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Preface

“Since the fabric of the universe is most perfect, and is the work of the most wise Creator, nothing
whatsoever takes place in the universe in which some form of optimality does not appear."

Leonhard Euler
Swiss Mathematician and Physicist (1707–1783)

The purpose of optimization is to maximize the quality of lives, productivity in time, as well
as interests. Therefore, optimization is an ongoing challenge for selecting the best possible
among many other inferior designs. For a hundred years in the past, as optimization has
been essential to human life, several techniques have been developed and utilized. Such a
development has been one of the long-lasting challenges in engineering and science, and it
is now clear that the optimization goals in many real-life problems are unlikely to be ach‐
ieved without resource to computational techniques. The history of such a development in
the optimization techniques starts from the early 1950s and is still in progress. Since then,
the efforts behind this development dedicated by many distinguished scientists, mathemati‐
cians, and engineers have brought us today a level of quality of lives. This book concerns
with the computational optimization in engineering and techniques to resolve the underly‐
ing problems in real life. The current book contains studies from scientists and researchers
around the world from North America to Europe and from Asia to Australia.

In Chapter 1, entitled “Deterministic Annealing: A Variant of Simulated Annealing and Its
Application to Fuzzy Clustering," a combination of the deterministic annealing algorithm of
optimization with fuzzy c-means has been studied. The method has been further developed
using Tsallis entropy maximization, called Tsallis-DAFCM, for the considered optimization
problem. In Chapter 2, entitled “Generalized Simulated Annealing," a modified GSA ap‐
proach has been discussed and implemented using the R package, GenSA. The nonconvex
optimization problems in the fields of physics and finance have been analyzed. In addition,
an interesting comparison between R packages has been presented in this chapter. In Chap‐
ter 3, entitled “A Simulated Annealing-Based Optimization Algorithm," the challenges in
metamodels for an optimization process have been discussed. A method of enhancement in
the overall prediction accuracy of models has also been proposed. In Chapter 4, entitled “Si‐
mulated Annealing of Constrained Statistical Functions," it has been demonstrated how si‐
mulated annealing can be used to perform a likelihood-based statistical inference in a
constraint optimization problem. In this study, an impressive stress-strength modeling is in‐
troduced along with its statistical and numerical properties. In Chapter 5, entitled “Fitting
Truncated Mode Regression Model by Simulated Annealing," the truncated mode regres‐
sion optimization has been considered to explore the conventional income structure in Chi‐
na. In this study, the statistical parameters of an optimization problem have been analyzed.



In Chapter 6, entitled “Facility Layout Problem for Cellular Manufacturing Systems," a heu‐
ristic algorithm has been designed to allocate and displace facilities in the radial direction
for the underlying optimization problem. In order to improve the search efficiency of the
developed algorithm, the different cell size in initialization has been considered. In this
chapter, a real-life optimization problem from the industry has been used. In Chapter 7, en‐
titled “Application of Simulated Annealing and Adaptive Simulated Annealing in Search for
Efficient Optimal Solutions of a Groundwater Contamination-Related Problem," the optimi‐
zation problem of source characterization has been considered using a methodology based
on ASA. In this study, it has also been shown that ASA provides reliable results for the con‐
sidered optimization problem.

I would like to add that it was a great time working on the chapters as an editor. I hope the
contents of the book attract the interests from all fields of engineering and scientific sectors,
as it has been desired to serve so. I welcome any further questions or comments on the book
chapters and their contents. Interested readers may send their comments directly to the edi‐
tor using the following e-mail address.

I would like to thank my family for their support, particularly, Reza for letting me work on
the book in times that I should have spent with him. I would like to thank Professor Mu‐
hammad Ali Imran, vice dean of UESTC at the University of Glasgow, for his encourage‐
ment and kind words. I would also like to thank Ms. Ana Pantar, senior commissioning
editor, and Ms. Martina Usljebrka, publishing process manager, for their assistance in pre‐
paring the book during the year.

Dr. Hossein Peyvandi
PhD, FHEA, MIEEE, MIET, MSc, BSc

University of Surrey, Guildford, Surrey
United Kingdom
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Chapter 1

Deterministic Annealing: A Variant of Simulated

Annealing and its Application to Fuzzy Clustering

Makoto Yasuda

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66072

Provisional chapter

Deterministic Annealing: A Variant of Simulated
Annealing and its Application to Fuzzy Clustering

Makoto Yasuda

Additional information is available at the end of the chapter

Abstract

Deterministic annealing (DA) is a deterministic variant of simulated annealing. In this
chapter, after briefly introducing DA, we explain how DA is combined with the fuzzy
c-means (FCM) clustering by employing the entropy maximization method, especially
the Tsallis entropy maximization. The Tsallis entropy is a q  parameter extension of
the  Shannon  entropy.  Then,  we  focus  on  Tsallis-entropy-maximized  FCM (Tsallis-
DAFCM), and examine effects of cooling functions for DA on accuracy and conver-
gence.  A  shape  of  a  membership  function  of  Tsallis-DAFCM  depends  on  both  a
system temperature and q. Accordingly, a relationship between the temperature and
q is quantitatively investigated.

Keywords: deterministic annealing, simulated annealing, free energy, fuzzy c-means
clustering, entropy maximization, Shannon entropy, fuzzy entropy, Tsallis entropy

1. Introduction

Statistical mechanics investigates the macroscopic properties of a physical system consisting of
many elements. Recently, great research activities of applying statistical mechanical models or
tools to information engineering problems have been seen. The entropy maximization method
applied to a fuzzy c-means clustering is a good example of such models.

Simulated annealing (SA) [1, 2] is one of the most commonly used optimization techniques
and plays an important role in the field of engineering because many of the engineering
problems can be formulated as optimization problems. SA is a stochastic relaxation method
that treats an objective function as a system energy, and by analogy with the annealing process

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



of solids, searches for its minimum with decreasing the system temperature. SA searches
randomly at a high temperature, but more deterministically at a low temperature. As long as
a neighborhood can be defined and the temperature is lowered sufficiently slowly, SA is a
global optimization technique for solving optimization problems. It requires a very long time
to find an optimal global solution because of a stochastic search at each temperature. Thus, SA
is an approximation method in practical.

Deterministic annealing (DA) is a deterministic variant of SA, which is first proposed by Rose
et al. [3] for a vector quantization algorithm. DA characterizes the minimization problem of
the objective function as the minimization of the free energy of the system, which depends on
the temperature. DA tracks the minimum of the free energy while decreasing the temperature.
Thus, it can deterministically optimize the objective function at each temperature, and is more
efficient than SA but does not guarantee the optimal solution. In addition, an effect of a cooling
function on the quality of a DA’s solution is still unclear.

Membership functions of the fuzzy c-means (FCM) clustering [4] maximized or regularized
with entropy [5, 6] have similar forms with the distribution functions that appear in statistical
mechanics. For example, a membership function obtained by the Shannon entropy maximi-
zation has a similar form with the Boltzmann-Gibbs distribution function [3, 5]. Similarly, a
membership function obtained by the fuzzy entropy [7] has a similar form with the Fermi-
Dirac distribution function [8]. Annealing methods can be applicable to these membership
functions because they contain a parameter that can be corresponded to the system tempera-
ture. The advantage of applying the entropy maximization methods to FCM is that fuzzy
clustering can be analyzed from both information processing and statistical physical points of
view.

Tsallis [9], by extending Boltzmann-Gibbs statistics nonextensively with a generalization
parameter q, postulated a generalized formulation of entropy. The entropy is now well known
as The Tsallis entropy, which, in the limit of q to 1, approaches the Shannon entropy. The Tsallis
entropy is applicable to numerous fields, including physics, bioscience, chemistry, networks,
computer science, and so on [10–12]. Menard et al. [13, 14] investigated fuzzy clustering in the
framework of nonextensive thermostatistics, and derived the possibilistic membership
function by taking the possibilistic constraint into account.

On the other hand, based on the Tsallis entropy, Yasuda [15] defined another form of entropy
for FCM, and then derived the membership function by maximizing this entropy within FCM
[15]. After that, by combining the membership function with DA, a new fuzzy clustering
algorithm (the Tsallis-DAFCM algorithm) has been developed. Tsallis-DAFCM was proved to
yield superior results in comparison with the conventional annealing methods.

Similarly to SA, a performance of Tsallis-DAFCM strongly depends on how to decrease the
temperature. Among the cooling functions for SA, the very fast annealing (VFA) method
decreases the temperature fastest. Thus, VFA is applied to Tsallis-DAFCM to improve its
performance, and proved to be effective [16].

In spite of its performance, it remains unknown how appropriate q value and initial annealing
temperature Thigh for Tsallis-DAFCM should be determined according to the data distribution.

Computational Optimization in Engineering - Paradigms and Applications4



of solids, searches for its minimum with decreasing the system temperature. SA searches
randomly at a high temperature, but more deterministically at a low temperature. As long as
a neighborhood can be defined and the temperature is lowered sufficiently slowly, SA is a
global optimization technique for solving optimization problems. It requires a very long time
to find an optimal global solution because of a stochastic search at each temperature. Thus, SA
is an approximation method in practical.

Deterministic annealing (DA) is a deterministic variant of SA, which is first proposed by Rose
et al. [3] for a vector quantization algorithm. DA characterizes the minimization problem of
the objective function as the minimization of the free energy of the system, which depends on
the temperature. DA tracks the minimum of the free energy while decreasing the temperature.
Thus, it can deterministically optimize the objective function at each temperature, and is more
efficient than SA but does not guarantee the optimal solution. In addition, an effect of a cooling
function on the quality of a DA’s solution is still unclear.

Membership functions of the fuzzy c-means (FCM) clustering [4] maximized or regularized
with entropy [5, 6] have similar forms with the distribution functions that appear in statistical
mechanics. For example, a membership function obtained by the Shannon entropy maximi-
zation has a similar form with the Boltzmann-Gibbs distribution function [3, 5]. Similarly, a
membership function obtained by the fuzzy entropy [7] has a similar form with the Fermi-
Dirac distribution function [8]. Annealing methods can be applicable to these membership
functions because they contain a parameter that can be corresponded to the system tempera-
ture. The advantage of applying the entropy maximization methods to FCM is that fuzzy
clustering can be analyzed from both information processing and statistical physical points of
view.

Tsallis [9], by extending Boltzmann-Gibbs statistics nonextensively with a generalization
parameter q, postulated a generalized formulation of entropy. The entropy is now well known
as The Tsallis entropy, which, in the limit of q to 1, approaches the Shannon entropy. The Tsallis
entropy is applicable to numerous fields, including physics, bioscience, chemistry, networks,
computer science, and so on [10–12]. Menard et al. [13, 14] investigated fuzzy clustering in the
framework of nonextensive thermostatistics, and derived the possibilistic membership
function by taking the possibilistic constraint into account.

On the other hand, based on the Tsallis entropy, Yasuda [15] defined another form of entropy
for FCM, and then derived the membership function by maximizing this entropy within FCM
[15]. After that, by combining the membership function with DA, a new fuzzy clustering
algorithm (the Tsallis-DAFCM algorithm) has been developed. Tsallis-DAFCM was proved to
yield superior results in comparison with the conventional annealing methods.

Similarly to SA, a performance of Tsallis-DAFCM strongly depends on how to decrease the
temperature. Among the cooling functions for SA, the very fast annealing (VFA) method
decreases the temperature fastest. Thus, VFA is applied to Tsallis-DAFCM to improve its
performance, and proved to be effective [16].

In spite of its performance, it remains unknown how appropriate q value and initial annealing
temperature Thigh for Tsallis-DAFCM should be determined according to the data distribution.

Computational Optimization in Engineering - Paradigms and Applications4

One of the important characteristics of the membership function of Tsallis-DAFCM is that
centers of clusters are given as a weighted function of the membership function to the power

of q(𝀵𝀵𝀵𝀵 ). Furthermore, it changes its shape in a similar way by decreasing the temperature or

by increasing q. In order to reveal the relationship between the temperature and q, 𝀵𝀵𝀵𝀵  is

quantitatively analyzed using the Iris Data Set [17]. The result shows that the temperature and

q affect 𝀵𝀵𝀵𝀵  almost inversely, suggesting that a q-incrementation algorithm is possible. This

algorithm might be a solution to the initialvalue problem of Tsallis-DAFCM [18, 19].

This chapter is composed of five sections. Section 1 is this introduction. In Section 2, how DA
works is explained generously, and its applications are summarized. In Section 3, each of the
components of entropy-maximized FCM clustering methods is explained. In Section 4, VFA is
used as the cooling function of Tsallis-DAFCM, and its effects are experimentally investigated.
Effects of the temperature and q-values on the membership function of Tsallis-DAFCM are also
examined. Section 5 gives a conclusion of this chapter.

2. Deterministic annealing

Vector quantization is a classification method for a big data, which is widely used in the field
of image compression. Linde-Buzo-Gray [20] and self-organizing feature map [21] algorithms,
for example, are well-known vector quantization algorithms. However, classification results
of these algorithms depend on initial settings of the reference vector, and can easily fall into
local minima.

In order to overcome the problem, by analogy with statistical mechanics, a DA method has
been proposed. DA does not suffer from the initial vector problem. It usually performs better
than other methods. However, it does not theoretically guarantee to find a global optimal
solution. Furthermore, its performance depends on a way of decreasing the system tempera-
ture.

This section gives a brief introduction of the deterministic annealing method. In Section 2.1, a
definition and major characteristics of DA are explained. In Section 2.2, DA is compared with
SA. In Section 2.3, applications and modifications of DA are summarized.

2.1. Major characteristics of deterministic annealing

In DA, by analogy with statistical mechanics, the free energy F is derived from an objective
function J of a problem. At a high temperature, F represents a global structure of J. As the
temperature decreases, it gradually reaches J.

Based on these characteristics, at the high temperature, DA is able to find a global minimum
of F by the steepest descent method because it should have multiple local minima. When the
temperature is lowered a little, F would change its shape only a little. Accordingly, by setting
the previous global mimimum as an initial value of the steepest descent mehod, DA searches

Deterministic Annealing: A Variant of Simulated Annealing and its Application to Fuzzy Clustering
http://dx.doi.org/10.5772/66072
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the next global minimum. This procedure continues until the temperature is lowered suffi-
ciently, and F reaches J. Consequently, at each temperature, DA searches the local minimum
of J deterministically.

2.2. Comparison with simulated annealing

While decreasing the temperature, SA searches the minimum stochastically at each tempera-
ture and thus requires a very long time to find an optimal solution. Hence, though theoretically,
it is guaranteed to find the optimal solution, SA is practically an approximation method.

On the contrary, DA consumes less computational time because it searches the local minimum
deterministically at each temperature. Furthermore, it should be noticed that, in case that
multiple local minima exist at some temperature, DA might not be able to find the minimum.
For this reason, even theoretically, DA is not guaranteed to find the optimal solution.

Approaches to speed up SA are mainly based on the improvement of a transition method and
a cooling function including its parallelization. For example, adaptive SA (ASA) [22], which
may belong to the both categories, is an implementation of very fast simulated re-annealing
(VFSA) [23]. As compared with the acceleration method called fast annealing (FA) [24] in which
the temperature is lowered inversely linear to a number of iterations, ASA is faster than FA.
In addition, among many features included in ASA, it can get the benefit of speeding-up by
simulated quenching.

In DA, it seems no comprehensive studies on this topic have been conducted.

The summary of comparison is shown in Table 1.

SA DA

Search strategy    Stochastic search based on the Metropolis algorithm. Deterministic search based on the

steepest descent algorithm.

Cooling function   Two categories of cooling functions are well-used.

1. Functions based on statistical analysis.

2. Adaptive functions depending on the problems.

Cooling functions appear in SA are

used empirically.

Optimality      The global minimum can be achieved if a temperature

is decreased as slow as T∝1/log(iterations).

Not guaranteed.

Table 1. Comparison of SA and DA.

2.3. Applications and modifications of deterministic annealing

The study on DA first addressed avoidance of the poor local minima of data clustering [25].
Then it was extensively applied to various subjects such as combinational optimization
problems [26], vector quantization [27, 28], maximum likelihood estimation [29], classifier
design [30], and pairwise data clustering [31].
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In order to cluster a large number of data, research activities that attempt to parallelize DA
have become popular. Kim et al. [32] discussed the parallelization method of DA using GPU,
and applied it to color image segmentation. In order to cluster a large number of bioscientific
data, Fox et al. [33, 34] parallelized DA using MPI. Qiu et al. [35] compared the DA’s perform-
ance using C# messaging runtime library CCR with that using MPI.

3. Application of deterministic annealing to fuzzy c-means clustering
maximized with entropy

One of the important applications of DA is fuzzy clustering. In this section, we focus on fuzzy
c-means (FCM) clustering. By maximizing the objective function of FCM with various entro-
pies, membership functions similar to the statistical mechanical distribution functions are
obtained. These membership functions can be easily combined with DA, because they contain
a parameter corresponding to a system temperature.

In this section, first we outline the formulation of FCM. Then, we describe how to apply the
entropy maximization methods to FCM. In Section 3.1, the classical FCM clustering method is
introduced. In Section 3.2, various entropy maximization methods are explained. The free
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the Lagrange function L is given by
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where ηk denotes the Lagrange multiplier. ∂/ ∂𝀵𝀵𝀵𝀵 = 0 gives the membership function of the

form:
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Similarly, 𝀵𝀵 can be determined by ∂/ ∂𝀵𝀵 = 0 as follows:
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Desirable cluster centers can be obtained by calculating Eq. (4) and Eq. (5) repeatedly.

3.2. Entropy maximization method for fuzzy c-means

3.2.1. Shannon entropy maximization

Shannon entropy for FCM takes the form:

1 1

log .
n c

SE ik ik
k i

S u u
= =

= -åå (6)

By setting m to 1 in Eq. (1), under the normalization constraint of Eq. (2), the Shannon entropy
functional is given by

( )
1 1 1 1
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= = = -
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ç ÷- - -
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è ø
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where αk and β denote the Lagrange multipliers. The stationary condition for Eq. (7) leads to
the following Gaussian membership function:
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and the same formula for  in Eq. (5).

3.2.2. Fuzzy entropy maximization

Fuzzy entropy for FCM is defined as [36]

{ }
1 1

log (1 )log(1 ) .
n c

FE ik ik ik ik
k i

S u u u u
= =

= - + - -åå (9)

The fuzzy entropy functional is given by
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The stationary condition for Eq. (10) leads to the following membership function:

1 ,
1k ik

ik du
ea b+=

+
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and the same formula for  in Eq. (5). Eq. (11) is similar to the Fermi-Dirac distribution function.

3.2.3. Tsallis entropy maximization

The Tsallis entropy for FCM is defined as [15]
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where q ∈ R is a real number. In case of the Tsallis entropy maximization, the objective function

should be rewritten as
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Accordingly, the Tsallis entropy functional is given by
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The stationary condition for Eq. (14) leads to the membership function of the form:

{ }
1

11 (1 )
,

qik
ik

q d
u

Z
b -- -

= (15)

where

{ }
1

1

1

1 (1 ) .
c q

jk
j

Z q db
-

=

= - -å

 is defined as

1

1

.

n q
ik kk

i n
ikk

u

u
=

=

=
å
å

x
v (16)

3.3. Free energy for entropy maximized fuzzy c-means

In each entropy, maximization methods introduced in Section 3.2, β can be regarded as the
inverse of the system temperature T-1. This feature makes it possible to apply DA, and Shannon-
entropy-maximized FCM with DA (Shannon-DAFCM, hereafter), fuzzy-entropy-maximized
FCM with DA (fuzzy-DAFCM, hereafter), and Tsallis-entropy-maximized FCM with DA
(Tsallis-DAFCM, hereafter) have been developed.

3.3.1. Free energy for Shannon-DAFCM

In Shannon-DAFCM, by analogy with statistical mechanics [37], the sum of the states (the
partition function) for the grand canonical ensemble of FCM can be expressed as
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The free energy is derived as
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Stable thermal equilibrium requires a minimization of the free energy. By formulating
deterministic annealing as a minimization of the free energy, ∂/ ∂ = 0 yields the same
expression for  as that in Eq. (5).

3.3.2. Free energy for fuzzy-DAFCM

Similarly, in fuzzy-DAFCM, the grand partition function for the grand canonical ensemble for
FCM can be written as
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The free energy is calculated as
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∂/ ∂ = 0   yields the same expression for  as that in Eq. (5).

3.3.3. Free energy for Tsallis-DAFCM

In Tsallis-DAFCM, the free energy can be derived as

1

1
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n q
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where T is a system temperature. ∂/ ∂ = 0   yields the same expression for  as that in Eq.
(16).
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3.4. Effect of annealing temperature on clustering

3.4.1. Dependency of shape of membership function on temperature

While reducing the system temperature T, DA achieves thermal equilibrium at each temper-
ature by minimizing the free energy. Thus, DA searches a cluster distribution that minimizes
the free energy at each temperature. When the temperature is high, the membership functions
distribute widely. This makes clusters to which a data belong fuzzy. In case of Tsallis-
DAFCM, when q is nearly equal to 2, the width of the membership function is almost propor-
tional to . On the contrary, at the low temperature, fuzzy clustering approaches hard
clustering. The relationship  = Tsallis − 𝀵𝀵Tsallis in Eq. (21) suggests that, at the higher

temperature, the larger entropy state or chaotic state is caused by a widening of the extent of
the membership function.

3.4.2. Cooling function

In SA, the temperature decreases according to a cooling function or an annealing schedule.
The representative cooling functions for SA [38] are:

(I) Exponential function

,t
highT T r= (22)

where Thigh is the highest initial temperature, r is a parameter which defines a temperature
reduction rate, and t is a number of iterations of temperature reduction.

(II) Inversely linear function

.highT
T

t
= (23)

(III) Inversely logarithmic function

.
ln
highT

T
t

= (24)

(IV) Inversely exponential function

.high
rt

T
T

e
= (25)
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(V) Very fast annealing

Rosen [39] proposed another inversely exponential function known as VFA. VFA decreases
the temperature exponentially in a similar way to ASA:

(1/ ) ,
e

D
high

rt

T
T = (26)

where D is a dimension of a state space.1 Figure 1 compares plots of Eq. (25) and Eq. (26).

Figure 1. Plots of (a) Eq. (25) and (b) Eq. (26) (Thigh = 1.0 × 105, D = 2).

4. Tsallis-entropy-maximized fuzzy c-means clustering with deterministic
annealing

In this section, we focus on Tsallis-DAFCM, and its important experimental results are
explained. In Section 4.1, we present the Tsallis-DAFCM clustering algorithm. In Section 4.2,
how VFA affects Tsallis-DAFCM is experimentally investigated. In Section 4.3, effects of the
temperature and q-values on the membership function are examined.

4.1. Tsallis-DAFCM clustering algorithm

The Tsallis-entropy-maximization method, fuzzy c-means clustering, and the deterministic
annealing method can be combined as the following Tsallis-DAFCM clustering algorithm [15]:

1. Set the number of clusters c, the highest temperature Thigh, the temperature reduction rate
m, and the threshold of convergence test δ1 and δ2;

1 In clustering, a state space refers to an input space of a data set. For example, if a data set consists of 3 attributes, D is
set to 3.
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2. Generate c clusters at random positions. Set current temperature T to Thigh;

3. Calculate the membership function uik by Eq. (15);

4. Calculate the centers of clusters  by Eq. (17);

5. Compare the difference between the current cluster centers  and the cluster centers

obtained in the previous iteration −. If the convergence condition𝀵𝀵𝀵𝀵𝀵𝀵1 ≤  ≤ 𑩤𑩤  −  < 1 is satisfied, then go to 6, otherwise go back to 3;

6. Compare the difference between the current cluster centers and the cluster centers
obtained at the previous temperature  . If the convergence condition𝀵𝀵𝀵𝀵𝀵𝀵1 ≤  ≤ 𑩤𑩤  −  < 2 is satisfied, then stop, otherwise decrease the temperature
using the cooling function, and go back to 3.

4.2. Effect of cooling functions

In general, the temperature should be reduced gradually in DA. However, this takes a long
time to converge. If VFA is applicable to Tsallis-DAFCM, it is of great advantage to this method.
Accordingly, VFA is tested as a cooling function of Tsallis-DAFCM.

In this subsection, both Shannon- and Tsallis-DAFCM are examined.

4.2.1. Experiment 1

In experiment 1, the numerical data composed of five clusters and 2000 data points are used,
as shown in Figure 2. The parameters are set as follows: c = 10, δ1 = 50, δ2 = 2, q = 1.5, Thigh =
1.0×106 or 1.0×105.

Figure 2. Numerical data.
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First, the inversely exponential cooling function is applied to Tsallis-DAFCM. The changes of
β parameterized by r are plotted in Figure 3. In case of r = 1000.0, when Thigh = 1.0×105, as T is
lowered from Figures 3 (A) to (D), data are clustered gradually and desirably. In case of r =
10.0 and r = 1.0 (Figures 3 (E) and (F), respectively), it is observed that uik and  converge more

rapidly.

Figure 3. Increasing of β by inversely exponential cooling function.

However, when Thigh = 1.0×106, the algorithm fails to converge with r = 100.0 and 10.0 (expressed
by “Not converged” in Figure 3) because the initial distribution of uik is too wide. This result
indicates that it is important to set both Thigh and r properly.

Figure 4. Shifts of cluster centers during clustering obtained by (a) Shannon-DAFCM and (b) Tsallis-DAFCM.
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In order to clarify the adaptability of VFA as a cooling function of DA, numerical experiments
on Shannon- and Tsallis-DAFCM are performed. The shifts of cluster centers with decreasing
temperature are illustrated in Figures 4 (a) and (b). Initially, clusters are located randomly.
Then, at the higher temperature, β is comparatively small and clusters move to near the center
of gravity of data because the membership functions are extend over the data area and become
extremely uniform. As T is lowered, contrarily, the membership functions become narrower
and the associations of data to the clusters become less fuzzy. In this process, in Shannon-
DAFCM, the clusters move to their nearest local data distribution centers. However, in Tsallis-
DAFCM, the clusters can move a long distance to optimal positions because the membership
functions have gentle base slopes.

Figures 5 (a) and (b) illustrates the three-dimensional plots of uik in the progress of Shannon-
and Tsallis-DAFCM clustering combined with VFA. When the temperature is as high as
3.7×104, roughness of uik of Tsallis-DAFCM is smaller than that of Shannon-DAFCM. After that,
the shapes of both membership functions do not change greatly, because VFA reduces the
temperature extremely only at the early annealing stage. When the temperature is lowered to
1.3×104, both methods cluster data desirably.

Figure 5. Initial and final landscapes of uik of (a) Shannon-DAFCM and (b) Tsallis-DAFCM.

Consequently, because Tsallis-DAFCM has gentle slope in the region far from the origin,
clusters can move long distance to optimal positions stably. This feature makes it possible to
reduce the temperature rapidly. Thus, VFA is suitable as a cooling function of Tsallis-DAFCM.

Computational Optimization in Engineering - Paradigms and Applications16



In order to clarify the adaptability of VFA as a cooling function of DA, numerical experiments
on Shannon- and Tsallis-DAFCM are performed. The shifts of cluster centers with decreasing
temperature are illustrated in Figures 4 (a) and (b). Initially, clusters are located randomly.
Then, at the higher temperature, β is comparatively small and clusters move to near the center
of gravity of data because the membership functions are extend over the data area and become
extremely uniform. As T is lowered, contrarily, the membership functions become narrower
and the associations of data to the clusters become less fuzzy. In this process, in Shannon-
DAFCM, the clusters move to their nearest local data distribution centers. However, in Tsallis-
DAFCM, the clusters can move a long distance to optimal positions because the membership
functions have gentle base slopes.

Figures 5 (a) and (b) illustrates the three-dimensional plots of uik in the progress of Shannon-
and Tsallis-DAFCM clustering combined with VFA. When the temperature is as high as
3.7×104, roughness of uik of Tsallis-DAFCM is smaller than that of Shannon-DAFCM. After that,
the shapes of both membership functions do not change greatly, because VFA reduces the
temperature extremely only at the early annealing stage. When the temperature is lowered to
1.3×104, both methods cluster data desirably.

Figure 5. Initial and final landscapes of uik of (a) Shannon-DAFCM and (b) Tsallis-DAFCM.

Consequently, because Tsallis-DAFCM has gentle slope in the region far from the origin,
clusters can move long distance to optimal positions stably. This feature makes it possible to
reduce the temperature rapidly. Thus, VFA is suitable as a cooling function of Tsallis-DAFCM.

Computational Optimization in Engineering - Paradigms and Applications16

On the other hand, final cluster positions obtained by Shannon-DAFCM tend to depend on
their initial positions.

4.2.2. Experiment 2

In experiment 2, the Iris Data Set [17] consisting of 150 four-dimensional vectors of iris flowers
is used. Three clusters of flowers detected are Versicolor, Virginia, and Setosa. Each cluster
consists of 50 vectors. VFA is used as a cooling function of DA. The parameters are set as
follows: c = 3, δ1 = 0.1, δ2 = 0.01, q = 1.5, Thigh = 2.0.

The minimum, maximum, and average values of misclassified data points of 100 trials are
summarized in Table 2. It can be seen that Shannon-DAFCM gives slightly better results than
Tsallis-DAFCM. However, it is also confirmed that Tsallis-DAFCM gives its best results when
the temperature reduction rate r is set to 1 or 2, though the best result for Shannon-DAFCM is
obtained only when r = 2. Furthermore, variances of Tsallis-DAFCM are smaller than those of
Shannon-DAFCM. These features indicate that a wide range of r values are applicable to Tsallis-
DAFCM. On the other hand, with larger r values, Shannon-DAFCM becomes unstable.

Shannon-DAFCM Tsallis-DAFCM

r Min. Max. Ave. r Min. Max. Ave.

1 15 16 15.01 1 14 14 14.00

2 11 13 12.97 2 14 15 14.01

3 11 14 13.59 3 14 15 14.68

Table 2. Misclassified data points of Iris Data Set (100 trials).

Figure 6. Plots of ().
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4.3. Dependencies of the membership function on temperature and q

In Eq. (16), it can be seen that 𝀵𝀵𝀵𝀵  plays an important role as a weight value to each 𝀵𝀵, and it

determines 𝀵𝀵. For this reason, dependencies of 𝀵𝀵𝀵𝀵  on T and q are to be investigated.

In this subsection, for simplicity, 𝀵𝀵 is set to be 0, because this makes the denominator of Eq.

(15) become the sum of the same formulas of its numerator. Figure 6 illustrates the numerator

of 𝀵𝀵𝀵𝀵  (expressed by   ) as a function of 𝀵𝀵, parameterized by T and q, respectively. In order

to plot the shape of 𝀵𝀵𝀵𝀵  as a function of the distance between the cluster center and various

data points, in this figure, 𝀵𝀵 is replaced to a continuous variable x. Figure 6 confirms that the

extent of 𝀵𝀵𝀵𝀵  becomes narrower with increasing q. On the contrary, as the temperature de-

creases, the distribution becomes narrower.

4.3.1. Quantitative relationship between temperature and q

As stated in the previous subsection, T and q inversely affect the extent of 𝀵𝀵𝀵𝀵 , which changes

in a similar way with decreasing T or increasing q. In order to examine the quantitative
relationship between T and q in more detail, they are changed independently as follows:

First, we define

121( , , ) 1 .

q
qq qu x T q x

T
--ì ü= -í ý

î þ
(27)

Then, Eq. (27) is calculated by fixing T and q to some constants T0 and q0. Next, by decreasing
T, we search the q values that minimize the sum of squares of the residuals of the following
two functions:

2

0 0
0

( , , ) ( , , ) .
S

q q

S

u xS T q u xS T q
=

D - Då
max

(28)

In the following calculations, the parameters are set as follows: Thigh(= T0) = 2.0; the domain of
x is 0 ≤ x ≤ 100; the number of sampling points of the sum of residuals Smax = 10,000; ∆x = 0.01.

