first few hours following stroke ictus
and a dramatic rise in haemorrhage complications thereafter [14–20].

Non-contrast head computed tomography (NCCT) has been suggested as the mainstay for
early stroke diagnosis because computed tomography (CT) scanners are more widely available
in the communities and may be accessed much more easily [13]. Computed tomography
examinations are not only cheaper than magnetic resonance imaging (MRI) but also faster to
perform. Thus, taking the time-critical nature of early stroke diagnosis into consideration,
NCCT is the preferred first-line imaging tool. Computed tomography and other neuroimaging
procedures will, however, not benefit the patient until the images have been accurately
interpreted. For visual analysis and interpretation of stroke CT images, the radiologist seeks
to identify affected areas of the brain by examining the dissimilarity between the left and right
cerebral hemispheres. The challenges associated with the visual interpretation of stroke CT
images are dearth of neuroradiologists [21] and the human errors of interpretation and
diagnosis. Errors in visual interpretation result from poor technique, failures of perception,
lack of knowledge and misjudgements [22]. Visual interpretation can be improved upon by
texture analysis which will make it possible for automated computer-aided approach to be
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used as a second opinion for clinicians, especially in equivocal cases. Automatic method of
stroke detection follows the same pattern as visual analysis and interpretation used by
radiologists [23].

Computer-aided diagnosis (CAD) in medical imaging is an application of artificial intelligence
in medicine. Artificial intelligence (IA) simulates the human brain or recreates it electronically.
It is defined as the study and design of intelligent agents [24], where an intelligent agent is a
system that perceives its environment and takes actions that maximize its chances of success
[24–26]. The simplest intelligent agents are programs written to solve specific problems. More
complicated intelligent agents include human beings and organization of human beings such
as a firm or a team. Artificial intelligence is based on the central characteristic of human beings:
intelligence—the sapience of Homo sapiens. This can be so precisely described that it can be
simulated by a machine.

One very important stage in medical image processing leading to CAD is image texture
analysis. Texture analysis of a medical image is the measurement of the quantitative parame-
ters that constitute the image of a supposed lesion or normal tissue. This has the advantages
of helping clinicians make accurate diagnosis and monitor disease processes under treatment.
The analysis of texture parameters is a useful way of increasing the information obtainable
from medical images [27].

2. The concept of texture and analysis of texture

Texture is a very difficult term to give a precise definition. This is because there is no unified
definition of texture and every definition that has been used has rather aimed at relating it to
the area of its application. The non-existence of a universally agreed-upon definition of texture
is an acknowledged fact [28, 29]. In general, texture can be defined as a descriptor that provides
measures of properties such as smoothness, coarseness and regularity [28]. For medical images,
image texture is defined as the appearance, structure and arrangement of the parts of an object
within the image [27]. The concept of texture as a quantitative measure is applied only to digital
images which are made up of numerous rectangular picture elements (pixels) as illustrated in
Figure 1.

In consideration of this technicality, the texture concept in a digital image is regarded as the
distribution of grey-level values among the pixels of a given region of interest in the image [27].
This definition is in agreement with a recent one which referred to texture as the spatial
variation of pixel intensities in an image [29]. In order to understand texture better, it is
important to draw an analogy from the way the human visual system perceives scenes. The
human eye perceives scenes as sets of objects that are related to each other over various surfaces
despite varying ambient illumination [30]. Texture has components called texels, which are
notional uniform micro-objects placed in an appropriate way to form any particular texture.
The placing may be random, regular, directional and so on, and there may be a degree of
overlap in some cases [30]. From the foregoing, texture in very simple physical concept is
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composed of the randomness, periodicity, directionality and orientation of the composite
elements making up an object’s structure.

Texture analysis is an aspect of imaging science which analyses pixel intensity variations or its
spatial distribution on a pixel-by-pixel scale to unravel patterns which may not be perceptible
to the human visual system. The technique evaluates the location and signal intensity of the
image represented by the pixel and contrast index for digital images [27]. Texture features
represent the mathematical parameters obtained from the distribution of pixels which
characterize the texture type and hence the structural components of an object [27]. Texture
analysis is employed in image classification, segmentation and synthesis. It also plays a very
vital role in computer-aided detection or diagnosis or more broadly machine vision.

Figure 1. An illustration of the pixel concept of digital medical images using a cranial CT.

3. Methods of texture analysis

There are four major issues in texture analysis, namely feature extraction, texture discrimina-
tion, texture classification and shapes from texture [31]. The purpose of feature extraction is to
compute a characteristic of a digital image able to numerically describe its texture properties,
while texture discrimination partitions a textured image into regions, each corresponding to
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a perceptually homogeneous texture (leads to image segmentation). In texture classification,
the goal is to determine to which of a finite number of physically defined classes, such as normal
or abnormal tissue, a homogeneous texture region belongs, while shape from texture recon-
structs the three-dimensional surface geometry from texture information.

The first stage in texture analysis is the extraction of texture parameters, and the results
obtained during this process are used for the remaining stages in texture analysis. The
approaches to texture analysis are categorized into structural, statistical, model-based and
transform methods [31]. These approaches are herewith described briefly.

3.1. Structural methods

In this method, texture is represented by well-defined primitives. In other words, a square
object is represented in terms of the straight lines or the primitives that form its border [27].
To describe texture using the structural approach, one must first define the primitives (micro-
texture) and then the placement rules. Primitives are the parts from which texture is composed.
Note well that primitives may be tonal, that is, grey levels. Tonal primitives are regions of an
image with tonal properties [32]. The advantage of structural methods is that they provide a
good symbolic description of the image [31], but the disadvantage is that it is not a very
powerful way describing texture.

3.2. Statistical methods

The statistical approach to texture analysis uses grey-level distribution within an image to
describe texture. This approach provides better discrimination between classes than structural
or transforms methods. It is the most widely used method in medical applications. Statistical
methods can be used to analyse the spatial distribution of pixel grey values in an image. This
is done by computing local features at each point in the image and then deriving a set of
statistics from the distributions of the local features [33]. Statistical methods are classified as
first-order, second-order and higher-order statistics based on the number of pixels that define
the local feature. In the first-order statistics, only one pixel is involved; in second-order
statistics, a pair of pixels; and higher-order statistics, three or more pixels [33]. There are
differences between the different statistical methods. In the first-order statistics, properties
such as average and variance of individual pixel values are estimated, but the spatial interac-
tion between the image pixels is not taken into consideration. More specifically, first-order
statistics measure the frequency of a particular grey level at a random image position without
taking into account the correlations or co-occurrences between the pixels. Thus, information
on texture is derived from the histogram of image pixel grey values [29]. The second-order and
higher-order statistics estimate properties of two or more pixel values occurring at specific
locations relative to each other, and thus, pixel-pixel interaction is a feature of these two
methods [33]. Specifically, information on the texture of an image based on second-order
statistical texture analysis is based on the probability of finding a pair pixels with the same
grey level at random distances and orientations over an entire image, while higher-order
statistics means the number of variables studied is increased [29].
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3.2.1. The co-occurrence matrix (COM)

The co-occurrence matrix is a second-order histogram that analyses the grey-level distribution
of pairs of pixels [27]. In grey-level co-occurrence matrix method, the probability of finding a
pixel with a defined grey level (i) at a defined distance (d) and a defined angle (α) from another
pixel with defined grey level (j) is calculated. So, the co-occurrences of pixel pairs are calculated
in vertical, horizontal and two diagonal directions, as well as distances up to five pixels. An
essential feature of this arrangement is that each pixel has eight nearest neighbours connected
to it except when the pixel is located at the periphery. A very simple illustration of grey-level
co-occurrence matrix as relative positions of pixels of the same grey-level intensities is shown
in Figure 2. In this illustration, the reference pixel (X) is of the same grey-level value with the
pixels X1 in horizontal direction for inter-pixel distance of 1, X2 in vertical direction for inter-
pixel distance of 2, X3 in 45° diagonal direction for inter-pixel distance of 3 and X4 in 135°
diagonal direction for inter-pixel distance of 3.