For q (= q0) values of 1.01, 2.0, 6.0, 10.0, and for T decreasing from Thigh, the q values that minimize
Eq. (28) (expressed by qmin) are shown in Figure 7 (a). Figure 7 (b), on the other hand, shows
the results of cases in which q is set to 2.0 and T is lowered from Thigh = 2.0, 20.0, 100.0, 200.0.
Approximate curves plotted in Figure 7 are obtained by fitting the data to the following
exponential function:
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Figure 7. Plots of 𝀵𝀵𝀵𝀵𝀵𝀵 as a function of  parameterized by (a)  and (b) high.

min ,bq aT -= (29)

where a and b denote the fitting parameters. Optimal values for these parameters obtained by
the least squares method are summarized in Table 3 and Table 4. From these tables, it is
concluded that b is nearly equal to 1.0 indicating that q is inversely proportional to T. In
addition, it can be seen that, though b does not change its value much, a increases with
increasing T.

q a b

1.01 2.71 1.126

2 4.67 1.066

6 12.65 1.023

10 20.64 1.014

Table 3. Parameters of approximate curves (Thigh = 2.0).

Thigh a b

2 4.67 1.066

20 54.33 1.066

100 302.06 1.066

200 632.35 1.066

Table 4. Parameters of approximate curves (q = 2.0).

As a result, by using the approximate relationship of T and qmin, instead of annealing or T-
reduction, q-incrementation clustering might be possible [18].
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5. Conclusion

In this chapter, we first explained the major characteristics of DA and compared it with SA.
DA is a variant of SA and searches a minimum deterministically. Thus, generally it is more
efficient than SA. We then explained how DA could be applied to the fuzzy c-means clustering
by employing the entropy maximization method.

After that, by focusing on Tsallis-entropy-maximized FCM combined with DA (Tsallis-
DAFCM), an effect of VFA on DA was examined. VFA reduces the temperature extremely only
at the early annealing stage, and the experimental result showed that this feature improved
the performance of Tsallis-DAFCM because it has gentle slope in the region far from the origin
and clusters can move long distance to optimal positions from the beginning.

The Tsallis entropy is an extension of the Shannon entropy with a generalization parameter
q. A shape of a membership function of Tsallis-DAFCM strongly depends on both the tem-
perature and q. Accordingly, a relationship between the temperature and q was quantitatively
investigated, and it was experimentally confirmed that they affected the area covered by the
membership function almost inversely. Based on the result, a development of a q-incrementa-
tion algorithm is our future subject.

Author details

Makoto Yasuda

Address all correspondence to: yasuda@gifu-nct.ac.jp

National Institute of Technology, Gifu College, Gifu, Japan

References

[1] E. Aarts, J. Korst. Simulated Annealing and Boltzmann Machines. Chichester: John
Wiley & Sons; 1989.

[2] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by simulated annealing. Science.
1983; 220: 671–680.

[3] K. Rose, E. Gurewitz, B. C. Fox. A deterministic annealing approach to clustering.
Pattern Recognition Letters. 1990; 11(9): 589–594.

[4] J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. New York:
Prenum Press; 1981.

Computational Optimization in Engineering - Paradigms and Applications20



5. Conclusion

In this chapter, we first explained the major characteristics of DA and compared it with SA.
DA is a variant of SA and searches a minimum deterministically. Thus, generally it is more
efficient than SA. We then explained how DA could be applied to the fuzzy c-means clustering
by employing the entropy maximization method.

After that, by focusing on Tsallis-entropy-maximized FCM combined with DA (Tsallis-
DAFCM), an effect of VFA on DA was examined. VFA reduces the temperature extremely only
at the early annealing stage, and the experimental result showed that this feature improved
the performance of Tsallis-DAFCM because it has gentle slope in the region far from the origin
and clusters can move long distance to optimal positions from the beginning.

The Tsallis entropy is an extension of the Shannon entropy with a generalization parameter
q. A shape of a membership function of Tsallis-DAFCM strongly depends on both the tem-
perature and q. Accordingly, a relationship between the temperature and q was quantitatively
investigated, and it was experimentally confirmed that they affected the area covered by the
membership function almost inversely. Based on the result, a development of a q-incrementa-
tion algorithm is our future subject.

Author details

Makoto Yasuda

Address all correspondence to: yasuda@gifu-nct.ac.jp

National Institute of Technology, Gifu College, Gifu, Japan

References

[1] E. Aarts, J. Korst. Simulated Annealing and Boltzmann Machines. Chichester: John
Wiley & Sons; 1989.

[2] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by simulated annealing. Science.
1983; 220: 671–680.

[3] K. Rose, E. Gurewitz, B. C. Fox. A deterministic annealing approach to clustering.
Pattern Recognition Letters. 1990; 11(9): 589–594.

[4] J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. New York:
Prenum Press; 1981.

Computational Optimization in Engineering - Paradigms and Applications20

[5] R.-P. Li, M. Mukaidono. A maximum entropy approach to fuzzy clustering. In:
Proceedings of the 4th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE/
IFES ‘95); 1995 March 20–24; Yokohama, Japan; 1995. p. 2227–2232.

[6] S. Miyamoto, M. Mukaidono. Fuzzy c-means as a regularization and maximum entropy
approach. In: Proceedings of the 7th International Fuzzy Systems Association World
Congress; 1997 June 25–29; Prague, Czech Republic; 1997. p. 86–92.

[7] A. DeLuca, S. Termini. A definition of a nonprobabilistic entropy in the setting of fuzzy
sets theory. Information and Control. 1972; 20: 301–312.

[8] L. D. Landau, E. M. Lifshitz. Statistical Physics (Part 1). Oxford: Butterworth Heine-
mann; 1980.

[9] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical
Physics. 1988; 52(1–2): 479–487.

[10] S. Abe, Y. Okamoto, editors. Nonextensive Statistical Mechanics and Its Applications.
New York: Springer; 2001.

[11] M. Gell-Mann, C. Tsallis, editors. Nonextensive Entropy—Interdisciplinary Applica-
tions. New York: Oxford University Press; 2004.

[12] C. Tsallis, editor. Introduction to Nonextensive Statistical Mechanics. New York:
Springer; 2009.

[13] M. Menard, V. Courboulay, P.-A. Dardignac. Possibilistic and probabilistic fuzzy
clustering: unification within the framework of the non-extensive thermostatistics.
Pattern Recognition. 2003; 36(6): 1325–1342.

[14] M. Menard, P. Dardignac, C. C. Chibelushi. Non-extensive thermostatistics and extreme
physical information for fuzzy clustering. International Journal of Computational
Cognition. 2004; 2(4): 1–63.

[15] M. Yasuda. Entropy maximization and very fast deterministic annealing approach to
fuzzy c-means clustering. In: Proceedings of the 5th Joint International Conference on
So Computing and 11th International Symposium on Intelligent Systems; 8–12
December 2010; Okayama, Japan; 2010. p. 1515–1520.

[16] M. Yasuda. Deterministic annealing approach to fuzzy c-means clustering based on
entropy maximization. Advances in Fuzzy Systems. 2011; 960635: 9.

[17] UCI Machine Learning Repository: Iris Data Set [Internet]. 1988. Available from: http://
archive.ics.uci.edu/ml/datasets/Iris

[18] M.  Yasuda.  Q-increment  deterministic  annealing  fuzzy  c-means  clustering  using
Tsallis  entropy.  In:  Proceedings  of  the  11th  International  Conference  on  Fuzzy
Systems  and  Knowledge  Discovery  (FSKS);  19–21  August  2014;  Xiamen,  China;
2014.  p.  31–35.

Deterministic Annealing: A Variant of Simulated Annealing and its Application to Fuzzy Clustering
http://dx.doi.org/10.5772/66072

21



[19] M. Yasuda. Quantitative analyses and development of a q-incrementation algorithm
for  FCM  with  Tsallis  entropy  maximization.  Advances  in  Fuzzy  Systems.  2015;
404510:  7.

[20] Y. Linde, A. Buzo, R. M. Gray. An algorithm for vector quantizer design. IEEE Trans-
action on Communication. 1980; Com-28(1): 84–95.

[21] T. Kohonen. Self-Organizing Maps. 3rd ed. New York: Springer; 2000.

[22] L.  Ingber.  Adaptive  Simulated  Annealing.  In:  H.  A.  Oliveira,  A.  Petraglia  Jr.,
L. Ingber, M. A. S. Machado, M. R. Petraglia (Eds.), Stochastic Global Optimization
and  Its  Applications  with  Fuzzy  Adaptive  Simulated  Annealing.  New  York:
Springer;  2012.  p.  33–61.

[23] L. Ingber. Very fast simulated re-annealing. Mathematical Computer Modelling. 1989;
12(8): 967–973.

[24] H. Szu, R. Hartley. Fast simulated annealing. Physics Letters A. 1987; 122(3–4): 157–162.

[25] K. Rose. Deterministic annealing for clustering, compression, classification regression,
and related optimization problems. Proceedings of the IEEE. 1998; 86(11): 2210–2239.

[26] K. Rose, E. Gurewitz, G. C. Fox. Constrained clustering as an optimization method.
IEEE Transaction on Pattern Analysis and Machine Intelligence. 1993; 15(8): 785–794.

[27] J. Buhmann, H. Kuhnel. Vector quantization with complexity costs. IEEE Transaction
on Information Theory. 1993; 39(4): 1133–1143.

[28] K. Rose, E. Gurewitz, G. C. Fox. Vector quantization by deterministic annealing. IEEE
Transaction on Information Theory. 2002; 38(4): 1249–1257.

[29] N. Ueda, R. Nakano. Mixture density estimation via EM algorithm with deterministic
annealing. In: Proceedings of 1994 IEEE Neural Networks for Signal Processing; 6–8
September 1994; Ermioni, Greek. IEEE; 1994. p. 69–77.

[30] D. Miller, A. V. Rao, K. Rose, A. Gersho. A global optimization technique for statistical
classifier design. IEEE Transaction on Signal Processing. 1996; 44: 3108–3122.

[31] T. Hofmann, J. Buhmann. Pairwise data clustering by deterministic annealing. IEEE
Transaction on Pattern Analysis and Machine Intelligence. 1997; 19: 1–14.

[32] E. Kim, W. Wang, H. Li, X. Huang. A parallel annealing method for automatic color
cervigram image segmentation. In: Medical Image Computing and Computer Assisted
Intervention, MICCAI-GRID 2009 HPC Workshop; 2009 September 20–24; London, UK;
2009.

[33] G. C. Fox, D. R. Mani, S. Pyne. Detailed results of evaluation of DAVS(c) deterministic
annealing clustering and its application to LC-MS data analysis. 2013. Available from:
http://grids.ucs.indiana.edu/ptliupages/publications/DAVS2.pdf

Computational Optimization in Engineering - Paradigms and Applications22



[19] M. Yasuda. Quantitative analyses and development of a q-incrementation algorithm
for  FCM  with  Tsallis  entropy  maximization.  Advances  in  Fuzzy  Systems.  2015;
404510:  7.

[20] Y. Linde, A. Buzo, R. M. Gray. An algorithm for vector quantizer design. IEEE Trans-
action on Communication. 1980; Com-28(1): 84–95.

[21] T. Kohonen. Self-Organizing Maps. 3rd ed. New York: Springer; 2000.

[22] L.  Ingber.  Adaptive  Simulated  Annealing.  In:  H.  A.  Oliveira,  A.  Petraglia  Jr.,
L. Ingber, M. A. S. Machado, M. R. Petraglia (Eds.), Stochastic Global Optimization
and  Its  Applications  with  Fuzzy  Adaptive  Simulated  Annealing.  New  York:
Springer;  2012.  p.  33–61.

[23] L. Ingber. Very fast simulated re-annealing. Mathematical Computer Modelling. 1989;
12(8): 967–973.

[24] H. Szu, R. Hartley. Fast simulated annealing. Physics Letters A. 1987; 122(3–4): 157–162.

[25] K. Rose. Deterministic annealing for clustering, compression, classification regression,
and related optimization problems. Proceedings of the IEEE. 1998; 86(11): 2210–2239.

[26] K. Rose, E. Gurewitz, G. C. Fox. Constrained clustering as an optimization method.
IEEE Transaction on Pattern Analysis and Machine Intelligence. 1993; 15(8): 785–794.

[27] J. Buhmann, H. Kuhnel. Vector quantization with complexity costs. IEEE Transaction
on Information Theory. 1993; 39(4): 1133–1143.

[28] K. Rose, E. Gurewitz, G. C. Fox. Vector quantization by deterministic annealing. IEEE
Transaction on Information Theory. 2002; 38(4): 1249–1257.

[29] N. Ueda, R. Nakano. Mixture density estimation via EM algorithm with deterministic
annealing. In: Proceedings of 1994 IEEE Neural Networks for Signal Processing; 6–8
September 1994; Ermioni, Greek. IEEE; 1994. p. 69–77.

[30] D. Miller, A. V. Rao, K. Rose, A. Gersho. A global optimization technique for statistical
classifier design. IEEE Transaction on Signal Processing. 1996; 44: 3108–3122.

[31] T. Hofmann, J. Buhmann. Pairwise data clustering by deterministic annealing. IEEE
Transaction on Pattern Analysis and Machine Intelligence. 1997; 19: 1–14.

[32] E. Kim, W. Wang, H. Li, X. Huang. A parallel annealing method for automatic color
cervigram image segmentation. In: Medical Image Computing and Computer Assisted
Intervention, MICCAI-GRID 2009 HPC Workshop; 2009 September 20–24; London, UK;
2009.

[33] G. C. Fox, D. R. Mani, S. Pyne. Detailed results of evaluation of DAVS(c) deterministic
annealing clustering and its application to LC-MS data analysis. 2013. Available from:
http://grids.ucs.indiana.edu/ptliupages/publications/DAVS2.pdf

Computational Optimization in Engineering - Paradigms and Applications22

[34] G. C. Fox, D. R. Mani. Parallel deterministic annealing clustering and its application to
LC-MS data analysis. In: 2013 IEEE International Conference on Big Data; 6–9 October
2013; Silicon Valley, USA. IEEE; 2013. p. 665–673.

[35] X. Qiu, G. C. Fox, H. Yuan, S. Bae, G. Chrysanthakopoulos, F. Nielsen. Performance of
multicore systems on parallel data clustering with deterministic annealing. In: Inter-
national Conference on Computer Science 2008; 23–25 June 2008; Krakow, Poland.
Springer-Verlag; 2008. p. 407–416.

[36] M. Yasuda, T. Furuhashi, S. Okuma. Statistical mechanical analysis of fuzzy clustering
based on fuzzy entropy. IEICE Transaction on Information and Systems. 2007; E90-D(6):
883–888.

[37] L. E. Reichl. A Modern Course in Statistical Physics. New York: John Wiley & Sons;
1998.

[38] S. M. Sait, H. Youssef. Iterative Computer Algorithms with Applications in Engineer-
ing: Solving Combinatorial Optimization Problems. U.S.A.: Wiley-IEEE Computer
Society Press; 2000.

[39] B. E. Rosen. Function optimization based on advanced simulated annealing. In:
Proceedings of the IEEE Workshop on Physics and Computation (PhysComp ’92); 2–4
October 1992; Dallas, U.S.A. IEEE; 1992. p. 289–293.

Deterministic Annealing: A Variant of Simulated Annealing and its Application to Fuzzy Clustering
http://dx.doi.org/10.5772/66072

23





Chapter 2

Generalized Simulated Annealing

Yang Xiang, Sylvain Gubian and Florian Martin

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66071

Provisional chapter

Generalized Simulated Annealing

Yang Xiang, Sylvain Gubian and

Florian Martin

Additional information is available at the end of the chapter

Abstract

Many problems in mathematics, statistics, finance, biology, pharmacology, physics,
applied mathematics, economics, and chemistry involve the determination of the global
minimum of multidimensional real-valued functions. Simulated annealing methods
have been widely used for different global optimization problems. Multiple versions of
simulated annealing have been developed, including classical simulated annealing
(CSA), fast simulated annealing (FSA), and generalized simulated annealing (GSA).
After revisiting the basic idea of GSA using Tsallis statistics, we implemented a modified
GSA approach using the R package GenSA. This package was designed to solve com-
plicated nonlinear objective functions with a large number of local minima. In this
chapter, we provide a brief introduction to this R package and demonstrate its utility
by solving non-convexoptimization problems in different fields: physics, environmental
science, and finance. We performed a comprehensive comparison between GenSA and
other widely used R packages, including rgenoud and DEoptim. GenSA is useful and
can provide a solution that is comparable with or even better than that provided by
other widely used R packages for optimization.

Keywords: classical simulated annealing (CSA), fast simulated annealing (FSA), gen-
eralized simulated annealing (GSA), GenSA

1. Introduction

Determining the global minimum of a multidimensional function is the focus of many prob-
lems in statistics, biology, physics, applied mathematics, economics, and chemistry [1–6].
Although there is a wide spectrum of problems, computing the global minimum remains a
challenging task, because, for example, modern problem dimensionality is increasing.

The optimization of convex functions is usually reasonably conducted using standard
optimization approaches, such as simplex optimization, the steepest descent method, and
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the quasi-Newton method. These methods can also provide reasonable results for the study
of simple non-convex functions with only a few dimensions and well-separated local
minima.

Deterministic methods are usually faster than stochastic methods although they tend to be
trapped into a local minimum. To overcome this particular issue, stochastic methods have
been widely developed and can determine a good approximation of the global minimum
with a modest computational cost. Among stochastic methods, genetic algorithms [7], evo-
lution algorithms [8], simulated annealing (SA) [9], and taboo search [10–12] have been
successfully applied.

Among popular approaches, genetic algorithms [7] mimic the process of natural DNA evolu-
tion. In this approach, a population of randomly generated solutions is generated. The solu-
tions are encoded as strings and evolve over many iterations toward better solutions. In each
generation, the fitness of each individual in the population is evaluated, and in the next
generation, strings are generated by crossover, mutation, and selection, based on their fitness.
Differential evolution belongs to such genetic algorithms.

Ant colony optimization (ACO) [13] is another set of stochastic optimization methods, which is
inspired by ants wandering to find food for the colony. An ant starts wandering randomly
while laying down pheromone trails that will influence other ants because they will be
attracted (increase in probability) by the trail, and if they eventually locate food, will return
and reinforce the trail. To avoid the algorithm converging to local minima, the pheromone trail
is set to evaporate proportionally to the time it takes to traverse the trail to decrease its
attractiveness. As a consequence, the pheromone density of short paths becomes higher than
that of longer paths. The design of ACO perfectly matches graph-based optimization (e.g.,
traveling salesman problem), but it can be adapted to determine the global minimum of real-
valued functions [14] by allowing local random moves in the neighborhood of the current
states of the ant.

The SA algorithm was inspired by the annealing process that takes place in metallurgy,
whereby annealing a molten metal causes it to achieve its global minimum in terms of thermo-
dynamic energy (crystalline state) [9]. In the SA algorithm, the objective function is treated as
the energy function of a molten metal, and one or more artificial temperatures are introduced
and gradually cooled, which is analogous to the annealing technique, to attempt to achieve the
global minimum. To escape from local minima, this artificial temperature (or set of tempera-
tures) acts as a source of stochasticity. Following the metallurgy analogy, at the end of the
process, the system is foreseen to reside inside the attractive basin of the global minimum (or in
one of the global minima if more than one global minimum exists). In classical simulated
annealing (CSA), the visiting distribution is a Gaussian function (a local search distribution)
for each temperature. It has been observed that this distribution is not optimal for moving
across the entire search space [5]. Generalized simulated annealing (GSA) was developed to
overcome this issue by using a distorted Cauchy-Lorentz distribution.

For a more extensive review of stochastic optimization algorithms, see the review provided by
Fouskakis and Draper [15].
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The R language and environment for statistical computing will be the language of choice in
this chapter because it enables a fast implementation of algorithms, access to a variety of
statistical modeling packages, and easy-to-use plotting functionalities. These advantages make
the use of R preferable in many situations to other programming languages, such as Java, C++,
Fortran, and Pascal [16].

In this chapter, we elaborate further on the background and improvements of GSA and the use
of the R package GenSA [17], which is an implementation of a modified GSA. We will also
discuss the performance of GenSA and show that it outperforms the genetic algorithm (R
package rgenoud) and differential evolution (R package DEoptim) in an extensive testbed
comprising 134 testing functions based on the success rate and number of function calls. The
core function of GenSA is written in C++ to ensure that the package runs as efficiently as
possible. The utility of this R package and its use will be presented by way of several applica-
tions, such as the famous Thomson problem in physics, non-convex portfolio optimization in
finance, and kinetic modeling of pesticide degradation in environmental science.

2. Method

As mentioned above, SA methods attempt to determine the global minimum of any objective
function by simulating the annealing process of a molten metal. Given an objective function

f ðxÞ with x ¼ ðx1,x2,…,xnÞT , we attempt to determine its global minimum using SA. The
general procedure for SA is as follows:

1. Generate an initial state x0 ¼ ðx01,x02,…,x0nÞT randomly and obtain its function value

E0 ¼ f ðx0Þ. An initial temperature T0 is set. imax is set to be any big integer.

2. For step i ¼ 1 to imax,

• The temperature Ti is decreased according to some cooling function.

• Generate a new state xi ¼ xi−1 þ Δx, where Δx follows a predefined visiting distribution

(e.g., Gaussian distribution). Ei ¼ f ðxiÞ and ΔE ¼ Ei−Ei−1.

• Calculate the probability p of xi−1 ! xi.If p < randomð0, 1Þ, xi is set back to its previous

state xi−1 and Ei is also set back to Ei−1.

3. Output the final state ximax and its function value Eimax.

We provide more details of SA methods as follows.

2.1. Classical simulated annealing (CSA)

According to the process of cooling and the visiting distribution, SA methods can be classified
into several categories, amongwhich CSA [9], fast simulated annealing (FSA) [18], and the
GSA [19] are the most common.
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In CSA, proposed by Kirkpatrick et al., the visiting distribution is a Gaussian function, which
is a local search distribution [5, 19]:

gðΔxÞ ∝ exp −
ðΔxÞ2
T

 !
, (1)

where Δx is the trial jump distance of variable x and T is an artificial temperature in the
reduced unit. In a local search distribution, for example, a Gaussian distribution Δx is always
localized around zero. The jump is accepted if it is downhill of the energy/fitness/objective
function. If the jump is uphill, it might be accepted according to an acceptance probability,
which is computed using the Metropolis algorithm [20]:

p ¼ min 1, exp −
ΔE
T

� �� �
: (2)

Geman and Geman [21] showed that for the classical case, a necessary and sufficient condition
for having probability 1 of ending at the global minimum is that the temperature decreases
logarithmically with the simulation time, which is impossible in practice because this would
dramatically increase the computational time.

2.2. Fast simulated annealing (FSA)

In 1987, Szu and Hartley proposed a method called FSA [18], in which the Cauchy-Lorentz
visiting distribution, that is, a semi-local search distribution, is introduced:

gðΔxÞ ∝ T
�
T2 þ ðΔxÞ2

�Dþ1
2
, (3)

whereD is the dimension of the variable space. In a semi-local search distribution, for example,
the Cauchy-Lorentz distribution, the jumps Δx are frequently local, but can occasionally be
quite long. The temperature T in FSA decreases with the inverse of the simulation time, and
the acceptance algorithm is the Metropolis algorithm shown in Eq.(2).

2.3. Generalized simulated annealing (GSA)

2.3.1. Introduction to GSA

A generalization of classical statistical mechanics was proposed by Tsallis and Stariolo [19]. In
the Tsallis formalism, a generalized statistic is built from generalized entropy:

sq ¼ k
1−∑ pqi
q−1

, (4)

where q is a real number, i is the index of the energy spectrum, and sq tends to information
entropy:
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s ¼ −k∑ pilnpi (5)

when q ! 1. Maximizing the Tsallis entropy with the constraints

∑ pi ¼ 1, and

∑ pqi εi ¼ const,
(6)

where εi is the energy spectrum, and the generalized probability distribution is determined
to be

pi ¼
½1−ð1−qÞβεi�

1
1−q

zq
, (7)

where zq is the normalization constant that ensures that pi integrates to 1. This distribution
pointwise converges to the Gibbs-Boltzmann distribution, where q tends to 1.

The GSA algorithm [19] refers to the generalization of both CSA and FSA according to Tsallis
statistics. It uses the Tsallis-Stariolo form of the Cauchy-Lorentz visiting distribution, whose
shape is controlled by the parameter qv:

gqv

�
ΔxðtÞ

�
∝

½TqvðtÞ�
− D
3−qv

1þ ðqv−1Þ
�
ΔxðtÞ

�2

½Tqv ðtÞ�
2

3−qv

2
64

3
75

1
qv−1

þD−1
2
: (8)

Please note that qv also controls the rate of cooling:

Tqv ðtÞ ¼
2qv−1−1

ð1þ tÞqv−1−1Tqvð1Þ, (9)

where Tqv is the visiting temperature. In turn, a generalized Metropolis algorithm is used for
the acceptance probability:

pqa ¼ min 1, ½1−ð1−qaÞβΔE�
1

1−qa

n o
, (10)

where β ¼ 1=ðKTqaÞ. The acceptance probability is controlled by the artificial temperature, Tqa .
When qv ¼ 1 and qa ¼ 1, then GSA is exactly CSA. Another special instance is given by qv ¼ 2
and qa ¼ 1 for which GSA is exactly FSA. Asymptotically, GSA has a similar behavior thanthe
stochastic steepest descentas T ! 0. A faster cooling than CSA and FSA is achieved when
qv > 2.

It has been shown in a few instances that GSA is superior to FSA and CSA. Xiang et al.
established that a pronounced reduction in the fluctuation of energy and a faster convergence

Generalized Simulated Annealing
http://dx.doi.org/10.5772/66071

29



to the global minimum are achieved in the optimization of the Thomson problem and Nickel
cluster structure [4–6]. Lemes et al. [22] observed a similar trend when optimizing the structure
of a silicon cluster.

2.3.2. Improvement of GSA

A simple technique to accelerate convergence is as follows:

Tqa ¼
Tqv

t
(11)

where Tqa is the acceptance temperature, Tqv is the visiting temperature, and t is the number of
time steps. Our testing shows that this simple technique accelerates convergence [6].

The performance of GSA can be further improved by combining GSA with a local search
method, large-scale bound-constrained Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
[23] for a smooth function, or Nelder-Mead [24] for a non-smooth function. A local search is
performed at the end of each Markov chain for GSA.

3. Results

The GenSA R package has been developed and added to the toolkit for solving optimization
problems in the Comprehensive R Archive Network (CRAN) R packages repository. The
package GenSA has proven to be a useful tool for solving global optimization problems [17].

3.1. Usage

The GenSA R package provides a unique function called GenSA whose arguments were
described in the associated help [25]:

par: Numeric vector. Initial values for the parameters to be optimized over. Default value is
NULL, in which case, the initial values will be generated automatically.

lower: Numeric vector with a length of par. Lower bounds for the parameters to be optimized
over.

upper: Numeric vector with a length of par. Upper bounds for the parameters to be optimized
over.

fn: A function to be minimized, where the first argument is the vector of parameters over
which minimization is to take place. It should return a scalar result. The function has to
always return a numerical value; however, not applicable (NA) and infinity are supported.

...: Allows the user to pass additional arguments into fn.
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control: A list of control parameters, discussed below. The control argument is a list that can be
used to control the behavior of the algorithm. Some components of control are the following:

• maxit: Integer. Maximum number of iterations of the algorithm. Default value is 5000,
which could be increased by the user for the optimization of a very complicated objective
function.

• threshold.stop: Numeric. The program will stop when the objective function value is≤
threshold.stop. Default value is NULL.

• smooth: Logical. TRUE when the objective function is smooth, or differentiable almost
everywhere, and FALSE otherwise. Default value is TRUE.

• max.call: Integer. Maximum number of calls of the objective function. Default value is
10,000,000.

• max.time: Numeric.Maximum running time in seconds.

• temperature: Numeric. Initial value for the temperature.

• visiting.param: Numeric.Parameter for the visiting distribution.

• acceptance.param: Numeric.Parameter for the acceptance distribution.

• verbose: Logical. TRUE means that messages from the algorithm are shown. Default value
is FALSE.

• trace.mat: Logical. Default value is TRUE, which means that the trace matrix will be
available in the returned value of the GenSA call.

The default values of the control components are set for a complicated optimization problem.
For typical optimization problems with medium complexity, GenSA can determine a reason-
able solution quickly; thus,using the variable threshold.stop to the expected function value is
recommended to make GenSA stop at an earlier stage. A maximum run time can be also set by
max.time argument or max.call argument for setting the maximum run time or number of
calls, respectively.

3.2. Performance

An extensive performance comparison of currently available R packages for continuous global
optimization problems has been published [26]. In this comparison, 48 benchmark functions
were used to compare 18 R packages for continuous global optimization. Performance was
measured in terms of the quality of the solutions determined and speed. The author concluded
that GenSA and rgenoud are recommended in general for continuous global optimization [26].
Based on this conclusion, we set out to perform a more extensive performance test by includ-
ing more benchmark functions and the additional algorithm DEoptim. The SciPy Python
scientific toolkit provides an extensive set of 196 benchmark functions. Because these 196

Generalized Simulated Annealing
http://dx.doi.org/10.5772/66071

31



benchmark functions are coded in Python, we had to convert the Python code to R code. As a
result, a subset containing 134 functions was available for this test. One hundred runs using a
random initial starting point were performed for every combination of the 134 benchmark
functions and the aforementioned three methods. We used a local search method to further
refine the best solution provided by Deoptim, because this technique provides a more accurate
final result [17]. The default values of the parameters of every package were used in this
comparison. A tolerance of 1e-8 was used to establish whether the algorithm determines the
global minimum value.

The reliability of a method can be measured by the success rate%, which is defined as the
number of successful runs over 100 runs. For each testing function, the number of function
calls required to achieve the global minimum was recorded for every method, and we refer to
this as the number of function calls. Please note that rgenoud required a longer time to
complete 100 runs compared with GenSA and DEoptim. Table 1 shows the success rate% and
the average number of function calls (in parentheses).

The mean of the success rate% over all the benchmark functions is 92, 85, and 86% for GenSA,
DEoptim, and rgenoud, respectively. Because the number of function calls changes dramati-
cally, the median rather than the mean of the number of function calls is provided: 244.3 for
GenSA, 1625.9 for Deoptim, and 1772.1 for rgenoud.

A heatmap of the success rate% for GenSA, DEoptim, and rgenoud is displayed in Figure 1.
The color scaling from red to green represents the success rate% from 0 to 100. Clearly, GenSA
has a larger green region (high success rate%) than DEoptim and rgenoud.

Both the success rate% and number of function calls show that GenSA performed better than
DEoptim and rgenoud in the testbed composed of 134 benchmark functions.