Figure 2. An illustration of the grey-level co-occurrence matrix concept of texture computation.

A co-occurrence matrix is produced in each direction (α), for each inter-pixel distance (d), with
the matrix dimension being equal to the number of intensity levels. It, therefore, means that
the process becomes computationally intense and the number of grey levels in an image would
undergo a rescaling and re-binning procedure to reduce the range of pixel values contained
within an image [34]. The implication of rescaling and re-binning of the grey levels in the image
is loss of texture information.
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The co-occurrence matrix parameters include the angular second moment, contrast, correla-
tion, sum of squares, inverse difference moment, sum average, sum variance, sum entropy,
entropy, difference variance and difference entropy. The construction of the co-occurrence
matrix and mathematical derivation of the formulae for calculating the parameters are both
tedious processes and further reading is necessary for better understanding [28, 31].

3.2.2. The run-length matrix (RLM)

The grey-level run-length matrix is a higher-order statistical method of texture feature
extraction. The run-length matrix aims to calculate the number of consecutive pixels in a given
direction that has the same grey-level intensity. It is a number of pixels in a particular direction
with the same grey-level intensity value [29]. A coarse texture will, therefore, be dominated
by relatively long runs, whereas a fine texture will be populated by much shorter runs [29].
The parameters derivable from the run-length matrix are usually computed in four different
directions: horizontal, vertical and two diagonals. The grey-level run-length matrix is illus-
trated in Figure 3 which shows a run-length of 4 pixels in a 45° diagonal direction [34].

Figure 3. An illustration of the grey-level run-length matrix concept of texture computation.

The run-length emphasis describes a number of consecutive pixels with the same grey-level
value. It could be suitably termed long- or short-run emphasis depending on the number of
consecutive pixels in the chosen direction with the same grey-level value [35]. The run-length
and grey-level non-uniformity describe the disorderliness in pixel and pixel grey-level runs.
The fraction of the image in runs simply refers to run percentages. That is, the ratio of the total
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number of runs in the image to the total number of pixels in the image expressed as a per-
centage [35].

The run-length method of texture analysis was first introduced by Galloway [36], but it has
not gained the desired general acceptance as an efficient way of calculating texture [35]. It is
therefore not popular among researchers working to develop diagnostic tools for medical
applications.

The calculation of the run-length matrix parameters using MaZda® can be illustrated as
follows. If  ,   is the frequency of the run of a length j with a grey-level intensity i, Ng is the
number of grey-level intensities and Nr is the number of runs. Then, the parameters for the
run-length matrix p(i, j) can be calculated using the following equations:
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The coefficient C in Eqs. (1)–(4) above is defined as:
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3.2.3. The absolute gradient (Gr)

The gradient of an image measures the spatial variation in grey-level values across the image
[27]. This method evaluates the relationship of variations in grey-level intensity values across
neighbouring pixels as shown in Figure 4 according to the illustration by Waugh [34]. A high
gradient is produced when there is abrupt change, from extreme pixel grey-level intensity
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value to another extreme grey-level intensity value. Conversely, a low gradient is produced in
gradually changing pixel grey-level values. The five parameters derived from absolute
gradient are the gradient mean, gradient variance, gradient skewness, gradient kurtosis and
gradient non-zeros. Conventionally, only the magnitude of the gradient is taken into consid-
eration [27]. The direction of variation, whether it is positive or negative, is irrelevant and hence
the term “absolute gradient”.

Figure 4. An illustration of the gradient concept of texture computation.

The gradient non-zero is the number of pixels in an image with a grey-level value greater than
zero, and gradient variance is the deviation of absolute pixel grey-level value from the mean,
while gradient mean is the average variation in pixel grey-level value across the image [31].
The absolute gradient as a method of texture analysis find application in accentuating the
boundaries of an image [27] and therefore is useful in edge enhancement.

3.2.4. The histogram

This is a first-order statistical analysis and uses pixel occurrence probability to calculate texture.
To illustrate the histogram approach to texture analysis, assume in an image the grey levels
are in the range 0 ≤ 𑩤𑩤 ≤ 𑩤𑩤𑩤𑩤 𑩤𑩤 1, where Ng is the total number of particular grey levels. If N(i)
is the total number of pixels with intensity i and M is the total number of pixels in the image,
then the pixel occurrence probability P(i) is given by [29]

( ) ( )P i N i M= ¸ (7)

The probability of occurrence of a pixel of particular grey level (intensity) is called the
histogram. It does not consider the spatial relationships, and correlations, between pixels [29].
The main advantage of the histogram is its simplicity by the use of standard descriptors such
as mean and variance to characterize texture data. The features derivable from the histogram
are mean, variance, skewness, kurtosis, percentile 01, percentile 10, percentile 50, percentile 90
and percentile 99. Some of the features from the histogram used to characterize texture are
represented by the equations below:
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3.3. The model-based methods

In model-based texture analysis, there is an attempt to fit an image texture to a computational
(mathematical) model. For MaZda® texture analysis software, the model used is referred to as
the auto-regressive model (ARM). In this model, an assumption that knowing the grey-level
intensity value of one pixel, the grey-level intensity values of other neighbouring pixels can be
deduced holds. In a more formal way, the ARM assumes a local interaction between image
pixels in that pixel grey-level value is a weighted sum of the grey-level values of the neigh-
bouring pixels [27]. The main disadvantage of the model-based approach to texture analysis
is the complexity involved in the computations to estimate the model parameters. Other
models of texture aside ARM are Markov random field (MRF) and fractal models [31].

3.4. The transform methods

In the transform methods, the texture of an image can be analysed in the frequency or scale
space. These methods can employ the Fourier [37], Gabor [38] or wavelet transform [39].
However, the wavelet transform is the most popular because it can easily be adjusted to suit
the problem at hand as desired by the user [27]. Wavelet is a technique that analyses the
frequency content of an image with different scales of that image. The wavelet analysis yields
a set of numbers called the wavelet coefficients which correspond to different scales and
frequency directions [27]. Each pixel of an image analysed by wavelet transform is associated
with a set of wavelet coefficients which describe the frequency content of the image at that
point over a set of scales.

4. Texture analysis of medical images

Texture analysis of medical images remained without much clinical interest until 1998 when
it took a giant leap. This was when MaZda®, a computer program for calculating texture
parameters (features) in digitized images, was developed. The software has been under
development since 1998, to satisfy the needs of the participant of COST B11 European Project
“Quantitative Analysis of Magnetic Resonance Image Texture” and the subsequent COST B21
“Physiological Modelling of Magnetic Resonance Image Formation” [31]. MaZda® is a very
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versatile software package that is capable of 2D and 3D image texture analysis. It can be used
for quantitative analysis of image texture, computation of texture features, feature selection
and extraction. The software also has algorithms for data classification, data visualization and
image segmentation tools [40]. The software was originally developed in 1996 at the Institute
of Electronics, Technical University of Lodz (TUL), Poland, for texture analysis of mammo-
grams [41]. The software has been further developed and made more versatile to be used in
the analysis of other textured image. It has been found to be efficient and reliable for quanti-
tative image analysis even in more accurate and objective medical diagnosis. There has also
been a non-medical application in the food industry to assess food product quality [40]. Other
computer softwares that are used for texture analysis of digital images are MATLAB® and
Scilab® [42, 43]. Scilab® is available to users free, while MATLAB® is commercially available.

The medical importance of texture analysis cannot be over-emphasized. Analysis of medical
image texture helps to increase the information obtained from medical images [27], which may
improve diagnosis. It is an emerging aspect of medical imaging and finds applications in
segmentation of specific anatomical structures and detection of lesions. The detection of lesions
implies differentiating between unhealthy and healthy tissues in the different organs of the
body. The differentiation between unhealthy and healthy tissues implies that texture param-
eters obtained from medical images form the basis for computer-aided diagnosis. Just recently,
it was demonstrated that texture analysis can be used in patients undergoing neoadjuvant
chemotherapy treatment of breast cancer to indicate whether the patient will respond well or
not. The results of that study appeared to correlate well with the final pathological outcome
[34].

5. Role of texture analysis in computer-aided diagnosis

Many researchers have shown interest in texture analysis of medical images. The researches
in texture analysis of medical images have been targeted at developing computer-aided
diagnosis systems. Computer-aided diagnosis systems are gaining popularity in one way or
another because of their ability to improve the precision and accuracy of characterization of
lesions beyond what radiologists do by visual inspection [44]. The main objectives of a CAD
system in the diagnostic process are to accurately detect and precisely characterize potential
abnormalities [45]. This a very important step towards the effective treatment of diagnosed
abnormalities. The radiologist detects and characterizes abnormalities by visual interpretation.
To do this, the radiologists must successfully integrate of two distinct processes, namely image
perception to recognize unique image patterns and the process of reasoning to identify the
relationships between perceived patterns and possible diagnosis. The two processes are
heavily dependent on the empirical knowledge, memory, intuition and diligence of the
radiologist. The approach of the radiologist is not always error-free as there are well-docu-
mented errors and variations in the human interpretation of clinical images [46]. In summary
of the foregoing, CAD aims to provide a computer output as a second opinion in order to assist
physicians in the detection of abnormalities, quantification of disease progress and differential
diagnosis of lesions [1]. One important step in the generic architecture of CAD system is feature
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extraction (texture analysis), and thus, texture analysis is the fundamental basis of CAD at its
present stage of development [1].

The human visual system can discriminate between different morphologic information such
as shape and size, but there is evidence that the human visual system has difficulty in the
discrimination of textural information that is related to higher-order statistics or spectral
properties of an image [47, 48]. The human visual system if unaided has a limited number of
grey levels it can tell apart. Thus, texture analysis can potentially augment the visual skills of
the radiologist by extracting image features that may be relevant to the diagnostic problem but
that are not necessary visually extractable [45]. In the use of image texture analysis as a
preprocessing step in CAD schemes, the input generation process is automated and, therefore,
is reproducible and robust. Although useful to the diagnostic process, texture analysis is not
a panacea for the diagnostic interpretation of radiologic images [45]. The pursuit of texture
analysis is based on the hypothesis that the texture signature of an image is relevant to the
diagnostic problem at hand. A major drawback is that the effectiveness of texture analysis is
bound by the type of algorithm that is used to extract meaningful textural features.

6. Decision making in computer-aided diagnosis

Texture analysis is the fundamental basis of computer-aided diagnosis in radiology and is,
therefore, indispensable to the process. The main problem with calculated texture is that it
produces an avalanched of outputs, especially co-occurrence matrix. The outputs need to be
reduced to a manageable level so that useful information which could be used for decision
making can be obtained from the further analysis. Using the MaZda® software, feature
reduction is achieved by using the Fisher coefficient, classification error combined with the
correlation coefficient, mutual information [41, 49] and a selection of optimal feature subsets
with minimal classification error of 1-nearest neighbour (1-NN) classifier [50, 51]. The Fisher
coefficient selects features by reducing intra-group variance and maximizing inter-group
difference [52]. If the above methods do not reduce the features sufficiently initially, further
reduction is carried out by transforming the original features into a new feature space with
lower dimensionality [40]. This method is called feature extraction or projection [53] and can
be achieved in MaZda® using principal component analysis (PCA), linear discriminant analysis
(LDA), nonlinear discriminant analysis (NDA) [50, 54–57] and raw data analysis (RDA).
Artificial intelligence tools are used for automated decision making in computer-aided
diagnosis. Such tools include different algorithms which are provided by different computer
softwares. The Waikato Environment for Knowledge Analysis (WEKA) version 3.6.11 data
mining software is useful software equipped with many classification algorithms. It is a
landmark system in data mining and machine learning [58]. The software came about through
the perceived need for a unified workbench that would allow researchers easy access to the
state-of-art techniques in machine learning [59].

The two tools for decision making or classification in computer-aided diagnosis popular with
researchers are the artificial neural networks (ANN) and k-nearest neighbour (k-NN). The
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lower dimensionality [40]. This method is called feature extraction or projection [53] and can
be achieved in MaZda® using principal component analysis (PCA), linear discriminant analysis
(LDA), nonlinear discriminant analysis (NDA) [50, 54–57] and raw data analysis (RDA).
Artificial intelligence tools are used for automated decision making in computer-aided
diagnosis. Such tools include different algorithms which are provided by different computer
softwares. The Waikato Environment for Knowledge Analysis (WEKA) version 3.6.11 data
mining software is useful software equipped with many classification algorithms. It is a
landmark system in data mining and machine learning [58]. The software came about through
the perceived need for a unified workbench that would allow researchers easy access to the
state-of-art techniques in machine learning [59].

The two tools for decision making or classification in computer-aided diagnosis popular with
researchers are the artificial neural networks (ANN) and k-nearest neighbour (k-NN). The
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ANN and k-NN algorithms are part of the resources provided in the WEKA software. Both
algorithms perform supervised classifications implying that the classification is under the
guidance of a human being. In supervised classification, the user selects sample pixels in an
image that he considers representative of specific classes and then initiates the software to use
these training sites as references for the classification of other pixels in the image.

6.1. The artificial neural network

Artificial neural networks are regarded as relatively crude electronic networks of “neurons”
which simulate the neural structure of the human brain. They literally imitate the decision-
making process of the human brain. The networks are the electronic equivalent of the human
brain and are therefore trainable for improved performance. They process records one at a
time as the records are fed into them and “learn” from “experience” by comparing their
classification of each record with a known actual classification of the record. The subsequent
classifications are therefore made more accurate by using the errors from the classification of
previous records which are fed back into the network to modify the networks’ algorithm.

A multilayer feed-forward neural network is the one that has one or more hidden layers. The
neurons in the hidden layer arbitrate between the input and the output of the network. The
source nodes in the input layer of the neural network receive the input feature vector. The input
signals which are applied to the neurons in the hidden layer are made up of the neurons in the
input layer. The output signals of the hidden layer can be used as inputs to the next hidden or
output layer, and this process continues but terminates when the output layer produces the
final output result [60].

6.2. The k-nearest neighbour

The k-nearest neighbour is a non-parametric method used for classification and regression [61].
In the algorithm, the training data set is stored, so that classifying a previously unclassified
(new) record is by comparing it to the most similar records in the training data set. Simply put,
in the k-nearest neighbour classification algorithm, a database in which data points are
separated into several separate classes is used to predict the classification of a new data point.
The data set is assumed to be in space and classification is achieved by assigning the new data
point to its closest neighbour. It is a rather simple and versatile concept.

7. The case study

7.1. Research design and location

A prospective cross-sectional design that targeted patients clinically diagnosed with stroke
and who underwent non-contrast CT (NCCT) investigation of the brain was adopted for the
study. The research design and protocol were approved by the Research Ethics Committee of
Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria. The study
was carried in two locations, namely Onitsha, Anambra State in south-eastern Nigeria, and

Histogram-Based Texture Characterization and Classification of Brain Tissues in Non-Contrast CT Images...
http://dx.doi.org/10.5772/65349

93



Ibadan, Oyo State in south-western Nigeria. Two privately owned radiodiagnostic centres
were selected. The choice of the centres was to have an adequate number of patients because
the centres have a high number of stroke patients referred to them for brain CT examination.