3.3. Applications

3.3.1. The Thomson problem in physics

The physicist J.J. Thomson posed the famous Thomson problem after proposing his plum
pudding atomic model, based on his knowledge of the existence of negatively charged elec-
trons within neutrally charged atoms [27]. The objective of the Thomson problem is to deter-
mine the minimum electrostatic potential energy configuration of N equal point charges
constrained at the surface of a unit sphere that repel each other with a force given by Cou-
lomb's law. The Thomson model has been widely studied in physics [28–31]. In the Thomson
model, the energy function is

E ¼ 1
2
∑
j≠i

1

j r!i− r
!

jj
: (12)

The number of metastable structures (local minima) of the Thomson problem grows exponen-
tially with N [28]. The region containing the global minimum is often small compared with
those of other minima [30]. The Thomson problem has been selected as a benchmark for global
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Function name GenSA DEoptim-LBFGS rgenoud

AMGM 100% (93.0) 100% (62.6) 100.0% (88.8)

Ackley01 100% (746.2) 100% (1710.0) 100.0% (1840.1)

Ackley02 100% (182.9) 100% (1703.6) 100.0% (2341.6)

Ackley03 100% (352.5) 100% (1420.2) 100.0% (1860.9)

Adjiman 100% (33.3) 100% (1133.9) 100.0% (1677.5)

Alpine01 100% (756.0) 70% (2756.8) 95.0% (46852.2)

Alpine02 100% (56.4) 100% (913.6) 100.0% (1688.0)

BartelsConn 100% (263.1) 100% (1539.8) 100.0% (2343.5)

Beale 100% (145.6) 100% (1311.8) 100.0% (1711.0)

BiggsExp02 100% (85.6) 100% (763.3) 100.0% (1710.5)

BiggsExp03 100% (190.7) 100% (2614.4) 100.0% (1975.9)

BiggsExp04 100% (3498.8) 88% (8182.5) 100.0% (4234.5)

BiggsExp05 98% (40117.8) 14% (10864.2) 17.0% (13871.5)

Bird 100% (112.3) 100% (1777.3) 100.0% (1702.9)

Bohachevsky1 100% (875.1) 100% (1107.5) 100.0% (2673.1)

Bohachevsky2 100% (1372.9) 100% (1155.2) 76.0% (2554.5)

Bohachevsky3 100% (623.4) 100% (1342.4) 96.0% (2596.9)

BoxBetts 100% (129.2) 100% (1866.3) 100.0% (2018.8)

Branin01 100% (42.2) 100% (1747.6) 100.0% (1694.9)

Branin02 100% (1495.7) 28% (2830.9) 96.0% (1752.3)

Brent 100% (11.0) 100% (987.5) 100.0% (1687.9)

Bukin02 100% (39.9) 100% (1477.4) 100.0% (1679.7)

Bukin04 100% (217.9) 100% (1029.4) 100.0% (1744.2)

Bukin06 0% (NA) 0% (NA) 0.0% (NA)

CarromTable 100% (119.5) 100% (2040.9) 100.0% (1729.6)

Chichinadze 100% (517.4) 100% (1063.9) 92.0% (2219.8)

Colville 100% (4515.8) 100% (8230.9) 100.0% (2996.1)

CosineMixture 100% (22.0) 100% (3875.3) 100.0% (1670.6)

CrossInTray 100% (70.8) 100% (1512.8) 100.0% (1772.1)

CrossLegTable 0% (NA) 0% (NA) 2.0% (51829.0)

CrownedCross 0% (NA) 0% (NA) 2.0% (16045.0)

Cube 100% (1717.2) 100% (2030.3) 52.0% (21649.8)

DeVilliersGlasser01 100% (2343.8) 0% (NA) 1.0% (43919.0)

DeVilliersGlasser02 2% (173501.0) 0% (NA) 0.0% (NA)

Deb01 100% (57.1) 100% (4000.0) 100.0% (1700.8)

Deb03 100% (78.8) 100% (4028.9) 100.0% (1708.1)
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Function name GenSA DEoptim-LBFGS rgenoud

Decanomial 100% (1519.3) 100% (741.4) 100.0% (2050.8)

DeckkersAarts 100% (74.6) 100% (1525.0) 100.0% (1988.7)

Dolan 100% (2504.7) 1% (10293.0) 82.0% (25067.4)

DropWave 100% (3768.7) 85% (4009.8) 83.0% (2973.3)

Easom 97% (5077.5) 100% (1343.0) 100.0% (1875.7)

EggCrate 100% (122.9) 100% (912.2) 100.0% (1697.2)

ElAttarVidyasagarDutta 100% (675.7) 93% (1625.9) 100.0% (2115.7)

Exp2 100% (85.3) 100% (781.2) 100.0% (1707.7)

Exponential 100% (20.6) 100% (580.3) 100.0% (1682.5)

FreudensteinRoth 100% (395.4) 83% (2620.7) 100.0% (1700.9)

Gear 100% (2225.8) 100% (1118.0) 93.0% (1609.6)

Giunta 100% (39.6) 100% (592.3) 100.0% (1686.6)

GoldsteinPrice 100% (158.7) 100% (1023.0) 100.0% (1703.5)

Gulf 100% (1739.0) 100% (4076.4) 1.0% (1810.0)

Hansen 100% (149.7) 100% (104.0) 100.0% (132.0)

HimmelBlau 100% (53.7) 100% (2384.8) 100.0% (1698.7)

HolderTable 100% (138.0) 100% (2010.3) 100.0% (1701.7)

Hosaki 100% (49.8) 100% (583.2) 100.0% (1699.5)

Infinity 100% (225.8) 100% (113.4) 100.0% (492.0)

JennrichSampson 0% (NA) 0% (NA) 0.0% (NA)

Keane 100% (21.4) 100% (679.1) 100.0% (629.5)

Leon 100% (128.0) 100% (1338.2) 35.0% (2156.5)

Levy05 100% (152.8) 100% (144.7) 100.0% (224.6)

Levy13 100% (867.3) 100% (1138.5) 100.0% (1771.7)

Matyas 100% (33.8) 100% (967.7) 100.0% (1702.4)

McCormick 100% (42.2) 100% (747.8) 100.0% (1705.4)

Michalewicz 100% (97.3) 100% (69.0) 100.0% (157.3)

MieleCantrell 100% (2935.1) 100% (1942.7) 100.0% (3438.9)

Mishra03 81% (138334.7) 0% (NA) 24.0% (5745.0)

Mishra04 0% (NA) 0% (NA) 13.0% (1833.2)

Mishra05 100% (1289.1) 77% (1396.9) 100.0% (1680.0)

Mishra06 0% (NA) 0% (NA) 0.0% (NA)

Mishra07 100% (38.9) 100% (3055.9) 100.0% (1679.7)

Mishra08 100% (1519.3) 100% (741.4) 100.0% (1900.8)

Mishra09 100% (80.0) 85% (4832.0) 99.0% (12356.0)
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Function name GenSA DEoptim-LBFGS rgenoud

Mishra11 100% (30.9) 100% (3152.2) 100.0% (1613.1)

MultiModal 100% (134.5) 100% (481.8) 100.0% (1691.6)

NewFunction01 1% (243864.0) 0% (NA) 27.0% (9823.3)

NewFunction02 0% (NA) 0% (NA) 33.0% (12260.0)

Parsopoulos 100% (29.9) 100% (3267.7) 100.0% (1683.9)

Paviani 100% (423.3) 100% (18764.2) 100.0% (2168.7)

PenHolder 100% (94.3) 100% (1391.3) 100.0% (1701.6)

Plateau 100% (35.5) 100% (22.4) 100.0% (27.6)

Powell 100% (692.4) 100% (6501.1) 100.0% (2052.4)

Price01 100% (27.4) 100% (2107.0) 100.0% (1686.6)

Price02 100% (1242.4) 92% (4031.3) 85.0% (2087.7)

Price03 100% (3840.5) 64% (2574.6) 56.0% (1855.1)

Price04 100% (440.1) 100% (1075.4) 94.0% (6413.9)

Qing 0% (NA) 0% (NA) 0.0% (NA)

Quadratic 100% (26.0) 100% (872.2) 100.0% (1695.8)

Quintic 100% (928.2) 76% (2694.1) 36.0% (42496.5)

Rastrigin 100% (482.4) 98% (3753.6) 100.0% (1840.2)

Ripple01 100% (5742.4) 71% (4053.3) 99.0% (4758.6)

Ripple25 100% (414.7) 99% (3165.8) 100.0% (1771.5)

RosenbrockModified 100% (1343.5) 24% (3625.6) 95.0% (2329.0)

RotatedEllipse01 100% (26.0) 100% (1345.8) 100.0% (1699.9)

RotatedEllipse02 100% (28.0) 100% (1218.1) 100.0% (1700.8)
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Schaffer01 99% (7105.6) 92% (3092.8) 59.0% (4520.3)
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Schwefel21 100% (2158.6) 100% (1853.2) 100.0% (1774.8)

Schwefel22 100% (2772.0) 100% (1678.6) 100.0% (1775.0)

Schwefel26 100% (131.3) 100% (1648.2) 100.0% (1687.5)

Schwefel36 100% (361.3) 100% (1298.7) 100.0% (1930.6)
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optimization algorithms in a number of previous studies [4, 5, 28, 32]. The Thomson problem
has been solved by both deterministic methods, including steepest descent [28], and stochastic
methods, including (but not limited to) constrained global optimization (CGO) [29], the GSA
algorithm [4, 5], genetic algorithms [30], and the Monte Carlo method [31, 33]. Typically,
deterministic methods with multiple starts can provide a good solution when there are fewer
point charges, whereas stochastic methods have to be used when N is large.

Function name GenSA DEoptim-LBFGS rgenoud

SixHumpCamel 100% (83.3) 100% (909.2) 100.0% (1695.7)

Sodp 100% (64.3) 100% (477.7) 100.0% (1697.5)

Sphere 100% (17.4) 100% (730.2) 100.0% (1683.2)

Step 100% (471.0) 100% (219.3) 100.0% (1131.5)

Step2 100% (433.4) 100% (222.0) 100.0% (1177.1)

StyblinskiTang 100% (94.7) 100% (861.4) 100.0% (1824.2)

TestTubeHolder 100% (839.0) 98% (3957.5) 100.0% (2088.5)

ThreeHumpCamel 100% (86.3) 100% (817.5) 100.0% (1699.0)

Treccani 100% (49.1) 100% (1015.2) 100.0% (1696.4)

Trefethen 64% (20972.8) 0% (NA) 46.0% (29439.5)

Trigonometric02 100% (1766.2) 100% (1319.6) 99.0% (4809.6)

Ursem01 100% (47.7) 100% (682.1) 100.0% (1753.8)

Ursem03 100% (584.0) 100% (1645.7) 100.0% (1777.7)

Ursem04 100% (210.2) 100% (1372.3) 100.0% (1847.3)

UrsemWaves 100% (2565.0) 26% (4025.8) 50.0% (1674.8)

VenterSobiezcczanskiSobieski 100% (698.3) 100% (1748.0) 100.0% (2004.8)

Vincent 100% (41.4) 100% (3013.4) 100.0% (1703.5)

Wavy 100% (535.1) 100% (3110.8) 100.0% (1745.0)

WayburnSeader01 100% (156.1) 96% (2258.3) 93.0% (16665.5)

WayburnSeader02 100% (262.8) 100% (1772.3) 100.0% (1826.0)

Wolfe 100% (50.3) 100% (3252.9) 100.0% (1720.7)

XinSheYang02 100% (1048.0) 87% (2284.5) 100.0% (1768.5)

XinSheYang04 100% (457.0) 88% (3329.7) 100.0% (1777.5)

Xor 100% (26204.2) 48% (18245.1) 100.0% (1852.9)

YaoLiu09 100% (482.3) 98% (3753.6) 100.0% (1824.3)

Zacharov 100% (59.7) 100% (944.3) 100.0% (1696.6)

Zettl 100% (123.4) 100% (846.8) 100.0% (1712.5)

Zirilli 100% (131.0) 99% (702.3) 100.0% (1695.1)

Table 1. The success rate% and average number of function calls (in parentheses) for GenSA, DEoptim, and rgenoud.
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We can define an R function for the Thomson problem as follows:

>Thomson.fn<- function(x) {
fn.call<<- fn.call + 1
x <- matrix(x, ncol = 2)
y <- t(apply(x, 1, function(z) {
c(sin(z [1]) * cos(z [2]),
sin(z [1]) * sin(z [2]), cos(z [1])) }))
n <- nrow(x)
tmp<- matrix(NA, nrow = n, ncol = n)
index<- cbind(as.vector(row(tmp)), as.vector(col(tmp)))
index<- index [index [, 1] < index [, 2],, drop=F]
rdist<- apply(index, 1, function(z) {
tmp<- 1/sqrt(sum((y [z [1],] - y [z [2],])^2))
})
res<- sum(rdist)
return(res)
}

In this example, we chose six point charges because our purpose is only to show how to use
our package GenSA. The global energy minimum of six equal point charges on a unit sphere is
9.98528137 [28].

We applied GenSA with default settings to the Thomson problem. As the number of point
charges is small, GenSA can determine the global minimum easily. We set the maximum
number of function calls allowed, max.call, to 600:

>n.particles<- 6 # regular octahedron with global minimum
9.98528137
>lower.T<- rep(0, 2 * n.particles)
>upper.T<- c(rep(pi, n.particles), rep(2 * pi, n.particles))
>require(GenSA)
>options(digits = 9)
>set.seed(1234)
>fn.call<<- 0
>out.GenSA<- GenSA(par = NULL, lower = lower.T, upper = upper.T,
fn = Thomson.fn, control = list(max.call=600))
>print(out.GenSA[c(“value”, “counts”)])
$value
[1]9.98528137
$counts
[1]600
>cat(“GenSA call function”, fn.call, “times.\n”)
GenSA call function 600 times.

The global minimum 9.98528137 for six point charges is determined within 600 function calls.
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3.3.2. Kinetic modeling of pesticide degradation

Various types of pesticides have been widely used in modern agriculture. It is important to
calculate the concentration of a pesticide in groundwater and surface water. We will show how
GenSA can be used to fit a degradation model for a parent compound with one transformation
product. All the data and models are from the R packages mkin [34] and FOCUS (2006) [35].

After loading the library, we obtain the data (FOCUS Example Dataset D). The observed
concentrations are in the column named “value” at the time specified in column “time” for
the two observed variables named “parent” and “m1.”

>require(mkin)
>require(GenSA)
>require(deSolve)
>options(digits = 9)
>set.seed(1234)
>str(FOCUS_2006_D)
'data.frame':44 obs. of3 variables:
$ name : Factor w/2 levels “m1”,”parent”: 2 2 2 2 2 2 2 2 2 2 ...
$ time :num0 0 1 1 3 3 7 7 14 14 ...
$ value: num99.5 102 93.5 92.5 63.2 ...

The measured concentration of parent and m1 change with time is displayed in the lower
panel of Figure 2.

According to the kinetic model displayed in the upper panel of Figure 2, we define the
derivative function as follows:

>df<- function(t, y, parameters) {
+d_parent<- -parameters [”k_parent_sink”] * y [”parent”]-
+parameters [”k_parent_m1”]* y [”parent”]
+d_m1 <- parameters [”k_parent_m1”]* y [”parent”]-
+parameters [”k_m1_sink”]* y [”m1”]
+return(list(c(d_parent, d_m1)))
+ }

There is one initial concentration, parent_0, and three kinetic parameters, k_parent_m1,
k_parent_sink, and k_m1_sink, whose values need to be fitted out by fitting the concentration
curves. The initial concentration of m1, m1_0, is always zero. We define the objective function,
fn, as the sum of the squares of residuals (deviations predicted from observed values for both
the parent and m1):
>fn<- function(x,
+names_x = c(“parent_0”, “k_parent_sink”, “k_parent_m1”,
“k_m1_sink”),

+names_y = c(“parent”, “m1”),
+names_parameters = c(“k_parent_sink”, “k_parent_m1”,
“k_m1_sink”),
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+tspan = if (!is.null(dat.fitting))
+sort(unique(dat.fitting [[”time”]])) else NULL,
+df, dat.fitting = NULL) {
+m1_0 = 0
+names(x) <- names_x
+y0 <- c(x [”parent_0”], m1_0)
+names(y0) <- names_y
+parameters<- x [c(“k_parent_sink”, “k_parent_m1”, “k_m1_sink”)]
+stopifnot(!is.null(tspan))
+out<- ode(y0, tspan, df, parameters)
+if (is.null(dat.fitting)) {
+rss<- out
+ }else {
+rss<- sum(sapply(c(“parent”, “m1”), function(nm) {
+o.time<- as.character(dat.fitting [dat.fitting$name == nm,
”time”])
+sum((out [, nm][match(o.time, out [, “time”])] -
+dat.fitting [dat.fitting$name == nm, “value”])^2,
na.rm = TRUE)
+}))
+}
+return(rss)
+ }

Then, we use GenSA to estimate the four parameters. As the model is not complicated, we
limit the running time of GenSA to 5seconds by setting max.time=5:

>res<- GenSA(fn = fn, lower = c(90, rep(0.001, 3)),
+upper = c(110, rep(0.1, 3)),
+control = list(max.time = 5), df = df,
+dat.fitting = FOCUS_2006_D)
>names(res$par) <- c(“parent_0”, “k_parent_sink”, “k_parent_m1”,
“k_m1_sink”)
>print(round(res$par, digits = 6))
parent_0 k_parent_sinkk_parent_m1k_m1_sink
99.5984910.0479200.0507780.005261

GenSA successfully determines the correct value of the initial concentration of the parent and
the three kinetic parameters. The fitting curves for the parent and m1 are displayed in the
lower panel of Figure 2.

3.3.3. Finance: risk allocation portfolios

Portfolio selection problems were addressed by mean-risk models in the 1950s. The most
popular measures of downside risk are the value-at-risk (VaR) and conditional VaR(CVaR).
Portfolio weights for which the portfolio has the lowest CVaR and each investment can
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contribute at most 22.5% to the total portfolio CVaR risk were estimated using differential
evolution algorithms in Mullen et al. [16] and Ardia et al. [36]. The code for the objective
function in portfolio optimization is rewritten below from Ardia et al. [36]:

>library(“quantmod”)
> tickers <- c(“GE”, “IBM”, “JPM”, “MSFT”, “WMT”)
>getSymbols(tickers, from = “2000-12-01”, to = “2010-12-31”)
[1] “GE” “IBM” “JPM” “MSFT” “WMT”
> P <- NULL
>for(ticker in tickers) {

Figure 2. Kinetic modeling of pesticide degradation. Upper panel: illustration of pesticide degradation model. Lower
panel: experimental concentration data and fitting curves for parent and m1.
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+tmp<- Cl(to.monthly(eval(parse(text = ticker))))
+P <- cbind(P, tmp)
+ }
>colnames(P) <- tickers
> R <- diff(log(P))
> R <- R [-1,]
> mu <- colMeans(R)
> sigma <- cov(R)
>library(“PerformanceAnalytics”)
>pContribCVaR<- ES(weights = rep(0.2, 5),
+method = “gaussian”, portfolio_method = “component”,
+mu = mu, sigma = sigma)$pct_contrib_ES
>obj<- function(w) {
+if (sum(w) == 0) {w <- w + 1e-2 }
+w <- w/sum(w)
+CVaR<- ES(weights = w,
+method = “gaussian”, portfolio_method = “component”,
+mu = mu, sigma = sigma)
+tmp1 <- CVaR$ES
+tmp2 <- max(CVaR$pct_contrib_ES - 0.225, 0)
+out <- tmp1 + 1e3 * tmp2
+return(out)
+}

GenSA can be used to determine the global optimum of this function using a bounded search
domain from 0 to 1 values for the five parameters to be optimized:

>library(GenSA)
>lb<- rep(0, 5) # lower bounds, minimum values for all 5 parameters
are 0
>ub<- rep(1, 5) # upper bounds, maximum values for all 5 parameters
are 1
> out1.GenSA <- GenSA(fn = obj, lower = lb, upper = ub)

For non-differentiable objective functions, the smooth parameter in the control argument can
be set to FALSE, which means that the Nelder-Mead method is used in the local search:

> out2.GenSA <- GenSA(fn=obj, lower=rep(0, 5), upper=rep(1, 5),
+control=list(smooth=FALSE, max.call=3000))
The max.call parameter is set to 3000 to make the algorithm stop
earlier:
> out2.GenSA$value
[1] 0.1141484884
> out2.GenSA$counts
[1] 3000
>cat(“GenSA call functions”, fn.call.GenSA, “times.\n”)
GenSA call functions 3000 times.
>wstar.GenSA<- out2.GenSA$par
>wstar.GenSA<- wstar.GenSA/sum(wstar.GenSA)
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>rbind(tickers, round(100 * wstar.GenSA, 2))
[,1] [,2] [,3] [,4] [,5]
tickers “GE” “IBM” “JPM” “MSFT” “WMT”
”18.92” “21.23” “8.33” “15.92” “35.6”
>100 * (sum(wstar.GenSA * mu) - mean(mu))
[1] 0.03790568876

GenSA determined a minimum of 0.1141484884 within 3000 function calls.

4. Discussion and conclusions

The discrete optimization problem, in particular, the feature selection problem, exists exten-
sively. GSA can also be used for the discrete problem. Please refer to [37] for details.

GSA is a powerful method for the non-convex global optimization problem. We developed an
R package GenSA based on Tsallis statistics and GSA. In an extensive performance testbed
composed of 134 benchmark functions, GenSA provided a higher average success rate% and a
smaller median of the number of function calls compared with two widely recognized R
packages: DEoptim and rgenoud. GenSA is useful and can provide a solution that is compara-
ble with or even better than that provided by other widely used R packages for optimization.

R is very good for program prototype. When there is a need for heavy computation, other
computational languages, such as C/C++, Fortran, Java, and Python,are recommended. Con-
sidering both speed and usability, aPython version of GSA, PyGenSA, is being developed and
will be released within the SciPy scientific toolkitat the end of 2016.
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Abstract

In modern engineering finding an optimal design is formulated as an optimization
problem which involves evaluating a computationally expensive black-box function.
To alleviate these difficulties, such problems are often solved by using a metamodel,
which approximates the computer simulation and provides predicted values at a
much lower computational cost. While metamodels can significantly improve the
efficiency of the design process, they also introduce several challenges, such as a high
evaluation cost, the need to effectively search the metamodel landscape and to locate
good solutions, and the selection of which metamodel is most suitable to the problem
being solved. To address these challenges, this chapter proposes an algorithm that
uses a hybrid simulated annealing and SQP search to effectively search the
metamodel. It also uses ensembles that combine prediction of several metamodels to
improve the overall prediction accuracy. To further improve the ensemble accuracy, it
adapts the ensemble topology during the search. Finally, to ensure convergence to a
valid optimum in the presence of metamodel inaccuracies, the proposed algorithm
operates within a trust-region framework. An extensive performance analysis based
on both mathematical test functions and an engineering application shows the effec-
tiveness of the proposed algorithm.

Keywords: simulated annealing, metamodelling, ensembles, trust-region, expensive
optimization problems

1. Introduction

With the advent of high performance computing, intricate computer simulations can now
model real-world physics with high accuracy. This, in turn, transformed the engineering
design process into a simulation-driven process in which candidate designs are evaluated by
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a computer simulation instead of a laboratory experiment. In this set-up, the design process is
formulated as an optimization problem with several unique features [1]:

• The computer simulation acts as the objective function, since it assigns objective values to
candidate designs. However, the simulation is often a legacy code or commercial software
whose inner workings are inaccessible to the user, and so there is no analytic expression
that defines how candidate designs are mapped to objective values. Such a black-box
function precludes the use of optimization algorithms that require an analytic function.

• Each simulation run is computationally expensive, that is, it requires a lengthy run time, and
this severely restricts the number of candidate designs that can be evaluated.

• Both the real-world physics being modelled and the numerical simulation process may
result in an objective function, which has a complicated landscape, and this further
complicates the optimization process.

An optimization strategy that has proven effective in such problems is that of metamodel-
assisted optimization, namely, where a metamodel approximates the true expensive function
and provides predicted objective values at a lower computational cost [1]. However, the
integration of metamodels and ensembles into the optimization search introduces several
challenges:

• Locating a good solution requires effectively searching the metamodel, which can have a
complicated landscape with multiple local solutions, and hence can be a difficult task.

• Since function evaluations are expensive, only a small number of evaluated vectors will be
available and hence the metamodel will be inaccurate. In severe cases, the optimization
search can converge to a false optimum, namely, which was artificially created by the
metamodel's inaccurate approximation of the true expensive function.

• A variety of metamodels have been proposed, for example, artificial neural networks
(ANNs), Kriging and radial basis functions (RBFs) [2, 3], but the optimal variant is
problem-dependant, and is typically not known a priori. In an attempt to address this
issue, ensembles employ several metamodels concurrently and aggregate their individual
predictions into a single one [4, 5]. However, the effectiveness of ensembles depends on
their topology, namely, which metamodels they incorporate, but the optimal topology is
again typically unknown a priori, and may be impractical to identify by numerical exper-
iments due to the high cost of each simulation run.

To address this issue, this chapter proposes an optimization algorithm that uses a hybrid-
simulated annealing (SA) search followed by a local refinement of solutions based on an SQP
search. In this manner, this set-up achieves both an effective global and local search, which
assists in locating good solutions. To address the issue of inaccurate metamodel predictions,
the proposed algorithm operates within a trust region (TR) approach that manages the
metamodel and ensures convergence to a valid optimum. Finally, to further improve the
prediction accuracy the proposed algorithm uses ensembles and selects the most suitable
topology during the search.

Computational Optimization in Engineering - Paradigms and Applications48
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Accordingly, this chapter presents several contributions: (a) a hybrid SA-SQP metamodel-
assisted search, (b) integration within a TR framework, and (c) continuous selection of the
ensemble topology during the search. An extensive performance analysis based on both
mathematical test functions and an engineering problem of airfoil shape optimization shows
the effectiveness of the proposed algorithm.

The remainder of this chapter is organized as follows: Section 2 provides the background
information, Section 3 describes the proposed algorithm, then Section 4 provides an
extensive performance evaluation and discussion, and finally Section 5 concludes this
chapter.

2. Background

2.1. Optimization techniques

As mentioned in Section 1, simulation-driven problems often include a challenging objective
function, such as having multiple local optima or lacking an analytic expression. In such
settings, classical gradient-based optimization algorithms can perform poorly, and therefore
researchers have explored various alternative approaches [1]. One class of such algorithms is
the nature-inspired metaheuristics, which include evolutionary algorithms (EAs), particle
swarm optimization (PSO), and SA. The latter was inspired by the physics of the annealing
process in metals: initially a metal has a high temperature and so particles have a high
probability of moving to a higher energy state. As the metal cools in the annealing process,
particles are more likely to move to a lower energy level than to a higher one. The process is
completed once the system has reached the lowest possible energy level, typically its temper-
ature of equilibrium with the environment. In the realm of global optimization, these
mechanics have been translated into a heuristic search, which starts with an initial vector,
namely, a candidate solution. During the search, the current vector is perturbed so that new
vectors in its vicinity are obtained. These vectors are evaluated and replace the original vector
if: (a) they are better, or (b) they are worse and with probability p, which is analogous to the
energy state changes. As p decreases, the search is transformed from being explorative to
being more localized. Two main parameters of the SA algorithm are the annealing schedule,
namely, the duration of the search process, which is determined by the manner that the
temperature is decreased, and the selection probability function, which defines the dynamic
threshold for accepting a worse solution. Algorithm 1 gives a pseudocode of a baseline SA
algorithm, while Section 3 gives the specific parameter settings of the SA implementation
used in this study.

The underlying mechanism of the SA algorithm was originally proposed by Metropolis et al.
[6], while the more common annealing-inspired formulation was later proposed by Černy [7]
and Kirkpatrick et al. [8]. Since then the algorithm has been widely used in the literature, and
some recent examples include [9] in finance, [10] in machine learning, [11] in chemical engi-
neering and [12] in production line machine scheduling.
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2.2. Expensive black-box problems

Computationally expensive optimization problems are common across engineering and sci-
ence. Typically in such problems, candidate designs are parameterized as vectors of design
variables and sent to the simulation for evaluation, as shown in Figure 1.

As mentioned in Section 1, metamodels are often used in such settings to alleviate the high
computational cost of the simulation runs [2, 3]. However, the integration of metamodels into
the search introduces two main challenges:

• Prediction uncertainty: Due to the high cost of the simulation runs only a small number of
designs can be evaluated, which in turn degrades the prediction accuracy of the
metamodel and leads to optimization with uncertainty regarding the validity of the
predicted objective values [13]. To address this, the metamodel needs to be updated
during the search to ensure that its accuracy is sufficient to drive the search to a correct
final result. To accomplish this, the proposed algorithm is structured based on the TR
approach [14]. In this way, the algorithm performs a sequence of trial steps that are
constrained to the TR, namely, the region where the metamodel is assumed to be accurate.
Based on the success of the trial step, namely, if a new optimum has been found, the TR
and the set of vectors are updated. Section 3 presents a detailed description of the TR
approach implemented in this study.

• Metamodel suitability: Various metamodel variants have been proposed, but the optimal
variant is problem dependant and is typically unknown a priori [15]. To address this,
ensembles employ multiple metamodels concurrently and combine their predictions into
a single one to obtain a more accurate prediction [4, 5, 16]. Figure 2 shows an example
based on the Rosenbrock function.

The ensemble topology, namely, which metamodel variants are incorporated, is typically
determined a priori and is unchanged during the search. However, the topology directly
affects the prediction accuracy, and hence an unsuitable topology can degrade the search
effectiveness. As an example, RBFs, RBFN and Kriging metamodels (described in Appen-
dix 1) were used to generate several ensemble topologies. The same testing and training
samples were used with all the topologies (sized 30 and 20 vectors, respectively), such that
each ensemble was trained with training sample and its prediction accuracy was tested on

Figure 1. The layout of an expensive black-box optimization problem. The optimization algorithm generates candidate
solutions, and these are evaluated by the simulation, which acts as a ‘black-box’ function, to obtain their corresponding
objective values.
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the testing sample. The prediction accuracy was measured both with the root mean
squared error (RMSE),

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1


f̂ ðxiÞ−f ðxiÞ

2
s

(1)

and the R2 indicator,

R2 ¼ St−Sr
St

; (2a)

where

St ¼ ∑ðf ðxiÞ−f ðxiÞÞ2;  Sr ¼ ∑ðf ðxiÞ−f̂ ðxiÞÞ2; (2b)

Figure 2. An ensemble topology consisting of RBF, RBFN and Kriging metamodels. The overall prediction is the aggre-
gation of the individual predictions.

Ensemble topology

R+RN R+K RN+K

Function RMSE R2 RMSE R2 RMSE R2

Ackley-5D 1.172e+00 -1.830e-02 1.630e+00 -2.613e-02 1.176e+00 -9.521e-01

Rastrigin-10D 3.149e-02 -2.407e-01 2.471e-02 -1.812e-01 2.907e-02 -3.381e-01

Rosenbrock-20D 6.101e-04 -3.566e-01 4.968e-04 -4.541e-01 3.859e-04 -1.410e-01

Schwefel 2.13-30D 1.003e-03 -9.573e-01 2.234e-04 -7.182e-02 3.212e-04 -1.321e-01

Note: R: RBF, RN: RBF network, K: Kriging.

Table 1. Statistics for prediction accuracies of different topologies.
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where f ðxÞ, and f̂ ðxÞ are the true and the ensemble predicted values, respectively, and xi,
i ¼ 1…n are the testing vectors. Table 1 presents the test results, fromwhich it follows that
the prediction accuracy varied with the topology and that no single topology was the
overall best.

Addressing this issue, the algorithm proposed in this study selects the most suitable ensemble
topology during the search, as explained in the following section.

3. Proposed algorithm

This section describes the algorithm proposed in this study, which is designed to address the
issues described in Sections 1 and 2. The proposed algorithm operates in five main steps, as
follows:

Step 1. Initialization: The algorithm begins by generating an initial sample of vectors based on
the optimal Latin hypercube design (OLHD) method [17]. The method ensures that the resul-
tant sample is space-filling, namely, adequately covers the search space, which in turn
improves the prediction accuracy of the metamodels. The OLHD method exploits patterns of
point locations for optimal Latin hypercube designs based on a variation of the maximum
distance criterion to produce near-optimal designs efficiently. After generating the sample, the
vectors are evaluated with the true expensive function.