7.2. Sample size determination

The minimum sample size required for this study was determined using the Taro Yamane’s
formula for finite population [62]:

21n N Ne= ¸ + (12)

where n = sample size; N = number of patients clinically diagnosed with a stroke who under-
went NCCT study of the brain in the two radiodiagnostic centres in previous one year: May
2012 to April 2013; e = the level of precision or confidence level required.

So,

2208 1 208(0.05) 137n = ¸ + = (13)

Within the period: May 2012 and April 2013, a total 208 patients with clinically diagnosed
stroke underwent non-contrast CT of the brain in the two centres, and thus, a minimum sample
of approximately 137 was calculated as shown above.

7.3. Patient selection

A total of 164 clinically diagnosed stroke patients who were referred to the two radiodiagnostic
centres for CT scan and who met the inclusion criteria for the study were enlisted in the study
to improve its precision. The inclusion criteria were:

1. Patients clinically diagnosed with stroke at the Nnamdi Azikiwe University Teaching
Hospital (NAUTH), Nnewi, Anambra State, and University College Hospital (UCH)
Ibadan, Oyo State, and peripheral private and public hospitals in these two states.

2. Patients clinically diagnosed with stroke who underwent non-contrast CT of the brain at
the two selected private radiodiagnostic centres.

3. Patients in whose CT images stroke lesions were identified by the radiologist.

4. Patients who met criteria 1–3 and consented to participate in the study.

All the participating patients directly or indirectly, through their relatives, expressed willing-
ness to participate in the study by signing an informed consent form before enlistment in the
study.

7.4. Equipment and softwares used

The equipment and computer softwares used include the following:
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1. A four-slice helical Toshiba AsteionTM CT scanner with 512×512 reconstruction matrix
manufactured by Toshiba Medical Systems Corporation and a two-slice Philips MX8000
DualTM CT scanner also with 512×512 reconstruction matrix manufactured by Philips
Medical Systems. The CT scanners were used to carry out non-contrast studies of the
patients’ brains.

2. DatamaxTM digital video discs (DVDs) to copy the CT images from the scanners.

3. An HP C2000TM laptop with 64-bit Windows 7 operating system used to view the images
and perform texture analysis.

4. MedisynapseTM and MicrodomTM DICOM viewers.

5. MaZda® texture analysis software version 4.7 for performing texture analysis on the
images. The software was developed at the Institute of Electronics, Technical University
of Lodz (TUL), Poland.

6. The Waikato Environment for Knowledge (WEKA) version 3.6.11 data mining software
(Hamilton, New Zealand) used for image classification.

7.5. Patient data and image acquisition

The enlistment of patients in the study, collection data and acquisition CT images commenced
in May 2013 and ended in April 2014. The patients after being clinically diagnosed with stroke
in the hospitals were referred to undergo NCCT of the head to confirm or rule out the disease
as the cause of their signs and symptoms. On arriving the radiodiagnostic centre, the patient
or his/her relatives were approached and the study explained to them. The researcher through
the request form identified the provisional diagnosis necessitating the scan. If it was a stroke,
an appeal was made to the patient or his/her relatives to enlist in the study. If the response is
affirmative, an informed consent form is signed by the patient or his/her relatives. There was
no financial reward for participating in the study. Demographic data of the patient such as age
and gender were thereafter obtained and documented. The approximate time interval between
the onset of symptoms and head CT examination was ascertained and documented. Non-
contrast CT images of the brain were obtained using the CT machine, Toshiba Asteion™ in
one centre. In the second centre, a Philips MX8000 Dual™ CT scanner was used for the same
purpose. Scans were obtained at 0.5–1 mm contiguous sections from the base of the skull to
the vertex. The scan parameters used were exclusively chosen by the attending radiographer
in each centre. The images were transferred from the CT archive to a DVD and then loaded
into an HP 2000™ laptop for viewing using either Medysynapse™ or Microdom™, both
DICOM viewing softwares.

7.6. Radiological reporting of the images

The CT images obtained were visually inspected and reported by a team of two radiologists
with experiences in CT diagnosis of stroke. The first radiologist had five-year post-qualification
experience as a consultant radiologist, while the second had seven-year post-qualification
experience. Both radiologists reported on the images independently and were blind to each
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other. The reports included in the study were those in which the two radiologists were in
agreement for the presence of stroke, the subtype and anatomical location of the lesions. The
reports that indicated there were no radiological signs of abnormality and those that indicated
neurological abnormalities mimicking stroke were excluded from the study.

Figure 5. A non-contrast CT image showing left cerebral ischaemia (arrows). Note there is a small area of ischaemia on
the right parietal lobe.

Figure 6. A non-contrast CT image showing left cerebral haemorrhage (arrows). Note the marked compression of the
right and left ventricles.

The anatomical locations of the lesions were identified and the lesions categorized as ischaemic
or haemorrhagic lesion by the two radiologists as shown in Figures 5 and 6. The radiologist’s
reports contained the patient’s name, identification number, age, sex, provisional diagnosis
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and radiological diagnosis, which contained details such as the type of stroke lesions identified,
their number, anatomical locations of the lesions and geographic extent in the brain.

7.7. Texture analysis of stroke CT images

Texture analyses of stroke CT images were done using the MaZda® texture analysis software.
The procedure for the texture analysis of the CT images is represented in the block diagram
shown in Figure 7 below.

Figure 7. Block diagram illustrating the analytical procedure.

All the images in which lesion appeared were loaded into the computer program and analysed.
Four regions of interest (ROIs) in each CT image that demonstrated the lesions were selected
for analysis. Two ROIs each represented the lesion and normal brain tissue as shown in Figure
8. The lesioned brain tissue contained ROI 1 and RO1 2, while the adjacent normal brain tissue
contained ROI 3 and ROI 4 as shown in Figure 8.

Figure 8. Illustration of the method of selection of the regions of interest (ROIs). Note that ROI 1 (red) and ROI 2
(green) are on ischaemic tissues on the left cerebral hemisphere, while ROIs 3 and 4 (blue and sky blue) are on normal
tissues on the right cerebral hemisphere.

Precaution was taken to ensure that machine settings which differed between cases did not
affect the image during texture analysis. This was achieved by normalizing the image.
Normalization process literally changes the range of pixel grey-level values of different images
so that they appear to have been obtained with the same machine settings. This is called image
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consistency. The method of normalization prior to texture analysis was the ±3 sigma method
selected from the program functions. Histogram texture parameters for the four ROIs were
computed using the MaZda® version 4.7 program. The output of the parameters computed for
each CT image was saved as a comma separated value (CSV) file in Microsoft Excel for further
analysis.

7.8. Statistical analyses

Statistical analyses were carried out in two stages. In the first stage, the lesioned brain tissues
for which texture parameters were calculated were divided according to lesion types. The
discriminating histogram texture parameters were obtained by raw data analysis (RDA). In
the second stage, the normal brain tissues and lesions from which the histogram texture
parameters were computed were then classified by the artificial neural network and k-nearest
neighbour algorithms as normal tissue, haemorrhagic or ischaemic tissues. The classifications
were then cross-validated with the radiologist’s report as gold standard using the receiver
operating characteristic (ROC) curve analysis. Raw data analysis of computed histogram
texture parameters was performed with MaZda® and classification of brain tissues with WEKA
3.6.11.

7.8.1. Feature reduction

In order to reduce the computed histogram texture parameters to only the ones useful for
further analyses and eliminate redundant data, the Fisher coefficient was used. The Fisher
coefficient reduced the intra-group variance and maximized the inter-group difference. It is a
feature of the MaZda® texture analysis software.

7.8.2. Feature extraction

The histogram texture parameters computation reports on the selected ROIs saved in Micro‐
soft Excel files were loaded into MaZda®, first according to lesion type and in combined lesion
form, and raw data analysis was performed on them. The best discriminating texture param-
eters were extracted through the raw data analysis and displayed in a three-dimensional (3D)
feature space. The process also classified the ROIs as that of normal tissue, ischaemic or
haemorrhagic lesions using the best discriminating texture parameters. In this process, the
ROIs in space were picked one at a time and assigned a class to which it belonged with the
radiologist’s interpretation taken as the expected ideal outcome.

7.8.2.1. Artificial neural network and k-nearest neighbour classifications

A multilayer feed-forward neural network and k-nearest neighbour algorithm were used to
classify brain tissues as lesions, according to lesion type or normal tissues. For the purpose of
classifying ROIs into normal brain tissue, ischaemic and haemorrhagic lesions using the k-
nearest neighbour algorithm, a value of 1 was chosen for k. The Waikato Environment for
Knowledge Analysis (WEKA) version 3.6.11 data mining software was used to perform these
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classifications. Both algorithms were trained by creating a model on retrospective data before
applying them to a test data.

The performance of the neural network and k-nearest neighbour algorithms in classifying the
ROIs as normal brain tissue or lesioned and according to lesion type was cross-validated with
the radiologist’s report using the ROC curve analysis. The accuracy, sensitivity, specificity,
positive predictive value and negative predictive value were determined from the ROC curves
plotted. The parameters from ROC analysis were calculated.

8. Results

The raw data analysis was used to analyse the data from histogram texture parameters. The
raw data analysis was discriminated between the various ROIs as normal brain tissue, is-
chaemic stroke lesion or haemorrhagic stroke lesions. The classifications of the ROIs ob-
tained in the discrimination are shown in the 3D feature space diagram (Figure 8). In the
figure, the ischaemic lesion is represented by 1, haemorrhage by 2 and normal brain tissues
by 3. The discriminating histogram parameters were the mean, 90 percentile and 99 percen-
tile as shown in Figure 8. The result of the raw data analysis shows that histogram texture
parameters were very accurate in discriminating between normal brain tissues, ischaemic le-
sion and haemorrhagic lesions as shown in Table 1 and illustrated in Figure 9.

Total number of ROIs Number of correctly classified ROIs Number of misclassified ROIs Accuracy (%)

1260 1161 99 92.14

Table 1. Classification accuracy of the ROIs by raw data analysis.

Figure 9. The distribution of ROIs in 3D feature space using data obtained from the histogram.
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Evaluation parameters Tissue/lesion type

Normal Haemorrhage Ischaemia Weighted average

Sensitivity or true positive rate (TPR) 0.971 0.949 0.888 0.947

True negative rate or (TNR) Specificity 0.937 0.989 0.983 0.962

False positive rate (FPR) 0.063 0.011 0.017 0.038

False negative rate (FNR) 0.029 0.051 0.112 0.053

Positive predictive value (PPV) 0.938 0.971 0.936 0.947

Negative predictive value (NPV) 0.953 0.857 0.050 0.693

Area under ROC curve 0.979 0.986 0.977 0.980

Table 2. Receiver operating characteristic analysis of artificial neural network classification of brain tissues.

Evaluation parameters Tissue/lesion type

Normal Haemorrhage Ischaemia Weighted average

Sensitivity or true positive rate (TPR) 0.954 0.944 0.853 0.929

True negative rate (TNR) or Specificity 0.934 0.983 0.966 0.955

False positive rate (FPR) 0.066 0.017 0.034 0.045

False negative rate (FNR) 0.046 0.056 0.147 0.071

Positive predictive value (PPV) 0.934 0.957 0.878 0.928

Negative predictive value (NPV) 0.949 0.273 0.029 0.693

Area under ROC curve 0.944 0.963 0.909 0.942

Table 3. Receiver operating characteristic analysis of k-nearest neighbour classification of brain tissues.

Classification algorithm Sensitivity Specificity FPR AUROCC

ANN 0.947 0.962 0.038 0.980

k-NN 0.929 0.955 0.045 0.942

Remark p = 0.061 p = 0.378 p = 0.378 p = 0.373

Table 4. Comparison of artificial neural network and k-nearest neighbour in classification of brain tissues.

The statistics in Tables 2 and 3 show the performance of histogram-based texture parameters
in the classification of brains tissues as normal, ischaemic or haemorrhagic using the artificial
neural network and k-nearest neighbor algorithms. There was no difference in sensitivity,
specificity, false positive rate and area under ROC curve between the artificial neural network
and k-nearest neighbour classifications (p > 0.05) as shown in Table 4.
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9. Discussion

Medical image analysis techniques play very important roles in several radiological interpre-
tations. In general, the applications involve the automatic extraction of texture features from
images which are then used for a variety of classification tasks, such as distinguishing normal
tissue from abnormal tissue [33].

In this study, histogram parameters were computed for the selected ROIs chosen from stroke
lesions and adjacent normal brain tissues using MaZda®. The whole process involved com-
putation of histogram texture parameters, feature selection or reduction and raw data analysis
to extract discriminating parameters namely the mean, percentile 90 and percentile 99, were
the best discriminators. They achieved very high accuracy in discriminating between normal
brain tissues, ischaemic and haemorrhagic stroke lesions. According to the result of a previous
study, histogram features when used with Radial Basis Function of Nerve Network (RBFNN)
achieved accuracies of over 80% in classification brain of tissues [63]. The histogram measures
the frequency of occurrence of the different grey-scale patterns throughout the image by
moving in steps of one pixel across the image. This approach is attractive for its conceptual
simplicity and most people are at ease with it. The result of this study shows that histogram
is highly accurate in discriminating between normal brain tissues and lesions, and between
ischaemic stroke and haemorrhagic stroke lesions. In another similar study, grey-level co-
occurrence matrix features were used in automatic detection of ischaemic stroke [64]. Four
different algorithms were used, namely decision tree, artificial neural network, k-nearest
neighbour and support vector machine (SVM), and the results were quite similar to ours. The
sensitivity was 93% for decision tree, 98% for artificial neural network, 96% for k-nearest
neighbour and 98% for SVM, while specificity was 90% for decision tree and artificial neural
network and 100% for k-nearest neighbour and SVM. The accuracy of detection was 92% for
decision tree, 96% for artificial neural network, 97% for k-nearest neighbour and 98% for SVM
[64].

The results of ROC curve analysis of the performance of the artificial neural network and k-
nearest neighbour classifications of brain tissues based on data obtained from the histogram
show that histogram-based texture parameters are highly accurate. A classification accuracy
of over 90% was achieved, and the weighted average sensitivity, specificity and area under
ROC curve of almost unity were recorded for both artificial neural network and k-nearest
neighbour. Correspondingly, the false positive rate (referred to as fall-out in machine learning)
and false negative rate in both methods were very low. Sensitivity and specificity are important
measures of the diagnostic accuracy of a test [65]. A diagnostic test with high sensitivity is
useful in ruling out a disease condition when the test result is negative. Correspondingly, a
diagnostic test with high specificity is useful in ruling in a disease condition when the test
result is positive. The foregoing explanation of the importance of sensitivity and specificity in
diagnostic test performance can be applied to the present study which was aimed at being
used for automatic detection of stroke lesions.