Step 2. Ensemble selection:

Step 2.1. Following the cross-validation (CV) procedure [18], the vectors that have been evalu-
ated so far are split into a training set and a testing set. In turn, each candidate metamodel
variant is trained with the training set and is tested on the testing set. The prediction accuracy
is measured with the root mean squared error (RMSE), which is calculated as

εj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l
∑
l

i¼1


mjðxiÞ−f ðxiÞ

2
s

; (3)

where xi, i ¼ 1…l, are the vectors in the testing set, f ðxiÞ is the exact and already known
function value at xi, and mjðxÞ is the prediction of the jth metamodel variant that has been
trained with the training set.

Step 2.2. The evaluated vectors are again split into a training and a testing set. For each
candidate ensemble topology, the following steps are performed:

• Each metamodel variant that is active in the ensemble is assigned an ensemble weight,
which is calculated as

wi ¼
ε−1i

∑nm
j¼1ε

−1
j

; (4)

and the overall ensemble prediction is then given by
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function value at xi, and mjðxÞ is the prediction of the jth metamodel variant that has been
trained with the training set.
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candidate ensemble topology, the following steps are performed:

• Each metamodel variant that is active in the ensemble is assigned an ensemble weight,
which is calculated as
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and the overall ensemble prediction is then given by
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ψðxÞ ¼ ∑
nm

i¼1
wimiðxÞ, (5)

where nm is the number of participating metamodels in the ensemble and miðxÞ is a
metamodel that has been trained with the new training sample.

• The prediction accuracy of the ensemble is estimated based on its RMSE on the testing set

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k
∑
k

i¼1


ψðxiÞ−f ðxiÞ

2
s

; (6)

where xi, i ¼ 1…k, are the vectors in the testing set.

Step 2.3. After repeating the process with all the candidate topologies, the one having the
lowest RMSE, as defined in Eq. (6), is selected for the current optimization iteration. A
new ensemble is then trained based on the selected topology and on all the evaluated
vectors. This ensemble will be used in the following step.

It is emphasized that during the above process, the true expensive function is not used,
and hence the process requires negligible computational resources.

For the specific implementation in this chapter, three well-established metamodels were
considered for the ensembles: RBF, RBFN and Kriging that are all described in Appendix
1, while Table 2 presents the candidate ensemble topologies. Also, the split ratio between
the training and testing vectors was calibrated by numerical experiments, as described in
Appendix 2.

Step 3. Optimization trial step: The proposed algorithm now seeks an optimum based on
the ensemble prediction in the bounded TR around the current best solution (xb), namely

ℑ ¼ {x : ∥x−xb∥2 ≤ Δ}, (7)

where Δ is the TR radius. The search is performed by using a hybrid approach [19], which
is composed of an initial search performed by a SA algorithm, and followed by a localized
refinement of the solution with a sequential quadratic programming (SQP) algorithm. The
main settings of the SA algorithm were based on existing studies [20–22], as follows:

• Initial temperature: Tmax ¼ 1000  d where d is the function dimension. This was done to
increase the annealing schedule for higher dimensional problems, which require a more
extensive search.

• Final temperature (stopping condition): T ≤ 10−8.

• Temperature decrease function: A 5% decrease, namely

TðtÞ ¼ 0:95  Tðt−1Þ (8)
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where t is the current time-step counter. This way the temperature initially decreases at a
slow rate, which assists the exploration search, but the reduction is much faster in later
stages when the search is localized.

• Acceptance probability function: A decaying exponent, namely

pðTÞ ¼ exp −
f ðxnÞ−f ðxcÞ

TðtÞ

� �
(9)

where xn is the new vector being examined and xc is the current vector.

During the entire process, objective values are obtained only from the ensemble at a
negligible computational cost, and hence the SA and SQP were able to evaluate a large
number of candidate vectors.

Step 4. TR updates: The best vector found in the previous step (x⋆) is evaluated with the
true expensive function, and the following updates are performed [14]:

• If f ðx⋆Þ < f ðxbÞ: The trial step was successful since the vector found was indeed better
than the current best one. This indicates that the ensemble prediction is accurate, and
accordingly the TR radius is doubled.

• If f ðx⋆Þ ≥ f ðxbÞ and there are sufficient vectors in the TR: The search was unsuccessful since
the solution found is not better than the current best one. However, since there are enough
vectors in the TR to train the metamodels the failure is attributed to the TR being too large,
and accordingly the TR radius is halved.

• If f ðx∗Þ ≥ f ðxcÞ and there are insufficient vectors in the TR: As above but now the failure is
attributed to having too few vectors in the TR to train the metamodels with. Therefore, a
new vector is sampled in the TR, as explained below.

The implementation described above differs from the classical TR framework in two main
aspects:

Metamodels participating in the ensemble

Index RBF RBFN Kriging

1 •

2 •

3 •

4 • •

5 • •

6 • •

7 • • •

Table 2. Candidate ensemble topologies.
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The implementation described above differs from the classical TR framework in two main
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• The TR is contracted only if the number of vectors in the TR is above a threshold n, which
is done to avoid premature convergence. The threshold parameter was calibrated through
numerical experiments, as described in Appendix 2.

• In Step 4, a new vector may be sampled in the TR to improve the prediction accuracy. This
vector should be located in a region that is sparse with vectors, namely away from existing
TR vectors. To accomplish this efficiently, the proposed algorithm generates a Latin
hypercube design (LHD) sample of vectors in the TR and selects the one having the largest
minimal distance (max-min criterion) from the existing TR vectors.

To conclude the description, Algorithm 2 gives the pseudocode of the proposed algorithm.

4. Performance analysis

4.1. Benchmark tests based on mathematical test functions

To evaluate its effectiveness, the proposed algorithm was applied to the established set of
mathematical functions [23]: Ackley, Griewank, Rastrigin, Rosenbrock, Schwefel 2.13 and
Weierstrass in dimensions 5–40, as listed in Table 3. These test functions represent challenging
features such as high multimodality, deceptive landscapes and noise, and are therefore ade-
quate for the testing purpose.

For a comprehensive evaluation, the proposed algorithm was benchmarked against the fol-
lowing four reference algorithms:

• V1: A variant of the proposed algorithm, which is identical to it in operation, except that it
used a single metamodel (RBF), but no ensembles.

• V2: A variant of the proposed algorithm, which is identical to it in operation, except that it
used a fixed ensemble, which consisted of the RBF, RBFN and Kriging metamodels, but
without any topology selection.

Function Definition, f ðxÞ¼ Domain

Ackley −20exp ð−0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑d

i¼1x
2
i =d

q
Þ−

exp

∑d

i¼1 cos ð2πxiÞ=d

þ 20þ e

½−32; 32d

Griewank ∑d
i¼1{x

2
i =4000}−∏

d
i¼1{ cos ðxi=

ffiffi
i

p
Þ}þ 1 ½−100; 100d

Rastrigin ∑d
i¼1fx2i −10 cos ð2πxiÞ þ 10g ½−5; 5d

Rosenbrock ∑d−1
i¼1f100ðx2i −xiþ1Þ2 þ ðxi−1Þ2g ½−10; 10d

Schwefel 2.13
∑
d

i¼1


∑
d

j¼1
½

ai;j sin ðαjÞ þ bi;j cos ðαjÞ


−

ai;j sin ðxjÞ þ bi;j cos ðxjÞ



2 ½−π;πd

Weierstrass ∑d
i¼1

n
∑20

k¼00:5
k cos


2π3kðxi þ 0:5Þ

o
−

d∑20
k¼00:5

k cos ðπ3kÞ
½−0:5; 0:5d

Table 3. Mathematical test functions.
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• Evolutionary algorithm with periodic sampling (EA-PS): The algorithm leverages on the
concepts in references [24, 25]. It uses a Kriging metamodel and a real-coded evolutionary
algorithm (EA). The accuracy of the metamodel is maintained by periodically evaluating a
small subset of the EA population with the true objective function, and using these
sampled vectors to update the metamodel.

• Expected improvement with covariance matrix adaptation evolutionary strategy (CMA-ES) (EI-
CMA-ES) [26]: The algorithm combines a covariance matrix adaptation evolutionary
strategy (CMA-ES) algorithm with a Kriging metamodel, and uses the expected improve-
ment (EI) framework to select new vectors for evaluation based both on the response and
uncertainty in the metamodel prediction. This way the algorithm balances between a local
search around the current best solution, and an explorative search in less-visited regions
of the search space.

This testing set-up was used for several reasons: (i) any gains brought by using ensembles are
highlighted through the comparisons to the V1 and V2 algorithms and (ii) the performance of
the proposed algorithm is benchmarked against representative metamodel-assisted algorithms
from the literature, namely, the EA-PS and EI-CMA-ES algorithms. Each algorithm-objective
function combination was tested over 30 runs to support a valid statistical analysis, and the
number of evaluations of the true objective function was limited to 200, to represent the tight
optimization budget in expensive problems.

Tables 4 and 5 give the resultant test statistics of mean, standard deviation (SD), median,
minimum (best) and maximum (worst) objective value for each algorithm-objective function
combination. It also gives the statistic α that indicates the significance level at which the
results of the proposed algorithm were better than those of the competing algorithms,
measured at either the 0.01 or 0.05 levels, while an empty entry indicates no such statistically
significant advantage. The α statistic was obtained by using the Mann-Whitney non-para-
metric test [27].

Test results show that the proposed algorithm performed well, as it obtained the best mean
and median statistics in 8 out of 12 cases. Its results also had a statistically significant advan-
tage over the other algorithms in 30 out of 48 cases. The performance advantage of the
proposed algorithm was particularly pronounced in the high-dimensional cases, where it
obtained the best mean and median in five out of six test functions. In terms of repeatability
of performance, its SD was often slightly higher but was competitive with the best SD in each
test case.

Overall, the proposed algorithm consistently outperformed the V1 and V2 variants, which
shows that selecting the ensemble topology during the search improved the search effective-
ness, both when compared to using a fixed metamodel or a fixed ensemble topology. Also, the
proposed algorithm consistently outperformed the two reference algorithms from the litera-
ture, which shows that it compares well with existing approaches.

The analysis of the experiments also examined how the ensemble topology was updated, to
examine if either a single or multiple topologies were predominantly selected. Accordingly,
Figure 3 shows representative plots of the ensemble topologies selected during a run with the
Ackley-10D function and another with the Rosenbrock-20D function. It follows that in both
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Proposed V1 V2 EA-PS EI-CMA-ES

Ackley-10 Mean 7.576e+00 1.415e+01 1.320e+01 5.241e+00 1.796e+01

SD 8.218e+00 4.522e+00 7.843e+00 5.590e-01 1.529e+00

Median 2.274e+00 1.547e+01 1.855e+01 5.408e+00 1.797e+01

Min(best) 8.677e-02 2.362e+00 3.381e+00 4.098e+00 1.443e+01

Max(worst) 1.779e+01 1.778e+01 2.046e+01 6.010e+00 1.988e+01

α 0.01 0.01

Griewank-10 Mean 1.253e-01 1.920e-01 8.625e-01 9.579e-01 9.338e-01

SD 1.759e-01 1.643e-01 1.401e-01 1.076e-01 2.435e-01

Median 7.507e-02 1.267e-01 8.834e-01 9.862e-01 1.007e+00

Min(best) 9.163e-03 3.485e-02 5.304e-01 7.146e-01 2.441e-01

Max(worst) 6.194e-01 5.401e-01 1.022e+00 1.046e+00 1.050e+00

α 0.01 0.01 0.01

Rastrigin-5 Mean 6.259e+00 9.031e+00 7.828e+00 7.631e+00 2.131e+01

SD 3.695e+00 7.483e+00 8.286e+00 4.811e+00 4.890e+00

Median 5.844e+00 7.273e+00 4.246e+00 7.226e+00 2.139e+01

Min(best) 1.950e+00 1.005e+00 3.224e+00 1.621e+00 1.353e+01

Max(worst) 1.189e+01 2.653e+01 3.046e+01 1.456e+01 3.006e+01

α 0.01

Rosenbrock-5 Mean 1.443e+01 3.247e+01 1.358e+02 2.074e+02 3.701e+02

SD 3.839e+01 7.480e+01 2.784e+02 1.640e+02 2.320e+02

Median 2.508e+00 3.522e+00 6.636e+00 1.796e+02 3.498e+02

Min(best) 2.465e-02 1.730e+00 4.085e+00 1.368e+01 7.677e+01

Max(worst) 1.236e+02 2.388e+02 8.787e+02 5.617e+02 6.719e+02

α 0.01 0.01 0.01

Schwefel-5 Mean 5.379e+02 3.809e+02 3.663e+02 5.598e+02 3.333e+02

SD 8.894e+02 9.297e+02 6.567e+02 4.995e+02 3.227e+02

Median 7.371e+01 2.749e+00 1.715e+02 4.804e+02 2.050e+02

Min(best) 2.508e-02 5.862e-02 4.835e+01 5.685e+01 3.426e+01

Max(worst) 2.202e+03 2.955e+03 2.215e+03 1.817e+03 1.080e+03

α

Weierstrass-10 Mean 6.620e+00 8.936e+00 8.168e+00 3.706e+00 5.909e+00

SD 1.970e+00 1.731e+00 2.042e+00 5.593e-01 2.777e+00

Median 6.395e+00 9.023e+00 8.494e+00 3.702e+00 5.805e+00

Min(best) 3.786e+00 6.875e+00 5.234e+00 2.787e+00 1.657e+00

Max(worst) 1.052e+01 1.236e+01 1.108e+01 4.627e+00 9.409e+00

α 0.01

Table 4. Test statistics: test functions—low dimension.
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Proposed V1 V2 EA-PS EI-CMA-ES

Ackley-20 Mean 6.446e+00 8.795e+00 1.947e+01 6.814e+00 1.863e+01

SD 5.712e+00 6.302e+00 2.836e-01 2.461e-01 1.921e+00

Median 3.885e+00 5.524e+00 1.944e+01 6.744e+00 1.934e+01

Min(best) 2.683e+00 3.574e+00 1.909e+01 6.468e+00 1.493e+01

Max(worst) 1.802e+01 1.804e+01 1.998e+01 7.203e+00 2.044e+01

α 0.05 0.01 0.05 0.01

Griewank-40 Mean 1.045e+00 1.270e+00 8.192e+00 1.461e+00 1.102e+00

SD 2.942e-02 1.185e-01 1.151e+00 6.031e-02 3.032e-02

Median 1.040e+00 1.246e+00 8.068e+00 1.454e+00 1.096e+00

Min(best) 1.013e+00 1.120e+00 6.567e+00 1.387e+00 1.071e+00

Max(worst) 1.114e+00 1.475e+00 1.035e+01 1.595e+00 1.157e+00

α 0.01 0.01 0.01 0.01

Rastrigin-20 Mean 6.490e+01 6.501e+01 1.492e+02 1.223e+02 2.105e+02

SD 3.753e+01 1.703e+01 2.754e+01 1.219e+01 3.914e+01

Median 4.808e+01 6.683e+01 1.449e+02 1.230e+02 2.296e+02

Min(best) 3.924e+01 4.203e+01 1.144e+02 1.046e+02 1.395e+02

Max(worst) 1.568e+02 8.807e+01 1.983e+02 1.429e+02 2.507e+02

α 0.01 0.01 0.01

Rosenbrock-20 Mean 5.653e+02 1.005e+03 9.013e+03 8.435e+02 3.967e+03

SD 2.067e+02 5.794e+02 5.142e+03 3.012e+02 9.406e+02

Median 5.807e+02 8.295e+02 8.112e+03 7.782e+02 3.685e+03

Min(best) 2.042e+02 5.281e+02 4.165e+03 4.676e+02 3.141e+03

Max(worst) 8.756e+02 2.497e+03 2.271e+04 1.439e+03 6.144e+03

α 0.01 0.01 0.05 0.01

Schwefel-40 Mean 7.503e+05 8.786e+05 2.322e+06 1.774e+06 1.667e+06

SD 2.173e+05 2.506e+05 5.317e+05 2.509e+05 6.520e+05

Median 7.074e+05 8.420e+05 2.369e+06 1.744e+06 1.528e+06

Min(best) 4.989e+05 5.815e+05 1.666e+06 1.415e+06 8.933e+05

Max(worst) 1.126e+06 1.348e+06 3.186e+06 2.104e+06 2.871e+06

α 0.01 0.01 0.01

Weierstrass-40 Mean 2.730e+01 4.048e+01 5.105e+01 2.343e+01 3.598e+01

SD 4.414e+00 4.106e+00 2.138e+00 1.265e+00 1.463e+01

Median 2.445e+01 4.100e+01 5.135e+01 2.304e+01 2.597e+01

Min(best) 2.365e+01 3.351e+01 4.817e+01 2.214e+01 2.100e+01

Max(worst) 3.419e+01 4.685e+01 5.333e+01 2.567e+01 5.817e+01

α 0.01 0.01

Table 5. Test statistics: test functions—high dimension.

Computational Optimization in Engineering - Paradigms and Applications58



Proposed V1 V2 EA-PS EI-CMA-ES
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SD 5.712e+00 6.302e+00 2.836e-01 2.461e-01 1.921e+00

Median 3.885e+00 5.524e+00 1.944e+01 6.744e+00 1.934e+01

Min(best) 2.683e+00 3.574e+00 1.909e+01 6.468e+00 1.493e+01

Max(worst) 1.802e+01 1.804e+01 1.998e+01 7.203e+00 2.044e+01

α 0.05 0.01 0.05 0.01

Griewank-40 Mean 1.045e+00 1.270e+00 8.192e+00 1.461e+00 1.102e+00

SD 2.942e-02 1.185e-01 1.151e+00 6.031e-02 3.032e-02

Median 1.040e+00 1.246e+00 8.068e+00 1.454e+00 1.096e+00

Min(best) 1.013e+00 1.120e+00 6.567e+00 1.387e+00 1.071e+00

Max(worst) 1.114e+00 1.475e+00 1.035e+01 1.595e+00 1.157e+00

α 0.01 0.01 0.01 0.01

Rastrigin-20 Mean 6.490e+01 6.501e+01 1.492e+02 1.223e+02 2.105e+02

SD 3.753e+01 1.703e+01 2.754e+01 1.219e+01 3.914e+01

Median 4.808e+01 6.683e+01 1.449e+02 1.230e+02 2.296e+02

Min(best) 3.924e+01 4.203e+01 1.144e+02 1.046e+02 1.395e+02

Max(worst) 1.568e+02 8.807e+01 1.983e+02 1.429e+02 2.507e+02

α 0.01 0.01 0.01

Rosenbrock-20 Mean 5.653e+02 1.005e+03 9.013e+03 8.435e+02 3.967e+03

SD 2.067e+02 5.794e+02 5.142e+03 3.012e+02 9.406e+02

Median 5.807e+02 8.295e+02 8.112e+03 7.782e+02 3.685e+03

Min(best) 2.042e+02 5.281e+02 4.165e+03 4.676e+02 3.141e+03

Max(worst) 8.756e+02 2.497e+03 2.271e+04 1.439e+03 6.144e+03

α 0.01 0.01 0.05 0.01

Schwefel-40 Mean 7.503e+05 8.786e+05 2.322e+06 1.774e+06 1.667e+06

SD 2.173e+05 2.506e+05 5.317e+05 2.509e+05 6.520e+05

Median 7.074e+05 8.420e+05 2.369e+06 1.744e+06 1.528e+06

Min(best) 4.989e+05 5.815e+05 1.666e+06 1.415e+06 8.933e+05

Max(worst) 1.126e+06 1.348e+06 3.186e+06 2.104e+06 2.871e+06

α 0.01 0.01 0.01

Weierstrass-40 Mean 2.730e+01 4.048e+01 5.105e+01 2.343e+01 3.598e+01

SD 4.414e+00 4.106e+00 2.138e+00 1.265e+00 1.463e+01

Median 2.445e+01 4.100e+01 5.135e+01 2.304e+01 2.597e+01

Min(best) 2.365e+01 3.351e+01 4.817e+01 2.214e+01 2.100e+01

Max(worst) 3.419e+01 4.685e+01 5.333e+01 2.567e+01 5.817e+01

α 0.01 0.01

Table 5. Test statistics: test functions—high dimension.
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cases, different topologies were selected, which indicate that no single topology was the
overall optimal, and further justifies the proposed approach.

4.2. Engineering test problem

The proposed algorithm was also applied to a representative simulation-driven engineering
problem, where the goal is to find an airfoil shape, which maximizes the lift L and minimizes
the drag (aerodynamic friction) D at some prescribed flight conditions. In practise, the design
requirements for airfoils are specified in terms of the non-dimensional lift and drag coefficients, cl
and cd, respectively, defined as

cl ¼
L

1
2ρV

2S
(10a)

cd ¼
D

1
2ρV

2S
(10b)

where L and D are the lift and drag forces, respectively, ρ is the air density, V is the aircraft
speed, and S is the reference area, such as the wing area. The relevant flight conditions are the
aircraft altitude, speed and angle of attack (AOA) that is the angle between the aircraft velocity
and the airfoil chord line. Figure 4 gives a schematic layout of the airfoil problem.

Candidate airfoils were represented with the Hicks-Henne method [28], such that an airfoil
profile was defined as

y ¼ yb þ ∑
h

i¼1
αibiðxÞ  ; (11)

where yb is a baseline profile taken here to be the NACA0012 symmetric profile, and bi are the
shape basis functions [29].

Figure 3. Ensemble topologies selected during two test runs. Abbreviations: K: Kriging, R: RBF, RN: RBF network.
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biðxÞ ¼ sin πx
logðð0:5Þ

logði=ðhþ1ÞÞ
 h i4

  ; (12)

where αi∈½−0:01; 0:01 are the variables, as shown in Figure 4. Ten basis functions were used
for the upper and lower airfoil profiles, respectively, which resulted in a total of 20 variables
per airfoil. Also, for structural integrity the thickness of an airfoil between 0.2 and 0.8 of its
chord line was required to be greater than a critical thickness t⋆ ¼ 0:1. The lift and drag
coefficients of candidate airfoils were obtained by using XFoil, an aerodynamics simulation
code for subsonic isolated airfoils [30]. Each airfoil evaluation required up to 30 s on a desktop
computer, so evaluations were not prohibitively expensive and the tests could be completed
within a reasonable time.

Based on the above discussion, the objective function used was

f ¼ −
cl
cd

þ p  ;  p ¼
  t⋆

t
 j cl
cd
j if   t <   t⋆

0 otherwise

8
<
: (13)

where p is the penalty for violation of the thickness constraint. The flight conditions were an
altitude of 30,000 ft, a speed of Mach 0.7, namely 70% of the speed of sound, and an AOA of 2°.

Tests were performed along the set-up of Section 4.1, and Table 6 gives the resultant test
statistics. The trends are consistent with those of the test functions, and the proposed algorithm

Figure 4. The layout of the airfoil problem: main components (left) and parameterization (right).

Proposed V1 V2 EA-PS EI-CMA-ES

Mean -3.376e+00 -3.279e+00 -3.368e+00 -3.231e+00 -3.278e+00

SD 1.242e-01 6.683e-02 1.008e-01 7.164e-02 9.597e-02

Median -3.355e+00 -3.274e+00 -3.352e+00 -3.227e+00 -3.267e+00

Min(best) -3.624e+00 -3.393e+00 -3.533e+00 -3.335e+00 -3.395e+00

Max(worst) -3.158e+00 -3.161e+00 -3.214e+00 -3.134e+00 -3.098e+00

α 0.01 0.01 0.05

Table 6. Test statistics for the airfoil problem.
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outperformed the other candidate algorithms also here. It obtained the best mean and median
statistics, and had a competitively low SD.

5. Conclusion

While computer simulations can improve the efficiency of the engineering design process, they
also introduce new optimization challenges. Metamodels aim to alleviate the challenge of a
high evaluation cost by providing computationally cheaper approximations of the true expen-
sive function.

While metamodels can significantly improve the search effectiveness, they also introduce
various challenges, such as identifying an optimal combination of metamodel variants, and
effectively searching the metamodel landscape. To address these issues, this chapter has
proposed a hybrid algorithm that uses SA to perform a global search, and it then refines the
solutions with an SQP local search. To further enhance its effectiveness, the proposed algo-
rithm uses ensembles of metamodels and selects the most suitable ensemble topology during
the search. Lastly, to ensure convergence to an optimum of the true expensive function in the
light of the inherent metamodel inaccuracies, the proposed algorithm operates within a TR
approach such that the optimization is performed through a series of trial steps.

In an extensive performance analysis, the proposed algorithm was benchmarked against two
implementations without selection of the ensemble topology, and two reference algorithms
from the literature, which also do not use topology adaption. Analysis of the results shows that
the proposed algorithm consistently outperformed the other algorithms: it achieved better
results in 30 out of 48 cases with mathematical test functions, and also performed well with a
simulation-driven problem. Its performance advantage was evident from the superior mean
and median statistics that was obtained across the tests and was particularly pronounced in
the high-dimensional problems.

The analysis also showed that during the optimization search the optimal topology continu-
ously varied during the search, and that no single topology was the overall optimal. This
observation further supports the approach proposed of selecting the ensemble topology dur-
ing the search.

Overall, the solid performance of the proposed algorithm shows the merit of the hybrid SA
+SQP algorithm proposed. It also suggests that the proposed algorithm could be applied to
problems from a variety of academic domains, such as scheduling, systems engineering and
model calibration, to name a few.

Appendix 1: Candidate metamodels

This appendix describes the metamodels used, as follows:

• Kriging: A statistical metamodel that combines a global ‘drift’ function and a local adjust-
ment based on the correlation between the sample vectors. The metamodel replicates the
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observed responses precisely (Lagrangian interpolation). For a constant drift function, the
metamodel becomes

mðxÞ ¼ βþ κðxÞ, (14)

where κðxÞ is the local correction. The latter is defined by a stationary Gaussian process
with mean zero and covariance

Cov½κðxÞκðyÞ ¼ σ2cðθ;x;yÞ, (15)

where cðθ;x;yÞ is a user-prescribed correlation function. With the Gaussian correlation
function [3]

cðθ;x;yÞ ¼ ∏
d

i¼1
exp

�
−θðxi−yiÞ

2
�
; (16)

the above metamodel becomes

mðxÞ ¼ β̂ þ rðxÞTR−1ðf−1β̂Þ  (17)

where β̂ is the estimated drift coefficient, R is the symmetric matrix of correlations
between all interpolation vectors, f is the vector of objective values and 1 is a vector with
all elements equal to 1. rT is the correlation vector between a new vector x and the sample
vectors, namely,

rT ¼ ½cðθ;x;x1Þ,…;cðθ;x;xnÞ (18)

The estimated drift coefficient β̂ and variance σ̂2 are calculated as

β̂ ¼ ð1TR−11Þ−11TR−1f ; (19a)

σ̂2 ¼ 1
n
½ðf−1β̂ÞTR−1ðf −1β̂Þ (19b)

For an isotropic (single correlation parameter) Kriging metamodel the optimal value of the
parameter is obtained by maximizing the metamodel likelihood [31]

θ⋆ : maxfjRj1=nσ̂2g  (20)

• Radial basis functions (RBF): The metamodel approximates the true objective function with
a set of basis functions, namely
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mðxÞ ¼ αi ∑
n

i¼1
φiðxÞ þ c (21)

where φiðxÞ are basis functions of the form

φiðxÞ ¼ φð∥x−xi∥2Þ, (22)

where xi is a sampled vector and c is a constant. The coefficients αi and c are determined
from the interpolation conditions

mðxiÞ ¼ f ðxiÞ, i ¼ 1…n; (23a)

∑
n

i¼1
αi ¼ 0  : (23b)

In this study, the widely used Gaussian basis function [32] was used:

φiðxÞ ¼ exp −
x−xi
τ

� �
; (24)

where τ controls the width of the Gaussians, and is determined by cross-validation
[33, 34].

• Radial basis function network (RBFN): A variant of the RBF approach but in which the
number of basis functions is smaller than the sample size, which can improve the predic-
tion accuracy in certain scenarios. The metamodel is given by

mðxÞ ¼ ∑
n̂

j¼1
αjφjðxÞ, (25)

where the coefficients αi are determined from the least-squares interpolation conditions

ΦTΦα ¼ ΦTf (26)

where

Φi;j ¼ φjðxiÞ (27)

and xi, i ¼ 1…n, are the sample vectors, f is the vector of corresponding objective function
values, and φjðxÞ, j ¼ 1…n̂ are the basis functions, which in this study were taken as the

Gaussian functions described above. The basic function centres xj are obtained by cluster-
ing the sampled vectors and using the resultant cluster centres.
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Appendix 2: Parameter sensitivity analysis

As described in Section 3, the proposed algorithm relies on two main parameters: (i) the
minimum number (n) of TR vectors needed to allow a TR contraction, and (ii) the split ratio
(s) between the training and testing subsets, as used in estimating the accuracy of candidate
metamodel and ensembles.

To calibrate these parameters, a set of numerical experiments were performed where different
parameter settings were used, and for each setting the algorithm was tested with the Rastrigin-
10D, Rosenbrock-10D, Rastrigin-20D and Rosenbrock-20D functions. The parameter settings
examined were:

• n: 0:1d, 0:5d, d, where d is the dimension of the objective function.

• s: 80–20, 60–40, 40–60, in percent.

Table 7 gives the resultant test statistics of mean objective value, rank per objective
function and the overall rank based on each setting where a lower score is better. From
these results it follows:

(a) Statistics: different TR vectors threshold (n)

n ¼ 0:1d n ¼ 0:5d n ¼ d

Function Mean Rank Mean Rank Mean Rank

Ras-10 4.598e+01 02 4.827e+01 03 3.530e+01 01

Ros-10 1.233e+02 02 4.393e+01 01 1.317e+02 03

Ras-20 9.256e+01 03 8.656e+01 02 7.997e+01 01

Ros-20 4.503e+02 01 5.361e+02 02 8.518e+02 03

Overall 08 08 08

(b) Statistics: different split ratios (s)

80–20 60–40 40–60

Function Mean Rank Mean Rank Mean Rank

Ras-10 4.598e+01 02 3.981e+01 01 5.414e+01 03

Ros-10 1.233e+02 02 1.266e+02 03 4.929e+01 01

Ras-20 9.256e+01 03 8.899e+01 02 7.970e+01 01

Ros-20 4.503e+02 01 5.578e+02 03 5.318e+02 02

Overall 08 09 07

Note: ratios are in percent.

Table 7. Parameter sensitivity analysis results.
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• n: Performance was similar across the different settings and accordingly the intermediate
setting of n ¼ 0:5d was selected.

• s: The best performing split ratio was 40–60 between the training and testing subsets.

The above settings were then used during the numerical experiments described in Section 4.
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Abstract

In 1987, Corana et al. published a simulated annealing (SA) algorithm. Soon thereafter in
1993, Goffe et al. coded the algorithm in FORTRAN and showed that SA could uncover
global optima missed by traditional optimization software when applied to statistical
modeling and estimation in economics (econometrics). This chapter shows how and
why SA can be used successfully to perform likelihood-based statistical inference on
models where likelihood is constrained by often very complicated functions defined on
a compact parameter space. These constraints arise because likelihood-based inference
involves comparing the maxima of constrained versus unconstrained statistical optimi-
zation models. The chapter begins with a review of the relevant literature on SA and
constrained optimization using penalty techniques. Next, a constrained optimization
problem based in maximum likelihood stress-strength modeling is introduced, and its
statistical and numerical properties are summarized. SA is then used to solve a sequence
of penalty-constrained optimization problems, and the results are used to construct a
confidence interval for the parameter of interest in the statistical model. The chapter
concludes with a brief summary of the results and some ways we were able to enhance
the performance of SA in this setting.

Keywords: SA, constrained optimization, penalty, likelihood

1. SA and penalty-constrained optimization

Several chapters in this book consider the foundations and development of the simulated
annealing (SA) algorithm. In this chapter, we focus on just one version of the algorithm given
in Ref. [1] and one FORTRAN implementation of the algorithm presented in Ref. [2]. The
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reasons for this are efficiency and familiarity. The algorithm in Ref. [1] is tight and effective and
the FORTRAN implementation in [2] is dependable, easily extensible and sufficiently fast that
it can be applied to both complicated small-scale problems and to very large Monte Carlo
studies such as the one in Ref. [3].

1.1. Background

The SA algorithm in Ref. [1] was developed as an approach to find the unconstrained global
optimum of functions with a potential multiplicity of optima, some of which may lie on the
boundaries of the function’s domain. The function being optimized need not be differentiable
or even continuous, but it must be bounded. As well, the domain of the function must be
compact. The search algorithm in Ref. [1] depends upon function evaluations. Derivatives
play no role. The reader is referred to the careful statement of the algorithm on pages 266–269
in Ref. [1]. Here we provide an overview of the algorithm and its implementation.

In a multivariate setting, the domain of the function is initially defined as a (perhaps very)
large hypercube. Random paths of individual choice variable values are searched at each stage.
The number of such searches is controlled by the user. The step sizes that partially define the
random paths are part of the algorithm and will in general be different for each choice variable
at each stage. The algorithm cycles through and individually changes (increases or decreases)
all choice variables. Each time a variable change leads to a “better” value of the function being
optimized, this point is accepted. Sometimes “worse” points are temporarily accepted. That is,
sometimes, the algorithm deliberately allows a search path at a stage to contain “worse”
points. By allowing the paths to meander through better and worse points in the domain, the
algorithm allows the domain to be searched for better optima that can only be reached by first
passing through the worse regions. In this way, the search process can escape from local
optima that are dominated by one or more global optima. This distinguishes SA from tradi-
tional hill-climbing algorithms that use the local properties of the function to move always in
better directions. Movements in worse directions are governed by a Metropolis decision. In a
sense, the Metropolis decision can be thought of as the algorithm giving permission to the
search process to move in a worse direction, depending upon the roll of a (weighted) die. As
the algorithm progresses through subsequent (“cooling”) stages, the chance that a worse point
will be permitted/accepted decreases. In addition, as the algorithm progresses, the effective
domain of the function (that part of the domain to which the search is effectively restricted) is
contracted. In part, the search evolves in a fashion consistent with the overall (global versus
local) topography of the surface of the function being optimized. Asymptotically, the algorithm
converges to a domain that contains the best optimum encountered and which has a user-
specified (small) volume. Convergence criteria and the number and length of searches at each
stage are determined by parameters set by the user.

The FORTRAN implementation in Ref. [2] is faithful to the algorithm in Ref. [1], but it does
include some features and suggestions that tend to help in deciding whether a global optimum
has been reached and, in the initial stages of optimization, the features allow the researcher to
search individual subsets of the domain of the function. The researcher can control the number
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of searches, the initial “temperature” of the model and the rate at which temperature
decreases. Uphill and rejected downhill moves are balanced by changes to the upper and
lower bounds on parameter changes. In Ref. [2], the suggestion is made that starting the SA
algorithm from a variety of randomly selected domain points may provide information about
whether a global optimum has been found. This is balanced, to some extent, by the realization
that the properties of SA that make it a global optimizer also tend to make it independent of
initial values of the choice variables. Any indication of sensitivity to starting values is, there-
fore, a strong suggestion that the SA user-determined parameters should be changed to
provide a more thorough search.

As with any mathematical tool, becoming adept at using SA to solve optimization problems
requires practice. FORTRAN code for the SA implementation in Ref. [2] is widely available.
This code, written in FORTRAN 77, is carefully documented and contains an example
problem that illustrates many of the features of SA. These features, such as convergence
criteria, cooling rate, lengths of search paths, and the like can be adjusted to study how the
implementation works. It is straightforward to code and solve new problems. The advice in
Ref. [2] and in the code is helpful in finding the set of search parameters that solves the
problem at hand.

Finally, Goffe et al. [2] address the issue of the speed of SA and recommend the ways that the
user can tune the implementation to run more quickly. The implementation was published in
1994, and since then multicore very fast processors with at least 64-bit single precision have
become the norm. At the same time, though, there are optimization problems that are now
being addressed at the limit of current technology.

1.2. Penalty-constrained optimization

The foregoing discussion has provided an overview of SA and how it can be applied to
optimize a function. We now turn to a discussion of how SA can be used to find the global
optimum of functions when there are constraints on the choice variables. Our principal con-
cern is how to find the optimum of the statistical functions when the choice variables must
satisfy an integral equality constraint. Our approach, however, is quite general and it can be
adapted to solve optimization problems subject to several inequality as well as equality
constraints that may or may not involve integrals. At this point, it is helpful to introduce some
notation.

Our choice variables are represented by the vector: θ. The objective function to be maximized
is given by: l(θ). As well, there is a constraint given by: R(θ) = ψ0. In the statistical problem
considered in the next section, we examine the unconstrained problem.

1.2.1. (Unconstrained problem) U: choose θ to maximize l(θ)

(Unconstrained Problem) U: Choose θ to maximize l(θ) is an important part of the analysis. It
is almost always the case in statistical settings that the unconstrained problem can be solved in
a straightforward manner using SA.
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1.2.2. (Constrained problem) C: choose θ to maximize l(θ) subject to R(θ) = ψ0

(Constrained Problem) C: Choose θ to maximize l(θ) subject to R(θ) = ψ0 can also be solved
using simulated annealing. Indeed, as we will see, SA is a very natural approach to solving
problem C.

Within a statistical setting, substitution and Lagrange multiplier techniques tend not to work
well when attempting to solve C. Typically, the objective function, l(θ), and the constraint, R
(θ) = ψ0 will not have properties that guarantee a straightforward solution to the optimization
problem. For example, the constraint can reasonably be expected to be a highly nonlinear
function of the choice variables, θ. In both the substitution and Lagrange approaches, it is
necessary at each iteration to solve the constraint equation to express one choice variable in
terms of all of the others. If one or more of the choice variables takes on an extreme value (very
large or very small) during the iteration process, then this can lead in turn to an extreme
constraint solution and such extreme values tend to perpetuate themselves through subse-
quent iterations. The traditional absence of some form of textbook concavity or convexity on
the objective function and/or the constraint function typically results in a failed optimization
attempt. Standard derivative-based optimizers often get lost when derivatives take extreme
values or when the Hessian of the function is indefinite. In part, this is due to their strong
dependence upon local properties of the function being optimized.

The penalty function approach provides an alternative way of dealing with the constraint,
which does not require exact satisfaction of the constraint equation at each “iteration.” In fact,
the constraint equation only holds asymptotically. To clarify this, we begin by introducing the
penalty function PL:

PL θ;ψ0

� �
¼ l θð Þ−k R θð Þ−ψ0

� �2
, k > 0: (1)

This is the penalty function associated with the constrained optimization problem C intro-
duced above. In this case, k is a positive parameter controlled by the researcher.

In a recent paper, Byrne [4] studied how the penalty functions like PL could be used to solve
constrained optimization problems such as C. The following three conditions are introduced:

1. θ is chosen from a compact set.

2. The functions l(θ) and R(θ) are continuous.

3. Let θ
k be the vector that corresponds to the global maximum of PL in Eq. (1) when the

parameter multiplying the squared term is k. We assume that each element in the sequence
θ
k , k ¼ 1, 2,…

� �
exists.

Then, based on these conditions, it is proved in Ref. [4] that the sequence θ
k , k ¼ 1, 2,…

� �

converges to the θ* that solves problem C.

This result is extremely important for applying simulated annealing to solve constrained
optimization problems. First, SA chooses candidate optimizers from a compact set. Second,
continuity of the penalty function PL is more than what is required for SA to reach a global
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optimum. The complicating point is that the result in Ref. [4] is expressed in terms of the limit
of a sequence of SA optimizations. But, in our experience, this is not a complication of
considerable practical importance. In the first place, even for large values of k, SA is not helped
by starting the iterations for the (k + 1)st solution at the optimal values from the kth solution. In
practice, given that SA searches (“cools”) sufficiently slowly and follows long enough paths in
the domain, it tends to find the global solution of the (k + 1) problem regardless of the starting
values it is given. Second, there is a practical issue of how much accuracy can be expected. The
SA algorithm terminates when successive improvements in the value of the objective function
are all less that a user-specified threshold. This means that the contribution of the term k[R
(θ) − ψ0]

2 must also be small in absolute value. In all of the problems we have considered,
setting k = 100, 000 is certainly enough to get a high-quality estimate of θ*. That is, it is
reasonable to truncate the sequence at this value of k.

In concluding this section, we reconsider the question: “Why does a penalty approach work
when the Lagrange approach fails?” In our experience, the Lagrange approach, which requires
solutions of an equation to a given level of accuracy, is prone to problems of numerical
accuracy and their propagation. Alternatively, the penalty approach never requires the con-
straint to be exactly satisfied. Instead, it increasingly discourages large squared deviations of
the constraint function R(θ) from its constraint value ψ0 as k increases. As a final point, when
conditions are satisfied for the Lagrange multiplier formally to exist, it can be obtained as the
limit of the partial derivative of the penalty function with respect to the parameter ψ0 as k
increases.

2. Modeling reliability using SA penalized likelihood

2.1. Background on reliability

We consider two variables X and Y. We refer to them respectively as Strength and Stress. For
example, Strength could refer to the “time before failure” of a component such as a digital
storage device. Alternatively, Stress might measure the total time that the device is used. From
the standpoint of a manufacturer, X and Y are both random variables with distributions that
can, in principle, be estimated from available breakdown and usage data. Reliability, R, is
defined as the probability that the component will withstand the stress it faces in use. In
particular,

R ¼ P Y < Xð Þ: (2)

A variety of distributions have been used for X and Y in the literature. The actual choice
depends upon the process being studied. It is standard and reasonable to suppose that X and
Y are independent.1

1
That is, the probability distribution of Y does not depend upon any realized value of X and vice versa. If dependence is
possible in a given setting, it is easily accommodated. Formally, (Eq. (2)) will continue to hold, but additional parameters,
associated with the interdependence, may appear in both the objective function and the constraint. In a formal sense, the
penalty approach is unchanged.
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In this section, we suppose that both X and Y are distributed as exponentiated exponential
distributions. Exponentiated exponential distributions, EE(α, β), have two parameters: α > 0
controls shape and β > 0 controls scale. Adopting the notation introduced in Ref. [5], the
cumulative distribution function is:

F x;α; β
� 

¼ 1−e−βx
� α

, α > 0, β > 0, x > 0; (3)

As in Ref. [6], we assume that X is distributed as EE(α1, β1) and Y is distributed as EE(α2, β2).
We do not, however, constrain the scale parameters, β1 and β2, to be equal. As a result, the
expression for reliability is:

R ¼ P Y < Xð Þ ¼
ð∞

0
α1β1 1−e−β1x

� α1−1 e−β1x 1−e−β2x
� α2 dx: (4)

There is no known closed-form solution for this integral. As noted in Ref. [7], introducing the
change of variables: z = β1x allows one to see that R is homogeneous of degree 0 in (β1, β2). The
contours of R are, therefore, all constant along a line in a parameter space defined by β2 = β1.

2.2. The unconstrained EE likelihood equation and it properties

Following Ref. [7], we let x = (x1, …, xn)′ and y = (y1, …, ym)′ denote the realizations of random
samples from EE(α1, β1) and EE(α2, β2), respectively. The log-likelihood function of the above
model can be written:

l α1; β1;α2; β2; x; y
� 

¼ nlogα1 þ nlogβ1 þ α1−1ð Þ∑
n

i¼1
log 1−e−β1xi

� 
−β1 ∑

n

i¼1
xi

þmlogα2 þmlogβ2 þ α2−1ð Þ∑
m

j¼1
log 1−e−β2yj

� 
−β2 ∑

m

j¼1
yj:

(5)

We denote the parameter vector as θ = (α1, α2, β1, β2)′.

The Appendix in Ref. [7] contains a derivation of the properties of l(θ) = l(α1, β1, α2, β2; x, y). In
particular, l(θ) is not a concave function of θ nor is it quasi- or pseudo-concave. There is a small
region around the point where the gradient of l(θ) vanishes and in that region, the Hessian
matrix is negative definite. Elsewhere in the parameter space, the determinant of the Hessian
matrix changes sign frequently. Thus, extreme care must be taken in trying to maximize l(θ),
using a derivative-based algorithm. We found that a variable-metric algorithm would work as
long as an approximate Hessian matrix, constrained to be negative definite, is used over a
restricted parameter space.

One example, which we consider in greater detail later in the paper, uses the following data
with sample sizes of 11 and 9: x= (2.1828, 0.5911, 1.0711, 0.9007, 1.7814, 1.3616, 0.8629, 0.2301,
1.5183, 0.8481, 1.0845) and y= (0.8874, 1.1482, 0.8227, 0.4086, 0.5596, 1.1978, 1.1324, 0.5625,
1.0679). Our SA program quickly and easily solved the associated unconstrained maximum
likelihood optimization problem.
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2.3. Constrained likelihood maximization

As will be discussed in the next section, inference for the “parameter” R(θ) in our reliability
model requires that the likelihood function l(θ) be maximized subject to the constraint R
(θ) = ψ0 for a range of values of the constraint parameter ψ0. These constrained optimization
problems are all solved using the penalty function approach introduced in Section 1.2 and
using the penalty function PL(θ, ψ0) given in Eq. (1). The functions l(θ) and R(θ) can be thought
of now as the unconstrained EE likelihood function and the reliability function, respectively.

3. Likelihood-based inference and penalty functions

In Eq. (5), we introduced the statistical log-likelihood function primarily as an example of a
function that needs to be maximized (with and without constraint) in a statistical setting. In
this section, we provide more details about likelihood functions and inference. Our brief
discussion is not intended as a complete explanation of the underlying statistical notions.
Rather, it is intended only to motivate some importance of constrained and unconstrained
optimization within statistics. Our discussion is rooted in the example of Eq. (5).

3.1. Background on likelihood models in statistics

Likelihood is akin to probability. The difference in the notions for our purposes is that likeli-
hood is measured in terms of the probability density governing the realizations of a continu-
ous random variable. Technically, the probability of any one outcome, say x0, of a continuous
random variable is 0. The value of the density, say h(x), evaluated at x0 and multiplied by dx,
that is, h(x0) dx, can be thought of as approximately the probability that there will be a
realization of the random variable X in a very small interval containing x0. It is common to
have situations where the realized (observed) values of a random variable X arise from a
process of random sampling where the outcomes are independent of each other yet are
governed by identical probability density functions, h(x). The likelihood of a given sample of
realized values is defined as the product of the densities corresponding to each of the outcomes
in the sample; so the likelihood of a given sample is, up to a scaling factor, a notion similar to
the probability of the sample. The likelihood of a sample of realizations of X and Y is, given our
assumptions, the product of the likelihoods of the X and the Y samples. For a variety of
reasons, it is often easier to work with a positive monotonic transformation of the sample
likelihood. In particular, we work with the log-likelihood of the sample. In Eq. (5), we are
given the log-likelihood of a sample where the densities come from possibly different
exponentiated exponential distributions.

The derivation of the log-likelihood associated with a sample of realizations is just the begin-
ning of the modeling process. Extensions include forecasting the next realization of a random
variable or perhaps finding an interval where one can be 95% confident that the next realiza-
tion of a function of the random variables will fall. For example, we could ask for a 95%
confidence interval of the measure of reliability in Eq. (4), incorporating the information in the
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sample given at the end of Section 2.2. These are questions of statistical inference. We answer
these questions by solving the optimization problems.

The likelihood function given in Eq. (5) can be combined with the sample of 11 realizations of
X and 9 realizations of Y given in Section 2.2. We can use the information in the data to
estimate the unknown vector of parameters: θ = (α1, α2, β1, β2). One set of estimates of the
parameters of the model is obtained by maximizing the likelihood function with the choice
variables being the parameters. These maximum likelihood parameter estimates can be
thought of as the parameter values that yield specific density functions that are most likely to
have generated the data. Of course, 20 observations are not enough to achieve certainty, so
there is a related theory about where the true (population) parameters lie in relation to their
estimates. Indeed, there are probability distributions associated with the maximum likelihood
parameter estimation process, and the parameter values that maximize the log-likelihood for a
given sample of data realizations are themselves just realizations. These probability distribu-
tions or their approximations allow us to estimate how close the parameter realizations are to
the true parameter values.

There is also a probability distribution for the maximized value of the log-likelihood function.
This allows us to ask questions such as the following: do I induce a “significant” change in the
maximized likelihood value when I constrain the parameter estimates (choice variables) to
satisfy an additional condition or set of conditions. This leads back to the constrained optimi-
zation problem C in Section 1.2, and the penalty function in Eq. (1).

In the subsection that follows, we present the process of inference for our reliability model. The
presentation is more technical.

3.2. Inference in the reliability model

Given l(θ) is the log likelihood function, we denote the unconstrained maximum likelihood

estimator bθ when l(θ) alone is maximized. As well, we define

j bθ
 

¼ −
∂2l θð Þ
∂θ∂θ′

bθ
(6)

as the observed information matrix evaluated at bθ. Finally, we let bθψ be the constrained
maximum likelihood estimator of θ given by maximizing l(θ) subject to R(θ) = ψ. Formally,
bθψ can be obtained for any ψ in the range of R(θ) by maximizing l(θ) subject to the constraint R
(θ) = ψ using the penalty function approach within SA.

The aim next is to obtain inference concerning R = R(θ), where dim(R) = 1. Two widely used
likelihood-based methods for obtaining confidence interval for R are based on the asymptotic

distribution of the maximum likelihood estimator bθ and the (log) likelihood ratio statistic.

Taking θ as the true population parameter vector, bθ−θ
 ′

var bθ
 h i−1 bθ−θ

 
is asymptotically

distributed as chi-square with degrees of freedom equal to dim(θ), and variance-covariance
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matrix cvar bθ
 

≈j−1 bθ
 

. Since R = R(θ) depends upon the entire vector of parameters, we

approximate its variance by applying the Delta method to bR ¼ R bθ
 

and obtain:

cvar bR
 

≈R′
θ

bθ
 

cvar bθ
 

Rθ
bθ

 
(7)

where

Rθ
bθ

 
¼ ∂R θð Þ

∂θ

bθ
: (8)

Since dim bR
 

¼ 1, we have

bR−R
ffiffiffiffiffiffiffi
cvar

p bR
  (9)

asymptotically distributed as standard normal. An approximate (1 − α)100 % confidence

interval for R based on bθ is

bR−zα=2
ffiffiffiffiffiffiffi
cvar

p
bR

 
, bR þ zα=2

ffiffiffiffiffiffiffi
cvar

p
bR

  
(10)

where zα/2 is the (1 − α/2)100th percentile of the standard normal distribution. This is our first
confidence interval.

Alternatively, with regularity conditions stated in Refs. [8, 9], the log likelihood ratio statistic:

W ψð Þ ¼ 2 ℓ bθ
 

−ℓ bθψ

 h i
(11)

is asymptotically distributed as chi square with 1 degree of freedom. Therefore, an approxi-
mate (1 − α)100 % confidence interval of R based on the likelihood ratio statistic is:

ψ : W ψð Þ≤χ2
1,α

n o
: (12)

The set of all constrained values ψ in the domain of R that cannot be rejected at the (1 − α)100 %
as the true value R(θ) is defined in Eq. (10). These values form our second confidence interval.

It should be noted that both methods have rates of convergence O(n− 1/2). While the MLE-based
interval is often preferred because of simplicity in calculation, the log-likelihood ratio method
has the advantage that it is invariant to reparameterization and the MLE-based method is not.
The results presented in Ref. [10] suggest that, in terms of coverage, the confidence interval
based on the log-likelihood ratio statistic should be preferred to the MLE-based interval. In
particular, when 95% confidence intervals for both statistics are compared, the interval from
the log-likelihood ratio statistic is shorter and therefore more precise.
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The results are summarized in Table 1. We note that, consistent with Ref. [10], the χ2 interval is
indeed shorter than the MLE interval.

4. Conclusion

This chapter has considered how SA can play an important role as a global optimizer of
constrained likelihood-based statistical models. SA is naturally paired with the penalty func-
tion approach to constrained optimization. SA and the penalty approach both require compact
domains and bounded functions. Penalty functions must be continuous and, within a statisti-
cal setting, this almost always holds. SA supplies the global optimization property that guar-
antees that the penalty function approach converges to the global constrained optimum. Even
though our implementation of SA does not make use of derivatives, the converged penalty
function will often be differentiable and Lagrange multipliers, gradients, and Hessian matrices
can be calculated. The extension of these results to multiple constraints is computationally
straightforward.

In this chapter, we have motivated the pairing of SA and penalty functions in a statistical
setting. But the approach can be used to solve many other types of numerical constrained
optimization problems. Over time, we have accumulated a considerable amount of experience
solving constrained problems using SA and the penalty functions. One lesson stands out: SA is
a global optimizer and, for the most part, it should be independent of initial conditions such as
starting values of parameters (choice variables). If you find that you get a different optimum
after changing the starting values, then it is likely that neither solution is the true global
optimum. You can usually remedy this by increasing the initial temperature, slowing the rate
of cooling, and/or increasing the length and number of search paths.
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Abstract

Like mean, median, and standard deviation, mode as the value that appears most often
in a set of data is an important feature of a distribution. The numerical value of the mode
is the same as that of the mean and median in a symmetric distribution but may be very
different in a highly skewed distribution. Mode regression, which models the relationship
between the mode of a dependent variable and some covariates, was first introduced by
Lee in terms of truncated dependent variables. Some modifications of the truncated mode
regression  have  been  proposed  recently.  However,  little  progress  is  made  on  the
computation or algorithm of fitting a mode regression due to an NP-hard optimization
problem. In this paper we first introduce the popular simulated annealing (SA) to solve
the truncated mode regression optimization. Experiments with simulations compare
favorably to SA. Then, a mode regression with the proposed algorithm is applied to explore
the typical income structure of China. We also compare the income returns to gender,
education, experience, job sector, and district between the majority of workers with typical
income and the workers with mean, middle income via comparison between mode
regression, mean regression, and median regression.

Keywords: income inequality, Lee’s estimate, median regression, mode, mode regres-
sion fitting, simulated annealing algorithm, truncated variable

1. Introduction

Mode, the most likely value of a distribution, has wide applications in biology, astronomy,
economics, and finance. For example, in the archeology, many practical questions often focus
on “Which era the biological species most likely to survive in according to the biological
fossils?” In such cases, mode regression provides a convenient summary of how the repressors
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affect the conditional mode. Income inequality is of growing concern to people in rich as well
as poor countries. This inequality may result in problem in social stability in a region or a country.
But using average income as a statistical measurer is largely affected by a small number of richest
who earned a high proportion of all income. Mode is the right statistic to measure the typical
income over the whole population, or mode-based measurement represents the income of
majority workers. The causes of income inequality have been attracting a lot of attention in
literature and public. Education and experience are often cited as important factors for income.
Gender pay gap has been an issue for many regions, particularly in some developing countries.
The difference in wage between public sector staff and private workers changes from country
to country and region to region. The mode regression or mode-based regression analysis provides
a direct and powerful tool to explore the typical income and the return to education, experience,
gender, sector, and so on. Mode-based clustering techniques have also been developed [1].

The mode regression models the relationship between the conditional mode of the depend-
ent variable y* and covariates x as

* ¢= +y x b e (1)

where vector x = (1, x1, …, xp)′, β = (1, β1, …, βp)′ is the unknown parameter vector, and ε is the
model error. Let mode(y*|x) be the mode of y* conditional on x and then mode(y*|x) = x′β ⇔
mode(ε|x) = 0. Usually, one assumes that the density of ε is wider than [−w, w] for a w > 0
suitably chosen.

Lee [2] first considers truncated model regression where y* is truncated from below at c by y
or y* is observed only when y* > c. That is, y = max(y*, c). Examples of truncated regression
include (1) candidates of students who want to nominate a university prize are required to
have a minimum examination mark of 70 out of 100 to qualify for the entry. Thus, the sample
is truncated at an examination mark of 70. (2) A researcher has data for a sample of British
citizens whose income is above the poverty line. Hence, the lower part of the distribution of
income is truncated. Truncated regression cannot be fitted by ordinary least squares (OLS)
regression, as OLS regression will not adjust the estimates of the coefficients to take into
account the effect of truncation, so that the estimated coefficients may be severely biased. This
can be conceptualized as a model specification error [3].

Under model (1), given observations on {(x1, y1), (x2, y2), …, (xn, yn)}, we aim at estimating β.
This is the main task of fitting the model. Lee’s [2] mode regression estimates β by

1

1

ˆ arg max ma , )x(-

=

æ öé ù= ¢ + £-ç ÷ë ûè ø
å

n

i
i

x c w wn I yb bb (2)

where I[⋅] is the indicator function, which takes the value 1 if the condition inside [ ] is satisfied
and 0 otherwise.
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But little progress on mode regression has been made due to computation difficulty although
some modifications of the proposed mode regression have been developed (e.g., see [4–7]).
The difficulty in computing these estimators arises because the objective function consists of
indicator function I[⋅] and involves in an absolute function and maximum operator. So that
the objective function in Eq. (2) is neither convex nor differentiable but may result in a large
number of local maxima. See further details in Section 2. Therefore, the estimation in Eq. (2) is
an NP-hard problem, so that standard optimization algorithms will perform poorly if they
tend to get trapped in local maxima, or they may not be applicable if analytical gradients are
required, because standard optimization tools, which require the objective function to be
differentiable and/or convex, may fail to discover the true mode regression function.

Currently, rather than dealing with the NP-hard problem directly, some attempts were made
to solve the computation of mode regression via replacing rectangular kernel in Eq. (2) by a
“smooth” version [4, 5]. However, these smooth versions of mode estimators, in spite of their
improved asymptotical properties, may not estimate mode but estimate something else. This
big issue is often ignored in literature.

For example, the smoothing version of mode estimator of Kemp and Silva [5] is to maximize  = −1 = 1 ℎ  − ′  with ℎ = 1ℎ ⋅ℎ  and the standard normal density as kernel

function K(⋅), and then the estimator is closer to mean than to mode due to the quadratic
property of normal density function. Also, a careful selection of bandwidth h which requires
tending to zero is not available.

Lee [4] employed a quadratic kernel (QME) to smoothing the rectangular kernel and estimated
β by
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This QME is quite similar to the symmetrically trimmed least squares (STLSs) estimation in
Powell [8], which, instead of maximization, minimizes

[ ]21

1

ˆ arg min max(0.5 0.5 , )-

=

¢= - +å
n

i i
i

xn y y cb bb (4)

However, QME is quite sensitive to the choice of w whose optimal value is difficult to derive
in practice. And the STLS, which strongly depends on the symmetric requirement of y
conditional on, needs the symmetry up to ± x′β. That is, STLS requires global symmetry if x is
unbounded.
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The other way to develop efficient algorithms for the truncated mode regression objective
function (2) could be the emulation algorithms (EA) [9, 10], which compute the truncated mode
regression estimator by checking every critical point and solving maximum score estimation
as a nonlinear programming problem. However, EA exhibits a high degree of complexity in
its implementation. EA may achieve convergence to local minima, whereas obtaining a global
minimum requires a heavy computational load, something that renders its use in solving real
problems impractical.

This paper aims to introduce meta-heuristic methods for computing the elegant rectangular
mode regression estimator so that one could not only fit the mode regression but also improve
computation efficiency. The recommended heuristic method for dealing with complicated
objective function with many local optima could be the popular simulated annealing (SA) [11],
because SA provides a means to avoid getting stuck in local optima by accepting worse
neighbors in hopes of finding a global optimum. However, SA has not been used in mode
regression fitting.

The paper is organized as follows. In Section 2, we outline the issue of many local optima of
Lee’s estimator and SA computation. Section 3 compares different algorithms or estimation
methods such as QME, STLS, EA, and SA via (Monte Carlo) simulation study. In Section 4, we
fit a multiple mode regression model for the analysis of a real income data via SA algorithm.
The final section concludes with brief remarks.

2. Lee’s estimator with many local optima and SA algorithm

As mentioned earlier, truncated mode regression fitting problem may be seen as a global
optimization problem (GOP) with many local optima. SA is applied to optimize Eq. (2), which
represents a nonlinear objective function. Then, the estimation equation can be formulated as
follows:

1

1
( ) max( , )-

=

¢é ù= - £ û+ëå
n

i
i

xf c wn wI y bb (5)

Note that f(β), as a function of regression coefficient β, is an unconstrained nonlinear and non-
smooth function; it is difficult to calculate its optimizer. Moreover, f(β) is not convex in β.
Therefore, an effective tool for solving global optimization problems is required. Let us
demonstrate this issue via a simple example and graphical representation of the objective
function. Draw an independent sample size of 10 from a standard normal distribution, i.e.,
xi ~ N(0, 1), i = 1, 2,…, 10, and let the i.i.d error term ε also have a standard normal distribution.
So the dependent variable y* can be generated from the mode regression yi* = βxi + εi. Then we
obtain observations of yi from yi* via truncated point y0 = 0. This gives a 52% heavy truncated
on average. The objective function f(β) against β’s values from this model can take a form as
plotted in Figure 1. Clearly, the objective function under w = 1 has many local maxima, which

Computational Optimization in Engineering - Paradigms and Applications86



The other way to develop efficient algorithms for the truncated mode regression objective
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lie in the range between −0.5 and 0.25. When w = 1.5, this objective function still has many
localities but in the range between −0.75 and 0.25. However, Figure 1 shows that these
localities under w = 0.5 fall in a much narrower range than those under w = 1 and w = 1.5.

Figure 1. The objective function of a simple example with w = 1, w = 1.5, and w = 0.5.

The SA algorithm proposed by Kirkpatrick, Gelatt, and Vecchi [11], as a local search meta-
heuristic, is characterized by an acceptance criterion for neighboring solutions that adapts itself
at run time. In this chapter, we process the data by the R software. One of the packages to
implement SA in R is stats with sann as an option of optim function [12]. An alternative SA is
the GenSA function in specific R-package GenSA. The SA flow diagram is presented in Figure 2.
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Figure 2. The flow diagram of SA.

3. Numerical comparison

Following Lee ([2, 4]) consider the mode regression model

0+ , 1,2, ,= + = Li i iy x i ne (6)

where sample size n = 30, xi follows a standard normal random variable, and the model error
εi is generated from a standard normal distribution.
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The four methods—QME (quadratic kernel smoothing method in Ref. [2]), STLS (trimmed
least square method in Ref. [8]), emulation algorithm (EA in Ref. [9, 10]), and SA [11]—are
implemented for numerical comparison of optimization of f(β) in terms of β, where β simply
stands for the slope coefficient whose true value is 1.

The data generated from the model are under four different distributions (normal, Cauchy,
logistic, and gamma) for model error ε and two different numbers of truncated schemes: 25
and 50%. For each of these five different distributions of ε and each truncated scheme, we
implement all four methods to estimate the slope coefficient 200 times, respectively, via
simulation.

Then the performance criteria of each method consist of bias of the estimator of slope
coefficient, standard deviation (STD), root mean square errors (RMSE), lower quartile (LQ),
median (MED), and upper quartile (UQ) of estimation. At each simulation of 200 times, the
bias is the difference between estimate and the true value; then the bias we collect for com-
parison is a simple average of 200 times of replications. The computation of STD, RMSE, LQ,
MED, and UQ are based on 200 times of replications.