Studies similar to ours have been carried out in the past with quite good outcomes. In one such
study, classification of stroke lesions into acute infarct, chronic infarct and haemorrhage on
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non-contrast brain CT were done [23]. The researchers used histogram-based comparison and
wavelet energy-based texture information to classify stroke lesions. In a study to propose a
method for automatic diagnosis of abnormal tumour region present in CT images using
wavelet-based statistical texture features and support vector machine (SVM) for classification
of brain tissues, the researchers obtained a very high classification accuracy [66]. In another
study, using extracted texture features from CT images with inductive learning techniques and
Radial Basis Function Neural Network, brain tissues were classified as normal and abnormal
with very high accuracy [63].

In this study, comparison of artificial neural network and k-nearest neighbour classifications
of brain tissues showed that histogram-derived data achieved the same classification perform-
ance with both algorithms. This implies that either of the two algorithms can be used for
classification and therefore may be used in real clinical situations. Histogram method of texture
analysis is a rather simple concept and may be found attractive by many researchers with a
view of developing computer-aided diagnostic softwares. The present database could be used
in building a computer-aided diagnosis tool for stroke based on content-based image retrieval
similar to that proposed by Yuan et al. [67].

The computer-aided diagnostic tool tries to emulate the radiologist’s visual inspection and
interpretation of brain CT images or any other image it has been presented with depending
on the case under investigation. Classification is typically accomplished by using a decision
or discriminant function [68]. In this study, supervised classification was carried using the
artificial neural network [69, 70] and k-nearest neighbour [71], two algorithms popular with
researchers in artificial intelligence in medicine. The performance of the artificial neural
network and k-nearest neighbour algorithms in classifying brain tissues in non-contrast brain
CT into normal, ischaemic and haemorrhagic lesions was evaluated using the ROC curves. In
the ROC curve analysis, the classification of data points as belonging to normal brain tissue,
ischaemic stroke or haemorrhagic stroke was cross-validated with the radiologist’s identifica-
tion of stroke lesions and normal brain tissues. Receiver operating characteristic curves are
used to compare the diagnostic performance of two or more diagnostic tests [72–74] and also
to discriminate between diseased and normal cases. With data from the histogram texture
parameters obtained in this study, there was no difference in the results of ROC analysis of the
classifications using the artificial neural network and k-nearest neighbour. This implies that
both algorithms can be used with histogram-derived data to build automatic diagnostic tools
for stroke.

The following factors may affect a generalization of the result of this study. So, its use should
be with the following points in mind:

1. This study was not hospital-based. It was conducted in two radiodiagnostic centres, and
the patients were carefully selected. The research conditions may therefore not reflect the
actual clinical situation.

2. Sensitivity and specificity levels in this study were high but not 100% implying that a
computer-aided scheme can make mistakes. This study recognizes this fact, but it did
not consider how the mistaken cases may be identified. Sensitivity is rarely 100%
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In this study, comparison of artificial neural network and k-nearest neighbour classifications
of brain tissues showed that histogram-derived data achieved the same classification perform-
ance with both algorithms. This implies that either of the two algorithms can be used for
classification and therefore may be used in real clinical situations. Histogram method of texture
analysis is a rather simple concept and may be found attractive by many researchers with a
view of developing computer-aided diagnostic softwares. The present database could be used
in building a computer-aided diagnosis tool for stroke based on content-based image retrieval
similar to that proposed by Yuan et al. [67].

The computer-aided diagnostic tool tries to emulate the radiologist’s visual inspection and
interpretation of brain CT images or any other image it has been presented with depending
on the case under investigation. Classification is typically accomplished by using a decision
or discriminant function [68]. In this study, supervised classification was carried using the
artificial neural network [69, 70] and k-nearest neighbour [71], two algorithms popular with
researchers in artificial intelligence in medicine. The performance of the artificial neural
network and k-nearest neighbour algorithms in classifying brain tissues in non-contrast brain
CT into normal, ischaemic and haemorrhagic lesions was evaluated using the ROC curves. In
the ROC curve analysis, the classification of data points as belonging to normal brain tissue,
ischaemic stroke or haemorrhagic stroke was cross-validated with the radiologist’s identifica-
tion of stroke lesions and normal brain tissues. Receiver operating characteristic curves are
used to compare the diagnostic performance of two or more diagnostic tests [72–74] and also
to discriminate between diseased and normal cases. With data from the histogram texture
parameters obtained in this study, there was no difference in the results of ROC analysis of the
classifications using the artificial neural network and k-nearest neighbour. This implies that
both algorithms can be used with histogram-derived data to build automatic diagnostic tools
for stroke.

The following factors may affect a generalization of the result of this study. So, its use should
be with the following points in mind:

1. This study was not hospital-based. It was conducted in two radiodiagnostic centres, and
the patients were carefully selected. The research conditions may therefore not reflect the
actual clinical situation.

2. Sensitivity and specificity levels in this study were high but not 100% implying that a
computer-aided scheme can make mistakes. This study recognizes this fact, but it did
not consider how the mistaken cases may be identified. Sensitivity is rarely 100%
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especially because of the wide variability in lesion and background appearance [75]. It
may be the case that majority of the computer-aided detection schemes may never be
trained with enough cases to “see” all possible variations in a given target lesion. Even
for a scheme that uses artificial neural networks and continues to learn with each
successive case they analyse, the sensitivity of 100% may not be achieved [75]. Thus,
computer-aided detection systems should be used with caution and it ideally should
not completely replace visual inspection and interpretation. Such systems are meant to
complement visual inspection and interpretation. Heavy reliance on computer-aided
detection system to detect and classify lesions may alter the normal search and decision-
making processes [76].

3. Only stroke cases confirmed at CT were evaluated in this study. Clinical mimics of stroke
were not included, and therefore, it is not possible to tell if this method can distinguish
stroke from its clinical mimics.

4. The post-ictal intervals before CT imaging were not captured, and thus, the result of
this study cannot be used to explain the changes in CT appearance of stroke lesions with
time.

In view of the findings of this study, a larger-scale study in an actual clinical environ-
ment is recommended. This study will evaluate the performance of this proposed auto-
matic method of detecting and classifying stroke lesions and compare it with radiologist’s
visual interpretation. This study will also include the changes in CT appearance of stroke
lesions with the passage of time. The chronological sub-typing will be crucial to identify-
ing hyperacute, acute and chronic stroke lesions on CT. This will help neurologist to esti-
mate the post-stroke neurological deficit that should be expected in any individual case.
In conclusion, this study has established that histogram-derived texture parameters are
accurate in classifying brain tissues in NCCT images and therefore suitable for automatic
detection and classification of stroke lesions using the artificial neural network and k-
nearest neighbour classifiers. The results obtained in this study suggest that computer-
aided diagnostic tool for stroke diagnosis utilizing histogram-derived texture parameters
may be ideal.
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Abstract

Structural health monitoring (SHM) is an important research area, which interest is the 
damage identification process. Different information about the state of the structure 
can be obtained in the process, among them, detection, localization and classification 
of damages are mainly studied in order to avoid unnecessary maintenance procedures 
in civilian and military structures in several applications. To carry out SHM in prac-
tice, two different approaches are used, the first is based on modelling which requires to 
build a very detailed model of the structure, while the second is by means of data-driven 
approaches which use information collected from the structure under different struc-
tural states and perform an analysis by means of data analysis . For the latter, statisti-
cal analysis and pattern recognition have demonstrated its effectiveness in the damage 
identification process because real information is obtained from the structure through 
sensors installed permanently to the observed object  allowing a real-time monitoring. 
This chapter describes a damage detection and classification methodology, which makes 
use of a piezoelectric active system which works in several actuation phases and that is 
attached to the structure under evaluation,  principal component analysis, and machine 
learning algorithms working as a pattern recognition methodology. In the chapter, the 
description of the developed approach and the results when it is tested in one aluminum 
plate are also included.