Table 1 reports the results by different designs which are the combination of truncation rate
and distribution of ε.

BIAS SE RMSE LQ MED UQ

Design 1: 50% truncation, standard normal

w = 0.5 0.535 1.451 1.563 0.910 1.341 1.811

w = 1.0 0.502 1.011 1.217 0.925 1.244 1.930

w = 1.5 0.523 1.345 3.492 0.696 1.112 1.748

w = 2.0 0.591 1.876 1.729 0.997 1.270 1.840

Design 2: 25% truncation, standard normal

QME 0.085 0.331 0.345 0.839 1.042 1.269

STLS 0.023 0.210 0.208 0.873 0.989 1.136

EA 0.067 0.023 0.022 0.891 0.993 1.542

SA 0.065 0.381 0.412 0.893 1.114 1.458

Design 3: 50% truncation, standard normal

QME 0.515 1.139 1.248 0.895 1.213 1.677

STLS 0.200 0.502 0.542 0.913 1.090 1.354

EA 0.206 0.489 0.512 0.807 1.051 1.431

SA 0.215 0.431 0.387 0.801 1.098 1.398

Design 4: 50% truncation, standard Cauchy

QME 0.470 1.812 1.872 0.851 1.270 1.878
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BIAS SE RMSE LQ MED UQ

STLS 0.396 6.390 6.949 0.823 1.109 1.605

EA 0.401 1.978 2.231 0.901 1.123 1.589

SA 0.393 1.759 2.217 0.801 1.012 1.598

Design 5: 50% truncation, standard normal

QME 0.767 2.338 2.479 0.858 1.488 2.620

STLS 0.494 3.765 3.798 0.776 1.189 1.966

EA 0.506 2.634 2.634 0.884 1.052 1.890

SA 0.509 2.031 3.012 0.765 1.175 1.935

Design 6: 50% truncation, gamma (2, 1) mode

QME 0.615 3.147 3.209 0.879 1.402 2.710

STLS 0.556 3.403 3.450 1.048 1.474 2.168

EA 0.598 3.479 3.581 0.881 1.057 1.111

SA 0.501 2.549 3.000 0.893 1.231 1.786

Design 7: 50% truncation, gamma (3, 1) mode

QME 0.688 2.361 2.460 0.771 1.613 2.761

STLS 0.705 3.712 3.778 0.731 1.335 2.486

EA 0.676 2.476 3.247 0.790 0.895 1.431

SA 0.617 3.001 3.223 0.801 1.112 1.524

Table 1. yi = 0 + xi + εi, i = 1, 2, ⋯, n, xi ~ N(0, 1), n = 30, and 200 replications; only the slope is reported.

In Design 1, with 50% truncation and the standard normal distribution as the model error, we
first check the effect of choosing w on the performance of SA algorithm. We note that w = 0.5 − 2
appears to be the range. So we try SA algorithm corresponding to w = 0.5, 1, 1.5, and 2,
respectively. The algorithm gives quite “stable” results with w = 0.5, 1, and 1.5 but provides
big variation for w = 2 under different replicates. This fact not only concludes that the selec-
tion of w may not be necessarily unique but also indicates that larger w may not have better
outcome. So in the real data analysis of Section 4, we suppose that w follows a uniform
distribution over the interval of [w1, w2], where w1 = 0.5 and w2 = 1.5.

Because of the results from Design 1, we use w = 1 (a value between 0.5 and 1.5) in Designs 2
and 3 for SA algorithm but use w = 0.1, 0.5, 0.9, and 1.3 to construct a weighted version of QME
(WQME) which is due to Lee’s [2] suggestion that an average of the estimates for several ws
may work along with WQME applied to the reasonable range of w. Actually, WQME some-
times performs better than a specific QME. STLS and EA seem to do well in both Designs 2
and 3. This, however, will change for distributions with thicker tails. Furthermore, STLS and
EA get much more estimation variation than SA.
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In Designs 4–7, we check the sensitivity to the underlying distribution, particularly to the tail
behavior of the distribution. We consider the standard Cauchy, standard logistic, and gamma
distributions with 50% truncation.

In Designs 4 and 5, except STLS, all methods perform similar. This is also true in Design 7.
STLS method, in spite of the small bias on average, gets big estimation variation for most of
cases except the case with a normal distribution. For example, among methods, STLS gives the
biggest variance and RMSE for fat-tailed distribution (Cauchy) and skewed distributions
(logistic and gamma). So STLS is not very reliable for practical application.

In Designs 4 and 5, EA and SA show slightly better than others in some of cases.

A final comment goes to algorithm speed, measured by CPU time. We found that CPU times
for all algorithms used in Table 1 are comparable, typically in the range between 5 and 10 s.

4. Returns of human capital in China

China has experienced rapid economic growth in the past 30 years, but the increase in wage
inequality is gradually a serious problem and should be given more attention. We will analyze
the important factors, which affect the incomes for most of Chinese workers. This study
consists of an analysis of annual income of 1967 Chinese citizens with ages between 18 and 55
in 2008. The data is provided by Chinese Social Survey Open Database (CSSOD) (http://
www.cssod.org/index.php in Chinese). We aim to check how education, experience, sex,
district, and job sector affect the typical income. One may use mean regression to carry out the
analysis, but average income is largely affected by small number of high-income receivers, so
that the resulting analysis does not represent the majority people or the typical case. For
example, majority workers often see their income as far lower than the reported average
income. Therefore, mode regression is an ideal model to carry out the analysis.

We use a standard log-linear Mincer formulation:

2
1 2 3 4 5 6 7log += + + + + + +Y Edu Exp Exp Gender Dis Sectorb b b b b b b e (7)

where log Y is the logarithm transform of annual income (in 1000 Yuan) and truncated by 2,
as majority annual income is more than 8000 Yuan. Edu is the number of years of schooling,
Exp is potential experience (approximated by the age minus years of schooling minus 7), Gender
is equal to 1 for male and 0 otherwise, Dis is equal to 1 for workers from the eastern China and
0 otherwise, Sector is equal to 1 for private sector workers and 0 otherwise, and ε is the model
error. The estimate coefficient βi means that a unit increase in the predictor variable results in
an increase in (100(exp(βi)−1))%.

We now carry out the mean and median regression analysis. That is, we fit the model (7) by
the mean regression and the median regression model, respectively. By implementing the lm
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and rq (in R-package quantreg) function in the R software, we obtain the fitted mean and median
results as shown in Table 2.

Mean regression Median regression Mode regression

Intercept 113.884***

(9.755)

134.376***

(11.486)

132.179***

(228.825)

Education 9.381***

(14.418)

8.501***

(12.614)

3.519***

(63.185)

Experience 2.103***

(3.630)

1.879***

(3.314)

3.887***

(56.280)

Experience2 −0.049***

(−3.569)

−0.045***

(−3.173)

−0.192***

(−47.839)

Gender 27.919***

(8.347)

25.912***

(7.585)

20.921***

(232.146)

District 44.463***

(13.249)

43.874***

(12.714)

42.571***

(447.565)

Sector 7.024*

(1.919)

−2.418

(0. 520)

−3.291***

(−23.626)

Note: Asymptotic standard errors are in parentheses for the mean and median regression.
* p < 0.1, ** p < 0.05, and *** p < 0.01 (two tailed)

Table 2. The results of three different regressions (%).

Table 2 shows that each additional year of education increases the conditional-mean income
by a factor of exp(0.09381) = 1.09835, which indicates a 9.835% increase. And the fitted median
regression model gives a coefficient of 0.08501, which indicates that one more year of education
increases the conditional-median income by exp(0.08501) = 1.08873 or a 8.873% increase. That
is, for small values of the estimated coefficient βi, this is approximately 100 βi%.

The experience entering the model in quadratic form is due to the most popular version of the
Mincer equation [13], which includes a quadratic function in years of potential experience to
capture the fact that on-the-job training investments decline over time in a standard life cycle
human capital model. The estimated coefficients of years of experience and its square both are
significant in the mean and the median regression. That is, the Chinese worker’s income shows
an inverted U-shaped relationship with years of experience and reaches the maximum at years
of 21.459 and 20.878, respectively. This means that experience within about 20 years does make
difference on the income but experience longer than 20 years would not add anything more
for the conditional-mean or the conditional-median income.
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Compared with being female, being male increases the conditional-mean income by
100[exp(0.27919)−1]% = 32.206% according to the mean regression results but by
100[exp(0.25912)−1]% = 29.579% according to the median regression results. In other words,
the conditional-mean income for male is 32.206% higher than it is for female, and male’s
conditional-median income is 29.579% higher than female’s, with other covariates held
constant.

Similarly, the conditional-mean and conditional-median income difference between workers
from the west and the east of China both is about 100[exp(0.44)−1]% = 55.271%.

For the dummy variable sector, the results of the mean regression indicate that the conditional-
mean income of workers from private sectors is greater than from public sectors by a factor of
exp(0.07024) = 1.072766, that is, a 7.277% increase in conditional-mean income. However,
according to the result of the median regression model, the coefficient of sector is not signifi-
cant, which means that there is no difference between the public and private sectors for the
conditional-median income.

As is known that the selection of w may not be unique for the mode regression, we suppose
that w ~ U[0.5, 1.5] and draw 300 different random ws from this uniform distribution. Based
on the 300 different ws, we implement the GenSA function in the R-package GenSA to fit the
multivariate mode regression and obtain 300 different vectors of the coefficients  . Following
the law of large numbers, the mean of these estimated  must approach to the real βi. Then

we can use the two-tailed T test for checking if hypotheses about  = 0 are true or not. The

mean and the two-tailed T test results of these seven coefficients βi based on the 300 different
mode regressions are shown in Table 2.

According to the results of mode regression based on the SA algorithm, the estimated returns
to an additional year of education are about 3.519%, and the education has a much smaller
effect on the conditional-mode income. Maybe this is one of the reasons why the typical income
is lower than the mean and median income.

The coefficients of years of experience and its square both are significant. That is, the relation-
ship between the conditional-mode income and the years of experience is shown in the inverted
U-shaped relationship too, but the income for most workers reaches the maximum at 10.122
years of experience. The return to experience, i.e., the derivative of the typical value of log
income with respect to experience, is therefore given by a combination of coefficients (3.887
− 2 × 0.192 × experience). The derivative needs to be evaluated at some specified level of
experience. Two points were chosen: 5 years of experience, representing fairly new entrants,
and 15 years of experience, representing experienced workers. And these two points give the
combination of coefficients 1.967 and −1.873. That is, the return to experience of 5 years is
1.967% and experience of 15 years is −1.873%. In contrast with the results of the mean and
median regression model, the return to experience of 15 years both is positive. The relationship
between income and experience based on these three different regression models is represent-
ed in Figure 3.
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Figure 3. The relationship of income and experience.

As shown in Figure 3, we conclude that experience does make a great contribution to the
conditional-mode income within 10 years, but experience longer than 10 years would not add
anything more for it. That is, the conditional-mode income increases rapidly due to experience
and decreases rapidly too after reaching the peak income. However, experience returns are
positive until about 20 years to the conditional-mean and conditional-median income. Maybe
this is another important reason why the typical income is lower than the mean and median
income.

The conditional-mode income from a man is about 20.921% more than from a woman, which
means that the gender pay gap is slightly less serious for majority workers compared with the
mean and median regression. Similarly, the conditional-mode income from workers of eastern
China is about 42.571% more than from worker of western China.

The private sector does not have positive return to mode income; this is in sharp contrast with
the results of the mean regression. Concretely speaking, the conditional-mode income for the
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public sector worker is 3.291% higher than for the private sector worker. This result is the
opposite of what is shown in the mean regression model.

The results from the analyses of both mean and the mode regression models are inconsistent
with the economic intuitions. In China, private sector includes private enterprises operated by
local Chinese; Sino foreign joint ventures; Hong Kong-, Macao-, and Taiwan-funded enter-
prises; and foreign-funded enterprises. Workers in the private enterprises which account for
the vast majority of the private sectors do not have the “compilation” or sign the labor contracts
with these enterprises; thus, their rights and interests cannot be guaranteed and their wage is
low. Although the workers in Sino foreign joint ventures and Hong Kong-, Macao-, and
Taiwan-funded enterprises do not have the “compilation,” they gain an attractive income
because of these enterprises’ relatively good efficiency. Workers in the foreign enterprises have
the highest wages, especially for those CEOs. So the average wage level of workers in the
private sector is relatively high. Most workers in the public sectors protected by the “compi-
lation,” often sign the labor contracts with the stated own enterprises, tend to gain a higher
wage than the workers in the private enterprise, and the wage gap is very relatively small.
Thus, the majority of workers have a lower wage in the private sector than in the public sector,
but on average, the opposite is the case.

5. Conclusion

While mode regression has been found very useful in practical regression analysis, the main
goal of this article is to introduce SA algorithm to fit mode regression models. The most popular
mode regression model is introduced by Lee [2]. There is no doubt on the elegance of rectan-
gular mode regression estimator of Lee [2], but the main problem with this estimator lies in
computation. While the difficulty in obtaining reliable mode regression coefficients limits the
application of the mode regression, we propose the SA algorithm for the mode regression
estimation and then compare the proposed SA algorithm with other existing methods. To sum
up, SA algorithm for fitting truncated mode regression does not require any liberalization or
modification of Lee’s estimator and solves the corresponding nonlinear optimization problem
more efficiently and robustly as a rule.

As an application of the SA algorithm fitting a real data-based mode regression and the
illustration of the sensible interpretation of fitted mode regression coefficients by the algorithm,
we apply the mode regression model in income inequality analysis of China and some
meaningful conclusions are obtained which are different from the mean regression and the
quantile regression.
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Abstract

Good layout plan leads to in improve machine utilization, part demand quality, efficient
setup time, less work-in-process inventory and material handling cost. Cellular
Manufacturing (CM) is an application of GTCM is the combination of job shop and/or
flow shop. Facility Layout Problem (FLP) for CMS includes both inter-cell layout and
intra-cell layout. A bi-level mixed-integer non-linear programming continuous model
has been formulated to fully define the problem and the relationship between intra-cell
and inter-cell layout design. Facilities are assumed unequal size; operation sequences,
part demands, overlap elimination, aisle are considered. The problem is NP-hard; hence,
a simulated annealing meta-heuristic employing a novel constructive radial-based heu-
ristic for initialization have been designed and implemented. For the first time, a novel
heuristic algorithm has been designed to allocate and displace facilities in radial direc-
tion. In order to improve the search efficiency of the developed SA algorithm, the cell
size used in the initialization heuristic algorithm is assumed twice as that of the original
size of the cells. A real case study from the metal cutting inserts industry has been used.
Results demonstrate the superiority of the developed SA algorithm against rival compa-
rable meta-heuristics and algorithms from the literature.

Keywords: facility layout problem, cellular manufacturing, mathematical modelling,
simulated annealing, aisle constraint
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1. Introduction

Facility layout problem (FLP) is the arrangement of a given number of non-equal-sized facili-
ties within the given space. Good layout plan leads to improve machine utilization, part
demand quality, efficient setup time, less work-in-process inventory and material handling
cost. Generally speaking, efficient layout design provides two main advantages: (1) Reduction
of between 30% to 70% in the total material handling cost (MHC) and (2) designing layout is
the long term-plan, hence, any changes in layout impose some expenditure such as shutting
down production or service line, losing process time and so on. Thus, designing proper facility
layout plan would prevent lots of costs [1].

Several algorithms have been developed for FLP problem. The traditional approach to FLP
called discrete representation often addressed by quadratic assignment problem (QAP)
with the objective of minimizing a given function cost. There are two main assumptions in
QAP: firstly, all facilities are equal size and shape; secondly, the location of facilities is
known in a priori. However, these kinds of assumptions are not applicable in real-world
case studies. This approach to FLP is not suited to represent the exact location of facilities
and cannot formulate FLP especially when facilities are unequal size and shape or if there
are different clearances between the facilities. The more suitable approach to such a kind of
cases is continuous representation rather than discrete. There are two ways to solve this
problem. Chronologically, the first one attempts was to divide each facility into smaller size
unit blocks, where the total area of those blocks is approximately equal to the area of the
facility. There are two drawbacks to this method: firstly, the problem size is growing as the
total number of blocks increase, and secondly, the exact shapes of facilities are ignored.
The second approach to continuous problem assumes the exact shape and dimensions of
the facilities (Table 1).

The design of a cellular manufacturing system (CMS) includes: (1) cell formation (CF), (2)
group layout, (3) group scheduling and (4) resource allocation. FLP to CMS is focusing on the
second step of design of CMS which by itself is twofold: inter-cell and intra-cell layouts. The
main objective of group layout is minimizing material handling cost (MHC) by arranging
facilities in their corresponding cells and cells in floor. In this chapter, both demand and
operation sequencing have been considered in optimizing the layout both at inter- and intra-
cellular levels. However, this was not the case with the literature; there is a dearth of papers
that happened to take a discrete approach which really did address those factors. Moreover, in
this chapter, a continuous approach has been adopted.

Approach Plant site Distance Facilities
Mathematical
formulation

Discrete Divided in rectangular blocks with same size
and shape; i.e., predetermined locations

Parameters
Meller et al., [2]

Equal-sized QAP

Continuous No predetermined location, i.e., no blocks Variable Unequal-sized MIP

Table 1. FLP discrete approach versus FLP continuous approach.
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Here, a bi-level mixed-integer non-linear programming continuous model has been devel-
oped for both intra-cell and inter-cell layout design sequentially. The problem is to arrange
facilities that are machine tools in the leader problem and cells in the follower problem on
the continual planar site. The objective function of leader and follower problems is minimiz-
ing the material handling cost at intra- and inter-cellular levels, respectively. The developed
mathematical model has some main novelties. Firstly, a continuous approach has been
adopted; i.e., facilities take unequal size and their locations are not predetermined. Secondly,
operation sequences and part demands are taken into consideration. Thirdly, the model has
the ability to consider certain restrictions or preferences for cells and floors such as aisle.
Finally, CMS design of disjoint cells is considered; hence, the overlapping elimination con-
straint is presented. Since the model is NP-hard, a novel heuristic has been developed to
solve the problem at two different levels (intra- and inter-cellular) in a similar fashion to that
used for developing the mathematical model. The developed heuristic is very different from
its counterparts in the literature in the sense that it places the facilities radially, while
dividing the production floor area into four quadrants. A real case study from the metal
cutting industry has been used, where multiple families of inserts have been formed, each
with its distinguished master plan.

2. Literature review

The block facility layout problem that was originally formulated by Armour and Buffa [3] is
concerned with finding the most efficient arrangement of m indivisible departments with
unequal area requirements within a facility [4]. As defined in the literature, the objective of
the block layout design problem is to minimize the material handling costs by considering the
following two sets of constraints: (a) department and floor area requirements; i.e. departments
cannot overlap, must be placed within the facility, and some must be fixed to a location or
cannot be placed in specific regions; see Refs. [1, 3, 5, 6].

Cellular layout is considered as one of the special cases of the general FLP. There is an
increasing interest in solving the block layout problem by taking a continuous approach [6].
Alfa et al., [9] have developed a model to simultaneously solve group formation and intra-cell.
The objective function is the summation of both inter-cell and intra-cell flow times based on
distance. They develop SA/heuristic algorithm to solve their model. SA has been used to find
the initial solution, and then a heuristic approach based on the penalty model developed to
improve the solution. The main limitation of this model is that the cell locations are
predetermined.

Bazargan-Lari and Kaebernick published few papers about design of cellular manufacturing
[10–13]. Bazargan-Lari and Kaebernick [11] present a continuous plane approach where
different constraints such as cell boundaries, non-overlapping, closeness relationships, loca-
tion restrictions/preferences, orientation constraints and travelling distances have been con-
sidered. They develop a hybrid method which combined a non-linear goal programming
(NLGP) and simulated annealing for machine layout problem. They have combined all
constraints as goals using goal programming (GP) formulas. Generally speaking, GP divides
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those constraints into two main categories such as absolute or hard and goal or soft con-
straints. Hard constraints are those that have to be satisfied absolutely. It means that viola-
tion of any of them would yield to infeasibility. However, soft constraints can be
compromised and be offset from desired set goals. Those constraints are considered as three
separate sets of objectives. The first priority level includes all set of absolute or hard objec-
tives which have to be absolutely satisfied such as non-overlapped and cell boundary
constraints. The second and third priority levels are preferences. The second priority is
devoted to minimizing the area of the cells/shop floor, satisfying closeness relationship and
orientation. Finally, the third priority is to minimize the total travelling cost. Overall, the
approach of Bazargan-Lari and Kaebernick is a combination of the NLGP and SA. They use
the pattern search to solve their NLGP based on those three priorities. Since a pattern search
is finding the local minimum, then they have been using SA to exit from the trap of local
minimum. The core of their model is that they are generating alternative layout design by
changing the order of priority levels 2 and 3 in each outer loop of SA algorithm. In other
words, the starting point of new outer loop of SA is generated by the patter search algorithm.
By changing the goal priority levels, huge pools of efficient solutions are generating. To solve
this issue, they used what they called the filtering process to choose which sets of solutions
have more different with the other ones. The logic behind this is giving decision-makers the
chance to consider how changing preferences’ priorities would impact the solutions.

The other important piece of research was written by Imam and Mir [14, 15]. Imam and Mir [14]
introduce a heuristic algorithm to place unequal-sized rectangular facilities in continuous plane
by introducing the new concept of ‘controlled coverage’ by using ‘envelop blocks'. In the initial
solution, facilities are randomly placed in plane in the envelop block the size of which is much
larger than the actual size of facility and is calculated by multiplying magnification factor with
the facilities’ actual dimensions. Afterwards, during the heuristic iterations, the sizes of envelop
blocks are gradually decreased by decreasing the magnification factor until the dimensions of
envelopes will became equal to the dimensions of their corresponding facilities. By this
approach, they were controlling the coverage of facilities together. The improvement iteration is
based on the univariate search method. In this method, only one of the 2n design variables where
n is the number of facilities is changing at time. This change means moving facility horizontally
or vertically along the x-axis or y-axis, respectively. There are three drawbacks to their method.
Firstly, each iteration cycle is repeated 2n times, n times to move facilities horizontally and then
another n more times to move them vertically. The other drawback is that facilities are just
allowed to move horizontally or vertically, there is no diagonal movement. Thirdly, there are no
borders for the assumed continuous plane. However, in real world, there is no plane without
borders. The last drawback is related to magnification factor, they have not specified how large
this factor has to be originally and by which fraction it has to be reduced in each iteration cycle.

Mir and Imam [15] have mentioned the second drawback above is addressed and try to
improve their primary procedure. They develop a hybrid model by using SA for gaining the
sub-optimal initial feasible solution and then they improved it using a steepest descent
approach. As they also noted that the number of optimization iterations depends of the
magnification factor by which the size of the envelope blocks reduces when the magnification
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factor was being reduced. The algorithm stopped when the magnification factor is equal to
one. So it is obvious that the computational cost and time are quite dependent on magnifica-
tion factor.

On the other hand, there are various papers that considered alternative as a discrete approach.
QAP is an NP-complete problem, which means that when the size of the problem is increasing
it cannot be solved by exact algorithm [16]. Hence, lots of efforts have been made to develop
and apply heuristic and meta-heuristic algorithm for this kind of problem. Wilhelm and Ward
[16] have applied simulated annealing (SA) to solve QAP. Their results have been compared
with the computerized relative allocation of facilities technique (CRAFT), biased sampling and
revised Hillier problem and showed better quality solutions.

Baykasoğlu and Gindy [17] have applied SA for dynamic layout problem, discrete approach.
They claim their proposed algorithm finds better solution. They compared their proposed
algorithm to the three works done [18–20]. In the first comparison, their SA approach found
optimum solution and revealed better solution than dynamic programming algorithm of
Rosenblatt [18]. The second comparison has two experiments: first one carried out with no
shifting cost and the SA algorithm found optimum solution and outperforms that Conway
and Venkataramanan [19] genetic algorithm. In this experiment, relocation costs are included.
The optimum solution was not found; however, the results of SA showed a slight improve-
ment over that of Rosenblatt [18]. Finally, in the third comparison the data set obtained from
Balakrishnan and Cheng [20]. They develop non-linear genetic algorithm (NLGA). The com-
parison between the SA-based approach and NLGA reveals the superiority of SA algorithm
when the size of the problems is large. Since they have taken discrete approach to FLP, the
only operator has been used in neighbourhood generation algorithm is the swap operator.

Tavakkoli-Moghaddam et al., [21] are developed a non-linear mathematical modelling to solve
the cell formation in dynamic environment in which demand varies in each time horizon. The
strength point of their model is that it is a multi-objective model, i.e. considering more than one
objective such as machine cost, operating cost, inter-cell material handling cost and machine
relocation cost. Three meta-heuristic models, such as genetic algorithm (GA), simulated
annealing (SA) and tabu search (TS), have been used to solve this problem. The results show
SA outperforms compare to the two meta-heuristics.

Safaei et al., [22] have developed a mixed integer programming which tries to minimize machine
constant and variable costs, inter- and intra-material handling cost and reconfiguration costs.
They present a hybrid model called mean field annealing and simulated annealing (MFA-SA) to
solve the problem. MFA stands for mean field annealing which used to find the feasible initial
solution for SA. Most of the developed heuristics in the literature have taken a discrete approach
to FLP than a continuous one. Developing heuristics for the discrete problem is easier, because
locations are predetermineda priori; hence, the only operator that is usually used is the swap
operator, to shuffle the different facilities locations. Moreover, in the discrete approach no
overlap would happen between facilities. On the other hand, it is harder to design heuristics for
the continuous formulation of FLP since overlap takes place. It is usually the case that repeated
repairs and checks of validity of the generated solutions have to take place.
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3. Mathematical modelling

The problem is to arrange facilities that are cells in the leader problem and machine tools in the
follower problem in their respective space. The site has a rectangular shape with specified length
(L) and width (W). Moreover, there is a horizontal aisle in the site by the same length as of site,
however, with two different vertical dimensions YVALU and YVALL. Aisle divides the site into two
sections, upper and lower. No facilities are allocated to the aisles. The objective is to minimize the
total travel-flow cost by considering shape, size and geometric characteristic of the different
facilities. Facilities have a rectangular shape. The position of each facility is determined by the
coordinates of its centroid as well as its predetermined length and width. Facilities are not
allowed to overlap each other and have to be assigned in their related boundary areas, which is
the overall site's boundaries for the follower problem and that of the cell for the leader problem.
The traditional Cartesian coordinate system, shown in Figure 1, represents the scheme used
in this chapter. The following model has represented by Allahyari and Azab [7, 8] and Allahayri
[7]. The problem is formulated under the following assumptions [6]:

The problem is formulated under the following assumptions:

1. CF is known in advanced.

2. Machines are not in the same size.

3. Machines must be located within a given area.

4. Machines are not allowed to overlap each other.

5. Cell's dimensions and orientation are predetermined.

Figure 1. Scheme of shop.

Computational Optimization in Engineering - Paradigms and Applications104



3. Mathematical modelling

The problem is to arrange facilities that are cells in the leader problem and machine tools in the
follower problem in their respective space. The site has a rectangular shape with specified length
(L) and width (W). Moreover, there is a horizontal aisle in the site by the same length as of site,
however, with two different vertical dimensions YVALU and YVALL. Aisle divides the site into two
sections, upper and lower. No facilities are allocated to the aisles. The objective is to minimize the
total travel-flow cost by considering shape, size and geometric characteristic of the different
facilities. Facilities have a rectangular shape. The position of each facility is determined by the
coordinates of its centroid as well as its predetermined length and width. Facilities are not
allowed to overlap each other and have to be assigned in their related boundary areas, which is
the overall site's boundaries for the follower problem and that of the cell for the leader problem.
The traditional Cartesian coordinate system, shown in Figure 1, represents the scheme used
in this chapter. The following model has represented by Allahyari and Azab [7, 8] and Allahayri
[7]. The problem is formulated under the following assumptions [6]:

The problem is formulated under the following assumptions:

1. CF is known in advanced.

2. Machines are not in the same size.

3. Machines must be located within a given area.

4. Machines are not allowed to overlap each other.

5. Cell's dimensions and orientation are predetermined.

Figure 1. Scheme of shop.

Computational Optimization in Engineering - Paradigms and Applications104

6. Each part type has a number of operations that must be processed based on its operation
sequence readily available from the route sheet of parts. It should be noted that the
process sequence of each part is different.

7. The demand for each part type in known and is constant.

8. Material handling devices moving the one part between machines.

9. Inter- and intra-cell movements related to the part types have different costs that are
related to the distance travelled. We assume the rectangular distance between each pair
of machines’ centroid.

10. In determining machine size and dimensions, the workspace required for operator
usage and that needed to enforce between the different machines have been taken into
account.

The mathematical formulation represented as below

Sets:

P ¼ {1, 2, 3,…,P} Index set of part types

M ¼ {1, 2, 3,…,M} Index set of machine types

C ¼ {1, 2, 3,…,C} Index set of cell types

Op ¼ {1, 2, 3,…,Op} Index set of operations indices for part p

Parameters:

L Horizontal dimension of shop floor

W Vertical dimension of shop floor

YVALU Vertical dimension of upper side of aisle

YVALL Vertical dimension of lower side of aisle

XHALLF Horizontal dimension of left side of aisle

XHALRT Horizontal dimension of right side of aisle

li Length of machine i

wi Width of machine i

lc Length of cell c

wc Width of cell c

CAj Intra-cellular transfer unit cost for part j

CEj Inter-cellular transfer unit cost for part j

Dj Demand quantity for part j

Ujoi 1, if operation o of part j is done by machine i, otherwise 0
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U0
joi 1, if operation o of part j is done by machine i which is located in cell c, otherwise 0

Qic 1, if machine i is assigned in cell c

Decision variables:

xi Horizontal distance between centre of machine i and vertical reference line

yi Vertical distance between centre of machine i and horizontal reference line

x0c Horizontal distance between centre of cell c and vertical reference line

y0c Vertical distance between centre of cell c and horizontal reference line

Ziu 1, if machine u is arranged in the same horizontal level as machine i, and 0 otherwise

Wcc0 1, if cell c is arranged in the same horizontal level as cell c0 and 0 otherwise

Zc 1, if cell c is arranged in out of aisle horizontal boundaries and 0 otherwise

Wc 1, if cell c is arranged in out of aisle vertical boundaries and 0 otherwise

The continuous bi-level programming problem is defined as: the intra-cell layout mathematical
formulation to layout the different machines (machines here are the facilities) of every cell c at a
time is as follows:

Min
XP

j¼1

Xop�1

o¼1

XM
i, u ¼ 1
i 6¼ u

Ujoi Ujoþ1uðjxi � xuj þ jyi � yujÞ CAjDj (1)

s.t.

xi þ li
2
≤ lC i ¼ 1, ::,M (2)

xi � li
2

≥ 0 i ¼ 1, ::,M (3)

yi þ
wi

2
≤ wc i ¼ 1, ::,M (4)

yi �
wi

2
≥ 0 i ¼ 1, ::,M (5)

jxi � xuj ≥Ziuðli þ luÞ=2 i, u ¼ 1, ::,M (6)

jyi � yuj ≥ ð1� ZiuÞðwi þ wuÞ=2 i, u ¼ 1, ::,M (7)

xi, yi ≥ 0,Ziu are binary i,u ¼ 1, ::,M (8)

Equation (1) declares the objective function of leader problem, which is minimizes the total
intra-cell transportation cost of parts. Equations (2)–(5) are within site constraints that ensure
each machine tool is assigned within the boundaries of its corresponding cell. Equations (6)
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and (7) force the overlap elimination for machine tools. Equation (8) represents the nature of
the decision variables which are binary and non-negative.

Finally, the inter-cell layout problem tries to layout the different cells (cells here are the
facilities) of the entire shop floor is as follows:

Min
XP

j¼1

Xop�1

o¼1

XC
c, c0 ¼ 1
c 6¼ c0

U0
joc U0

joþ1c0 ðjx0c � x0c0 j þ jy0c � y0c0 jÞCEjDj (9)

s.t

x0c þ l0c
2

≤ L c ¼ 1, ::,C (10)

x0c � l0c
2

≥ 0 c ¼ 1, ::,C (11)

y0c þ
w0

c

2
≤W c ¼ 1, ::,C (12)

y0c �
w0

c

2
≥ 0 c ¼ 1, ::,C (13)

jx0c � x0c0 j ≥Wcc0 ðl0c þ l0c0 Þ=2 c, c0 ¼ 1, ::,C (14)

jy0c � y0c0 j ≥ ð1�Wcc0 Þðw0
c þ w0

c0 Þ=2 c, c0 ¼ 1, ::,C (15)

Aisle constraints:

Horizontal aisle:

ðy0c þw0
c=2Þ � YVALL ≤ M Zc (16)

YVALU � ðy0c �w0
c=2Þ ≤M ð1� ZcÞ (17)

Vertical aisle:

ðx0c � l0c=2Þ � XHALRT ≤MWc (18)

XHALLF � ðx0c þ l0c=2Þ ≤ M ð1�WcÞ (19)

x0c, y0c ≥ 0,Wcc0 ,Zc,Wc are binary c ¼ 1, ::,C (20)

Equation (9) represents the objective function of follower program. The objective function
minimizes the inter-cell transportation cost of parts. The within-site constraints are enforced
by the set of constraints 10–13; i.e. these constraints ensure that cells are assigned within the
boundaries of shop floor. Moreover, overlap elimination constraints are defined by constraints
(14) and (15) which enforce the overlap elimination among cells. Equations (16) and (19) in the
follower problem ensure that no cells would be assigned in the aisle boundaries. Finally,
Eq. (20) specifies that the decision variables are binary and positive.
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4. Simulated annealing

Simulated annealing is a stochastic neighbourhood search technique, which was initially
developed by Metropolis and applied to combinatorial problems by Kirkpatrich et al. [25] for
the first time.

To begin with, the basic of SA is based on statistical mechanics and comes from the similarity
between the annealing of solids process and the solving method of combinatorial problem. If
each feasible solution to the combinatorial optimization problem as a configuration of atoms
and the objective function value of corresponding feasible solution as the energy of the system,
then the optimal solution of combinatorial optimization problem is as like as the lowest energy
state of the physical system [23]. The core of heuristic algorithms for solving the combinatorial
problem is based on continual improvement, moving from one solution to another one in order
to decrease the objective function from one iteration to next one. The same procedure is taking
in quenching the system from high to low temperature in order to reach the required quality.

4.1. The elements of an SA algorithm

The core of SA algorithm is Metropolis algorithm, which allows uphill moves sometimes.
Metropolis algorithm has four main elements [24, 25]. Figure 2 represents the simulated
annealing steps.

1. Initial solution and description of system configuration

It is the starting point of SA algorithm. There are two main approaches for generating initial
solution. One is generating initial solution randomly; by taking this approach feasibility of
initial solution has to be considered. The second approach is getting feasible initial solution
by adapting greedy algorithms or another heuristic algorithm. It has to be noted that initial
solution should not be too good because escaping from its local optimum is hard.

2. Configuration changes

By moving from one configuration to another one, new neighbourhood solution is gener-
ated. These changes occurred by defining some operators which are responsible to make
changes in the current solution.

3. Objective function that represent the quantitative measurement of goodness of a system

After finding any neighbour, the difference between objective value of new solution (Enþ1)
and of the current solution ðEnÞ is calculated. If ðΔE < 0Þ, it means that the objective value
of neighbourhood solution is showing improvement in comparison to the objective value
of the current solution found so far ðΔE < 0Þ. Hence, the current one will be accepted
as the new best solution. On the other hand, if ðΔE ≥ 0Þ the new solution is accepted with a
certain probability. Using this approach, SA tries to exit from the local optima region in
which it trap. The probability is based on the so-called Boltzmann probability distribution

ProbðΔEÞe expð�ΔE=kbTÞ (21)
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where T is the parameter and kb is the Boltzmann's constant which is not required when
Metropolis algorithm is applying to combinatorial problems [16]. The acceptance probability
of new solution depends on two factors, one is how large is this difference. The bigger the
difference, the lesser the chance of accepting this new solution. The second criterion is a control
parameter (temperature). It should be noted if the initial temperature is not large enough or it
decreases dramatically the chances that the algorithm traps at local optima is high.

4. Annealing schedule/cooling schedule

Figure 2. Flowchart of simulated annealing.

Facility Layout Problem for Cellular Manufacturing Systems
http://dx.doi.org/10.5772/67313

109



The annealing schedule determines four rules:

1. Initial temperature: Since the annealing of solids is the basic of the SA approach, initial
temperature is the melting point of SA algorithm and it should be defined in such a way that
the solutions generated by high acceptance probability approximately close to one. Kirkpatrick
et al. [25] noted that the initial temperature has to be large enough that 80% of generated
solutions are accepted. Kia et al., [26] and Baykasoğlu and Gindy [17] defined initial solution
high enough in such a way that 95% of generated candidates can be accepted using the
following equation:

T0 ¼
Objvj �Objvi

lnð0:95Þ (22)

Objvj and Objvi are the objective values of two random solution i and j, respectively. It should
be noted initial solution T0 is generated once at the beginning of SA algorithm.

2. Temperature length

3. Termination: There are different approaches for stopping criteria such as

• A specific number of iteration

• Exact final temperature

• No improvement for a number of iteration

Based on the literature review, there are different approaches for choosing SA parameters as
explained briefly in Table 2.

Author
Initial temperature
(T0) Cooling rate (α)

Temperature
reduction

Loop length

Inner Outer

Bazargan-Lari and
Kaebernick [11]

10 0.9 ti ¼ 10ð0:9Þi�1 N0 ·n K

Baykasoğlu and Gindy [17] Tin ¼ fmin�fmax
lnPc¼lnð0:95Þ ∝ ¼ lnPc

lnPf

� �1 ðeLmax
�1Þ= Telþ1 ¼ αTe1 IL>LMC elmax calculated

Heragu and Alfa [27] 999 0.90 T ¼ rT Epoch concept
N0 ·n

K

Wilhelm and Ward [16] 10 0.9 ti ¼ 10ð0:9Þi�1 Epoch concept
N0 ·n

K

Epoch: Predetermined specific number of successful pairwise interchanges at each temperature.
N0 : Predetermined integer.
n : Total number of facilities.
K : Predetermined integer- the total number of temperature steps.

Table 2. SA parameters.
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4.2. Developed simulated annealing for FLP

4.2.1. Initialization

A unique heuristic is used to generate a feasible initial solution for SA algorithm [7, 8]. The
explanation of the developed heuristic is provided in Section 4.2.1.1.

4.2.1.1. Initialization heuristic

The mechanics of the developed algorithm are very different than any of the available heuris-
tics in the literature. The whole idea behind our algorithm is to place facilities radially along

vectors rf
! that are originated from the centroid of the space considered, where all facilities are

to be placed as shown in Figure 3. The radial vectors along which all facilities are to be placed

are distant radially by an angle θ ¼ 3600
M .

At the start of the heuristic method, at first the given area is first divided into four equal size
quadrants; i.e. Q1, Q2, Q3, and Q4. Afterwards, all facilities are placed on top of each other in
the middle of the given area. The developed heuristic algorithm consists of the two nested loops.

4.2.1.1.1. Outer loop

For each iteration of the outer loop, one random facility (called target facility) f G is chosen and
located radially along the radius ðrf Þ, which is making an angle θ0 with the abscissa, as shown
in Figure 3.

�θ ¼ i ·θ i ¼ 1, 2,…,M (23)

Facilities are permitted to be placed within the boundaries of the given area. In order to satisfy this

constraint, vector a
!
, which is a vector of random magnitude along vector's rf

! direction, is taken,

Figure 3. The mechanics of developed heuristics.
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and facility, f G, is placed at the end of this vector. The length of vector a
!

is a random number

between ½0, j rf! j � r�, where r is the length of the diagonal of facility f G. The next step is checking
the possibilities for overlap between all facilities. If any overlap occurs between the target facility
f G and the given area's boundaries or between target facility f G and the previously placed facilities,
the inner loop is triggered. It should be noted that the facility coordinates for each is calculated
based on an origin that is located at the bottom-left corner of the site as shown in Figure 3.

4.2.1.1.2. Inner loop

Different repair functions based on the type of overlap are being developed to eliminate
overlap. Repair functions guarantee the elimination of overlap between facilities and allocation
of the facility within the boundaries of its corresponding quadrant. However, if the
corresponding quadrant is too congested, the overlapped facility can be placed partially in a
different quadrant. Nevertheless, no facilities are allowed to violate the given area boundaries.
The inner loop has two main steps: in the first step, the overlap between facility f G and the
overlapped facility f j is repaired. Afterwards, overlap checking is performed for all facilities

starting from the last placed facility to the first one to see if repair done in previous step has
caused further overlaps or not. If no overlap takes place, the inner loop is ended and algorithm
goes back to the outer loop to place another facility, given a facility is still left to be placed.
However, if overlap is detected when checking for overlap between all the facilities, the second
step of the inner loop is enacted.

The second step of the inner loop consists of few iterations. In each iteration, as explained one
facility f i is selected as target facility, and then the possibility of overlap between the target
facility and rest of previously placed facilities is checked. If there is overlap between the target
facility f i and facility f j , overlap elimination algorithms are enacted. The overlap has two main

projections: one in the x-direction, Δx, and another in the y-direction, Δy. Δx represents the
horizontal overlap between the two facilities f i and f j. In a similar fashion, Δy shows the

vertical overlap between the two overlapped facilities as demonstrated in Figure 4. If Δx ≤Δy,

Figure 4. Scheme of overlap between two facilities f i and f j.
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the overlap is fixed by removing overlap in the x-projection direction; otherwise, it does that in
the y-direction. The repair mechanism starts by moving target facility f i by the overlap dis-
tance Δ in appropriate direction.

Since no facility is allowed to violate the given area's boundaries, there is a need to know how
much distance left between facility f i and cell/floor (or quarter) boundaries. If the distance left
is less than overlap Δ, then overlap elimination is carried out for the facility f j. Moreover, if the

distance left between the facility f j and site (or quarter) boundaries is not less than overlap Δ,

the overlap distance Δ should be applied to both facilities f i and f j. At the end of each iteration,

the overlap is checked once again to tackle any possibility of newly occurred overlap. This loop
is repeated until all overlap and intersection between facilities are repaired. The summary of
the developed initialization heuristic is represented in Figure 5.

Figure 5. Summary of developed initialization heuristic algorithm.
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4.2.2. Neighbourhood solution scheme

In order to generate new neighbourhood solution, two main operators, namely, move operator
and swap operator, have been developed. The move operator tries to make facilities close to
each other and also the swap operator switches the location of the two facilities. The details
about these two operators explained below.

4.2.2.1. Move operator

The developed move operator tries to reduce distances between the facilities. The logic behind
this algorithm is decreasing the distance between one facility called in-context facility, which is
chosen randomly and the closest facility towards that. By moving the in-context facility
towards its closest facility, the possibility of overlap between in-context facility and the rest of
facilities is decreased. Main point here is that how much the maximum_movable_ distance is.
Maximum_movable_ distance is the maximum length which if in-context facility moved
towards its closest facility no overlap will happen between them. The steps of move operator
algorithm are explained below:

1. Randomly choose one facility, called in-context facility f G.

2. The Euclidean distance between the centroid of in-context facility f G and the rest of
facilities is calculated.

DisGi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXG � XiÞ2 � ðYG � YiÞ2

q
∀ i ¼ 1, 2,…,M and i 6¼ G (24)

3. Facilities are sorted based on the distances found in step 2 in the descending order. The
first one among the above set would be the closest facility f C to the in-context facility f G.

4. Divide the in-context facility f G into four equal-sized quadrants by the origin of its
centroid.

5. Find in which quadrant of in-context facility f G the closest facility f C is located.

6. At this point the maximum _movable_ distance j CC0 j
�!

is calculated. For finding this

distance, two points C and C0 have to be found. C is the conjunction of vector r0
!

and the
closest boundary of in-context facility f G to the closest facility f C; and C0 is the conjunction

of vector r
0 0!
and the closest boundary of closest facility to in-context facility. To do this,

these concepts are defined:

O0O
0 0���!
: Vector between centroids of in-context facility f G and closest facility f C.

j CC0 j
�!

: Maximum_movable_distance

θ1: The angle between vector O0O
0 0���!
and horizontal line

Computational Optimization in Engineering - Paradigms and Applications114



4.2.2. Neighbourhood solution scheme

In order to generate new neighbourhood solution, two main operators, namely, move operator
and swap operator, have been developed. The move operator tries to make facilities close to
each other and also the swap operator switches the location of the two facilities. The details
about these two operators explained below.

4.2.2.1. Move operator

The developed move operator tries to reduce distances between the facilities. The logic behind
this algorithm is decreasing the distance between one facility called in-context facility, which is
chosen randomly and the closest facility towards that. By moving the in-context facility
towards its closest facility, the possibility of overlap between in-context facility and the rest of
facilities is decreased. Main point here is that how much the maximum_movable_ distance is.
Maximum_movable_ distance is the maximum length which if in-context facility moved
towards its closest facility no overlap will happen between them. The steps of move operator
algorithm are explained below:

1. Randomly choose one facility, called in-context facility f G.

2. The Euclidean distance between the centroid of in-context facility f G and the rest of
facilities is calculated.

DisGi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXG � XiÞ2 � ðYG � YiÞ2

q
∀ i ¼ 1, 2,…,M and i 6¼ G (24)

3. Facilities are sorted based on the distances found in step 2 in the descending order. The
first one among the above set would be the closest facility f C to the in-context facility f G.

4. Divide the in-context facility f G into four equal-sized quadrants by the origin of its
centroid.

5. Find in which quadrant of in-context facility f G the closest facility f C is located.

6. At this point the maximum _movable_ distance j CC0 j
�!

is calculated. For finding this

distance, two points C and C0 have to be found. C is the conjunction of vector r0
!

and the
closest boundary of in-context facility f G to the closest facility f C; and C0 is the conjunction

of vector r
0 0!
and the closest boundary of closest facility to in-context facility. To do this,

these concepts are defined:

O0O
0 0���!
: Vector between centroids of in-context facility f G and closest facility f C.

j CC0 j
�!

: Maximum_movable_distance

θ1: The angle between vector O0O
0 0���!
and horizontal line

Computational Optimization in Engineering - Paradigms and Applications114

θ2: The angle between vector O0O
0 0���!
and vertical line

r0 :
!

Vector from centroid of in-context facility O0 to the closest boundary of in-context
facility f G towards the closet facility f C:

r
0 0
:

!
Vector from centroid of the closest facility O

0 0
to the closet boundary of the closest

facility f C toward the in-context facility f G.

θ1 ¼ tan�1 jOpposite sidej
jAdjacent sidej ¼ tan�1 jYG � YCj

jXG � XCj (25)

θ2 ¼ tan�1 jOpposite sidej
jAdjacent sidej ¼ tan�1 jXG � XCj

jYG � YCj (26)

Also: θ2 ¼ 90� θ1

where XG and YG are vertical and horizontal coordinates of centroid of in-context facility f G,
respectively. Similarly, XC and YC are vertical and horizontal coordinates of centroid of in-
context facility f C, respectively.

It has to be noted, the length of both vectors r
0!
and r

00!
depends on their corresponding angles θ1

and θ2. Figures 6 and 7 illustrate this topic.

j r0
!
j ¼

Adjacent side
Cosθ1

¼ LG=2

Cosθ1
if 0 ≤θ1 ≤ 450

Opposite side
Sinθ1

¼
WG=2
Sinθ1

if 450 ≤θ1 ≤ 900

8>><
>>:

(27)

j r00
!

j ¼
Adjacent side

Cosθ2
¼ WC=2

Cosθ1
if 0 ≤θ2 ≤ 450

Opposite side
Sinθ2

¼
LC=2
Sinθ1

if 450 ≤θ2 ≤ 900

8>><
>>:

(28)

where LG andWG are length and width of in-context facility f G, respectively. Similarly, LC and
WC are length and width of in-context facility f C, respectively.

Based on in which quadrant closing facility is located, C and C0 coordinates are calculating by
equations shown in Table 3.

Hence, the length of vector j CC0�!
j is

j CC0�!
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXC � XC0 Þ2 � ðYC � YC0 Þ2

q
(29)

7. At this point the length of the movement, called ml is the random number in interval

ð0, j CC0�!
j�: Furthermore, the direction of movement is along the vector CC0�!

.
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Figure 6. Angle calculation in move operator (I).

Figure 7. Concept of angle in move operator (II).

Computational Optimization in Engineering - Paradigms and Applications116



Figure 6. Angle calculation in move operator (I).

Figure 7. Concept of angle in move operator (II).

Computational Optimization in Engineering - Paradigms and Applications116

8. If the closest facility is adjacent to the facility f G, find the other closest facility and go to step
5, otherwise go to step 9.

9. Finally, new coordinates of in-context facility f G are calculated and shown in Table 4.

4.2.2.2. Swap operator

The second operator of the developed SA is the swap operator which is switching positions of
two facilities. The point here is how swap two facilities together that with the minimum
possibility of overlap. To do that, the new concepts called free zone is defined. To apply this
concept, a random facility called f G is chosen and the available free space around this facility
called FZG is determined by applying the maximum_movable_distance concept introduced in
move operator. It has to be noted the centroid of free zone FZG is the same as centroid of the
facility f G. If there is any facility whose area is greater than the area of the facility f G and less
than the area of free zone FZG then that facility is qualified for swapping. By swapping this
facility with facility f G the possibility of occurrence of overlap is minimized. Moreover, if there
is more than one facility which are qualified to swap with the facility f G , one facility is chosen
randomly. Figure 8 shows the scheme of free zone concept. The algorithm below explained
swap operator's steps in detail:

1. One facility is chosen randomly, called facility f G.

Coordinates

Quadrant c c0

1 ðXG þ r0Cosθ1, YG þ r0Sinθ1Þ ðXi � r
0 0
Cosθ2, Yi � r

0 0
Sinθ2Þ

2 ðXG � r0Cosθ1, YG þ r0Sinθ1Þ ðXi þ r
0 0
Cosθ2, Yi � r

0 0
Sinθ2Þ

3 ðXG � r0Cosθ1, YG � r0Sinθ1Þ ðXi þ r
0 0
Cosθ2, Yi þ r

0 0
Sinθ2Þ

4 ðXG þ r0Cosθ1, YG � r0Sinθ1Þ ðXi � r
0 0
Cosθ2, Yi þ r

0 0
Sinθ2Þ

Table 3. C and C0 coordinates.

New coordinates of target facility

Direction XG YG

Quadrant 1 XG þml � Cosθ1 YG þml � Sinθ1

Quadrant 2 XG �ml � Cosθ1 YG þml � Sinθ1

Quadrant 3 XG �ml � Cosθ1 YG �ml � Sinθ1

Quadrant 4 XG þml � Cosθ1 YG �ml � Sinθ1

Table 4. New coordinate of f G after move.

Facility Layout Problem for Cellular Manufacturing Systems
http://dx.doi.org/10.5772/67313

117



2. The closest facility to the f G is determined-details mentioned in move operator.

3. Maximum_movable_distance is calculated.

4. Free zone FZG of facility f G is determined.

5. Areas of facility f G and FZG are calculated.

6. Among the rest of facilities those ones whose areas are greater than the area of facility f G
and less than the area of free zone FZG are found.

7. Randomly one facility among those facilities is found in step 6 is chosen, call it f i.

8. Swap facility f G to the facility f i.

9. Calculated the new coordinates of both f G and f i.

10. End

Figure 8. Free zone concept.
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Assume:

LG: Length of the f G

WG: Width of the f G

ml: Maximum movable distance

LFZ: Length of the FZ

WFZ: Width of the FZ

AFZ: Area of FZ

AC ¼ min XG � LG=2ðð Þ,ml ·Cosθ1Þ (30)

AC0 ¼ min YG � WG=2ðð Þ,ml · Sinθ1Þ (31)

LFZ ¼ LG þ 2AC (32)

WFZ ¼ WG þ 2AC0 (33)

AFZ ¼ LFZ·WFZ (34)

4.2.3. Aisle constraints

In case of aisle, the operators move and swap vary. The details are presented in the below
section.

4.2.3.1. Move operator

The move operator has the same procedure as the move operator developed in case of no aisle.
Hence, in case of aisle one facility is chosen randomly f G and moves to its closest facility f C.

Afterwards, the possibility of overlap between aisle and new position of facility f G called f´G is
considering. If any overlap happened, it has to be fixed. To do that, two repair functions have
been developed.

4.2.3.2. Before-aisle repair function

The idea behind this function is if there is any overlap between f´G and aisle happens, the

facility f´G moves back exactly before the aisle. To illustrate, f´G backs to the back of boundary of
aisle which it passed over. Figures 9 and 10 represent the overlap conditions in both cases of
vertical and horizontal aisle.

The steps of the move operator with aisle constraints are explained as follows:

Step 1.Move facility f G towards its closest facility. Calculate new coordinates of facility f G and

call it facility f´G.

Step 2. Check overlaps possibility between f´G and aisle.
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Step 3. If there is any overlap, take appropriate repair function.

Step 4. Find the coordinates of f´G- —details are shown in Tables 5 and 6.

Step 5. End

Repair function-horizontal aisle

• Facility f G is lower side of the aisle is

Rep ¼ ýGþWG =2ðð Þ� YA�wA =2ð ÞÞ=Sinθ (35)

• Facility f G is upper side of the aisle:

Rep ¼ YAþWA =2ðð Þ� ýG�wG =2ð ÞÞ=Sinθ (36)

Repair function-vertical aisle

• Facility f G is in the left side of the aisle:

Rep ¼ x́GþlG =2ðð Þ� XA�LA =2ð ÞÞ=Cosθ (37)

• Facility f G is in the right side of the aisle:

Rep ¼ XAþLA =2ðð Þ� x́G�lG =2ð ÞÞ=Cosθ (38)

Figure 9. Before-aisle move operator for horizontal aisle.
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Figure 10. Before-aisle move operator for vertical aisle.
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4.2.4. Developed SA algorithm

In this chapter, the parameters taken by Bazargan-Lari and Kaebernick [10] have been used in
the developed SA algorithm:

1. Initial temperature: 10

2. Cooling rate: 0.9

3. Temperature reduction: ti ¼ 10ð0:9Þi�1

4. Outer loop: 25

5. Inner loop: 100·M, M is the total number of facilities

5. Case study

Carbide Tool Inc. manufactures and distributes metalworking tools. The company is dedicated
to developing specialized carbide, polycrystalline diamond (PCD) and cubic boron nitride
(CBN) inserts, as well as multi-task tooling for the aerospace, automotive and mould-die
industries. The company currently has a process layout configuration. Five different kinds of
family cutting insert tools are produced. Each part has specific monthly demand. There are
different kinds of unequal sized grinding machine tools. Some of the machine tools have
identical copies on the shop floor to increase productivity. Therefore, the demand is being

Horizontal
Aisle xfG < xf´G xf G ≥ xf´G

yfG < YL xf´G ¼ xf´G � Rep · cosθ
xf´G ¼ xf´G � Rep · sinθ

xf´G ¼ xf´G þ Rep · cosθ
xf´G ¼ xf´G � Rep · sinθ

yfG > YL xf´G ¼ xf´G � Rep · cosθ
xf´G ¼ xf´G þ Rep · sinθ

xf´G ¼ xf´G þ Rep · cosθ
xf´G ¼ xf´G þ Rep · sinθ

Table 5. Revised coordinate based on before-aisle repair function-horizontal aisle.

Vertical Aisle yfG < yf´G yfG ≥ yf´G

xfG < XL xf´G ¼ xf´G � Rep · cosθ
xf´G ¼ xf´G � Rep · sinθ

xf´G ¼ xf´G � Rep · cosθ
xf´G ¼ xf´G þ Rep · sinθ

xfG > XL xf´G ¼ xf´G þ Rep · cosθ
xf´G ¼ xf´G � Rep · sinθ

xf´G ¼ xf´G þ Rep · cosθ
xf´G ¼ xf´G þ Rep · sinθ

Table 6. Revised coordinate based on before-aisle repair function-vertical aisle.
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shared among the different copies of those machine tools. Different operations are performed
on inserts with different sequences. The list of operations of each insert and the machine tools
used for those operations are shown in Table 7.

The company's shop floor has a rectangular shape. There is no special material handling device
for transforming unfinished products among machine tools. As demonstrated in Table 7, it is
obvious that the number of operations performed on each part insert tool is large enough;
hence, the amount of travel taking place every day on the production floor is quite significant.
Additionally, as per their original layout, all the raw materials are transported from the back
side of the shop to the front to start operation. This causes extra unnecessary travel, and hence
extra material handling cost. The inspection and shipping stations which are two of the last
steps as per the sequence of operations are not properly positioned in the current layout,
because they are located in front of the floor. Since the current layout is process layout, similar
machine tools are grouped together and located on one side of the floor. The original layout is

ID Machine

Dimension Cutting insert tools

Length Width
Dog
bone

S
Shape Triangular

Top
notch

Diamond
type 1

Diamond
type 2

Diamond
type 3

M1 Double disk (1) 12.67 5 O1 O2

M2 Blanchard (2) 6 9.07 O1 O1 O1 O1

M3 Wendt (3) 8.5
6.8

6.1
9.45

O1 O2 O4 O2 O2 O2

M4 Polish (1) 6 5 O3

M5 EWAG (1) 4.3 7.3 O7 O3

M6 Surface grinding (2) 7 6 O4 O5 O5 O3

M7 Surface grinding (1) 6 7.54 O3 O3

M8 Swing fixture (1) 8 6 O2 O3

M9 V-bottom (1) 7 6 O3 O4

M10 Wire cutting (2) 7.8
7.4

6.7
5.7

O4 O4

M11 Laser M/C (1) 7.6 9.74 O6

M12 Brazing (1) 4 1.8 O6 O5 O1

M13 ETCH (1) 3 4 O5 O5 O6 O4 O8 O7 O3

ST1 Inspection (1) 4 3 O6 O6 O7 O5 O9 O8 O4

ST2 Wash (1) 5 3 O7 O7 O8 O6 O10 O9 O5

ST3 Packing (1) 16 8 O8 O8 O9 O7 O11 O10 O6

Part demand 1200 900 500 500 600 600 200

Table 7. Machine tool characterizations and parts’ operations sequence.
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causing too much traffic, since it is not taking into account the sequence of processing of parts.
For an example, the primary operations of all insert tools are performed by the combination of
three machine tools: Double Disk, Blanchard and Wendt. All Wendt machines are located in
upper side of hall, while Blanchard and Double Disk machines are arranged in the lower side.
Therefore, it could be concluded that there are too much back and forth travel being done
between the two sides of the floor just for performing the first couple of operations.

After having several meetings with the plant manager and executive board of the company,
cellular layout was chosen as the best layout plan. Group formation was performed by the plant
manager. Four cells with specific types of machine tools were designed as given in Table 8. The
problem was solved using both the developed mathematical model and heuristic [7].

5.1. Mathematical model

5.1.1. Intra-cellular layout

For the leader problem the layout of the different machine tools and work stations in their
respective cells are being solved. The intra-cellular travel cost per unit distance per one unit of
each respective part are ¢10, ¢10, ¢15, ¢12 and ¢20, respectively for Dog Bone, S Shape,
Triangular, Top Notch and all types of Diamond. The results for intra-cellular layout are
summarized in Table 9.

5.1.2. Inter-cellular layout

In the follower problem, the four cells with exact dimensions are located on the 90” · 60” shop
floor. The inter-cellular travel cost per unit distance for each unit of Dog Bone, S shape,

Cell name Machine tools/work station

Primary M1 (1) M2 (2) M4 (1) M3 (3)

Grinding M6 (2) M8 (2) M9 (1)

Diamond M10 (2) M7 (1) M5 (1) M12 (1) M11 (1)

Final M13 (1) ST1 (1) ST2 (1) ST3 (1)

Table 8. GF results.

Cells Dimension Centroid MHC (material handling cost)

Length Width X Y

Primary 35 25 42.5 13.5 $1191.550

Grinding 26 20 74 50 $520.588

Diamond 30 20 45 59.22 $764.580

Final 30 20 75 8 $1056.350

Aisle 90 60 45 32.5

Table 9. Intra-cell material handling costs and inter-cell dimensions of cells.
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Triangular, Top Notch, and Diamond are ¢12, ¢12, ¢18, ¢15, and ¢20, respectively. Material
handling cost for the inter-cellular layout is $7520.42. Table 11 shows the coordinates of cells
based on inter-cellular layout plan. The final sketch of inter-cellular and intra-cellular layout is
shown in Figure 11.

5.2. Heuristic

The heuristic is applied to solve the intra-cellular layout problems for each respective cell. The
results obtained are provided in Table 10 and plotted in Figure 12. The material handling cost
for the inter-cellular layout is $6134.50 [6].

5.3. Simulated annealing (SA)

5.3.1. To validate the proof of the efficiency of the developed SA algorithm, the developed SA was applied
for 10 runs for each cells [8]

5.4. Discussion

The comparison between the solutions provided non-linear, linear model and simulated
annealing is represented in Table 11. The linear model gives the exact optimum solution,
however simulated annealing provides near optimum solution. The results also prove this
fact. In both leader and follower problem, i.e. intra- and inter-cell, respectively, the total

Figure 11. Inter-cell and intra-cell layout plan.
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material handling cost is less than costs provided by non-linear mixed integer programming
and simulated annealing.

The follower problem solved by simulated annealing has just assumed aisle.

Generally speaking, the linearized model obviously has yielded exact optimal results which
proved to be better than those obtained by both the simulated annealing and the original non-

Cell Machine Coordinates

X Y

Primary Blanchard 14.5 18.30

Blanchard 21.27 17.16

Polish 14.5 5.98

Wendt 6.58 7.64

Wendt 23.34 4.45

Double Disc 23.83 10

Wendt 7.25 17.72

MHC $734.581

Grinding Surface grinding 16.79 4

Surface grinding 21.05 16

Swing fixture 18.97 10

Swing fixture 5.72 15.26

V-bottom 8.55 6.76

MHC $669.480

Diamond Wire cutting 10.39 3.8

Wire cutting 5.50 10

Surface grinding 18 5.64

Brazing 26 10

Ewag 11.53 16.31

Laser M/c 18.8 14.87

MHC $808.640

Final ETCH 26.19 9

Wash 15 12.42

Inspection 4.89 9

Packing 15 5

MHC $2410.760

Table 10. Machine coordinates based on heuristic.

Computational Optimization in Engineering - Paradigms and Applications126



material handling cost is less than costs provided by non-linear mixed integer programming
and simulated annealing.

The follower problem solved by simulated annealing has just assumed aisle.

Generally speaking, the linearized model obviously has yielded exact optimal results which
proved to be better than those obtained by both the simulated annealing and the original non-

Cell Machine Coordinates

X Y

Primary Blanchard 14.5 18.30

Blanchard 21.27 17.16

Polish 14.5 5.98

Wendt 6.58 7.64

Wendt 23.34 4.45

Double Disc 23.83 10

Wendt 7.25 17.72

MHC $734.581

Grinding Surface grinding 16.79 4

Surface grinding 21.05 16

Swing fixture 18.97 10

Swing fixture 5.72 15.26

V-bottom 8.55 6.76

MHC $669.480

Diamond Wire cutting 10.39 3.8

Wire cutting 5.50 10

Surface grinding 18 5.64

Brazing 26 10

Ewag 11.53 16.31

Laser M/c 18.8 14.87

MHC $808.640

Final ETCH 26.19 9

Wash 15 12.42

Inspection 4.89 9

Packing 15 5

MHC $2410.760

Table 10. Machine coordinates based on heuristic.