Keywords: SHM, PCA, machine learning, structural health monitoring

1. Introduction

Structural health monitoring (SHM) is a very interesting area, which main objective is the 
damage identification using permanently installed sensors to the structure. In general, one 
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of the aims is to monitor in real time a structure in order to know the current state starting 
from the damage detection, from this point of view, damage detection is extremely important: 
first, for safety, because it helps manage the downside risk resulting in a reduction cost by 
improving the visual inspection and maintenance processes [1, 2]. Currently, the new devel-
opments in several areas include the use of more complex structures. In many cases, the rela-
tion between the structure and the rest of the elements introduces interdependences which 
can be non-linear increasing the difficulty of the damage detection process. In these cases, a 
multicomponent and systemic approach can be incorporated to result in a safe and optimal 
maintenance model [3]. It is also important to note that there is infrastructure, which has been 
in use for several years, some examples can be found in historical buildings, bridges, aero-
nautical and aerospace structures, among others. This aging process brings new challenges 
[4] for SHM systems.

It is mandatory also to highlight the wide range of opportunities offered by the automation of 
the structural health monitoring process which can be used in conjunction with other automa-
tion systems such as an integrated transport system (ITS - Intelligent Transportation Systems), 
auto guided vehicles, among others. This symbiosis can offer benefits and give news perspec-
tives about the use of the structures by providing additional information that the SHM sys-
tems can leverage to increase reliability, robustness and efficiency, reducing the probability 
of error, and providing tools for a better decision-making [5]. Structural health systems have 
a wide application in countless civilian infrastructures such as bridges [24] and buildings [6]. 
Similarly, SHM systems have been also applied to monitor mechanical components such as 
fuselages helicopters [7], wind turbines installed on land [8, 9] and sea (offshore) [10], aero-
space equipment [11], aircraft [12], high-speed trains [13], aircraft turbines [14] and boats [15], 
in the same way SHM systems have been applied to marine renewable energy equipment [16]. 
It is noteworthy that the environmental conditions need to be considered to ensure a robust 
damage detection, in this sense, some works have been introduced to compensate the effects 
of the temperature changes [17, 18].

Regardless of the infrastructure design or the technology used in the development of the 
maintenance decision making, there are some factors to consider. Factors, such as informa-
tion about the physical infrastructure, administrative information, use, and many others 
such as reliability, maintainability, operability, bearing capacity, and policy-adopted main-
tenance [19], need to be considered. Added to this it must be remembered drift probability 
[20]. The theories and the definition about the best inspection process are really complex, 
for instance in the machines which are working all time it is necessary to develop mainte-
nance methodologies to avoid the failure or breakdown maintenance, in this sense, preven-
tive maintenance and reliability-centered maintenance, among others need to be included 
[21]. This chapter includes a description of a methodology for damage detection and clas-
sification and the experimental validation with data from an aluminum plate instrumented 
with piezoelectric transducers permanently attached to its surface. In this sense, the chapter 
is organized as follows: Chapter 2 presents general concepts about the methods and con-
cepts used in the methodology, Chapter 3 explains the methodology. Chapter 4 describes 
the experimental setup, after Chapter 5 presents the results, finally the conclusions are 
included.
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2. General concepts

The methodology described in this work uses some well-known methods for data driven, 
however in this section some of this concepts will be introduced.

2.1. Principal components analysis

One of the greatest difficulties in data analysis occurs when the amount of data is very large 
and there is no apparent relationship between all the information or if it is very difficult to 
find. As solution, principal component analysis (PCA) was born as a very useful tool to reduce 
and analyze a big quantity of information. The principal component analysis technique was 
described by Pearson in 1901, as a Mechanism of Multivariate analysis and was also used 
by Hotelling in 1933 [22]. This method allows to find the principal components, which are a 
reduced version of the original dataset and include relevant information that identifies the 
reason for the variation between them. To find these variables, the analysis includes the trans-
formation of the current coordinate space to a new space in order to re-express the original 
data trying to filter the noise and redundancies. These redundancies are measured by means 
of the correlation between the variables [23].

There are two mechanisms to implement the analysis of main components: first method is 
based on correlations and second is based on covariance. It is necessary to highlight that PCA 
is not invariant to scale, so the data under study must be normalized. Many methods can be 
used to do this as is shown in [23, 24]. In many applications, PCA is used as a tool to reduce the 
dimensionality of the data to be applied in a subsequent process to work with a reduced num-
ber of data. Currently, there are many useful toolboxes to apply PCA and analyze the reduced 
data provided by the technique [25], this is one of the reasons about PCA still being used. More 
information about PCA and the normalization process can be consulted in Refs. [24, 26–28].

2.2. Machine learning

Since Alan Turing showed interest in learning by machines, this area has remained at the fore-
front of the research by increasing his popularity and expanding its field of performance [29]. 
This has revolutionized the way in which complex problems has been tackled. In the relent-
less pursuit of best tools for data analysis, machine learning has been highlighted by finding 
a set of strategies for pattern recognition, which are able to find the relationship between data 
that at first glance have no correlation and are very difficult to define a deterministic math-
ematical model. Machine learning strategies and bio-inspired algorithms allow to avoid this 
difficulty through mechanisms designed to find the answer by themselves. In SHM or related 
areas, it is possible to find some applications about how machine learning has been used to 
detect problems, such as breaks, corrosion, cracks, impact damage, delamination, disunity, 
breaking fibers (some pertinent to metals and the others to composite materials [30]), in addi-
tion it has been used to provide information about the future behavior of a structure under 
extreme events such as earthquakes [31].

Depending on how the algorithms work, machine learning can be classified into two main 
approaches: unsupervised and supervised learning. First, the information is grouped and 
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interpreted only using the input data, however, the second, requires information about the 
output data to perform the learning task. Figure 1 shows this classification and includes infor-
mation about the works that each one of these learning can be used.

Since this work is aimed to classify damages, supervised learning is used. In practice, this task 
is performed through the classification learner toolbox of MATLAB®, and Table 1 includes 
the methods used in the development of this work.

Figure 1. Machine learning approaches according to the learning.

Decision trees Nearest neighbor classifiers Support vector machines Ensemble classifiers

Simple tree Fine KNN Linear SVM Boosted trees

Medium tree Cubic SVM Fine Gaussian SVM Bagged trees

Complex Tree Medium KNN Medium Gaussian SVM Subspace KNN

Coarse KNN Coarse Gaussian SVM Subspace discriminant

Cosine KNN Quadratic SVM RUSBoosted

Weighted KNN Cubic SVM Trees

Table 1. Methods included in the classification learner toolbox of MATLAB®.

Pattern Recognition - Analysis and Applications112



interpreted only using the input data, however, the second, requires information about the 
output data to perform the learning task. Figure 1 shows this classification and includes infor-
mation about the works that each one of these learning can be used.

Since this work is aimed to classify damages, supervised learning is used. In practice, this task 
is performed through the classification learner toolbox of MATLAB®, and Table 1 includes 
the methods used in the development of this work.

Figure 1. Machine learning approaches according to the learning.

Decision trees Nearest neighbor classifiers Support vector machines Ensemble classifiers

Simple tree Fine KNN Linear SVM Boosted trees

Medium tree Cubic SVM Fine Gaussian SVM Bagged trees

Complex Tree Medium KNN Medium Gaussian SVM Subspace KNN

Coarse KNN Coarse Gaussian SVM Subspace discriminant

Cosine KNN Quadratic SVM RUSBoosted

Weighted KNN Cubic SVM Trees

Table 1. Methods included in the classification learner toolbox of MATLAB®.