Computational Optimization in Engineering - Paradigms and Applications126

linear model. This was quite expected; in most cases simulated annealing resulted in better
solutions than the non-linear model; however, there were cases where the non-linear model
results were slightly better than those obtained by simulated annealing. The exception was for
grinding cell and diamond cell where the non-linear model outperformed slightly than simu-
lated annealing.

Table 12 summarizes the results from both leader and follower problems. Both mean and SDV
from the performed 10 runs are being provided. Standard deviation is good except for inter-
cell layout problem. For inter-cell, we believe the algorithm is yet to be improved, and variance
as shown in Table 12 is relatively high.

Figure 12. Heuristic results showing layout presented at intra-cell level for different cells (note: quadrant have been
plotted demonstrating how facilities were spread around the different quadrants as per the working of the algorithm).

Method

Leader problem Follower problem

Primary cell Grinding cell Diamond cell Final cell Shop

NLMIP $ 1191.550 $520.588 $764.580 $1056.350 $7520.420

LMIP $503.024 $399.750 $360.800 $685.200 $2838.6

SA $701.592 $526.004 $787.940 $856.508 $6167.6

Table 11. Comparisons between mathematical modelling and simulate annealing.
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6. Conclusion

Cellular manufacturing system (CMS) layout has recently begun to receive heightened atten-
tion worldwide. The design of a CMS includes: (1) cell formation (CF), (2) group layout, (3)
group and (4) resource allocation. An effective CMS implementation help any company
improve machine utilization and quality; it also makes reduction in setup time, work-in-process
inventory, material handling cost, part makespan and expediting costs.

There are two main approaches to FLP such as the discrete and continuous approaches. The
discrete approach holds two main assumptions: one is all facilities are equal size and shape;
the other one is predetermined locations of facilities. However, these kinds of assumptions are
not realistic. The discrete approach is not suited to represent the exact locations of facilities.
Moreover, this approach is not applicable for FLP with unequal size and shape facilities. The
appropriate approach to this kind of FLP is continuous representation.

Generally speaking, the design of layout cannot be efficient if manufacturing attributes are not
being considered in it. To illustrate, operation sequencing and parts’ demand are the two
factors that have significant impacts on the flow rate which minimizes the main objective of
FLP. The majority of literature studies have not considered these factors in the design of layout
plan. Besides those manufacturing attributes, the available area of the shop that can be used for
locating facilities is the other factor that has to be considered.

The facility layout problem for cellular manufacturing system in both inter- and intra-
cellular levels is considered in this chapter. The problem is to arrange facilities that are cells
in the leader problem and machine tools in the follower problem in the continual planar site.
Operation sequence and parts’ demand are the two main manufacturing attributes consid-
ered in the developed model. The MIP has been presented for both leader and follower
problems. The novel aisle constraints have been presented in the mathematical formulation.
Since the model is non-linear, the linearized model has been developed. Additionally, a novel
mathematical modelling has been developed for considering block constraints such as fixed
departments and facilities. Since the FLP is an NP-hard problem, novel heuristics presented
in this chapter.

A novel heuristic model developed for finding feasible initial solution for designed meta-
heuristic algorithm, simulated annealing. The initial solution is based on the radial movement.

Cell Average SDV

Primary $633.86 $11.19

Grinding $492.44 $15.63

Diamond $759.790 $22.315

Final $902.62 $32.23

Inter-cell $5474.61 $423.97

Table 12. Mean and standard deviation of SA solutions.
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In other words, the algorithm placed facilities along the specific radius with certain angle
within site. The algorithm starts with dividing site into four equal-sized quadrants, start
placing facilities into first quadrant to the fourth one. After placing any new facility, the over-
lap's possibility between facilities and between facility and site boundaries is being checked.
The different repair functions have been designed for different cases.

The SA algorithm developed for both inter- and intra-cellular problem. The results of heuristic
have used to initialize the developed SA algorithm. However, in order to have more efficient SA,
the cell size used in heuristic algorithm is assumed two times of the original size of the cells. The
two main operators used are move and swap operators. The move operator decreases the
distance between facilities by moving the target facility towards the closest facility to it. Further-
more, the swap operator developed by defining the concept of the free zone.
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Abstract

Characterization of groundwater contamination sources is a complex inverse problem. 
This inverse problem becomes complicated, due to the nonlinear nature of the ground‐
water flow and transport processes and the associated natural uncertainties. The math‐
ematical challenges arise due to the nonunique characteristics of this problem resulting 
from the nonunique response of the aquifer system to a set of stresses and the possibil‐
ity of instead locating only local optimal solutions. The linked simulation‐optimization 
model is an efficient approach to identifying groundwater contamination source charac‐
teristics. Efficiency and accuracy of the search for optimum solutions of a linked simu‐
lation‐optimization depend on the utilized optimization algorithm. This limited study 
focuses on the application and efficiency of simulated annealing (SA) as the optimiza‐
tion algorithm for solving the source characterization problem. The advantages in using 
adaptive simulated algorithm (ASA) as an alternative are then evaluated. The possibility 
of identifying a local optimal solution rather than a global optimal solution when using 
SA implies failure to solve the source characterization inverse problem. The cost of such 
inaccurate characterization may be enormous when a remediation strategy is based on 
the model inferences. ASA is shown to provide a reliable and acceptable alternative for 
solving this challenging aquifer contamination problem.

Keywords: groundwater contamination, adaptive simulated annealing, source 
characterization, simulation, optimization

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



1. Introduction

One of the efficient methodologies for identifying groundwater contamination source charac‐
teristics is the linked simulation‐optimization model [1]. Efficiency and accuracy of the opti‐
mal solutions for this type of inverse models, which are often complex, nonlinear, and large 
scale, depend on the efficiency and accuracy of the optimization algorithm. Simulated anneal‐
ing (SA) and adaptive simulated annealing (ASA) are two efficient evolutionary optimization 
algorithms which have been recently applied for solving such a large‐scale nonlinear and 
complex linked simulation‐optimization models for optimal characterization of unknown 
contaminant sources in groundwater systems. This chapter discusses the application of these 
two optimization algorithms and their relative performances in identifying the characteris‐
tics of contamination sources in groundwater systems. Adaptive simulated annealing is a 
modified version of simulated annealing where the optimization parameters are tuned auto‐
matically [2]. The advantages of using the ASA algorithm are demonstrated for an illustrative 
groundwater contamination‐related problem, and the relative efficiency and accuracy of these 
two optimization algorithms, SA and ASA, are compared. The adaptive algorithm, ASA, is 
shown to be computationally more efficient and more suitable for searching for a globally 
optimal solution for a complex nonlinear optimization model representing complex flow and 
contaminant transport process in a contaminated groundwater aquifer.

2. Background

Effective groundwater pollution management and remediation depend on identifying the 
unknown pollution source and reconstructing their release history [3, 4]. The optimal and 
accurate identification of the contaminant sources plays an important role in modeling of sub‐
surface transport processes and in reducing the long‐term contamination remediation cost. 
The source identification problem deals with the spatial and temporal variations of the loca‐
tion, activity duration, and the injection rate of the pollutant sources and is mostly inferred 
from the available sparse and sometimes erroneous concentration measurements at the site. 
Mainly, source identification includes a simulation problem, such as groundwater flow and 
pollutant transport models, used to estimate past phenomena or predict future scenarios.

A linked optimization simulation‐based methodology is often the viable and efficient 
approach for source identification in a regional‐scale aquifer. The unknown contamination 
source identification in a contaminated aquifer is generally a very complex, ill‐posed, and 
nonunique problem [5]. The nonuniqueness can be caused by sparsity of field measurement 
data or due to the inefficiency of the optimization algorithm to reach a global optimal solution. 
Designed monitoring networks [6–9] can reduce the nonuniqueness related to data availabil‐
ity. However, the nonuniqueness related to the search for a single global optimal solution to 
the inverse problem depends on the efficiency of the optimization algorithm. Other approach 
for source identification consists of solving the differential equations backwards in time 
(inverse problem). The random walk particle method [10, 11], the quasi‐reversibility tech‐
nique [12], the minimum relative entropy method [13], the Bayesian theory and geostatistical 
techniques [14], and genetic algorithm [15, 16] are some examples of this approach.
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A simulation‐optimization methodology couples the forward time contaminant simulation 
model with optimization techniques. If an optimization problem is solvable and every mini‐
mization sequence converges to a unique answer, it is called stable [17]. This methodology 
avoids the problem of stability associated with formally solving the inverse problem, but the 
iterative nature of simulation models usually requires increased computational effort. Many 
techniques were proposed utilizing coupled simulation‐optimization, and a few representa‐
tive ones are: response matrix [18, 19], embedded optimization [3], and linked simulation and 
ptimization [3, 15, 20].

The two limitations of the response matrix approach are as follows: it is based on the prem‐
ise that the superposition principle is approximately valid in terms of flow and contaminant 
transport in the aquifer, and the aquifer parameters must be known and the simulation model 
must be used to generate the response matrix prior to running the source identification model 
[3]. Mahar and Datta [3] showed that the embedding methods need large computer storage 
and computational time, for large aquifers. Gorelick and Evans [18] concluded that numerical 
difficulties are likely to arise for large‐scale problems using the embedding technique.

To conduct unknown pollutant source characterization in large‐scale aquifers and real areas, 
linked simulation‐optimization methodology was proposed. In this methodology, the numeri‐
cal models for simulation of the flow and transport process are internally linked to the optimi‐
zation algorithm. Chadalavada and Datta [1] and Amirabdollahian and Datta [21] presented 
an overview of the pollution source identification simulation‐optimization approaches.

The linked simulation‐optimization model is an efficient and effective technique to charac‐
terize the contaminant sources by internal linkage between flow and contaminant transport 
simulation models and the selected optimization technique. This methodology can solve con‐
taminant source problems in fairly large study areas.

Evolutionary optimization algorithms have made it possible to solve complex linked simu‐
lation‐optimization models, which are difficult to solve, or difficult to even obtain feasible 
solutions, when utilizing classical optimization tools. Moreover, there is less limitation in 
mathematical definition of objective function and constraints compared to former optimi‐
zation algorithms such as linear programming [22]. Finally, evolutionary algorithms can 
optimally identify relatively large number of decision variables [23], and utilization of the 
evolutionary optimization algorithms simplifies the linking process. Examples of the evolu‐
tionary optimization algorithms include: genetic algorithm (GA) [24], tabu search (TS) [25], 
simulated annealing (SA), adaptive simulated annealing (ASA) [26], and differential evolu‐
tion algorithm [27]. Yeh [28] and Datta and Kourakos [22] presented an overview on various 
optimization methods coupled with simulation techniques utilized for groundwater quantity 
management, and quality management, respectively.

In a linked simulation‐optimization approach, the optimization algorithm is used as an effi‐
cient search tool and the accuracy and efficiency of the methodology depend on the selected 
optimization algorithm. In groundwater contaminant source characterization problems, even 
when there are no errors or uncertainties associated with the inputs and parameter  estimates 
for the physical process simulation model, there may not be a unique solution to the inverse 
problem due to nonunique physical response of the system. The ill‐posed nature of the 
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inverse problem is a different issue and is predominantly due to sparsity of measurement 
data, which can be addressed by designing and implementing a suitable concentration moni‐
toring network [29]. The ill‐posed nature of the inverse problem and the plausibility of nonu‐
nique solutions can be interrelated as well. More efficient monitoring networks can reduce 
the plausibility of nonunique solutions, and therefore, optimal monitoring network design is 
a related issue [9, 22]. Also, only if the global optimum solution is found, it may represent the 
accurate solution to the source identification problem. Nonuniqueness in the system response 
may introduce alternate optimal solutions, although each globally optimal [5, 20, 21]. This is 
due to the fact that different sets of stresses (i.e., contaminant sources) can result in identi‐
cal responses (resulting spatial and temporal concentrations). Therefore, nonuniqueness is 
inherent, independent of errors in parameter estimates or measurements. In addition, if the 
optimal solution is not the global solution, it itself introduces nonuniqueness due to local opti‐
mal solutions being wrongly identified as the optimal solution of the inverse problem. In the 
optimal contaminant source identification process, this global optimum generally represents 
the actual contaminant source characteristics. Failure to identify the global optimal and the 
plausible local optimal solutions introduces nonuniqueness in the solution space. Therefore, 
efficiency of the optimization algorithm to reach a global optimum solution, or near optimal 
solution, is crucial to accurate source identification. Efficiency of algorithms like ASA can 
be extremely useful especially when compared to SA which needs tuning of optimization 
parameters, hence rendering the search for a global optimal somewhat subjective or more 
uncertain.

In this chapter, two evolutionary optimization algorithms are described: SA and ASA. 
Simulated annealing (SA) approaches the optimization model like a bouncing ball, which 
bounces over mountains from valley to valley. The SA controlling parameter is temperature 
(T) which mimics the effect of fast moving particle in a hot object like hot molten metal; as the 
T decreases and reaches relatively colder states, the height of the ball bounce decreases and it 
settles gradually in the deepest valley. To reach the optimal solution, there are many param‐
eters which need to be tuned, such as probability density function, acceptance probability 
density function, and re‐annealing temperature schedule. ASA is a variant of SA in which 
the automated re‐annealing temperature schedule and random step selection make the algo‐
rithm less sensitive to the user‐defined parameters. One of the issues in selecting a suitable 
and efficient optimization algorithm for solution of an optimization model is the likelihood 
of reaching a global optimum solution. It has been shown that SA is relatively more efficient 
in reaching a better optimal solution compared to GA [2]. The added advantage of using 
ASA is the elimination of the requirement to choose all the relevant optimization parameters 
appropriately, a process very much dependent on the structure and nature of the optimization 
model to be solved. ASA also eliminated the need for several trial executions of the model, 
to adjust the parameters [23]. Therefore, the possibility of reaching a global optimal solution 
faster is also enhanced by utilizing ASA. Very fast simulated re‐annealing (VFSR) developed 
in 1987 is the first version of ASA [30]. Ingber and Rosen [31] showed that VFSR is about one 
order of magnitude faster than GA in convergence speed and is more likely to find the global 
optimum.
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This study investigates the applicability of ASA to unknown groundwater contaminant source 
release history reconstruction problem and compares its performance to SA‐based solutions. 
The performance evaluation of linked simulation‐optimization approach is based on a real‐
istic scenario where contaminant concentration measurements are available a few years after 
the sources have ceased to exist. Apart from the convergence speeds, the two algorithms are 
compared for their performance in recovering accurate source release histories in terms of 
source location, magnitude, and duration of activity.

3. Methodology

The pollutant source characteristics which are required to be addressed in an identifica‐
tion procedure are: (1) source release history (time); (2) source locations; and (3) source 
flux magnitudes. The linked simulation‐optimization model consists of an optimization 
algorithm which specifies the candidate source characteristics. A simulation model which 
is linked to the optimization algorithm uses the candidate characteristics to simulate the 
contaminant concentration at monitoring locations at various time intervals. The optimi‐
zation algorithm is used to minimize the objective function representing the differences 
between measured concentrations and simulated ones. This process evolves until the algo‐
rithm reaches the optimal solution or a specified stopping criterion. This methodology for 
identification of unknown groundwater contamination sources has two major components: 
numerical groundwater flow and transport simulation models and linked simulation‐opti‐
mization model.

3.1. Groundwater flow and transport simulation models

Groundwater flow simulation model used in this study is MODFLOW‐2000 [32]. MODFLOW 
is a computer program that numerically solves the three‐dimensional ground water flow 
equation for a porous medium by using a finite‐difference method. The partial differential 
equation for transient groundwater flow utilized in MODFLOW is given by the following 
equation [33]:

    ∂ ___ ∂ x    (   K  xx     
∂ h _ ∂ x   )    +   ∂ ___ ∂ y    (   K  yy     

∂ h _ ∂ y   )    +   ∂ ___ ∂ z    (   K  zz     
∂ h _ ∂ z   )    + W =  S  s     

∂ h ___ ∂ t    (1)

where Kxx , Kyy and Kzz are the hydraulic conductivities (L/T) along the x, y, and z coordi‐
nate axes which are assumed to be parallel to the principal axes of hydraulic conductivity, 
respectively. H, SS, and t are the potentiometric head (L), the specific storage of the porous 
material (L‐1), and time, respectively. W is the volumetric flux per unit volume representing 
sources and/or sinks of water, where W < 0 for flow moving out of the groundwater system, 
and W > 0 for flow moving in (T‐1). When combined with boundary and initial conditions, 
Eq. (1) describes transient three‐dimensional groundwater flow in a heterogeneous and aniso‐
tropic medium, assuming that the principal axes of hydraulic conductivity are aligned with 
the coordinate directions.
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The contaminant transport simulation model which is used in this study is chosen as MT3DMS 
[34]. The partial differential equation describing three‐dimensional transport of contaminants 
in groundwater can be written as follows [35]:

    ∂ C ___ ∂ t   =   ∂ ___ ∂  x  j  
    (   D  j,k     

∂ C _ ∂  x  k  
   )    −   ∂ ___ ∂  x  j  

  ( u  j   C ) + ∑ 
i=1

  
N
      

 q  i   __ θ   +  ∑ 
p=1

  
NR

     R  p    (2)

where C is the solute concentration in groundwater (ML‐3); t is the time (T); j and k are the 
Cartesian coordinates along axes; uj is the groundwater velocity (LT‐1); Dj,k is the dispersion coef‐
ficient tensor (L2T‐1); qi is the flux of contaminant concentration for source i (MT‐1); and   ∑ 

p=1
  NR     R  

p
    are 

chemical reaction terms (ML‐3T‐1).

The MT3DMS transport model uses a mixed Eulerian‐Lagrangian approach to the solution of 
the three‐dimensional advective‐dispersive‐reactive equation [34]. The groundwater velocity 
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which is sufficiently large to prevent any individual term in Eq. (3) becoming indeterminate 
due to the observed value of concentration becoming very small. Adding this parameter 
variable also prevents domination of the obtained solution by deviation between measured 
and simulated concentrations corresponding to low concentration measurement values [3]. 
Figure 1 shows a schematic representation of the linked simulation‐optimization source iden‐
tification process using evolutionary optimization algorithms.

Figure 1. Schematic diagram of linked simulation‐optimization contaminant source identification methodology.
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4. Performance evaluation

A three‐dimensional transient illustrative groundwater contamination problem is utilized to 
compare the efficiency and accuracy of SA and ASA optimization algorithm in the context 
of this research. First, the illustrative groundwater system is defined. Arbitrary monitoring 
locations are selected, and flow and transport simulation models are used to estimate con‐
taminant concentrations at monitoring locations and times. Specifically for the performance 
evaluation purpose, these simulated concentration measurement values are to be used as 
observed concentration in the linked simulation‐optimization source identification model. 
Using this performance evaluation procedure with synthetic data for an illustrative example 
facilitates the comparison between the application of SA and ASA optimization algorithms, 
without the need to consider the reliability of model properties, measurement accuracies, and 
parameters estimation errors.

4.1. Illustrative groundwater contamination problem

The performance of the proposed methodology is evaluated for a three‐dimensional illus‐
trative groundwater aquifer study area. Figure 2 shows the plan view of the three‐dimen‐
sional study area measuring 1500 m × 1000 m × 36 m and consisting of two unconfined 
layers. The top, bottom, and left side boundaries have a specified head, and the right‐hand 

Figure 2. Plan view of the study area with location of contaminant sources.
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side boundary has variable head boundary conditions. The triangular signs show the loca‐
tion of active extraction wells (sinks). The candidate contaminant source locations are 
shown by square signs. Two of them are actual sources and one is a dummy. The dummy 
(not actual) source is introduced to evaluate the accuracy of the proposed methodology in 
 correctly identifying actual sources. Twelve concentration monitoring locations are speci‐
fied. It is assumed that the contaminant source fluxes are the same in every stress period. The 
study period is divided into five stress periods. Table 1 shows the length of stress periods 
and the extraction wells and contaminant sources’ properties. The field hydrogeological 
 parameters are given in Table 2.

Location Stress period

Row Column Layer 1 2 3 4 5
183 days 183 days 183 days 183 days 2196 days

Contamination 
source

12 11 1 60 70 20 30 10

15 15 1 Dummy source

20 13 1 30 50 70 80 0Flux (g/s)

Extraction well 22 7 1 100

Flow rate (L/day) 23 16 1 500

Table 1. Characteristics of the contamination sources and extraction wells.

Parameter Unit Value

Number of cells in x‐direction – 20

Number of cells in y‐direction – 30

Number of cells in z‐direction m 2

Horizontal hydraulic conductivity (1st and 2nd layers) m/d 25, 18

Vertical hydraulic conductivity m/d 3

Specific storage 1/m 0.2

Porosity – 0.25

Longitudinal dispersivity m 20

Horizontal transverse dispersivity m 2

Vertical transverse dispersivity m 1

Initial contaminant concentration ppm 0

Diffusion coefficient – 0

Upper and lower bounds for source fluxes g/s 0–100

Table 2. Hydrogeologic parameters for the study area.
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4.2. Contaminant source identification process

For the purpose of identifying contaminant source characteristics, all sources are considered 
to be active during all five stress periods, and the pollutant flux from each of the sources is 
assumed to be constant over a specified stress period. In order to evaluate the model perfor‐
mance, one dummy (not actual) source is also introduced as a potential source. Therefore, the 
source identification decision variables are the contaminant fluxes at three potential source 
locations for each stress period, and in total, there are 15 decision variables to be identified.

Since the performance is evaluated using illustrative problem, flow and transport simula‐
tion models are utilized to find contaminant concentration at monitoring locations using the 
actual source fluxes. These values are used in the linked simulation‐optimization process as 
observed concentrations. The initial source fluxes are set to 0 for all sources and stress periods. 
In real‐life contaminant source identification problems, the observed concentrations collected 
in the field will be used to find optimal source characteristics.

5. Results and discussion

The applicability of these two algorithms is compared in terms of efficiency and accuracy. The 
run time and number of generations are utilized to compare the efficiency of the algorithms. 
Moreover, the estimated source characteristics are compared with the actual properties in 
order to compare algorithms in terms of accuracy. To examine the capability of both models 
in terms of accuracy in estimating source fluxes, the normalized absolute error of estimation 
(NAEE%) is estimated using Eq. (6) [2]:

  NAEE (% ) =   
 ∑ i=1  N     |    q  est  i   −  q  act  i   |   

  ____________  ∑ i=1  N     q  act  i     × 100  (6)

where N is the number of stress periods and   q  
est

  i    and   q  
act

  i    are the estimated and actual source 
fluxes for stress period i, respectively.

Table 3 presents the SA and ASA optimization parameters. Every iteration of SA‐ and ASA‐
based methods uses one run of the groundwater transport simulation model (MT3DMS). 
Irrespective of the optimization algorithm, the execution time for one transport simulation 
run depends on the computation platform. In order to have a comparison between methods, 

Parameter Unit Value

Error tolerance for termination – 0.01

Objective function multiplier – 100

Lower bound for source fluxes g/s 0

Lower bound for source fluxes g/s 100

Initial source fluxes g/s 0

Table 3. Optimization model parameters.
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independent of the utilized computation platforms, both methods are compared based on the 
number of simulation runs which is directly proportional to the computational time.

In real‐life groundwater contaminant source identification problems, the source character‐
istics are unknown. Therefore, there is no information available to measure the accuracy of 
linked simulation‐optimization methods. The accuracy and efficiency of SA depend to a large 
extent on the selected SA optimization parameters. However, due to unknown source char‐
acteristics, sensitivity analysis and tuning SA parameters are not possible or very difficult. To 
compare SA‐ and ASA‐based methods, SA with initial temperature (T) 1.0E8 and temperature 
reduction factor (TR) 0.5 is selected. Figures 3 and 4 compare the estimated against actual 
fluxes for sources 1 and 3, respectively. NAEE% of the estimated fluxes using ASA and SA 
models (T = 1.0E8, RT = 0.5) is 22.5 and 75%, respectively. Both methods identified the dummy 
source (not an actual source but introduced as a potential source for evaluation purpose). As 
shown in Figures 3 and 4, this particular set of SA parameters represents one particular SA 
solution highlighting the comparative inefficiency of SA.

Figure 5 shows the convergence profiles for both SA‐ (T = 1.0E8, RT = 0.5) and ASA‐based 
models. Minimum value of the objective function achieved is plotted against number of the 
transport process numerical simulation models. Figure 5 shows that ASA converges faster to 
the smaller objective function values (in the minimization problem), compared to the utilized 
SA model. Although, as Figure 5 shows, the SA‐based model converges to very small objec‐
tive function values, the corresponding estimated NAEE% (75%) is large. This shows that 
SA‐based solutions seem to get trapped in a local optimum and did not find or get close to 
the global optimum. This may be due to the nonunique nature of the local optimal solutions 

as well, that is, the obtained solution matches the observed and simulated concentrations for 
a different set of sources not representing actual sources. The objective function is very small, 

Figure 3. Source 1 release fluxes.
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even though the accuracy of source estimates is very poor. Figure 5 shows that the objective 
function improvement rate decreases after 10,000 simulation runs. Next, sensitivity analysis 
is conducted to find suitable SA parameters. A set of 10,000 simulation runs is selected as 
maximum number of simulation runs.

For the performance evaluation purposes, a sensitivity analysis is performed to find suit‐
able SA parameters. This sensitivity analysis, so‐called artificial, is not possible in real‐life 

Figure 4. Source 3 release fluxes.

Figure 5. SA‐ (T = 1.0E8, RT = 0.5) and ASA‐based model convergence profiles.
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contamination problems. In this chapter, illustrative example study area is selected with syn‐
thetic aquifer data. Therefore, SA parameters are tuned by comparing estimated and actual 
release fluxes. This step is not possible in real‐life scenarios where the source release fluxes 
are unknown. These evaluation results only show that SA can deliver solution results compa‐
rable to the ASA solutions if the SA parameters could be optimally tuned based on sequential 
matching of desired and obtained solutions, an impractical scenario.

Two parameters, initial temperature and temperature reduction factor, in order to find the 
sensitivity of SA models to the optimization parameters. Since the objective of this chapter 
is to compare the performance of SA‐ and ASA‐based models, an initial execution of ASA is 
used to find desirable number of simulation runs. Using this initial model execution, 10,000 
simulation runs are selected. Figure 6 shows the resulted NAEE% using different SA param‐
eters with the same number of maximum simulation runs (10,000). The least NAEE% is asso‐
ciated with 1000 as initial temperature (T) and 0.3 as the temperature reduction factor (TR).

In order to compare the accuracy and convergence of the tune SA‐ and ASA‐based models, 
both models are executed with unconstrained time of run. Error tolerance of estimation is set 
as 0.01 for both methods. NAEE% of the estimated fluxes using ASA and tuned SA (T = 1.0E3, 
RT = 0.3) models is 22.5 and 16.5%, respectively.

It can be inferred from the results that both methods are able to correctly identify the dummy 
source. A zero or near zero estimation of the dummy source implies correct identification. 
Solution results obtained using tuned SA parameters recovered source 1 release fluxes more 
accurately compared to the other SA‐based solutions. Solutions obtained utilizing the ASA algo‐

Figure 6. SA parameters sensitivity analysis.
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rithm recovered source 3 release fluxes more accurately. Apparently, both methods resulted in 
relatively similar accuracy in recovering source release fluxes in terms of location and magni‐
tudes. The tuned SA method solution results are slightly superior to ASA method considering 
accuracy, although the errors are similar in magnitude. As shown in Figure 6, all other sets of SA 
parameters (the ones tested in sensitivity analysis process) resulted in higher NAEE% compared 
with ASA method (25%). This shows that the performance of the SA‐based method is highly 
reliant on the selection of its parameters which limits its applicability in real‐life scenarios.

It can be argued that the poor performance of various SA‐based models reported in Figure 6 may 
have resulted from limited number of simulation runs. The purpose of this chapter is to compare 
ASA‐ and SA‐based models based on both accuracy and convergence speed. Therefore, improved 
accuracy with the cost of relatively larger execution times is beyond the scope of this chapter. 
However, to give an insight to the readers, the SA model with T = 1.0E10 and RT = 0.9 is tested. 
The NAEE% associated with the estimated fluxes is 0.65 which was achieved after 103,876 simu‐
lation runs. Figure 7 shows the T values and corresponding minimum objective function values.

Therefore, longer execution times can improve the results using non‐tuned SA‐based model. 
Figure 7 shows that faster convergence happens when T reaches cooler states. This potentially 
demonstrates that very high T values would not have substantial positive effect on finding the 
optimal values. More rigorous studies are required to make a definitive conclusion about the 
SA parameters optimization without any time (computational costs) constraints.

Figure 7. SA‐based model convergence profile, T = 1.0E10, RT = 0.9.
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6. Conclusion

Characterization of unknown sources of groundwater pollution, especially when field con‐
centration measurement data are sparse and arbitrary, remains a challenging problem. The 
linked simulation‐optimization method to solve the inverse problem of unknown groundwa‐
ter contamination source characterization problem is utilized. The performance of two evolu‐
tionary optimization algorithms, SA and ASA, in terms of accuracy and convergence speed is 
evaluated. It is applied to an illustrative contaminated aquifer study area. Evaluation results 
show that suitable SA parameters need to be selected based on the nature of the problem to be 
optimized. Performance evaluation shows that the ASA‐based method estimates the source 
release fluxes more accurately and convergences to a smaller objective function value (in a 
minimization problem) faster than non‐tuned SA‐based method.

In this limited study, an illustrative study area was selected with synthetic hydrogeology 
and contamination data specified for evaluation of the solution results. Therefore, just for 
comparison and performance evaluation purpose, SA parameters are tuned by comparing 
estimated and actual release fluxes. This practice is not possible in real‐life scenarios where 
the source release fluxes are unknown. Without synthetic data, and simulation results to rep‐
resent field concentration measurements, such tuning with prior knowledge will be impos‐
sible. Therefore, in real‐life scenarios, the SA performance cannot be controlled by tuned SA 
parameters. This limits the application of SA‐based models. The non‐tuned SA model con‐
verged to poor results even with unconstrained computational time. Results demonstrated 
that non‐tuned SA might not converge to near optimum results, even with a large number 
of iterations, and it may be trapped in the vicinity of local optimal solutions. This is due 
to nonunique nature of the groundwater contamination source characterization problems. 
Since tuning SA parameters in real‐life scenarios is hard or impossible, utilizing SA may 
lead to wrong source flux estimation. The wrong estimation of source fluxes is not verifi‐
able in real life and may lead to wrong decisions about management and remediation of the 
contaminated area.

The solution results obtained by an SA‐based model with tuned parameters and solutions 
obtained by ASA‐based model show that they have relatively similar performance con‐
cerning both accuracy and convergence speed. Moreover, the need to tune SA parameters 
will substantially limit its application in groundwater source identification problems. The 
tuning trial and error process increases the total computational costs of the linked simu‐
lation‐optimization process. Therefore, the application of ASA in linked simulation‐opti‐
mization‐based groundwater source identification models results in substantial savings in 
computational time and potentially results in more accurate results. This inference is critical 
for designing, effective, and efficient contaminated aquifer remediation strategies which are 
often very costly, and cost of failed remediation strategies, caused by inaccurate character‐
ization of unknown contamination sources, can be enormous. ASA is shown to provide a 
reliable and an acceptable alternative for solving this challenging aquifer contamination 
problem.
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