Pattern Recognition - Analysis and Applications112

3. Damage classification methodology

The methodology used in this work is aimed to the damage detection and classification. To per-
form this task, it is necessary to highlight that pattern recognition point of view is used, in this 
sense, the methodology works first with the definition of a healthy pattern which is obtained 
from different states of the structure. In this work, data from healthy and different damages are 
used as inputs to the machines. This stage is defined as training and is developed as in Figure 2.

In general terms, the process includes a pre-processing step, where all the experiments are 
organized in a matrix per each actuation phase as in Figure 3, and normalization is applied 
before to create PCA models.

Figure 2. Training process.

Figure 3. Organization and normalization data.
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After training step, same experiments with unknown scenarios are applied to the structure, 
and these data are pre-processed and projected in the principal components and included in 
the trained machine to determine to which state it correspond. Figure 4 presents a description 
of the steps used on that process.

4. Experimental setup

Figure 5 shows a scheme of the SHM system, it is composed of one oscilloscope of four chan-
nels with an usb interface, one arbitrary generator, and a CPU as processing unit, additionally 
there is a switching device, which is implemented for automatizing the measurement as it is 
shown in Figure 5.

The inspection process can be summarized in the following steps:

• A burst signal is applied to one PZT and the rest of the transducers are used as sensors.

• A multiplexing system allows to change the actuator and collects the information from 
the rest of the sensors. This process is applied as many times as piezoelectric sensors are 
attached to the structure.

• A digitizer is finally used to capture the information collected by the sensors via an oscil-
loscope with usb interface.

The system collects the information in several files, in this case four since there are four trans-
ducers, and pre-processes, as was explained in the previous section. To validate the method-
ology, four structural states including the healthy state and three simulated damages were 
used as in Figure 6. These kinds of damages are used to produce changes in the wave propa-
gation [27] and to provide different scenarios for validating the methodology.

Figure 4. Test process.
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Figure 5. Experimental setup.

Figure 6. Structural states used in the damage classification validation.
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5. Experimental results

In order to validate the methodology with several machine learning methods, three experi-
ments were implemented. The objective is to determine the behavior of the different meth-
ods of machine learning described in Section 2 and its performance under different scenarios 
which are obtained by changes in the input data and the pre-processing step. In most of the 
cases, these kinds of changes are the responsible for producing false alarms in the damage 
identification process. In this way, the acquisition process was made by looking the effect of 
the attenuation with long cables (2.5 m) and short cables (0.5 m), the addition of Gaussian 
noise to the acquired signals and the use of a Golay filter in the pre-processing step. These 
experiments are explained below.

First experiment: acquisition performed with a short cable (0.5 m) from the digitizer to the 
sensors, and the acquired signals filtered with a Golay filter algorithm in this experiment after 
adding white Gaussian noise.

Second experiment: acquisition performed with long cable to sensors (2.5 m), and signals 
filtered with the Golay algorithm.

Third experiment: acquisition performed with a short cable (0.5 m) from the digitizer to the 
sensors, and the signal filter without a Golay filter algorithm.

As it was previously introduced, in the first group of experiments, the influence of added 
noise to the data will be explored in order to determine how it affects the results in the prin-
cipal components. For this, the Golay filter is applied to reduce the influence of aleatory sig-
nals and after the white Gaussian noise is added to the signals. Later, the methodology was 
applied to the signals with and without noise to determine the influence of the white noise in 
the detection process. An example of the signals used by the algorithms in the actuation phase 
2 can be seen in Figure 7, similar results are obtained with all the signals.

Figure 7. Signal received by sensors in the first experiment, without damage (a) with Golay filter applied without white 
Gaussian noise (b) with Golay filter applied with white Gaussian noise.
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Figure 8. First two principal components for experiment 1: (a) without added noise (b) with 25dB of white Gaussian 
noise.

Figure 9. The bad case confusion matrix for experiment 1.
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Figure 11. Signal received by sensors by experiment 2.

Figure 10. The good case confusion matrix for experiment 1.
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Figure 8a shows the first two principal components of the signal for the actuation phase 1, 
which are after used to train the machines, this train was made with methods included in the 
classification learner toolbox of MATLAB® shows in Table 1. This behavior is the same in all 
the actuation phases.

As seen in Figure 8a and 8b, the first the principal components are able to eliminate the noise 
and prove that they are a good tool for defining the elements to include in the machine this is 
the experiment one.

After searching the principal components, the machines are trained with these data. Although 
all the machine learning methods were explored, following worst and best results are shown 
for a better understanding. Figure 9 shows the confusion matrix with test Coarse KNN 
machine, and the result in all cases was very poor, with most machines having this behavior.

Figure 10 shows the confusion matrix with test Bagged Trees machine, the result in all cases 
was good, Fine KNN, Weighted KNN, Bagged Tree and subspace KNN, also the behavior was 
good, but only in some machines good response was obtained.

Figure 12. PCA components for experiment 2.
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Figure 13. The best confusion matrix for experiment 2.

Figure 14. The bad case confusion matrix for experiment 2.
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Figure 15. Signal received by sensors by experiment.

Figure 16. PCA components for experiment 3.
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Figure 17. The worst case confusion matrix for processing with other training.

Figure 18. The bad case confusion matrix for processing with other training.
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Figure 18. The bad case confusion matrix for processing with other training.
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In general, the response of these machine learning algorithms was good with or without 
added noise because PCA has shown great ability to reject the noise.

The second case was considered when the acquisition system is connected with long cables, 
and Golay filter for pre-processing is used, in this case the signals in some cases were bad 
digitalized because of the impedance of cable, the noise, the low voltage of the stimulus, and 
other experimental features. An example of the captured signals is shown in Figure 11.

Figure 12 shows the first two principal components obtained from the signal, which were 
used to train the machines.

As in the previous experiment, all the methods were explored and best and worst results are 
included in this work. Figure 13 shows the confusion matrix with Weighted KNN, and the 
behavior was similar to the first experiment. Similar results are obtained with adding Fine 
KNN, Weighted KNN, Bagged Tree, and subspace KNN.

Bad results were obtained with other methods for Coarse KNN. Figure 14 shows this behav-
ior, which is similar to the experiment 1.

Similar results were obtained with the third experiment; in this case, a short cable was used 
and unfiltered signals were used to calculate the scores. Figure 15 shows the acquired signal 
in the actuation phase 1.

Figure 16 shows the first two principal components of the signal, however in this experi-
ment these data were not used to train the machines, this means, principal components are 
projected into the machines trained in the first experiment to determine the influence of these 
changes in the results.

Figure 17 shows the response of the Coarse KNN machine, in this last case, the training is not 
success with this data series.

Figure 18 shows the response of the Fine KNN machine, similar results to the previous case 
are obtained, this means, a bad classification is provided by the machine.

6. Conclusions and future work

The piezoelectric transducers working as an active inspection system provide a good system 
to produce mechanical waves over materials under evaluation. In all the cases, the informa-
tion obtained from the healthy state and the different damage scenarios applied to the meth-
odology showed that algorithm is available to detect real and simulated damages in both 
structures in spite of shapes and differences in the element under inspection.

For all the experiments, the results showed that the behavior was very similar, only few 
machines architecture presented good results, these are: Fine KNN, Weighted KNN, Bagged 
Tree, and subspace KNN. Others types of machines did not work well for the experiments.

In all cases, it is necessary to train the machines with data pre-processed in the same way as 
in the definition of the healthy state, changes in the elements such as the cable length and the 
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use of the Golay filter are enough to change the results in the PCA model obtained which do 
that the machines do not work correctly.

PCA is a robust mechanism to characterize data since it was demonstrated to eliminate the 
noise, however, more experiments need to be considered by including environmental and 
operational noise to determine the effectiveness of the algorithm.
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